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Abstract

This work generalizes the multifractal process of Calvet & Fisher (2008), initially

used to model the volatility component of autoregressive data, to counting processes.

We include the multifractal process in the mean structure of the Poisson distribution

to obtain a distribution that can be applied to time series of count data. We show that

this kind of model is very �exible even if it only needs a few parameters. It is used with

the Zeger's classic polio data, where we found an unobserved periodic time dependence

structure that cannot be captured by a Poisson distribution with an autoregressive

component.

Key Words: Seasonality, Time Series, Count Data, Multifractal process,

Maximum Likelihood, Poisson.

1 Introduction

Time series of counts is a vast research area in statistics (see McKenzie(2003) or Jung &

Tremayne (2006) for excellent reviews). Models for count data observed over time can be
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classi�ed in many areas; a non-exhaustive list covers Markov Chain models (Raftery, 1985),

DARMA models (Jacob & Lewis 1978a, 1978b), models based on thinning operators (Al-Osh

& Alzaid, 1987), state space models, and hidden-Markov models (MacDonald & Zucchini,

1997).

In this paper, we are interested in the modeling of time series of count. We propose using

a generalization of Calvet & Fisher's (2008) multifractal process to model the unobserved

latent factor of a time series of counts. The interpretation of the model is interesting because

its underlying process can represent latent unobserved factors (e.g. climatic, economic or

social).

The word fractal emerged on the scienti�c scene with the work of Mandelbrot (1982)

in the 1960s and 1970s. Subsequently, multifractal processes became a popular mean of

modeling �nancial time series. We refer the interested reader to the numerous publications

of Mandelbrot (e.g. 1997 and 2001), for applications of these processes to �nance. To our

knowledge, this approach has not been exploited in a non-Gaussian framework.

We illustrate our work using polio data, a classic data set for time series of counts, �rst

used by Zeger (1988), and later by Chan & Ledolter (1995), Kuk & Cheng (1997), Oh &

Lin (2001), Jung & Liesenfeld (2001), and Farrell et al. (2007). We show that the �t of

this new model is interesting and can be advantageously compared to the Poisson-AR(1)

model. For example, unlike the Poisson-AR(1) model, the multifractal count model of this

paper can be estimated directly, without requiring simulations. A formal comparison of our

approach with the Poisson-AR(1), illustrates major di�erences between models, and shows

that the multifractal count distribution captures an unobserved time dependence structure,

not present in the other model.

In Section 2, the multifractal process is described and used with a Poisson distribution.

The inference technique using the Hamilton �lter is then explained, and the basic properties

of the model are explored. A numerical application with Zeger's dataset is presented in

Section 3. The last section concludes the paper.
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2 Multifractal Process Modeling

Models of time series of counts can be classi�ed in many ways. Cox (1981) proposed separat-

ing the models into two families: observation-driven models and parameter-driven models.

More recently, Jung & Tremayne (2011) carried out a detailed overview of time series mod-

els for counts, identifying several categories of models, such as static regression models, au-

toregressive conditional mean models, integer autoregressive models, and generalized linear

autoregressive models (GLARMA). In their classi�cation, a Poisson process with an autore-

gressive intensity is a parameter-driven model called the Poisson Stochastic Autoregressive

Mean (Poisson-SAM).

We propose a counting process that can model overdispersion and time dependence ex-

hibited by some time series. For this reason, we consider a Poisson random process, Nt,

which has the following stochastic intensity for the period of time [t, t+ 1):

λ(t) = dt exp(β>xt)Ft = τ(t)Ft, (2.1)

where the vector xt is used to include covariates, Ft is a multifractal process, and dt is the

exposure. An example of covariates is presented in the numerical application of Section 3.

The random process Ft is used here to introduce overdispersion and time dependence. This

approach is directly inspired by the binomial multifractal process used to model volatility in

a Gaussian time series, as studied by Calvet & Fisher (2008). In our framework, the number

of events observed on the time interval [t, t+ 1) has the following probability function:

Pr (Nt = n) =
λ(t)ne−λ(t)

n!
. (2.2)

The process Ft is the product of m random factors that may be climatic, economic, or social,

for example. Those factors are unobservable and are modeled by a Markov state vector, M t,

of m components:
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M t = (M1,t ,M2,t . . .Mm,t) ∈ Rm
+ .

The process Ft is the product of those factors:

Ft =
m∏
j=1

Mj,t (2.3)

Each process Mj,t, j = {1, . . . ,m}, is built in a recursive manner. Let us assume that the

vector of Mj,t−1 exists up to period t − 1. For each j = {1, . . . ,m}, the next period Mj,t

is drawn from a �xed distribution M(j) with probability γj, and is otherwise equal to its

previous value Mj,t = Mj,t−1. It can be expressed as:

Mj,t =


Mj,t−1 with probability 1− γj

M(j) with probability γj

. (2.4)

The random variable M(j) is a simple binomial variable that is worth m0,j with probability

p0 and 2−m0,j with probability 1− p0. Formally, we have:

M(j) =


m0,j p0 = 1

2

2−m0,j ≡ m1,j 1− p0 = 1
2

. (2.5)

The m0,j=1...m ∈ (0, 1) are parameters to be estimated and p0 is set to
1
2
. If the underlying

Markov process Mj,t equals 2−m0,j, it will increase the intensity rate. Conversely, if Mj,t =

m0,j, the intensity of the process will be reduced.

Basic properties of the model can be computed. Using (2.5), we have:

E(Mj,t) = 1, (2.6)

and:
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E(M2
j,t) =

m2
0,j +m2

1,j

2
. (2.7)

More generally, we can easily show that:

E(M q
j,t) =

mq
0,j +mq

1,j

2
. (2.8)

By construction, the parameter γj represents the probability that the factor Mj,t will

change its value. If γj is inversely proportional to j (we will impose this relation in the

inference), the last factor Mm,t changes its value less frequently than the �rst factor M1,t.

This approach allows us to capture low-valued regime shifts and long volatility cycles of the

counting process. We will revisit this point below.

2.1 Inference

As mentioned earlier, the number of events, Nt, on the time interval [t, t + 1] is distributed

as a Poisson random variable of intensity λt = τ(t)Ft where τ(t) = dt exp(β>xt) and Ft =∏m
i=1Mi,t. The parameters xt, dt and β are respectively a vector of covariates, the exposure

and the vector of coe�cients coupled with the covariates. The underlying multifractal process

Ft can take d = 2m values that are noted s1, ...sd. Each of these values corresponds to a

combination of processes Mj,t, t = 1, ..., T . Consequently, the vector Ft is a Markov chain

with a transition matrix A = (ai,j)1≤i,j≤d. The matrix A is fully determined by the γj=1...m

and has the following components:

ax,y = Pr(Ft = sx |Ft−1 = sy)

=
m∏
j=1

(
γj

1

2
+ (1− γj)I(Mj,t=Mj,t−1)

)
. (2.9)
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The factors (Mj,t)j=1,...,m are not directly observable, but the �ltering technique developed by

Hamilton (1989) and inspired by Kalman (1960) �lter allows us to retrieve the probabilities

of being in a state given all the previous observations.

Indeed, if we note as ni=0,...,t−1 the total number of events observed in the previous time

period, for a given observed number of events nt, the likelihood vector is de�ned as:

p(t, nt, xt) =


Pr(Nt = nt |Ft = s1, xt, dt)

...

Pr(Nt = nt |Ft = sd, xt, dt).


We then de�ne the probabilities of being in a certain state j as:

Π
(j)
t = Pr (Ft = sj |n1, . . . , nt, xt, dt)

The Hamilton �lter allows us to calculate recursively the vector Πt =
(

Π
(j)
t

)
j=1,...,d

as a

function of the probabilities of being during the previous period:

Πt =
p(t, nt, xt) ∗ (Πt−1A)

〈p(t, nt, xt) ∗ (Πt−1A) , 1〉
, (2.10)

where 1 = (1, . . . , 1) ∈ Rd and x ∗ y is the Hadamard product (x1y1, . . . , xdyd).

To start the recursion, we assume that the Markov processes have reached their stable

distribution. The vector Π0 is then set to the ergodic distribution, which is the eigenvector

of the matrix A, coupled with the eigenvalue equal to 1. If we observed the count process

on time T , the log-likelihood is:

lnL(n1 . . . nT |m0,j=1...m, γj=1...m, β) =
T∑
t=1

ln 〈p(t, nt, xt), (Πt−1A)〉 . (2.11)
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The MLE of the parameters m0,1, ...,m0,m, γ1, ..., γm, and β are obtained through numerical

maximization of (2.11):

max
m0,j=1...m,γj=1...m,β

lnL(n1 . . . nT |m0,j=1...m, γj=1...m, β)

To reduce the number of parameters to be estimated, we parametrize the m0,j=1...m and

γi=1...m in a similar way to Calvet & Fisher (2008). In particular, we assume that the

probability parameters γj are given by the function:

γj ≡ γb
j−1

1 j = 1, . . . ,m. (2.12)

where γ1 ∈ (0, 1) and b > 1. When dealing with the modeling of the volatility component

of autoregressive Gaussian data, Calvet & Fisher (2008) assumed that all m0,j are identical.

However, empirical analyses show that di�erentiating m0,j=1...m often leads to a better �t

of the count data. We therefore generalize the approach by supposing that m0,j can be

di�erent. We then adopt the following parametrization of m0,j:

m0,j = (m0)
jc , (2.13)

where m0 and c are such that m0,j ∈ (0, 1). The 2m parameters m0,1, ...,m0,m and γ1, ..., γm

are then replaced by four parameters: γ1, b,m0 and c. Of course, other parametrizations can

be used.

2.2 Moments

The multifractal process presented in this paper has several properties. Proofs of the prop-

erties listed in this section can be found in the appendix.

Proposition 2.1. If (2.5) holds and if Mj,0 if distributed as M(j), we have:
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E(Mj,t+1|Mj,t) = (1− γj)Mj,t + γj

Corollary 2.2. If Mj,0 are distributed as M(j), we have:

E(Mj,t+h|Mj,t) = (1− γj)h(Mj,t − 1) + 1

Proposition 2.3. If Mj,0 are distributed as M(j), we have that:

E(Mj,tMj,t+h) = (1− γj)h(E[M2
j,t]− 1) + 1

Given that the process Nt is Poisson-distributed, we get the following proposition:

Proposition 2.4. The expected number of events observed at time t is equal to:

E(Nt) = λ(t).

Its variance is given by :

V(Nt) = λ(t) + (λ(t))2
(

m∏
j=1

E(M2
j,t)− 1

)
,

where E(M2
j,t) is given by equation (2.8).The covariance between Nt and Nt+h is as follows:

Cov(Nt, Nt+h) = λ(t)λ(t+ h)
m∏
j=1

E (Mj,t,Mj,t+h)− 1

where E(Mj,t,Mj,t+h) is de�ned by equation (2.3).
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m=5 m=6 m=7 m=8
Parameters Est. (std.err.) Est. (std.err.) Est. (std.err.) Est. (std.err.)

γ1 0.074 (0.054) 0.075 (0.054) 0.075 (0.054) 0.076 (0.054)
b 5.602 (8.980) 5.241 (8.590) 5.023 (8.263) 4.873 (7.816)
m0 0.529 (0.104) 0.529 (0.104) 0.528 (0.103) 0.528 (0.103)
β0 0.337 (0.230) 0.328 (0.231) 0.325 (0.233) 0.323 (0.234)
β1 -0.841 (3.102) -0.870 (2.964) -0.884 (2.951) -0.895 (2.918)
β2 0.127 (0.128) 0.123 (0.127) 0.121 (0.126) 0.121 (0.126)
β3 -0.476 (0.152) -0.475 (0.151) -0.475 (0.150) -0.475 (0.150)
β4 0.427 (0.126) 0.424 (0.126) 0.423 (0.126) 0.423 (0.125)
β5 -0.028 (0.123) -0.024 (0.123) -0.022 (0.123) -0.022 (0.123)
c -0.589 (0.402) -0.661 (0.371) -0.709 (0.349) -0.740 (0.335)

Loglikelihood -246.789 -246.767 -246.760 -246.755

Table 3.1: Parameter estimates for di�erent models of the Poisson-Multifractal

3 Empirical Illustrations Using Zeger's Data.

To apply the Poisson-Multifractal model, we use Zeger's dataset, �rst introduced by Zeger

(1988), and used later by Chan & Ledolter (1995), Kuk & Cheng (1997), Oh & Lin (2001),

Jung & Liesenfeld (2001), Benjamin et al. (2003) and Farrell et al. (2007). The data contain

the monthly number of cases of poliomyelitis in the U.S from January 1970 to December

1983. The dataset comprises 168 observations. The main purpose of the analysis of the

data is to determine whether the polio counts follow a decreasing time trend. To account

for trend and seasonality, the following covariate vector is introduced

xt =

(
1,

t

1000
, cos

(
2π

12
t

)
, sin

(
2π

12
t

)
, cos

(
2π

6
t

)
, sin

(
2π

6
t

))
, (3.1)

and the intensity function is given by λ(t) = exp(β>xt).

Fitted parameters for the Poisson-Multifractal models are presented in Table 3.1 for

di�erent values of m. As we can observe, the value of m corresponding to the number of

fractal components does not in�uence the estimates of covariates. Indeed, for m = 5, ..., 8,

similar values of β are found.

9



3.1 Goodness-of-�t and Diagnostics

To verify the goodness-of-�t of the Poisson-Multifractal model, we �rst used the graphical

tool developed by Davis et al. (2003). The tool is based on adapted residuals, and the

probability integral transformation (PIT). Because discrete data are used, the classic PIT

has to be modi�ed. Davis et al. (2003) proposed a modi�cation that involves adding a

perturbation to the PIT to obtain a new tool called the randomized PIT. Formally, for

t = 1, ..., 168, it can be computed as:

ut =
nt−1∑
i=1

Pr(i|NT−1) + Ut Pr(nt|NT−1) (3.2)

where Ut is a sequence of i.i.d. uniform (0,1) random variables. If the �t of the Poisson-

Multifractal model is correct, it can be shown that the ut will be a sequence of i.i.d. uniform

random variables. We can also choose zt = Φ−1(ut) to verify the autocorrelation between

random variables.

Figure 3.1 illustrates a histogram of the randomized PIT, and a QQ plot against the

uniform distribution. Kolmogorov-Smirnov tests have done made to verify this uniformity

hypothesis, and we concluded that we cannot reject the uniformity of the ut for all Poisson-

Multifractal models (from m = 5 to m = 8).

Figure 3.2 illustrates the autocorrelogram of the zt for the Poisson-Multifractal (m = 8),

with dashed lines corresponding to the upper and lower 95% bounds. All Poisson-Multifractal

models obtain approximately the same form for the autocorrelagram, from which we cannot

reject the independence assumption.

3.2 Model Comparison

To work with this data, previous authors often assumed a conditional Poisson distribu-

tion, with an autoregressive lognormal process in the mean function. The model, denoted
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Figure 3.1: Randomized PIT and QQ plot

Figure 3.2: Autocorrelation function for the randomized PIT. The dashed lines represent
approximate 99% con�dence interval
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Poisson-AR(1) or noted Poisson-SAM (stochastic autoregressive mean) (Jung et al., 2011),

is described as:

Nt|θt ∼ Poisson(λ(t)θt), θt = exp(Wt), (3.3)

with:

Wt = δ1Wt−1 + ν2εt, , (3.4)

where εt ∼ N(0, 1). To account for trend and seasonality, the same covariate vector as the

Poisson-Multifractal models is used; see equation (3.1).

Many techniques for estimating the Poisson-SAM have been proposed. Zeger (1988)

suggests to use the �rst two moments of the model by generalizing the GLM �rst-order con-

ditions to add dependence between random variables. Frühwirth-Schnatter (1994) adapted

a Kalman �lter method to estimate the parameters. Chan & Ledolter (1995) used Monte-

Carlo Expectation Maximization (MCEM), where the expectation step is estimated through

Monte-Carlo simulations. Kuk & Cheng (1997) used the Monte-Carlo Newton-Raphson

(MCNR) method, where classic Newton-Raphson algorithm is used with the derivatives of the

log-likelihood being estimated with Monte-Carlo simulations. Durbin & Koopman (1997), us-

ing the approximated distribution of Frühwirth-Schnatter (1994), estimated the parameters

through importance sampling. Jung & Liesenfeld (2001) also used an approximated distri-

bution as part of importance sampling (a technique called e�cient importance sampling or

EIS), based on the minimization of the MC sampling variance. Oh & Lin (2001) and Farrell

et al. (2007) adopted Bayesian techniques to estimate a Poisson-SAM model. Consequently,

note that contrary to the Poisson-Multifractal model, the Poisson-AR(1) model is �tted by

simulations. Procedures based on simulations are more time-consuming and involve loss of

precision due to the variations in the estimates.
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Parameters Estimate (std.err.)
δ1 0.679 (0.149)
ν 0.507 (0.113)
β0 0.222 (0.255)
β1 -3.631 (2.572)
β2 0.161 (0.132)
β3 -0.484 (0.161)
β4 0.415 (0.117)
β5 -0.013 (0.113)

Loglikelihood -248.630

Table 3.2: Parameter estimates for the Poisson-AR(1) model of Jung & Liesen�eld (2003)

Table 3.2 shows the value obtained by Jung & Liesenfeld (2001) for the Poisson-AR(1)

model. We can see that the loglikelihood obtained by the Poisson-Multifractal model for

m = 8 is better than the one obtained with the Poisson-AR(1) model. However, the Poisson-

Multifractal has two more parameters than the Poisson-AR(1) model.

The randomized PIT and the corresponding Kolmogorov-Smirnov test were also used for

the Poisson-AR(1). The model cannot be rejected using these tests. We obtain a similar

conclusion regarding the autocorrelation between the zt. Because the Poisson-Multifractal

and the Poisson-AR(1) are non-nested, we cannot test the models directly against each other.

Instead, we used various scoring rules (see Czado et al., 2009) to compare them.

A score function measures the power of prediction of the models. The scoring rule used

to compare the Poisson-Multifractal and the Poisson-AR(1) models has the following form:

Score =
1

n

168∑
t=1

s(nt)

Many score functions s(nt) can be used. In this paper, we used three forms for the score

function:

• The logarithm score (LS): s(nt) = − log(Pr(Nt = nt))

• The quadratic score (QS): s(nt) = −2 Pr(Nt = nt) +
∑∞

j=0 Pr(Nt = j)2
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Model Log-likelihood AIC LS QS RPS
P.-Multifractal (m=5) -246.789 513.578 1.4690 -0.2916 0.7316
P.-Multifractal (m=6) -246.767 513.534 1.4689 -0.2918 0.7315
P.-Multifractal (m=7) -246.760 513.520 1.4688 -0.2919 0.7315
P.-Multifractal (m=8) -246.755 513.510 1.4688 -0.2920 0.7315

Poisson-AR(1) -248.630 513.260 1.4762 -0.2877 0.7449

Table 3.3: LS, QS and RPS scores for all �tted model

• The ranked probability score (RPS): s(nt) =
∑∞

j=0(Pr(Nt ≤ j)− 1(Nt≤j))
2

Table 3.3 presnts the scores for all the �tted models. We see that the scores obtained

with each model are quite similar. Even if the Poisson-Multifractal models generate lower

scores for LS, QS, and RPS, we cannot conclude that it is the best model to �t the data

compared to the Poisson-AR(1) model. Consequently, instead of focussing solely on this

scoring information, or other statistical tools, we chose to compare the models in detail in

details by looking at what each model supposes and the di�erences between models.

3.2.1 Values of the Parameters

The β coe�cients obtained with the Poisson-Multifractal di�er from the β obtained by Jung

& Liesenfeld (2001). In particular, the value of β1 that corresponds to the time trend is

clearly lower in the Poisson-Multifractal model. This trend is not statistically signi�cant

(other studies have also found a non-signi�cant value for the time trend). Therefore, based

on the dataset, we cannot infer a clear decrease in the number of poliomyelitis cases from

1970 to 1983. Other estimates of parameters β are quite similar to those reported in previous

studies.

Using the results of the Poisson-AR(1) by Jung & Liesenfeld (2001), the evolution of the

deterministic part of the intensity, λ(t), of each model is compared graphically in Figure

3.3. The di�erence in the time trend is quite apparent, while the periodicity seems to be

equivalent. The reason for this di�erence must be explained, for example, using smoothing

techniques. We will revisit this point below.
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Figure 3.3: Evolution of λ(t) for the Poisson-AR(1) model and the Poisson-Multifractal
model
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3.2.2 Analysis of Prior Distributions

In the Poisson-Multifractal model, the distribution of probabilities Πt of Ft can be easily

retrieved for t = 1, ..., 168. As recommended by Hamilton (1989), Π0 is assumed to be

equal to the ergodic distribution of the Markov processes ruling Ft. The vector Π0 can

be seen as a prior distribution of random e�ects that impact the counting process. In the

Poisson-AR(1) model, the same type of assumption is made. In particular, Jung & Liesen-

feld (2001) assume that θ0 = exp(W0) is lognormal with parameters σ =
√
ν2/(1− δ21) =√

0.5072/(1− 0.6792) = 0.6906 and µ = −σ2/2 = −0.2385. The priors of the multifractal

and Poisson-AR(1) processes have the same mean of 1. Furthermore, in the Poisson-AR(1)

model, the variance of the prior V ar[θ0] = 0.6111. Based on the results presented in Sec-

tion 2.2, the variance of the multifractal prior has been calculated and is equal to 0.6291,

which approaches that obtained for the lognormal distribution. To con�rm our intuition that

the prior distributions of both models are almost similar, we compare the density of priors

graphically. As seen above, the multifractal process creates d = 2m possible values of Ft.

For illustration, using m = 8 corresponds to 256 possible values of Ft. We have approached

Ft through a continuous function using gamma kernel functions and plotted the result in

Figure 3.4. This graph clearly shows that the shapes of the prior densities are almost iden-

tical. Because the variance and the shape of the priors are similar in the Poisson-AR(1) and

multifractal models, we conclude that the di�erences seen in tables 3.1 and 3.2 should be ex-

plained by features other than prior distributions. As we will see in the following subsection,

the di�erence between the Poisson-AR(1) and the Poisson-Multifractal models seems to be

in the memory displayed by the Poisson-Multifractal process, which is higher than that of

the Poisson-AR(1).

3.2.3 Smoothing and Filtering

Using the e�cient importance sampling (EIS) technique, Jung & Liesenfeld (2001) proposed

to estimate a function of the sequence of the latent variable (w1, ...., wT ) numerically for
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Figure 3.4: Prior distribution of the dynamic random e�ects for the Poisson model with
polio data (m = 8 for the multifractal process)
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the Poisson-AR(1) model. Using numerical integration techniques and e�cient importance

sampling, given all T observed countsNT = (n1, ..., nT ), they proposed a procedure to assess

the expectation of any function h(.) of wt:

E[h(wt)|NT ] =

´
h(w)f(NT , w)dw´
f(NT , w)dw

(3.5)

where f(NT, w) is the joint density of NT and wt. The Poisson-Multifractal model also allows

us to analyze the posterior distribution of the fractal components Ft at any time t, but is

less time-consuming. In particular, the conditional distribution of Ft, given all T observed

counts NT = n1, ..., nT , is noted g(Ft|NT ) and is provided by the following relation:

g(Ft|NT ) = g(Ft|n1, ..., nT )

=
g(Ft, n1, ..., nT )

Pr(NT )

=
g(Ft, nt+1, ..., nT |n1, ..., nt) Pr(n1, ..., nt)

Pr(NT )

=
Pr(nt+1, ..., nT |Ft, n1, ..., nt)g(Ft|n1, ..., nt) Pr(n1, ..., nt)

Pr(NT )

=
Pr(nt+1, ..., nT |Ft) Pr(Nt)

Pr(NT )
g(Ft|Nt), (3.6)

where all elements of this ratio that can be retrieved in the estimation procedure. g(Ft|n1, ..., nt)

is equal to the distribution of probabilities Πt:

g(Ft = sj |n1, ..., nt) = Π
(j)
t .

The joint density of all counts up to time t and T are noted Pr(n1, ..., nt) and Pr(NT )

respectively. They are approached by likelihood functions as de�ned in Section 2.1, e.g. :
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Pr(n1, ..., nt) = L(n1 . . . nt |m̂0,j=1...m, γ̂j=1...m, β̂)

=
t∏

u=1

〈p(u, nu, xu), (Πu−1A)〉

where m̂0,j=1...m, γ̂j=1...m, β̂ are estimators obtained by maximization of the loglikelihood.

Similarly, Pr(nt+1, ..., nT |Ft = sj) is the likelihood function given a prior distribution Πt = ej

(instead of the ergodic distribution). The smoothed values of E (Ft|NT ) and of E(exp(Wt)|NT )

are compared in Figure 3.5. Both series are similar for small values of t, but the di�erence

becomes signi�cant for larger values. Compared with the multifractal smoothed values, the

smoothed lognormal values exhibit larger variations for t > 100, particularly for values of t

between 110 and 120.

Figure 3.6 presents the evolution of the smoothed frequencies, λ(t)E[exp(Wt)|NT ] and

λ(t)E[Ft|NT ], for the Poisson-AR(1) and the Poisson-Multifractal models (using, as previ-

ously mentioned, estimates in Tables 2.1). Despite di�erences in λ(t) (emphasized by Figure

3.3) and in smoothed values of processes ruling the intensity (Figure 3.5), we see that the

values obtained for the smoothed mean of each model are almost identical. Thus, each model

estimates the data di�erently: the �rst model supposes a steeper decreasing time trend with

an autoregressive process with large variations for large t, and the second model supposes a

weaker decreasing time trend with an underlying mean process that has more time depen-

dence.

To better understand the time dependence of the underlying multifractal process of the

Poisson distribution, we will use a speci�c property of the model. The multifractal component

of the Poisson distribution, Ft, can be split intom elements, because Ft is equal to the product

of Mj,t, j = 1...,m. We can then compute the smoothed value of each Mj,t, j = 1...,m,

using a similar development as in (3.6):
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Figure 3.5: Smoothed values of exp(Wt) (for the Poisson-AR(1) model) and Ft (for the
Poisson-Multifractal model)
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Figure 3.6: Smoothed values λ(t)E[exp(Wt)|NT ] (for the Poisson-AR(1) model) and
λ(t)E[Ft|NT ] (for the Poisson-Multifractal model)
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g(Mj,t|NT ) =
Pr(nt+1, ..., nT |Mj,t) Pr(Nt)

Pr(NT )
g(Mj,t|Nt) j = 1, ...,m, (3.7)

or using the decomposition of g(Ft|NT ) =
∏m

j=1 g(Mj,t|NT ). The evolution of the smoothed

value of Mj,t, as de�ned in equation 3.7, and the distribution of g(Mj,t|NT ) are shown in

�gures 2.5 and 2.6 for di�erent values of m. For each values of m = 5, 6, 7, 8, we observe

a strong time dependence for the process M1,t. This can be interpreted as an unobserved

factor that has a speci�c random cycle a�ecting the counts. The cycles observed forM1,t are

almost regularly periodic: a high value between t = 7 to t = 33, a low value for t = 44 to

t = 70, a high value between (105, 121) and a last time period between (128, 162), with low

values. Except for the period (75, 100), which should be analyzed in more detail, the cycle

of M1,t seems to be regular, which means that we can observe long-term cycles of about 24

to 30 months.

The cycle observed for the �rst processM1,t explains the di�erences between time trends,

when compared with the Poisson-AR(1) model. Note that the other processes Mj,t, j =

2, ...,m also exhibit time dependence, but it is much lower than that observed for the �rst

process. In fact, other processes can almost be seen as noise added to the count distribution.

Indeed, each new process Mj,t added to the model with m = 4 causes only slight variation

in the model.

Consequently, even if the �t of the Poisson-AR(1) and the Poisson-Multifractal models are

almost identical, each model proposes di�erent interpretations in the number of poliomyelitis

cases from 1970 to 1983.

4 Conclusion

This work introduces the Poisson-Multifractal process to the count distribution literature.

It belongs to the family of autoregressive processes and combines the Poisson and fractal
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Figure 3.7: Evolution of the probability of Mj,t = m0(j) (left) and E[Mj,t|NT ] (right),
j = 1, ...,m, for m = 5, 6, for the Poisson-Multifractal model
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Figure 3.8: Evolution of the probability of Mj,t = m0(j) (left) and E[Mj,t|NT ] (right),
j = 1, ...,m, for m = 7, 8, for the Poisson-Multifractal model
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processes. This is a �exible approach to time series of count, particularly when data exhibits

overdispersion and slowly declining autocovariograms. Properties of the Poisson-Multifractal

model have been shown, as well as is inference technique, which is less time consuming than

inference techniques based on Monte Carlo simulations.

Using a reference dataset, we compare the Poisson-Multifractal and the classic Poisson-

AR(1) models. Although the two models share similarities, we observe a di�erence in the time

dependence implied by both approaches. In particular, the memory displayed by the Poisson-

Multifractal process is more extensive than that of the Poisson-AR(1). Using �ltering and

smoothing techniques, we analyze each component of the multifractal process and show that

they can be interpreted as unobserved climatic, economic, or social factors. For this example,

the Poisson-Multifractal process points to an almost regular periodic cycle in Zeger's (1988)

polio's data.
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Appendix

Proof of Proposition 2.1. This result can be obtained directly using the facts that theMj,t =

Mj,t−1 with probability 1 − γj, while Mj,t is drawn from M(j) (having a mean of 1) with

probability γj:

E(Mj,t+1|Mj,t) = (1− γj)Mj,t + γj

Proof of Corollary 2.2. We have

E(Mj,t+h|Mj,t) = E(E(Mj,t+h|Mj,t+h−1)|Mj,t)

= E((1− γj)Mj,t+h−1 + γj|Mj,t)

= (1− γj)E(Mj,t+h−1|Mj,t) + γj

= (1− γj)E(E(Mj,t+h−1|Mj,t+h−2)|Mj,t) + γj

= (1− γj)E((1− γj)Mj,t+h−2 + γj|Mj,t) + γj

= (1− γj)2E(Mj,t+h−2|Mj,t) + (1− γj)γj + γj

= (1− γj)2E(Mj,t+h−2|Mj,t) + 1− (1− γj)2

= (1− γj)2(E(Mj,t+h−2|Mj,t)− 1) + 1

Continuing this development leads to the result.
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Proof of Proposition 2.3. As in previous propositions, we condition on Mj,t to obtain:

E(Mj,tMj,t+h) = E(E(Mj,tMj,t+h|Mj,t))

= E(Mj,tE(Mj,t+h|Mj,t))

= E(Mj,t((1− γj)hMj,t + 1− (1− γj)h))

= (1− γj)hE(M2
j,t) + E(Mj,t)− (1− γj)hE(Mj,t)

= (1− γj)h(E(M2
j,t)− E(Mj,t)) + E(Mj,t)

= (1− γj)h(E(M2
j,t)− 1) + 1,

where we can use the equation (2.7) to conclude.

Proof of Proposition 2.4.

E(Nt) = E (E (Nt |Ft))

= λ(t)
m∏
j=1

E (Mj,t)

= λ(t)

The variance is given by the following expression:

V(Nt) = E (V (Nt |Ft)) + V (E (Nt |Ft))

= λ(t) + (λ(t))2V (Ft) .

We have:
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V (Ft) = V (Ft)

= E
(
F 2
t

)
− (E (Ft))

2

= E

(
m∏
j=1

M2
j,t

)
−

(
E

(
m∏
j=1

Mj,t

))2

=
m∏
j=1

E
(
M2

j,t

)
− 1,

where E(M2
j,t) is given by equation (2.7). The covariance is, by de�nition, equal to:

Cov(Nt, Nt+h) = E (Cov (NtNt+h |Ft+h)) + Cov (E (Nt |Ft)E (Nt+h |Ft+h))

= 0 + λ(t)λ(t+ h)Cov (Ft, Ft+h)

Multipliers are statistically independent, so we can conclude that:

Cov (Ft, Ft+h) = Cov (Ft, Ft+h)

= Cov

(
m∏
j=1

Mj,t,
m∏
j=1

Mj,t+h

)

= E

(
m∏
j=1

Mj,t

m∏
j=1

Mj,t+h

)
− E

(
m∏
j=1

Mj,t

)
E

(
m∏
j=1

Mj,t+h

)

= E

(
m∏
j=1

Mj,tMj,t+h

)
−

(
m∏
j=1

E (Mj,t)

)(
m∏
j=1

E (Mj,t+h)

)

=
m∏
j=1

E (Mj,t,Mj,t+h)− 1.
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