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RÉSUMÉ 

Depuis la fin du 20ème siècle, la prise de conscience de l'effritement sans 
précédent du nombre d 'espèces a mené les scient ifiques à se ques tionner sur les 
impacts de la perte de la biodiversité sur le fonctionnement des écosystèmes (FE). 
Conséquemment , une recherche concertée et systématiqu a été entreprise afin de 
comprendre la relation entre la biodiversité et le fonctionnem nt des écosyst èmes 
(RBFE). Plus de 20 ans de recherche ont dégagé un consensus associant l'accrois­
sement de la productivité , de la capture des ressources et d la décomposit ion avec 
une augmentation de la biodiversité. Les deux mécanismes principaux expliquant 
cette relation positive sont la complémentari té des niches et l 'effet de sélection. 
Ces deux mécanismes mettent en valeur le rôle fondam ental des traits fonctionnels 
pour expliquer les corrélations sous-jacentes à la RBFE. En par ticulier , la com­
plémentarité des niches (la plus grande exploitation des ressources due à une plus 
grande diversité des traits) a été montrée à la base des RBFE positifs et d 'aug­
menter au fil du· temps. Souvent u tilisée dans l'étude de la RBFE pour mesurer la 
diversité , la richesse spécifique n 'est pas le meilleur prédicteur du FE puisqu 'elle 
suppose que toutes les espèces sont fonctionnellement égal s ( c.-à-d ., l'effet de 
n 'importe quelle espèce est interchang able avec l'effet de n 'importe quelle autre) . 
La diversité fonctionnelle a , quant à elle, montré un meilleur potentiel pour ex­
pliquer les RBEF. Par contre, la majorité des recherches sur la RBEF a été fait 
sur des systèmes herbacés. De plus, les connaissances sur les traits fonctionnels 
proviennent presque exclusivement des parties aériennes des plantes . 

Les objectifs principaux de cette th 'se étaient de développer la connaissance 
des RBEF au niveau des communautés d 'arbres afin de mieux comprendre les 
effets de la complémentari té de niche et de la diversité fonctionnelle sur le fonc­
t ionnement de ces systèmes. Plus précisément, les objectifs étaient cl 'améliorer 
la connaissance des variations racinaires intraspécifiques et interspécifiques, de 
développer un design expérimental pour tester les effets de la diversité fonction­
nelle et déterminer s 'il y a présence de complémentarité clans les communautés 
d 'arbres. Le dernier objectif était de mettre en œuvre le design développé pour 
tester l'effet de la diversité fonctionnelle sur la productivité dans les communautés 
d 'arbres. La thèse est divisée en trois chapitres, traitant chacun un des objectifs. 
Le premier chapitre analyse deux ensembles de données de traits de racines fines 
(le diamètre, l'intensité du branchement et la longueur spécifique des racines) . Le 
premier jeu de données compare la corrélation interspécifique de ces traits pour 
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12 espèces nord-américaines d 'arbres cult ivées dans des conditions expérimentales 
contrôlées. Le deuxième jeu de données examine les variations intra-spécifiques 
pour quatre espèces co-occurrentes selon un gradient de conditions du sol et d 'âge 
des arbres. Entre les espèces, les traits des racines étaient fortement corrélés ce 
qui supporte les preuves récentes de l'existence d 'un spectre des traits racinaires . 
Pour une même espèce, les variations des traits racinaires dues au sol et à l'âge de 
la plante sont spécifiques à chaque trait. Des trois traits racinaires , le diamètre est 
celui qui montre la plus grande plasticité phénotypique et était significativement 
plus grand dans les sols riches et humides que dans les sols xériques et mésiques. 
Le deuxième chapitre récapitule et résume les connaissances actuelles sur la RBEF 
dans les communautés d'arbres et au-delà. Suite à l'identification des avenues de 
recherche principales au sein des RBEF, le deuxième chapitre propose un système 
expérimental dont l 'objectif est de répondre à ces questions. Le cœur de ce design 
expérimental est la variation des communautés d 'arbres suivant un gradient de 
diversité fonctionnelle (DF) continu pour tester spécifiquement l'effet de la DF sur 
le FE et décrire les mécanismes sous-j acents tels que la complémentarité. De plus, 
le design est très flexible, ce qui permet à chaque site d 'explorer simultanément 
d 'autres questions pertinentes. 

Le troisième chapitre expose les résultats obtenus sur un site expérimental 
suivant l 'approche décrite dans le deuxième chapitre. Des communautés d 'arbres 
très denses variant en termes de DF et de richesse spécifique de façon indépen­
dante ont servi à tester les effets respectifs de ces deux caractéristiques sur la 
productivité. L'existence de la complémentarité au sein de communautés d 'arbres 
jeunes a aussi été t estée dans ce chapit re. Après quatr années de croissance, des 
effets positifs de la diversité ont ét é trouvés pour la majorité des communautés 
testées. Par contre , ces effets sont largement attribuables aux effets de sélection. 
Quelques espèces décidues à croissance rapide ont clairement surproduit au sein 
des peuplements mixtes pendant que la plupart des conifères étaient exclus du à 
la compétit ion. Les traits fonctionnels expliquant cet effet incluent la longévité 
des feuilles, la masse de~ graines et le contenu en azote . Ces traits reflètent les 
stratégies fondamentale des espèces ayant surproduit . De plus la profondeur des 
racines et la quantité de ramifications racinaires affectaient significativement la 
biomasse des arbres et l'effet de la diversité sur la productivité, ce qui pourrait 
indiquer des ressources limitantes dans le sol. 

En conclusion, de même que pour les traits des parties aériennes des arbres, 
la variabilité des traits des racines fines semble être contrainte par des compromis 
physiologiques. De plus, même s' il est souvent négligé , le diamètre des racines 
fines pourrait être un meilleur estimateur de changements environnementaux que 
la. longueur spécifique des racines qui est fréquemment ut ilisée. En ce qui conc rne 
les RBFE, on conclut que même si de grands progrès dans la. compréhension des 
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effets de la biodiversité sur le FE ont été atteints , de nombreux liens cruciaux 
doivent encore être examinés, en part iculier pour les écosystèmes dominés par des 
arbres. Cela est particulièrement vrai pour des paramètres de diversité autres que 
la richesse en espèces. Malgré la reconnaissance croissante et la compréhension 
de l'importance de la DF par rappor t aux RBFE, seules quelques exp ' ri nees 
manipulent DF dans des communautés d 'arbres. En outre, les arbres sont des sys­
t èmes modèles pour étudier les RBFE offrant de multiples avantages par rappor t 
à d 'autres systèmes. Grâce à leur taille et la. facilité d 'éva.lu r leur développement 
sur une base individuelle au fil du temps, les systèmes d 'arbres permettent de 
tester de nouvelles séries de questions. En conséquence, ils rapprochent la. science 
d 'une compréhension plus détaillée de la façon dont les individus régulent la. co­
existence positivement ou négativement . Après avoir présent' l'une des premi 'res 
expériences t estant l'effet de la. DF sur la productivité, nous arrivons à la. conclu­
sion qu 'en général, la. diversité influe posit ivement sur la productivité clans 1 s 
jeunes communautés d 'arbres. Cependant, cet effet est en grande part ie clue à des 
effets de sélection. 

Mots-clés : biocliversité et fonctionnement des écosystèmes, arbre, diversité 
fonctionnelle, complémentarité, dispositif expérimental, plasticité r acinaire 
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INTRODUCTION 

One of the oldest quests in ecology is the search to understand the stable 

coexistence of species. To date, this quest has basically remained unresolved, es­

pecially in regard to plants. In grasslands for example, how is it possible that 

so many plant species can coexist while having fundamentally the same resource 

requirements (Silvertown, 2004)? A common null model assumes that species as­

sociations arise solely from species-specific responses to environmental variables 

(Holt , 2001). However , patterns of species associations emphasize the implica­

tion of sp cies interactions. And indeed , species interact with one another either 

directly ( e.g., via interference competit ion, predation, parasitism, mutualism) or 

indirectly ( e.g. , via altering abiotic condi tions, resource competition, apparent 

competition) affect ing their co xistence (Siepielski and McPeek, 2010). Among 

t he many models proposed (Zobel, 1992), niche complementarity certainly got 

t he most mpirical support and has been considered one of the main candidate 

mechanisms to explain species coexistence even though it is likely thar it is not 

the sole mechanism at work (Silvertown, 2004). According to the Volterra-Cause 

principle, the niche complementarity assumes that two or more species cannot co­

exist unless t heir requirements towards the limit ing resource(s) (i.e. niche) differ 

at least partially (Holt , 2001 ). 

Following t his principle, species that differ in their functional traits (traits 

that strongly influence organismal performance, McGill et a l. , 2006) should differ 

in their resource requirements (i. e. niche) and thus experience reduced compet i­

t ion. ln other words, increased diversity of species ' traits (i.e. functional diversity) 

should lead to increased ecosystem funct ioning. Indeed , the idea of increasing 
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plant diversity leading to increased producer productivity is known at least since 

t he 19th century. European forester von Cotta proposed in 1828 that "Since not 

all tree species utilize resources in t he same manner , growth is more lively in 

mixed stands . . . " (in Pretzsch , 2005) and three decades later, Darwin enunciated 

in his seminal work that a "divergence of character" would reduce interspecific 

competition and likely yield greater productivity (Darwin, 1859). However , it is 

not until the late 20t h century with the considerable and accelerating change in 

t he earth 's biota that a systematic and concerted search for the effects of bio­

diversity on ecosystem functioning (BEF) began. A generally positive relation 

between plant diversity and plant community product ivity was confirmed across 

a variety of biomes and taxa (Cardinale et al. , 2011 ). Niche complementarity has 

been evoked as the main candidate mechanism creating these positive mixture 

effects (Cardinale et al. , 2011 ; Hooper et al. , 2005). Most BEF research has been 

conducted on tcrrcstrial plant systems with a strong bias towards artificial and 

natural grasslands (Caliman et al. , 2010). BEF research using trees or in forests 

is more recent and scarce (Nadrowski , Wirth and Scherer-Lorenzen, 2010). Howe­

ver, forests support 80% of the world 's terrestrial biodiversity and provide key 

services to humanity including climate regulation, not to mention the livelihoods 

of 1.6 billion people and well over 300 billion $ generated from annual trade of 

forest products (FAO, 2010). This lack of BEF research on tree systems is mostly 

due to practical constraints (Scherer-Lorenzen et al. , 2007). 

Although early BEF focused on manipulations of species richness (SR) to 

assess diversity. strong effects of species composition and especially the presence 

or absence of specifie functional traits brought doubts on SR as the best predictor 

of EF (Chapin III et al. , 1997 ; Diaz and Cabido, 2001 ). To bett er understand the 

effect of components of diversity (i.e. functional diversity and identity) on EF and 

specifically test for underlying mechanisms such as complementari ty (i. e. different 
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niche occupation through functional diversity) , a more systernatic study of plant 

traits began. Through concerted effort , trait syndromes (i.e. strong correlation in 

suites of traits) in leaves (Wright et al. , 2004) and stems (Chave et al. , 2009) have 

been described and arneliorated our understanding of interspecific tra it varia tion. 

Due rnostly to the inaccessibility of the rhizosphere, our knowledge and underst an­

ding of root trait variation lacks behind those of aboveground traits. In addit ion, 

intraspecific variation in roots proved more variable than for aboveground traits 

(Ryser , 2006) and more research is needed to test root plasticity along gradients 

of environrnental gradients and age, especially in trees. 

The general objectives of t his doctoral thesis were to address sorne of the open 

research questions surrounding BEF in tree syst ms, particularly regarding niche 

cornplernentarity and plant functional trait s. Specifically, the objectives were : 

1. to irnprove our underst anding on fine root trait variat ion within and across 

tree species, 

2. to develop an experimental design testing sp cifically for the effects of func­

t ional diversity and the existence of cornplernentarity in tree cornrnunities , 

and 

3. to evaluat e how tree diversity afl'ects aboveground productivity. 

In the following, I will expancl on t.he funcl amental ecological para.digms unclerlying 

this doctoral thesis (i.e. biodiversity and ecosystern functioning research . niche 

cornplernentarity and plant functional traits) before introducing the structure of 

the thesis and the t hree chapters. 

0.1 Biodiversity Ecosystem Functioning - BEF 

Global change wit h its many biot ic ( e. g. exotic species , changes in phenology, 

extinction) and abiot ic facets ( e.g. land fragmentation and habitat loss , changing 
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biogeochemical cycles, changing elima te) increasingly manifest on the planet's 

face (Vitousek et al. , 1997). At the end of the 20th cent ury, the great concern 

about the unprecedented rate of species loss resulted in a concerted and systema­

tic search for the effect s of biodiversity on ecosystem functioning (Balvanera et 

al. , 2006). Publications on BEF increased exponentially between 1990 and 2007 

and their proportion of the overall ecological literature has exceeded the average 

publication effort since 2003 (Caliman et al. , 2010). Early BEF research focused 

on annual plant species grown in microcosm (Naeem et al. , 1996) or in control­

led field experiments (Tilman, Wedin and Knops , 1996) and examined above all 

t he relationship between species richness and productivity (Hector et al. , 1999 ; 

Tilman, Wedin and Knops, 1996) and stability (Lavorel, 1999 ; Tilman and Dow­

ning , 1994). After almost two decades of species richness manipulative research, 

general consensus leaned toward increased productivity and stability with diver­

sity (Hooper et al. 2005 , Kinzig 2001). These findings as well as critique on those 

early BEF experiments (Naeem, 2002a) t riggered more comprehensive approaches. 

Strong effects of species composition in addition to species richness for example 

led to studies including different metrics of biodiversity such as functional or phy­

logenetic diversity ( Cadotte et al. , 2009). More recent studies also broadened the 

array of EF under examination such as decomposit ion (Hattenschwiler , Tiunov 

and Scheu, 2005) or N-cycling (Niklaus, Wardle and Tate, 2006) . This was accom­

panied by an expansion towards other systems ( aquatic, animal, microbial) and 

t he consideration of multiple trophic levels (Bastian, Pearson and Boyero , 200~). 

In a recent meta-analysis summarizing more than 500 independent manipula­

t ions of species richness spanning 30 biomes, diversity increased producer uioma,ss 

in 86% of all cases (Cardinale et al. , 2011 ). However, most of these studies still 

originated from grasslands. Although forests are usually mixtures of species and 

mixed forest plantations are not a new concept in forestry, sorne naturally occur-
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ring constraints aggravate a straight-on approach to BEF in tree systems : 

i) In comparison to h rbaceous systems, a direct manipulation at the pro­

ducer level, i. e. trecs, is obviously a more difficult and long-lasting task. 

Therefore, we still have to rely mostly on observational (including large­

scale plantations) , compara tive studies rather than on xperimental mani­

pulat ions (Scherer-Lorenzen, Korner and Schulze, 2005 ; Zhang, Chen and 

Reich, 2012). However, the verification of a mixture effect is more difficult 

in observational studies due above all to the variety of confounding factors 

and the lack of appropriate control ( e.g. monoculture yields or replication) 

(Burkhart and Tham, 1992). 

ii) Forest landscapes, especially in temperate regions, have been subjected 

to heavy anthropogenic influence. Natural forests have ncarly always been 

converted to structurally and composit ionally more simplistic forests (Puett­

mann, Coates and l\!Iessier , 2008) . 

First evidence suggest s that t ree diversity significantly affects nutrient cycling 

(Rothe and Binkley, 2001), decomposition (Hattenschwiler , Tiunov and Scheu, 

2005), damage by insect pests ( J act el, Brockerhoff and Duelli, 2005), fungal pa­

thogens (Pautasso, Holdenrieder and Stenlid , 2005) and animal (bird) diversity 

(Kissling, Field and Bohning-Gaese, 2008) . In addition, reviews and meta-analysis 

regrouping around 100 st udies in t ree systems confirm a general trend of increased 

productivity with t ree diversity (Nadrowski , Wirth and Scherer-Lorenzen. 2010: 

Zhang, Chen and Reich, 2012). 

To explain t hese posit ive mixture effects in tree systems and beyond, two 

main mechanisms have been proposed : complementarity and select ion effects. 

Complementarity effects occur , when increased EF is due to increased resource 

exploitation through niche different iat ion or facilitation. Selection effects ascribe 
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greater EF to the dominance of species with particular traits (i. e. a very pro­

ductive species in monoculture will have increased yield in mixture) (Loreau and 

Hector, 2001 ). Both mechanisms are fundamentally based on the concept of func­

tional traits that link species to the role they play in the ecosystem. Functional 

traits are by definition "morpho-physio-phenological traits which impact fitness 

indirectly via their effects on growth, reproduction and survival, the three com­

ponents of individual performance" (Cardinale et al. , 2011 ) and it is now widely 

accepted , that trait changes at the organismallevel influence processes at higher 

organizationallevels and indeed , functional traits have been shown to be the key 

mechanism to drive ecosystem processes and services t hrough direct biotic control 

or indirect abiotic controls such as the availability of limiting resources (Violle 

et al. , 2007). In addit ion, functional components of diversity have been shown to 

exhibit strong explanatory power in a variety of systems (Diaz and Cabido, 2001) 

and in tree systems in particular (Nadrowski, Wirth and Scherer-Lorenzen, 2010). 

However , only few studies and ongoing projects actually manipulate continuous 

measures of functional diversity (instead of functional groups) and specifically test 

for niche complementarity, especially in trees. 

0.2 Niche Complementarity 

Niche complementarity or complementary resource use hinges on the idea of 

niche partitioning and leads back to the fundamental conceptions of competition 

and species coexistence . Following the competitive exclusion principle (an idea 

held by some naturalists in the late 19th century but first comprehensively des­

cribed by Ga use, 1934b). two very similar species will hardly ever co-exist due 

to competition for a certain and limited amount of energy (resource). Grinnell 

concluded in the following t hat two co-existing species must thus not occupy the 

same niche (Grinnell, 1914) - a view that got widely accepted. 
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To quantitatively detect a positive mixture effect, the rate of the ecosystem 

function under examination (most commonly yield) in mixture has tradit ionally 

been compared to its values in monoculture of the same species as found in the 

mixture; i.e. for a positive mixt ure effect , the EF rate per area in mixture divided 

by the EF rat e per area in monoculture must exceed one ("overyielding") . In agri­

culture, this method is known as the 'land equivalent ratio ' (LER) (Vandermeer 

1989) , the identical measure derived from replacement studies is known as the 

'relative yield total' (RYT) (de Wit 1960). As Loreau (1998) pointed out however , 

positive values for LER or RYT can have different underlying processes and it 

does not allow deducing complementarity. Loreau and Hector (2001 ) proposed an 

explicit approach to separate the two major proposed effect s : selection and com­

plementarity by using additive partit ioning of the observ cl and expected yields. 

Both components are based on the relative yield approach mentioned above. In 

this way, complementarity effects are the product of the monoculture yields and 

the relative yields and include t he hardly distinguishable niche differentiation and 

facilitative interactions. Selection effects are calculated as the covariance between 

monoculture yields and the relative yield. Although not formally acknowledged , 

t he selection effects corresponds to the mass ratio hypoth sis that holds that eco­

system functioning is greatly due to the traits of the dominating species (Grim , 

1998). In this sense, selection effects and the mass ration hypothesis are based 

on functional identi ty whereas complementarity effects are based on functional 

diversity. 

Both components have been shown to be at work in creating posit ive mixture 

effects (Cardinale et al. , 2011). There is however evidence for great er importance 

of complementarity in a variety of systems su ch as grasslands (Fargione et al. , 

2007 ; Marquard et al. , 2009 ; Spehn et al. , 2005 ; Van Ruijven and Berendse, 

2005) , pot experiments (Jiang, Zhang and Wang, 2007 ; Lanta and Leps , 2006) , 
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agricultural systems (Trenbath, 1974) and shrublands (Montès et al. , 2008). In 

addit ion, it has been shown that the importance and dominance of complemen­

tarity increased with t ime (Allan et al. , 2011 ; Cardinale et al. , 2007 ; Fargione 

et al. , 2007 ; Reich et al. , 2012). Evidence from tree systems however is scarce. 

There is ample evidence for positive mixture effects, mostly calculated in terms of 

relative yield (i. e. "overyielding") , experimental examination of underlying mecha­

nisms such as complementarity and selection effects has been attempted in only 

a few cases (Sapij anskas, Potvin and Loreau, 2013; Zeugin et al. , 2010) . Theo­

retical evidence of strong complementarity in tree systems cornes from modeling 

approaches (Morin et al. , 2011 ; Perot and Picard , 2012). Besicles documented 

cases of facilitation in tree mixtures with nit rogen fixers acacias (Forrester , Bau­

hus and Cowie, 2005; Piotto, 2008), architectural complementarity in canopies has 

long and often been proposed as mechanism for posit ive mixture effects (Assmann, 

1961 ; Erskine, Lamb and Bristow, 2006 ; P retzsch and Schütze , 2009). There is 

need to experimentally test for complementarity and selection effects to better 

understand underlying mechanisms of posit ive mixture effects . 

0.3 Plant Functional Traits 

The utilization and classification of plants according to their traits has long 

been known to plant ecology, at least since Raunkiaer's plant life-form classifi­

cations (Raunkiaer , 1937). In the face of global change, much hope was put on 

attempts to generalize complex community dynamics and predict changes in eco­

system processes by assessing plant functional traits (PFT) instead of species 

identit ies (Lavorel et al. , 2007). A first approach was to reduce complexity by 

classifying species into functional effect groups (i.e. species with a similar effect 

on one or several ecosystem functions) and functional response groups (i. e. groups 

of species with a similar response to a part icular environmental factor) (Lavorel et 
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al. , 1997). However, hopes to find an easily accessible and functionally comprehen­

sive classification scheme have been attenuated and t he quest has largely remained 

an "elusive Holy Grail" (Lavorel et al. , 2007). The high intraspecific t rait varia­

t ion has proved scaling-up from individuals to vegetation assembly and ecosystem 

processes more challenging than expected (Lavorel et al. , 2007). Ttait values and 

their correlations change for example along gradients of climate, disturbance (Diaz 

et al. , 1999), nutrient availability (Schellberg and Pontes, 2012), plant age ( Tiine­

mets, 2010) and neighborhood diversity (Burns and Strauss, 2012). In addition , 

effect and response traits cannot strictly be separated due to strong overlap (i. e. 

a t rait can exert an effect on t he community which in t urn may change the trait 

itself as it responds to the changed environment) (Schellberg and Pontes, 2012). 

However, information about PFT has increased (Lavorel et al. , 2007) and 

improved our understanding of their link to key processes such as plant economies 

at a global scale (Wright et al. , 2004). Due to trade-offs between traits based on 

whole plant integration, suites of co-varying traits have been grouped along axes of 

plant specialization and are surprisingly consistent over biomes and taxa (Diaz et 

al. , 2004 ; Reich et al. , 2003). Probably the best understood axis is based on trade­

offs between leaf longevity and specifie leaf area (SLA) including repercussions on 

nu trient resident time, plant growth rate and h rb ivory (Diaz et al. , 2004 ; Wright 

et al. , 2004). Along this axis, plants with low structural costs (high SLA) exhibit 

high photosynthetic rates, fast turnover and increased herbivory. 

0.4 The Hidden Half 

As leaves are the factories that produce energy for a trees ' growth, roots 

are the railways that spread out into the rhizosphere (often more than 20 m) to 

deliver water and th essential nutrients (not to mention the myriad of mycorrhi-
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zal contractors and n urnerous volatile couriers) . Though their physiological and 

ecological importance is well established, the understanding of their functional 

linkages lacks behind the knowledge on aboveground traits . The overwhelming 

complexity and the inaccessibility have hampered exhaustive root research resul­

ting in knowledge gaps about belowground traits , their linkages to other below­

and aboveground traits as well as t he functional role they play in ecosystem pro­

cesses. Whereas coarse roots are responsible for anchorage, transport and storage, 

fine roots actively absorb nutrients and water and thus contribute largely to a 

trees ' competitive ability and finally overall performance. Consequently, unders­

tanding their functional role is essential to assess a t rees ' competitive ability as 

well as the effects of t heir diversity on overall ecosystem processes. 

First evidence suggests the possible existence of co-varying traits along eco­

nomie axes similar to aboveground traits. Plant fine roots of higher diameter are 

usually associated with roots of low specifie root length, low nitrogen and high 

lignin content (Comas and Eissenstat, 2004; Comas and Eissenstat , 2009; Graine 

et al. , 2001 ; Graine and Lee, 2003). This syndrome has been associated with slow 

growing species and growth-limit ing conditions (Comas, Bouma and Eissenstat , 

2002 ; Comas and Eissenstat , 2004 ; Reich et al. , 1998). However , studies and t hus 

study conditions are limited and root responses to environmental conditions such 

as nu trient supply are highly variable (Ryser , 2006). A part of t he reason of these 

inconsistencies may be explained by the greater belowground compared to abo­

veground heterogeneity and the mult iple stresses plant roots experience t hat may 

shift trade-offs within root t raits. On t he other hand , responses of specifie root 

length (SRL), probably the most studied fine root trait , have been shown to si­

gnificantly change wit h type of fert ilizat ion, sampling method and size of the root 

sample (Ostonen et al. , 2007). In addition , most of root studies are conducted 

on non-woody plants , in pot experiments and on seedlings (Zobel , Kinraide and 
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Baligar, 2007). More studies examining inter specifie root variation as well as in­

traspecific root plasticity along natural environmental gradients (i. e. refiecting the 

multiple stresses in natural habitat) are needed to better understand root trait 

variation on different scales (i.e. across and within species). 

In addit ion, increased focus on phenotypic plasticity (PI , proportion of total 

variation due to changes in the environment) for above and belowground PFT 

may help choose t raits better suited to predict responses (i.e . high PI) or effects 

(i.e. low PI). 

0.5 Thesis Plan 

The thesis is divided into three chapters, each treating specifie aspects of the 

above-mentioned objectives. 

The first chapt er uses two datasets of t ree fine root traits - one from a. common 

garden experiment and one from natural forests . The first da.taset included 12 

North America.n temperate tree species and was used to describe the interspecific 

correlations between three fine root traits : diameter , specifie root length and 

branching intensity. This part of the study specifically tested for the existence of 

belowground trait syndromes and their link to aboveground !ife-strategies such 

as relat ive growth rate. The second da.ta.set examined the same three fine root 

traits in four North American tempera.te tree species co-occurring on different soil 

conditions in na.tura.l temperate deciduous forests nea.r Montreal. Canada. Here, 

intraspecific trait variation in relation to changes in ontogeny (i. e. juveniles and 

mature trees) and soil conditions (i.e . plasticity) wa.s examined. 

The second chapter reviews and synthesizes current knowledge surrounding 

the para.digm of biodiversity and ecosystem functioning (BEF) in tree systems and 

beyond. After identification of open resea.rch questions within the BEF paradigm, 
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t he second chapter proposes an experimental design addressing thosc gaps. This 

experimental design is the foundation of the International Diversity Experiment 

Network with Trees (IDENT ) regrouping experimental sites in Europe and North 

America that all share t he quest of examining t he effect of funct ional diversity on 

ecosystem functioning. 

The third chapter describes the results of the IDENT Montreal. The experi­

mental design followed the approach developed in chapter two and was the first 

site wit hin IDENT to being est ablished in 2009 . High-density tree communit ies 

t hat vary in functional diversity, independent of species richness were used to spe­

cifically test for the effect of those two metrics of diversity on productivity while 

separating their respective contributions. This chapter also specifically tested for 

the existence of complementarity and selection effect s in young tree communit ies . 
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1.1 Abstract 

Fine roots play an important role in nutrient and water absorption and hence 

overall tree performance. However , cmTent understanding of the ecological role of 

belowground traits lags considerably behind those of aboveground traits . In t his 

study, we used data on specifie root length (SRL), fine root diameter (D) and 

branching intensity (BI) of two datasets to examine interspecific t rait coordination 

as well as intraspecific trait variation across ontogenetic stage and soil conditions 

(i .e. plasticity). 

The first dataset included saplings of twelve North American temperate tree 

species grown in monocultures in a common garden experiment to examine inter­

specifie trait coordinat ion. The second dataset included adult and juvenile indivi­

duals of four species (present in both datasets) co-occurring in natural forests on 

contrasting soils (i.e. humid organic, mesic and xeric podzolic). 

The three fine root t raits investigated were strongly coordinated , with high 

SRL being related to low D and high BI. Fine root t raits and aboveground !ife­

strat egies (i.e. relative growth rate) were weakly coordinated and never significant. 

Intraspecific responses to changes in ontogenetic stage or soil condit ions were trait 

dependent. SRL was significant ly higher in juveniles compared to adults for A. 

and A. rubrum, but did not vary with soil condition. BI did not vary significantly 

wit h eit her ontogeny or soil condit ions, while D was generally significantly lower 

in juveniles and higher in humid organic soils. D also had the least total variability 

most of which was due to changes in t he environment (plasticity). 

This study brings support for the emerging evidence for interspecific root 

trait coordination in trees . It also indicates that intraspecific responses to both 

ontogeny and soil conditions are trait dependent and less concerted. D appears to 

be a better indicator of environmental change than SRL and BI. 
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fine roots, phenotypic plasticity, functiona l traits 

1.2 Introduction 

The search to understand the effects of species on ecosystem functioning 

has brought f01·ward t he functional role of various traits. Functional traits have 

been shown to link species to the roles they play in the ecosystem. Through 

changes at the organismal level they not only influence individual performance 

but also higher organizational levels and hence drive ecosystem processes and 

services (Dîaz and al. , 2004 ; Garnier and al. , 2004). However , we know much more 

about aboveground traits, their coordination, phenotypic plast icity and linkages 

to ecosystem functioning t han we know about belowground traits. 

Although t he physiological and ecological importance of roots is well esta­

blished, the great variability of root systems, the small and varied size of fine 

roots and the relat ive inaccessibility of the belowground realm have all hampered 

exhaustive root research. In addition, the lack of consensus about how to classify 

and measure fine roots has constrained the dcvclopmcnt of a unificd framework 

towards a root economies spectrum as was achieved for both leaves (Wright and 

al. , 2004) and wood (Chave and al. , 2009) traits. Fine roots have traditionally been 

distinguished from coarser roots using various diameter classes of arbitrary width, 

with 2mm being the most common threshold (Guo and al., 2008; Hishi, 2007; 

Pregitzer and al., 2002). Consequent ly, fine root samples of different or even the 

same species may include varying numbers of root orders. Fine root traits such 

as specifie root length , diamer , root length density as well as ni trogen, lignin , 

non-structural carbohydrate and cellulose concentrations have been found to sys­

tematically change with root order (Guo, Mitchell and Hendricks, 2004; Pregitzer 
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and al. , 2002 ; Wang and al. , 2006). Such morphological and physical changes with 

root order translate into potent ially large differences in functional proper ties such 

as water uptake (Rewald, Ephrath and Rachmilevitch, 2011 ) , respiration (Jia 

and al. , 2011 ) or fine root mortali ty (Wells, Glenn and Eissenstat, 2002). More re­

cently, a functional classification approach based on root orders has been applied 

(Guo and al. , 2008; Rewald , Ephrath and Rachmilevitch , 2011 ). In t ree roots, a 

first order root would usually be the smallest (i.e. shortest) segment, which would 

be attached to a second order branch and so for th (Fitter , 2002). Although this 

approach attempts to control for confounding factors, comparisons across studies 

are restricted due to varying numbers of root orders included (see for example 

Alvarez-Uria and Korner, 2011 ; Chen and al. , 2013; Comas and Eissenstat, 2009 ; 

Yu and al. , 2007). 

Above- and belowground organs share many functions, such as nut rient ac­

quisition and transfer. Sorne functional coordination between above and below­

ground t raits is therefore expected (Westoby and Wright, 2006). Despite examples 

of strong coordination in sorne t raits and ecosystems (Craine et al. , 2001 ; Heich 

et al. , 1998; Tj oelker et al. , 2005), results remain inconsistent (Chen et al. , 2013 ; 

Freschet et al. , 2010 ; Westoby and Wright , 2006). 

Apart from mean trait values used to coordinate and characterize species, 

trait plasticity has gainecl momentum as a driver of individual fi t ness and conse­

quently, community dynamics. Evidence is accumulating that through changes in 

realized niches, trait plasticity can be linked to a species ' competit ive ability and 

hence overall fitness (Berg and Ellers. 2010). Due to higher spatial and temporal 

variability of resources belowground, phenotypic plasticity (i. e. plasticity due to 

environmental changes) is expected to be great er for below- th an abov ground 

t raits . There is also evidence of drastic ontogenetic changes in t rait values (Cor­

nelissen et al. , 2003) that should be more pronounced in long living organisms 
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such as trees. However, only little information about root acclimation to changes 

in t he environment or in ontogeny is available, especially for trees. In addition, 

much of our knowledge about plant root function is based on seedling responses 

(Zobel et al. , 2007) and on experiments conducted in pots or containers. 

Probably the most studied fine root trait is specifie root length (SRL), the 

ratio between root length and weight (Zobel, Kinraide and Baligar , 2007). Much 

like the well-known specifie leaf area (SLA) for leaves, SRL is thought to describe 

t he economical aspect of a root by weighing the costs ( weight) per potential return 

(length) (Ryser , 2006). Under t he assumption that investment in carbon per unit 

length should be minimized to exploit a lm·ger volume of soil, SRL is expected to be 

highly plastic and increase under nutrient limitation . Despite examples confirming 

the assumption (see Ostonen et al. , 2007 for a meta-analysis) , increases in SRL 

with increasing nutrient supply as well as no responsc to changes in nutrient 

supply have been reported (see Ryser, 2006 for a summary) , with equally variable 

responses to changes in soil water (Bakker et al. , 2009 ; Cortina et al. , 2008 ; 

Ostonen et al. , 2007). 

Through its link to surface area and volume, fine root diameter (D) is an 

important trait directly linked to nutrient and water absorption. Although D has 

been shown to be plastic and strongly dependent on nu trient supply (Eissenstat 

et al. , 2000), it is rarely a foc us of fine root research exccpt as average diameter 

(Zobel, Kinraide and Baligar, 2007). Research on the response of D to nu trient 

concentrations showed species specifie responses wi th increases and decreases pos­

sibly depending on nutrient , species and their interaction (Zobel, Kinraide and 

Baligar , 2007). 

Last ly, bran ching intensity (BI , also called root tip density) is a fine root 

trait describing the topology of fine roots by counting the number of t ips per unit 
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root length. Changes in BI to environmental factors have been assessed in only 

a handful of studies, with contrasting results (Ahlstrom, Persson and Borjesson, 

1988; George et al. , 1997 ; Kakei and Clifford, 2002). 

In the present study, we examined interspecific (coordination) and intraspe­

cific variation across contras t ing soil conditions (i.e. plasticity) as well as with 

ontogenetic stages (i.e. adults versus juveniles) for SRL, D and BI. A first dataset 

("common garden", CG), including twelve North American temperate t ree species 

grown in a common garden experiment was used to examine trait variation across 

species. We tested the hypotheses that under uniform controlled conditions : 

1. SRL, BI and D are strongly coordinated across species of wide variation in 

root morphology ; and 

2. Belowground fine root traits are correlated to whole-plant life-strategies , 

such as relative growth rate. 

A second dataset ("nat ur al forest", NF) of four tree species ( also present in the 

CG dataset) that included adults and juveniles co-occurring on contrasting soil 

conditions in natural forests was employed to examine t rait variat ion in relation to 

species , ontogeny and soil conditions. More specifically, we tested the hypotheses 

that: 

1. SRL and BI are greater and D smaller in juvenile compared to adult trees; 

2. SRL and BI generally increase while D decreases with decreasing soil mois­

ture and nutrient content ; 

3. Phenotypic plasticity is greater in fine root t raits t hat are more strongly 

associated with resource uptake (i. e. SRL and D). 
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1.3 Materials and Methods 

1.3.1 Common garden dataset - CG 

Study sit e 

The study site for the first dataset was located at Ste-Anne-de-Bellevue, near Mon­

treal, Québec, Canada (45°26 ' , Long 73°56'\ iV , 39 m.s.l). Mean annual tempera-

t ure is 6.2 oc wit h a mean annual precipitation of 963 mm ( clima te.weatheroffice .gc .ca) . 

On this former agricultural field t hat has been managed for s veral decades (Marc 

Samoisette, personal communication, October 2011 ), monocultures of twelve Nor th 

American temperate forest species were established in spring 2009 wit h seedlings 

of one (broadleaf) or two ( conifer ) years of age. These monocultures are part 

of an ongoing experiment on biodiversity and ecosystem functioning with tr es 

(Tobner et al. , 2013). Wit hin t he objectives of this biodiversity experiment, the 

twelve species were selected to cover a wide range of functional traits, including 

angio- and gymnosperms, and early and late successional spccies : Acer· sacchaTum 

Marsh. , AceT Tubmm 1 ., Betula alleghaniensis Brit ton , Betula papyr"ijeTa Maxsh . 

and QueTcus Tubm L. as well as seven conifers : Abies balsamea (L. ) Mill. , Lar·ix 

laTicina (Du Roi) K. Koch, Pin us stm bus L. , Pin us Tesinosa Aiton, Picea glauca 

(Moench) Voss, Picea Tubens Sarg. and Thuja occidentalis L. Each species was 

planted in a square plot of eight by eight individuals (50 x 50 cm). Plots wcrc re­

plicat cl four times wi t hin an area of around 0.6 ha. Plots were weedecl manually 

and a fence was installed to protect against ungulate herbivory. 

Common garden trait measurements 

Traits were measured in September 2011. From each plot , two inclivicluals 

were selected that were growing in the outer rows ( to minimize impacts on the 

ongoing experiment) . T his was repeated for each of the four repli ca te blocks blocs 
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resulting in eight individuals sampled per species. Following the main axis (i. e. 

stem), a root t hat grew towards the inside of t he plot was detected and followed 

until it branched off into roots < 2mm. Roots were then excavated and placed in a 

cooler for transport. Roots were then stored at 4°C until processing that occurred 

no later than two weeks after sampling. Roots were carefully washed and separated 

into segments of t he first three orders. This classification approach (i.e. 1st to 

3rd or der roots) was chosen following Guo et al. ( 2008). Root sam pl es were th en 

scanned for subsequent image analysis (Winrhizo , Regent software, Québec). Total 

root length, average diameter and number of root t ips were measured for each 

sample. Finally, root samples were oven-dried at 65 oc and weighed to calculate 

SRL (rn g-1). Relative growth rate (RGR) was calculated based on volume ([t runk 

diameter at 5 cm]2 x total tree height ) : RGR = (log vol fall 2011- log vol spring 

2009) / 3 growth periods (i.e . vegetation periods 2009 through 2011). 

1.3.2 Natural Forest dataset - NF 

Study site 

The study site for the second dataset was situated at the Station de biologie 

des Laurent ides of Université de Montréal in St-Hippolytc, Québec, Canada (Lat 

45°59'N, Long 73°59 '\iV, 366 m.s.l. ). The research station consists of an area of 

about 16 km2 of forest and lakes dedicated to research and has been protected 

from other human activities since 1963. Birch ( Bet'Ula papyrifera and Bet'Ula alle­

ghaniensis) and maple (Acer sacchar-um and Acer rubrum) communities are t he 

dominating forest types covering more than 60% of the land surface in terms of 

canopy cover (Savage , 2001). Mean annual temperature is 3.9 oc with a mean an­

nual precipitation of 1164 mm (climate .weatheroffice.gc.ca). Four forest species , 

also present in the CG dataset , co-occur in the forests of the research station on 

contrasting soil conditions : Acer rubr·um, Betula papyrifera, Abies balsamea and 
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Th'Uja occidental'is. Species were selected to include a broad spectrum of phylogeny 

and different life strategies (growth rate, li fe span , type of mycorr hization, etc.). 

We identified three different sail condit ions where the studied species occur : 

Humisols with standing water level between 10 to 20 cm belowground and 

T. occidentalis as the dominant species, hereafter referred to as "humid 

organic", 

Orthic humoferric podzols (Courchesne and H ndershot , 1989, personal 

communication Courchesne, March 2011 ) on slopes of 28 to 46 degrees and 

strong water runoff with T. occidentalis as the dominant species, hereafter 

referred to as "xeric podzol" and 

Orthic humoferric podzols with good drainage, ni l to very gentle slope 

and B. papyr-ifera as t he dominant species , hcreaft.er referred to as "mesic 

podzol". 

For each sail type, t hree plots covering at. least 200m2 werc established. Plots 

were located under closed canopy, with no recent sign of perturbation and at leas t. 

four adult and four juvenile individuals of the target sp cies . Exceptions were T. 

occidentalis t hat never occurred on mesic podzols and B. papyrifera, for which no 

juvenile individuals were found, as this species does not regenerate under closed 

canopies. Juveniles were defined as tree saplings betwecn 25 and 100 cm in height 

and adult trees were defined as trees with a diametcr at 1.3 m (DBH) > 10 cm. 

Soil characterization 

At t he center of each plot , one sail sample was taken at 20 cm depth on 

August 22, 2011. The average daily temperature in the two weeks preceding soil 

sampling was 17.5 oc. Precipitation for the same period amounted to 46 mm 

distributed over 6 days with 15 mm being the strongest precipitation event for one 
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Table 1. 1 Soil and stand characteristics of the three soil condit ions for the Natural 
Forest Dataset. 

Soil CEC Basal area (rn ha· ) 
moi-

pH (emoi BS% sture 
kg' ') 

Abies Tlwja Acer Bet1da 
others 

(%) balsamea accidenta lis rubrum papyrifera 

HO 85.2 4.88 1.9 5.9 5.9 14.85 7.1 6.3 8.0 
::t:l.8 ::1: 1.1 ::1:1. 1 ±3.4 ::t:2 ::1:2 .6 ::1:0.4 ::1:3.5 ::1:4.2 

MP 30.7 5.05 0.6 9.9 7.2 4.7 23 9.95 
::t:3 .0 ::t:O.O ::t:0.2 :t l6.2 ::1:3 .0 ::t:0.4 ± 14.1 ::1:5 .6 

XP 19.2 4.70 0.5 9.1 6.0 10.1 4.0 6.7 11.6 
::t:7.2 ::t:0.3 ::t:O . I :t4. 7 ::t:3.4 ::1:5 .6 ::1:2 .9 ± 3.0 ::1:4 .0 

Given are means and standard deviation of three sites per soil condition (HO -
humid organic; MP- mesic podzol and XP- xeric podzol). CEC-cation exchange 
capacity, BS-base saturation. 

day. Soil samples were placed in resealable plastic bags and immediately stored 

at -18 oc before fur ther processing that occurred no later t han one week after 

collection. Samples were then oven-dried at 65 oc until they reached constant 

weight and sieved through a 2 mm mesh prior to soil analyses . Soil moisture was 

the difference in sample weight before and after drying. Soil pH was measured in 

water in a ratio of one part soil (10 mg) to two parts water for mineral soil and 

one part soil ( 4 mg) to five parts water for orga.nic soils ( Canadian Society of Soil 

Sciences; 2007). Cation exchange capacity (CEC) and base saturation (BS%) were 

assessed through dissolving soil samples in barium chloride solution and atomic 

spectroscopy ( Canadian Society of Soil Sciences, 2007) (Table 1.1). 

Nat.ural forest trait measurements 

On each plot; species and DBH of all adult trees (i. e. DBH > 10 cm) were 

recorded to calculate basal area (Table 1.1). Adult trees of the site are usually not 
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older than 90 years as the last high-intensity fire passed through the research area 

around 1923 (Savage, 2001). For the four target species , at least four adult and 

four juvenile individuals were sampled (i. e. total of 12 adults and 12 juveniles per 

soil condition). For each adult tree, two root samples were collected in opposite 

directions from each other . From the st em, roots were excavated and followed un til 

they branched off into fine roots ( < 2 mm diameter ). Roots of adult individuals 

were excavated from the mineral or organic soil horizons, never from the humus or 

litter layers. Furthermore, for each adult individual , at least three of the highest 

branches were harvested with the help of a professional tree climber to obtain 

sun leaves. For juveniles, t he entire plant was excavated for root samples and 

at least three leaves or 20 needles were collected. Leaf and root samples wer 

immediately put into sealed plastic bags, labeled and stored at about 4 oc until 

further processing, occurring no later than six weeks after sampling. For each 

individual, three to five leaves w re punched with a hollow metal pin, yielcling 

leaf samples of a st andard surface area. A minimum of 20 neeclles of the previous 

year of growth were plucked off the branch and scannecl. Samples were then oven­

dried to constant weight to calculate SLA (foliage area/ foliage weight , mm mg- 1 
) . 

Root samples ( < 2 mm) of each individual were carefully washed and scanned and 

analyzecl in an identical fashion to the CG clataset. Once the complete sample was 

scanned , parts of the image containing first to third order roots were selectecl and 

re-analyzed. For these subsamples, average diameter . total length and numb r 

of t ips were calculated . In addit ion, root diameter was assessed fo llowing the 

handbook of t rait measurements (Cornelissen et al. , 2003) , on first order roots , 

after t he root hair zone (i.e. after tapering) . Hereafter for both datasets, t raits 

measured on complete root samples (roots < 2mm) are notecl using the subscript 

"c" (e.g. De), while results for fine roots definecl as first to third order roots ar 

noted with subscript "3" ( e.g. D3 ) . Diameter measurecl on first order roots is noted 
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1.3.3 Phenotypic plasticity 

The total phenotypic variability of a population is the result of genetic and 

environmental sources and their interaction (Hart l and Clark, 1997 ; Whitman 

and Agrawal, 2009 ). To quantify t he total variability of a trait we employed the 

coefficient of variance (CV) , i.e. the standard deviation divided by the mean. 

In a second step, for each trait and species we calculated an index of the 

variability, which is due solely to variation in the environment , the phenotypic 

plasticity index (PI). Determining the contribution of the environmental source 

of variability is essential in assessing a population 's potential to adapt to hete­

rogeneous or changing environments (Byers , 2008). The ability of a genotype to 

express different phenotypic values for a given t rait under different environmen­

tal conditions, the phenotypic plasticity (Valladares , Sanchez-Cornez and Zavala, 

2006) , is strongly linked to individual fitness (Bell and Calloway, 2007 ; Nicotra 

and Davidson, 2010) and hence population demographies as it can generate no­

velty and faci lita te evolut ion (Draghi and Whitlock, 2012). Phenotypic plasticity 

has gained increasing interest with the necessity to predict species responses to 

global change (Matesanz, Gianoli and Valladares , 2010; Richter et al. , 2012) . Se­

veral metrics have been proposed to assess this environmental source of variabili ty 

(Valladares, Sanchez-Cornez and Zavala, 2006) . In the present study, we employed 

the phenotypic plasticity index (PI), a met rie recommended to explore functio­

nally related traits. PI is based on maximum and minimum trait means across 

environmental condit ions and was calculated for every trait and species as : 

[max( trait mean among soil condit ions) - min( trait mean among soil condi­

tions)] / max[trait mean among soil conditions] (Valladares , Sanchez-Cornez and 

Zavala, 2006). 

Finally, to compare t he phenotypic plasticity with the overall phenotypic 
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variability, we computed a ratio of PI to CV (PI :CV) as an expression of how much 

of the overall phenotypic variability is due to plast ic responses to the environment. 

Both CV and PI vary between zero and one . Hence , a PI :CV of zero would indicate 

no environmental source of variability, whereas a PI :CV of one would indicate 

that the overall phenotypic variability is completely due to acclimations to t he 

environment. Although the literature on trait variation and plasticity is rich , we 

are not aware of other studies using PI :CV to explore differences in relative 

plasticity between species and traits . 

1.3.4 Data analysis 

For both datasets , traits were tested for normality with the Shapiro test and 

transformations were applied where needed to correct for deviations. To test for 

species differences within the CG dataset , a one-way ANOVA wi th subsequent Tu­

key HSD test was performed. Trait correlations were assessed using the Pearson 

correlation coeffi cient. To test for effects of soil condition and ontogenetic stage 

on fine root traits in the NF dataset. linear mixed effect models (R.EML) with 

site (random effect ) as well as the interaction of plot and ontogenctic stage nestcd 

within soil condition were applied for each species. The asymptotic inference test 

for coefficients of variation as described in Miller and Feltz (1997) was used to test 

for differences in CV as well as P I :CV between traits and species. Subsequent 

Dunn-Sidak correction (Sidak , 1967) were applied to correct alpha levels for mul­

tiple comparisons. To test for differences in PI , resampling methods were applied 

to create populations per species , ontogenetic stage and t rait (N = 999). Data 

were then analyzed using ANOVA models to test for effects of trait and species. 
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1.4 Results 

1.4.1 Interspecific trait coordination (CG) 

In the common garden, fine root t raits were highly coordinated across species, 

especially SRL3 and D3 (Table 1.2) . SRL3 increased with Bh and decreased with 

D3 . Consequently, Bh was negatively correlated with D3 . Correlations between 

fine root traits and whole plant strategies such as RGR were much weaker and 

never significant (Table 1.2). In general, conifers showed greater D3 , lower SRL3 , 

and BI3 (Table 1.3). 

1.4.2 Intraspecific trait variation across ontogenetic stages and 

contrasting soil conditions (NF) 

In t he natural forest, fine root diameter in woody (i. e. De and D3 ) as well 

as non-woody roots (i.e. DI) was generally greater in humid organic than in me­

sic and xeric podzol conditions. However, differences were only significant for A. 

balsamea and T. occidentalis (Tables 1.4 and 1.5). D was also significantly lower 

for juveniles compared to adults in all threc spccics (Tables 1.4, 1.5 and Fig. 1.1). 

While differences for A. rubrum were consistent across fine root classification (i .e. 

size versus functional) for T . occidentalis differences were only significant for t he 

two funct ional classifications of fine roots (i.e. D3 and D1) , and for A. balsamea 

there only were significant differences in non-woody roots (i.e. D1 , Tables 1.4 and 

1.5). SRLc never varied significantly across soil conditions but was significantly 

greater for juveniles compared to adults in A. balsamea and A. rubrum. For juve­

niles of T. occidentalis, SRLc was smaller as well, but it did not vary significantly 

(Tables 1.4, 1.5 and Fig. 1.1). Conversely, Bic never varied significantly across soil 

conditions or ontogenetic stage (Tables 1.4 and 1.5). PI was greatest in De except 
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Table 1.2 Correlation matrix for functional traits of 12 North American tempe­
rate forest species grown in a common garden. 

0 3 SRL3 8 13 

SRL3 0.83 

813 0.64 0.66 

RGR 0.05 0.07 0.07 

Traits include belowground specifie root length (SRL), diameter (D) and 
branching intensity (BI) as well as whole-plant life-strategy measures (i.e., 
relative growth rate - RGR). Fine root traits were measured on first three root 
orders (subscript "3") . Significant correlations appear in bold type (P< 0.001 in 
all cases) . 

Table 1.3 Mean trait values for 12 North-American temperate forest spec1es 
grown in a common garden. 

Species 

Thuja occidenta!is 

Pinus slf·obus 

Abies balsamea 

Larix laricina 

Pinus resinosa 

Acer rubrum 

Acer saccharum 

Picea glauca 

Betu/a alleghaniensis 

Quercus rubra 

Picea rubens 

Betula papyrifera 

0 3 SRL.1 

0.57 A 13.9 l· 

0.56 A il 16.1 F 

0.45 BC 

0.38 CD 

0.37 CD 

0.35 Dll 

0.33 DllF 

23 .9 EF 

41.3 DE 

39.5 DE 

64.5 AB 

57.8 B D 

0.33 48.3 D 

0.28 FO 90.3 A 

0.27 p 7 J.9 AB 

81 3 RGR 

1.2 l· 0. 79 Bt 

3.2 IJCD O. 70 CD 

1.9 EF 

2.8 DE 

3.9 D 

3.J CD 

2.7 Dl! 

0.59 DE 

0.88 Ail 

0.69 CD 

0.75 B 

0.67 D 

3.1 D 0.59 OF 

4.0 AB 0.74 

4.6 A 0.68 D 

0.27 FG 

0.26 ° 
68.3 ABC 2.9 ABC 0.49 E 

74.0 AB 4.5 A 0.94 A 

Traits include belowground specifie root length (SRL), diameter (D) and 
branching intensity (BI) as well as whole-plant life-strategy measures (i. e., 
relative growth rate- RGR). Fine root traits were measured on first t hree root 
orders (subscript "3"). Different letters indicate significant differences between 
species . Angiosperms are underlined in gray. 
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Table 1.4 P-values for fixed effects (soil condit ion and ontogenetic stage - OS) 
of linear mixed models (REML) and their interactions on functional traits of four 
Iorth-American temperate forest species (NF dataset). 

Diameter 
Branching 

SLA 
SRL, intensity 

D, Dl D, BI, 8 13 

Soi! 0.03* 0.07• <0.01 ** 0.95 0.67 0.17 0.47 

Abies balsamea os 0.12 0.30 0.03* 0.01 * 0.58 0.44 <0.01 ** 

Soii+OS 0.72 0.43 0.20 0.7 1 0.98 0.96 0.34 

Soi! 0.09• 0.02* 0.03* 0.22 0.77 0.60 0.66 

Tlwja occidenlalis os 0.09• 0.02* <0.01 ** 0.72 0.2 1 0.71 <0.01 ** 

Soii+OS 0.71 0.95 0.67 0.51 0.66 0.59 0.42 

Soi! 0.13 0.76 0. 14 0.55 0. 11 0.10 0.09• 

Acer m brum os 0.04* 0.04* <0.01 ** 0.02* 0.63 0. 13 <0.01 ** 

Soii+OS 0.99 0.33 0.53 0.75 0.33 0.47 0.04* 

Be/Ilia papyrifera 1 Soi! 0.15 0.54 0. 10 0. 15 0.50 0.65 0.77 

Traits include belowground specifie root lengt h (SRL), diameter (D) and 
branching intensity (BI) as well as aboveground specifie leaf area (SLA) . Fine 
root traits were measured on roots < 2mm (subscript 'c') , first three root orders 
(subscript ·3') or first order roots only (subscript ' 1'). 
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for B. papyrifera adults and A. rubrum juveniles . PI for SRLe and Ble was more 

variable and depended on species (Fig 1.2). The amount of total t rait variability 

(CV), tended to be significantly higher in SRLe and Ble, compared to De (Fig 

1.2). Consequently, De was also the trait with the highest PI :CV. As expected, 

SLA was significantly higher in shade-grown leaves of juveniles compared to sun 

leaves of adults (Table 1.4). SLA did not vary significantly with soil conditions. 

The significant interaction term of soil condi tion and ontogenetic stage for A . T'U­

brum is due to a slightly higher SLA for juveniles in mesic con di ti ons (Table 1.4). 

vVhen analyzed by species and ontogenetic stage, no significant correlation was 

found between SLA and SRL (data not shown). Although fine root classification 

based on root orders did not uniformly reduce variation (i. e. CV) compared to 

fine root classification based on size (Table 1.5), in sorne cases, it helped detect 

treatment differences (e.g. De to D3 for T. occidentalis, Tables 1.4 and 1.5) . 
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1.5 Discussion 

1.5.1 Interspecific trait coordination 

The observed belowground trait correlations across various taxa indicate 

strong coordination among fine root morphological t raits supporting the idea of 

a generalized tree root syndrome (Holdaway et al. , 2011). 

As root diameter and root mass density constitute t he two components of 

SRL, t he strong negative correlation between SRL and D was expected (Chen 

et al. , 2013 ; Comas and Eissenstat , 2009 ; Fahey and Hughes, 1994). Branching 

patterns were found to negatively correlate with D when measured as BI (i.e. 

number of root tips divided by root length , Comas and Eissenstat , 2009) or as 

branching ratio (number of root t ips divided by number of second order roots, 

Chen et al. , 2013) and positively with SRL (Comas and Eissenstat , 2009). As 

shown by Comas and Eissenstat (2009) , t here is a possible link between BI and 

mycorrhization that may in t urn determine internal cell structure ( e.g. layers of 

root cortex) and hence D and SRL. 

Although evidence is still fragmentary, root syndromes are based on a. t ra.de­

off between life-history strategies ( e.g. RGR) and tissue longevity. Thus, roots with 

high SRL, thin D and low t issue density are generally a.ssocia.ted with grea.ter root 

proliferation, greater RGR and shorter overa.lllongevity (Eissensta.t , 1992 : Wright 

and Westoby, 1999). In previous studies , growth rates of juvenile and adult trees 

have been linked to root traits with fast-growing specics showing higher SRL 

(Comas, Bouma and Eissenstat, 2002 ; Comas and Eissenstat, 2004 ; Reich et al. , 

1998), sma.ller root dia.meter and grea.ter degree of branching (Comas, Bouma. 

and Eissenstat , 2002 note tha.t for these pa.pers, results are for phylogenetically 

constrained contrasts ; Comas and Eissenstat, 2004)). Other studies documented 
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Figure 1.1 Mean ± standard deviation for three fine root traits along a gradient 
of soil conditions (NF dataset). Traits are measured on roots < 2mm: specifie root 
length (SRLc) , branching intensity (Ble) and fine root diameter (De) . Soil condi­
tions were identified as HO - humid organic, MP - mesic podzol and XP - xeric 
podzol. Different letters indicate significant differences between soil conditions; 
asterisks indicate significant differences between adults (solid line) and juveniles 
(dashedline) (for P < 0.05). 
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no or even negative rclationships between SRL and SLA or RGR in grasslands 

(Kembel and Cahill , 2011 ; Laughlin et al. , 2010 ; Poorter and Remkes, 1990) and 

trees (with phylogenetic independent contrasts , Chen et al. 2013). 

In the present study, no significant relationships were found between fine root 

traits and RGR based on volume, height or diameter (only volume is reported). 

Here, the two species with highest SRL were also the species with the highest and 

lowest RGR (B. papyrifera and P. rubens, respectively). The study site for the 

common garden experiment has been intensively cultivated for decades. Nutrient 

availability can be assumed to be abundant . Interestingly, the four species occur­

ring in both datasets have markedly higher SRL (less so for T. occidentalis) in 

the common garden site, compared to the nutrient poorer natural forest , confu ting 

the often-assumed increase in SRL with nutrient limitation. This indicates that 

in nutrient abundant habitat , SRL may not be a t rait of primary importance for 

plant growth . 

1.5.2 Trait variation between ontogenetic tltages 

Trait responses to ontogenetic stage were trait dependent . Similar trends 

of decreasing SRL with age as shown in our study have been reported in the 

literature for Japanese cedar (C. japonica) (Fujimaki , Tateno and Tokuchi , 2007), 

silver hirch (B. pendula ) (Rosenvald et al. , 2013) , European spruce (P. abies ) and 

Turkey oak ( Q. cerris) (Claus and George, 2005) or in a comparison of laboratory­

grown seedlings to field-grown adult t rees of six temperate North American tree 

species (Comas and Eissenstat, 2004) . D was also found to increase with tree age 

(Jagodzinski and Kalucka , 2010; Rosenvald et al. , 2013). 

Two possible mechanisms ma.y explain differences in root morphology with 

age. On the one hand, higher SRL and lower D in juveniles could be an artifact 
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of differences in root orders measured as it is likely that juvenile root samples 

< 2mm contain fewer root orders than t heir conspecific adults . For a multitude 

of species , SRL and D have been shown to significantly change with root order 

(Pregitzer et al. , 2002; Wang et al. , 2006). However , when controlling for root 

orders in both adults and juveniles, SRL was still higher in juveniles compared to 

adult trees (Comas and Eissenstat , 2004; Rosenvald et al. , 2013). 

It appears thus more likely, that the observed changes in root morphology 

with ontogenetic stage may be an adaptation to rooting depth. In most of the 

above-mentioned st udies examining the effect of tree age on root morphology, in­

cluding the present study, soil depth was not accounted for. However , changes in 

SRL and diameter with soil depth have been reported in other st.udies (Makita et 

al. , 2011 ; Wang et al. , 2006). In the present study, root samplcs for adult trees 

were collected in the mineral horizons (often below 10 cm soil d pth) while the 

entire root system of juveniles often did not exceed 10 cm soil depth. Furthermore, 

juveniles were frequent ly found on or near rot.ting logs. Increasecl SRL and lower D 

of juveniles could thus be an acclimation to shallow soil depth and possible higher 

nutrient availability. This is congruent with the assumption that sp cies experien­

cing large shifts in height and therefore cnvironmental condi tions while maturing 

should experience corresponding shifts in traits (Grime, 2001 ; Smilauerova and 

Smilauer , 2007) . 

It was surprising that BI never changed significant ly wit h ontogenetic stage. 

In fact, BI also never changed significant ly wit h soil condition, paint ing towards 

a rather conservative trait and fine root topology. 
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1.5.3 Trait plasticity across soil conditions 

As shown earlier with ontogenetic stages, fine root responses to soil condit ions 

were also trait specifie. Despite the large gradient in soil nutrients and water (Table 

1.1), SRL and BI never varied significantly across soil conditions for t he four target 

tree species ; only D tended to be greater in humid organic soils. 

SRL has been studied extensively and it was often associated with root pro­

liferation in response to nu trient heterogeneity (Hodge, 2004). For trees , SRL has 

even been described as a successful indicator of nutrient availability (Ostonen et 

al. , 2007). Empirical responses of SRL to increases in nutrients have been mixed 

however (Ryser , 2006). Initially, it was proposed that under growth limit ing condi­

t ions, SRL should be greater (and D smaller) in order to decrease construction 

costs and invest in greater soil exploitation (Ryser , 2006). And indeed, decreases 

in SRL with nutrients have been documented (Ostonen et al. , 2007; Trubat , Cor­

t ina and Vilagrosa, 2006). However , positive (Majdi and Viebke, 2004 ; Yu et al. , 

2007) or non-significant (George et al. , 1997 ; Mei et al. , 2010) responses of SRL 

to nutrients have been documented as well. Despite advances in root research, 

responses of SRL to nutrient availability still appear somewhat "mysterious" (Ry­

ser , 2006) and SRL has been shown to vary significantly with type of ferti lizer , 

sampling method (i. e. pot , soil coring or ingrowth core) and root diameter class 

sampled (i.e. 0-1 mm , < 2 mm, etc.) (Ostonen et al. , 2007) . 

As mentioned earlier, SRL has two components : diameter and root mass den­

sity. While SRL did not change significantly with soil conditions. D was higher 

in humid organic conditions compared to mesic and xeric podzolic condi tions im­

plying a possible inverse response of root mass density that could explain the lost 

signal in SRL. ln grasses. decreases in nitrogen and phosphorus have been shown 

to decrease root diameter and increase tissue mass densiy (Ryser and Lambers, 
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1995). If the same applied to temperate tree species, then humid organic condi­

t ions with their greater water and nutrient content (Table 1.1) would constitute 

an improvement in plant nutrition. Tissue density in roots has been related to 

the proport ion of stele and of cell wall in the stele, and to characteristics of the 

tracheary system (Wahl and Ryser, 2000). A reduced percentage of stele in fine 

roots with decreasing t issue mass density could indicate a r duced importance 

of conductive t issue in an environment of goocl plant nutri tion as in humid or­

ganic soil conditions. Although sorne studies have reported incr ases in D with 

nutrients (Holdaway et al. , 2011 ) and water (Cortina et al. , 2008; Peek et al. , 

2005) , its potential as environmental indicator may have been underestimated so 

far. 

A limited number of stuclies have examinecl responses of BI to soil nutrition , 

reporting mostly non-significant changes (Bakker , Garbaye and Nys, 2000 ; George 

et al. , 1997). Interestingly, among these f w studies on BI, contrasting results were 

reported within species (i.e. Pinus sylvestris) (Ahlstrom, Persson and Borjesson, 

1988 ; George et al. , 1997). In the present study, BI provecl to b th least variable 

and least plastic fine root trait responding to neither ontogenetic stage nor soil 

condit ions. 

1.5.4 Trait plasticity 

From the three fine root traits assessed in the present study. D clearly sho­

wed the greatest plasticity (PI) and was also the trait where phenotypic plasticity 

contributed t he most to total phenotypic variabili ty (highest P I :CV). This coïn­

cides with it being the most responsive trait to soil conditions (Tables 1.4 and 1.5). 

Although more often used to assess acclimations to changes in the environment , 

SRLc had significantly greater CV and a lower PI :CV than De in most cases. 
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0.5 

ADULTS 

0.4 D cv 
ISI Pl 

0.3 

0.2 

0 .1 

0.0 
De SR Le B le 

0.5 ,------------, 

0.4 

JUVENILES 
A 

A 

Oc SRLc Ble 

Abies balsamea 

A 

A 

De SR Le Ble De SRLe Ble De SR Le Ble 

A 

De SRLc Ble De SRLc Ble 

Thuja occidentalis Acerrubrum Betula papyrifera 

Figure 1.2 Coefficient of variation (CV, grey) and the phenotypic plasticity in­
dex (PI, grey hatched) for fine root traits of four North-American temperate fo­
rest species (NF dataset). Different letters indicate significant differences between 
traits (capitalletters for CV, capitalletters on white inset for PI and smallletters 
for PI :CV). Traits include specifie root length (SRLc) , branching intensity (Bic) 
and fine root diameter (De) and were measured on roots < 2mm (subscript 'c') . 
Trait effects for CV and PI :CV were computed using the asymptotic interference 
t est (Miller and Feltz. 1997). Trait effects for PI were computed on resampled 
populations and consecutive AN OVA models. 
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Interest ingly, the species with the greatest CV within SRLc are t he two ectomy­

corrhizal species , A . balsamea (juvenile) and B. papyrifera (Table 1.5 and Fig 

1.2), indicating that this greater variability may be due in part to methodological 

challenges of hyphenated root samples. 

Variability of BI was highly species specifie. In adults and juveniles, CV for 

Ble was similar to those of De for the two angiosperm species and significant ly 

higher for the two gymnosperm species. In addition , CV was generally higher in 

juveniles compared to adults. This tr nd is reversed in many cases when measured 

on D3 , D1 or Bh (Table 1.5), indicating a possible effect of greater variation in 

root orders comprised in samples < 2 mm for juveniles . 

Fine root morphological traits were found to be strongly coordinated across 

species, but further work is need d to test for general patterns across ecosys t.ems 

and biomes . Above- and belowground traits and whole-plant-strategies may not be 

as coordinated as previously thought once other factors such as site productivity 

are a.ccounted for or controlled as we have done in this study for the common 

garden experiment. For the na.t ural fores t experiment , fine root traits responded 

differently to soil conditions within species, with fine root dia.meter being the most 

responsive. Diameter showed the lea.s t total variation yet much of it wa.s expla.ined 

by changes in t he environment. Consequently, D may be the most sui ta.ble trait 

for evalua.ting pla.sticity to soil nutrition for the rhizosphere. 

La.stly, the present study underscores th need for a unified fra.mework of fine 

root classification and stronger control for the many possible confounding factors 

in root studies. Although a functiona.l classification of fine roots managed to reduce 

variance in a limited number of cases, it improved estimator evaluation in a.t 

least one species. Most importantly, a unified fra.mework would grea.tly faci litate 

t he compa.rison of studies and therefore increa.se current understa.nding of the 
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funct ional ecology of roots. 
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2.1 Abstract 

Incr asing concern about loss of biodiversity and its effects on eco ystem func­

t ioning has triggered a series of manipulative experiments worldwide, which have 

demonstrated a general trend for ecosystem functioning to increase with diversity. 

General mechanisms proposed to explain diversity effects include complementary 

resource use and invoke a key role for species ' functional traits. The actual me­

chanisms by which complementary resource use occurs remain, however poorly 

understood, as well as whether they apply to tree-dominated ecosystems. Here we 

present an experimental approach offering multiple innovativ a ·p cts to t he field 

of biodiversity - ecosystem functioning (BEF) resea.rch . The International Diver­

sity Experiment Network with Trees (IDENT) a.llows resea.rch to be conducted 

a.t severa.l hiera.rchica.llevels within individua.ls, neighborhoods, and communities. 

The network investiga.tes questions rela.ted to intra.specific trait variation, com­

plementarity, and environmental stress. The goal of IDENT is to identify sorne 

of the mecha.nisms through which individua.ls and species intera.ct co promote 

coexistence and the complementary use of resources. IDENT includes severa.l im­

plemented and pla.nned sites in North America and Europe, and uses a replica.ted 

design of high-density tree plots of fixed species richness levels va.rying in func­

t iona.l diversity (FD). The design reduces the spa.ce and time needed for trees 

to intera.ct allowing a thorough set of mixtures va.rying ov r different diversity 

gradients (specifie, functiona.l, ph y logenetic) and environmenta.l conditions ( e.g. 

wa.ter stress) to be tested in the field. The intention of this pa.per is to sha.re the 

experience in designing FD-focused BEF experiments with trees, to fa.vor colla­

borations and expa.nd the network to different condi tions. 

Key words : Experimental design; tree-domina.ted ecosystems; complemen­

ta.rity; functional diversity; functiona.l traits, IDENT 
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2.2 Introduction 

Over two decades of research have documented a positive relationship bet­

ween ecosystem functioning and biodiversity for a multitude of systems , including 

grasslands, aquatic systems, bacterial microcosms and soil communities ( Cardi­

nale et al. , 2011 ; Hooper et al. , 2012 ; Reich et al. , 2012). However , most of t he 

biodiversity-ecosystem functioning (BEF) research on plants to date has been 

conducted on experimentally grown grasslands (Caliman et al. , 2010) , while stu­

dies on forests and tree-dominated eco systems are more recent and scarce ( J a­

drowski , Wirth and Scherer-Lorenzen, 2010). The ability to determine what mix­

ture of species could provide for better productivity and resilience , and how this 

may change with environmental condit ions, is crucial for management strategies, 

even more so in the face of global change. 

Since the size and longevity of t rees make them inherently difficult to study, 

t he bulk of studies have been observational, using forest inventory data. Most of 

these studies have reported positive relationships between diversity and produc­

tivity (Lei, Wang and Peng, 2009 ; Paquette and Messier , 2011; Vilà et al. , 2013 ; 

Vilà et al. , 2007; Zhang, Chen and Reich , 2012) or carbon stocks (Ruiz-Benito et 

al. , 2013) , but sorne have reported confiicting results (Jiang, Wan and Li , 2009) or 

even negative relationships (Thompson et al. , 2005; Vilà et al. , 2003). Although 

much welcomed for reasons of generality and applicabili ty in the "real world" 

(Reiss et al. , 2009 ; Symstad et al. , 2003) , observational studies may be limited 

in their abilities to investigat.e underlying mechanisms of BEF relationships. as 

well as other ecosystem functions than productivity (resource uptake, resilience, 

belowground and trophic interactions) not typically evaluated during forest sur­

veys. Several mechanisms have been propos d to explain BEF relationships, with 

the main candidates including complementari ty (CE) and selection effects (SE) 
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(Loreau and Hector , 2001) (see Discussion for details on the mechanisms). Com­

plementarity has been shown to be the dominant mechanism at work in grasslands 

and other ecosystems (Marquard et al. , 2009 ; Montès et al. , 2008 ; Spehn et al. , 

2005). Furthermore, recent studies have suggested an increasing importance and 

dominance of complementarity with time (Allan et al. , 2011 ; Reich et al. , 2012) . 

In trees however, the experimental isolation of CE has so far only been attempted 

in one tropical experiment (Sapij anskas, Potvin and Lm·eau, 2013 ; Zeugin et al. , 

2010). 

Functional traits are at the core of a mechanistic understanding of biodiversity 

effects (Reiss et al. , 2009). Functional traits link species to the roles they play 

in the ecosystem as "morpho-physio-phenological traits which impact fi t ness via 

their effects on growth, reproduction and survival, ... " (Vialle et al. , 2007)as well as 

influence processes at higher organizationallevels, and thus arc key agents driving 

ecosystem pro cesses (Diaz et al. , 2004). Species richn ss (SR) however has been the 

measure of biodiversity most often used in BEF research (Duffy, 2009), although 

evidence is accumulating that it may not be the most efficient predictor of EF 

and that other metrics su ch as functional div rsity (FD - the diversity of traits 

in a community) are needed to quantify BEF mechanisms (Hooper et al. , 2005). 

Nonetheless, SR and FD, as well as phylogenetic diversity (PD), are unarguably 

linked in the natural realm and t heir covariance challenges our ability to unravel 

their respective effects on ecosystem functioning (Naeem, 2002b: Paquette and 

Messier , 2011 ; Srivastava et al. , 2012) . 

Species complementarity may also operate at other t rophic levels via sha­

red enemies or mutualists , or from diversity effects that confer protection from 

disease or herbivory (Poisot , Mouquet and Gravel, 2013; Reiss et al. , 2009). Ad­

dit ionally, it was also proposed t hat biodiversity effects may be shaped by envi­

ronmental condi t ions (Steudel et al. , 2012), wi th more diverse communit ies being 
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more tolerant of environmental change, and CE being stronger under more stress­

fu! conditions. At the individual scale, within-species phenotypic plasticity with 

neighborhood composition may also enhance resource use efficiency and coexis­

t ence (Ashton et al., 20 lü ; Reiss et al. , 2009). 

The use of large ancl long-lived models such as t rees poses undeniable chal­

lenges , but also has benefits . In contrast to other plant-based models ( e.g. grass­

land experiments) , the position of individual tre s and t heir respective count is 

invariable t hroughout the duration of t he experiment ( unless manipulated or if 

mortali ty occurs). A tree-based model offers t he unique possibility to account for 

individual's contribution to the overall community-based functioning and to ana­

lyze the importance of spatial arrangements within o.,nd across species, as well as 

changes in those relations with t ime. Mixtures of trees thus make an excellent 

model for the next generation BEF research, by moving further from apparent 

overyielding to actual physiological and morphological adaptations of species that 

promote the complementary use of resources. 

We report here t he methodology of the International Diversity Experiment 

Network with Trees (IDENT) , a set of replicated and coordinated BEF experi­

ments testing a wide variety of tree mixtures and environmental conditions , as 

well as a variety of hypotheses on mult iple trophic levels. The experimental ap­

proach allows separating the effects of FD and SR t hrough a plot-based , replicated 

random design including t ree species mixtures varying in FD independent of SR. 

This variation of continuous indices of FD within levels of constant SR also al­

lows testing for underlying mechanisms such as CE and SE. The experimental 

approach used within the network is based on high-density tree plots and focuses 

on the early years of tree d velopment , reducing space, t ime and effort of imple­

mentation and maintenance. In addition , the experimental approach offers great 

fl.exibility with little changes in the design allowing for individual sets of questions 
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to each experimental site while sharing the core hypotheses with all other sites . 

This flexibility promotes international collaborations and new experiments to be 

established over a large gradient of condit ions ( e.g. soil, climate) and sp ci es pools, 

as proposed recently for testing global hypotheses in ecology (Fraser et al. , 2012). 

The network will help assess and quantify the direction, strength and shape of 

BEF relationships in early tree communit ies. In the following sections, we present 

t he conceptual background that led to sorne of the specifie research questions and 

challenges tackled by IDENT , as well as the design implemented to address them. 

We then present those research questions in more detail, and discuss how IDENT 

will address them. The main four research foci tackled by IDENT are relevant 

measures of diversity, underlying mechanisms and scale-dependency, importance 

of trophic interactions; and BEF effects over environmental gradients. IDENT 

aims to answer the following questions : 

1. What is the contribution of the different components of diversity to eco­

system functioning ? 

2. How to choose species and traits to crea te the desired FD gradient? 

3. Is complementarity the driving mechanism producing overyielding in early 

tree communities ? 

4. How does neighborhood diversity influences trait character displacement , 

thus the realized trait value and consequently realized functional diversity? 

5. At what spatial and temporal scales do complementarity effects occur? 

6. How to test for trophic-mediated complementarity? 

7. How do environmental conditions influence species interactions? 
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2.3 Experimental approach 

The common hypothesis underlying all IDENT experiments is that FD is a 

more mechanistic explanation and t hus a better predictor of ecosystem functio­

ning than SR. The separation of those diversity aspects is achieved through the 

establishment of two gradients. The first gradient consists of manipulations of SR 

(e .g. 1, 2, 4 and 12 species, Fig 2.1a) . The second gradient consists of species com­

binations of constant SR over which FD is varied continuously. To b etter isolate 

t he effect of FD ( over that due to t he presence/ absence of a specifie species or 

trait), FD levels are repeated using different species compositions and pooled in 

groups of similar value (Fig. 2.1). 

The sampling unit for system-scale metrics is the plot (7 x 7 or 8 x 8 as­

semblages of planted seedlings at regular intervals) and the design is replicated 

four times. Further replication allows additional t reatments, such as irrigation, 

at sorne sites . Tree seedlings are planted at regular close intervals ( 40 or 50 cm 

depending on site product ivity; Table 2.1). Although the relatively small indivi­

dual plot size used will never allow a true forest ecosystem to develop, IDENT 

also has provisions to address the problem of scale as trees grow (sce Q5). Focus 

in IDENT is clearly on t he early successional stage of stand development , at the 

onset of competit ion that will determine later community composition (i.e. domi­

nance, abundance , trait expression) and structure. Although interactions among 

juvenile trees will not match those of larger , mature trees that have developed 

over a long period of time. this difference should not be a barrier to the testing of 

general theory. Furthermore, it is well established that sorne crucial forest ecosys­

tem parameters are less dependent on age as they occur at similar rates or levels 

in young and mature stands, such as leaf area index (Lieffers, Pinno and Stadt , 

2002 ; Messier and Kimmins, 1991 ), fine root biomass (Claus and George , 2005 ; 
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Lei, Scherer-Lorenzen and Bauhus, 2012) , soil water retention and nutrient avai­

lability (Martin et al. , 2000). Given their cost and complexity, long-term full-scale 

experiments of forest BEF covering the whole range of forest dynamics are likely 

to be rare. 

2.4 Specifie design layouts 

At present, two cxpcrimcnts within IDENT have bcen implemented (Table 

2.1) at three sites, with more planned for 2013. The first xperiment (Montreal ; 

MTL) was established in spring 2009 near Montreal (Québec, Canada), where 0.6 

ha of a former high-input agricult ural site was fenced to protect trees from herbi­

vory. Nearly 10,000 individuals belonging to 12 North Am rican temperate forest 

species (Table 2.2) were planted at 50 cm intervals on plots of 64 individuals (8 x 

8 rows). SR varies from one, two, four to 12 species (Fig. 2.1a) . In each replication 

block, 12 monocult ures, 14 two-species, ten four-species, and one 12-species mix­

tures were implemented. The two- and four-species mixtures were establishecl over 

a FD gradient of eight levels, plus added replication at sorne levels (Fig. 2. 1a). 

These mixtures were chosen in a stratified random fashion in two steps. First , all 

possible mixtures of two and four species were arranged along a continuous FD 

gradient (Tables 2.2 and 2.3, also see Discussion for mor on FD computation). 

Then mixtures were placed into eight FD classes, from which one or more were 

drawn at random (Fig. 2.1a). 

A second experiment (AuCl) was established in 2010 at. two sites, one near 

Auclair (Québec, Canada) and the other in Claquet (Minnesota, USA) , to ta­

ckle similar questions from a differ nt angle. They were established on low-input 

abandoned pasture (Auclair) or previously forested (Cloquet) sites and are about 

0.5 ha each with 10 000 seedlings planted (Fig. 2.1b). Since both sites are less 
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Figure 2.1 Schematic representations of the IDE TT experimental design, showing 
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present. Upper panel : Design of the Montreal experiment with SR = 1, 2, 4 or 12 
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Design established at the Auclair and Cloquet experiment. SR = 1, 2 or 6 species , 
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pairs of similar species taken from the two continents ; medium FD from mixtures 
of two species within the same division , and high FD from mixtures that include 
both gymnosperm and angiosperms. 
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fertile and colder t han MTL, trees were planted at slightly doser 40 cm intervals 

to accelerate interactions, in plots of 7 x 7 trees. The AuCl experiment is different 

from the MTL one as communit ies were chosen not at random, but manipulated 

to maximize FD gradients within a balanced design. AuCl includes six congeneric 

pairs of temperate tree species with each pair made up of a Torth American and 

a European species. Implemented species mixtures include plots with one, two 

or six species with low, medium and high replicated FD levels in the two-species 

mixtures (Fig. 2.lb). 

These two-species mixtures were specifically chosen to balance the number of 

angiosperms and gymnosperms, and the three genera within each division. Thus 

AuCl varies both FD and PD independently over a fixed number of species, as 

suggested by Srivastava et al. (2012) and implemented by Gravel et al. (201 2) 

for marine bacteria communities . Low-diversity mixtures are composed of pairs of 

species from the same genus, medium-level uses specie · from the same division , 

while high diversity is realized when species are chosen from across divisions. 

However a central part of AuCl is the native vs. exotic contrast to study trophic 

complementarity ( e.g. complementarity that may operate at other trophic levels 

via shared enemies or mut ualists - see Discussion) . Th us the design also balances 

the use of North American and European species in mixtures of both, and within 

each provenance (Fig. 2.1 b). 

Planned sites for 201 3 will be located in Sault-Saint-Marie (ON, Canada), 

Solsona ( Catalonia , Spain) , Sardinia (Ital y) and Frei burg (German y). The first 

three are located in dry to very dry climates (Solsona and Sardinia) or poor soils 

(Sault-Ste-Marie) and will include manipulated environmental gradients (through 

irrigation or partial removal of rainfall). Those will be implemented simply by 

doubling (or more) the replication of a given FD gradient over a constant SR level 

(any line in Fig. 2.la or b) to accommodate both a control and a manipulated 
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Table 2.1 Characteristics of the two International Diversity Experiments imple­
mented at t hree sites in Canada and the USA 

Location 

Lat ; Long ; Elevation (m) 

Year of establishment 

Size of ex periment (ha) 

Number of replicate blocks 

Number of plots (trec communities) per 

Number of trees per plot 

Number of trees total 

Species richness treatments 

Planting distance (cm) 

Number of species p lanted 

Site history 

Gradients implemented intentionall y 

Montreal 

Ste-Anne-de-Bell evue. Oc. 

45.4247; -073.9390 ; 39 

2009 

0 .6 

4 

37 

64 (8x8) 

9472 

1, 2. 4 . 12 

50 

12 

high-input agricu ltural 

FD over SR (2 and 4) 

Auclair 1 Cloque! 

Auclair. Oc. Canada 

47.6969; -068.655 1 ; 333 

20 10 

0 .5 

4 

48 

49 (7x7) 

9408 

1. 2, 6 

40 

12 

low-input abandoned pasture 1 

FD and PD over SR (2) 

iotes : Size of experiments include corridors around plots and a. pla.nted buffer 
a.round the experiment , trees planted for destructive sa.mpling and for Aucla.ir / 
Cloquet , free to grow trees. FD gradients were implemented using two- a.nd 
four-species mixtures at Montreal, and two-species mixtures a.t Aucla.ir and 
Cloquet. 
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treatment. The Freiburg site is intended as a European counterpart to the AuCl 

experiment , with exotic and native species reversed (see question 6). IDENT is 

also part of a larger network of diversity experiments with trees , TreeDivNet, 

which includes mostly longer term experiments planted at larger spacings, such 

as BIOTREE (Scherer-Lorenzen et al. , 2007). 

IDENT is a coordinated effort (Fl:·aser et al. , 2012) and common sampling pro­

tocols, su ch as yearly growth measurements ( diameter and height ), are mandatory 

to all experiments. Generalization will be achieved using a multi-site approach 

such as in BIODEPTH (Hector et al. , 1999), especially for those experiments 

intent ionally linked ( e.g. Au Cl). However , given that most sit s also have particu­

larit ies matching local issues ( e.g. species pool, SR and FD gradient) , over-arching 

analyses will be achieved in a meta-analyses framework using effec t size ( e.g. ove­

ryielding) as response variable, with sample sizes and variances to control for 

site-specifie contributions to t he overall trend , as well as a number of covariables 

depending on t he function being analyzed ( e.g. mean temp rature). 

2.5 Discussion 

Here we present the main research questions (1-7) that will be addressecl 

within IDENT, art iculated along four main t hemes : relevant measures of diver­

sity ; unclerlying mechanisms and scale-clepenclency ; importance of trophic inter­

actions ; and BEF effect s over environmental gradients. The objective is to share 

our experience in clesigning BEF experiments with respect to these, and to favor 

collaborations and expand the network to include different questions. 
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Table 2.2 Tree species planted on experiments established near Montreal (MTL) 
and A uclair / Cloquet (AuCl) and functional traits used to compute functional 
diversity indices for analyses (see Table 2.3). 

Species Code MTL Au Cl Geographie Wood density Seed mass Leaf (%) 

A bi es balsamea ABBA x NA 0.34 7.6 1.66 

Acer platanoides ACPL x EU 0.5 165 139 1.99 

Acer rubrnm ACRU x NA 0.49 26.5 1.91 

Acer saccharum ACSA x x NA 0.56 55 .2 1.83 

Betula alleghaniensis BEAL x NA 0.55 0.9 2.20 

Betula papyrifera BEPA x x NA 0.48 0.4 2.31 

Betula pendula BEPE x EU 0.5125 0.29 2.33 

La rix decidua LADE x EU 0.474 7. 1 2.05 

La rix laricina LALA x x NA 0.49 2 1.36 

Picea abies PIAB x EU 0.37 7 1.19 

Picea glauca PIGL x x NA 0.33 2.4 1.28 

Picea ntbens PIRU x NA 0.38 3.3 1.1 5 

Pin us resinosa PIRE x NA 0.39 8 1.1 7 

Pin us s11·obus PIST x x NA 0.34 17 1.42 

Pin us sylves tris PISY x EU 0.422 6 1.33 

Quercus robur QURO x EU 0.56 3378 2.37 

Quercus rubra QURU x x NA 0.56 3 143 2.06 

Thuja occidentalis THOC x NA 0.3 1.4 1.02 

Notes : NA - North America, EU - Europe. Trait data compiled from publislled 
sources (Royal Botanic Gard ens Kew, 2008 : ·wright et al.. 2004 ; Zanne et al.. 
2009). 
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2.5.1 Measures of biodiversity 

Biodiver sity can be measured on various biotic scales, ranging from genetic 

variation within a species, to variation among species and finally, biomes. For the 

purpose of IDENT, we focus on individual and species-based measures at th com­

munity scale. Here , the components of diversity can include taxonomie diversity 

(SR and related measures of species relative abundances) and FD as well as PD. 

FD focuses on traits that relate the species to the function being measured (i. e. 

physiological , morphological and ecological traits) (Petchey and Gaston, 2006; 

Reich et al. , 2004). FD measures the extent of functional differences (distance) 

among species in a community (Laliberté and Legendre, 2010), and can be com­

puted based on single or multiple traits. The functional identity of a communi ty 

on the oth r hand is not given by the diversity of a trait among component spe­

cies, but rather by its mean value weightecl by abundances ( community weighte l 

mean value of traits, CW:~·/I ) (Roscher et al. , 2012). Phylogenetic measures of di­

versity focus on distances between species based on evolutionary history (i.e. time 

sin ce last common ancestors), and may use branch lengths between species on a 

phylogenetic clendrogram (Clarke and Warwick, 2001; Faith, 1992). Following the 

recent clemocratization of phylogenetics , PD has been proposed as an alternative 

to FD measures that rely on scarce and difficult to measure functional traits, as 

traits are the results of the evolutionary history inherited from ancestors ( Cadotte 

et al. , 2009 ; Cavender-Bares, Ackerly and Kozak, 2012; Gra.vel et al. , 2012). 

Strong correlation between those diversity components has renderecl it diffi.­

cult to unravel their respective effects on EF and only few experiments so far have 

attempted this, none with trees (Reich et al. , 2004; Scherber et al. , 2006). In an 

observational study of temperate and boreal North American forests , an index of 

FD best explained tree productivity, although both SR and PD also performed 
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well (Paquette and Messier , 2011 ). Following recent shifts in the assessment of 

biodiversity in conservation science (Devictor et al. , 2010), biodiversity experi­

ments are much needed to disentangle the respective contribut ions of biodiversity 

components to ecosystem functioning. In contrast to most prior BEF studies , our 

experimental design is explicit ly built to do exactly t hat. 

Question 1 : What is the contribution of the different components of diversity 

to ecosystem fun ctioning ? 

If the addit ion of any one species to a community contributes sorne unique 

functions to EF (i. e. species do not overlap in function), t hen the effect of FD on 

EF should not be different from the effect of SR on EF. However, more likely FD 

does not increase linearly with increasing SR but shows a saturating relationship 

due to functional redundancy (Loreau and Hector , 2001) (Fig. 2.2). A positive and 

more linear relationship between FD and EF ( than of SR to EF) would be the 

result. IDENT experiments are aimed at orthogonally separating t he respective 

effects of FD and SR on EF. This is achieved primarily by varying FD within 

communities of fixed number of species (Fig. 2. 1). However, feedbacks t hat occur 

over t ime could result in a different pattern over longer periods, where EF becomes 

increasingly linearly related to SR due to all or most species having significant 

ffects at sorne point intime (Reich et al. , 2012). This might be esp cially impor­

tant in forest systems undergoing succession, even over relatively short periods. 

With t ime, relationships between species that promote coexistence may change, 

and accordingly the relative importance of a given set of traits and the corres­

ponding FD metric's performance at predict ing functions (see also question 2). 

PD could be a useful complementary measure for the longer term study of BEF 

experiments as by d sign it is less affected by shifts in the relative importance of 

a given set of traits over t ime. Alternatively. PD could also be used in place of 

traits in new BEF experiments established in little understood ecosystems with 
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Figure 2.2 Upper panel : Expected relationships between spccics richness (SR) 
and functional diversity (FD) or ecosystem functioning (EF), assuming a linear or 
saturating relationship. The difference between the two lines is due to functional 
redundancy between species. A lin ar relationship is not expected as it would 
require all species to be functionally singular (no overlap). Lower panel : A positive 
and mostly linear relationship between EF and FD. Hypotheses to be tested in 
IDENT are presented as differences in either slopes or EF level (see Table 2.4). 
Illustrated here are differences in EF that may be due to an added effect of speci s 
richness (SR) or exposit ion to stress , result ing in different relationships with FD . 
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poor functional trait coverage. 

An important yet often neglected issue to allow for the partition of the dif­

ferent components of diversity is the use of FD and PD indices that are computa­

tionally free of SR (Helmus et al. , 2007 ; Laliberté and Legendre, 2010). But more 

generally, choosing species and functional traits a priori to build the experimental 

layout poses its own challenges. 

Question 2 : How ta choose species and traits to create the desired FD gra­

dient ? 

Within !DENT, one of the first challenges was calculat ing FD indices to 

guide the choice of species representing the traits anticipated to play important 

roles in the function( s) targeted, choices th at directly influence the species pool 

and the achievable FD gradient . At the MTL site the aim was to create a wide 

range of FD within mostly two SR levels. The trait matrix used to compute 

the FD index for all possible combinations of two and four species (from which 

mixtures were assigned to eight bins and then chosen at random to be planted - see 

"Specifie design layouts" included a wide range of above- and belowground traits 

to capture species' relations in trait space associated with multiple ecosystem 

processes. This approach did create the desired "general" spectrum of FD, but 

also has two potential drawbacks : i) the FD index is based on traits measured 

elsewhere, and ii) the included traits are not profoundly implied in all ecosystem 

processes under investigation. 

Therefore, for the second experiment (AuCl) we chose a different . complemen­

tary approach. Despite modern FD metrics that make use of mult i-dimensional 

trait space to compute distances between species (Laliberté and Legendre, 2010), 

it remains especially challenging for the establishment of biodiversity experiments 

to create mixtures of very low FD. This is however crucial to partition FD from 
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SR. Low FD values can be achieved with the inclusion of congen rie species that 

share similar traits. At MTL these naturally co-occur ( e.g. Acer· sacchar-um and 

Acer- r-ubr-um) but are few. In the case of the Au Cl experiments, pairs of func­

t ionally similar species were chosen a priori for that purpose . The pairs make up 

planted communities of congenerics including a North American and a European 

t axa of otherwise physiologically similar species ( e.g. Acer- sacchar-·um and A ceT 

platanoides ). 

The identity of traits with explanatory power is likely to change with the eco­

system process under investigation, and with time as species interactions change, 

both of which have great scientific interest. One method to identify relevant traits 

is the calculation of FD indices for each individual trait and assessrnent of their 

explanatory power in multiple regressions (Roscher et al. , 2012). Through the cal­

culation of community-weighted means (Diaz et al. , 2007), the cffcct of functional 

identity can be compared to that of FD. Table 2. 3 presents an example of FD 

indices computed for species combinations at AuCl for three of the most often re­

ported traits relevant for the productivity of forests (Paquette and Messier , 2011 ; 

Ruiz-Benito et al. , 2013). In general the values match the three FD classes (low to 

high) used to pool communities in our design (Fig. 2.1b), with c.g. lowest values 

found in same-genus communiti s. However, one can also perceive the effect of 

trait choice, such as seed mass, t hat largely explains why high st FD values are 

obtained in the presence of either Quer-cus species. Whether that relates to a true 

diversity effect will depend on the process being analyzed. 

2.5.2 Complementarity effects 

Niche complementarity or complementary resource use hinges on the idea 

of niche partitioning through differences in functional traits among species. To 
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Table 2 .3 Functional diversity matrix for Auclair and Claquet based on wood 
density, seed mass, and leaf nitrogen content (Table 2.2) for two- and six-species 
combinations (FDis index; Laliberté and Legendre, 2010). 

ACPL ACSA BEPA BEPE LADE LALA PI AB PIGL PIST PISY URO 

ACPL 

ACSA 0.36 . 

BEPA 0.95 . 0.99 . 

BEPE 0.94 . 0.93 . 0.20 ' 

LADE 0.59 ' 0.67 ' 0.44 ' 0.51' 

LALA 1.0 1' 0.86 ' 1.07 ' 1.10 ' 0.79 ' 

PIAB 1.35 ' 1.38 ' 1.44 ' 1.56 ' /./4 b 0.76b 

PIGL 1.52 ' 1.59 ' 1.46 1.60 ' 1.22 • 0.96 . 0.30 ' 

PIST 1.28 ' 1.40 ' 1.38 ' 1.52 ' 1.07 . 0.95 . 0.35b 0.35 . 

PISY 1.08 ' 1.06 ' 1.1 8 ' 1.27 ' 0.86 . 0.44 . 0.35 b 0.57 . 0.53 . 

QURO 0.77• 0.96 . 1.52 b 1.48 . 1.28 ' 1.76 ' 2.06 ' 2.23 ' 1.94 ' 1.82 ' 

QURU 0.63 b 0.78 b 1. 53 b 1.50 b 1.2 1' 1.56 ' 1.85 ' 2.05 ' 1.77 ' 1.6 1' 0.34 ' 

6 Angiosperms 1.23 b 

6 Gymnosperms 0.92b 

NA Angios + EU 1.43 ' 

Gym nos 

NA Gymnos + 1.71 ' 

EU Angios 

6NA 1.65 ' 

6 EU 1.46 ' 

Not all species combinations represented here were established in t he 
experiment . Traits are standardized prior to distance computations; seed mass 
was log-transformed. angiosp. Angiosperms, gymnosp. gymnosperms; for other 
abbreviations , see Tables 2.1 and 2.2. aLow FD (same genus) ; see Fig. 2.1b, 
bMedium FD (same division): see Fig. 2.1b, cHigh FD (between divisions) ; see 
Fig. 2.1b 
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quantitatively detect a positive mixture effect, the rate of the ecosystem function 

under examination (most commonly yield) in mixtures has tradit ionally been com­

pared to expectations from monocultures of t he same species (Loreau and Hector , 

2001). For a posit ive mixture effect , the EF rate per area in mixtures divicled 

by t he mean EF rate per area of the constituent species in monocultures must 

exceecl one ("overyielding") . The concept of overyielding is strongly rooted in the 

ratio of inter- to intraspecific competit ion (Loreau, 2004) , which also happens to 

be a criterion for stable coexistence. In agriculture, this method is known as the 

'land equivalent ratio ' (LER) (Vandermeer , 1989) . A positive mixture effect could 

have different underlying resource-related mechanisms, as previously identified : 

the SE and CE. Our experimental design, by fo cusing on monocul tures and two 

or more species mixtures will enable us to compute interaction coefficients , inves­

t igate t heir relation to functional proximity and t.herefore mechanisms underlying 

the BEF. 

Question 3 : Whi ch m echanisms under-lie BEF relationships ? 

It. is expected that with increasing FD , net biodiversity effects increase clue 

to increasing CE (as well as reclucecl clisease or pest damage, which we minimally 

address herein for brevity). A priori manipulation (i . . species mixtures of constant 

SR varying in FD) will allow testing for the relationship between FD and EF, 

independent of SR (Fig. 2.2). Response EF will be analyzed in IDENT within 

a framework composed of two main steps in a similar fashion as employed by 

Roscher et al. 2012 (2012). Firstly, the net biodiversity effect (NE) will be explicitly 

partitioned into CE and selection (identity) effects through addit ive partitioning 

of the observed and expected (from monocultures) yields following Loreau and 

Hector (2001) : 
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NE= 6Y =CE+ SE = N * 6RY M * cov(6RY, lvf) , (2.1) 

where Y is t he response being analyzed (e .g. growth), N the number of species 

present (i. e. SR), RY the relative yield of a species in mixtures, and M the yield 

in monocultures . Secondly, the following general equation (restricted maximum 

likelihood mixed model) will then be used to further investigate the nature of the 

above biodiversity ffects and links to FD and identity (see a detailed example in 

Table 2.4) : 

Y'= block(R )+SR+blochSR(R )+FD+SR*FD+covar1+ .. . +covarn+E, (2.2) 

where Y' is th biodiversity effect being investigated ( e.g. CE or SE, but 

could also be applied to raw responses such height growth ; Table 2.4) , block 

and its interaction with SR are random factors (R), SR is a mult i-level factor 

excluding monocultures (and e.g. in MTL the 12-species plots) . Covariables are 

added to cont rol for the effect of e.g. microtopographic differences in soils. In 

this example FD, a FD index (continuous), would be used to explain the nature 

of an observed CE. To control for the effect of species composition (i.e. species 

functional identity) . CWM may be addcd in an overarching model tested against 

the net effect (NE). or used instead of FD to explain a SE. At MTL. thanks 

to the replicated SR levels, differences in slopes (i.e. significant SR x FD effect; 

Table 2.4) will l.Je usecl to test for the additional contribution to EF attributed to 

increased species numbers (Fig. 2.2) , which would in part refiect the imperfection 

of our measure of FD . We used data for tree height at the end of the fir t growing 

season (2009) to validate the model with real data (Table 2.4). As expected, no 
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Table 2.4 Sample results of fixed and random (R) effects of an exemplary mixed 
model (REM L) used for analyzing results within IDENT sites for a given diver­
sity effect or response function. Shown are results for first year t ree height at 
t he Montreal site tested against species richness (SR) , functional diversity (FD), 
community weighted mean (CWM) , and a randomly generated co-variable. 

Effect DF F-ratio p-va lue 

Block(R) 3 

SR 0.51 0.51 

Block*SR(R) 3 

FD 1.38 0.24 

SR*FD 0.29 0.59 

CWM 2.36 0.13 

SR*CWM 0.37 0.55 

FD*CWM 0.62 0.43 

Co-variable 0. 11 0.74 

significant effect was found given the short duration. The driving forces behind 

complementarity are likely to be manifold , but space limi tations preclude their 

treatment here. 

Question 4 : H ow does neighborhood diversity influence intraspecific trait va­

riation and consequently FD ? 

BEF experiments with trees , such as IDENT. have advantages for investiga­

ting trait plast icity and its consequences on FD and funct ioning. Having many 

non-moving individuals ( trees) over a rela tively small are a facilitates quantification 

of changes in traits in relation to neighborhood composition and time (growth), 

and how they contribute to ecosystem functioning. One view to complementarity 

is that species differ in their fundamental niches (i. e. without competitors). But 

complementary resource use may also result from differences in realized niches 

due to intraspecific trait plasticity (i .e. character displacement) (Ashton et al. , 

2010). Empirical studies as well as growth models provide indications that intras-
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pecific trait plasticity can indeed reduce competition and improve performance in 

a competitive context (Callaway, Pennings and Richards, 2003). Traits measured 

on an individual plant basis will allow t he computation of "realized-FD" metrics 

(i .e. the FD achieved in a community through individual's plast icity), and t he as­

sessment of contribut ions of intra- and interspecific trait variation to biodiversity 

effects . Specifically, we expect to find a stronger realized-FD to EF relationship 

(i.e. better predictability) than the fundamental FD-EF (no plasticity) , due to 

character displacement (measured as an individual's trait value deviation from 

that in monocultures). 

Question 5 : At what spatial and temporal scales do CE occur ? 

The IDENT design will also be useful to investigate BEF across scales. Indeed , 

little is known about the scale at which competit ion (but see Boivin et al. , 2010; 

Boyden et al. , 2009 ; Kennedy et al. , 2002) and complementarity occur , especially 

for trees , and few experiments were designed with t hat in mind (Scherer-Lorenzen 

et al. , 2007). Planted tr es do not move, become large and live long enough to 

make it possible to follow each individual through time. Character displacement , 

for example, can be tracked for each individual with respect to immediate neighbo­

rhoods of variable size (such as within a moving-window approach). Interestingly, 

such change in scale can also be used to keep experiments going longer even as 

trees outgrow their initial plot-based communities. With the growing evidence 

from grassland experiments of the increasing importance of CE over time (Reich 

et al. , 2012) , we intend to shift our definition of the IDENT design from the ori­

ginal plot-based to a 'neighborhood-focused' experiment. Accordingly. hypotheses 

will shift from plot-based responses to individual-based responses. Trees in IDENT 

experiments will eventually reach sizes at which the present plots are no longer 

relevant regarding pro cesses and interactions ( each site varying in time required 

to reach that point depending on species used, planted density and plot size , and 
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fertili ty). From t hat point and into the future, analyses will be carried out using 

circular neighborhoods around focus individuals or groups, the appropriate size 

of which will be derived from the data themselves. 

2.5 .3 Trophic-mediated complementarity 

The concept of functional complementarity (Loreau, 1998) was primarily de­

rived for plants competing for a single resource. Functional traits determine how 

plants exploit limiting resources ( e.g. different rooting depths for water uptake) 

and thus interspecific competit ive interactions. Although exploitative competi­

t ion is common among plants , mun rous indirect interact ions via sharecl enemies 

or mutualists can result in indirect interactions that reduce or enhance perfor­

mance. There is strong evidence that complementarity can also arise from density­

dependent diversity effects that confer protec tion from disease or herbivory (Ma­

ron et al. , 2011 ; Schnitzer et al. , 2011 ) and this mechanism is not mutually ex­

clusive from resource-based mechanisms. For instance, whcn two plant species 

share a common herbivore , they interact via "apparent" competition (Holt , 1977) 

because an increasing population size of one species will translate into higher her­

bivory pressure for the other species . Similarly. plants could intcract by "apparent" 

mutualism via shared mutualists such as mycorrhizae. Recent theoretical develop­

ments on BEF generalized the concept of complement ari ty to all types of indirect 

interactions and suggest t hat t raditional analyses of resource acquisit ion-related 

t raits might provide only a partial understanding of complementarity (Poisot , 

Mouquet and Gravel, 2013). 

Question 6 : How ta test joT trophic-m ediated complementaTity ? 

We expect that native and exotic species are not functionally equivalent. even 

when they share very similar life history strategies. A key feature of some IDENT 
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experiments is the combination of native and exotic species with similar traits 

from North America and Europe (Table 2.2). Consequently we hypothesize that 

unexplained variation in t ree productivity after account ing for resource-related 

FD will be related to t rophic and mutualistic complementarity. Complementarity 

should t hus decrease with overlap in major enemies and increase with overlap in 

mutualists (Maron et al. , 2011 ; Schnitzer et al. , 2011 ). Trophic and mut ualistic in­

t eractions will be documented in monocultures and mixtures at the different sites 

of the network. Trophic-mediated complementarity will be estimated in IDENT 

in the field in a similar fashion to FD using matrices of interactions wi th soil and 

aboveground organisms and network theory tools to estimate niche overlap (Poi­

sot , Mouquet and Gravel, 2013) . Finally, the addi tion of a third site to the Au Cl 

pair , in Freiburg in 2013 , will allow us to confirm these hypotheses by running t he 

same analyses with the same experimental design, species and therefore FD, but 

with the rcvcrsal of thcir nativc-exotic st atus. 

2.5 .4 Complementarity along environmental gradients 

As shown empirically, the balance between positive and negative plant inter­

actions may be dependent on the abiotic environment such as individual rcsourcc 

availability (Brooker et al. , 2008) . Elucidating the effects of environmental stres­

sors on BEF relations is of crit ical importance in the face of global change. Global 

increases in temperatures. changes in precipitation regimes and eutrophication 

are just a few phenomena related to global change t hat will inevitably affect 

species interactions and hence BEF relationships (Reich et al.. 2001). The fre­

quency of positive plant interactions (i.e. fac ili tation) has been shown to increase 

with environmental stress (Brooker et al. , 2008). However, most studies have been 

conducted on pairs of species and it remains contentious how the effects of greater 

plant diversity on ecosystem functioning interplay with environmental stress. Mo-
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del predictions, for example, suggest a greater importance of complementarity in 

less productive environments (Warren, Topping and James, 2009) , which has been 

documented in a few, contrasted systems (Li et al. , 2010 ; Paquette and Messier , 

2011 ; S teudel et al. , 2012 ; VIT acker et al. , 2009). 

Question 7 : How do environm ental conditions influence species interactions ? 

Answers to many if not all of the above-mentioned research questions are 

likely to change with varying environm ntal condit ions as the r la tionship bet­

ween functional traits and t he fundamental niche is dependent on the environ­

ment (McGill et al. , 2006). In IDENT, environmental differences among sites , as 

well as wit hin-site t reatments ( e.g. irrigat ion) will be used to examine changes in 

species interact ions and to test whether the frequency and impor tance of com­

plementarity increase wit h environmental stress. Within upcoming sites (2013) , 

two replicated sets of idcntical sp ecies mixtures of constant SR. and varying FD 

will be implemented (as well as corresponding monocult ures) . Exposing one of 

t hose sets to differences in one environmental condi t ion ( e.g. irrigat ion on dry 

sites or rainfall exclusion on wetter sites - Sanchez-Humanes and Espelta , 2011 ) 

will create environmentally more stressful conditions for one set of mixtures . We 

expect that whereas total EF ra tes will be reduced wit. h environm ntal stress , this 

reduction will be lessened in more diverse communities (Fig. 2.2), thus showing 

greater tolerance to stress wit h increased diversity. 

2.6 Conclusion 

Although great advances in the understanding of the effects of biodiversity 

on ecosystem funct ioning have been achieved , many crucial links and aspects have 

yet to be examined , especially for tree-dominated ecosystems. Despite the growing 

acknowledgment and understanding of the importance of FD in explaining BEF 
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relations, only few experiments actually manipulate FD in tree communities . In 

addition to the realized and expected FD gradients within IDENT, to our know­

ledge no other study has been set up to successfully separate FD from SR in trees , 

and we argue that knowing more about this will be particularly important for ma­

naging and assessing t he functioning of tree-dominated ecosystems facing global 

changes. The research questions presented in t his paper are only a selection of po­

tent ially interesting ones that could be addressed wit hin IDENT or other studies 

with similar approaches. Future research will foster investigations of the role of 

tree diversity, complementarity, facilitation , competition and spatial complexity 

in maintaining functional ecosystems in t he face of global changes. 

In this paper we have attempted to convince readers that trees and related 

arboreal systems are not only a necessary next step in BEF research, but ually 

important , they may be an excellent model for t he next generation of BEF ex­

periments. Trees are large organisms t hat can be easily accessed and followed 

through t ime on an individual basis, thus allowing for a number of new questions 

to be asked , bringing the science closer to a more detailed underst anding of how 

individuals regulate the way in which species interact to form both posit ive and 

negative outcomes . But working wit h t rees does have its challenges. Trees indeed 

become large, and need time to establish and interact , thus imposing a larger priee 

tag wi th respect to comparable research carried out wit h smaller organisms with 

faster turnover. Therefore, while changes in FD and feedbacks of FD on ecosystem 

processes could lead to shifts in the form of the BEF relationship over ecologically 

realistic t ime frames (Reich et al. , 2012). sorne IDENT experiments may have t.o 

be terminated before large-scale competitive exclusions take place. and also before 

sorne potentially important functional traits such as seed production have been 

expressed in their true function. IDENT, therefore is most focused on the early 

interactions between trees , which in turn are fundamental in determining the later 
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dynamics and composit ions of forests. Naturally, large temporal and spatial scale 

experiments like BIOTREE (Scherer-Lorenzen et al. , 2007) are needed to com­

plement experiments like IDENT and look at the longer term impacts of varying 

species and FD on EF. 

Our intention in this art icle was to share our exp rience in designing BEF 

experiments wit h trees , the questions we faced and the "solutions" we applied. Th 

obj ective was to favor exchange with ot her researchers who may offer different 

solutions or research questions, or be interested in carrying out research wi thin 

IDENT or est ablishing new sites in different environments. We also hope that 

our experience may be helpful to ot her groups planning BEF experiments within 

other ecosyst ems heretofore unstudied in these respects. 
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3. 1 Abstract 

After more than two decades of biodiversity and ecosystem functioning (BEF) 

research, general consensus leans toward a general increase of producer growth 

with producer diversity. One of the main candidate mechanisms proposed to un­

derlie this posit ive relationship is niche complementarity t hat is conceptually ba­

sed on funct ional trait variation (i.e . functional diversity, FD). However , few stu­

dies to date specifically manipulated and tested for effects of FD on ccosystem 

functioning, especially in trees. 

Here we present results of a common garden experiment where higb-density 

tree communities were varied along a gradient of continuous FD , independent of 

species ricbness (one- , two-, four- and twelve-species mixtures) . We specifically 

tested for the effect of FD on productivity and its link to complementarity. After 

four years of growth, no t ransgressive overyielding was detected but positive mix­

ture effects ( overyielding) were confirmed for the majority of tree communities . 

However , these were largely due to selection effects driven by sorne fast-growing 

deciduous species and the competitive exclusion of many evergreen species. Conse­

qucntly, functional identity based on leaf longevity, seed mass and root traits had 

greater explanatory power on productivity than functional diversity. 

We conclnde tha.t in young tree communit ies, functional identity drives eco­

system functioning in favor of what was former ly described as r - strategists. The 

importanc of root traits in explaining tree productivity and diversity effects may 

refiect adaptations to t he experimental conditions (rich sandy soils, young trees) 

where light was not limiting, especially in the first two years. 

Key words : biodiversity and ecosyst m functioning, overyi lding, tree root 

traits , complementarity, functional diversity, functional ident ity, IDENT 
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3.2 Introduction 

The idea of increasing producer diversity leading to increased growth is known 

at least since t he 19th century. E uropean F01·ester von Cotta proposed in 1828 

that "Since not all tree species utilize resources in the same manner, growth is 

more lively in mixed stands .. . " (in P retzsch, 2005). Three decades later, Dar­

win enunciated in his seminal work t hat a "divergence of character" would reduce 

interspecific competit ion and likely yield greater productivity (Darwin, 1859). Ho­

wever, it is not until the late 20th century with the considerable and accelerating 

change in the eart h 's biota that a systematic and concerted search for the ef­

fects of biodiversity on ecosystem functioning (BEF) began . After more than two 

decades of BEF research, the hypothesis that increased producer diversity leads 

to increased producer productivity has been accepted with high confidence for a 

variety of systems but still based mostly on herbac ous experiments (Balvanera 

et al. , 2013 ; Cardinale et al. , 2012 ; Hooper et al.. 201 2). 

Although mixture trials with trees date back several centuries , experiments 

with adequate controls are rare and our understanding of BEF in tree systems 

lags behind herbaceous (mostly grassland) systems. Recent meta-analyses (Zhang, 

Chen and Reich , 201 2) and reviews (Nadrowski , Wirth and Scherer-Lorenzen, 

2010 ; Thompson et al. , 2009) bring together close to 100 experiment al and ob­

servational studies covering more than 30 years. From these studies, a general 

trend of increased tree productivity with tree diversity was concluded. Interestin­

gly, this trend was not dependent on biomes or stand origin (plantation versus 

nat ur al forest) indicating a more general phenomenon than previously assumed 

(Zhang, Chen and Reich, 2012). At the same time, strong effects of evenness 

(Zhang, Chen and Reich, 2012) and functional identity (Nadrowski , Wirth and 

Scherer-Lorenzen, 2010) indicated that species richness (SR) alone may not be 
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the best measure of biodiversity. 

To explain positive BEF relations, two main mechanisms have been propo­

sed. Complementarity effects include niche partitioning and posit ive interactions 

(i.e. facilitation) due to increased trait diversity, whereas selection effects are due 

to dominant species with particular t raits driving ecosystem functioning (Roscher 

et al. , 2012). Both mechanisms are not mutually exclusive and have been shown 

to be at work in creating positive BEF relationships in a variety of systems (Car­

dinale et al. , 2011) with evidence suggesting shifts between them and increasing 

importance, and in fact dominance of complementarity with t ime (Allan et al. , 

2011 ; Cardinale et al. , 2007 ; Fargione et al. , 2007 ; Reich et al. , 2012). Both 

mechanisms hinge on t he pivotal role of functional traits and indeed, funct io­

nal aspects of diversity have been shown to have greater explanatory power on 

ecosystem functioning than SR alone (Dîaz and Cabido, 2001 ; Mokany, Ash and 

Roxburgh, 2008). Two main approaches to calculate functional aspects of diversity 

have been used. On the one hand, continuous functional diversity indices estimate 

t he distance between species in a multidimensional trait space (Laliberté and Le­

gendre, 2010 ; Mouchet et al. , 2010). Theory predicts that functional diversity 

should be linked to complementarity, as the diversity in traits of the community 

should be an expression of niche overlap. In this way, increased functional diver­

sity should result in greater cosystem functioning through enhanced resource use 

complementarity (Hooper , 1998 ; Petchey, 2003). On the other hand, community 

weighed means ( CWM) have been used as a way to assess the mean trait value of 

all species present in a mixture weighed by their abundance. Conceptually, CWM 

are based on the 'mass ratio hypothesis' stating that the functional Lraits of the 

dominating species in a community drive ecosystem funct ioning (Grime, 1998). 

In consequence, GWM are closely linked to selection effects (SE) (Mokany, Ash 

and Roxburgh, 2008 ; Roscher et al. , 2012). De facto, both approaches have been 
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shown to exhibit explanatory power on ecosystem functioning in herbaceous (Mo­

kany, Ash and Roxburgh, 2008; Roscher et al. , 2012) and t ree systems (Nadrowski , 

\i\Tirth and Scherer-Lorenzen, 2010). 

Species richness and functional aspects of diversity are inevitably linked ma­

king it difficult to disentangle their respective influence on ecosystem functioning 

(Naeem, 2002). In addit ion, their relationship is more likely to be non-linear. While 

at low SR, each species addition may linearly increase FD , the relat ionship may 

truncate at higher levels of SR due to functional redundancy. In consequence, the 

relationship between FD and EF would be positive and mor linear than between 

SR and EF (Tobner et al. , 2013) . However , only few studies so far manipulated 

continuons FD metrics and tested for the effect of FD on EF independently of SR, 

even more so with trees (see www.treedivnet .ugent .be for a summary of current 

biodiversity experiment with trees). 

We conducted a common garden experiment of high-density tree communities 

near Montreal, Canada (Tobner et al. , 2013). The core of this experiment consists 

of species mixtures varying in FD. independent of SR, including ten two-species 

and 14 four- species mixtures. This experiment aimed to sp cifically tes t for the 

effect of FD on tree productivity, independently of SR. The implementation of 

monocult ures of all species present in mixtures allowed calculations of net biodi­

versity effect and its components complementarity and selection effect (following 

the addit ive partioning approach of Loreau and Hector , 2001 ). Here, we present 

the effects of tree diversity on tree product ivity, four years after experiment esta­

blishment. We specifically tested the hypotheses tha.t : 

1. Tree mixtures perform better than expected with respect to their respective 

monocultures (posit ive net biodiversity eff'ect , overyielding) , 

2. Increa.ses in productivity are due la.rgely to complementa.ri ty eHects , 
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3. Bence, FD is a better predictor of tree mixture productivity than CWM , 

4. Complementarity increases over time, and 

5. There is no significant difference between two-and four- species mixt ures. 

3.3 Methodology 

3.3.1 Site description 

The study site was located in Ste-Anne-de-Bellevue, near Mont real, Québec, 

Canada (Lat 45°26 'N, Long 73°56'W , 39 m.s.l. ) . Mean annual temperature is 6.2 

oc wit h a mean annual precipitation of 963 mm (climate.weatheroffice.gc.ca) . The 

study site is a former agricultural field that has been intensively managed for se­

veral decades. The soil consists of a 20 to 70 cm sandy layer followed by clay. In 

spring 2009 , an area of about 0.6 ha was cleared of corn debris before tree commu­

nit ies were planted with seedlings of one (broadleaf) or two ( conifer ) years of age 

(Tobner et al. , 2013 , Table 3.1). The species pool comprised 12 Nort h American 

temperate forest species covering a wide range of functional traits including five 

broadleaf as well as seven co ni fer species (Table 3.1). 

The Montreal experiment is part of the "International Diversity Experiment 

Network with Trees" (IDENT) that includes severa! sites in North America and 

Europe (Tobner et al. , 2013). Common to all IDENT sites are gradients of FD to 

specifically test for the effect of FD on EF. The experiment described here was 

t he first to be established and its focus was on a comprehensive gradient of FD, 

independent of SR. 
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3.3.2 Experimental design 

Trees were planted in square plots of 8x8 individuals, with 50 cm planting 

distance. Tree-free buffer zones of 1.25 rn around the plots were used for circulat ion 

within t he site and to minimize inter-plot interactions. For the latter reason, tree 

roots were also sliced 30 cm deep around each plot in those buffers in 2011 and 

2012. Plots included monocultures of all1 2 species, 14 combinations of two-sp cies 

mixtures , ten combinations of four-species mixtures and one mixture including all 

12 species (Fig 3. 1) (Tobner et al. , 2013). Each communi ty was replicated four 

t imes adding up to a total of 148 plots and 9472 individual trees. Within plots, 

trees in mixture were planted at random with restrictions. In two species mixtures, 

at least two of the eight neighbors had to be different species from any tree . In four 

species mixtures, at least two of the eight neighbors had to b from two different 

species. Plant ing patterns within plots wcrc repcat.ed in all four blocks. Wi thin 

each block however , plots were randomly distributed . Around the outermost rows 

of the experiment , t hree rows of trees at 50 cm distance were planted to serve as 

a buffer to the experiment and to replace cl ad t.rees after the first year of the 

experiment. In total, 52 trees were replaced after the first year. A fen ce t.o protect 

against herbivory surrounded the experiment and all plots were regularly weeded 

manually to keep them free of any herbaceous competit ion. 

3.3.3 FD calculation 

T he experiment aimed speci:fically at testing for the effect of FD on EF and 

the existence of complementarity, two concepts closely related. Niche complemen­

tarity or complementary resource use hinges on the idea of niche partitioning 

through differences in functional traits . Renee, the two- and four-species mixtures 

in the experiment were selected along a gradient of continuous FD (Fig 3.1). To 
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Table 3.1 Stock type, age and average tree height at planting (2009). Stock 
type varied between container (3 10 to 350 ml volume) and bare roots (BR). Tree 
height in 2009 was assessed on a subsample of trees varying from 27 to 47 per 
species, prior to planting. Tree height in 2012 (after four growing seasons) is the 
mean height of all individuals present in the experiment . All t rees courtesy of t he 
Québec ministry of natural resources. 

Species Code Stock 
Type 

Abies balsamea (L.) Mil l. Ab 3 10ml 

Acer rubrum L. Ar 340 ml 

Acer saccharum Marsh. As 340 ml 

Be/Ida al/eghaniensis Brinon Ba 340 ml 

Betula papyrifera Marsh. Bp 340 ml 

La rix laricina (Du Roi) K.Koch LI 310 ml 

Picea glauca (Mocnch) Voss Pg 350 ml 

Picea rubens Sarg. Pru 310 ml 

Pin us resinosa Aiton Pre 320ml 

Pin us s fl·obus L. Ps 3 10 ml 

Quercus rubra L • Qr BR 

Thuja occidentalis L To 320 ml 

Age al 
planting 

2 

2 

2 

2 

2 

2 

2 

Trec heighl 
2009 

28.3 ± 3.5 

58.9 ± 6.7 

45.2 ± 10.6 

50.0 ± 4.2 

44.1 ± 5.1 

37.4 ± 5.4 

40.9 ± 4.7 

46 ± 4.3 

17.9 ± 4.6 

18.7 ± 2.8 

93.7 ± 30.7 

31.7 ± 4.2 

Trec Heighl 
2012 

133. 1 ± 30.7 

235.4 ± 54.3 

239.7 ± 57.9 

266.6 ± 71.1 

4 14.1 ± 77.0 

337.5 ± 57.9 

132.2 ± 25.6 

132.6 ± 29.4 

147.6 ± 19.2 

163.4 ± 36.2 

300.4 ± 81.6 

152.3 ± 33.7 

*Note : Quercus rubra was older and larger and more variable in size compared 
to the other broadleaf species. Just after planting, all red oaks with an initial 
height > 25 cm clipped to 20 cm height , a common practice in reforestation with 
red oak to increase root to shoot ration and survival (Dey et al. 2008). 
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FD 

1 

2 

SR 

4 

12 

Figure 3.1 Schematic of the experimental design (replicated four time '). Com­
munit ies are implemented along a gradient of species richne ·s (SR) and functional 
diversity (FD). Smaller superposed squares indicate the replication of different 
communit ies with similar FD resulting in a total of 14 two-spccics mixtures and 
ten four-species mixtures. See table 3.1 for species cod s. 
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establish these gradients, FD indices had to be calculated prior to planting. The 

index used to calculate FD throughout t his paper was functional dispersion (FDis, 

Laliberté and Legendre, 2010) . FDis produces indices similar to Rao's quadratic 

entropy but offers several advantages. FDis is the mean distance of each species to 

the center of mass of all species in a multidimensional t rait space. Species' abun­

dances can be used to weigh distances . In addition to accept ing any number and 

type of trait (i.e. continuous to qualitative), FDis is mathematically independent 

of SR, resolves for communities of two (or more) species contrary to other in­

dices, and allows weighing of individual traits (Laliberté and Legendre, 2010) , all 

of which are needed to test our hypotheses (for example to distinguish SR from 

FD). 

Although only productivity is presented here, a variety of ecosystem pro­

cesses on multiple trophic levels have been and will be assessed at t he Montreal 

experiment, which is expected to last several years still. Renee, init ial FD in­

dices included 12 above- and belowground traits to ensure the inclusion of t raits 

linked to many different of ecosystem processes. These traits included maximal 

tree height , growth rate, wood density, seed mass , wood decomposition rate, roo­

ting depth , fine root diameter, mycorrhization, specifie leaf area, leaf longevity, 

mass-based leaf nitrogen and leaf size. 

However, this approach has also drawbacks. First , the availability of trait 

data on certain species and especially belowground traits in the literature is li­

mited. Second, traits derived from the literature may vary substantially for the 

same species, depending on the stndy. In those cases. we chose trait values from 

studies encompassing biotic and abiotic conditions closest to our experiment. Ho­

wever, it remains uncertain how those li ter at ure values vary from local (in the 

Montreal experimcnt) orres. Lastly, init ial FD indices may include traits not lin­

ked to ecosystem processes under study. Careful choice of number and identity 



81 

of traits is however vital to refiect ecosystem processes and must correspond to 

hypotheses linked thereto (Petchey and Gaston, 2006). To create the init ial FD 

gradient , FDis was calculated for all possible assemblages of two and four species 

mixtures (i. e. 66 two-species mixtures and 495 four-species mixtures) , using traits 

ment ioned above. After ranking the assemblages according to their FD index, t he 

assemblages were divided into eight classes of equal size. From t he middle of each 

class, one species assemblage was chosen to be planted in the field. To control for 

species composit ion and add replication (same FD achieved with different species 

combinations), sorne classes were resampled , result ing in 14 two-species and ten 

four-species mixtures (Fig 3.1 ). During this process , it was assured that species 

were distributed as evenly as possible over t he gradients. In the third and four th 

year of the experiment (i.e. 2011 and 201 2), local traits were measured in mono­

cultures to substit ute missing or most variable li tera ture values in final analys s. 

Specifie root length, fine root diameter and branching intensity (i.e. number of 

t ips per cm length) were measured on first to third order roots in 2011 (for me­

thodology and results s e Tobner , Paquet te and Messier , 2013) . Lcaf area ( cm2
) 

and leaf mass per a.rea (mg mm~2 ) were measured on sun leaves in 201 2. We also 

updated the original trait table with new or improved values from the literature 

for t hose traits we did not measure i n situ (Table 3. 1). 

In analyses . we applied uni varia te (single trait ) FDis as multivariate FD in­

dices do not permit to directly identify the contribut ion of each trait to a par ti­

cular ecosystem process (Roscher et al. , 2012). In addit ion, mult ivariate indices 

were shown to mask signals when traits with opposing effects were included (Spa­

sojevic and Suding, 201 2) . In addit ion, multivariat e indices never increased model 

fit when test ed in the present study (data not shawn). 
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Table 3.2 Species present in the experiment and their respective trait values used 
in analyses . Traits include leaf, root (grey) and whole-plant traits : leaf nitrogen 
content (leaf N, % per unit mass), leaf longevi ty (leaf long, months) , leaf mass per 
area (LMA, g m- 2 ) , fine root diameter (root D, mm), specifie root length (SRL, rn 
g- 1 ), fine root branching intensity (BI, number ofroot tips per cm), rooting depth 
( root depth,l- shallow, 2-medium, 3-deep) , seed mass (log[g per 1000 seeds] + 1), 
wood density (WD, g cm-3 ) , shade tolerance and drought tolerance (0-no tolerance 
to 5-maximal tolerance). 

Species Code Leaf Leaf LMA Root SRL' BI' Root Seed WD Shade Drough 
N' long' D' Depthd Mass ' f Toi" Toi' 

Abies balsamea Ab 1.7 110.0 151 0.4 3.2 2.3 1.0 1.9 0.34 5.0 1.0 

Acer rubrum Ar 1.9 5.6 71 0.3 7.6 3.7 2.0 2.4 0.49 14 1.8 

Acer sacclwrum As 1.8 5.5 71 0.3 6.8 3.5 2.0 2.7 0.56 4.8 2.3 

Beru/a al/eghaniensis Ba 2.2 5.5 46 0.2 13.6 5.7 2.0 1.0 0.55 3.2 3.0 

Beru/a papy rifera Bp 2.3 3.6 78 0.2 10.7 5.9 1.0 0.6 0.48 1.5 2.0 

Larix /aricina LI 1.4 6.0 120 0.4 3.8 3.7 1.0 1.3 0.48 1.0 2.0 

Picea glauca Pg 1.3 50.0 303 - 0.3 4.9 4.3 1.0 1.4 0.35 4.2 2.9 

Picea rubens Pru 1.2 103.2 305 0.2 11.4 5.2 1.0 1.5 0.38 4.4 2.5 

Pinus resinosa Pre 1.2 36.0 294 0.3 4.8 3.8 2.0 1.9 0.39 1.9 3.0 

Pi nus srrobus Ps 1.4 20.0 122 0.4 2. 1 4.5 3.0 2.2 0.36 3.2 2.3 

Quercus rubra Qr 2.1 6.0 84 0.2 Il.! 6.4 3.0 4.5 0.56 2.8 2.9 

Thuja occidemalis To 1.0 33.0 223 0.5 1.8 1.3 1.0 1.1 0.30 3.5 2.7 

Trait data sources : aGLOPNET (V!right et al. 2004) , 6t raits measured in 
monocultures of the experiment by Laura \iVilliams, ctraits measured in 
monocultures of the experiment by the authors (see Tobner, Paquette and 
Messier 2013 for root trait methodology), dSilvics of North America, eRoyal 
Botanic Gardens Kew (2008) , fChave et al. (2009) , YNiinements and Valladares 
(2006). 
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3.3.4 Aboveground stem productivity 

In general, diversity indices were calculated over the ntire plot (8 x 8 in­

dividuals) whereas ecosystem responses (i.e. productivity) were ass ssed over the 

inner 6 x 6 individuals to minimize buffer effects. To ass ss productivity in a 

non-destructiv fashion , tree height (H) and diameter (D , at 5 cm from ground) 

were measured at the end of each vegetation period from 2009 to 2012. An ap­

proximation of biomass was calculated for each year as D2 x H x wood clcnsity 

(WD). 

Mortality over the first four years was negligible. In 2012, out of the 5328 trees 

of the inner 6 x 6, 39 were dead and 122 showed signs of crown damage, mostly due 

to insect herbivory or snow. In 2011 , wasp nests impeded the measurement of 35 

tr es . To accommodate for these missing values , biomass per plot was calculated 

as the mean tree biomass per species multiplied by the number of individuals 

present in the plot. Tet diversity effects (NE) , complement arity effects (CE) and 

selection effect · (SE) were calculatecl on thcsr vFtJ ues. 

Diversity indices (i.e. CWM and FDis) wcre weighed by spccies· relative do­

minance measurecl as volume, as this generally increased explana tory power (data 

not shown). In this case, the mean tree volume (cliameter2 x height ) per plot and 

species was calculated including all 8 x 8 individuals. 

3.3.5 Biodivesity effects 

Several metrics exist to assess the effect of diversity on ecosystem functioning 

(most often yield). The fundamental concept to all of those metrics is the com­

parison between a species' yield in mixture comparecl toits yield in monoculture. 

also called relative yield (RY, cleWit 1960). Relative yield can be calculated for 
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each component species or for the whole community when calculated as the sum 

(relative yield total, RYT). For a two-species mixture of species A and B, RYT is 

calculated as follows : 

RYT _ PA(mixture) * Y ieldA(mixture) P8 (mixture) * Y ield8 (mixture) 
AB - Y ieldA (monoculture) + Y ieldB(monoculture) 

(3 .1) 

where Pis the proportion of a specics in mixture and yield is expressed as unit 

per area (e.g. biomass per hectare). RYT = 1 indicates no diversity effect (i. e. the 

performance of species in mixture is equal to their performance in monoculture). 

RYT < 1 indicates a negative and RYT > 1 a positive mixture effect; i.e. the 

performance of species in mixture exceeds their performance in monoculture - or 

in other words , t hey grow better in mixture than would be expected from their 

respective performance in monoculture. 

An example of that is shown in Fig. 3.2. Say species A yields 10 units yield 

and species B yields 20 units per unit area ( e.g. 1 ha) in monocult ure. In mixture 

(of the same are a), species A and B are planted at the same densi ty as in the 

monocultures and yield 5 and 15 units yield , respectively. Extrapolat d to one 

ha for each species , this amounts to ten units of yield for species A and 30 for 

species B. At equal proportions (0.5 each), their RYT would be 1.25 (Fig. 3.2c) , 

indicating a positive diversity effect . 

However , the RY approach does not allow deflecting on mechanisms under­

lying this positive diversity effect. So a more recent approach was developed which 

is also based on the calcula t i on of a general deviat ion of yield in mixture ( observed 

yield , Y0 ) from that in monocult ure (expected yield, Y E) but now this general 

(net) diversity effect ( TE) can then be partit ioned into complementari ty (CE) and 
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selection effect (SE) (Loreau and Hector, 2001 ; Eq 3.2). 

NE= Y0 - Ye = CE+ SE 

= N~RYM + Ncov(~RY,JVI) (3.2) 

Both constituent effects (CE and SE) hingeon the calculation of RY, in this 

case expressed as ~ RY : 

~RYA = Y ield p_ (rni.TtuTe) _ PA 
Y ieldA ( monocultuTe) 

(3 .3) 

CE is the mean of species ' delta r lative yidds ( ~RY ) multipliee! by the mean 

of species' monoculture yields (A1) times the number of species (N) (Eq 3.2, Lor au 

and Hector , 2001 ). CE are thus multiple species effects. averaging positive and 

negative cliversity effects of all species present in the mixture. SE are calculatecl 

as the covariance between species' rela tive ( ~RY) and monoculture yielcls (M) 

multipliee! by the number of species present in the community (N, Eq 3.2) . SE 

are posit ive when more productive speôes in monoculture increase performance 

in mixture (Fig. 3.2c). Similarly, SE are negative when less productive species iu 

monoculture exceed procluctivity in mixture (Fig. 3.2cl). SE are also refenecl to 

as single species effects. In contrast to the RY approach, NE, CE and SE can only 

be calculated at t he community level. 

The latter approach clearly offers 1 he unique ad van tage of linking diversity 

effects to underlying mechanisms. Howenr, sorne caveats have to be kept in minci , 

especially when working with tree systems. Through the inclusion of monoculture 

yields , NE, CE and SE are sensit ive to absolute values and may overweigh t he 

contribut ion of higher-yielcling species (Friclley, 2003). This becomes problematic 



86 

with for example two two-species communities whose yields in mixture exceed t he 

average monoculture yield by 5 units (Fig. 3.2a and 3.2b). However, differences in 

average monocult ures yield are two-fold (10 and 20 units yield) . In consequence, 

the relative increase (NE relative) is greater for the smaller community (Fig. 3.2a) 

(150 and 125%, respectively). 

Second, perennial plants su ch as trees cumula te biomass every year (or sea­

son) t hroughout their lifetime, especially in earlier phases . The inclusion of ab­

solute yields consequent ly results in increasing NE, CE and SE with t ime, in­

dependent of t he relative importance of CE and SE in t he communities . The 

part itioning approach is thus not suited to test for the effect of t ime in those 

systems. 

In the present study, we applied the additive partitioning method to assess 

general diversity effects for each community and the respective contribution of 

single (SE) and multiple species effects (CE). To assess the effects of diversity on 

a per species level and to assess the effects of diversity over time, the RY approach 

was applied. 

3.3.6 Data analysis 

To test for effects of funct ional diversity and identity on response variables 

(i.e. biomass and diversity effect s) , a restricted maximum likelihood model (REVIL) 

was applied using the following general structure : 

Y'= p,topo+ block(random) + FD1 + .. . + FDn+ CTV.i\11 + ... +CWMn+E , (3 .4) 



a) 

1 
10 10 

b) 

20 20 

c) 

1 
10 20 20 

d) 

10 20 20 

CE= 5 RY l= 0.75 
SE= 0 RY = 0.75 
NE= 5 
NE relative= 150 LRY = 1.5 

CE= 5 RY : = 0.75 
SE= 0 RY = 0.5 
NE= 5 
NE relative = 125 LRY = 1.25 

CE = 3.75 RY = 0.5 
SE = 1.25 RY = 0.75 
NE = 5 
NE relative = 133.3 LRY = 1.25 

CE= 6 
SE= -1 
NE = 5 

RY = 0.8 
RY = 0.6 

NE relative = 133.3 LRY = 1.4 
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Figure 3.2 Examples of the calculation of net diversity effect (1\E) . complem n­
tarity (CE) and selection effects (SE) following addi tive partitioning (Loreau and 
Hector 2001 ) as well as relative yields (RY, deWit , 1960) for different mixture 
effects. All mixtures have two sp cies initially planted in equal proportions. NE 
in all examples equals 5 (all mixtures produced 5 units yield more than expected 
from their component monocultures) . Tlüs positive diversity effect can b due to 
positive CE (a. b) , positive CE and SE (c) or positive CE and negative SE (d). 
Relative yield (RY) assesses a diversity effect for each component species or for 
the whole community (RY). For a species relative density of 50% in mixture, a RY 
> 0.5 indicates a performance above that achieved in monoculture. _ E relative is 
the relative increase of yield in the mixture compared to the average monoculture 
(%). Despit.e equal NE, RY and NE relat ive vary across examples, depending on 
monoculture values. Renee an absolute increase of 5 units is greatest in a) and 
smallest in b) (150% versus 125%). 
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where t he co-variable microtopography (J..Ltopo) is the difference in elevation 

between plot centers measured on site to account for slight differences in soil 

humidity, 'FD ' functional diversity indices (FDis) , 'CWM' community weighed 

means and " an error term. Models included two- and four- species mixt ures , only. 

Data were checked for heteroscedasticity and log transformed , were necessary. 

Functional diversity indices (i.e. FD and CWM) to include into t he model 

were chosen using redundancy analyses . Stepwise regression methods were then 

applied to identify t hose diversity indices with significant effects on the response 

variable. To control for possible mult icollinearity, constraints were added to this 

stepwise regression process. CWM of wood density was omitted from analyses 

since t hat information was used in biomass calculations. From sui tes of traits wi th 

known correlations in leaves ( e.g. LMA, leaf are, leaf nitrogen) or roots (SRL, fine 

root diameter , branching intensity) only one t rait per suite was p rmitted in final 

model fi ts (see Table 3.2 for complete list of FD indices) . However , the latter 

constraints did not have to be applied. Biomass and net diversity effects were 

tested against FD and CWM , CE only against FD and SE only against CWM as 

conceptually suggested. The residuals of the final model fit were tested against 

species richn ss (two- versus four species-mixtures) . 

To test if diversity effects changed over the four years, repeated measures 

ANOVA were applied including microtopography, year and species richness as 

well as the interaction term between year and SR ( never significant). In cases of 

significant effect s of year on diversity effects, differences in RY between years were 

tested against zero in a one-sample t-test . A correction for mult iple comparisons 

similar to the one used in Tukey HSD tests was applied . 
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3.4 Results 

In the fourt h year of the experiment , aboveground stem biomass ranged from 

14.5 kg to 98.1 kg per plot. The highest biomass wa.s achieved in L. laricina 

monocult ures, followed by a four species mixture (AsBpPgPs) and two two-species 

mixtures (BpQr and BpPs) that all include B . papyrifera (Fig 3.3). 

Although no transgressive overyielding was observed , posit ive net biodiversity 

effects (NE) occurred in 19 out of 25 mixtures (Fig 3.4). NE ranged from -3.6 kg 

for the A. rubrum and B . alleghaniensis mixture (ArBa) to + 44 kg for a four 

species mixture including A. saccharum, B. papyrif era, P. glauca and P. strobus 

(AsBpPgPs, Fig. 3.4). 

Positive mixture effects were largely due to selection effects (SE). Whereas SE 

had negative values in only three communities (PruPs, ArBa, BpQr), more than 

half (i. e. fourteen) of t he communities had negative values for CE (Fig 3.4). If only 

positive values are considered , a total of 197 kg was overyielded in the two-and 

four-species mixtures (NE) out of which 70% (137 kg) were due toSE and another 

30% (60 kg) were due to CE. More than 90% of the 197 kg were overyielded in 

seven mixtures , including three two-species and four four- species mixtures . All but 

one (BqQr) are mixtures of decicluous and evergreen species and they all cont.ain 

B. papyrifera and/ or L . laricina. (except BaPruPrePs) . In general, community 

weighed means ( CWM) were more strongly correlated to aboveground stem bio­

mass and TE than FDis. In addiüon. most of FDis indices were negatively related 

to t hose two response variables (Fig. 3.5) . Through stepwise regression methods, 

six functional diversity indices were identifiee! that together with microtopography 

explained more than 90% of vari ation in aboveground stem biomass. The majo­

rity of these indices were community weighed means (i.e. leaf longevity, rooting 

dept h, branching intensity, seed mass and leaf ni trogen), only FDis of seed mass 



90 

100 

- 80 
C) 

.::e. -rn rn Go 
rtl 
E 
0 
al 40 

Monocultures 

20 1 1 1 

2-species mixtures 

Tree community 

- 1 4-species mixtures 

~ 
:::J 
x 
E 
"' <Il 
(3 
<Il 
Q_ 

"' N 

"' = n. <( 
Cl 
n. 
a. 
[Û 
(/) 
<( 

Figure 3.3 Stem biomass (calculated on the inner 6 x 6 trees) by tree community 
(means standard error for the four blocks). ee table 3.1 for specie codes . 
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Figure 3 .4 Biodiversity effects by tr e community. Given are net biodiversity 
effect (NE, filled circles) standard en or (for the four blacks) and it s two com­
ponents complementarity effects (CE. light red bars) and sel ction effects (SE . 
dark red bars). Biodiversity effects werc cale;ulated on mean spccics biomass in 
each mixture in the fourth year of the experiment . 2012. See table 3. 1 for species 
codes. 
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significant ly contributed to biomass (Fig 3.5) . Functional diversity indices iden­

tified with significant explanatory power on NE largely overlap those identified 

for biomass . Together , CWM of leaf longevity, rooting depth , branching intensity, 

seed mass and FDis of seed mass and leaf nitrogen exp lain 4 7% of variation in NE 

(Fig 3.5) . 

31% of variation in SE was explained by microtopography and CWM. Similar 

to biomass and NE, branching intensity and leaf nitrogen significantly explained 

variation in SE. The strongest effect in SE however was related to shade tolerance 

(Fig 3.5) . Complementarity effects on the contrary could not be significant ly ex­

plained by any of the FDis calculated in the present study. Microtopography alone 

however explained 24% of variation in CE (Fig 3.5). 

Although calculating diversity effects following Lm·eau and Hector (2001 ) 

offers the advantage of being able to separate SE and CE, values are sensitive 

to changes in absolute yield. To compare diversity effect s over time (independent 

on absolute stem biomass) , we calculated relative yield (RY). Averaged over all 

mixtures , RY increased significantly from 2009 to 2010 but decreased in 2011 

and 2012 to levels similar to 2009 , with no significant difference between species 

richness two and four (Fig. 3.6). 

On a species-specific level, RY in 2012 varied between 0.54 for P. stro bus 

and 2. 74 for B. papyrifera when averaged over all mixtures. Within indiviclual 

mixtures , relative yield ranged from 0.3 (i. e. 70% less biomass t han expectecl ) to 

around 5.0 (i.e. 500% more biomass t han expected) (Fig. 3. 7). In general. RY 

was lower for evcrgrccn compared to deciduous species (Fig. 3. 7). About half of 

t he species showed RY values significantly different from one, indicat ing signifi­

cant mixture effects (Fig. 3.7). Among the seven species significantly affected by 

mixtures, four evergreen coniferous species underyielded while B. papyrifera, L. 
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a) Effect Sign OF F-ratio ~-va l u e R2 ., 
Microtopography 30.7 <.001 0.91 0 

CWM leaf longevity 35 1.3 <.001 b) 
CWM rooting depth 113.1 <.001 

BM CWM bran ching lntcnsity + 92.6 <.001 
CWM seed mass 34.8 <.00 1 
CWM lear nitrogen + 8.9 0.004 BM· 

FD seed mass + 6.0 0.016 

NË 
Microtopography 14.2 <.001 0.47 
CWM branching intcnsity + 26.2 <.001 .. 

ç 
CWM rooting depth 13.5 <.001 ·1 0 1 0 

E CWM leaflongevity 7.5 <.001 
CWM seed mass 5.9 0.017 . 

0 S!' 
FD seed mass + 15.2 <.001 c) 
FD leaf nitrogen + 7.3 0.008 

CE Microtopography 11.4 0.0011 0.24 

Microtopography 12.2 0.04 0.31 
CWM Shade Tolerance 16.5 <.001 

SE 
CWM leaf nitrogen 6.6 0.0 12 

., 
+ ç 

CWM bran ching intensi ty + 5.9 0.0 17 · 1 0 10 

F igure 3 .5 Summary of mixed model (REML ,a) and visuali :1.ation of significant 
diversity indices on biomass (BM) and net diversity effects (NE, b) as well as 
complementarity (CE) and selection effects (SE , c) using redundancy analyses . 
Summary includes degrees of freedom (DF), F-ratios, p-values and the coefficient 
of determination for t he whole model (R2). Given are significant effects after step­
wise regressions. Microtopography (topo) was measured as the elevation of each 
plot center (maximum difference 36 cm). Only significant effcct s are shown, indu­
ding functional dispersion indices, FDis and community weighed means ( CWM) 
of seed mass (SeM) , leaf nitrogen content ( l), leaf longevity (Llo), fine root bran­
ching intensity (BI), rooting depth (RoD) and shade tolerance; see table 3.2 for 
complete list of effects tested. 
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Figure 3 .6 Relative yield (RY) of two- (empty circle) and four-species mixtures 
(filled circle) by year . Symbols are slightly offset to improve readability. Given are 
means standard error across mixtures and blocks ( J = 56 for 2-species and 40 for 
4-species mixtures). Different letters indicate significant differences betwccn ycars 
for all mixtures, as there was no significant difference between 2- and 4-species 
mixtures. RY > 1 indicate positive mixture effects. 
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laricina and Q. rubm significantly overyielded in mixtures. Changes in RY over 

time were species specifie. While RY for B. papyrifem and L. laricina significantly 

increased, RY for A . balsamea, P. glauca, P. strobus and T. occidentalis signifi­

cantly decreased from 2009 to 2012 (Fig. 3.7) . RY for all other species did not 

change significantly over t ime. 

3.5 Discussion 

The present study confirms t he general positive mixt ur ffect that was do­

cumented for systems as different as forests (Zhang, Chen and Reich , 2012) , grass­

lands (Cardinal et al. , 2011) and aquatic (Cardinale et al. , 2012 ; Mora et al. , 

2011) environments on different trophic lcvels such as producers, herbivores, pre­

dators and detrivors (Cardinale et al. , 2006). There was no transgressive ove­

ryielding in our experiment so far. Th highest biomass after four years of the 

experiment was achieved in monocultures of L. laric'ina. Although transgressive 

overyielding is often seen as the ultimate demonstration of niche complementa­

rity, such overyielding has been documented in but a few cases and remains a 

rare phenomenon (Cardinale et al. , 2011 ; Loreau and Hec tor , 2001 ; Schmid et 

al. , 2008). 

The present study is one of the first to test for underlying mcchanisms of 

diversity effects in trees. Here, posit ive cliversity effects were largely driven by se­

lection ( around 70%). In other words, some species that did well in monoculture 

profited from reduced interspecific competit ion compared to intr::tspedfic compe­

t it ion and came to dominate mixtures . Across a variety of BEF studies , com­

plementarity and selection effects were found to contribute around 50% each to 

positive net biodiversity effects (Cardinale et al. , 2011). In contrast to grassland 

systems were all species are more or less equally shade-intolerant, trees exhibit 
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considerable variation in shade-tolerance (Humbert et al. , 2007) . In the present 

study, t he species that significantly enhanced biomass in mixt ure compared to 

monocultures included four deciduous, shade-intolerant species (B . papyrifera, L. 

laricina, Q. rubra and B. alleghaniensis ). It is thus those four species that were 

most likely best adapted to the open condit ions during t he first years of the expe­

riment and their accrued growth led to intraspecific competition clearly exceeding 

interspecific competition. 

Following the stress gradient hypothesis (Bertness and Callaway, 1994) , po­

sit ive plant interactions have been hypothesized to gain importance in stressful 

environments and it has often been assumed that the diversity productivity rela­

t ion as well as the contribut ion of complementarity and selection effects depend 

on site conditions (Reich et al. , 2001 ; Warren, Topping and James, 2009). St.u­

dies examining BEF along environmental gradients are scarcc and the fcw results 

controversial (Steudel et al. , 2012; Wacker et al.. 2009). Evidence for reduced 

competit ion and increased complement.arity (at least in relative importance) in 

environmentally challenging conditions has been documented in herbaceous (.Jar­

chow and Liebman, 2012 ; Wacker et al. , 2008) , microalgae (Steudel et al. , 2012) 

and tree systems (Paquet te and 1essier. 2011 ; Prctzsch et al. , 2013). Herc . the 

high intensity agricultural input over decades on the study site resulted in nutrient­

abundant conditions possibly favoring single species effect s (i. e. selec tion). This 

is consistent with theoretical considerations that the coexistence of functionally 

divergent species increases productivity in less productive and more stressful en­

vironments , while dominant and highly productive species are able to competit i­

vely dominate in more productive habitats (Bertnes · and Callaway, 1994 ; Gause, 

1934). 

Similarly, effects of biodiversity in general (species richness) were less pro­

nounced on more fer tile sites (Pot ter and Woodall) and in less stressful (i. e. tem-
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pcrate compared to boreal) environments (Paquette et Messier, 2011 ). Corrobo­

rating t hese observations, on t he rather nutrient rich study site described here , 

no significant differences between two- and four-species mixtures were found in 

productivity and diversity effect . 

3.5.1 Diversity indices 

Consistent with t he large cont ribut ion of selection effects to net biodiversity 

effects , community weighed means ( C\iVM) had greater explanatory power on 

variation in biomass and diversity effects. This corroborates studies in herbaceous 

(Diaz and Cabido, 2001 ; Mokany, Ash and Roxburgh, 2008 ; Roscher et al. , 2012) 

and tree systems (Nadrowski , Wirth and Scherer-Lorenzen, 2010) where functional 

ident ity rather than diversity better explained productivity. Although around 30% 

of net biodiversity effects were attributed to complementarity in the present study, 

none of the measured FDis significantly explained complementarity effects. In 

addition, microtopography alone explained around 25% of variation in CE. In 

fact all measures of diversity (including RY) as well as productivity significantly 

decreased with increasing plot center elevation indicating that in lower elevation 

plots higher biomass and hence increased species interactions lead to increased 

diversity effects. 

Only litt le is known about which t raits are involved in tree productivity 

and its diversity effects. In forests , positive mixture effects appear most corn­

mon in stands of species with vertical stratification (Garber and Maguire. 2004 ; 

Kelty, 1992) and/ or contrasting traits such as shade tolerance (Zhang, Chen and 

Reich, 2012) , wood density (Swenson and Enquist , 2007) , seed mass (Ben-Hur et 

al. , 2012) and maximum height (Paquette and Messier , 2011 ; Ruiz-Benito et al. , 

2013). Due to large ontogenetic shifts in trees , it can be expected, that traits linked 
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to productivity change with tree age. It would thus appear logic that maximum 

height may not be of importance in young tree communities. In th present study, 

community weighed means of leaf longevity, seed mass and two root traits sho­

wed strongest explanatory power on productivity and net diversity ffects ( TE). In 

other words , communities of increased biomass were dominated by sp cies with the 

following functional characteristics : a reduced leaf life span (i.e . deciduous) , smal­

ler seeds (earl y successional species), shallower root systems and highly branched 

fine roots. The significant positive effect of FDis of seed mass impli s that a certain 

trait variation in seed mass contributed to increased biomass. All of thos traits 

show sorne correlation (Fig. 3.5) and can be grouped along the same life-history 

axes , fm·merly described as r-strategists (Reznick, Bryant and Bashey, 2002). In 

fact, deciduous, rapidly developing, shad -intolerant species in th ir identity or 

diversity have thus been crucial in explaining overyielding in all cases. Interesting 

to note in the present study is the importance of root trait· in cxplaining produc­

t ivity and diversity effects. The significant cffcct of rooting depth and branching 

intensity may r fiect increased belowground compared to abovcground compe­

t ition in thos young tree communiti s. Especially in the first two year. of the 

experiment, light was not a limiting resom ce . The lack of mature shade-casting 

t rees and ampl space between planted seedlings may have emphasized below­

ground competition and favored species with shallow. highly branched roots . As 

most plant nutrients are situated in the upper layers of the soil. shallower. in crea­

singly branched fine roots may refiect an increased capacity to ace ss resources. 

This corroborates results from natural forests where mixed species showed increa­

sed fine root productivity through increa ed soil volume filling, especia.lly in t he 

upper soil layers (Brassard et al., 2011). 

Consequently, it could be expected that with increasing growth and accrued 

species interactions. diversity effects increase, at lest in relative importance. It 
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could be expectcd that with increasing canopy closure, aboveground t raits in­

crease in respective importance (Ishii , Azuma and abeshima, 2013). However , 

one could also expect increased belowground niche part it ioning due to t he increa­

sed uptake and depletion of nut rients. Accumulating evidence from the longest­

running (grassland) BEF experiments do point to increased complementarity with 

t ime (Reich et al. , 2012). 

3.5.2 Diversity effect s over time 

Over a large number of studies , net diversity effects have been found to in­

crease with t ime (Cardinale et al. , 2012). Alt hough two distinct ecological mecha­

nisms were proposed to underlie positive mixt ure effects, both ( complementarity 

and selection) have been shown to be mutually at work in creating posit ive net 

biodiversity effects . Their relative contribut ion over t ime however has been shown 

to shift towards increasing importance, and in fact dominance of complementarity 

wit h t ime in many cases (Allan et al. , 2011 ; Cardinale et al. , 2007 ; Fargione et 

al. , 2007 ; Reich et al. , 2012). 

In the present study, overyielding (mean RY for all plots) was significantly 

higher in t he second year of the experiment , compared to all other years (Fig. 3.6). 

This was independent of species richness. While t he first year of t he experiment 

was characterized by an establishment phase with moderate growth. trees profited 

from the unoccupied space around them in the second year and showed highest 

relative growth rates (data not shown) and highest relative yields. This corrobo­

rates with first evidence from experiments where diversity effects increased with 

biotope space (Dimitrakopoulos and Schmid, 2004) . In the following years, redu­

ced diversity effects could be linked to the start of physical t ree interactions and 

t hus reduced biotope space. \Vhen calculated per species , RY did not generally 
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decrease over time but was rather species-specific. While L. laricina and B. papy­

rifera could significantly increase their RY from 2009 to 2012 , several evergreen 

species significantly decreased in RY. After four years of tree interactions, two 

competit ive species came to dominate ecosystem functioning due to competit ive 

exclusion of several evergreen species. 

Interestingly, in grasslands (Cardinale et al. , 2007) and tropical tree plan­

tations (Sapijanskas , Potvin and Loreau, 2013 ) it took five years to detect a si­

gnificant signal of complementarity / overyielding. Increasing complementari ty 

over time was shawn due to increasing functional divergence of species (Sapij ans­

kas, Potvin and Loreau, 2013) and/ or functional t urnover in species (Reich et 

al. , 2012). In contrast to herbaceous species, trees accumulate large amounts of 

carbon and nutrients. Here, it may thus be expected tha t species with greater 

investment in belowground structures or reserves catch up in aboveground invest­

ment in fu ture years resulting in increased tree interact ions. It has been shown 

that traits are plastic in response to neighbor diversity and ident.i ty possibly pro­

moting complementary resource use (Ashton et al. , 2010 ; Messier et al. , 2009). 

Renee , in the present study, increased interactions and possible phenotypic plas­

t icity could create stronger positive mixture effects in the fu ture due to functional 

divergence. Long-term experiments however are necessary to test for temporal 

complementarity through species turnover in trees. 

3.6 Conclusion 

T hese are t he first results from experimental t ree communit ies that speci­

fically tested for the effects of functional diversity and the existence of comple­

mentarity in tree communities, independent of species richness. We demonstrated 

general posit ive mixture effects for most polycultures. After four years of growth, 
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t hose mixture effects were driven primarily by selection (70%) compared to com­

plementarity effect s (30%). In consequence, functional ident ity better explained 

productivity and diversity effect s t han functional diversity, at testing the domi­

nance of few deciduous species and the competitive exclusion of most evergreen 

species . The strong effects of root t raits emphasize the need to better investigate 

and understand belowground interactions. Following natural succession pat terns 

of t hose species, changes in dominance are to be expected (in favor of evergreen 

species) and consequently, possible shifts in diversity effects. Evidence is emerging, 

t hat complementari ty may be a mechanism gaining importance in t he long-term, 

assuring spatial and temporal stabili ty (Cardinale et al. , 201 2) . 

Studying BEF relations in tree-dominated systems bears undeniable advan­

t ages as well as caveat s. Tradit ional approaches to assess diversity effects as done 

in herbaceous systems are limited in t ree systems. In contrast to herbaceous plant 

species , trees have secondary growth and through reserves and different allocation 

strategies , responses assessed over several years may bear signals from previous 

years. In the present study, t rees are still closing the canopy and increasing in­

teractions. Consequently, diversity effects of the last years could differ from the 

earl y years of the experiment (less interactions) . Assessing diversity effects on t he 

last years growth (biomass 2012 - biomass 2011 ) instead of th total aboveground 

biomass accumulated over four years may avoid a dilution of the diversity signal 

and give a clearer idea of the underlying BEF mechanisms in the future. In ad­

dit ion, the additive part it ioning method should not be used to test for effect s of 

time on diversity effects. Here, we presented a mixed approach using the additive 

partitioning approach and the relative yield approach. 
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CONCLUSION 

The aim of this thesis was to fill crucial gaps in knowl dge surrounding plant 

functional traits in t ree-dominated systems. Specifically, the objectives were to 

improve our understanding of fine root trait variation within and across tree spe­

cies, to design and implement an experimental design to test for the effects of 

trait diversity (functional diversity) on productivity as well as the existence of 

complementarity in tree communities, and to evaluate how functional diversity 

affects aboveground productivity in trees. 

3.8 The hidden half 

Despite the vital role of roots for plant performance, li ttle is known about 

root trait variat ion, especially in trees . This finding confirms cmerging evidence 

for a fine root trait syndrome - similar to the well established "leaf economies 

spectrum" that links severalleaf traits - that may be due to physiological-economic 

trade-offs . In contrast to expectations based on earlier studies , no relationship 

was found between these belowground traits and wholc-plant strategies (relat ive 

growth rate), indicating a possible link to site fer tili ty. 

Chapter I also showed that despite strong correlat ion b tween root t raits 

across species, responses to changes in the environment within species were t rait 

specifie. A novel approach pres nted in chapter I provided indications for under­

lying mechanisms of these trait-specifie responses. Through the combinat ion of 

a trait 's total variation and its phenotypic plasticity (i. e. variation due to the 

environment), environmental indicator traits can be identified. Fine root di ame-
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ter for example proved to be the best environmental indicator among the three 

fine root traits studied with low total variation almost entirely due to phenotypic 

plasticity. In the quest for a mechanistic framework linking functional traits to 

environmental drivers, identifying indicator traits may greatly enhance our abi­

lity to extrapolate from traits to plant communit ies and ameliorate our capacity 

to monitor and predict (e.g. the effect of global change drivers) . 

Chapter III provided furt her strength to the importance of roots for t he per­

fül·mance of trees and t he functioning of tree dominated systems. In this chapter 

the relation between trait diversity and t ree productivity as well as diversity ef­

fects were tested. Out of all 12 traits included in analyses , four t raits significantly 

explained productivity and net diversi ty effects , two of which were belowground 

traits. In the first years of the experiment described in chapter III , light was not 

a limit ing resource. The importance of root traits likely refiects the belowground 

species interactions and competit ion for nutrients and / or water. Of the three 

root traits studied in chapter I and III , community weighed means of branching 

intensity wR.s significantly correlated to growth and overyielding. Community wei­

ghed means assess the functional identity of communities. The low plasticity with 

regard to ontogeny and environmental changes may make branching intensity a 

more reliable trait to characterize a species' functional identity. 

Together, these results suggest that understanding the rhizosphere and more 

specifically root trait variation is crucial for understanding the underlying me­

chanisms of ecosystem functioning. As highlighted in chapter I, one of the most 

important things to advance root trait research is a unifying framework to assess 

fine roots. Although often criticized , fine roots are still defined by arbitrary size 

classes (most often < 2 mm) in many places. A functional approach, based on root 

orders has been proposed. However , studies applying this funct ional approach use 

different numbers of root orders rendering a broader understanding ( across stu-
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dies) difficult. Advances in technology are also needed. Even with image analyzing 

software, time and effor t to study fine roots greatly exceed those for aboveground 

traits. Improved precision in wave reflectance instruments like ground-p netrating 

radar could provide valuable tools to access the rhizosphere more easily. 

3.9 Biodiversity and Ecosystem Functioning 

Based on the synthesis and the identification of open research questions sur­

rounding BEF in chapter II , it is clear that the question "whether" biodiversity 

influences EF has long been answered. However , much uncer tainty remains about 

"how" biodiversity influences EF. The IDENT fr amework proposed in chapter II 

was developed in response to this knowledge gap . IDENT is a unique network 

of tree functional diversity experiments designed to be both flexib le and easy to 

implement . As a result , IDENT serves as an effective tool t.o tackle severa! open 

research questions. 

The Montreal site of IDENT presented in chapt.er III is the first study to 

test the effect of continuous funct ional diversity on tree procluctivity. inclepenclent 

of species richness . In addit ion, diversity effects were separatecl into complemen­

tarity and selection effects in tree communi t ies for the fi rst time. stressing the 

importance of the lat ter in young t ree communit ics. In other words. species that 

clid well in monocultures profited from Lesser interspecific competition compared 

to intraspecific competition. Consequemly, indices of functional identity ( commu­

nity weighed means) had greater explanatory power on productivity and diversity 

effects than indices of functional cliversity. Traits linked to productivity and ove­

ryielcling included community weighed means of leaf life span, seed mass, rooting 

dept h and root branching intensity. Renee, species that profited from lesser inter­

specifie compared to intraspecific competition included early successional species 
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with shallow and finely branched root systems and can be grouped along the 

same life-history strategies formerly known as r-strategists. This demonstrates 

the adaptation of ear ly successional species to the open experimental conditions 

and resembles t he patterns of natural succession. 

Following the concept of natural succession, it could be expected that late­

successional species will increase in relative ab un dance (as expressed by biomass) 

with t ime. In addit ion, all species are still in a period of fast growth likely re­

sult ing in increased interspecific interactions in t he following years. Undoubtedly, 

this will influence the absolute and relative contribut ion of complementarity and 

selection to net diversity effects. Diversity effects did not increase over t ime in 

the Montreal site. These findings contrast many others in the literature where 

diversity effects tend to increase with t ime, generally in favor of complementarity 

effects (Cardinale et al. , 2011). However , most of these studies were conducted in 

grasslands and increased complementarity was attributed to species turnover with 

different species dominating and driving ecosystem functioning over t he years thus 

maintaining high biomass (Allan et al. , 2011). The experimental design presented 

here is limited in its spatial and temporal extents to test for increased comple­

mentarity due to species turnover considering that the average life span of the 

present species is well beyond 100 years. The only other experiment to date that 

tested for diversity effects over t ime in trees found that increasing overyielding 

was due to functional divergence of species (Sapij anskas , Potvin et Loreau, 2013). 

In the present experiment, t rees are st ill developing rapidly and species interac­

tions increasing. Taking advantage of the nature of t he experimental organisms, in 

particular their size, one could follow individual trees, organs or even extremities 

(a root or branch) and observe changes in t rait values depending on t he neighbor 

identity. I would thus expect increasing complementarity effects with time due to 

functional divergence in the present experiment. 
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However , chapter III also showed that traditional approaches to assessmg 

mixture effects are limited in tree dominated systems . In contrast to annual spe­

cies, trees accumulate tissue and reserves and biomass . Calculating mixture effects 

( complementarity and selection) is based on biomass. Bence, mixture effects of any 

given year in tree communities will al ways include signais of previous years of tree 

growth. One way to avoid including information from previous years in asses­

sing prod ucti vi ty would be to calcula te annual increment ( [biomass year x+ 1] -

[biomass year x]). In a second step, diversity effects could be calculated on these 

increments and allow contribution of diversity eHects in the early years to be 

separated from the contributions of later years. 

Biodiversity and ecosystem functioning research with trees is only just be­

ginning. It will be indispensable to study the effect of functional cliversity on 

ecosystem functioning over time, as this collection of recently cstablishccl cxperi­

ments mature. After four years , t rees have only started to inter act and i t will be 

most interesting to see how the contribution of selection and complement.arity ef­

fects change in absolute and relative importance over the next yea.rs. However , this 

thesis showed that short-term studies such as within IDENT are a valuable tool 

to ident ify mixture effects and functional identities of tree commnnities overyiel­

ding in early years. Long-term st.uclies ar nonetheless vital to complement these 

findings and examine for example t he eHect of natural disturbances or resilience 

to pathogens. 

3.10 Plant functional traits 

My quest for the Holy Grail in plant functional traits certainly lost sorne of 

the initial enthusiasm. While understanding on t he variation and role of functio­

nal traits in ecosystem functioning in trees grew, a general application and extra-
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polation to ecosystem functioning however seems still far. For one, the ecological 

significance of many traits ( especially belowground on es) lacks consensus in t he li­

terature. Specifie root length for example is certainly the root trait most employed 

in root research and has been proposed as environmental indicator trait ( Ostonen 

et al. , 2007). In chapter I, this trait was shown less responsive to changes in soil 

conditions in natural forests than the unt il now less employed fine root diameter. 

In fact , due to the divergent responses of specifie root length in t he literature, 

this trait was labeled "mysterious" (Ryser , 2006) . Another example is the role of 

functional traits in chapter III. Although almost 30% of net diversity effects were 

attributed to complementarity, none of the 12 functional diversity indices assessed 

were significantly correlated to complementarity effects. 

Assuming that traits respond differently to neighborhood diversity as they 

do to ontogeny and age (in chapter I), the specifie trait value could potentially 

b e different in each mixture (depending on neighborhood identity and diversity) . 

However , most functional diversity indices do not take t his intraspecific variation 

into consideration. This may explain why none of the FD indices used in chapter 

III contributed significantly to product ivity and overyielding. It is likely that trait 

plasticity plays a bigger role than often accounted for and the approach proposed 

in chapter I of comparing total variation to variation due to plast icity might 

offer possibilit ies to identify t raits t hat show greater plasticity in response to 

neighborhood and thus offer greater insight into how complementary resource use 

may be facili tated. 

As proposed in chapter II. assessing 'realized' niches through integration of 

intraspecific variability (plasticity) will likely yield better predictabili ty and fi.­

nally increase our understanding of underlying mechanisms in creating posit ive 

diversity effects. I propose that one way of assessing realized niches could be cx­

pressed as t he deviation of trait values in mixture from those in monoculture. 
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This surely implies a greater amount of investment , in terms of t ime, effort and 

financial resources . The approach used in chapter I t hat compares total variation 

of a trait to its phenotypic plasticity may help ident ifying traits with greater ex­

planatory potential for functional ident ity (low plasticity) or functional diversity 

(high plasticity with neighborhood diversity) and t hus help direct resources . 

In short, this body of work presents progress toward the Holy Grail of linking 

plant traits with community composit ion and ecosystem functioning, highligh­

ted the importance of belowground traits and develop ,d a novel experimental 

approach toward understanding t he roles of traits in tr e-dominat d systems. In 

addit ion, the existence of complementarity and selection effects in tree systems 

was documented for t he first t ime underlining the dominance of the latter and 

consequently the pivotal role of functional identity in young tree communi ties . 
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