
UNIVERSITÉ DU QUÉBEC À MONTRÉAL

INFERRING MISSING SCHEMA FROM LI IKED DATA

USING FORMAL CONCEPT A ALYSIS (FCA)

!J:ASTER THESIS

PRESE ITED

AS A PARTIAL REQUIREMENT

FOR THE MASTER lN COMPUTER SCIENCE

BY

RAZIEH MEHRI DEHNAVI

FEBRUARY 2014

UNIVERSITÉ DU QUÉBEC À MONTRÉAL
Service des bibliothèques

Avertissement

La diffusion de ce mémoire se fait dans le respect des droits de son auteur, qui a signé
le formulaire Autorisation de reproduire et de diffuser un travail de recherche de cycles
supérieurs (SDU-522- Rév.01-2006). Cette autorisation stipule que «conformément à
l'article 11 du Règlement no 8 des études de cycles supérieurs, [l 'auteur] concède à
l'Université du Québec à Montréal une licence non exclusive d'utilisation et de
publication de la totalité ou d'une partie importante de [son] travail de recherche pour
des fins pédagogiques et non commerciales. Plus précisément, [l'auteur] autorise
l'Université du Québec à Montréal à reproduire, diffuser, prêter, distribuer ou vendre des
copies de [son] travail de recherche à des fins non commerciales sur quelque support
que ce soit, y compris l'Internet. Cette licence et cette autorisation n'entraînent pas une
renonciation de [la] part [de l'auteur] à [ses] droits moraux ni à [ses] droits de propriété
intellectuelle. Sauf entente contraire, [l'auteur] conserve la liberté de diffuser et de
commercialiser ou non ce travail dont [il] possède un exemplaire.»

UNIVERSITÉ DU QUÉBEC À MO TTRÉAL

INFÉRE CE DU SCHÉMA MANQUA T À PARTIR DE DO ÉES LIÉES

À L'AIDE DE L'ANALYSE DE CONCEPTS FORMELS (ACF)

MÉMOIRE

PRÉSENTÉ

COMME EXIGENCE PARTIELLE

DE LA MAITRISE EN INFORMATIQUE

PAR

RAZIEH MERRI DEHNAVI

FÉVRIER 2014

ACKNOWLEDGMENTS

I am deeply thankful to my supervisor, Dr. Petko Valtchev, for his guidance and

encouragement throughout my Master studies at UQAM. He has been an excellent

advisor and a constant source of knowledge, motivation , and encouragement during this

dissertation work.

I would like to extend my thanks to Dr. Fatiha Sadat , my co-supervisor , for her guidance

throughout this research work.

I am continuously grateful to my family specially my parents for their support , love and

encouragement.

Finally, I would like to thank all the staff members of the Computer Science department

at UQAM for their direct and indirect helps during my studies at UQAM.

Vl

TABLE OF CONTENTS

LIST OF FIGURES Xl

LIST OF TABLES Xlll

ABREVIATIO NS xv

RÉSUMÉ xvn

ABSTRACT X lX

INTRODUCTIO N 1

CHAPTERI
MAI CO CEPTS 3

1.1 RDF . 3

1.2 RDF Schema (RDFS) 5

1.3 FCA 7

1.3.1 Introduction to Formal Concept Analysis 7

1.3.2 Concept Lattice . 8

1.4 DBpedia 9

1.4.1 Data Source . 10

1.4.2 Data Structure 11

1.4.3 Data Access . 13

1.5 Summary 14

CHAPTERII
REVIEW OF THE LITERATURE 15

2.1 Basic Concepts Related to Similarity 15

Vlll

2.1.1 Name-based Techniques . .

2.1.2 Structure-based Techniques

2.1.3 Extensional Techniques ..

2.1.4 Semantic-based Techniques

2.2 RDF and Similarity

18

27

30

32

34

2.2.1 Similarity of RDF Graphs on Linked Open Data (Interlinking Tools) 34

2.2.2 Finding Similarity between RDF Individuals Using FCA

2.3 FCA and Semantic Web Applications .

2.4 Summary

45

46

47

CHAPTERIII
METHODOLOGY A D IMPLEMENTATION

3.1 Approach

3.1.1 Converting RDF to FCA Input

3.1.2 Converting FCA Output to RDFS

49

49

50

52

3.1.3 Choosing Plausible ames for RDFS Classes Using DBpedia 54

3.2

3.3

Implementation

3.2.1 Java Frameworks and APis

3.2.1.1 Jena.

3.2.1.1.1 RDF API

3.2.1.1.2 SPARQL

3.2.1.2 Galicia

3.2.1. 3 RDF Gravity

3.2.2 Generating RDFS from RDF data

3.2.2.1 Step One: Converting . rdf to . rcf. xml .

3.2.2.2 Step Two: Converting lat. xml to RDFS

3.2.2.3 Step Three: aming Classes Using DBpedia

Summary . .

58

58

58

59

60

61

61

64

64

65

66

67

C HAPTERIV
EXPERIMENTS A ND RESULTS

4.1 Dataset

4.2 Results .

4.2.1 Binary Relation Table

4.2 .2 Concept Lattice .

4.2.3 RDFS Graph ..

4.3 Discussion of the Experiments .

4.4 Summary

co TCLUSIO

BIB LIOGRAPHY

lX

69

69

70

70

70

70

72

77

79

79

x

LIST OF FIGURES

Figure Page

1.1 RDF graph example 4

1.2 RDFS graph example. 6

1.3 Formai context example 7

1.4 Concept lattice example 9

1.5 Reduced labeling diagram of concept lattice example 10

1.6 lnfobox of Portugal 11

1.7 The DBpedia dataset for Barack Obama 14

2.1 Similarity techniques 16

3.1 RDF graph of music dataset . 51

3.2 Lattice of music dataset ... 52

3.3 Reduced labeling diagram of music dataset lattice . 53

3.4 RDFS graph of music dataset 55

3.5 RDF Gravity representation of music dataset 's RDFS graph 56

3.6 Objects of rdf: type predicate with dbpedia- owl prefix of Lake Onega
and Neva River in DBpedia . 56

3.7 Objects of dbpedia-owl: Wikipagesdirect predicate for Neva River in
DBpedia 57

3.8 Jena framework . 59

3.9 SPARQL Example 60

3.10 Galicia v.2 beta view . 62

3.11 RDF Gravity View . . 63

Xll

3.12 SNORQL

4. 1 Lattice of Russia dataset by Galicia

4. 2 Full RDFS graph of Russia dataset by RDF Gravity

4.3 Parts of RDFS graph of Russia dataset

66

71

73

76

LIST OF TABLES

Table Page

1.1 Classes in DBpedia ontology . 11

2.1 Tool comparison . 44

3.1 Binary relation table of music dataset 50

3.2 RDF Gravity notations 64

4.1 Measurement table . 75

xiv

ABREVIATIONS

FCA Formal Concept Analysis

RDF Resouce Description Framework

RDFS RDF Schema

LOD Linked Open Data

SW Semantic Web

Galicia GAlois Latticebased Incrementa! Closed Itemset Approach

SPARQL Simple Protocol and Rdf Qu ry Language

RDF Gravity RDF GRAph Vlsualization Tool

XML Extensible Markup Language

W3C World Wide Web Consortium

NLP N atur al Language Processing

xvi

-~--~----------------,

RÉSUMÉ

Avec l'augmentation massive de la quantité de données disponibles sur le web , la
détection et l'analyse d'information dans le contenu web deviennent très rentables. Le
déploiement des données structurées fondé sur les technologies du Web sémantique a aug­
menté de façon significative en ligne au cours des deux dernières décennies. L'extraction
d 'information devient donc un problème majeur entre les chercheurs du Web sémantique.

Pour publier des données structurées sur le Web, les sources de données sont décrites
avec le Cadre de Description des Ressources (Resource Description Framework ou RDF).

Dans cette mémoire, nous cherchons à extraire la structure conceptuelle du Web de
données, c'est à dire, des données RDF dans le Web de documents. L'objectif principal
est d 'apprendre le niveau du schéma à partir du niveau d 'instances, en d'aut res termes,
nous essayons de convertir les données RDF à RDF Schéma (RDFS) par apprentissage
de la structure conceptuelle induite par des individus décrits en RDF.

Pour construire le treillis de concepts à partir de données RDF, les concepts sont
identifiés à l 'aide de l'Analyse de concepts formels (FCA). Le nombre de concepts est
basé sur le nombre de sous-ensembles possibles contenant ressources RDF similaires .
Par ressources RDF similaires, on veut dire que l'on considère l'ensemble des ressources
RDF qui partagent un ensemble commun d 'attributs. Après la construction du treillis de
concepts, nous allons tenir compte des propriétés et des propriétés de données déduites
à partir de données RDF pour construire le schéma.

Un autre défi pour construire le modèle RDFS est le fait de nommer les classes
de RDFS. Pour cela , on utilise DBpedia. DBpedia contient l 'information structurée de
Wikipédia, qui contient des informations t rès utiles nous permettant d'apprendre le type
d' instances de sortie dans les données RDF.

La méthodologie présentée dans cette thèse extrait le schéma maximum possible à
partir du niveau d 'instance de données RDF. En adoptant les étapes mentionnées avant ,
on atteint la capacité d'exploiter la structure conceptuelle à partir du Web de données.

Mots-clés: RDF, RDFS , DBpedia, treillis de galois, données liées

XVlll

ABSTRACT

The amount of available data on the web has considerably increased in recent years,
thus the detection and analysis of useful information from its content is very profitable.
Deployment of structured data based on Semantic Web technologies has grown signifi­
cantly online in past two decades.

Therefore, information extraction has become a major concern among Semantic Web
researchers. To publish structured data on the web, data sources are published using
the Resource Description Framework (RDF) data madel.

This thesis aims at extracting conceptual structures from Web of Data, i. e., RDF
data in Web of documents. The main objective is to learn schema level from instance
level in a dataset; in other words, we try to couvert the RDF data into a data with
the RDF Schema (RDFS) model by learning the conceptual structure between RDF
individuals in the instance level.

To construct a concept lattice from the RDF data, concepts are identified via Formai
Concept Analysis (FCA) . The number of concepts is based on the number of possible
subsets containing similar RDF individuals. By similar RDF individuals we mean the
set of RDF resources which share a common set of attributes. After detecting concepts
of t he concept lattice -classes of RDFS- and t he hierarchical relations between them, we
take into account the properties and the inferred data propert ies from the RDF data in
arder to construct the schema level.

Another challenge in building the RDFS model from data is naming the RDFS
classes. We overcome this issue by using DBpedia. DBpedia contains the structured
information from Wikipedia, which contains very useful information allowing us to learn
the type of exiting instances in the RDF data.

The proposed methodology in the thesis extracts the maximum possible schema from
the instance level of RDF data. By adopting the aforem ntioned steps, we achieved the
capability to exploit conceptual structure from Web.

Keywords: RDF, RDFS, DBpedia, concept lattice, linked data

xx

INTRODUCTION

Today, the Web of documents has expanded to the Web of Data since the appearance

of Semantic Web. Web of Data is described as graphs of data. It rapidly produces large

datasets containing billions of RDF triples from different domains of knowledge. Thus,

with high growing availability of structured data on the web , exploiting it becomes ever

more interesting.

Compared to RDF data, XML and HTML are more readable by humans than RDF

since RDF data doesn 't explicit ly follow hierarchical and sequential structure formats.

Therefore, RDF modellacks the simplicity of human readability and writability for its

documents.

We believe that concept extraction from Web of Data provided in RDF helps us for

fulfilling user 's requirements in having a better understanding of heterogeneous data

on the web. Implementing this idea could lead us to improve the readability of RDF

statements by ordering and grouping them.

FCA is a key issue for formally discovering and representing concept hierarchies as well

as the clustering of knowledge found on the web.

Motivation

Even though the data sources are structurally defined on Web of Data, the effort

for reducing decentralization of data which suffers from the lack of vocabulary in non­

conceptualized data is interesting. In other words, extracting schema from data becomes

more interesting when it comes to data without explicit conceptualization.

RDF describes resources without considering taxonomies of their classes and properties.

The approach of discovering conceptual structure from Web of Data represented as RDF

triples is possible by using FCA.

2

Objective

Extraction of schema from RDF data could lead to RDFS model construction which

contains richer vocabularies for describing the data. RDFS is an extension of RDF

model which allows t he descript ion of RDF tenns in t he form of class (types of the

instances), subClass (relation between classes) , property (properties which describe

classes) and subProperty (relation between properties) as well as domain and range

of t he properties. Obtaining an RDFS model from the RDF data helps us solve the

problems of heterogeneity in raw data of the web.

Structure of this dissertation

This dissertation is mganized as follows:

In Chapter 1, we define the basic concepts which are used t hroughout this thesis. The

main concepts that are explained in t he chapter include: Resource Description Frame­

work (RDF), RDF Schema (RDFS), Formai Concept Analysis (FCA) and DBpedia.

Chapter 2 presents a review of the literature. It presents related works to our thesis

and the comparison of our works to them. First, the chapter discusses the basic simi­

larity methods that exist for ontologies. The similarity methods are used for building

interlinking tools which are introduced in continuance briefiy. Finally, we present our

approach in comparison to the other works for extracting similar RDF individuals.

Chapter 3 describes the full implementat ion of our methodology in addition to the in­

troduction to some Java platforms and APis required during implementation.

Finally, the methodology is evaluated by three metric measurements including precision,

recall and f-measure in Chapter 4 .

.___ ______________________________ _ ________ -------- ·

CHAPTER I

MAIN CONCEPTS

The current chapter provides background information on technologies we benefited

from during our approach. In two first sections , brief introductions to RDF and RDFS

models are provided. Third section introduces FCA which plays an important role in

our methodology. Finally, the DBpedia which contains useful knowledge for generating

our final output is proposed.

1.1 RDF

The Resource Description Framework (RDF) is a fundamental data model in Se­

mantic Web technology [MM04] . It is designed to be read and understood by machines .

As a generic data model, RDF represents t he information on the web in the form of

< subj ect-predicate-object > triples. Each triple is a sentence describing a resource. A

resource is an ent ity which can be a subj ect, predicate or object in an RDF triple. Each

resource on the web is uniquely identified by Uniform Resource Ident ifier (URI). URI

ident ifies a resource via location or a name or both.

The subject or first part of an RDF triple is a resource which the statement describes.

The predicat e or second part of a t riple is a property or aspect which relates t he resource

to an object. T herefore, the object is third part of a t riple which could be anot her re­

source or a liter al value defined as a string or a number, a date, etc [1899].

RDF depicts the information on t he web as directed graphs. An RDF graph is composed

4

of a set of triples where each triple represents an arc. Therefore, each RDF statement

is a subgraph where each node is a subj ect or object whereas arcs are predicates (The

arc starts from the subject and it is directed to the object). Further, RDF can use

XML based syntax, i.e., RDF/ XML to create or modify the RDF graphs [RDF04]. An

example of RDF graph is given in the following [Li13] .

Suppose that a student with name James Anderson has professor Paul Jones as his su­

pervisor . The statements related to this information are represented as an RDF graph

shown in Figure 1.1.

http:f fwww~mydomain.orgfuni-m/PauiJones http:f fwww .mydomain.org/uni-m/ JamesAnderson

http:f/www .mydomain.org/uni-m/ /Prof essor

Figure 1.1: RDF graph example [Li13]

The XML syntax of the RDF datais:

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:uni="http://www.mydomain.org/uni-ns">

<rdf:Description rdf:about="http: //www .mydomain .org/ uni-ns / PaulJones" >

<rdf: t ype rdf:resource="http://www.mydomain.org/uni-ns/Professor"/>

<uni:advises rdf:resource= "http://www .mydomain .org/uni-ns/JamesAnderson"/>

</rdf :Description>

</rdf:RDF>

http: //www.w3.org/1999/02/ 22-rdf-syntax-ns# and http: //www .mydomain.org/uni-ns

are XML namespaces. One uses XML namespace in RDF to show the collection of names

5

of resources and propert ies . For example, the xmlns: rdf namespace specifies that the el­

ements with rdf prefix come from the namespace http: 1 /www 0 w3 0 org/1999/02/22-rdf­

-syntax-ns which is known as a namespace for RDF vocabularies . Moreover , XML

Qualified Name is a shortcut for URI; for example, we could use uni instead of the full

URI http: 1 /www omydomainoorg/uni-ns.

In t he graph, Paul Jones is connected to James Anderson by predicate advises. Be­

sicles, there exists another relation which connects Paul Jones to the class Professor at

the schema level; therefore, Paul Jones is connected to class Professor by using pred­

icate type . Again, the namespace rdf is used instead of writing t he full URI http:-

1 /www 0 w3 0 org/1999/02/22-rdf-syntax-ns#. The full example of the schema level is

given in t he following section.

1.2 RDF Schema (RDFS)

On top of t he RDF which doesn't provide significant semant ics, RDFS is an exten­

sible knowledge representation language which adds vocabulary to RDF in order to ex­

press information about class and subclass and properties (relationship between classes)

[BVM04] . These vocabularies contain class, subclass, relationship between classes, prop­

erty, subproperty, relationship between propert ies, domains and ranges, etc.

The RDFS level of the example described in the previous section is given in t he following

gr a ph [Li13] (drawn as Figure 1. 2):

The schema part of t he RDF / XML syntax from RDFS data is:

<rdfs:Class rdf:ID

<rdfs:Class rdf:ID

"Person"/>

"Student"/>

<rdfs:subClassOf rdf:resource = "#Person"/>

</rdfs :Class>

<rdfs:Class rdf : ID = "Professor">

<rdfs:subClassOf rdf : resource = "#Person"/>

6

rdfs:range

RDFSievel

RDF level advises

Figure 1.2: RDFS graph example [Li13]

</ rdfs:Class>

<rdf s :Property rdf:ID = "advises" >

<rdfs:domain rdf : resource = "#Profe ssor" / >

<rdfs :range rdf : r esource = "#Student" />

</rdfs :Property>

"# " is used instead of riting URI referenc. Th rdfs:domai n and rdfs:range predi­

cates relate a predicate to the class of instances which can be considered as the subject

or object of t he predicate, respectively. rdfs: subClassOf ident ifies the hierarchical re­

lationship between classes at the schema level. In the above example, Professor and

Student are subclasses of Person class. advises is a property which has classes Professor

and Student respectively as its domain and rang .

7

1.3 FCA

1.3.1 Introduction to Formal Concept Analysis

FCA stands for Formal Concept Analysis, a formal representation of data that has

the potential to be represented as conceptual structure [GW99]. FCA is a data analysis

technique that helps to identify the conceptual structure of data using formal contexts

and concept lattices. Every dataset which consists of a binary relation between a set of

objects and a set of attributes can be introduced as a formal context in FCA [WB04].

Definition 1 (Formal Context): A formal context is a triple K := (G, M , I), where

G and M are sets and I is a relation between G and M. The elements of G and M are

called objects and attributes , respectively, and (g ,m) E I is read as "an object g hasan

attribute m".

A set of objects and their corresponding attributes plus the relations that exist between

those objects and attributes can be shown in a formal context. Formal context can be

represented as a table in which rows are objects and columns are attributes and each

cross in the table is a relation between an object and corresponding attribute.

An example of formal context can be seen in Figure 1.3. The example includes four

object and four attributes.

~ Aii2l~ Att'4l
Objl ~ ~ ~ IEl
Obj2 1 ~ ~ [ô lEI

1obj3 1 ~ IEl IEl ~

Obj4 ~ ID [j) ~

Figure 1.3: Formal context example

Further , t he formal context can be represented in concept ual structure which will be

explained in the next section.

8

1.3.2 Concept Lattice

A formal concept can be represented in a lattice of concepts in which each concept

includes a set of objects and related attributes. The definition of formal concept and

concept lattice are given in the following [WH06].

Definition 2 (' Operation):

For a set A Ç G of abjects, we define: A'= {mE M 1 \lg E A: (g,m) E I}

Correspondingly, for a set B Ç M of attributes, we define: B' = {g E G 1 \lm E B : (g, m) E I}

The formal concept is defined as:

Definition 3 (Formai Concept): A formal concept C in the formal context (G , M, I)

is a pair (A, B) , where A Ç G, B Ç M , A' = B and B' = A. The set Ais called the

extent and the set B the intent of the concept C.

In other words, each concept is represented by a pair consisting of an extension and an

intension which are a set of abjects and a set of attributes, respectively. As a general

rule, the abjects in the extension have all the attributes in t heir intension in common

and have no other attributes in common. Further, all the attributes in the intension are

shared by all the abjects in the extension and no other abject outside of the extension.

A concept lattice arises on the top of the concepts derived from formal context.

Definition 4 (Concept Lattice): For a formal context K := (G, M,I) and two con­

cepts C1 = (A1, B1) and C2 = (A2 , B2) , a hierarchical subconcept-superconcept relation

is given by

T he set of all concepts in K ordered by the :::; relation is called the concept lattice of K.

The concept lattice of the above example is shown in Figure 1.4.

The lattice can also be presented using reduced labeling diagram [GW99]. Reduced

9

Figure 1.4: Concept lattice example

labeling diagram only shows the attributes and abjects once in lattice diagram (Figure

1.5); therefore, it makes data analyzation easier for sorne applications.

1.4 DBpedia

DBpedia1 is a project that aims at extracting structured information from Wikipedia

content. T his open source data set is available on the web as linked data -RDF t riples- for

human and machine usage. Since DBpedia is provided in structural form , it allows users

for much easier querying and exploring against Wikipedia content by using SPARQL

end point. So far DBpedia is known as a central interlinking hub for published data on the

web and it is evolved by any changes in Wikipedia [ABKLC08]. DBpedia includes around

3.5 million instances that belong to different categories. Also, DBpedia is available in

97 different languages. More information is given later in this section.

In t he following, t he structure of DBpedia and the source of its data will be described.

Finally, the methods for accessing DBpedia are discussed.

1 http: //dbpedia.org/ About

10

Att 1

Att 4 Att 3

Obj 3, Obj 4 Obj 1

Figure 1.5: Reduced labeling diagram of concept lattice example

1.4.1 Dat a Source

DBpedia is a cross-domain ontology which has been built manually by the members

of DBpedia community. DBpedia uses Wikipedia as it s source of knowledge. Wikipedia

is one of the fastest-growing and largest collections of human knowledge ever collected.

Since some of the information in Wikipedia is unstructured , querying information from it

needs a full t ext search . The DBpedia community found a way to convert the contents of

Wikipedia into RDF triples. In addition to free text information, DBpedia also uses the

different types of structured information from Wikipedia including infobox templates1 ,

t itle, abstract , categorization information, images, geo information , and external url

links and converts them into RDF triples . F igure 1.6 shows an example of extracting

semant ics from a Wikipedia infobox for Port ugal's content in DBpedia. Currently, the

DBpedia ontology 2 is created based on several Wikipedia infobox templates and con­

verts them into 359 classes with 1,775 properties.

As ment ioned earlier , DBpedia includes 3.5 million instances and 2. 35 million of which

are classified in the DBpedia Ontology, including persons, places, works (contain music

1 http: / / en.wikipedia.org/ wiki / Help:Infobox
2 htt p: / / wiki .d bpedia .org/ Ontology

1

1
1 image..111ap
1 mapsize

= Algarve
= Region
= LocalRegiaoAlgarve. svg
= 186lpx

1 map_caption = llap showing Algarve
Region in Portugal

subdivision...type = [[Countries of the
wor ld 1 Country]]

subdi vision...name = { {POR}}
subdivision...type3 = Capital city
subdivision...name3 = [[Faro, PortugaliFaro]]

1 are a_ totaLJan2 = 5412
1 population...total = 41&&&&
1 timezone = [[Western European

1 utc_offset
1 timezone..J)ST

1 utc_offset..JlST
1 blank_name_sec1
1 blanlc_info_sec1
1 blank_name_sec2
1 blank..info_sec2

}

Time 1 iiETJ]
= +Il
= [[Western European

S\l.llllller Time IWESTJ]
= +1
= [[NUTS]] code
= PTIS
= [[GDPJ] per capita
= €19,281!1 (2&&6)

Figure 1.6: Infobox of Portugal

Class Instances
Resource (overall) 2,350,000

Place 573,000
Person 764,000
Work 333,000

Species 202,000
Organisation 192,000

Table 1.1: Classes in DBpedia ontology

11

albums, films and video games), organizations (con tain companies and educational insti­

tutions), species. Table 1.1 shows t he number of the instances per class in the DBpedia

ontology.

1.4.2 Data Structure

In contrast to Wikipedia, which lacks a structural representation of data, DBpedia

uses Semantic Web technologies for extracting structured information from Wikipedia

to facilitate querying and searching tasks. DBpedia ontology is based on the OWL lan-

guage [PHH04].

The DBpedia extractor framework is used to extract intended data from Wikipedia

12

[MLASH12] . Some of the main information extracted from Wikipedia to be used in

DBpedia is given below:

Labels: Every Wikipedia page defines a resource and has a title which is specified by

rdf: label in the DBpedia dataset .

Abstracts:

Short Abstract: The first paragraph in each Wikipedia is considered as a short abstract

of a corresponding resource specified by rdfs : comment.

Long Abstract: The text before a table of contents in each Wikipedia article is consid­

ered as a long abstract of a resource specified by dbpedia-owl: abstract .

Interlanguage Links: For each resource, the DBpedia dataset includes the links which

connect articles about the same topic in different language edit ions of Wikipedia and

uses them for assigning labels and abstracts in different languages to t he resource.

Images : Each image in Wikipedia article related to a resource refers to Wikimedia

Commons and it is specified by foaf: depiction in the DBpedia dataset.

Redirects : Since the synonym of each resource can be resources dedicated to other

articles in Wikipedia, DBpedia redirects the page of the resource to those pages as ref­

erences to that article and specify it by dbpedia-owl: wikiPageRedirects.

Disambiguation: The disambiguation links of a Wikipedia page corresponding to a

resource are specified by dbpedia-owl : wikiPageDisambiguates .

Infobox: As mentioned earlier , each infobox contains properties which are represented

by http: 1 / dbpedia . org/property/ namespace in DBpedia. The name of a property is

the same as the name used in infobox. Moreover, the Ontology Infobox Types dataset

contains the rdf: types of the instances which have been extracted from the infoboxes .

Geo-coordinates: The latitude and longitude of a resources are specified by geo: lat

and geo: long in DBpedia and express coordinates using Basic Geo (WGS84 lat/ long)

Vocabulary and the GeoRSS Simple encoding of the W3C Geospatial Vocabulary.

External links: Specified by dbpedia:reference in DBpedia, Externallinks contain

the references to external web resources.

Pagelinks: Pagelinks include alllinks between Wikipedia articles specified by dbpedia-owl-

13

:wikilink.

Homepages: The homepages of resources such as companies and organizations are

specified by foaf :homepage in DBpedia .

Persan Data: It include t he resources about persans containing persona! information

such as surname, and birth date which are respectively specified by foaf: surname, and

dbpedia:birthDate .

Categories: Categories are specified by skos: concepts and skos: broader and they

includes categories using skos .

Moreover , DBpedia also includes links to other knowledge bases such as EuroStat , The

World Factbook, Freebase, OpenCyc ,YAGO and Umbel.

1.4.3 Data Access

Three mechanisms exist for accessing DBpedia: Linked Data, the SPARQL protocol,

and downloadable RDF dumps [ABKLC08].

Linked Data: DBpedia presents the structural format of Wikipedia content as Linked

Data. Linked data publishes data on the web as RDF triples. Linked data principles

include: URis for ident ifying things (resources) in the world, RDF model for structuring

and linking descriptions of things, HTTP for retrieving descriptions of those resources .

The URis give information about the resource, i.e., every information related to the

resource in the form of RDF triples. For example, part of information about Barack

OBama identificd as URI http://dbpedia.org/page/Barack_Obama can be found in

Figure 1.7. The Figure shows a HTML view of the information about resource accessible

by typing the resource address in browsers.

SPARQL Protocol: The DBpedia dataset allows users to ask complex queries against

Wikipedia. Looking for the intended t riple by looking on linked data is not practical;

therefore, developers came up with frameworks where users can ask their queries over the

SPARQL proto col to t his end point at http: 11 dbpedia. org/ sparql. More information

on SPARQL and instructions are given later in chapter 3.

14

About Barack Obama
An Entity ofType: ruHID!. from Named Graph : http://dbpedia.org, within Data Space: dbpedia.org

Barack Hussein Obama Il is the 44th and currenl President of the Unfted States, in office since 2009. He is the first African American to hold the office. Born in Honolulu, Hawaii, Obama is a graduate of
Columbia University and Harvard Law School, where he was president of the Harvard Law Review. He was a community organizer in Chicago befure eaming his law degree.

Property

dbpedia-owl:abstract
~ J

• Barack Hussein Obama Il (ba'.Kl:k hu'sein ou·ba:ma) ist ein us-amerikanischer Politiker und seit dem 20. Januar 2009 der 44. Prasident der Verein~en Staaten.
Er wurde bei der Prâsidentschaftswahl 2008 in dieses Ami gewahlt und am 6. Nowmber 2012 für eine zweite Arntsperiode ais U~asident bestatigt. Obama.
Sohn einer weiBen US-Amerikanerin und eines Kenianers, ist der erste Afroamerikaner in diesem Amt. Obama isl ausgebildeter Rechtsanwalt für
U5-Verfassungsrecht und seit 1992 Politiker der Demokratischen Partei. Von 2005 bis 2008 gehôrte er ais Junior Senator für den US-Bundesstaatlllinois dem
Senat der Vereinigten Staaten an. Am 10. Oezember 2009 wurde ihm der friedensnobelpreis verliehen. lm Mai 2012 sprach er sich ais erster US-Prasident im ARt
iiffentlich für die Legalisierung von gleichgeschlechtlichen Ehen aus.

• Barack Hussein Obama Il is the 44th and current President of the United States, in office since 2009. He is the first African American to hold the office. Born in
Honolulu, Hawaii, Obama is a graduate of Columbia University and Harvard Law School, where he was president of the Harvard Law Review. He was a community
O<ganizer in Chicago belore eaming his law degree. He WO<ked as a civil righls attorney in Chicago and taughl constitutionallaw al the Universfty of Chicago Law
School from 1992 to 2004. He served three lerrns representing the 13th District in the Illinois Senale from 1997to 2004, running unsuccessfully fur the United
States House of Representatives in 2000. ln 2004, Obama received national attention during his campaign to representlllinois in the United States Senale with his
victory in the March Democratie Party primary, his keynole address al the Democratie National Convention in July, and his election to the Senate in Nowmber. He
began his presidential campaign in 2007, and in 2008, alter a close primary campaign againsl Hillary Rodham Clinton, he won suflicient delegates in the
Democratie party primaries to receive the presidential nomination. He then defeated Republican nominee John Mc Cain in the general election, and was inaugurated
as president on JanuaJ)' 20, 2009. Nine months lat er, Obama was named the 2009 Nobel Peace Prize laureate. He was re-elected president in November2012,
defeating Republican nominee Mill Rormey, and was swom in for a second lerm on January 20, 2013. Early in his first lerm in office, Obama signed inlo law
economie stimulus legislation in response to the Great Recession in the form of the American Rec·owry and Reinvestment Act of2009 and the Tax Relief,
Unemployment ln surance Reauthorization, and Job Creation Act of 2010. Other major domestic initiatives in his presidency include the Patient Protection and
Affordable Care Act; the Oodd-Frank Wall Street Reform and Consumer Protection Act; the Don' Ask, Don\ Tell Repeal Act of 2010; the Budget Control Act of
2011 ; and the American Taxpayer Relief Act of 2012. ln May 2012, he became the first sitting U.S. president to publicly support the rights of same-sex couples to

._ _____________,lega_lho m"!!Y. and in 2013 his administration filed briefs which urged the Suf!eme Court to rut• in favor of same-s ex cou [>les in bath the cases of Hollingsworth v.

Figure 1.7: The DBpedia dataset for Barack Obama

RDF Dumps: However, SPARQL protocol accessible at http: 1 / dbpedia. org/ sparql

allows the online queries for user , some users want to do the offiine queries from DBpedia

by downloading RDF Dumps (or N-Triple serializations) of DBpedia.

1.5 Summary

This chapter introduced the main concepts we need to know before diving into t he

details of the methodology steps. We first introduced RDF and RDFS to specify our in­

put and output data. T hen , FCA theory and DBpedia as a knowledge tool are proposed.

In the next chapter, t he related works to our approach are introduced.

CHAPTER II

REVIEW OF THE LITERATURE

With the rise of data on the web, large numbers of data sources from a wide range

of domains have been produced recent ly. In order to publish structured data on t he

web, these data sources are published using t he RDF data model. Due to t he RDF

graph topology, linked data-based applications can navigate throughout a data source

and discover new data sources by following RDF links.

This thesis aims to look for schema out of t he concrete data, i.e., grouping individual

resources into clusters to become RDFS classes. Since grouping typically uses similarit ies

between the individuals in a dataset, examining different ways of defining t he similarity

in the semantic web context is necessary.

The chapter studies similarity in interlinking tools. Before discussing interlinking tools,

some similarity measurements used in those tools are int roduced. Then, t he similarity

methodology used in our research , i. e. FCA, is discussed and compared with other

work on RDF data. Finally, the usage of FCA in different semantic web applications is

described.

2.1 Basic Concepts Related to Similarity

The following introduces the basic methods for assessing the similarity and relations

between entities of ontologies. lnterlinking tools use the combination of these similarity

methods in an adequate way to assess the similarity between RDF individuals in LOD.

16

Similarity Basic
Techniques

Name-based

technique!&

String-baed
methocb

Deductive
Techniques

Figure 2.1: Similarity techniques

17

Four basic techniques for assessing the similarity between ontology ent it ies exist: Name­

based, Structure-based, Extensional and Semantic-based. They are respectively de­

scribed in the following sections [ES07].

First, sorne basic definit ions related to the similarity measurement between two en­

tities are introduced.

Definition 5 (Similarity): A similarity Œ : 0 x 0 --+ IR is a function from pair of

ent it ies to a real number expressing the similarity between two objects such that:

\lx, y E O, Œ(x,y) ~ 0 (positiveness)

Vx E 0 , Vy, z E 0 , Œ(x , x) ~ Œ(y, z) (maximality)

Vx, y E 0 , Œ(x, y)= Œ(y, x) (symmetry)

D efinition 6 (Dissimilarity): Given a set 0 of entit ies, a dissimilarity o : 0 x 0 --+ IR

is a function from a pair of entit ies to a real number such that:

Vx, y E 0, o(x , y) ~ 0 (positiveness)

\lx E 0 , o(x, x) = 0 (minimality)

Vx, y E 0, o(x, y)= o(y, x) (symmetry)

For dissimilarity, the distance and ultrametric notions could be considered:

Definition 7 (Distance): A distance (or metric) o : 0 x 0 --+ IR is a dissimilarity

function satisfying the definiteness and triangular inequality:

Vx,y E O,o(x,y) = 0 if and only if x= y (definiteness)

18

\lx, y, z E 0, o(x, y)+ o(y, z) 2: o(x , z) (triangular inequality)

Definition 8 (Ultrametric): Given a set 0 of entities, an ultrametric is a metric

such that:

\lx, y, z E 0 , o(x, y) :S; max(o(x , z), o(y, z)) (ultrametric inequality)

To simplify t he process of comparing measures with each other and improving t he

accuracy of measurements, the measures shall be normalized. To do t hat, for all

(dis)similarity methods in this report the normalized versions are given.

Definition 9 (Normalised (dis)similarity): A (dis)similarity is said to be normalised

if it ranges over the unit interval of real numbers [0 1]. A normalised version of a

(dis)similarity (} (respectively, o) is denoted as u (respectively, 5).

2.1. 1 Name-based Techniques

Name-based (Terminological) techniques are the similarity methods based on termi­

nology and they can be used to compare class names, URLs, label and comments of

different entities .

Due to Synonymy (entities with the different names but the same meanings) and Homonymy

(entities with the same name but different meanings) problems, we cannat simply com­

pare the entities just by their names. In addition to Synonymy and Homonymy problems,

words from different languages and syntactic variations (For example, an abbreviation

with two different usage expanded) of the same words could also cause difficulties in

comparing tenns with each other according to their similar names.

~--

19

Name-based techniques compare the terms by considering strings only as sequences of

characters (String-based methods) or by taking into account some linguistic knowledge

interpreting these strings (Language-based methods) .

String-based methods

Depending on the structure view of strings, many string-based methods have been

created. Sorne of these methods used frequently in similarity techniques are discussed

below.

a. Normalisation:

To enhance t he results of string comparison, the init ial strings could be normalized by

some normalization procedures:

Case normalization converts each alphabetic character of string to its lower case.

Diacritics and Digit suppression replaces character with diacritic signs with their most

frequent replacements and removes the numbers from strings.

Blank normalization converts all blank characters to a single blank.

Link stripping replaces t he links between words such as apostrophe and underline with

blanks or dashes.

Punctuation elimination removes punctuation signs.

All these normalizations must be applied with sorne caution. For example, in diacrit­

ics suppression which converts livré to livre, we should consider in French t here are

differences between the meanings of these two words; therefore, diacritics suppression

shouldn't be applied in this case.

b. String equality and Substring techniques:

String equality returns 0 when the input strings are different and returns 1 when they

are the same (when the result is 0 it doesn't consider how much these two strings are

differ from each other).

Definition 10 (String equality): String equality is a similarity a § x § ---+ [0 1]

20

such that Vx,y E §,(J(x ,x) = 1,and if x -1- yp(x, y) = 0

H amming distance is another metric which calcula tes the dissimilarity between two

strings by counting t he number of positions in which the characters of two strings are

different.

Substring test examines if one string is a substring of another; thus, t hey become very

similar.

Definition 11 (Substring test): Substring test is a similarity (/ : § x § -t [0 1]

such that Vx, y E §, if there exist p, s E § where x = p + y + s or y = p + x + s, t hen

(/(x, y)= 1, otherwise dx, y)= O.

Substring similarity computes the ratio of the common subpart between two strings

(this method is also useful for examining if one string is prefix or suffix of another string

or finding the longest common suffix or prefix among strings; it is also used to com­

pare specifie and general strings and compare strings and similar abbreviations to those

strings).

D efinition 12 (Substring Similarity): Substring similarity is a similarity (/ : §x§ -t

[0 1] such that Vx, y E §and t is the longest common substring of x and y:

2lt1
(/(x, y)= lxi+ IYI

The n-gram as another subst ring test method counts the number of common n-grams

(sequence of n characters) between two strings. For example, 3-grams of word paper

are pap, ape and per . This function is efficient when only few charact ers of string are

missed in another string.

D efinition 13 (n-gram similarity): Let ngram(s , n) be the set of substrings of s

21

of length n. The n-gram similarity is a similarity 0' : § x § -t lR such that:

O'(s, t) = lngram(s, n) n ngram(t, n) 1

The normalised version of this function is as follows:

_ () ngram(s, n) n ngram(t, n) (}' s t = ---'------:--'-;-;--~:--;-:-----'---:--'-
) min(lsl, ltl)- n + 1

c. Edit distance:

Edit distance between two strings consists of the sequence of operations with minimal

cast (each operation has a cast) to o btain one string from another (might be used for

the words with mistakes in their spelling) .

Definition 14 (Edit distance): Given a set Op of string operations (op: § -1 §) ,and

a cast function w : Op -1 JR, such that for any pair of strings there exists a sequence

of operations that transform the first one into the second one (and vice versa), the edit

distance is a dissirnilarity 0' : § x § -1 [0 1] w here o (s , t) , is the cast of the less costly

sequence of operat ions that transform s into t.

O(s, t) = min(op;)1 ;opn(.. opl(s))=t(l= Wap;)
iEI

(opi) 1 indicates the set of operations that con vert string s to t and I consists of a variety

of sets of operation numbers. For each set of I t he cast of sequence of operations are

calculated to examine t he one with the lowest cost .

Three main operations of edit distance consist of: Insertion of a character , Replacem ent

of a character with another one and Deletion of a character .

The Edit distance was first introduced by Levenshtein and in its simplified definition all

operations have the same cast equal to 1 [Lev65].

22

J ara measure is another measure based on the common characters between two strings

(since the Jara is not symmetric, it 's not similarity).

D efinition 15 (Jaro measure): The Jaro measure is a non symmetric measure

a : § x § --+ [0 1] such that

()
1 (lcam(s , t)l icam(t, s)l icam(s, t)l- ltransp(s, t)l) a s, t = - x + + -'----'--'...:....:..._----'-.,-,----'--'--'
3 lsl ltl icom(s,t) l

lcom(s, t) 1 stands for the number of common characters between s and t.

Notice that two characters of strings sand tare common if they are the same(s[i] = t[j])

and j and i satisfy ::lj E [i- (min(lsl, lt1) / 2i + min(lsl, 1tl)/2](i and j are the positions

of co mm on characters in s and t).

ltransp(s, t)l indicates the number of cases where the i-th common character of sis not

equal to the i-th common character of t. For instance, the transp(' MARTHA' ,' M ARHT A')

is equal to 2 because between all common characters of s and t only two characters T

and H are placed disorderly in s and t.

J ara - W inkler measure is a variant of J ara measure and it fo cuses on the longest

common prefix between two strings.

D efinition 16 (J aro-Winkler measure): The J ara- W inkler measure a : § x § --+

[0 1] is as follows :

(()
1- aJaro(s , t)

a s, t) = aJaro s, t +P X Q X ------'-----'-
10

su ch that P is the length of the co mm on prefix and Q is a constant and a J aro (s, t) stands

for the J ara measure in the previous definition.

Smaa is another similarity measurement introduced in [SSK05]. Smaa depends on both

matched and unmatched substring lengths and the result value of the measure is in [-1 ,

1] .

23

d. Token-based distance:

In Token-based technique, each string is considered as a (multi)set of words (bag of

words). In comparison to set, mult i set's elements could appear several t imes in multi

set . This technique works out for long texts by aggregating different sources of strings

or by split ting strings into independent tokens.

Each multi set or bag of words could be a vector in which each dimension is a term

(token) and each position in the vector is the number of occurrences of the token in

its related multi set Many existing measures can be cited related to the token-based

techniques. Two of these measures (Cosine similarity and TF- I D F) are discussed

here:

C osin Similarity as a usual metric distance calculates the eosine of the angles between

two vectors.

Definition 17 (Cosine similarity) : Given ? and f, the vectors corresponding

t o two strings s and t in a vector space V , the eosine similarity is the function

ov :V x V---+ [0 1] such that :

For instance, for two sentences "I have to be there" and "I have togo to 11 we would have

(For each sentence, the vector including all words of both sentences is created and the

values of each dimension would be the frequency of each word in respect sentences.):

Sentence 1: [I, have, to, be, there, go] = [1 , 1, 1, 1, 1, 0]

Sentence 2: [I, have, to, be, there, go]= [1, 1, 2, 0, 0, 1]

and their Cosin similarity would be:

av(I haveto be there,I have togoto)

24

(1 x 1) + (1 x 1) + (1 x 2) + (1 x 0) + (1 x 0) + (0 x 1) 4

J((12) + (12) + (12) + (12) + (12) + (02)) * ((12) + (12) + (22) + (02) + (02) + (12)) v'35

There exists several similarity measures that attempt to use lower dimensions. La­

tent Semantic Indexing (LSI) as a dimensionality reduction technique, using matrix­

computation methods to reduce the dimension space of each vector. LSI is based on the

idea that words that occur in the same context have identical meanings . LSI assigns a

column of a matrix to each document; then, all columns of the matrix are decomposed

by the singular-value decomposition (SV D) method and at the meantime the factors of

matrix with less influence on the rest information would be removed; thus, the dimen-

sions of vectors became smaller [DDFLH90].

Another common measure is TF- I DF (Tenn frequency-inverse document frequency).

This measure is used to assess the importance of each word in a document to whole

corpus. The importance is increased according to the number of times that the word

appears in the document (tf) by considering the inverse proportion of t he word 's oc­

currence in the en t ire corpus (idf). Therefore, for measuring TF ID F , both tf and idf

become important.

Definition 18 (Term frequency-lnverse document frequency) : Given a corpus

C of multisets , we define the following measures:

\ft E §,Vs E C, tj(t, s) = t~s (term fr equency)

. ICI
\ft E § , 2dj(t) = log(l{ C }l) (inverse document fr equency)

sE ;tEs

TFIDF(s , t) = tj (t , s) x idf (t) (TFIDF)

In t he above formula, s could be assumed as a document therefore t~s is the number

of occurrences of term t in document s and idf (t) is the inverse document frequency of

tenn t explained before.

e. Path comparison :

25

Path comparison considers the distance of two compared entities from their superest

class as well as comparing the label of those entit ies and the entities in considered paths

(the pa th from their superest class).

Language-based methods

ln language-based methods, a string is considered as a text composed of words oc­

curring in sequence with a grammatical structure. This method uses N LP techniques to

extract t he meaningful tenns from texts; by comparing these terms and t heir relations

the similarity between entities are assessed. There exist two types of linguistic methods:

the orres using only the internallinguistic properties of the instances (Intrinsic methods)

and t hose using external resources like dictionaries and lexicons (Extrinsic methods) .

Intrinsic metlwds-Linguistic normalisation:

Each term can appear in various fonns. The main kinds of terms' forms are: Morpho­

logical (foundation form of a term based on sorne roots) divided to inflection and deriva­

tional or combination of them, Syntactic (Grammatical Structure of tenn) divided into

coordinate, permutation and insertion , Semantic (usually using Hypernymy (general

meaning) or Hyponymy (specifie meaning) or Synonymy (same meaning)) , Multi­

lingual and Morphosyntactic combination of morphological (derivational) and syn­

tactic variants.

To obtain the standardized from of the term (normalisation) , the combination of these

functions are used: Tokenizer (separate a string into its tokens by recognizing them by

punctuation, cases , blank characters, digits , etc.) , Lemmatisation (Stemming) , Term

extraction (extracting t erms from text by applying syntactic and morphological trans­

formations and using patterns -multi rules- on multi t erms for extracting terms) , Stop

word elimination (elimina ting co mm on words)

Extrinsic methods:

Various kinds of linguistic resources are useful for finding the similarities between t erms.

The list of linguistic recourses is proposed in the following:

26

Lexicons: Lexicons or dictionaries are composed of sets of words with their definitions.

(For the words with several synonyms gloss-based distance could be used)

Multi-lingual lexicons: dictionaries or lexicons in which words have their equivalent

terms in other languages as their definitions, for example, the definition of word Paper

is Article which is a French word. Multi-linguallexicons are useful for ontologies which

include words in different languages.

Semantico-syntactic lexicons: lexicons .which record names, their categories and the

types of arguments taken by verbs and adjectives.

Thesauri: A thesaurus is a kind of lexicon with some relational information that includes

hypernyms, synonyms, and antonyms. (WordNet is an example of Thesaurus which dis­

t inguishes between words by making synsets (sets of synonyms).

Terminologies: Treasures which contains phrases rather than single words (in compari­

son to dictionaries it has less semantic ambiguity).

If these lexicons focus on specifie domain the results would be more efficient; because

in this way the ontologies only concern on specialized senses for a word and not every

senses existing for a word. This would also be useful in common abbreviations. For

example, in company domain it would recognize the abbreviation PO as Purchase Order

instead of Post Office.

Some similarity measures based on lexicon resources are defined in the following:

Definition 19 (Synonymy similarity): Given two terms s and t and a synonym

resource 2:: , the synonymy is a similarity a:§ x§-+ [0 1] such that:

if I:(s) n L:(t) =f. 0

otherwise

Definition 20 (Cosynonymy similarity): Given two terms s and t and a synonym

resource L:, the cosynonymy is a similarity O" : § x § ---7 [0 1] such that:

1 l::: (s) n l::: (t)l
O" (s, t) = 1 l::: (s) U l:::(t)l

27

Some other similarity measures consider hyponymy / hypernymy between synstes (these

methods are discussed in Relational structure of structure-based techniques) .

The rest of t he methods (usually not normalized) rely on information theoretic per­

spective. For example, Resnik method uses the hierarchical relation between synsets

of terms for measuring the similarity between two terms and it is based on information

theory. Therefore, the information content of a concept is the inverses of its occurrence

probability.

Another similarity measurement is I nf or mat ion T heoretic Similarity method. it con-

siders information content of common synset information of two terms to the information

content of both terms.

For comparing two strings through lexicon resource Gloss overlap method is used. The

Gloss ovelap of two tenus is based on the number of shared words (overlaps) in their

defini t i ons (glosses) .

2.1. 2 Structure-based Techniques

Structural-based techniques based on conceptual relations which compare the struc­

ture of entities. This comparison is categorized into: 1- Internal structure which con­

siders the properties of entities in addition to their names and labels and 2- Relational

structure which compares the entities related to each other.

28

Internal structure

Comparing ent ities according to their internal structure (e.g. the domain and range

of their properties) is another way to find t he similarity between ent it ies, but these meth­

ods t ry to cluster entities according to their similar structure rather than finding the

accurate similarity between these entities. Since the internal structure couldn't provide

much information , these methods should be used in combination with other techniques .

Sorne internal structure comparisons are mentioned in the following:

Property comparison and keys:

Keys in classes have a main role in ident ifying individuals. Two classes identified in

the same way (each class has a primary key and the main keys of two classes have the

one-to-one relationship with each other) represent the same set of individuals.

Datatype comparison:

Property comparison may include property datatype comparison. One can say the prox­

imity between two data types are maximal when their types are t he same (string and

string) , low when compatible (string and character) and lower when non compatible

(string and integer). Since comparing datatypes technique is not complete and might

have sorne incorrect results, the methods using such techniques should use other tech­

niques in combination with datatype comparison.

Domain comparison:

In comparison to individuals, classes have domains instead of values. Comparing do­

mains with each other is based on both intersection and union of intervals.

Relational structure (external)

The similarity measure between two entities could be based on their posit ions hierar­

chies. When considering ontologies as graphs, relations between entities (edges between

nodes) are obtained. Contrary to Extensional methods in which entities mean indi­

viduals, in this approach, entities mean classes and properties. For finding similarity

29

between graphs, graph homomorphism problem and maximum common directed sub­

graph (M CS) definit ions are considered.

There exist three types of structural relations between ent it ies, all based on t heir hi­

erarchies: Taxonomie relations (subClassOf), Mereologic relations (a-part-of) and all

involved relations.

Taxonomie structure:

Taxonomy relation (SubClassOf) is a very important factor in comparing ontologies

structures; therefore, many measures have been discovered in finding such relation be­

tween classes of ontologies. In taxonomy, a super-ent ity could have relation with one or

more sub-ent it ies while a sub-ent ity could have relation with one or more super-ent it ies .

Three popular similarity measures are: Structural T opological Dissimilarity on H ierar­

chies which is used to discovers the shortest paths, Wu-Palmer counts t he number of

edges in the taxonomy between two classes and U pward C otopic which counts the num­

ber of common super classes.

In addition to global methods ment ioned so far, there exist some non-global measures,

such as super or subclass rules and bounded path matching.

Merelogic: In mereology, t he relations between entities are whole part relations. The

sub-ent ity is a part of t he super-ent ity and the super-ent ity can be composed of differ­

ent sub-entities. Therefore, the classes are considered more similar if they share similar

parts (we cannot have the same cri teria as we had for Taxonomy -if all or most of leaves

of two entities are the same then the ent ities are the same to-because two super-ent it ies

don't have the same leaves) . Besicles, the extension of classes could be compared for

finding more similar abjects (might share the same set of parts).

All relations: The similarity between entities could also be based on their all relations.

This can be extended to a set of classes and a set of relations. It means t hat if we have

a set of relations r 1 ... rn in the first ontology which is similar to another set of relations

r 1 ... rn in the second ontology, it is possible to say that two classes are similar too.

For having more similarity we have to consider two other extension solutions:

Children: Two non-leaf entities are structurally similar if their immediate children sets

30

are highly similar.

Leaves: Two non-leaf elements are structurally similar if their leaf sets are highly similar ,

even if their immediate children are not.

2.1.3 Extensional Techniques

Extensional techniques are instance-based techniques and they are really useful for

comparing classes with their available individuals (elements). Extensional methods are

divided into: 1- the methods a pp lied to classes (of ontologies) with common instances

(common extension comparison) , 2- the methods proposing instance identification tech­

niques and 3- the ones without identification (disjoint extension comparison). In the

mentioned extensional techniques the similarities between the sets of class instances are

measured .

Common extension comparison

One way to compare the classes is to find the intersection of their instances (ex­

tensions) . The relations between entity sets are considered based on set theory: equal

(AnB =A= B) , contains (AnB = A) , contained-in (AnB = B) , disjoint (AnB = 0)

and overlap.

Even though , the amount of incorrect dat a is small , it may lead to a huge fault in whole

results. Besicles , the dissimilarity is one if two classes don 't have any of t heir instances

in common. For solving these problems the Hamming distance is used .

Definition 21 (Hamming distance): The Hamming dist ance between two sets is

a disimilarity function 6 : 2E x 2E ----t IR, such that Vx, y Ç E

b() = lx u y- x n YI
x, y lx U YI

31

Another way to compute the similarity is based on t he probabilistic of instances in sets .

D efinition 22 (Jaccard similarity): Given two sets A and B ,let P(X) be the prob­

abilities of a random instance to be in the set X. The J accard similarity is defined

by:

(A B) = P(A nB)
() ' P(A u B)

P(X) is a probability of random instance belongs to set X.

This measure is normalized and reaches 0 when An B = (/) ; and 1 when A= B .

One tool from formai concept analysis (FCA) is to compute concept lattice. The concept

lattice is composed of set of objects (instances) and their properties. This operation is

not accurate but it could be optimized by removing redundant relations and it starts

with the complete lattice of the set of instances and preserves the nodes if they are closed

otherwise the nodes are discarded [GW99].

Instance identification techniques

If the sets don't have any instances in common; t hen, one way could be the identi­

fication of the relations between instances. One solut ion is to use keys in t heir external

identification. If the keys are not available other approaches with string-based and

structure-based techniques might be used to compare property values.

Disjoint extension comparison

When comparing instances is not directly possible some approximate techniques

should be used:

Statistical approach:

This approach is computing some statistics about the property values found in instances

32

(such as maximum, minimum, ...); therefore, this may help to characterize sorne inter­

nai structure of entities (domain of class properties). Moreover, sin ce the data patterns

and distribution have lower time-consumption and need less data, data values can be

replaced with them.

Similarity-based extension comparison:

The method is based on the computed (dis)similarities between instances for comparing

the set of instances between classes (There is no any expectation from classes to share

the same instances) .

Matching-based comparison:

In matching-based comparison, only the related elements(instances) would be compared

with each other (not all instances).

Definition 23 (Match-based similarity): Given a dissimilarity function CJ: Ex E--+

IR, the Match - based similarity between two subsets of E is a similarity function:

MSim: 2E x 2E --+ IR such that\fx , y Ç E

. maXpEpairing(x,y) o:= (e,e')Ep CJ (e, e'))
MS~m(x,y) = max(lxl, lyl)

with Pairings(x, y) being the set of mappings of elements of x to elements of y.

2.1.4 Semantic-based Techniques

Semant ic-based techniques compare the interpretation of entities. They have the

ability to ensure the completeness (finding all correspondences that must hold) and

consistency (fin ding all correspondences leading to inconsistency). Bef ore applying de­

ductive techniques, the alignments on entit ies (ontology anchoring) are init iated and

then extended by deductive methods.

33

External ontologies -based techniques

One way to find the similarity between two ontologies is to find the external resources

related to those ontologies . T l1ree characteristics make t hese resources different (in all

of them , t here is the possibility to match terms) :

Breadth (whether the ontologies have a general purpose resources or specifie purpose

resources), Formality (whether the ontologies are pure, i. e., info rmal resources such as

Word Jet or not, i.e., formal resources, and Status (whether the resources are sets of

instances or ontologies).

Two steps are needed for init iating an alignment between ontologies :

1. Anchoring: Matching two ontologies (non-reference) to the background ontology

(reference)

2. Deriving relations: Combining t he anchor relations wit h the relations coming from

the reference ontology and use t hem to make new relations between anchor ontologies

(non-reference) by reasoning methods.

Deductive Techniques

To search more correspondences between entit ies of ontologies, sorne deductive tech­

niques such as Proposit ional techniques and Description logic techniques are used .

Propositional techniques:

Propositional satisfability for matching two classes from two different ontologies includes

three steps:

1. Building a theory or domain knowledge which might use WordNet to discover identical

words and then convert the relations between classes into the language of propositional

logic.

2. Creating matching formulas which have axioms as premises entailing the relations

between two classes (=, Ç , ;;;;! , ..l).

3. In the last step , the created formula from step two should be checked for validity.

34

Therefore, if the negation of formula is unsatisfiable, then we are allowed to say the

formula is satisfibale.

Description logic techniques:

Compared to propositional logic, description logic is more expressive. We can match

terms with the same interpretation by merging ontologies and looking for equivalence

between pairs of ontology classes and subsumption roles.

2.2 RDF and Similarity

The aforementioned basic similarity methods can be used to find similarity between

individuals in LOD (RDF datasets). Most of the interlinking tools proposed in section

2.2.1 use the combination of these basic methods along with the methodologies they use

to find similarity between RDF graphs. Even though, we may use very common and

widely used string matching techniques in the whole process of our application while

converting RDF dataset to RDFS mode!, the main purpose is to use FCA to detect

similar RDF individuals according to the properties they share. In this section, the

studies of similarity method in interlinking tools as well as t he methodology used to find

similarity in RDF dataset by the help of FCA are discussed.

2.2.1 Similarity of RDF Gr a phs on Linked Open Data (Interlinking Tools)

With large amount of published data on the web, discovering explicit links between

entities in different data sources, i.e. , interlinking the Web of Data becomes more essen­

tial. Many interlinking tools exist which can be applied to different do mains (e.g., music

ontology, publications, etc.) or data types (e.g. , multimedia data).

In the following , we introduce each interlinking tool briefly. More details about each

tool can been seen in Table 2.].

LD-Mapper

35

LD-Mapper [RSS08] is an interlinking framework in music domain. LD-Mapper

provides two matching approaches. The first one is naïve approach consisting of simple

literai lookup and extended literai lookup methods and the second is graph matching

approach which has better performance since it takes into account both the similarity

between resources and their neighbors. The interlinking experiments include linking

a creative common music dataset (http: / j www.jamendo.com/ de/) to an editorial one

(http :/ / musicbra inz.org/) and linking personal music collection to corresponding web

ident ifiers (http: // musicbrainz.org/). The latter t ries to link audio files (using ID3

metadata of files) in personal music collection to editorial music dataset and it is known

as GNAT tool.

RDF-AI

RDF-AI [SLZ09] is a tool for integrating RDF datasets through merging and in­

terlinking. RDF-AI finds alignment between two given data sets in order to merge or

interlink them. RDF-AI includes five steps: 1) Preprocessing prepares two data sets for

matching by doing sorne operation on them including: Checking for any inconsistency of

input datasets , Materialization of RDF triples, Translation of properties from one lan­

guage to another language, Ontology evolution and Properties transformation such as

name reordering, 2) Matching returns alignment between two data sets, 3) Interlinking

generates linkset between two datasets from alignment, 4) Fusion merges two datasets

and 5) Post-processing checks the inconsistencies of fusion results.

RKB-CRS

RKB-CRS [JGM08] manages the co-reference between URis (Two different URis

referring to one entity) by using Consistent Reference Service (CRS) [JGM07]. The

synonym URis can be originated from the same dataset or different datasets.

Co-reference is provided with bundles where each bundle stores the resources refer to

the same entity. Therefore, at first a bundle is dedicated to each URI, i.e., the number

of URis is equal to the number of bundles. Then the different bundles with the resources

36

refer to the same entity are merged gradually in order to generate the new and bigger

bundles.

ODD-Linker

ODD-Linker [HKL 1109] or LinQuer [HXML09] is an interlinking tool for discovering

relations between data items in different relational data sets stored as RDBMS. ODD­

Linker links the equivalent records within relational datasets represented in LOD.

The equivalent records are determined by two matching methods: 1)An approximate

string matching method tries to find approximate or similar strings to an input string

using Jaccard weighted method (Definition 22) with q-grams (Definition 13) . 2) Seman­

tic Matching method uses semantic knowledge (ontology) which encapsulates synonymy,

hyponymy / hypernymy relation types between records of relational datasets . Finally,

LinQL languages is proposed to specify the linkage within relational datasets.

Knofuss

Knofuss [NUM07] merges two different RDF datasets by integrating ontologies in

instance level, i.e. knowledge fusion. In order to compare two datasets, first an ontology

is dedicated to each dataset specifying which resources to compare. If two ontologies are

different, ontology alignment is used. An application context for each resource type is

defined and for each application context it is specified which similarity method should

be used. The application contexts with the same similarity method are given the same

ID in both ontologies of datasets. Knofuss also checks the results of two datasets fusion

for any inconsistencies.

Knofuss knowledge fusion is composed of two main subtasks: 1) ontology integration

(schema level) and 2) knowledge integration (instance level). Co-referencing step of in­

tegration process in Knofuss specifies 1) the tasks which have to be accomplished, 2)

library of methods for solving the problem and 3) the appropriate methods to be se­

lected.

Tluee methods exist in order to solve co-referencing problem: manually constructed

37

using primary key concept for each object, supervised method including machine learn­

ing methods and unsupervised methods containing similarity measures such as string

similarity -Edit distance (Definition 14), Jaro-Winkler (Definition 16), Leveshtein- and

set similarity -Cosin (Definit ion 17), J accard (Definition 22) , TDF-IDF (Definition 18)­

metrics. These matching algorit hms could be combined in order to make an efficient

matching algorithm ..

Guess What!?

Guess What [MV10] is a semantic game using human intelligence in order to create

formal domain ontology by mining linked open data. Guess what provides players with

a described concept (class expression) from LOD and asks them to guess a suitable class

name related to the class expression, i.e., extraction of ontologies from unstructured

text.

The system's architecture includes t hree layers: Data, Data Access, Business logic. Data

layer composed of a Sesame RDF store and a MySQL database. Data access layer gath­

ers RDF triples from semantic web resources . The business layer accesses to the data

from data access layer and generates class expression from.

Pool Party

Pool Party [SB10] is a thesaurus management tool which enriches thesaurus by gath­

ering relevant information from LOD along with text analyzing since Pool Party has nat­

urallanguage processing capabilities. Pool Party represents thesauri in RDF and Simple

Knowledge Organization System (SKOS) form. In addition to publishing its data on

LOD, Pool Party consumes LOD for enhancing its thesauri. It also provides Personal

Information Management tool which allows users to create categories from LOD (e.g.

A movie expert can create knowledge madel of filmmakers and the countries they lived

in).

The possible matchings from DBpedia are returned for each concepts in Pool Party us-

38

ing DBpedia lookup service. User can select the DBpedia resource which matches t he

concept and t herefore link the URI in t hesauri and DBpedia through owl:sameAs links.

Pool Party probably uses string matching algorithm.

Deriving Similarity Graphs from Linked Data

Semantic Similarity Transition(SST) method finds similar herbs in TCM (Tradi­

tional Chinese Medicine) linked data set [MCLYP09] . Finding similar herbs to a given

herb helps medicine researchers and physicians in making prescription or other research

activities.

In order to calculate the similarity between two resources, SST transits similarity in t he

graph iteratively by following link data in the graph. The main idea of transitivity comes

from classic Page Rank algorithm where the importance of each page is calculated by

the importance of other pages related to that page.

Since SST calculates the s mantic similarity bctween nodes, two approaches could be

used for calculating the semantic similarity: taxonomy-based approach which uses is-a

hierarchical relation between concepts , and relationship-based approach which considers

the common information between two concepts.

Interlinking Distributed Social Graph

Modern web users have their own profile over many social network web sites . Inte­

grating these pieces of information distributed over multiple web sites helps us to identify

a real world person [Row09].

Three methods of computing similarity help graphs with t heir linkage process includ­

ing: 1) Node/ Edge Overlap which is used to derive the similarity measure between

two graphs. The method uses Jaccard (Definition 22) distance to match two graph

by overlapping nodes and edges from them. 2) Iode Mapping matches two graphs by

mapping all possible nodes from two graphs; therefore, the similarity measure between

two graphs is derived by measuring the similarity between every possible combination

of object nodes and also between every possible combination of subject nodes. 3) Graph

39

Reasoning is a low level basic reasoning which matches graphs with each other. In order

to compare two graphs, Levenshtein similarity is used for comparing literais from graphs.

An Approach for Entity Linkage

Name Feature Matching (nfm) is a new approach of entity matching in large entity

repositories by data linkage [SB009].

Each entity is represented as a feature consists of name/value pair < n , v >. First,

the closeness between two entities is calculated using Levenshtein distance. Afterward ,

a matrix represents the similarity between every possible combination of two entities '

features is created. Finally, Name Feature Score (nfs) returns the sum of maximum

amount of each row of matrix as a result of similarity between two entit es.

Silk: A Link Discovery Framework

Silk framework discovers semantic relationships between entities through different

sources. Silk makes easier for data publishers to set RDF links from their data sources to

other data sources on the Web [VBGK09] . First , the stream of data items are generated

from Data Source. The data items generated from data source could be clustered in

the optional st ep called Blocking. The Link Generation step dedicates a similarity value

to each pair of data items. Then pairs of data items are generated from an internai

cache which all data items were written into before. If blocking section exists, cache

returns the complete cartesian product of two data sets. If blocking doesn 't exist, only

data items from the same cluster are compared wit h each other. Then, for each pair of

data items, their link (similarity) is evaluated. In this section sorne similarity metrics are

used in order to compare property values or sets of entit ies. T hese similarity metrics are:

string comparison techniques, numerical and date similarity measures , concept distances

in a taxonomy, and set similarit ies. These similarity metrics could be combined using

aggregation functions: AVG (weighted average of similarity value set) , MAX (choose

highest similarity value in set), MIN (choose lowest similarity value in set), EUCLID

40

(Euclidian distance aggregation) and PRODUCT (weighted product of similarity value

set). Afterward, t he Filtering step removes t he links with a lower confidence than the

threshold. At last, in output step the generated and filtered links are extracted as a

result .

LinksB2 : Automatic Data Integration

A UK B2B Marketing framework discovers information overlaps in different RDF

data sources by using clustering methods [SCRGDS09].

The LinkB2N algorithm is composed of four steps (Figure 7): 1) Single Data Source

Analysis (SDSA) which collects graph statistics and creates clusters of similar values

(objects) for each RDF predicate, 2) RDF Predicate selection (RPS) which finds

suitable pairs of RDF predicates to be compared using clusters produced from previ­

ous step, 3) Predicate Value Evaluation (PVE) which for each pair of predicates

calculates confidence ratio by evaluating the equivalences between RDF objects and 4)

Filter of Non-confidence Matching (FNC) in which iterations of the previous step

are applied in order to find more matches between instances .

All proposed tools in this section are summarized and compared in Table 2. 1 based on

their main criteria.

T
o

o
ls

A

u
to

m
at

ic

G
o

a
l

M
a
t c

h
in

g

T
ec

h
n

iq
u

e
s

L
D

-M
ap

p
er

A

ut
o

m
at

ic

In
te

r l
in

ki
ng

m

us
ic

St

ri
ng

m

at
ch

-

d
at

as
et

s
(J

 a
m

en
 d

o
in

g,

S
im

il
ar

it
y

an
d

M
 u

si
cb

ra
in

z)
,

pr
op

ag
at

io
n

In
te

r l
in

ki
ng

p

er
-

us
in

g
gr

 a
p

h

so
n

al

m
u

si
c

co
ll

ee
-

m
at

ch
in

g

ti
o

n
 t

o
 c

or
re

sp
on

d-

in
g

w
eb

id

en
ti

fi
er

s

(M
us

ic
b

ra
in

z)

In
te

rl
in

ki
ng

 D
is

-
A

ut
o

m
at

ic

Id
en

ti
fy

a

re
al

G

ra
p

h

m
at

ch
-

tr
ib

u
te

d

S
oc

ia
l

w
o

rl
d

p
er

sa
n

by
 i

n-
in

g,

S
tr

in
g

G
ra

p
h

s
te

gr
at

in
g

d
at

a
fr

om

m
at

ch
in

g

F
ac

eb
oo

k
,

M
ys

p
ac

e

an
d

T
w

it
te

r
p

ro
fil

es

R
D

F
-A

I
Se

 m
i

In
te

gr
a t

in
g

R
D

F
St

ri
n

g
m

at
ch

-

d
at

as
et

s
pl

us
 f

u
si

on

in
g,

W

o r
d

an
d

in
te

r l
in

ki
ng

re

la
ti

on

m
at

ch
-

(a
ny

 d
om

ai
n

)
in

g
(s

y
n

on
y

m
s,

ta
x

o
n

om
ic

al

si
m

il
ar

i t
y)

-

In
p

u
t

M
u

si
c

d
at

as
et

s,

P
er

so
n

al

m
u

si
c

co
ll

ec
ti

o
n

U
se

rs
'

p
ro

fi
le

di
st

ri
b

u
te

d
ov

er

m
an

y
so

ci
al

w
eb

si
te

s

T
w

o
d

at
as

et
s

O
u

tp
u

t

ow
l:

sa
m

eA
s

li
nk

se
t,

m
o:

av
al

ai
bl

e

li
nk

se
t (

In
te

r l
in

ki
ng

p
er

so
n

al

m
us

ic

co
ll

ec
ti

on

to

M
u-

si
cb

ra
in

z)

P
ro

vi
de

ow
l:

sa
m

eA
s

li
nk

s

b
et

w
ee

n
m

at
ch

in
g

fo
af

:P
er

so
n

in
-

st
an

ce
s

in
 s

ep
ar

at
e

gr
 a

p
hs

M
er

ge
d

d
at

a
se

t
or

ow
l:

sa
m

eA
s

li
nk

se
t

O
n

to
lo

g
ie

s

M
u

lt
ip

le

M
u

lt
ip

le

S
in

gl
e

..,..

f-
'

*""

l'
-)

1

R
K

B
-C

R
S

1
Se

m
i

1
M

an
ag

in
g

U
R

I
sy
n-

~
S

tr
in

g
m

at
ch

in
g

1
M

ul
ti

pl
e

pu
bl

i-
1

ow
l:

sa
m

eA
s

li
nk

se
t

1
M

ul
ti

pl
e

on
y

m
y

pr
ob

le
m

s
fo

r
ca

ti
o

n
 s

ou
rc

es

pu
bl

i c
at

io
ns

S
il

k
1

Se
m

i
A

li

nk

di
sc

ov
er

y
S

tr
in

g
m

at
ch

-
L

in
ks

sp

ec
ifi

ca
-

A
li

gn
m

en
t

fo
rm

at

S
in

gl
e

fr
am

ew
or

k
(a

ny

in
g,

S

im
il

ar
it

y
ti

 on

al
ig

n
m

en
t

li
nk

se
t

d
om

ai
n

)
m

et
ri

cs

(n
u-

m
e t

h
o

d

m
er

ic
al

,
d

at
es

,

c o
n

ce
p

t
di

s-

ta
n

ce
,

se
ts

)

O
D

D
-L

in
ke

r
1

Se
m

i
1

L
in

k
di

sc
ov

er
y

fr
om

sy

no
ny

m
,

hy
-

1
S

Q
L

 d
at

ab
as

e
1

L
in

ks
et

1

S
in

gl
e

re
la

ti
on

 al
 d

at
a

(a
ny

p

on
y

m

an
d

S
Q

L
 a

cc
es

s)

s t
ri

n
g

m
at

ch
-

in
g,

li

nk

cl
au

se

ex
pr

es
si

on
s

L
in

ks
B

2
N

1

Se
m

i(
?)

In

te
gr

at
in

g
d

at
a

C
lu

st
er

in
g,

1

T
w

o
d

at
a

se
ts

1

L
in

ks
et

1

M
ul

ti
pl

e

fr
om

di

ff
er

e n
t

d
at

a
S

tr
in

g
m

at
ch

in
g

se
ts

in

do

m
ai

n
of

b
us

in
es

s
to

 b
us

in
es

s

(B
2B

)
m

ar
ke

ti
ng

an
al

ys
is

D
er

iv
in

g
S

im
-

A
u

to
m

at
ic

T

ra
n

si
ti

ve

Se
m

an
-

il
ar

it
y

G
ra

p
hs

ti

c
Si

m
il

ar
it

y
(S

S
T

)

fr
om

L

in
k e

d

m
et

h
o

d
 i

n
o

rd
er

 t
o

D
at

a
fi

nd
 s

im
il

ar
 h

er
bs

 i
n

T
ra

di
ti

on
al

 C
hi

ne
se

M
ed

ic
in

e

E
n

ti
ty

 L
in

ka
ge

1

Se
m

i(
?)

A

no

ve
l,

pr

oo
f-

of
-

co
n

ce
p

t
ap

pr
oa

ch

fo
r

en
ti

ty
 m

at
ch

in
g

in

a
la

rg
e

en
ti

ty

re
po

si
to

ry

K
n

of
us

s
1

S
em

i
H

an
d

li
ng

in

st
an

ce

co
re

fe
re

n
ci

ng

T
ra

ns
it

iv
e

1
T

w
o

d
at

as
et

s

se
m

an
ti

c
si

m
i-

la
ri

ty
,

i.e
,

w
or

d

re
la

ti
on

m

at
ch

-

in
g

(s
y

n
on

ym
s,

ta
xo

no
m

ic
al

si
m

il
ar

i t
y)

,

S
tr

in
g

m
at

ch
in

g

S
tr

in
g

m
at

ch
in

g
1

T
w

o
d

at
a

se
ts

S
tr

in
g

m
at

ch
-

S
ou

rc
e

an
d

 t
ar

-

in
g

,
A

d
ap

ti
ve

ge

t
kn

ow
le

d
ge

l e
ar

n
in

g
ba

se
,

fu
si

on

on
to

lo
gy

1
L

in
ks

et

1
S

in
gl

e

1
L

in
ks

et

1
M

ul
ti

p
le

A
li

g n
m

en
t

fo
rm

at

1
M

ul
ti

pl
e

of
 m

er
ge

d
d

at
as

et

"""'

V
J

1 1

G
u

es
s

W
h

at

Se
 m

i
U

se

of

U
R

is

fr
om

N

at
u

ra
l

la
n-

R
D

F

tr
ip

le
s

D
B

p
ed

ia
,

F
re

eb
as

e
gu

 ag
e

p
ro

 ce
ss

-
fr

om

Se
m

an
ti

cs

an
d

 O
p

en
C

yc

in
g,

G

ra
p

h

w
eb

 s
ou

rc
e

m
in

in
g,

H

u
m

an

gu
es

si
ng

an

d

ev
al

u
at

io
n

P
o

o
l

P
ar

ty

Se
 m

i
W

eb
 b

as
e

th
es

au
ru

s
p

ro
b

ab
ly

st

ri
n

g
R

D
F

tr

ip
le

s

m
an

ag
em

en
t

sy
s-

m
at

ch
in

g
fr

om
 L

O
D

te
m

 U
si

ng
 S

K
O

S
 T

ab
le

 2
.1

:
T

oo
l

co
m

p
ar

is
on

co
ul

d
b

e
fo

rm
al

iz
ed

as
 O

W
L

R
D

F

tr
ip

le
s

w
it

h

ow
l:

sa
m

eA
s

re
l a

-

ti
 o

ns

n
/a

M
u

lt
ip

le

~

~

45

2.2.2 Finding Similarity between RDF Individuals Using FCA

With rapid growth in the availability of data on the web, analyzing t he Web of Data

becomes ever more interesting. Linked data on the web is represented in RDF model.

As mentioned in the previous chapter, RDF represents the information on t he web as

directed graphs. In RDF graphs, each node is an object whereas arcs are relations be­

tween objects. Therefore, RDF graphs or simply graphs constitute a simple yet powerful

way to represent conceptual description of data of web sources. Representation of data

on t he web as such standard format makes it easier for exploit ing, managing, etc.

Building concept lattice from RDF data can construct an ontology model. One way to

do this is to view the set of RDF statements as a directed labeled graph. Each RDF

statement or combination of RDF statements builds sub graphs of a entire RDF graph.

Afterwards , based on common predicate-object paths , resources are clustered into con­

cepts in lattices to construct the desired conceptual model.

Delteil et.al. represented a method for extracting knowledge from Web of documents by

learning new concepts from RDF graphs [DFD02]. To build a concept lattice, authors

have built a concept hier arch y (lattice). The extension con tains a set of resources (ob­

jects) and intension contains a set of descriptions (attributes) shared by those resources.

The resource description is defined as description of a specifie length of a resource, i.e.,

the largest connected sub graph which contains all possible paths of the specifie length

started from and ended to the resource. The full definition could be found in [DFD02].

First , t he lattice (or concept hierarchy) is built of resources' descriptions with length

one, i. e., concepts of lattice have intensions of length 1. Then, concept hierarchy is

completed incrementally by incrementing the length of resource description till we reach

the complete concept hierarchy. Moreover, for the resources wit hout any name we would

consider their classes from RDFS level, i. e., adding type path and including their classes

while building the intensions of each concept in lattice.

The methodology for building concept lattice from RDF data we use in this thesis is dif­

ferent from above-mentioned technique. First, we only consider instance level as an input

46

for building the lattice; then, the ontology model or RDFS (schema level) are built based

on the information in lattice. The built lattice includes concept s which are constructed

based on triples in RDF data. Each concept in lattice includes extension containing a

set of resources (objects) and intension containing a set of predicates (attributes) shared

by those resources in RDF statements. More information of the methodology with an

example is given later in chapter 3.

2.3 FCA and Semantic Web Applications

Sorne ontology-related technologies such as ontology alignment (ontology matching),

ontology learning and engineering can be clone by knowing the conceptual structure of

ontologies. FCA helps those ontology technologies for discovering patterns, regularities,

etc. , in ontologies. Besicles, a large amount of applications have been carried out on

the usage of FCA along with Semantic Web tasks [KL12]. All related applications are

discussed in [Zha07]. Besicles, FCA has been applied to many other Semantic Web tasks

such as querying, visualization and so on [KL12] .

FCA is also useful in information retrieval applications using Semantic Web. The re­

trieved results from structured data on the web can be improved by the usage of FCA.

In the following, some of those applications related to RDF are explained. d'Aquin et .al.

int roduced a method to extract relevant questions on a input RDF dataset using FCA

[AMll] . The method transforms the hierarchy of meaningful sets (concepts contain­

ing entities) into natural language questions. The sets of entities represent the clauses

of generated questions. In [Ferlü], authors provided a navigation mechanism for RDF

graphs using FCA, i. e., accessing concepts t hrough SPARQL-like queries.

The other work related to information retrieval from web of data is found in [ROH05]

in which Topia answers questions posed by users. Therefore, in return of users ' ques­

tions, the system converts the structural data in a form of RDF to hierarchical structure

of documents which can be easily analyzed by users. In order to build a hierarchical

structure, RDF properties of annotations are considered as attributes of their subj ects.

47

Moreover , if input data is also provided with schema level-RDFS- rdfs: subclass could

help us for identifying more groups, i. e., better hierarchical structure of documents.

FCA is also used to build ontology from scientific corpus by mapping a concept lattice

to a formal ontology [JN07]. In [MA13], authors used concept lattices to reveal hidden

semantics in the content of query answers. By adding a formal concept layer to the

Semantic Web, the exploration of LOD datasets is possible. This also supports query

refinement, data cleaning, concept clustering, and more [KLll] .

2.4 Summary

Extracting useful information from web of data is always a big concern among Se­

mantic Web researchers. This information could be the semantic similarity that exists

between individuals in data. The extracted information could be used to construct a

concept lattice for other usages . In this chapter , after introducing some similarity mea­

surements which are used for discovering similarity between entit ies of ontologies, we

discussed the study of similarity in LOD tools. Further we t alked about the usage of

FCA in finding similar RDF individuals, i. e., converting RDF to RDFS. Finally, the

usage of FCA in different semantic web applications is described.

48

CHAPTER III

METHODOLOGY AND IMPLEMENTATION

Chapter 2 introduced works related to the usage of FCA in RDF applications as well

as the study of similarity in LOD tools. FCA as a mathematical tool represents ontolo­

gies in concept lattices. The approach proposed in this thesis is to find similar RDF

individuals based on their common properties using FCA. Then, an FCA tool creates a

lattice that contains concepts while each concept includes similar individuals. Finally,

each concept is assigned a symbolic named according to the names of its individuals. To

that end, we use DBpedia.

This chapter presents our research methodology with a small RDF music dataset ex­

ample. The chapter also covers the implementation of the methodology including the

introduction to Java platforms and APis used for developing our product.

3.1 Approach

A discussion in this section covers the methodology used to extract concepts from

RDF dataset and generate an RDFS graph from them. To that end, the approach

includes three steps: 1) Converting RDF to FCA input: In this step , the resources and

their properties are extracted from RDF data. The extracted information is used to

construct the formal context table; then, the FCA tool converts the formal context into

a lattice. 2) Converting FCA output to RDFS: The step converts the concept lattice

into an RDFS graph according to the rules described later. 3) Choosing plausible names

A
Default Na ...
897
HOIF

arkS
Bran<F
Huston

evada
467
Nylo
Chris loi
v-
100
Slale
ssu
Çllocl<

anielA
Hama
.lanc.,uver
553
-~

~,-sM
~alletm..

50

for RDFS classes: The most important step is to choose appropriat e names for classes

in the resulting RDFS graph. To do this, t he types of objects of each node are extracted

from DBpedia. A proper name for the node is selected from the intersection between

the types of all object s belong to the node.

In the following, each step is described in detail.

3.1.1 Converting RDF to FCA Input

Each concept in the concept lattice contains resources (called objects in FCA) with

common propert ies (called attributes in FCA). ln t he following, an example of an RDF

music store is given. This example includes part ial information about four music bands

shown in Figure 3 .1.

Table 3.1 shows resources (objects in binary table) as well as propert ies (at t ributes in

binary t able) that belong to each resource. For ease of reading, the ab breviation has been

applied for each resource's name, e.g., 897 stands for URI http: 1 /www. music . fake/band/897 .

The latt ice of t he aforementioned RDF example is drawn as Figure 3. 2 (Here, the lattice

8 c D E F G H 1 J K L M
IReleased ... Has Membef Genre Name LastName Year Bomln Plays SongWtiter ... Country. Sings . FormedYear
IX x x 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 x 0 x 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 x 0 0 0
0 0 0 x 0 0 0 0 0 0 0
x x x x 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 x 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
x x 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 x 0 : c . > IX 0 0
0 0 0 0 0 0 0 0 :'"""'·' 0 0

Table 3.1: Binary relat ion table of music dataset

is drawn by Lattice Miner 1.41 tool): The attributes and objects are respect ively

1 http:/ / sourceforge.net j projects/ lattice-miner/

,...,
l.J')

~

<Y
tjci

1
H

otfuss
1 ~

h
n

p
-j /w

w
w

 .band
.org/band/553

~
Ë

5Z

t:t\
~

~
~

i

1 Stoem
er
1
~

~
V

i

t:Ë

!1~

\ .,_ '1; "" q..

1 M
urnford

1 L
......:.::..:.

h
ttp

:/ /w
w

w
. b
a
n
d
.
O
f
t
/
0
1
~
4
6
7

r
-

1
1 -...,s---'-

,.,.---,1 ci
r
-

1
SH-..,,S----'-

i..;U---,
0

1 ci

t: Ë

!1~

~
 t...::.!:=

=
...J

52

written in blue and red colm·s.

Na me
1 DO 467 553 897 Anahiem Babel BrandF ChodK Chrisll4 DanielA Devon Hanna Ho1F Houston MarkS 114arkusM M o Nevada SSU state \lan couver

1

Figure 3.2: Lattice of music dataset

The lattice is also presented as a reduced labeling diagram depicted in Figure 3.3.

Each concept of lattice contains abjects with the same attributes. For example, MarkS,

ChrisM, BrandF, Chodk and MarcusM as members all write song lyrics for their own

bands. Therefore, they belong to the same concept but toward bottom they split into

two different concepts. ChrisM, ChodK and MarcusM belong to both concepts, since

they can play instruments and also sing while BrandF only sings and MarkS only plays

an instrument.

3.1.2 Converting FCA Output to RDFS

The translation of t he above lattice to RDFS graph is shown in Figure 3.4. (The

number in each RDF node is the number of corresponding concept in the reduced

labeling diagram). Three rules have been applied to the lattice in order to crea te RDFS

graph.

Node Rule: All nodes except the one including all abjects , i.e., node number 0 in

Figure 3.2, as well as the one which doesn't include any abject , i.e., node number 11 in

the same figure should be used as classes to create the RDFS graph.

53

Figure 3.3: Reduced labeling diagram of music dataset lattice

rdfs: subclass Rule: rdf s: subcl ass relation between classes is built according to

the hierarchy between concepts in lattice. Notice that even though the last step of

methodology called choosing plausible names for RDFS classes explains how to choose

name for each node, for easiness of analyzing predicate rule, we considered proper names

for some of the nodes in advance, i.e. node number 2,3,4,5,6,7 and 9 are respectively

called Musician, Country, Album, Artist, Band, Song Writer and Singer.

Predicate Rule: For relating classes with properties , we shall survey all properties

related to those classes. Among all of t he properties that belong to a class those who

go to resources in t he RDF graph can be related to the other classes in RDFS graph.

For example, class Musician has four properties Name, LastName, Born in and Plays.

Among all properties of class Musician, only Born in property goes to resource Country

in the RDF graph but other properties go to literals. Therefore, Born in predicate is

considered for relating two classes, i.e., Born in should relate class Musician to class

Country. Besicles, the other properties (N ame, LastN ame and Pla ys) which go to literals

cannat be ignored while building RDFS graph. Therefore, their data types are taken into

account and based on their respective types in RDF file, t hey are related accordingly.

54

Below, a part of the RDF file for music dataset is illustrated. As it is seen, the predicates

of resource 897 which go to literals have explicit datatypes in the RDF file:

<rdf:Description rdf:about="http://bands.org/musicband#897">

<band:ReleasedAlbum rdf:resource='http://bands . org/musicband#HotF'/>

<band:HasMember rdf:resource='http://bands . org/musicband#MarkS'/>

<band:HasMember rdf:resource='http://bands.org/musicband#BrandF'/>

<band:Genre rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Indie Rock</band:Genre>

<band:Name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">The Killers</band:Name>

<band :FormedYear rdf:datatype="http://www.w3.org/2001/XMLSchema#int">2001</band :FormedYear>

</rdf:Description>

Moreover, for each property whose range or domain is related to a class, we should

remove the duplicated relations to those classes where their super classes have the same

relations. For example, Born in has all classes Artist, Musician, Song Writer and Singer

as its domain. Since Artist is superclass of all three classes Musician, Song Writer and

Singer, it would be enough for Born in property to only have Artist as its domain.

In Figure 3.4, all classes with their properties and all relations are declared in an RDFS

graph.

Other properties which go to datatypes are shown in Figure 3.5 (Notice that the node

numbers in this figure are different from node numbers in the previous figure but lo­

cations are the same). RDF Gravity 1.01 tool is used to show the representation of

music dataset's RDFS graph.

3.1.3 Choosing Plausible Names for RDFS Classes Using DBpedia

A Key part of the algorithm consists of naming classes built with our tool. In addition

to the previous example, the examples in this section also contain the Russia dataset

used in chapter 4.

In order to name the nodes in the RDFS graph, for each node we shall survey common

types (objects of rdf: type predicate in DBpedia) of resources of DBpedia which match

1 http: / / semweb. salzburgresearch.at / apps/ rdf-gravity / index.html

RDFSt...wf

aass

Porperty -­[1

Figure 3.4: RDFS graph of music dataset

55

with the resources in t he node. The purpose is to find the most plausible name for a node;

therefore, among all the common types extracted from DBpedia for the resources of one

node, the more specifie one is selected. For example, for a node with Lake Onega and

N eva River as its members , among the objects of rdf: type predicate with dbpedia-owl

prefix of t hose resources, Place, BodyOfWater and NaturalPlace are in common. Since

the second one (BodyOfWater) is more specifie than others, we choose BodyOfWater

which gives us better name for the node (Figure 3.6).

Moreover , sorne resources may use their other known names in RDF input data,

e.g., Neva is used instead of Neva_River in RDF data. Therefore, query results from

DBpedia may not be satisfactory. The solut ion we propose is to look for all objects of

predicate dbpedia-owl :wikiPageRedirects in DBpedia for each resource.

As it is shown in Figure 3.7, the DBpedia page for Neva River shows that dbpedia :Neva

is one of the dbpedia-owl :wikiPageRedirects values of http: 1 /dbpedia . org/page/Neva_River.

Therefore, by sending http : 11 en . wikipedia. org/wiki/Neva in the query we can ob-

56

Figure 3.5: RDF Gravity representation of music dataset 's RDFS graph

Lake Onega
dbpedia-owi:Piace
dbpedia-owi:Bodyot\Nater
dbpedia-owi:Lake
dbpedia-owi:NaturaiPiace

Neva River

• dbpedia-owi:Piace
• dbpedia-owi:River
• dbpedia-owi:BodyotWater
• dbpedia-owi:NaturaiPlace

Figure 3.6: Objects of rdf: type predicate with dbpedia-owl prefix of Lake Onega and
Neva River in DBpedia

57

tain the results for http: 11 en. wiki pedia. org/wiki/Neva_Ri ver.

is dbpedia-owl:wikiPageRedirects oj dbpedia:Neva
• dbpedia:Neva _river
• dbpedia:Ri'l'er_Neva
• dbpedia:Bolshaya_Nevka
• db edia:The N'-"eva="----'

Figure 3.7: Objects of dbpedia-owl :Wikipagesdirect predicate for Neva River in DB­
pedia

Further , if all resources of one node have dbpedia-owl: Person as an object of their

rdf: type predicate in DBpedia, considering de: description predicate leads to more

appropria te name for the node since objects of de: description predicate contains more

specifie data . Therefore, we shalllook for the abj ects corresponded to de : description

predicate in order to choose a suitable name for t he node only by applying a few simple

Natural Language Processing (NLP) methods.

For example, assume Rihanna and John Bottomley as resources belong to a node. Both

of them have dbpedia-owl: Person as object of t heir r df: type predicate in DBpedia,

i.e., both are of type Person. Therefore, the abjects of their de : descriptions predi­

cate should be extracted and considered instead of rdf: type predicate. The object of

de :descriptions predicate for Rihanna is "Singer, songwriter" and for John Bottomley

is "Canadian singer and songwriter".

Notice that "and" and "," separate phrases inside the objects of de: description predi­

cate. Moreover, in the phrases composed of two or more words, usually the last word is

no un and other words are adjectives, i. e., only the last ward of every phrase should be

considered for choosing a name for that node, e.g., the last word of phrase " Argentine

singer" would be "singer".

Therefore , with a simple NLP technique, "Singer, songwriter" which belongs to Rihanna

can be converted to a list with two elements "Singer" and "Songwriter" by considering

of capitalizing the first letter of each word. Moreover, for John Bottomley, " Canadian

singer and songwriter" is converted to a list with two elements "Singer" and "Song-

writer".

After making list of plausible names for each resource of a class using de: description,

58

we shall intersect the results for all resources of the node. The intersection between

both above-mentioned lists is "Singer" and "Songwriter". Renee, the class name would

be "Singer Songwriter".

After choosing names for nodes, there may happen to be some nodes with similar names.

To reduce t he occurrences of nodes with similar names, a techniques is applied. For the

nodes with the similar name as their parents, the reduced labeling attributes of those

nodes should be added to the name of the nodes. The technique is illustrated with more

detail with an example in chapter 4.

3.2 Implementation

In this section, first the Java platforms and APis including Jena, RDF API , SPARQL,

Galicia and RDF Gravity used for implementation are introduced. To illustrate the pro­

cess of implementation of the algorithm, each of the steps mentioned in the previous

section will be discussed based on their representative usage.

3.2.1 J ava Frameworks and APis

3.2.1. 1 Jena

Jena 1 is an open source semantic web framework which has been built by the mem­

bers of the Semantic Web research group at HP labs. After 2009, Jena was released into

the open source community to be developed and supported openly.

Jena is a java library which provides the abilities to work with semantic web applica­

tions. It provides an API for RDF, RDFS and OWL ontologies which makes it easier for

programmers to use them in their applications rather than doing alternative implemen­

tations [McBOl]. Moreover, Jena has the ability to read, process and write RDF data

into/ from XML [Arn10], N-triples and Turt le formats. The framework was first built

1 http:/ / jena.sourceforge.net /

59

only for RDF type languages and then it added features for using in OWL languages

too. Jena also provides SPARQL query engine.

The main components of Jena frameworks are shown in Figure 3.8.

Figure 3.8: Jena framework [LinlO]

The central model interface contains 4 main components including: RDF, OWL API ,

SPARQL search engine and the Inference API & Engines which is useful for external

and built-in reasoners.

3.2.1.1.1 RDF API

RDF API is a Java API which allows the creation and manipulation of RDF graphs.

As it is said before, Jena was first developed for data with RDF type languages. All

information provided by RDF data is stored in a data structure called model.

RDF uses the standard Jena madel. The model includes RDF statements and sorne

functions for querying, adding and removing those statements.

Compared to RDF, RDFS has ontological interface; therefore, it uses Jena's OntModel

which has the ability to create and manipulate models from ontologies in RDFS or OWL.

Based on its type, a model can provide methods for querying, manipulating, creating

RDF, RDFS and OWL data such as listProperties, listStatements, createResource, cre­

ateLiteral, createStatement, createProperty,createClass, createOntProperty and so on.

To have java access to RDF / RDFS models, RDF API has libraries which allow any java

program to create and manipulate RDF / RDFS based models easily [McBOl].

60

3.2.1.1.2 SPARQL

Querying the accessible data stored in a model is possible by the ARQ search engine for

Jena. ARQ provides SPARQL [PS06], an RDF Query language, on RDF type models.

SPARQL is a standard query language to be used in RDF type models. SPARQL queries

information in a similar way that SQL does but it uses RDF model instead of relational

data model, i.e., it uses triple patterns in WHERE clause. A triple pattern is an expression

of RDF statement composed of three components: subject, predicate and abject. Each

component can be a variable, e.g., ?per son, a name added to the default namespace ,

e.g. , eus tom: Name and a value of an attribute belong to an entity or a full URI. Moreover,

the third component can be a numeric literal, e.g., 3.14, a plain literal, e.g., "Duke", a

plain literal with a language-tag, e.g., "Duke"@en, or a typed literal , e.g. , "123"8sd:int

(xsd : i nt 1 stands for integer datatype in XML Schema) .

Figure 3.9 presents an example which return the names of persans who has a pet called

"Duke". Three triple patterns have been chained to create the WHERE clause of the query.

Namespaces are shortcuts for full URis and it enhances both readability and writability.

Among all four commands used in SPARQL to perform the query (SELECT, CONSTRUCT,

PREFIX custom : <http: 1 /mySi te/MySchema/ > Namespaces

SELECT ?personName
WHERE

}

?person custom :Name ?personName .
?pet custom:OWner ?person;

custom:Name 'Duke'.

Output columns

Triple
Patterns

Figure 3.9: SPARQL Example [Szl09]

ASK and DESCRIBE), SELECT is the most common used and it extracts columns of table

based on WHERE clause.

1http :/ / www.w3.org/ TR/ xmlschema-2/

- - ------ - - -- -

61

3.2.1.2 Galicia

Galicia [VG03] is an open source platform that supports tasks related to FCA such

as creating, visualizing, and storing lattices . Being written in java, Galicia2 can be run

on different platforms without changes in its functionality. Moreover , Galicia can be

used with both a command line interface (CLI) and a graphie user interface (GUI).

Galicia supports different input types including binary data, lattice, multi-valued context

and relational context families. Galicia's name -Galois Lattice-Based Incrementai closed

Itemset Approach- comes from its incrementai data mining algorithms , which are used

for mining association rules in transaction databases. It is not our interest in this thesis.

Binary relationships between abjects and attributes can be stored as Relational Context

Family (. rcf) format in Galicia. One can genera te an XML format of an RCF context

and import into Galicia to create a lattice from it.

Figure 3.10 shows a loaded data with binary relationship within context family editor

of Galicia as well as the output lattice of data.

3.2.1.3 RDF Gravity

RDF Gravity is an open source tool for visualizing directed graphs in RDF / OWL

format [GW06, DK07]. RDF Gravity has pre-built functionality that allows the user to

filter out and choose to visualize the desired part of a graph. However, large data are

not easily readable by RDF Gravity.

RDF Gravity's main features include: graph visualization, global and local filters (en­

abling specifie views on a graph), full text search/ RDQL queries and visualizing multiple

RDF files.

RDF Gravity is implemented on top of the JU G Graph API and the J ena framework.

A screen shot of RDF Gravity tool is shawn in Figure 3.11.

In Table 3.2, the notations used to display RDF graphs in RDF Gravity are shawn with

2 http: / / www .iro. umontreal. ca/ .-vgalicia/
1 http: / / www.softpedia.com/

62

Figure 3.10: Galicia v.2 beta view

63

.
File Apply f iter QaphView Configure HTTP Hel>

1~ l.,.)otto1- .. Glob81 Flller

' ~ ~ ~ ttl:p:/lwww .w3 .org/2002Al7A:>w1#081atypeProperty

~
i- li!!. triooOt l&.c lo~ssof l.l . 1 L Âi1ersectiorl:l1

~ titp:lf.N'NVII .w3.orgl2000.()1 A'd1-schemal R 1ction f-1! Â coownert

L !!J Â subCioss01
1-!!J Â domo;n

h11p1-.... l L !!JÂ range $
l&clns of de ·· ~:: ... -. l

..
OOer!li'ROOC

l©o ,_owo."l One"'i'neFI.er

l4\ .1 pllil r5onow 1 R•d;~ ~1 lncludeVIsllle l~CD
~~ ... - .. J 1? titp:Jiwoww.w 3.orgl1999.02122-rdf-.syntex-nsl

L-Â type

1m; III;&IIIB!J
~. f sfow OO~ng Nodes 1 f--· ÂReS1rictK>n

,)r"1:shoW~Nodes ~-Â r>sjojr<I'Wh

~ ~ Hide Node l©comp•q f-• <rtln01

LÉ
L Â iltersec1ioo01

"~
Show llef'Qis

~~ t'ttp:J/www.w3.txgi2()0(W1td1-schemal l l &lullno~ m e o . .J Hide llerels

~ ~isj Showlnstsoces
f-Â,corronert
~-Âsl.bCies:sOf

HidelnStonces - f- Âdomem

7
L... Â,range

~ 1 Open ROF (hph li Scrontlle li Clear Oraph)
[l~

1
.

.:1 r=----,

•'•
T

Figure 3.11: RDF Gravity View1

64

domain Violet edges refer to rdfs:domain predicate

range
Green edges refer to rdfs:Range predicate

sub Ciass:Of 1> Blue edges refer to rdfs:subClassOfpredicate

type
Black edges refer to rdf:type predicate.

l©settlement l Refers to concepts or classes.

Here, "SeUlement" is a concept.

1 Â has distano .. 1
Refers to Properties .

Here, "has_distance" is aproperty.

lA Derî ..
Refers to a literai value (string, integer) etc.

H ere, "D eri" is a Literai.

~ Refers to Anonymous nodes

& Refers to instances. Any anonymous node

which has rdf:type predicate associated to a

class is also shown as an instance.

l ~htlpJ""- · · · ''
Refers to URI strings which cannot be

identi.fied as any of the above items

Table 3.2: RDF Gravity notations

brief descriptions.

3.2.2 Generating RDFS from RDF data

3. 2. 2.1 Step One: Convert ing . rdf to . r cf . xml

The first step converts the RDF input data into the XML format of a RCF file

(. rcf . xml). We chose Galicia as FCA tool, sin ce Galicia can easily read and pro cess

XML data and transform . rcf. xml to lattice. First, relations between resources and

properties in RDF data are determined and generated as < resource, property> pairs.

Later, these relations will be described in a binary relationship table by Relational

Context Family (. rcf) format.

Reading and extracting properties and resources from RDF datais performed by using

Jena's RDF API (introduced in section 3.2.1.1).

65

A list of pairs of resources and their corresponding properties is used to create

. rcf . xml file readable by Galicia.

DOMXML parser is a programming API that helps in creating and writing intoj from

XML files. DOM considers XML documents as tree st ructures. To do this, first a

XML document is created using DocumentBuilder class; t hen, all the XML content are

defined. The XML file requires tlu ee main child elements called OBJS , ATTS, RELS

respect ively used for objects , attributes and relations between them. Finally, the Trans­

former class is used to write t he ent ire XML content to a fi le with rcf . xml format .

After creat ing RCF file in XML format , Galicia is able to construct a lat t ice from the

relation between abjects and attributes. We may select Lat t ice opt ion from the export

menu of Galicia while saving the latt ice. Galicia saves the lattice in XML format, i.e.,

lat . xml.

3.2.2.2 Step Two: Convert ing l at. xml to RDFS

After obtaining XML format of LAT file from Galicia, we read the latt ice file in order

to create the RDFS file. The Lat t ice format has four specifie tags : PARENT , NOD ,

ATT and OBJ. DOMXML provides functions for parsing and extract ing data from XML

files. Before creating an RDFS file (file with . rdf format but including schema level

instead of instance level) from lattice, each node is named properly according to t he

step three. Usually the naming class step comes before the generation of RDFS file,

but for the facility of understanding our methodology here, the creation of RDFS file is

explained before explaining the naming of the classes of RDFS file.

RDFS file is similar to RDF file but the content contains schema level. The RDFS file

uses Jena's OntModel for manipulating models from ontologies . It is produced based on

three rules including Node rule, rdf s : subclass rule and Predicate rule fully described

in the previous section.

66

3.2.2.3 Step Three: Naming Classes Using DBpedia

To obtain names for RDFS classes, DBpedia is queried using the SPARQL end­

point. Information in DBpedia could be retrieved online via SPARQL or offiine from

downloaded the DBpedia dataset. In section 3.1.3, it is mentioned which information

of DBpedia needs to be retrieved for naming RDFS classes properly. In our case, the

information has been retrieved from online DBpedia.

DBpedia allows users to retrieve data from DBpedia by providing a public SPARQL

endpoint at http://dbpedia.org/ .

Moreover, SNORQL query explorer allows users to have a preview of their results

by providing a simpler interface to the DBpedia SPARQL endpoint . Figure 3.12 shows

the results of an example in SNORQL.

,. +) ~ dbpedia.org/ snorq V?query=SEL ECT + 'Y~ F o + WHERE+{%DD%0A< http%3A'Yo2FI)'o2Fdbpedia.org %2Fresource%2FRihanna> +dc%3Adescription+ %3Fo+ o/cDD'YoOA} Ô v e

1

SPARQL:
HU!FIX owl: <bnp:/lwww .wa.ozg/2002/01/owlt>
PRU'lX ~: <btt;p://,.. . .a.org/2001/~b
PSŒriX zdb: <llnp:IJYWW.v3.org/2000/01/mt-scboa&J>
PCIE.FD: rif : <http://.,.. ,v~.oq/19DV/O:i:/22-zdf-sp~>

PREFIX fod : <htç://~.r:,.JfoaE/0.'1/>

l'll%n.x do: ~tp:/{JNZl.oqldc/e~ts/1.1/>
PIŒFIX : <h•t:p://~.01:g/ftti0\U'C4/>
PR!!FIX clbpecli.a2: <h'hp://clbpHla.oq/~J/>
nœnx dbpedia: <br.tp://dbped.ia . arg/>
FRU'D sto:~: <lU;'P:// v3.etrQ/20Go!/O.:i!/sk05 ccn:eb

SELECT ?o WHERE {

SPARQL Explorer for http://dbpedia.org/sparql

<ht.tp: 1 /dbpedia. orq/re:~ource/Rihanna> de :description ?o
}

Resutts:J Browse ~ Il Got~l L Reset<l

PARQL resu~ts :

"Singer, songwriter"@en

Figure 3.12: SNORQL

67

3.3 Summary

In this chapter , the approach and implementation of our methodology are covered.

The main goal of our study is to extract schema from RDF data. The approach is done

by classifying RDF individuals according to the properties they share. Therefore, RDF

individuals that share common properties are considered to belong to the same class .

Then the classes are named according to their individuals' names. For each individual,

t he type of individual is obtained by searching its name in DBpedia. Finally, the class

name is selected according to one of the common types shared by its individuals in

DBpedia. In the next chapter, t he experimental results will be presented.

68

CHAPTERIV

EXPERIMENTS AND RESULTS

The results for each of the steps detailed in the previous chapter are presented in this

chapter. The effectiveness of our algorithm in t erms of Precision, Recall and F-Measure

is also analyzed and discussed.

4. 1 Dataset

Both validity and diversity of the dataset are important factors in arder to achieve

t he best performance from our tool. Besicles, t he dataset must be large enough to show

the efficiency of the tool. Therefore, finding an interesting and suitable dataset appears

to be a challenging issue. The dataset used for t he experiment contains a high variety

of information about Russia and is large enough to prove the efficiency of our tool.

The RDF dataset used in our experiment is a set of 1613 triples about Russia. The

information includes data about Russia's cultural (theaters , museum, galleries, etc.)

and natural (ri vers, lakes, parks, etc.) sites. It also includes data about famous people

in Russia, entertainment and other features.

The Russia dataset contains both instance and schema level of RDF madel. Since our

goal is to detect RDF schema level only by knowing the RDF instance level, we only

considered the instance level and ignore the information at the schema level. The schema

level of dataset is used to evaluate our results.

70

4.2 Results

4.2.1 Binary Relation Table

The data extracted from the RDF file are used to crea te a binary relation table (also

called a formai context) for the FCA tool. The number of objects and attributes of our

dataset are respectively 92 and 47. By exploring the XML version of Russia's RCF file,

we also found that 256 relations exist between those objects and attributes. In the next

section, a concept lattice is constructed from the binary table using Galicia.

4.2.2 Concept Lattice

The lattice of the dataset generated by Galicia is shown in Figure 4.1. Each node 's

content can appear by clicking right on the node in the Galicia software. The lack of

space has prevented us from showing full information of all nodes in the image. The

concept lattice in the dataset includes 69 nodes where the uppermost node contains all

objects and the lower most contains no objects. Therefore, in reference to the previous

chapter, all nodes except the upper most and the lower most are used to build the RDFS

gr a ph.

Even though the concepts are created from resources using FCA, it should be considered

that based on the open world assumption (OWA) , creating a class even for a single

resource may be necessary since the datais potentially incomplete [CBHS05].

4.2.3 RDFS Graph

Extracting schema from the dataset and translating it to RDFS are done by following

the steps described in the previous chapter. Figure 4.2 shows the RDFS graph extracted

from the dataset . We used DBpedia to name the nodes according to the common infor­

mation their objects share in DBpedia. Therefore, there is a reduction in the number of

--
.J

l-

'

72

nodes compared to the concept lattice due to the similar names applied to some nodes.

In order to tune this reduction, the aforementioned technique (refer to page 63 in the

text) has been applied for naming similar no des differently as much as possible.

The technique is used for nodes with the similar name as their parents. The solution is

to add reduced labeling attributes of the node to its current name. For example, node

7 and node 23 both obtained name "PopulatedPlace". Since node 23 has node 7 as its

parent, we shall add one of node 7's attributes to its name which node 23 doesn 't have,

in other words , adding the reduced labeling attribute of node 7 (distance_ unit_region)

toits name. Finally, node 7 is named as "PopulatedPlace with distance_unit_region".

We used the RDF Gravity version 1.0 to visualize the RDFS graph of our results from

the dataset . For more details on the notations of RDF Gravity refer to section 3.2.1.3

of chapter 3.

4.3 Discussion of the Experiments

The original hypothesis of this methodology is to convert RDF to RDFS data by

taking advantage of FCA for clustering RDF individuals according to the common prop­

erties they share. The resulting RDFS graph should provide a proper classification of

individuals by considering the properties they have in the RDF data. Further, the gen­

erated RDFS graph should have classes with proper names.

The experiment was performed on a Windows 7 Home Premium operating system run­

ning on Intel Duo Core 2 2.40GHz PC wit h 3GB of RAM. Details on the dataset used

in our experiment are already given in section 4.1. In t he following, quant itative results

are provided in terms of P recision, Recall and F-Measure.

As ment ioned before, Russia dataset is also provided with schema level. To evaluate our

tool against the dataset, we only consider the relevant classes in the dataset.

In this experiment , the relevant classes stands for the classes which have instances and

at least one of their instances is used to construct the concept lattice, i. e., instances with

73

Figure 4.2: Full RDFS graph of Russia dataset by RDF Gravity

74

properties.

Recall is a measure which calculates the number of the relevant classes extracted from

the dataset and it is calculated as follows:

R ll
relevant classes n retrived classes

eca = --------~------~----------­
relevant classes

The numerator is the intersection between the relevant and retrieved classes. The num-

ber of relevant classes in the dataset is 35 and the number of classes which are extracted

to construct t he resulted RDFS graph is 36. Among all of the extracted classes only 27

are relevant and used to const ruct the final RDFS graph since some of them combined

due to the similar names. The criteria used to evaluate the retrieved classes is based

on the classes names; therefore, it is important to have classes with different names.

To resolve this issue, we should consider the occurrence of classes with same name only

once. Therefore, the numerator of the fraction is 27 and the denominator is 35.

Precision shows the number of extracted classes from the dataset which are relevant and

it is calculated as follows:

P
. . relevant classes n retrived classes

rectswn = --------------~.,--------------­

retrived classes

The numerator of the fraction is 27 and the denominator is 36.

F-Measure is a measure of accuracy which takes both Recall and Precision metrics into

account ((3 is one which shows the equal weights for Recall and Precision). It is calculated

as follows:
(/32 + 1) x Precision x R ecall

F-Measure =:...._.,.----;:--'------------:----------
(/32 x Precision) + R ecall

As mentioned before, by applying the technique (refer to page 63 of the text) the number

of relevant classes appearing in the resulted RDFS graph is changed from 17 to 27.

The below shows the amount of Precision, Recall and F-Measure before and after ap­

plying t he ment ioned technique. Table shows a significant improvement in the amount

of Precision , Recall and F-Measure after applying the technique.

75

Precision Recall F-Measure
After applying the t echnique 0.75 0.771 0.763
Before applying the technique 0.472 0.485 0.478

Table 4.1: Measurement table

In order to demonstrate the results more clearly, sorne filtration are applied to Figure

4.2 by using RDF Gravity's fil t er feature (represented in Figure 4.3.). All the generated

classes with their complete names in the RDFS graph are shown in the figure. The

names have been applied according to the common information extracted from DBpedia

for the objects of each node. Sorne of the names are added by applying the technique

described in section 4.2.3.

The classes generated from the RDF dataset to construct the RDFS graph are:

Persan, Months, Place, PopulatedPlace, PopulatedPlace with population_value, Persan

which study_at, Artist, SeUlement, NaturalPlace, ArtMuseumsAndGalleriesl nRussia, Palacesl n­

SaintPetersburg, PopulatedPlace with sight_ city, PopulatedPlace with distance_unit_region,

PopulatedPlace with distance_to_moscow_ city, BalletCompanieslnRussia, Persan with

birthplace, Country, Writer, Stream, Palacesl nSaintPetersburg with position_to_stpetersburg

_palace, StreetslnMoscow, Museum, AdministrativeRegion, Novelist, Politician, Art­

Mus eumsAndGallerieslnRussia which closed_on, AdministrativeRegion with distance_to_moscow

_city

We believe that the resulting RDFS graph entails enough classes in which RDF individ­

uals from the RDF dataset can be identified by them. Non-named classes are issued by

the names of individuals in the RDF dataset since their names don't lead to any useful

information to be retrieved from DBpedia. For example, node 13 which doesn't get any

name includes two objects Russian_ Winter_Folk_Festival and the_Festival_of_the_North.

Since no information is retrieved from DBpedia for those objects, their nodes don 't get

any name. The other example is node 16 which includes the object with name ice_skating

which are identified as an sport type but nothing is retrieved from DBpedia by searching

ice_skating.

co
t
-

+
-'

(l)

~
+

-'
(lj

"d

-~ C
il

C
il

~
'+-<
0

...c: p
.

(lj
'-<
b.O

[
f)

~

ê '+-<
0 C

il
+

-'
'-<
(lj

P-.

'"" '<i' (l)
'-<

51
ti:;

77

4.4 Summary

In this chapter, we used an adequate dataset to prove the efficiency of our methodol­

ogy by using measurement metrics. FCA helps us detect similar RDF individuals in the

dataset according to the common properties t hey share. The concept lattice created by

Galicia includes concepts where each concept contains similar individuals. After obtain­

ing the schema level of the RDF dataset , each concept is named according to the names

of its individuals using DBpedia. This chapter verifies the productivity of our approach

on detecting schema from the RDF dataset and transforming it to RDFS model.

78

CONCLUSION

This thesis has presented a methodology to obtain useful information from Web

of Data by creating conceptual structure from RDF datasets. The proposed approach

decreases the heterogeneousness of RDF datasets.

To fulfill this need, we used the advantage of FCA to build formal context and determine

a binary relation between resources and attributes of RDF statements. The FCA tool

used in our implementation is Galicia.

Afterward, by the usage of Galicia the formal context is converted into a concept lattice

containing concepts and the hierarchical relation between those concepts . Each concept

contains a set of resources called extension as well as a set of attributes shared by those

resources called intension.

Gaining the conceptual structure from RDF data is a part of process for converting

data from RDF to RDFS model. The obtained concept lattice couverts into an RDFS

graph. The concepts in concept lattice are considered as classes in RDFS model with

hierarchical relation between them. Properties in the RDF data should also be taken

into account for completing the RDFS graph. ecessity data properties also should be

added properly.

Further, to name the classes of the RDFS graph, we used DBpedia to retrieve the

common information that abjects of each class share in DBpedia.

Since we uses DBpedia to retrieve names for RDFS classes , for datasets containing

complicated names for abjects our algorithm may not always lead to precise names for

the classes.

Although the presented results have demonstrated the effectiveness of our approach, it

could be further developed. One way is to refine the names for the classes. It can be

done by using WordNET in addition to DBpedia while applying more NLP techniques.

80

BIBLIOGRAPHY

[ABKLC08] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, Z. and Z. Ives,

DBpedia: a nucleus for a web of open data , In Proceedings of the 6th International

Semantic Web Conference (ISWC) , Lecture Notes in Computer Science, Vol. 4825,

Springer , pp. 722-35 , 2008.

[AMll] M. d 'Aquin, E. Motta, Extracting relevant questions to an RDF dataset using

formal concept analysis, In Proceedings of the 6th International Conference on

Knowledge Capture (K-CAP), ACM, pp. 121-128, 2011.

[Arn10] Arnaud le Hors et al , Document Object Model (DOM) Level 2 Core Specifica­

tion, http: / j www.w3.org/ TR/ 2000/ REC-DOM-Level-2-Core- 20001113/ , 2000.

[BVM04] D. Brickley, R. V. Guha and B. McBride, RDF Vocabulary Description Lan­

guage 1.0: RDF Schema, http: / j www.w3.org/ TR/ rdf-schema/ , 2004.

[CBHS05] J . J . Carroll, C. Bizer, P. Hayes, and P. Stickler, Named Graphs , Provenance

and Trust, In Proceedings of the 14th International World Wide Web Conference

(WWW), ACM Press, 2005.

[DDFLH90] S. Deerwester , S. Dumais, G. Fumas, T. Landauer, and R. Harshman,

Indexing by Latent Semantic Analysis, Journal of the American Society for Infor­

mation Science, 41(6) :pp. 391-407, 1990.

[DFD02] A. Delteil , C. Faron, R. Dieng, Building Concept Lattices by Learning Con­

cepts from RDF Graphs Annotating Web Documents. In: Priss U, Corbett D,

Angelova G (eds) LNAI 2393, Springer, pp 191-204, 2002.

[DK07] L. Deligiannidis, K. Kochut ,A. Sheth, RDF data exploration and visualization,

ln Proceedings of the ACM first workshop on Cyberinfrastructure 2007, pp. 39-46,

New York, 2007.

[ES07] J. Euzenat, P. Shvaiko, Ontology Matching, Springer, Heidelberg, 2007.

82

[Fer10] S. Ferre, Conceptual avigation in RDF Graphs with SPARQL-Like Queries,

In: Kwuida, L. , Sertkaya, B. (eds.), ICFCA 2010. L CS , vol. 5986, pp. 193-208,

Springer , Heidelberg, 2010.

[GW99] B. Gamter , R. Wille, Formal Concept Analysis: Mathematical Foundations,

Springer Verlag, Berlin, 1999.

[GW06] S. Goyal, R. Westenthaler, RDF Gravity (RDF Graph Visualization

Tool) , Salzburg Research, Austria, http :/ / semweb.salzburgresearch.at j apps/ rdf­

gravity / index.html, 2006.

[HKLM09] O. Hassanzadeh, A. Kementsietsidis, L. Lim, R.J. Miller, andM. Wang, A

framework for semantic link discovery over relational data, In Proceedings of the

18th ACM Conference on Information and Knowledge Management (CIKM), D.W.­

L. Cheung, I.-Y. Song, W.W. Chu, X. Hu, and J.J. Lin, eds, ACM, pp. 1027-1036,

2009.

[HXML09] O. Hassanzadeh, R. Xin, R. J . Miller , L. Lim, A. Kementsietsidis, M. Wang,

Linkage Query Writer , In Proceedings of the 35th International Conference on Very

Large Data Bases (VLDB 2009)-Demonstrations Track, 2009.

[JGM07] A. J affri,H. Glaser , I. Millard, URI Identity Management for Semantic Web

Data Integration and Linkage, In Proceedings of the Workshop on Scalable Semantic

Web Systems, Springer, Vilamoura, Portugal, 2007.

[JGM08] A. Jaffri , H. Glaser , and I. Millard. Managing uri synonymity to enable con­

sistent reference on the semantic web. In IRSW2008 - Identity and Reference on

the Semantic Web 2008 at ESWC, 2008.

[KLll] M. Kirchberg, E. Leonardi , Y. Shyang Tan, R.K.L. Ko , S. Link, B.S. Lee, Be­

yond RDF Links: Exploring the Semantic Web with the Help of Formal Concepts,

Semantic Web Challenge, 2011.

83

[KL12] M. Kichberg, E. Leonardi , S. Link, R. Ko, F. Lee, Formal Concept Discovery in

Semantic Web Data, Springer, 2012.

[Lev65] V. Levenshtein, Binary codes capable of correcting spurious insertions and dele­

tions of ones, Probl. Inf. 'Iransmission 1, pp. 8-17, 1965.

[Li13] Y. Li, A Federated Query Answering System for Semantic Web Data, Ph.D The­

sis, Lehigh University, Pennsylvania, 2013.

[Lin10] F. Lindorfer, Semantic Web Frameworks, CS341 Distributed Information Sys­

tems, HS 2010 Universitat Basel, 2010.

[LS99] O. Lassila, R. R. Swick, Resource Description Framework (RDF) Model and Syn­

tax Specification, http :/ / www.w3.org/ TR./ 1999/ REC-rdf-syntax-19990222/ , 1999.

[MA13] M.W. Chekol, A. Napoli, An FCA Framework for Knowledge Discovery in

SPARQL Query Answers , The Semantic Web (iswc2013), Sydeny, 2013.

[McB01] B. McBride, Jena: Implernenting the RDF Model and Syntax Specification, In

Steffen Staab et al (eds.): Proceedings of the Second International Workshop on

the Semantic Web - SemWeb'2001 , 2001.

[MCLYP09] J. Mi, H. Chen, B. Lu, T. Yu, and G. Pan, Deriving similarity graphs from

open linked data on semantic web, In Proceedings of the lOth IEEE International

Conference on Information Reuse and Integration, pp. 157-162, 2009.

[MLASH12] M. Morsey, J. Lehmann, S. Auer, C. Stadler ,S. Hellmann, Dbpedia and the

live extraction of structured data from wikipedia, Program: Electronic Library and

Information Systems, pp 46-27, 2012.

[MM04] F. Manola, E. Miller, RDF Primer, http:/ / www.w3.org/ TR/ rdf-primer/ , 2004.

[MV10] T. Markotschi, J. Volker, GuessWhat?!-Human Intelligence for Mining Linked

Data, In Proceedings of the Workshop on Knowledge Injection into and Extrac­

t ion from Linked Data (KIELD) at the International Conference on Knowledge

Engineering and Knowledge Management (EKAW) , 2010.

- --------- ------------------------------------

84

[NUM07] A. Nikolov,V. Uren, E. Motta, Knofuss: a comprehensive architecture for

knowledge fusion , In Proceedings of the 4th International Conference on Knowledge

Capture, K-CAP 2007, pp. 185-186, ACM, New York ,2007.

[PHH04] P. Patel-Schneider, P. Hayes, and I. Horrocks, OWL Web Ontology Language

semantics and abstract syntax Recommendation, http: / j www.w3.org/ TR/ owl­

semantics/ , 2004.

[PS06] E. Prud'hommeaux, and A. Seaborne, SPARQL Query Language for RDF,

http:/ j www.w3.org/ TR/ rdf-sparql-query/ , 2006.

[RDF04] RDF / XML Syntax Specication (Revised) ,World Wide Web Consortium,

http:/ j www.w3.org/ TR/ rdf-syntax-grammar/ , 2004.

[ROH05] L. Rutledge, J. Ossenbruggen, L. Hardman, Making RDF Presentable: Inte­

grated Global and Local SemanticWeb Browsing. In: Proc WWW2005, Chiba, pp

199-206, 2005.

[Row09] M. Rowe, Interlinking Distributed Social Graphs, Linked Data on the Web

,Workshop , LDOW, 2009.

[JN07] H. Jia, J. Newman, H. Tianfield, A new formai concept analysis based learning

approach to ontology building, in Proceedings of the 2nd International Conference

on Metadata and Semantics Research (MTSR 2007), pp. 433-444, 2007.

[RSS08] Y. Raimond, C. Sutton, and M. Sandler , Automatic interlinking of music

datasets on the semantic web , In Proceedings of the Linking Data On the Web

workshop at WWW'2008, 2008.

[SB10] T. Schandl, A. Blumauer, Poolparty: Skos thesaurus management utilizing

linked data, In Lora Aroyo, Grigoris Antoniou, Eero Hyvïfjnen, Annette ten Teije,

Reiner Stuckenschmidt, Liliana Cabral, and Tania Tudorache, editors, ESWC (2),

volume 6089 of Lecture Notes in Computer Science, pages 421-425, Springer, 2010.

85

[SB009] H. Stoermer, P. Bouquet, A Novel Approach for Entity Linkage, ln Proceedings

of IRI 2009, the lOth IEEE International Conference on Information Reuse and

Integration, vol. 10, pp. 151-156, USA, 2009.

[SCRGDS09] M. Salvadores, G. Correndo, B. Rodriguez-Castro , N. Gibbins, J. Darling­

ton, N. R. Shadbolt , LinksB2N: Automatic data integration for the semantic web,

In OTM Conferenc , pp. 1121-1138, 2009.

[SLZ09] F. Scharffe, Y. Liu, and C. Zhou. RDF-AI: an architecture for RDF datasets

matching, fusion and interlink, In Workshop on Identity and Reference in Knowl­

edge Representation, IJCAI 2009, 2009.

[SSK05] G. Stoilos , G. Stamou, and S. Kollias , A string metric for ontology alignment , ln

Proc. 4th International Semantic Web Conference (ISWC) , volume 3729 of Lecture

notes in computer science, pp. 624-637, Galway (IE), 2005.

[Szl09] G. Szlechtman, On the Semantic Web: SPARQL queries,

http : / / blogs.southwor:ks.net/ gabrielsz/ category j semant icweb j , January 9th,

2009.

[VBGK09] J . Volz, C. Bizer, M. Gaedke, G. Kobilarov, Silk- A link discovery framework

for the web of data, In Proceedings of the 2nd Linked Data on theWebWorkshop,

April 2009.

[VG03] P. Valtchev , D. Cosser, C. Roume, and M. Hacene, Galicia: an open platform for

lattices, In Using Conceptual Structures: Contributions to ICCS 2003, B. Ganter

and A. de Moor, Eds. Shaker Verlag, pp. 241-254, 2003.

[WB04] B. Wormuth, P. B€cker , Introduction to formal concept analysis, in: 2nd Inter­

national Conference of Formal Concept Analysis, Sydney, 2004.

[WH06] J. Wang, K. He, Towards representing FCA-based ontologies in Semantic Web

Rule Language, In Proceedings of the Sixth IEEE International Conference on

Computer and Information Technology (CIT'06), Korea, 2006.

86

[Zha07] Y. Zhao, Using Formai Concept Analysis for Semantic Web Applications,

Springer-Verlag Berlin Heidelberg, SCI (42):157-176, 2007.

