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RESUME

Avec l'augmentation massive de la quantité de données disponibles sur le web, la
détection et I'analyse d’information dans le contenu web deviennent trés rentables. Le
déploiement des données structurées fondé sur les technologies du Web sémantique a aug-
menté de fagon significative en ligne au cours des deux derniéres décennies. L’extraction
d’information devient donc un probléme majeur entre les chercheurs du Web sémantique.

Pour publier des données structurées sur le Web, les sources de données sont décrites
avec le Cadre de Description des Ressources (Resource Description Framework ou RDF).

Dans cette mémoire, nous cherchons & extraire la structure conceptuelle du Web de
données, c’est & dire, des données RDF dans le Web de documents. L’objectif principal
est d’apprendre le niveau du schéma & partir du niveau d’instances, en d’autres termes,
nous essayons de convertir les données RDF 4 RDF Schéma (RDFS) par apprentissage
de la structure conceptuelle induite par des individus décrits en RDF.

Pour construire le treillis de concepts & partir de données RDF, les concepts sont
identifiés & 1’aide de I’Analyse de concepts formels (FCA). Le nombre de concepts est
basé sur le nombre de sous-ensembles possibles contenant ressources RDF similaires.
Par ressources RDF similaires, on veut dire que ’on considére I’ensemble des ressources
RDF qui partagent un ensemble commun d’attributs. Aprés la construction du treillis de
concepts, nous allons tenir compte des propriétés et des propriétés de données déduites
& partir de données RDF pour construire le schéma.

Un autre défi pour construire le modéle RDFS est le fait de nommer les classes
de RDFS. Pour cela, on utilise DBpedia. DBpedia contient 1’'information structurée de
Wikipédia, qui contient des informations trés utiles nous permettant d’apprendre le type
d’instances de sortie dans les données RDF.

La méthodologie présentée dans cette thése extrait le schéma maximum possible &
partir du niveau d’instance de données RDF. En adoptant les étapes mentionnées avant,
on atteint la capacité d’exploiter la structure conceptuelle & partir du Web de données.

Mots-clés: RDF, RDFS, DBpedia, treillis de galois, données liées
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ABSTRACT

The amount of available data on the web has considerably increased in recent years,
thus the detection and analysis of useful information from its content is very profitable.
Deployment of structured data based on Semantic Web technologies has grown signifi-
cantly online in past two decades.

Therefore, information extraction has become a major concern among Semantic Web
researchers. To publish structured data on the web, data sources are published using
the Resource Description Framework (RDF) data model.

This thesis aims at extracting conceptual structures from Web of Data, i.e., RDF
data in Web of documents. The main objective is to learn schema level from instance
level in a dataset; in other words, we try to convert the RDF data into a data with
the RDF Schema (RDFS) model by learning the conceptual structure between RDF
individuals in the instance level.

To construct a concept lattice from the RDF data, concepts are identified via Formal
Concept Analysis (FCA). The number of concepts is based on the number of possible
subsets containing similar RDF individuals. By similar RDF individuals we mean the
set of RDF resources which share a common set of attributes. After detecting concepts
of the concept lattice -classes of RDFS- and the hierarchical relations between them, we
take into account the properties and the inferred data properties from the RDF data in
order to construct the schema level.

Another challenge in building the RDFS model from data is naming the RDFS
classes. We overcome this issue by using DBpedia. DBpedia contains the structured
information from Wikipedia, which contains very useful information allowing us to learn
the type of exiting instances in the RDF data.

The proposed methodology in the thesis extracts the maximum possible schema from
the instance level of RDF data. By adopting the aforementioned steps, we achieved the
capability to exploit conceptual structure from Web.

Keywords: RDF, RDFS, DBpedia, concept lattice, linked data






INTRODUCTION

Today, the Web of documents has expanded to the Web of Data since the appearance
of Semantic Web. Web of Data is described as graphs of data. It rapidly produces large
datasets containing billions of RDF triples from different domains of knowledge. Thus,
with high growing availability of structured data on the web, exploiting it becomes ever
more interesting.

Compared to RDF data, XML and HTML are more readable by humans than RDF
since RDF data doesn’t explicitly follow hierarchical and sequential structure formats.
Therefore, RDF model lacks the simplicity of human readability and writability for its
documents.

We believe that concept extraction from Web of Data provided in RDF helps us for
fulfilling user’s requirements in having a better understanding of heterogeneous data
on the web. Implementing this idea could lead us to improve the readability of RDF
statements by ordering and grouping them.

FCA is a key issue for formally discovering and representing concept hierarchies as well

as the clustering of knowledge found on the web.

Motivation

Even though the data sources are structurally defined on Web of Data, the effort
for reducing decentralization of data which suffers from the lack of vocabulary in non-
conceptualized data is interesting. In other words, extracting schema from data becomes
more interesting when it comes to data without explicit conceptualization.

RDF describes resources without considering taxonomies of their classes and properties.
The approach of discovering conceptual structure from Web of Data represented as RDF

triples is possible by using FCA.



Objective

Extraction of schema from RDF data could lead to RDFS model construction which
contains richer vocabularies for describing the data. RDFS is an extension of RDF
model which allows the description of RDF terms in the form of class (types of the
instances), subClass (relation between classes), property (properties which describe
classes) and subProperty (relation between properties) as well as domain and range
of the properties. Obtaining an RDFS model from the RDF data helps us solve the

problems of heterogeneity in raw data of the web.

Structure of this dissertation

This dissertation is organized as follows:
In Chapter 1, we define the basic concepts which are used throughout this thesis. The
main concepts that are explained in the chapter include: Resource Description Frame-
work (RDF), RDF Schema (RDFS), Formal Concept Analysis (FCA) and DBpedia.
Chapter 2 presents a review of the literature. It presents related works to our thesis
and the comparison of our works to them. First, the chapter discusses the basic simi-
larity methods that exist for ontologies. The similarity methods are used for building
interlinking tools which are introduced in continuance briefly. Finally, we present our
approach in comparison to the other works for extracting similar RDF individuals.
Chapter 3 describes the full implementation of our methodology in addition to the in-
troduction to some Java platforms and APIs required during implementation.
Finally, the methodology is evaluated by three metric measurements including precision,

recall and f-measure in Chapter 4.



CHAPTER 1

MAIN CONCEPTS

The current chapter provides background information on technologies we benefited
from during our approach. In two first sections, brief introductions to RDF and RDFS
models are provided. Third section introduces FCA which plays an important role in
our methodology. Finally, the DBpedia which contains useful knowledge for generating

our final output is proposed.

1.1 RBF

The Resource Description Framework (RDF) is a fundamental data model in Se-

mantic Web technology [MMO04]. It is designed to be read and understood by machines.
As a generic data model, RDF represents the information on the web in the form of
<subject-predicate-object> triples. Each triple is a sentence describing a resource. A
resource is an entity which can be a subject, predicate or object in an RDF triple. Each
resource on the web is uniquely identified by Uniform Resource Identifier (URI). URI
identifies a resource via location or a name or both.
The subject or first part of an RDF triple is a resource which the statement describes.
The predicate or second part of a triple is a property or aspect which relates the resource
to an object. Therefore, the object is third part of a triple which could be another re-
source or a literal value defined as a string or a number, a date, etc [LS99].

RDF depicts the information on the web as directed graphs. An RDF graph is composed




of a set of triples where each triple represents an arc. Therefore, each RDF statement
is a subgraph where each node is a subject or object whereas arcs are predicates (The
arc starts from the subject and it is directed to the object). Further, RDF can use
XML based syntax, i.e., RDF /XML to create or modify the RDF graphs [RDF04]. An
example of RDF graph is given in the following [Li13].

Suppose that a student with name James Anderson has professor Paul Jones as his su-
pervisor. The statements related to this information are represented as an RDF graph

shown in Figure 1.1.

”'mwwwmydomah.org/unim/ Pauuoﬂesﬂ\‘\umm'ms':5 hitp:/fwww mydomain.org/funi-ns/ jam&m
M TR T

BT

’é%

@pj/www,mmnahorgfurﬂm/ {Professor _)

Figure 1.1: RDF graph example [Li13]

The XML syntax of the RDF data is:

<?xml version="1.0"7>

<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:uni="http://www.mydomain.org/uni-ns">

<rdf:Description rdf:about="http://www.mydomain.org/uni-ns/PaulJones">

<rdf:type rdf:resource="http://www.mydomain.org/uni-ns/Professor"/>

<uni:advises rdf:resource="http://www.mydomain.org/uni-ns/JamesAnderson"/>

</rdf :Description>

</rdf :RDF>

http://www.w3.0rg/1999/02/22-rdf -syntax-ns# and http://www.mydomain.org/uni-ns

are XML namespaces. One uses XML namespace in RDF to show the collection of names




of resources and properties. For example, the xmlns:rdf namespace specifies that the el-
ements with rdf prefix come from the namespace http://www.w3.0rg/1999/02/22-rdf -
-syntax-ns which is known as a namespace for RDF vocabularies. Moreover, XML
Qualified Name is a shortcut for URI; for example, we could use uni instead of the full
URI http://www.mydomain.org/uni-ns.

In the graph, Paul Jones is connected to James Anderson by predicate advises. Be-
sides, there exists another relation which connects Paul Jones to the class Professor at
the schema level; therefore, Paul Jones is connected to class Professor by using pred-
icate type. Again, the namespace rdf is used instead of writing the full URI http:-
//www.w3.0rg/1999/02/22-rdf-syntax-ns#. The full example of the schema level is

given in the following section.

1.2 RDF Schema (RDFS)

On top of the RDF which doesn’t provide significant semantics, RDFS is an exten-
sible knowledge representation language which adds vocabulary to RDF in order to ex-
press information about class and subclass and properties (relationship between classes)
[BVMO4]. These vocabularies contain class, subclass, relationship between classes, prop-
erty, subproperty, relationship between properties, domains and ranges, etc.

The RDFS level of the example described in the previous section is given in the following
graph [Lil3| (drawn as Figure 1.2):
The schema part of the RDF/XML syntax from RDFS data is:

<rdfs:Class rdf:ID = "Person"/>

<rdfs:Class rdf:ID = "Student"/>
<rdfs:subClass0f rdf:resource = "#Person"/>
</rdfs:Class>

<rdfs:Class rdf:ID = "Professor">

<rdfs:subClass0f rdf:resource = "#Person"/>




Person
f %%%,a’
&
rdfs:domain rdfs:range
Professor Ahisps Student

RDFS level 3 &

‘h I

3 5
RDF level e

Paul Jones » James Anderson

Figure 1.2: RDFS graph example [Li13]

</rdfs:Class>

<rdfs:Property rdf:ID = "advises">
<rdfs:domain rdf:resource = "#Professor"/>
<rdfs:range rdf:resource = "#Student"/>

</rdfs:Property>

"4 is used instead of writing URI reference. The rdfs:domain and rdfs:range predi-
cates relate a predicate to the class of instances which can be considered as the subject
or object of the predicate, respectively. rdfs:subClass0f identifies the hierarchical re-
lationship between classes at the schema level. In the above example, Professor and
Student are subclasses of Person class. advises is a property which has classes Professor

and Student respectively as its domain and range.



1.3 FCA

1.3.1 Introduction to Formal Concept Analysis

FCA stands for Formal Concept Analysis, a formal representation of data that has
the potential to be represented as conceptual structure [GW99]. FCA is a data analysis
technique that helps to identify the conceptual structure of data using formal contexts
and concept lattices. Every dataset which consists of a binary relation between a set of

objects and a set of attributes can be introduced as a formal context in FCA [WBO04].

Definition 1 (Formal Context): A formal context is a triple K := (G, M, I), where
G and M are sets and I is a relation between G and M. The elements of G and M are
called objects and attributes, respectively, and (g, m) € I is read as "an object g has an
attribute m".

A set of objects and their corresponding attributes plus the relations that exist between
those objects and attributes can be shown in a formal context. Formal context can be
represented as a table in which rows are objects and columns are attributes and each
cross in the table is a relation between an object and corresponding attribute.

An example of formal context can be seen in Figure 1.3. The example includes four

object and four attributes.

TV A A ]
Obj1 ®
oz ® g
5
8 &

Figure 1.3: Formal context example

Further, the formal context can be represented in conceptual structure which will be

explained in the next section.




1.3.2 Concept Lattice

A formal concept can be represented in a lattice of concepts in which each concept
includes a set of objects and related attributes. The definition of formal concept and

concept lattice are given in the following [WHO06].

Definition 2 ( ' Operation):
For a set A C G of objects, we define: A'={me M |Vge A:(9,m) e I}
Correspondingly, for aset B C M of attributes, we define: B' = {g € G |Vm € B: (g,m) € I'}

The formal concept is defined as:

Definition 3 (Formal Concept): A formal concept C in the formal context (G, M, I)
is a pair (4, B), where A C G, BC M, A’ = B and B’ = A. The set A is called the
extent and the set B the intent of the concept C.

In other words, each concept is represented by a pair consisting of an extension and an
intension which are a set of objects and a set of attributes, respectively. As a general
rule, the objects in the extension have all the attributes in their intension in common
and have no other attributes in common. Further, all the attributes in the intension are
shared by all the objects in the extension and no other object outside of the extension.

A concept lattice arises on the top of the concepts derived from formal context.

Definition 4 (Concept Lattice): For a formal context K := (G, M, I) and two con-
cepts C; = (A3, B1) and C5 = (A2, By), a hierarchical subconcept-superconcept relation
is given by

(Al,Bl) < (Az,Bz) &S A C Ay (<=> Bl1D> B2)

The set of all concepts in K ordered by the < relation is called the concept lattice of K.
The concept lattice of the above example is shown in Figure 1.4.

The lattice can also be presented using reduced labeling diagram [GW99]. Reduced




/

Attl

Obj1, Obj 2, Obj 3,0bj4

Attl, Att2

0Obj3 ,0bj4

T

Attl, Att 2

Obj1,0bj2

Attl, Att 2, Att3, Att4

Atltl, Att 2, Att3

Obj1

Figure 1.4: Concept lattice example

labeling diagram only shows the attributes and objects once in lattice diagram (Figure

1.5); therefore, it makes data analyzation easier for some applications.

1.4 DBpedia

DBpedia! is a project that aims at extracting structured information from Wikipedia
content. This open source data set is available on the web as linked data -RDF triples- for
human and machine usage. Since DBpedia is provided in structural form, it allows users
for much easier querying and exploring against Wikipedia content by using SPARQL
endpoint. So far DBpedia is known as a central interlinking hub for published data on the
web and it is evolved by any changes in Wikipedia [ABKLCO08]. DBpedia includes around

3.5 million instances that belong to different categories. Also, DBpedia is available in

97 different languages. More information is given later in this section.

In the following, the structure of DBpedia and the source of its data will be described.

Finally, the methods for accessing DBpedia are discussed.

Thttp://dbpedia.org/About
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Att 1
Att 2
Obj 2
Att 4 Att 3
Obj 3, Obj 4 Obj 1

\_/

Figure 1.5: Reduced labeling diagram of concept lattice example

1.4.1 Data Source

DBpedia is a cross-domain ontology which has been built manually by the members
of DBpedia community. DBpedia uses Wikipedia as its source of knowledge. Wikipedia
is one of the fastest-growing and largest collections of human knowledge ever collected.
Since some of the information in Wikipedia is unstructured, querying information from it
needs a full text search. The DBpedia community found a way to convert the contents of
Wikipedia into RDF triples. In addition to free text information, DBpedia also uses the
different types of structured information from Wikipedia including infobox templates?,
title, abstract, categorization information, images, geo information, and external url
links and converts them into RDF triples. Figure 1.6 shows an example of extracting
semantics from a Wikipedia infobox for Portugal’s content in DBpedia. Currently, the
DBpedia ontology ? is created based on several Wikipedia infobox templates and con-
verts them into 359 classes with 1,775 properties.

As mentioned earlier, DBpedia includes 3.5 million instances and 2.35 million of which

are classified in the DBpedia Ontology, including persons, places, works (contain music

'http://en.wikipedia.org/wiki/Help:Infobox
http://wiki.dbpedia.org/Ontology
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0box settlement
| official_name = Algarve

settlement_type = Region

!

| image_map = LocalRegiaoAlgarve.svg
| mapsize = 180px

| map_caption = Map showing Algarve

Region in Portugal
subdivision_type = [[Countries of the

world|Country]]
subdivision_name = {{POR}}
subdivision_type3 = Capital city
subdivision_name3 = [[Faro, Portugal|Faro]]

area._total_km2 = 5412
population_total = 410066
timezone = [[Western European Uap shavwing Algai va Regios n Portagat
Time IWET]] Cosmbry 1 Portegm
| utc_offset = 4§ Capltal city fars
| timezone_DST = [[Western European Arse
Sumnier Time |WEST]] - Volal _S412m? Q0006 w0
| utc_offset DST =+1 Poputation
| blank _name_secl = [[NUTS]] code S e
| blank_info_secl = PT15 i el idaciad)
i

blank_name_sec2 = [[GDP]] per capita 2 ) L JSESTAED

wUTS code TIS
b}l blank_info_sec2 = €19,260 (2006) 00 porcaphs (93] ¢ 10290 208!

Figure 1.6: Infobox of Portugal

Class Instances
Resource (overall) | 2,350,000
Place 573,000
Person 764,000
Work 333,000
Species 202,000
Organisation 192,000

Table 1.1: Classes in DBpedia ontology

albums, films and video games), organizations (contain companies and educational insti-
tutions), species. Table 1.1 shows the number of the instances per class in the DBpedia

ontology.

1.4.2 Data Structure

In contrast to Wikipedia, which lacks a structural representation of data, DBpedia.
uses Semantic Web technologies for extracting structured information from Wikipedia
to facilitate querying and searching tasks. DBpedia ontology is based on the OWL lan-
guage [PHHO4].

The DBpedia extractor framework is used to extract intended data from Wikipedia
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[MLASH12|. Some of the main information extracted from Wikipedia to be used in
DBpedia is given below:

Labels: Every Wikipedia page defines a resource and has a title which is specified by
rdf:1label in the DBpedia dataset.

Abstracts:

Short Abstract: The first paragraph in each Wikipedia is considered as a short abstract
of a corresponding resource specified by rdfs: comment.

Long Abstract: The text before a table of contents in each Wikipedia article is consid-
ered as a long abstract of a resource specified by dbpedia-owl:abstract.
Interlanguage Links: For each resource, the DBpedia dataset includes the links which
connect articles about the same topic in different language editions of Wikipedia and
uses them for assigning labels and abstracts in different languages to the resource.
Images: Each image in Wikipedia article related to a resource refers to Wikimedia
Commons and it is specified by foaf :depiction in the DBpedia dataset.

Redirects: Since the synonym of each resource can be resources dedicated to other
articles in Wikipedia, DBpedia redirects the page of the resource to those pages as ref-
erences to that article and specify it by dbpedia-owl:wikiPageRedirects.
Disambiguation: The disambiguation links of a Wikipedia page corresponding to a
resource are specified by dbpedia-owl:wikiPageDisambiguates.

Infobox: As mentioned earlier, each infobox contains properties which are represented
by http://dbpedia.org/property/ namespace in DBpedia. The name of a property is
the same as the name used in infobox. Moreover, the Ontology Infobox Types dataset
contains the rdf:types of the instances which have been extracted from the infoboxes.
Geo-coordinates: The latitude and longitude of a resources are specified by geo:lat
and geo:long in DBpedia and express coordinates using Basic Geo (WGS84 lat/long)
Vocabulary and the GeoRSS Simple encoding of the W3C Geospatial Vocabulary.
External links: Specified by dbpedia:reference in DBpedia, External links contain
the references to external web resources.

Pagelinks: Pagelinks include all links between Wikipedia articles specified by dbpedia-owl-
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:wikilink.

Homepages: The homepages of resources such as companies and organizations are
specified by foaf :homepage in DBpedia.

Person Data: It include the resources about persons containing personal information
such as surname, and birth date which are respectively specified by foaf : surname, and
dbpedia:birthDate.

Categories: Categories are specified by skos:concepts and skos:broader and they
includes categories using skos .

Moreover, DBpedia also includes links to other knowledge bases such as EuroStat, The
World Factbook, Freebase, OpenCyc ,YAGO and Umbel.

1.4.3 Data Access

Three mechanisms exist for accessing DBpedia: Linked Data, the SPARQL protocol,
and downloadable RDF dumps [ABKLCO08].
Linked Data: DBpedia presents the structural format of Wikipedia content as Linked
Data. Linked data publishes data on the web as RDF triples. Linked data principles
include: URIs for identifying things (resources) in the world, RDF model for structuring
and linking descriptions of things, HTTP for retrieving descriptions of those resources.
The URIs give information about the resource, i.e., every information related to the
resource in the form of RDF triples. For example, part of information about Barack
OBama identified as URI http://dbpedia.org/page/Barack_Obama can be found in
Figure 1.7. The Figure shows a HTML view of the information about resource accessible
by typing the resource address in browsers.
SPARQL Protocol: The DBpedia dataset allows users to ask complex queries against
Wikipedia. Looking for the intended triple by looking on linked data is not practical;
therefore, developers came up with frameworks where users can ask their queries over the
SPARQL protocol to this endpoint at http://dbpedia.org/sparql. More information

on SPARQL and instructions are given later in chapter 3.
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Figure 1.7: The DBpedia dataset for Barack Obama

RDF Dumps: However, SPARQL protocol accessible at http://dbpedia.org/sparql
allows the online queries for user, some users want to do the offline queries from DBpedia

by downloading RDF Dumps (or N-Triple serializations) of DBpedia.

1.5 Summary

This chapter introduced the main concepts we need to know before diving into the
details of the methodology steps. We first introduced RDF and RDFS to specify our in-
put and output data. Then, FCA theory and DBpedia as a knowledge tool are proposed.

In the next chapter, the related works to our approach are introduced.




CHAPTER 11

REVIEW OF THE LITERATURE

With the rise of data on the web, large numbers of data sources from a wide range
of domains have been produced recently. In order to publish structured data on the
web, these data sources are published using the RDF data model. Due to the RDF
graph topology, linked data-based applications can navigate throughout a data source
and discover new data sources by following RDF links.

This thesis aims to look for schema out of the concrete data, i.e., grouping individual
resources into clusters to become RDF'S classes. Since grouping typically uses similarities
between the individuals in a dataset, examining different ways of defining the similarity
in the semantic web context is necessary.

The chapter studies similarity in interlinking tools. Before discussing interlinking tools,
some similarity measurements used in those tools are introduced. Then, the similarity
methodology used in our research, i.e. FCA, is discussed and compared with other
work on RDF data. Finally, the usage of FCA in different semantic web applications is
described.

2.1 Basic Concepts Related to Similarity

The following introduces the basic methods for assessing the similarity and relations
between entities of ontologies. Interlinking tools use the combination of these similarity

methods in an adequate way to assess the similarity between RDF individuals in LOD.
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Figure 2.1: Similarity techniques
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Four basic techniques for assessing the similarity between ontology entities exist: Name-
based, Structure-based, Extensional and Semantic-based. They are respectively de-

scribed in the following sections [ES07].

First, some basic definitions related to the similarity measurement between two en-

tities are introduced.

Definition 5 (Similarity): A similarity o : O x O = R is a function from pair of

entities to a real number expressing the similarity between two objects such that:

Vz,y € 0,0(z,y) 20 (positiveness)

Vz € O,Vy,z € O,0(z,z) > o(y, 2) (mazimality)

Vz,y € 0,0(z,y) = o(y,z)  (symmetry)
Definition 6 (Dissimilarity): Given a set O of entities, a dissimilarity 6 : O x O = R
is a function from a pair of entities to a real number such that:
Vz,y € 0,6(z,y) 20 (positiveness)

Vz € 0,6(z,z) =0  (minimality)
vz,y € 0,6(z,y) = 6(y,x)  (symmetry)

For dissimilarity, the distance and ultrametric notions could be considered:

Definition 7 (Distance): A distance (or metric) § : O x O — R is a dissimilarity

function satisfying the definiteness and triangular inequality:

Vz,y € O,6(z,y) =0if andonly if x=y (definiteness)
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Vz,y,z € 0,6(z,y) + 6(y, z) > 6(z, 2) (triangular inequality)

Definition 8 (Ultrametric): Given a set O of entities, an ultrametric is a metric

such that:

Vz,y,z € 0,6(z,y) < mazx(d(z, 2),(y, 2)) (ultrametric inequality)

To simplify the process of comparing measures with each other and improving the
accuracy of measurements, the measures shall be normalized. To do that, for all

(dis)similarity methods in this report the normalized versions are given.

Definition 9 (Normalised (dis)similarity): A (dis)similarity is said to be normalised
if it ranges over the unit interval of real numbers [0 1]. A normalised version of a

(dis)similarity o (respectively, §) is denoted as & (respectively, ).

2.1.1 Name-based Techniques

Name-based (Terminological) techniques are the similarity methods based on termi-
nology and they can be used to compare class names, URLs, label and comments of
different entities.

Due to Synonymy (entities with the different names but the same meanings) and Homonymy
(entities with the same name but different meanings) problems, we cannot simply com-
pare the entities just by their names. In addition to Synonymy and Homonymy problems,
words from different languages and syntactic variations (For example, an abbreviation
with two different usage expanded) of the same words could also cause difficulties in

comparing terms with each other according to their similar names.
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Name-based techniques compare the terms by considering strings only as sequences of
characters (String-based methods) or by taking into account some linguistic knowledge

interpreting these strings (Language-based methods).

String-based methods

Depending on the structure view of strings, many string-based methods have been
created. Some of these methods used frequently in similarity techniques are discussed
below.

a. Normalisation:

To enhance the results of string comparison, the initial strings could be normalized by
some normalization procedures:

Case normalization converts each alphabetic character of string to its lower case.
Diacritics and Digit suppression replaces character with diacritic signs with their most
frequent replacements and removes the numbers from strings.

Blank normalization converts all blank characters to a single blank.

Link stripping replaces the links between words such as apostrophe and underline with
blanks or dashes.

Punctuation elimination removes punctuation signs.

All these normalizations must be applied with some caution. For example, in diacrit-
ics suppression which converts livré to livre, we should consider in French there are
differences between the meanings of these two words; therefore, diacritics suppression
shouldn’t be applied in this case.

b. String equality and Substring techniques:

String equality returns 0 when the input strings are different and returns 1 when they
are the same (when the result is 0 it doesn’t consider how much these two strings are

differ from each other).

Definition 10 (String equality): String equality is a similarity ¢ : S x S — [0 1]
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such that Vz,y € S,0(z,z) = l,and if z # y,0(z,y) =0

Hamming distance is another metric which calculates the dissimilarity between two
strings by counting the number of positions in which the characters of two strings are
different.

Substring test examines if one string is a substring of another; thus, they become very

similar.

Definition 11 (Substring test): Substring test is a similarity ¢ : S xS — [0 1]
such that Vz,y € S, if there exist p,s € S wherex = p+y+sory =p+z+s, then
o(z,y) = 1, otherwise o(z,y) = 0.

Substring similarity computes the ratio of the common subpart between two strings
(this method is also useful for examining if one string is prefix or suffix of another string
or finding the longest common suffix or prefix among strings; it is also used to com-
pare specific and general strings and compare strings and similar abbreviations to those

strings).

Definition 12 (Substring Similarity): Substring similarity is a similarity o : SxS —
[0 1] such that Vz,y € S and ¢ is the longest common substring of z and y:

2|¢|

@Y = L)

The n-gram as another substring test method counts the number of common n-grams
(sequence of n characters) between two strings. For example, 3-grams of word paper
are pap, ape and per. This function is efficient when only few characters of string are

missed in another string,

Definition 13 (n-gram similarity): Let ngram(s,n) be the set of substrings of s
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of length n. The n-gram similarity is a similarity ¢ : S x S — R such that:

a(s,t) = |ngram(s,n) N ngram(t, n)|

The normalised version of this function is as follows:

ngram(s,n) N ngram(t,n)
min(|s|, |t]) —n+1

glat=

c. Edit distance:
Edit distance between two strings consists of the sequence of operations with minimal
cost (each operation has a cost) to obtain one string from another (might be used for

the words with mistakes in their spelling).

Definition 14 (Edit distance): Given a set Op of string operations (op : S — S),and
a cost function w : Op — R, such that for any pair of strings there exists a sequence
of operations that transform the first one into the second one (and vice versa), the edit
distance is a dissimilarity o : S x S — [01] where 6(s,t), is the cost of the less costly

sequence of operations that transform s into ¢.

5(5,) = Mn(0p,) ri0pn(...op ()=t () Wo:)
i€l

(op;)1 indicates the set of operations that convert string s to t and I consists of a variety
of sets of operation numbers. For each set of I the cost of sequence of operations are
calculated to examine the one with the lowest cost.

Three main operations of edit distance consist of: Insertion of a character, Replacement
of a character with another one and Deletion of a character.

The Edit distance was first introduced by Levenshtein and in its simplified definition all

operations have the same cost equal to 1 [Lev65].
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Jaro measure is another measure based on the common characters between two strings
(since the Jaro is not symmetric, it’s not similarity).

Definition 15 (Jaro measure): The Jaro measure is a non symmetric measure
0 :S xS — [0 1] such that

om(s,t)|  |com(t,8)| | |com(s,t)| — |transp(s,t)|
s Il |com (s, t)|

a(s,t):%x(lc )

|com(s, t)| stands for the number of common characters between s and t¢.

Notice that two characters of strings s and ¢ are common if they are the same(s[:] = t[5])
and j and i satisfy 35 € [i — (min(]s|, |t])/2¢ + min(|s|, |t|)/2](i and j are the positions
of common characters in s and t).

|transp(s,t)| indicates the number of cases where the i-th common character of s is not

equal to the i-th common character of ¢. For instance, the transp( MARTHA'/ MARHTA')

is-equal to-2 because between all commen eharacters of s-and -t enly-twe-characters T
and H are placed disorderly in s and ¢.
Jaro — Winkler measure is a variant of Jaro measure and it focuses on the longest

common prefix between two strings.

Definition 16 (Jaro-Winkler measure): The Jaro — Winkler measure 0 : S xS —

[0 1] is as follows:

l—0 8,1
0(37 t) = O'Jaro(sa t) +P X Q X '+‘(7).O(Q
such that P is the length of the common prefix and @ is a constant and o j4r0(s, t) stands
for the Jaro measure in the previous definition.
Smoa is another similarity measurement introduced in [SSK05]. Smoa depends on both

matched and unmatched substring lengths and the result value of the measure is in [-1,

1].
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d. Token-based distance:

In Token-based technique, each string is considered as a (multi)set of words (bag of
words). In comparison to set, multi set’s elements could appear several times in multi
set. This technique works out for long texts by aggregating different sources of strings
or by splitting strings into independent tokens.

Each multi set or bag of words could be a vector in which each dimension is a term
(token) and each position in the vector is the number of occurrences of the token in
its related multi set Many existing measures can be cited related to the token-based
techniques. Two of these measures (Cosine similarity and TF — IDF') are discussed
here:

Cosin Similarity as a usual metric distance calculates the cosine of the angles between

two vectors.

Definition 17 (Cosine similarity): Given g and _t), the vectors corresponding
to two strings s and ¢ in a vector space V , the cosine similarity is the function

oy : V x V — [01] such that:

Y
Dielv) Si X i
UV( )

8,t) =
— =
\/Zie|V| 812X D iev) ti 2

For instance, for two sentences "I have to be there" and "I have to go to" we would have
(For each sentence, the vector including all words of both sentences is created and the
values of each dimension would be the frequency of each word in respect sentences.):
Sentence 1: [I, have, to, be, there, go| = [1,1,1,1,1,0]

Sentence 2: [I, have, to, be, there, go] = [1,1,2,0,0,1]

and their Cosin similarity would be:

oy(I have to be there, I have to go to)
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| AxD+(1x1)+(1x2)+(1x0)+(1x0)+(0x1) 4
V@D +@+ @)+ @)+ @)+ (D) + @)+ @) + (00 + (03 + (1) V35

There exists several similarity measures that attempt to use lower dimensions. La-
tent Semantic Indexing (LSI) as a dimensionality reduction technique, using matrix-
computation methods to reduce the dimension space of each vector. LST is based on the
idea that words that occur in the same context have identical meanings. LS assigns a
column of a matrix to each document; then, all columns of the matrix are decomposed
by the singular-value decomposition (SV D) method and at the meantime the factors of
matrix with less influence on the rest information would be removed; thus, the dimen-
sions of vectors became smaller [DDFLH90].

Another common measure is TF — IDF (Term frequency-inverse document frequency).
This measure is used to assess the importance of each word in a document to whole
corpus. The importance is increased according to the number of times that the word

appears in the document (tf) by considering the inverse proportion of the word’s oc-

currence in the entire corpus(idf). Therefore, for measuring FFIDF, bothtf and-idf

become important.

Definition 18 (Term frequency-Inverse document frequency): Given a corpus

C of multisets, we define the following measures:

YVt €S, Vs e C,tf(t,s) =tls (term frequency)

€]

Vi €S, idf(t) = 1085t )

(inverse document frequency)
TFIDF(s,t) = tf(t,s) x idf(t)  (TFIDF)

In the above formula, s could be assumed as a document therefore t§s is the number
of occurrences of term ¢ in document s and idf(t) is the inverse document frequency of
term ¢ explained before.

e. Path comparison:
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Path comparison considers the distance of two compared entities from their superest
class as well as comparing the label of those entities and the entities in considered paths

(the path from their superest class).

Language-based methods

In language-based methods, a string is considered as a text composed of words oc-
curring in sequence with a grammatical structure. This method uses N L P techniques to
extract the meaningful terms from texts; by comparing these terms and their relations
the similarity between entities are assessed. There exist two types of linguistic methods:
the ones using only the internal linguistic properties of the instances (Intrinsic methods)
and those using external resources like dictionaries and lexicons (Extrinsic methods).
Intrinsic methods-Linguistic normalisation:

Each term can appear in various forms. The main kinds of terms’ forms are: Morpho-
logical (foundation form of a term based on some roots) divided to inflection and deriva-
tional or combination of them, Syntactic (Grammatical Structure of term) divided into
coordinate, permutation and insertion , Semantic (usually using Hypernymy (general
meaning) or Hyponymy (specific meaning) or Synonymy (same meaning)) , Multi-
lingual and Morphosyntactic combination of morphological (derivational) and syn-
tactic variants.

To obtain the standardized from of the term (normalisation), the combination of these
functions are used: Tokenizer (separate a string into its tokens by recognizing them by
punctuation, cases, blank characters, digits, etc.), Lemmatisation (Stemming), Term
extraction (extracting terms from text by applying syntactic and morphological trans-
formations and using patterns -multi rules- on multi terms for extracting terms), Stop
word elimination (eliminating common words)

Extrinsic methods:

Various kinds of linguistic resources are useful for finding the similarities between terms.

The list of linguistic recourses is proposed in the following:
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Lexicons: Lexicons or dictionaries are composed of sets of words with their definitions.
(For the words with several synonyms gloss-based distance could be used)
Multi-lingual lexicons: dictionaries or lexicons in which words have their equivalent
terms in other languages as their definitions, for example, the definition of word Paper
is Article which is a French word. Multi-lingual lexicons are useful for ontologies which
include words in different languages.

Semantico-syntactic lexicons: lexicons which record names, their categories and the
types of arguments taken by verbs and adjectives.

Thesauri: A thesaurus is a kind of lexicon with some relational information that includes
hypernyms, synonyms, and antonyms. (WordNet is an example of Thesaurus which dis-
tinguishes between words by making synsets (sets of synonyms).

Terminologies: Treasures which contains phrases rather than single words (in compari-
son to dictionaries it has less semantic ambiguity).

If these lexicons focus on specific domain the results would be more efficient; because
in this way the ontologies only concern on specialized senses for a word and not every
senses existing for a word. This would also be useful in common abbreviations. For
example, in company domain it would recognize the abbreviation PO as Purchase Order

instead of Post Office.

Some similarity measures based on lexicon resources are defined in the following:

Definition 19 (Synonymy similarity): Given two terms s and ¢ and a synonym

resource Y , the synonymy is a similarity o : S x S — [0 1] such that:

1 i) N3 o) #0

0 otherwise

a(s,t) =

Definition 20 (Cosynonymy similarity): Given two terms s and ¢ and a synonym
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resource Y ., the cosynonymy is a similarity o : S x S — [0 1] such that:

~—~

5) N3 ()]

B
o) = IS @) |

w0

Some other similarity measures consider hyponymy,/ hypernymy between synstes (these
methods are discussed in Relational structure of structure-based techniques).

The rest of the methods (usually not normalized) rely on information theoretic per-
spective. For example, Resnik method uses the hierarchical relation between synsets
of terms for measuring the similarity between two terms and it is based on information
theory. Therefore, the information content of a concept is the inverses of its occurrence
probability.

Another similarity measurement is In formation Theoretic Similarity method. it con-
siders information content of common synset information of two terms to the information
content of both terms.

For comparing two strings through lexicon resource Gloss overlap method is used. The
Gloss ovelap of two terms is based on the number of shared words (overlaps) in their

definitions (glosses).

2.1.2 Structure-based Techniques

Structural-based techniques based on conceptual relations which compare the struc-
ture of entities. This comparison is categorized into: 1- Internal structure which con-
siders the properties of entities in addition to their names and labels and 2- Relational

structure which compares the entities related to each other.
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Internal structure

Comparing entities according to their internal structure (e.g. the domain and range
of their properties) is another way to find the similarity between entities, but these meth-
ods try to cluster entities according to their similar structure rather than finding the
accurate similarity between these entities. Since the internal structure couldn’t provide
much information, these methods should be used in combination with other techniques.
Some internal structure comparisons are mentioned in the following:

Property comparison and keys:

Keys in classes have a main role in identifying individuals. Two classes identified in
the same way (each class has a primary key and the main keys of two classes have the
one-to-one relationship with each other) represent the same set of individuals.
Datatype comparison:

Property comparison may include property datatype comparison. One can say the prox-
imity between two datatypes are maximal when their types are the same (string and
string), low when compatible (string and character) and lower when non compatible
(string and integer). Since comparing datatypes technique is not complete and might
have some incorrect results, the methods using such techniques should use other tech-
niques in combination with datatype comparison.

Domain comparison:

In comparison to individuals, classes have domains instead of values. Comparing do-

mains with each other is based on both intersection and union of intervals.

Relational structure (external)

The similarity measure between two entities could be based on their positions hierar-
chies. When considering ontologies as graphs, relations between entities (edges between
nodes) are obtained. Contrary to Extensional methods in which entities mean indi-

viduals, in this approach, entities mean classes and properties. For finding similarity
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between graphs, graph homomorphism problem and maximum common directed sub-
graph (MCS) definitions are considered.

There exist three types of structural relations between entities, all based on their hi-
erarchies: Taxonomic relations (subClassOf), Mereologic relations (a-part-of) and all
involved relations.

Taxonomic structure:

Taxonomy relation (SubClassOf) is a very important factor in comparing ontologies
structures; therefore, many measures have been discovered in finding such relation be-
tween classes of ontologies. In taxonomy, a super-entity could have relation with one or
more sub-entities while a sub-entity could have relation with one or more super-entities.
Three popular similarity measures are: Structural Topological Dissimilarity on Hierar-
chies which is used to discovers the shortest paths, Wu-Palmer counts the number of
edges in the taxonomy between two classes and Upward Cotopic which counts the num-
ber of common super classes.

In addition to global methods mentioned so far, there exist some non-global measures,
such as super or subclass rules and bounded path matching.

Merelogic: In mereology, the relations between entities are whole part relations. The
sub-entity is a part of the super-entity and the super-entity can be composed of differ-
ent sub-entities. Therefore, the classes are considered more similar if they share similar
parts (we cannot have the same criteria as we had for Taxonomy -if all or most of leaves
of two entities are the same then the entities are the same to-because two super-entities
don’t have the same leaves). Besides, the extension of classes could be compared for
finding more similar objects (might share the same set of parts).

All relations: The similarity between entities could also be based on their all relations.
This can be extended to a set of classes and a set of relations. It means that if we have
a set of relations r; ... 7, in the first ontology which is similar to another set of relations
r1...Tn in the second ontology, it is possible to say that two classes are similar too.
For having more similarity we have to consider two other extension solutions:

Children: Two non-leaf entities are structurally similar if their immediate children sets
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are highly similar.
Leaves: Two non-leaf elements are structurally similar if their leaf sets are highly similar,

even if their immediate children are not.

2.1.3 Extensional Techniques

Extensional techniques are instance-based techniques and they are really useful for
comparing classes with their available individuals (elements). Extensional methods are
divided into: 1- the methods applied to classes (of ontologies) with common instances
(common extension comparison), 2~ the methods proposing instance identification tech-
niques and 3- the ones without identification (disjoint extension comparison). In the
mentioned extensional techniques the similarities between the sets of class instances are

measured.

Common extension comparison

One way to compare the classes is to find the intersection of their instances (ex-
tensions). The relations between entity sets are considered based on set theory: equal
(ANB = A = B), contains (ANB = A), contained-in (AN B = B), disjoint (AN B = 0)
and overlap.

Even though, the amount of incorrect data is small, it may lead to a huge fault in whole
results. Besides, the dissimilarity is one if two classes don’t have any of their instances

in common. For solving these problems the Hamming distance is used.
Definition 21 (Hamming distance): The Hamming distance between two sets is
a disimilarity function 6 : 2% x 28 — R, such that Vz,y C E

zUy—zNy|
§(z,y) = llT?A
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Another way to compute the similarity is based on the probabilistic of instances in sets.

Definition 22 (Jaccard similarity): Given two sets A and B,let P(X) be the prob-
abilities of a random instance to be in the set X. The Jaccard similarity is defined

by:

_ P(ANB)
o4 8) = 5E0E)

P(X) is a probability of random instance belongs to set X.

This measure is normalized and reaches 0 when AN B =0 ; and 1 when A = B.

One tool from formal concept analysis (FCA) is to compute concept lattice. The concept
lattice is composed of set of objects (instances) and their properties. This operation is
not accurate but it could be optimized by removing redundant relations and it starts
with the complete lattice of the set of instances and preserves the nodes if they are closed

otherwise the nodes are discarded [GW99].

Instance identification techniques

If the sets don’t have any instances in common; then, one way could be the identi-
fication of the relations between instances. One solution is to use keys in their external
identification. If the keys are not available other approaches with string-based and

structure-based techniques might be used to compare property values.

Disjoint extension comparison

When comparing instances is not directly possible some approximate techniques
should be used:
Statistical approach:

This approach is computing some statistics about the property values found in instances
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(such as maximum, minimum,. ..); therefore, this may help to characterize some inter-
nal structure of entities (domain of class properties). Moreover, since the data patterns
and distribution have lower time-consumption and need less data, data values can be
replaced with them.

Similarity-based extension comparison:

The method is based on the computed (dis)similarities between instances for comparing
the set of instances between classes (There is no any expectation from classes to share
the same instances).

Matching-based comparison:

In matching-based comparison, only the related elements(instances) would be compared

with each other (not all instances).

Definition 23 (Match-based similarity): Given a dissimilarity function o : ExXE —
R, the Match — based similarity between two subsets of E is a similarity function:

MSim : 2F x 28 5 R such thatVz,y C E

MATpepairing(z,y) (Z(e,e' Yep (e, e’))

MSim(z,y) = maz(|z|, |y|)

with Pairings(z,y) being the set of mappings of elements of = to elements of y.

2.1.4 Semantic-based Techniques

Semantic-based techniques compare the interpretation of entities. They have the
ability to ensure the completeness (finding all correspondences that must hold) and
consistency (finding all correspondences leading to inconsistency). Before applying de-
ductive techniques, the alignments on entities (ontology anchoring) are initiated and

then extended by deductive methods.
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External ontologies -based techniques

One way to find the similarity between two ontologies is to find the external resources
related to those ontologies. Three characteristics make these resources different (in all
of them, there is the possibility to match terms):

Breadth (whether the ontologies have a general purpose resources or specific purpose
resources), Formality (whether the ontologies are pure, i.e., informal resources such as
WordNet or not, i.e., formal resources, and Status (whether the resources are sets of
instances or ontologies).

Two steps are needed for initiating an alignment between ontologies :

1. Anchoring: Matching two ontologies (non-reference) to the background ontology
(reference)

2. Deriving relations: Combining the anchor relations with the relations coming from
the reference ontology and use them to make new relations between anchor ontologies

(non-reference) by reasoning methods.

Deductive Techniques

To search more correspondences between entities of ontologies, some deductive tech-
niques such as Propositional techniques and Description logic techniques are used.
Propositional techniques:

Propositional satisfability for matching two classes from two different ontologies includes
three steps:

1. Building a theory or domain knowledge which might use WordNet to discover identical
words and then convert the relations between classes into the language of propositional
logic.

2. Creating matching formulas which have axioms as premises entailing the relations
between two classes (=,C, 3, 1).

3. In the last step, the created formula from step two should be checked for validity.
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Therefore, if the negation of formula is unsatisfiable, then we are allowed to say the
formula is satisfibale.

Description logic techniques:

Compared to propositional logic, description logic is more expressive. We can match
terms with the same interpretation by merging ontologies and looking for equivalence

between pairs of ontology classes and subsumption roles.

2.2 RDF and Similarity

The aforementioned basic similarity methods can be used to find similarity between
individuals in LOD (RDF datasets). Most of the interlinking tools proposed in section
2.2.1 use the combination of these basic methods along with the methodologies they use
to find similarity between RDF graphs. Even though, we may use very common and
widely used string matching techniques in the whole process of our application while
converting RDF-dataset-to RDFS model,-the main purpese-is-to use FCA to-detect
similar RDF individuals according to the properties they share. In this section, the
studies of similarity method in interlinking tools as well as the methodology used to find

similarity in RDF dataset by the help of FCA are discussed.

2.2.1 Similarity of RDF Graphs on Linked Open Data (Interlinking Tools)

With large amount of published data on the web, discovering explicit links between
entities in different data sources, i.e., interlinking the Web of Data becomes more essen-
tial. Many interlinking tools exist which can be applied to different domains (e.g., music
ontology, publications, etc.) or data types (e.g., multimedia data).

In the following, we introduce each interlinking tool briefly. More details about each

tool can been seen in Table 2.1.

LD-Mapper
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LD-Mapper [RSS08] is an interlinking framework in music domain. LD-Mapper
provides two matching approaches. The first one is naive approach consisting of simple
literal lookup and extended literal lookup methods and the second is graph matching
approach which has better performance since it takes into account both the similarity
between resources and their neighbors. The interlinking experiments include linking
a creative common music dataset (http://www.jamendo.com/de/) to an editorial one
(http://musicbra inz.org/) and linking personal music collection to corresponding web
identifiers (http:// musicbrainz.org/). The latter tries to link audio files (using ID3
metadata of files) in personal music collection to editorial music dataset and it is known

as GNAT tool.
RDF-AI

RDF-AI [SLZ09] is a tool for integrating RDF datasets through merging and in-
terlinking. RDF-AI finds alignment between two given data sets in order to merge or
interlink them. RDF-AI includes five steps: 1) Preprocessing prepares two data sets for
matching by doing some operation on them including: Checking for any inconsistency of
input datasets, Materialization of RDF triples, Translation of properties from one lan-
guage to another language, Ontology evolution and Properties transformation such as
name reordering, 2) Matching returns alignment between two data sets, 3) Interlinking
generates linkset between two datasets from alignment, 4) Fusion merges two datasets

and 5) Post-processing checks the inconsistencies of fusion results.

RKB-CRS

RKB-CRS [JGMO08] manages the co-reference between URIs (Two different URIs
referring to one entity) by using Consistent Reference Service (CRS) [JGMO07]. The
synonym URIs can be originated from the same dataset or different datasets.
Co-reference is provided with bundles where each bundle stores the resources refer to
the same entity. Therefore, at first a bundle is dedicated to each URI, i.e., the number

of URIs is equal to the number of bundles. Then the different bundles with the resources
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refer to the same entity are merged gradually in order to generate the new and bigger

bundles.
ODD-Linker

ODD-Linker [HKLMO09] or LinQuer [HXMLQ9] is an interlinking tool for discovering

relations between data items in different relational data sets stored as RDBMS. ODD-
Linker links the equivalent records within relational datasets represented in LOD.
The equivalent records are determined by two matching methods: 1)An approximate
string matching method tries to find approximate or similar strings to an input string
using Jaccard weighted method (Definition 22) with g-grams (Definition 13). 2) Seman-
tic Matching method uses semantic knowledge (ontology) which encapsulates synonymy,
hyponymy/hypernymy relation types between records of relational datasets. Finally,
LinQL languages is proposed to specify the linkage within relational datasets.

Knofuss

Knofuss [NUMO07] merges two different RDF datasets by integrating ontologies in

instance level, i.e. knowledge fusion. In order to compare two datasets, first an ontology
is dedicated to each dataset specifying which resources to compare. If two ontologies are
different, ontology alignment is used. An application context for each resource type is
defined and for each application context it is specified which similarity method should
be used. The application contexts with the same similarity method are given the same
ID in both ontologies of datasets. Knofuss also checks the results of two datasets fusion
for any inconsistencies.
Knofuss knowledge fusion is composed of two main subtasks: 1) ontology integration
(schema level) and 2) knowledge integration (instance level). Co-referencing step of in-
tegration process in Knofuss specifies 1) the tasks which have to be accomplished, 2)
library of methods for solving the problem and 3) the appropriate methods to be se-
lected.

Three methods exist in order to solve co-referencing problem: manually constructed
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using primary key concept for each object, supervised method including machine learn-
ing methods and unsupervised methods containing similarity measures such as string
similarity -Edit distance (Definition 14), Jaro-Winkler (Definition 16), Leveshtein- and
set similarity -Cosin (Definition 17), Jaccard (Definition 22), TDF-IDF (Definition 18)-
metrics. These matching algorithms could be combined in order to make an efficient

matching algorithm.
Guess What!?

Guess What [MV10] is a semantic game using human intelligence in order to create
formal domain ontology by mining linked open data. Guess what provides players with
a described concept (class expression) from LOD and asks them to guess a suitable class
name related to the class expression, i.e., extraction of ontologies from unstructured
text.

The system’s architecture includes three layers: Data, Data Access, Business logic. Data
layer composed of a Sesame RDF store and a MySQL database. Data access layer gath-
ers RDF triples from semantic web resources. The business layer accesses to the data

from data access layer and generates class expression from.

Pool Party

Pool Party [SB10] is a thesaurus management tool which enriches thesaurus by gath-
ering relevant information from LOD along with text analyzing since Pool Party has nat-
ural language processing capabilities. Pool Party represents thesauri in RDF and Simple
Knowledge Organization System (SKOS) form. In addition to publishing its data on
LOD, Pool Party consumes LOD for enhancing its thesauri. It also provides Personal
Information Management tool which allows users to create categories from LOD (e.g.
A movie expert can create knowledge model of filmmakers and the countries they lived
in).

The possible matchings from DBpedia are returned for each concepts in Pool Party us-
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ing DBpedia lookup service. User can select the DBpedia resource which matches the
concept and therefore link the URI in thesauri and DBpedia through owl:sameAs links.
Pool Party probably uses string matching algorithm.

Deriving Similarity Graphs from Linked Data

Semantic Similarity Transition(SST) method finds similar herbs in TCM (Tradi-
tional Chinese Medicine) linked data set [MCLYP09|. Finding similar herbs to a given
herb helps medicine researchers and physicians in making prescription or other research
activities.

In order to calculate the similarity between two resources, SST transits similarity in the
graph iteratively by following link data in the graph. The main idea of transitivity comes
from classic Page Rank algorithm where the importance of each page is calculated by
the importance of other pages related to that page.

Since SST calculates the semantic similarity between nodes, two approaches could be
used for calculating the semantic similarity: taxonomy-based approach which uses is-a
hierarchical relation between concepts, and relationship-based approach which considers

the common information between two concepts.
Interlinking Distributed Social Graph

Modern web users have their own profile over many social network web sites. Inte-
grating these pieces of information distributed over multiple web sites helps us to identify
a real world person [Row09).

Three methods of computing similarity help graphs with their linkage process includ-
ing: 1) Node/Edge Overlap which is used to derive the similarity measure between
two graphs. The method uses Jaccard (Definition 22) distance to match two graph
by overlapping nodes and edges from them. 2) Node Mapping matches two graphs by
mapping all possible nodes from two graphs; therefore, the similarity measure between
two graphs is derived by measuring the similarity between every possible combination

of object nodes and also between every possible combination of subject nodes. 3) Graph
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Reasoning is a low level basic reasoning which matches graphs with each other. In order

to compare two graphs, Levenshtein similarity is used for comparing literals from graphs.
An Approach for Entity Linkage

Name Feature Matching (nfm) is a new approach of entity matching in large entity
repositories by data linkage [SBO09].
Each entity is represented as a feature consists of name/value pair < n,v >. First,
the closeness between two entities is calculated using Levenshtein distance. Afterward,
a matrix represents the similarity between every possible combination of two entities’
features is created. Finally, Name Feature Score (nfs) returns the sum of maximum

amount of each row of matrix as a result of similarity between two entites.

Silk: A Link Discovery Framework

Silk framework discovers semantic relationships between entities through different
sources. Silk makes easier for data publishers to set RDF links from their data sources to
other data sources on the Web [VBGKO09]. First, the stream of data items are generated
from Data Source. The data items generated from data source could be clustered in
the optional step called Blocking. The Link Generation step dedicates a similarity value
to each pair of data items. Then pairs of data items are generated from an internal
cache which all data items were written into before. If blocking section exists, cache
returns the complete cartesian product of two data sets. If blocking doesn’t exist, only
data items from the same cluster are compared with each other. Then, for each pair of
data items, their link (similarity) is evaluated. In this section some similarity metrics are
used in order to compare property values or sets of entities. These similarity metrics are:
string comparison techniques, numerical and date similarity measures, concept distances
in a taxonomy, and set similarities. These similarity metrics could be combined using
aggregation functions: AVG (weighted average of similarity value set), MAX (choose
highest similarity value in set), MIN (choose lowest similarity value in set), EUCLID
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(Euclidian distance aggregation) and PRODUCT (weighted product of similarity value
set). Afterward, the Filtering step removes the links with a lower confidence than the
threshold. At last, in output step the generated and filtered links are extracted as a

result.
LinksB2N: Automatic Data Integration

A UK B2B Marketing framework discovers information overlaps in different RDF
data sources by using clustering methods [SCRGDS09].
The LinkB2N algorithm is composed of four steps (Figure 7): 1) Single Data Source
Analysis (SDSA) which collects graph statistics and creates clusters of similar values
(objects) for each RDF predicate, 2) RDF Predicate selection (RPS) which finds
suitable pairs of RDF predicates to be compared using clusters produced from previ-
ous step, 3) Predicate Value Evaluation (PVE) which for each pair of predicates
calculates confidence ratio by evaluating the equivalences between RDF objects and 4)
Filter of Non-confidence Matching (FNC) in which iterations of the previous step
are applied in order to find more matches between instances.
All proposed tools in this section are summarized and compared in Table 2.1 based on

their main criteria.
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2.2.2 Finding Similarity between RDF Individuals Using FCA

With rapid growth in the availability of data on the web, analyzing the Web of Data
becomes ever more interesting. Linked data on the web is represented in RDF model.
As mentioned in the previous chapter, RDF represents the information on the web as
directed graphs. In RDF graphs, each node is an object whereas arcs are relations be-
tween objects. Therefore, RDF graphs or simply graphs constitute a simple yet powerful
way to represent conceptual description of data of web sources. Representation of data
on the web as such standard format makes it easier for exploiting, managing, etc.
Building concept lattice from RDF data can construct an ontology model. One way to
do this is to view the set of RDF statements as a directed labeled graph. Each RDF
statement or combination of RDF statements builds sub graphs of a entire RDF graph.
Afterwards, based on common predicate-object paths, resources are clustered into con-
cepts in lattices to construct the desired conceptual model.

Delteil et.al. represented a method for extracting knowledge from Web of documents by
learning new concepts from RDF graphs [DFD02]. To build a concept lattice, authors
have built a concept hierarchy (lattice). The extension contains a set of resources (ob-
jects) and intension contains a set of descriptions (attributes) shared by those resources.
The resource description is defined as description of a specific length of a resource, i.e.,
the largest connected sub graph which contains all possible paths of the specific length
started from and ended to the resource. The full definition could be found in [DFD02].
First, the lattice (or concept hierarchy) is built of resources’ descriptions with length
one, i.e., concepts of lattice have intensions of length 1. Then, concept hierarchy is
completed incrementally by incrementing the length of resource description till we reach
the complete concept hierarchy. Moreover, for the resources without any name we would
consider their classes from RDFS level, i.e., adding type path and including their classes
while building the intensions of each concept in lattice.

The methodology for building concept lattice from RDF data we use in this thesis is dif-

ferent from above-mentioned technique. First, we only consider instance level as an input
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for building the lattice; then, the ontology model or RDFS (schema level) are built based
on the information in lattice. The built lattice includes concepts which are constructed
based on triples in RDF data. Each concept in lattice includes extension containing a
set of resources (objects) and intension containing a set of predicates (attributes) shared
by those resources in RDF statements. More information of the methodology with an

example is given later in chapter 3.

2.3 FCA and Semantic Web Applications

Some ontology-related technologies such as ontology alignment (ontology matching),
ontology learning and engineering can be done by knowing the conceptual structure of
ontologies. FCA helps those ontology technologies for discovering patterns, regularities,
etc., in ontologies. Besides, a large amount of applications have been carried out on
the usage of FCA along with Semantic Web tasks [KL12]. All related applications are
discussed-in{Zha07]. Besides, FCA-has been-applied to many other Semantic Web tasks
such as querying, visualization and so on [KL12].

FCA is also useful in information retrieval applications using Semantic Web. The re-
trieved results from structured data on the web can be improved by the usage of FCA.
In the following, some of those applications related to RDF are explained. d’Aquin et.al.
introduced a method to extract relevant questions on a input RDF dataset using FCA
[AM11]. The method transforms the hierarchy of meaningful sets (concepts contain-
ing entities) into natural language questions. The sets of entities represent the clauses
of generated questions. In [Ferl0], authors provided a navigation mechanism for RDF
graphs using FCA, i.e., accessing concepts through SPARQL-like queries.

The other work related to information retrieval from web of data is found in [ROHO05]
in which Topia answers questions posed by users. Therefore, in return of users’ ques-
tions, the system converts the structural data in a form of RDF to hierarchical structure
of documents which can be easily analyzed by users. In order to build a hierarchical

structure, RDF properties of annotations are considered as attributes of their subjects.
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Moreover, if input data is also provided with schema level -RDFS- rdfs:subclass could
help us for identifying more groups, i.e., better hierarchical structure of documents.

FCA is also used to build ontology from scientific corpus by mapping a concept lattice
to a formal ontology [JNO07]. In [MA13], authors used concept lattices to reveal hidden
semantics in the content of query answers. By adding a formal concept layer to the
Semantic Web, the exploration of LOD datasets is possible. This also supports query

refinement, data cleaning, concept clustering, and more [KL11].

2.4 Summary

Extracting useful information from web of data is always a big concern among Se-
mantic Web researchers. This information could be the semantic similarity that exists
between individuals in data. The extracted information could be used to construct a
concept lattice for other usages. In this chapter, after introducing some similarity mea-
surements which are used for discovering similarity between entities of ontologies, we
discussed the study of similarity in LOD tools. Further we talked about the usage of
FCA in finding similar RDF individuals, i.e., converting RDF to RDFS. Finally, the

usage of FCA in different semantic web applications is described.
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CHAPTER III

METHODOLOGY AND IMPLEMENTATION

Chapter 2 introduced works related to the usage of FCA in RDF applications as well
as the study of similarity in LOD tools. FCA as a mathematical tool represents ontolo-
gies in concept lattices. The approach proposed in this thesis is to find similar RDF
individuals based on their common properties using FCA. Then, an FCA tool creates a
lattice that contains concepts while each concept includes similar individuals. Finally,
each concept is assigned a symbolic named according to the names of its individuals. To
that end, we use DBpedia.

This chapter presents our research methodology with a small RDF music dataset ex-
ample. The chapter also covers the implementation of the methodology including the

introduction to Java platforms and APIs used for developing our product.

3.1 Approach

A discussion in this section covers the methodology used to extract concepts from
RDF dataset and generate an RDFS graph from them. To that end, the approach
includes three steps: 1) Converting RDF to FCA input: In this step, the resources and
their properties are extracted from RDF data. The extracted information is used to
construct the formal context table; then, the FCA tool converts the formal context into
a lattice. 2) Converting FCA output to RDFS: The step converts the concept lattice

into an RDF'S graph according to the rules described later. 3) Choosing plausible names
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for RDFS classes: The most important step is to choose appropriate names for classes
in the resulting RDF'S graph. To do this, the types of objects of each node are extracted
from DBpedia. A proper name for the node is selected from the intersection between
the types of all objects belong to the node.

In the following, each step is described in detail.

3.1.1 Converting RDF to FCA Input

Each concept in the concept lattice contains resources (called objects in FCA) with
common properties (called attributes in FCA). In the following, an example of an RDF
music store is given. This example includes partial information about four music bands

shown in Figure 3.1.

Table 3.1 shows resources (objects in binary table) as well as properties (attributes in
binary table) that belong to each resource. For ease of reading, the abbreviation has been
applied for each resource’s name, e.g., 897 stands for URI http://www.music.fake/band/897.

The lattice of the aforementioned RDF example is drawn as Figure 3.2 (Here, the lattice

A B c D E F G H 1 J K E M
Default Na...
0 0 o [ o 0 0
o 0 0 0 0 0 0 0 0 0
o o 0 B 0 o 0
0 B 6 0 o 0 0
0 o 0 0 0 0 0 0 0 0
0 o 0 0 0 o 0 0 0 0
0 0 o 0 0 o [
[ o 0 0 0 0 o ] 0 0
o o 0 0 0 0
0 o 0 0 0 0 0 0 0 o
0 0 o o B o0 o
0 0 o 0 [ o o lo o [
o o 0 0 0 0 B o 0 0
o o 0 0 0 0
0 o 0 0 0 o o 0
[ 0 0 0 0 0 0 0 [ 0
0 0 0 0 o 0 o o [ 0
0 0 [i] o 0 [ o
0 0 [ 0 0 [ 0 0 o 0
) o 0 0 0 0
] o 0 0 [ o o o 0 0

Table 3.1: Binary relation table of music dataset

is drawn by Lattice Miner 1.4! tool): The attributes and objects are respectively

"http://sourceforge.net /projects/lattice-miner/
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written in blue and red colors.

Name
100 467 553 887 Anahiem Babel BrandF ChodK ChrisM DanielA Devon Hanna Hoif Houston MarkS MarkusM Mylo Nevada SSU State Yancouver]

Formed Year' Genre Name Rel d Albums'h
100 467 553 897

Country Name

‘Bom in' LasiName Name
BrandF ChodK Chrisk DanielA Marks Markusk

‘Bom in’ LasiName Name ‘Song Writer Of]
BrandF ChodK ChrisM MarkS MarkusM

‘Bom in' LastName Name Plays 'Song Writer Of| |'Bom in‘ LasiName Name Sings "Song Writer OT'
ChodK Chiisk MarkS Markus BrandF ChodK ChrisM Markush

Bom in’ LastName Name Plays Sings ‘Song Writer Ofl
ChodK ChrisM MarkusM

Name Year

7.
‘Bom in' LastName Name Plays
ChodK ChrisM DaniglA Marks MarkusM

‘Born in' Country 'Formed Year' Genre LastName Name Plays Released Albums'’ Sings ‘8ong Writer Of Year hasMember

Figure 3.2: Lattice of music dataset

The lattice is also presented as a reduced labeling diagram depicted in Figure 3.3.
Each concept of lattice contains objects with the same attributes. For example, MarkS,

bands. Therefore, they belong to the same concept but toward bottom they split into
two different concepts. ChrisM, ChodK and MarcusM belong to both concepts, since
they can play instruments and also sing while BrandF only sings and MarkS only plays

an instrument.

3.1.2 Converting FCA Output to RDFS

The translation of the above lattice to RDFS graph is shown in Figure 3.4. (The
number in each RDFS node is the number of corresponding concept in the reduced
labeling diagram). Three rules have been applied to the lattice in order to create RDFS
graph.

Node Rule: All nodes except the one including all objects, i.e., node number 0 in
Figure 3.2, as well as the one which doesn’t include any object, i.e., node number 11 in

the same figure should be used as classes to create the RDFS graph.
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[(MName]
2 3 4

‘Formed Year Genre 'Released Albums' hasMemberl
100 467 553 837

5
Anahiem Devan Hanna Houston Nevada Yancouver|-| Babel HotF Mylo SSU State ‘Born in' LastName
3 g -

6

‘Song Wyriter Of]

ChodK Chrishl MarkusM

Figure 3.3: Reduced labeling diagram of music dataset lattice

rdfs:subclass Rule: rdfs:subclass relation between classes is built according to
the hierarchy between concepts in lattice. Notice that even though the last step of
methodology called choosing plausible names for RDFS classes explains how to choose
name for each node, for easiness of analyzing predicate rule, we considered proper names
for some of the nodes in advance, i.e. node number 2,3,4,5,6,7 and 9 are respectively
called Musician, Country, Album, Artist, Band, SongWriter and Singer.

Predicate Rule: For relating classes with properties, we shall survey all properties
related to those classes. Among all of the properties that belong to a class those who
go to resources in the RDF graph can be related to the other classes in RDFS graph.
For example, class Musician has four properties Name, LastName, Born in and Plays.
Among all properties of class Musician, only Born in property goes to resource Country
in the RDF graph but other properties go to literals. Therefore, Born in predicate is
considered for relating two classes, i.e., Born in should relate class Musician to class
Country. Besides, the other properties (Name, LastName and Plays) which go to literals
cannot be ignored while building RDFS graph. Therefore, their data types are taken into

account and based on their respective types in RDF file, they are related accordingly.
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Below, a part of the RDF file for music dataset is illustrated. As it is seen, the predicates

of resource 897 which go to literals have explicit datatypes in the RDF file:

<rdf:Description rdf:about="http://bands.org/musicband#897">
<band:ReleasedAlbum rdf:resource=’http://bands.org/musicband#HotF’/>
<band:HasMember rdf:resource=’http://bands.org/musicband#Marks?’/>
<band:HasMember rdf:resource=’http://bands.org/musicband#BrandF’/>
<band:Genre rdf:datatype="http://www.w3.org/2001/IML.Schema#string"”>Indie Rock</band:Genre>
<band:Name rdf:datatype="http://www.w3.0rg/2001/XMLSchemai#tstring">The Killers</band:Name>
<band:FormedYear rdf:datatype="http://www.w3.0rg/2001/XMLSchema#int">2001</band:FormedYear>

</rdf:Description>

Moreover, for each property whose range or domain is related to a class, we should
remove the duplicated relations to those classes where their super classes have the same
relations. For example, Born in has all classes Artist, Musician, SongWriter and Singer
as its domain. Since Artist is superclass of all three classes Musician, SongWriter and
Singer, it would be enough for Born in property to only have Artist as its domain.

In Figure 3.4, all classes with their properties and all relations are declared in an RDES

graph.

Other properties which go to datatypes are shown in Figure 3.5 (Notice that the node
numbers in this figure are different from node numbers in the previous figure but lo-
cations are the same). RDF Gravity 1.0' tool is used to show the representation of

music dataset’s RDFS graph.

3.1.3 Choosing Plausible Names for RDFS Classes Using DBpedia

A Key part of the algorithm consists of naming classes built with our tool. In addition
to the previous example, the examples in this section also contain the Russia dataset
used in chapter 4.

In order to name the nodes in the RDFS graph, for each node we shall survey common

types (objects of rdf:type predicate in DBpedia) of resources of DBpedia which match

Thttp:/ /semweb.salzburgresearch.at/apps/rdf-gravity /index.html
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Figure 3.4: RDF'S graph of music dataset

with the resources in the node. The purpose is to find the most plausible name for a node;
therefore, among all the common types extracted from DBpedia for the resources of one
node, the more specific one is selected. For example, for a node with Lake Onega and
Neva River as its members, among the objects of rdf : type predicate with dbpedia-owl
prefix of those resources, Place, BodyOfWater and NaturalPlace are in common. Since
the second one (BodyOfWater) is more specific than others, we choose BodyOfWater

which gives us better name for the node (Figure 3.6).

Moreover, some resources may use their other known names in RDF input data,
e.g., Neva is used instead of Neva River in RDF data. Therefore, query results from
DBpedia may not be satisfactory. The solution we propose is to look for all objects of
predicate dbpedia-owl:wikiPageRedirects in DBpedia for each resource.
As it is shown in Figure 3.7, the DBpedia page for Neva Riwver shows that dbpedia:Neva
is one of the dbpedia-owl :wikiPageRedirects values of http://dbpedia.org/page/Neva River.

Therefore, by sending http://en.wikipedia.org/wiki/Neva in the query we can ob-
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Lake Onega Neva River
n dbpedia-owi:Place n dbpedia-owl:Place
» dbpedia-owl:.BodyOfWater = dbpedia-owl:River
= dbpedia-owh:Lake = dbpedia-owl:BodyOfWater

u dhpedia-owl'NatwalPtace s dbpedia-owl-NatwalPlace

Figure 3.6: Objects of rdf:type predicate with dbpedia-owl prefix of Lake Onega and
Neva River in DBpedia



a7

tain the results for http://en.wikipedia.org/wiki/Neva River.

iz dbpedia-owl:wikiPageRedirects ok dbpedia:-Neva
n dhpedia:Neva_river
= dbpedia:River_Neva
= dbpedia:Bolshaya Nevka
s dbpediaThe_Meva

Figure 3.7: Objects of dbpedia-owl:Wikipagesdirect predicate for Neva River in DB-
pedia

Further, if all resources of one node have dbpedia-owl:Person as an object of their
rdf:type predicate in DBpedia, considering dc:description predicate leads to more
appropriate name for the node since objects of dc:description predicate contains more
specific data. Therefore, we shall look for the objects corresponded to dc:description
predicate in order to choose a suitable name for the node only by applying a few simple
Natural Language Processing (NLP) methods.

For example, assume Rihanna and John Bottomley as resources belong to a node. Both
of them have dbpedia-owl:Person as object of their rdf:type predicate in DBpedia,
i.e., both are of type Person. Therefore, the objects of their dc:descriptions predi-
cate should be extracted and considered instead of rdf:type predicate. The object of
dc:descriptions predicate for Rihanna is “Singer, songwriter” and for John Bottomley
is “Canadian singer and songwriter”.

Notice that “and” and “,” separate phrases inside the objects of dc:description predi-
cate. Moreover, in the phrases composed of two or more words, usually the last word is
noun and other words are adjectives, i.e., only the last word of every phrase should be
considered for choosing a name for that node, e.g., the last word of phrase “Argentine
singer” would be “singer”.

Therefore, with a simple NLP technique, “Singer, songwriter” which belongs to Rihanna
can be converted to a list with two elements “Singer” and “Songwriter” by considering
of capitalizing the first letter of each word. Moreover, for John Bottomley, “ Canadian
singer and songwriter” is converted to a list with two elements “Singer” and “Song-
writer”.

After making list of plausible names for each resource of a class using dc:description,
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we shall intersect the results for all resources of the node. The intersection between
both above-mentioned lists is “Singer” and “Songwriter”. Hence, the class name would
be “Singer Songwriter”.

After choosing names for nodes, there may happen to be some nodes with similar names.
To reduce the occurrences of nodes with similar names, a techniques is applied. For the
nodes with the similar name as their parents, the reduced labeling attributes of those
nodes should be added to the name of the nodes. The technique is illustrated with more

detail with an example in chapter 4.

3.2 Implementation

In this section, first the Java platforms and APIs including Jena, RDF API, SPARQL,
Galicia and RDF Gravity used for implementation are introduced. To illustrate the pro-
cess of implementation of the algorithm, each of the steps mentioned in the previous

section will be discussed based on their representative usage.

3.2.1 Java Frameworks and APIs

3.2.1.1 Jena

Jena ! is an open source semantic web framework which has been built by the mem-
bers of the Semantic Web research group at HP labs. After 2009, Jena was released into
the open source community to be developed and supported openly.

Jena is a java library which provides the abilities to work with semantic web applica-
tions. It provides an API for RDF, RDFS and OWL ontologies which makes it easier for
programmers to use them in their applications rather than doing alternative implemen-
tations [McBO01]. Moreover, Jena has the ability to read, process and write RDF data
into/from XML [Arn10], N-triples and Turtle formats. The framework was first built

Yhttp://jena.sourceforge.net,/
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only for RDF type languages and then it added features for using in OWL languages
too. Jena also provides SPARQL query engine.

The main components of Jena frameworks are shown in Figure 3.8.

RDF AP OWL AP|

Inference AP} &

SPARQL Interface Fae
1 S

Figure 3.8: Jena framework [Lin10]

The central model interface contains 4 main components including: RDF, OWL API,
SPARQL search engine and the Inference API & Engines which is useful for external

and built-in reasoners.

3.2.1.1.1 RDF API

RDF API is a Java API which allows the creation and manipulation of RDF graphs.
As it is said before, Jena was first developed for data with RDF type languages. All
information provided by RDF data is stored in a data structure called model.

RDF uses the standard Jena model. The model includes RDF statements and some
functions for querying, adding and removing those statements.

Compared to RDF, RDFS has ontological interface; therefore, it uses Jena’s OntModel
which has the ability to create and manipulate models from ontologies in RDFS or OWL.
Based on its type, a model can provide methods for querying, manipulating, creating
RDF, RDFS and OWL data such as listProperties, listStatements, createResource, cre-
ateLiteral, createStatement, createProperty,createClass, createOntProperty and so on.
To have java access to RDF/RDFS models, RDF API has libraries which allow any java
program to create and manipulate RDF/RDFS based models easily [McBO01].
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3.2.1.1.2 SPARQL

Querying the accessible data stored in a model is possible by the ARQ search engine for
Jena. ARQ provides SPARQL [PS06], an RDF Query language, on RDF type models.
SPARQL is a standard query language to be used in RDF type models. SPARQL queries
information in a similar way that SQL does but it uses RDF model instead of relational
data model, i.e., it uses triple patterns in WHERE clause. A triple pattern is an expression
of RDF statement composed of three components: subject, predicate and object. Each
component can be a variable, e.g., Tperson, a name added to the default namespace ,
e.g., custom:Name and a value of an attribute belong to an entity or a full URI. Moreover,
the third component can be a numeric literal, e.g., 3.14, a plain literal, e.g., “Duke”, a
plain literal with a language-tag, e.g., “Duke’@en, or a typed literal , e.g., “123"8sd:int
(xsd:int! stands for integer datatype in XML Schema).

Figure 3.9 presents an example which return the names of persons who has a pet called
“Duke”. Three triple patterns have been chained to create the WHERE clause of the query.
Namespaces are shortcuts for full URIs and it enhances both readability and writability.

Among all four commands used in SPARQL to perform the query (SELECT, CONSTRUCT,

PREFIX custom: <http://mySite/MySchema/> Namespaces

SELECT ?personName Output columns
WHERE {

?person custom:Name ?personName. y

’pet custom:Owner ?person; Triple

custom:Name 'Duke'. Patterns

Figure 3.9: SPARQL Example [Szl09]

ASK and DESCRIBE), SELECT is the most common used and it extracts columns of table

based on WHERE clause.

 http://www.w3.org/ TR /xmlschema-2/
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3.2.1.2 Galicia

Galicia [VG03] is an open source platform that supports tasks related to FCA such
as creating, visualizing, and storing lattices. Being written in java, Galicia? can be run
on different platforms without changes in its functionality. Moreover, Galicia can be
used with both a command line interface (CLI) and a graphic user interface (GUI).
Galicia supports different input types including binary data, lattice, multi-valued context
and relational context families. Galicia’s name -Galois Lattice-Based Incremental closed
Itemset Approach- comes from its incremental data mining algorithms, which are used
for mining association rules in transaction databases. It is not our interest in this thesis.
Binary relationships between objects and attributes can be stored as Relational Context
Family (.rcf) format in Galicia. One can generate an XML format of an RCF context
and import into Galicia to create a lattice from it.

Figure 3.10 shows a loaded data with binary relationship within context family editor

of Galicia as well as the output lattice of data.

3.2.1.3 RDF Gravity

RDF Gravity is an open source tool for visualizing directed graphs in RDF/OWL
format [GW06, DK07]. RDF Gravity has pre-built functionality that allows the user to
filter out and choose to visualize the desired part of a graph. However, large data are
not easily readable by RDF Gravity.

RDF Gravity’s main features include: graph visualization, global and local filters (en-
abling specific views on a graph), full text search/ RDQL queries and visualizing multiple
RDF files.

RDF Gravity is implemented on top of the JUNG Graph API and the Jena framework.
A screen shot of RDF Gravity tool is shown in Figure 3.11.

In Table 3.2, the notations used to display RDF graphs in RDF Gravity are shown with

2http://www.iro.umontreal.ca/~galicia/
'http:/ /www.softpedia.com/
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[£] Galicia v.2.0, Release Distribution - August 2004
File Console Help

[s]ls] ajle]

' 4
Binary Con! Editor
a ' celts i :DefuitName |
File Edit Rules Generation Algorithms Database Console

Galois Lattice Buil 'fbdmtm [
A 8 C D
Default Na...

Import data from: Binary Context
| L {import data from: Multi-Valued Context
import data from: Lattice

&

Figure 3.10: Galicia v.2 beta view
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dofmain

Violet edges refer to rdfs:domain predicate

— Green edges refer to rdfs:-Range predicate
e D Blue edges refer to rdfs:subClassOf predicate
— Black edges refer to rdf-type predicate.
e

Refers to concepts or classes.
Here, "Settlement” is a concept.

Refers to Properties.
Here, "has_distance” is a property.

A Deri ...

Refers to a literal value (string, integer) etc.
Here, "Den” is a Literal.

Refers to Anonymous nodes

Refers to instances. Any anonymous node
which has rdfitype predicate associated to a
class is also shown as an instance.

Refers to URI strings which cannot be
identified as any of the above items

brief descriptions.

Table 3.2: RDF Gravity notations

3.2.2 Generating RDFS from RDF data

3.2.2.1 Step One: Converting .rdf to .rcf.xml

The first step converts the RDF input data into the XML format of a RCF file
(.rcf.xml). We chose Galicia as FCA tool, since Galicia can easily read and process
XML data and transform .rcf.xml to lattice. First, relations between resources and
properties in RDF data are determined and generated as <resource, property> pairs.
Later, these relations will be described in a binary relationship table by Relational
Context Family (.

Reading and extracting properties and resources from RDF data is performed by using

rcf) format.

Jena’s RDF API (introduced in section 3.2.1.1).
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A list of pairs of resources and their corresponding properties is used to create
.rcf .xml file readable by Galicia.
DOMZXML parser is a programming API that helps in creating and writing into/from
XML files. DOM considers XML documents as tree structures. To do this, first a
XML document is created using DocumentBuilder class; then, all the XML content are
defined. The XML file requires three main child elements called OBJS, ATTS, RELS
respectively used for objects, attributes and relations between them. Finally, the Trans-
former class is used to write the entire XML content to a file with rcf.xml format.
After creating RCF file in XML format, Galicia is able to construct a lattice from the
relation between objects and attributes. We may select Lattice option from the export
menu of Galicia while saving the lattice. Galicia saves the lattice in XML format, i.e.,

lat.xml.

3.2.2.2 Step Two: Converting lat.xml to RDFS

After obtaining XML format of LAT file from Galicia, we read the lattice file in order
to create the RDFS file. The Lattice format has four specific tags: PARENT, NOD,
ATT and OBJ. DOMXML provides functions for parsing and extracting data from XML
files. Before creating an RDFS file (file with .rdf format but including schema level
instead of instance level) from lattice, each node is named properly according to the
step three. Usually the naming class step comes before the generation of RDFS file,
but for the facility of understanding our methodology here, the creation of RDFS file is
explained before explaining the naming of the classes of RDFS file.

RDFS file is similar to RDF file but the content contains schema level. The RDFS file
uses Jena’s OntModel for manipulating models from ontologies. It is produced based on
three rules including Node rule, rdfs:subclass rule and Predicate rule fully described

in the previous section.
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3.2.2.3 Step Three: Naming Classes Using DBpedia

To obtain names for RDFS classes, DBpedia is queried using the SPARQL end-
point. Information in DBpedia could be retrieved online via SPARQL or offline from
downloaded the DBpedia dataset. In section 3.1.3, it is mentioned which information
of DBpedia needs to be retrieved for naming RDFS classes properly. In our case, the
information has been retrieved from online DBpedia.

DBpedia allows users to retrieve data from DBpedia by providing a public SPARQL
endpoint at http://dbpedia.org/.

Moreover, SNORQL query explorer allows users to have a preview of their results
by providing a simpler interface to the DBpedia SPARQL endpoint. Figure 3.12 shows
the results of an example in SNORQL.

(- | @ dbpedia.org/snorql/7query=SELECT + %3Fo+ WHERE +{%0D %0A < http %3A%2F %2F dbpedia.org %2Fresource%2FRihanna> + dc %3Adescription+ %3F o+ %0D %0A} ff v _CJ

SELECT 20 WHERE {
«<htop!//dbpedia.orgf resource/Rihamma> dc:description %o
¥

Powered by Opest Vit 209 dpece

Figure 3.12: SNORQL
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3.3 Summary

In this chapter, the approach and implementation of our methodology are covered.
The main goal of our study is to extract schema from RDF data. The approach is done
by classifying RDF individuals according to the properties they share. Therefore, RDF
individuals that share common properties are considered to belong to the same class.
Then the classes are named according to their individuals’ names. For each individual,
the type of individual is obtained by searching its name in DBpedia. Finally, the class
name is selected according to one of the common types shared by its individuals in

DBpedia. In the next chapter, the experimental results will be presented.
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CHAPTER IV

EXPERIMENTS AND RESULTS

The results for each of the steps detailed in the previous chapter are presented in this
chapter. The effectiveness of our algorithm in terms of Precision, Recall and F-Measure

is also analyzed and discussed.

4.1 Dataset

Both validity and diversity of the dataset are important factors in order to achieve
the best performance from our tool. Besides, the dataset must be large enough to show
the efficiency of the tool. Therefore, finding an interesting and suitable dataset appears
to be a challenging issue. The dataset used for the experiment contains a high variety
of information about Russia and is large enough to prove the efficiency of our tool.
The RDF dataset used in our experiment is a set of 1613 triples about Russia. The
information includes data about Russia’s cultural (theaters, museum, galleries, etc.)
and natural (rivers, lakes, parks, etc.) sites. It also includes data about famous people
in Russia, entertainment and other features.

The Russia dataset contains both instance and schema level of RDF model. Since our
goal is to detect RDF schema level only by knowing the RDF instance level, we only
considered the instance level and ignore the information at the schema level. The schema

level of dataset is used to evaluate our results.
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4.2 Results

4.2.1 Binary Relation Table

The data extracted from the RDF file are used to create a binary relation table (also
called a formal context) for the FCA tool. The number of objects and attributes of our
dataset are respectively 92 and 47. By exploring the XML version of Russia’s RCF file,
we also found that 256 relations exist between those objects and attributes. In the next

section, a concept lattice is constructed from the binary table using Galicia.

4.2.2 Concept Lattice

The lattice of the dataset generated by Galicia is shown in Figure 4.1. Each node’s
content can appear by clicking right on the node in the Galicia software. The lack of
space has prevented us from showing full information of all nodes in the image. The
concept lattice in the dataset includes 69 nodes where the uppermost node contains all
objects and the lower most contains no objects. Therefore, in reference to the previous
chapter, all nodes except the upper most and the lower most are used to build the RDFS
graph.

Even though the concepts are created from resources using FCA, it should be considered
that based on the open world assumption (OWA), creating a class even for a single

resource may be necessary since the data is potentially incomplete [CBHSO05].

4.2.3 RDFS Graph

Extracting schema from the dataset and translating it to RDF'S are done by following
the steps described in the previous chapter. Figure 4.2 shows the RDFS graph extracted
from the dataset. We used DBpedia to name the nodes according to the common infor-

mation their objects share in DBpedia. Therefore, there is a reduction in the number of
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nodes compared to the concept lattice due to the similar names applied to some nodes.
In order to tune this reduction, the aforementioned technique (refer to page 63 in the
text) has been applied for naming similar nodes differently as much as possible.

The technique is used for nodes with the similar name as their parents. The solution is
to add reduced labeling attributes of the node to its current name. For example, node
7 and node 23 both obtained name “ PopulatedPlace”. Since node 23 has node 7 as its
parent, we shall add one of node 7’s attributes to its name which node 23 doesn’t have,
in other words, adding the reduced labeling attribute of node 7 (distance_unit__region)
to its name. Finally, node 7 is named as “ PopulatedPlace with distance_unit__region”.
We used the RDF Gravity version 1.0 to visualize the RDFS graph of our results from
the dataset. For more details on the notations of RDF Gravity refer to section 3.2.1.3

of chapter 3.

4.3 Discussion of the Experiments

The original hypothesis of this methodology is to convert RDF to RDFS data by
taking advantage of FCA for clustering RDF individuals according to the common prop-
erties they share. The resulting RDFS graph should provide a proper classification of
individuals by considering the properties they have in the RDF data. Further, the gen-
erated RDFS graph should have classes with proper names.

The experiment was performed on a Windows 7 Home Premium operating system run-
ning on Intel Duo Core 2 2.40GHz PC with 3GB of RAM. Details on the dataset used
in our experiment are already given in section 4.1. In the following, quantitative results
are provided in terms of Precision, Recall and F-Measure.

As mentioned before, Russia dataset is also provided with schema level. To evaluate our
tool against the dataset, we only consider the relevant classes in the dataset.

In this experiment, the relevant classes stands for the classes which have instances and

at least one of their instances is used to construct the concept lattice, i.e., instances with
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properties.
Recall is a measure which calculates the number of the relevant classes extracted from

the dataset and it is calculated as follows:

relevant classes N retrived classes

Recall =
relevant classes

The numerator is the intersection between the relevant and retrieved classes. The num-
ber of relevant classes in the dataset is 35 and the number of classes which are extracted
to construct the resulted RDFS graph is 36. Among all of the extracted classes only 27
are relevant and used to construct the final RDFS graph since some of them combined
due to the similar names. The criteria used to evaluate the retrieved classes is based
on the classes names; therefore, it is important to have classes with different names.
To resolve this issue, we should consider the occurrence of classes with same name only
once. Therefore, the numerator of the fraction is 27 and the denominator is 35.

Precision shows the number of extracted classes from the dataset which are relevant and

it is caleulated as follows:

relevant classes Nretrived classes

Precision = -
retrived classes

The numerator of the fraction is 27 and the denominator is 36.
F-Measure is a measure of accuracy which takes both Recall and Precision metrics into
account (£ is one which shows the equal weights for Recall and Precision). It is calculated

as follows:
(B2 + 1) x Precision X Recall

(B2 x Precision) + Recall

F-Measure =

As mentioned before, by applying the technique (refer to page 63 of the text) the number
of relevant classes appearing in the resulted RDFS graph is changed from 17 to 27.

The below shows the amount of Precision, Recall and F-Measure before and after ap-
plying the mentioned technique. Table shows a significant improvement in the amount

of Precision, Recall and F-Measure after applying the technique.
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Precision | Recall | F-Measure
After applying the technique 0.75 0.771 0.763
Before applying the technique 0.472 0.485 0.478

Table 4.1: Measurement table

In order to demonstrate the results more clearly, some filtration are applied to Figure
4.2 by using RDF Gravity’s filter feature (represented in Figure 4.3.). All the generated
classes with their complete names in the RDFS graph are shown in the figure. The
names have been applied according to the common information extracted from DBpedia
for the objects of each node. Some of the names are added by applying the technique
described in section 4.2.3.
The classes generated from the RDF dataset to construct the RDFS graph are:
Person, Months, Place, PopulatedPlace, PopulatedPlace with population value, Person
which study_at, Artist, Settlement, NaturalPlace, ArtMuseumsAndGalleriesInRussia, PalacesIn-
SaintPetersburg, PopulatedPlace with sight__city, PopulatedPlace with distance_unit__region,
PopulatedPlace with distance_to_moscow__city, BalletCompaniesInRussia, Person with
birthplace, Country, Writer, Stream, PalacesInSaintPetersburg with position_to_stpetersburg
__palace, StreetsInMoscow, Museum, AdministrativeRegion, Novelist, Politician, Art-
MuseumsAndGalleriesInRussia which closed_on, AdministrativeRegion with distance_to_moscow
__city
We believe that the resulting RDF'S graph entails enough classes in which RDF individ-
uals from the RDF dataset can be identified by them. Non-named classes are issued by
the names of individuals in the RDF dataset since their names don’t lead to any useful
information to be retrieved from DBpedia. For example, node 13 which doesn’t get any
name includes two objects Russian_Winter_Folk_Festival and the_Festival_of the_North.
Since no information is retrieved from DBpedia for those objects, their nodes don’t get
any name. The other example is node 16 which includes the object with name ice_skating
which are identified as an sport type but nothing is retrieved from DBpedia by searching

ice_skating.
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Figure 4.3: Parts of RDFS graph of Russia dataset
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4.4 Summary

In this chapter, we used an adequate dataset to prove the efficiency of our methodol-
ogy by using measurement metrics. FCA helps us detect similar RDF individuals in the
dataset according to the common properties they share. The concept lattice created by
Galicia includes concepts where each concept contains similar individuals. After obtain-
ing the schema level of the RDF dataset, each concept is named according to the names
of its individuals using DBpedia. This chapter verifies the productivity of our approach
on detecting schema from the RDF dataset and transforming it to RDFS model.







CONCLUSION

This thesis has presented a methodology to obtain useful information from Web
of Data by creating conceptual structure from RDF datasets. The proposed approach
decreases the heterogeneousness of RDF datasets.

To fulfill this need, we used the advantage of FCA to build formal context and determine
a binary relation between resources and attributes of RDF statements. The FCA tool
used in our implementation is Galicia.

Afterward, by the usage of Galicia the formal context is converted into a concept lattice
containing concepts and the hierarchical relation between those concepts. Each concept
contains a set of resources called extension as well as a set of attributes shared by those
resources called intension.

Gaining the conceptual structure from RDF data is a part of process for converting
data from RDF to RDFS model. The obtained concept lattice converts into an RDFS
graph. The concepts in concept lattice are considered as classes in RDFS model with
hierarchical relation between them. Properties in the RDF data should also be taken
into account for completing the RDF'S graph. Necessity data properties also should be
added properly.

Further, to name the classes of the RDFS graph, we used DBpedia to retrieve the
common information that objects of each class share in DBpedia.

Since we uses DBpedia to retrieve names for RDFS classes, for datasets containing
complicated names for objects our algorithm may not always lead to precise names for
the classes.

Although the presented results have demonstrated the effectiveness of our approach, it
could be further developed. One way is to refine the names for the classes. It can be

done by using WordNET in addition to DBpedia while applying more NLP techniques.
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