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RESUMÉ 

Notre vision de l'écologie et de l'évolution a beaucoup changé au cours des dernières décennies 

due aux découvertes des mécanismes complexes gouvernant les différents aspects de la vie, 

des cellules, aux populations, aux espèces et encore, aux communautés et métacommunautés. 

Par contre, l'analyse de ces phénomènes complexes nécessite le développement de nouveaux 

concepts de même que de nouveaux outils informatiques rapides et fiables . Un de ces nouveaux 

concepts, la théorie des graphes, gagne rapidement en popularité dans les domaines de 

l'écologie et de l'évolution grâce à des avancées théoriques et infonnatiques. L'objectif 

principal de ce doctorat est de développer un cadre d 'étude basé sur la théorie des graphes afin 

de résoudre des problèmes possédant des caractéristiques de réseaux en écologie et en évolution 

(p. ex., évolution réticulée ou connectivité spatiale entre des communautés). Dans cette thèse, 

quatre problèmes différents sont abordés. Bien que les entités biologiques diffèrent entre les 

problèmes (variant des espèces aux communautés), ceux-ci peuvent tous être approchés par 

des approches de réseaux similaires . Ces quatre problèmes (un par chapitre) représentent 

chacun une contribution originale dans l'app lication méthodologique des réseaux : 1) 

construire des réseaux phylogénétiques consensus à partir de données contenant des signaux 

évolutifs contradictoires ; 2) retracer l'historique de dispersion des espèces ; 3) explorer 

l'hétérogénéité spatiale des metacommunautés ; et 4) mesurer la connectivité dans des réseaux 

de métacommunautés. Les résultats obtenus de l'application de ces méthodo logies sur des 

données empiriques et/ou simulées démontrent que la complexité inhérente à plusieurs 

prob lèmes en éco logie et en évo lution peut être explorée et réso lue à l'aide d'approches basées 

sur la théorie des graphes. Ainsi , la théorie des graphes , un outil flexible et robuste pour 

l' analyse de problèmes complexes, a un grand potentiel pour améliorer notre compréhension 

des systèmes en écologie et en évo lution. 



ABSlRACT 

Our vision of ecology and evolutionary biology has changed significantly during the past few 

decades due to the discovery of a plethora of complex mechanisms goveming the various 

aspects of !ife, from cells to populations to species to even more comp lex eco logical entities 

(communities and metacommunities). However, the analysis and exploration of such comp lex 

problems needs new concepts, as weil as reliable as faster computational tools. One of the 

relatively new and increasingly popular concepts in ecological and evo lu tionary biology 

studies is graph theory owing to the recent advances in computer technology. The main 

objective of this doctoral thesis is to develop frameworks based on graph theory to tackle 

complex eco logical and evo lutionary biology problems involving network characteristics ( e.g., 

reticulated evolution, spatial connectivity across ecological communities). ln this thesis, I have 

chosen four different problems involving ecological and evolutionary networks. The biological 

entities are different (from species to eco logical communities) but they can be ali tackled by 

related network approaches. These problems were tackled by four chapters that represent each 

novel network applications: 1) building consensus phylogenetic networks from datasets 

containing conflicting evo lutionary signais, 2) retracing dispersal history of species, 3) 

exploring the spatial heterogeneity of metacommunities, and 4) measuring the connectivity of 

metacommunity networks. The results obtained from the application of these methodologies 

on real and/or simu lated datasets showed that the inherent complexity of many ecological and 

evolutionary biology problems can be successful ly exp lored, exp lained and resolved by using 

graph-theoretical approaches. Network theory has the potential to significantly improve our 

understanding of ecological systems and evolution because it is a flexible and robust tool to 

tackle most problems in these fields. 



INTRODUCTION 

0.1 Background 

One of the outstanding characteristics of biological systems (ecological and 

evolutionary) is that they are complex in both structure and ftmctions due to their 

dynamic nature, compositional variability and their ability to self-reproduce and self­

organize. In the ecological context, one of the main factors contributing to this 

biological complexity is species interacting with one another and with their 

surrounding environment. For example, we have just started to understand the 

relationship between humans and their intestinal bacterial and archaeal flora, which 

involves many interactions and regulations between the host and symbiont genes (Gill 

et al., 2006) . On the other hand, the recent advances in molecular biology and high­

throughput analyses have dramatically changed our vision of evolutionary biology . 

There are numero us mechanisms con tribu ting to the complexity of molecular biology, 

such as alternative splicing, post-translational modifications and the presence of micro 

RNAs and interference RNAs, just to name a few examples. These mechanisms are 

also likely to play an important role in molecular evolution, thus contributing to its 

complexity. 

The interactions between the components of complex biological systems can be well 

represented as networks. For example, metabolic networks of biochemical reactions 

(Karp et al. , 2005; Ravas.z et al. , 2002); protein-protein interaction networks of the 

physical interactions between proteins (Giot et al. , 2003 ; Li et al., 2004); and the 

transcriptional (or gene) regulatory networks of the regulatory interactions between 

various genes (Ihmels et al. , 2002; Salgado et al. , 2006; Shen-Orr et al. , 2002) are 

among the most well-known biological networks. The above-mentioned biological 

networks have numerous potential applications within the fields of Biology and 
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Medicine, such as determining the evolution and functions of the unknown pro teins or 

genes, identifying potential drug targets, unravelling complex biochemical regulatory . 

pathways, and understanding the range and mechanisms of infectious diseases 

outbreaks (Eubank et al., 2004; Jeong et al., 2003 ; Samanta and Liang, 2003). 

In fact, networks exist at all scales ofbiological organization, from single cells to large 

metacommunities and, traditionally, graph theory is the frrst choice and the most 

capable tool to investigate such complex networks . Interestingly, many initial efforts 

to model biological systems involved the use of random graphs (Barabasi and Albert, 

1999) . However, it is too simplistic to think of real networks (i.e. , as opposed to 

artificial or anthropogenic networks such as social networks on the internet) behind 

such diverse complex systems as random graphs. lfthese biological networks are not 

random, then we need to develop tools, measures and frameworks to study and analyze 

their organization, characteristics and behaviour. Fortunately, the recent technological 

ad van ces in computer sciences have led to a dramatic growth in the use of graph theory 

to investigate biological networks. 

In this thesis, however, the focus is on two particular types of biological networks: 

ecological networks and phylogenetic networks . The main goal here is to take 

advantage of the exceptional potentials of graph theory and computer science as weil 

as available data in arder to design and develop novel efficient computational tools and 

frameworks for tackling sorne of the complex issues in the fields of ecology and 

evolutionary biology. Moreover, by using problems from these two fields , one is able 

to observe how different problems often converge to somewhat similar solutions. 

Based on these premises, four different ecological and evolutionary biology questions 

have been chosen to be addressed using graph-theoretical approaches. These problems 

included 1) resolving gene tree discordancy and detecting unorthodox evolutionary 

pathways (e.g., horizontal gene transfers, recombination events); 2) retracing species 

dispersal history; 3) detecting spatial variability in metacommunities; and 4) estimating 

- -- --- ------
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the connectivity of b~ological networks. In common, they share the ' transfer' as a 

common theme; the trans fer of genes among species and the trans fer of species among 

large biogeographie zones and small local ecological communities. The reason for 

selecting these four seemingly unrelated problems was to showcase the potential and 

the versatility ofnetwork theory in solving complex biological issues across the fields 

of ecolo gy and evolutionary biology. With the rise of network applications in medicine, 

social sciences and computer sciences, among others, it seems inevitable for ecologists 

and evolutionary biologists to take network thinking more seriously (May, 2006) . 

. Following the advances in other fields and mainly to keep pace with advances in life 

sciences and information technologies, we must be on track to design and develop 

similar tools to tackle the large-scale data problems we face now. In arder to 

understand, organize, madel and study large-scale data we need tools far more powerful 

and complex than classic methods. Moreover, because different ecological and 

evolutionary problems often require similar computational solutions, my attempt here 

is also to demonstrate the flexibility of the network based approaches developed in this 

thesis. This flexibility is particularly useful in the age of data revolution where having 

access to multi-purpose tools will save us time and money. 

Networks are excellent tools to represent many features and processes of eco logical 

and evolutionary systems. Specifically, their incomparable value becomes apparent in 

cases where the problem in volves large datasets in arder to reveal patterns behind sm ali 

and large-scale ecological and evolutionary proc ss s (Proulx et al., 2005). Moreo er, 

the need to move away from a purely reductionist approach in favour of an integrative, 

systems-oriented approach has been recently promoted by many researchers (see 

Masan and Verwoerd, 2007 for a review). Since ail biological systems are, indeed, sets 

of interacting components, the application of network theory becomes a p.atural way to 

tackle scientific questions within such complex systems. Therefore, this thesis is aimed 

at contributing to the graph-theoretical toolbox of ecologists and evolutionary 

biologists and promoting the application of network theory (i.e., network thinking) in 

---------------------------------------------------------------------------- ------
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these fields. 

In the following sections, brief descriptions of ecological and phylogenetic networks 

are given. In addition, some of the foundational concepts underlying the four chapters 

of the thesis are presented. Finally, at the end of the Introduction section an outline of 

the main four chapters of this thesis is provided. 

0.2 Phylogenetic networks 

One of the main goals of evolutionary biology is to reconstruct phylogenetic trees 

which accurately represent the evolutionary history of a group of species. In 

phylogenetic trees , each leafrepresents an existing species, white the internai vertices 

correspond to hypothetical ancestors, and edges (also called branches) show the 

relationships between ancestors and their descendants. 

Vast progress in the field of molecular biology in the last few decades has profoundly 

changed the nature of the datasets used in ph y logenetic analysis. Initially, the only 

available data for building evolutionary trees were morphological characters, but 

nowadays, biological sequence data (nucleotide or amino acid sequences) are mostly 

used to infer the history of !ife. These data sets are produced with the aid of efficient 

DNA and protein sequencing technologies and the comprehensive computer-based 

analysis of the results. These data are maintained in huge freely available and publicly 

accessible databases such as GenBank and EMBL among others. Given that the amount 

of data available in these databases are growing exponentially, it is vital to analyze 

these data in a fast, efficient, and accurate manner in order to make use oftheir results 

to tackle both theoretical and applied questions in evolutionary biology and ecological 

and societal contemporary problems. 
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In phylogenetics, this means that algorithms and applications have to be developed 

with the aim of analyzing and modelling the diverse and complex processes that have 

occurred during the evolution of any given set of current species. So far, many efforts 

have been made to develop efficient methods in order to reconstruct ph y logenies that 

best represent the evolutionary history for different sets of taxa. Sin ce evolution just 

occurred once in the past, there is no direct observational or experin1ental study that 

may be used in phylogenetic reconstruction. Moreover, the fossil record is often 

incomplete and ambiguous. Therefore, evolutionary biologists have to mostly rely 

upon mathematical and statistical models for analyzing the sequence data of existing 

species in order to infer phylogenetic trees and understand past events that led to 

speciation and other evolutionary patterns (Wiens, 2009). 

Essentially, there are three types of methods for ph y logenetic tree reconstruction: ( 1) 

distance-based methods like UPGMA (unweighted pair group method with arithmetic 

mean) and neighbor-joining, (2) parsimony-based methods like maximum parsimony, 

and (3) statistical-based methods like maximum likelihood and the closely related 

Bayesian method. A detailed description of ph y logeny reconstruction methods can be 

found in Felsenstein (2004). 

Phylogenetic networks are a generalization of evolutionary trees that make possible the 

simultaneous visualization of severa! conflicting or alternating histories of life. In a 

phylogenetic network, each conflicting or alternative history event is usually 

represented as an extra bran ch (or a link between two species or clades invo lved in the 

event) added to the phylogenetic tree . Thus , these extra branches or links (also called 

reticulation events) convert a simple phylogenetic tree, which at best can only 

represents one dominant hypothesis, to a phylogenetic network which can represent 

multiple conflicting or alternative historical hypotheses. Indeed, there are severa! types 

of events that lead to histories that are not adequately modelled by a single tree (Huson 

and Bryant, 2006; Legendre and Makarenkov, 2002): (1) horizontal gene transfer in 

- - - - - - - --- - - - --- - -- - - - - -



6 

bacterial evolution; (2) hybridization between species, including allopolyploidy in 

plants; (3) micro-evolution of local populations within a species, involving genetic 

differentiation ofallopatric populations, gene exchange through migration, or both; (4) 

homoplasy, the portion of phylogenetic similarity resulting from evolutionary 

convergence (e.g., parallel evolution and reversais), which cari be represented by 

reticulation branches added to a phylogenetic tree; and non-phylogenetic situations, 

such as (5) host-parasite relationships involving host transfer and (6) vicariance and 

dispersal biogeography. 

Even if the relationships between species are tree-like, phenomena like sampling error, 

parallel evolution, or mode! heterogeneity can also generate difficulties in representing 

evolution by a single tree (Gascuel, 2005). Generally speaking, there exist two 

fundamental types of phylogenetic networks, namely: (1) explicit networks that 

provide a concrete scenario of reticulate evolution and (2) implicit networks that are 

intended to represent incompatible signais in a data set (see Figure 3 in Huson and 

Bryant, 2006). An explicit network is generally depicted as a phylogenetic tree with 

additional edges. The internai nod es in such a network represent ancestral species, and 

nades with more than two parents correspond to reticulate events such as hybridization 

or recombination. Explicit networks mode! non-tree-like evolution and their purpose is 

to point out which lineages have undergone reticulation events. Implicit approaches, 

on the other band, are often based on split networks which represent ail splits contained 

in a set of gene trees. Each parallelogram of the resulting network corresponds to two 

incompatible splits. To be able .to accommodate incompatible splits, it is often 

necessary that a split network contains nades that do not represent ancestral species. 

Th us , split networks provide only an "implicit" representation of evolutionary history . 

Phylogenetic networks will be discussed in detail in Chapters I and II. 

0.3 Ecological networks 
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In ecology, the components (i.e., biotic and abiotic objects or entities) that construct a 

system show varying degrees of interactions. These interactions can be represented as 

an ecological network in which the components are indicated as nodes (i.e., vertices in 

graph terminology) and the interactions are depicted as links between the nodes (i.e., 

edges in graph terminology). These interactions, among other types , can be trophic, 

competitive, symbiotic, social and geographie connectivity. Ecolo gical networks are 

very useful models to describe, analyze and compare the structure of ecological 

systems. For example, they are often used to investigate the effects ofnetwork structure 

(i.e., topology) on the properties of ecological systems such as their stability (Dunne et 

al., 2002). 

Traditionally, ecological networks were frrst developed and used to model trophic 

relationships within food webs (Lindeman, 1942; Odum, 1965). Food webs are 

important components of every ecological system due to the feeding is essential for 

organisms' survival. In food webs organisms are connected directly through feeding. 

Networks have been used to mode! food webs, explore their stability and determine if 

certain network properties result in more stable networks (MacArthur, 1955). Given 

that the local extinction of a species within a given eco logical system may result in an 

unstable food web, network analysis have been used to determine how removal of 

species do influence food webs as a whole (Dunne et al., 2002). 

Another type of ecological network is species interaction networks which consist of 

pairwise interactions between individuals of one or more species. Network analysis of 

species interactions allows quantifying the associations between individuals and 

inferring details about the network as a whole. Moreover, the power and flexibility of 

network approaches allow for the study of various types of interactions ( e.g., social, 

competitive, predatory, cooperative and mutualistic interactions) using the same 

general approach. As such, ecological networks are useful in analyzing numerous 
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complex interactions within most ecologie al systems (Krause et al., 2009; Ryder et al., 

2008). 

Additional applications of ecological networks include exploring complex interactions 

at the multi-species levels in terms of both species dispersion and coevolution of pairs 

of species . In this thesis, network models were developed to study metacommunities , 

which are particularly complex given their relative large geographie extent, their 

heterogeneous landscapes and their multi -species composition. Since 

metacommunities involve large scale problems, there is no direct observational or 

experimental study that may be used to understand sorne of the processes (e.g. , 

dispersal history) underlying their structure. These applications are further discussed 

in Chapters II, III and IV. 

0.4 Biogeography 

Historical biogeography studies show how ecological processes that happen over long 

periods of time influence the distributional patterns of living organisms (Cox and 

Moore, 1993). Conversely, studying the same processes acting in short periods oftime 

is called ecological biogeography. Biogeography as a whole is a multidisciplinary 

science with a long history . Indeed, the study of plant and animal distributions has a 

his tory as long as bio lo gy itself. 

It is accepted that the scientific theory of biogeography likely grew out of the work o:f 

Alfred Russel Wallace (1823-191 3) and other early evolutionary scientists. Wallace 

studied the distribution of flora and fauna of the Malay Archipelago in the 19th century. 

One of the interesting subjects in historical biogeography has been the study of the 

effects of Pleistocene glaciations on the distribution of living organisms. However, 

sorne authors place this subject between ecological and historical biogeography, 
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because the processes involved acted for only several thousand years which 1s not 

considered a long period oftime in geography (Myers and Giller, 1988). 

The aim ofbiogeography is to reveal where species live, why, and at what abundances 

through the study of the distribution of biodiversity over space and time (Martiny et 

al. , 2006). One of the most impressive features of our planet is the sheer diversity of 

organisms it contains, and one of the main problems facing scientists is how to explain 

this diversity, and the reas ons for the varying patterns of occurrence of different species 

over the surface of the planet or in particular large landscapes . Moreover, biogeography 

is about seeking general rules that can account for distributional patterns and provide a 

general framework to generate insights that can subsequently be used for predictions 

about the consequences ofupcoming phenomena. 

Patterns of species distributions can be usually explained through a combination of 

historical factors such as speciation, extinction , continental drift, glaciation (and 

associated variations in sea level, river routes, among other factors) , and river capture, 

in combination with the area and isolation of landmasses (geographie constraints) and 

available resources. All these factors are the results of the interaction between two great 

natural phenomena: evolution and plate tectonics . Although, nowadays , biogeography 

is an independent discipline with a core of accepted knowledge and methodological 

princip les, it is also an adjunct whose status is contingent on other areas of study such 

as ecology, evolution, taxonomy, molecular systematics, geography, geology, and 

palaeontology . For instance, phylogenetic networks in which the re lations between 

regions within a landscape are represented by branches could be used to explore the 

hypothesis that multiple dispersal routes were used by a particular species of interest 

to migrate from one region to another. The application of network theory on 

biogeography is the focus of Chapter II. 
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0.5 Metacommunity 

In ecology, a community is a group of populations of two or more different species 

occupying the same geographical area. Community ecology is primarily concerned 

with patterns of species distributions, abundance and interactions across different 

spatial and temporal scales. As an extension, an ecological metacommunity is consisted 

of a set of local interacting communities that are interconnected through dispersal 

(Leibold et al., 2004). 

Metacommunities have been defmed and studied based on four major perspectives: 1) 

patch dynamics; 2) species sorting; 3) source-sink dynamics (or mass effect); and 4) 

neutra! model. These four theoretical frameworks were developed in order to explore 

specifie processes underlying community patterns. Patch dynamics models are mainly 

used to describe species composition among multiple habitat patches, such as islands. 

The focus in patch dynamics is on the possible coexistence due to competition­

dispersal, competition-colonization or dispersal-fecundity trade-offs. Conversely, 

species sorting models try to link the variation in abundance and composition within 

the metacommunity to similar and differentiai responses of the species to 

environmental heterogeneity. Source-sink models, on the other hand, are based on the 

assumption that dispersal and environmental heterogeneity interact to determine local 

and regional ab un dance and composition. Finally, in the neutra! framework species are 

considered essentially equi aient in their competitive and dispersal abilities. Therefore, 

stochastic demographie processes and dispersal limitation are the primary factors 

determining the local and regional composition and abundance (Leibold et al. , 2004). 

Spatial heterogeneity and connectivity ofmetacommunities will be further investigated 

using networks in Chapter III and Chapter IV, respectively. 
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0.6 Thesis outline 

This thesis is comprised of the following four chapters: 

Chapter I 

Chapter II 

Chapter III 

Chapter IV 

Inferring explicit weighted consensus networks to represent 

alternative evo lutionary histories 

Using directed phylogenetic networks to retrace specres 

dispersal history 

Spatial networks for inferring dispersal rn eco logical 

communities 

A novel connectivity measure for metacomrmmity networks 

Chapter I emphasizes the application of networks in evolutionary biology and 

phylogenetics. It is comprised of a novel weighted explicit method to construct 

consensus phylogenetic networks. Moreover, this method is capable of detecting 

different reticulation events such complete horizontal gene transfers , partial horizontal 

gene transfers, recombination and hybrid izations. This method was also successfully 

tested and assessed by both empirical and sirnulated datasets . Chapter II is prirnarily 

concemed with the application ofnetworks in biogeography. Specifically, it includes a 

new network methodology that is developed to retrace species dispersal history. This 

new method was successfully applied on an empirical dataset in arder to reconstruct 

th historical dispersal e ents that occurred when fish species left southem refugia to 

recolonize the northem Ontario province after the last glaciation period. Chapter III 

focuses on the use of network theory to investigate the spatial heterogeneity within 

large multi-species ecological systems. In this chapter, a novel graph-theoretical 

method was developed to capture and explore the spatial variation within 

metacommunities. This new method was successfully tested on both empirical and 

sirnulated datasets . Finally, Chapter IV investigates the application of graph theory in 

detecting connectivity in metacommunities . In this chapter, a new connectivity 



12 

measure was developed to be specially applied on metacommunities. This connectivity 

measure was successfully tested on simulated datasets. 



- ---------- --

CHAPTER 1 

INFERRING EXPLICIT WEIGHTED CONSENSUS NETWORKS TO 

REPRESENT ALTERNATIVE EVOLUTIONAR Y HISTORIES 

Mehdi Layeghifard, Pedro R. Peres-Neto and Vladimir Makarenkov 

Published in BMC Evolutionary Biology. 

1.1 Summary 

The advent of molecular biology techniques and constant increase in availability of 

genetic material have triggered the development of many phylogenetic tree inference 

methods. However, severa! reticulate evolution processes, such as horizontal gene 

transfer and hybridization, have been shawn to blur the species evolutionary history by 

causing discordance among ph y Jo genies inferred from different genes. To tackle this 

problem, we hereby describe a new method for inferring and representing alternative 

(reticulate) evolutionary histories of species as an explicit weighted consensus network 

which can be constructed from a collection of gene trees with or without prior 

knowledge of the species phylogeny . We provide a way of building a weighted 

phylogenetic network for each of the following reticulation mechanisms: diploid 

hybridization, intragenic recombination and complete or partial horizontal gene 

transfer. We successfully tested our method on sorne synthetic and real datasets to infer 

the above-mentioned evolutionary events which may have influenced the evolution of 

many species. Our weighted consensus network inference method allows one to infe r, 

visualize and validate statistically major conflicting signais induced by the mechanisms 

of reticulate evolution. The results provided by the new method can be used to represent 



the inferred conflicting signais by means of explicit and easy-to-interpret phylogenetic 

networks . 

1.2 Introduction 

Molecular data have played an instrumental, and usually indispensable, role in many 

ph y logenetic and evolutionary studies in the recent decades . The ir in creas ing 

availability is due to outstanding advances in the development of fast, efficient and 

affordable sequencing technologies (Pettersson et al. , 2009). Although this growth has 

triggered the advancements of theoretical informatics aspects of phylogenetics and 

evolutionary biology via the development of new algorithms, statistical models and 

software, fast and effective analytical methods have yet to be designed to take 

advantage of this huge surplus of data. For instance, the field of phylogenetics still 

faces sorne key analytical challenges stemming from reticulate evolution. They 

include : 1) horizontal' gene transfer (e.g., in bacterial or viral evolution); 2) 

hybridization among species (e.g. , allopolyploidy in plants); 3) genetic differentiation 

of allopatric populations and gene exchange through migration; 4) homoplasy (i.e. , 

parallel evolution and reversais); 5) incomplete lineage sorting; and 6) recombination 

between genes (Huson and Bryant, 2006; Huson et al. , 2010; Legendre and 

Makarenkov, 2002; Posada and Crandall, 2001). Ali these processes may lead to the 

incongruity among gene trees (Giribet et al. , 2001 ; Grechko, 2013 ; Mason-Gamer and 

Kellogg, 1996; Rokas et al. , 2003 ; Zou and Ge, 2008) inferred from the data affected 

by reticulate evolutionary mechanisms. Implicit or explicit phylogenetic networks 

should be used to represent these complex phenomena when the gene tree incongruity 

is observed (Huson et al. , 2010; Makarenkov and Legendre, 2004). Implicit networks 

are better suited for a general representation of conflicting evo lutionary signais present 

in the data, whereas explic it networks are used for depicting the precise reticulation 



events , including their directionality and the species involved. The inference and 

validation of explicit phylogenetic networks is the main goal of the current study. 

Another key factor that con tribu tes to the incompatibility among gene trees is stochastic 

errors resulting from analytical features such as choice of optimality criterion, taxon 

sampling and seqtlence evolution mode! (Graybeal, 1998; Huelsenbeck, 1995; Yang et 

al. , 1994). These complications not only makes it difficult for researchers to fmd 

reliable estirnates of the true species phylogenies, but also obstruct such fields as 

comparative biology and community phylogenetics which rely on phylogenetic trees 

in their analyses (Harvey and Pagel, 1991 ; Peres-Neto, 2012; Webb, 2002). 

Evidence from many studies conducted on different groups of species, from fruit flies 

to hominids (Burbrink and Pyron, 2011; Carstens and Knowles, 2007; Ebersberger et 

al. , 2007; Grechko, 2013 ; Jennings and Edwards, 2005 ; Pollard et al. , 2006; Sanchez­

Gracia and Castresana, 2012; Syring et al., 2007; Takahashi et al. , 2001), have shawn 

that gene tree discordance is a widespread phenomenon. These studies mostly 

concluded that rarely a predominate or consistent single-gene-based phylogeny could 

be perceived or reconstructed for a moderate to large set of species , regard Jess of the 

typeofphylogenetic data at hand. Among the traditional tree-like techniques developed 

to solve the gene tree incongruence problem there are two widely used approaches of 

gene concatenation and consensus tree reconstruction, both of which result in the 

inference of a single phylogenetic tree as the most probable representation of the 

evolutionary history of species. 

Although, there have been successful cases of using the concatenation approach to 

elucidate the ancestral relationships among certain groups of species (Baldauf et al., 

2000; Chen and Li, 2001; More ira et al. , 2000; Soltis et al., 1999), multi-gene datasets 

very rarely converge to the same phylogeny, more often providing results which are 

contradictory or inconsistent with well-known and highly reliable species tree (Giribet 



et al., 2001; Hwang et al., 2001; Mossel and Vigoda, 2005; Naylor and Brown, 1998). 

These statistical inconsistencies in estirnating phylogenetic trees using concatenated 

datasets have been confmned by simulation studies (Kolaczkowski and Thomton, 

2004; Kubatko and Degnan, 2007). 

The main idea behind traditional consensus tree reconstruction methods is that each of 

the phylogenetic trees from a given collection oftrees should contribute to a consensus 

tree according to the presence of its clusters. Among the most known and widely used 

consensus tree reconstruction methods are the majority rule consensus (Margush and 

McMorris, 1981) and Nelson (often called Nelson-Page) consensus approaches 

(Nelson, 1979; Page, 1989). The traditional strict majority rule consensus tree includes 

all the clusters that occur in more than 50% of the considered trees . The major pitfall 

of this method is that for a set of trees with a po or overall bootstrap support, the 50% 

cluster occurrence constraint leads to a very weakly resolved phylogeny. On the other 

hand, in the extended majority rule consensus tree approach, a strict consensus tree is 

first constructed and then the remaining compatible clusters are added to it following 

their overall frequency in the considered tree collection. For the collections of trees 

with a poor overall bootstrap support, the constraint of 50% used when inferring the 

majority rule and extended majority rule consensus trees can be often inconvenient. 

Many existing software allow for clusters that are present in less than 50% of the trees. 

They work downwards in the frequency of the cluster occurrences as long as the new 

clusters aid to resolve the consensus tree. The extended majority rule consensus method 

often provides solutions sirnilar to those of the Nelson consensus method , although not 

necessarily identical to them (Nelson, 1979; Page, 1989). The Nelson consensus 

method, first described in (Nelson, 1979) and then generalized in (Page, 1989), re lies 

on the graph theory techniques to fmd maximum cliques of mutually compatible 

clusters. Its major drawback is that these cliques do not always contain enough 

compatible clusters to constitute a fully resolved phylogenetic tree (Bryant, 2003). 



Moreover, the problem of fmding a maximum clique of compatible clusters has been 

shown to be NP-hard (Abello et al. , 1999). 

Phylogenetic networks should be used instead of consensus species trees or species 

trees inferred from concatenated sequences whenever reticulate evolutionary processes 

are studied (Huson et al. , 2010; Legendre and Makarenkov, 2002; Makarenkov and 

Legendre, 2004). Here , we recall sorne of the existing ph y logenetic network building 

methods and software based on the cluster support. In an early attempt to build 

consensus phylogenetic networks, Holland et al. (2004) developed an irnplicit 

consensus network mo del based on the median network method (Bandelt et al., 1999) 

to visualize incompatibilities encompassed in the given collection oftrees. This method 

proceeds frrst by ranking all the splits according to their frequency and then builds a 

system of compatible splits by adding those splits to the network, one at a time, 

following their frequency ranking. Holland and colleagues (Holland et al., 2006) 

further optirnized their original greedy consensus network method to incorporate 

weights from individual trees into the network inference process. Having the length of 

each split (i.e., branch length of the split branches) in different trees as well as the 

weights associated with those trees, this method computes an average length for each 

split and fmally selects compatible splits based on their weights to build a consensus 

network. 

In another attempt, Huson (1998) and then Huson and Bryant (2006) have deve loped a 

computer program called SplitsTree which reconstructs an unrooted splits graph from 

a collection ofphylogenetic trees through selecting all the splits that are present in more 

than a ftxed percentage of all the trees (Holland et al., 2004). However this pro gram 

provides as result only implicit network structures; the inferred extra links do not 

usually directly correspond to the tree lineages and the number of nodes and edges of 

the resulting network can grow exponentially with the number of splits. To address 

these disadvantages, Huson and Ru pp (2008) proposed the elus ter network approach to 



build a phylogenetic network from a collection of gene trees using a modified tree 

popping algorithm which they called network popping algorithm. To estimate the 

support of any reticulation edge, the average support of th at edge ( computed over ail 

trees) is divided by the average support of the alternative reticulation edges located at 

the same position and weighted by the average support of ali other tree edges (Huson 

and Rupp, 2008; Huson et al., 201 0). The latter authors stated however that no 

association between clusters and reticulation edges is provided by this method. For 

instance, the obtained cluster support was not shown in their network representations 

(Huson and Rupp, 2008). On the other hand, Abby et al. (201 0) proposed a horizontal 

gene transfer inference method called Prunier. Prunier needs a species tree and a gene 

tree as a reference and does not treat multiple gene trees. Prunier relies on a ranking of 

branches that are common to the species and gene trees based on the amount of 

conflicts that is reduced when the branch is removed. This amount of conflicts is a 

function that depends on the statistical support of the interna! branches of the gene tree. 

For a detailed review of the existing phylogenetic network reconstruction methods the 

reader is referred to (Huson et al. , 201 0). Note that the results yielded by most of the 

existing consensus network building methods are implicit and generally not easy to 

interpret. 

In this study, we present a new algorithm for the inference of explicit weighted 

consensus networks from a collection oftrees (e.g., multiple single-gene phylogenies), 

ith or ithout prior kno ledge of th sp ci s phylog ny. Such networks are capable 

of representing the main historical pattern of the species evolution (i.e., associated with 

the clusters present in the species tree) as we ll as the alternative evolutionary routes 

characterizing the species and genes under consideration. The main advantage of our 

method is that it allows for visualizing the species evolutionary relationships in a very 

clear and easy-to-interpret manner. Our algorithm takes advantage of the weights ( e.g., 

!east-square scores , posterior probabilities, maximum likelihood scores or p-values) 

assigned to the gene trees as well as the weights associated with the tree clusters ( e.g., 



cluster's bootstrap score or posterior probability) to infer the species dominant and 

alternative evolutionary histories. If a species tree is provided in addition to the 

collection of gene trees, our algorithm cons id ers it as the dominant evolutionary his tory 

(i.e., backbone structure) and uses the collection of gene trees to infer the most 

significant reticulation events. If only a collection of gene trees is given, the new 

algorithm frrst builds a weighted consensus tree as the main evolutionary pattern and 

then infers the most significant alternative events. 

The rest of the article is organized as follows. In the Methods section, a description of 

the basic concepts of phylogenetic networks and a detailed presentation of our new 

algorithm are given, followed by the description of the simulation protocol and the 

three considered real datasets . In the Results section, the results and performances of 

the new algorithm obtained for both simulated and real data are reported. They are then 

discussed in detail in the fmal section ofthe article. 

1.3 Methods 

1.3 .1 Basic concepts 

1.3 .1.1 Graph 

A graph G (V, E) consists of a collection of vertices (V) which are connected by a 

collection of edges (E) in a pairwise manner. A path in a graph is a sequence of at least 

two vertices (v1 , v2, ... , Vk) such that, for alli E{ 1, 2, ... , k-1} , there exists an edge {v;, 

V;+J} in E. A cycle in a graph is a path whose first and last vertices are the same, wh ile 

ali other edges and vertices are pairwise distinct. 



1.3 .1.2 Phylogenetic tree 

A phylogenetic tree (1) is an acyclic connected graph whose leaves (i.e., vertices of 

degree one) are labelled according to the given set oftaxa (i.e., species). Phylogenetic 

trees can be either bifurcating (i.e., ail the interna! nades have an indegree of one and 

an outdegree of two) or multifurcating (i.e., interna! no des can have an outdegree of 

three and more). Phylogenetic trees can be rooted or unrooted, where the root is a node 

representing a co mm on ancestor of ail the species invo Ived in the analysis. 

1.3 .1.3 Phylogenetic network 

A phylogenetic network is a connected graph used either to visualize evolutionary 

relationships between species or to display conflicting evolutionary signais without 

such limitations as being acy clic or having a flxed indegree or outdegree of its nades . 

Phylogenetic networks can be implicit or explicit: irnplicit networks such as split 

graphs are used to represent conflicting and ambiguous signais in a dataset using 

parallel sets of edges, rather than single branches. These networks often con tain nades 

that are not representing any ancestral species, hence providing only an implicit 

representation of evolutionary histories (Huson and Bryant, 2006). In explicit 

networks, in contrast, the interna! nodes represent ancestral species and nodes with 

more than two parents correspond to reticulation events such as hybridization, 

recombination or horizontal gene transfer. Such networks provide an explicit 

representation of evolutionary history of species (see Huson et al. , 2010 for more 

details). Here, we will frrst defme sorne basic princip les of the weighted consensus tree 

reconstruction prior to expanding them to phylogenetic networks inferring. 



1.3 .1.4 Bootstrap-based majority rule consensus tree 

The main idea of our approach is that each phylogenetic tree from a given collection 

of trees should con tribu te to a consensus tree not sim ply by the presence, but also by 

the quality of its clusters (i.e ., bipartitions or splits corresponding to the internai tree 

branches). The quality of a cluster within a given collection of trees can be defmed as 

the sum of bootstrap scores, taken over ali the trees in this collection, of the internai 

branches associated with · this cluster. The traditional majority rule consensus tree 

in eludes only the clusters that exist in more than 50% of the considered trees (Margush 

and McMorris, 1981). Note that any other percentage between 50% and 100% can be 

also specified in most of the existing phylogenetic packages (e.g., in PHYLIP; 

Felsenstein, 1989). The bootstrap-based majority rule consensus tree will include any 

cluster whose average bootstrap support, i.e., total sum ofbootstrap scores, computed 

over ali the trees in the collection, divided by the number oftrees in this collection, is 

greater than 50% (e.g., tree T bm in Figure 1.1 is the bootstrap-based majority rule 

consensus tree, as weil as the strict majority rule consensus tree, oftrees T1, T2 and T3). 

It is easy to prove that ail the clusters satis:fying such a rule will be pairwise compatible. 

For this, it will be sufficient to substitute each tree of the original tree collection by the 

set of its bootstrap repli ca tes (i.e., rep licated trees built wh en carrying out the bootstrap 

procedure) and then apply the traditional strict majority rule method on this extended 

set of replicated trees . Ali the clusters appearing in more than 50% of the replicated 

trees will be mutually compatible. 

1.3 .1. 5 Bootstrap-based extended majority rule consensus tree 

Similar to the traditional extended majority rule method, as implemented in the 

CONSENS program ofthe PHYLIP package (Felsenstein, 1989), the bootstrap-based 

extended majority rule method is a two-stage procedure. First, any cluster whose 



average bootstrap score is greater than 50% will be included in the consensus tree. 

Then, the method will consider the remaining clusters following the order oftheir total 

sums of bootstrap scores, computed over ail the trees in the collection, and gradually 

add to the consensus tree tho se that are compatible with the current consensus tree un til 

the tree is fully resolved or no more compatible clusters remains. For instance, tree Tbem 

in Figure 1.1 is the extended bootstrap-based majority rule consensus tree of trees TI, 

T2 and TJ. 

1.3.1.6 Bootstrap-based Nelson consensus tree 

We also consider the following extension of the traditional Nelson method . To build 

the bootstrap-based Nelson consensus tree each clique will be assigned a score equal 

to the sum of scores of clusters included in it. The score of each cluster is defmed as a 

sum ofbootstrap scores associated with this cluster, computed over the given collection 

of trees. Unlike the method described by Page (1989), where only the replicated 

clusters can contribute to the clique scores, our procedure also takes into account the 

scores of ali unreplicated clusters . If a single clique with the highest total bootstrap 

score is found, the group of compatible clusters included in this clique will define the 

bootstrap-based Nelson consensus tree. lfthere exist more than one such clique, then 

the bootstrap-based Nelson consensus tree will contain only the clusters found in ali of 

the maximal replication cliques. In this case, clust rs found in som , but not ali, of the 

maximal-replication cliques can be classified as "ambiguous" (for more details see 

Felsenstein, 1989; Page, 1989; Swofford, 1991) . In sorne cases, the bootstrap-based 

extended majority tree and Nelson consensus tree will be identical ( e.g. , tree T bem in 

Figure 1.1 is also the Nelson consensus tree oftrees TI, T2 and TJ), but this equivalence 

does not hold in general. 
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Figure 1.1 Bootstrap-based consensus trees and networks. Bootstrap-based majorityrule consensus tree 

Tbm, bootstrap-based extended majority rule consensus tree Them and weighted implicit phylogenetic 

network Nm for a collection of three binary phylogenetic trees r,, T2 and T3 who se leaves are labelled 

by the set of 5 taxa (x, y, z, w and u). The bootstrap scores of the internai branches oftrees T1, T2 and T3 

ar~ indicated. AJI the trees have the same weight. 



In Figure 1.1 , a set ofthree trees is presented (Tt , T2 and T3), each of them containing 

two internai branches with the associated bootstrap scores. The right-hand internai 

bran ch ( connecting Ieaves "z" and "w" to the rest of the tree) has bootstrap support of 

100% in all three trees . Therefore, it should be included in all consensus trees, or 

networks , regardless of the reconstruction method usèd. On the other hand, the left­

hand internai bran ch connecting leaves "x" and "y" to the rest of the tree in Tt and T2 

has different bootstrap scores in these trees (40 and 45% respectively). In tree T3, the 

left-hand internai bran ch connects leaves "x" and "u" to the rest of the tree. Its bootstrap 

score, 90%, is higher than the sum of bootstrap scores of the corresponding bran ch in 

Tt and T2. When using the bootstrap-based majority rule defmed above, we obtain a 

consensus tree (Tbm in Figure 1.1) th at do es not in elude the left-hand internai bran ch 

because neither the sum of scores of T1 and T2 nor the bootstrap score of T3 divided by 

the number of trees is greater than 50%. The application of the bootstrap-based 

extended majority rule adds to the consensus tree (tree Tbem in Figure 1.1) the left­

handed branch oftree T3, since 90% 1 3 = 30% > (40% + 45%) 1 3 = 28.3%. Tree Tbem 

is also the bootstrap-based Nelson consensus tree of T1, T2 and TJ . Finally, the 

construction of the bootstrap-based consensus network (Nm in Figure 1.1) relies on 

the same principle as the bootstrap-based extended maj ority rule, except that it 

encompasses both left-hand internai branches (that from T1 and T2 and that from T3) 

characterized by their bootstrap support. Network Nm is an irnplicit consensus 

network. In this article we will show how such an irnplicit network can be transforrned 

into explicit one depending on the evolutionary mechanism being studied. 

1.3.2 Method description: consensus tree 

The method we present and appiy here also takes into consideration the weights 

associated with the given phylogenetic trees in addition to bootstrap scores of the tree 

clusters (i.e., internai branches). Using one of the three equations presented in the 



section "lnferring weights", the method defmes a weight of each cluster based on the 

weights of the trees containing this cluster and on the cluster' s bootstrap scores in these 

trees . Then, after ranking ail the clusters based on their weights, it regroups the 

compatible clusters starting from the top of the list, until a fuily resolved consensus 

tree is built. This method is cailed here weight-based extended majority rule consensus 

tree inference. 

1.3 .3 Method description: consensus network 

Our consensus network inference method accepts two types of input: 1) a species 

phylogenetic tree and a set of gene phylogenetic trees defmed on the same set of 

species, or 2) only a set of gene trees defmed on the same set of species . In phy logenetic 

studies, gene trees are usually characterized by their weights that reflect the quality of 

the reconstruction process. Such weights could be an average ofbootstrap scores of the 

tree's internai branches, a maximum parsimony or maximum likelihood score or a 

Bayesian posterior probability estimate. Thus, we assume that ail the phylogenies have 

bootstrap scores or posterior probabilities (or any other measure of support) for the ir 

internai branches. Our algorithm frrst, breaks down ail the gene phylogenies into their 

relevant clusters and calculates a weight for each cluster based on Equations 1.1 , 1.2 

or 1.3 presented in the foilo wing section. Next, the algorithm ranks ali the clusters 

based on their weights . For this typ of input, our algorithm u es the species tree as the 

backbone of the network and graduaily adds to it the highly ranked clusters (i.e., 

represented by reticulation branches) of the gene phylogenies. For the frrst type of 

input, the species tree is accepted as the dominant evolutionary history and the clusters 

of the gene trees are used to infer the reticulate (alternative) evolutionary events . For 

the second type of input, our algorithm reconstructs a consensus phylogenetic tree 

using the weight-based extended majority rule consensus tree method described above 

and then adds to it the remaining highly ranked incompatible clusters which are 



presented as reticulation branches. In the obtained consensus network, the weight­

based consensus tree and .the reticulation branches can be regarded as the main and 

alternative evolutionary scenarios, respectively. 

Regardless of the input type, the resulting representation is a weighted consensus 

phylogenetic network with a backbone tree structure and reticulation branches being 

chosen based on their weights which reflect the ir contribution to the clustering process. 

These two algorithmic facets are sch~matically presented in Figure 1.2, in which the 

steps depicted by letter a correspond to processing the frrst type of input and those 

depicted by letter b are related to the second type of input. Steps 2 to 4 are corn mon for 

bath types of input. 

We present here three network building algorithms (Algorithms I, II and III), each of 

them being optiinized for detecting and representing a specifie evolutionary 

phenomenon. The first algorithm (Algorithm 1), which accepts the input of type 2 (a 

collection of gene trees inferred for various genes), is suitable for inferring either 

diploid or polyploidy hybridization events occurred among the observed species, or for 

fmding recombination events occurred at the chromosome level. Algorithm I frrst 

proceeds by building the weight-based extended majority rule consensus tree followed 

by fmding reticulation events and adding them to the consensus tree with proper 

direction in arder to build the explicit weighted consensus network. The tirne 

complexity of Algorithm I is O(n x m2 x (n + r)), where n is the number of gene trees 

in the considered gene tree collection r, mis the number ofleaves in each ofthese trees 

and r is the number of reticulation branches (i.e., reticulation events) added to the 

consensus tree. Note that the cluster inference procedure in Algorithm I (i.e. , the frrst 

loop for in this algorithm) has the tune complexity of 0( n x m2
) as we use an optimal 

algorithm for the tree cluster inference, originally described by Makarenkov and 

Leclerc (2000), in which each tree cluster is presented as a binary bipartition vector. 



The weight computation procedure for the clusters from the gene tree collection r (i.e., 

the second loop for in Algorithm I) has the time complexity of O(n2 x m2
). The time 

complexity of the second loop white in this algorithm, where the reticulation branches 

are added to the consensus tree, is O(r x n x m2
). The function fi nd direction in the 

same algorithm has the time complexity of O(n x m2
). A group of clusters (i.e., 

bipartition vectors) is called compatible if altogether these clusters induce a unique 

phylogenetic tree. A cluster chas thefirst degree ofin'compatibility with a phylogenetic 

tree T if there exists an SPR (Subtree Prune and Regraft) rn ove of the branches of T 

induced by the cluster c that transforms Tinto another phylogenetic tree . For instance 

in Figure 1, cluster (xy) has the frrst degree ofincompatibility with tree T3. In the ,same 

way, cluster (xyw) has the second degree of incompatibility with tree T3, as it requires 

two SPR moves (i.e., two reticulation branches) to transform T3 into a tree where cluster 

(xyw) is present. In the case of a directed phylogenetic network Nh inferred in 

Algorithm I, cluster c will have the frrst degree of incompatibility with Nh if it has the 

first degree of incompatibility with the tree T obtained from Nh after carrying out all 

SPR moves corresponding to the reticulation branches included in Nh. Mention that in 

all the three presented algorithms we only need to know whether a given cluster c has 

thefirst degree ofincompatibility with a given network Nh or not. 
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Figure 1.2 Flowchart of the new method for building weighted consensus networks. Facet a of the 

method (indicated by lowercase a next to step numbers) uses a species tree as weil as a set of gene trees 

to infer the consensus network. Facet bof the method (indicated by lowercase b next to step numbers) 

uses only a set of gene trees to build the consensus network. Step numbers that do not conta in any letter 

are comrnon steps for the two facets. 



Algorithm II, on the other hand, is designed to infer intragenic recombination events 

or partial horizontal gene transfers which lead to the creation of mosaic genes. This 

algorithm accepts two types of input (a species tree and a multiple sequence alignment, 

or only a multiple sequence alignment). In cases where a species tree is provided, 

Algorithm II uses it as a backbone of the network. A sliding window procedure is then 

carried out for fmding the aforementioned reticulation events and adding them to the 

backbone in order to build an explicit weighted consensus network. Otherwise, if only 

a multiple sequence alignrnent is given, a weight-based extended majority rule 

consensus tree will be built from it and used as the backbone of the network. The time 

complexity of Algorithm II isO(iSWi x (O(PhyllnjMeth) +nx m 2 x(n +r))), where 

ISWI is the cardinality of the set of MSA (multiple sequence alignment) fragments 

examined by the sliding window procedure and O(PhyllnfMeth) is the running time 

of the phylogeny inferençe method used to infer the tree T from the MSA fragment 

MSAJ. 

Our third algorithm (Algorithm III) is intended for fmding complete horizontal gene 

transfer events. It accepts as input a species tree in addition to one or more gene trees 

(or multiple sequence alignments). Algorithm III uses the species tree as the backbone 

for the network and adds toit the most significant clusters (i.e., horizontal gene transfer 

events) obtained after computing the weights of the gene tree clusters in order to build 

the weighted consensus horizontal gene transfer network. The time complexity of 

Algorithm III is O(PhyllnjMeth) + O(n x m 2 
x (n + r)). 

The resulting phylogenetic network, regardless of the algorithm used, will be an 

explicit (in the sense that it represents exactly the assumed evolutionary mechanism) 

weighted and directed consensus network as shown in detail in Figure 1.3. The weight 

estimates of the obtained backbone and reticulation branches provide statistical support 

of the inferred speciation and reticulation events . 



Species (or backbone) tree Gene tree (or concensus 
tree of a set of gene trees) 

lmplicit phylogenetic 
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Explicit weighted hybridization 
network (or recombination network 
with two parent species detected) 

z 

... 

y x h z 

Explicit weighted horizontal gene transfer network 
(or recomb ination network with one parent species 
detected) - intermediate network for hybridization 

y x h z 

Figure 1.3 Building explicit weighted consensus phylogenetic networks. The explicit network is built 

from sets of clusters de fined by a species (i.e. backbo ne) phylogenetic tree and a gene tree (or a set of 

gene trees): An impli cit weighted phylogenetic network is firs t constructed; then, it is transformed into 

an explicit weighted hori zontal gene transfer network, wh ich can be transformed info an explicit 

hybridization network. Traditional (i.e. complete) horizontal gene transfer, partial horizontal gene 

transfer and recombination events for which the recombinant organism and on! y one of its parents can 

be identified give rise to a horizontal gene transfer network. Diploid and polyploid hybridization along 

with recombination events for which the recombinant organism and both of its parents can be identified 

give rise to a hybridization network. Straight !ines indicate single tree or network branches, dashed !ines 

- ret iculation branches and wavy !ines- paths including multiple branches. 



1.3 .4 Inferring elus ter weights 

For each cluster from the set of the given gene trees , we have first to compute its overall 

weight. Every tree elus ter can be associated with two types of initial weights, one being 

its proper bootstrap score or posterior probability in its tree of origin and another 

characterizing its entire tree of origin. In the case when the input contains only the 

weights associated with internai tree branches and Jacks any measure of support for 

entire trees, we use the following equation to calculate the overall cluster weights: 

(1.1) 

where ~ (C) is the overall weight ofcluster i, W(Cu) is the weight ofcluster i in treej 

and n is the total nurnber of trees . If cluster i is absent in tree j, then O"i equals 0, 

otherwise it equals 1. Conversely, wh en the en tire tree support is provided for each tree 

from the given set oftrees but the input Jacks individual supports for internai branches , 

we use the following equation to calculate the overall cluster weights: 

~(T) = CI~= I ŒiJ x W(T1 ))/ n, (1.2) 

where ~(7) is the overall weight of cluster i calculated from the tree supports only, 

W(1}) is the support of tree j and n is the total nurnber of trees . Finally , when both 

cluster and tree initial supports are provided in the input, we use the following equation 

to infer the overall cluster weight, ~(C, 1), for each cluster i: 

W/C, T) = CI~= IŒiJ x W(CiJ) x W(T)) I n , (1.3) 



where W(Cu) is the weight of cluster i in tree j, W(T;) is the support for tree j and n is 

the total number _of trees. These overall cluster weights will be used to build the 

consensus tree or network as described above. 

1.3.5 Assessing the efficiency ofthe new method 

1.3 .5.1 Real data 

We examined three evolutionary datasets to test the efficiency of our weighted 

consensus network inference method. The frrst dataset consisted of 677 bp nucleotide 

sequences ofmitochondrial cytochrome c oxidase subunit Il of six species ofhoneybees 

(subfamily Apinae ). The second one comprised eight chloroplast 16S rRNAs (920 

nucleotides) from plants,- algae and cyanobacterium. These two datasets are well­

known and distributed with the SplitsTree program (Huson, 1998) among the data 

encompassing the events of reticulate evolution. The third considered dataset consisted 

of amino acid sequences ofribosomal protein rpLJ2e for 14 Archaeal species (Matte­

Tailliez, 2002). 

We applied four different tree inference methods on both real and simulated (described 

in the next section) data to produce collections of gene trees. One representative from 

each of the four main tree reconstruction approaches (i.e., distance-based (Saitou and 

Nei, 1987), maximum parsimony (Fitch, 1971), maximum likelihood (Felsenstein, 

1981) and Bayesian (Rannala and Yang, 1996) approaches) was considered. The exact 

methods we used were the following : BIONJ (Gascuel, 1997), DNAPARS from the 

PHYLIP package (Felsenstein, 2005), PhyML (Guindon et al., 2010) and MrBayes 

(Ronquist et al., 2012). 



We applied these tree inference methods on both whole sequences and fragments of 

sequences (using a sliding window procedure) in order to search for alternative 

evolutionary events which might have affected either entire gene sequences (e.g. , 

hybridization events) or only small sequence fragments (e.g., partial horizontal gene 

transfer events). The latter events are usually ignored when analyzing entire genetic 

sequences during tree or network reconstruction . In the case of horizontal gene transfer 

events in Archaebacteria, we also computed the directions of complete and partial 

horizontal gene transfers using a dedicated function based on the Robinson and Foulds 

topological distance (Robinson and Foulds, 1981 ); see the function fi nd_ direction in 

the end of Algorithm I. Assume that T is the backbone phylogenetic tree and r is the 

newly found horizontal gene transfer event between clusters cl and c 2 (i.e., groups of 

species related by r). Let T1 be the tree obtained by an SPR (Subtree Prune and Regraft) 

move induced by reticulation branch r with direction d1 (corresponding to the 

horizontal gene transfer from cluster C1 to cluster C2) and T2 be the tree with r added 

to represent the gene transfer in the opposite direction (i.e., from C2 to C1). Then, the 

cumulative Robinson and Foulds distance is calculated between T1 and ali the original 

gene trees containing cluster C = C1 u C2, on one hand, and T2 and ali the original 

gene trees containing C, on the ether hand. Finally, the obtained cumulative Robinson 

and Foulds distances are weighted by the support of the original gene trees containing 

Cas it is shawn in Algorithm 1 (see the exact formula is in the functionjind_direction) 

and the resulting inequality indicates the direction of the horizontal gene transfer r. 

1.3 .5. 2 Sirnulated data 

We generated sets of trees encompassing multiple reticulation features to test the 

efficiency of the proposed consensus network inference method in the context of 

recombination. First, random binary phylogenetic trees were generated using the 

procedure originally described by Kuhner and Felsenstein (1994). The branch lengths 



ofthese phylogenies were computed using an exponential distribution. Following the 

approach of Guindon and Gascuel (2002), we added sorne noise to the tree branches to 

create a deviation from the molecular clock hypothesis. Ail branch lengths were 

multiplied by 1 +ax, where the variable x was obtained from an exponential distribution 

(P(x>k) =exp (-k)), and the constant a was a tuning factor accounting for the deviation 

intensity. The value of a was fixed to 0.8. The random trees generated by this procedure 

had depth of O(log (n)), where n was the number of species (i.e., number of leaves in 

a binary ph y logenetic tree ). 

Second, we ran the SeqGen program (Rambaut and Grass, 1997) to generate DNA 

sequences along the branches ofthe phylogenies constructed at the frrst step. SeqGen 

was used with the HKY mode! of nucleotide substitution, madel of rate heterogeneity 

assigning different rates to different sites according to a gamma distribution (with the 

shape parameter equal to 1.0) and (TS/TV) ratio equal to 2.0. These settings were 

selected in arder to render the simulation parameters similar to those used when 

processing the real datasets. The DNA sequences with 400 nucleotides were generated. 

Third , using the reticulation events generation procedure described in (Boe and 

Makarenkov, 2011), we incorporated the blacks of fragments induced by 

recombination into the generated multiple sequence alignments (MSAs). The sliding 

window procedure was then employed to recover these recombined blacks of 

sequences. Forth, for each generated MSA, the BIONJ, DNAPARS, PhyML and 

MrBayes methods were carried separately to infer phylogenetic trees fo r the whole 

MSA and for each MSA fragment corresponding to the fixed position of the sliding 

window. Finally, we carried the proposed weighted consensus network build ing 

method to infer the consensus tree topo logy (i.e. , backbone evolut ionary structure 

representing the most significant speciation events) as well as to recover the most 

significant (those with the highest weights) recombination events. We repeated this 

procedure 100 times for each original tree, i.e., 100 different MS As were generated for 

the same original tree . The sliding window sizes considered in our simulations were 



10, 20, 30, 40 and 50% ofthe totallength of the generated MSAs. The sliding window 

progress step of 5 nucleotides was adopted. Simulations were carried out with the 

phylogenies having 16, 24, 32, 48 and 64 leaves and encompassing 1 to 8 

recombination events. 

1.4 Results 

1.4.1 First examp1e: Honeybee data 

We applied the BIONJ, DNAPARS, PhyML and MrBayes methods to infer the 

evolutionary history of the six honeybee species. The inferred trees are shown in Figure 

1.4. The BIONJ and PhyML methods provided a single phylogeny (Figures 1.4A and 

1.4B, respectively). In contrast, two optimal phylogenies were obtained by each ofthe 

DNAPARS and MrBayes methods (Figures 1.4C and 1.4D represent maximum 

parsimony trees and Figures 1.4E and 1.4F represent Bayesian trees). For the sake of 

simplicity, we assigned a total weight of 1 to each of the considered methods . 

Therefore, the BIONJ and PhyML phylogenies received a weight of 1, whereas each 

of the DNAPARS phylogenies received a weight of 0.5. For the case of Bayesian 

phylogenies, we also used their specifie posterior probabilities whose sum was scaled 

to 1. 

After breaking down the phylogenies into their clusters and calculating the cluster 

weights using Equation 1.3 , we ranked ali the clusters according to their weights and 

put together the compatible clusters to build the backbone of the consensus network 

based on the clusters ranks. Finally, we added the rest of the highly ranked clusters to 

the backbone tree to construct a weighted consensus network of the six honeybee 

species. In this ana1ysis, we found one reticulation bran ch (alternative event) in addition 

to the backbone (consensus tree). The explicit weighted consensus network built using 



Algorithm 1 is shawn in Figure 1.5A. It depicts one recombination event which might 

have influenced the evolution of the considered honeybee species. 

(A) ML (B) NJ (C) MP1 
A. andreniformis A. andreniformis A. mellifer 

A. florea A. florea A. dorsata 

A. koschevnikovi A. koschevnikovi A. cerana 

A. cerana A. cerana 
100'1. 

A. andreniformis 

51% 
A. mellifer 

58% 
A. mellifer A. florea 

A. dorsala A. dorsata A. koschevnikovl 

(D) MP2 (E) BT1 (F) BT2 
A. koschevnikovi A. andreniformis A. andreniformis 

100% 
A. andreniformis A. florea A. florea 

A. florea A. koschevnikovi A. koschevnikovi 

A. me/lifer A. cerana A. dorsata 

A. cerana A. mellifer A. mellifer 

A. dorsata A. dorsata A. cerana 

Figure 1.4 The set of six gene trees (A-F) obtained using di ffere nt tree reconstruction methods fo r 

honeybee dataset. ML, NJ, MP and BT abbreviat ions stand for trees obtained by maximum likelihood, 

neighbour-j oining (here a distance-based approach implemented in BIOINJ), maximum parsimony and 

Bayesian approaches , respectively. 
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Figure 1.5 Explicit weighted consensus networks 

inferred for the honeybee dataset. A) network obtained 

from full -length sequences using ali the six trees from 

Figure 1.4 (which were inferred using the ML, NJ, MP 
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~--~---A. cerana 

A. me/liter 

43% A. dorsata 

(B) 
A. andreniformis 

A. f/orea 

window procedure with a ML method used for tree 

inference; C) network obtained by the sliding window 

procedure with a Bayesian method used for tree 

inference. The bootstrap scores of internai branches of 

the backbone tree and the weights of reticulation 

branches are indicated. The sliding window procedure 

was used to detect smaller-sca le reticulation events 

which are represented by dashed !ines in parts B and C 
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1.4.2 Second example: Chloroplast data 

In this example, we used the same four tree inference methods as in the previous section 

to madel evolutionary relationships among the eight plants from the chloroplast 

dataset. The application ofthese methods resulted in one maximum likelihood (Figure 

1.6A), one distance-based (Figure 1.6B), three maximum parsimony (Figures 1.6C to 

1.6E) and two Bayesian phylogenies (Figures 1.6F and 1.6G). Similar to the previous 

example, we assigned a total weight of 1 to each method. Therefore, the BIONJ and 

PhyML phylogenies received the weight of 1 while each of the DNAPARS trees 

received the weight of0.33. In the case of the MrBayes phylogenies, we also used their 

corresponding posterior probabilities scaling their sum to 1. We, then, computed the 

weights of all the clusters presented in at least one ofthe se ven ph y logenetic trees using 

Equation 3. Finally, we built the backbone of the consensus network and added to it 

the reticulation branches after ranking the clusters as described in Algorithm 1. 

In this analysis, we found three reticulation branches which represent possible 

recombination events. The reconstructed weighted consensus network of the plastid 

16s rRNAs is shawn in Figure 1.7A. Using the eut-off level of 10% and eliminating 

the two poorly supported reticulation branches (those with the weights of2% and 3%) 

would provide us with the weighted consensus network encompassing one probable 

reticulation event only (that with the weight of 23%). 
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(A) ML (B) NJ (C) MP1 
Chlamydomonas Tobacco Tobacco 

Olithodiscus Rice Rico 

Anacystl& Marchantla Marchantla 

Euglona Chlamydomonas Chlamydo~onas 

Chlorella Chlorella A nacystis 

Marchant! a Euglena Chlorella 

Rica 51'!. Anacystls Euglena 

Tobacco Oli thodiscus Olithodiscus 

(D) MP2 (E) MP3 (F) BT1 
Ollthodiscus Olithodlscus Tobacco 

Tobacco Tobacco Rico 

Rico Rico Marchantla 

Marchantla Marchantla C hlamydomonas 

Chlorella Chlamydomonas Chlorella 

Chlamydomonas Chlorella Euglena 

Anacystis Anacystls Anacystis 

Euglena Euglena O lithodiscus 

(G) BT2 
Tobacco 

Rice 

Marchantia 

Chlamydomonas 

Chlorella 

Euglena 

Anacystls 

Ollthodiscus 

Figure 1.6 The set of seven gene trees (A-G) inferred for the chloroplast dataset. The abbreviations used 

in Figure 1.4 also apply here . 
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Figure 1.7 Explicit weighted consensus networks 

obtained for the chloroplast dataset. A) network 

obtained from full-length sequences using ali the 

seven trees from Figure 1.6 (which were inferred 

using the ML, NJ, MP and BT approaches); B) 
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with a ML method used for tree inference ; C) 

network obtained by the sliding window procedure 

with a Bayesian method used for tree inference. The 

notations of Figure 1.5 also apply here. 



1.4.3 Third example: Archaebacteria data 

Similar to the two previous examples we used the four above-mentioned tree inference 

methods to build multiple phylogenies of the gene rpll2e for 14 Archaebacteria species 

originally analyzed by Matte-Tailliez et al. (2002). Th us , one ma{(imum likelihood 

(Figure 1.8A), one distance-based (Figure 1.8B), five maximum parsimony (Figures 

1.8C to 1.8G) and two Bayesian phylogenies (Figures 1.8H and 1.81) were obtained. 

Considering the species tree (Figure 1. 9A), which was reconstructed using the 

concatenation approach (Matte-Tailliez et al., 2002), we applied Algorithm III to the 

obtained phylogenies to infer a horizontal gene trans fer network of the gene rpll2e. 

The species tree was used as the backbone topology to which we added the highly 

ranked incompatible clusters to build the weighted consensus evolutionary network 

encompassing a scenario of horizontal transfers of rpll2e. Using the eut-off leve! of 

30%, we obtained five reticulation branches depicting alternative evolutionary histories 

(Figure 1.9B). Then, applying the above-discussed strategy for determining horizontal 

gene trans fer direction (see function Ji nd_ direction), we assigned directions to all 

obtained gene transfer branches. In the case of Transfers 1 and 2 (Figure 1.9B), the 

transfer direction cannat be retraced without discrepancy because both concurrent 

transfers are symmetric and lead to the same tree topology . 

Note that in Figures 1.5A and 1.7A the supporting weights calculated by our method 

for the backbonè and reticu lation branches are given in percentages. For the network 

presented in Figure 1. 9B our method was carried out to calculate the supporting weights 

of the reticulation branches only, whereas the weights of the internai branches of the 

backbone (species) phylogeny are the bootstrap scores provided by Matte-Tailliez and 

colleagues (2002). 
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Figure 1.9 Explicit weighted consensus horizontal gene transfer networks inferred for the 

Archaebacteria dataset. A) species tree obtained by Matte-Tailliez et al. (2002); B) network obtained 

from full-length sequences using ali the ni ne gene trees from Figure 1.8 (which were inferred using the 

ML, NJ, MP and BT approaches) and depicting complete horizontal gene transfer events; C) network 

obtained by the sliding window procedure with a ML method used for tree inference and depicting 

complete and partial horizontal gene transfers; 0) network obtained by the sliding window procedure 

with a Bayesian method used for tree inference and depicting complete· and partial hori zontal gene 

transfers. The sequence interval corresponding to each partial horizontal gene transfer (see parts C and 

D of the figure) is given between brackets. The trans fer number corresponds to its order of appearance 

in the gene transfer scenario found by our method. The bootstrap scores of internai branches of the 

species (backbone) tree and the weights of horizontal gene transfers are also indicated . 

1.4 .4 Siri:mlation results 

The results provided by Algorithm II (inference ofrecombination events using a sliding 

window approach) on simulated data are shown in Figures 1.10 and 1.11. For each 

parameter combination, including the number of taxa, number of reticulation events 

and sliding window size, 100 datasets were generated and analyzed. The average rates 

of true and false positives characterizing our weighted consensus network building 

method are illustrated. Since in our simulations we knew the exact source and target of 

each reticulation event, we were able to estimate the success and failure rates of the 

consensus network method in terms oftrue positives and false positives by measuring 

the proportion of times when our method was able to identi:fy both the exact source 

branch and destination branch of the event (i.e., true positive reticulation) and when 

either the source or destination branch of the detected event, or both of them, were 

different from the simulated ones (i.e., false positive reticulation). The x-axis depicts 

either the number of recombination events introduced in the data (Figure 1.1 0) or the 

number of taxa (i.e., number of species or tree leaves - Figure 1.11 ). The results 

obtained for the sliding windows whose width was equal to 10, 20, 30, 40 an? 50% of 



the total length of the multiple sequence alignment are illustrated in different panels. 

The y-axis represents the average number of times when our weighted consensus 

network reconstruction method correctly (true positives - left-hand panels) or 

incorrectly (false positives - right-hand panels) identified intragenic recombination 

events. 

The obtained results suggest that when the number of recombination events is small, 

they are more likely to be detected correctly. The best results in terms ofboth true and 

false positives were found for longer recombination fragments, i.e., 40 and 50% of the 

total length of the multiple sequence alignment. Another general trend is that the 

PhyML and MrBayes methods were much more effective in inferring the correct 

supporting tree and reticulation events than their BIONJ and DNAPARS counterparts. 

These results also suggest that it is much easier to detect recombination events in larger 

(i.e., 32 and 64-species) phylogenies. Furthermore, the probability of fmding the 

correct reticulation events increases as the width of the sliding window becomes closer 

to the reallength of the simulated recombination fragment. 

1.4.5 Searching for intragenic recombination and partial horizontal gene transfer events 

in real data 

Considering the results obtained for simulated data, we applied Algorithm II based on 

the sliding window approach and the two best tree inference methods (PhyML and 

MrBayes) to reanalyze the honeybee, chloroplast and Archaebacteria data described 

above. The purposeofthis new analysis was to discover alternative evolutionary events 

of smaller lengths (i.e., intragenic recombination and partial horizontal gene transfer 

events which trigger the formation of mosaic genes; Boe and Makarenko v, 2011 ). 

Tho se partial evo lutionary events, in the sense that they con cern only a part of 
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by the weighted consensus network reconstruction method depending on the number of recombination 

events in the simulated data and the tree inference method used. The presented rates are the averages 

computed for different sliding window sizes (varying fro m 10 to 50% of the total MSA length) and 
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parameter combination; ML, NJ, MP and BT abbreviations stand for the PhyML, BIOINJ, DNAPARS 

and MrBayes methods, respectively. 
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the given gene, might have gone unnoticed when analyzing the full-length gene 

sequences. 

For the honeybee example, the PhyML and MrBayes methods allowed us to infer one 

and two possible recombination events (Figures 1.5B and 1.5C), respectively, in 

addition to a possible recombination event found in the analysis based on the full-length 

sequences (i.e., linking the species A. mellifer and A. serana in Figure Sl.A). For the 

chloroplast data, two additional reticulation events were detected using PhyML (Figure 

1.7B) compared to the full-length sequence analysis (Figure 1. 7 A). Using MrBayes, 

we inferred four additional recombination events (Figure 1.7C) compared to the full­

length sequence analysis three of which were concordant with the results obtained 

using PhyML. 

For the smaller-scale recombination events found using Algorithm II for the honeybee 

and chloroplast data, the intervals where they were detected are indicated between 

brackets in addition to their supporting weights (see Figures 1.5B, l.SC, 1.7B and 

1.7C) . For the full-sequence analysis events found using Algorithm I (see Figures l.SA 

and 1. 7 A), no intervals are given because the latter events apply to en tire genes. 

Finally, in the case of the Archaebacteria data, the PhyML and MrBayes methods 

allowed us to detect eight and seven partial horizontal gene transfers, respectively 

(Figures 1.9C and 1.90). Three of the detected partial gene transfers (Transfers 1, 3 

and 6 in Figures 1.9C and 1.90), which were found by both methods, were also 

reported by Boe et al. (20 1 0) (a study dedicated to the detection of complete horizontal 

gene transfers) and Boe et al. (2013) (a study dediçated to the detection of partial 

horizontal gene trans fers) . Two other partial gene trans fers (Transfers 5 and 8 in Figure 

1.9C) detected using PhyML (one of them was also detected using MrBayes; Transfer 

5 in Figures 1.9C and 1.90) were reported only in (Boe et al., 2013), while another 

gene transfer (Transfer 4 in Figures 1.9C and 1.90) detected using both PhyML and 



--- ------ ---- -------

MrBayes was a combination oftwo separate complete gene transfer events (Transfers 

3 and 4 in Figure 1.9B) originally detected by Boe et al. (2010). Our method also 

identified two additional partial horizontal gene transfers (Transfers 2 and 7 in Figures 

1.9C and 1. 9D) th at were not indicated in Boe et al. (20 13). 

For comparison purposes, we also inferred splits graphs and cluster networks for the 

three above-mentioned real datasets using the SplitsTree (Huson, 1998;. Huson and 

Bryant, 2006) and Dendroscope (Huson and Scomavacca, 2012) programs , 

respectively. Moreover, reticulograms were inferred for the honeybee and chloroplast 

datasets and a horizontal gene transfer network was constructed for the Archaebacteria 

dataset, both using the T-Rex web server (Boe et al. , 2012). The NeighborNet 

algorithm (Bryant and Moulton, 2004) from the SplitsTree 4 software was used with 

the ordinary !east-square optirnization and convex hull algorithm options. The 

Dendroscope pro gram (Huson and Scomavacca, 20 12) was carried out with the default 

parameters and the percent threshold equal to 20 to build cluster networks. The 

reticulogram inference algorithm was carried out using the weighted !east-square 

method MW with global optirnization (Makarenkov and Leclerc, 1999) to infer the 

support tree and the stopping criterion Q, (Legendre and Makarenkov, 2002). The 

HOT-Detection algorithm was performed with the HGT bootstrap option and the 

species and gene tree roots selected as described in (Boe et al., 201 0) . 
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Figure 1.13 Alternative network 

representations of the chloroplast dataset. 

They include: A) reticulogram obtained 

by the Reticulogram building algorithm 

from the T-REX web server; B) cluster 

network obtained by the Cluster network 

algorithm from the Dendroscope 

program; C) splits graph obtained by the 

NeighborNet algorithm from SplitsTree 
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Figure 1.14 Alternative network representations of the Archaebacteria dataset. They include: A) 

horizontal gene transfer network obtained by the HGT-Detector algorithrn from the T-REX web server; 

8) cluster network obtained by the Cluster network algorithrn from the Dendroscope pro gram; C) splits 

graph obtained by the NeighborNet algorithm from SplitsTree 4. 

The obtained network representations are shown in Figures 1.12, 1.13 and 1.14 for the 

honeybee, chloroplast and Archaebacteria examples, respectively. In Figures 1.12A 

and 1.13A, one of the reticulation branches (represented by dashed lin es) found by 

reticulogram was also identified by our weighted çonsensus network building method 

(i.e., the reticulation branches between (1) A. mellifer and A. cerana in Figure 1.12A 



and between (2) Euglena and Olithodiscus in Figure 1.13A). The sirnilarities between 

horizontal gene transfer network found by us and by HOT-Detection (Boe et al., 2010; 

Figure 1.14A) will be discussed in detail in the next section. 

1.5 Discussion 

Dealing with multiple incompatible phylogenies inferred either through the use of 

different reconstruction methods or by including multiple genes in the analysis has 

been always a major issue in phylogenetics. The degree ofuncertainty increases in line 

with the number of various phylogenies inferred for the same set of species (Bryant, 

2003). The concatenation approach, which has been widely used as a solution to the 

single-gene phylogenies discordance problem, has been proven to lead to biased and 

misleading phylogenies in many practical situations (Hwang et al., 2001; Mossel and 

Vigoda, 2005; Naylor and Brown, 1998). For instance, Kubatko and Degnan (2007) 

showed that when the internai branches of a species phylogeny are short (due to 

adaptive radiation, increased number of taxa from the same group or recent 

divergences), the concatenation approach usually reduces the accuracy of standard 

phylogenetic methods. The latter authors also suggested that bootstrap scores obtained 

from concatenated datasets tend to show moderate to strong support for incorrect trees 

(Kubatko and Degnan, 2007). In general, the main drawback of the concatenation 

approach lies in i s fla ed assumption that ali th gen s (and in a sirnilar way, th 

whole genomes) have been subject to the same evolutionary processes at the same 

evolutionary rate, and consequently, no heterogeneity exists among the genes. Given 

the broad occurrence of heterogeneity among genes and the high number of 

phylogenetic mechanisms influencing their evolution, one can argue that in a 

considerable number of cases the concatenation approach will fail to infer a reliable 

congruent ph y 1ogenetic tree or network. S ince incongruence in creas es with the number 

of genes included in the analysis, proposing as a fmal cohesive solution a single 



phylogeny reconstructed usmg either the concatenation or the consensus tree 

approaches is only an indication of ignoring phylogenetic conflicts, and consequently, 

ignoring many widespread evolutionary processes such as horizontal gene transfer, 

recombination, hybridization and deep coalescence, which play major roles in the 

evolution of many species . 

When the heterogeneity among genes is due to reticulate evolution, phylogenetic 

networks should be used in place oftraditional or consensus phylogenetic trees (Huson 

and Bryant, 2006; Huson et al. , 2010; Legendre and Makarenkov, 2002). Phylogenetic 

networks are generalizations of ph y logenetic trees intended to represent both speciation 

and reticulate evolutionary events characterizing the given group of genes and species 

( explicit networks) or to dis play conflicting evo lutionary signais present in the data 

(irnplicit networks). 

To address the gene trees discordancy issue, we described here a new weighted 

consensus network reconstruction method which is able to infer and validate 

statistically the dominant evolutionary his tory of species (consensus tree) as well as the 

alternative evo lutionary scenarios (consensus reticulation events). 

Two practical situations are possible : we are either in possession of a reliable species 

phylogeny or not. In the case when we have a reliable species tree (e.g., when tree 

topology is confrrmed via the Tree of Life project), we can directly defme it as the 

network support structure. Otherwise, averaging the tree clusters present in the given 

gene trees and using the consensus tree approach as the starting point for building the 

consensus network is a natural way of computing the support species tree structure in 

the absence ofreliable additional information. The weights are used to take into account 

the tree elus ter support wh en building an explicit ph y logenetic network. The more gene 

trees we have, even when sorne of them are affected by different reticulation events, 

the more reliable the consensus network is . The most difficult practical situation for 



our method is when we have only a few gene phylogenies, most ofwhich are affected 

by the same reticulation event. But there is no any network building method that will 

infer a correct explicit phylogenetic network is such a situation. 

We use both the discrepancy between the gene tree topologies (i.e. between the gene 

tree clusters) and statistical support of the gene tree branches in order to identify the 

consensus network branches and reticulation events. Bootstrap scores or posterior 

probabilities of the gene tree clusters are constantly used to compute weights and thus 

to validate the selected network braches. The acceptance of sorne of the clusters and 

rejection of the other is determined by comparing the elus ter weights to a pre-defmed 

threshold. Indeed, like any other phylogenetic method, bootstrapping has its own 

pitfalls (Morrison, 2013). However, in general, bootstrap scores and posterior 

probabilities are widely-accepted statistical estimates which have been proven very 

useful for assessing statistical robustness of phylogenetic trees. 

Many studies supported by simulations advocate the use of probabilistic methods over 

distance- and parsimony-based approaches for inferring phylogenetic trees (Guindon 

and Gascuel, 2002; Hall, 2005; Huelsenbeck, 1995). Our general conclusion supported 

by the simulation results is that phylogenetic networks should be preferably 

reconstructed using maximum likelihood or Bayesian approaches as well. However, in 

sorne cases in this study, we used all the four main tree reconstruction approaches sin ce 

different phylogenetic assumptions, optimality criterions and nucleotide or amino acid 

substitution models augment the collective probability offmding potential evolutionary 

conflicts. 

In our frrst example examining the evolution of six honeybee species, we discovered a 

possible reticulate evolutionary history, suggesting that A. cerana could be a doser 

relative of A. mellifer, compared to the backbone species phylogeny in which the 

closest relative of A. mellifer is A. dorsata (Figure 1.5A- network obtained from the 



full-length sequences). This fmding was consistent with a possible 

hybridization/recombination hypothesis involving the ancestors of A. cerana and A. 

mellifer, which was frrst formulated by Makarenkov and colleagues (Makarenkov et 

al., 2004). Our weighted hybridization networks constructed using the sliding window 

procedure (Figure 1. 5B and 1.5C) suggest explicitly that A. ceran ais a possible hybrid 

of A. mellifer and A. koschevnikovi (see the arrows stemming from the A. mellifer and 

A. koschevnikovi branches and entering into the A. cerana branch). The opposite 

arrows entering into the A. cerana branch concem the intervals that have a very short 

overlap in both cases (Figure 1.5B and 1.5C) what suggests a possible recombination 

event. We cannot provide such an easy interpretation for the corresponding 

reticulogram, cluster network or splits graph (Figure 1.12A to 1.12C, respectively) . 

Note that the backbone phylogeny we built using the bootstrap-based extended 

majority rule was consistent with the species phylogeny inferred in (Makarenkov et al., 

2004). 

Similarly, the dominant evolutionary history (i.e., the backbone phylogeny) we inferred 

when analyzing the chloroplast dataset was consistent with the fmdings ofMakarenkov 

and Legendre (2004). The most significant reticulation event depicted in the network 

obtained from the full-length sequences (it is represented by a double-headed arrow in 

Figure 1. 7 A showing th at each of the involved species might be a parent of the other) 

suggests a doser relationship between Euglena and Olithodiscus (i.e., sterriming from 

a possible hybridization event involving the ancestors of these species) compared to 

the dominant scenario in which Olithodiscus is the closest neighbour of Anacystis . The 

networks inferred using the sliding window procedure (Figure 1. 7B and 1. 7C) suggest 

in addition that Chlamydomonas might be a hybrid species whose possible parents 

include the ancestors of Anacystis and Euglena, and the common ancestor ofTobacco, 

Rice and Marchantia, and that Euglena might be a parent of Chlorella. 



In the horizontal gene transfer example, we considered the maximum likelihood 

phylogeny of 14 Archaean species inferred by Matte-Tailliez and colleagues (2002) 

using the gene concatenation approach. This tree played the role of the species tree, 

representing the dominant evolutionary history, in our analysis (Figure 1.9A). First, 

using multiple phylogenies ofthe gene rpll2e inferred using the BIONJ, DNAPARS, 

PhyML and MrBayes methods (Figure 1.8) and Algorithm III, we identified five 

potential horizontal gene transfer relationships not accounted for by the backbone tree 

topology (Figure 1.9B). Our fmdings were consistent with the horizontal gene transfer 

hypothesis formulated by Boe et al. (2011). Four transfer branches we inferred (see 

Transfers 1, 2, 4 and 5 in Figure 1.9B) were equivalent to those obtained by Boe and 

colleagues (Figure 1.14A). Furthermore, the fifth horizontal gene transfer we found 

(Trans fer 3 in Figure 1. 9B) differs from Trans fer 5 in Figure 1.14A only by the 

presence of M bakeri in the cluster of the donor organisms. 

While fu_ll-length multiple sequence alignments can be directly used for fmding diploid 

hybridization and complete horizontal gene transfer events, we need to consider the 

alignment fragments in order to detect smaller-scale evolutionary events, such as 

intragenic recombination and partial horizontal gene transfer (i.e., in the latter case a 

horizontal gene transfer is followed by an intragenic recombination leading to the 

formation of a mosaic gene; Boe et al., 2011). The sliding window approach described 

above was applied here to search for partial gene transfers. The weighted consensus 

network of partial horizontal g n trans fers built using Algorithm II (Figure 1.9C and 

1.9D) allowed us to detect successfully five of the seven partial transfers originally 

predicted by Boe et al. (2013). 

In terms ofvisualization and results interpretation, our explicit network mode! is easily 

explicable, while the interpretation of implicit network models (e.g., splits graphs, 

cluster networks and reticulograms) becomes extremely difficult when dealing with a 

high number of species or conflicting events (see Figures 1.1 OB-C, 1.11B-C and 1.12B-

- - - - - - - - - - - - - ---- - - - - - - --



C). Methods and software developed by Huson (1998), Legendre and Makarenkov 

(2002), Holland and Moulton (2003), Holland et al. (2006) and Huson and Rupp (2008) 

are rather devised to infer and visualize incompatibilities among gene trees without 

precisely describing the underlying evolutionary events. In contrast, our explicit 

weighted consensus network inference method is capable of detecting and validating, 

through the use of the weight function, the following reticulate evolutionary events: 

diploid or polyploid hybridization (recombination at the chromosome level) , intragenic 

recombination, complete horizontal gene transfer and partial horizontal gene transfer 

followed by intragenic recombination. In a recent attempt, Guénoche (20 13) developed 

' a method to tackle the problem of conflicting evolutionary signais by fmding multiple 

consensus trees instead of a network as a method for separating and representing the 

evolution of diverging genes. In the future, it would be interesting to verify whether 

this method could be extended to the inference of multiple consensus phylogenetic 

networks representing alternative evolutionary hypotheses . The computer program 

implementing our method is available for download at the following URL: 

- http://www.info2 .uqam.ca/~makarenkov _ v/ConsensusNetwork.rar. 



CHAPTERII 

USING DIRECTED PHYLOGENETIC NETWORKS TO RETRACE SPECIES 

DISPERSAL HIS TORY 

Mehdi Layeghifard, Pedro R. Peres-Neto and Vladimir Makarenkov 

Published in Molecular Phylogenetics and Evolution. 

2.1 Summary 

Methods designed for inferring phylogenetic trees have been widely applied to 

reconstruct biogeographie history. Because traditional phylogenetic methods used in 

biogeographie reconstruction are based on trees rather than networks, they follow the 

strict assumption in which dispersal among geographical units have occurred on the 

basis of single dispersal routes across regions and are, therefore, incapable of modelling 

multiple alternative dispersal scenarios. The goal of this study is to describe a new 

method that allows for retracing species dispersal by means of directed phylogenetic 

networks obtained using a horizontal gene transfer (HGl) detection method as weil as 

to draw parallels between the processes of HGT and biogeographie reconstruction. In 

our case study, we reconstructed the biogeographie history of the postglacial dispersal 

of freshwater fishes in the Ontario province of Canada. This case study demonstrated 

the utility and robustness of the new method, indicating that the most important events 

were south-to-north dispersal patterns, as one would expect, with secondary faunal 

interchange among regions. Finally, we showed how our method can be used to explore 

additional questions regarding the commonalities in dispersal history patterns and 

phylogenetic similarities among species . 



2.2 Introduction 

The minimum length Steiner tree with 120° between ali branches, which is a particular 

case of a ph y lo genetic tree, is known to give the tree connecting ali points in the plane. 

lt allows for representing geographie information as a bifurcating minimum length tree 

(Cavalli-Sforza and Edwards, 1967). Methods designed for inferring phylogenetic trees 

have been widely used to reconstruct biogeographie history (e.g., Anderson, 2002; 

Brooks, 1990; Graham et al., 2004; Legendre and Legendre1 1984; Legendre and 

Makarenkov, 2002). In many biogeographie applications, the goal is to apply methods 

used for characterising the evolutionary relationships among species (or genes) in the 

context of inferring dispersal scenarios among geographical units (i.e., terminal species 

or genes beçome regions). However, biogeographie reconstruction has not kept pace 

with new developments in phylogenetics. Current phylogenetic methods used in 

biogeographie reconstruction are based on trees rather than networks, thus following 

the strict assumption that different branches of a dispersal tree have evolved 

independently from one another. In the same way that we know that the independent 

evolution of different branches of a phylogeny is considered to be an unrealistic 

assumption for reconstructing the phylogenetic history of many taxa (e.g., bacteria, 

hybrids), dispersal among geographical units has, most likely, not occurred on the basis 

of independent single dispersal routes. While species might have taken multiple 

dispersal routes to migrate from one region to another, most of the current phylogenetic 

methods used in biogeographie r construction assume a lack of trade-offs bet een 

territorial units (geographie regions) during dispersal periods; i.e., current methods 

assume that one single dispersal route is always optimal for ali species between any 

two given regions. Indeed, simple tree-like structures only show one dispersal scenario 

(one dispersal route) out of severa! that might have been occurred during dispersal 

events (akin to hybridization in reticulated evolution). While phylogenetic networks 

have been widely employed in the analysis of reticulate evolution, their use should be 



encouraged as well when constructing biogeographie dispersal hypotheses to represent 

·multiple alternative dispersal patterns that explain present day species distribution. 

Phylogenetic networks are a generalisation of phylogenetic trees allowing for 

simultaneous representation of several conflicting or alternative forces shaping 

evolutionary histories (Huson and Bryant, 2006), such as horizontal gene transfer 

(HGT) in bacterial evolution, evolution through allopolyploidy in plants, hybridisation 

events between related species, and homoplasy (i.e., evolutionary convergence). 

Phylogenetic networks inference methods can be also used to address non-phylogenetic 

questions , such as host- parasite relationships, vicariance and dispersal biogeography. 

Legendre and Makarenkov (2002) were the frrst to use reticulograms in historical 

biogeography while studying the postglacial dispersal of freshwater fishes in the 

Quebec peninsula. However, reticulograms are undirected graphs (reticulation 

branches show no direction), not allowing one to infer the direction of dispersal and 

migration events among regions. The goal of this study is to introduce a new method 

for inferring directed phylogenetic networks that can be used to mode! multiple 

dispersal events among regions in biogeographie reconstruction. As a case study, we 

reconstruct the biogeographie history of the postglacial dispersal of freshwater fishes 

in the Ontario province. We chose Ontario as the case study because of the availability 

of a large and detailed dataset on fish distribution for this province. Ontario is the 

second largest Canadian province after Quebec in both total and water-covered area, 

and it is also second o Manitoba in th pere ntag of total area covered by water. 

Finally, Ontario con tains the greatest biodivers ity of freshwater fishes in Canada along 

with British Columbia (Chu et al. , 2003). 

The current distributional patterns of freshwater fishes in Canada are the result of active 

processes following the Wisconsinian glacial period, which occurred 8000-10,000 

years ago (Mandrak and Crossman, 1992). During the maximum extent of the 

Wisconsinian ice sheet, there were no known freshwater habitats in Canada. During 

·1 



the period in which Canada was being gradually covered by ice, fishes either died out 

or migrated to refugia in warmer southem water bodies. The present-day fishes living 

in water bodies across Canadà reinvaded the country as lakes and rivers were created 

by the melt-water of the receding glacial ice sheet. Because these water bodies were 

first developed along the southem margin of the glacial ice sheet, they were easily 

linked to the southem refugia and provided water routes acting as dispersal corridors 

into increasingly de-glaciated areas for fish and other aquatic organisms. Given that 

present-day fish distributions are entirely due to relatively new dispersal events in the 

region, the biogeographie reconstruction ofthis area should be relatively sirnpler and 

thus regarded as a relevant case test for our framework. 

2.3 Materials and Methods 

2.3.1 Biogeographie data and study area 

The fish distributional dataset used in this study came from the Ontario Ministry of 

Natural Resources (OMNRs) and comprises presence-absence records and geographie 

positioning for more than 9000 lakes. Ontario province is located in east-central 

Canada and is bordered by the provinces of Manitoba to the west, Quebec to the east, 

and the US states (from west to east) of Minnesota, Michigan, Ohio and Pennsylvania 

(both ac oss Lak Eri ), and N w York to the south and east. Ontario ranges roughly 

from 74° to 95° longitudinally and from 42° to 57° latitudinally. The presence-absence 

data for 77 species (excluding introduced and hybrid species) in 9372 lakes of Ontario 

were analysed in this study. 



2.3 .2 Defming geographical units 

Because of the very large number of lakes included in this analysis, we grouped 

adjacent lakes together to make the analysis more computationally effective. Moreover, 

the interest in biogeography is often to estimate the faunal exchange among large 

geographie units rather than dispersal events at smaller scales . Given that we did not 

have any a priori expectation regarding important geographie units or regions that 

would represent major patterns of biogeographie differentiation among them, we 

decided to distribute the lakes into regions using somewhat artificial biogeographie 

boundaries. The new method we will present can be applied in either situation (i.e., 

natural- by the recognition of natural geographie boundaries or biogeographie events, 

or artificial - by geographical proximity as in this study). We frrst converted the map 

of Ontario into a 15-by-15-cell grid map1 and then assigned each lake to one ofthese 

cells based on its geographical coordinates. From the total of 225 cells, only 96 cells 

contained one or more lakes for which we had data. Note that other methods could be 

certainly used to arrange lakes into large geographie units based on objective criteria 

such as the identification of groups using permutation procedures (Strauss, 2001) or 

space-constrained algorithms (Legendre, 1987). Then, a k-means !east-squares 

partitioning method (the software we used is available at 

http://www.bio.umontreal.ca/Casgrain/en/labo/k-means.html; one can also use the 

function ' k-means' from the R package) was carried out to partition the 96 Ontario ce lis 

according to th ir l v ls of species' similarities . K-means is a method of cluster analysis 

that aims at partitioning n observations (here the 96 geographie cells) into k clusters 

based on attributes (here faunal composition) (MacQueen, 1967). The clustering is 

performed by minimising the sum-of-squares of the distances between the cells in each 

cluster and the corresponding cluster centroid. This analysis indicated that the 

geographie cells should be divided into two large groups, indicating that the species 

composition ofthe southem and northem Ontario regions were significantly-different. 

We then conducted an additional k-means analysis for each region separately that 

- - - - - - - - - - - - --- - - - ---- - -



allowed us to further amalgamate the geographie cells into 12 and 8 geographie sub­

regions within the sou them and northem regions, respectively (Figure 2.1 ). These sub­

regions were then used in the fmal dispersal network reconstruction. 

Figure 2.1 Biogeographie history of postglacial dispersal of Ontario fishes represented as a dispersal 

network. Solid, dotted and dashed !ines represent, respectively, the main dispersal routes, alternative 

routes within both main Ontario regions and an alternative route connecting these two main regions. 



2.3 .3 Directional species dispersal networks 

The method discussed here to reconstruct a dispersal network (which comprises, for 

example, all possible migration routes taken by fish species to reoccupy the newly de­

glaciated areas) includes two main steps (Figure 2.2). The first step consists in 

reconstructing two different phylogenetic trees (see algorithm below) for each of the 

two regions in Ontario identified earlier - one spatial, based on the geographie 

distances (Euclidean) between the sub-regions, and another distributional, based on the 

presence-absence of fishes in the sub-regions within each region (i.e., southern and 

northern regions). As a starting point, we needed to know the approxirnate locations of 

the refugia (i.e., network roots) and the frrst regions through which the fish entered 

Ontario to root the trees. Mandrak and Crossman (1992) proposed severa! possible 

dispersal corridors into Ontario from three different refugia. Here we adopted the two 

refugia that coincided with the southern and northern regions defmed earlier as roots. 

For instance, the third major possible refugium suggested by Mandrak and Crossman 

(1992) has multiple corridors spreading all over the Great Lakes and entering into 

various geographie units of Ontario. Considering the wide geographie range of this 

multi-corridor refugium, we decided not to include it in our analysis. Moreover, a fmer 

scale of the two refugia that we considered contributes to the accuracy of our analysis 

compared to a broader scale of the third refugium which is more suitable for analyses 

involving a much larger geographie region. 

We calculated a pairwise geographie distance matrix among the sub-regions (8 northern 

and 12 southern sub-regions determined by k-means) using the geographie coordinates 

of the centre of each sub-region. The resulting matrix was then used to build the 

geographie distance tree. The distributional tree was built using a matrix of S0rensen 

distances (Smensen, 1948) between the sub-regions based on the distributional data 

(i.e., presence-absence data). 
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F igure 2.2 Schematic representation of the directional species dispersal network building process based 

on an artificial data set. (a) Coordinates of geographie sites; (b) presence-absence (or incidence) data set 

describing the distribution of species across sites; ( c) geographie distance (Euclidean) matrix calculated 

from the coordinates of the sites ; (d) S0rensen's distance matrix calc,ulated from presence-absence data ; 

(e) geographie tree built from geographie distance matrix; (f) dispersal tree built from the S0rensen 

distance matrix; (g) the directional dispersal network built from the two above-mentioned (dispersal and 

geographie) trees. The directed -dashed line shows an alternative migratory route (i.e., dispersal or 

"reticulation" event). The direction ofreticulation events can be determined using any of the following 

optimisation criteria: !east-squares, Robinson and Foulds (RF) distance, quartet distance or bipartition 

dissimilarity. 



The second step consists in building a dispersal network (Figure 2.2) for each of the 

southern and northern regions of Ontario separately. In arder to build these dispersal 

networks, we adapted a recent method developed by Boe et al. (20 1 0) for detection of 

horizontal gene transfer (HGT) events. In the remainder of the article, we refer to our 

method as DSDNs (Direetional Species Dispersal Networks; see Table 2.1 for 

terminological parallels that can be drawn between the HGT and historical 

biogeography processes ). The considered HGT detection method (Boe et al., 201 0) 

uses two trees as input, namely a species tree (representing the non-reticulate history 

of the species at hand) and a gene tree (representing the evolutionary history of the 

given gene for the same set of speeies), and exploits the original discrepancy between 

their topologies to transform the species tree into the gene tree by an optimal 

combination ofsub-tree maves (i.e ., sub-tree prune and regraft operations). lt estimates 

the possibility of an HGT (i.e., retieulation event) between each pair of branches of the 

species tree and allows for adding new directed branches to the speeies phylogeny to 

represent the estimated reticulation events. In contrast, our DSDN method uses 

geographie (spatial) and S0rensen ( distributional) distance matrices in place of the gene 

and species distance matrices, respectively, considered in the HGTmodel above. Thus, 

the DSDN method proceeds by a graduai reconciliation (for more details , see Section 

2.4 and Boe et al., 201 0) of the geographie and dispersal (i.e. , distributional) trees in 

arder to infer a directed network. The bootstrap scores of the dispersal tree, which is 

usually obtained from the presence- absence data, can be estimated using the traditional 

bootst ap proc dur (F ls nstein, 1985). Moreo er, the bootstrapping of th obtain d 

alternative dispersal routes can be performed by fixing the topology of the geographie 

tree and by resampling the original presence-absence binary data used to build the 

dispersal tree. Then, the DSDN method ean be performed to calculate the percentage 

of time that each original alternative dispersal root has been recovered using as input 

the same geographie tree and, in turn, different dispersal tree phylogenies obtained 

from the resampled presence-absence matrices. Thus, the DSDN method allows for 

adding and validating new directed branches to the biogeographie tree to represent 



these alternative routes (see Figure 2.2). 

Once the networks for the southern and northern Ontario regions were built using the 

new method, we connected them to infer potential alternative routes between their 

neighbouring sub-regions (i .e., sub-regions 11 , 16 and 18 from the northern and sub­

regions 10, 14 and 15 from southem region in Figure 2.1). Ali phylogenetic trees in this 

study were reconstructed using the neighbour-joining method (Saitou and Nei, 1987). 

The latter method as well as the HGT detection method (Boe et al., 201 0) used here are 

included in the T-Rex package (Makarenkov, 2001; see also the web site: 

www.trex.ugam.ca). 

Table 2.1 Terminology adopted in thjs article to draw parallels between the HGT (horizontal gene 

trans fer) detection and DSDN ( directional species dispersal network) methods. 

HGT terminology DSDN terminology 

Species tree ~ Geographie tree 

Gene tree ~ Dispersal tree 

Phylogenetic network ~ Dispersal network 

Reticulation event ~ Alternative (dispersal) routes 

Clade (cluster) ~ Biogeographie cluster 



2.3 .4 Exploring the relationship between dispersal history and species attributes 

As pointed out by Wiens and Donoghue (2004 ), historical biogeography for most parts 

ignores phylogenetic and ecological characteristics of species and vice versa. lndeed, 

an important endeavour in ecology is to understand how ecological species attributes, 

such as their molecular features or environmental requirements may influence their co­

existence (co-occurrence) and dispersal decisions. Two basic processes may be 

involved in these decisions: (a) species with similar attributes may choose similar 

dispersal routes on the basis of their common tolerance to the habitats encountered 

while dispersing (hereafter referred to as dispersal filtering in contrast to environmental 

filtering in community ecology); and (b) competitive interactions among species, 

which would limit their co-existence along dispersal routes and perhaps force species 

to disperse via alternative routes (hereafter referred to as dispersal avoidance). These 

two processes make contrasting predictions about co-occurrence patterns among 

species and their phylogenetic relatedness. Under dispersal filtering, closely related 

species would tend to share similar dispersal histories, whereas under dispersal 

avoidance, closely related species would tend to have different dispersal histories. Note 

that species functional traits, when available, can be equally considered, especially in 

the case where these traits are not phylogenetically conserved. 

An interesting extension of our framework is the combination of both biogeographie 

and phylogenetic information to assess the likelihood of these two processes during 

dispersal history. In this case, phylogenetic relatedness (e.g., within genera and 

families) un der the assumption of niche conservatism serves as a pro x y for the abiotic 

conditions for which a species can persist given that species sharing common ancestry 

also tend to share similar ecological attributes. This analysis parallels the work in 

community phylogenetics by Cavender-Bares et al. (2009) in a biogeographical setting 

and may provide additional insights into the mechanisms and factors driving co­

existence and dispersal patterns at large spatial scales. 



We used the presence-absence incidence matrix to calculate the average phylogenetic 

distance (APDobs) within each genus or family using S0rensen's similarity index. For 

each family or genus, we then applied a null madel in which we randomly selected a 

group of species of the same size ( e.g., if the genus or family und er consideration had 

x species, then we picked up exactly x species from the en tire pool of species, regardless 

of their taxonomie affiliation) . For each randomly chosen group, we calculated its 

average phylogenetic distance (APDrnd), and fmally, the standardized average distance 

Z and its associated significance value (p-value) using the following formulas: 

Z = (APDobs - APDrnd) 1 SDrnd,, 

P=(X+ 1) / (N+ 1), 

where X is the number of APDrnd values equal to or greater than APDobs (1 in the 

formula accounts for the observed value; i.e. , the observed value is also considered as 

one potential outcome of the null mo del, for more details see Peres-Neto, 2004), N is 

the number of randomly chosen groups of species (here we used a test based on 999 

randomly chosen groups), and SDrnd is the standard deviation of randomly chosen 

groups. The obtained results are presented in Table 2.2. 



Table 2.2 Nu li mode! results (Z-score and probability values) for the Ontario fish genera and families and 

their associated significance. Probabilities (p-values) smaller than 0.05 were used as indicative of dispersal 

avoidance, whereas values greater than 0.95 were considered as indicative of dispersal filtering. Significant 

values are shown in bold. 

Gene rn Z-score p-Value 

Ameiurus sp. -0 .8489 0.8610 

Catostomus sp. 0.5809 0.1574 

Coregonus sp. 1.7250 0.0875 

Cottus sp. -0 .8473 0.9900 

Esoxsp. 0.9791 0.0995 

Etheostoma sp. -0 .9989 0.9900 

Hiodon sp. 0.8136 0.1194 

Jchthyomyzon sp. 6.9705 0.0018 

Lepomis sp. -1.0255 0.9630 

Luxilus sp. -0 .5806 0.6311 

Moxostoma sp. 0.2023 0.2523 

Notropis sp. -1.1097 0.9120 

Percina sp. -0 .8471 0.9950 

Phoxinus sp. -0 .0102 0.3723 

Pimephales sp. -0.6234 0.6471 

Rhinichthys sp. -0 .6517 0.7501 

Semotilus sp. -0.7025 0.9950 

Stizostedion sp. -0.7091 0.9310 

Families 

Catostomidae 0.8101 0.1974 

Centrarchidae -1.1631 0.9940 

Cottidae -0.9624 0.9990 

Cyprinidae -1.7853 0.9900 

Gasterosteidae -0 .6760 0.8081 

Ictaluridae -1.0371 0.9470 

Percidae -1.5722 1.0000 



Additionally, we contrasted the species phylogenetic tree against a species dispersal 

pattern tree in order to identify any potential discrepancy or consistence between the 

tree clades (Figure 2.3). The species phylogenetic tree was inferred from the DNA 

sequences of mitochondrial COI genes (Figure 2.3a), whereas the species dispersal 

pattern tree was inferred from the S0rensen distance matrix calculated from the 

presence-absence data (Figure 2.3b ). The DNA sequences of a 652-bp segment from 

the 5' region of the mitochondrial COI (cytochrome C oxidase subunit I) genes of 

Ontario freshwater fishes were obtained from GenBank using the accession numbers 

from Hubert et al. (2008). The species phylogenetic tree was built using the neighbour­

joining method (Saitou and Nei, 1987). To verify the accuracy of the tree, we also 

reconstructed the species phylogeny using a maximum likelihood (ML) method, and 

obtained almost identical results (the ML tree is not presented here). Because the 

mitochondrial DNA sequences were available for 66 fish species only, we excluded the 

remaining 11 species from both trees. 

We then used the Robinson and Foulds topological distance (Robinson and Foulds, 

1981) to compare the phylogenetic (Figure 2.3a) and distributional (Figure 2.3b) trees 

and to fmd possible similarities between the tree topologies. The Robinson and Foulds 

topological distance is equal to the minimum number of elementary operations, 

consisting of merging and splitting nodes, necessary to transform one tree into the 

other. As demonstrated by Robinson and Foulds (1981) , it is also the number of 

bipartition , o Bun eman' s splits (1971 ), ha be long to exactly one of the two trees . 

For two unrooted binary trees whose leaves are labelled according to the same set ofn 

species, the Robinson and Foulds distance between them varies between 0 (when the 

trees are identical) and 2n- 6 (when the trees are completely different) . 
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Figure 2.3 Comparison between phylogenetic tree and dispersal pattern tree. (a) Phylogenetic tree for 

the 66 fish species built using the available mitochondrial COI gene sequences. Fami ly names are 

included in the species phylogeny. Bootstrap scores greater than 50% are shown on the tree branches 

and (b) dispersal pattern tree for the same set of species inferred from presence-absence data. 

Convergent biogeographie clusters between the two trees are indicated by the numbers # 1-#5. 



2.4 Results 

The k-means method suggested separating the Ontario map into 20 sub-regions which 

can be divided into two regions (i.e. , southern and northern; Figure 2.1). However, it 

should be noted that in two cases, k-means grouped together two geographically distant 

cells instead ofneighbouring cells. Given the large total number of cells (i.e., 96), these 

two inconsistencies ( errors) were considered negligible and were corrected manually. 

The data analysis showed that 56 species, out of a total of 77 fish species, inhabit both 

the northern and southern regions of the Ontario province, while 18 and three fish 

species are unique to the southern and northern regions , respectively, confliffiing the 

fact that the southern region presents a greater species diversity. 

In searching for alternative routes, our directional species dispersal network method 

identified five and three such routes in the southern and northern regions of Ontario, 

respectively (dotted lines in Figure 1). We also found one alternative route between the 

southern and northem regions ( dashed line in Figure 2.1 ). The dotted and dashed lines 

in Figure 2.1 show the potential different routes taken by Ontario fish species during 

the postglacial dispersal. 

The null model analysis performed for all fish genera and families showed a significant 

correlation between the dispersal patterns and phylogenetic relationships for only six 

genera and four families (Table 2.2). Among them, aU but one genus (i.e., 

Ichthyomyzon) was consistent with dispersal fi lt~ring rather than dispersal avo idance, 

as species in these genera and families tended to have sirnilar distributions. 

By comparing the two 66-species trees (dispersal pattern and molecular phylogeny) 

using the Robinson and Foulds topological distance, we found five sirnilar species 

clusters (numbered from #1 to #5 in Figures 2.3a and 2.3b). The Cyprinidae family 

appeared to be the largest (23 species) and the most vas tl y distributed group of fishes 



m Ontario, though four members of this family were grouped together in the 

distributional tree, suggesting a similar pattern of dispersal for these species (see cluster 

#4 in Figures 2.3a and 2.3b ). Conversely, members of the Percidae family (nine 

species) were scattered across the distributional tree showing different dispersal 

patterns. A similar trend was found for the Cottidae family (four species). In the 

remaining families having at least three members, the distributional patterns across 

species showed a higher similarity (Figures 2.3a and 2.3b) even though the related 

species were still scattered across the trees . 

2.5 Discussion 

In this article we drew parallels between the processes of horizontal gene transfer, 

which can be represented by directed phylogenetic networks , and historical species 

dispersal, which can be represented by biogeographie dispersal networks. We 

introduced a framework that allows directional network analysis in historical 

biogeographie reconstruction, and as an illustration, we applied the new method to 

explore the historical patterns of biogeography of Ontario fishes as well as the possible 

relationships of those patterns with the species phylogeny. Although trees have been 

proven to be useful in reconstructing biogeographie history (Legendre and Legendre, 

1984), they pro vide a mu ch simplified view of what most likely took place. In arder to 

estimate the possibility of other major dispersal ents and th r lat d rout s used by 

species during these events, a more comprehensive method is needed. To the best of 

our knowledge, our method is the frrst one to allow the construction of a directional 

network to estimate such al!ernative dispersal events. 

In our DSDN framework, a phylogenetic tree built from the geographie distances 

between regional centres is used as the backbone for the method, because fish, as a 

number of other organisms, are likely to migrate from a region to its bordering regions , 
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and then to the next bordering regions and so on, as in a stepping stone process (Olden 

et al., 2001). Thus, the inferred backbone tree represented the shortest possible way for 

fish to disperse throughout Ontario. However, as mentioned above, fishes could have 

also used alternative dispersal routes, which would have been neglected by traditional 

methods based on traditional phylogenetic trees. Using a dispersal tree, built from the 

distance matrix calculated from the presence-absence data, the DSDN method searches 

for discrepancies between the trees and transforms them into estimates for alternative 

dispersal routes. As stressed earlier, a great advantage of our method over the 

reticulograms introduced by Legendre and Makarenkov (2002) is that it also shows the 

directions of reticulation events. Moreover, in the process of reticulogram 

reconstruction, a phylogenetic tree is frrst built from a single distance matrix (e.g., 

using the neighbour~oining method), and supplementary branches (reticulation events) 

are then added to that tree, once at a time, in arder to minimise a !east-squares or 

weighted !east-squares loss function (based either on the same distance matrix used to 

reconstruct the original phylogenetic tree or on an alternative one), whereas our DSDN 

algorithm proceeds by a progressive reconciliation oftwo phylogenetic trees (one for 

each distance matrix). The described method uses the "bipartition dissimilarity" 

between two trees for inferring and validating horizontal gene transfer (HGT) events 

(Boe et al., 201 0). This measure of proximity can be considered as a refmement of the 

Robinson and Foulds distance (Robinson and Foulds, 1981), which takes into account 

only identical bipartitions in the compared ph y logenies. Boe et al. (20 1 0) showed that 

the use of the bipartition dissimilarity as an optimisation criterion offers important 

improvements ?Ver the well-known least squares (used when building reticulograms as 

in Legendre and Makarenkov, 2002), Robinson and Foulds distance, and quartet 

distance measures. They also showed that this algorithm outperforms other well-known 

horizontal gene transfer detection methods such as LatTrans (Hallett and Lagergren, 

2001) and RIATA-HGT (Nakhleh et al., 1992) in many aspects. Moreover, it includes 

a bootstrap validation procedure allowing one to assess the reliability of obtained HGT 

events (i.e., alternative dispersal routes in the biogeographie context). As horizontal 



gene transfers can be inferred directly from sequence data (Boe and Makarenkov, 

2011), alternative dispersal routes could be also inferred from an available matrix of 

presence-absence data without transforming these data into a dispersal tree. However, 

the geographie tree, which is the backbone structure of the new method, must be always 

inferred or provided. 

At present, only two matrices are used as input in our method, though it would be 

plausible to consider multiple sources of information, such as combining species 

composition, geographie distances and species' ecological characteristics ( e.g. , 

environmental affmities, dispersal capability, body size) to pro vide a more complete 

analysis of the processes that drove and constrained past dispersal events and current 

faunal distribution (see, Wiens and Donoghue, 2004 for a discussion). Moreover, the 

integration of faunal composition (our approach) with species phylogenetic evidence 

is certainly interesting in the sense of thinking about the diversity of historical 

processes that may have taken place (Esselstyn et al. , 201 0) and the association of 

geological and speciation patterns and events. Note, however, that in our case study, 

there has been no speciation in the area after the last glaciation event. Finally, our 

method could be certainly applied to small-scale dispersal events. While dispersal 

dynamics for multiple species at small scales are certainly interesting, recent ecological 

events across large areas may produce a large noise to signal ratio in presence-absence 

matrices (i.e. , many absences within a given species geographie range) that may 

obscure historical dispersal. As a result, we used cluster analyses prior to applying our 

method to cluster sampling units (lakes) and ensure that well-delirnited faunal units 

were used in the method. 

Our case study well illustrated the utility and robustness of the proposed method, 

indicating that the most important events were a south-to-north dispersal pattern, as 

one would expect, with secondary faunal interchange among sub-regions. Moreover, 

in the southern region of Ontario, most ofthe alternative routes (four out offive routes) 



were found between neighbouring sub-regions (Figure 2.1). This scenario is indeed 

extremely plausible because these sub-regions have both the greatest concentration of 

water bodies and the highest fish biodiversity. The only alternative route that did not 

link two bordering sub-regions was the one between sub-regions 10 and 15 (Figure 

2.1 ). This exception suggests that sorne fishes migrated from sub-region 10 to sub­

region 15, most likely through sub-region 14, and that, subsequently, fishes in the latter 

sub-region went extinct. The only alternative route detected between the two Ontario 

regions was the one from sub-region 15 to sub-region 16. This event also seems quite 

plausible because migration occurred from the southem region, with higher diversity, 

to the northern region, with less diversity. The frequency of the alternative routes found 

in both this study ( directed networks) and that conducted by Legendre and Makarenko v 

(2002; undirected networks) shows that the detection of alternative dispersal pathways 

uncovers much more detailed information on biogeographie history and provides a 

better estimate ofthe major dispersal events that led to the main biogeographie patterns 

observed in present times. The large-scale patterns found in this study are particularly 

strong and most likely due to the fact that small-scale environmental conditions may 

have played a reduced role in structuring the fish faunal distribution in Ontario 

province. Jackson and Harvey (1989), using a much reduced data set based on only six 

sub-regions in Ontario (286 lakes in total), showed that the local environmental 

characteristics of lakes cartnot exp lain present-day fish distribution and that postglacial 

dispersallikely played the most important role ip. structuring their fish assemblages. 

Several refugia and dispersal corridors have been suggested to explain the re­

colonisation and dispersal patterns of fishes into Ontario after the last glaciation 

(Mandrak and Crossman, 1992). However, our results indicated only two major 

detectable dispersal events. One of them took place in the southem and eastern sub­

regions of Ontario, when the other in the northern and western sub-regions. In both 

regions (southern and northern), the number of species decreased moving from south 

to north. This is most likely due to the fact thatmoving northward, the weather becomes 



increasingly colder, and only a few species would have been able to survive in harsh 

environments. The southern sub-regions of the southern region of Ontario have the 

greatest diversity among all of the sub-regions in Ontario along with tho se of British 

Columbia (Chu et al., 2003). 

The phylogenetic tree built from the COI gene sequences appears robust given that, 

without exception, members of each genus and family were grouped together (Figure 

2.3a). The main purpose ofreconstructing the species phylogenetic tree along with the 

species dispersal pattern tree was to reveal possible relationships between the 

phylogenetic patterns and biogeographie distribution of Ontario fishes . There are two 

main processes involved in determining distributional patterns of closely related 

species within a biota: the positive co-occurrence of closely related species due to 

sirnilar physiological limitations and niche conservatism (Weiher and Keddy, 1995; 

Weiher et al. , 1998) and repulsion (negative co-occurrence) of species due to 

competitive interactions or differentiai environmental affmities (Chesson, 1991; Elton, 

1946; Leibold, 1998; MacArthur and Levins, 1964). These two processes are referred 

to as phylogenetic attraction and phylogenetic repulsion, respectively (Cavender-Bares 

et al., 2009). A secondary airn of this study was to incorporate this ecological 

framework within the context ofhistorical biogeography, in which these processes are 

referred to as dispersal filtering and dispersal avoidance, respectively. 

Comparing the species dispersal tree with the phylogenetic trees built for 66 species, 

we found five sirnilar biogeographie clusters in the two trees. However, most of the 

clusters in these two trees were quite different (Figure 2.3). The Robinson and Foulds 

distance between the two trees, which should be between 0 (if the trees are identical) 

and 126 (if the trees are completely different), was 109, thus suggesting that these trees 

are not topologically equivalent. Indeed, our phy logenetic null models showed a strong 

relationship between phylogeny and dispersion for only five genera and four families 

of the Ontario fishes (Table 2.2). Note th;ü these differences are not related to dispersal 



avoidance (Table 2.2), but rather to random patterning regarding phylogenetic 

relationships . Perhaps, these species share similar dispersal histories that are related to 

environmental affmities, which, in turn, are not phylogenetically conserved. Indeed, 

there is evidence that environmental preferences are not necessarily phylogenetically 

conserved (Diniz-Filho et al., 201 0), including those offish (Peres-Neto, 2004; see also 

Helmus et al., 2007 for more complex analyses). Moreover, if these phylogenetic 

patterns are driven by complex interactions between environmental filtering, 

competitive interactions and biogeographie events, regions composed by a species that 

underwent a mix ofthese processes may appear as being non-structured (Leibold et al., 

201 0). Finally, it is arguable that a lack of strong correspondence between distributional 

and phylogenetic patterns may provide data that are more suitable for biogeographie 

reconstruction. 

In conclusion, we attempted to show that, as has been found in evolutionary studies 

where phylogenetic networks have been proven advantageous over phylogenetic trees, 

the use ofnetwork-like structures, such as our DSDN framework, instead oftree-like 

structures, do provide much greater and detailed information about the biogeographie 

history of dispersals. This study should serve as a starting point for adopting or 

developing more versatile network reconstruction methods that could take into account 

other factors affecting biogeographie dispersal, such as geographie barriers, 

environmental conditions, climate, and species characteristics. 



CHAPTER III 

SPATIAL NETWORKS FOR INFERRING DISPERSAL IN ECOLOGICAL 

COMMUNITIES 

Mehdi Layeghifard, Vladimir Makarenkov and Pedro R. Peres-Neto 

3.1 Summary 

Multiple spatial and non-spatial processes are involved in patteming complex spatial 

variation in species and their assemblages. This complexity makes modelling and 

examination of spatial heterogeneity very challenging at the metacommunity level 

given the logisticallimitations in tracking dispersal for multiple species across multiple 

communities. While metapopulation studies have inferred immigration rates based on 

landscape connectivity metrics , metacommunity studies instead, have relied on spatial 

predictors that are built without considering patch connectivity inferred from 

information on patch occurrence for multiple species at multiple communities. Here, 

we introduce a novel method to detect and explain spatial variability within 

metacommunities through the use of a graph-theoretical approach. Our multi-species 

spatial network (MSSN) method uses both geographie and incidence data as input to 

infer dispersal within metacommunities. Our simulation results and real data analyses 

showed that MSSN was more robust in terms of explaining variation in community 

analysis models than a commonly used method to detect spatial patterns in 

communities. In addition to its robustness in inferring dispersal within 

metacommunities, our proposed framework can be also useful in assessing the levels 

of spatial connectivity for each local community. Finally, our framework is highly 
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flexible and can incorporate different types of functions to infer spatial and different 

types of algorithms to infer migration levels and dispersal directionality. 

3.2 Introduction 

Ecological entities (e.g. , individuals, populations, species and communities) show 

complex patterns of variation in space. This spatiality is often a combination of 

outcomes generated by endogenous mechanisms, such as dispersal limitation (but also 

sociality and reproduction) and species interactions, as weil as by exogenous factors 

such as spatially structured environment (e.g., local environment, regional climate) 

which in turn impose spatial patterns in species distributions via habitat filtering (Dray 

et al. , 2012; Peres-Neto and Legendre, 201 0). Therefore, the nature and origin of spatial 

structures ofspecies and their communities are not always obvious, especially because 

species distributions are structured by a mix of spatial and non-spatial processes and 

factors (Gravel et al. , 2006; see Leibold et al. , 2004 for a review). Moreover, even if 

only spatial processes were at place, the complex interactions among those may not 

necessarily leave strong signatures. For example, repulsive interactions between parent 

trees and their seedlings can generate regular (non-spatial) patterns. Negative spatial 

autocorrelation (e.g., due to competitive interactions; e.g,, Meyer et al. , 2008), and 

positive spatial autocorrelation ( e.g., due to dispersal limitation) may actually cancel 

each other out and g n rat null spatial patterns (Dray, 2011) . 

One particular ecologicallevel in which the complex interactions are evident are at the 

level of metacommunities (Leibold et al. , 2004), i.e. , spatial networks of local species 

assemblages connected by dispersal. Metacommunity ecology has become a 

framework fo r understanding how dispersal interacts with local community assembly 

to determine patterns of species distributions among patches. Metacommunity 

dynamics · has been increasing our understanding about complex interactions in 
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community ecology especially because of local species interactions have long been 

understood to predict much simpler patterns of community structure at large scales than 

what we typically observe in naturallandscapes (Holyoak et al., 2005; Huston, 1999; 

Ricklefs, 1987). Nevertheless applying these ideas to natural patterns of community 

variation is particularly challenging because of the lack of appropriate quantitative 

frameworks to estimate dispersal and connectivity patterns at the metacommunity level 

(i .e., multiple species at multiple sites; Jacobson and Peres-Neto, 2010). The main 

challenge owes to the fact that one cannot possibly estimate dispersal across multiple 

communities and multiple species directly. Moreover, dispersal dynamics can change 

through time and current spatial patterns may not necessarily reflect past dispersal 

history that was important for present-day metacommunity structure. Even in the case 

of single species distributed across patches by dispersal (i.e., metapopulations), 

assessing patterns of dispersal (e.g., mark-recapture at severa! locations) may be 

technically challenging and they still may not account for the importance of past 

dispersal (but see Jacobson and Peres-Neto, 2010 for potential genetic methods). 

Instead, metapopulation ecologists have inferred immigration rates based on 

connectivity metrics that attempt to estimate the inaccessibility of a patch or site to 

potential immigrants arriving from other patches and take into consideration the 

distribution of populations in the landscape (Bender, et al., 2003; Hanski, 1994; 

Moilanen and Nieminen, 2002). Perhaps the simplest and most common measure of 

patch connectivity is the distance to the nearest occupied site (e .g., Bender et al., 2003). 

Metacommunity studies (e.g., Beisner et al., 2006; Cottenie, 2005; Gucht et al., 2007), 

instead, have re lied on spatial predictors ( e.g., geographical positioning, geographie 

polynomials, eigenvector maps; see Legendre et al. , 2005 for a review) that are quite 

robust in detecting spatial patterns in data but are built without considering patch 

connectivity inferred from information on patch occurrence of multiple species at 

multiple communities (i.e., a metric homologous to metapopulation connectivity). 

In order to address the challenges of assessing connectivity patterns at the 

metacommunity level, we introduce a novel method to detect and explain spatial 
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variability within metacommunities through the use of a graph-theoretical approach. A 

graph or network is a mathematical model of the pairwise relations between members 

of a given set of objects (here local communities or species assemblies). In ecology, 

there has been a multitude of studies using graph theory to understand food web 

structure (Banasek-Richter et al., 2009; Krause et al., 2003; Luczkovich et al. , 2003; 

Pimm, 2002), landscape connectivity (Bodin and Norberg, 2007; Ferrari et al. , 2007; 

Jordan et al., 2007; Urban and Keitt, 2001), conservation biology (Bunn et al., 2000; 

Naujokaitis-Lewis et al. , 2012; Rubio and Saura, 2012; Urban and Keitt, 2001 ; Yu et 

al., 20 12), and metapopulation ecolo gy (Hanski and Ovaskainen, 2000; Ovaskainen 

and Hanski, 2001 ). Urban and Keitt (200 1) presented a refmed overview of the basic 

elements of graph theory, focusing especially on meta-population theory in 

conservation biology. 

The aim of this study is to introduce and demonstrate the robustness and utility of a 

novel framework to investigate spatial patterns of connectivity within 

metacommunities (i.e. , across multiple local communities for multiple species) using a 

graph-theoretical approach. This graph-theoretical approach, hereafter referred as to 

multi-species spatial networks (MSSN), uses both geographie data (geographie 

positions of sites in the form of latitude and longitude values) and incidence data 

(presence-absence of species across multiple sites) as input to infer dispersal within 

metacommunities. 

3.3 Methods 

In graph theory, points or objects (here communities and sites are used 

interchangeably) in space are referred to as "vertices" or "nodes" and the lines 

(connections) linking them are called "edges". Therefore, a network is a collection of 

vertices (points) interconnected by edges (lin es) . A network is called directed if all the 



85 

edges are unidirectional (Figure 3.1 b; i.e ., amenable to measuring directional dispersal) 

and undirected if they are bidirectional (Figure 3 .la; i.e. , sim ply connected but no 

directionality). The basis of our framework is to reconcile the spatial representation of 

the communities using a geographie tree (i.e ., a dendrogram representing the spatial 

similarity of sites based on their spatial positioning) with the data on their species 

compositions. lfthere is a perfect match between the two (closest sites are always more 

similar in species composition), th en there is no need of reconciliation and the spatial 

tree will perfectly represent the spatial structure in species composition across 

communities (i.e. , metacommunity). Conversely ifthere are communities that are more 

similar in species composition than expected by their spatial proximity, then a 

reconciliation between their spatial differences and species compositions can be 

performed by adding extra edges (links) connecting the two communities (vertices). 

Therefore, the fmal spatial network represents the reconciliation between the spatial 

distribution of sites and species compositions at those sites (i.e. , local communities). A 

diagrammatic description of the steps involved in our spatial network method is given 

in Figure 3.2 and is based on two broad steps: 

(1) Build a spatial tree using pairwise Euclidean distances between sites , computed 

from their geographie coordinates, and estimate the root from the incidence data 

(i.e. , species composition across communities). Note that these geographie 

distances could be also transformed in a way to represent functions that better 

represent dispersal fun etions su ch as the negative xponential (exp( -d) where d 

represents the distance between two sites) or other metrics of landscape 

resistance (see Zeller et al. , 2012 for a review). 

(2) Use the species distribution data to fmd extra links (reconciliations) among 

communities. Community similarity here was measured using the Jaccard 

similarity coefficient but other indexes can be certainly considered (see 

Legendre and Legendre, 2012 for a review). Build the spatial network for the 
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metacommunity by adding extra links to the spatial backbone tree calculated in 

step (1). The technical details involved in these two steps are explained below. 

3.3 .1 Step 1: Building the spatial tree 

Our spatial network method requires two types of input: an incidence matrix (a matrix 

ofsites-by-species presence-absence) and a geographie positioning matrix (a matrix of 

sites-by-geographic coordinates). The incidence data matrix is a binary matrix of 1s 

and Os indicating the presence or absence information of each species (co lumns) within 

each patch (rows). 
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F igure 3.1 A simple representation oftwo mathematical graphs or networks. a) Shows an undirected 

graph with six vertices (or nodes) and seven edges. b) A directed graph drawn using the same set of 

vertices and edges. The only difference between the two graphs is that the edges of graph b have 

directions. 
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Figure 3.2 Diagrammatic summary of the steps involved in our spatial network method. 
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An important aspect of inferring dispersal is that any given two communities may not 

have the same level of dispersal between them in which case dispersal is asymmetric 

or directional. Therefore, the frrst step to build the spatial tree is to estimate its root as 

an unrooted tree has no reference to direction in space. This is akin to unrooted 

phylogenetic trees in which the direction oftime is undetermined. Note, however, that 

directionality is not an essential component of our method and in cases where 

directionality is not of interest, it can be sim ply ignored. In such case, our method could 

be implemented simply on the basis of an unrooted spatial tree. Note that although the 

spatial tree was based on geographie distances among sites, its root was determined by 

the species composition. In this way, the root would represent how the species pool can 

be best divided across two major clusters of sites that are spatially structured. One way 

to estimate the root would be via an exhaustive process of determining all possible 

rooted trees from the unrooted spatial tree (i.e. , a root from all possible edges from the 

unrooted tree) and then assess which rooted tree best fit with species community 

composition across all communities. Note that the average of all rooted trees is the 

unrooted one. This exhaustive method, however, is impractical especially given the 

large number of simulations that we used in this study to assess the performance of our 

proposed framework. Instead, we used UPGMA (Unweighted Pair Group Method with 

Arithmetic Mean; Sokal and Michener, 1958), which is a well-known and widely-used 

hierarchical clustering method. 

Once the root has been established (i.e ., by an UPGMA on species incidence matrix), 

we applied the widely-used Neighbor-Joining method for phylogenetic reconstruction 

(Saitou and Nei, 1987) to build the spatial tree based on a pair-wise Euclidean 

geographie distance among sites (i.e. , local communities). This spatial tree serves, then, 

as the backbone of the spatial network for the local communities. The reason for using 

Neighbor-Joining method (instead of the one produced by UPGMA) was that minimum 

length Steiner tree with 120° between all branches, which is a particular case of a 

phylogenetic tree, is known to generate the tree connecting all points in the plane and 



- - --------- -----------------------------------------

90 

allows for representing geographie information as a bifurcating minimum length tree 

(Cavalli-Sforza and Edwards, 1967). While UPGMA is a simple clustering method 

mainly used in bioinformatics for the creation of phenetic or rooted trees (phenograms 

and dendrograms, respectively), it is not a well-regarded method for tree inference. 

Conversely, Neighbor-Joining is well-known for inferring the correct tree as long as 

the distance matrix is correct and "nearly additive" (Atteson, 1997; Felsenstein, 2004 ). 

Although in reality these conditions are rarely satisfied, Neighbor-Joining often 

constructs the correct tree topology (Mihaescu et al., 2009). Therefore, we combined 

the strengths of the two methods to construct the rooted spatial tree using the 

geographie relationships among sites. Note that we could also apply a diffe'rent 

combination of methods instead and assess which one performs best for the same data. 

3.3.2 Step 2: Building the metacommunity network 

To convert the binary spatial tree into a directed (asymmetric) spatial metacommunity 

network, we needed frrst to detect strong (significant) connections (similarities) among 

local communities and then the corresponding direction of these additional 

connections. Once this was established, we would then add a directional connection to 

the spatial tree built in step 1. To detect potential connectivity among communities, our 

framework makes use of the pair-wise similarities between all possible combinations 

of communities and nodes (i.e. , either of two local communities, a node and a 

community, or two nodes; see Appendix A for computations details) using the Jaccard 

similarity coefficient (Figure 3.2). We only considered additional links for 

communities and/or nodes that shared more species than expected by chance alone (an 

indicative of strong connectivity). In order to estimate this probability, we randomly 

permuted entire rows (sites) of the incidence matrix in relation to one another and 

recalculated the Jaccard similarity matrix (i.e. , across all possible combinations of 

communities and nod es) based on the permuted value. We repeated this step 999 times 
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(Figure 3 .2) and computed a p-value for every pair (i.e., either two local communities, 

a node and a community, or two nades) as the number of random values greater or 

equal to their respective observed values plus 1 (i.e. , the observed value was also part 

of the null distribution) divided by 1000. Here we considered that a pair should be 

connected when they shared a significant number of species (here a confidence limit 

of 0.05 was used) . An alternative (though not considered here) would be to consider 

greater alpha values (e .g. , 0.1 0, 0.20) and see if they improved madel fit in predicting 

species distributions. 

The direction of dispersal is always from the root to the nodes except for the extra 

branches which do not respect the spatial matrix and need to have their directionality 

estimated. Once the significance of the connection was established, dispersal 

directionality of newly added edges was determined by minimizing the topological 

differences computed by the Robinson and Foulds method (Robinson and Foulds, 

1981). For example, in the case of the extra edge found between sites 6 and 7 (dotted 

arrow line from Site 7 to Site 6), we first attached the newly found edge to Site 6 

(representing one direction; Site 6 to Site 7) and calculated the Robinson-Foulds 

topological distance between the resulting tree and original tree . Then, similarly, we 

attached the new edge to Site 7 (representing the reverse direction; from Site 7 to Site 

6) and computed the Robinson-Foulds topological distance between the resulting tree 

and original 'tree . Finally, the smaller distance determined the direction of the newly 

found edge, which in this case is from Site 7 to Site 6 (see Appendix B for more details). 

3.3 .3 Building dispersal predictors 

ln single-species metapopulation studies, the common procedure is to model species 

distributions (an incidence vector of presences and absences across local populations) 

against a predictor (or a set of predictors) of site connectivity (Foltête et al., 2012; 
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Hartel Tibor, 201 0; Peres-Neto and Cumming, 201 0). Here, in order to build a common 

set of connectivity predictors for all species across local communities, we frrst coded 

the MSSN into a site by edge matrix with rows representing the local communities and 

columns representing the edges (or branches) of the network (Blanchet et al., 2008; see 

Appendix A for a complete example with calculations). The site by edge matrix is a 

site-by-edge binary matrix H = [hu] in which each entry hu is set to 1 if edge j was 

involved in the path connecting the site i to the root and set to 0, otherwise . Next, H 

was multiplied by a vector (1-by-edge) of edge weights E = [eu], resulting into a 

weighted site-by-edge matrix HE. Akin to metapopulation metrics (e.g. , distance to 

nearest occupied site, average distance to all occupied sites), we defmed weights as a 

compromise between the geographie proximity and community composition similarity 

between two communities (see Appendix A for a complete example with calculations). 

Finally, a site-by-site Euclidean matrix C was calculated on the basis of HE. In essence, 

C is a connectivity matrix representing how local communities are spatially connected 

on the basis of our multi-species spatial network (MSSN). Matrix C was then double­

centered as : 

where 1 is an n-by-n identity matrix, 1 is an n-by-1 vector of ones, T denotes matrix 

transpose, and n is the number of sites. We then extracted the eigenvectors from Cc, 

which represents all orthogonal and linearly independent spatial patterns that are 

possible to produce from C (Griffith and Peres-Neto, 2006). The extracted eigenvectors 

are then used as dispersal predictors to model species distributions. The extracted 

eigenvectors are akin and will be referred here as to the asymmetric eigenvector maps 

(AEMs) approach developed by Blanchet and colleagues (2008) with the difference 

that the node-by-edge was built on the basis of our MSSN approach. 
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Our fmal step, as in metapopulation studies (see Prugh, 2009 for a review), was to 

model species distributions (i.e., n-by-species incidence matrix) on the basis of our 

connectivity predictors (i.e., AEMs). Because we have multiple species , we have 

applied Redundancy Analysis (RDA), a regression modelling· technique that can 

accommodate multiple response variables (species) . Model fit was assessed via an 

adjusted coefficient of determination (adjusted R2
; Peres-Neto et al. , 2006) and model 

performance via a permutation test explained in the next section. 

3.3 .4 Assessing the performance of MSSN via simulations 

Here we compared the performance (type I error, statistical power and model fit -

adjusted R2) of our AEM approach with the most commonly used approach to model 

the spatial component of multi-species distributions, namely Moran's Eigenvector 

Maps (MEM; Dray et al. , 2006). MEM are the eigenvectors of a non-directional 

connectivity matrix that sim ply considers the spatial proximity of sites (see Griffith and 

Peres-Neto, 2006 for calculation details), thus differing from the AEM approach based 

on MSSN in which directionality and spatial distributional characteristics of species 

(as in single species metapopulation models) are used. 

In order to estimate the significance of our metacommunity models (RDA with species 

incidence matrix as response and either AEM and MEM as spatial predictors) in 

explaining species distributions, we randomly permuted rows (local communities) of 

the incidence matrix in respect to one another. Because our AEM approach is based on 

the distributional properties of communities, we re-calculated fo r each permuted set its 

multi-species spatial network (MSSN), extracting a new set of 'random' AEMs. The 

permuted incidence matrix was then modelled (via RDA) against MEMs (which is 

invariable under permutation) and the AEMs on the basis of the permuted set. For each 

permuted set and each set of spatial predictors, we calculated their respective adjusted 
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R2. We repeated the permutation procedure 999 times and computed a p-value for the 

each RDA (AEMs or MEMs) as the number ofrandom adjusted R2 values greater or 

equal to their respective observed values plus 1 divided by 1000. 

In arder to test the efficiency of our multi-species spatial network method, it was 

important to apply the method on simulated data given that we could generate data with 

known structuring levels (see next section for an assessment based on real data sets). 

We simulated metacommunities consisting of 2500 local communities (sites) and 50 

species were collectively used. Here, local communities were distributed across a 

squared lattice (50 x 50). The first step was to calculate a pairwise geographie 

Euclidean distance matrix D = [dij] among all the 2500 communities in the Iandscape. 

Next, in order to generate spatial patterns into the species distributions within the 

metacommunity (lattice ), we created a spatial matrix W as follows: 

where a represents the range parameter. By varying a (greater values represent greater 

autocorrelation, i.e ., more spatially structured metacommunities). Next, the Cholesky 

decomposition was applied to W. By post-multiplying the upper-triangular from the 

decomposed matrix by a random normally distributed vector N(O,l) with 2500 

observations, we created a normally distributed variable X according to a spherical 

variogram with a specifie given range a. Because we wanted to simulate species having 

different levels of similarity in their distributions across local communities, we created 

a vector b = [bi] with 50 entries varying in increments of one from -n/2 to +n/2, where 

n is the number of species. For each species, we created a vector of probabilities Pi 
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corresponding to the chance that the ith species occupies the fh local community 

according to the simulated spatial gradient X as follows: 

where -ba is a randomly generated number from a uniform distribution that changes 

for each species i and e is a random normally distributed vector N(O, 1) with 2500 

observations that introduces further noise to species distributions (i.e., so that species 

having very similar b values do not end up with extremely similar probabilities ). Pi was 

then converted into a binary vector of presences-absences by drawing for each local 

community a random value from the binomial distribution according to PJi· By 

combining all Pi vectors from all n species, we created the incidence matrix 

(distributional matrix) for any given particular metacommunity. Note that although the 

approach used here to simulate metacommunities does not simulate dispersal perse, 

our simulation protocol would have led to parallel results ifwe have actually simulated 

movement across the landscape instead of constraining species distributions on the 

basis of a spatialized environment. This is because in our simulation species tracked 

environmental features that are themselves spatialized. Moreover, simulations based 

on dispersal are extremely computationally time consuming especially given that our 

MSSN framework is also time consuming. 

In order to contrast the power of our MEM and AEM, X was generated by considering 

spatial ranges (a) from 1 to 30. For type I error estimates, X was a non-spatial variable 

N(O, 1). For each range and the non-spatial X, we simulated 500 different 

metacommunities that were then used to infer spatial variability using our MSSN 

method. Before doing so, however, sorne non-spatial pattern in local species 

composition was introduced to each simulated metacommunity through replacing 10 

or 20 % of local communities with randomly chosen communities within the 
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metacommunity. These replacements were intended to emulate unusual non-spatial 

events and see how the method behaves. Following, from each simulated 

metacommunity (30 ranges x 500 metacommunities x 3 (0, 10% or 20% replacement 

= 45 000 metacommunities) , one sample containing 50 and 100 local communities, 

respectively, were randomly selected with replacement, so that the two samples could 

have communities in common (though unlikely give the large number of local 

communities, i.e., 2500). Samples were taken because in realistic situations we only 

estimate patterns of species distributions in a much smaller number of communities in 

contrast to the metacommunity . The sampled data from the metacommunity 

represented an incidence matrix of species occurrences across sampled local 

communities (presences and absences) as weil as their matrix of geographie 

coordinates. These two matrices were then used as input to our MSSN method. 

3.3.5 Assessing the performance ofMSSN on real datasets 

Here we used a dataset on fish communities inhabiting various lakes across Ontario 

province of Canada. This data set, which was obtained from the Ontario Fish 

Distribution Database (OFDD) maintained by the Ontario Ministry of Natural 

Resources (OMNR), contains the presence-absence . records of 134 fish species 

distributed among approximately 9900 lakes as weil as the geographie positions of the 

lakes . We used presence-absence records collected in summers between 1968 and 1985 

distributed across 72 independent watersheds (see Henriques-Silva et al., 2012 for 

complete details) . In this study, each watershed was considered as a metacommunity . 

The number of sites (local communities) and species varied very much across 

watersheds (between 21 and 280 sites and 17 and 50 species). In order to contrast the 

two spatial models (MSSN-AEM and MEM), we simply contrasted their adjusted R2 

across ali 72 watersheds. 
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3.4 Results 

3.4.1 Simulated data 

Figures 3.3 and 3.4 summarize the simulation results comparing our MSSN and MEM 

approaches . First, in terms of explained variance (adjusted R2 values), it is clear that 

our novel approach outperforms MEM (Figure 3 .3). Second, both methods are, as 

expected, sensitive to the level of spatial autocorrelation in which low spatial ranges 

reduce the ability of both methods in detecting spatial patterns in species community 

composition (Figures 3.3 and 3 .4) . Third, both methods are sensitive to the sample size 

in which large samples increase the performance of both methods. Fourth, both 

methods were sensitive to the level of random (non-spatial) replacement of 

communities in which greater levels of non-spatial noise (contrast 20% with 0% 

replacement; Figures 3 and 4) decreased the performance of both methods. Fi:fth, 

despite the fact that our framework generate models with greater variance explained 

(Figure 3.3), both frameworks (MSSN and MEM) present similar levels of power. 

Finally, the type I error of our framework is correct (Figure 3.4; a range = 0 provide 

5% of significant models as expected under a rejection level of 0.05) . 

3.4.2 Real ecological data 

Figure 3.5 contrasts the adjusted R2 values for MSSN and MEM frameworks across 

the 72 watersheds. The results clearly show the advantage of our spatial network 

method over MEM in detecting spatial patterns in a large set of real data. For the large 

majority ofwatersheds (65 watersheds outof72 or 90 .27% ofwatersheds), the adjusted 

R2 values obtained through the use of the MSSN approach were larger than those 

obtained by MEM. Although our spatial network method failed to surpass the MEM 
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method in seven cases, it still managed to infer a quite similar amount of variation in 

these cases. 
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An additional advantage of our framework is that we can make inferences (strength 

and direction) about the levels of connectivity across local communities. Figure 3.6 

contrasts two metacommunities (watersheds) in terms of the spatial patterns of local 

community connectivity. Each circle in Figure . 3.6 represents a site (lake) from the 

watershed and the size of the circles shows the amount of interaction they have with 
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the other sites: the size of the circles are proportional to the interaction ( connectivity) 

in the form of the number of links (both inner - immigration events and outer -

emigration events) connecting any lake in particular and the rest of the spatial network. 

The solid black part of the circles represents the number of network links terminated at 

those sites (immigration from other local communities) and the white part shows the 

number of links originated from those sites (emigration events toward other local 

communities). 
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Figure 3.6 Bubble plot maps for lakes of two fish metacommunities (watersheds) representing their 

levels of connectivity with the other lakes within watersheds. Lakes are plotted according to their 

geographie positioning. The size of the circles represents the levels of connectivity for any particular 

lake. The amou nt of black is proportional to the estimated number of immigration events and the amou nt 

of white is proportional to the estimated number of emigration events. 
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3.5 Discussion 

Inferring dispersal in real metacommunities is a daunting task given the logistical 

limitations in following individuals across a wide range of taxa and geographie 

locations. Moreover, the processes shaping metacommunities may have been historical 

and much beyond the temporal scope of the empirical data on species distributions 

(Layeghifard et al., 2012; Leibold et al., 2010). Our framework is intended to detect 

the spatial variability in metacomrnunities and represent them as spatial networks. It is 

the frrst such method applied to multi-species communities using a graph-theoretical 

approach. Graph-theoretical approaches have already been used in landscape ecology 

to examine the sensitivity of landscape connectivity to changes in landscape 

configuration (Keitt et al., 1997), to assess overall and individual patch contribution to 

landscape connectivity (Urban and Keitt , 2001), to quantify levels of 

compartmentalization in landscapes (Bodin and Norberg, 2007) and to build and 

analyze spatially implicit models of compartmentalization in trophic structure (Dunne 

et al., 2002; Pascual and Dunne, 2005). However, it has not been used to detect and 

explain the spatial variability ofmetacomrnunities so far. 

Given the challenges of measuring dispersal directly within metacommunities, the 

proposed framework offers severa! features. First, it pro vides a parallel framework used 

in metapopulation models (Dunham and Rieman, 1999; Hanski, 1994; Hartel Tibor, 

2010; Knapp et al., 2003) given that our measure of connec ivity is based on functions 

that represent spatial distributions of occupied versus non-occupied sites for multiple 

species (homologous to metapopulation metrics; see Bender et al. , 2003 and Prugh, 

2009 for reviews). Second, it infers dispersal directionality across local communities. 

This is a major ad van tage even over metapopulation frameworks based on connectivity 

metrics ( e.g., nearest occupied neighbour site) in which by having distributional 

information for multiple species, one can infer the likelihood of emigration versus 

immigration between two local communities. Even metapopulation metrics for 
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inferring dispersal do not infer directionality (i.e ., assume ornni-directionality; e.g. , 

Magle et al., 2009) and by using information on multiple species, our framework allows 

for directionality because we canuse similarity in species compositions to estimate the 

most likely direction regarding species dispersal. The third advantage is that our 

method infers connectivity matrices that can be then used as spatial predictors into 

multiple species modelling frameworks . This is akin to single-species modelling that 

use metapopulation connectivity metrics to estimate site isolation ( e.g., Dunham and 

Rieman, 1999; Prugh, 2009). lt also allows estimating how well connected (hot spots) 

or disconnected (cold spots) local communities are. 

The fmal advantage, in which our MSSM framework is capable of detecting patterns 

of connectivity that are not necessarily spatialized, deserves sorne additional attention 

because it relates to the way that connectivity metrics for metapopulations and ours 

(metacommunity) make inferences about dispersal. Although we commonly assume 

that the signatures of dispersal are spatialized, two communities that are spatially close 

may harbour quite different species and sites that are spatially distant may assemble 

similar species, th us reducing the ability to infer dispersal solely on the basis of the 

spatial structure of species distributions . That is the reason why metapopulation uses 

incidence information across the landscape and ours use community similarity across 

the metacommunity. However, as in metapopulation metrics, our MSSN framework 

also weights community similarity in relation to geographie distance by considering a 

compromise between spatial arrangement and information on community similarity. If 

there is a high level of similarity between two communities that are quite distant apart, 

they will not be considered as connected as if the same two communities were nearby. 

This is an important issue when studying metapopulations and metacommunities 

inhabiting environmentally heterogeneous landscapes especially those composed of 

species that are good dispersers but have strong environmental preferences. In this case, 

species can get anywhere (mass effect perspective; Leibold et al., 2004) but are sorted 

according to the type of environment (species-sorting perspective) . lt fo llows that 
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metapopulation metrics and our metacommunity framework may infer strong dispersal 

dynamics across occupied sites (especially in the case in which optimal patches are 

also spatially structured) whereas in fact the major factor is instead strong 

environmental filtering instead. One way to separate these two hypotheses is to use a 

variation partitioning approach (Borcard et al., 1992; Peres-Neto et al., 2006) in which 

environment and our MSSN-AEM are used and contrasted against each other. In this 

case, if species have strong environmental affmities in which optimal environments are 

highly spatially structured, and they are not dispersal limited, then environmental 

predictors and our MSSN-AEM predictors should covary strongly and serve as an 

indication that our dispersal predictors are confounded by environment. Note that this 

is not an issue per se of our method, but an issue of naturallandscapes not being able 

to provide orthogonal designs (i.e., variation in species optima being not spatial 

structured). 

Our simulation and real data applications clearly show the features and advantages of 

our framework over a widely used method to depict spatial patterns in 

metacommunities (MEM). The main advantage of our method is that it integrates both 

geographie and species composition information to infer and explain spatial 

heterogeneity in species distributions. By integrating both sources of information we 

can infer about directionality and also non-spatialized dispersal patterns. Although the 

geographie distance between patches is a fundamental component of any landscape, 

species dispersal b haviour also plays a key ole in shaping the spatial structure of 

metacommunities. In cases where species distributions closely follow the geographie 

arrangement of the habitat patches in the landscape, species dispersal can be ignored in 

practice. However, in reality, species dispersal patterns are much more complex and 

our network framework aims directly at inferring such patterns. While presence­

absence data sets are not always ideal representations of species dispersal patterns in a 

metacommunity, they are widely available and are commonly used in ecological 

analyses to understand the processes driving common patterns of species distributions. 
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Therefore, integrating presence-absence information with geographie distances, we can 

gain greater insights irito the spatial heterogeneity of metacommunities. 

In addition to its robustness in inferring dispersal within metacommunities, our 

proposed framework could also be useful in assessing the impacts of fragmentation or 

loss ofhabitats on metacommunity structure (Benton et al., 2003; Fahrig and Merriam, 

1994; Meffe et al. , 2002). The most immediate effect of habitat fragmentation or loss 

is the change in the spatial structure of landscapes. This shift in spatial structure 

typically leads to substantial changes in species dispersal patterns and our framework 

can be applied using data from temporal surveys to assess changes in patterns of 

d,ispersal among local communities considering the en tire metacommunity. Because 

spatial patterns of lands capes are critical to devising habitat conservation plans (Bunn 

et al., 2000), our multi-species multi-site approach can be applied to infer changes in 

community connectivity through time and aid in risk analysis and habitat plans as other 

network based approaches (Keitt et al. , 1997). 

We certainly hope that ecologists fmd our approach useful and intuitive. The presented 

framework is quite flexible and can directly incorporate different types offunctions to 

infer spatial proximity (linear versus non-linear functions), different types of indexes 

to infer community similarity, and different types of algorithms to infer cluster of sites 

and dispersal directionality. As such, we expect our MSSN method to become a 

aluable addition to the spatial cologists' toolbox and fmd many int r sting 

applications in metacommunity studies, landscape ecology and conservation biology. 



CHAPTERIV 

A CONNECTIVITY MEASURE FOR METACOMMUNITY NETWORKS 

Mehdi Layeghifard, Vladimir Makarenkov and Pedro R. Peres-Neto 

4.1 Summary 

Connectivity is an important theme in theoretical, empirical and applied studies of 

heterogeneous landscapes. Graph theory has recently provided a number of promising 

methodologies to measure lands cape connectivity. Graph-theoretical connectivity 

measures vary in terms of the assumptions they make as weil as the ecological issues 

they are meant to address. Connectivity within metacommunities (among local 

communities) is one of the important ecological situations that can be modeled by 

graph theory. Here, we introduce a novel graph-theoretical approach to defme and 

measure the connectivity of a metacommunity in which local communities are 

interconnected through species dispersal. Our approach uses species composition 

similarities among local communities to assess the contribution of each local 

community to the o erall conn ctivity of the metacommunity . Our results showed that 

our connectivity measure is quite robust in detecting most significant local 

communities in terms of their contribution to the overall network connectivity within 

simulated metacommunities. As such, our connectivity measure for metacommunity 

networks is a valuable addition to the toolbox of the graph-theoretical connectivity 

measures and could be used alone or in conjunction with other available measures to 

investigate metacommunities . 
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4.2 Introduction 

Ever since Merriam (1984) introduced the concept of connectivity to landscape 

ecology, many studies have been carried out to describe and measure individual patch 

or overall landscape connectivity (Keitt et al. , 1997; Moilanen and Hanski, 2001 ; 

Schumaker, 1996; Tischendorf and Fahrig, 2000; Tischendorf and Fahrig, 2001 ). 

Nevertheless, the complexity of connectivity bas prevented these efforts to converge 

into a common widely accepted defmition. For example, depending on context, 

connectivity could be defmed to be functional or structural (Belisle, 2005). Functional 

connectivity is behaviour related and corresponds to " the degree to which the landscape 

facilitates or impedes movement among resource patches" (Taylor et al. , 1993). 

Structural connectivity, on the other band, ignores organisms ' behaviour and only 

considers the physical connectedness of the landscape elements (With et al. , 1997). 

Moreover, the impacts of connectivity vary across different time scales. For example, 

it could affect the success of juvenile dispersal, migration or species ability to exp and 

in short, intermediate and large time scales, respectively (Minor and Urban, 2007). 

In addition to theoretical and empirical research, investigating connectivity rn 

ecological and conservation studies can also help planning mitigation programs to 

!essen the outcomes of habitat fragmentation and loss. Habitat fragmentation, caused 

by anthropological disturbances or natural catastrophes, is one of the most significant 

causes of populations and species extinction (Hanski, 1998). Habitat fragmentation 

occurs when discontinuities appear within an otherwise homogeneous landscape, thus 

reducing species mobility, populations' viability and breeding success (Chetkievicz et 

al. , 2006; Malanson, 2002; Nikolakaki, 2004), among other impacts. Connectivity 

reduces the harsh effects of habitat fragmentation on populations, species and their 

communities through facilitating species dispersion and gene flow between suitable 

patches and reducing the probability of species' extinctions at the landscape level 

(Haddad et al. , 2003; McLaughlin et al., 2002). 
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Graph theory has recently provided a number of very promising methodologies to 

measure landscape connectivity. Although graph -theoretical approaches were 

traditionally considered to be highly sophisticated and computationally prohibitive, 

recent technological advances have converted them into an increasingly efficient and 

popular toolbox that can be used to fmd solutions for many scientific and practical 

issues (Gross and Yellen, 2006). Graph theory has been widely used to study and 

schematically represent the connections within natural or anthropogenic entities, 

including both real (e.g. , towns and countries interconnected through roads, railways 

and airways) and virtual entities (e.g., social networks such as Facebook). In an 

ecological context, one of the simplest exarnples is viewing landscapes as a network of 

habitat patches connected by dispersing individuals (Bunn et al. , 2000). Graph­

theoretical approaches are quite flexible in such a way that their connectivity measures 

can vary in terms of both the assumptions they make and the specifie ecological 

questions they were meant to address. As a result , different connectivity measures may 

be more suitable to tackle different specifie tasks. With the increase in the number and 

popularity of graph-theoretic connectivity measures, efforts have been made to 

compare these measures and study their performance and properties (Pascual-Hortal 

and Saura, 2006; Saura and Pascual-Hortal, 2007; refer to Laita et al. , 2011 for a recent 

review on the comparison of various graph-theoretical approaches in terms of their 

conceptual differences). 

Connectivity within metacommunities is one of the important ecological characteristics 

that can be modeled and explained using graph theory. In metapopulation studies, 

connectivity is measured based on the links among populations inhabiting landscape 

patches. As an extension, metacommunities may be seen as a co llection of interacting 

metapopulations. Connectivity among local communities is essential for movement of 

genes, individuals, populations, and species and therefore critical for their stability, 

integrity and overall maintenance (Clergeau and Burel; 1997; Collinge, 1998; Raison 
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et al., 2001; Taylor et al., 1993; With et al., 1997). Graph theory has been shown to be 

very effective in unravelling the complexities surrounding interactions within 

metapopulations and metacommunities (Jordan et al., 2003; Urban and Keitt, 2001).1t 

has also provided valuable tools for addressing conservation issues and devising land 

management and conservation planning policies ( e.g. , Andersson and Bodin, 2009; 

Ferrari et al., 2007; Minor and Urban, 2008; Pascual-Hortal and Saura, 2008; Urban 

and Keitt, 2001). 

In this paper, we introduce a novel graph-theoretical approach to measure landscape 

connectivity. In our method, species composition similarities among local communities 

are used to assess the overall connectivity of the landscape as well as the contribution 

of each local community to the overall connectivity of the metacommunity. We start 

by describing sorne of fundamental attributes of networks and provide a detailed 

presentat.ion of our new method, followed by a simulation to demonstrate the 

performance of the approach. 

4.3 Methods 

4.3 .1 Background 

Network. In graph theory, a network is represented as a graph G = (v, E), where Vis 

the set ofvertices (nodes; ecological objects such as local communities) andE is the 

set of edges (links or interactions between nodes). This network of interconnected 

objects is depicted as a set of dots (or small circles; to represent vertices) which are 

connected by straight or curved lines (to represent edges). 
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Node degree. The degree of node i in graph G refers to the number of other nod es in 

the same graph which are directly connected to node i (i.e., neighbors of node i) in the 

same graph. 

Degree matrix. A degree matrix D of a graph G is a diagonal n x n matrix where n is 

the number ofnodes and the diagonal entry dü is the degree of node i, also indicated as 

deg(vi). 

Adjacency matrix. An adjacency matrix A of a finite graph Gis an n x n matrix where 

n is the number of nod es and the entry aij is the number of edges from node i to node j. 

The value of the diagonal entry a ii depends on the number of loops connecting node i 

to itself. In acyclic graphs this value is zero because such graphs are devoid of loops. 

Laplacian matrix. The Laplacian matrix L of a graph G is an n x n symmetric matrix 

o btained from subtracting the adj acency matrix A from the degree matrix D. Therefore, 

L represents an undirected, unweighted graph without loops or multiple edges from one 

node to another. The Laplacian matrix is als.o called the admittance matrix or Kirchhoff 

matrix (Babic et al. , 2002; Cvetkovic et al. , 1998). Moreover, Lis a real, non-negative 

and semi-defmite matrix. Therefore, all the eigenvalues of L are real and non-negative. 

Second sma/lest eigenvalue. While the smallest eigen value of the Laplacian matrix L 

is zero (due to normalization, see below), its 2nd smallest eigenvalue is a non-negative 

value referred to as the algebraic connectivity of graph G in spectral graph theory 

(Fiedler, 1973; Fiedler, 1975; Chung, 1997). In other words, for any two graphs Gt and 

G2, if G1 has fewer links than G2, then the 2nd smallest eigenvalue or the algebraic 

connectivity of G1 is smaller than that of G2. Therefore, 2nd smallest eigenvalue 

represents a measure of graph connectivity . 



111 

4.3 .2 Methodology 

Assuming that we have a metacomrnunity (i.e., a group of local communities in a 

landscape ), the graph-theoretical representation would be a network in which the no des 

and edges indicate local communities and dispersal routes, respectively. Figure 4.1a 

shows a simple diagrammatic example of such metacomrnunity represented as a 

network, _where numbered circles are local communities and the lines connecting the 

circles are the representations of species dispersal. The main goal of our novel method 

is to fmd the significance of each network node to the metacomrnunity connectedness 

using a weight-based approach. 

(A) (8) 

Figure 4.1 A simple example of a metacommunity represented as a network. Numbered circ! es are local 

communities and the !ines connecting the circles are the representations of species dispersal. (A) A 

simple metacommunity network. (B) A metacommunity network with species composition similarities 

shown next to each edge linking every pair ofnodes. 
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Traditionally, the majority of methods developed to investigate network conneçtivity 

use unweighted approaches in their computations. In other words, they use a binary 

system of 1 s and Os to indicate the existence or lack of a connection between every pair 

of nod es, respectively. Our method, on the other hand, takes ad van tage of the species 

composition similarities/dissimilarities to weight the connections between each pair of 

local communities before calculating the significance of those connections to the 

network' s overall connectivity. If species composition similarity is high, one can 

assume that there were important dispersal events in the past between these 

communities. Here, Jaccard's well-known index was used to calculate the 

dissimilarities in species compositions among local communities, although any other 

similarity/distance indices could be easily applied. 

Our method calculates the pairwise similarities between local communities based on 

the incidence data (i.e., presence or absence of species within communities) in the frrst 

step. These similarities are shown next to the edges connecting the corresponding pairs 

of nodes in Figure 4.1b. Next, it builds the weighted Laplacian matrix for the 

metacommunity network and calculates the 2nd smallest eigenvalue of the network. 

Then, nodes will be removed one at a time the 2"d smallest eigenvalues will be 

calculated for each of the resulting sub-networks. Finally, the 2"d smallest eigenvalues 

of sub-networks will be deducted from the 2"d smallest eigen value of the initial network 

and the nodes will be ranked according to the results . Here, in order to make our method 

easier to understand, we will frrst describe the unweighted approach of calculating the 

Laplacian matrix before presenting the weighted approach which is our main objective. 

A diagrammatic representation of the steps involved in our method is given in Figure 

4.2. 
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Figure 4.2 A diagrammatic representation of the steps involved in our graph-theoretical connectivity 

measure methodology. See the text for details. 
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4.3 .2.1 Unweighted approach 

For the unweighted network G =(V, E), its Laplacian matrix L(G) = [l i,J ] is defmed 

as follows : 

l
deg( vi) if i = j 

L(G) = [li,Jl = -1 ifi ::f:jandvi isadjacentto vj 
0 otherwise 

(1) 

where i ,j E { 1 , .. . , n} are indices of the nades, Vi and Vj are the ith and }th nod es, 

respectively and deg(vi) is the degree of ith node. Therefore, the resulting Laplacian 

matrix for the network shawn in Figure lais the following: 

L( G) = r;1 
-1 

-1 -1 
2 -1 

-1 3 
0 -1 

~1j 
-1 
2 

(2) 

The symmetric normalized Laplacian matrix of the same network G, however, IS 

defmed as follows: 

if i = j and deg( vi) * 0 

if i * j and vi is adjacent ta vj (3) 

otherwise 

Arguably, the most important attribute of the normalized Laplacian matrix is that all its 

eigenvalues (known as spectra of the normalized Lap lacian) are rt:al and non-negative. 

In fact, if À is an eigenvalue of L , then 0 =À = 2. Finally, the normalized Laplacian 

matrix, Lnorm(G), calculated for the network shawn in Figure lais: 



L norm( G) = [=8
1

:j~ 
-0.41 

4.3.2.2 Weighted approach 

- 0.41 
1 

-0.41 
0 

-0.29 
-0.41 

1 
-0.41 
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-0.411 
-0~41 (4) 

For any weighted network Gw =(V, E), its Laplacian matrix L( Gw ) = [li,} ] is generally 

defmed as fo llows: 

if i = j and deg{ vJ 1= 0 
if i * j and vi is adjacent to v1 
otherwise 

(5) 

where Wis the weight of the edge connecting the two nodes Vi and Vj. In our approach, 

however, instead of adding up the number of edges which coïncide on any particular 

node to calculate the degree of that node, we add up the weight of those coinciding 

edges to calculate the weight for that node. This weighting approach is very similar to 

the approaches used in designing or analyzing networks with non-uniform traffic, such 

as computer networks (Liu et al., 2009). Since the species dispersal is also non-uniform 

(i.e. , the rate of dispersal varies across landscape), this weighting approach is more 

meaningful than simply counting the number of links. Therefore, our weighted 

Laplacian matrix is defmed as follows : 

if i = j anddeg(vi) * 0 
if i * j and v i is adjacent to v1 
otherwise 

(6) 
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where W(vi) is the weight of the node Vi. Then, the weighted Laplacian matrix 

calculated for the network shown in Figure 1 b is: 

r 

3.72 

L weighted ( G) = ::::g:~~ 
-0.43 

-0.27 
3.72 

-0.29 
0 

-0.29 
-0.29 
3.15 

-0.47 

-0043] 
-0.47 
1.43 

4.3 .2. 3 Assessing node contribution to the network connectivity 

(7) 

As described above, since our weighted Laplacian matrix is symmetric and normalized, 

ail the eigenvalues are real and non-negative. lt is also well-known that the 2nd smallest 

eigenvalue (the smallest eigenvalue is 0) is referred to as the algebraic connectivity of 

the graph. To assess the significance of each node for the overall connectedness of the 

network, we frrst calculate the 2nct smallest eigen value for the network as a who le. Next, 

we remove the nodes one at a time and recalculate the 2nct smallest eigenvalue for each 

of the resulting sub-networks . Finally, by subtracting the 2nct smallest eigenvalues 

obtained for each sub-network from the 2nct smallest eigenvalue of the full network, we 

are able to calculate the leve! of the contribution of each node to the overall 

connectivity of the network. 

4.3.3 Assessing the performance of the metric 

We used four different types ofnetworks (i.e. , random, regular, exponential and scale­

free networks) to simulate the metacommunities required to assess the performance of 

our metric. Random network mode! which was first developed by Erdôs and Rényi 

(thus the so-called " Erdôs-Rényi mode!"; Erdôs and Rényi, 1959) consists of Nv 
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vertices, connected by NE (undirected) edges that are chosen randomly from the set of 

Nv(Nv - 1)/2 possible edges (excluding multiple connections and loops). A regular 

network is a graph where each vertex has the same number of neighbors (i.e., same 

degree of connectivity). For example, in a regular network of degree 3 each node has 

three neighbors. An exponential network is a graph whose degree distribution follows 

an exponential function. Finally, a scale-free network is a graph whose degree 

distribution follows a poyver law function . In other words, when building the scale-free 

network the new edges are preferentially added to vertices with higher degrees. 

Therefore, a fraction of vertices in a scale-free network will have very large degrees 

compared to other vertices. 

Using each of the above-mentioned network types we frrst constructed networks with 

100 nodes and then used them as blueprints along with a colonization-extinction model 

to sirnulate metacommunities consisting of 100 local communities each (collectively 

containing 50 species). For the simulation process we used a colonization probability 

of 0.1 and extinction rates of 0.1 , 0.2, 0.3 , 0.4, 0.5 and 0.6. For each possible 

combination of network types, colonization probability and extinction rates we 

sirnulated 1000 metacommunities or 24,000 metacommunities in total. 

After applying our weighted metric method on every one of the sirnulated 

metacommunities, we calculated the correlation coefficients (Pearson coefficients) 

between our estimates (levels of contribution to overall connectivity calculated for each 

node using dissirnilarities between species composition of local communities) and 

closeness centrality estirnates (based solely on the topology of constructed networks 

without considering metacommunity data). Since metacommunities were sirnulated 

based on the topology of the constructed networks of different types, the correlation 

between our metric estirnates for network nodes and a node centrality measure such 

closeness centrality would be a reasonable indicator of our methods efficiency in 

fmding nodes contributions to the overall connectivity of a metacommunity . In 
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connected graphs, closeness of a node is defmed as the inverse of the sum of its 

distances (shortest paths) to all other no des. Therefore, closeness centrality is used in 

network analysis as a measure of the relative importance of a node within a graph. 

4.4 Results 

The correlation coefficients between estimates obtained from our weighted 

connectivity metric and closeness centrality measures for different types of networks 

are presented in Figures 4.3 to 4.6. Histograms in Figure 4.3 show the correlation 

coefficients between our connectivity estimates for ali metacommunity nades and the 

closeness centrâlity measures of the underlying regular networks . Each histogram 

sumrnarizes 1000 metacommunities simulated for a specifie extinction rate. Sim ilarly , 

Figure 4.4 to 4.6 present same measurements for random, exponential and scale-free 

network types, respectively. As mentioned above, all the nod es in regular networks 

have the same degree of connectivity . Therefore, all the nod es have alrnost same 

amount of contribution to the network overall connectivity. This homogeneity in 

degree distribution among the nades is efficiently detected by our method as shawn in 

Figure 4.3, where correlation coefficients are closely centered around zero in ali 

histograms. In random networks, on the other hand, there exists sorne leve! of variation 

in degree distribution, but this random variat ion is not enough to structuralise networks 

and metacommunities . This is clearly attested by our method as shawn in Figure 4.4, 

where corre lation coefficients centered around -1 or -2 in the histogram s. 

In Figure 4.5 the corre lation results for exponential network are presented. In this type 

of network the degree distribution follows an exponential function . Therefore, 

networks and the metacomrnunities simulated based on them are structured. In other 

words , sorne nades in the network have larger contribution to the overall connectivity 

than others and, in this case, our weighted connectivity metric method was highly 
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efficient in detecting these nades as shawn in Figure 4.5. Sirnilar to exponential 

networks , the metacommunities sirnulated based on scale-free networks are also 
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Figure 4.3 Correlation results between our algorithm estimates and closeness centrality measures of 

nodes relative importance within metacommunities simulated based on regu lar networks. 1000 

simulated metacommunities were analyzed per each extinction rate. Correlation coefficients shown here 

are between -4 x 1 Q· 15 and 4 x 1Q·15. 
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Figure 4.4 Correlation results between our algorithm estimates and closeness centrality measures of 

nodes relative importance within metacommunities simu lated based on random networks. 1000 

simulated metacommunities were analyzed per each extinction rate. 
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Figure 4.5 Correlation results between our algorithm estimatés and closeness centrality measures of 

nades relative importance within metacommunities simulated based on exponential networks . 1000 

simulated metacommunities were analyzed per each extinction rate. 
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Figure 4.6 Correlation results between our algorithm estimates and closeness centrality measures of 

nodes relative importance within metacommunities simulated based on scale-free networks. 1000 

simulated metacommunities were analyzed per each extinction rate. 

structured, although the degree distribution follows a different function (i.e., a power 

law function) . The correlation results for scale-free metacommunities are presented in 

Figure 4.6. Again, our weighted connectivity metric method was highly successful in 

fm ding the no des with high levels of contribution to the overall network connectivity. 

As shawn in Figures 4.5 and 4.6, in both exponential and scale-free cases , the vast 

majority of correlation coefficients are between -7 and -8. This shows that our metric 

is highly efficient in detecting the nades that are most vital for the overall connectivity 

of metacommunity networks. It must be noted that the correlation sign is negative 

because we used Jaccard 's distance index. As we mentioned above, any 

similarity/dissimilarity measure could be used instead of the Jaccard 's distance. Using 

a similarity measure would therefore result in positive signs. 
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Furthermore, we also tested our metric fmding using Spearman and weighted Pearson 

correlation methods which yielded in similar results (data not shown). In summary, the 

results from regular and random network simulations show the robustness of our 

method the results obtained from exponential and scale-free networks demonstrate the 

high efficiency of our method in detecting the nodes (local communities) highly 

important for the overall connectivity ofmetacommunities. 

4.5 Discussion 

Graph theory has been widely used to represent landscapes as networks where habitat 

patches are depicted as nodes and connections between patches are depicted as links 

connecting the corresponding nodes (Bunn et al., 2000; Fall et al., 2007; Urban and 

Keitt, 2001; Urban et al., 2009). Using graphs to represent landscapes bas resulted in 

the development of numerous connectivity measures as weil as the adoption of many 

connectivity rneasures developed for purposes other than landscape ecology (Laita et 

al., 2011). 

Graph-theoretical connectivity measures have been successfully used in landscape 

ecology to design reserve networks (Fuller et al., 2006), to conserve endangered 

species (Fall et al., 2007) and to fmd most valuable habitat patch es and the ir roles in 

landscapes (Jordan et al., 2003; Minor and Urban, 2007; Opdam et al., 2006; Pascual­

Horta! and Saura, 2006; Pascual-Horta! and Saura, 2008; Rothley and Rae, 2005). 

Similarly, these measures have the potential to exp lain the complex pro cesses 

occurring within metacommunities including dynamics of species dispersal and the 

significance of the individual local communities and their corresponding connections 

to the maintenance of the metacommunity. 
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lt must be noted, however, that connectivity measures developed based on graph theory 

do not behave in a similar manner. So, they must not be treated equally or expected to 

result in similar outcomes. Different connectivity measures were developed with 

different underlying assumptions in arder to address different issues. In addition, 

various connectivity measures take advantage of different attributes of graphs which 

might be more suitable for a variety of specifie purposes. For example, Expected 

Cluster Size (O'Brien et al., 2006) represents an area-weighted mean habitat size which 

carries information on the amount of habitat within a landscape component, but its 

value in creas es with the loss of small isolated patch es or components, although the total 

habitat area in the landscape reduces . On the ether hand, Landscape Coïncidence 

Probability (Pascual-Hortal and Saura, 2006) which is the probability that two points 

located randomly within a landscape reside in the same habitat component shows a 

decrease in its value with increasing fragmentation . Contrary to the two graph­

theoretical measures described above, graph diameter (Bunn et al., 2000; Ferrari et al., 

2007) is purely a topological measure which is sensitive to the number of patches . 

Therefore, the value of graph diameter increases due to fragmentation , because usually 

habitat fragmentation leads to a higher number ofpatches. Graph diameter is in fact the 

longest path between any two nades in the graph, where the path length between those 

nodes is itselfthe shortest possible length. 

One of the most appealing characteristics of graph theory to ecologists is that it can be 

used efficiently on small data sets and furth r fmements can be made if more data is 

available in the future (Urban and Keitt, 2001 ; Urban et al. , 2009). In other words, our 

method allows us to start with a small ( e.g ., incomplete) dataset and fme-tune the 

outcomes while we gather more data. Particularly in the case of large landscapes, 

graph-theoretical approaches are suggested to show the greatest benefit-to-effort ratio 

for conservation purposes, because they are quite capable of providing detailed results 

even from modest datasets (Calabrese and Fagan, 2004). 
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As is often the case with novel methods, our connectivity measure for metacommunity 

networks should be regarded as a valuable addition to the toolbox of the graph­

theoretical connectivity measures. Our method could be used alone or in conjunction 

with other available metrics (or even alternative approaches to graph theory) in order 

to investigate highly complex ecological systems, such as metacommunities, and 

expand our knowledge of pro cesses that shape and go vern them. 

One of the main advantages ofusing graph theory to develop connectivity measures is 

that it can consider both structural and functional aspects of connectivity at the same 

time (i.e., the topology of network represent the structure and the weighted links 

· represent the functions; Urban and Keitt, 2001). Here, we adopted and modified the 

application of graph theory in landscape ecology in arder to investigate the functional 

(i.e., species similarities) connectivity of metacommunities. As a result, instead of 

habitat patches, here we considered a set of local communities interconnected by 

dispersal. In real situations, when two local communities show similar species 

compositions, the main conclusion one can draw is that these two local communities 

are (were) connected to each other through important dispersal routes or corridors. 

Here we only used the functional aspect of connectivity rn which we used 

dissimilarities among local communities to fmd the local communities contributing the 

most to the overall connectivity of a metacommunity. Our results clearly showed the 

efficiency of our metric in detecting highly connected local communities in structured 

metacommunities (e.g. , exponential and scale-free networks) as weil as its robustness 

in not erroneously fmding such local communities in unstructured metacommunities 

(e.g., regular and random networks). However, our measure can be expanded in 

different ways. We could easily add structural factors such as geographie distribution 

of local communities representing different dispersal functions and other functional 

aspects such as species' dispersal range and behaviour-related attributes to movement, 

among others. 



CONCLUSIONS 

The primary goal of this thesis was to explore the power and flexibility of graph 

(network) theory in fmding solutions for complex biological problems, particularly in 

the fields of ecology and evolutionary biology. In doing so, each chapter focused on 

one particular ecological or evolutionary biological problem and the methods 

developed in this thesis were assessed for efficiency and robustness using empirical 

and/or simulated datasets. The main logic behind choosing four different problems to 

be addressed by graph theory was to demonstrate the inherent capacities of networks 

in dealing with complex biological issues regardless oftheir scope and field. 

The primary resuh of Chapter I was a novel method to reconstruct weighted explicit 

consensus network from a collection of species and gene trees . Given the broad 

occurrence of heterogeneity among genes and the high nurnber of phylogenetic 

mechanisms influencing their evolution, having a method to resolve the incongruence 

among gene trees was the main objective of this chapter. In addition, this powerful 

and flexible network reconstruction method allows one to infer, visualize and 

statistically validate major conflicting signais induced by various mechanisms of 

reticulate evolution. Moreover, the inferred conflicting signais could be presented by 

means of explicit and easy-to-interpret phylogenetic networks . 

The mam conclusion of Chapter II was that graph-theoretical approaches (i.e., 

network-like structures) were shown to be more advantageous than tree-like 

structures in investigating and reconstructing dispersal histories due to their 

capabilities in providing much greater and more detailed information about the 

biogeographie history of dispersals. This was consistent with results obtained from 

the application of networks in evolutionary biology, where networks easily 

outperform phylogenetic trees in providing detailed information about various 
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evolutionary mechanisms . This study could serve as a starting point for adopting or 

developing more versati le network reconstruction methods that could take into 

account other factors affecting biogeographie dispersal, such as geographie barriers, 

environmental conditions, clirnate, and species characteristics. 

In Chapter III a new multi-species spatial network method for modelling the spatial 

heterogeneity of metacommunities was developed. Results from both simulated and 

real data analyses showed that this method was more robust in tenns of explaining 

variation in community analysis models than the predominant mode! being used 

today. Moreover, this newly developed framework is usefu l in assessing the levels of 

spatial connectivity for each local community within a metacommunity. Finally, this 

spatial network framework is highly flexible and can incorporate different types of 

functions to infer spatial variation and different types of algorithms to infer migration 

levels and dispersal directionality . 

The fmal chapter, Chapter IV, resulted in the development of a new graph-theoretical 

connectivity measure for metacommunities that can be easily generalized to any other 

network system. This new connectivity measure was capable of successfully 

detecting the most important local communities (in terms of connectivity) within a 

metacommunity using species composition sirnilarity /dissirn ilarity. These local 

communities are essential for the survival of species through dispersal and 

subsequent colonization of habitat patches across heterogeneous landscapes. 

Moreover, the extra information gained through the application of this connectivity 

measure could play an irnport(l.nt role in designing conservation plans for 

metacomm unities. 

In conclusion, this thesis showed that network-based approaches can provide a way to 

describe complex biological systems such as metacommunities. They can also 

Improve our understanding of many biological systems as diverse as conflicting 
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evolutionary histories, biogeography and community dynamics . The hope is that this 

thesis and similar works will pave the way for further advances in biological 

networks so that every scientist can have access to an efficient, fast and easy-to-use 

toolbox ofnetwork-based methods . 



ALGORITHM 1 

Inference of hybridization events (Diploid or Polyploid hybridization) - recombination at the 
chromosome levet 

Input: set ofunrooted gene trees r defined on the same set of taxa X 
Output: explicit weighted consensus network Nh on X representing diploid or polyploid hybridization 
events 

begin 

end 

de fine p - eut-off levet 
defme C- set of ali clusters of rand C,., - weighted set of clusters of r 
defme Cb - set of clusters (splits or bipartitions) of backbone tree Tb 

foreach Tofr 
infer ali clusters of T 
add clusters to the set C 

for each cluster c of C 
compute weight W(c) of c using Equations 1, 2 or 3 
add c to Cw 

sort Cw according to the weight magnitude 

whi1e (there exist clusters in Cw compatible with ali clusters in Cb) do 
consider cluster c from C,., with the hi ghest weight W(c) 

if (( W(c) ?:.. p)) && ( c is compatible with ali clusters in Cb)) th en 
add c to cb 

eliminate c from Cw 

N" = Th Il network is first defined as backbone tree with the elus ter set Ch 
among remaining clusters in Cw, identify clusters with the 1 st degree of incompatibility with Nh 

while (there exists a cluster c from Cw such that: 
((W(c)?:.. p )) && (chas the 1 st degree of incompatibility with Nh)) do 
find cluster c from Cw with the highest weight W( c) such that : 

(( W(c)?:.. p )) && (chas the l st degree of incompatibility with Nh)) 
d =ji nd_ direction (reticulation branch re, Nh, r) 
add re, representing cluster c, to N11 with direction d ;md weight W(c) 
eliminate c from Cw 
among remaining clusters in Cw, identify clusters with the 1 st degree of 
incompatibility with Nh 

transform Nh into an explicit weighted hybridization network (see Figure 3) 

Functionfind_direction (reticulation branch re, Nh, r) 

begin 



129 

define Td1 - tree obtained from N;, and induced by reticulation branch re with direction d, (a 
directed reticulation branch corresponds to an SPR move) 
defme T c12 - tree obtained from N;, and induced by reticulation bran ch re with direction d2 
(opposite to d1) 

if (N11 contains sorne other directed reticulation branches, apart from re) then 
obtain Td1 and T c12 by carrying out SPR rn oves correspondi ng to these reticu lation 
branches 

if(L(W(T;) 1 RF(T;,Tdi)) < L(W(T;) 1 RF(T;, Tc12 ))) then 
return d2 

else 
return d, 

Il here RF denotes the Robinson and Foulds distance and W(T;) is the weight oftree T; 
Il the sums are taken over al! trees in r thal include elus/er c 

endfind_direction 



ALGORITHM II 

inference of intragenic recombination or partial horizontal gene trans fer events followed by intragenic 
recombination - two or more genes recombine to create a mosaic gene 

Input: unrooted species phylogenetic tree Ts and multiple sequence alignment MSA (or on/y multiple 
sequence alignment MSA) deflned on the same set of taxa X 
Output: explicit weighted consensus network N, on X representing recombina/ion or partial HGT 
events 

begin 

end. 

defme p - eut-off leve! 
defme C(T)- set of clusters oftree rand Cw(T)- weighted set of clusters of T 
defme SW- set ofMSA fragments examined by sliding window procedure 

if T, is not given then 
infer weight-based consensus Ts from MSA (e.g., using PhyML, RaxML or BIONJ) 

for each MSA fragment, MSAJ, from SW 
in fer a phylogenetic tree T from MSAJ 
compute bootstrap scores of internai branches of T 

infer C(T), set of ali clusters of T 

for each cluster c of C(T) 
compute weight W(c) of c using Equation 1 (based on bootstrap scores) 
add c to C",(T) 

sort Cw(T) according to the weight magnitude 
Nr(SW) = T,/1 network isflrst deflned as species tree 
among remaining clusters in Cw(T), identify clusters with the 1 st degree of incompatibility 
with N,(SW) 

while (there exists a cluster c from C,,,(T) such that: 
((W(c) ~p)) && (chas the lst degree of incompatibility with Nr(SW))) do 
find cluster c from Cw(T) with the highest weight W(c) such that: 

((W(c) ~p)) && (chas the 1 st degree of incompatibility with Nr(SW))) 
d = flnd _direction (reticulation branch re, Nr(SW), T) 
add re, representing cluster c, to Nr(SW) with direction d and weight W(c) 
eliminate c from Cw(I) 
among remaining clusters in Cw(i'), identify clusters with the 1 st degree of 
incompatibility with N,(SW) 

if (recombination network Nr(SW) obtained for the MSA fragment MSAJ is 
identical to that obtained for the previous interval MSAJ-I) then 

merge MSAJ-I and MSAJ as intervals providing the identical solutions 
if(recombination is studied and both parents of recombinant species are identified) theo 

transform Nh into an explicit weighted hybridization network (see Figure 3) 



ALGORITHM III 

Inference of horizontal gene transfer events (the case of a complete gene transfers when the whole 
gene is transferred from donor to host; Input data: Species tree + gene tree or Species tree + MSA) 

Input: unrooted species phylogenetic tree T, and unrooted gene phylogenetic tree Tg (or multiple gene 
sequence alignment MSA) defined on the same set of taxa X 
Output: explicit weighted consensus horizontal gene trans/er network Nhgt on X 

beg in 

end 

de fine p -eut-off leve! 
de fme C(T,)- set of clusters oftree T, and Cw(Tg)- weighted set of clusters of tree Tg 

if (Tg is not given) the n 
infer weight-based consensus Tg from MSA (e.g., using PhyML, RaxML or BIONJ) 
compute bootstrap scores of internai branches (i.e. clusters) of Tg 

for each cluster c of Tg 
compute weight W(c) of c using Equation 1 (based on bootstrap scores) 
add c to Cw(Tg) · 

sort C,,(Tg) according to the weight magnitude 
Nhgt = T,/1 network isfirst defined as backbone tree 
among remaining clusters in Cw(T g), identify clusters with the 1 st degree of 
incompatibility with Nhgt 

while (there exists a cluster c from Cw(Tg) such that: 
((W(c) ?.p)) && (chas the lst degree ofincompatibilitywith N,g,)) do 

find cluster c from Cw(Tg) with the highest weight W(c) such that: 
((W(c) ?.p)) && (chas the lst degree ofincompatibi litywith N,g,)) 
d = find_direction (reticulation branch re, Nhgt, Tg) 
add re, representing cluster c, to Nhgt with direction d and weight W(c) 
eliminate c from Cw.(T g) 
among remaining clusters in Cw(T g), identify clusters with the 1 st degree of 
incompatibility with Nhgt 



----------- ---- --------- --- -- -- ---------- - ··-- --- -----·---- --------------------, 

APPENDIXA 

CALCULA TION OF WEIGHTS FOR THE EDGES OF SPATIAL NETWORK 

In order to calculate the weights fo r ali edges of the spatial network, we need A) the pair-wise 

Euclid ean distances between local communities (sites), B) the spatial tree topo logy, and C) 
the spatial network: 

A) Euclidean geographie matrix 

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 
Site 1 0 0.1 2 0.15 0.56 0.61 0.89 0.99 1.00 
Site 2 0.12 0 0.14 0.4 7 0.52 0.77 0.88 0.88 
Site 3 0.15 0.14 0 0.42 0.47 0.85 0.96 0.95 
Site 4 0.56 0.4 7 0.42 0 0.07 0.67 0.80 0.73 

Site 5 0.61 . 0.52 0.47 0.07 0 0.63 0.75 0.67 
Site 6 0.89 0.77 0.85 0.67 0.63 0 0.12 0.12 
Site 7 0.99 0.88 0.96 0.80 0.75 0.12 0 0. 13 

Site 8 1.00 0.88 1 0.95 0.73 0.67 0.12 0.13 0 

B) The backbone spatial tree. C) The fm al spatial network 

Site 1 Site 1 

Site 2 Site 2 
r----1 Node3 

• • Si te 3 Site 3 
r--- -1 Node4 • • • 

' ' Site 4 
" 

Site 4 
• 

Site 5 Site 5 

Site 6 Site 6 

Site 8 Site 8 
• 1 

'------tNode6 

• 
' Site 7 Site 7 



133 

In order to calculate the edge weights, we need to know the distances and sirnilarities 

between ali the sites and nodes, because edges are the connections between those 

sites and nodes. Here, we only show an example of the Euclidean distance matrix 

obtained from geographie coordinates. The same approach (detailed calculations now 

shown here) is used for the community sirnilarity matrix (Jaccard). 

Calculation of the distance between Node 1 and the other communities: 

d[Site 3, Node 1] = d[Site 3, (Site 1, Site 2)] 

= 1/2 * [d(Site 3, Site 1) + d(Site 3, Site 2)- d(Site 1, Site 2)] 

= 1/2 * [0.15 + 0.14- 0.12] 

= 0.09 

Distances between Node 1 and the other nodes (sites) are calculated in the same way. 

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 Node ! 

Site 1 0 0.12 0.15 0.56 0.61 0.89 0.99 1.00 0 
Site 2 0.12 0 0.14 0.47 0.52 0.77 0.88 0.88 0 

Site 3 0. 15 0.14 0 0.42 0.47 0.85 0.96 0.95 0.09 
Site 4 0.56 0.47 0.42 0 0.07 0.67 0.80 O. 73 0.45 

Site 5 0.61 0.52 0.47 0.07 0 0.63 0.75 0.67 0.50 
Site 6 0.89 0.77 0.85 0.67 0.63 0 0.12 0.12 0.77 

Site 7 0.99 0.88 0.96 0.80 0.75 0.12 0 0.13 0.88 
SiteS 1.00 0.88 0.95 0.73 0.67 0.12 0.13 0 0.88 

. Node 1 0 0 0.09 0.45 0.50 0.77 0.88 0.88 0 



Calculation of the distance between Node 2 and the other communities: 

d[Site 3, Node 2] = d[Site 2, (Site 4, Site 5)] 

= 112 * [d(Site 3, Site 4) + d(Site 3, Site 5) - d(Site 4, Site 5)] 

= 112 * [0.42 + 0.47 - 0.07] 

= 0.41 
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Distance calculations between Node 2 and the. other nodes (sites) follow the same 

rule. For the edge between Node 1 and Node 2, we proceed as follows: 

d[Node 1, Node 2] = d[Node 1, (Site 4, Site 5)] or d[ (Site 1, Site2), Node 2] 

Site 1 

Site 1 0 
Sit.e 2 0.12 
Site 3 0.15 
Site 4 0.56 
Site 5 0. 61 

Site 6 0.89 
Site 7 0.99 
Site 8 1.00 
Node! 0 

Node 2 0.55 

= 112 * [d(Node 1, Site 4) + d(Node 1, Site 5)- d(Site 4, Site 5)] 

= 1/2 * [0.45 + 0.5- 0.07] 

= 0.44 

Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site S Node 1 Node 2 

0.12 0.15 0.56 0.61 0.89 0.99 1.00 0 0.55 
0 0.14 OA7 0.52 0.77 0.88 0.88 0 0.46 

0.14 0 0.42 0.47 0.85 0.96 0.95 0.09 0.41 
0.47 0.42 0 0.07 0.67 0.80 0.73 0.45 0 
0.52 0.47 0.07 0 0.63 0.75 0.67 1 0.50 0 
0.77 0.85 0.67 0.63 0 0.12 0. 12 0.77 0.62 
0.88 0.96 0.80 0.75 0.12 0 0.13 0.88 0.74 
0.88 0.95 0.73 0.67 0.12 0. 13 0 0.88 0.67 

0 0.09 0.45 0.50 0.77 0.88 0.88 0 0.44 

0.46 0.41 0 0 0.62 0.74 0.67 0.44 0 
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Calculation ofthe distance between Node 3 and other communities: 

d[Site 4, Node 3] = d[Site 4, (Site 3, Node 1)] 

= 1/2 * [d(Site 4, Site 3) + d(Site 4, Node 1)- d(Site 3, Node 1)] 

= 1/2 * [0.42 + 0.45- 0.09] 

=0.39 

Distance calculations between Node 3 and the other nodes (sites) follow the same 

rule. For the possible edge between Node 3 and Node 2, we proceed as follows: 

d[Node 3, Node 2] = d[Node 3, (Site 4, Site 5)] or d[ (Node 1, Site2), Node 2] 

Site 1 
Site 1 0 

Siie 2 0.12 
Site 3 0. 15 
Sne 4 0.56 
Site 5 Ml 
Site 6 0.89 
Sne 7 0.99 
Site 8 1.00 
Node! 0 
Node2 0.55 
Node3 0 

= 1/2 * [d(Node 3, Site 4) + d(Node 3, Site 5)- d(Site 4, Site 5)] 

= 1/2 * [0.39 + 0.45 - 0.07] 

= 0.38 

Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Siie 8 Node ! N"ode2 Node3 
0.12 0.15 056 0.6 1 0.89 0.99 LOO 0 0.55 0 

0 0.14 0.47 0.52 077 0.88 0.88 0 0.4<i 0 
0.14 0 0.42 0.47 0.85 0.96 0.95 0.09 0.41 0 
0.47 0.42 0 0.07 0.67 0.80 0.73 0.45 0 0.39 
0.52 0.47 0.07 0 0.63 0.75 0.67 0.50 0 0.45 

0.77 0.85 0.67 0.63 0 0.12 0.11 0.77 0.62 0.77 
0.88 0.96 0.80 O. 75 0.12 0 0.13 0.88 0.74 0.88 

0.88 0.95 0.73 0.67 0.12 0.13 0 0.88 0.67 0.87 

0 0.09 0.45 0.50 0.77 0.88 0.88 0 0.44 0 

0.46 0.41 0 0 0.62 0.74 0.67 0.44 0 0.38 

ù 0 0.39 0.45 0.77 0.88 0.87 0 0.38 0 
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Calculation of the distance between Node 4 and other communities: 

d[Site 6, Node 4] = d[Site 6, (Node 2, Node 3)] 

= 112 * [d(Site 6, Node 2) + d(Site 6, Node 3) - d(Node 2, Node 3)] 

= 1/2 * [0.62 + 0.77 - 0.38] 

= 0.50 

Distance calculat ions between Node 4 and the other nodes (s ites) fo llow the same 

rule. 

Site 1 Site2 Sitd Site 4 Site 5 Site 6 Site 7 Site 8 Node! Node2 Node3 Node4 

Site 1 0 0.12 0.15 0.56 0.61 0.89 0.99 1.00 0 0.55 0 0 

Site 2 0.12 0 0,1-i 0.47 0.52 0.77 0.83 0.83 0 0.46 0 0 

Sitd 0.15 0.14 0 0.42 0.47 0.35 0.96 0.95 0.09 0.41 0 0 

Site 4 0.56 0.47 0.42 0 0.07 0.67 oso 0.73 0.45 0 0.39 0 

Site 5 0.61 0.52 0.47 0.07 0 0.63 0.75 0.67 0.50 0 0.45 0 

Site 6 0.39 0.77 0.85 0.67 0.63 0 0.12 0.12 0.77 0.62 0.77 0.50 

Site 7 0.99 0.88 0,96 0 .80~ 0.12 0 0. 13 0.88 0.74 0.88 0.62 

Site 8 1.00 0.88 0.95 0.73 0.11 0.13 0 0.88 0.67 0.87 0.58 

Node 1 0 0 0.09 0.45 0.50 0.77 0.88 0.88 0 0.44 0 0 

Node2 0.55 0.46 0.41 0 0 0.62 0.74 0.67 0.44 0 0.38 0 

Node3 0 0 0 0.39 0.45 0.77 0.88 0.87 0 0.38 0 0 

Node4 0 0 0 0 0 0.50 0.62 0.58 0 0 0 0 



--------------------- - --- -------------------------------

Calculation of the distance between Node 5 and other communities : 

d[Site 7, Node 5] = d[Site 7, (Site 6, Site 8)) 

= 112 * [d(Site 7, Site 6) + d(Site 7, Site 8)- d(Site 6, Site 8)] 

= 1/2 * [0.12 + 0.13- 0.12) 

= 0.07 
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Distance calculations between Node 5 and the other nodes (sites) follow the same 

rule. For the possible edges between Node 5 and any of Nodes 1, 2, 3 and 4, we 

proceed as follows: 

d[Node 1, Node 5] => d[Node 1, (Site 6, Site 8)] or d[ (Site 1, Site2), Node 5] 

= 112 * [d(Node 1, Site 6) + d(Node 1, Site8)- d(Site 6, Site 8)] 

= 1/2 * [0.77 + 0.88- 0.12) 

= 0.77 

d[Node 2, Node 5) => d[Node 2, (Site 6, Site 8)] or d[ (Site 4, Site 5), Node 5] 

= 112 * [d(Node 2, Site 6) + d(Node 2, Site8)- d(Site 6, Site 8)] 

= 112 * [0 .62 + 0.67- 0.12] 

= 0.58 

d[Node 3, Node 5] => d[Node 3, (Site 6, Site 8)] or d [ (Site 3, Node 1), Node 5] 

= 112 * [d(Node 3, Site 6) + d(Node 3, Site8)- d(Site 6, Site 8)] 

= 112 * [0.77 + 0.87- 0.1 2] 

= 0.76 



d[Node 4, Node 5] => d[Node 4, (Site 6, Site 8)] or d[ (Node 2, Node 3), Node 5] 

= 1/2 * [d(Node 4, Site 6) + d(Node 4, Site8)- d(Site 6, Site 8)] 

= 1/2 * [0.5 + 0.58- 0.12] 

= 0.48 
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Site 1 Sitd Site3 Site 4 Site S Site 6 Site 7 SiteS Node ! 'Node2 Node3 Node4 Node 5 

Site 1 0 0.12 0.15 0.56 0.61 0.89 0.99 1.00 0 0.55 0 0 0.89 
Site 2 0.12 0 0.14 0.4 7 0.52 0.77 O.SS o.ss 0 OA6 0 0 0.77 

Site 3 0.1 5 O.H 0 04 2 0.4 7 0.85 0.96 0.95 0.09 0.41 0 0 0.84 
Siie 4 0.56 0.4 7 0.42 0 0.07 0.67 0.80 0.73 0.45 0 0.39 0 0.64 
SiteS 0.61 0.52 0.47 0.07 0 0.63 0.75 0.67 0.50 0 0.45 0 0.59 
Site 6 0.89 0.71 o.ss 0.67 0.63 0 0.12 0.12 0.71 0.62 0.77 0.50 0 

Site 7 0.99 o.ss 0.96 0.80 0.75 0.12 0 0.13 0.88 0.74 0.88 0.62 0.07 
SiteS LOO 0.88 0.95 0.73 0.67 0.12 0.13 0 0.88 0.67 0.87 0.53 0 .. . 
Node ! 0 0 0.09 0.45 0.50 0.77 0.88 0.88 0 0.44 0 0 0.77 
Node2 0.55 0.46 0.41 0 0 0.62 0.74 0.67 0.44 0 0.38 0 0.58 
Node3 0 0 0 0.39 OA5 0.77 0.88 0.87 0 0.38 0 0 0.76 
Node4 0 0 0 0 0 0.50 0.62 0.58 0 0 0 0 0.48 

Node5 0.89 0.77 0.84 ' 0.64 0.59 0 0.07 0 0.77 0.58 0.76 0.43 0 



Calculation ofthe distance between Node 6 and other communities : 

d[Site 1, Node 6] = d[Site 1, (Site 7, Node 5)] 

= 1/2 * [d(Site 1, Site 7) + d(Site 1, Node 5) - d(Site 7, Node 5)] 

= 1/2 * [0.99 + 0.89 - 0.07] 

= 0.91 
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Distance calculations between Node 6 and the other nades (sites) follow the same 

rule. For the possible edges between Node 6 and any of Nades 1, 2, 3 and 4, we 

follow the same procedure presented for Node 5. 

Sit e 1 Site 2 Site 1 Site ~ Site S Site 6 Site. J SiteS 1 Node 1 1 Nodel Node3 Node 4 Nodé 5 Node6 
Site ! 0 0.12 ().15 0.56 Ml O.S9 0.99 1.00 

~ 
0 0 O.S9 Ml 

Site 2 0.12 0 0.14 0,47 052 o.n o.ss o.ss 0 0 0.71 0.79 
Sitt 3 0.15 O.H 0 o.n 0.47 0.85 0.96 1!.95 0.09 0.41 0 0 O.S4 U 7 
Sit• 4 0.56 0.41 0.42 0 O . .o7 0.67 o.so 0.73 0.45 0 0.39 0 0.64 0.68 

Site S 0.61 0.52 0.47 0.0) 0 0.63 O.JS 0.67 0.50 0 0.45 0 0.59 0.64 
Site6 O.S9 0.11 o.ss 0.61 0.63 0 0.11 0.12 0.77 M 2 0.77 0.50 0 0 
Sitt i O. 0.96 o.so 0.7$ 0.12 0 0.!3 o.ss 0.74 o.ss 0.62 0.01 () 

Sit• S 0,95 0.73 0.61 0.12 0.13 0 0.&8 0.67 0.&1 O.l8 0 0 
0.09 0.4) 0.50 0.77 O.SS o.ss 0 0;# 0 0 0.71 0.79 

0.41 0 0 M;> 0.74 1).67 0.44 0 0.38 0 o.ss 0.63 
0 0.59 0.45 0.77 o.ss OJ7 0 OJS 0 0 0.76 0.19 
() () 0 0.50 0.62 0.58 0 0 0 0 0.:8 0.51 

Node 5 0.$9 U4 ... O.M O.l9 0 0.07 0 0,17 OJ S 0.76 0.48 0 0 
1 Node6 1 0.91 0.]9 1 o.t ! 0.6S 0.64 0 0 0 0.79 Q.63 0.79 !U I 0 0 
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Finally, in order to obtain the weight for edges between an internai node (e.g., Node 

1) and its successor nodes (e.g., Site 1 and Site 2) we divide the distance between the 

successors by 2 and assign the result to each of the edges. For example: 

d(Site 1,Site 2) = 0.12 => W(Node 1-Site 1) = W(Node 1-Site 2) = 0.06 

Site by Edge matrix indicating the edges between each local community and the Root: 

NI-SI 1\I-S2 1\2-S~ li<!-S5 Ni-NI li<"3-S3 >i~-Nl N~-1\3 j N5-S6 j1\~-SS 1 N6-S7 1 N6-N5 R-N~ R-N6 

Sî!t 1 1 0 0 () l 0 0 'Mm 1 (1 

Site :1 0 1 0 0 1 0 0 ) 0 0 1 0 

Site 3 0 0 0 0 0 1 0 l l 0 

Sitt 4 0 0 l 0 0 0 l 0 0 0 l 0 

Sitt ~ 0 0 0 1 0 0 1 0 0 0 0 0 l 0 

~ 
0 0 0 () 0 0 0 0 1 0 0 1 0 1 

0 0 0 0 0 0 0 0 0 l 0 l 0 l 

0 0 0 0 0 0 0 0 0 0 l 0 0 l 
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Site by Edge matrix including the extra branches: 

Nl ·Sl Nl-S2 Nlt 
1

NW 

1

N3r N3-S3 M -N2 N4-N3 Nl-S~ N5.SS N6-S7 N6-N5 R-N~ R-N6 S5-N3 S7.S6 

Sit<! J 0 0 1 l (1 0 0 0 l 0 l 0 

Sit• .2 Q l 0 1 J 0 1 0 J l l l 0 

Slte 3 0 () 0 l 0 J l J 0 0 0 0 1 0 1 0 

Si1•4 0 0 l 0 0 0 1 0 () 0 0 0 1 0 0 0 

Sii< 5 0 0 () 1 () 0 1 0 () 0 0 0 1 0 c 0 

Sii< 6 0 0 0 0 0 0 () 0 J 0 1 J 0 1 0 1 
Site J 0 0 0 0 0 0 0 0 () l 0 J 0 l 0 0 

sa. s 0 0 Q 0 0 0 0 0 0 0 1 0 0 l 0 () 

Vector of distance-based weights for ali edges for our spatial network: 

The values are obtained from the final site (node) by site (node) distance matrix. For 

instance, the value for column N 1-S 1, which is the distance-based weight for the edge 

between Node 1 and Site 1, is the distance between Node 1 and Site 1 in the fmal 

distance matrix. 

Vector of similarity-based weights for ali edges for our spatial network: 

Same approach described above in detail could b us d to calculate a weight vector 

based on the Jaccard similarity instead ofEuclidean distance. 
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Finally, the overall weights will be computed using the following equation applied on 

the two weight vectors above: 

Where ~ is the fmal weight of edge i, W(D)J is the distance-based weight of edge i 

and W(J) i is the Jaccard-based weight of edge i. Therefore, the final weigh vector is : 

Weighted Site by Edge matrix which is the product of the Site by Edge matrix and 

the fmal weight vector. 

1 1 Ni·Sl Kl-S2 Nl.S~ No-Sl !\"3.Nl N3·S3 N~·l\"l 1 N4-NJ N5-S6 1 Nl-SS N6.Si N6S5 R-:>:J R-N6 S5-NJ S7-S6 

l" 
0 0 o.ss O.SJ 0 0.76 1 OJ6 0 1 () () 0 0.65 0 0.42 0 

~ 
O.Si 0 O.SS o.s~ 0 

ffi 6±± 
0 0.9 0.65 0.65 0.42 0 

0 0 o.ss Q O.SJ 6 0 0 0.65 0 O.J2 0 

0 o.ss 0 0 0 Q 0 0 MS 0 0 0 
0 0 O.SS 0 0 O.i6 0 0 0 0 0 065 0 0 0 
0 0 0 0 0 0 0 0.) 0 0.9 0.9 0 0.65 0 0.63 

1 Sit!f 1 0 0 0 0 0 0 0 () 0 0.1 0 0.9 0 0.65 0 0 

0 0 0 0 0 0 0 0 0 0 0.9 0 0 0.65 0 0 

The Euclidean distance matrix, calculated for the weighted Site by Edge matrix, to 

be used in RDA analysis. 

Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 
1.47 1.94 1.49 2.63 2.39 2.29 
1.97 2.34 L9S 2.49 2.00 2.47 

0 1.73 1.21 2.48 2.23 2.11 
1.73 0 1.24 2. 17 1.87 1.73 

1.21 1.24 0 2.1 7 1.87 1.73 
Site 6 2.48 2.1 7 2.17 0 1.48 1.30 
Site 7 2.39 2.00 2.23 1.87 1.87 1.48 0 1.45 
Site 8 2.29 2.47 2.11 1.73 1.73 1.30 1.45 0 



APPENDIXB 

F INDING THE DISPERSAL DIRECTION OF NEWL Y ADDED EDGES. 

The dispersal directionality of newly added edges was determined by minimizing the 

topological differences computed by the Robinson and Foulds method . For example, 

assuming that To in Figure B.l is the backbone spatial tree and e is the newly found edge 

between Sites 3 and 4, then, Tt will be the backbone tree with the new edge, e, added to Site 3 

to represent direction from Site 3 to Site 4. Conversely, T2 will be the backbone tree with e 

added to Site 4 to represent the reverse direction (From Site 4 to Site 3). Then, the Robinson­

Foulds topological distance between To and each of Tt and T2 (RF1 and RF2, respectively) will 

be computed, separately. Finally, the smaller distance will determine the direction of the 

newly found link. For instance, if RF2 is smaller than RF1 , the direction will be from Site 4 to 

Site 3 in the frnal network. In other words, minimizing the topological distance proves that 

the new link is more connected to Site 4 than to Site 3 showing that this migratory route is 

more probably originated from Site 4. Eventually, as shown in Figure B.l , after adding the 

newly-found significant link to the backbone spatial tree, the frnal multi-species spatial 

network (MSSN) is built. 
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Site1 Site2 Site3 Site4 SiteS Slte1 Site2 Site3 Site1 Site2 Site3 Site4 SiteS 

Site 1 Site 1 

'---- Site2 Site 2 

- - --, 
1 

L----- Site 3 Site 3 

1 
1 

--- Site4 Site 4 

'----Site 5 Site 5 

Spatial Tree Spatial Network 

Figure B.l Finding the dispersal direction ofnewly added edges 
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