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RESUME

Notre vision de I’écologie et de I’évolution a beaucoup changé au cours des derniéres décennies
due aux découvertes des mécanismes complexes gouvernant les différents aspects de la vie,
des cellules, aux populations, aux espéces et encore, aux communautés et métacommunautés.
Par contre, ’analyse de ces phénoménes complexes nécessite le développement de nouveaux
concepts de méme que de nouveaux outils informatiques rapides et fiables. Un de ces nouveaux
concepts, la théorie des graphes, gagne rapidement en popularité¢ dans les domaines de
I’écologie et de I’évolution grice a des avancées théoriques et informatiques. L’objectif
principal de ce doctorat est de développer un cadre d’étude basé sur la théorie des graphes afin
de résoudre des problémes possédant des caractéristiques de réseaux en écologie et en évolution
(p. ex., évolution réticulée ou connectivité spatiale entre des communautés). Dans cette these,
quatre problémes différents sont abordés. Bien que les entités biologiques différent entre les
problémes (variant des especes aux communautés), ceux-ci peuvent tous étre approchés par
des approches de réseaux similaires. Ces quatre problémes (un par chapitre) représentent
chacun une contribution originale dans I’application méthodologique des réseaux : 1)
construire des réseaux phylogénétiques consensus a partir de données contenant des signaux
évolutifs contradictoires ; 2) retracer I’historique de dispersion des espéces ; 3) explorer
I’hétérogénéité spatiale des metacommunautés ; et 4) mesurer la connectivité dans des réseaux
de métacommunautés. Les résultats obtenus de I’application de ces méthodologies sur des
données empiriques et/ou simulées démontrent que la complexité inhérente a plusieurs
problémes en écologie et en évolution peut €tre explorée et résolue 4 I’aide d’approches basées
sur la théorie des graphes. Ainsi, la théorie des graphes, un outil flexible et robuste pour
I’analyse de problémes complexes, a un grand potentiel pour améliorer notre compréhension

des systemes en écologie et en évolution.




ABSTRACT

Our vision of ecology and evolutionary biology has changed significantly during the past few
decades due to the discovery of a plethora of complex mechanisms governing the various
aspects of life, from cells to populations to species to even more complex ecological entities
(communities and metacommunities). However, the analysis and exploration of such complex
problems needs new concepts, as well as reliable as faster computational tools. One of the
relatively new and increasingly popular concepts in ecological and evolutionary biology
studies is graph theory owing to the recent advances in computer technology. The main
objective of this doctoral thesis is to develop frameworks based on graph theory to tackle
complex ecological and evolutionary biology problems involving network characteristics (e.g.,
reticulated evolution, spatial connectivity across ecological communities). In this thesis, I have
chosen four different problems involving ecological and evolutionary networks. The biological
entities are different (from species to ecological communities) but they can be all tackled by
related network approaches. These problems were tackled by four chapters that represent each
novel network applications: 1) building consensus phylogenetic networks from datasets
containing conflicting evolutionary signals, 2) retracing dispersal history of species, 3)
exploring the spatial heterogeneity of metacommunities, and 4) measuring the connectivity of
metacommunity networks. The results obtained from the application of these methodologies
on real and/or simulated datasets showed that the inherent complexity of many ecological and
evolutionary biology problems can be successfully explored, explained and resolved by using
graph-theoretical approaches. Network theory has the potential to significantly improve our
understanding of ecological systems and evolution because it is a flexible and robust tool to

tackle most problems in these fields.




INTRODUCTION

0.1 Background

One of the outstanding characteristics of biological systems (ecological and
evolutionary) is that they are complex in both structure and functions due to their
dynamic nature, compositional variability and their ability to self-reproduce and self-
organize. In the ecological context, one of the main factors contributing to this
biological complexity is species interacting with one another and with their
surrounding environment. For example, we have just started to understand the
relationship between humans and their intestinal bacterial and archaeal flora, which
involves many interactions and regulations between the host and symbiont genes (Gill
et al., 2006). On the other hand, the recent advances in molecular biology and high-
throughput analyses have dramatically changed our vision of evolutionary biology.
There are numerous mechanisms contributing to the complexity of molecular biology,
such as alternative splicing, post-translational modifications and the presence of micro
RNAs and interference RNAs, just to name a few examples. These mechanisms are
also likely to play an important role in molecular evolution, thus contributing to its

complexity.

The interactions between the components of complex biological systems can be well
represented as networks. For example, metabolic networks of biochemical reactions
(Karp et al., 2005; Ravasz et al., 2002); protein-protein interaction networks of the
physical interactions between proteins (Giot ef al, 2003; Li ef al, 2004); and the
transcriptional (or gene) regulatory networks of the regulatory interactions between
various genes (Thmels er al, 2002; Salgado ef al., 2006; Shen-Orr ef al., 2002) are
among the most well-known biological networks. The above-mentioned biological

networks have numerous potential applications within the fields of Biology and




Medicine, such as determining the evolution and functions of the unknown proteins or
genes, identifying potential drug targets, unravelling complex biochemical regulatory .
pathways, and understanding the range and mechanisms of infectious diseases

outbreaks (Eubank et al., 2004; Jeong et al,, 2003; Samanta and Liang, 2003).

In fact, networks exist at all scales of biological organization, from single cells to large
metacommunities and, traditionally, graph theory is the first choice and the most
capable tool to investigate such complex networks. Interestingly, many initial efforts
to model biological systems involved the use of random graphs (Barabési and Albert,
1999). However, it is too simplistic to think of real networks (i.e., as opposed to
artificial or anthropogenic networks such as social networks on the internet) behind
such diverse complex systems as random graphs. If these biological networks are not
random, then we need to develop tools, measures and frameworks to study and analyze
their organization, characteristics and behaviour. Fortunately, the recent technological
advances in computer sciences have led to a dramatic growth in the use of graph theory

to investigate biological networks.

In this thesis, however, the focus is on two particular types of biological networks:
ecological networks and phylogenetic networks. The main goal here is to take
advantage of the exceptional potentials of graph theory and computer science as well
as available data in order to design and develop novel efficient computational tools and
frameworks for tackling some of the complex issues in the fields of ecology and
evolutionary biology. Moreover, by using problems from these two fields, one is able
to observe how different problems often converge to somewhat similar solutions.
Based on these premises, four different ecological and evolutionary biology questions
have been chosen to be addressed using graph-theoretical approaches. These problems
included 1) resolving gene tree discordancy and detecting unorthodox evolutionary
pathways (e.g., horizontal gene transfers, recombination events); 2) retracing species

dispersal history; 3) detecting spatial variability in metacommunities; and 4) estimating




the connectivity of biological networks. In common, they share the ‘transfer’ as a
common theme; the transfer of genes among species and the transfer of species among
large biogeographic zones and small local ecological communities. The reason for
selecting these four seemingly unrelated problems was to showcase the potential and
the versatility of network.theory in solving complex biological issues across the fields
of'ecology and evolutionary biology. With the rise of network applications in medicine,
social sciences and computer sciences, among others, it seems inevitable for ecologists
and evolutionary biologists to take network thinking more seriously (May, 2006).
Following the advances in other fields and mainly to keep pace with advances in life
sciences and information technologies, we must be on track to design and develop
similar tools to tackle the large-scale data problems we face now. In order to
understand, organize, model and study large-scale data we need tools far more powerful
and complex than classic methods. Moreover, because different ecological and
evolutionary problems often require similar computational solutions, my attempt here
is also to demonstrate the flexibility of the network based approaches developed in this
thesis. This flexibility is particularly useful in the age of data revolution where having

access to multi-purpose tools will save us time and money.

Networks are excellent tools to represent many features and processes of ecological
and evolutionary systems. Specifically, their incomparable value becomes apparent in
cases where the problem involves large datasets in order to reveal patterns behind small
and large-scale ecological and evolutionary processes (Proulx et al., 2005). Moreover,
the need to move away from a purely reductionist approach in favour of an integrative,
systems-oriented approach has beén recently promoted by many researchers (see
Mason and Verwoerd, 2007 for a review). Since all biological systems are, indeed, sets
of interacting components, the application of network theory becomes a natural way to
tackle scientific questions within such complex systems. Therefore, this thesis is aimed
at contributing to the graph-theoretical toolbox of ecologists and evolutionary

‘biologists and promoting the application of network theory (i.e., network thinking) in




these fields.

In the following sections, brief descriptions of ecological and phylogenetic networks
are given. In addition, some of the foundational concepts underlying the four chapters
of the thesis are presented. Finally, at the end of the Introduction section an outline of

the main four chapters of this thesis is provided.

0.2 Phylogenetic networks

One of the main goals of evolutionary biology is to reconstmét phylogenetic trees
which accurately represent the evolutionary history of a group of species. In
phylogenetic trees, each leaf represents an existing species, while the internal vertices
correspond to hypothetical ancestors, and edges (also called branches) show the

relationships between ancestors and their descendants.

Vast progress in the field of molecular biology in the last few decades has profoundly
changed the nature of the datasets used in phylogenetic analysis. Initially, the only
available data for building evolutionary trees were morphological characters, but
nowadays, biological sequence data (nucleotide or amino acid sequences) are mostly
used to infer the history of life. These data sets are produced with the aid of efficient
DNA and protein sequencing technologies and the comprehensive computer-based
analysis of the results. These data are maintained in huge freely available and publicly
accessible databases such as GenBank and EMBL among others. Given that the amount
of data available in these databases are growing exponentially, it is vital to analyze
these data in a fast, efficient, and accurate manner in order to make use of their results
to tackle both theoretical and applied questions in evolutionary biology and ecological

and societal contemporary problems.

<




In phylogehetics, this means that algorithms and applications have to be developed
with the aim of analyzing and modelling the diverse and complex processes that have
occurred during the evolution of any given set of current species. So far, many efforts
have been made to develop efficient methods in order to reconstruct phylogenies that
best represent the evolutionary history for different sets of taxa. Since evolution just
occurred once in the past, there is no direct observational or experimental study that
may be used in phylogenetic reconstruction. Moreover, the fossil record is often
incomplete and ambiguous. Therefore, evolutionary biologists have to mostly rely
upon mathematical and statistical models for analyzing the sequence data of existing
species in order to infer phylogenetic trees and understand pést events that led to

speciation and other evolutionary patterns (Wiens, 2009).

Essentially, there are three types of methods for phylogenetic tree reconstruction: (1)
distance-based methods like UPGMA (unweighted pair group method with arithmetic
mean).and neighbor-joining, (2) parsimony-based methods like maximum parsimony,
and (3) statistical-based methods like maximum likelihood and the closely related
Bayesian method. A detailed description of phylogeny reconstruction methods can be

found in Felsenstein (2004).

Phylogenetic networks are a generalization of evolutionary trees that make possible the
simultaneous visualization of several conflicting or alternating histories of life. In a

phylogenetic network, each conflicting or alternative history event is usually
repfesented as an extra branch (or a link between two species or clades involved in the
event) added to the phylogenetic tree. Thus, these extra branches or links (also called
reticulation events) convert a simple phylogenetic tree, which at best can only
represents one dominant hypothesis, to a phylogenetic network which can represent
multiple conflicting or alternative historical hypotheses. Indeed, there are several types
of events that lead to histories that are not adequately modelled by a single tree (Huson

and Bryant, 2006; Legendre and Makarenkov, 2002): (1) horizontal gene transfer in




bacterial evolution; (2) hybridization between species, including allopolyploidy in
plants; (3) micro-evolution of local populations within a species, involving genetic
differentiation of allopatric populations, gene exchange through migration, or both; (4)
homoplasy, the portion of phylogenetic similarity resulting from evolutionary
convergence (e.g., parallel evolution and reversals), which can be represented by
reticulation branches added to a phylogenetic tree; and non-phylogenetic situations,
such as (5) host—parasite relationships involving host transfer and (6) vicariance and

dispersal biogeography.

Even if the relationships between species are tree-like, phenomena like sampling error,
parallel evolution, or model heterogeneity can also generate difficulties in representing
evolution by a single tree (Gascuel, 2005). Generally speaking, there exist two
fundamental types of phylogenetic networks, namely: (1) explicit networks that
provide a concrete scenario of reticulate evolution and (2) implicit networks that are
intended to represent incompatible signals in a data set (see Figure 3 in Huson and
Bryant, 2006). An explicit network is generally depicted as a phylogenetic tree with
additional edges. The internal nodes in such a network represent ancestral species, and
nodes with more than two parents correspond to reticulate events such as hybridization
or recombination. Explicit networks model non-tree-like evolution and their purpose is
to point out which lineages have undergone reticulation events. Implicit approaches,
on the other hand, are often based on split networks which represent all splits contained
in a set of gene trees. Each parallelogram of the resulting network corresponds to two
incompatible splits. To be able to accommodate incompatible splits, it is often
necessary that a split network contains nodes that do not represent ancestral species.
Thus, split networks provide only an “implicit” representation of evolutionary history.

Phylogenetic networks will be discussed in detail in Chapters I and II.

0.3 Ecological networks




In ecology, the components (i.e., biotic and abiotic objects or entities) that construct a
system show varying degrees of interactions. These interactions can be represented as
an ecological network in which the components are indicated as nodes (i.e., vertices in
graph terminology) and the interactions are depicted as links between the nodes (i.e.,
edges in graph terminology). These interactions, among other types, can be trophic,
competitive, symbiotic, social and geographic connectivity. Ecological networks are
very useful models to describe, analyze and compare the structure of ecological
systems. For example, they are often used to investigate the effects of network structure
(i.e., topology) on the properties of ecological systems such as their stability (Dunne et
al., 2002).

Traditionally, ecological networks were first developed and used to model trophic
relationships within food webs (Lindeman, 1942; Odum, 1965). Food webs are
important components of every ecological system due to the feeding is essential for
organisms’ survival. In food webs organisms are connected directly through feeding.
Networks have been used to model food webs, explore their stability and determine if
certain network properties result in more stable networks (MacArthur, 1955). Given
that the local extinction of a species within a given ecological system may result in an
unstable food web, network analysis have been used to determine how removal of

species do influence food webs as a whole (Dunne et al., 2002).

Another type of ecological network is species interaction networks which consist of
pairwise interactions between individuals of one or more species. Network analysis of
species interactions allows quantifying the associations between individuals and
inferring details about the network as a whole. Moreover, the power and flexibility of
network approaches allow for the study of various types of interactions (e.g., social,
competitive, predatory, cooperative and mutualistic interactions) using the same

general approach. As such, ecological networks are useful in analyzing numerous



complex interactions within most ecological systems (Krause et al., 2009; Ryder et al.,

2008).

Additional applications of ecological networks include exploring complex interactions
at the multi-species levels in terms of both species dispersion and coevolution of pairs
of species. In this thesis, network models were developed to study metacommunities,
which are particularly complex given their relative large geographic extent, their
heterogeneous landscapes and their multi-species composition.  Since
metacommunities involve large scale problems, there is no direct observational or
experimental study that may be used to understand some of the processes (e.g.,
dispersal history) underlying their structure. These applications are further discussed

in Chapters II, [Il and V.

04 Biogeography

Historical biogeography studies show how ecological processes that happen over long
periods of time influence the distributional patterns of living organisms (Cox and
Moore, 1993). Conversely, studying the same processes acting in short periods of time
is called ecological biogeography. Biogeography as a whole is a multidisciplinary
science with a long history. Indeed, the study of plant and animal distributions has a

history as long as biology itself.

It is accepted that the scientific theory of biogeography likely grew out of the work of
Alfred Russel Wallace (1823-1913) and other early evolutionary scientists. Wallace
studied the distribution of flora and fauna of the Malay Archipelago in the 19th century.
One of the interesting subjects in historical biogeography has been the study of the
effects of Pleistocene glaciations on the distribution of living organisms. However,

some authors place this subject between ecological and historical biogeography,




because the processes involved acted for only several thousand years which is not

considered a long period of time in geography (Myers and Giller, 1988).

The aim of biogeography is to reveal where species live, why, and at what abundances
through the study of the distribution of biodiversity over space and time (Martiny et
al., 2006). One of the most impressive features of our planet is the sheer diversity of
organisms it contains, and one of the main problems facing scientists is how to explain
this diversity, and the reasons for the varying patterns of occurrence of different species
over the surface of the planet or in particular large landscapes. Moreover, biogeography
is about seeking general rules that can account for distributional patterns and provide a
general framework to generate insights that can subsequently be used for predictions

about the consequences of upcoming phenomena.

Patterns of species distributions can be usually explained through a combination of
historical factors such as speciation, extinction, continental drift, glaciation (and
associated variations in sea level, river routes, among other factors), and river capture,
in combination with the area and isolation of landmasses (geographic constraints) and
available resources. All these factors are the results of the interaction between two great
natural phenomena: evolution and plate tectonics. Although, nowadays, biogeography
is'an independent discipline with a core of accepted knowledge and methodological
principles, it is also an adjunct whose status is contingent on other areas of study such
as ecology, evolution, taxonomy, molecular systematics, geography, geology, and
palaeontology. For instance, phylogenetic networks in which the relations between
regions within a landscape are represented by branches could be used to explore the
hypothesis that multiple dispersal routes were used by a particular species of interest
to migrate from one region to another. The application of network theory on

biogeography is the focus of Chapter II.
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0.5 Metacommunity

In ecology, a community is a group of populations of two or more different species
occupying the same geographical area. Community ecology is primarily concerned
with patterns of species distributions, abundance and interactions across different
spatial and temporal scales. As an extension, an ecological metacommunity is consisted

of a set of local interacting communities that are interconnected through dispersal

(Leibold et al., 2004).

Metacommunities have been defined and studied based on four major perspectives: 1)
patch dynamics; 2) species sorting; 3) source—sink dynamics (or mass effect); and 4)
neutral model. These four theoretical frameworks were developed in order to explore
specific processes underlying community patterns. Patch dynamics models are mainly
used to describe species composition among multiple habitat patches, such as islands.
The focus in patch dynamics is on the possible coexistence due to competition-
dispersal, competition-colonization or dispersal-fecundity trade-offs. Conversely,
species sorting models try to link the variation in abundance and composition within
the metacommunity to similar and differential responses of the species to
environmental heterogeneity. Source-sink models, on the other hand, are based on the
assumption that dispersal and environmental heterogeneity interact to determine local
and regional abundance and composition. Finally, in the neutral framework species are
considered essentially equivalent in their competitive and dispersal abilities. Therefore,
stochastic demographic processes and dispersal limitation are the primary factors
determining the local and regional composition and abundance (Leibold et al., 2004).
Spatial heterogeneity and connectivity of metacommunities will be further investigated

using networks in Chapter III and Chapter IV, respectively.
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0.6 Thesis outline
This thesis is comprised of the following four chapters:

Chapter I Inferring explicit weighted consensus networks to represent
alternative evolutionary histories

Chapter II Using directed phylogenetic networks to retrace species
dispersal history

Chapter IIl  Spatial networks for inferring dispersal in ecological
communities

Chapter [V A novel connectivity measure for metacommunity networks

Chapter I emphasizes the application of networks in evolutionary biology and
phylogenetics. It is comprised of a novel weighted explicit method to construct
consensus phylogenetic networks. Moreover, this method is capable of detecting
different reticulation events such complete horizontal gene transfers, partial horizontal
gene transfers, recombination and hybridizations. This method was also successfully
tested and assessed by both empirical and simulated datasets. Chapter II is primarily
concerned with the application of networks in biogeography. Specifically, it includes a
new network metﬁodology that is developed to retrace species dispersal history. This
new method was successfully applied on an empirical dataset in order to reconstruct
the historical dispersal events that occurred when fish species left southern refugia to
recolonize the northern Ontario province after the last glaciation period. Chapter III
focuses on the use of network theory to investigate the spatial heterogeneity within
large multi-species ecological systems. In this chapter, a novel graph-theoretical
method was developed to capture and explore the spatial variation within
metacommunities. This new method was successfully tested on both empirical and
simulated datasets. Finally, Chapter IV investigates the application of graph theory in

detecting connectivity in metacommunities. In this chapter, a new connectivity
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measure was developed to be specially applied on metacommunities. This connectivity

measure was successfully tested on simulated datasets.




CHAPTER 1

INFERRING EXPLICIT WEIGHTED CONSENSUS NETWORKS TO
REPRESENT ALTERNATIVE EVOLUTIONARY HISTORIES

Mehdi Layeghifard, Pedro R. Peres-Neto and Vladimir Makarenkov
Published in BMC Evolutionary Biology.

1.1  Summary

The advent of molecular biology techniques and constant increase in availability of
genetic material have triggered the development of many phylogenetic tree inference
methods. However, several reticulate evolution processes, such as horizontal gene
transfer and hybridization, have been shown to blur the species evolutionary history by
causing discordance among phylogenies inferred from different genes. To tackle this
problem, we hereby describe a new method for inferring and representing alternative
(reticulate) evolutionary histories of species as an explicit weighted consensus network
which can be constructed from a collection of gene trees with or without prior
knowledge of the species phylogeny. We provide a way of building a weighted
phylogenetic network for each of the following reticulation mechanisms: diploid
hybridization, intragenic recombination and complete or partial horizontal gene
transfer. We successfully tested our method on some synthetic and real datasets to infer
the above-mentioned evolutionary events which may have influenced the evolution of
many species. Our weighted consensus network inference method allows one to infer,
visualize and validate statistically major conflicting signals induced by the mechanisms

of reticulate evolution. The results provided by the new method can be used to represent




the inferred conflicting signals by means of explicit and easy-to-interpret phylogenetic

networks.

1.2 Introduction

Molecular data have played an instrumental, and usually indispensable, role in many
phylogenetic and evolutionary studies in the recent decades. Their increasing
availability is due to outstanding advances in the development of fast, efficient and
affordable sequencing technologies (Pettersson et al., 2009). Although this growth has
triggered the advancements of theoretical informatics aspects of phylogenetics and
evolutionary biology via the development of new algorithms, statistical models and
software, fast and effective analytical methods have yet to be designed to take
advantage of this huge surplus of data. For instance, the field of phylogenetics still
faces some key analytical challenges stemming from reticulate evolution. They
include: 1) horizontal gene transfer (e.g., in bacterial or viral evolution); 2)
hybridization among species (e.g., allopolyploidy in plants); 3) genetic differentiation
of allopatric populations and gene exchange through migration; 4) homoplasy (i.e.,
parallel evolution and reversals); 5) incomplete lineage sorting; and 6) recombination
between genes (Huson and Bryant, 2006; Huson et al, 2010; Legendre and
Makarenkov, 2002; Posada and Crandall, 2001). All these processes may lead to the
incongruity among gene trees (Giribet ef al., 2001; Grechko, 2013; Mason-Gamer and
Kellogg, 1996; Rokas et al., 2003; Zou and Ge, 2008) inferred from the data affected
by reticulate evolutionary mechanisms. Implicit or explicit phylogenetic networks
should be used to represent these complex phenomena when the gene tree incongruity
is observed (Huson ef al., 2010; Makarenkov and Legendre, 2004). Implicit networks
are better suited for a general representation of conflicting evolutionary signals present

in the data, whereas explicit networks are used for depicting the precise reticulation




events, including their directionality and the species involved. The inference and

validation of explicit phylogenetic networks is the main goal of the current study.

Another key factor that contributes to the incompatibilify among gene trees is stochastic
errors resulting from analytical features such as choice of optimality criterion, taxon
sampling and sequence evolution model (Graybeal, 1998; Huelsenbeck, 1995; Yang et
al,, 1994). These complications not only makes it difficult for researchers to find
reliable estimates of the true species phylogenies, but also obstruct such fields as
comparative biology and community phylogenetics which rely on phylogenetic trees
in their analyses (Harvey and Pagel, 199.1; Peres-Neto, 2012; Webb, 2002).

Evidence from many studies conducted on different groups of species, from fruit flies
to hominids (Burbrink and Pyron, 2011; Carstens and Knowles, 2007; Ebersberger et
al., 2007; Grechko, 2013; Jennings and Edwards, 2005; Pollard et al., 2006; Sanchez-
Gracia and Castresana, 2012; Syring et al., 2007, Takahashi et al., 2001), have shown
that gene tree discordance is a widespread phenomenon. These studies mostly
concluded that rarely a predominate or consistent single-gene-based phylogeny could
be perceived or reconstructed for a moderate to large set of species, regardless of the
type of phylogenetic data at hand. Among the traditional tree-like techniques developed
to solve the gene tree incongruence problem there are two widely used approachés of
gene concatenation and consensus tree reconstruction, both of which result in the
inference of a single phylogenetic tree as the most probable representation of the

evolutionary history of species.

Although, there have been successful cases of using the concatenation approach to
elucidate the ancestral relationships among certain groups of species (Baldauf et al.,
2000; Chen and Li, 2001; Moreira et al., 2000; Soltis et al., 1999), multi-gene datasets
very rarely converge to the same phylogeny, more often providing results which are

contradictory or inconsistent with well-known and highly reliable species tree (Giribet




et al.,2001; Hwang ef al., 2001; Mossel and Vigoda, 2005; Naylor and Brown, 1998).
These statistical inconsistencies in estimating phylogenetic trees using concatenated
datasets have been confirmed by simulation studies (Kolaczkowski and Thornton,

2004; Kubatko and Degnan, 2007).

The main idea behind traditional consensus tree reconstruction methods is that each of
the phylogenetic trees from a given collection of trees should contribute to a consensus
tree according to the presence of its clusters. Among the most known and widely used
consensus tree reconstruction methods are the majority rule consensus (Margush and
McMorris, 1981) and Nelson (often called Nelson-Page) consensus approaches
(Nelson, 1979; Page, 1989). The traditional strict majority rule consensus tree includes
all the clusters that occur in more than 50% of the considered trees. The major pitfall
of this method is that for a set of trees with a poor overall bootstrap support, the 50%
cluster occurrence constraint leads to a very weakly resolved phylogeny. On the other
hand, in the extended majority rule consensus tree approach, a strict consensus tree is
first constructed and then the remaining compatible clusters are added to it following
their overall frequency in the considered tree collection. For the collections of trees
with a poor overall bootstrap support, the constraint of 50% used when inferring the
majority rule and extended majority rule consensus trees can be often inconvenient.
Many existing software allow for clusters that are present in less than 50% of the trees.
They work downwards in the frequency of the cluster occurrences as long as the new
clusters aid to resolve the consensus tree. The extended majority rule consensus method
often provides solutions similar to those of the Nelson consensus method, although not
necessarily identical to them (Nelson, 1979; Page, 1989). The Nelson consensus
method, first described in (Nelson, 1979) and then generalized in (Page, 1989), relies
on the graph theory techniques to find maximum cliques of mutually compatible
clusters. Its major drawback is that these cliques do not always contain enough

compatible clusters to constitute a fully resolved phylogenetic tree (Bryant, 2003).




Moreover, the problem of finding a maximum clique of compatible clusters has been

shown to be NP-hard (Abello et al., 1999).

Phylogenetic networks should be used instead of consensus species trees or species
trees inferred from concatenated sequences whenever reticulate evolutionary processes
are studied (Huson et al., 2010; Legendre and Makarenkov, 2002; Makarenkov and
Legendre, 2004). Here, we recall some of the existing phylogenetic network building
methods and software based on the cluster support. In an early attempt to build
consensus phylogenetic networks, Holland et al (2004) developed an implicit
consensus network model based on the median network method (Bandelt et al., 1999)
to visualize incompatibilities encompassed in the given collection of trees. This method
proceeds first by ranking all the splits according to their frequency and then builds a
system of compatible splits by adding those splits to the network, one at a time,
following their frequency ranking. Holland and colleagues (Holland et al., 2006)
further optimized their original greedy consensus network method to incorporate
weights from individual trees into the network inference process. Having the length of
each split (i.e., branch length of the split branches) in different trees as well as the
weights associated with those trees, this method computes an average length for each
~ split and finally selects compatible splits based on their weights to build a consensus

network. -

In another attempt, Huson (1998) and then Huson and Bryant (2006) have developed a
computer program called SplitsTree which reconstructs an unrooted splits graph from
a collection of phylogenetic trees through selecting all the splits that are present in more
than a fixed percentage of all the trees (Holland e al., 2004). However this program
provides as result only implicit network structures, the inferred extra links do not
usually directly correspond to the tree lineages and the number of nodes and edges of
the resulting network can grow exponentially with the number of splits. To address

these disadvantages, Huson and Rupp (2008) proposed the cluster network approach to




build a phylogenetic network from a collection of gene trees using a modified tree
popping algorithm which they called network popping algorithm. To estimate the
support of any reticulation edge, the average support of that edge (computed over all
trees) is divided by the average support of the alternative reticulation edges located at
the same position and weighted by the average support of all other tree edges (Huson
and Rupp, 2008; Huson et al, 2010). The latter authors stated however that no
association between clusters and reticulation edges is provided by this method. For
instance, the obtained cluster support was not shpwn in their network representations
(Huson and Rupp, 2008). On the other hand, Abby et al. (2010) proposed a horizontal
gene transfer inference method called Prunier. Prunier needs a species tree and a gene
tree as a reference and does not treat multiple gene trees. Prunier relies on a ranking of
branches that are common to the species and gene trees based on the amount of
conflicts that is reduced when the branch is removed. This amount of conflicts is a
function that depends on the statistical support of the internal branches of the gene tree.
For a detailed review of the existing phylogenetic network reconstruction methods the
reader is referred to (Huson et al, 2010). Note that the results yielded by most of the
existing consensus network building methods are implicit and generally not easy to

interpret.

In this study, we present a new algorithm for the inference of explicit weighted
consensus networks from a collection of trees (e.g., multiple single-gene phylogenies),
with or without prior knowledge of the species phylogeny. Such networks are capable
of representing the main historical pattern of the species evolution (i.e., associated with
the clusters present in the species tree) as well as the alternative evolutionary routes
characterizing the species and genes under consideration. The main advantage of our
method is that it allows for visualizing the species evolutionary relationships in a very
clear and easy-to-interpret manner. Qur algorithm takes advantage of the weights (e.g.,
least-square scores, posterior probabilities, maximum likelihood scores or p-values)

assigned to the gene trees as well as the weights associated with the tree clusters (e.g.,




cluster's bootstrap score or posterior probability) to infer the species dominant and
alternative evolutionary histories. If a species tree is provided in addition to the
collection of gene trees, our algorithm considers it as the dominant evolutionary history
(i.e., backbone structure) and uses the collection of gene trees to infer the most
significant reticulation events. If only a collection of gene trees is given, the new
algoﬁthm first builds a weighted consensus tree as the main evolutionary pattern and

then infers the most significant alternative events.

The rest of the article is organized as follows. In the Methods section, a description of
the basic concepts of phylogenetic networks and a detailed presentation of our new
algorithm are given, followed by the description of the simulation protocol and the
three considered real datasets. In the Results section, the results and performances of
the new algorithm obtained for both simulated and real data are reported. They are then

discussed in detail in the final section of the article.

1.3 Methods
1.3.1 Basic concepts
1.3.1.1 Graph

A graph G (¥, E) consists of a collection of vertices (V) which are connected by a

collection of edges (E) in a pairwise manner. A path in a graph is a sequence of at least

two vertices (v1, v2, ..., vi) such that, for all i €{1, 2, ..., k-1}, there exists an edge {vi,

vi+1} in E. A cycle in a graph is a path whose first and last vertices are the same, while

all other edges and vertices are pairwise distinct.




1.3.1.2 Phylogenetic tree

A phylogenetic tree (T) is an acyclic connected graph whose leaves (i.e., vertices of
degree one) are labelled according to the given set of taxa (i.e., species). Phylogenetic
trees can be either bifurcating (i.e., all the internal nodes have an indegree of one and
an outdegree of two) or multifurcating (i.e., internal nodes can have an outdegree of
three and more). Phylogenetic trees can be rooted or unrooted, where the root is a node

representing a common ancestor of all the species involved in the analysis.

1.3.1.3 Phylogenetic network

A phylogenetic network is a connected graph used either to visualize evolutionary
relationships between species or to display conflicting evolutionary signals without
such limitations as being acyclic or having a fixed indegree or outdegree of its nodes.
Phylogenetic networks can be implicit or explicit: implicit networks such as split
graphs are used to represent conflicting and ambiguous signals in a dataset using
parallel sets of edges, rather than single branches. These networks often contain nodes
that are not representing any ancestral species, hence providing only an implicit
representation of evolutionary histories (Huson and Bryant, 2006). In explicit
networks, in contrast, the internal nodes represent ancestral species and nodes with
more than two parents correspond to reticulation events such as hybridization,
recombination or horizontal gene transfer. Such networks provide an explicit
representation of evolutionary history of species (see Huson et al, 2010 for more
details). Here, we will first define some basic principles of the weighted consensus tree

reconstruction prior to expanding them to phylogenetic networks inferring.



1.3.1.4 Bootstrap-based majority rule consensus tree

The main idea of our approach is that each phylogenetic tree from a given collection
of trees should contribute to a consensus tree not simply by the presence, but also by
the quality of its clusters (i.e., bipartitions or splits corresponding to the internal tree
branches). The quality of a cluster within a given collection of trees can be defined as
the sum of bootstrap scores, taken over all the trees in this collection, of the internal
branches associated with this cluster. The traditional majority rule consensus tree
includes only the clusters that exist in more than 50% of the considered trees (Margush
and McMorris, 1981). Note that any other percentage between 50% and 100% can be
also specified in most of the existing phylogenetic packages (e.g., in PHYLIP;
Felsenstein, 1989). The bootstrap-based majority rule consensus tree will include any
cluster whose average bootstrap support, i.e., total sum of bootstrap scofes, computed
over all the trees in the collection, divided by the number of trees in this collection, is
greater than 50% (e.g., tree Thm in Figure 1.1 is the bootstrap-based majority rule -
consensus tree, as well as the strict majority rule consensus tree, of trees 71, 12 and T3).
It is easy to prove that all the clusters satisfying such a rule will be pairwise compatible.
For this, it will be sufficient to substitute each tree of the original tree collection by the
set of its bootstrap replicates (i.e., replicated trees built when carrying out the bootstrap
procedure) and then apply the traditional strict majority rule method on this extended -
set of replicated trees. All the 'clusters appearing in more than 50% of the replicated

trees will be mutually compatible.
1.3.1.5 Bootstrap-based extended majority rule consensus tree
Similar to the traditional extended majority rule method, as implemented in the

CONSENS program of the PHYLIP package (Felsenstein, 1989), the bootstrap-based

extended majority rule method is a two-stage procedure. First, any cluster whose




average bootstrap score is greater than 50% will be included in the consensus tree.
Then, the method will consider the remaining clusters following the order of their total
sums of bootstrap scores, computed over all the trees in the collection, and gradually
add to the consensus tree those that are compatible with the current consensus tree until
the tree is fully resolved or no more compatible clusters remains. For instance, tree Tsem
in Figure 1.1 is the extended bootstrap-based majority rule consensus tree of trees 71,
1> and T3.

1.3.1.6 Bootstrap-based Nelson consensus tree

We also consider the following extension of the traditional Nelson method. To build -
the bootstrap-based Nelson consensus tree each clique will be assigned a score equal
to the sum of scores of clusters included in it. The score of each cluster is defined as a
sum of bootstrap scores associated with this cluster, computed over the given collection
of trees. Unlike the method described by Page (1989), where only the replicated
clusters can contribute to the clique scores, our procedure also takes into account the
scores of all unreplicated clusters. If a single clique with the highest total bootstrap
score is found, the group of compatible clusters included in this clique will define the
bootstrap-based Nelson consensus tree. If there exist more than one such clique, then
the bootstrap-based Nelson consensus tree will contain only the clusters found in all of
the maximal replication cliques. In this case, clusters found in some, but not all, of the
maximal-replication cliques can be classified as “ambiguous” (for more details see
Felsenstein, 1989; Page, 1989; Swofford, 1991). In some cases, the bootstrap-based
extended majority tree and Nelson consensus tree will be identical (e.g., tree Tpem in
Figure 1.1 is also the Nelson consensus tree of trees 71, T2 and 73), but this equivalence

does not hold in general.
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Figure 1.1 Bootstrap-based consensus trees and networks. Bootstrap-based majority rule consensus tree
Tsm, bootstrap-based extended majority rule consensus tree T and weighted implicit phylogenetic
network N for a collection of three binary phylogenetic trees T1, T2 and T3 whose leaves are labelled
by the set of 5 taxa (x, y, z, w and u). The bootstrap scores of the internal branches of trees T}, T2 and T3

are indicated. All the trees have the same weight.



In Figure 1.1, a set of three trees is presented (71, 7> and T3), each of them containing
two internal branches with the associated bootstrap scores. The right-hand internal
branch (connecting leaves “z” and “w” to the rest of the tree) has bootstrap support of
100% in all three trees. Therefore, it should be included in all consensus trees, or
networks, regardless of the reconstruction method used. On the other hand, the left-
hand internal branch connecting leaves “x” and “y” to the rest 0.f the tree in 71 and 7>
has different bootstrap scores in these trees (40 and 45% respectively). In tree 73, the
left-hand internal branch connects leaves “x™ and “u” to the rest of the tree. Its bootstrap
score, 90%, is higher than the sum of bootstrap scores of the corresponding branch in
Ty and T2. When using the bootstrap-based majority rule defined above, we obtain a
consensus tfee {Tem in Figure 1.1) that does not include the left-hand internal branch
because neither the sum of scores of 71 and 73 nor the bootstrap score of 73 divided by
the number of trees is greater than 50%. The application of the bootstrap-based
extended majority rule adds to the consensus tree (tree Tr.m in Figure 1.1) the left-
handed branch of tree 73, since 90% / 3 = 30% > (40% + 45%) / 3 = 28.3%. Tree Threm
is also the bootstrap-based Nelson consensus tree of Ti, 7> and T3. Finally, the
construction of the bootstrap-based consensus network (N123 in Figure 1.1) relies on
the same principle as the bootstrap-based extended majority rule, except that it
encompasses both left-hand internal branches (that from 71 and 73 and that from 73)
characterized by their bootstrap support. Network Ni23 is an implicit consensus
network. In this article we will show how such an implicit network can be transformed

into explicit one depending on the evolutionary mechanism being studied.
1.3.2 Method description: consensus tree
The method we presént and apply here also takes into consideration the weights

associated with the given phylogenetic trees in addition to bootstrap scores of the tree

clusters (ie., internal branches). Using one of the three equations presented in the




section “Inferring weights”, the method defines a weight of each cluster based on the
weights of the trees containing this cluster and on the cluster’s bootstrap scores in these

trees. Then, after ranking all the clusters based on their weights, it regroups the

compatible clusters starting from the top of the. list, until a fully resolved consensus :

tree is built. This method is called here weight-based extended majority rule consensus

tree inference.

1.3.3 Method description: consensus network

Our consensus network inference method accepts two types of input: 1) a species

phylogenetic tree and a set of gene phylogenetic trees defined on the same set of -

. species, or 2) only a set of gene trees defined on the same set of species. In phylogenetic
studies, gene trees are usually characterized by their weights that reflect the quality of
the reconstruction process. Such weights could be an average of bootstrap scores of the
tree’s internal branches, a maximum parsimony or maximum likelihood score or a
Bayesian posterior probability estimate. Thus, we assume that all the phylogenies have
bootstrap scores or posterior probabilities (or any other measure of support) for their
internal branches. Our algorithm first, breéks down all the gene phylogenies into their
relevant clusters and calculates a weight for each cluster based on Equations 1.1, 1.2

“or 1.3 presented in the following section. Next, the algorithm ranks all the clusters
based on their weights. For this type of input, our algorithm uses the species tree as the
backbone of the network and gradually adds to it the highly ranked clusters (ie.,
represented by reticulation branches) of the gene phylogenies. For the first type of
input, tﬁe species tree is accepted as the dominant evolutionary history and the clusters
of the gene trees are used to infer the reticulate (alternative) evolutionary events. For
the second type of input, our algorithm reconstructs a consensus phylogenetic tree
using the weight-based extended majority rule consensus tree method described above

and then adds to it the remaining highly ranked incompatible clusters which are



presented as reticulation branches. In the obtained consensus network, the weight-
based consensus tree and the reticulation branches can be regarded as the main and

alternative evolutionary scenarios, respectively.

Regardless of the input type, the resulting representation is a weighted consensus
phylogenetic network with a backbone tree structure and reticulation branches being
chosen based on their weights which reflect their contribution to the clustering process.
These two algorithmic facets are schematically presented in Figure 1.2, in which the
steps depicted by letter a correspond to processing the first type of input and those
depicted by letter b are related to the second type of input. Steps 2 to 4 are common for

both types of input.

We present here three network building algorithms (Algorithms I, II and III), each of
them being optimized for detecting and representing a specific evolutionary
phenomenon. The first algorithm (Algorithm I), which accepts the input of type 2 (a
collection of gene trees inferred for various genes), is suitable for inferring either
diploid or polyploidy hybridization events occurred among the observed species, or for
finding recombination events occurred at the chromosome level. Algorithm I first
proceeds by building the weight-based extended majority rule consensus tree followed
by finding reticulation events and adding them to the consensus tree with proper

direction in order to build the explicit weighted consensus network. The time
‘complexity of Algorithm [ is O(n x m? x (n+r)), where n is the number of gene trees
in the considered gene treé collection 7, m is the number of leaves in each of 