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RÉSUMÉ 

Cette thèse traite de diverses difficultés inhérentes à l'analyse d'ensembles mult i­
modèles de projections de changements climatiques. Ces ensembles, souvent appelés 
« ensembles d'opportunité », sont formés en fonction de la disponibilité de plusieurs 
centres de modélisation à l'échelle mondiale à produire un certain nombre de simulations. 
Les ensembles résultants d'un tel processus ne sont donc pas construits selon un cadre 
expérimental systématique visant à permet tre une analyse optimale, mais plutôt en 
fonction de facteurs externes émergeant d 'un processus d 'échantillonnage ouvert. 

Dans le premier chapitre de cette thèse, le concept d 'un échantillonnage de type 
«expert» est étudié. Consistant en une présélection d 'un certain nombre de simulations 
à partir de l'ensemble disponible, ce type de processus est généralement utilisé dans le 
but de réduire la taille d 'un ensemble qui ne peut être traité en entier lorsque les res­
sources sont limitées. Les incertitudes d 'échantillonnage reliées au calcul des statistiques 
de l'ensemble sont calculées en ré-échantillonnant sur un grand nombre de sous-ensembles 
de simulations. Le processus de sélection est divisé en deux types de choix faits par les 
experts : le choix des modèles et celui des membres. Il est démontré comment ces in­
certitudes d 'échantillonnage consistent en des manifestations de sources d 'incertitudes 
connues reliées aux projections climatiques, soient la variabili té climatique naturelle et 
l'écart-type inter-modèle. 

Le second chapitre vise à étudier une problématique fondamentale à l'échantillon­
nage des modèles dans un ensemble d 'opportunité . Les modèles de climat n'étant a 
priori pas tout à fait indépendants puisque les scientifiques partagent des connaissances 
à propos du système climatique et quant à la manière de construire les modèles, au­
cune métrique pour évaluer cette indépendance ne fait présentemenL consensus entre 
les scientifiques. Dans ce chapitre, nous proposons un critère pour déLecter un manque 
d 'indépendance entre les projections de changements climatiques. Ce critère est basé sur 
le fait que deux modèles peuvent mener à des scnsihilités climatiques similaires face atLx 
forçages externes, mais un tel consensus devrait être rejeté quand des raisons suffisantes 
peuvent remettre en cause la notion d 'indépendance. Par exemple, lorsque d'importantes 
similarités structurelles apparaissent entre les modèles ou, dans une moindre mesure, dû 
à une certaine dépendance institutionnelle. 

Dans le troisième chapiLre, des pistes de solutions sont suggérées face au problème 
que les modèles sont généralement représentés da.ns un ensemble par peu de membres et 
en nombres souvent inégaux. L'utilisation d 'échantillons non-équilibrés peut engendrer 
certains problèmes, particulièrement en ce qui a trait à l'estimation de la variabilité natu­
relle dans l'ensemble, celle-ci étant souvent obtenue à partir de l'écart-type inter-membre. 



:JG"Xii 

Avant de considérer des méthodes de reconstruction visant à régénérer les simulations 
jugées manquantes à partir de l'information disponible dans l'ensemble, deux hypothèses 
se doivent d 'être vérifiées. La première s'applique à un ensemble de membres provenant 
d'un seul modèle et consiste à déterminer si cet ensemble peut être supposé comme étant 
ergodique, c.-à-d. que la variabilité temporelle est à peu près égale à celle qui intervient 
entre les membres. La seconde hypothèse considère que la variabilité naturelle est simu­
lée de façon égale entre les modèles. Bien que les résultats montrent que la variabilité 
naturelle diffère de façon importante entre les modèles, l'hypothèse d 'ergodicité entre les 
membres s'avère vraie pour des simulations sans forçages externes. Pour des simulations 
avec forçages externes, il est démontré comment des conditions de stationnarité peuvent 
être atteintes par traitement en soustrayant les tendances polynomiales dans les séries 
temporelles. 

Dans le quatrième chapitre sont cornparées différentes méthodes pour quantifier la 
variabili té naturelle à partir d 'une combinaison de plusieurs modèles. D'un côté, l'estimé 
optimal pour cette variabilité serait biaisé vers les modèles avec le plus de membres, tan­
dis qu'un estimé donnant le même poids à tous les modèles serait caractérisé par une plus 
grande erreur type. Dans ce même chapitre est aussi fourni un exemple d'application de 
l'hypothèse d 'ergodicité, qui permet d'utiliser la variabilité temporelle afin de comparer 
les signaux de changements climatiques provenant de deux modèles, lorsque ces derniers 
sont représentés par un seul membre. Cette approche peut être vue comme une alter­
native devant la méthode plus coûteuse de considérer des expériences supplémentaires , 
par exemple les simulations de contrôle pour la période préindustrielle disponibles dans 
l'ensemble CMIP3. 

Mots clés : ensemble mult i-modèle, échantillon non balancé, variabilité naturelle, incer­
titude modèle, indépendance des modèles, ergodicité 



ABSTRACT 

This thesis focuses on inherent issues to the analysis of multi-model ensembles of 
climate-change projections. Such ensembles, oftcn denoted as "ensembles of opportunity", 
are formed on the basis of the readiness of severa! modelling centres around the world 
to produce simulations. It results in ensembles Lhat are not constructed based on a 
systematic framework aimed at an optimised analysis but rather on external factors 
emerging from an open sampling process. 

In the first chapter of this thesis, the concept of an expert-based sampling is in­
vestigated, consisting in making a pre-selection of a number of simulations from a large 
ensemble. Such a sampling process is generally used by research centres that cannot 
afford to handle the entire ensemble due to limited resources of treatment. Sampling un­
certainties affecting the statistics of the resulting ensemble are assessed using resampling 
methods by randomly selecting over severa! ensembles subsets. The selection process is 
divided as two types of choices made by the experts : the choice of the models and 
that of the members. We show how these sampling uncertainties are manifestations of 
known sources of uncertainty, namely the natural climate variability and the inter-mode! 
spread. 

The second chapter investigates an issue that is fundamental to the sampling of 
the models in an ensemble of opportunity. Whilc clima.te models are not expected to 
be independent since scientists share knowledge about the climate system and on how 
to construct models, no robust metric to qua.ntify mode! independence is commonly 
accepted among climate scientists. In this cha.pter, we propose a criterion for detec ting 
possible la.ck of independence between elima te-change projections. This cri teri on is ba.sed 
on the fact that two models can lead to similar clirnate sensitivities to external forcings, 
but such a consensus should be rejected when there are sufficient reasons to believe that 
it occurs for the wrong reasons, i.e. whether duc to important structural similarities 
between the models or to a lesser extent, to some institutional dependence. 

In the third chapter, a workaround to the apparent problem of a small and une­
quai number of members provided by the models is investigated. Such an imbalance 
between sample sizes mises issues in the assessment of the natural climate variability 
when obtained from the inter-member spread. \Vhcn considering reconstruction methods 
for regenerating these "missing simulations", two assumptions about Lhe multi-model en­
semble have to be investigated . The first one applies to a single mode! and consists in 
determining whether an ensemble of members can be a..ssumed as ergodic, i.e. that the 
variability measured in time is approximately equal to the inter-member spread. The 
second assumption is that the natural variability is equally simulated by the different 



models in the ensemble. While the results show that the natural variability lar·gely dif­
fers among the models, an ensemble of members can be considered as ergodic when run 
under stationary conditions. For simulations run under transient forcings , it is shown 
how stationary conditions can be reached by treatment by removing polynomial trends 
from the time series. 

In the fourth chapter, different methods are compared for assessing the natural 
variabili t-y from a multi-model ensemble. While an optimal estimator of the natural va­
riability would be biased toward the models with larger sample sizes, an unweighted 
estimate that gives an equal importance to the different models would be affected by 
larger sampling en·ors. We also provide an example of application of the ergodic assump­
tion that allows taking advantage of the temporal variability in the simulations in order 
to compare the climate-change signais provided by two models when both provide a 
single member. This method can be seen as an alternative to the more expensive way of 
using supplementary simulations run without external forcings such as the pre-industrial 
control experiments in the CMIP3 mul ti-model ensemble. 

Keywords : multi-rnodel ensemble, unbalanced framework, natural variability, mode! 
uncertainty, mode! independence, ergodicity 



INTRODUCTION 

La méthode scientifique requiert que les théories soient validées par l'expérimentation. 

Toutefois, en science du climat, les chercheurs n'ont pas accès à un laboratoire au sens 

classique qui permette de vérifier leurs hypothèses. En ce sens, le système climatique 

terrestre est à la fois laboratoire et sujet d 'étude. Considérant que certaines perturbations 

du système climatique peuvent prendre plusieurs décennies avant que les répercussions 

puissent être ressenties de manière significative, il serait peu judicieux pour l'Homme 

d'envisager de perturber son environnement afin d 'en évaluer les conséquences. 

Les modèles de climat 

Les scientifiques du climat doivent donc se tourner vers des expériences effectuées par 

ordinateur où les équations mathématiques décrivant la physique du système climatique 

permettent d'en simuler l'évolution. Au cours des dernières décennies, la science du cli­

mat a évolué considérablement , et ce, en grande partie grâce à l'augmentation de la puis­

sance de calcul des ordinateurs. Les principaux outils à la portée des scientifiques sont les 

Modèles de Circulation Générale Couplés Atmosphère-Océan (MCGAO ; Randall et al. 

2007), qui t iennent compte des principales composantes elu système climatique : l' atmo­

sphère, les océans , la surface terrestre, la glace de mer et la biosphère. Dans ces modèles 

sont prescrits des forçages dits "externes" comme les émissions de gaz à effet de serre 

et d 'aérosols (GESA) (Nakicenovic et al. , 2000). A l'aide des MCGAO contemporains, 

le climat planétaire peut être simulé sur plusieurs centaines d'années à des résolutions 

spatiales de l'ordre d 'une centaine de kilomètres, et ce, en quelques semaines de calcul 

sur un superorclinateur. Le coût relatif à la production de ces simulaLions reflète à quel 

point les modèles de climat sont des programmes informatiques complexes nécessitant 

une grande puissance de calcul. 
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Incertitude dans les projections climatiques 

En dépit de la grande complexité des modèles de climat , ces derniers ne restent que des 

approximations du système climatique réel. D'abord par leur nature discrète, ils ont une 

résolution finie, et donc même certains processus assez bien connus comme la dynamique 

des fluides se voier)t alo rs approximés. De façon similaire, d 'autres approximations ont 

lieu puisque certains processus physiques interviennent à des échelles plus fines que la 

grille du modèle. Ces processus non résolus par le modèle, par exemple la convection, la 

micro-physique des nuages ou les transferts radiatifs, se doivent donc d 'y être intégrés 

sous forme de paramétrages (Tompkins, 2002) . 

Les projections climatiques sont évidemment sujet tes à un certain niveau d 'incert itude. 

Cette incertitude peut être séparée e1~ trois composantes, soit la variabilité naturelle du 

climat , l'incerti tude reliée aux approximations utilisées par un modèle et l'incertitude 

due au choix de scénario de GESA (Hawkins et Sutton, 2011 ) . La variabilité naturelle 

est une composante fondamentale d 'incer titude puisqu'elle reflète le caractère chaotique 

du système climatique (Lorenz, 1963) . Cette source de variabilité est générée à l'inté­

rieur même du système et est souvent considérée comme le niveau minimal de "bruit 

climatique" en deçà duquel le système ne peut être considéré déterministe. La variabi­

lité naturelle générée par un modèle de climat peut être quantifiée de deux manières 

différentes. La première consiste à générer une longue simulation ( e. g. plusieurs cen­

taines d 'années) et d 'en évaluer la variabilité temporelle (Deser et al. , 2010). La seconde 

consiste à générer plusieurs réalisations d'un même climat en imposant de petites diffé­

rences dans les condit ions initiales. Par la nature chaotique du système, ces simulations 

perdront toute mémoire de leurs condi tions initiales après une certaine période de temps 

de mise à l'équilibre (Stouffer et al. , 2004; Stouffer, 2004) . La variabilité entre ces diffé­

rentes réalisations est souvent utilisée comme mesure de la variabilité naturelle simulée 

par un modèle de climat (Sorteberg et Kvamst0, 2006; Deser et al. 2010) . 

L'incertitude modèle est due au fait que les scientifiques ont une connaissance limitée 
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du système climatique. Autant le choix des processus physiques d 'intérêt à inclure dans 

les modèles que la manière de les t ransposer sous forme d'équations pouvant être solu­

tionnées par ordinateur peut différer entre les experts. Les modèles sont donc construits 

différemment , ce qui mène à certaines différences dans leurs projections climatiques . 

L'incertitude due au scénario est due au fait que l'évolution fu ture des émissions an­

thropiques de GESA est pratiquement inconnue. Ces émissions dépendent notamment 

de l'évolution du contexte socio-économique, technologique et polit ique mondial. Elles 

sont donc trés difficiles à prévoir et cette question dépasse largement le cadre de la 

problématique reliée à la modélisation du système climatique. Or, l'ut ilisation de diffé­

rents scénarios d 'émissions dans les simulations climatiques montre clairement l'effet de 

ces derniers sur l'ampleur et les détails du changement climatique appréhendé (Meehl 

et al. , 2007a) , faisant du choix de scénario une source importante d 'incertitude dans les 

projections climatiques. 

Les ensembles d 'opportunité 

Dans le but de quantifier les différentes sources d' incertitude reliées aux projections 

climatiques, d 'imposants ensembles de simulations doivent être utilisés. En mettant à 

contribution les différents centres de recherche en modélisation climatique de par le 

monde, ces projets internationaux permettent ml certain échantillonnage des différentes 

sources d 'incertitude. Un bon exemple de ce type d'ensemble est la phase 3 du projet 

d 'intercomparaison de modèles couplés (CMIP3; Meehl et al. 2007b). Cet ensemble 

contient des simulations provenant de plus d'une vingtaine de modèles pour quelques 

scénarios d 'émissions de GESA. La variabili té naturelle y est échantillonnée à l'aide de 

plusieurs réalisations par expérience, de même que par un certain nombre de simulations 

de la période préindustrielle où aucun forçage anthropique n'est appliqué. 

Le processus d'échantillonnage de l'ensemble CMIP3 reste relativement ouvert en ne 

posant que certaines conditions minimales aux différents centres pour y participer. Ceci 

permet entre autres de maximiser le nombre de modèles dans l'ensemble. Ces condit ions 
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minimales peuvent se résumer à utiliser w1 MCGAO conforme aux règles de l'art pour 

générer un certain nombre de simulations en fonction d 'expériences suggérées, et ce, dans 

les délais et formats d 'archivage requis par le projet. Un tel processus d 'échantillonnage 

engendre un ensemble dont la structure est principalement définie par l'offre en simula­

tions, soit le degré de participation des différentes équipes de recherche en fonction de 

leurs ressources et intérêts. Au final, l'ensemble sera souvent incomplet, c'est-à-dire que 

tous les modèles ne sont pas utilisés pour générer toutes les expériences proposées étant 

donné le coût important relié à la production de telles simulations. Pour les mêmes rai­

sons, l'ensemble a peu de chances d 'êt re équilibré, et donc que les modèles et institutions 

y sont représentés de façon plutôt inégale selon les trois axes d 'incertitude. 

Problèmes inhérents aux ensembles multi-modèles 

L'échantillonnage des principales sources d 'incertitude via ce type d 'ensemble pose ce­

pendant plusieurs problèmes. D'abord, par sa structure irrégulière, l'analyse d 'un en­

semble multi-modèle mène à des approximations dans les méthodes statistiques conven­

tionnelles (von Storch et Zwiers, 1999) et possiblement à des biais . Or, ce type de pro­

blème n'est pas nouveau, Kendall (1946) ayant déjà mentionné l'importance d 'impliquer 

des mathématiciens lors d 'un processus échantillonnage afin de permettre l'application 

d'une analyse de type exact (i.e. sans approximations) , où les biais sont minimisés et les 

erreurs d 'échantillonnage contrôlées . Dans le cas de CMIP3, on peut voir ces problèmes 

comme un compromis étant donné le processus d 'échantillonnage ouvert permettant la 

maximisation du nombre de modèles dans l'ensemble. 

Un exemple d 'ensemble où ces problèmes sont considérés lors du processus d 'échan­

tillonnage est le projet ARCCAP (The North American Regional Climate Change As­

sessment Program ; Mearns et al. 2009). La structure de l'ensemble y est déterminée à 

l'avance afin d'en optimiser l'analyse. On notera aussi le projet ENSEMBLES (van der 

Linden et Mitchell , 2009), qui au même titre que CMIP3, utilise un processus d'échan­

tillonnage basé sur l'offre en simulations, résultant en une structure d 'ensemble incom-
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plète et non équilibrée. Dans le but d 'analyser les différentes composantes d 'incertitude 

reliées à cet ensemble, Déqué et al. (2012) a dù utiliser certaines astuces mathéma­

tiques afin de reconstruire les expériences manquantes dans la structüre. Un avantage 

d 'une telle approche est d'obtenir un cadre expérimental souhaitable pour l'application 

d 'une méthode d'analyse exacte en évitant les biais lors de l'évaluation des différentes 

composantes d'incertitude. 

Cependant, même dans le cas d'un ensemble multi-modèle dont la structure est complé­

tée et équilibrée selon les différentes expériences suggérées , certains problèmes d'échan­

tillonnage persistent au-delà de ceux strictement reliés la structure même de l'ensemble. 

Un problème de taille réside dans l 'échantillonnage de l'incertitude modèle. Typique­

ment, l'incertitude modèle est étudiée à l'aide de deux types d'ensemble. Le premier 

est l'ensemble à la "physique perturbée" (EPP) qui consiste à utiliser un seul modèle 

sous différentes configurations. Ces configurations sont obtenues en variant certains pa­

ramètres du modèle dont la valeur est incertaine (Rowlands et al. , 2012). Un modèle 

pouvant contenir des centaines de paramètres à varier, l'étude de l'incertitude modèle 

via ce type d 'ensemble consiste à explorer un espace avec autant de dimensions, ce qui 

est hors de portée pour la plupart des groupes de recherche en modélisation. Un effort 

considérable dans ce domaine est le projet climateprediction. net (Stainforth et al. , 2005) 

qui utilise des ressources informatiques distribuées afin de générer un ensemble comp­

tant plusieurs milliers de simulations. Cependant, un EPP reste par définition contraint 

aux particularités structurelles d 'un seul modèle et donc ne révèle qu'une facette de 

l'incertitude modèle (Tebaldi et Knutti , 2007) . 

La deuxième manière d'étudier l'incertitude modèle consiste à utiliser un ensemble multi­

modèle ( e.g. CMIP3). Ce type d'ensemble tient compte des différences structurelles entre 

les modèles, comme le choix des processus d'intérêt à considérer ou la manière de les re­

présenter sous forme de paramétrages. Un problème important relié à ce type d'ensemble 

est que les modèles y sont échantillonnés de manière ni aléatoire ni systématique, mais 

plutôt basée sur la disponibilité des modèles (offre en simulations). L'échantillonnage 
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multi-modèle explore un espace indéfini qui ne peut être simplement représenté à partir 

de nombres comme c'est le cas pour l'EPP dont l'espace des paramètres est défini, bien 

que extrêmement coûteux à explorer (Murphy et al. , 2007). Les difficultés reliées à la dé­

fini tion d 'un "espace des modèles" reposent sur une problématique d 'ordre conceptuelle. 

Cette difficulté constitue une importante barrière devant toute interprétation probabi­

liste des résultats de l'ensemble, à moins d 'utiliser des hypothèses substantielles (Giorgi 

eL Mearns, 2002; Greene et al. 2006). 

Un point important relié à l'échantillonnage des modèles est que plusieurs raisons portent 

à penser qu 'ils ne sont pas tout à fait indépendants l'un de l'autre. En fait, les centres de 

modélisation partagent des connaissances en ce qui a tra.it au système climatique et à la 

manière de construire les modèles, par la participation à des conférences et la publica­

tion d 'articles spécialisés. De plus, les modèles sont souvent validés et ajustées (via leurs 

paramètres) en fonction de données climatiques similaires. Un indicateur de ce manque 

d'indépendance est que les modèles ont en commun certains biais lorsque leurs résultats 

sont comparés avec le climat observé (Lambert et Boer, 2001; Knutti et al. 2010). En 

guise de comparaison, des échantillons indépendants devraient statistiquement mener à 

une annulation des erreurs au fur et à mesure que la taille de l'ensemble est augmentée, ce 

qui n'est pas le cas pour les MCGAOs contemporains. De plus, Masson et Knutti (2011 ) 

ont mis en évidence que des similarités entre les résultats de modèles tendent à appa­

raître lorsque ces derniers sont développés par des acteurs communs. Aucune métrique 

ne faisant présentement consensus parmi les scientifiques afin de quantifier le concept 

d'indépendance (Tebaldi et Knutti , 2007) , certaines implications sont très importantes. 

Par exemple, l'ut ilisation d 'une norme basée sur les similari tés des simulations des mo­

dèles en guise d 'indicateur de confiance dans un résultat donné se voit une idée difficile 

à défendre sans une confiance de l'indépendance des modèles (Pirtle et al. , 2010); les 

similarités pouvant très bien apparaître pour les mauvaises raisons , par exemple dû à 

des hypothèses similaires utilisées dans la construction des différents modèles. 
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Objectifs et plan de la thèse 

Cette thèse vise à mettre en lumière plusieurs problématiques fondamentales auxquelles 

doivent faire face les scientifiques lors de l'analyse d'un ensemble multi-modèle. L'en­

semble CMIP3 y est utilisé à t itre d'exemple mais ces problématiques se veulent tout 

aussi applicables à d 'autres ensembles comme CiviiP5. En particulier, on s'attarde au..x 

deux sources d 'incertitude primordiales des proj ections climatiques, c'est-à-dire la va­

riabilité naturelle et l' incert itude modèle. La thèse est divisée en quatre chapitres qui 

représentent des articles scientifiques à soumettre à des revues spécialisées. 

L'ensemble CMIP3 étant le résultat d 'un effort sans précédent de coordination à l'échelle 

mondiale, il est donc très riche en information mais aussi relativement imposant en 

termes de volume de données. Une équipe de recherche utilisant ces simulations se li­

mitera souvent à n 'utiliser qu'une part ie de l'ensemble selon ses capacités de traitement 

de données et des questions scientifiques à étudier. Ce processus de sélection d 'un en­

semble est fait par les experts et vise d 'abord à réduire la taille de l'ensemble mis à 

leur disposition tout en minimisant les pertes en information. Dans le premier chapitre, 

on étudie les erreurs d 'échantillonnage issues d'une présélection de simulations quant 

à leur effet sur le calcul des statistiques de l'ensemble. Le processus d'échantillonnage 

par les experts y est analysé en fonction d 'une sélection faite sur les modèles ainsi que 

sur les membres disponibles pour chaque modèle. Le cadre expérimental proposé vise 

entre autres à mieux comprendre les effets d 'un ensemble de taille finie en évaluant les 

erreurs statistiques en fonction de la taille de l'échantillon sélectionné. On y discute no­

tamment les hypothèses fondamentales qui se doivent généralement d'être adoptées lors 

de l'ut ilisation de ces ensembles. 

Après l'étude du processus de sélection d'un ensemble par les. experts, le second chapitre 

traite de la nature de l'échantillonnage à la ba.se même d'un ensemble multi-modèle. 

D'abord, on y discute de la participation des centres de recherche et de leur effet sur 

l'échantillon disponible. Le concept d'indépendance des modèles y est ensuite révisé en 
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détails selon les travaux déjà abordés . Nous proposons par la suite un cadre expéri­

mental visant à quantifier la notion d'indépendance quant aux consensus et désaccords 

observés entre les signaux de changemenls climatiques par rapport au niveau de bruit 

donné par la variabilité naturelle. On y étudie aussi l'hypothèse souvent évoquée que 

deux modèles développés par une même institution tendent à donner des résultats avec 

des caractéristiques similaires. Bien que cette hypothèse ne soit pas toujours vraie, elle 

reste néanmoins un outil important en vue de filtrer l'ensemble de ses consensus non 

informatifs, c'est-à-dire dus aux mauvaises raisons. Enfin, on y avance certaines pistes 

de solution qui devraient être considérées par la communauté scientifique afin de dimi­

nuer l'ampleur du problème relié au manque d'indépendance entre les modèles pour les 

ensembles à venir. 

Dm1s le troisième chapitre, un autre type d 'échantillonnage est abordé. On le qualifiera 

d'échantillonnage synthétique, celui-ci visant à régénérer artificiellement les simulations 

considérées comme manquantes dans l'ensemble. Ce type d'approche est principalement 

voué à simplifier l' analyse d 'un ensemble incomplet ou non équilibré à l'aide de méthodes 

peu coûteuses en comparaison avec la production de simulations à l'aide d 'un MCGAO. 

Ce chapitre propose notamment deux types d'approches visant à tirer profit de l'infor­

mation temporelle disponible dans l'ensemble en vue d 'y générer de nouveaux membres . 

La première technique consiste à ut iliser l'information temporelle fournie par un mo­

dèle afin de lui générer des membres supplémentaires, tandis que la seconde consiste à 

utiliser l'information temporelle provenant de tous les modèles de l'ensemble. Ces deux 

approches sont placées dans un cadre décisionnel afin de déterminer la méthode souhai­

table en fonction de l'ensemble utilisé. En particulier, la première méthode évoque le 

caractère ergodique d'un ensemble de membres provenant d 'un seul modèle. Cette ca­

ractéristique apparaît comme une symétrie entre le temps et les membres ; elle peut être 

d 'une grande utili té pour la reconstruction d 'expériences manquantes dans un ensemble 

multi-modèle. 

Le quatrième chapitre se veut une récapitulation des principaux concepts développés 
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dans cette thèse. On y propose notamment deux exemples d 'application . Le premier 

fait une comparaison entre différentes approches afin de combiner la variabilité naturelle 

simulée par différents modèles. Le deuxième exemple applique le principe d 'ergodicité 

entre les membres afin d 'améliorer la quali té des tests statistiques proposés dans le pre­

mier chapitre quant à la caractérisation de l'indépendance entre deux modèles développés 

par un même groupe de modélisation. 





-- ---------------------, 

CHAPTER I 

ON THE UNCERTAINTY RELATED TO EXPERTS' DECISIONS IN THE 

SELECTION OF A SUBSET OF SIMULATIONS FROM A LARGE 

ENSEMBLE OF OPPORTUNITY 

ABSTRACT 

From the elima te modelling point of view, an ensemble of opportunity consists of a group 
of simulations generated using severa! models dcveloped by different research centres 
around the world. Such ensembles are generally fonned in a rather open way by allowing 
research groups to provide an arbitrary number of member simulations generated from 
one or severa! versions of their mode!. While these simulations are used in a wide variety 
of applications, users often consider only a small part of the entire âvailable ensemble 
due to limitee! resources for data handling. 

In this chapter, we investigate the concept of the sampling uncertainties emerging from 
the selection of a subset of simulations from a large ensemble. It is shown how these 
uncertainties can be constrained by the select ion process and the underlying assumption 
about the nature of the ensemble-related populat ion. Emerging as the lower bouncl of 
error in the ensemble statistics, these sampling uncertainties consist in different ma­
nifestations of known sources of uncertainty in climate modelling such as the natural 
variability and the mode! structural uncertainty. 

1.1 Introduction 

As a result of different approximations and alternative approaches employed, different 

coupled Atmosphere-Ocean General Circulation Models (AOGCMs) developed by a 

number of research teams around the world give different climate sensitivities in res­

ponse to the same concentration of greenhouse gases and aerosols (GHGA). In order to 
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interpret these differences and understand their impacts on climate-change projections 

for the next century, sorne internationa.lly coordinated efforts have been realised over 

the last years, aiming at setting up experimental frameworks that allow comparing and 

combining climate simulations from different models. These large projects are formed 

in a rather open way, meaning that research centres are generally free to participate 

by delivering an arbi trary number of simulations. Such experiments allow collecting a 

relatively large nwnber of simulations, leading to a range of credible climate-change 

projections that are brought together as a mult i-model ensemble of simulations. At this 

time, the best achieved example of such an application is the Coupled Mode! Intercom­

par·ison Project Phase 3 (CMIP3 ; Meehl et al. 2007b) while CMIPS is underway at the 

time of writing. 

A fundamental issue of climate-change modelling resides in the intrinsic nature of multi­

model ensembles . Often denoted as "ensemble of opportunity" (e.g. Christensen et al. 

2007, Tebaldi and Knutti 2007, Annan and Hargreaves 2010) , such ensembles do not 

irnply any random or systematic sampling of the models over the possible population of 

all modelling approaches. Research centres around the world are free to participate to the 

coordinated effort towards climate-change assessment , but they do so according to their 

own computing and human resources constraints. This results in ensembles that sample 

in sorne way the mode! structural differences (or modelling approaches) ; the spread 

arnong simulations is often interpreted as reflecting the uncertainty of climate-change 

projections, in addi ~ion to the uncertainty about the future GHGA emissions pathways. 

It is worth noting that participating groups provide an arbitrary number of realisations 

from the same model, usually referred to as "members", which sample the models' natural 

variability (Sorteberg and Kvamst0, 2006; Deser et al. , 2010). Moreover, the rather open 

method of forming an ensemble allows for a participating group to provide runs from 

several versions of the same model, that may differ for example by changes of spatial 

resolution, parame~erization packages, or different tuning of sorne parameters. 

While the simulations resulting from th se ensembles are often used "as is" in a va-
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riety of climate-change assessments , downscaling techniques are increasingly used in the 

hope of obtaining further regional information. Examples are dynamical downscaling 

with Regional ClimaLe Models (RCMs; Rummuka.inen 2010) and statistical downscaling 

( e.g. Dibike et al. 2008) in order to obtain small-scale details from the coarse-resolution 

AOGCMs' simulations. Either approaches involve a large amount of data-handling re­

sources, and comput ing resources in Lhe case of RCM ; hence the motivation for conside­

ring only a subset of the original AOGCM ensemble. Expert decisions may be involved 

in selecting such a subset in order to minimise !osses of valuable information. One corn­

mon approach for reducing a large ensemble in to a. smaller subset is by retaining a single 

member of each mo del or version of mode! ( e.g. Bombardi and Carvalho 2011 , Peings 

and Douville 2010 , Riüsanen et al. 2010) when severa! are available, thus reducing the 

size of the ensemble to the number of available models. Such sampling is expected to 

have a little impact for climate-change projections made over severa! decades , since at 

these time scales, the inter-member variability is generally smaller than the inter-mode! 

variability (Hawkins and Sut ton, 2009). The idea of retaining a single member per mode! 

also sustains the democratie idea of "one vote per mode!" (Knut ti 2010) in the assessment 

of the climate-change signal. 

If su ch 11 one member per mode!" reduced dalaset is st ill too large for the hanc! ling 

capability of a user , t he ensemble is further reduced by proceeding to the selection of 

a smaller number of models according to sorne specifie characterisLics. An often usee! 

criterion is the models ' performance in reprocluciag the present climaLe (Gleckler et al. 

2008) in order to remove from the ensemble the models that are consideree! less reliable. 

Another one consists in eliminating the 11 out liers" whose climate change differs the most 

from the ensemble mean ( e.g. Giorgi and Mearns 2002). Another way of selecting a 

subset of models can be basee! on t heir degree of indepenclence, a rule of thumb is to 

consider on! y one mode! from each instit ute (WheLton et al. , 2007). Alt ernatively, Houle 

et al. (201 2) usee! a cluster analysis in order to classify 86 climate simulations from 

the CMIP3 archive into 5 subgroups, retaining only a single simulation per subgroup 

for further analysis. In t he case of dynamical downscaling experiments, a reason for 

------------------------
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retaining a specifie subset of AOGCJ\II from a large ensemble of opportunity may also 

simply be based on the availability of fields that are necessary for driving an RCJ\II , or 

some compatibility issues between RCM and AOGCM may also influence the choice of 

the AOGCMs to be retained in a study. 

In addition to the selection of a subset. from a large ensemble of simulations, severa! ways 

exist for combining simulations from severa! models for climate-change assessment . For 

example, a widely used approach is to consider models as equivalent representations 

of the real climate system, thus using their simulations as equally likely outcomes of 

the future climate. This can be clone by using the ari thmetic mean over all models 

as a measure of the projected climate--change signal ; the inter-mode! spread is then 

generally interpreted as reflecting the "mode! uncertainty" (Tebaldi and Knutti 2007) 

affecting the signal. From a different point of view, some au thors argue that since models 

do not exhibit equal skill at simulating the present climate, they should be weighted 

based on their performance according to some criteria (Giorgi and Mearns 2002, Tebaldi 

et al. 2005b, Greene et al. 2006 , RiiisiiJ1Cn et al. 2010). Such methods allow giving the 

greatest importance to models that are judged to be more reliable, thus reducing the 

influence of the less reliable models on the ensemble stat istics. The optimal way to 

combine simulations from a multi-model ensemble is still an open debate (Riiisiinen, 

2007). As a striking example, Christensen et al. (2007) shows that two methods for 

cornbining AOGCMs' output into probabilistic climate-change projections (Tebaldi et al. 

2005a,b and Greene et al. 2006) lead to results that differ significantly. 

In summary, once a large ensemble of opportunity becornes available to the comrnunity, 

the users are exposed to complex choices rela ted to the selection, t reatrnent and cornbi­

nation of these simulations. More precisely, three levels of decisions may be stated as : 

1) the pre-selection of simulations of interest to be retained from a large ensemble, 2) 

the use of downscaling techniques for processing the selected set of simulations, and 3) 

the mathematical treatment applied for cornbining the simulations into ensemble statis­

tics or probabilistic projections. In the following, we focus on the uncertainty ernerging 
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from t he first leve! of decision, i.e. the selection of a subset of simulations from a large 

ensemble. 

In Sect. 1.2.1 , we briefly describe the multi-model ensemble used in this study and the 

pre-processing applied to these simulations before further analysis. We also define the 

ensemble statistics (Sect . 1.2.2) , namely the climale-change projections signal and inter­

mode! spread. In Sect. 1.2.3 and 1.2.4, we propose two methods that airh at quantifying 

the uncertainty relatee! to the select ion of the members and the retained models. In Sect. 

1.3, the results are illustrated for the case of summer surface air temperature change over 

North America. We also investigate the effect of tite ensemble size, comparing the entire 

multi-model ensemble and a subset of 11 models, as weil as other particular ensembles 

of smaller size. In Sect. 1.3.3, our analysis leads to a particular representation of the 

well-known "plume diagram", inspiree! from (ChrisLensen et al. , 2007), that will be seen 

as "blurred" due to the uncertainty emerging from the selection that affects both the 

signal and the inter-mode! spread statistics. Finally, in Sect. 1.3.4, basic constraints that 

can be applied to a selection process are discusseù. 

1.2 Experimental Framework 

1.2.1 Data and pre-processing 

The CMIP3 multi-model dataset has been analysee! in the context of the IPCC Fourth 

Assessment Report (AR4). In the following, we use the simulations performed under 

the A1B GHGA emission scenario (Tab. 1.1) , for Lhe simple reason that it counts the 

largest number of models and members compared to other scenarios. In the following, 

the tenn "multi-model ensemble" (MME) is used Lo refer to t his particular ensemble of 

55 simulations. For more information about models' names and specifications, the reader 

is invitee! to refer to the PCMDI website at http: 1 /www-pcmdi.llnl. gov. 

The present study focuses on models ' results over North America. Each models' historica l 

runs have been combinee! with the respective projections following the A1B scenario, thus 
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giving simulations that cover the time period from 1900 to 2100. Climate changes have 

been calculated over successive 20-yea.r averaging windows, relative to the 1900-1950 

average, for each mode!. Since spatial resolution of the models ' atmospheric component 

varies over a broad range (from 1.1° to 5°), all data were linearly interpolated on the 

coarsest grid corresponding to that of the GISS-ER mode!, with a resolution of (4° x 5°) . 

1.2.2 Ensemble stat istics 

The climate-change signal and the inter-mode! spread are commonly used statistics to 

summarise the results from a multi-model ensemble of simulations. It is worth noting 

that the latter statistics is often interpreted as an estimate of the uncertainty of the 

climate-change signal. To avoid any confusion, we keep the terminology "spread" since 

"uncertainty" will be used in a different context in the following sections. 

Let first 1/Jik be any field obtained from one simulation of the ith mode! in an ensemble 

of severa! models. 'vVe will consider in the following that the ensemble consists in an 

array of simulations from severa! models , with each model being represented by a single 

realisation. In principle, such an ensemble is not uniquely defined since a number of 

realisations of each model could have beon generated. We refer to any of these possible 

ensembles by using the k index, which will be discussed in more details in the next two 

sections . Let us now define the reference past climate (Pik) at time t = p0 as : 

pik = 1/Jik(X, y, z, t =Po) (1.1) 

where x , y and z are the spatiallocatio11 coordinates. In the present context, Po corres­

ponds to a time average of the simulation over the reference period from 1900 to 1950. 

Similarly, the later time climate (Fik) defined over a given 20-year window is written as : 

Fik = 1/Ji.k(x, y , z, t >Po) (1.2) 

where t is larger than p0 , although we focus on the range from 2000 to 2100 in the 
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following. The climate-change signal (6ik) for the ith mode! of the kth ensemble is hence 

given by 

(1.3) 

As stated previously, climate-change projections are generally presented as ensemble 

statistics. In order to obtain the magnitude and the range of the ensemble projections, 

we define the ensemble-mean climate-change signal (~) and inter-mode] spread (ak) 

as 

and 

-ri r.;--i -p i 
Ui k = I' ik - ik 

. i 

respectively, where IT is the averaging operator over ail models in the ensemble. 

(1.4) 

(1.5) 

In the following, we present a general framework that aims at evaluating the uncertainty 

related to the selection of a sample of simulations from a large ensemble. First , we present 

in Sect. 1.2.3 the member-sampling approach and evaluate the uncertainty related to the 

choice of one realisation per mode!. Then (SecL. 1.2.4) , we present the model-sampling 

approach and evaluate the efiect of selecting different subsets of models from the original 

ensemble. 

1.2.3 Member sampling 

In this section, we aim at quantifying the unccrtainty that is related to the choice of 

the members when extracting a subset from a large ensemble of simulations. This is 

clone by assuming two constraints to the selection pro cess : 1) one member per mo del is 

considered when severa! are available, and 2) the choice of t he models is kept fixed, i.e. 

is already assumed. We will show how this uncertainty affects Lhe ensemble statistics, 

namely the ensemble-mean signal and the inter-mode! spread . 

As seen from Tab. 1.1, the 24 CMIP3 models are represented by different and arbitrary 
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number of members. Let us denote as Ni the number of members available from the 

ë 1
· mode!. There are hence many ways Lo form a multi-model array from 24 different 

models, i.e. 11;~ 1 Ni = 1, 360, 800. Each of these variations of the "e[ected members" that 

represent the models are associated with an ensemble index, k, which has been introduced 

in Sect. 1.2.2. Thea , for the k th variation of the multi-model array, the ensemble-mean 

signal and inter-mode! spread are calculated using (14) and (1.5) respectively. 

After resampling for a large number (J<) of iterations, we perform the following statistics 

where ft is the averaging operator over all generated ensembles. We hence obtain the 

elima te-change signal mean value ( D.mem), 

(1.6) 

the uncertainty of the climate-change signal mean value (U7~em), 

(1.7) 

the inter-mode! spread mean value (:Emern), 

" - k '"-'mern = O'k (1.8) 

and the uncertainty of the inter-mode! spread mean value (U~em) , 

(1.9) 

In the following, we refer to "member sampling" as the method just described , consisting 

of randomly choosing one member per mode! within a multi-model array. It involves a 

part icular assumption on the population from which a subset is drawn. Since we assume 

a fixed set of models, it should be inLcrpreted as the only opportunity of its kind and 

hence implicitly as the entire population of the possible modelling approaches. Under 
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these circumstances, the choice of the members appears as the unique source ofsampling 

uncertainty in t he process of selecting one particular subset array. 

1.2.4 Model sampling 

Since in principle, an infinite number of models could be imagined, let us extend the 

previous assumption on t he nature of the population. vVe now assume that the multi­

model ensemble consists in a representative sarnple of a larger population. This lm·ger 

population could be interpreted as including all the possible modelling approaches with 

a similar leve! of complexity to the models of the cmTent generation. Based on this 

assumption, we describe in the following a method for assessing the sampling uncertainty 

that relates to the choice of the models when constructing a subset from a large ensemble 

of simulations. 

The present method consists of generating maHy subset arrays by resampling with re­

placement over the original set of models. Such a method is generally referred to as 

bootstrap (Wilks 2011). As in Sect. 1.2.3, we constrain the selection process to the use 

of one member per mode! that is randomly chosen when severa! exist; this means that 

Lhe choice of the members also contributes to the model-sampling uncertainty. This way 

of generating a multi-model array of size m from a pool of N simulations gives (N+.;;:-1) 

possibilit ies. It is worth noting that in combinatorial analysis, this kind of sample is 

generally called a multiset (Bona, 2006) since one particular element can appear severa! 

times. The latter distinction will be discussed in more details in Sect. 1.3.4. In whaL 

follows , we however refer to an extracted samplc from a larger population as a "subset", 

which stands for a more general point of view. 

By using m = 24 models from a pool of N = 55 simulations (Tab. 1.1) , it is possible 

to form 7.9 x 1019 different ensembles. However, since the selection of a mode! is done 

before the choice of one of its members, an equal probability of occurrence is attributed to 

1.6 x 1013 sets differing by at least one mode!. Naturally, each set may exist under severa! 

possible states that differ only by the selected members. This property refl.ects the fact 
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that the number of members representing a mode! does not influence its probability to 

be drawn from the pool. Moreover, since the resampling is done with mode! replacement , 

some of the models may be selected severa! t imes while others may not appear at all 

in a given subset. By assuming the MME to be a representative sample of a larger 

population, the "mode! sampling" somehow consists in a generalisation of a classical 

models' pre-selection phase where each mode! would not be considered more than once. 

For a large number of iterations, one can compute the statistics over the k ensemble index 

for ~ and CJ~c, as done in the previous section for the member-sampling approach. vVe 

hence obtain similar statistical coefficients for the signal, the spread and their sampling 

uncertaint ies labelled as 6.mod, u~od' I:mod and u~od > corresponding to (1.6) to (1.9) 

respectively. 

1.3 Results 

1.3. 1 Signal, spread and their uncerta int ies 

We now apply the two approaches described in sections 1.2.3 and 1.2.4 and present the 

results for the summer surface air temperature over North America. Fig. 1.1 shows the 

elima te-change signal mean value ( 6.mern and 6.mod) for three different periods, 2000-

2020, 2040-2060 and 2080-2100 (from left to right) , relatively to the 1900-1950 climate. 

The signal is calculated as an average over: a large number of ensembles (K = 2000) 

generated using either member (Fig. 1.1a.) or mo del (Fig. 1.1 b) sampling approaches. As 

seen from this figure, the two approaches lead to nearly identical results : an important 

temperature increase covering the land part of the domain, with a maximum of 5.5°C 

located on the western part of United States. 

The fact that both approaches give very similar results is expected since for the mode! 

sampling, all modcls have the same probability of being chosen. Hence, for a large num­

bcr of iterations, each model will be chosen an approximately equal number of times, 

similarly to the member sampling where the 24 models are kept fixed at each iteration. 
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Since both approaches lead to practically identical results, we use the symbol 6. without 

subscript in the following to refer to the climate-change signal mean value without re­

gard to the sampling rnethod . It is worth noting that proceeding to a simple arithmetic 

mean over the en tire ensemble of simulations (Tab. 1.1) would have led in effect to a 

weighted average of the signal , because the relative importance of each mode! would be 

determined by their number of available mernbers. lt can be shown (Appendix 4.B) that 

the climate-change mean values presentee! in Fig. l .l a and b consist of unweighted en­

semble means that give equal relative importance to each of the rnodels in the ensemble, 

independently of their sarnple size. 

The sampling uncertainty of the signal mean value is displayed in Fig. 1.2 for both ap­

proaches (U{;,em and U{;,
0
d). For the member sampling (Fig. 1.2a), uncertainty values 

smaller than 0.06°C cover the domain for the titree periods. Patterns display sorne diffe­

rences in their shape with tirne, but the magni tude does not vary substantially. While we 

interpret this as a measure of t he uncertainty related to the choice of members if severa! 

are available, this quantity is a manifestation of the natural variability as simulated by 

the models providing severa! members to the ensemble. 

This measure of uncerta.inty is expected to undere ·timate the overall effect of t he na­

tura! variability that should normally affect the ensemble statistics. lri a hypothetical 

case where the MME would contain a sufficiently large nwnber of members representing 

each mode!, our measure of uncertainty would tend asymptotically towards an unbiased 

estimate of the overall effect of natural variabili ty on the ensemble statistics. This state­

ment is demonstrated in Appendix l.A through au idealisee! experiment using synthetic 

data; this will be also inves tigated analytically iu Chap. 4 (Appendix 4.B) . To keep us in 

perspective, we note that the simulated natural variability can be calculated by using a 

single but very long elima te simulation run und er stationary conditions ( e.g. Deser et al. 

2010) , i.e. without external forcing such as GHGA. Under transient boundary conditions 

such as the present ensemble of simulations, the natural variability is likely to change 

somewhat over climatic time scales (Sorteberg and Kvamst0, 2006). Hence, the natural 
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variability may be seen as a time-dependent measure of uncertainty, which can be quan­

tified using the spread between several members generated using a single model with 

slight differences at the initial conditions. Since both measures are manifestations of the 

same physical process and that we consider it as a blend-effect from several models , we 

use the terminology "multi-model natural variability" for describing this specifie feature 

in the following. 

Let us now consider Fig. 1.2b where is displayed the uncertainty of the signal mean 

value that appears from selecting a set of models ( U~od). More precisely, this measure 

of uncertainty consists in the standard deviation of the climate-change ensemble-mean 

signals (Eq. 1.4) that can be obtainecl from randomly selecting 24 models with replace­

ment from the MME. The values are considerably larger than those obtained using the 

member-sampling approach (note the different scales), reaching 0.4°C in the north of 

Canada. Also, the patterns are consistent in time with an increasing magnitude. 

The inter-model spread mean values (~1nem and ~mod) are displayed in Fig. 1.3. For the 

same reason as for ll. , both sampling methods lead to nearly identical results. We will 

hence adopt the ~ symbol without subscript in the following , for referring to the inter­

mode! spread mean value. One shoulcl note the great similarity of the patterns compared 

to that of U~od (Fig. 1.2b) , with a lar·ger magnitude for~- Values of~ reach l.6°C over 

the centre of United States and exceecl 2°C in the north of Canada. The similarity 

between ~ and U7~od can easily be understood since, by analogy to the standard error 

relationship (von Storch and Zwiers , 1999), the model-sampling uncertainty that affects 

the signal should be proportional to the inter-model spread and inversely proportional 

to the square root of the number of models. 

Finally, the uncertainties of the inter-model spread mean value (U~em and u;_od) are 

shown in Fig. 1.4. For the member sampling (U~em ) , patterns vary with time, without 

any general char1ges in magnitude, as was the case for the uncertainty of the signal 

due to the selection of the members (Fig. 1.2a) . Relatively small values of U~em cover 

the continental region, in a range between 0.05°C and 0.07°C. Based on the results of 
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Appendix 1.A stating that the member-sampling uncertainty of the signal (Fig. 1.2a) un­

derestimates t he real eff'ect of the multi-modelnatural variability, the rhember-sampling 

uncertainty that affects the inter-mode! spread is also expected to be underest imated 

due to the relatively small number of members available for each mode! in the ensemble. 

The model-sampling uncertainty of the inter-mode! spread (U~0d) is, as expected , larger 

than U~em > with a maximum of 0.6°C in Lhe north of Canada. One should note sorne 

similarity between the model-sampling uncertainty of the inter-mode! spread (Fig. 1.4b) 

and the inter-mode! spread mean value (Fig. 1.3). T hese two quantities are related in a 

similar way as are the uncertainty of the signal mean value and the inter-mode! spread 

mean value t hrough the standard error relatiouship . For instance, the expected error 

of the variance estimator is proport ional to the square of the population variance for a 

clataset consisting in inclependent and identicaJ!y disLributecl normal random variables 

(von Storch and Zwiers, 1999). 

1.3.2 Smaller ensemble of opportunity 

The previous section presentee! results using ali of the 24 models that are available in 

t he ensemble. One issue in assessing the member-sampling uncertainty is that 13 of the 

24 models are representee! by only one member. For each subset an ay obtained with 

the member-sampling approach, these 13 models do not allow any possibility of varying 

the elected members, thus increasing artificially the apparent stability of the ensemble 

statistics and hence decreasing the magnitude of the result ing perceived uncertainty. 

An approach that aims at minimising this issue is simply to remove from the ensemble 

the 13 models representee! by only one member. By the same logic , one could also 

choose to retain only the models with the largcst number of membcrs after removing 

those with a sample size that is smaller than sorne predefined threshold. It is worth 

noting t hat this specifie pattern of models' pre-selection to form smaller subsets allows 

maximising the number of possible ensembles that can be formed by using the member­

sampling approach. A side effect is that it compromises the diversity of the models in 

the calculation of the member-sampling uncerLainty. According to Appendix l.A, the 
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11-model subset that is based on the models with at !east two realisations consists 

in an educated guess in order to minimise the side effects from an unequal and small 

number of members across the models. IL is hence expected that a small systematic bias 

will remain between our measure of the member-sampling uncertainty and the expected 

value of multi-model natural variability. In the following, we present results in a similar 

way as in Sect. 1.3.1, but for the 11-model ensemble where each mode! is represented by 

at least two members. 

Fig. 1.5a shows the signal mean value for the surface air temperature obtained using 

the 11-model ensemble. Compared to the signal mean value calculated from the entire 

24-model ensemble (Fig. 1.1), the signa.! extracted from the 11-model ensemble has a 

maximum that is located nearer to the west coast of United States, with slightly weaker 

intensity. 

For the member-sampling uncertainty of Lhe signal mean value (Fig. 1.5b) , the patterns 

are very similar to that of Fig. 1.2a, but with more than twice its intensity ; since the 

models with only one member have been removed from the ensemble, the member­

sampling uncertainty of the signal mean value originates from same variations of the 

elected members as for the entire 24-model ensemble. The member-sampling uncertainty 

obtained for the 11-model ensemble consists in a mult i-model blend of natural variability, 

but its overall effect on the signal mean value is expected to be slightly underestimated . 

For the model-sampling uncertainty of the signal mean value, Fig. 1.5c shows an inCl·ease 

of the uncertainty comparee! to Fig. 1. 2b. The values reach approximately 0.15°C over 

central United States. This increase of the uncertainty is mainly due to the larger stan­

dard error of the mean when using a smaller sample of models. A second contribution 

is that shown in Fig. 1.5b, since the member-sampling uncertainty is implicit ly included 

in that of the model sampling. 

In order to analyse further the impact of the sampling uncertainty on the ensemble 

statistics, we introcluce here a measure of relative uncertainty, calculatecl as U~eml 6. 
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and U7~odl b. , as shown in Fig. 1.6a and b for mcmber and mode! sampling, respectively. 

It can be seen from Fig. 1.6a that the member-sampling relative uncertainty decreases 

with time due to the fact that the intensity of the member-sampling uncertainty is 

approximately constant with time (Fig. 1.5b) whilc the climate-change signal mean value 

increases. For the 2000-2020 period (Fig. 1.6a, lefl panel), the values are generally smaller 

t han 10% over the cont inental region, while two sLrong maxima(> 15%) are located in 

the north of Canada and near Greenland. The model-sampling relative uncertainty of 

the signal for the 2000-2020 period (Fig. 1.6b, lefL panel) gives values that can reach 20% 

over the continental regions, while maxima over the Pacifie Ocean and near Greenlancl 

are larger than 35%. With time, the model-sampling relative uncertainty of the signal 

decreases briefl.y after the 2000-2020 period , but remains approximately constant from 

2020-2040 to 2080-2100. 

Let us now take a look to the inter-mode! spread mean value and its components of 

uncertainty for the 11-model ensemble (Fig. 1.7). As for the signal mean value, the 

patterns of the inter-mode! spread (Fig. 1.7a) are substantially different from those ob­

tainecl using the 24-model ensemble (Fig. 1.3). The magnitude of the inter-mode! spread 

for the 11-mode! ensemble is smaller most! y over continental regions, while over ocean 

it tends to exhibit similar values. For the membcr-sampling uncertainty of the spread 

mean value (Fig. 1.7b), patterns vary with timc, with sorne persisting features such as 

the maximum over United States. The model-sampling uncertainty of the inter-mode! 

spread (Fig. 1.7c) grows with time as for the spread mean values for both ensembles of 

mo dels (Fig. 1. 7a and Fig. 1.4b) . 

In Fig. 1.8 is shown the relative uncertainty of the spread mean value, written as U~em/r, 

and U!;_
0
d/'E for the member and model sampling rcspectively. For the member sampling, 

the relative uncertainty decreases with time sincc the absolu te uncertainty (Fig. 1. 7b) 

does not change so much in intensity while the spread mean value (Fig. 1.7a) considerably 

increases with time. Finally, the relative uncertainty due to the sampling of the moclels 

(Fig. 1.8b) is nearly constant with time, clue to the fact that the uncertainty component 
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increases at a similar rate as the sprea.d mean value. 

To summarise our results , we present in the following the different components of un­

certainty as function of the size of the ensemble subset, for one grid point centred over 

the Québec province in Canada. We use particular ensembles of different sizes chosen by 

removing models represented by less than 2, 3, 4 and 5 members, resulting in ensembles 

fonned by 11 , 10, 5 and 3 models, respectively. This particular pattern for selecting the 

models allows optimising the sampling of the natural variabili ty in smaller multi-model 

ensembles. Such an approach tends to maximise the measure of the member-sampling 

uncertainty by minimising its systematic bias (due to an insufficient number of mem­

bers). However, we note that it does not maximise the intensity of the member-sampling 

uncertainty from the physical point of view, given that important inter-mode! differences 

exist in the simulated natural variability. The different components of uncertainty are 

shown in Fig. 1.9 for the three time periods. Reducing the size of the subset ensemble 

increases the member-sampling uncertainty, similarly for both the signal and the spread. 

While the member-sampling uncertainty exhibit a similar magnitude for both signal and 

spread, at ali times, the model-sampling uncertainty increases with time at a similar rate 

for the signal than for the spread. 

Finally, the components of relative uncertainty as function of the ensemble size are shown 

in Fig. 1.10. The relative uncertainty increases when reducing the ensemble size, at a 

fa.<;ter rate for the uncertainty of the spread compared to that of the signal, for both 

member and mode! sampling uncertainties . The member-sampling relative uncertainty 

of signal and spreacl diminishes with time, while the model-sampling relative uncertainty 

shows sorne decreases from 2000-2020 to 2040-2060 and remains approximately constant 

until 2080-2100. This stability with time of the relative uncertainty is due to the fact 

u;;,od and u~od increase at a rate that is partly balanced by 6. and I; respectively. 

For U~odfL:: , t his balance is somewhat expected since U~od depends on I:. For U/;,
0
d/ 6. 

however, the balance occurs rather by chance since U/;,od depends on I: while 6. depends 

on the intensity of the GHGA forcing . 
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1.3.3 Revisiting the plume diagram 

In this section, we extend the concept of the sampling uncertainties to the construction 

of plume diagrams presented in Christensen et al. (2007) . From Sect. 1.2.4, the model­

sampling approach is applied to calculate the signal and inter-mode! spread mean values 

(6 and I:) with their respective uncertaint ies (u;;od and u;_odJ over the entire 200-year 

period; we also calculate U~em and U~em as described in Sect. 1.2.3. 

Let us now present the plume diagrams for the surface air temperature field over a 

grid point centred over the Québec province of Canada, using the 24-model ensemble 

(Fig. l.lla), the 11-model (Fig. l.llb) and the 5-model ensemble (Fig. l.llc). The signal 

mean value (6 ) is displayed as the blue fullline; the signal uncertainty that is due to the 

sampling of the models (U~0d) is drawn as blue dashed !ines calculated as 6 ± 2 x U~od' 

and similarly for the sampling of the members as blue dotted !ines (6 ± 2 x U~em) · 

The upper and lower boundaries of the ensemble cnvelope (reel full !ines) are calculatecl 

by using the signal and inter-mode! spreacl mean values combined as 6 ± 2 x I:. The 

moclel-sampling uncertainty affecting the envelope bounclaries is given by the four reel 

dashed !ines and calculated as 6 ± 2 x L; ± 2 x u;_od; similarly, the member-sampling 

uncertainty is displayed as red dottecl !ines using .6. ± 2 x I: ± 2 x U~em · 

The plume cliagram clisplayed in Fig. 1.11a is obtainecl using t he entire 24-model eH­

semble and shows a surface air temperature incrcase of 4°C in the signal mean at the 

horizon 2080-2100. The signais obtained from different ensemble sizes differ slightly, with 

values of 3.5°C and 3.3°C for the 11-model and 5-model subsets , respectively. It shoulcl 

be noted that it is not an effect due to the ensemble size, but rather a consequence of 

the particular choices of the models fm·rning the ensembles. 

For the same time horizon of 2080-2100, the sigual has a model-sampling uncertainty of 

0.5, 0.6 and 0.8°C for the 24-, 11- ancl5-model ensembles, respectively. This component of 

uncertainty describes the stability of the signal coefficient for arbitrary ensembles of the 

prescribed sizes, under the assumption that the Ml'v1E consists in a representative sample 
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of a lm·ger population that would consider all the possible modelling approaches with a 

similar leve! of complexity than those that are currently available in the pool. Indeed , 

if new models were available in the pool for example by including more processes and 

having finer resolution, there are reasons to believe that the inter-mode! spread among 

models would likely increase (Knutti , 2010) , hence inducing a corresponding increase of 

the perceived uncertainties . 

Similarly to the signal, the inter-mode! spread has different values depending on which 

models are chosen to form the ensemble, with values of 2.3 , 2.0 and l.8°C at the horizon 

2080-2100 for the three ensemble with 24, 11 and 5 models. As discussed above, the 

uncertainty of the signal due to the sa.mpling of models increases when reducing the 

ensemble size, but also is proportional to :B as it is generally the case for standard 

errors. The uncertainty of the inter-mode! spread is 0.2, 0.2 and 0.4°C for the 24-, 11-

and 5-model ensembles, respectively. In both cases of signal and inter-mode! spread, the 

uncertainty due to the sampling of the members has very little impact on the statistics 

(blue and red dotted !ines, respectively) for the 24-model ensemble, but it i_ncreases 

significantly when reducing the ensemble size. As noted previously, the latter source of 

uncertainty is probably underestimated, particularly for the 24-model ensemble, due to 

the very poor sampling of the members compared to the number of models within the 

ensemble. 

The plume diagrams shown in Fig. Lll characterise one variable over a particular lo­

cation. The general idea to be retained from these results however is that these plume 

diagrams appear as "blurred" in both their mean and spread components. This blurring 

is the perceived error in the ensemble statistics and aims at representing the uncer­

tainty that face experts when selecting a. subset from a large ensemble of simulations. 

It consists in a manifestation of known sources of uncertainty, in the present case the 

natural variability a11d the inter-mode! spread. 
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1.3.4 Constraining the selection process 

Like any decision process that is not based on pure randomness , choosing a set of si­

mulations from a large ensemble should involve well-defined constraints. While such 

constraints may be very specifie to the matter of a study, others are of common use in 

climate sciences. One rather popular constraint is the use of one realisation per rnodel if 

severa! are available ( e.g. Bombardi and Carvalho 2011 , Peings and Douville 2010, Riüsà­

nen et al. 2010) , which allows to considerably reduce the size of an ensemble while retai­

ning much of the information relative to the model uncertainty (inter-Jriodel spread). One 

may also think of more complex constraints, for example based on mode! performance 

(Gleckler et al. , 2008), institutional independence (Whetton et al. , 2007) or clusters in 

the phase space (Houle et al. , 2012). 

Other constraints may, at first sight , appear as implicit but can be relaxed for more gene­

rali ty. For example, the rnodel-sampling technique Lhat has been appliecl throughout this 

article ernploys mo del replacement. However , in a real expert-basecl pro cess of selecting 

a mult i-model array of simulations, a same mode! is generally not included more than 

once. Allowing for model replacement in the resampling technique has been intimately 

related to the assumption that the MME is a representative sample of a lar·ger popu­

lation. On the other hand, if one assumes that the MME is not representative of any 

lar·ger but rather consists in the entire population of modelling approaches, the selection 

of a set of models should be clone without replacement. In what follows, we investigate 

the effect of choosing one of these two assumptions about the nature of an ensemble of 

opportunity through an experiment based on synthetic data. 

Let us consider an artificial 24-model array where each mode! is represented by a single 

number. By simplicity, we assume a unique member to be available for each of the models. 

This array is generated using a random number generator based on a normal distribution 

wit h zero mean and unit variar1ce. We hence apply the model-sampling approach as 

described in Sect. 1.2.4 for K = 2000 iterations and repeat this procedure for each 
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sample size m from 24 to 2. For each drawn subset of a given size, the ensemble mean is 

first calculated and next the standard deviation over all the means (previously denoted 

as U~od > according to Eq. 1.7) is calculated. In a similar way, we repeat the previously 

described technique over the same initial 24-model array but with the difference that we 

use a "no-replacement constraint" throughout the resampling procedure, unlike what is 

normally done for bootstrapping techniques. 

The results are shown in Fig. 1.12a where the blue and green curves represent the 

perceived error of the mean depending on the version of the model-sampling technique, 

i.e. with and without replacement , respectively. Both curves are normalised using the 

standard deviation of the initial sample, which in practice differs from 1 because the 24-

model ensemble is of fini te size. For reference, a red curve has been added corresponding 

to the well-known standard error law in its normalised form , i. e. 1/ ,;m. As seen from 

the figure, the uncertainty of mode! sa.rnpling with replacement agrees fairly well with 

the standard error relationship . A subLle underestimation however appears in intensity, 

which is due to the fini te size of the initial sample (i.e. m = 24). 

According to Fig. 1.12a , the underlying assumption about the nature of the ensemble of 

opportunity plays an important role in interpreting the ensemble statistics from the point 

of view of their sampling uncertainty. The important differences between the blue and 

green curves can be related to the number of combinations that can be formed from the 

initial pool. While (N+;;:-1) multisets (with replacement) of size m can be formed from 

a pool of N elements, (~) subsets (without replacement) are possible. For convenience, 

Fig. 1.13a shows the number of combiuations that are possible for multisets (blue) and 

subsets (green). The t rivial case consists in m = 24 where the extracted sample has the 

same size as th entire pool. Thus, it leavcs a single possibility of forming an ensemble by 

considering all of the models. For m = 24 in Fig. 1.12a , a nul! value of uncertainty is hence 

attributed to the selection of a group of models since the extracted sample consists in 

the entire population. For an equal sample size, mode! sampling with replacement allows 

for 1.6 x 1013 different combinations of models. In the latter number of combinations, 
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ali but one involve at !east two replicates of a same mode! and these combinations result 

in a value of 0.2 for the uncertainty of the mean. 

It is worth noting that t he possible ensembles thal can be formed without replacement 

are included in those for the case that allows for mode! replacement . The blue curve 

in Fig. 1.13a hence represents the total number of ensembles that can be formed both 

with and without replacement , while t he green curve accounts only for the latter. By 

analysing these two curves, it can be seen that the relative importance of the number of 

possible ensembles formed without replacement increases relatively to the total number 

of ensembles. This can be seen more clearly in Fig. 1.13b where is shown the ratio between 

t he number of subsets and multisets . This ratio diminishes rapidly when increasing the 

sample size, t he number of subsets (wit hout replacement) representing 43% of the total 

number of combinations at m = 5, while it shows 2% for m = 10. Since, when decreasing 

the sample size, the combinations formed without replacement represent an increasing 

proportion of the total number of combinatious, this necessarily leads to converging 

errors of the mean as seen in Fig. 1.12a. The fact that both measures of uncertainty 

converge when decreasing the sample size can be seen in Fig. 1.12b where is shown 

the ratio between the error emerging from resampling without and with replacement. 

The error ratio deet·eases monotonically with increasing the sample size, resampling 

without replacement representing approximately 90% of the error obtained by allowing 

replacement for m = 5, while it represents 40% for m = 20. 

In summary, introducing constraints to the selection process along with a specifie as­

sumption about the nature of t he population are considerations that play an important 

role in characterising the uncertainty related to experts ' decisions. Moreover, we note 

that a systematic application of a constraint may reveal some patterns in the decision 

process. For example, in Sect. 1.3.2, we constrained our selection of smaller subsets by 

advocating models with largest sample sizes in order to minimise the systematic biases 

affecting the member-sampling uncertainty. A wonying pattern that could emerge from 

such a strategy could consists in a "liberal picture" of the multi-model natural variabi-



32 

lity, which tends to over-represent the wealthiest researc~ centres with larger resources 

allowing performing a larger number of simulations. Another pattern of selection that 

will be investigated in Chap. 2 consists in constraining the selection to the models that 

have been developed by different modelling centres. Such an approach reveals important 

benefits by limiting the occurrence of uninformative consensus that contaminate the 

message conveyed by an ensemble of opportunity. 

1.4 Discussion and conclusions 

Climate-change projections are mainly based on AOGCMs' simulations that are forced 

by increasing concentration of GHGA in the atmosphere over periods extending from 

decades to centuries. It is weil known that ensembles of such simulations generally lead 

to a broad range of climate-change projection when using severa! models, which may 

differ from a structural point of view, addit ionally to differences in the tuning of weakly 

constrained parameters and in the numerical approximations used in the discretisation 

of the equations. Severa! internationally coordinated projects have been set up over the 

last decade in order to compare models ' results and quantify the inter-mode! spread that 

is often interpreted as the uncertainty in modelling the climate system. In general, such 

ensembles do sample the differences in modelling approaches, but neither i~ a random 

nor in a systematic ma.nner. Often called ensembles of opportunity, these are formed in 

a rather open way : the resulting sample of simulations highly depends on the fact that 

research centres are free to participate by delivering an arbitrary number of members 

generated using one or severa! models or versions. 

Ensembles of opportunity are important for informing the public, the scientific commu­

nity and the policy makers about fu ture climate changes. Additionally to their direct 

use in climate-change assessments, these simulations are often used as an input to other 

kinds of models, such as Regional Climate Models (RCMs; Rummukainen 2010) and 

Statistical Downscaling Models (e.g. Dibike et al. 2008). However, many centres that 

use the output data from an ensemble of opportunity are constrained to process only 
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a small set of simulations comparee! to the available ensemble. For example, the dyna­

mical downscaling of AOGCM simulations using an RCM involves large computational 

resources due to the use of high resolutions and long time periods, additionally to the 

treatment needed for preparing the driving fields. T he selection of a subset of simula­

tions from a large ensemble is generally basee! on experts' judgement , depencling upon 

the goals of the stucly. A rather popular choicc for rcducing the size of a large ensemble 

is to use only one member per mode! when severa! are available. This choice is generally 

supportee! by the assumption that the inter-mode! spreacl is more important than the 

simulatecl na tura! variability when using simulations over long time periods ( e.g. severa! 

decades) . Other types of decisions are more specifie to the selection of the models to 

be part of the new ensemble, for example basee! on their simulation of specifie climate 

features, mode! performance, institut ional indepeudence, compatibiliLy issues or simply 

based on the availability of particular fields of inLerest ( e.g. needed for clriving an RCM) . 

As statecl in introduction, experts generally face up three levels of decision when using 

the data from a large ensemble of opportunity the pre-selection of a set of simula­

tions from the available ensemble, the use of other types of models for processing the 

AOGCMs' output and the combination of the simulations into ensemble statistics or 

probabilistic projections. In this chapter, we airnecl a t quantifying the uncertainty rela­

tee! to the first leve! of experts' decisions. The second and thire! levels are simplifiee! by 

not using any other kinds of models (e.g. RCMs) and by calculating common ensemble 

statistics, namely the ensemble mean climate-change signal and the inter-mode! spread. 

T he process of selecting a subset of simulations from a large ensemble has been investi­

gated by considering the selection of both the members and the models . We firsL defined 

the member-sampling approach that is basee! on two basic constraints : one member per 

mode! is retained when severa! are available and the selection of the models forming 

the ensemble is kept fixee!. It results in a large number of possible multi-model arrays 

that differ only by the selection of members. From a more general point of view, the 

member-sampling approach assumes the pre-selected sample of models as the one and 

only opportunity of its kind and hence it consists in the entire population of modelling 
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approaches. No sampling uncertainty is hence attributed to the selection of the models 

while the only source resides in the choice of the member (if severa! are available) that 

represents each mode!. By resampling over a large number of mult i-model arrays , we 

obtained the member-sampling uncertainty of the ensemble statistics, which is a mani­

festation of the models ' natural variabili ty. 

On the other hand, the model-sampling approach is also constrained ~y the selection of 

one member per mode! if severa! are available, but wit hout the second constraint , that is 

the selection of the models is not fixed a pr·iori. By resampling over severa! multi-model 

arrays , this approach allows to assess the sampling uncertainty that is due to both the 

choice of the models and the members. Additionally to the fact t hat the mode! sampling 

accounts for the choice of the models, it is more general than the member-sampling 

approach in its underlying assumption about the nature of the ensemble of opportu­

nity. More precisely, it assumes that the MME is not unique but rather consists in a 

representative sample taken from a lm·ger population of possible modelling approaches. 

In the present experiment , this representativeness emerges from allowing mode! repla­

cement in the sampling method. It results in a model-sampling uncertainty that is a 

direct manifestation of the inter-mode! spread through the well-known standard error 

relationship. 

As seen from the results , the member-sampling uncertainty shows very small values for 

both signal and spread, especially when using ail of the 24 models. We emphasise on the 

fact that the member-sampling uncertainty underestimates the real natural variability 

in the ensemble statistics, as shown in an alternative experiment using synthetic data 

(Appendix l.A) . T his underestimation is mainly due to t he small and unequalnumber of 

members representing each mode! in the ensemble. We aimed at reducing this systematic 

bias by removing from the ensemble the models with less than 2, 3, 4, and 5 members, 

thus increasing the minimal number of members that are available for the considered 

models. One drawback from not considering some of the models consists in a reduction 

of models' diversity in the sampled natural variability. As expected for both the signal 
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and the spread , the member-sampling uncertainty increases as function of the decreasing 

number of models in the ensemble. The uncertainty also remains approximately constant 

with time in absolute terms, but decreases when analysed as relatively to the ensemble 

mean signal and inter-mode! spread , which both increase with time. 

In the results obtained from the use of the model-sampling approach, the uncertainty 

for both signal and spread has been shown to iucrease when diminishing the number of 

models in the sample, as it is generally the case with standard errors. It also appeared 

to increase wit h time, since the model-sampling uncertainty necessarily depends on the 

inter-mode! spread. The model-sampling relative uncertainty displayed some tendency 

to remain constant with time, which seems to occur somehow by chance for the signal 

since the signal and the inter-mode! spread are not directly related : the strength of 

the signal depends on the magnitude of the GHGA emissions while the inter-mode! 

spread depends mainly on the structural differences between models and their different 

response to changes in forcing. For the relative uncertainty of the inter-mode! spread, 

this balance can be expected since the model-sampling uncertainty of the spread depends 

on the spread itself. 

The member and mode! sarnpling uncertainties have been used in the construction of 

a plume diagrarn, where the signal mean and inter-mode! spread appear as "blurred" 

features. The thickness of the model-sampling uncertainty envelopes affecting the signal 

and the spread necessarily depends on both the inter-mode! spreacl and the number 

of moclels involvecl in the ensemble, acldi tionally Lo a contribution from t he member 

sampling. Taken atone, the member-sampling cnvelope of uncertainty depends on the 

number of rnoclels forming the ensemble and consists in a blend of the natural variability 

as simulated by severa! different models. This blend is attenuatecl compared to the real 

effect of the natural variability that is expectecl from the use of an ensemble where each 

mode! would be represented by a sufficienLly large number of members. As will be seen 

in Chap. 4, the extent to which the member-sampling uncertainty underestimates the 

real value of the multi-model natural variability mainly depends on the minimal number 
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of members that represent a mode! in the ensemble. 

Our experimental framework aimed at quantifying the uncertainty range resulting from 

the choices made by data users when selecting a set of simulations from a large ensemble. 

It is important to note that this kind of uncertainty should not be seen as a supple­

mental'Y source to those that are currently known such as GHGA emission pathways, 

inter-mode! differences and natural variabili ty (see Foley 2010 for a review) . Rather , the 

sampling uncertainties should be interpreted as different manifestations of these known 

sources. Moreover, our perception of these sources can be altered through the selection 

process depending on the constraints that are involved and the assumption about the na­

ture of the ensemble of opportunity. For instance, the member-sampling uncertainty un­

derestimates the multi-model natural variability while the model-sampling uncertainty is 

a direct consequence of the inter-mode! spread (mode! uncertainty) through the standard 

error relationship. It is worth noting that a mode! selection based on the assumption that 

the MME consists in the entire population of modelling approaches would not involve 

any mode! replacement and hence the perceived sampling uncertainty would consist in 

an underestimation of what is expected from t he standard error relationship. Of course, 

the present approach for assessing the sampling uncertainties could be extended to more 

complex ensemble statistics than means and variances , for example by using quantiles. 

vVe also note that the previous results are conditional to one specifie emission scenario 

and hence that the sampling uncertainties could be extended to the scenario dimension 

as well , additively to the models and the members. 

A variety of possible choices that are left to the user when selecting simulations from a 

large ensemble has been explored in this chapter by using resampling methods based on 

a set of prior constraints. The main constraint that consists in retaining a single mem­

ber per mode! reflects a typical decision made by experts in order to efficiently reduce 

the size of a large ensemble of opportunity. While the choice of the members is often 

clone randomly in real-life applications, we acknowledge that this method is a simplified 

representation of a real expert-based pro cess of selecting a set of mo dels from a large 
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ensemble. From that point of view, our experimental framework could be extended for 

better representing such a process. For example, one could add constraints to the selec­

tion process, such as by forbidding severa! models developed by a same research centre to 

. be part of a same ensemble. Our approach could be also used to seek for ensembles with 

special characteristics, for example by maximising the inter-mode! spread for a given eH­

semble size. Though sorne similarities could be noted between the !aLLer application and 

clustering methods (Houle et al. , 2012) , considering both approaches in complementa­

rity could provide a powerful framework for investigat ing the simulations' pre-selection 

problem. On the other hand , however, it is always worth questioniug Lhe potentially 

diminishing return of implementing complex and expensive strategies for selecting a set 

of simulations. This is especially t rue when, as scen previously, the sampling uncertainty 

related to the choice of an ensemble is smaller LhaJ1 what should be expecLed from the 

known sources . 

In the application of the model-sampling technique, the generation of a particular en­

semble could be related to the use of an arbitrary weighting procedure, in the sense that 

sorne of the models may be accounted for severa! Limes while others are not considered at 

ali in the calculation of the ensemble mean. By applying the model-sampling technique 

with severa! iterations, it however appears as coutradictory with a potential assessment 

of the ùncertainty related to such weighting procedures. T he importaut difference is that 

the model-sampling technique weights the modcls in an unconstrained manner, i.e. ran­

domly and uniformly, while by definition, the common weighting procedures attribute 

weights according to specifie physical constraints (e.g. Allen and Ingram 2002). While a 

robust constraint should not involve a large dependence of the weighLed results onto the 

ensemble under consideration, applying the model-sampling technique according to a gi­

ven physical constraint could allow to quantify the sampling uncertainty related to that 

specifie weighting procedure, thus providing a comprehensive measure of robustne~s. 

Another possible application involves the membcr-sampling approach that could be used 

for investigating the overall effect of the natura.l variability that arises from a combina-
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tion of severa! models. As said previously, the uncertainty due to the selection of one 

member per mode! results in an underestimation of the real effect of the simulated natu­

ral variabili ty due to t h.e insufficient and unequal number of members representing each 

mode!. As shown in Appendix l.A , such a systematic bias can be reduced by applying a 

correction factor based on synthetic experiments results. On the other hand , the analysis 

of variance (ANOVA) is a popular approach used for decomposing the variability of a 

system into severa! components, such as the mode! uncertainty and the natural varia­

bility. However, such an approach is not always suitable for the case of unequal sample 

sizes, especially when the smallest samples count very few elements. 

From a more general point of view, both the selection of a set of simulations and the 

application of weighting procedures can be understood as expert-based samplings that 

are applied to an already existing ensemble. We note that this supplementary sampling 

should be weil distinguished from the initial sampling of the ensemble. Often described 

as neither random or systematic, the initial sampling of an ensemble of opportunity 

can be interpreted as a "natural pre-selection" between severa! modelling approaches, a 

process by which a better representation is given to modelling centres that can afford 

the delivering of a larger number of simulations. On the other hand , an expert-based 

selection is often applied due to limiLed resources for handling ali of the available data. 

In such a case, the reduction of a large ensemble has to be carefully clone by minimising 

any potential Joss of information that could serve the purpose of the study. Another 

reason for applying an expert-based selection is the aim at "correcting'' some uneven 

characteristics that appear in the initial sampling of an ensemble, such as by filtering 

out supplementary models developed by a same institute, a method that might help to 

recluce the occurrence of uninformative consensus between the moclels ' results . 

The two main assumptions about the nature of the population related to an ensemble of 

opportunity that have been investigatecl through this work are at the basis of a majority 

of studies in climate sciences, as well as in other fields. While these points of view can 

be argued for, they remain very specifie lo the ensemble at hand by either considering 
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it as the entire population or by projecting it toward a lar·ger ensemble but with similar 

distributional characteristics. In consequence, it hides an important part of the problem 

by not questioning the "neither random or systematic" .nature of the sampling process 

by which an ensemble of opportunity ha..s been formee! . In orcier to provide a clearer 

picture of this important issue, one should think of a thire! assumption about the nature 

of an ensemble of opportunity by which it is not representative and likely to be biased 

from an idealisee! population of modelling approaches. While the task of defining such 

a population may seem out of reach , sorne realistic considerations cau be made at least 

in the01·y; it should be formee! by mostly independent climate models in orcier to allow 

sorne car1cellation of the models' respective biases with an increasing sample size. Such 

a task should necessarily be undertaken by filtering the multi-model ensemble according 

to robust constraints of selection or weighting procedures, which are far from making 

broad consensus within the clirnate-science cornmLmity. 
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Appendix l.A : Perfect-ensemble experimeut for bias correction in the statistics 

related to an unbalanced design 

In this appendix, we present an idealised experirnent conducted with synthetic data in 

order to evaluate how the uncertainty emerging from the member-sampling approach is 

affected by the "imperfect geometry" of a multi-model ensemble, due to the fact that 

there is a varying number of members for different models. 

Let us consider P as an ensemble of simulations composed of 24 models, where each 

mode! would be represented with 24 realisations. The simulations can be arranged as 

a matrix where the models are distributed horiz:ontally and the realisations vertically. 

vVe refer to this matrix as a "perfect ensemble", siuce every mode! would have an equal 

number of realisations and because the number of members for each mode! is sufficiently 

large to offer a relatively good sample of each model's natural variability. Structurally, 

the multi-model ensemble (MME) shown in Tab. 1.1 can be considered a subset of P , 

as sho>vn in Fig. 1.14, where the black elements represent t he available simulations from 

t he MME and the white elements the simulations that are missing conipared to P. The 

subset is denoted as I and is referred to as the "imperfect ensemble". 

A perfect-ensemble experiment will be realised based on synthetic data and hence does 

not imply any real data from climate models. From the concept of the perfect (P) and . 

imperfect (J) ensembles, as previously defined, random processes are used to emulate the 

climate models' database. The methodology can be summarised through the following 

steps : 

1. Construct the P matrix where each element I{j is generated using the following 

statistical mode] : 

(1.10) 

where the two components on the right-hand side consist of normally distribu-
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ted random processes characLerised as : 

Qi rv N(p, = 0, CJ
2 = 100) 

b.ij rv N(p, = 0, (J2 = 25) 

(1.11) 

(1.12) 

where p, and CJ
2 are the mean and the variance defining each of the two pro­

cesses . Thus, every element Pij mimics a climate-change signal simulated by 

the lh member of the ith modeL The values of variance in (1.11) and (1.12) 

have been chosen arbitrarily but their relative magnitudes aim at emulating 

the inter-mode! spread (CJ = Hl) and the natural variability of individual mo­

dels (CJ = 5). We assumed I = 24 models, and for each mode!, J = 24 members 

are generated. 

2. Construct I by applying the MME mask (Fig. 1.14) toP. 

3. Apply Lhe member-sampling approach to both sets (P and I) , with 2000 itera­

tions, to obtain the member-sa.rnpling uncertainty. The sampling uncertainty 

of the mean is calculated from P and I and denoted with U~èfn and U~/m 

respecLively. 

4. Repeat steps 1 to 3 severa! times (1000 iterations), where each iteration consists 

in a new initialisation of the P matrix according to the mode! described by 

(1.10) to (1.12). 

5. Repeat step 4 using different definitions of the P and I ensembles. Similarly 

to the selection pattern that is applied in this chapter, we successively remove 

the models with the smallest number of members, i.e. from the right to left 

in Fig. 1.14. The selection pattern is applied to P and I (and similarly to the 

mask) , leading to ensembles of 11 , 10, 5 and 3 models, thus maximising the 

number of available elements for each reduction along the mode! axis. 

V.l e now consider the results obtained for the 11-model ensemble. In Fig. 1.15 are shown 
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the distributions for the sampling uncertainty of the ensemble mean , with normalised 

frequencies, for the perfect (U~e~ , left panel) and imperfect (U~;/m, right panel) cases. 

These distributions represent the range of values Laken by the uncertainty across the 

1000 experiments , each one being characterised by a new initialisation of the P matrix. 

For the perfect case, t he distribution of the uncertainty is not centred on the red line 

that indicates the expected value of uncertainty. This expected value consists in the 

standard error of the mean that emerges from uatural variabili ty, hence CJ / vm = 1.5, 

where CJ = 5 from (1.12) and m = 11. The distribution is slightly biased toward smaller 

values, meaning that 24 members are not enough for the maLrix Lo be strictly perfect. 

Due to the large computational cost of the present experiment , we still assume that P 

is a perfect matrix by neglecting this small bias . 

It can be seen in Fig. 1.15 that the distribution of the member-sampling uncertainty 

in the 11-model ensemble mean for the imperfcct case (right panel) is characterised by 

changes in its parameters, namely the location (mean) and the scale (standard devia­

tion). vVhen compared to the perfect case (Ieft panel), the imperfect ensemble shows a 

systematic bias toward smaller values and its scale is larger. 

Let us now introduce a bias-correction fac tor ( G) that characterises the transformation 

of the distribution from the imperfect to the perfect case. This correction factor can be 

written as follows : 

(1.13) 

consisting in the ratio between the member-sampling uncertainty obtained from the 

perfec t and the imperfect matrix , for each of the 1000 iterations (step 4) and ensemble 

sizes (step 5) . The distribution of G as functiou of the number of models forming the 

ensemble is shown in Fig. 1.16. When reducing the number of models and thus increasing 

the number of available elements relatively to the perfect matrix, the distribution of 

t he bias-correction factor moves to the left and tends to be centred over 1. For the 

24-model ensemble, G is distributed around 1.7 and stands far away from the other 

ensemble sizes, which are centred slightly higher than 1. While the distributions for the 
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11- and 10-model ensembles are quite similar, the 5 and 3-model ensembles show some 

displacement toward unity. However, despite that the correction factor gets doser to 1, 

reducing the dimension of the mode! axis leads to some ]oses in the mode! diversity of 

the ensemble in its sampling of the natural variability. The 11-model ensemble seems to 

be the best compromise between having a bias-correction factor near of 1 and by keeping 

the largest amount of information about the mode! diversity in natural variability. It is 

worth noting that the results for G do not vary when changing the input parameters (p, 

and 0"
2) of the mode! described by (1.1 0) to (1. 12). 

From a practical point of view, one could use the G factor in order to de-skew (by simple 

multiplication) the uncertainty emerging from the member-sampling approach obtained 

in the present chapter. Considering the present perfect-ensemble experiment , the MME 

shown in Tab. 1.1 can be seen as one realisation of the I matrix over 1000 (step 4). lt 

results that the correct value of G for the particular case of CMIP3 is unknown, but 

can be expected to be part of the disLributions shown in Fig. 1.16. An educated guess 

for the choice of G would be to use the value with the highest frequency of occurrence 

in the distribution, for example, G = 1.7 and 1.14 for the 24- and 11-model ensembles, 

respectively. 
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Tab. 1.1: Multi-model ensemble formed by 24 AOGCMs taken from the PCMDI ar­
chive, which provide climate-change projections based on the A1B emission scenario. 
The sample size (Ni) corresponds to the numbcr of members available for the ith mode! 
for a total of 55 runs. For more information about models' names and specifications, the 
reader is invited to refer to the PCMDI website at http: 1 /www-pcmdi . llnl. gov. 

1 i Il Models 1 Sample size (Ni) 1 

1 BCCR.-BCM2.0 1 
2 CCSM3 7 
3 CGCM3.1(T47) 5 
4 CGCM3.1(T63) 1 
5 CNR.M-CM3 1 
6 CSIR.O-MK3.0 1 
7 CSIR.O-MK3.5 1 
8 ECHAM5/ MPI-OM 4 
9 ECHO-G 3 
10 FGOALS-gl.O 3 
11 GFDL-CM2.0 1 
12 GFDL-CM2.1 1 
13 GISS-AOM 2 
14 GISS-EH 3 
15 GISS-ER. 4 
16 INGV-ECHAM4 1 
17 INM-CM3.0 1 
18 IPSL-CM4 1 
19 MIR.OC3. 2(hires) 1 
20 MIR.OC3. 2( medres) 3 
21 MR.I-CGCM2.3.2 5 
22 PCM 3 
23 UKMO-HadCM3 1 
24 UKMO-HadGEM1 1 
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l!. (2000-2020) l!. (2040-2060) /!. (2080-21 00) 

(a) 

l!. (2000- 2020) l!. (2040- 2060) /!. (2080-21 00) 

~n24-K200G-ta-

(b) 

Fig. 1.1 : Signal mean value of climate change calculated using a) the member sam­
pling (É:l.mem) and b) t he mode! sampling ( É:!.mod) methods for the summer surface air 
temperature over North America for three time periods (from left to right) : 2000-2020, 
2040-2060 and 2080-2100 relatively to the 1900-1950 period. Ali the available simulations 
are used in the computation. 
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u~.m (2000-2020) u~em (2040-2060) u~.m (2080-21 00) 

(a) 

u~od (2000-2020) u~oo (2040-2060) u~od (2080-21 00) 

(b) 

Fig . 1.2: Uncertainty of the signal mean value due to a) the member sampling (U~em) 
and b) the mode! sampling (U~0d). Al! the available simulations are used in the compu­
tation. 

I: (2000- 2020) I: (2080-21 00) 

ô 
1 ~ 

(a) 

I: (2000-2020) I: (2080-21 00) 

(b) 

Fig. 1.3: Inter-mode! spread mean value calculated using a) the member sampling 
(~mem) and b) the mode! sampling (~mod)· Al! the available simulations are used in the 
computation. 
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u~.m (2000-2020) u~.m (2040-2060) u~.m (2080- 21 00) 

(a) 

u~od (2000- 2020) u~od (2040-2060) u~oo (2080- 2100) 

(b) 

Fig. 1.4: Uncertainty of the inter-mode! spread mean value due to a) the member 
sampling (UJ;em) and b) the mode! sm'npling (U~0d). Ali the available simulations are 
used in the computation. 
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{!. (2080-21 00) 

u~em (2080- 2100) 

~~ 

u~d (2080-21 oo) 

Fig. 1.5 : a) Signal mean value (.6.) and its componcnts of unccrtainty due to b) the 
member sampling (Ur~em) and c) the madel sampling (U/;0d) , calculated using the Il­
mode! subset. 

l 
1 
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u~•m'"' (2000-2020) u~.m/6 (2040-2060) u~.m/6 (2080-21 00) 
15l'<o=-'~;2:;; 

(a) 

U~aJt. (2000-2020) u~oJ6 (2040-2060) U~aJ6 (2080-21 00) 

(b) 

Fig. 1.6: Relative uncertainty of the signal mean value due to a) the member sampling 
(U~emft:J. ) and b) the mode! sampling (U~odf t:J. ), calculated using the 11-model subset. 
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l: (2000-2020) l: (2040-2060) l: (2080-21 00) 

(a) 

u~em (2000-2020) u~em (2040-2060) u~.m (2080-21 00) 

(b) 

u~od (2000-2020) u~od (2040-2060) u~od (2080-21 00) 

""'""'"--.rr.-. 

( c) 

Fig. 1. 7: a) Inter-mode! spread mean value (I;) and its components of uncertainty duc 
to b) the member sampling (UJ!em) and c) the mode! sampling (Ur~od) , calculated using 
the 11-model subset. 
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u~.m/L (2000-2020) U~em/E (2040- 2060) u~.m/L (2080- 21 00) 

(a) 

u~odŒ (2040- 2060) u~odŒ (2080- 21 oo) 

--~-

(b) 

Fig. 1.8: Relat ive uncertainty of the inter-model spread mean value due to a) the 
member sampling (U~em/ 'E, ) and b) the model sampling (U;,0dj 'E,) , calculated using the 
11-model subset . 
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Fig. 1.9: Uncertainty components for the signal and the spread as fw1ction of the 
number of models in the ensemble for a grid point located at the centre of the Québec 
province of Canada. 
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Fig. 1.10: Relative uncertainty components for the signal and the spread as function 
of the number of models in the ensemble for a grid point located at the cent re of the 
Québec province of Canada. 
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Fig. 1.11: Plume diagram for the surface air temperature in the summer season over a 
grid point centred over the Québec province of Canada. The blue and red full !ines consist 
in the signal and inter-mode! spread mean values respectively, the blue and red dashed 
!ines are the statistical uncertainty of the signal and inter-mode! spread mean values 
using the mode! sampling method, and the dotted !ines the statistical uncertainties using 
the member sampling method . The plumes are obtained from three different ensemble 
sizes: a) the entire 24-model ensemble and the b) 11-model and c) 5-model subsets. 
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Fig. 1.12: a) The standard devia tion of the mean aR function of the sample size obtained 
from a synthctic data set generated using a randorn number generator based on a normal 
distribution with zero mean and unit variance. The initial data set consists in 24 elements 
over which is applied the model-sampling approach by allowing and forbidding mode! 
replacement (blue and green curves respectively). The curves are nonnalised using the 
standard deviation of the initial data set and compared with the normalised standard 
error relationship (in red) defined as 1/ vm,. b) The ratio of the errors given by the green 
and blue curves in (a). 
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Fig. 1.13: a) The number of combinations that can be formed from an ensemble of 24 
models as function of the sample size. In oTeen is shown the number of the combinations 
that can be fo rmed without replacement. The blue curve represents the total number 
of combinations, including both with and without replacement possibilit ies. The blue 
curve is based on the fact that (N+~-1) multisets of size m can be formed from a pool 

of N elements while the green curve reprcsents the (~) possible subsets. b) The ratio of 
the numbers given by the green and blue curves in (a). 
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mo dels 

Fig. 1.14: The "MME mask" where the black elements ("TRUE" values in the code) 
represent the CMIP3 simulations using the AlB scenario and the white elements ("FAL­
SE") stand for the missing simulations in the ensemble compared to the perfect matrix 
P. Models are distributed along the horizontal axis and the members along the vert ical 
one. 
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Fig. 1.15: Distribution of the uncertainty emerging from the member-sampling ap­
proach for the perfect (U~ii':n , left panel) and imperfect (U~ii!n, right panel) matrices. 
Frequencies are normalised to obtain an integral of 1 under each distribution. 
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Fig. 1.16: Distributions of the bias-correction factor ( G) for ensembles of 24, 11 ,10, 5 
and 3 models. Frequencies are normalisecl to obtain an integral of 1 under each distri­
bution. 
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CHAPTER II 

INVESTIGATING CONSENSUSES IN CLIMATE-CHANGE PROJECTIONS 

FOR MODELS DEVELOPED BY A SAME RESEARCH INSTITUTE 

ABSTRACT 

One rationale behind the use of multi-model ensembles is the aim a t collecting inde­
pendent estimates of the future climate change. Such projections are generally provided 
by different leading modelling centres around the world , result ing in ensembles that are 
intended to allow sorne cancellation of errors as their sample size is increased. 

In theory, two unconnected groups of scientists could be expected to develop independent 
modelling approaches. However, there are in rcality severa! reasons to question this 
assumption of independence. For instance, scientists share knowledge about the climatc 
system, which is likely to result in models tha.t are based on similar sets of physical 
assumptions in their formulation. Sorne models even share parts of their code and are 
often calibrated using similar observational datasets. All these facts contribute to the 
risk of inducing common biases to the models and hence to a lack of independence. 

vVhile a rather classical approach to assessing mode! independence could consist in de­
tecting possible correlations of errors when comparing models to the observations, such 
an approach can not be directly applied to climale-change simulations due to the re­
latively short climate period available for valictat ion. An alternative approach can be 
to investigate directly on t he differences betwcen t he models' climate-change projec­
t ions. An additional issue resides in determining whether if similari ties in the models 
output consist in a proxy of high confidence into a specifie climatic outcome or simply 
due to a Jack of independence between the underlying models. In order to improve the 
message conveyed by an ensemble, it is of primary importance to aim at filtering the 
non-informative consensuses from the ensemble in order to focus only on the informative 
ones. On the other hand, disagreement between models ' output could be seen as infor­
mative from the point of view of assessing the uncertainty related to the use of different 
coexisting modelling approaches. 
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2.1 Introduction 

In the last decades, internationally coordinated efforts have been conducted in order 

to nourish the scientific community with credible ranges of climate-change projections. 

These proj ects consist in relatively large ensembles of simulations that aim at sam­

pling the different sources of uncertainty affecting climate-change projections. Firstly, 

the emission scenarios of greenhouse gases and aerosols (GHGA) used as an external for­

cing to the models depends on the evolving socio-economical context and hence play an 

important role in our uncertainty of the future climate changes. Secondly, the use of a po­

pulation of state-of-the-art Atmosphere-Ocean General Circulation Models (AOGCMs) 

allows obtaining a considerable range of projections since models generally differ in their 

climate sensitivity for a given forcing scenario. Thirdly, each model/scenario combina­

tians are often subject to severa! members (realisations) that differ only by their initial 

conditions; multiple realisations allow sampling the natural variabili ty as simulated by 

the models, which is also considerecl as a source of uncertainty affecting climate-change 

projections. 

It is a generally acceptecl iclea that climate moclels are not "created equal", that is they 

perform clifferently in reprod ucing the various facets of the elima te system ( G leckler 

et al., 2008) . An important reason why climate moclels perform clifferently is that they 

are based on different approximations, which are sometime subject to debates within the 

climate modelling community. Given t haL a mode! may perform weil in reproducing some 

climatic features while showing weaknesses in simulating others, it has been suggested 

that climate-change projections from severa! models should be weighted according to 

some measure of their respective skill. As an example, Giorgi and Mearns (2002) de­

veloped a method for obtaining weighted averages based on both the performance of 

the models in reproducing the obser-ved climate and the consensus of their projections 

of the future climaLe. Similarly, Chrislensen et al. (2010) used severa! metrics for eva­

luating models' performance and combined these scores into a single weight for each 

mode!. The best way for evaluating moclels' performance and to use this measure of skill 
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for assigning weights to the models is however far from making any consensus among 

the climate scientists. Moreover , it is poorly understood how the skill of a mode! in 

reproducing the present climate may be related t o its reliability for climate projections 

(Raisanen, 2007). 

Nevertheless, the rationale behind the use of multi-model ensembles is to collect severa! 

independent est imates of future climate changes. Under the assumption of independence, 

a cancellation of errors is expected to happen between the different estimates and hence 

t he ensemble average should be doser to the climaLic truth t han any single mode!. Ano­

ther expected advantage of using independent estimates of climate changes is that the 

spread of the members in an ensemble provide an estimate of the uncertainty about 

the modelled system. There are prior reasons, however, to believe that models are not 

totally independent from one another. While models differ in a variety of face ts since se­

veral expert 's choices are involved in the development of such complex softwares, climate 

scientists share knowledge, learn from each other and even share parts of their mode! 

code. This results in climate models that are similar at different levels, from their under­

lying physical assumption (included processes and interactions), the Luning of weakly 

constrained internai parameters, and t he numerical approximations used to solve the 

equations. 

It is a generally accepted idea that climate models (and hence their projections) suffer 

from a Jack of independence, but how to determine to what extent? Very li ttle is known 

for answering this question since no clear metric for measuring model independence has 

been commonly accepted at this t ime (Tebaldi and Knut ti , 2007). Fortunately, sorne 

attempts have been made over the last years for a..ssessing the degree of independence of 

the climate models, which are mainly based on three points of view. 

A fi.rst way of addressing the independence of climate-change projections is by focusing 

on the models formulation, i.e. a priori to generating output . Probably the largest issue 

related to this approach is the definition of a mode! space, which can not be clone using 

real numbers by analogy to perturbed-physics ensembles (PPEs ;Stainforth et al. 2005; 
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Rowlands et al. 2012) that offer a systematic approach to exploring the parameter space 

of a single mode!. 

Another approach for assessing the independence of climate models simulations is by 

considering that independent estimates are evenly distributed about the truth, that is 

the observed climate. This approach has been used by sorne authors (Jun et al. 2008b ,a; 

Knutti 2010; Pennell and Reichler 2011) in the context of the Coupled Mode! Intercom­

parison Project phase 3 (CMIP3) . A general result from these studies is that partial 

correlations exist between the models' biases to the observed climate and hence that the 

models' output is generally not evenly dist ributed about the climatic truth. However, a 

disadvantage of such an approach is that it can not be applied direct! y to climate-change 

projections due to the relatively short climate period available for validating the models 

and since no observations are available on the future state of the climate system. In or­

der to make an inference about the inclependence of the climate-change projections, one 

has to assume that a sample of models providing indepenclent estimates of the observed 

climate will necessarily lead to independcnt projections of t he future climate. 

The thircl approach addresses the issue of independence from the point of view of the 

clissimilarities in the models output. A clear advantage of such an approach is that it 

does not need an observational data seL and hence that it can be applied to climate­

change projections. Abramowitz and Gupta (2008) projected the mode! space onto a 

metric space from which the distance between two models cau be used as a proxy for 

mode! independence. They also put in evidence that mode! independence and mode! 

performance consist in two unrelated propert ies of climate models (Abramowitz, 2010). 

More recently~ Masson and Knutti (2011) used a hierarchical clustering framework ac­

cOl·ding to the degree of similarity in Lhe models' proj ec tions and put in evidence that 

moclels developed by a same insti tute arc likely to provide similar results. 

We will proceed wiLh an overview of the issues related with the use of multi-model en­

sembles for climate-change assessment . In Sect. 2.2 we will analyse the sampling process 

related to an ensembles of opportuniLy. In Sect. 2.3, we will review and discuss the 
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topic of model performance, following with a theoretical discussion about model inde­

pendence in Sect. 2.4 by focusing on the conceptual relationship that may exist between 

prior considerations about the models (independcnce of the models formulations) and 

the consensus/ disagreement in their output (inclependence of the output). We will ana­

lyse in Sect. 2.5 the typical structural similaritie:;; that appear between models developed 

by a same research institute and present sorne results based on a subset of the CMIP3 

multi-model dataset. In Sect. 2.6, we note sorne Jacks that have been found in the do­

cumentation provided by the participating centres about their models and simulations. 

We finally proceed to a broader discussion (Sect . 2.7) about mode! independence and 

focus on the possible ways to improve our interpretation of an ensemble of opportunity 

according to the way these are constructed and used by the scientific community. 

2.2 On the sampling process of an ensemble of opportunity 

The Program for Climate Model Diagnosis and Intercomparison (PCMDI) initiated the 

sampling process of the CMIP3 multi-model dalaset by volunteering established mo­

delling centres to participate by delivering AOGCM climate projec tions. In order to 

participate to such a coordinated experimental framework, the moclelling centres are 

generally committed to some minimal requirements, for example by delivering the si­

mulations before some deadline and according to a specifie data format. Requirements 

on submitted variables are ratee! as low to high priority in order to focus on specifie 

scientific issues. Finally, a variety of experiments have been proposed to the modelling 

groups, the main ones being the 20th century cxperiment (labeled as 20C3M) and the 

projections using three emission pathways (Al B, A2 and Bl) from the special report on 

emissions scenarios (SRES ; Nakicenovic et al. 2000). 

In order to encourage (and hence maximise) the amount and diversity of simulations 

in the ensemble according to the number of scenarios, models and realisations, few 

other constraints are imposed to t he participating centres. It is indeed very expensive to 

pro duce simulations for long periods ( e.g. centuries) with increasingly high spatial reso-
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lutions. Because human, computational and funding resources are limited and modelling 

centres do not ali share the same interests, the final size and shape of the ensemble 

is necessarily affected by these factors. Renee an arbitrary numbers of realisations are 

generated using the different models , sorne institutes may also provide simulations from 

severa! models or versions, and not ali emission scenarios are used to force each of the 

participating models. 

An important particularity of such ensembles is that they do sample different modelling 

approaches, but in a neither a random or systematic way (Knutti, 2010). The sampling 

process of such an ensemble could be more akin to a "natural pre-selection" among 

modelling approaches, where some centres may not afford ali of the proposed experiments 

while others tend to be better represented in the ensemble. One possible drawback of this 

pre-selection process is that it tends to give a larger "ideological weight" in the ensemble 

to the better endowed institutes according to the number of provided simulations and 

their diversity in representing the severa! scenarios , models, versions and realisations. 

2.3 Performance of climate models 

Climate-change assessments face severa! issues when attempting to extract the message 

conveyed by an ensembles of opportunity through the use of ensemble statistics. An 

important issue that is under debate in the community is the optimal way of combining 

simulations from different models. Probably the simplest and easiest manner to process 

multi-model ensembles is known as "one mode!, one vote" (Knutti et al. , 2010) , which 

considers the models as equivalent representations of the climate system. This can be 

interpreted as assuming that each mode! is independent from one another and hence 

that the models' simulations consist in equally likely outcomes of the future climate. The 

ensemble mean is interpreted as a best estimate of the projected signal since individual 

mode! errors arc cxpcctcd to cancel out through ensemble averaging. In addition to 

its simplicity, this approach is widely used since the average of severa! models often 

outperforms each of the individual models of an ensemble in reproducing current climate 
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(Lambert and Boer 2001; Weigel et al. 2008; Gleckler et al. 2008; Reifen and Toumi 2009; 

Annan and Hargreaves 2011). 

An alternative approach for combining simulations from a multi-model ensemble is based 

on the assertion that "models are not created equal", i.e. that sorne perform better that 

the others in reproducing the observed climatc, which is taken to imply similarly for 

the projected climate changes. Indeed, models have different strengths and weaknesses 

in reproducing the various facets of t he CUITent climate ( e.g. different variables and 

geographical locations). If there were a commonly agreed measure of mode! ski li by 

the scientific community, a convenient way to process multi-model ensembles would be 

to give preponderance to the "best models" while down-weighting the "bad ones" in 

ensemble averaging. However, since a very short period of observation is available for 

mode! verification, and the reliability of climaLe rnodels in projecLing future climate 

changes can not be assessed directly, it is noL clear which clirnate features have to 

be better reproduced in order to increase our confidence in mode! projections. As an 

example, Christensen et al. (2010) defined six mctrics of mode! performance based on the 

skill in reproducing the annual cycle, trends, large-scale circulation, etc. These metrics 

have been combined in order to assign a single weight to each of the models in calculating 

the ensemble statistics. Another example is Giorgi and Mearns (2002) who used the 

mode! performance in reproducing the observed climate and the consensus between the 

mode! projections in order to obtain the ensemble mean and standard deviation that are 

weighted according to these two criteria; the au thors however noted that the performance 

of the models in reproducing the observed climaLe is poorly related Lo their consensus 

in climate-change projections. 

While evaluating the mode! performance is far from trivial due to the paucity of climatic 

data for verification, another important characteristic of a multi-model ensemble is the 

degree of independence that exist between research institutes and rnodelling approaches. 

As will be explained in the n.ext section, there are severa! indications that the models for­

ming the CMIP3 multi-model dataset suffer of a la.ck of independence. Unresolved issues 
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in attempting to obtain a clear measure of mode! independence limits our interpretation 

of ensemble statistics. 

2.4 Independence of climate models 

Today's climate models exist in a broad diversity since severa! expert decisions were 

involved in the development of these complex pieces of software. Models may differ in 

a variety of facets including their basic physical assumptions since modellers have to 

identify and judge which processes of the climate system are sufficient ly relevant to be 

included in a mode!. For example, in t he upcoming CMIP5 mult i-model ensemble, a dy­

namical vegetation component is included for sorne of the models while others use a static 

vegetation cover. Another way climate models may differ is how the included processes 

are formulated , as by choosing among severa! possible physical parameterizations for a 

same process ( e.g. Bechtold et al. 2001 vs Kain and Fritsch 1990 for convective parame­

terization). While these two types of mode! difference can be referred to as "structural", 

another kind of difference exists between climate models. These differences may appear 

in the numerical approximations of the equations, the time and spatial resolu tions, and 

the tuning of some poorly constrained parameters (Murphy et al. , 2007; Stainforth et al. , 

2005; Murphy et al. , 2004; Separovic et al., 2012) . In the following, we refer to this type 

of difference as "parameters and numerical". It is worth noting that successive versions 

of a climate mode! may in principle differ in the same way as models do (i.e. structural, 

parameters and nl\merical); however, differences between versions are generally subtler 

due to limited changes. 

Despite the variety of differences existing between climate models formulations , the mo­

delling centres are not completely inclependent from one another from an ideological 

point of view, and so are expected to be both the models and their output. As for 

science in general , the climate science cvolves in a rather open manner as scicntists 

share knowledge about the climate system and learn from other groups through lite­

rature, conferences and exchanges. An important example of this is the physical basis 
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of ftuid dynamics and thermodynamics that is similarly formulated within the core of 

every atmosph re or ocean moclel. To a lesser extent , the research centres also share 

mo del components ( e.g. parameterization packages) and even parts of code. In particu­

lar, this characteristic of the climate mo dels to share common components is likely to 

be strengthenecl when the models are developed by nearby actors, for example within a 

same research centre or country. This may also be clue to the fact that severa! models 

have public releases that can be downloaded <md usee! by other groups or inclivicluals. 

Another reason to believe a priori that climatc moclels are not independent is becau.se 

they are often tunecl according to the same obscrvational data sets that also contain 

some errors, a strategy t hat may indu ce common biases to the mo dels (Knutti et al. , 

2010). Moreover, even in the idealisee! situation where a mode! would fit perfectly to 

perfect observational data, it would be possible Lhat a goocl result be obtained for wrong 

reasons. While different tunings of the parameLers can lead to similar mode! output, 

exploring systematically the parameter space of a mode! would be an humongous task 

to unclertake (Stainforth et al. , 2005). 

As notee! previously, one rationale behind the use of multi-model ensembles is to obtain 

independent estimates of the future climate changes. However , there is no commonly 

acceptee! measure of the degree of independence between climate models (Tebaldi and 

Knutti, 2007). While severa! authors use consensus between models as a predictors of 

confidence ( e.g. IPCC 2007; Seager et al. 2007) , su ch an inference is difficult to sus tain 

without any robust measure of models' indepeHdcnce (Pirtle et al. , 2010). One impor­

tant issue is the difficulty to define a mode! space, which can not be illustrated clearly 

by using real numbers , for example. By analogy, in a perturbee! physics experimeuL 

(PPE), the different! y tuned versions of a same mode! can be representee! by points in a 

multi-dimensional space of parameters. The distance between two mode! versions in the 

parameter space can be associated to a distance in the projected phase space (mode! 

output). Clearly, this approach can not be applicd to quantify the mode! uncertainty 

since models t hat differ structurally are also representee! by spaces that may differs in 

both their number of dimensions and in the definition of each axis (parameters). De-



68 

fining a general space that would contain ali of the individual mode! sub-spaces is a 

conceptual issue that has found no clea.r answer at this time while being an emerging 

field of research over the last few years. 

Expecting that, a priori, climate models suffer from a Jack of independence partly ques­

tions the way these models are developed and improved over years by scientists around 

the world. On the olher hand, it is also important to understand how, a posteriori, these 

characteristics may affect the models' output. As shown by Knutti et al. (2010), the 

CMIP3 models are partly correlated in lheir biases to observations over severa! regions 

of the global domain. Other important results have been obtained by Masson and Knutti 

(2011) who used a hierarchical clustering framework to put in evidence that the degree 

of similarity between models ' output is iutimately related to the ''mode! genealogy". 

In order to put the previous discussion in the context of climate-change assessment using 

multi-model ensemble, Fig. 2.1 shows a diagram summarising the conceptual relation­

ships that exist between the prior and posterior considerations of independence. While 

no widely accepted metric exists for assessing mode! independence, as weil on the side 

of the mo dels themselves (a priori) as in the mo dels' output (a posteriori) , we posit 

the following defini t ions. A set of models are said to be ideologically independent if the 

modelling approaches differ substantially by their included processes, parameterizations, 

numerical approximations and tuning of parameters. The two boxes on the left side of 

Fig. 2.1 represent high and low levels of ideological independence within a sample of 

models. For simplicity, we assume ali the models in the sample to be either independent 

or not , and to the same extent , unlike t he more complex case of the CMIP3 multi-model 

dataset where some groups of models arc more similar than others, corresponding to a 

mix of different levels of independence. On the right side of the diagram, the two boxes 

represent two degrees of similarity ( disagreement or consensus) that may exist between 

the models' output. The output can be considered as in disagreement (consensus) if thcir 

sensitivity to equal GHGA forcing diffCI·s by a larger (smaller) amount than the typical 

magnitude of the natural variability as simulated by this type of mode!. 
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Let us now discuss the conceptual relationships between prior and posterior states of 

independence. As a first possibility (link A in Fig. 2. 1), a priori independent models 

lead to outputs that disagree; this corresponds to the case of a wide range of models ' 

responses to identical climate forcings, a situation that contributes to t he so-called mode! 

uncertainty. As a second possibility (B), a prior·i independent modcls lead to outputs 

LhaL agree; such a consensus between substantially different modelling approaches ge­

nerally tends to reinforces our confidence into a specifie outcome in the simulation of 

the future climate (so-called robust results) . The Lhird relationship ( C) shown in the 

diagram relates to the trivial situation where the sample is formed by models being very 

similar in their structure, parameters and numerical characteristics; su ch a case consists 

in a "non-informative consensus" sin ce based on severa! replications of ( essentially) a 

same mode!. The fourth hypothetical case ( dashed line) of a prior-i non-independent 

models leading to disagreeing outputs is obviously unrealistic since a sample of models 

that are considered as replications of a single one should not lead to differences in their 

outputs that are larger than the simulated na tural variabili ty, unless sorne modclling 

differences are hidden to the data user which then should be interpreted as case A. 

In surnmary, the analysis of the climate projections obtained from an ensemble of op­

portunity would be highly simplified if we could assert that only relationships A and B 

exist, vvhich would clarify the mea11ing of consensus as the most likely outcome and inter­

mode! spread as a measure of uncertainty in the projections. We argue that disagreement 

between models' output is always informative, unless serious bugs are known to exist in 

sorne of the models. From the point of view of mitigation and adaptation strategies, it 

is generally more cautious to deal with overesLimaLed uncertainty in order to assume a 

larger range of possibilities for the future climat ic outcome. On the other hand , underes­

timated ranges of uncertainty simplify the mitigation process while increasing the risk 

due to an unsuspected, damaging and costly climate outcome to happen. 

It is worth noting that the previous discussion focuses on multi-model ensembles but 

might apply as well to PPEs that face similar issues . For example, more or less inde-
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pendent attributions of the mode! parameters may be fetched through these experimental 

frameworks, which are however constrained according to a unique mode! structure. 

2.5 Typical differences between models developed by an institute and how this 

affects their climate-change projections 

AOGCMs constitute the main tools usE:.'Ci by scientists in order to better understand 

the present climate and its projections to the future according to conceivable GHGA 

pathways. The diversity of modelling approaches resulting from the various choices avai­

lable for structural, numerical and parameter characteristics, makes a complex task to 

describe the differences existing between two models that have been developed indepen­

dently. In order to simplify the following discussion, we focus on the typical differences 

among models that share a considerable number of components, i. e. with a certain leve! 

of structural similarity. By analogy to the mode! space briefiy described in Sect. 2.4, it 

consists in comparing models that belong to partially different parameter spaces . Rather 

thau proceeding to an exhaustive study of all the differences in structural, pa.ra.meters 

and numerical characteristics of sorne twenly AOGCM models in the CMIP3 multi-model 

ensemble, an intuit ive approach to identify models with structural similarities is paying 

attention to their origin. As an educated guess or proxy for mode! non-independence, 

the models being developed by a research institute can be expected to share severa! 

characteristics. 

In Tab. 2.1 are presented the 7 research groups (first column) , hosted by 5 countries 

(second column), that provide more t han a single mode! to the CMIP3 multi-model 

archive. In the third column is given an a.cronym that represents the research group and 

their models. In Tab. 2.2 is shown the list of the corresponding models collapsed into 

pairs developed by a same research group. The pairs of models are numbered from I to 

IX (first column) and idcntified by their acronym in the second column. In the third 

column of Tab. 2.2 are shown the models (or versions) identifiers. The five remaining 

columns in Tab. 2.2 enumerate the main structural differences according to main mode! 
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components : atmosphere (A) , ocean ( 0) , sea ice (!) , coupling ( C) and land surface 

(L). Each unit in these columns is filled with an identifiers for the type of difference : 

R for resolut ion, V for version (i.e. minor modifications in the code), M for mode! 

(i.e. substantial differences in t he code) , and "-" when the same component is used. 

This table consists in an adaptation from Randall et al. (2007) and more details about 

models characteristics are given in the PCMDI documentation at http: 1 /www- pcmdi . 

l lnl .gov/ipcc/mode l _documentation/ ipcc_model_documentation.php. 

According to Tab. 2.2, the pairs I to IV are formed by models that cliffer li ttle in a 

structural sense. The CGCM moclels (I) cliffer only in the atmosphere and ocean spatial 

resolution (T47 vs T63) , and similarly for the MIROC pair (II) with a lm·ger jump in 

resolut ion (T42 vs T106). Changes in resolution only coulcl be considered as a parameters 

modification while no other changes are expected in the code. The CSIRO (III) and 

GFDL (IV) pairs provide models' versions that differ in minor modifications to their 

main components. More precisely, the version change may apply to any of the mode! 

components, i.e. atmosphere and ocean for GFDL, and ocean, ice, land and coupling for 

CSIRO. 

The pairs V to IX are formed by models differing substantially in a structural sense. 

The first GISS pair (V) consists in two models (EH and ER) that cliffer in the ocean 

component only. Rather than successive versions, two different ocea11 models (Russell 

et al. 1995; Bleck 2002) have been used in these AOGCMs, which could be scen as a 

substmltial structural difference. In addition to this structural difference, the two ocean 

components used different spatial resolutions. For the pairs VI to IX, models differ 

substantially according to mosL of their componcnts ( atmosphere, ocean , sea ice, coupling 

and land). An apparent similarity however exists between the models AOM and ER (in 

pair VI) which use successive versions of the sa.rne ocean rnodel (Russell et al. , 1995, 

2000) . Among other differences, each of the pairs VI and VII is subject to a different 

atmosphere component. Overall , GISS AOM, EH and ER can be seen as coexisting 

models developed within a same institute (NASA/ GISS) but one (AOM) appears more 
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different from the two others (EH and ER). Similarly, pairs VIII and IV are formed by 

two coexisting models developed within a same institute, i. e. the National Centre for 

Atmospheric Research (NCAR) and the Hadley Centre. 

In Tab. 2.2 have been presented the main structural differences that appear within 9 pairs 

fonned by 15 models and developed by 7 research institutes. In Fig. 2.2 are summarised 

the results from these models, according to their domain averaged (North America) 

and ensemble averaged (the mean of all the available realisations of each mode!) for 

the surface air temperature and precipitation rate for the summer and winter seasons. 

The research institutions are representee! by different colors and the models from a 

same institute are identifiee! using different line styles. We first note the high consensus 

beL-ween the two versions of the Canadian mode! that use different spatial resolutions 

( dark blue curves). The two versions strongly agree with a change of approxima tel y 

3.4°C for the summer temperature wa.nning (Fig. 2.2a) and agree relatively weil in 

winter (Fig. 2.2b) with a temperature increase of 5.8°C. Even though noisy, the summer 

precipitation rate also shows relatively high agreement between the two mode! versions 

while a slight difference is found for the winter season. By comparison, the MIROC 

pair (in magenta) clisplays rather large differences in sensitivities with exception of the 

summer temperature where the moclels agree relatively weil with a change of 5.3°C. The 

disagreements are more important than those between the two versions of the Canadian 

mode!, probably due to the larger increase in resolution (T47 to T63 for CGCM, white 

T43 to T120 for MIROC). Moreover, this result could a.lso suggest that modifications to 

other parameters have been done between the two MIROC models, but little information 

has been found in the available models' documentation. 

Another striking feature in Fig. 2.2 is the pair V formed by the GISS EH and ER 

models that differ only by t heir ocean mode! (i.e. sarne atmospheric, land, coupling 

and sea ice components). These two models agree generally weil according to the two 

variables and two seasons presented in the figure. Also, the two coexisting models of the 

NCAR institute (pair VIII) show very similar results for precipitation (Fig. 2.2c and d). 
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For the Hadley Centre that a.lso provides two models, some consensus is obtained for 

the summer temperature and winter precipitatiou (Fig. 2.2a and d) , while the two other 

variables (Fig. 2.2b and c) show disagreement thaL appear similar in magnitude to the 

overall inter-mode! spread. 

While the inter-mode! spread is a measure of uncertainty that highly depends on the 

selected set of models, it is convenient to compare the differences in the models' output 

according to the natural variability that constitutes an intrinsic characteristic of the 

climate system. However, the main limitation for such an approach resides in the number 

of realisations available for each of the models. Over the 9 pairs of models shown in 

Tab. 2.2, three pairs (CSIR.O , GFDL and UKMO) are formed by models with a single 

realisation and hence can not be used in the scope of the following analysis. In Tab. 2.3 

are shown the number of members available for each mode! in each pair (Nx and Ny) 

and the fifth column shows tl1e feasibility of a SLudent's t-test for the difference between 

ensemble means. 

The difference of mean between each mode! pair is therefore calculated. We focus on the 

summer surface air temperature change relative to the 1900-1950 reference period, and 

al! models have been interpolated over a commou 4° x 5° coarse-resolution grid (sec Sect. 

1.2.1 for more details). In order to assess the statistical significance of Lhese differences, a 

two-tailed Student's t-test is applied at the 5% significance leve! (i.e. 2.5% on each tai!). 

As will be discussed in Chap. 3, the models show differences in their simulated natural 

variability. For pairs where both of t he models provide at !east two members , the t-test 

can be applied without assuming equal variances. On the other hand, the pairs where 

one mode! is representee! by a single rnernber are restricted to the assumption of equal 

variances. More details on the t-test are providcd in Appendix 2.A. 

In Fig. 2.3a to f are presented the differences of the ensemble means between models 

developed by a same institute, for the pairs I, II , V, VI , VII and VIII respectively. The 

order in which the differences are calculated corresponds to that presented in Tab. 2.2, 

for example as T47 minus T63 for the CGCM pair. Each panel is composed of six maps, 
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where three time periods are shown : 2000-2020, 2040-2060 and 2080-2100. On the first 

row are shown the differences in ensemble means and in the second t he areas of statistical 

significance for positive (red) and negative (blue) differences. White areas corresponds 

to regions where the differences are not statistically significant. 

For the CGCM and MIROC pairs, (Fig. 2.3a and b) , an important part of the domain 

shows differences that are not statistically significant. For both pairs, a similar pattern 

in the rejection of the nul! hypothesis is seen over the Atlantic Ocean (south eastern 

part of the domain) and in the region of the Labrador Sea and Hudson Bay (eastern 

side of the domain). It is worth noting that the opposite sign of these patterns is simply 

due to the order of the difference is cakulated, and hence the higher resolution mode! 

leads to a larger climate sensitivity for both pairs. It is worth noting that the two 

mode! versions have been interpolated over the same grid and hence an important part 

of the potentially added value by the higher resolution models is not considered here. 

On · the other hand, it can be seen that the change in resolution has a rather weak 

effect on the larger scales present on this grid. According to the small sample size, the 

coarse resolution and the variable considered, there is little statistical evidence to reject 

the hypothesis of an equality of the means between these mode! versions. Under these 

considerations, including both mode! versions for the CGCM and CSIRO pairs does not 

add much supplementary information to the ensemble compared to the use of a single 

mode! version. 

In Fig. 2.3c is shown the difference betwcen the GISS EH and ER models that differ in 

their ocean component mode!. Significant positive differences are found over the Hudson 

Bay and the maximum increases in magnitude with time to reach nearly 3°C in the 

2080-2100 period. Other significant differences are seen over the Pacifie Ocean, but these 

are generally smaller in magnitude than - 1 °C. From this panel, it is quite clear that 

structural differences in the ocean component affect mainly the results over oceanic 

regions and particularly the Hudson Bay. In Fig. 2.3d are shown the differences between 

the GISS AOM and ER models that have large structural differences in all of their 
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components except the o~ean that underwent only a change in version. An important 

difference that exceed - 2°C appears over land . This difference grows with time, which 

means t hat the models' climates diverge from each other over this region, similarly 

to what has been noted for the EH and ER models over the Hudson Bay (Fig. 2.3c). 

Differences over the Pacifie Ocean have similar magnitude, with values around 1 °C. Also , 

no maximum difference appear over the Hudson Day, which can be attributed to srnall 

structural changes between the two versions of the ocean component. The third pair of 

the GISS institute, AOM vs EH, is shown in Fig. 2.3e. This time, al! of the models' 

main components have been changed. It is interesting to note the few similarities with 

the previous GISS pairs differences. The large difference over the Hudson Bay is similar 

in magnitude wi th > 2°C (with reverse sign) comparee! to the EH-ER difference. This 

response is expected since the AOM-EH pair relates the difference between the Russell 

(second version) and HYCOM ocean componenLs, while the EH-ER pair corresponds to 

a difference between the HYCOM and Russell (first version) components . As seen from 

the small difference between AOM and ER over Lhe Hudson Day, the two versions of the 

Russell ocean component do not lead to large differences especially in that region. For 

the minimum of difference that exceed -2°C ovcr land, it is nearly the same value as for 

the AOM-ER difference presented in Fig. 2.3J . lHcleed , the pairs AOM-EH and AOM­

ER (Fig. 2. 3d and e respectively) correspond to the same differences in the atmosphere 

component . This logic may also be applied to the differences over the Pacifie Ocean. T he 

difference between ER and EH being around 1 oc degree (Fig. 2.3c) and that between 

AOM and ER of approximately 1 °C (Fig. 2.3cl ), it is unclerstandable how the difference 

between AOM and EH may be of nearly 2°C (Fig. 2.3e). It is interesting to note that 

the analysis of the differences between the threc GISS pairs leacls to differences in their 

climate sensitivities that are addit ive from the point of view of structural changes in 

t heir atmosphere and ocean models components. 

Finally, the difference between the two NCAR moclels is shown in Fig. 2.3f. T hese models 

show statistically significant d ifferences over practically ali of the North America. These 

differences are relatively large and increase with time to exceed 2°C over a large part of 
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the domain for the period 2080-2100. 

2.6 Notes on the minimal requirements to t he participating centres of a climate 

change assessment 

In order to facilitate the analysis of the results from a large ensemble such as the CMIP3 

multi-model dataset, the participating centres have been invited to fil! a sm·vey that 

surnmarise their experimental set-up by providing information about mode! identity, 

cornponent mode! characteristics and simulations details. We acknowledge that such 

pieces of information have an important value to the data users such as ourselves here. 

Notable lacks exist however which are worth mentioning for the benefit of further users 

and assessments. 

While it is mainly the responsibility of each modelling centre to provide complete and 

accurate information throughout these surveys, it is important to note that no (or little) 

control seems to have been applied after their submission to PCMDI. As a proof by 

contradiction, a minimal post-control ou these surveys would not have resulted in the 

following examples of inaccurate or even missing information. A first example is found 

in the documentation for the CCSM3 mode! that contains entries such as "Still working 

on this ... " or "See the excel chart [ .. . J that I mai led you last week" in the section of 

the simulations details. Another striking example is the missing of such surveys for 

both mode! versions from the Canadian Centre for Climate Modelling and Analysis 

(CCCMA). 

One reason why such sm·veys are very important from the point of view of the data users 

is since the models configuration often rapidly changes with time and such modifications 

are not always clearly documented throughout peer-reviewed literature. Another note 

about these surveys is that the community would lm·gely benefit from a broader focus 

on the modelling differences between models (or versions) provided by a centre. For 

example, a centre could be invited through the survey to provide arguments describing 

how a mode! or version may add supplementary information to the ensemble, specifically 



77 

in the context of collecting independent estimates of the future climate changes and in 

the aim at spanning the full range of the uncert ainty about these projections. 

Of course, modelling centres are always welcome to provide severa! models versions , 

which may be used in a variety of applications. However , it is worth questioning that the 

resources spent in these supplementary models or versions could be relocated for example 

by producing more scenarios and realisations from a single mode! version, or using higher 

resolution to reduce sorne systematic bia.ses. In a similar perspective, consideration may 

be given to sharing of computational resources beLween the different centres to optimise 

the design of multi-model eJlsembles. 

2. 7 Discussion and conclusions 

Internationally coordinated projects of climate-cha.nge assessments have been increasin­

gly common over the last decade orso. These projects consist in relative! y large ensembles 

of simulations that use sorne population of rnodcb with a similar leve! of complexity in 

order to obtain climate-change projections accorcling to different GHGA emission scena­

rios. While the real outcome for the future emission pathway is largely uncertain since 

mainly depending on t he evolving socio-economica.l and political context, the divergence 

of projections obtained from severa! models also contributes importantly to our overall 

uncertainty about future climate changes (Hawkius and Sutton, 2009). 

Beyond the sampling of a credible range of climate-change projections according to 

different emission scenarios, an important ratiouale that motivates Lhe use of large eu­

sembles such as the CMIP3 multi-model data.set is to obtain a colleclion of independeut 

estimates of the future climate changes. T he use of such a sample should result in two 

important benefits. First , a sample of indepenclenL estima tes allows some cancellation of 

the errors across the different models and hence Lhe ensemble average should converge 

toward the future climatic truth as the number of models contributing to the ensemble 

increa.ses. The second benefit is tha t the spread between models ' projections should be 

representative of the uncertainty about the clirnate projections. 
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It has been discussed throughout this chapter that there are severa! reasons to believe 

that clima,te models are not indepencleut from one another . Moreover , very little is 

known on the extent to which models depend on each other since no measure of inde­

pendence has been commonly accepted at this time. Severa! authors have assessecl the 

inclependence of the projections by usiug the models' output (e.g. Jun et a l. 2008b ,a; 

Abramowitz and Gupta 2008; Knutti 2010; Pennell and Reichler 2011 ; Abramowitz 2010; 

Masson and Knutti 2011). Here we have adopted a different approach that aims at cla­

rifying the concept of independence frorn the point of view of the models formulations. 

Of course, such an approach may become complicated since climate models have a very 

complex structure and include hundreds of parameters. 

In order to explore the concept of the independence of the climate models a priori to 

their proj ections, we used as a starting point the assumption that models dev loped by a 

same institute share severa! characteristics at the structural, parameters and numerical 

levels. The structural leve! has been defined literally as the set of underlying physical 

assumptions that served as basis to each mode!. The way these assumptions are fm·mu­

latecl , for example the choice of the parameterizations, has been also includecl in the 

structural leve!. Additionally, the values given to model's internai parameters and the 

numerical approximations have been highlighted as other types of mode! differences. It 

has been shown that the models (or versions) developed by an institute are prone to 

share such characteristics. Structural similari ties are often straightforward to point out 

from models documentation provided by the PCMDI. Similarities in parameters and 

numerical characteristics are subtler and often not explicitly provided in the documen­

tation. However, the fact that models from a same institute that differ only in a few 

components also suggests that the parameters and numerical approximations remain 

un changee! . 

By paying attention to the consensus/ disagreements in outputs as function of the degree 

of similarity in structural, parameters and numerical characteristics, we put in evidence 

that non-informative consensuses are likcly to happen in a large multi-model ensembles 
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such as the CMIP3 multi-model dataset. The idea of non-informative consensuses has 

been explored in the specifie context of the models developed by a saine institute. Ho­

wever, it is very important to note that the non-informative consensuses are not limited 

to the same-institute context, but should rather be extended beyond this scope. Two 

models developed by different institutes with a priori no structural, parametric and 

numerical similarities could lead to non-informative consensuses since based on corn­

mon physical assumptions and processes and interactions included in the models. For 

example, it is known (Knutti et al. , 2010) that severa! CMIP3 models share common 

biases that are not exclusively limited to the same-institute context. On a larger scale, 

the generation of AOGCMs fonning the CMIP3 multi-model dataset could also share 

important biases since none of them include a dynamical vegetation component, to cite 

but one example. A similar example is on the numerical assumptions for the models 

that use flux adjustment in the ocean (see Randall et al. 2007; Meehl et al. 2000). An 

important issue related to the independence of the climate models is that it depends on 

the simulated variable. For example , the two versions of the GISS model, EH and ER., 

share the same atmosphere, ice, land and coupling components, but differ in their ocean 

mode! components. Such a set-up is likely to resuli in a non-informative consensus in the 

surface air temperature ovei land , while informative disagreements (i .e. uncertainty) arc 

found over the ocean. In this case, rather lit tle information contributes to uncertainty 

over land, while an informative disagreement exists over the ocean. 

The conceptual relationship between the prior (same-institute context) and posterior 

( consensus/ disagreement in the outputs) defini tions of independence does not appear 

sufficiently straightforward to be assumed blindly. In other words, one must find serious 

evidence to reject a consensus and hence to consicler it as non-informative. Making such 

an inference shoulcl be clone after paying attention to both t he nature of the consensus 

( e.g. simulated variable, season, region and t imc period) and to the structural, parame­

tric and numerical differences between the mo dels (or versions). On the other hand, the 

direct application of this assumption by inclucling only one model per institute in the 

scope of a specifie study (e.g. Whetton et al. 2007) might be understood as little more 
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thau an "educated guess" aiming at potentially decreasing the number of non-informative 

consensuses in the ensemble across the severa! variables, seasons, regions and time per­

iocls. This approach may be considered akin to a filtering or the assignment of zero 

weights to sorne of the models. This necessarily results in an increase of the standard er­

ror associated with the ensemble statistics since a smaller ensemble size is considered. A 

second potential benefit is reducing the risk of overconfidence in the ensemble statistics. 

More technically, the rule of "one mode! per institute" may improve in sorne way the 

message conveyed by the ensemble statislics by reducing the risk of introducing artificial 

consistencies between models' projections. It is worth noting that further improvements 

are also possible since the issue of the models independence goes beyond of the same­

institute context. Recent work has shown that t he ensemble size of the CMIP3 multi­

model dataset is much smaller than it appears from its number of participating models 

(e.g., Pennell and Reichler 2011 , Annan and Hargreaves 2011) . Moreover, given the 

relatively large sample of 24 models, simply removing the supplementary models for 

each centre might consist only in a slight reduction of the drawbacks relatecl to the lack 

of independence between climate models. Using different methods for processing t he 

models output , Pennell and Reichler (201 1) estimated the effective number (NeJJ) of 

climate models in the CMIP3 multi-model dataset to lie between 7.5 to 9, while Annan 

and Hargreaves (2011 ) obtained a range from 4 to 11. These estimates of the effective 

sample size can be combined into a single figure by their rounded average of 8 models. 

Now, by considering only the same-inst itute context as a proxy for mode! independence, 

the effective sample size of the CMIP3 multi-model dataset is estimated to 18 models 

when retaining only one mode! per institute (Tab. 2.1) , with exception of the GISS 

family from which two models with different atmosphere components could be retained 

(AOM with EH or ER) and NCAR that provides two models (CCSM3 and PCM) with 

important differences in their response to identical climate forcing. 

In order to understand the effect of these effective sample sizes on the statistics of the 

ensemble, let us recall the relationship of the standard error of the mean that can be 
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expressed as Var(f.i) = CJ
2 

/ N , where f.l and CJ
2 are the true ensemble mean and inter­

mode! variance and N the number of models in the ensemble. Assuming no changes 

in the mean and variance, comparing t he perceived ensemble size (N ) to the effective 

sample size (Nef! ) corresponds to a standard error of the mean that is inflated by 

.jN/Neff · Hence, the ensemble mean is inflatecl by 73% for Neff = 8 while by only 

15% when using Nef f = 18. With similar arguments, this reasoning may as weil be 

applied to the standard error of the inter-mode! sp·read that is sometimes used to assess 

the mode! uncertainty. From the point of view of mitigation and adaptation strategies 

to climate change, overestimating the uncertainty of projections or the standard error 

of the ensemble statistics is generally more cautious, but indeed more expensive, since a 

broader range of climate outcomes are considerecl . On the other hand , underestimating 

t hese ranges certainly simplifies the mitigation process while increasing the risk of an 

outcome that lies outside the measured range of uncertainty, and hence that might be 

unexpected by the mitigation plan. 

In the climate modelling community, the democratie way of thinking the message conveyed 

by an ensemble such as "one mode!, one vote" has been discussed and questioned in the 

context of mode! performance. Since models perfonn differently in reproducing the va­

rious facets of the climate syst em, it is sometime argued that climate projections should 

be weighted according to some performance criteria. While mode! democracy would be 

somewhat compromised by using such an approach (Knutti , 2010), the same concept 

could be extended according to the issue of rnodel independence as an "institutional 

dernocracy" that should already exist in t he ensemble resul ts or being imposed through 

the analysis of the results. A potent ial way to induce institutional democracy in the 

ensemble data would be to invite the participating centres to "demonstrate" t he benefi ts 

of including a second mode! version as how it would cont ribute by potentially adding 

sorne value to the ensemble. The latter way corresponds to a post-fi!Lering or weighting 

of the ensernble's models according to sorne independence metric, which consists in an 

emerging field of research. Since the issue of mode! independence goes far beyond the 

same-institute context, one could argue ult imately that the climate modelling science 
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should tend toward sorne kind of "ideological democracy" since even different research 

institutes may not be sufficiently independent from each other. The latter considera­

tions could help spann.ing a broader and more realistic range for the uncertainty around 

the climate-change modelling problem, whether according to pre-selec ted participating 

institutes or to post-filtering an ensemble of opportunity. 

Of course, the climate modelling science is not the only field of research where inde­

pendence matters. In its precursory works, Levins (1966) noted that the use of severa! 

different biological population models may lead to a same result despite their different 

underlying assumptions. The author used the terminology of a "robust theorem" for a 

result that is free of the details of each mode!. This concept can be interpreted similarly 

to that of an informative consensus discussed in this chapter. 
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Appendix 2.A Statistical significance of t he difference between two ensemble 

means ( t- test) 

Let f..lX and f..lY be the ensemble mean climate-change signais for two models denoted by 

the X and Y indices. The latter consist in true means that could be estimated by using a 

sufficiently large number of realisa tions differing in the initial conditions. By simplicity, 

we fi.rstly assume equal inter-member variances between the models , i.e. that a-x = o-y . 

The null hypothesis of equal means, Ho , can be defi.ned as 

Ho: f..LX = ~·Y (2.1) 

and the t statistics 
/lx - fly 

t = --'-r==== 
A . 1 1 1 
o-py Nx + Ny 

(2.2) 

where Nx and Ny correspond to the models' sample sizes and Ô'~ to t he pooled variance 

(2.3) 

with N x + Ny - 2 degrees of freedom. 

In a case where the. variances can not be assumed as equal (o-x =f: o-y), the t statistics 

becomes 

(2.4) 

that consists in an approximation of the t clisLribution with its numb r of degrees of 

freedom being estimated from t he data such as 

( Œi 1 N x + â"~ 1 Ny) 
2 

d + - _;___c...:.__---;c-_..;;,______,-;;-

:1 - (â~/Nx ) 2 + (â}/Ny )
2

• 

Nx-1 Ny - 1 

(2.5) 

The critical values for a given signifi.cance leve! can hence be found using a table of the t 
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distribution. More details on these tests a.nd the related tables can be found in common 

sta.tistical textbooks such as von Storch and Zwiers (1999) and Wil~s (2011). 
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Tab. 2.1: Name of the research institutes/ groups that provided severai models or ver­
sions to the CMIP3 multi-model archive. 

Name of the research institutel group Country Acronym 
Canadian Centre for Climate Modelling & Analysis Canada CGCM 
Center for Climate System Research (The University of To- Japan MIROC 
kyo), National Institute for Environmental Studies, and Frou-
t ier Research Center for Global Change (JAMSTEC) 
The Commonwealth Scientific and Industrial Research Orga- Australia CSIRO 
nisation (Atmospheric Research) 
US Dept . of Commerce 1 NOAA 1 Geophysical Fluid Dyua- USA GFDL 
mies Laboratory 
NASA / Goddard Institute for Space Studies USA GISS 
National Center for Atmospheric Research USA NCAR 
Hadley Centre for Climate Prediction and Research 1 1\kt UK UKMO 
Office 

Tab. 2.2: Table of the main structural, pararneLers and numerical differences between 
pairs of moclels developed by a sarne research institute within the CMIP3 multi-model 
archive. Models are comparee! accorcling to their main components : atmosphere (A), 
ocean (0 ), sea ice (I), coupling (C) and land surface (L). The differences are categorisee! 
as resolution (R), version (V), mode! (M) and no change(-). 

Pair Acronym Mode ls Difference A 0 I c L 
I CGCM T47 VS T63 Change in 6. x ·y for At. and Oc. H. H. .. - .. 

II MI ROC Tl06 vs T42 Change in 6. xy for At. and Oc. H. R - - -

III CSIRO 3.0 vs 3.5 Oc. eddy parametcrization (transport .. v v v v 
coefficient) & mixed-layer t reatment 
(turbulent kinet. ic energy), se a ice 
(numerical scheme), coupling (wind 
stress), treatment of surface runoff and 
river routing schcme 

IV GFDL CM2.0 vs CM2. l Numerical schemc: advection, gravity v v .. - ... 

waves and damping at t he top boun-
dary for At. and lcapfrog t imestepping 
vs staggered for Oc. 

v GISS EH vs ER Different Oc. (HYCOM vs Russe111 ) .. MR .. .. .. 

VI GISS AOM vs ER Different At. , sea ice, coupling and MR VR M M M 
land, different versions of the Russell 
Oc. 

VII GISS AOM vs EH Different At. , sca ice, coupling and MR MR M M M 
land, different Oc. (Russe11 2 vs HY-
COM) 

VIII NCAR CCSM3 vs PCM Different models developpee! by the MR MR M M M 
same institute (NCAR). 

IX UKMO CM3 vs GEMI Different models developpee! by the MR MR M M M 
same institute (Had ley Centre) . 
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Tab. 2.3: Feasibility of a t-test for t he difference between ensemble means of different 
pairs of models , according to the number of simulations available for the AlE scenario 
within the CMIP3 multi-model dataset. Sample sizes of the two models in a pair are 
denoted by Nx and Ny . In the last column (t), the pairs are denoted by "0" when the 
test can not be performed, by "E" when equal variances have to be assumed and by "U" 
when unequal variances can be considen:.'Ci. 

Pair N am e N x Ny t 
I CGC:tvi (T47-T63) 5 1 E 
II MIROC (T106-T42) 1 3 E 
III CSIRO (3.0-3.5) 1 1 0 
IV GFDL (2.0-2.1) 1 1 0 
v GISS (EH-ER) 3 4 u 
VI GISS (AOM-ER) 2 4 u 
VII GISS (AOM-EH) 2 3 u 
VIII NCAR (CCSM3-PCM) 7 3 u 
IX UKMO (Civi3-GEM1) 1 1 0 
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Fig. 2.1: Schematic of the conceptual relationship between prior and posterior defini­
tions of model independence. 
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Fig. 2.2: Climate-change projections fo r the a) summer and b) winter surface air 
temperature and for the c) summer and d) winter precipitation rate. T hese changes are 
calculated over 20-year time periods compared to the 1900-1950 leve! for each of the 
models presented in Tab. 2.2. All available realisations are averaged over the regional 
domain of North Ainerica. 



---· -------- - ------------------------------

89 

~, -~y (2000-2020) ~, - ~y (2040-2060) ~, -~y (2080-21 00) 

t-mask (2000- 2020) t- mask (2040- 2060) 

(a) CGCM: T47-T63 

~, - ~y (2000- 2020) 

t-mask (2080- 21 00) 

"""'~~~-

(b) MIROC: Tl06-T42 

Fig. 2.3: To be continued ... 
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Fig. 2 .3 : Difference of the ensemble mean climate-change signal for different pairs of 
models (or versions) developed by the same resea.rch institute. The climate-change signal 
is calculated for each simulation relatively to the 1900-1950 period. The panel at the 
bottom of each difference shows the mask of rejection of the null hypothesis by using a 
two-tailed t-test at the 5% significance leve! (2.5% on each side). Red and blue colours 
mean positive and negative differences respectively. 





CHAPTER.III 

THEOR.ETICAL FR.AMEWOR.K FOR. R.ECONSTR.UCTING MISSING 

MEMBERS IN A MULTI-MODEL ENSEMBLE OF AOGCMS 

ABSTRACT 

Mode! Intercomparison Proj ects aim to compare climate-change projections obtained 
from different modelling centres. The main value of such ensembles of simulations re­
sides in providing the scientific community wit h Lhe plausible range of fu ture climates. 
However, such ensembles are ofien constructcd in a rather a.rbitrary ma.nner , mainly 
based on the computing resources available to Lhc part icipating centres. It follows that 
studying the uncertainty in such ensembles can suffer of limitations due to the use of a 
non-systematic experimental framework. In orcier to circumvent these limitations, one 
can consider the alternat ive of artificially regenerating the "missing simulations" in the 
ensemble in order t<J provide a sys tematic framework for the further analysis. The present 
chapter investigates the feasibility of two data-reconstruction methods : the single-mode! 
and multi-model pooling. The first method consists in regenerating new members for a 
mode! by using only the information available from that mode!. The second method 
consists in regenerating members by using the information available from severa! rnodels 
in the ensemble. T he choice of the method depends on 1) the invariance of the statis­
t ics when calculated over time or across the multiple realisations associated to a mode! 
(ergodicity), and 2) t he similarit ies in inter-me111ber (internai) variability across models. 

3.1 Introduction 

Over the last years, severa! Mode! Intercomparison Projects (MIPs) have been conduc­

ted internationally by the climate modelling community in order to characterise the 

main sources of uncertainty affecting t he climate-change projections fo r the 2lst cen­

tury. Among these sources, the uncertainty emerging from different modelling approaches 

··~--·----
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( commonly known as "mode! uncertainty") can be investigated through the use of mu! ti­

mode! ensembles (Tebaldi and Knutti , 2007) . One basic characteristic of such ensembles 

is that different models are run under similar externat forcings ; popular examples are the 

Coupled Mode! Intercomparison Project phase 3 (CMIP3) multi-model dataset (Meehl 

et al. , 2007a,b) and CMIP5. Commonly applied externat forcings include anthropoge­

nic sources such as the greenhouse gases and aerosols (GHGA) emissions and land-use 

scenarios (Nakicenovic et al. , 2000). On the other hand, forcings from natural sources 

are also applied to climate models simulations as the events of volcanic emissions (Sato 

et al. , 1993; Ammann et al. , 2003) and the historical trends and cycles in the solar 

irradiance (Lean et al. , 1995). The externat forcings that are prescribed in the mo dels 

are also affected by uncertainty ; for exarnple, the anthropogenic forcings are intimately 

relatee! to the future socio-economical and political context. 

Another source of uncertainty is the na.tural variability of the climate system that ranges 

over broad time scales, from seconds to thousands of years. It is generally consideree! 

as a source of uncertainty that is internai to the system since it appears even under 

stationary climate forGing. The natural variability can be sampled by using a single 

but long climate-model simulation (e.g. thousands ofyears). Similarly, the inter-member 

variability appears as the spread between severa! realisations using the same mode!, 

but with slight differences in the initial conditions. This measure of spread is generally 

attributed to the natural climate variability when sampled from an Atmosphere-Ocean 

General Circulation Mode! (AOGCM) (Sorteberg and Kvamst0, 2006; Deser et al. , 2010). 

Comparatively, the inter-member variability that is sampled from a Regional Climate 

Mode! (RCM) (Alexandru et al. , 2007; Lucas-Picher et al. , 2008; Nikiema and Laprise, 

2011) is generally smaller in magnitude. White the realisations from an RCM use the 

same boundary conditions that also include the natural climate variability (e.g. from an 

AOGCM), the inter-member variability represents in this case the deviations from an 

externally forced state. 

For a given externat forcing scenario , a. mult i-model ensemble (MME) implies simulations 
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from severa! models and where each one is represented by one or severa! realisations 

(members) . Different number of members is often noted across models due to the high 

cost of produeing simulations for long periods ( e.g. hundreds of years) with increasingly 

high resolutions, while the part icipating centres have limited resources and their own 

interests. Such a MME can be represented as a two-dimensional matrix of simulations 

(models, members for each mode!) where sorne clements are "missing'' compared to an 

idealised ensemble where each mode! would have Lhe same number of members. 

Even more complex MMEs result from dynamicaJ downscaling with Regional Climatc 

Models (RCMs) driven by lateral atmospheric aud sea-surface boundary conditions from 

AOGCM simulations ( e.g. ARCMIP 1, NARCCAP 2 , ENSEMBLES 3 , CORDEX 4) . Su ch 

framework also suffers from missing matrix elernents due to the very high cost involved 

in attempting to downscale each member of each AOGCM with each R.CM. However, the 

effects of the missing mode! combinations can be minimised when the missing elements 

are systematically distributed across the matrix. For example in the NAR.CCAP project , 

each AOGCM is used to drive three R.CMs, while each R.CM uses boundary conditions 

from two AOGCMs (Mearns et al. , 2009). The ENSEMBLES proj ect on the other hand , 

while attempting to account for severa! sources ofuncertainty, suffered from an imbalance 

between the sampling of the scenarios, mode! combinations and member realisations 

(van der Linden and Mitchell , 2009). 

The use of an unbalanced ensemble can involvc biases and large sampling errors when 

partitioning the uncertainty into severa! componcnLs ofvariabili ty. In orcier to circumvent 

these issues and hence reinforce the message convcyecl by the analysis of the uncertainty 

1. The Arctic Regional Climate Mode! In tercompa.rison (ARCMIP), http: 11 curry. eas. gate ch . 
edu/ ARCMI P 1. 

2. North American Regional Climate Change Asscssrnent Prog~·am (NARCCAP) , http: 1 /www. 
narccap.ucar.edu/. 

3. The ENSEMBLES Project, http :/ /www. ensembles-eu. org/. 

4. COordinated Regional climat e Downscaling Experiment (CORDEX) , http://www.meteo. 
unican.es/en/projects/CORDEX/. 
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components, Déqué et al. (2007, 2012) used data-reconstruction methods for projecting 

a non-systematic framework onto a systematic one. One should keep in mind though 

that an inappropriate data-reconstruction method could also result in an increase of the 

uncertainty by adding arbitrary noise to the original dataset. 

Since severa! empirical ways can be imagined in order to regenerate the missing elements 

of a matrix of simulat ions, this chapter presents a theoretical framework that aims at 

choosing the most suitable between two data-reconstruction methods. The first method , 

henceforth referred to as single-mode! pooling (SMP), consists in a resampling from the 

aw:ülable realisations of one mode! in orcler to generate artificial members to that mode!. 

The second method , referred to as mul ti-model pooling (MMP), uses the realisations 

from different models to generate artificial members to any of the models. T he choice 

of the most suitable approach implies two scientific questions that are inherent to the 

nature of the MME. The first one (Q1) asks for ergodicity in a single-mode! ensemble, 

i.e. the invariance of the statist ics whether computed over time or members (Peixoto 

and Oort , 1992). T he second (Q2) adclresses the differences in the simulated climate 

variability by different models, more precisely whether these differences are physically 

significant . 

Sect. 3.2 presents the theoretical framework in order to make an educated guess on 

which data-reconstruction method is the most appropriate for generating the missing 

members in a MME. Sect. 3.3.1 describcs the data used in this study, which consist in 

an subset extracted from the CMIP3 mul ti-model dataset (MMD). Sect. 3.3.2 presents 

the decomposition of the climate variability into forced and unforced components , and 

Sect. 3.3.3 develops the test ing frameworks related to both questions Ql and Q2. The 

results are analysed in Sect. 3.4, followed by a general discussion in Sect. 3.5. 

3. 2 General approach to member reconstruction 

As noted in Introduction, the use of a non-systematic ensemble framework can be an 

issue wh en applying common statistical methods ( e.g. analysis of variance) to separa te 
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the different components of the uncertainty. In this chapter , we propose two methods for 

generating the missing elements in an unbalanced ensemble such as the MMD. Basically, 

both methods generaLe artificial simulations by resampling over a "pool of climatic da­

ta'', either from singl~model or multi-model information. We will first describe the two 

types of pool, and then we will integrate the two approaches within a single theoretical 

framework aiming to make an educated guess on which one is the most suitable for 

applying to t he MMD. 

An important part of our analysis is based on Lhe fact that a single-mode! ensemble of 

climate simulations can be consideree! as ergodic, i. e. that the main sLatistics ( e.g. mean 

and variance) are invariant wh ether calculated over time for one realisation or over seve­

r al members for one specifie time. In orcier to apply the ergodic assumption to the case of 

a singl~model ensemble of AOGCM simulations, sorne basic conditions have to be met. 

F irstly, the realisations have to be run under sLationary conditions or more specifically, 

with constant external forcings applied (e.g. GHGA emission and land-use scenarios, 

volcanic emissions, solar irradiance). Secondly, the realisations are independent, that is 

the initial conditions have been forgotten by lcaving a sufficiently long spin-up time 

period at t he beginning of each simulation. Finally, the ensemble size and the length of 

the simulations are sufficiently large. It is worth noting that seasonal, annual or longer 

t ime-averages can be consideree! in order to avoid any correlation between the members 

due to either the daily and annual cycles. For more deta ils about the previous condi­

tions, Appendix 3.A presents an exarnple of applica tion of the ergodic assurnp tion to a 

singl~model ensemble of AOGCM simulations. 

By assuming Lhe Lruthfulness of the ergodic assumption for a single-mode! ensemble of 

simulations, it follows that artificial simulations can be regenerated for one mode! by 

random sampling over the data available from Lhc members of that mode!. By using such 

an approach, the arLificial liiTle series are not expccLed to reproduce ail the charactcristics 

of a climate mode! simulation, such as the sequence of weather events. However, under 

the ergodic assumption, the statistics are expected to be preserved in the extended 
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ensemble : i.e. the mean or variance of climate calculated for one realisation should 

equal the ensemble mean at any specifie time. In what follows , we refer to this method 

as the single-mode! pooling (SMP) sincc the information available from one mode! is 

used as a pool for generating artificial members for that mode!. 

The SMP method can be extended by pooling together the realisations from severa! 

models in order to fonn a multi-model pool (MMP) from which climatic data can be 

resampled . While the SMP method could be limited in the case of a mode! providing 

very few members (e.g. one) , the MMP method offers a wider pool to pick from. Un­

fortunately, it is well known that different models can show relatively large differences 

in their simulated climate (Greene et al. 2006, Gleckler et al. 2008). Inter-mode! dif­

ferences can also be expected for the natural variability, but the physical significance 

of these differences could be judged small enough in some cases to consider the MMP 

approach. Assuming the mode! biases to be removed and thus imposing equal means 

beL-ween the models , the MMP generat~s artificial members for one mode! by sampling 

over the climatic data available from the members of other models. 

As stated previously, the two pooling methods involve an ensemble of simulations run 

under stationary condition. Obviously, this condition is not met for the MMD projections 

into the 2lst century where the models employ transient external forcings as GHGA 

emission and land-use scenarios, volcanic emissions, variations in the solar irradiance, etc. 

However, one can approach stationary conditions (and hence ergodicity) by removing the 

forced component in the simulations. Such an approach allows leaving only t he unforced 

component that represents the internai variability as simulated by the models. It is worth 

noting that the for·ced component can be extracted by using the ensemble mean, but 

doing so general! y necessita tes a large number of realisations ( e.g. Wigley et al. 2005) . 

In the case of the MMD that generally provides very few members for each AOGCM, an 

important part of the forced component can be removed by detrending the simulations 

according to the ensemble mean of each single-mode! ensemble (see Appendix 3.B). 

Fig. 3.1 presents a fl.owchart that summarises the proposed theoretical framework for 
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reconstructing the missing members in a MME of AOGCMs in order to obtain a balan­

ceci ensemble framework. Beginning from the top of the diagram with an MME under 

transient forcing, t he simulations have to be detrended to approach stationary condi­

tions and hence allows t he ergodic assumption to apply. The next step is represented 

in the figure by a diamoml box that involves a first scientific question that is deno­

ted as Ql ; this question aims aL verifying if t he detrending of the simulations satisfies 

the ergodic assumption. It involves a test (Appendix 3.C) that allows detecting if a 

single-mode! ensemble can be treated as ergodic by investigating both the statistical 

and physical significance of t he non-ergodic parL of the signal. In the case that the 

single-mode! ensemble is judged ergodic, t he next step in the ftowchart involves a second 

scientific question, denoted as Q2, which checks Lhe equali ty of t he climate variability as 

simulated by different models . To help answering this question, a second test (Appendix 

3.D) is constructed for evaluating both the sta.Listical and physical significance of the 

inter-mode! differences in the simulated climate varia.bility. 

In the case that the answer to both questions Ql and Q2 is "yes", we consider as sui table 

the use of a MMP for reconstructing t he missing elements in the MME. In the case 

t hat we a.nswer "no" to Q2 , a SMP should be preferred . Since ergodicity is expected for a 

single-mode! ensemble run under stationary condi tions (Appendix 3.A), it is worth noting 

tha.t answering "no" to Ql could reftect an inappropriate detrending of the simulations. 

For example, it could be due to t he degree of the fitted polynomial function that is not 

appropriate or that a correction should also be applied to higher statistical moments. An 

alternative could be to reject the non-ergodic simulations or to consider other methocls 

for data reconstruction. Once the choice of the most suitable type of pooling is clone, 

art ificial members can be generated for any mode! in the ensemble. It is worth noting 

that the removed trends can be "added back" to the generated members, depending on 

the needs of further analysis. 
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3.3 Experimental framework 

3.3.1 Data 

In this study, we consider a subset of simulations from the CMIP3 MMD. More speci­

fically the eleven models providing more than a single realisation for the A1B scenario 

have been retained. This subset from the large ensemble will be referred to as the MME. 

The projections for the A1B scenario have been merged with their corresponding run for 

the 20th century, resulting in 42 simulations covering the period from 1900 to 2100. The 

mode! names are shown in Tab. 3.1 with their respective number of available members 

(NK)· Also are shown in the table which models include the radiative forcing due to the 

volcanic emissions and variations in t he solar irradiance. The complete models' specifi­

cations can be found on the Program for Climate Mode! Diagnosis and Intercomparison 

(PCMDI) website at http: 1 / www-pcmdi . llnl. gov. The present study focuses on the 

time evolution of the summer-average surface air temperature over Nor th America. The 

simulations from the different models have been linearly interpolated over a common 

grid of 4° x 5° degrees. The time series are detrended according to 4th-degree polyno­

mial functions fit ted to the ensemble mean of each mode!. This method for detrending 

the simulations is detailed in Appendix 3.B. 

3.3.2 Components of variance 

Fig. 3.2 schematises an ensemble of simulations performed by a single climate mode!. 

This single-mode! ensemble can be seen as a matrix (X ) containing time periods (t ) and 

realisation (member) number (k). Note that the mode! index (m) and spatial coordinates 

are implicitly considered to lighten the notation. An element (X tk) can be described as 

(3. 1) 

where p, represenLs the mean climate of the single-mode! ensemble. As described in 

Appendix 3.B, the time series are detrended in order to approach stationary conditions. 
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It follows that the X tk are time deviations (from t he trend) and hence that 11 tends 

to zero by construction. The first component (at) describes the deviations that are 

shared across ali the realisations according to the time. Because of the dctrending, this 

component does not reflect the GHGA or aero. ols emissions, but includes faster cycles 

resulting from volcanic emissions and solar irradiance when these are taken into account 

and simulated by a mode!. 

In the following analysis, we assume at as a raudom effect occurring in time with sorne 

variability defined as the forced variance a}. For etk> it consists in the r siclual fluctua­

t ions t hat are assumed to be inclependent and identically distributed ( iid) accorcling to 

t and k. The residual fluctuations component has a variance a}v and is expected to 

represent the interna! variability as simulated by the mode!. Based on the assumption 

that at represents t he forced component, a}v can be also interpretee! as the natmal 

variability of the modelized climate system undcr stationary conditions. Based on the 

previous statistical mode! and its related assumptions, the elements XLk are distributed 

with a variance that will be referred to as the Lota! climate variability (crz0t ) : 

2 2 + 2 
CT tot = CT p CT IV> (3.2) 

a sum of the forced variance (cr}) and the interna.! (natural) variability ( crJv) . 

3.3.3 Hypotheses testing 

The two quest ions (Q1 and Q2) that appear in Lhe flowchart in Fig. 3.1 can be invest i­

gated through the use of test statistics. Each of Lllese statistics involves the rej ection of 

a nul! hypothesis that translates the scient ific question under study. 

A formulation of the test associated to the first question (Q1) can be founcl in Appenclix 

3.C. The nul! hypothesis is denoted as Hgrgo and states that there is no forced component 

of variability according to the t ime and hence thaL ali the variability of the single-mode! 

ensemble is clescribed by the uriforced component ( crJv) . A rejection of Hgrgo ( using an 
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F-ratio denoted as Fl) means that the for·ced component of variability is statistically 

significant , i.e. that the single-mode! ensemble is not ergodic from the point of view of 

the test. It follows that the ergodic assumption cannat be verified directly but can only 

be rejected at sorne significance level. In order to appreciate the physical significance of 

the regions where the null hypothesis is rejected, P1 represents the ra tio between the 

forced variability (a}) and the total elima te variability (a} + a} v). 

The second question (Q2) is addressed in Appendix 3.D and can be translated by the null 

hypothesis H0ar . This hypothesis states that the simulated total climate variability ((/tot) 

is equal between two models (labeled as m and m'). In order to reject this hypothesis, 

we use the statistics F2(m, m') that consists in an F-ratio between the two variances. 

In order to quantify the physical significance of the difference in variability, the relative 

error of variance P2(m, m') is used , which consists in a ratio of the difference in variance 

with the mean variance of the two moclels (Eq. 3.16 in Appendix 3.D). 

3.4 Results 

In the following two sections, we evaluate the feasibility of applying the SMP and MMP 

member-reconstruction methods in orcier to regenerate the missing simulations in the 

MME. The results are presented through an investigation of the two scientific questions 

(Ql and Q2) tha t are involved within the theoretical framework presented in Fig. 3.1. 

3.4 .1 Ergodicity in single-model ensembles 

In this section, we present the results related to the first question (Q I) of the theoretical 

framework proposed in Fig. 3.1. This question focuses on the ergodic assumption applied 

to single-mode! ensembles. In our analysis, we use the summer mean surface air tem­

perature for the eleven models of the MiviD that provide more than a single realisation 

(Tab. 3.1). The results for this test are shown for the 20th and 21st centuries separately. 

Considering first the simulations over the 20th century, in Fig. 3.3 is shown the variance 
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ratio (P1) for each of the models that are sorted from the largest (Fig. 3.3a) to the 

smallest (Fig. 3.3k) number of realisations. The coloured regions indicate the areas where 

Hgrgo is rejected wit h a significance leve! of 10%. Given t he significance leve!, the crit ical 

values of F1 are calculated from the F-distribution and are determinee! by both the 

number of climatic time periods Nr and ensemble size NK as F(Nr -1 ; Nr x (NK - 1)) 

(see Appendix 3.C) . For example, Lhe criLical value of the variance ratio P1 is 0.03 for 

t he CCSM3 mode! (Fig. 3.3a) and increases to 0.13 for GISS-AOM (Fig. 3.3k) due to the 

reduction in the ensemble size from NK = 7 to Nr< = 2. It is worth noting that a lower 

significance leve! ( e.g. 1%) would have a similar effect by increasing the prominence of 

the non-rejecting regions (in white). 

The rejecting rate can be defined as the percenLage of the domain where the nul! hypo­

t hesis is rejected. By comparing the different models in Fig. 3.3, it can be seen that some 

models show rejection rates that are higher than 20% of t he domain (CCSM3, GISS-ER., 

P CM, GISS-EH and MIROC3.2(medres) in Fig. 3.3a, d, f, g and i respectively) . The 

other .models show relatively small rejection ra Les with values smallet than . 9% of the 

domain. 

If we now pay attention to the spatial distribution of the ratio (H ) between the forcee! 

and total variability (referred to as the non-ergodic signal), in Fig. 3.3a, f and g, there 

are areas where H > 20% of variance. This mainly occurs in the southeast part of 

the domain, over the Gulf of Mexico and exLeuding over the Atlantic Ocean. Weaker 

signal is also noted along the east-coast of the United States for MIROC3.2(medres) 

and ECHO-G (Fig. 3.3i and j), and over the Gulf of Mexico for GISS-ER (Fig. 3.3d). An 

interesting feature is LhaL Lhe detection of a nou-ergodic signal generally appears over the 

oceanic or coastal regions while less occurrence appears over the land regions where the 

non-ergodic signal is generally smaller than 10% of the variance, with an exception for 

the PCM and GISS-EH models showing a local maximum (P1 ~ 15%) over the Québec 

province of Canada. R.ecalling Ta b. 3.1 , t he models without volcanic and solar forcing 

are CGCM3.l(T47), MPI-ECHAM5, FGOALS-gl.O, and GISS-AOM. In Fig. 3.3 (b, e, h 
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and k) , aU four models do not display any clear signal of rejection of the nul! hypothesis 

(Hgrgo) through very low rejecting rates. It is worth noting that the MRI-CGCM2.3.2 

mode! does include both of the volcanic and solar forcing agents but does not show any 

significant variability according to the present test. 

The results for Ql are also shown for the 21st century in Fig. 3.4. The occurrence of 

a non-ergodic signal is relatively rare for most of the models and the rejection rate is 

always smaller than 12% of the domain. Also, the non-ergodic signal present near the 

. Gulf of Mexico in the simulations for the 20th century does not appear at aU in the 21st 

century. This result shows that after cletrending the simulations, sorne variability due to 

external forcings is remaining in the simulations for the 20th century but not in those for 

the 21st. It seems that this remaining variability is mainly due to the volcanic emissions 

events in the 20th century rather than Lo the cycles in the solar irradiance (Appenclix 

3.B) . However, the effect of these two forcings is difficult to evaluate separately by using 

the MMD since the models that include volcanic forcing also account for variations in 

solar irradiance. 

R.ecalling that the critical value of the F-distribution depends on the number of climatic 

time periods (Nr) and the ensemble size (NK), it is worth noting that a large NK 

does not necessarily involve a high rejecling rate of the nul! hypothesis. For example, 

the CGCM3.l(T47) and MRI-CGCM2.3.2 (Fig. 3.3b and c) models that have relatively 

large ensemble sizes (NK = 5) , Hgrgo is rejected over only 5% and 2% of the domain 

respectively. Given the leve! of statistical significance, a single-mode! ensemble can be 

consiclered as non-ergodic from a statistical point of view over the regions where the 

nul! hypothesis Hgrgo is rejected. From lhe physical point of view, one can argue for 

ergodicity over the same regions if the variance ratio (P1) is judged sufficiently small . 

Overall, the results suggest that we can assign a rather positive answer to Ql, i. e. that 

the ergodic assumption generally holds over a great part of the domain and especially 

for the land regions in the simulations for the 20th century and practically for the entire 

domain in the 21st century. 
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3.4.2 Inter-model differences in the simulatecl total climate variability 

In the previous section, we analysed the non-ergodic part of the signal by comparing 

the forcee! variability (o}) to the total climate variabili ty (o} + aJv ). The forcee! corn­

panent generally appeared relatively small and hence the internai variability (aJv) has 

to count for the largest part of azot due to the sum of variances (3.2). In this section, 

we investigate both the statistical and physical significance of the inter-mode! diffe­

rences in the simulated total climate variability. Such an analysis can provide valuable 

information for answering question Q2 , which plays a decisive role in the selection of a 

data-reconstruction method according to Fig. 3.1. As shown in Appendix 3.D, the total 

climate variability simulated by two models , denotee! as az0 t(m) and az0 t(m') , can be 

compared using the relative error of variance P2(m , m'). Using the 11 models of the 

MME, 55 subsets of two models can be formed. These 55 comparisons are presented in 

Fig. 3.6 in the form of a strict ly upper triangular matrix of panels whcre the m moclels 

are representee! as rows (a to j) and the m' as columns (b' to k') (sec Tab. 3.1 for the 

mode! name associatecl to each letter). The P2 staListics is bounclecl between P2 = -2 

(in blue) where the ratio F2 = 0 and saturates Lo P2 = 2 (in red) for F2 -+ oo . For 

equal variabili ty between the two models (i.e. F2 = 1) , the relaLive error is P2 = O. In 

Fig. 3.5, P2 is plotted as function of F2 according to Eq. 3.16 in Appendix 3.D. Using 

a two-tailed F-test at the 10% significance levcl , a white mask has been applied over 

regions where the difference of variances is not sLatistically significant. In these regions, 

not enough evidence allows to distinguish the two models' climate variabili ty. 

In F ig. 3.6, the inter-mode! cornparison of the Lota.! clima te variabili Ly is done for the 

20th century. A general feature is that the rejection rate of the null hypothesis (H0ar ) 

is rather large, i.e. that th€ inter-mode! differences in the total clirnate variability are 

statistically different over large proportions of lhe domain. It is worth noting that the 

sign of P2(m, m' ) is determinee! by t he order of the comparison between m and m'. For 

example, if we focus on the comparison of GISS-EH with the other models, we follow 

the g' column to be compared with t he models a Lo f and continue on t he row g for a 
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comparison with the models h' to k'. For this mode!, one can identify a maximum value 

of relative error )ocated over the Hudson Bay represented in blue in the g' column and 

in red in the g row. Particularly, the panel (g, h' ) displays a maximum corresponding 

to a total climate variability that is 10 times larger in variance for GISS-EH thau for 

the FGOALS-gl.O mode!. Inversely the GISS-AOM mode! has generally smaller total 

climate variability then the other models over the largest part of the domain where the 

values of P2 are positive (column k' ). An interesting feature can be seen in the pair 

( d, g') that shows a relatively low rejection rate compared to the other pairs. These 

models (GISS-ER and GISS-EH) are developed by the same institute but differ only in 

their ocean component. This could probably explain the maximum of relative error of 

variance (P2 R:i -1.5) found over the Hudson Bay. On the other hand , the continental 

values generally do not exceed P2 = 0.5, which corresponds approximately to twice the 
1 

variance of the reference (i.e. F2 = 2 according to Fig. 3.5) . These results are consistant 

with the inter-mode! comparison doue by (Sauter et al. , 201 1). 

If we now look at the cross-mode! comparison for the 21st century (Fig. 3.7) , the results 

appear very similar to those obtained for the 20th century (Fig. 3.6). For example, the 

positive maximum value of relative error over the Hudson Bay is preserved for the GISS­

EH mode! (g) as for the GISS-AOM mode! (k) that has a total climate variability that 

is smaller thau the other models over a great part of the domain. Also , the total climate 

variability of the GISS-ER and GISS-EH models are still statistically similar over the 

land since the nul! hypothesis is weakly rejected. 

As noted in Sect. 3.4.1 , the non-ergodic part of the variability (a}) can greatly contribute 

to the total clirnate variability (ot0J However, the large contributions are generally 

located in an area characterised by rather small total climate variability such as the Gulf 

of Mexico (not shown). Added to the fact that the inter-mode! ratios of total climate 

variability do not change much betwecn the 20th and 21st centuries, this suggests that 

the internai variability of the climate models is relatively robust over centennial periods 

under the A1B emissions scenario. Howevcr, investigat ing shorter periods would probably 
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reveal temporal changes in the simulated intem al variability as obtained by Riüsiinen 

(2002) using the previous generation of models. 

3.5 Discussion and concLusions 

Mode! intercomparison projects (MIPs) consist in internationally conducted experiments 

where different rnodelling centres provide simulations from one or severa! models. In 

orcier to encourage diversity in the participating models, low requirements are generally 

asked to the centres in the number of simulations to be provided. It follows that these 

ensembles are very likely to result in non-systematic frameworks due to an imbalance in 

the sampling of scenarios, models and realisations. An unbalanced ensemble design can 

induce errors in the use of sorne diagnosis tools (e.g. analysis of variance) . Vve proposecl 

two simple methods in orcier to artificially gencrate the members that are missing in a 

mu! ti-mode! ensemble in orcier to obtain a bala.nced framework. Both methods use a pool 

of climatic data which are resamplecl to create artificial time series. The first method 

involves a pool constructecl using the realisations from a single-mode!, the second use 

data from multiple models. 

The single-mode! pooling (SMP) method requires that the single-mode! ensemble is 

ergodic and hence that t ime periods can be considered in the construction of new mem­

bers and vice versa. The CMIP3 multi-model claLaset (MMD) being run uncler transient 

forcings, the most important being the GHGA emissions, the simulations have been de­

trendecl in orcier to rernove the main part of the fOt·ced component. It appeared from 

the results that the single-mode! ensembles arc rather ergodic even if the effect from 

some transient forcings has survived to the detrending. Especially, the simulations for 

the 21st century appeared more ergodic since subject to less synchronised transient for­

cings compared to the 20th century where the volcanic emissions and t he solar irradiance 

are modulated in t ime based on historical records. The non-ergodic signal for the 20th 

century has been mainly detected over the Gulf of Mexico for severa! models while this 

feature do es not appear for the 21 th century. 
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In order to use the multi-model pooling (MMP) method, the ergodic assumption must 

apply for t he different single-mode! ensembles and with the supplementary condition that 

the climate variability must be simulatcd with a similar intensity among the models. The 

results show that the inter-mode! d ifferences in variability are generally significant over 

the most of the analysed domain. Howevcr , sorne pairs of models share some similarities 

in the simulated total climate variability, uch as the GISS-ER and GISS-EH models over 

land , while larger differences are found over the Hudson Bay. These differences have been 

attributed to the fact that the two models differ only by their ocean component . 

We proposed a theoretical framework for choosing the most appropriate method for 

reconstructing the missing members in a multi-model ensemble. We attributed a rather 

positive answer to Ql and then the SMP method can be applied to reconstruct artificial 

time series. The second question (Q2) results in a rather negative answer and hence the 

MMP method seems Jess appropriate for an application to this MME. It is worth noting 

that a positive answer to both questions would suggest the application of both the SMP 

and MMP methods, but in that case the MMP would provide a larger pool of climatic 

time periods to resample from and hence should be preferred . 

We acknowledge that more complex tcsling frameworks could have been implemented 

for obtaining a more precise answer to questions Ql and Q2. For example, the changes 

in the internai variability of the climate system for the next century were neglected 

in the present study since they are expccted to be rather small for temperature over 

midlatitudes (Hawkins and Sutton , 2011 , 2009; Raisanen , 2002) and hardly detectable 

due to the poor sampling of realisations for each mode!. 
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Appendix 3.A : Applying the ergodic assumption to climate model simulations 

The ergodic theor-y has been developed through research in statistical physics ( e.g. Reif 

1965). As a general definition, the ergodicity principle applies when a characteristic of 

a system is invariant according to different coordinates (axes). In the present, we apply 

the ergodicity principle between the time and the 11 members 11 axes as described in the 

following example. 

Let us first consider an AOGCM used to simulate the planetary weather over a long 

climatic t ime scale (e.g. severa! centuries). We assume a sufficiently long spin-up period 

has been removed at t he beginning of the simulation (Stouffer, 2004) after which the 

simulation has reached sorne equilibrium betwcen the main components of the mode] 

(e.g. atmosphere, ocean, land, sea-ice, vegetation). The mode! is run under stat ionary 

conditions, i.e. that no .extemal transient forcings are applied ( e.g. GHGA emission and 

land-use scenarios , volcanic emissions, variations in the solar radiation). We note that 

the diurnal and annual cycles in solar radiation are included, resulting in simulations 

that are cyclo-stationary. Let us now suppose that we generate a large ensemble of such 

simulations by using the same mode! but with slight differences in the initial conditions. 

After the spin-up periocl, the two simulations are expectecl to be totally uncorrelatecl 

at every t ime scales from day-to-day variability Lo longer cycles as the multi-clecaclal 

climate variability. 

Suppose now that we proceed to averaging over seasonal, annual or longer time periods 

in orcier to focus on a climatic time scale, thus removing both the daily and annual cycles 

in the time series. The simulations being now st.ationary and assuming sufficiently long 

simulation period with a large ensemble, it is cxpected that the time average over one 

time series will tend to equal the ensemble average at any specifie time. Similarly, the 

temporal variance calculated from one simulation (natural variability) will tend toward 

the inter-member variance at any time (internai variability), and similarly for the higher 

statistical moments. 
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Such an ensemble of simulations can be considered as ergodic in a similar way as used 

in statistical physics. According to Reif (1965), the ergodic assumption can be stated as 

"each system of [an] ensemble will in the course of a sufficiently long time pass through 

ali the values accessible to itn In our example, a system consists in a realisation and the 

ensemble is formed by ali the realisations available for a given mode!. If considering a 

sufficiently long time scale, it is expected that each realisation will visit ali its acc;essible 

states but at different moment in time since the realisations are independent from one 

another. Corollary, the statistics calculated in time for one realisation are expected to be 

equal to the same statistics but calculated over all the realisations at one specifie t ime. 

It is interesting to note that for such an ensemble under ergodic conditions, the only 

difference between the time and member axes is the chronology of the events that cha­

racterises the time axis . On the other hand, the member axis can be seen as time axis 

but without any preferred order of chronology. 

Appendix 3.B Approaching stationary conditions by detrending the ensemble 

mean 

The simulations provided by the CMIP3 multi-model (MMD) dataset include impor­

tant externat transient forcings and then the ergodic assumption (see Appendix 3.A) is 

not expected to hold. However, stationary conditions can be approached for a particu­

lar mode! by "correcting" its ensemble mean (i.e. the average over the realisations). If 

the higher statistical moments are not processed as the ensemble mean, the resulting 

ensemble can be seen as under "weakly stationary" conditions. One should note that a 

weakly stationary process generally involves both of the two first statistical moments 

(von Storch and Zwiers , 1999). 

The ensemble mean represents the mean response of a mode! to its external transient 

forcings in the limit of a sufficiently large ensemble size. In the simulations from the 

CMIP3 experiment, the most important external forcing being the emission scenario, 

its general effect on the simulations can be described using a 4th-degree polynomial 
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regression as clone by Hawkins and Sutton (2009). Another effect that cau be described 

by a 4th-degree function is t he secular changes in solar radiation along the 20th century. 

The effect of volcanic emissions and the periooic variations in the solar radiation will 

survive to the detrending because those happen synchronously across al! the realisations. 

While the effect of the former is expected to be important comparee! to the latter for 

the surface air temperature, the two effec ts are difficult to separate using the CMIP3 

archive since the models generally include both or neither of these forcings. 

As an example, Fig. 3.8 shows the coefficient of determination ( R2) that characterises the 

fit of a 4th degree polynomial function to the ensemble mean of the GISS-ER ensemble of 

simulations. The coefficient of determination infonns us about the proportion of variation 

that is described by the regression compared to the total variability about the overall 

mean (averaging over the time and the realisations). As seen on this figure , the values 

of R2 are higher than 90% over Pacifie Ocean (PO) while relative! y small ( < 50%) over 

the Labrador Sea (LS). In Fig. 3.9a and b are shown the summer-mean time series over 

two grid points that correspond to the previous regions. In t hese panels, the different 

realisations are shown as thin coloured !ines and the ensemble mean as a black line. The 

red line represents the polynomial function fitted to the ensemble mean. These curves 

show that, even for regions with small R2, a 4th-degree polynomial function seems to 

describe properly the general trend detected in the ensemble mean. 

As noted previously, the effects from sorne tra.nsient forcing agents are expected to 

remain in the climate simulations after the detrcnding of t he ensemble mean. In Fig. 

3.10 are shown the domain averaged (over North America) time series for the available 

memb rs of each models , the ensemble means and Lhe related polynomial fits. The GISS­

ER mode! (Fig. 3.10d) shows three large peaks in the ensemble mean that corresponds to 

important volcanic events throughout the 20th century : Novarupta in 1912, El Chich6n 

in 1982 and Mt. Pinatubo in 1991. The other moclels presentee! in Lhe figure generally 

show a weaker response to volcanic forcing compared to the GISS-ER and GISS-EH 

models. Also, it can be seen from a general point of view that the structure of the 



112 

ensemble mean is general! y different between the 20th and 21st centuries ( e.g. PCM in 

Fig. 3.10f) . In the 21st century, the ensemble mean is relatively close to the fit with 

relatively short cycles while longer cycles can also be seen in the 20th century. These 

oscilla tions are partly attributable to the numerous volcanic emissions that have been 

recorded (Ammann et al. , 2003) for the 20th century and that are used to force most of 

the models of the MME. 

Appendix 3.C Testing the ergodic assurnption for a single-rnodel ensemble 

In this appendix, we describe a testing framework in order to investigate the ergodic 

assumption for a single-mode! ensemble of simulations. This test aims to provide an 

answer to the first scientific question ( Q 1) asked through the theoretical framework 

presented in Fig. 3.1. 

A single-mode! ensemble of simulations can be represented by a matrix X as shown in 

Fig. 3.2. Using the linear model (3.1), a onc-way analysis of variance (ANOVA ; von 

Storch and Zwiers 1999) can be applied to decompose the total variability in X into a 

sum of squares, i. e. SST = SSA + SSE, where SST is the total sum of squares, SSA 

the sum of squares due to the treatmcnt intime and SSE the residual error. These three 

components are summarised in Table 3.2 where the "o" notation indicates averaging over 

the missing subscript . Also is shown in this table the number of degrees of freedom ( df) 

associated to each sum of square. 

In order to build a test statistics that translates the ergodic assumption for the ensemble 

shown in Fig. 3.2, we define the nul! hypothesis as : 

Nr 
H ergo . """' 2 _ O o · L....t at - · 

t 

(3.3) 

The nul! hypothesis (3.3) means that there is no treatment along the time axis and hence 

that ali the variability in the ensemble ma trix (Fig. 3.2) is described by t he residual error 

( etk) . The errors are assumed to be independent and identically distributed ( iid) and 
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hence represent the ergodic (unforced) componcut of the matrix, i.e. an invariance of the 

statistics according to time and members. On Lhc other hand, at represents the forced 

variability in time and hence the non-ergodic component. lt is worth noting that in the 

context of a single-mode! ensemble including the GHGA forcing, H~rgo is expected to 

be strongly rejected . 

Before constructing a test statistics for the ergoclic assumption, let us consider the term 

S'SA as shown in Tab. 3.2. Using (3. 1) , it can l>e shown that the expectation of S'SA 

can be written as : 
E(SSA) NKL1.az 2 ___.:. _ __:_ = + Ojv 
Nr -1 Nr -1 

(3.4) 

where 

2 E(SSE) 
Ojv = 

Nr x (NK- 1) 
(3.5) 

is the variance of the iid process (etk) which can be associated to the rnodel simulated 

internai variability From (3.4), it can be see11 Lhat E(SS'A) /(Nr - 1) estimates dv 
when Hgrgo is true and a larger number if Hgrgo is false. Similarly, it can be shown that 

E(SSE) /(Nr x (NI(- 1)) estimates dv independently of whether if Hgrgo is true or 

false. In orcier to test H~rgo, we th en use the following ratio : 

F
1 

= SSA/(Nr- 1) 
SSEj (Nr x (NK - 1)). 

(3.6) 

Under the nul! hypothesis, F1 follows an F-distribution that is defincd by its number 

of degrees of freedom, i.e. F ( Nr - 1; Nr x ( N K - 1)) . The ergodic assumption can 

then be tested using a one-sided test at sorne significance leve! by using the critical 

values associated to the F-distribution. The F1 statistics provides information about 

the rejection of the nul! hypothesis but tells very little about the physical relevance of 

of the non-ergodic component. The proportion of variance (P1) of the matrix X that is 

described by the forced component of variability can be estimated as : 

(3.7) 

1 

·1 



114 

where &} estimates the forced variance that occurs in time, which can be defined as 

(3.8) 

and thus estimated by replacing (3 .8) into (3.4) as : 

, 2 SSA/(Nr -1)- SSEj(Nr x (NK- 1)) 
Œp = NK . (3 .9) 

The ratio (3.7) is finally calculated as : 

SSA- Nr:[i}-l)SSE 
p 1 = SST- SSE/Nr (3.10) 

It is worth noting that P1 can be written as a function of F1 : 

(3.11) 

Recalling that a rejection of the null hypothesis at sorne significance leve! involves an 

F1 ratio that exceeds sorne critical value calculated from the F-distribution, one can 

calculate the corresponding critical value of the variance ratio (P1 ) by using (3. 11). The 

variance ratio allows to appreciate the physical significance of the non-ergodic component 

when Hgrgo is rejected. 

Appendix 3.D Testing the inter-model differences in the simulated total climate 

variability 

In what follows, we develop a testing framework for question Q2 that investigates the 

inter-mode! differences in simulated total climate variability. From Tab. 3.2, the total 

sum of square divicled by its number of degrees of freedom -allows to estimate the total 
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elima te variability ( afot) : 

(3.12) 

where mis the mode! index. Since the simulations have been detrended (Appendix 3.B) , 

the ensemble mean Xmoo tends to zero. Also, it is worth noting that the estimate of the 

total climate variability given by (3. 12) tends to be equal to t he sum &} + â}v (see Eqs. 

3.5 and 3.9) when Nr and Nx become large. We thus define the nul! hypothesis of equal 

total elima te variability between two mo dels ( m and m') : 

H var 2 ( ) 2 ( ' ) o : O"tot m = O"t.ol m · (3 .13) 

This assertion can be verified through the use of an F- test defined as the following ratio : 

(3.14) 

Under the nul! hypothesis (i.e. when H'0ar is truc), the F2 ratio is clistributed as the 

F-distribution F(Nx(m) x Nr - l;Nx(m') x Nrr - 1). It follows that H0ar can be 

tested by using a two-sided test at sorne significancc leve!. 

As a measure of physical significance, we define the relative error of variance (P2 ) as : 

' 2 ( ) ' 2 ( ') 
p. ( ') _ O"tat m - O"tot m 

2 m , m - '2 ( ) • . , ( ') 
. (J toi nt + uïot. rn 

(3.15) 

2 

This ratio can be expressed as a function of F2 as follows : 

(3.16) 

It results that a crit ical value obtained for F2 can be converted into a corresponding 

critical value for P2 and vice versa. 
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Tab. 3 .1: Names of the models in t he CMIP3 multi-model dataset that provide two 
or more realisations following the AlB emission scenario. Is also given the number of 
realisations (NK) that are available for each mode!. For supplementary information, the 
reader is invited to refer to the PCMDI website at http: 1 /www- pcmdi . llnl. gov. 

Model name NK (m) Volcanic Sol ar 
a CCSM3 7 x x 
b CGCM3.1 (T47) 5 - -

c MRI-CGCM2.3.2 5 x x 
d GISS-ER 4 x x 
e MPI-ECHAM5 4 - -

f PCM 3 x x 
g GISS-EH 3 x x 
h FGOALS-gl.O 3 - -

i MIROC3.2(medres) 3 x x 
j ECHO-G 3 x x 
k GISS-AOM 2 - -

Tab. 3.2: One-way analysis of variance table where the total sum of squares, the treat­
ment sum of squares and the sum of squared errors are expressed with their respective 
number of degrees of freedom. Ny is the numbcr of time periods and Nf( is the number 
of realisations generated using the climate mode!. 

Component 

total 

t reatment 
err or 

Sum of squares 

S ST =_ ~~ T ~/J:< C!·tk - ! oof 
S SA - Nx ~t (Xto- Xoo) 

SSE = ~.fr ~~}( (Xtk - Xto )2 

Degree of freedom ( df) 

Nr x NI< - 1 

Nr-1 
Nr x (Nx -1) 
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Detrending models' 
ensemble means 

Ql: Is t he 
single-mo del 

ensemble 
ergodic? 

y es 

Q2: Is the 
climate varia­

bility the same 
among models? 

y es 

Multi-model pool of 
climatic time periods 

' ' 

• Fitted function not appropriate ? 
no • Detrending higher moments ? 

no 

• Rejecting non-ergodic models ? 
• Considering other approaches ? 

Single-model pool of 
climatic time periods 

Fig. 3.1 : Theoretical framework for an educated guess in the selection of a member­
reconstruction method to be applied to a multi-model ensemble (MME) under transient 
forcing. 
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------------------~ t 

k 

Fig . 3.2: Single-mode! ensemble schematised as a matrix (X) of time periods. The index 
t represents t he Nr t ime periods and k represents the N K realisat ions (or members) that 
differ in the initial conditions. 

(a) CCSM3 (b) CGCM3.l(T47) (c) MRI-CGCM2.3.2 (d) GISS-ER 

(e) MPI-ECHAM5 (f) PCM (g) GISS-EH (h) FGOALS-gl.O 

(i) MIROC3.2(rnedres) (k) GISS-AOM 

Fig. 3.3: Testing the ergoclic assumption (Hgrgo) using a one-sicled F-test at the 10% 
significance leveL The colored areas indicate where Hgrgo is rejected over the domain. The 
ratio of variance (P1, see Appendix 3.C) is shown in order to appreciate the physical 
significance when the ergodic assumption is rejccted. The results are shown for the 
simulations over the 20th century with a climaLic Lime period of 1 year (Nr = 100) and 
the models are labeled from the largest (panel a) to the srnallest (panel k) single-mode! 
ensemble size (Nx) according to Tab. 3.1. 
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(a) CCSM3 (b) CGCM3. l (T47) (c) MRI-CGCM2.3.2 (d) GISS-ER 

(e) MPI-ECHAM5 (f) PCM (g) GISS-EH (h) FGOALS-gl.O 

(i) MIROC3.2(medres) (j ) ECHO-G (k) GISS-AOM 

Fig. 3.4: Idem to Fig. 3.3 but for the 21st century. 

L__ _ ______________________________________ _____ _ ____ _________ _ 
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N 1 
0., 

H 
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0 
H 0 
H 
Q) 

- 0 . 5 
ri 
Q) -1 p::; 

-1.5 

-2 
0 5 10 15 20 

Var. ratio (F2 ) 

Fig. 3.5: Relative error of varianC€ (P2) as fuucüon of the variance ratio (F2) of the 
total climate variability as simulated by two models (see Appendix 3.D). 
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Goodness-of-fit (R2) in the single-madel ens. mean 
giss-model- e- r (N

1
=200,N,=4) 

0.9 

0.8 
"2 

0.7 g 
"' 0.6 ·~ 

05 * "0 

0.4 0 
-.; 

0 3 §_ 
0.2 

0.1 

Fig. 3.8: Coefficient of determination ( R2 ) obtained for the fi t of a 4th degree polynomial 
function to the ensemble mean of the GISS-ER model. 

~me (y&ar) 

(a) 

Gridpoii'II (LS) 

=-~~~-=~~~·~=rooo~7.2m=-~~~-=~7 
timo(year) 

(b) 

Fig. 3.9 : Examples of time series for Lhe four realisat ions (thin colored !ines) available 
for the GISS-ER model. The series arc shown for two grid point locatcd over a) the 
Atlantic Ocean and b) the Labrador Sea. The black !ines represent the ensemble mean 
and the red line the 4th degree polynomial fit to the ensemble mean. 



(a) CCSM3 

Ooms~~n average (mrl--çgcm2-3-2a) 

(c) MRI-CGCM2.3.2 
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Domain average {OCCI'NI-cgcm3- 1) ,, 

1920 1940 1960 1080 2000 2020 ~0 2060 2080 
l imt(par) 

(b) CGCM3.l(T47) 

(d) GISS-ER 

Domalnaverage(near-pc.ml) 
17.5--~-~-~-·~-.......:;..:....._:_,---:_~-~--

" ... .. 
- 15.5 

e 15 

1920 1960 1 A80 2000 2020 2040 2060 2080 2100 
limt(ytat) 

(e) 1 I-ECHAM5 (f) PCM 

Fig. 3.10 : (To be couLinued ... ) 
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(g) GISS-EH 

(i) MmOC3.2(medres) 

(k) GISS-AOM 

Domain average (iap-lgoalsl-Q-g) 

\~.::,.,--c::,.,.::--:c,.:!c,,,---::, 960::---;,::C"":---::::2Q00::---:,::::,,::---::20'::<0---:206::0:::-0 -::2080':::----::!2100 
lime(year) 

(h) FGOALS-gl.O 

(j) ECHO-G 

Fig. 3.10: Domain averaged ( over North-America) time series of surface air temperature 
covering the 1900-2100 period under the A1B scenario for the 11 AOGCMs of the multi­
model ensemble (Ta b. 3. 1). In each panel are shown the available realisations ( colored 
thin !ines), t he single-model ensemble mean (black) and the polynomial fit (thick red). 



CHAPTER IV 

SUMMARY AND EXAMPLES OF APPLICATION 

ABSTRACT 

In this last chapter, we proceed to a review of the main theoretical concepts that have 
been developed t hroughout this thesis, fo llowed by Lwo examples of applications. The first 
example compares different possible approaches for obtaining an estimate of the natural 
variability representative of the entire mult.i-model ensemble. In the second example, 
the "same-institute assumption" is once again investigated through an improved test 
statistics that focuses primarily on temporal variability of the t ime series rather than on 
the inter-member spread. 

4. 1 Introduction 

State-of-the-art climate-change projections using Atmosphere-Ocean General Circula­

tion Models (AOGCMs) are subject to uncertainties, which are often divided into three 

main components. An important one is related io the external forcings that are ap­

plied to the models, which generally consist in Lhc emissions of Grecnhouse Gases and 

Aerosols (GHGA) that are uncertain since bascd un scenarios represenLing the future 

socio-economical, technological and political conlcxt . By assuming a given pathway of 

GHGA emissions, another component of the ttncertainty affecting the projections is 

known as mode! uncertainty, which is clearly scen by the fact that different models of­

fer different responses to the same emissions paLhways. The mode! uncertainty is also 

sometime addressed from the point of view of a single mode! that may exist in an ar­

bitrary number of versions that differ in the tunings of weakly constrained parameters 
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(Stainforth et al. , 2005; Rowlands et al , 2012). The third component is the natural 

variability that affects the projections of every model and that cau be sampled by gene­

rating a large number of realisations with perturbee! initial conditions. One could also 

think of two supplementary levels of uncertainty that lie below the natural variability of 

an AOGCM. These appear when proceeding to the downscaling of an AOGCM simula­

tion through dynamical downscaling using Regional Climate Models (RCMs) or through 

sta.tistical downscaling models (SDM) in order to obtain fine-scale details from AOGCM 

simulations. In such an example, a fourth level of uncertainLy could be that due to the 

different RCMs or SDMs used for downscaling a given AOGCM realisation. A fifth leve! 

of uncertainty would be the inter-member variability of the RCM that cau be sampled in 

the same way as for an AOGCM, that is by generating severa! realisations from different 

ini tial conditions. 

In the last decades, severa! internationally coordinated projects have been conducted 

in order to sample the different sources of uncertainty. However, the latter sources of 

uncertainty are generally investigated quite differently across the projects. For example, 

the CMIP3 multi-model dataset (Meehl et al. , 2007b) sampled severa! GHGA scenarios, 

AOGCM models and realisations thereof. At a different leve!, the North American Re­

gional Climate Change Assessment Pro gram (N ARCCAP ; Mearns et al. 2009) 1 used a 

few AOGCMs to drive a set of RCMs und er a single GHGA emission scenario . Ensembles 

of opportunity hence exist in a broad variety that may be seen as different attempts at 

assessing the main sources of uncertainty in climate-change projections. 

White these ensembles provide an appreciable number and diversity of climate-change 

projections, these numerous pieces of information are sometime diffi.cult to combine 

and to interpret. In particular, these ensembles raise important conceptual issues de­

pending on the sarnpling of the different sources of uncertainty. A first concern is the 

unclear sampling of the models. The assumption that different climate models provide 

independent pieces of information about climate change is likely to be false for seve-

1. http: //wwlil. narccap. ucar. edu 
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rai reasons, while quantifying this lack of independence represents a fairly difficul t task 

(Tebaldi and Knutti , 2007). One reason to believe that the climate models are not in­

dependent is that science develops based on the sharing of knowledge, for example the 

modelling groups learn from each other and even share parts of mode! code. Models are 

generally based on similar basic physical assumptions and include similar processes and 

interact ions. Also, through their evaluation process, models are ofteu tuned against the 

same sets of observations, what is likely to ii1cluce common biases to the models, espe­

cially since observations also contain errors. Naturally, structural similarities between 

climate models are likely to be strengthen when the latter are developed by nearby ac­

tors , e.g. within a same research institute that may contribute severa! models or mode! 

versions in large multi-model ensembles such as CMIP3. 

Another characteristic common to most ensembles is that the entire matrix of all po­

tential combinations of moclels and forcing is not realisee! since climate simulations are 

expensive to procluce. For example, sorne experimental frameworks (e.g. NARCCAP) 

are constrained in order to minimise potential biases and statistical errors relatee! to 

t he incomplete sampling process. On the other hanc! , in unconstrained experimental fra.­

meworks such as CMIP3, the missing simulations are likely to be disti"ibuted unevenly 

across the ensemble ; the scenarios and the realisations are sampled unevenly among the 

moclels. Such biases in the sampling process of an ensemble are also intimately relatecl 

to the unequal resources and the different interests of the participating groups. 

In this thesis , we notee! that in a mult i-model ensemble such as CMIP3, sorne moclels are 

represented by severa! realisations of a give1i scenario while others provide a single one. 

Providing at !east a few realisations is imporLanL in orcier to obtain a climate-change 

signal that is more representative of a given mode! ; averaging over multiple realisations 

filters noise, i.e. the natural climate variability, which might otherwise obscure sorne 

features in the signal. Severa! realisations of a given experiment allow assessing the 

natural climate variability at any point in time when the simulations are run under 

transient forcings. 
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When sorne elements of the matrix are missing, this may lead to situations where the 

experimental framework is unbalancèd. For example, applying an analysis of variance 

(ANOVA) for decomposing the uncertainty into components (e.g. scenario , mode! and 

natural variability) on an unbalanced ensemble should involve experts ' judgement in 

order to prevent potential biases. When a non-systematic ensemble design is not appro­

priate for an analysis such as ANOVA that assumes sorne balance in the data, qualitative 

methods of comparisons can be more suiLable (Rowell , 2006). On the other hand, artifi­

cially correcting thè imbalances of ensembles may allow performing an analysis as in an 

ideal case. This has been done by Déqué eL al. (2007 , 2012) who used data-reconstruction 

methods in order to transform t he non-systematic framework into a systematic one and 

hence to apply the ANOVA. Such an approach allows simplifying the uncertainty de­

composition while aiming at limiting biases and sampling errors. 

Throughout this thesis , we focused on two specifie sources of uncertainty in climate 

modelling, namely the natural variability and the inter-mode! spread. The first source 

being int rinsic to the models, the way it is quantified is very important. Another mo­

tivation for a clear quantification of this source of uncertainty is that it is of primary 

importance when investigating other sources, such as the mode! uncertainty. The two 

examples presented below summarise this idea. In Example 1, we take an overview of the 

different approaches that can be considered for combining the natural variability from 

an ensemble of severa! models. In Example 2, we choose one of the latter methods for 

assessing the natural variability in order to test the differences between climate-change 

signais simulated by different models. The choice of the method has been made in order 

to maximise possibili ties of comparisons, including models that do not provide more 

tha.n a single realisaLion of a specifie experiment . 
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4.2 Theoretical summary: Review of concepts 

4.2.1 Pre-selection of the simulations 

In Chap. 1, we developed a framework based on resampling methods (bootstrap) in order 

to quantify the uncertainty of the ensemble statistics t hat emerges from the numerous 

choices available to the user 1vhen selecting a limited set of simulations from a large en­

semble. While this approach allows for sampling the stat istical uncertaint ies that emerge 

from a weakly constrained sampling process, we highlighted the distinction between the 

known sources of uncertàinty ( e.g. natural varia.bility) and the extent Lo which these are 

"perceived" in the ensemble statistics. 

One question t hat we addressed in this thesis is how t he natural variability affects the 

ensemble statistics through the selection of a sei of simulations from the large ensemble. 

It has been shown in Chap. 1 that the real effect of the natural variabili ty on the 

ensemble statist ics is underestimated due to the relatively small sample sizes of single­

mode! ensembles (typically from 1 to 7 realisations) . Such a question could be addressed 

in a more general way : How would t he natura.l variability really affect the ensemble 

statistics given an infinite number of realisations a.vailable for each of the models? 

While the pre-selection of realisations is often donc randomly ( e.g. Bombardi and Car­

valho 2011 , Peings and Douville 2010, Raisanen et al. 2010) , the selection of a set of 

models should preferably be constrained by some criteria. A broad range of constraints 

are commonly used , for exa111ple based on the same-institute criterion (Whetton et al. , 

2007). Ensemble post-filtering is also sometimc gcneralised be attributing wcights to 

t he models, based on performance criteria (Giorgi and Mearns, 2002) or other physi­

cal constraints (Allen and Ingram, 2002) . In the model-sampling method proposed in 

Chap. 1, we generalised the selection process by allowing mode! replacement based on 

t he hypothesis that the CMIP3 multi-model ensemble is only a representative sample of 

a notional larger population of models with similar leve! of complexity. 

---------------
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4.2.2 Initial sampling of an ensemble of opportunity 

As discussed in Chap. 2, suspected Jacks of independence between modelling approaches 

is likely to be an issue when using multi-model ensembles for climate-change projections . 

While it is not clear to which extent it affects the climate-change projections, it involves 

a risk of biasing the estimated signal toward groups of similar models. Without any 

robust measure of mode! independence, attributing a higher confidence to a specifie 

climate outcome that makes consensus between the models becomes highly questionable. 

Another important point is the attribu tion of climate-change projections uncertainty to 

the inter-mode! spread, which is rather unclear without a robust definition of mode! 

independence. 

The "same-institute assumption" can be used as a cautious approach to prevent non­

informative consensuses from contarninating the results of an ensemble, at the cost of 

reducing its size and thus increasing errors in the statistics. This can be seen as a rather 

conservative way of approaching ensembles and their results, white larger uncertainties 

are not always ·interpreted in a positive way by the public. On the other hand , basing 

adaptation and mitigation plans on overconfident results is surely not a suitable option 

either. The same-institute assumption consists in attributing consensuses in the models' 

output to some dependencies between climate models such as structural similarities. 

While using this criterion as a rule of thumb should involve care, it is at !east very useful 

for pointing out groups of models that are structurally similar within a large multi-model 

ensemble. On the other hand , the observed propensity of models to give similar results 

when developed by nearby actors is probably only the tip of the iceberg concerning the 

more general issue of a lack of independeuce between the existing modelling approaches. 
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4.2.3 The ergodic assumption as a workaround for unbalanced ensemble frame­

works 

Large intercomparison projects are often formed in a rather open manner that favours 

the number and diversity of simulations over balance between experimental units. The 

dimension and shape of the result ing matrix of simulations is then affected by external 

factors such as the unequal resources and the different interests of the participating mo­

delling centres. Renee, such ensembles may noL consist in balanced designs for specifie 

investigations such as decomposing t he uncertainty into its main components. By ana.­

lysing such an ensemble from the point of view of a perfect balanced framework , some 

elements appear to be missing, which leads to approximations in the statistical theor·y 

and possibility of biases in the results. 

One way for circumventing such issues is by consiclering reconstruction methods in or­

der to obtain a balanced framework from the unbalanced one and hence to faci li tate the 

analysis by applying exact t heory for analysis. Obviously, such an approach involves the 

risk of adding supplementary noise to t he datasct. Using robust physical assumptions in 

t he reconstruction methods is hence of primary importance in such a context . A credible 

physical assumption has been identified in Chap . :3 that single-mode! ensembles are crgo­

dic in the sense that the temporal variability is statistically indistinguishable from that 

occurring between members. This characteristic of single-mode! ensembles is expected 

to occur when simulations are rw1 under stationary condit ions, while under sufficiently 

strong transient forcings , the ergoclic assumptiou has to be rejected. In the la tter case, 

however , ergodicity can be approximately reachcd under "artificial stationarity" achieved 

by detrending the time series. 

As will be seen in Example 1, the ergodic assumption could be of use in the develop­

ment of reconstruction methods, especially in cases where imbalance makes the analysis 

problematic. In Example 2, the benefits of using the ergodic assumption will be demons­

trated through the construction of a test statistics that can be applied to compare two 
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models providing single realisations. In this case, the ergodic assumption allows reducing 

an important imbala.nce in the ensemble that consists in sorne models providing only a 

single member per experiment. 

4.2.4 Analysis of variance and decomposition of the uncertainty 

The analysis of variance (ANOVA) is a popular approach for decomposing variances 

into a number of sub-components. This approach is known to be suitable with balanced 

framework, or when imbalances are relatively unimportant. In order to understand how 

the ANOVA is affected by the imbalance in the sampling of the realisations in the CMIP3 

multi-model enserpble, Appendix 4.A shows how the ANOVA can be applied to such an 

ensemble. 

The approach is based on a statistical mode! of the form Xmn = J.k + am + emn , where 

Xmn consists in the nth member available for the mth mode!, J.k the theoretical mean 

of the population 2 , am the treatment affect due to the use of different models and 

emn the residual variability that represeuts the natural variability as simulated by the 

climate models. \Vhile in general, the lat ter component represents a level of noise that is 

independent and identically distributed ( iid) along both m and n axes, this assumption 

is not expected to hold for a multi-model ensemble. Particularly, it has been shown in 

Chap. 3 that the natural variability is sometimes simulated rather differently across the 

models of the CMIP3 multi-model dataset. 

Another important point is the relative importance of the different models in the calcula­

tion. In the Appendix 4.A, it is also showu how the resulting estimate of the multi-model 

natural variability is biased toward the models with the largest sample sizes. Another 

issue that is strictly due to the unbalanced design is that the component of inter-mode! 

variance cannot be obtained explicitly, but only approximately. This is due to the fact 

2. Since defining such a population is problematic (see Chap. 1), we assume the ensemble to be 
representative of a larger population that includes other possible modelling approaches with a similar 
leve! of complexity as the CMIP3 models. 
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that we need to assume an effective sample size (No) in ( 4.20) that should represent the 

different models' sample sizes. Hence, when sample sizes differ importantly, it increases 

the range of possible values that can be taken by No, leading to a largei· estimation error 

in the inter-mode! spread. 

4.3 Example 1 : Mult i-model combination of the simulated natural variabili ty 

In the context of assessing the different components of uncertainty in climate-change 

projections, the natural variability is the first level of uncertainty that should be estima­

ted, while the second is the mode! uncertainty. Natural variability reptesents a measure 

of noise from which the physical and statistical significance of the lat ter can be assessecl. 

The ANOVA is a conventional technique for decomposing the variability into its severa! 

components. However, such an approach is based on hypotheses t hat do not necessarily 

holcl for an ensemble of oppor tunity such as CMIP3. An important assumption is that 

the "noise" is iid according to t he mode! and member axes . As shown in Chap. 3, there is 

compelling evidence that the natural variability is not identically distributed across mo­

dels, hence violating the assumption. Another problem related to the use of the ANOVA 

in t hat context is t hat the number of members largely differs across the models. As 

will be shown below, the unequal sample sizes and Lhe non-iclentically clistributed natu­

ral variability across the m<Jdels are important factors to consicler when estimating the 

primary source of uncertainty in mult i-model euscmbles. Also, it appears necessary to 

compare different approacb€8 in order to optimise the estimate of the natural variability 

depending on the ensemble under consideration. 

As a starting point , the mernber-sampling approach described in Chap. 1 allows to quan­

tify how the ensemble stabstics are affected by a random selection of one member per 

model. The uncertainty of the ensemble mean signal (U~em) consists in a manifestation 

of the natural variability as simulated by different models . As shown in Appendix 4.B, 

this measure of uncertainty can be transformee] into an estimate of t he natural varia.­

bility by "scaling'' this error of the mean to a single mode! by using Lhe standard error 
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relationship as VM x u,g_em• M being the number of models in the ensemble. While 

this treatment has been applied to climate-change projections, i.e. differences between 

two climatic sta t s, we use in the following the corresponding est imate of the na tural 

variability. 

Let us rewrite ( 4.28) from Appendix 4.B as 

(4.1) 

where the "o" notation indicates averaging over the missing subscript. X mnt is not a 

delta but the climate state at time t of the n th realisation over Nm members provided by 

the mth mode!. (4.1 ) consists in the analytic form of the member-sampling uncertainty. 

This variance is calculated at a particular t ime (t) and consists in a multi-model average 

of biased estimates of inter-member variances. White such a bias is more important at 

small Nm, this est imate of the multi-model natural variability is not weighted according 

to the models' different sample sizes. 

As a more conventional approach, the ANOVA allows to decompose the total variability 

of a multi-model ensemble in two components : the inter-mode! spread and the natural 

variabili ty. As shown in Eq. 4.16 (Appendix 4.A), applying the ANOVA to a multi-model 

ensemble leads to an estimate of the multi-model natural variabili ty that corresponds to 

(4.2) 

where N = l:m Nm is the total number of simulations in the ensemble. ( 4.2) consists in a 

combination of severa! models inter-member variabili ty. By gathering the deviations from 

different models and dividing by the number of degrees of freedom (dj ), this estimate 

is weighted according to the number of members provided by each mode! and bence 

biased toward the models providing the largest sample sizes . Given potentially important 

differences in the natural variability simulated by the models (Chap . 3) , it is relevant to 
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consider an unweighted version of ( 4.2) such as 

(4.3) 

which gives an equal weight to each mode! in the resulting multi-model estimate of the 

na tura! variability. It can be seen from the la tter equation that &'br (t) consists in an 

average over severa! unbiased estimates of inter-member variances. 

The variance estimates ( 4.1 ) to ( 4.3) consist in different approaches for combining the 

inter-member variability from severa! models and these estimates pertain to a given 

time. Under the assumpt ion that the inter-member spread does not change significantly 

with t ime, it is convenient t<l consider t he information from the entire t ime series in our 

multi-model estima.te of t he natural variability. 

Reca.lling ( 4.2) , the squared deviations can be summed by including ali the time periods 

from each of the models, and hcncc dividing by T (N - M) the number of df , we obtain 

1 
M Nm 1' 

A 2 "'"" "'"" "'"" - 2 DWTI = T(N _ M) L_.- L_.- L_.- (Xmnt- X mot) · 
m n t 

( 4.4) 

The la tter time-averaged est imate of the multi-model natural variabili ty is weighted 

according to the sam pie sizes. Similarly, we can clefine an unweightecl version of ( 4.4) by 

summing (4.3) over time such as 

( 4.5) 

Finally, assuming ergodicity in t he single-mode! ensembles, one can imagine two additio­

nal ways of combining the natural variability from severa! models, namely the weighted 

ergodic variance 

(4.6) 
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and the unweightecl ergodic variance 

(4. 7) 

The main difference between (4.4)- (4.5) and (4.6)-(4.7) is that the former consist in 

multi-model t ime-averaged inter-member spreads relatively to single-mode! ensemble 

means (Xmot) , while the latter consider the variability of the time series relatively to 

a trend denotee! by Pmnt· The term T- K- 1 consists in the number of df associated 

with t he mean squared error of a realisation around the J(th_degree trend, for which 

K + 1 parameters have to be estimated . Recalling the ergodic assumption, the temporal 

variabiliLy around the trend includes the non-ergodic part of the signal. On the other 

hanc! , when considering the spread around a single-mode! ensemble mean such as in ( 4.4) 

and (4.5) , the non-ergodic part of the signal is included in the mean and hence does not 

contribu te to the final estimate of the natural variability. 

4.3.1 Results 

Let us now take a look to sorne results relatee! to the previous estimates of the natu­

ral variability. A common feature appea.ring in most of the previous estimators (with 

exception of Eqs. 4.6 and 4. 7) is that the variability emerges from deviations about 

single-mode! ensemble means. We hence limit the following investigation to the models 

from CMIP3 (A1B) that provide at !east two realisations. As seen from Tab. 1.1 , the 

pre-selected ensemble consists in 42 simulations from 11 models. 

ln Fig. 4.1a to c are presentee! three a.pproaches for assessing the inter-member varia-

bility of the climate-change signal from a multi-model ensemble. Fig. 4.1a and b show 

the ANOVA coefficient (ôwr ) and its unweighted version (ôw) respectively, for three 

20-year averaging windows (2000-2020 , 2040-2060 and 2080-2100). Comparing these two 

approaches for each of the time periods, some differences appear in intensity but the 

general shape of the patterns remains similar. By comparing with 4.1c, i.e. the member-
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sampling coefficient Ô"mem, it can be seen how the intensity of the inter-member varia­

bility is systematically smaller for the member-sampling approach than for the ANOVA 

coefficient and its unweighted version (Fig. 4.la and b). This systcmatic bias of the 

member-sampling approach is mainly due to the relatively small number of members 

provided by the models, as can be understoocl from ( 4.1) ; ârnem being a multi-model 

average of severa! biased eslimates of variance. 

It is possible to unbiase the member-samplihg estimate of the mu! ti-mode! inter-member 

spread by using a correction factor ( G) su ch as G x Ô"mem.· Based on the approach 

detailed in Appendix l.A, the "perfect" ensemble of simulations is defined as consisting 

in 11 models, each one being represented by 1000 realisations. On the other hand, the 

"imperfect" ensemble has the same structure as the present 11-model ensemble. By using 

Monte-Carlo methods, the perfect and imperfect ensembles are generated 2000 times, 

where for each ensemble, 2000 iterations of the member-sampling approach are applied. 

By determining the most probable value of the correction factor , the imperfect ensemble 

has to be infiated by G = 1.19 in order to supprcss its bias compared to the perfect case. 

In Fig. 4.1d is shown the empirically unbiased eslimator of the multi-model inter-member 

variabili ty ( Gx Ô"mem.) · Compared to âw 1 and Ô(J! (Fig. 4.la and b respectively) , patterns 

are now quite similar in both their shape and intcnsity. Moreover, Gxâmem appears more 

similar to âu 1 than âw 1, which is due to the fac t th at both Ô"mem. and âu 1 are unweighted 

estimators according to the number of realisations per mode!. By paying attent ion to 

the temporal evolution of the multi-model intcr-member variability, patterns display 

a relatively important variability. These changes in time are mainly due to the poor 

sampling of members rather than to real physical changes in the natural variability, for 

instance due to the external transient forcings (e.g. GHGA). Also, it is worth noting 

that the differences between weighted and unweighted estimators appear smaller than 

the temporal variability of the inter-member spread. 

In Fig. 4.2a and b is shown the estimates of inter-member variability obtained using 

the member-sampling and the ANOVA methods respectively, both being applied to a 
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reconstructed ensemble that has been fi lled up to 100 members by applying the single­

mode! poo ling method (SMP; see Chap. 3) to each of the models. Briefl.y, this application 

of the SMP method consists in a random sampling over a pool of time periods obtained 

from detrended time series. Only two coefficients are shown here by simplicity, Ô"mem(t) 

and Ô"wi(t) , referring to (4. 1) and (4.2) respectively. Due to the nature of the SMP 

method, a single-mode! ensemble is forced to become strongly ergodic as its size increases. 

Renee, Ô"mem(t) and Ô"wi(t) tend to be constant in time fo r a sufficiently large number 

of reconstructed members. The unweighted coefficient ( ô-u I) is not shown here sin ce the 

weighting does not have any influence when lhe models' sample sizes are equal. It can 

be seen from the results that for such a large ensemble, both the member-sampling and 

the ANOVA lead to practically identical results. 

In Fig. 4.3a and b is shown the inter-member variability averaged over time using the 

weighted and unweighted coefficients ( Ô"wTJ and ô-urI respecti v ely). These approaches 

lead to rather similar results while differences between the t ime-dependent versions of 

these estimators (Fig. 4.1a and b) were more important. This particularity is related to 

t he error of estimation according to the sample size used in these calculations. Taking 

example with the weighted estimators , lhe sample used in the calcula ti on of â"w I cor­

responds to N deviations fromM means (N - M df) while T(N- M) df are used in 

the calculation of ô-wr 1. 

Fig. 4.4a and b shows the weighted and unweighted ergodic variances, respectively. 

Undet: the ergodic assumption, the temporal variability of the times series is calculated 

according to a trend ( calculated separa tel y for each mode!, realisation and grid point) 

and hence accounts for some additional variability that is due lo Lhe external forcings 

(mainly the effect of the volcanoes in the 20th century) that occur synchronously between 

the members of a same mode!. As can be seen by comparing Fig. 4.4 to Fig. 4.3, the 

ergodic variances arc slightly larger than the t ime-averaged inter-member spreads. Also, 

the shape of the pattern of the weighted ergodic variance (Fig. 4.4a) is similar to the 

corresponding weighted time-averaged inLer-member spread (Fig. 4.3a) and similarly for 
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the unweighted versions (Fig. 4.4b and Fig. 4.3b). 

Let us now summarise t he previous calculations. Fig. 4.5a presents histograms for t luee 

time-dependent ratios : ÔWJ(t)/ôw(t) (in blue), âmem(t )/âuJ(t) (iii red) and G x 

âmem(t)/âuJ (t) (in green). These are calculated for ali grid points of the domain and for 

each 20-year averaging window from 1900 to 2100. The blue curve represents the effect 

of whether using a weighted or unweighted estimate of the inter-member spread. The 

distribution is centred on 1, which means thaL weighting the models may increase or 

decrease the estimate of the variability in a balauced ma.nner. Another way to interpret 

this is tha.t there is no correlation between the sample size and the inter-inember spr ad, 

which are obviously two unrelated quantit ies. The red curve represents the estimate of 

the inter-member spread using the member-sampling approach, and in green, its em­

pirically corrected version. By applying the correction factor, the green distribution is 

rela.tively weil centred on 1, 1vhich validate the method detailed in Appendix l.A for cal­

culating G. The red and green distributions have rather small width, which relates the 

high similarity between âmern and âu1 since both are unweighted estimators according 

to the models' sample sizes . 

In Fig. 4.5b, the ratios for Lhe estimators of the inter-member spread averagcd in time 

are shown. Represented by the red curve, the ratio âwTI / âuTI is centred on 1, as wa.s 

the blue curve in Fig. 4.5a.. The blue and green curves represents sirnilar ratios for the 

weighted and unweighted ergodic variances, namely &wE/êruTJ and &uE/&uTI, rcspcc­

tively. These ratios are not centree! a.t 1, which relates the supplementary contribution of 

the non-ergodic part of the varia.bility tha.t is accounted in these estimates. A ma.ximwn 

value is obtained at 1.1 , which could be interpretecl as if the non-ergodic component 

typica.lly increa.ses the inter-member sprea.d of about 10%. Since this supplementa.ry 

a.mount of variability is mainly due to a natural factor ( volcanic emissions) , determining 

whether the ergodic variance consists in a more realistic representation of the natural 

variability of the climate system depends on the definition of what should be included in 

tha.t system. Assuming t hat these emissions arc part of the climate system, the ergodic 
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variability should consist in a more realistic estimate of the natural variability, while 

the inter-member spread is simply the interna! variability of the system given a set of 

external boundary conditions. 

The grey curve gives the ratio &wi(t)/a-un, i. e. a time-dependent inter-member varia­

bilii-y compared to a time-averaged estimator. It gives an idea of the temporal variability 

of the inter-member spread around its iime-averaged value. As noted before , the tem­

poral variability of the inter-member spread (grey curve in Fig. 4.5b) is more important 

than the variability due to the weighting procedure (blue curve in Fig. 4.5a, note the 

different scales) . Finally, the black curve represents the ratio between the inter-member 

spread calculated from a reconstructed ensemble (based on the SMP method) compa­

red to the unweighted t ime-averaged inter-member spread. The distribution shows that 

ÛSMP underestimates &un, which is probably due to an oversampling of the members. 

White using 100 members in the SMP mcthod gives robust results according to time, the 

maximum number of reconstructed members should be 20 and 70 for models providing 

2 and 7 members respectively. 

In Sect . 4.4, the ergodic assumption will be considered in a different manner. It will 

be shown how to systematically transfer the information about the natural variability 

between members and temporal axes, rather than by artificially reconstructing new 

realisations to an ensemble as with the SMP method. This approach will be applied 

in the context of assessing the statistical significance of the difference between climate­

change signais as sirnulated by two rnodels developed within a same research institute. 

4.4 Example 2 : Improving statistical testing of the same-institute assumption 

based on ergodicity in single-rnodel ensembles 

In Chap. 2, the sa.me-institute criterion has been applied in order to focus on speci­

fie pairs of models that share structural similarities. The "sarne-institute assurnption" 

consists in relating these structural similarities to potential consensuses in the models' 

output. In order to compare a pair of models developed by a same institute, the difference 
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in the climate-change signais bas been investigaLed by using a t-test. This test assesses 

the statistical significance of inter-mode! differences based on a measure of the natural 

variability. vVhile sample sizes are relatively sruall for assessing the inter-member spread, 

a supplementary limitation to this investigation is that sorne pairs of models had to be 

excluded when only one realisation was availablc for a mode!. The CMIP3 multi-model 

ensemble providing a large diversity of simulations, it also consists in a great opportunity 

for studying potential structural similarities between climate models. White defining a 

robust metric of mode! independence is a rather complex task, if even possible, invest i­

gating typical structural differences between climate models should at least increase our 

knowledge about what should resemble such a hypothetical metric. 

As discussed before, an important characteristic of AOGCM simulations that can be 

used to circumvent the limitations of single-mode! ensembles is thal they can be as­

sumed as ergodic, i.e. that the natural variability calcula ted over Lime is statistically 

indistinguishable from the inter-member spread. vVhile one should expect perfect ergo­

dicity in an ensemble of simulations run under stationary conditions, applying a strong 

externat forcing ( e.g. GHGA emissions) results in a violation of the ergodic assumption. 

As a workaround for simulations run under transient forcings, it has been shown that by 

detrending the time series with a 4th-degree polynomial function , the remaining forced 

variability (e.g. volcanic emissions) is relatively srnall ; single-mode! ensembles can then 

reasonably be treated as ergodic under such conditions of artificial stationarity. 

By imposing such artificial condition of ergodicity, our previous investigation of the samc­

institute assumption can be extcnded to the pairs of models that provide only single 

realisations. Rather than assessing the natural variability by using the inter-mcmber 

spread (see Sect. 4.3), the natural variability is now calculated from the detrended time 

series of single realisations, which are then pooled together when severa! are available. 

In the following, we show how to test the difference between two climate-change signais, 

independently of how many members are provicled for each mode!. 

Let Px and P,y be estimates of the ensemble mean climate-change signais from two 
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models, denoted with the indices X and Y respectively. Recognising that the simulated 

natural variability is not equal among the models (Chap. 3), the t-statistics for the 

difference of the means consists in 

!lx - fly 
t =-,.~=~ 

/~+~ V Nx Ny 

(4.8) 

where Nx and Ny are the sample sizes (number of members) used in the calculation 

of flx and fly , and similarly, Œi and ô-~ are the natural variabili ty associated with the 

two models' climate-change signais respectively. Particularly, both ô-Je and ô-~ consist in 

variance estimates related to a difference between two climatic states. For simplicity, let 

us define the climate change as the difference between two 20-year averaging windows 

(e.g. 2020-2040 relative to 1980-2000) . Assuming independence of the details of fu ture 

and past climatic states as a result of natural variabili ty, the variance of the difference 

between two elima tic states ( ô-l) is equal to the sum of the variances related to each 

of these states, i.e.· ô-Je = 2ô-Jc20 where ô-l20 is the natural variability of a time series 

formed by 20-year climate periods. These estimates of the natural variability can be 

assessed based on the application of the ergodic principle. In clear, the nth realisation 

of the mth mode! (Xmnt) has its t rend (flmnt) removed and the residual mean squared 

error consists in an estimate of the natural variability such as 

( 4.9) 

which consists in one particular mode! cousidered in the unweighted multi-model average 

of the ergodic variance as shown in ( 4. 7) and multiplied by 2 since it is the variance of 

a difference. In (4.9), K = 4 is the degree of the polynomial function related to flmnt 

and T - K - 1 the number of degrees of freedom associated to the mean squared error 

according to the trend. The natural variability of each of the Nm members from the mth 

mode! are hence averaged by summing over n and dividing by Nm· 

Recalling ( 4.8), the denominator is not proportional to the x2 distribution due to the fact 
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that âJ -1- &?, , and hence this statistic is not t-clistributed even und er a true null hypo­

thesis of equal means. Weil known as the Behrens-Fisher problem, a convenient solution 

is to assume a t-distribution \vith its number of degrees of freedom being estimated from 

the data as 
(&i / Nx + &~jNy ) 2 

df = ----'-__:_:_:..--,-- -"-'---'----,-
(â'i /Nx )2 (â~jNy ) 2 ' 

Nx (T K 1) + Ny(T J( 1) 

(4. 10) 

that has been constructed by using the Welch's approximate t-solut iori a..s described by 

Scheffé (1970). (4.10) is bounded as min(Nm)(T-K -1) :::; dj :::; (Nx +Ny )(T-K -1). 

B y comparison with our previous t-test based only on the severa! membcrs without 

temporal averaging (Eq. 2.5 in Appendix 2.A), the approximate number of degrees of 

freedom associated with this t-distribution is bounded as min(Nm) - 1 :::; df :::; N x + 

Ny - 2. For example, by using T = 10, K = 4 and N x = Ny = 2, 1 :::; dj :::; 2 for the 

approach based on the multiple members (Eq. 2.5) and 5 :::; df :::; 20 for the case using 

the ergodic a..ssumption (Eq. 4.10). This important, increase in the number of degrees of 

freedom for such a minimalist case of two membcrs per mode! resu!Ls in a test with a 

higher power to reject t he nul! hypothesis. 

4.4.1 Results 

In Chap. 2, the same-institute assumption has bcen investigated using six pairs of moclels 

that allow a t-test by providing multiple members for at !east one of the two models (Tab. 

2.3). Renee, among the nine pairs of models shown in Tab. 2.2, three had to be excluded 

from the analysis, i.e. those relatee! to the CSIR.O, GFDL and UKMO modelling groups. 

The previously explained approach based on the ergodic assumption allows extending 

our investigation to the three excluded pairs of models in addition to increasing the 

power of the statistical test . 

In Fig. 4.6a to f, the pairs of models already investigated in Chap. 2 are shown while in 

Fig. 4.6g to i, the excluded pairs providing a single realisation per mode! are shown. In 

the following, we investigate the climate-change differences by focusing on the signal (in 
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surface air temperature) relative to the reference period of 1980-2000. Fig. 4.6a and b 

shows the pairs of models that differ from the point of view of their resolution, namely 

the CGCM and MIROC models respectively. Recalling that the mode! output has been 

interpolated over a coarser-resolution grid, the CGCM models show very low rejection 

rates and hence these two models provide climate-change signals that are not statistically 

different for 2000-2020 and 2040-2060, while subtle differences begin to emerge at 2080-

2100. For the MIROC pair , where the change in resolution is more important, significant 

differences emerge in 2040-2060 and fil! Lhe oceanic part of the domain by 2080-2100. 

lt is worth noting that the high-resolution MIROC mode! has a larger climate-change 

signal than the law-resolution version over the ocean. It is also true for the CGCM pair 

but to a smaller extent (Fig. 4.6a). 

The three GISS models are interesting t.o compare since differing in their atmospheric 

and oceanic components . Fig. 4.6c shows the difference between EH and ER models 

that have different ocean components . Significant differences in the sensitivity mainly 

occur over the Hudson Bay, where lies a difference of about 3°C in their climate-change 

signàl in 2080-2100. The AOM and ER models (Fig. 4.6d) differ in all their components 

with different versions of their ocean component ; the climate-change signal for AOM 

is generally smaller over land regions a.nd larger over the Hudson Bay relatively to ER. 

These differences also increase with time, which indicates different climate sensitivities. 

For the AOM-EH pair (Fig. 4.6e) that consists in a difference in all the main mode! 

components, a negative minimum of difference becomes more intense with time over the 

western part of North America and the Hudson Bay, while there is a significant positive 

difference occurring over the Pacifie Ocean for 2040-2060 and 2080-2100. Considering 

now the NCAR. models (Fig. 4.6f), CCSM3 warms significantly faster than P CM from 

the 2000-2020 time period. 

Let us now take a look. to the pairs of models providing only single members, from 

the CSIR.O, GFDL and UKMO modelling groups (Fig. 4.6g toi respectively). Versions 

3.0 and 3.5 of the CSIR.O mode! (Fig. 4.6g) differ in their parameterization ( e.g. ocean 
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eddy transport coefficient). Important differences occur around the Hudson Bay where 

the climate-change signal differs of about 4°C in 2080-2100. On the other hand , these 

models do not show significant differences in the signal over an important part of the 

land area at the centre of the domain, even by the end of the 2lst century (2080-2100). 

Versions 2.0 and 2.1 of the GFDL mode! (Fig. 4.6h) has structural differences that 

can be understood as min or modifications to the code ( e.g. numerical scheme) . They 

show practically no significant differences in their climate-change signal. Finally, the 

HadCM3 and HadGEM1 models from the Hadley Centre are compared in Fig. 4.6i. It 

is interesting to note that these two models, which are generally thought as a priori 

independent models developed within a same institute, show rela Lively low rejection 

rates of the null hypothesis of equal means. Even for t he 2080-2100 period, the two 

climate-change signals are not significantly diffcreHL from each other nearly over all the 

cont inental region. Over the Pacifie Ocean and the West Coast of North America, a 

small area of negative difference slowly increases in magnitude with some statistical 

significance in 2080-2100. 

4.5 Conclusions 

A generally accepted idea among the community is t hat the three main sources of uncer­

tainty affecting the climate-change projections consist in the natural variability of the 

climate system, the mode! uncertainty and the GHGA scenario uncertainty. The former 

source being related to the chaotic nature of the climate system, it would even affect the 

simulations from a perfect climate mode!. Each mode! consisting in an approximation 

of the true climate system, the second source of uucertainty represents the differences 

in the results related to the use of different approach s to climate modelling. The third 

source of uncertainty is sometimes considered as outside from the physical climate issue 

since GHGA emissions largely depend on socio-economical, technological and political 

issues. While the latter sources of uncertainty are often sampled, analysed and discussed 

using a variety of ensemble structures, fundameutal issues remain in their interpretation 

and quantification. Throughout this thesis, we have focused on the two first sources, 
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that is the natural variability and mode! uncertainty. 

Basically, quantifying the natural variability in climate-model simulations can be clone 

in two different ways. Applied to a given mode!, a basic way of addressing this source of 

uncertainty is by using a single but very long climate simulation run under stationary 

conditions (i.e. wjthout external forcing change), from which the temporal variability 

from the mean climate can be estimated. Another way for quantifying the natural varia­

bility of a climate mode! is by using ensembles of multiple realisations differing only in 

their initial conditions. The spread between the ensemble members may hence be used 

as a measure of the natural variability. 

In large mode! inter-comparison proj ec ts such as CMIP3, the focus is generally on si­

mulations run with transient GHGA emission scenarios. However , since running climate 

simulations is expensive in terms of t ime and computational resources, few realisations 

are generally provided by the modelling centres. Overall , the explicit sampling of the 

natural variability in contemporary ensembles is rather poor ; in addition it is heteroge­

neously sampled across the different models. For example, in the CMIP3 (AlB) , more 

than half of the models are represented by a single realisation while the maximum sample 

size is 7 members, a rather large ens mble from the point of view of computational cost 

and data volume, but rather small in statistical sense. 

In a multi-model ensemble, the imbalance of sample sizes between models firstly compli­

cates the analysis of natural variability. Because natural variability differs between mo­

dels , a multi-model combination of the simulated natural variabili ty· is beyond the scope 

of common statistical methods. For example, using an analysis of variance (ANOVA) as 

a way to estimate the inter-member variance involves the assumption that the natural 

variability is iid across members and models, which is known to be false. While in the 

case of equal variability, the imbalancc in sample sizes leads to approximations in the 

A OVA the01·y, the occurrence of both the imbalance and the unequal variances tends 

to bias a multi-model estimate of the ua.iural variability. More clearly, the resulting es­

timate is weighted according to the sa.mple size and hence is necessarily biased toward 
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models that are better represented in the ensemble. 

In this work, we have summarised different alternatives for calculating the natural va­

riability related to a multi-model ensemble. We presented three es timators based on 

t he inter-member spread that apply to a specifie time. The first followed the member­

sampling approach detailecl in Cha p. 1, aiming at quantifying the effec t of a random 

select ion of a single member per mode! when severa! are available. This estimator ha.s 

been shown to be a multi-model average of biased estimates of variance, unweighted, 

giving the same relative importance to each of the models. The second estimator is the 

mean squared error tenn related to the ANOVA. It is basically an unbiased estimator 

of variance under the assumption that the natural variabilities are equal. Since it is not 

actually the case, the ANOVA coefficient tends to be biased toward sorne of the models 

since weighted according to the sample sizes. T he third estimator of the inter-member 

spread consists in an unweighted version of the ANOVA coefficient that gives equal 

weight to the models no matter on how many realisations are availa.ble. The ANOVA 

coefficient and its unweighted version have been also calculated by considering the entire 

time series, i.e. as mult i-model time-averages of the inter-member spread. A supplemen­

tary pair of weightedj unweighted coefficients has been also provided, namely the ergoclic 

variances that are based on the premise that single-mode! ensembles are ergoclic. Unlike 

the time-averages of inter-member spreads, the latter es timates focus on the variability 

that appears in the time series once the trend is removed. 

The results show that th inter-member spread varies with time, rnainly clue to the 

limited number of realisations rather than any re~l physical changes in the natural 

variability t hat could be attributed Lo changes in the external forcings (GHGA). For 

the estimate related to the member-sampling approach, the systematic bias has been 

successfully removed by applying a correction factor that depends on the structure of 

the multi-model ensemble and that has been obt,ained empirically from Monte-Carlo 

simulations. The difference between weighted and unweighted statistics appeared a little 

smaller than the temporal variability of the inLer-member spread. Overall , the small 
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influence of the weighting could be explained by the important inter-mode! differences 

in the simulated natural variability that are fil tered through the averaging procedure 

while the remaining weak component is shared by most of the models. For the time­

averaged estimates of the natural variabili ty, the ergodic variance has shown an increase 

of about 10% of the variability, which is due to the non-ergodic component of variability 

that acts synchronously between the members of a same mode!. Also, an ensemble has 

been reconstructed based on the SMP method by random sampling new members from 

a pool of climatic time periods. The resulting estimate of the natural variability has 

been shown to be smaller than both the time-averaged inter-member spread and the 

ergodic variance. We attribute this underestimation to an insufficiently large pool of 

time periods to choose from since sorne models have very few members. 

The general effect of the weighting depends on both the structure of the ensemble and on 

the importance of the differences/ conscnsuses between models' simulated natu~al varia­

bili ty. This characteristic should bence be considered in future ensembles. For example, 

the impact of imbalance in t he sample sizes could become more important for future 

generations of models if higher levels of similarity appear between some of the models. 

Generally speaking, it is worth noting that unweighted variances are expected to be af­

fected by larger sampling errors since giving a larger relative importance to the poorest 

estimates of the natural variability provided by the models with the smallest sample 

sizes ( e.g. 2 members). In the present case, where su ch a weight ing do es not influence 

much the final multi-model estimate of the natural variability, the weighted coefficients 

should be preferred due to their smaller error. In an hypothetical case, where the weigh­

ting would have a significant impact , the use of an unweighted average between natural 

variability could be suitable by sustaining the democratie idea of "one mode!, one vote" 

in the construction of the multi-model estimate of the natural variability. 

The unbalanced number of realisations in a multi-model ensemble necessarily affects the 

quantification of the other sources of uncertainty. An example that has been noted in 

Sect. 4.2.4 is that applying the ANOVA on an unbalanced dataset involves approxima-
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tions in order to separate the variability into severa! components. More particularly, in 

order to assess the inter-mode! spread (not shown), one has to guess a constant sample 

size representing the entire e11semble. ConsequeuL!y, if the sample sizes largely differ such 

as in CMIP3, this guess becomes rather uncertaiu and might have a large impact on the 

measure of the inter-mode! spread and the other sources of uncertainty (e.g. scenario). 

The second source of uncerLainty in climate-change projection emerges since severa! 

alternatives exist in order to build a climate model. While quantifying the inter-mode! 

spread might seem a relatively simple task, esta.blishing a relationship wit h the so-called 

mode! uncertainty is a very complex one. This issue occurs mainly because models are 

not independent from one another and since Lhere is no commonly accepted metric 

for quantifying mode! independence. In order to address this issue, we used the name 

of t he research centres in order to focus on pairs of models that are likely to share 

important structural dependencies. In addit ion, other interesting pairs were those formed 

by rather distinct models but developed within a same institute, which may also share 

sorne dependencies in a more general sense. vVe proposed a theoretical framework in 

order to test the "same-institute assumption" that consists in attributing consensuses 

in the models' climate-change projections to both structural and institutional types of 

dependence. 

A key point in the analysis resides in assessing the statistical significance of the difference 

between the climate-change signais from Lwo models. The testing framework is based 

on a t-statistics of the difference of the means rclatively to a measure of t he natural 

variability. In a first attempt (Chap. 2) , we used Lhe inter-member spread for assessing 

the natural variability. However, such an approach might be questioned since very few 

members are generally available for each mode!. Moreover, some models providing a 

single realisation, some pairs of models with instiLutional dependence had to be excluded 

from the investigation. 

Based on Chap. 3, it has been shown that single-mode! ensembles can be considered as 

ergodic, i.e. that the inter-Inember spread is assumed as equal to the time variability. 



152 

·while this is expected for simulations ruu under stationary conditions, simulations with 

transient forcing can be also treated as if ergodic after detrending the time series with a 

4th-degree polynomial function, resul ting in a slight increase in variability. The applica­

tion of the ergodic assumption has been shown to be very important in the construction 

of a statistical test for assessing the significance of a difference between two models, 

especially when both are providing only a single realisation. 

Among our findings, general consensuses have been found between models developed by 

a same institute. Striking examples consist in the pairs of models of CGCM and MIROC 

that differ by a change in resolution. Climate-change projections in summer surface air 

temperature were not statistically different over the land, recalling that these simulations 

have been interpolated over a coarser grid resolut ion. Also, successive versions of the 

GFDL mode! have shown very similar results over the entire orth-American domain. 

A rather interestiqg result is the pair of models from UKMO , which are often considered 

as rather independent climate models. These have shown statistically similar results 

practically over the whole domain for the two first periods considered (2000-2020 and 

2040-2060) , white slight differences in their climate-change signal begin to be statistically 

different after about a century. The latter results should be interpreted carefully since 

it is also possible Lhat both models lead Lo the same result in rather independent ways. 

In such a situation, further investigaLion should be spent on these two models in order 

to determine wh ther the consensus in Lhe signal is informative or not. 

Such consensuses between models developed by a same institute should at !east be taken 

into account when considering a multi-model ensemble. Reducing the occurrence of po­

tential non-informative consensuses in an ensemble allows a clear·er interpretation of the 

inter-mode! spread as a measure of the modelling uncertainties, in addition to more direct 

relationship beLween consensuses and confidence in a specifie climatic outcome. While 

excluding sorne models in an ensemble iucreases the error of the ensemble statistics, it 

could be understood as a cautious choice for reducing overconfidence. Since assessing 

model independence consists in a very complex task, this should be undertaken by the 



15:3 

entire climate modelling community. For example, an institute providing severa! models 

or versions of a same mode! to an inter-comparison project should at !east provide some 

insights about the potentia.l added value to the enLire ensemble by considering severa! 

rather than a single mode! from their institute. From that point of view, it is also possible 

that two versions of a same madel give a non-informative consensus in their response for 

a specifie variable (e.g. temperature) while leading Lo an informative disagreement that 

contribute to the modelling uncertainty for anoLher variable (e.g. precipitation). 

In the case of large ensembles of opportunity such as the CMIP3 mult i-model dataset , 

weak constraints are applied to the sampling procedure in order to favour a largest 

diversity of simulations over the structure of the ensemble. Forming ensembles in such 

an open way is likely to lead to unbalanced ensemble frameworks in the context of sorne 

specifie studies . More precisely, an unbalanced sampling design leads Lo approximations 

in the statistical theory and is likely to lead to larger sampling errors compared to an 

optimised framework of th€ same size. Moreover, since the sampling of the models is 

done in a neither random or systematic manner, experts' judgement becomes necessary 

in order to interpret correctly the message conveyed by an ensemble of opportunity. 
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Appendix 4.A : Analysis of variance applied to a multi-model ensemble (MME) 

In this section, we describe how the analysis of variance (ANOVA) can be applied to a 

multi-model ensemble in order to separate the total variability into two main compo­

nents , i.e. the inter-mode! spread and the natural variability. We assume a MME formee! 

by sever al models, each one providing an arbitrary number of realisations (at least two) 

of a given experiment ( e.g. a given emission scenario). 

Let us first describe one element of a multi-moclel ensemble of simulations according to 

the linear model 

(4.11) 

where ;_;, is the theoretical mean of the population, am the effect of the treatment ( dif­

ferent moclels) and emn the residual error (natural variability) assumed as independent 

and identically distributed (iid) according to the madel and member indices (m and n 

respectively). According to the present statistical mode!, the natural variability has to 

be assumed as the same across the models, whai has been shown to be false in Chap. 3. 

We however assume by simplicity that emn is 'iid white some direct implications of this 

erroneous assumption will be cliscussed fmther. 

As a starting point, we use the unweighted ensemble mean (X 00 in "o" notation) , 

(4.12) 

an averaging that gives equal weighting to each of Lhe models even when sample sizes 

differ. In orcier to study the components of variance, the total sum of square (SST) is 

written relatively to the unweightecl ensemble mean as 

M Nm 

"'"' -r2 SST = ~L)Xmn -Xoo) ( 4.13) 
m n 

where M is the number of models in the ensemble and Nm the sample size of the mth 
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model. (4. 13) can be decomposed as SST = SSA + SSE , where 

M 

S SA = L Nm( X mo- X 00 )
2 (4. 14) 

1n 

and 
M Nm 

SSE = LL(Xmn - X m0 )
2 ( 4.15) 

m n 

respectively. In order to interpret the sums ( 4.13) to ( 4.15) as variances, we have first 

to determine their respective number of degrees of freedom ( df) . In S ST , N square 

terrns are summed (N = I::m Nm) and the deviations used in the calculation are all 

independent with exception of one term. The latter is fixed by the N - 1 other terms 

through the unweighted ensemble mean (4.12) , and hence, (4.13) has N - 1 df. Similarly, 

S SE contains N terms but M of them are constrained by the single-mode! ensemble 

means (Xm0 ). It fo llows that the sum (4.1 5) has N- M df. Finally, SSA consists in 

M- 1 independent terms (or df) due to the multi-model ensemble average (X 0 0 ) that 

constrains the m th single-mode! ensemble mean. 

Dividing (4.15) by its number of df results in a mean squared error component (MSE), 

which can be interpreted as a measurc of natural variability that is pooled across the 

models (ô-tv I), i.e. 

1 
M Nm 

~ 2 "'"' - 2 Œwr = N _ M ~ ~(Xmn - X ma) . ( 4.16) 
m n 

Under the iid assumption and with sufficiently large sample sizes, ô-tv I t:hould tend 

toward a theoretical value of natural variability that characterises a mode! and that is 

approached with sufficiently large sample size. However, since the iid assumption appears 

to be false (according to Chap. 3) and that the models generally provide different sample 

sizes (Nm) , Œtvr is necessarily biased ioward the models with the largest number of 

members. 

Using the number of df is not sufficieni in order to interpret the mean square of SS A 

as the inter-mode! variance. It can be seen by replacing (4. 11) into (4.14) to obtain the 
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expected value of SSA as 

!vi J\1 

E(SSA) = LNma~ + L Nm(emo - eoo) 2
. ( 4.17) 

m ·m. 

While t he inter-mode! variance (&~) should be defined as M~l 'L~~ a~ according to 

( 4.11), such a tenn can not be isolated analytically from ( 4.17) due to the unequal Nm. 

However, a strategy for circumventing this issue is to assume a constant sample size (No) 

t hat is representative of the ensemble in the expcctation of SSA as : 

M M 

E(SSA) ~NoL a~+ No L(emo- eoo) 2
. (4 .18) 

m m 

IL can be shown that the second term on the right-hand si de of ( 4.18) corresponds to 

(M- l)aDvi and then that 

E(SSA) 2 J\T 2 
NI-l = awi + oaM. (4. 19) 

It follows that the inter-mode! variance can be estimated as : 

, 2 SSA/(M- 1)- SSE/ (N- M) 
aM= No ( 4.20) 

where the median of the sample sizes can be u. cd as an educated guess for No . 

Appendix 4.B : Assessing the natural variability by using the member-sampling 

method 

In this section, we make an analytic demonstration of the uncertainty obtained using the 

member-sampling approach presented in Chap. 1. The resulting value of the uncertainty 

affecting the ensemble statistics will next be scaled in order to obtain an est imate of the 

multi-model natural variability. As shown previously in a perfect-ensemble experiment 

(Appendix l.A), the member-sampling approach underestimates the expected effect of 
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the natural variability. This systematic bias will be discussed and related to the insuffi­

cient number of members available for each mode! in the ensemble. The imbalance in the 

sampling of the realisations across models will also be related to the obtained estimate 

of multi-model natural variability. For consistence of the demonstration, we assume the 

same basic constraint of selection as in the member sampling, i. e. one member per mo­

del is retained in each ensemble. By simplicity, we explicit ly use an ensemble size of 

two models but a generalisation to an arbitrm-y number of models (M) will be provided 

through the demonstration. 

Let X1j and X2k represent two models (M = 2) where both of the j and k indices refer to 

a particular member available for one of these models. The sample sizes for these models 

are denoted as N1 and N2 respectively. According to the member-sampling method, the 

multi-model mean is first calculated for each generated ensembles, which differ only by 

the retained member for each mode!, and hence the multi-model means are averaged . 

The latter overall ensemble mean (fl) cau be written as follows : 

( 4.21) 

vVhile the member-sampling method uses a random selection of members, we use for 

convenience in ( 4.21) all the possible combinations of members in a systematic manner. 

By rearranging the terrns , we obtain 

( 4.22) 

The previous equation consists in the average of two single-mo del ensemble means and 

then cau be generalised for an arbitrary number of models as 

( 4.23) 

i.e. the unweighted ensemble mean, which gives equal importance to the different models 
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no matter on how many members they provides. This is due to the fact that the average 

over the members is calculated before that over the models. 

Let us now calculate the statistical error of the ensemble mean, using again two models 

as a starting point. According to the member-smnpling method, the variance of the mean 

is calculated as 

(4.24) 

where the first term in the parenthesis is the (j, k]Lh ensemble mean and the second the 

overall ensemble mean (Eq. 4.23) . By rearranging Lhe terms in (4.24) , we obtain: 

( 4.25) 

By developing the square term in t he sum, it can be shown that t he cross product 

vanishes since the j and k indices vary indepenclently. We hence obtain : 

( 4.26) 

or in more general tenns for an ensemble with an arbitrary number of models : 

( 4.27) 

For typical ensemble sizes, the fraction at the clcnominator is very small and can be 

assumed to be zero. Recalling that the standard error of the mean corresponds to the 

variance of t he sample mean divicled by the smnple size, we obtain an estimate of the 

natural variability by multiplying (4.27) by Mas 

1 
M 

1 
Nm 

A2 "'"""' "'"""' - 2 O"mem = M ~ N ~(Xmn - Xmo ) 
m m j 

( 4.28) 
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tha.t consists in the a.vera.ge between lvi bia.sed estima.tes of variance, each one represen­

ting the inter-member variability of a single mode!. Under the assumption that the Nm 

are sufficiently large, the bias of the estimates decreases asymptotically to zero. On the 

other hand, it is worth noting that this estimate of the natural variability is unweighted , 

i. e. that it is not biased towa.rd particular models, for example those providing larger 

sample sizes. 
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Fig. 4 .1: Assessing the natural variability from a multi-model ensemble by using dif­
ferent estimators based on t he inter-member spread : a) the weighted inter-member 
spread ( Ô"W 1 ; AN OVA mean-square err or) , b) Lhe unweighted inter-member spread 
(ô-ui), c) the member-sampling estimator (ô-me?n) and d) the empirically corrected 
member-sampling estimator (G x Ô"mem)· 
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(a) (b) 

Fig. 4.2 : Assessing the natural variability from a multi-model ensemble where each 
single-mode! ensemble is reconstructed up to 100 members based on the single-mode! 
pooling (SMP ) method: a) the member-sampling estimator (ô-mem) and b) the ANOVA 
coefficient ( ô-w I). 

(a) (b) 

Fig. 4.3: Assessing the natural variability from a multi-model ensemble by using a) 
weighted ( ô-wTJ) and b) unweighted (ô-un) time-averaged inter-member spreads. 

(a) (b) 

Fig. 4.4: Assessing the natural variability from a multi-model ensemble by using a) 
weighted ( ô-w E) and b) unweighted (ô-tm ) ergodic variances. 
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Fig. 4.5: Ratio between the different estimates of the natural variability relatively to a 
reference est ima tor a) the unweighted inter-member spread ( &u I) and b) the unweighted 
time-averaged inter-member spread ( &uTI) . Distributions are constructed using data 
from ali grid points of the domain and ali available 20-year average windows from 1900 
to 2100. 
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1-mask (2040-2060) 1-mask (2080- 21 00) 

(a) CGCM: T47-T63 
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1-mask (2000- 2020) 1-mask (2040- 2060) 

(b) MIROC: Tl06-T42 

Fig. 4.6: To be continued ... 
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Fig. 4.6: To be continued .. . 
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Fig. 4 .6: To be continued ... 
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Fig. 4.6: To be continued .. . 
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~x - ~y (2000-2020) ~x - ~y (2040- 2060) ~x - ~y (2080-21 00) 

(i) UKMO : CM3-GEM1 

Fig. 4 .6 : Difference of the ensemble mean climate-change signal for different pairs of 
models (or versions) developed by the same research institute. The climate-change signal 
is calculated for each simulation relatively to the 1980-2000 period. The panel at the 
bottom of each difference shows the mask of rejection of the nul! hypothesis by using a 
two-tailed t-test at the 5% significanco leve! (2.5% on each side) based on the ergodic 
assumption. Red and blue colours mean positive and negative differences respectively. 



CONCLUSION 

Depuis une vingtaine d'années, une grande partie des connaissances scientifiques sur 

le système climatique a été acquise grâce à l'utilisation d 'ensembles de simulations de 

type "multi-modèles". En guise d 'exemples importants, les ensembles CMIP1 (Lambert et 

Boer, 2001) et CMIP3 (Meehl et al. , 2007b) ont été respectivement les pierres d 'assise des 

t roisième et quatrième rapports du Groupe d'experts intergouvernemental sur l'évolution 

du climat (GIEC) (IPCC 2001 , IPCC 2007) ; quant à CMIP5, il joue un rôle similaire 

dans le cadre du cinquième rapport. Ces étapes importantes témoignent de l'évolution 

des règles de l'art quant à notre compréhension du système climatique observé et de 

son évolution dans le futur, tout comme de la succession des différentes générat ions de 

modèles dont le niveau complexité est toujours grandissant. Le type d 'ensemble à la ba..se 

des rapports du GIEC est souvent appelé "ensemble d'opportunité" puisque basé sur la 

contribution de divers centres de recherches à l'échelle mondiale et dont le niveau de 

participation dépend des ressources et intérêts propres à chaque groupe. 

La principale valeur de ces ensembles réside dans le fait qu'ils sont formés par des si­

mulations provenant de modèles développés par différents centres de recherche et d 'une 

manière, a priori, plutôt indépendante. Ces modèles consistant en différentes représenta­

tions mathématiques du système climatique, ils permettent un certain échantillonnage de 

l' incertitude scientifique autour de leur construcLion, c'est-à-dire quant aux hypothèses 

et approximations qui y sont employées . Ces ensembles sont riches en information, mais 

ils sont aussi extrêmement coûteux à produire ct leur volume de données est imposant. 

Leur traitement peut poser des problèmes tant au niveau technique que pour des rai­

sons plus conceptuelles, voire philosophiques. Cotte thèse a permis de mettre en lumière 

plusieurs difficultés associées à l'utilisation d'ensembles multi-modèles de projections cli­

matiques. Ce projet de recherche s'est positionué dans un cadre assez général de sorte 
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que la plupart d s problématiques abordées puissent aussi s 'appliquer à d 'autres cas 

d 'ensembles (e.g. CMIP5). L'ensemble CMIP3 a donc été utilisé à titre d'exemple d 'en­

semble d'opportunité. Cet ensemble étant assez vaste, l'analyse a été concentrée sur le 

champ de température de l'air à la surface à partir des simulations disponibles pour les 

zoe et 21 e siècles, où des forçages externes sont appliqués comme les émissions de gaz 

à effet de serre et d 'aérosols (GESA). De plus, le cadre de la recherche s 'est restreint 

aux deux sources d 'incertitudes fondamentales dans les projections climatiques, soient 

la variabilité climatique naturelle et l 'incertitude "modèle". Le scénario d 'émissions A1B 

a été choisi puisqu 'il contient le plus grand nombre de modèles et de simulations. 

L'échantillonnage d 'un ensemble d 'opportunité étant principalement basé sur la parti­

cipation des divers centres de recherches, et donc d 'une certaine manière de l'offre en 

simulations, la structure finale d 'un Lcl ensemble est définie par des facteurs externes 

plutôt que par un cadre expérimental précis permettant une optimisation de l'analyse 

subséquente (c.-à-d. une décomposition des différentes composantes d' incertitude). En 

conséquence, si on interprète l'ensemble CMIP3 comme une matrice de simulations dont 

un axe représente les modèles et l'autre les membres, il apparaît que certains éléments 

sont manquants en raison de l'échantillonnage des membres qui varie substantiellement 

entre les modèles. Une question à la base du premier chapitre de la thèse était d 'esti­

mer la perte en information reliée à ce manque apparent de membres dans l'ensemble. 

La matrice incomplète étant la seule de disponible, cette question n'a pu être abor­

dée directement. Nous avons donc procédé à la quantification de la perte d' information 

intervenant lors d 'un second processus d 'échantillonnage depuis l'ensemble original. 

Ce second processus d 'échantillonnage est inspiré de ce qui se fait généralement par les 

experts lorsqu'un ensemble est jugée trop volumineux pour être traité en entier. Par 

exemple, un centre de modélisation régionale du climat ne peut généralement pas traiter 

toutes les simulations provenant de tous les modèles de CMIP3, et donc une présélection 

de simulations s'avère alors nécessaire. Une décision typique visant à réduire la taille 

d' un tel ensemble consiste à n'utiliser qu 'un seul membre par modèle (p. ex. Bombardi 
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et Carvalho, 2011; Peings et Douville, 2010; lliiisanen et al. 2010). Ce choix se justifie 

généralement sur le fait que l'incertitude modèle est plutôt grande en comparaison avec 

la variabilité climatique naturelle (Hawkins et SuLLon, 2011). Ce processus de sélection 

a été utilisé comme contrainte de base dans l'élaboration d'un cadre expérimental visant 

à mesurer l'effet d'une présélection des simulations. 

À partir de l'ensemble CMIP3, la sélection d 'un soUs-ensembles de la forme "un membre 

par modèle" laisse plus d 'un million de possibilités. En utilisant une approche par boots­

trap, de tels ensembles ont pu être échantillonnés en grand nombre. Pour chaque en­

semble ainsi formé, deux statistiqu€S d 'ensemble ont été calculées, soient la moyenne 

d 'ensemble et l'écart- type inter-modèle. En considérant plusieurs milliers d'ensembles, 

des statistiques ont pu être calculées sur ces sLa.Listiques d'ensemble. En particulier, 

l'écart-type des statistiques d 'ensemble a été iltLerprétée comme une mesur d'incerti­

tude reliée à la présélection d'un ensemble. Via la sélection aléatoire d'un membre par 

modèle, cette incertitude est une manifestation de la variabilité inLer-membre, et donc 

de la variabilité climatique naturelle simulée par les modèles. Un résultat intéressant 

est que cette mesure d'incertitude sous-estime l'effet qui serait attendu si l'ensemble de 

départ avait compté un très grand nombre de rnembres par modèle. Ceci a été démontré 

à l'aide d 'une expérience de type Monte-Carlo où un ensemble parfaiL était comparé au 

cas imparfait dont la structure est identique à l'ensemble CMIP3 disponible. Du même 

coup, cette expérience a permis de calc~ler un facteur empirique permettant de corriger 

l'ampleur de l'incertitude attribuable au choix des membres pour qu 'elle corresponde à 

la valeur attendue pour un ensemble contenant un grand nombre de membres. Ceci met 

en lumière une différence importante entre l'incertitude perçue lors de la sél ction et sa 

valeur attendue par l'effet réel de la variabilité climatique naturelle. 

De manière similaire, le processus cl€ présélection d 'un groupe de modèles a aussi été étu­

dié dans le premier chapitre. Une particularité de la méthode utilisée est l'utilisation de 

l'hypothèse voulant que les modèles de CMIP3 cousistent en un échantillon représentatif 

d'une plus grande population. Par exemple, on pourrait imaginer une telle population 
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comme étant formée de modèles hypothétiques dont le niveau de complexité serait si­

milaire à ceux formant l'ensemble CMIP3. Techniquement , cet te hypothèse revient à 

permettre le remplacement des modèles lors de l'échantillonnage par bootstrap. Cette gé­

néralisation de la méthode d 'échantillonnage des modèles a été adoptée devant l'approche 

généralement utilisée de contraindre la sélection à des modèles différents . Ceci met en 

lumière une fois de plus la différence entre l'incert itude perçue par différentes sélections 

d'ensembles de l'incertitude réelle qui serait attendue à l'aide d'un ensemble contenant 

cette fois un très grand nombre de modèles. Un cas particulier consiste en un ensemble 

de 24 modèles où un seul choix de sous-ensemble peut être fait sous la cont rainte d 'utili­

sation de modèles différents, tandis que la généralisation par remplacement des modèles 

mène à 1, 6 x 1013 ensembles différant par au moins un modèle. Cette approche donne 

notamment une mesure d 'incert itude reliée directement à la taille de l'échant illon et à 

l'écart- type inter-modèle, soit la relation de l'erreur type de la moyenne (von Storch et 

Zwiers, 1999) . 

L'incert itude due à la sélection des modèles s'est montrée généralem.ent plus grande que 

celle associée à la sélection des membres. Tel qu'attendu par la loi de l'erreur type, les 

deux sources d 'incertitudes deviennent de plus en plus importantes au fur et à mesure 

que la taille de l'ensemble est réduite. L' incertitude reliée à la sélection des membres 

étant à peu près constante dans le temps, son importance diminue relativement au signal 

de changement climatique lorsqu 'on avance dans le futur. Pour l'incerti tude associée à 

la sélection des modèles, celle-ci augmente avec le temps puisque directement reliée à 

l'écart- type inter-modèle du signal de changement climatique. Par ailleurs, l'incert itude 

associée à la sélection des modèles tend à rester constante dans le temps par rapport 

au signal de changement climatique, un résultat attribué à la chance puisque l'écart­

type inter-modèle dépend des différences structurelles ent re modèles ainsi que de leurs 

différentes réponses au forçage externe, tandis que le signal de changement climatique 

dépend de l'intensité des émissions de GESA. 

Le choix d 'un membre par modèle étant généralement fait aléatoirement en pratique, 
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le cadre expérimental proposé est très représentatif de ce qui se fait dans la réalité. 

La sélection d'un membre par modèle apparaît comme une technique très efficace pout 

réduire la taille d 'un ensemble volumineux puisque son effeL sur les statistiques d'en­

semble est assez petit, même pour des ensembles comptant peu de modèles. D'un autre 

côté, le cadre proposé pour la sélection des modèles est peu contraint comparativement 

à une présélection par les experts, où des processus complexes de sélection de modèles 

peuvent être considérés. Le cadre expérimental proposé peut permettre de juger si l'effet 

du choix des modèles sur les statistiques d 'ensemble est suffisamment grand pour s'en­

gager clans un tel processus et y allouer beaucoup de ressources. Basé sur des contraintes 

bien définies, il semble qu 'effectuer une présélection de modèles peut en principe per­

mettre de corriger certaines lacunes apparaissant dans l'échantillonnage initial d 'un en­

semble d 'opportunité. Par exemple, les notions de performance (Giorgi eL Mearns ,_ 2002) 

ou d'indépendance (Whetton et al. 2007; Abramowitz et Gupta, 2008) des modèles 

peuvent permettre d'améliorer la qualité de l'échantillon init ial , mais encore faut-il que 

les contraintes de sélection soient robustes et fassent consensus entre les scientifiques. 

Après avoir étudié les caractéristiques d 'un échantillonnage de type "expert" dans le 

premier chapit re, le second chapitre s'est concentré sur le processus d 'échantillonnage 

à la base même de la formation d'un ensemble d'opportunité. Dans un t el ensemble, 

l'échantillonnage des modèles se fait d 'une manière ni aléatoire ni systématique, ce qui 

engendre plusieurs difficultés au niveau de l'interprétation des résultats de l'ensemble. 

Bien que les modèles soient construits différemment, certaines particularités leurs sont 

souvent communes, comme certaines hypothèses sur les processus physiques d 'intérêt à 

y intégrer ou quant à la manière de les transposer sous forme d 'équations. La préseuce 

de similarités au niveau de la structure des modèles est en quelque sorte attendue étant 

donné la manière dont la science évolue. Par exemple, les experts partagent des connais­

sances sur le système climatique et quant à la manière de construire les modèles. Ce 

manque d'indépendance apparent entre les modèles étant donc compréhensible, il n 'en 

est pas moins que la portée du problème est assez mal comprise. Une raison à ceci est 

qu'aucune métrique permettant d'évaluer l'ind6pcndance des modèles ne fait présente-
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ment consensus entre les scientifiques (Tebaldi et Knutti , 2007) . Ce problème est un 

obstacle majeur devant toute interprétation probabiliste des résulta ts de l'ensemble. En 

particulier, on s'attendrait qu'un échantillon de modèle totalement indépendants mène 

aux propriétés suivantes : 

1. Un consensus entre plusieurs modèles est un indicateur de confiance en un 

résultat donné 

2. L'écart-type inter-modèle peut être interprété comme une mesure de l'incerti­

tude modèle 

3. L'erreur de la moyenne par rapport au climat réel devrait diminuer au fur et 

à mesure que des modèles sonL ajoutés à l'ensemble. 

Il a été montré que certains biais par rapport aux observations sont partiellement cor­

rélés entre les modèles (e.g. Lambert eL Boer, 2001 ; Knutti et al. 2010) , ce qui serait 

l'indicateur d'un manque d'indépendance. Cependant, ce type d'approche nécessite des 

données d 'observation et donc ne peut être directement appliquée au cas des change­

ments climatiques attendus pour le prochain siècle, à moins d 'utiliser l'hypothèse que 

deux représentations indépendantes du climat observé sont aussi des représentations in­

dépendantes du système climatique quant à sa sensibilité aux forçages de GESA. Une 

autre approche consiste à étudier les similarités entre les sorties de modèles sans avoir 

recours aux observations. Par exemple, Masson et Knutti (2011) ont montré que les mo­

dèles développés par une même institution tendent à mener vers des résultats similaires . 

En guise d 'approche au problème de l'indépendance, nous avons choisi d 'étudier la na­

ture des consensus de changements climatiques entre modèles développés par une même 

institution. Dans ce contexte, les modèles de CMIP3 qui sont développés par un même 

groupe de recherche sont souvent très similaires au niveau de leur construction. Certaines 

paires de modèles diffèrent seulemenL par la résoluLion (paires CGCM et MIROC), ou 

consistent en des versions successives d 'un même modèle (paires CSIRO et GFDL) où des 

changements relativement mineurs sonL apportés au code des modèles. D'autres modèles 
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développés par une même institution sont caractérisés par des différences structurelles 

à plus haut niveau, par exemple les trois modèles GISS diffèrent par leur composante 

d'atmosphère, d'océan, de surface terrestre, de glace de mer et de couplage. Finalement, 

les paires CAR et UKMO comprennent chacunes deux modèles assez différents mais 

qui ont tout de même été développés par une même institution. 

Le cadre expérimental proposé vise à établir un critère permettant d'invalider un consen­

sus entre deux modèles lorsque des raisons suffisantes peuvent remeltre en cause leur 

indépendance. D'abord , afin de déterminer s'il y a consensus, la différence entre les si­

gnaux de changements climatiques a été comparée à la variabilité cli1natique naturelle 

simulée par les modèles. Les différences qui sont statistiquement non-significatives ont 

été interprétées comme des consensus ent re modèles. Bien qu'il soit possible qu'un tel 

consensus apparaisse aussi entre deux modèles indépendants, le lien structurel ou ins­

titutionnel entre les modèles faisant consensus pourrait apparaître comme une raison 

suffisante pour remettre en cause leur indépendance, et donc de rejeter leur consensus. 

En pratique, le rejet d'un consensus pourrait consister à ne considérer qu'un seul modèle 

de la paire lors du calcul du signal de changement climatique moyen dans l'ensemble 

CMIP3. Un tel filtrage de J'ensemble permettrait de clarifier la notioil d 'un consensus 

dans l'ensemble (p. ex. via la moyenne) qui devrait apparaître par annulation des erreurs 

plutôt que par une corrélatlon de celles-ci. Du même coup, le filtrage d 'un ensemble per­

mettrait de clarifier la relation entre l'écart- type inter-modèle et la notion d'incertitude 

modèle. 

Les résultats de l'analyse par paire de modèles développés par une même institution 

ont révélé plusieurs consensus. Les paires CGCM et MIROC ont montrés des signaux 

de changement climatiques très similaires. Il faut elire que les résultats de ces modèles 

ont été interpolés sur une grille commune, et donc qu'une partie importante de la valeur 

potentiellement ajoutée paT le modèle à hauLe résolution (Di Luca et al. , 2013) n'était 

pas considérée. La comparaison entre les modèles GISS munis de la même composante 

atmosphérique (GISS-EH et ER) a quant à elle donné de forts consensus principalement 
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au-dessus du continent. La paire GFDL a aussi mené à un consensus sur la majeure 

partie du domaine, suggérant que les changements structurels entre ces deux versions 

du même modèle étaient relativement mineurs. Un autre consensus a été trouvé entre 

les modèles UKMO. Ces derniers sont apparemment très différents d 'un point de vue 

structurel mais pat"Lagent tout de même des similarités au niveau du schéma radiatif. 

En principe, l'indépendance des modèles de climat devrait pouvoir être évaluée via une 

comparaison exhaustive du code de chacun des modèles, avec une attention particulière 

aux hypothèses et approximations uLilisées. Il est assez évident que cette avenue est 

extrêmement laborieuse. Dans ce sens, la problématique de l'indépendance des modèles 

devrait être prise au sérieux par l'ensemble de la communauté des sciences du climat. Par 

exemple, un centre fournissant à un ensemble des simulations provenant de deux de ses 

modèles, ou versions d 'un même modèle, devrait fournir une certaine justification quant à 

la valeur ajoutée lorsque sont considérés les deux modèles plutôt qu'un seul. Ceci pourrait 

grandement aider à l'interprétation de l'ensemble final et ses utilisateurs pourraient être 

en quelque sorte orientés vers la sélection d'un groupe de modèles plutôt indépendants. 

Poussant cette idée un peu plus loin, au lieu de traiter le problème a posteriori par un 

filtrage de l'ensemble, on pourrait aussi imaginer l'ajout de telles contraintes lors du 

processus d 'échantillonnage de l'ensemble. Ainsi , un groupe de modélisation ne pouvant 

justifier la valeur ajoutée par un second modèle devrait choisir elle-même la version à 

soumettre à l'analyse par la communauté. Le filtrage se ferait donc par les développeurs 

qui connaissent bien ces modèles plutôL que par la communauté qui doit souvent se 

limiter à une interprétation de la documentation fournie. Ce type de contrainte ajoutée 

au processus d 'échantillonnage pourrait en plus offrir certaines possibilités quant à une 

redistribution des ressources informatiques, par exemple en produisant plus de membres 

pour le modèle choisi ou même en produisant des simulations supplémentaires à l'aide 

d'un modèle développé par un centre bénéficiant de moins grandes ressources. 

Dans le cadre de ce travail, certaines difficultés dans l'analyse ont été reliées au pauvre 

échantillonnage de membres pour cettains des modèles. Par exemple, dans le chapi tre 
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1, les modèles avec le plus petit nombre de membres ont été filtrés de l'ensemble en 

vue de minimiser le biais systématique de l'incertitude reliée au choix d'un membre 

par modèle. Au cours du deuxième chapitre, le fait que certains modèles ne fournissait 

qu'un seul membre a nécessité le rejet des modèles développées par certains centres, 

ces derniers ne pouvant être comparés à l'aide d'un t-test basé sur la variabilité inter­

membre. Un objectif visé dans le troisième chapitre était de s'attaquer à ce problème en 

"remplissant" les éléments considérés comme manquants dans la matrice de simulations 

par des méthodes peu coûteuses relativement à l'utilisation d 'un modèle de circulation 

générale coup!$. 

Au cours du chapit re 3, un cadre décisionnel a éLé défini en vue de choisir l'approche la 

mieux adaptée à l'ensemble u ti lisé. Ce cadre proposait deux approches, soit 1) utiliser 

l'information temporelle d 'un modèle pour lui générer des membres supplémentaires, 

ou 2) utiliser l'information temporelle de tous les modèles pour la reconstruction de 

membres. Le choix de l'approche s'est basé sur deux questions fondamentales reliées à 

la simulation de la variabilité climatique naturelle clans l'ensemble. La première consiste 

à évaluer si un ensemble de membres générés par un même modèle peut être considéré 

comme étant ergodique, c'est-à-dire que la variabilité entre les membres est à peu près 

égale à celle mesurée dans le temps . Bien que l'ergodicité soit attendue pour des si­

mulations sans forçages externes (Peixoto et Oort , 1992), l'approche utilisée pour des 

simulations sous GESA fut d'abord de les rendre "stationnaires par traitement", soit en 

soustrayant les tendances (représentées par des polynômes) de leurs séries temporelles. 

La seconde question visait quant à elle à vérifier si la variabilité naturelle était égale 

entre les modèles. Selon le cadre décisionnel proposé, une réponse positive à la première 

question permettrait l'utilisation de l'approche 1, tandis qu'une réponse positive aux 

deux questions permettrait l 'uti lisation de l'approche 2. Pour les modèles considérés , 

l'hypothèse d'ergodicité s'est avérée plutôt vraie, tandis que l'hypothèse selon laquelle 

les modèles simulent le climat avec la même varaibilité naturelle s'est avérée plutôt 

fausse. 
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Le chapitre 4 a permis d 'effectuer une synthèse des principaux concepts avancés dans 

cette thèse tout en proposant deux exemples d 'applications concrètes. Le but visé par la 

première application était de comparer différentes approches afin d' stimer la variabili té 

climatique naturelle par une combinaison de l'information disponible provenant de tous 

les modèles de l'ensemble. Plusieurs estimateurs y ont été discutés. D'abord, une forme 

analytique de la variabilité inter-membre estimée à partir de la méthode de sélection des 

membres (Chap. 1) a été fournie. Cette démonstration mathématique permet d'abord de 

comprendre que le biais systématique de l'estimateur apparaît puisqu'il consiste en une 

moyenne multi-moclèle sur plusieurs estimateurs biaisés de la variance inter-membre. De 

plus, il apparaît de cette démonstration que la méthode de sélection des membres mène 

à un estimé qui est non-pondéré, c'est-à-dire qui donne le même poids à chacun des 

modèles peu importe la taille des échantillons. Comme deuxième estimateur , la variabi­

li té inter-membre a été calculée de manière plutôt classique en fonction des déviations 

autour de la moyenne d 'ensemble (sur les membres) de chaque modèle. Cet estimateur 

provient de la méthode d 'analyse de variance (ANOVA) , et suppose que tous les modèles 

ont une variabilité inter-membre égale, ce qui n'est visiblement pas le cas. L'estimateur 

résulte donc en une variance pondérée selon la taille de l'échantillon de chaque modèle. 

Nous avons donc proposé une version non-pondérée de cet estimateur qui consiste à faire 

la moyenne multi-modèle des variances inter-membre (non-biaisées) . Ensuite, ces deux 

derniers estimateurs ont été généralisés en considérant une moyenne au cours du temps, 

basée sur l'hypothèse que la variabilité inter-membre reste à peu près constante, ses 

variations étant principalement dues à de petits échantillons de membres. La variabilité 

inter-membre moyennée dans le temps a aussi été formulée sous des formes pondérées et 

non-pon:dérées par rapport à la taille des échantillons. Finalement, deux aut res estima­

teurs ont été fournis, toujours en versions pondérées et non-pondérées, mais cette fois 

en supposant l'ergodicité dans les ensembles de membres. On peut voir ces estimateurs 

comme étant des variances temporelles moyennées sur les membres et les modèles, plutôt 

que des variances inter-membres moyennées sur le temps et les modèles comme ce fut le 

cas pour les estimateurs précédents. 
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La comparaison des différents estimateurs pennettant de combiner les variabilités na­

turelles au niveau multi-modèle a généralement montré de faibles différences entre les 

versions pondérées et non-pondérées. La structure de l'ensemble utilisé est en partie res­

ponsable de ce résultat ainsi que la nature des différences entre les variabilités naturelles 

simulées par les modèles. D'une manière plus générale, la qualité des estimés pondérés 

devrait être supérieure à leur version non-pondérée respective, cette dernière donnant 

une plus grande importance relative aux mauvais estimés fournis par les modèles avec 

moins de membres. Cependant, dans un cas où les différences elues à la pondération se­

raient grande (p. ex. autre variable ou ensemble), les versions non-pondérées se doivent 

d 'être considérées basé sur le principe démocratique de "un modèle un vote". 

Une application simple du principe d 'ergodicité a aussi permis de reconstruire des 

membres supplémentaires afin de "remplir" la matrice de simulations, tel que suggéré 

au chapitre 3. Cependant, l'application de la méthode de reconstruction était basée sur 

un échantillonnage aléatoire de périodes temporelles pour générer de nouveaux membres, 

ce qui a résulté en une sous-estimation de la variabilité naturelle en comparaison avec les 

autres estimateurs. De plus longues séries temporelles, et donc un plus grand choix de 

périodes temporelles, aurait probablement permis d'obtenir un estimé de la variabilité 

naturelle se rapprochant des autres estimateurs. D'un autre côté, une application systé­

matique de l'hypothèse d 'ergodicité, c'est-à-dire en moyennant la variabilité temporelle 

sur plusieurs membres, a montré une légère surestimation de la variabilité climatique 

naturelle par rapport aux autres méthodes. CeLte variabilité supplémentaire est princi­

palement due à la composante non-ergodique associée aux forçage. résiduels (comme les 

émissions volcaniques) après soustraction des tendances dans les séries temporelles . 

Dans le chapitre 4, le deuxième exemple d'application visait à améliorer les tests sta­

tistiques proposés au chapitre 2 en vue d'étendre la comparaison aux paires de modèles 

ayant été rejetées de l'analyse étant donné que chacun des modèles ne comportait qu'un 

seul membre. En utilisant l'hypothèse d 'ergodicité, l'information temporelle de ces si­

mulations a permis d'évaluer le niveau de signifiance statistique des différences entre 
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signaux de changements climatiques, et ce, même pour des modèles n'ayant qu'un seul 

membre. Entre autres, ce type d 'approche aura permis de démontrer que l'information 

temporelle des simulations peut servir efficacement à palier le manque de membres de 

certains modèles dans l'ensemble. La notion d'ergodicité dans les ensembles peut donc 

mener à un certain questio1mement quant au nombre de membres fournis dans un en­

semble multi-modèle ainsi que de la valeur ajoutée par de longues simulations de l'ère 

préindustrielle. L'attribution de tendances basées sur des polynômes aux séries tempo~ 

relies pouvant dépendre de la variable considérée et donc se devant d 'être étudiée plus en 

profondeur , la possibilité d 'obtenir un ensemble ergodique même en présence de forçages 

externes (GESA) s'avère une méthode assez efficace pour réduire le volume de données à 

extraire d'un grand ensemble. Par exemple, cette méthode pourrait être utilisée comme 

une alternative peu coûteuse comparativement au téléchargement des simulations sta­

tionnaires de la période préindustrielle dans l'ensemble CMIP3, qui consistent en des 

échantillonnages explicites de la variabililé naturelle simulée par les modèles. 



REFERENCES 

Abramowitz , G. (2010). Mode! independence in multi-model ensemble prediction. Aus­

tralian Meteorological and Oceanographie Journal, 59 :3- 6. 

Abramowitz, G. and Gupta , H. (2008). Towarcl a mode! space and mode! independence 

metric. Geophys. Res. Lett., 35(5) :105705. 

Alexandru, A. , de Elia, R., and 1 aprise, R. (2007). Internai variability in regional climate 

downscaling at the seasonal scale. Mon. Wea. Rev., 135 :3221- 3238. 

Allen, M. R.. and Ingram, W. J. (2002). Conslraints on future changes in climate and 

the hydrologie cycle. Nature, 419(6903) :224- 232. 10.1038/ nature01092. 

Ammann, C. M. , Meehl, G. A., Washington, W . M., and Zender, C. S. (2003). A monthly 

and latitudinally varying volcanic forcing dat<1.set in simulations of 20th century di­

mate. Geophys. Res. Lett., 30(12) :1657. 

Annan, J. D. and Hargreaves, J. C. (2010). Reliability of the CMIP3 ensemble. Geophys. 

Res. Lett., 37(2) :102703. 

Annan, J. D. and Hargreaves, J. C. (2011). Understanding the CMIP3 multimodel 

ensemble. Journal of Climate, 24(16) :4529- 4538 . 

Bechtold, P., Bazile, E., Guichard, F. , Mascart , P., and Richard , E. (2001). A mass 

flux convection scheme for regional and global models. Quart. J. Roy. Meteorol. Soc., 

127 :869- 886. 

Bleck, R. (2002). An oceanic general circulation mode! framee! in hybrid isopycnic­

cartesian coordinates. Ocean Modelling, 4(1) :55- 88. 



182 

Bombardi , R. and Carvalho, L. (2011). T he south atlantic dipole and varia tions in the 

characteristics of the South American Monsoon in the WCRP-CMIP3 multi-model 

simulations. Climate Dynamics, (11-12) :2091- 2102. 

Bona, M. (2006). A Walk Through Comb'irwtorics: An Introduction to Enumeration and 

Graph Theory (Second Edition). World Scientific Publishing Company. 

Christensen, J. , Hewitson, B. , Busuioc, A. , Chen , A. , Gao, X. , Held, I. , Jones, R., Kolli , 

R. , Kwon, vV.-T. , Laprise, R. , Magana Rueda, V ., Mearns, 1., Menéndez , C. , Riüsanen, 

J. , Rinke, A. , Sarr , A. , and Whetton, P. (2007). Regional Climate Projections. In : 

Climate Change 2007: The Physical Science Basis. Contribution of Working Group I 

to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change 

[Solomon, S., D. Qin, M. Manning, Z. Chen , M. Marquis, K.B. Averyt , M. Tignor and 

H.L . Miller (eds.) ]. Cambridge University Press , Cambridge, United Kingdom and 

ew York, NY, USA. 

Christensen, J. H., Kj ellstrom, E. , Giorgi, F. , Lenderink , G. , and Rummukainen , M. 

(2010). Weight assignment in regional climate models. Climate Research, 44(2-3) :179-

194. 10 .3354/ cr00916 . 

Déq~é, M., Rowell , D. , Lüthi , D., Giorgi, F. , Christensen , J ., Rockel, B. , Jacob, D. , 

Kjellstrom, E. , de Castro, M. , and van den Hurk, B. (2007). An intercomparison of 

regional climate simulations fo r europe : assessing uncertainties in mode! projections. 

Climatic Change, 81(0) :53- 70. 

Déqué, M. , Somot, S. , Sanchez-Gomez, E. , Goodess, C., Jacob , D. , Lenderink , G. , and 

Christensen, O. (2012). The spread amongst ensembles regional scenarios : regional 

climate models, driving general circulation models and interannual variability. Climate 

Dynamics, 38(5) :951- 964. 

Deser, C. , P hillips, A. , Bourdette, V., and Teng, H. (2010) . Uncertainty in climate change 

projections : the role of interna! variability. Climate Dynamics, 38(3-4) :527- 546. 



183 

Di Luca , A., Elia, R. , and Laprise, R. (2013). Potential for small scale added value of 

RCM 's downscaled climate change signal. Chmate Dynamics, 40(3-4) :601- 618. 

Dibike, Y. B. , Gachon, P., St-Hilaire, A. , Ouarda, T . B. M. J. , and Nguyen, V. T. V. 

(2008) . Uncertainty analysis of statistically downscaled temperature and precipi tation 

regimes in northern canada. Theoretical and Applied Climatology, 91(1-4) :149- 170. 

Fole:y, A. (2010). Uncertainty in regional climate modelling : A review. Progress in 

Physical Geography, 34(5) :647- 670. 

Giorgi, F. and Mearns, L. O. (2002) . Calcula.tion of Average , Uncertainty Range, and 

Reliability of Regional Climate Changes from AOGCM Simulations via the "Reliability 

Ensemble Averaging" (REA) Method". Jour-nal of Climate, 15(10) :1141- 1158. 

Gleckler , P.J. , Taylor , K. E. , and Doutriaux, C. (2008) . Performance metrics for climate 

models. J. Geophys. Res., 113(D6) :1984- 201 2. 

Greene, A. M., Goddard , L., and Lall , U. (2006). Probabilistic rrn.iltimodel regional 

temperature change projections. Journal of Clùnate, 19(17) :4326- 4343. 

Hawkins, E. and Sutton, R. (2009). The potcnt ial to narrow uncerLainty in regional 

climate predictions. Bulletin of the Amer"ican Meteorological Soc·iety, 90(8) :1095-

1107. 

Hawkins, E. and Sutton, R. (2011). The potential to narrow uncertainty in projections 

of regional precipitation change. Climate Dyn.am:ics, 37(1-2) :407- 418. 

Houle, D., Bouffard , A., Duchesne, L., Logan, T. , and Harvey, R. (2012) . Projections 

of future soi! temperature and water content for three sout hern quebec forested sites. 

Journal of Climate, 25(21) :7690- 7701. 

IPCC (2001). Climate Change 2001 :The Sci.entific Basis. Contribution of Working 

Group I ta the Third Assessment Report of the Intergovernmental Panel on Climate 

Change [Houghton, J.T ., Y. Ding, D.J. Griggs, M. Noguer, P.J . van der Linden, X. 



184 

Dai, K. Maskell, and C.A. Johnson (eds.)]. Cambridge University Press , Cambridge, 
. 1 

United Kingdom and New York, NY, USA, 881pp. 

IPCC (2007). Clirnate Change 2007: The Physical Science Basis. Contribution of Wor­

king Group I to the Fourth A ssessment Report of the Intergovernrnental Panel on Cli­

rnate Change [Salomon, S. , D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt , 

M. Tignor and H.L. Miller (eds.) ]. Cambridge University Press, Cambridge, United 

Kingdom and New York, NY, USA , 996 pp . 

Jun, M. , Knutti , R ., and Nychka, D. W. (2008a). Local eigenvalue analysis of CMIP3 

climate model errors. Tellus A ; Vol 60, No 5 (2008) . 

Jun, M., Knutti , R. , and Nychka, D. W. (2008b). Spatial analysis to quantify nume­

rical mode! bias and dependence. Journal of the Arnerican Statistical Association, 

103( 483) :934- 947. 

Kain , J . S. and Fritsch, J. M. (1990). A one-dimensional entraining/ detraining plume 

model and application in convective parameterization. J. Atrnos. Sei. , 47 :2784- 2802. 

Kendall , M. (1946). The advanced theory of statistics. Vol . 2. Griffin , London. 

Knutti , R. (2010). The end of model democracy? Clirnatic Change, 102(3-4) :395- 404. 

Knutti, R. , Furrer, R. , Tebaldi, C. , Cerrnak, J. , and Meehl , G. A. (2010). Challenges in 

combining projections from multiple climate models. Journal of Clirnate, 23(10) :2739-

2758. 

Lambert , S. J. and Boer, G. J . (2001) . CMIP1 evaluation and intercomparison of coupled 

climate models. Clirnate Dynarnics, 17(2) :83- 106. 

Lean, J ., Beer, J. , and Bradley, R. (1995). Reconstruction of solar irradiance since 1610: 

Implications for climate change. Geophys. Res. Lett. , 22(23) :3195- 3198. 

Levins , R. (1966). T he strategy of model building in population biology. Arnerican 

Scientist, 54 :421- 431. 



185 

Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric 

Sciences, 20(2) :130·-141. 

Lucas-Picher , P. , Caya, D. , de Elia, R. , and Laprise! R. (2008). Investigation of regional 

climate models interna.! variability with a ten-member ensemble of 10-year simulations 

over a large domain. Clim. Dyn., 31(7-8) :927- 940. 

Masson, D. and Knutti , R. (2011) . Climate mode! genea.logy. Geophys. Res. Lett. , 

38(8) :108703. 

Mea.rns, L. 0. , Gutowski , W. , Jones, R. , Leung, R. , McGinnis , S. , Nunes, A., and Qian, 

Y. (2009). A regional clima.te change assessmeüt program for North America. Eos 

Trans. AGU, 90(36). 

Meehl , G., Stocker, T. , Collins, W ., Friedlingstcin, P., Gaye, A. , Gregory, J. , Ki toh, A. , 

Knutti , R. , Murphy, J ., Noda., A. , Raper , S. , Wa.tterson, I. , Weaver , A., and Zhao , 

Z.-C. (2007a) . Global Clima.te P rojections. In : Climate Change 2007 : The Physical 

Science Basis . Contribution of Working GrO'Itp I ta the Fourth Assessm ent Report of 

the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, 

Z. Chen, M. Marquis, K.B . Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge 

University Press, Cambridge, United Kingdom and New York, NY, USA. 

Meehl, G. A., Boer , G . J. , Covey, C. , La.tif, M. , and Stouffer , R. J. (2000). The Cou­

pied Mode! Intercomparison Project (CMIP). Bulletin of the Amer'ican Meteoro logical 

Society, 81(2) :313- 318. 

Meehl , G. A. , Covey, C., Taylor , K. E. , Delworth, T. , Stouffer , R. J. , La.Lif, M. , McAva.ney, 

B. , and Mitchell , J.F. B. (2007b). T he WCRP CMIP3 Multimodel Da.taset: A New 

Era. in Clima.te Change Research. Bulletin of the American Meteorological Society, 

88(9) :1383- 1394. 

Murphy, J. , Booth, B., Collins, M. , Harris, G ., Sexton, D. , and Webb, M. (2007). A 

methodology for proba.bilistic predictions of regional clima.te change from perturbed 



186 

physics ensembles. Philosophical Transactions of the Royal Society A : Mathematical, 

Physical and Engineering Sciences, 365(1857) :1993- 2028. 

Murphy, J. M., Sexton, D. M. H. , Barnett , D. N. , Jones , G. S. , Webb, M. J. , Collins, 

M., and Stainforth , D. A. (2004) . Quantification of modelling uncertainties in a large 

ensemble of climate change simulations. Nature, 430(7001) :768- 772. 10.1038/ na­

ture02771. 

Nakicenovic , N. , Davidson, 0. , Davis, G., Grübler, A. , Kram, T. , La Rovere, E. L. , Metz, 

B. , Morita , T. , Pepper , W ., Pitcher , H., Sankovski , A., Shukla, P. , Swart, R. , Watson, 

R. , and Dadi , Z. (2000). Special RepoTt on Emissions Scenarios : A Special Report of 

Working Group III of the Intergovem mental Panel on Climate Change. Cambridge 

University Press. 

Nikiema, O. and Laprise, R. (2011). Diagnost ic budget study of the internai variability 

in ensemble simulations of the Canadian RCM. Climate Dynamics, 36(11) :2313- 2337. 

Peings , Y. and Douville, H. (2010) . Influence of the Eurasian snow cover on the In­

dian summer monsoon variability in observed climatologies and CMIP3 simulations. 

Climate Dynamics, 34(5) :643- 660- 660. 

Peixoto, J. P. and Oort , A. H. (1992). Physics of Climate. American Institute of Physics. 

Pennell , C. and Reichler, T . (2011). On the effective number of climate models. Joumal 

of Climate, (24) :2358- 2367. 

Pirtle, Z., Meyer, R. , and Hamilton, A. (2010). What does it mean when climate models 

agree? A case for assessing independence among general circulation models. Environ­

mental Science €1 Policy, 13(5) :351- 361. 

lliüsiinen, J. (2002). C02-induced changes in interannual temperature and precipitation 

variability in 19 CMIP2 experimenis. Journal of Climate, 15(17) :2395- 2411 . 

Riüsiinen, J. (2007) . How reliable are clirnate models ? Tellus A, 59(1) :2- 29. 



187 

Riüsanen, J. , Ruokolainen , L. , and Ylhaisi, J. (2010). Weighting of mode! results for 

improving best estimates of climate change. Climate Dynamics, 35(2) :407- 422. 

Randall , D., Wood , R. , Bony, S., Colman, R. , Fichcfet , T ., Fyfe, J. , Kattsov, V. , Pitman, 

A. , Shukla, J., Srinivasan, J., Stouffer, R. , Sumi, A. , and Taylor , K. (2007). Climate 

Models and Their Evaluation. In : Climate Change 2007: The Physical Science Basis . 

Contribution of Working Group 1 to the Fourth Assessment Report of the lntergovern­

mental Panel on Climate Change [Solomon, S. , D. Qin, M. Manning, Z. Chen, M. 

Marquis, K.B . Averyt , M.Tignor and H.L. Miller (eds .)]. Cambridge University Press, 

Cambridge, United Kingdom and ew York, NY, USA. 

Reif, F. (1965). Fundamentals of Statistical and Thermal Physics (McGraw-Hill Series 

in Fundamentals of Physics) . McGraw-Hill Science/ Engineering/ Math. 

Reifen , C. and Toumi, R. (2009). Climate projections : Past performance no guarantee 

of future skill ? Geophys. Res. Lett. , 36(13) :113704. 

Rowell , D. (2006). A Demonstration of the Uncertainty in Projections of UK Climaie 

Change Resulting from Regional Mode! Formulation. Climatic Change, 79(3) :243-

257 . 

Rowlands , D. J., Frame, D. J., Ackerley, D. , Aina, T. , Booth, B. B. B. , Christensen, 

C., Collins, M. , Faull , N., Forest, C. E. , Grandey, B. S. , Gryspeerdi , E ., Highwood, 

E. J., Ingram, W . J. , KnighL, S. , Lopez, A., Massey, N. , McNamara, F. , Meinshausen, 

N. , P iani , C. , Rosier, S. M. , Sanderson, B. M., Smith, L. A. , Stone, D. A. , Thurston, 

M. , Yamazaki , K. , Hiro Yamazaki , Y. , and Allen, M. R. (2012). Broad range of 2050 

warming from an observationally constrained large climate mode! ensemble. NatuTe 

Geosci, 5(4) :256- 260. 10.1038/ ngeo1430. 

Rummukainen, M. (2010). State-of-the-art wiih regional climate models. Wiley Inter­

disciplinaTy Reviews : Climate Change, 1(1) :82- 96. 

Russell , G. 1 ., Miller, J. R. , and Rind, D. (1995). A coupled atmosphere-ocean mode! 

for transient climate change studies. Atmosphere- Ocean, 33( 4) :683- 730. 



188 

Russell , G. L., Miller, J. R., Rind, D. , Ruedy, R. A., Schmidt, G. A. , and Sheth , S. (2000). 

Comparison of model and observed regional temperature changes during the past 40 

years. Journal of Geophysical Research. : Atmospheres, 105(D11 ) :14891- 14898. 

Santer, B.D. , Mears, C., Doutriaux, C., Caldwell, P. , Gleckler, P. J. , Wigley, T . M. L. , 

Solomon, S. , Gillett , N. P., Ivanova, D. , Karl , T . R. , Lanzante, J. R. , Meehl , G. A. , 

Stott, P. A. , Taylor, K. E. , Thome, P. W ., Wehner, M. F. , and Wentz, F. J. (2011). 

Separating signal and noise in atmospheric temperature changes : The importance of 

timescale. J. Geophys. Res., 116(D22) :D22105. 

Sato, M. , Hansen , J. E. , McCormick, M. P. , and Pollack, J. B. (1993). Stratospheric 

aerosol optical depths. J. Geophys. Res ., 98(D12) :22987- 22994. 

Scheffé, H. (1970). Practical solutions of the Behrens-Fisher problem. Journal of the 

American Statist·ical Association, 65(332) :1501- 1508. 

Seager, R. , Ting, M., Held , I. , Kushnir , Y., Lu, J. , Vecchi , G., Huang, H.-P., Harni.k , 

., Leetmaa, A. , Lau, N. -C. , Li , ·c., Velez, J. , and Naik, N. (2007) . Model projections 

of an imminent transition to a more arid climate in southwestern North America. 

Science, 316(5828) :1181- 1184. 10.1126/ science.1139601. 

Separovic, L. , Elia; R. , and Laprise, R. (2012). Impact of spectral nudging and domain 

size in studies of RCM response to parameter modification. Climate Dynamics, 38(7-

8) :1325- 1343. 

Sorteberg, A. and Kvamst0, N. G. (2006). The effect of internai variability on anthro­

pogenic climate projections. Tellus A , 58(5) :565- 574. 

Stainforth, D. A. , Aina, T. , Christensen , C., Collins , M. , Faull , N., Frame, D. J. , Kettle­

borough, J. A., Knight , S., Martin, A. , Murphy, J. M. , Piani , C., Sexton, D. , Smith, 

L. A., Spicer, R. A., Thorpe, A. J., and Allen, M. R. (2005). Uncertainty in predictions 

of the climate response to rising levcls of greenhouse gases. N ature, 433(7024) :403-

406. 10.1038/ nature03301. 



189 

Stouffer, R. J. (2004) . T ime scales of climate rcsponse. Journal of Climate, 17(1) :209-

217. 

Stouffer, R. J., Weaver , A. J., and Eby, M. (2004) . A method for obtaining pre­

twentieth century initial conditions for use in climate change studies. Climate Dy-

namics, 23(3) :327- 339. 

Tebaldi , C. and Knut ti, R. (2007). The use of the multi-model ensemble in probabilistic 

climate project ions. Philosophical Transactions of the Royal Society A : Mathematical, 

Physical and Engineering Sciences, 365(1857) :2053- 2075. 

Tebaldi, C., Mearns, L. 0. , Nychka, D., and Srnith , R. (2005a). Regional probabilities 
' 

of precipitat ion changes : A bayesian analysis of multi-model simulations. Geophys. 

Res. Lett. , 31. L24213. 

Tebaldi, C., Smith, R. L. , Nychka, D., and Mearns, L. O. (2005b). Quantifying uncer-

tainty in projections of regional climate change : A bayesian approach to the analysis 

of mult imodel ensembles . Journal of Climate, 18(10) :1524- 1540. 

Tompkins, A. M. (2002). A prognostic parametcrization for the subgrid-scale variability 

of water vapor and clouds in large-scale models and its use to diagnose cloud cover. 

Journal of the Atmospheric Sciences, 59(12) :1917- 1942. 

van der Linden, P. and Mitchell , J. (2009). Report. ENSEMBLES : Climate Change 

and its Impacts : Summary of research and rcsults from the ENSEMBLES project. 

Met Office Hadley Centre, FitzRoy Road , Exeter EX1 3PB, UK. 160pp (2009) . 

von Storch, H. and Zwiers, F. W. (1999) . Statistical analysis in climate research. Cam­

bridge University Press, UK. 

Weigel, A. P., Liniger, M. A., and Appenzeller, C. (2008) . Can multi-model combina­

tien really enhance the prediction skill of probabilistic ensemble forecasts? Quarterly 

Journal of the Royal Meteorological Society, 134(630) :241- 260. 



190 

Whetton, P. , Macadam, I. , Bathols , J., and O'Grady, J. (2007). Assessment of the use of 

current climate patterns to evaluate regional enhanced greenhouse response patterns 

of climate models. Geophys. Res. Lett ., 34. 

Wigley, T. M. L. , Ammann, C. M. , Santer, B. D. , and Raper , S. C. B. (2005). Ef­

fect of climate sensitivity on the response to volcanic forcing. J. Geophys . Res., 

110(D9) :D09107. 

Wilks, D. S. (2011). Statistical Methods in the Atmospheric Sciences, Volume 100, Third 

Edition. International Geophysics Series. Elsevier Science & Technology. 


