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RESUME

Cette thése traite de diverses difficultés inhérentes & Panalyse d’ensembles multi-
modéles de projections de changements climatiques. Ces ensembles, souvent appelés
« ensembles d’opportunité », sont formés en fonction de la disponibilité de plusieurs
centres de modélisation & I’échelle mondiale & produire un certain nombre de simulations.
Les ensembles résultants d’un tel processus ne sont donc pas construits selon un cadre
expérimental systématique visant & permettre une analyse optimale, mais plutét cn
fonction de facteurs externes émergeant d’un processus d’échantillonnage ouvert.

Dans le premier chapitre de cette thése, le concept d’un échantillonnage de type
« expert » est étudié. Consistant en une présélection d’un certain nombre de simulations
a partir de I’ensemble disponible, ce type de processus est généralement utilisé dans le
but de réduire la taille d’'un ensemble qui ne peut étre traité en entier lorsque les res-
sources sont limitées. Les incertitudes d’échantillonnage reliées au calcul des statistiques
de ’ensemble sont calculées en ré-échantillonnant sur un grand nombre de sous-ensembles
de simulations. Le processus de sélection est divisé en deux types de choix faits par les
experts : le choix des modéles et celui des membres. Il est démontré comment ces in-
certitudes d’échantillonnage consistent en des manifestations de sources d’incertitudes
connues reliées aux projections climatiques, soient la variabilité climatique naturelle et
’écart-type inter-modéle.

Le second chapitre vise 4 étudier une problématique fondamentale 3 ’échantillon-
nage des modéles dans un ensemble d’opportunité. Les modéles de climat n’étant a
priori pas tout & fait indépendants puisque les scientifiques partagent des connaissances
4 propos du systéme climatique et quant & la maniére de construire les modéles, au-
cune métrique pour évaluer cette indépendance ne fait présentement consensus entre
les scientifiques. Dans ce chapitre, nous proposons un critére pour détecter un manque
d’indépendance entre les projections de changements climatiques. Ce critére est basé sur
le fait que deux modéles peuvent mener & des sensibilités climatiques similaires face aux
forcages externes, mais un tel consensus devrait étre rejeté quand des raisons suffisantes
peuvent remettre en cause la notion d’indépendance. Par exemple, lorsque d’importantes
similarités structurelles apparaissent entre les modéles ou, dans une moindre mesure, di
4 une certaine dépendance institutionnelle.

Dans le troisiéme chapitre, des pistes de solutions sont suggérées face au probléme
que les modéles sont généralement représentés dans un ensemble par peu de membres et
en nombres souvent inégaux. L’utilisation d’échantillons non-équilibrés peut engendrer
certains problémes, particuliérement en ce qui a trait & ’estimation de la variabilité natu-
relle dans 'ensemble, celle-ci étant souvent obtenue & partir de ’écart-type inter-membre.



Avant de considérer des méthodes de reconstruction visant & régénérer les simulations
jugées manquantes 4 partir de 'information disponible dans ’ensemble, deux hypothéses
se doivent d’étre vérifiées. La premiére s’applique & un ensemble de membres provenant
d’un seul modéle et consiste & déterminer si cet ensemble peut étre supposé comme étant
ergodique, c.-3~d. que la variabilité temporelle est &4 peu prés égale & celle qui intervient
entre les membres. La seconde hypothése considére que la variabilité naturelle est simu-
lée de fagon égale entre les modéles. Bien que les résultats montrent que la variabilité
naturelle différe de fagon importante entre les modéles, ’hypothése d’ergodicité entre les
membres s’avére vraie pour des simulations sans forgages externes. Pour des simulations
avec forgages externes, il est démontré comment des conditions de stationnarité peuvent
étre atteintes par traitement en soustrayant les tendances polynomiales dans les séries
temporelles.

Dans le quatriéme chapitre sont comparées différentes méthodes pour quantifier la
variabilité naturelle & partir d’'une combinaison de plusieurs modéles. D’un c6té, I’estimé
optimal pour cette variabilité serait biaisé vers les modéles avec le plus de membres, tan-
dis qu’un estimé donnant le méme poids & tous les modéles serait caractérisé par une plus
grande erreur type. Dans ce méme chapitre est aussi fourni un exemple d’application de
I’hypothése d’ergodicité, qui permet d’utiliser la variabilité temporelle afin de comparer
les signaux de changements climatiques provenant de deux modéles, lorsque ces derniers
sont représentés par un seul membre. Cette approche peut étre vue comme une alter-
native devant la méthode plus cotiteuse de considérer des expériences supplémentaires,
par exemple les simulations de contrble pour la période préindustrielle disponibles dans
I’ensemble CMIP3.

Mots clés : ensemble multi-modéle, échantillon non balancé, variabilité naturelle, incer-
titude modéle, indépendance des modéles, ergodicité




ABSTRACT

This thesis focuses on inherent issues to the analysis of multi-model ensembles of
climate-change projections. Such ensembles, often denoted as “ensembles of opportunity”,
are formed on the basis of the readiness of several modelling centres around the world
to produce simulations. It results in ensembles that are not constructed based on a
systematic framework aimed at an optimised analysis but rather on external factors
emerging from an open sampling process.

In the first chapter of this thesis, the concept of an expert-based sampling is in-
vestigated, consisting in making a pre-selection of 4 number of simulations from a large
ensemble. Such a sampling process is generally used by research centres that cannot
afford to handle the entire ensemble due to limited resources of treatment. Sampling un-
certainties affecting the statistics of the resulting ensemble are assessed using resampling
methods by randomly selecting over several ensembles subsets. The selection process is
divided as two types of choices made by the experts : the choice of the models and
that of the members. We show how these sampling uncertainties are manifestations of
known sources of uncertainty, namely the natural climate variability and the inter-model
spread.

The second chapter investigates an issue that is fundamental to the sampling of
the models in an ensemble of opportunity. While climate models are not expected to
be independent since scientists share knowledge about the climate system and on how
to construct models, no robust metric to quantify model independence is commonly
accepted among climate scientists. In this chapter, we propose a criterion for detecting
possible lack of independence between climate-change projections. This criterion is based
on the fact that two models can lead to similar climate sensitivities to external forcings,
but such a consensus should be rejected when there are sufficient reasons to believe that
it occurs for the wrong reasons, i.e. whether due to important structural similarities
between the models or to a lesser extent, to some institutional dependence.

In the third chapter, a workaround to the apparent problem of a small and une-
qual number of members provided by the models is investigated. Such an imbalance
between sample sizes raises issues in the assessment of the natural climate variability
when obtained from the inter-member spread. When considering reconstruction methods
for regenerating these “missing simulations”, two assumptions about the multi-model en-
semble have to be investigated. The first one applies to a single model and consists in
determining whether an ensemble of members can be assumed as ergodic, i.e. that the
variability measured in time is approximately equal to the inter-member spread. The
second assumption is that the natural variability is equally simulated by the different



models in the ensemble. While the results show that the natural variability largely dif-
fers among the models, an ensemble of members can be considered as ergodic when run
under stationary conditions. For simulations run under transient forcings, it is shown
how stationary conditions can be reached by treatment by removing polynomial trends
from the time series.

In the fourth chapter, different methods are compared for assessing the natural
variability from a multi-model ensemble. While an optimal estimator of the natural va-
riability would be biased toward the models with larger sample sizes, an unweighted
estimate that gives an equal importance to the different models would be affected by
larger sampling errors. We also provide an example of application of the ergodic assump-
tion that allows taking advantage of the temporal variability in the simulations in order
to compare the climate-change signals provided by two models when both provide a
single member. This method can be seen as an alternative to the more expensive way of
using supplementary simulations run without external forcings such as the pre-industrial
control experiments in the CMIP3 multi-model ensemble.

Keywords : multi-model ensemble, unbalanced framework, natural variability, model
uncertainty, model independence, ergodicity




INTRODUCTION

La méthode scientifique requiert que les théories soient validées par ’expérimentation.
Toutefois, en science du climat, les chercheurs n’ont pas accés 4 un laboratoire au sens
classique qui permette de vérifier leurs hypothéses. En ce sens, le systéme climatique
terrestre est 4 la fois laboratoire et sujet d’étude. Considérant que certaines perturbations
du systéme climatique peuvent prendre plusieurs décennies avant que les répercussions
puissent étre ressenties de maniére significative, il serait peu judicieux pour I’Homme

d’envisager de perturber son environnement afin d’en évaluer les conséquences.

Les modéles de climat

Les scientifiques du climat doivent donc se tourner vers des expériences effectuées par
ordinateur ou les équations mathématiques décrivant la physique du systéme climatique
permettent d’en simuler ’évolution. Au cours des derniéres décehnies, la, science du cli-
mat a évolué considérablement, et ce, en grande partie grace a I’augmentation de la puis-
sance de calcul des ordinateurs. Les principaux outils 4 la portée des scientifiques sont les
Modeéles de Circulation Générale Couplés Atmosphére-Océan (MCGAOQ ; Randall et al.
2007), qui tiennent compte des principales composantes du systéme climatique : I'atmo-
sphére, les océans, la surface terrestre, la glace de mer et la biosphére. Dans ces modéles
sont prescrits des for¢ages dits “externes” comine les émissions de gaz & effet de serre
et d’aérosols (GESA) (Nakicenovic et él., 2000). A I'aide des MCGAO contemporains,
le climat planétaire peut étre simulé sur plusieurs centaines d’années & des résélutions
spatiales de l'ordre d’une centaine de kilométres, et ce, en quelques semaines de calcul
sur un superordinateur. Le coit relatif 4 la production de ces simulations refléte 4 quel
point les modeles de climat sont des programmes informatiques complexes nécessitant

une grande puissance de calcul.



Incertitude dans les projections climatiques

En dépit de la grande complexité des modeéles de climat, ces derniers ne restent que des
approximations du systéme climatique réel. D’abord par leur nature discréte, ils ont une
résolution finie, et donc méme certains processus assez bien connus comme la dynamique
des fluides se voient alors approximés. De fagon similaire, d’autres approximations ont
lieu puisque certains processus physiques interviennent 4 des échelles plus fines que la
grille du modgle. Ces processus non résolus par le modéle, par exemple la convection, la
micro-physique des nuages ou les transferts radiatifs, se doivent donc d’y étre intégrés

sous forme de paramétrages (Tompkins, 2002).

Les projections climatiques sont évidemment sujettes 4 un certain niveau d’incertitude.
Cette incertitude peut étre séparée en trois éomposantes, soit la variabilité naturelle du
climat, 'incertitude reliée aux approximations utilisées par un modéle et I'incertitude
due au choix de scénario de GESA (Hawkins et Sutton, 2011). La variabilité naturelle
est, une composante fondamentale d’incertitude puisqu’elle refléte le caractére chaotique

du systéme climatique (Lorenz, 1963). Cette source de variabilité est générée 3 'inté-

rieur méme du systéme et est souvent considérée comme le niveau minimal de “bruit
climatique” en dega duquel le systéme ne peut étre considéré déterministe. La variabi-
lité naturelle générée par un modéle de climat peut étre quantifiée de deux maniéres
différentes. La premiére consiste & générer une longue simulation (e. g. plusieurs cen-
taines d’années) et d’en évaluer la variabilité temporelle (Deser et al., 2010). La seconde
consiste & générer plusieurs réalisations d’un méme climat en imposant de petites diffé-
rences dans les conditions initiales. Par la nature chaotique du systéme, ces simulations
perdront toute mémoire de leurs conditions initiales aprés une certaine période de temps
de mise & ’équilibre (Stouffer et al., 2004; Stouffer, 2004). La variabilité entre ces diffé-
rentes réalisations est souvent utilisée comme mesure de la variabilité naturelle simulée

par un modeéle de climat (Sorteberg et Kvamstg, 2006 ; Deser et al. 2010).

L’incertitude modéle est due au fait que les scientifiques ont une connaissance limitée



du systéme climatique. Autant le choix des processus physiques d’intérét a inclure dans
1es modéles que la maniére de les transposer sous forme d’équations pouvant étre solu-
tionnées par ordinateur peut différer entre les experts. Les modéles sont donc construits
différemment, ce qui méne & certaines différences dans leurs projections climatiques.
L’incertitude due au scénario est due au fait que 1’évolution future des émissions an-
thropiques de GESA est pratiquement inconnue. Ces émissions dépendent notamment
de I’évolution du contexte socio-économique, technologique et politique mondial. Elles
sont donc trés difficiles 4 prévoir et cette question dépasse largement le cadre de la
problématique reliée & la modélisation du systéme climatique. Or, I"utilisation de diffé-
rents scénarios d’émissions dans les simulations climatiques montre clairement D’effet de
ces derniers sur "ampleur et les détails du changement climatique appréhendé (Meehl
et al., 2007a), faisant du choix de scénario une source importante d’incertitude dans les

projections climatiques.

Les ensembles d’opportunité

Dans le but de quantifier les différentes sources d’incertitude reliées aux projections
climatiques, d’imposants ensembles de simulations doivent &tre utilisés. En mettant &
contribution les différents centres de recherche en modélisation climatique de par le
monde, ces projets internationaux permettent 1:111 certain échantillonnage des différentes
sources d’incertitude. Un bon exemple de ce type d’ensemble est la phase 3 du projet
d’intercomparaison de modéles couplés (CMIP3; Meehl et al. 2007b). Cet ensemble
contient des simulations provenant de plus d'une vingtaine de modéles pour quelques
scénarios d’émissions de GESA. La variabilité naturelle y est échantillonnée 3 ’aide de
plusieurs réalisations par expérience, de méme que par un certain nombre de simulations

de la période préindustrielle ot aucun forgage anthropique n’est appliqué.

Le processus d’échantillonnage de ’ensemble CMIP3 reste relativement ouvert en ne
posant que certaines conditions minimales aux différents centres pour y participer. Ceci

permet entre autres de maximiser le nombre de modéles dans ’ensemble. Ces conditions



minimales peuvent se résumer & utiliser un MCGAO conforme aux régles de l'art poﬁr
générer un certain pombre de simulations en fonction d’expériences suggérées, et ce, dans
les délais et formats d’archivage requis par le projet. Un tel processus d’échantillonnage
engendre un ensemble dont la structure est principalement définie par l'offre en simula-
tions, soit le degré de participation des différentes équipes de recherche en fonction de
leurs ressources et intéréts. Au final, I’ensemble sera souvent incomplet, c’est-a-dire que
tous les modéles ne sont pas utilisés pour générer toutes les expériences proposées étant
donné le coit important relié & la production de telles simulations. Pour les mémes rai-
sons, I’ensemble a peu de chances d’étre équilibré, et donc que les modéles et institutions

y sont représentés de fagon plutét inégale selon les trois axes d’incertitude.

Problémes inhérents aux ensembles multi-modéles

L’échantillonnage des principales sources d’incertitude via ce type d’ensemble pose ce-
pendant plusieurs problémes. D’abord, par sa structure irréguliére, I’analyse d'un en-
semble multi-modéle méne & des approximations dans les méthodes statistiques conven-
tionnelles {von Storch et Zwiers, 1999)-et-possiblement & des biais. Or, cetype de pro=——
bléme n’est pas nouveau, Kendall (1946) ayant déja mentionné I'importance d’impliquer
des mathématiciens lors d’un processus échantillonnage afin de permettre ’application
d’une analyse de type exact (i.e. sans approximations), ou les biais sont minimisés et les
erreurs d’échantillonnage contrélées. Dans le cas de CMIP3, on peut voir ces problémes
comme un compromis étant donné le processus d’échantillonnage ouvert permettant la

maximisation du nombre de modéles dans I’ensemble.

Un exemple d’ensemble ou ces problémes sont considérés lors du processus d’échan-
tillonnage est le projet NARCCAP (The North American Regional Climate Change As-
sessment Program ; Mearns et al. 2009). La structure de I’ensemble y est déterminée &
'avance afin d’en optimiser ’analyse. On notera aussi le projet ENSEMBLES (van der
Linden et Mitchell, 2009), qui au méme titre que CMIP3, utilise un processus d’échan-

tillonnage basé sur l'offre en simulations, résultant en une structure d’ensemble incom-



pléte et non équilibrée. Dans le but d’analyser les différentes composantes d’incertitude
reliées & cet ensemble, Déqué et al. (2012) a di utiliser certaines astuces mathéma-
tiques afin de reconstruire les expériences manquantes dans la structure. Un avantage
d’une telle approche est d’obtenir un cadre expérimental souhaitable pour ’application
d’une méthode d’analyse exacte en évitant les biais lors de I’évaluation des différentes

composantes d’incertitude.

Cependant, méme dans le cas d’un ensemble multi-modéle dont la structure est complé-
tée et équilibrée selon les différentes expériences suggérées, certains problémes d’échan-
tillonnage persistent au-dela de ceux strictement reliés la structure méme de ’ensemble.
Un probléme de taille réside dans I’échantillonnage de l'incertitude modéle. Typique-
ment, U'incertitude modéle est étudiée 4 'aide de deux types d’ensemble. Le premier
est 'ensemble a la “physique perturbée” (EPP) qui consiste & utiliser un seul modéle
sous différentes configurations. Ces configurations sont obtenues en variant certains pa-
ramétres du modéle dont la valeur est incertaine (Rowlands et al., 2012). Un modéle
pouvant contenir des centaines de paramétres 4 varier, I’étude de l'incertitude modéle
via ce type d’ensemble consiste 4 explorer un espace avec autant de dimensions, ce qui
est hors de portée pour la plupart des groupes de recherche en modélisation. Un effort
considérable dans ce domaine est le projet climateprediction.net (Stainforth et al., 2005)
qui utilise des ressources informatiques distribuées afin de générer un ensemble comp-
tant plusieurs milliers de simulations. Cependant, un EPP reste par définition contraint
aux particularités structurelles d’un seul modéle et donc ne révéle qu’une facette de

Pincertitude modéle (Tebaldi et Knutti, 2007).

La deuxiéme maniére d’étudier 'incertitude modéle consiste 4 utiliser un ensemble multi-
modéle (e.g. CMIP3). Ce type d’ensemble tient compte des différences structurelles entre
les modeles, comme le choix des processus d’intérét a considérer ou la maniére de les re-
présenter sous forme de paramétrages. Un probléme important relié  ce type d’ensemble
est que les modéles y sont échantillonnés de maniére ni aléatoire ni systématique, mais

plutdt basée sur la disponibilité des modeéles (offre en simulations). L’échantillonnage



multi-modéle explore un espace indéfini qui ne peut étre simplement représenté a partir
de nombres comme c’est le cas pour I’'EPP dont l'espace des paramétres est défini, bien
que extrémement cofiteux & explorer (Murphy et al., 2007). Les difficultés reliées a la dé-
finition d’un “espace des modéles” reposent sur une problématique d’ordre conceptuelle.
Cette difficulté constitue une importante barriére devant toute interprétation probabi;
liste des résultats de 'ensemble, & moins d’utiliser des hypothéses substantielles (Giorgi

et Mearns, 2002 ; Greene et al. 2006).

Un point important relié & I’échantillonnage des modéles est que plusieurs raisons portent
4 penser qu’ils ne sont pas tout & fait indépendants I'un de l’autre. En fait, les centres de
modélisation partagent des connaissances en ce qui a trait au systéme climatique et 4 la
maniére de construire les modéles, par la participation & des conférences et la publica-
tion d’articles spécialisés. De plus, les modeéles sont souvent validés et ajustées (via leurs
paramétres) en fonction de données climatiques similaires. Un indicateur de ce manque
d’indépendance est que les modéles ont en commun certains biais lorsque leurs résultats
sont comparés avec le climat observé (Lambert et Boer, 2001 ; Knutti et al. 2010). En
guise de comparaison, des-échantillons-indépendants-devraient statistiquement mener &—
une annulation des erreurs au fur et 4 mesure que la taille de I’ensemble est augmentée, ce
qui n’est pas le cas pour les MCGAOs contemporains. De plus, Masson et Knutti (2011)
ont mis en évidence que des similarités entre les résultats de modéles tendent & appa-
raftre lorsque ces derniers sont développés par des acteurs communs. Aucune métrique
ne faisant présentement consensus parmi les scientifiques afin de quantifier le concept
d’indépendance (Tebaldi et Knutti, 2007), certaines implications sont trés importantes.
Par exemple, 'utilisation d’une norme basée sur les similarités des simulations des mo-
deles en guise d’indicateur de confiance dans un résultat donné se voit une idée difficile
3 défendre sans une confiance de I'indépendance des modéles (Pirtle et al., 2010); les
similarités pouvé.nt trés bien apparaitre pour les mauvaises raisons, par exemple di &

des hypothéses similaires utilisées dans la construction des différents modéles.




Objectifs et plan de la thése

Cette thése vise 4 mettre en lumiére plusieurs problématiques fondamentales auxquelles
doivent faire face les scientifiques lors de I’analyse d’un ensemble multi-modéle. L'en-
semble CMIP3 y est utilisé & titre d’exemple mais ces problématiques se veulent tout
aussi applicables 4 d’autres ensembles comme CMIPS. En particulier, on s’attarde aux
deux sources d’incertitude primordiales des projections climatiques, c’est-a-dire la va-
riabilité naturelle et Pincertitude modéle. La thése est divisée en quatre chapitres qui

représentent des articles scientifiques 4 soumettre & des revues spécialisées.

L’ensemble CMIP3 étant le résultat d’un effort sans précédent de coordination & ’échelle
mondiale, il est donc trés riche en information mais aussi relativement imposant en
termes de volume de données. Une équipe de recherche utilisant ces simulations se li-
mitera souvent & n’utiliser qu'une partie de ’ensernble selon ses capacités de traitement
de données et des questions scientifiques & étudier. Ce processus de sélection d’un en-
semble est fait par les experts et vise d’abord & réduire la taille de I’ensemble mis &
leur disposition tout en minimisant les pertes en information. Dans le premier chapitre,
on étudie les erreurs d’échantillonnage issues d’une présélection de simulations quant
a leur effet sur le calcul des statistiques de ’ensemble. Le processus d’échantillonnage
par les experts y est analysé en fonction d’une sélection faite sur les modéles ainsi que
sur les membres disponibles pour chaque modele. Le cadre expérimental proposé vise
entre autres 4 mieux comprendre les effets d’un ensemble de taille finie en évaluant les
erreurs statistiques en fonction de la taille de I’échantillon sélectionné. On y discute no-
tamment les hypothéses fondamentales qui se doivent généralement d’étre adoptées lors

de 'utilisation de ces ensembles.

Aprés Pétude du processus de sélection d’un ensemble par les.experts, le second chapitre
traite de la nature de ’échantillonnage & la base méme d'un ensemble multi-modéle.
D’abord, on y discute de la participation des centres de recherche et de leur effet sur

I’échantillon disponible. Le concept d’indépendance des modéles y est ensuite révisé en




détails selon les travaux déja abordés. Nous proposons par la suite un cadre expéri-
mental visant & quantifier la notion d’indépendance quant aux consensus et désaccords
observés entre les signaux de changements climatiques par rapport au niveau de bruit
donné par la variabilité naturelle. On y étudie aussi ’'hypothése souvent évoquée que
deux modéles développés par une méme institution tendent a4 donner des résultats avec
des caractéristiques similaires. Bien que cette hypothése ne soit pas toujours vraie, elle
reste néanmoins un outil important en vue de filtrer 'ensemble de ses consensus non
informatifs, c’est-a-dire dus aux mauvaises raisons. Enfin, on y avance certaines pistes
de solution qui devraient étre considérées par la communauté scientifique afin de dimi-
nuer 'ampleur du probléme relié au manque d’indépendance entre les modéles pour les

ensembles & venir.

Dans le troisiéme chapitre, un autre type d’échantillonnage est abordé. On le qualifiera
d’échantillonnage synthétique, celui-ci visant & régénérer artificiellement les simulations
considérées comme manquantes dans l’ensemble. Ce type d’approche est principaleﬂlent
voué 4 simplifier ’analyse d'un ensemble incomplet ou non équilibré 4 ’aide de méthodes
peucoliteuses en comparaison avec la-production de simulations & Paide d’un MCGAO.
Ce chapitre propose notamment deux types d’approches visant & tirer profit de 'infor-
mation temporelle disponible dans ’ensemble en vue d’y générer de nouveaux membres.
La premiére technique consiste a utiliser ’information temporelle fournie par un mo-
déle afin de lui générer des membres supplémentaires, tandis que la seconde consiste 3
utiliser l'information temporelle provenant de tous les modéles de l'ensemble. Ces deux
approches sont placées dans un cadre décisionnel afin de déterminer la méthode souhai-
table en fonction de l’ensemble utilisé. En particulier, la premiére méthode évoque le
caractére ergodigue d’un ensemble de membres provenant d’un seul modéle. Cette ca-
ractéristique apparait comme une symétrie entre le temps et les membres; elle peut étre
d’une grande utilité pour la reconstruction d’expériences manquantes dans un ensemble

multi-modéle.

Le quatriéme chapitre se veut une récapitulation des principaux concepts développés



dans cette thése. On y propose notamment deux exemples d’application. Le premier
fait une comparaison entre différentes approches afin de combiner la variabilité naturelle
simulée par différents modéles. Le deuxiéme exemple applique le principe d’ergodicité
entre les membres afin d’améliorer la qualité des tests statistiques proposés dans le pre-
mier chapitre quant 3 la caractérisation de I'indépendance entre deux modeéles développés

par un méme groupe de modélisation.






CHAPTER 1

ON THE UNCERTAINTY RELATED TO EXPERTS’ DECISIONS IN THE
SELECTION OF A SUBSET OF SIMULATIONS FROM A LARGE
ENSEMBLE OF OPPORTUNITY

ABSTRACT

From the climate modelling point of view, an ensemble of opportunity consists of a group
of simulations generated using several models developed by different research centres
around the world. Such ensembles are generally formed in a rather open way by allowing
research groups to provide an arbitrary number of member simulations generated from
one or several versions of their model. While these simulations are used in a wide variety
of applications, users often consider only a small part of the entire available ensemble
due to limited resources for data handling.

In this chapter, we investigate the concept of the sampling uncertainties emerging from
the selection of a subset of simulations from a large ensemble. It is shown how these
uncertainties can be constrained by the selection process and the underlying assumption
about the nature of the ensemble-related population. Emerging as the lower bound of
error in the ensemble statistics, these sampling uncertainties consist in different ma-
nifestations of known sources of uncertainty in climate modelling such as the natural
variability and the model structural uncertainty.

1.1 Introduction

As a result of different approximations and alternative approaches employed, different
coupled Atmosphere-Ocean General Circulation Models (AOGCMs) developed by a
number of research teams around the world give different climate sensitivities in res-

ponse to the same concentration of greenhouse gases and aerosols (GHGA). In order to
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interpret these differences and understand their impacts on climate-change projections
for the next century, some internationally coordinated efforts have been realised over
the last years, aiming at setting up experimental frameworks that allow comparing and
combining climate simulations from different models. These large projects are formed
in a rather open way, meaning that research centres are generally free to participate
by delivering an arbitrary number of simulations. Such experiments allow collecting a
relatively large number of simulations, leading to a range of credible climate-change
projections that are brought together as a multi-model ensemble of simulations. At this
time, the best achieved example of such an application is the Coupled Model Intercom-
parison Project Phase 3 (CMIP3; Meehl et al. 2007b) while CMIP5 is underway at the

time of writing.

A fundamental issue of climate-change modelling resides in the intrinsic nature of multi-
model ensembles. Often denoted as “ensemble of opportunity” (e.g. Christensen et al.
2007, Tebaldi and Knutti 2007, Annan and Hargreaves 2010), such ensembles do not

imply any random or systematic sampling of the models over the possible population of

all modelling-approaches. Research centres-around-the-world are free to participate to the
coordinated effort towards climate-change assessment, but they do so according to their
own computing and human resources constraints. This results in ensembles that sample
in some way the model structural differences (or modelling approaches); the spread
among simulations is often interpreted as reflecting the uncertainty of climate-change
projections, in addition to the uncertainty about the future GHGA emissions pathways.
It is worth noting that participating groups provide an arbitrary number of realisations
from the same model, usually referred to as “members”, which sample the models’ natural
variability (Sorteberg and Kvamstg, 2006; Deser et al., 2010). Moreover, the rather open
method of forming an ensemble allows for a participating group to provide runs from
several versions of the same model, that may differ for example by changes of spatial

resolution, parameterization packages, or different tuning of some parameters.

While the simulations resulting from these ensembles are often used “as is” in a va-
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riety of climate-change assessments, downscaling techniques are increasingly used in the
hope of obtaining further regional information. Examples are dynamical downscaling
with Regional Climate Models (RCMs; Rummukainen 2010) and statistical downscaling
(e.g. Dibike et al. 2008) in order to obtain small-scale details from the coarse-resolution
AOGCMs’ simulations. Either approaches involve a large amount of data-handling re-
sources, and computing resources in the case of RCM ; hence the motivation for conside-
ring only a subset of the original AOGCM ensemble. Expert decisions may be involved
in selecting such a subset in order to minimise losses of valuable information. One com-
mon approach for reducing a large ensemble into a smaller subset is by retaining a single
member of each model or version of model (e.g. Bombardi and Carvalho 2011, Peings
and Douville 2010, Raisinen et al. 2010) when several are available, thus reducing the
size of the ensemble to the number of available models. Such sampling is expected to
have a little impact for climate-change projections made over several decades, since at
these time scales, the inter-member variability is generally smaller than the inter-model
variability (Hawkins and Sutton, 2009). The idea of retaining a single member per model
also sustains the democratic idea of “one vote per model” (Knutti 2010) in the assessment

of the climate-change signal.

If such "one member 'per model” reduced dataset is still too large for the handling
capability of a user, the ensemble is further reduced by proceeding to the selection of
a smaller number of models according to some specific characteristics. An often used
criterion is the models’ performance in reproducing the present climate (Gleckler et al.
2008) in order to remove from the ensemble the models that are considered less reliable.
Another one consists in eliminating the "outliers” whose climate change differs the most
from the ensemble mean (e.g. Giorgi and Mearns 2002). Another way of selecting a
subset of models can be based on their degree of independence, a rule of thumb is to
consider only one model from each institute (Whetton et al., 2007). Alternatively, Houle
et al. (2012) used a cluster analysis in order to classify 86 climate simulations from
the CMIP3 archive into 5 subgroups, retaining only a single simulation per subgroup

for further analysis. In the case of dynamical downscaling experiments, a reason for
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retaining a specific subset of AOGCM from a large ensemble of opportunity may also
simply be based on the availability of fields that are necessary for driving an RCM, or
some compatibility issues between RCM and AOGCM may also influence the choice of
the AOGCMs to be retained in a study.

In addition to the selection of a subset from a large ensemble of simulations, several ways
exist for combining simulations from several models for climate-change assessment. For
example, a widely used approach is to consider models as equivalent representations
of the real climate system, thus using their simulations as equally likely outcomes of
the future climate. This can be done by using the arithmetic mean over all models
as a measure of the projected climate-change signal; the inter-model spread is then
generally interpreted as reflecting the “model uncertainty” (Tebaldi and Knutti 2007)
affecting the signal. From a different point of view, some authors argue that since models
do not exhibit equal skill at simulating the present climate, they should be weighted
based on their performance according to some criteria (Giorgi and Mearns 2002, Tebaldi
ét al. 2005b, Greene et al. 2006, Riisénen et al. 2010). Such methods allow giving the
greatest importance-to models that are judged to-be more reliablethusredueingthe—
influence of the less reliable models on the ensemble statistics. The optimal way to
combine simulations from a multi-model ensemble is still an open debate (Raiisénen,
2007). As a striking example, Christensen et al. (2007) shows that two methods for
combining AOGCMs’ output into probabilistic climate-change projections (Tebaldi et al.
2005a,b and Greene et al. 2006) lead to results that differ significantly.

In summary, once a large ensemble of opportunity becomes available to the community,
the users are exposed to complex choices related to the selection, treatment and combi-
nation of these simulations. More precisely, three levels of decisions may be stated as :
1) the pre-selection of simulations of interest to be retained from a large ensemble, 2)
the use of downscaling techniques for processing the selected set of simulations, and 3)
the mathematical treatment applied for combining the simulations into ensemble statis-

tics or probabilistic projections. In the following, we focus on the uncertainty emerging
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from the first level of decision, i.e. the selection of a subset of simulations from a large

ensemble.

In Sect. 1.2.1, we briefly describe the multi-model ensemble used in this study and the
pre-processing applied to these simulations before further analysis. We also define the
ensemble statistics (Sect. 1.2.2), namely the climate-change projections signal and inter-
model spread. In Sect. 1.2.3 and 1.2.4, we propose two methods that aim at quantifying
the uncertainty related to the selection of the members and the retained models. In Sect.
1.3, the results are illustrated for the case of summer surface air temperature change over
North America. We also investigate the effect of the ensemble size, comparing the entire
multi-model ensemble and a subset of 11 models, as well as other particular ensembles
of smaller size. In Sect. 1.3.3, our analysis leads to a particular representation of the
well-known “plume diagram”, irispired from (Christensen et al., 2007), that will be seen
as “blurred” due to the uncertainty emerging from the selection that affects both the
signal and the inter-model spread statistics. Finally, in Sect. 1.3.4, basic constraints that

can be applied to a selection process are discussed.

1.2 Experimental Framework
1.2.1 Data and pre-processing

The CMIP3 multi-model dataset has been analysed in the context of the IPCC Fourth
Assessment Report (AR4). In the following, we use the simulations performed under
the A1B GHGA emission scenario (Tab. 1.1), for the simple reason that it counts the
largest number of models and members compared to other scenarios. In the following,
the term “multi-model ensemble” (MME) is used to refer to this particular ensemble of
55 simulations. For more information about models’ names and specifications, the reader

is invited to refer to the PCMDI website at http://www-pcmdi.11lnl.gov.

The present study focuses on models’ results over North America. Each models’ historical

runs have been combined with the respective projections following the A1B scenario, thus
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giving simulations that cover the time period from 1900 to 2100. Climate changes have
been calculated over successive 20-year averaging windows, relative to the 1900-1950
average, for each model. Since spatial resolution of the models’ atmospheric component
varies over a broad range (from 1.1° to 5°), all data were linearly interpolated on the

coarsest grid corresponding to that of i;he GISS-ER model, with a resolution of (4° x 5°).

1.2.2 Ensemble statistics

The climate-change signal and the inter-model spread are commonly used statistics to
summarise the results from a multi-model ensemble of simulations. It is worth noting
that the latter statistics is often interpreted as an estimate of the uncertainty of the
climate-change signal. To avoid any confusion, we keep the terminology “spread” since

“uncertainty” will be used in a different context in the following sections.

Let first 1% be any field obtained from one simulation of the i* model in an ensemble
of several models. We will consider in the following that the ensemble consists in an
array of simulations from several models, with each model being represented by a single
realisation. In principle, such an ensemble is not uniquely defined since a number of
realisations of each model could have been generated. We refer to any of these possible
ensembles by using the k index, which will be discussed in more details in the next two

sections. Let us now define the reference past climate (Py) at time ¢t = p, as :

'Pik = ’Wik(-’ﬂ, Y, 2,t = Po) (11)

where z, y and z are the spatial location coordinates. In the present context, p, corres-
ponds to a time average of the simulation over the reference period from 1900 to 1950.

Similarly, the later time climate (Fj;) defined over a given 20-year window is written as :

-Fik = ¢ik($7y, Z%,t> Po) (12)

where ¢ is larger than p,, although we focus on the range from 2000 to 2100 in the
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following. The climate-change signal (&;,) for the i model of the k% ensemble is hence
given by
8k = Fi — Py (1.3)

As stated previously, climate-change projections are generally presented as ensemble
statistics. In order to obtain the magnitude and the range of the ensemble projections,
we define the ensemble-mean climate-change signal (m) and inter-model spread (o%)
as

=i

Sk = Fyge' — Py, (1.4)

o=l —Ta P (L5)

respectively, where _(7 is the averaging operator over all models in the ensemble.

and

In the following, we present a general framework that aims at evaluating the uncertainty
related to the selection of a sample of simulations from a large ensemble. First, we present
in Sect. 1.2.3 the member-sampling approach and evaluate the uncertainty related to the
choice of one realisation per model. Then (Sect. 1.2.4), we present the model-sampling
approach and evaluate the effect of selecting different subsets of models from the original

ensemble.

1.2.3 Member sampling

In this section, we aim at quantifying the uncertainty that is related to the choice of
the members when extracting a subset from a large ensemble of simulations. This is
done by assuming two constraints to the selection process : 1) one member per model is
considered when several are available, and 2) the choice of the models is kept fixed, i.e.
is already assumed. We will show how this uncertainty affects the ensemble statistics,

namely the ensemble-mean signal and the inter-model spread.

As seen from Tab. 1.1, the 24 CMIP3 models are represented by different and arbitrary
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number of members. Let us denote as N; the number of members available from the
i** model. There are hence many ways to form a multi-model array from 24 different
models, i.e. H?il N; =1, 360, 800. Each of these variations of the “elected members” that
represent the models are associated with an ensemble index, k, which has been introduced
in Sect. 1.2.2. Then, for the k™ variation of the multi-model array, the ensemble-mean

signal and inter-model spread are calculated using (1.4) and (1.5) respectively.

After resampling for a large number (K) of iterations, we perform the following statistics
where Gk is the averaging operator over all generated ensembles. We hence obtain the

climate-change signal mean value (Amem),

—k
i

Amem= ik (16)

the uncertainty of the climate-change signal mean value (UZ..,),

—————k
51 —=K
Uf%em =Y (m _W ¥ (1.7)

the inter-model spread mean value (Zmem),
_ =k
Ymem = Tk (1.8)

and the uncertainty of the inter-model spread mean value (UZ,,),
 JEY i 17
Umem = V (0k — 0%")? . A (1.9)

In the following, we refer to “member sampling” as the method just described, consisting
of randomly choosing one member per model within a multi-model array. It involves a
particular assumption on the population from which a subset is drawn. Since we assume
a fixed set of models, it should be interpreted as the only opportunity of its kind and

hence implicitly as the entire population of the possible modelling approaches. Under



19

these circumstances, the choice of the members appears as the unique source of sampling

uncertainty in the process of selecting one particular subset array.

1.2.4 Model sampling

Since in principle, an infinite number of models could be imagined, let us extend the
previous assumption on the nature of the population. We now assume that the multi-
model] ensemble consists in a representative sample of a larger population. This larger
population could be interpreted as including all the possible modelling approaphes with
a similar level of complexity to the models of the current generation. Based on this
assumption, we describe in the following a method for assessing the sampling uncertainty
that relates to the choice of the models when constructing a subset from a large ensemble

of simulations.

The present method consists of generating many subset arrays by resampling with re-
placement over the original set of models. Such a method is generally referred to as
bootstrap (Wilks 2011). As in Sect. 1.2.3, we constrain the selection process to the use
of one member per model that is randomly chosen when several exist ; this means that

the choice of the members also contributes to the model-sampling uncertainty. This way

N+m-—-1)

of generating a multi-model array of size m from a pool of N simulations gives ( e

possibilities. It is worth noting that in combinatorial analysis, this kind of sample is
generally called a multiset (Bona, 2006) since one particular element can appear several
times. The latter distinction will be discussed in more details in Sect. 1.3.4. In what
follows, we however refer to an extracted sample from a larger population as a “subset”,

which stands for a more general point of view.

By using m = 24 models from a pool of N = 55 simulations (Tab. 1.1), it is possible
to form 7.9 x 10'° different ensembles. However, since the selection of a model is done
before the choice of one of its members, an equal probability of occurrence is attributed to
1.6 x 10'3 sets differing by at least one model. Naturally, each set may exist under several

possible states that differ only by the selected members. This property reflects the fact
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that the number of members representing a model does not influence its probability to
be drawn from the pool. Moreover, since the resampling is done with model replacement,
some of the models may be selected several times while others may not appear at all
in a given subset. By assuming the MME to be a representative sample of a larger
population, the “model sampling” somehow consists in a generalisation of a classical

models’ pre-selection phase where each model would not be considered more than once.

For a large number of iterations, one can compute the statistics over the k ensemble index
for m and oy, as done in the previous section for the member-sampling approach. We
hence obtain similar statistical coeficients for the signal, the spread and their sampling
uncertainties labelled as Ayyoq, UnAwd, Ymod and Ufwd, corresponding to (1.6) to (1.9)

respectively.

1.3 Results
1.3.1 Signal, spread and their uncertainties

‘We now apply the two approaches described in sections 1.2.3 and 1.2.4 and present the
results for the summer surface air temperature over North America. Fig. 1.1 shows the
climate-change signal mean value (Amem and Ameq) for three different periods, 2000-
2020, 2040-2060 and 2080-2100 (from left to right), relatively to the 1900-1950 climate.
The signal is calculated as an average over a large number of ensembles (K = 2000)
generated using either member (Fig. 1.1a) or model (Fig. 1.1b) sampling approaches. As
seen from this figure, the two approaches lead to nearly identical results : an important
temperature increase covering the land part of the domain, with a maximum of 5.5°C

located on the western part of United States.

The fact that both approaches give very similar results is expected since for the model
sampling, all models have the same probability of being chosen. Hence, for a large num-
ber of iterations, each model will be chosen an approximately equal number of times,

similarly to the member sampling where the 24 models are kept fixed at each iteration.
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Since both approaches lead to practically identical results, we use the symbol A without
subscript in the following to refer to the climate-change signal mean value without re-
gard to the sampling method. It is worth noting that proceeding to a simple arithmetic
mean over the entire ensemble of simulations (Tab. 1.1) would have led in effect to a
weighted average of the signal, because the relative importance of each model would be
determined by their number of available members. It can be shown (Appendix 4.B) that
the climate-change mean values presented in Fig. 1.1a and b consist of unweighted en-
semble means that give equal relative importance to each of the models in the ensemble,

independently of their sample size.

The sampling uncertainty of the signal mean value is displayed in Fig. 1.2 for both ap-
proaches (UZ,, and US,;). For the member sampling (Fig. 1.2a), uncertainty values
smaller than 0.06°C cover the domain for the three periods. Patterns display some diffe-
rences in their shape with time, but the magnitude does not vary substantially. While we
interpret this as a measure of the uncertainty related to the choice of members if several
are available, this quantity is a manifestation of the natural variability as simulated by

the models providing several members to the ensemble.

This measure of uncertainty is expected to underestimate the overall effect of the na-
tural variability that should normally affect the ensemble statistics. Ini a hypothetical
case where the MME would contain a sufficiently large number of members rep.resenting
each model, our measure of uncertainty would tend asymptotically towards an unbiased
estimate of the overall effect of natural variability on the ensemble statistics. This state-
ment is demonstrated in Appendix 1.A through an idealised experiment using synthetic
data; this will be also investigated analytically in Chap. 4 (Appendix 4.B). To keep us in
perspective, we note that the simulated natural variability can be calculated by using a
single but very long climate simulation run under stationary conditions (e.g. Deser et al.
2010), i.e. without external forcing such as GHGA. Under transient boundary conditions
such as the present ensemble of simulations, the natural variability is likely to change

somewhat over climatic time scales (Sorteberg and Kvamstg, 2006). Hence, the natural
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variability may be seen as a time-dependent measure of uncertainty, which can be quan-
tified using the spread between several members generated using a single model with
slight differences at the initial conditions. Since both measures are manifestations of the
same physical procéess and that we consider it as a blend-effect from several models, we
use the terminology “multi-model natural variability” for describing this specific feature

in the following.

Let us now consider Fig. 1.2b where is displayed the uncertainty of the signal mean
value that appears from selecting a set of models (Ufﬁod). More precisely, this measure
of uncertainty consists in the standard deviation of the climate-change ensemble-mean
signals (Eq. 1.4) that can be obtained from randomly selecting 24 models with replace-
ment from the MME. The values are considerably larger than those obtained using the
member-sampling approach (note the different scales), reaching 0.4°C in the north of

Canada. Also, the patterns are consistent in time with an increasing magnitude.

The inter-model spread mean values (Zmem and Ep0q) are displayed in Fig. 1.3. For the
same reason as for A, both sampling methods lead to nearly identical results. We will
hence adopt the & symbol without subscript in the following, for referring to the inter-
model spread mean value. One should note the great similarity of the patterns compared
to that of Uﬁod (Fig. 1.2b), with a largér magnitude for L. Values of ¥ reach 1.6°C over
the centre of United States and exceed 2°C in the north of Canada. The similarity
between ¥ and U"Awd can easily be understood since, by analogy to the standard error
relationship (von Storch and Zwiers, 1999), the model-sampling uncertainty that affects
the signal should be proportional to thé inter-model spread and inversely proportional

to the square root of the nrumber of models.

Finally, the uncertainties of the inter-model spread mean value (UZ,,, and Uz ;) are
shown in Fig. 1.4. For the member sampling (UZ,,,), patterns vary with time, without
any general changes in magnitude, as was the case for the uncertainty of the signal

due to the selection of the members (Fig. 1.2a). Relatively small values of UZ,, . cover

the continental region, in a range between 0.05°C and 0.07°C. Based on the results of
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Appendix 1.A stating that the member-sampling uncertainty of the signal (Fig. 1.2a) un-
derestimates the real effect of the multi-model natural variability, the member-sampling
uncertainty that affects the inter-model spread is also expected to be underestimated
due to the relatively small number of members available for each model in the ensemble.
The model-sampling uncertainty of the inter-model spread (Ufwd) is, as expected, larger
than UL, with a maximum of 0.6°C in the north of Canada. One should note some
similarity between the model-sampling uncertainty of the inter-model spread (Fig. 1.4b)
and the inter-model spread mean value (Fig. 1.3). These two quantities are related in a
similar way as are the uncertainty of the signal mean value and the inter-model spread
mean value through the standard error relationship. For instance, the expepted €rror
of the variance estimator is proportional to the square of the population variance for a
dataset consisting in independent and identically distributed normal random variables

(von Storch and Zwiers, 1999).

1.3.2 Smaller ensemble of opportunity

The previous section presented results using all of the 24 models that are available in
the ensemble. One issue in assessing the member-sampling uncertainty is that 13 of the
24 models are represented by only one member. For each subset array obtained with
the member-sampling approach, these 13 models do not allow any possibility of varying
the elected members, thus increasing artificially the apparent stability of the ensemble
statistics and hence decreasing the magnitude of the resulting perceived uncertainty.
An approach that aims at minimising this issue is simply to remove from the ensemble
the 13 models represented by only one member. By the same logic, one could also
choose to retain only the models with the largest number of members after removing
those with a sample size that is smaller than some predefined threshold. It is worth
noting that this specific pattern of models’ pre-selection to form smaller subsets allows
maximising the number of possible ensembles that can be formed by using the member-
sampling approach. A side effect is that it compromises the diversity of the models in

the calculation of the member-sampling uncertainty. According to Appendix 1.A, the
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11-model subset that is based on the models with at least two realisations consists
in an educated guess in order to minimise the side effects from an unequal and small
number of members across the models. It is hence expected that a small systematic bias
will remain between our measure of the member-sampling uncertainty and the expected
value of multi-model natural variability. In the following, we present results in a similar
way as in Sect. 1.3.1, but for the 11-model ensemble where each model is represented by

at least two members.

Fig. 1.5a shows the signal mean value for the surface air temperature obtained using
the 11-model ensemble. Compared to the signal mean value calculated from the entire
24-model ensemble (Fig. 1.1), the signal extracted from the 11-model ensemble has a
maximum that is located nearer to the west coast of United States, with slightly weaker

intensify.

For the member-sampling uncertainty of the signal mean value (Fig. 1.5b), the patterns
are very similar to that of Fig. 1.2a, but with more than twice its intensity; since the
models with only one member have been removed from the ensemble, the member-
sampling uncertainty of the signal mean value originates from same variations of the
elected members as for the entire 24-model ensemble. The member-sampling uncertainty
obtained for the 11-mode] ensemble consists in a multi-model blend of natural variability,

but its overall effect on the signal mean value is expected to be slightly underestimated.

For the model-sampling uncertainty of the signal mean value, Fig. 1.5¢ shows an increase
of the uncertainty compared to Fig. 1.2b. The values reach approximately 0.15°C over
central United States. This increase of the uncertainty is mainly due to the larger stan-
dard error of the mean when using a smaller sample of models. A second contribution
is that shown in Fig. 1.5b, since the member-sampling uncertainty is implicitly included

in that of the model sampling.

In order to analyse further the impact of the sampling uncertainty on the ensemble

statistics, we introduce here a measure of relative uncertainty, calculated as UZ,,,/A
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and Uﬁod /A, as shown in Fig. 1.6a and b for member and model sampling, respectively.
It can be seen from Fig. 1.6a that the member-sampling relative uncertainty decreases
with time due to the fact that the intensity of the member-sampling uncertainty is
approximately constant with time (Fig. 1.5b) while the climate-change signal mean value
increases. For the 2000-2020 period (Fig. 1.6a, left panel), the values are generally smaller
than 10% over the continental region, while two strong maxima (> 15%) are located in
the north of Canada and near Greenland. The model-sampling relative uncertainty of
the signal for the 2000-2020 period (Fig. 1.6b, left panel) gives values that can reach 20%
over the continental regions, while maxima over the Pacific Ocean and near Greenland
are larger than 35%. With time, the model-sampling relative uncertainty of the signal
decreases briefly after the 2000-2020 period, but remains approximately constant from

2020-2040 to 2080-2100.

Let us now take a look to the inter-model spread mean value and its components of
uncertainty for the 11-model ensemble (Fig. 1.7). As for the signal mean value, the
patterns of the inter-model spread (Fig. 1.7a) are substantially different from those ob-
tained using the 24-model ensemble (Fig. 1.3). The magnitude of the inter-model spread
for the 11-model ensemble is smaller mostly over continental regions, while over ocean
it tends to exhibit similar values. For the member-sampling uncertainty of the spread
mean value (Fig. 1.7b), patterns vary with time, with some persisting features such as
the maximum over United States. The model-sampling uncertainty of the inter-model
spread (Fig. 1.7c) grows with time as for the spread mean values for both ensembles of

models (Fig. 1.7a and Fig. 1.4b).

In Fig. 1.8 is shown the relative uncertainty of the spread mean value, written as Uﬁem /=
and Uﬁod /% for the member and model sampling respectively. For the member sampling,
the relative uncertainty decreases with time since the absolute uncertainty (Fig. 1.7b)
does not change so much in intensity while the spread mean value (Fig. 1.7a) considerably
increases with time. Finally, the relative uncertainty due to the sampling of the models

(Fig. 1.8Db) is nearly constant with time, due to the fact that the uncertainty component
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increases at a similar rate as the spread mean value.

To surmunarise our results, we present in the following the different components of un-
certainty as function of the size of the ensemble subset, for one grid point centred over
the Québec province in Canada. We use particular ensembles of different sizes chosen by

| removing models represented by less than 2, 3, 4 and 5 members, resulting in ensembles
formed by 11, 10, 5 and 3 models, respectively. This particular pattern for selecfing the
models allows optimising the sampling of the natural variability in smaller multi-model
ensembles. Such an approach tends to maximise the measure of the member-sampling
uncertainty by minimising its systematic bias (due to an insufficient number of mem-
bers). However, we note that it does not maximise the intensity of the member-sampling
uncertainty from the physical point of view, given that important inter-model differences
exist in the simulated natural variability. The different components of uncertainty are
shown in Fig. 1.9 for the three time periods. Reducing the size of the subset ensemble
increases the member-sampling uncertainty, similarly for both the signal and the spread.
While the member-sampling uncertainty exhibit a similar magnitude for both signal and
spread;-at all timaes, the model-sampling uncertainty-increases-with-time at a similar rate —
for the signal than for the spread.

Finally, the components of relative uncertainty as function of the ensemble size are shown
in Fig. 1.10. The relative uncertainty increases when reducing the ensemble size, at a
faster rate for the uncertainty of the spread compared to that of the signal, for both
member and model sampling uncertainties. The member-sampling relative uncertainty
of signal and spread diminishes with time, while the model-sampling relative uncertainty
shows some decreases from 2000-2020 to 2040-2060 and remains approximately constant
until 2080-2100. This stability with time of the relative uncertainty is due to the fact
Uﬁod and Uf,:wd increase at a rate that is partly balanced by A and ¥ respectively.
For U,Eod /%, this balance is somewhat expected since Ufwd depends on . For U,nAwd/ A

however, the balance occurs rather by chance since U,ﬁod depends on ¥ while A depends

on the intensity of the GHGA forcing.
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1.3.3 Revisiting the plume diagram

In this section, we extend the concept of the sampling uncertainties to the construction
of plume diagrams presented in Christensen et al. (2007). From Sect. 1.2.4, the model-
sampling approach is applied to calculate the signal and inter-model spread mean values
(A and ¥) with their respective uncertainties (U4, and UZ ) over the entire 200-year

period ; we also calculate UZS,,,, and UZ,,.. as described in Sect. 1.2.3.

Let us now present the plume diagrams for the surface air temperature field over a
grid point centred over the Québec province of Canada, using the 24-model ensemble
(Fig. 1.11a), the 11-model (Fig. 1.11b) and the 5~model ensemble (Fig. 1.11c). The signal
mean value (A) is displayed as the blue full line ; the signal uncertainty that is due to the
sampling of the models (Uﬁod) is drawn as blue dashed lines calculated as A +2 x Uﬁod,
and similarly for the sampling of the memibers as blue dotted lines (A £ 2 x UA..).
The upper and lower boundaries of the ensemble envelope (red full lines) are calculated
by using the signal and inter-model spread mean values combined as A £2 x X. The
model-sampling uncertainty affecting the envelope boundaries is given by the four red

dashed lines and calculated as A £ 2 x S+ 2 x Ufwd; similarly, the member-sampling

uncertainty is displayed as red dotted lines using A £2 x ¥ £ 2 x U,%em.

The plume diagram displayed in Fig. 1.11a is obtained using the entire 24-model en-
semble and shows a surface air temperature increase of 4°C in the signal mean at the
horizon 2080-2100. The signals obtained from different ensemble sizes differ slightly, with
values of 3.5°C and 3.3°C for the 11-model and 5-model subsets, respectively. It should
be noted that it is not an effect due to the ensemble size, but rather a consequence of

the particular choices of the models forming the ensembles.

For the same time horizon of 2080-2100, the signal has a model-sampling uncertainty of
0.5, 0.6 and 0.8°C for the 24-, 11- and 5-model ensembles, respectively. This component of
uncertainty describes the stability of the signal coefficient for arbitrary ensembles of the

prescribed sizes, under the assumption that the MME consists in a representative sample
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of a larger population that would consider all the possible modelling approaches with a
similar level of complexity than those that are currently available in the pool. Indeed,
if new models were available in the pool for example by including more processes and
having finer resolution, there are reasons to believe that the inter-model spread among
models would likely increase (Knutti, 2010), hence inducing a corresponding increase of

the perceived uncertainties.

Similarly to the signal, the inter-model spread has different values depending on which
models are chosen to form the ensemble, with values of 2.3, 2.0 and 1.8°C at the horizon
2080-2100 for the three ensemble with 24, 11 and 5 models. As discussed above, the
uncertainty of the signal due to the sampling of models increases when reducing the
ensemble size, but also is proportional to X as it is generally the case for‘ standard
errors. The uncertainty of the inter-model spread is 0.2, 0.2 and 0.4°C for the 24-, 11-
and 5-model ensembles, respectively. In both cases of signal and inter-model spread, the
uncertainty due to the sampling of the members has very little impact on the statistics
(blue and red dotted lines, respectively) for the 24-model ensemble, but it increases
significantly when reducingthe ensemble size. As noted previously, the latter source of
uncertainty is probably underestimated, particularly for the 24-model ensemble, due to
the very poor sampling of the members compared to the number of models within the

ensemble.

The plume diagrams shown in Fig. 1.11 characterise one variable over a particular lo- -
cation. The general idea to be retained from these results however is that these plume
diagrams appear as “blurred” in both their mean and spread components. This blurring
is the perceived error in the ensemble statistics and aims at representing the uncer-
tainty that face experts when selecting a subset from a large ensemble of simulations.
It consists in a manifestation of known sources of uncertainty, in the present case the

natural variability and the inter-model spread.
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1.3.4 Constraining the selection process

Like any decision process that is not based on pure randomness, choosing a set of si-
mulations from a large ensemble should involve well-defined constraints. While such
constraints may be very specific to the matter of a study, others are of common use in
climate sciences. One rather popular constraint is the use of one realisation per model if
several are available (e.g. Bombardi and Carvalho 2011, Peings and Douville 2010, Réisé-
nen et al. 2010), which allows to considerably reduce the size of an ensemble while retai-
ning much of the information relative to the model uncertainty (inter-model spread). One
may also think of more complex constraints, for example based on model performance
(Gleckler et al., 2008), institutional independence (Whetton et al., 2007) or clusters in
the phase space (Houle et al., 2012).

Other constraints may, at first sight, appear as implicit but can be relaxed for more gene-
rality. For example, the model-sampling technique that has been applied throughout this
article employs model replacement. However, in a real expert-based process of selecting
a multi-model array of simulations, a same model is generally not included more than
once. Allowing for model replacement in the resampling technique has been intimately
related to the assumption that the MME is a representative sample of a larger popu-
lation. On the other hand, if one assumes that the MME is not representative of any
larger but rather consists in the entire population of modelling approaches, the selection
of a set of models should be done without replacement. In what follows, we investigate
the effect of choosing one of these two assumptions about the nature of an ensemble of

opportunity through an experiment based on synthetic data.

Let us consider an artificial 24-model array where each model is represented by a single
number. By simplicity, we assume a unique member to be available for each of the models.
This array is generated using a random number generator based on a normal distribution
with zero mean and unit variance. We hence apply the model-sampling approach as

described in Sect. 1.2.4 for K = 2000 iterations and repeat this procedure for each
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sample size m from 24 to 2. For each drawn subset of a given size, the ensemble mean is
first calculated and next the standard deviation over all the means (previously denoted
as Ufﬁod, according to Eq. 1.7) is calculated. In a similar way, we repeat the previously
described technique over the same initial 24-model array but with the difference that we
use a “no-replacement constraint” throughout the resampling procedure, unlike what is

normally done for bootstrapping techniques.

The results are shown in Fig. 1.12a where the blue and green curves represent the
perceived error of the mean depending on the version of the model-sampling technique,
i.e. with and without replacement, respectively. Both curves are normalised using the
standard deviation of the initial sample, which in practice differs from 1 because the 24-
model ensemble is of finite size. For reference, a red curve has been added corresponding
to the well-known standard error law in its normalised form, i.e. 1/y/m. As seen from
the figure, the uncertainty of model sampling with replacement agrees fairly well with
the standard error relationship. A subtle underestimation however appears in intensity,

which is due to the finite size of the initial sample (i.e. m = 24).

According to Fig. 1.12a, the underlying assumption about the nature of the ensemble of
opportunity plays an important role in interpreting the ensemble statistics from the point
of view of their sampling uncertainty. The important differences between the blue and
green curves can be related to the number of combinations that can be formed from the
initial pool. While (N +m=1) multisets (with replacement) of size m can be formed from
a pool of N elements, (f::) subsets (without replacement) are j;)ossible. For convenience,
Fig. 1.13a showsAthe number of combinations that are possible for multisets (blue) and
subsets (green). The trivial case consists in m = 24 where the extracted sample has the
same size as the entire pool. Thus, it leaves a single possibility of forming an ensemble by
considering all of the models. For m = 24 in Fig. 1.12a, a null value of uncertainty is hence
attributed to the selection of a group of models since the extracted sample consists in
the entire population. For an equal sample size, model sampling with replacement allows

for 1.6 x 1013 different combinations of models. In the latter number of combinations,
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all but one involve at least two replicates of a same model and these combinations result

in a value of 0.2 for the uncertainty of the mean.

It is worth noting that the possible ensembles that can be formed without replacement
are included in those for the case that allows for model replacement. The blue curve
in Fig. 1.13a hence represents the total number of ensembles that can be formed both
with and without replacement, while the green curve accounts only for the latter. By
analysing these two curves, it can be seen that the relative importance of the number of
possible ensembles formed without replacement increases relatively to the total number
of ensembles. This can be seen more clearly in Fig. 1.13b where is shown the ratio between
the number of subsets and multisets. This ratio diminishes rapidly when increasing the
sample size, the number of subsets (without replacement) representing 43% of the total
number of combinations at m = 5, while it shows 2% for m = 10. Since, when decreasing
the sample size, the combinations formed without replacement represent an increasing
proportion of the total number of combinations, this necessarily leads to converging
errors of the mean as seen in Fig. 1.12a. The fact that both measures of uncertainty
converge when decreasing the sample size can be seen in Fig. 1.12b where is shown
the ratio between the error emerging from resampling without and with replacement.
The error ratio decreases monotonically with increasing the sample size, resampling
without replacement representing approximately 90% of the error obtained by allowing

replacement for m = 5, while it represents 40% for m = 20.

In summary, introducing constraints to the selection process along with a specific as-
sumption about the nature of the population are considerations that play an important
role in characterising the uncertainty related to experts’ decisions. Moreover, we note
that a systematic application of a constraint may reveal some patterns in the decision
process. For example, in Sect. 1.3.2, we constrained our selection of smaller subsets by
advocating models with largest sample sizes in order to minimise the systematic biases
affecting the member-sampling uncertainty. A worrying pattern that could emerge from

such a strategy could consists in a “liberal picture” of the multi-model natural variabi-
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lity, which tends to over-represent the wealthiest research centres with larger resources
allowing performing a larger number of simulations. Another pattern of selection that
will be investigated in Chap. 2 consists in constraining the selection to the models that
have been developed by different modelling centres. Such an approach reveals important
benefits by limiting the occurrence of uninformative consensus that contaminate the

message conveyed by an ensemble of opportunity.

1.4 Discussion and conclusions

Climate-change projections are mainly based on AOGCMs’ simulations that are forced
by increasing concentration of GHGA in the atmosphere over periods extending from
decades to centuries. It is well known that ensembles of such simulations generally lead
to a broad range of climate-change projection when using several models, which may
differ from a structural point of view, additionally to differences in the tuning of weakly
constrained parameters and in the numerical approximations used in the discretisation
of the equations. Several internationally coordinated projects have been set up over the
last decade in order-to compare models’ results and quantify theinter-model spread that —
is often interpreted as the uncertainty in modelling the climate system. In general, such
ensembles do sample the differences in modelling approaches, but neither in a random
nor in a systematic manner. Often called ensembles of opportunity, these are formed in
a rather open way : the resulting sample of simulations highly depends on the fact that
research centres are free to participate by delivering an arbitrary number of members

generated using one or several models or versions.

Ensembies of opportunity are important for informing the public, the scientific commu-
nity and the policy makers about future climate changes. Additionally to their direct
use in climate-change assessments, these simulations are often used as an input to other
kinds of models, such as Regional Climate Models (RCMs; Rummukainen 2010) and
Statistical Downscaling Models (e.g. Dibike et al. 2008). However, many centres that

use the output data from an ensemble of opportunity are constrained to process only
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a small set of simulations compared to the available ensemble. For example, the dyna-
mical downscaling of AOGCM simulations using an RCM involves large computational
resources due to the use of high resolutions and long time periods, additionally to the
treatment needed for preparing the driving fields. The selection of a subset of simula-
tions from a large ensemble is generally based on experts’ judgement, depending upon
the goals of the study. A rather popular choice for reducing the size of a large ensemble
is to use only one member per model when several are available. This choice is generally
supported by the assumption that the inter-model spread is more important than the
simulated natural variability when using simulations over long time periods (e.g. several
decades). Other types of decisions are more specific to the selection of the models to
be part of the new ensemble, for example based on their simulation of specific climate
features, model performance, institutional independence, compatibility issues or simply
based on the availability of particular fields of interest (e.g. needed for driving an RCM).
As stated in introduction, experts generally face up three levels of decision when using
the data from a large ensemble of opportunity : the pre-selection of a set of simula-
tions from the available ensemble, the use of other types of models for processing the
AOGCMSs’ output and the combination of the simulations into ensemble statistics or
probabilistic projections. In this chapter, w.e aimed at quantifying the uncertainty rela-
ted to the first level of experts’ decisions. The second and third levels are simplified by
not using any other kinds of models (e.g. RCMs) and by calculating common ensemble

statistics, namely the ensemble mean climate-change signal and the inter-model spread.

The process of selecting a subset of simulations from a large ensemble has been investi-
gated by considering the selection of both the members and the models. We first defined
the member-sampling approach that is based on two basic constraints : one member per
model is retained when several are available and the selection of the models forming
the ensemble is kept fixed. It results in a large number of possible multi-model arrays
that differ only by the selection of members. From a more general poiﬁt of view, the
member-sampling approach assumes the pre-selected sample of models as the one and

only opportunity of its kind and hence it consists in the entire population of modelling
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approaches. No sampling uncertainty is hence attributed to the selection of the models
while the only source resides in the choice of the member (if several are available) that
represents each model. By resampling over a large number of multi-model arrays, we
obtained the member-sampling uncertainty of the ensemble statistics, which is a mani-

festation of the models’ natural variability.

On the other hand, the model-sampling approach is also constrained by the selection of
one member per model if several are available, but without the second constraint, that is
the selection of the models is not fixed a priori. By resampling over several multi-model
arrays, this approach allows to assess the sampling uncertainty that is due to both the
choice of the models and the members. Additionally to the fact that the model sampling
accounts for the choice of the models, it is more general than the member-sampling
approach in its underlying assumption about the nature of the ensemble of opportu-
nity. More precisely, it assumes that the MME is not unique but rather consists in a
representative sample taken from a larger population of possible modelling approaches.
In the present experiment, this representativeness emerges from allowing model repla-
cement-in-the sampling method—It results in & model-sampling uncertainty—that is-a
direct manifestation of the inter-model spread through the well-known standard error

relationship.

As seen from the results, the member-sampling uncertainty shows very small values for
both signal and spread, especially when using all of the 24 models. We emphasise on the
fact that the member-sampling uncertainty underestimates the real natural variability
in the ensemble statistics, as shown in an alternative experiment using synthetic data
(Appendix 1.A). This underestimation is mainly due to the small and unequal number of
members representing each model in the ensemble. We aimed at reducing this.systematic
bias by removing from the ensemble the models with less than 2, 3, 4, and 5 members,
thus increasing the minimal number of members that are available for the considered
models. One drawback from not considering some of the models consists in a reduction

of models’ diversity in the sampled natural variability. As expected for both the signal



and the spread, the member-sampling uncertainty increases as function of the decreasing
number of models in the ensemble. The uncertainty also remains approximately constant
with time in absolute terms, but decreases when analysed as relatively to the ensemble

mean signal and inter-model spread, which both increase with time.

In the results obtained from the use of the model-sampling approach, the uncertainty
for both signal and spread has been shown to increase when diminishing the number of
models in the sample, as it is generally the case with standard errors. It also appeared
to increase with time, since the model—sa.mpling.uncertainty necessarily depends on the
inter-model spread. The model-sampling relative uncertainty displayed some tendency
to remain constant with time, which seems to occur somehow by chance for the signal
since the signal and the inter-model spread are not directly related : the sfrength of
the signal depends on the magnitude of the GHGA emissions while the inter-model
spread depends mainly on the structural differences between models and their different
response to changes in forcing. For the relative uncertainty of the inter-model spread,
this balance can be expected since the model-sampling uncertainty of the spread depends

on the spread itself.

The member and model sampling uncertainties have been used in the construction of
a plume diagram, where the signal mean and inter-model spread appear as “blurred”
features. The thickness of the model-sampling uncertainty envelopes affecting the signal
and the spread necessarily depends on both the inter-model spread and the number
of models involved in the ensemble, additionally to a contribution from the member
sampling. Taken alone, the member-sampling envelope of uncertainty depends on the
number of models forming the ensemble and consists in a blend of the natural variability
as simulated by several different models. This blend is attenuated compared to the real
effect of the natural variability that is expected from the use of an ensemble where each
model would be represented by a sufficiently large number of members. As will be seen
in Chap. 4, the extent to which the member-sampling uncertainty underestimates the

real value of the multi-model natural variability mainly depends on the minimal number
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of members that represent a model in the ensemble.

Our experimental framework aimed at quantifying the uncertainty range resulting from
the choices made by data users when selecting a set of simulations from a large ensemble.
It is important to note that this kind of uncertainty should not be seen as a supple-
mentary source to those that are currently known such as GHGA emission pathways,
inter-model differences and natural variability (see Foley 2010 for a review). Rather, the
sampling uncertainties should be interpreted as different manifestations of these known
sources. Moreover, our perception of these sources can be altered through the selection
process depending on the constraints that are involved and the assumption about the na-
ture of the ensemble of opportunity. For instance, the member-sampling uncertainty un-
derestimates the multi-model natural variability while the model-sampling uncertainty is
a direct consequence of the inter-model spread (model uncertainty) through the standard
error relationship. It is worth noting that a model selection based on the assumption that
the MME consists in the entire population of modelling approaches would not in;rolve

any model replacement and hence the perceived sampling uncertainty would consist in

an underestimation of what is expected from the standard error relationship—Of-course;———

the present ‘approach for assessing the sampling uncertainties could be extended to more
complex ensemble statistics than means and variances, for example by using quantiles.
We also note that the previous results are conditional to one specific emission scenario
and hence that the sampling uncertainties could be extended to the scenario dimension

as well, additively to the models and the members.

A variety of possible choices that are left to the user when selecting simulations from a
large ensemble has been explored in this chapter by using resampling methods based on
a set of prior constraints. The main constraint that consists in retaining a single mem-
ber per model reflects a typical decision made by experts in order to efficiently reduce
the size of a large ensemble of opportunity. While the choice of the members is often

done randomly in real-life applications, we acknowledge that this method is a simplified

representation of a real expert-based process of selecting a set of models from a large
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ensemble. From that point of view, our experimental framework could be extended for
better representing such a process. For example, one could add constraints to the selec-
tion process, such as by forbidding several models developed by a same research centre to
_be part of a same ensemble. Our approach could be also used to seek for ensembles with
special characteristics, for example by maximising the inter-model spread for a given en-
semble size. Though some similarities could be noted between the latter application and
clustering methods (Houle et al., 2012), coﬁsidéring both approaches in complementa-
rity could provide a powerful framework for investigating the simulations’ pre-selection
problem. On the other hand, however, it is always worth questioning the potentially
diminishing return of implementing complex and expensive strategies for selecting a set
of simulations. This is especially true when, as seen previously, the sampling uncertainty
related to the choice of an ensemble is smaller than what should be expected from the

known sources.

In the application of the model-sampling technique, the generation of a particular en-
semble could be related to the use of an arbitrary weighting procedure, in the sense that
some of the models may be accounted for several times while others are not considered at
all in the calculation of the ensemble mean. By applying the model-sampling technique
with several iterations, it however appears as contradictory with a potential assessment
of the uncertainty related to such weighting procedures. The important difference is that
the model-sampling technique weights the models in an unconstrained manner, i.e. ran-
domly and uniformly, while by definition, the common weightin;g procedures attribute
weights according to specific physical constraints (e.g. Allen and Ingram 2002). While a
robust constraint should not involve a large dependence of tﬁe weighted results onto the
ensemble under consideration, applying the model-sampling technique according to a gi-
ven physical constraint could allow to quantify the sampling uncertainty related to that

specific weighting procedure, thus providing a comprehensive measure of robustness.

Another possible application involves the member-sampling approach that could be used

for investigating the overall effect of the natural variability that arises from a combina-
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tion of several models. As said previously, the uncertainty due to the selection of one
member per model results in an underestimation of the real effect of the simulated natu-
ral variability due to the insufficient and unequal number of members representing each
model. As shown in Appendix 1.A, such a systematic bias can be reduced by applying a
correction factor based on synthetic experiments results. On the other hand, the analysis
of variance (ANOVA) is a popular approach used for decomposing the variability of a
system into several components, such as the model uncertainty and the natural varia-
bility. However, such an approach is not always suitable for the case of unequal sample

sizes, especially when the smallest samples count very few elements.

From a more general point of view, both the selection of a set of simulations and the
application of weighting procedures can be understood as expert-based samplings that
are applied to an already existing ensemble. We note that this supplementary sampling
should be well distinguished from the initial sampling of the ensemble. Often described
as neither random or systematic, the initial sampling of an ensemble of opportunity
can be interpreted as a “natural pre-selection” between several modelling approaches, a
process by which-a-better representatien—is given to modelling centres thatcan afford——
the delivering of a larger number of simulations. On the other hand, an expert-based
selection is often applied due to limited resources for handling all of the available data.
In such a case, the reduction of a large ensemble has to be carefully done by minimising
any potential loss of information that could serve the purpose of the study. Another
reason for applying an expert-based selection is the aim at “correcting” some uneven
characteristics that appear in the initial sampling of an ensemble, such as by filtering
out supplementary models developed by a same institute, a method that might help to

reduce the occurrence of uninformative consensus between the models’ results.

The two main assumptions about the nature of the population related to an ensemble of

opportunity that have been investigated through this work are at the basis of a majority

of studies in climate sciences, as well as in other fields. While these points of view can

be argued for, they remain very specific to the ensemble at hand by either considering
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it as the entire population or by projecting it toward a larger ensemble but with similar
distributional characteristics. In consequence, it hides an important pért of the problem
by not questioning the “neither random or systematic” nature of the sampling process
by which an ensemble of opportunity has been formed. In order to provide a clearer
picture of this important issue, one should think of a third assumption about the nature
of an ensemble of opportunity by which it is not representative and likely to be biased
from an idealised population of modelling approaches. While the task of defining such
a population may seem out of reach, some realistic considerations can be made at least
in theory; it should be formed by mostly independent climate models in order to allow
some cancellation of the models’ respective biases with an increasing sample size. Such
a task should necessarily be undertaken by filtering the multi-model ensemble according
to robust constraints of selection or weighting procedures, which are far from making

broad consensus within the climate-science community. .
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Appendix 1.A : Perfect-ensemble experiment for bias correction in the statistics

related to an unbalanced design

In this appendix, we present an idealised experiment conducted with synthetic data in
order to evaluate how the uncertainty emerging from the member-sampling approach is
affected by the “imperfect geometry” of a multi-model ensemble, due to the fact that

there is a varying number of members for different models.

Let us consider P as an ensemble of simulations composed of 24 models, where each
model would be represented with 24 realisations. The simulations can be arranged as
a matrix where the models are distributed horizontally and the realisations vertically.
We refer to this matrix as a “perfect ensemble”, since every model would have an equal
number of realisations and because the number of members for each model is sufficiently
large to offer a relatively good sample of each model’s natural variability. Structurally,
the multi-model ensemble (MME) shown in Tab. 1.1 can be considered a subset of P,
as shown in Fig. 1.14, where the black elements represent the available simulations from
the MME and the white elements the simulations that are missing conipared to P. The

subset is denoted as I and is referred to as the “imperfect ensemble”.

A perfect-ensemble experiment will be realised based on synthetic data and hence does
not imply any real data from climate models. From the concept of the perfect (P) and |
imperfect (I) ensembles, as previously defined, random processes are used to emulate the
climate models’ database. The methodology can be summarised through the following

steps :

1. Construct the P matrix where each element F;; is generated using the following

statistical model :

P,'j = a; + bij (1.10)

where the two components on the right-hand side consist of normally distribu-




42

ted random processes characterised as :

a; ~ N(u = 0,0% = 100) (1.11)
Ve bij ~ N (s = 0,0 = 25) (1.12)

where p and o2 are the mean and the variance defining each of the two pro-
cesses. Thus, every element Fj; mimics a climate-change signal simulated by
the jth ﬁember of the i model. The values of variance in (1.11) and (1.12)
have been chosen arbitrarily but their relative magnitudes aim at emulating
the inter-model spread (o0 = 10) and the natural variability of individual mo-
dels (o0 = 5). We assumed I = 24 models, and for each model, J = 24 members

are generated.
2. Construct I by applying the MME mask (Fig. 1.14) to P.

3. Apply the member-sampling approach to both sets (P and I'), with 2000 itera-
tions, to obtain the member-sampling uncertainty. The sampling uncertainty
of the mean is calculated from P and I and denoted with U,»,Aléﬁ, and U,»,A;é{n

respectively.

4. Repeat steps 1to 3 several times (1000 iterations), where each iteration consists
in a new initialisation of the P matrix according to the model described by

(1.10) to (1.12).

5. Repeat step 4 using different definitions of the P and I ensemblés. Similarly
to the selection pattern that is applied in this chapter, we success?vely remove
the models with the smallest number of members, i.e. from the right to left
in Fig. 1.14. The selection pattern is applied to P and I (and similarly to the
mask), leading to ensembles of 11, 10, 5 and 3 models, thus maximising the

number of available elements for each reduction along the model axis.

We now consider the results obtained for the 11-model ensemble. In Fig. 1.15 are shown
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the distributions for the sampling uncertainty of the ensemble mean, with normalised
frequencies, for the perfect (U,%éﬁ, left panel) and imperfect (Uﬁé‘,’n, right panel) cases.
These distributions represent the range of values taken by the uncertainty across the
1000'experiments, each one being characterised by a new initialisation of the P matrix.
For the perfect case, the distribution of the uncertainty is not centred on the red line
that indicates the expected value of uncertainty. This expected value consists in the
standard error of the mean that emerges from natural variability, hence o//m = 1.5,
where 0 = 5 from (1.12) and m = 11. The distribution is slightly biased toward smaller
values, meaning that 24 members are not enough for the matrix to be strictly perfect.
Due to the large computational cost of the present experiment, we still assume that P

is a perfect matrix by neglecting this small bias.

It can be seen in Fig. 1.15 that the distribution of the member-sampling uncertainty
in the 11-model ensemble mean for the imperfect case (right panel) is characterised by
changes in its parameters, namely the location (mean) and the scale (standard devia-
tion). When compared to the perfect case (left panel), the imperfect ensemble shows a

systematic bias toward smaller values and its scale is larger.

Let us now introduce a bias-correction factor (G) that characterises the transformation
of the distribution from the imperfect to the perfect case. This correction factor can be

written as follows :
AP
mem
G= AT (1.13)
mem

consisting in the ratio between the member-sampling uncertainty obtained from the
perfect and the imperfect matrix, for each of the 1000 iterations (step 4) and ensemble
sizes (step 5). The distribution of G as function of the number of models forming the
ensemble is shown in Fig. 1.16. When reducing the number of models and thus increasing
the number of available elements relatively to the perfect matrix, the distribution of
the bias-correction factor moves to the left and tends to be centred over 1. For the
24-model ensemble, G is distributed around 1.7 and stands far away from the other

ensemble sizes, which are centred slightly higher than 1. While the distributions for the
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11- and 10-model ensembles are quite similar, the 5 and 3-model ensembles show some
displacement toward unity. However, despite that the correction factor gets closer to 1,
reducing the dimension of the model axis leads to some loses in the model diversity of
the ensemble in its sampling of the natural variability. The 11-model ensemble seems to
be the best compromise between having a bias-correction factor near of 1 g.nd by keeping
the largest amount of information about the model diversity in natural variability. It is
worth noting that the results for G do not vary when changing the input parameters (u

and ¢2) of the model described by (1.10) to (1.12).

From a practical point of view, one could use the G factor in order to de-skew (by simple
multiplication) the uncertainty emerging from the member-sampling approach obtained
in the present chapter. Considering the present perfect-ensemble experiment, the MME
shown in Tab. 1.1 can be seen as one realisation of the I matrix over 1000 (step 4). It
results that the correct value of G for the particular case of CMIP3 is un’known, but
can be expected to be part of the distributions shown in Fig. 1.16. An educated guess
for the choice of G would be to use the value with the highest frequency of occurrence

in the distribution, for example, G- = 1.7 and 1.14 for the 24- and 1}l-model-ensembles,

respectively.
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Tab. 1.1: Multi-model ensemble formed by 24 AOGCMs taken from the PCMDI ar-
chive, which provide climate-change projections based on the A1B emission scenario.
The sample size (V;) corresponds to the number of members available for the it" model
for a total of 55 runs. For more information about models’ names and specifications, the
reader is invited to refer to the PCMDI website at http://www-pcmdi.1llnl.gov.
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Fig. 1.1: Signal mean value of climate change calculated using a) the member sam-
pling (Amem) and b) the model sampling (Amoq) methods for the summer surface air
temperature over North America for three time periods (from left to right) : 2000-2020,
2040-2060 and 2080-2100 relatively to the 1900-1950 period. All the available simulations
are used in the computation.
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Fig. 1.2: Uncertainty of the signal mean value due to a) the member sampling (U,,Awm
and b) the model sampling (U2,,). All the available simulations are used in the compu-
tation.
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Fig. 1.3: Inter-model spread mean value calculated using a) the member sampling
(Zmem) and b) the model sampling (Zy,04). All the available simulations are used in the
computation.
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Fig. 1.4: Uncertainty of the inter-model spread mean value due to a) the member
sampling (UZ,,,,) and b) the model sampling (U=, ;). All the available simulations are
used in the computation.
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Fig. 1.5: a) Signal mean value (A) and its components of uncertainty due to b) the
member sampling (UA,,,) and c) the model sampling (UZ,;), calculated using the 11-
model subset.



50

A A A
Umam/A (2000-2020) U /A (2040-2060) umem/A (2080-2100)

mermn

0.25

0.2

0.15

0.1

0.08

U~teh-Drmena1 1 -KZ000-t88-0

(a)

UﬁmjA (2000~2020) US /A (2040-2060) UﬁmlA (2080-2100)

U-iet=pmod—nt 1-KZ000-428-8

(b)

Fig. 1.6: Relative uncertainty of the signal mean value due to a) the member sampling
(UAem/A) and b) the model sampling (UZ,,/A), calculated using the 11-model subset.
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Fig. 1.7: a) Inter-model spread mean value () and its components of uncertainty due
to b) the member sampling (U;,) and c) the model sampling (UZ,,), calculated using
the 11-model subset.
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Fig. 1.8: Relative uncertainty of the inter-model spread mean value due to a) the
member sampling (UZ,,,,/Z) and b) the model sampling (U= ;/T), calculated using the
11-model subset.
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Fig. 1.9: Uncertainty components for the signal and the spread as function of the
number of models in the ensemble for a grid point located at the centre of the Québec
province of Canada.
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Fig. 1.10: Relative uncertainty components for the signal and the spread as function
of the number of models in the ensemble for a grid point located at the centre of the
Québec province of Canada.
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Fig. 1.11: Plume diagram for the surface air temperature in the summer season over a
grid point centred over the Québec province of Canada. The blue and red full lines consist
in the signal and inter-model spread mean values respectively, the blue and red dashed
lines are the statistical uncertainty of the signal and inter-model spread mean values
using the model sampling method, and the dotted lines the statistical uncertainties using
the member sampling method. The plumes are obtained from three different ensemble
sizes : a) the entire 24-model ensemble and the b) 11-model and ¢) 5-model subsets.
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Fig. 1.12: a) The standard deviation of the mean as function of the sample size obtained
from a synthetic data set generated using a random number generator based on a normal
distribution with zero mean and unit variance. The initial data set consists in 24 elements
over which is applied the model-sampling approach by allowing and forbidding model
replacement (blue and green curves respectively). The curves are normalised using the
standard deviation of the initial data set and compared with the normalised standard
error relationship (in red) defined as 1/4/m. b) The ratio of the errors given by the green
and blue curves in (a).
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Fig. 1.13: a) The number of combinations that can be formed from an ensemble of 24
models as function of the sample size. In green is shown the number of the combinations
that can be formed without replacement. The blue curve represents the total number
of combinations, including both with and without replacement possibilities. The blue
curve is based on the fact that (N +n’:—1) multisets of size m can be formed from a pool

of N elements while the green curve represents the (g) possible subsets. b) The ratio of
the numbers given by the green and blue curves in (a).
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Fig. 1.14: The “MME mask” where the black elements (“TRUE” values in the code)
represent the CMIP3 simulations using the A1B scenario and the white elements (“FAL-
SE”) stand for the missing simulations in the ensemble compared to the perfect matrix
P. Models are distributed along the horizontal axis and the members along the vertical
one.
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Fig. 1.15: Distribution of the uncertainty emerging from the member-sampling ap-
proach for the perfect (U,%é.i, left panel) and imperfect (U,%é{n, right panel) matrices.
Frequencies are normalised to obtain an integral of 1 under each distribution.
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CHAPTER II

INVESTIGATING CONSENSUSES IN CLIMATE-CHANGE PROJECTIONS
FOR MODELS DEVELOPED BY A SAME RESEARCH INSTITUTE

ABSTRACT

One rationale behind the use of multi-model ensembles is the aim at collecting inde-
pendent estimates of the future climate change. Such projections are generally provided
by different leading modelling centres around the world, resulting in ensembles that are
intended to allow some cancellation of errors as their sample size is increased.

In theory, two unconnected groups of scientists could be expected to develop independent
modelling approaches. However, there are in reality several reasons to question this
assumption of independence. For instance, scientists share knowledge about the climate
system, which is likely to result in models that are based on similar sets of physical
assumptions in their formulation. Some models even share parts of their code and are
often calibrated using similar observational datasets. All these facts contribute to the
risk of inducing common biases to the models and hence to a lack of independence.

While a rather classical approach to assessing model independence could consist in de-
tecting possible correlations of errors when comparing models to the observations, such
an approach can not be directly applied to climate-change simulations due to the re-
latively short climate period available for validation. An alternative approach can be
to investigate directly on the differences between the models’ climate-change projec-
tions. An additional issue resides in determining whether if similarities in the models
output consist in a proxy of high confidence into a specific climatic outcome or simply
due to a lack of independence between the underlying models. In order to improve the
message conveyed by an ensemble, it is of primary importance to aim at filtering the
non-informative consensuses from the ensemble in order to focus only on the informative
ones. On the other hand, disagreement between models’ output could be seen as infor-
mative from the point of view of assessing the uncertainty related to the use of different
coexisting modelling approaches.
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2.1 Introduction

In the last decades, internationally coordinated efforts have been conducted in order
to nourish the scientific community with credible ranges of climate-change projections.
These projects consist in relatively large ensembles of simulations that aim at sam-
pling the different sources of uncertainty affecting climate-change projections. Firstly,
the emission scenarios of greenhouse gases and aerosols (GHGA) used as an external for-
cing to the models depends on the evolving socio-economical context and hence play an
important role in our uncertainty of the future climate changes. Secondly, the use of a po-
pulation of state-of-the-art Atmosphere-Ocean General Circulation Models (AOGCMs)
allows obtaining a considerable range of projections since models generally differ in their
climate sensitivity for a given forcing scenario. Thirdly, each model/scenario combina-
tions are often subject to several members (realisations) that differ only by their initial
conditions ; multiple realisations allow sampliﬁg the natural variability as simulated by
the models, which is also considered as a source of uncertainty affecting climate-change

projections.

It is a generally accepted idea that climate models are not “created equal”, that is they
perform differently in reproducing the various facets of the climate system (Gleckler
et al., 2008). An important reason why climate models perform differently is that they
are based on different approximations, which are sometime subject to debates within the
climate modelling community. Given that a model may perform well in reproducing some
climatic features while showing weaknesses in simulating others, it has been suggested
that climate-change projections from several models should be weighted according to
some measure of their respective skill. As an example, Giorgi and Mearns (2002) de-
veloped a metl}od for obtaining weighted averages based on both the performance of
the models in reproducing the observed climate and the consensus of their projections
of the future climate. Similarly, Christensen et al. (2010) used several metrics for eva-

luating models’ performance and combined these scores into a single weight for each

model. The best way for evaluating models’ performance and to use this measure of skill




61

for assigning weights to the models is however far from making any consensus among
the climate scientists. Moreover, it is poorly understood how the skill of a model in
reproducing the present climate may be related to its reliability for climate projections

(Raisénen, 2007).

Nevertheless, the rationale behind the use of multi-model ensembles is to collect several
independent estimates of future climate changes. Under the assumption of independence,
a cancellation of errors is expected to happen between the different estimates and hence
the ensemble average should be closer to the climatic truth than any single model. Ano-
ther expected advantage of using independent estimates of climate changes is that the
spread of the members in an ensemble provide an estimate of the uncertainty about
the modelled system. There are prior reasons, however, to believe that models are not
totally independent from one another. While models differ in a variety of facets since se-
veral expert’s choices are involved in the development of such complex softwares, climate
scientists share‘knowledge, learn from each other and even share parts of their model
code. This results in climate models that are similar at different levels, from their under-
lying physical assumption (included processes and interactions), the tuning of weakly
constrained internal parameters, and the numerical approximations used to solve the

equations.

It is a generally accepted idea that climate models (and hence their projections) suffer
from a lack of independence, but how to determine to what extent 7 Very little is known
for answering this question since no clear metric for measuring model.independence has
been commonly accepted at this time (Tebaldi and Knutti, 2007). Fortunately, some
attempts have been made over the last years for assessing the degree of independence of

the climate models, which are mainly based on three points of view.

A first way of addressing the independence of climate-change projections is by focusing
on the models formulation, i.e. a priori to generating output. Probably the largest issue
related to this approach is the definition of a model space, which can not be done using

real numbers by analogy to perturbed-physics ensembles (PPEs ;Stainforth et al. 2005;
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Rowlands et al. 2012) that offer a systematic approach to exploring the parameter spacé

of a single model.

Another approach for assessing the independence of climate models simulations is by
considering that independent estimates are evenly distributed about the truth, that is
the observed climate. This approach has been used by some authors (Jun et al. 2008b,a;
Knutti 2010; Pennell and Reichler 2011) in the context of the Coupled Model Intercom-
parison Project phase 3 (CMIP3). A general result from these studies is that partial
correlations exist between the models’ biases to the observed climate and hence that the
models’ output is generally not evenly distributed about the climatic truth. However, a
disadvantage of such an approach is that it can not be applied directly to climate-change
projections due to the relatively short climate period available for validating the models
and since no observations are available on the future state of the climate system. In or-
der to make an inference about the independence of the climate-change projections, one
has to assume that a sample of models providing independent estimates of the observed

climate will necessarily lead to independent projections of the future climate.”

The third approach addresses the issue of independence from the point of view of the
dissimilarities in the models output. A clear advantage of such an approach is that it
does not need an observational data set and hence that it can be applied to climate-
change projections. Abramowitz and Gupta (2008) projected the model space onto a
metric space from which the distance between two models can be used as a proxy for
model independence. They also put in evidence that model independence and model
performance consist in two unrelated properties of climate models (Abramowitz, 2010).
More recently, Masson and Knutti (2011) used a hierarchical clustering framework ac-
cording to the degree of similarity in the models’ projections and put in evidence that

models developed by a same institute are likely to provide similar results.

We will proceed with an overview of the issues related with the use of multi-model en-
sembles for climate-change assessment. In Sect. 2.2 we will analyse the sampling process

related to an ensembles of opportunity. In Sect. 2.3, we will review and discuss the




63

topic of model performance, following with a theoretical discussion about model inde-
pendence in Sect. 2.4 by focusing on the conceptual relationship that may exist between
prior considerations about the models (independence of the models formulations) and
the consensus/disagreement in their output (independence of the output). We will ana-
lyse in Sect. 2.5 the typical structural similarities that appear between models developed
by a same research institute and present some results based on a subset of the CMIP3
multi-model dataset. In Sect. 2.6, we note some lacks that have been found in the do-
cumentation provided by the participating centres about their models and simulations.
We finally proceed to a broader discussion (Sect. 2.7) about model independence and
focus on the possible ways to improve our interpretation of an ensemble of opportunity

according to the way these are constructed and used by the scientific community.

2.2 On the sampling process of an ensemble of opportunity

The Program for Climate Model Diagnosis and Intercomparison (PCMDI) initiated the
sampling process of the CMIP3 multi-model dataset by volunteering established mo-
delling centres to participate by delivering AOGCM climate projections. In order to
participate to such a coordinated experimental framework, the modelling centres are
generally committed to some minimal requirements, for example by delivering the si-
mulations before some deadline and according to a specific data format. Requiremehts
on submitted variables are rated as low to high priority in order to focus on specific
scientific issues. Finally, a variety of experiments have been proposed to the modelling
groups, the main ones being the 20th century experiment (labeled as 20C3M) and the
projections using three emission pathways (A1B, A2 and B1) from the special report on

emissions scenarios (SRES ; Nakicenovic et al. 2000).

In order to encourage (and hence maximise) the amount and diversity of simulations
in the ensemble according to the number of scenarios, models and realisations, few
other constraints are imposed to the participating centres. It is indeed very expensive to

produce simulations for long periods (e.g. centuries) with increasingly high spatial reso-
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lutions. Because human, computational and funding resources are limited and modelling
centres do not all share the same interests, the final size and shape of the ensemble
is necessarily affected by these factors. Hence an arbitrary numbers of realisations are
generated using the different models, some institutes may also provide simulations from
several models or versions, and not all emission scenarios are used to force each of the

participating models.

An important particularity of such ensembles is that they do sample different modelling
approaches, but in a neither a random or systematic way (Knutti, 2010). The sampling
process of such an ensemble could be more akin to a “natural pre-selection” among
modelling approaches, where soﬁe centres may not afford all of the proposed experiments
while others tend to be better represented in the ensemble. One possible drawback of this
pre-selection process is that it tends to give a larger “ideological weight” in the ensemble
to the better endowed institutes according to the number of provided simulations and

their diversity in representing the several scenarios, models, versions and realisations.

2.3 Performance of climate models

Climate-change assessments face several issues when attempting to extract the message
conveyed by an ensembles of opportunity through the use of ensemble statistics. An
important issue that is under debate in the community is the optimal way of combining
simulations from different models. Probably the simplest and easiest manner to process
multi-model ensembles is known as “one model, one vote” (Knutti et al., 2010), which
considers the models as equivalent representations of the climate system. This can be
interpreted as assuming that each model is independent from one another and hence
that the models’ simulations consist in equally likely outcomes of the future climate. The
ensemble mean is interpreted as a best estimate of the projected signal since individual
model errors are expected to cancel out through ensemble averaging. In addition to

its simplicity, this approach is widely used since the average of several models often

outperforms each of the individual models of an ensemble in reproducing current climate
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(Lambert and Boer 2001; Weigel et al. 2008; Gleckler et al. 2008; Reifen and Toumi 2009;
Annan and Hargreaves 2011).

An alternative approach for combining simulations from a multi-model ensemble is based
on the assertion that “models are not created equal”, i.e. that some perform better that
the others in reproducing the observed climate, which is taken to imply similarly for
the projected climate changes. Indeed, models have different strengths and weaknesses
in reproducing the various facets of the current climate (e.g. different variables and
geographical locations). If there were a commonly agreed measure of model skill by
the scientific community, a convenient way to process multi-model ensembles would be
to give preponderance to the “best models” while down-weighting the “bad ones” in
ensemble averaging. However, since a very short period of observation is available for
model verification, and the reliability of climate models in projecting future climate
changes can not be assessed directly, it is not clear which climate features have to
be better reproduced in order to increase our confidence in model projections. As an
example, Christensen et al. (2010) defined six metrics of model performance based on the
skill in reproducing the annual cycle, trends, large-scale circulation, etc. These metrics
have been combined in order to assign a single weight to each of the models in calculating
the ensemble statistics. Another example is Giorgi and Mearns (2002) who used the
model performance in reproducing the observed climate and the consensus between the
model projections in order to obtain the ensemble mean and standard deviation that are
weighted according to these two criteria ; the authors however noted that the performance
of the models in reproducing the observed climate is poorly related to their consensus

in climate-change projections.

While evaluating the model performance is far from trivial due to the paucity of climatic
data for verification, another important characteristic of a multi-model ensemble is the
degree of independence that exist between research institutes and modelling approaches.
As will be explained in the next section, there are several indications that the models for-

ming the CMIP3 multi-model dataset suffer of a lack of independence. Unresolved issues
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in attempting to obtain a clear measure of model independence limits our interpretation

of ensemble statistics.

2.4 Independence of climate models

Today’s climate models exist in a broad diversity since several expert decisions were
involved in the development of these complex pieces of software. Models may differ in
a variety of facets including their basic physical assumptions since modellers have to
identify and judge which processes of the climate system are sufficiently relevant to be
included in a model. For example, in the upcoming CMIP5 multi-model ensemble, a dy-
namical vegetation component is included for some of the models while others use a static
vegetation cover. Another way climate models may differ is how the included processes
are formulated, as by choosing among several possible physical paré,meterizations for a
same process (e.g. Bechtold et al. 2001 vs Kain and Fritsch 1990 for convective parame-
terization). While these two types of model difference can be referred to as “structural”,

. another kind of difference exists between climate models. These differences may appear

in the numerical approximations of the equations, the time and spatial Fesolutions, and
the tuning of some poorly constrained parameters (Murphy et al., 2007; Stainforth et al.,
2005; Murphy et al., 2004; Separovic et al., 2012). In the following, we refer to this type
of difference as “parameters and numerical”. It is worth noting that successive versions
of a climate model may in principle differ in the same way as models do (i.e. structural,
parameters and numerical) ; however, differences between versions are generally subtler

due to limited changes.

Despite the variety of differences existing between climate models formulations, the mo-
delling centres are not completely independent from one another from an ideological
point of view, and so are expected to be both the models and their output. As for
science in general, the climate science evolves in a rather open manner as scientists

share knowledge about the climate system and learn from other groups through lite-

rature, conferences and exchanges. An important example of this is the physical basis
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of fluid dynamics and thermodynamics that is similarly formulated within the core of
every atmosphere or ocean model. To a lesser extent, the research centres also share
model components (e.g. parameterization packages) and even parts of code. In particu-
lar, this characteristic of the climate models to share common components is likely to
be strengthened when the models are developed by nearby actors, for example within a
same research centre or country. This may also be due to the fact that several models
have public releases that can be downloaded and used by other groups or individuals.
Another reason to believe a priori that climate models are not independent is because
they are often tuned according to the same observational data sets that also contain
some errors, a strategy that may induce commion biases to the models (Knutti et al.,
2010). Moreover, even in the idealised situation where a model would fit perfectly to
perfect observational data, it would be possible that a good result be obtained for wrong
reasons. While different tunings of the parameters can lead to similar model output,
exploring systematically the parameter space of a model would be an humongous task

to undertake (Stainforth et al., 2005).

As noted previously, one fationale behind the use of multi-model ensembles is to obtain

independent estimates of the future climate changes. However, there is no commonly
- accepted measure of the degree of independence between climate models (Tebaldi and
- Knutti, 2007). While several authors use consensus between models as a predictors of
confidence (e.g. IPCC 2007; Seager et al. 2007), such an inference is difficult to sustain
without any robust measure of models’ independence (Pirtle et al., 2010). One impor-
tant issue is the difficulty to define a model space, which can not be illustrated clearly
by using real numbers, for exa@ple. By amnalogy, in a perturbed physics experiment
(PPE), the differently tuned versions of a same model can be represented by points in a
multi-dimensional space of parameters. The distance between two model versions in the
parameter space can be associated to a distance in the projected phase space (model
output). Clearly, this approach can not be applied to quantify the model uncertainty
since models that differ structurally are also represented by spaces that may differs in

both their number of dimensions and in the definition of each axis (parameters). De-
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fining a general space that would contain all of the individual model sub-spaces is a
conceptual issue that has found no clear answer at this time while being an emerging

field of research over the last few years.

Expecting that, a priori, climate models suffer from a lack of independence partly ques-
tions the way these models are developed and improved over years by scientists around
the world. On the other hand, it is also important to understand how, a posteriori, these
characteristics may affect the models’ output. As shown by Knutti et al. (2010), the
CMIP3 models are partly correlated in their biases to observations over several regions
of the global domain. Other important results have been obtained by Masson and Knutti
(2011) who used a hierarchical clustering framework to put in evidence that the degree

of similarity between models’ output is intimately related to the “model genealogy”.

In order to put the previous discussion in the context of climate-change assessment using
multi-model ensemble, Fig. 2.1 shows a diagram summarising the conceptual relation-
ships that exist between the prior and posterior considerations of independence. While
no widely accepted metric exists for assessing model independence, as well on the side
of the models themselves (a priori) as in the models’ output (a posteriori), we posit
the following definitions. A set of models are said to be ideologically independent if the
modelling approaches differ substantially by their included processes, parameterizations,
numerical approximations and tuning of parameters. The two boxes on the left side of
Fig. 2.1 represent high and low levels of ideological independence within a sample of
models. For simplicity, we assume all the models in the sample to be either independent
or not, and to the same extent, unlike the more complex case of the CMIP3 multi-model
dataset where some groups of models are more similar than others, corresponding to a
mix of different levels of independence. On the right side of the diagram, the two boxes
represent two degrees of similarity (disagreement or consensus) that may exist between
the models’ output. The output can be considered as in disagreement (consensus) if their

sensitivity to equal GHGA forcing differs by a larger (smaller) amount than the typical

magnitude of the natural variability as simulated by this type of model.
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Let us now discuss the conceptual relationships between prior and posterior states of
independence. As a first possibility (link A in Fig. 2.1), a priori independent models
lead to outputs that disagree; this corresponds to the case of a wide range of models’
responses to identical climate forcings, a situation that contributes to the so-called model
uncertainty. As a second possibility (B), a priori independent models lead to outputs
that agree; such a consensus between substantially different modelling approaches ge-
nerally tends to reinforces our confidence into a specific outcome in the simulation of
the future climate (so-called robust results). The third relationship (C) shown in the
diagram relates to the'trivial situation where the sample is formed by models being very
similar in their structure, parameters and numerical characteristics; such a case consists
in a “non-informative consensus” since based on several reﬁlications of (essentially) a
same model. The fourth hypothetical case (dashed line) of a priori non-independent
models leading to disagreeing outputs is obviously unrealistic since a sample of models
that are considered as replications of a single -one should not lead to differences in their
outputs that are larger than the simulated natural variability, unless some modelling

differences are hidden to the data user which then should be interpreted as case A.

In summary, the analysis 6f the climate projections obtained from an ensemble of op-
portunity would be highly simplified if we could assert that only relationships A and B
exist, which would clarify the meaning of consensus as the most likely outcome and inter-
model spread as a measure of uncertainty in the projections. We argue that disagreement
between models’ output is always informative, unless serious bugs are known to exist in
some of the models. From the point of view of mitigation and adaptation strategies, it
is generally more cautious to deal with overestimated uncertainty in order to assume a
larger range of possibilities for the future climatic outcome. On the other hand, underes-
timated ranges of uncertainty simplify the mitigafion process while increasing the risk

due to an unsuspected, damaging and costly climate outcome to happen.

It is worth noting that the previous discussion focuses on multi-model ensembles but

might apply as well to PPEs that face similar issues. For example, more or less inde-
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pendent attributions of the model parameters may be fetched through these experimental

frameworks, which are however constrained according to a unique model structure.

2.5 Typical differences between models developed by an institute and how this

affects their climate-change projections

AOGCMs constitute the main tools used by scientists in order to better understand
the present climate and its projections to the future according to conceivable GHGA
pathways. The diversity of modelling approaches resulting from the various choices avai-
lable for structural, numerical and parameter characteristics, makes a complex task to
describe the differences existing between two models that have been developed indepen-
dently. In order to simplify the following discussion, we focus on the typical differences
among models that share a considerable number of components, i.e. with a certain level
of structural similarity. By analogy to the model space briefly described in Sect. 2.4, it
consists in comparing models that belong to partially different parameter spaces. Rather
than proceeding to an exhaustive study of all the differences in structural, parameters
and numerical characteristics of some twenty AOGCM models in the CMIP3 multi-model
ensemble, an intuitive approach to identify models with structural similarities 'is paying
attention to their origin. As an educated guess or proxy for model non-independence,
the models being developed by a research institute can be expected to share several

characteristics.

In Tab. 2.1 are presented the 7 research groups (first column), hosted by 5 countries
(second column), that provide more than a single model to the CMIP3 multi-model
archive. In the third column is given an acronym that represents the research group and
their models. In Tab. 2.2 is shown the list of the corresponding models collapsed into
pairs developed by a same research group. The pairs of models are numbered from I to
IX (first column) and identified by their acronym in the second column. In the third

column of Tab. 2.2 are shown the models (or versions) identifiers. The five remaining

columns in Tab. 2.2 enumerate the main structural differences according to main model
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components : atmosphere (4), ocean (0), sea ice (I), coupling (C) and land surface
(L). Each unit in these columns is filled with an identifiers for the type of difference :
R for resolution, V for version (i.e. minor modifications in the code), M for model
(i.e. substantial differences in the code), and ‘“” when the same component is used.
This table consists in an adaptation from Randall et al. (2007) and more details about
models characteristics are given in the PCMDI documentation at http://www-pemdi.

11lnl.gov/ipcc/model_docunentation/ipcc_model_documentation.php.

According to Tab. 2.2, the pairs I to IV are formed by models that differ little in a
structural sense. The CGCM models (I) differ only in the atmosphere and ocean spatial
resolution (T47 vs T63), and similarly for the MIROC pair (II) with a larger jump in
resolution (T42 vs T106). Changes in resolution only could be considered as a parameters
modification while no other changes are expected in the code. The CSIRO (III) and
GFDL (IV) pairs provide models’ versions that differ in minor modifications to their
main components. More precisely, the version change may apply to any of the model
components, i.e. atmosphere and ocean for GFDL, and ocean, ice, land and coupling for

CSIRO.

The pairs V to IX are formed by models differing substantially in a structural sense.
The first GISS pair (V) consists in two models (EH and ER) that differ in the ocean
component only. Rather than successive versions, two different ocean models (Russell
et al. 1995; Bleck 2002) have been used in these AOGCMs, which could be seen as a
substantial structural difference. In addition to this structural difference, the two ocean
components used different spatial resolutions. For the pairs VI to IX, models differ
substantially according to most of their components (atmosphere, ocean, sea ice, coupling
and land). An apparent similarity however exists between the models AOM and ER (in
pair VI) which use successive versions of the same ocean model (Russell et al., 1995,
2000). Among other differences, each of the pairs VI and VII is subject to a different
atmosphere component. Overall, GISS AOM, EH and ER can be seen as coexisting
models developed within a same institute (NASA /GISS) but one (AOM) appears more
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different from the two others (EH and ER). Similarly, pairs VIII and IV are formed by
two coexisting models developed within a same institute, i.e. the National Centre for

Atmospheric Research (NCAR) and the Hadiey Centre.

In Tab. 2.2 have been presented the main structural differences that appear within 9 pairs
formed by 15 models and developed by 7 research institutes. In Fig. 2.2 are summarised
the results from these models, according to their donllain averaged (North America)
and ensemble averaged (the mean of all the available realisations of each model) for
the surface air temperature and precipitation rate for the summer and winter seasons.
The research institutions are represented by different colors and the models from a
same institute are identified using different line styles. We first note the high consensus
between the two versions of the Canadian model that use different spatial resolutions
(dark blue curves). The two versions strongly agree with a change of approximately
3.4°C for the summer temperature warming (Fig. 2.2a) and agree relatively well in
winter (Fig. 2.2b) with a temperature increase of 5.8°C. Even though noisy, the summer
precipitation rate also shows relatively high agreement between the two model versions
while a slight difference is found for the winter season. By eemparisom,—the MIROC—
pair (in magenta) displays rather large differences in sensitivities with exception of the
summer température where the models agree relatively well with a change of 5.3°C. The
disagreements are more important than those between the two versions of the Canadian
model, probably due to the larger increase in resolution (T47 to T63 for CGCM, while
T43 to T120 for MIROC). Moreover, this result could also suggest that modifications to
other parameters have been done between the two MIROC models, but little information

has been found in the available models’ documentation.

Another striking feature in Fig. 2.2 is the pair V formed by the GISS EH and ER
models that differ only by their ocean model (i.e. same atmospheric, land, coupling
and sea ice components). These two models agree generally well according to the two
variables and two seasons presented in the figure. Also, the two coexisting models of the

NCAR institute (pair VIII) show very similar results for precipitation (Fig. 2.2c and d).
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For the Hadley Centre that also provides two models, some consensus is obtained for
the summer temperature and winter precipitation (Fig. 2.2a and d), while the two other
variables (Fig. 2.2b and c¢) show disagreement that appear similar in magnitude to the

overall inter-model spread.

While the inter-model spread is a measure of uncertainty that highly depends on the
selected set of models, it is convenient to compare the differences in tlie models’ output
according to the natural variability that constitutes an intrinsic characteristic of the
climate system. However, the main limitation for such an approach resides in the number
of realisations available for each of the models. Over the 9 pairs of models shown in
Tab. 2.2, three pairs (CSIRO, GFDL and UKMO) are formed by models with a single
realisation and hence can not be used in the scope of the following analysis. In Tab. 2.3
are shown the number of members available for each model in each pair (N, and Ny)
and the fifth column shows the feasibility of a Student’s ¢-test for the difference between

ensemble means.

The difference of mean between each model pair is therefore calculated. We focus on the
summer surface air temperature change relative to the 1900-1950 reference period, and
all models have been interpolated over a common 4° x 5° coarse-resolution grid (see Sect.
1.2.1 for more details). In order to assess the statistical significance of these differences, a
two-tailed Student’s ¢-test is applied at the 5% significance level (i.e. 2.5% on each tail).
As will be discussed in Chap. 3, the models show differences in their simulated natural
variability. For pairs where both of the models provide at least two members, the ¢-test
can be applied without assuming equal variances. On the other hand, the pairs where
one model is represented by a single member are restricted to the assumption of equal

variances. More details on the ¢-test are provided in Appendix 2.A.

In Fig. 2.3a to f are presented the differences of the ensemble means between models
developed by a same institute, for the pairs I, IT, V, VI, VII and VIII respectively. The
order in which the differences are calculated corresponds to that presented in Tab. 2.2,

for example as T47 minus T63 for the CGCM pair. Each panel is composed of six maps,
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where three time periods are shown : 2000-2020, 2040-2060 and 2080-2100. On the first
row are shown the differences in ensemble means and in the second the areas of statistical
significance for positive (red) and negative (blue) differences. White areas corresponds

to regions where the differences are not statistically significant.

For the CGCM and MIROC pairs, (Fig. 2.3a and b), an important part of the domain
shows differences that are not statistically significant. For both pairs, a similar pattern
in the rejection of the null hypothesis is seen over the Atlantic Ocean (south eastern
part of the domain) and in the region of the Labrador Sea and Hudson Bay (eastern
side of the domain). It is worth noting that the opposite sign of these patterns is simply
due to the order of the difference is calculated, and hence the higher resolution model
leads to a larger climate sensitivity for both pairs. It is worth noting that the two
model versions have been interpolated over the same grid and hence an important part
of the potentially added value by the higher resolution models is not considered here.
On the other hand, it can be seen that the change in resolution has a rather weak
effect on the larger scales present on this grid. According to the small sample size, the
coarse resolution and thervariable'considered, there-is little statistical evidence to reject
the hypothesis of an equality of the means between these model versions. Under these
considerations, including both model versions for the CGCM and CSIRO pairs does not
add much supplementary information to the ensemble compared to the use of a single

model version.

In Fig. 2.3c is shown the difference between the GISS EH and ER models that differ in
their ocean component model. Significant positive differences are found over the Hudson
Bay and the maximum increases in magnitude with time to reach nearly 3°C in the
2080-2100 period. Other significant differences are seen over the Pacific Ocean, but these
are generally smaller in magnitude than —1°C. From this panel, it is quite clear that
structural differences in the ocean component affect mainly the results éver oceanic
regions and particularly the Hudson Bay. In Fig. 2.3d are shown the differences between

the GISS AOM and ER models that have large structural differences in all of their
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components except the ocean that underwent only a change in version. An important
difference that exceed —2°C appears over land. This difference grows with time, which
means that the models’ climates diverge from each other over this region, similarly
to what has been noted for the EH and ER models over the Hudson Bay (Fig. 2.3¢).
Differences over the Pacific Ocean have similar magnitude, with values around 1°C. Also,
no maximum difference appear over the Hudson Bay, which can be attributed to small
structural changes between the two versions of the ocean component. The third pair of
the GISS institute, AOM vs EH, is shown in Fig. 2.3e. This time, all of the models’
main components have been changed. It is interesting to note the few similarities with
the previous GISS pairs differences. The large difference over the Hudson Bay is similar
in magnitude with > 2°C (with reverse sign) compared to the EH-ER difference. This
response is expected since the AOM-EH pair relates the difference between the Russell
(second version) and HYCOM ocean components, while the EH-ER pair corresponds to
a difference between the HYCOM and Russell (first version) components. As seen from
the small difference between AOM and ER over the Hudson Bay, the two versions of the
Russell ocean component do not lead to large differences especially in that region. For
the minimum of difference that exceed —2°C over land, it is nearly the same value as for
the AOM-ER difference presented in Fig. 2.3d. Indeed, the pairs AOM-EH and AOM-
ER (Fig. 2.3d and e respectively) correspond to the same differences in the atmosphere
component. This logic may also be applied to the differences over the Pacific Ocean. The
difference between ER and EH being around 1°C degree (Fig. 2.3c) and that between
AOM and ER of approximately 1°C (Fig. 2.3d), it is understandable how the difference
between AOM and EH may be of nearly 2°C (Fig. 2.3¢). It is interesting to note that
the analysis of the differences between the three GISS pairs leads to differences in their
climate sensitivities that are additive from the point of view of structural changes in

their atmosphere and ocean models components.

Finally, the difference between the two NCAR models is shown in Fig. 2.3f. These models
show statistically significant differences over practically all of the North America. These

differences are relatively large and increase with time to exceed 2°C over a large part of
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the domain for the period 2080-2100.

2.6 Notes on the minimal requirements to the participating centres of a climate

change assessment

In order to facilitate the analysis of the results from a large ensemble such as the CMIP3
multi-model dataset, the participating centres have been invited to fill a survey that
summarise their experimental set-up by providing information about model identity,
component model characteristics and simulations details. We acknowledge that such
pieces of information have an important value to the data users such as ourselves here.
Notable lacks exist however which are worth mentioning for the benefit of further users

and assessments.

While it is mainly the responsibility of each modelling centre to provide complete and
accurate information throughout these surveys, it is important to note that no (or little)
control seems to have been applied after their submission to PCMDI. As a proof by
contradiction, a minimal post-control 611 these surveys would not have resulted in the
following examples of inaccurate or even missing information. A first example is found
in the documentation for the CCSM3 model that contains entries such as “Still working

on this...”

or “See the excel chart [...] that I mailed you last week” in the section of
the simulations details. Another striking example is the missing of such surveys for
both model versions from the Canadian Centre for Climate Modelling and Analysis

(CCCMA).

One reason why such surveys are very important from the point of view of the data users
is since the models configuration often rapidly changes with time and such modifications
are not always clearly documented throughout peer-reviewed literature. Another note
about these surveys is that the community would largely benefit from a broader focus
on the modelling differences between models (or versions) provided by a centre. For

example, a centre could be invited through the survey to provide arguments describing

how a model or version may add supplementary information to the ensemble, specifically
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in the context of collecting independent estimates of the future climate changes and in

the aim at spanning the full range of the uncertainty about these projections.

Of course, modelling centres are always welcome to provide several models versions,
which may be used in a variety of applications. However, it is worth questioning that the
resources spent in these supplementary models or versions could be relocated for example
by producing more scenarios and realisations from a single model version, or using higher
resolution to reduce some systematic biases. In a similar perspective, consideration may
be given to sharing of computational resources between the different centres to optimise

the design of multi-model ensembles.

2.7 Discussion and conclusions

Internationally coordinated projects of climate-change assessments have been increasin-
gly common over the last decade or so. These projects consist in relatively large ensembles
of simulations that use some population of models with a similar level of complexity in
order to obtain climate-change projections according to different GHGA emission scena-
rios. While the real outcome for the future emission pathway is largely uncertain since
mainly depending on the evolving socio-economical and political context, thé divergence
of projections obtained from several models also contributes importantly to our overall

uncertainty about future climate changes (Hawkins and Sutton, 2009).

Beyond the sampling of a credible range of climate-change projections according to
different emission scenarios, an important rationale that motivates the use of large en-
sembles such as the CMIP3 multi-model dataset is to obtain a collection of independent
estimates of the future climate changes. The use of such a sample should result in two
important benefits. First, a sample of independent estimates allows some cancellation of
the errors across the different models and hence the ensemble average should converge
toward the future climatic truth as the number of models contributing to the ensemble
increases. The second benefit is that the spread between models’ projections should be

representative of the uncertainty about the climate projections.
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It has been discussed throughout this chapter that there are several reasons to believe
that climate models are not independent from one another. Moreover, very little is
known on the extent to which models depend on each other since no measure of inde-
pendence has been commonly accepted at this time. Several authors have assessed the
independence of the projections by using the models’ output (e.g. Jun et al. 2008b,a;
Abramowitz and Gupta 2008; Knutti 2010; Pennell and Reichler 2011; Abramowitz 2010;-
Masson and Knutti 2011). Here we have adopted a different approach that aims at cla-
rifying the concept of independence from the point of view of the models formulations.
Of course, such an approach may become complicated since climate models have a very

complex structure and include hundreds of parameters.

In order to explore the concept of the independence of the climate models a priori to
their projections, we used as a starting point the assumption that models developed by a
same institute share several characteristics at the structural, parameters and numerical
levels. The structural level has been defined literally as the set of underlying physical
assumptions that served as basis to each model. The way these assumptions are formu-
lated, for example the choice of the parameterizations, has been also-ineluded-in-the
structural level. Additionally, the values given to model’s internal parameters and the
numerical approximations have been highlighted as other types of model differences. It
has been shown that the models (or versions) developed by an institute are prone to
share such characteristics. Structural similarities are often straightforward to point out
from models documentation provided by the PCMDI. Similarities in parameters and
numerical characteristics are subtler and often not explicitly provided in the documen-
tation. However, the fact that models from a same institute that differ only in a few
components also suggests that the parameters and numerical approximations remain

unchanged.

By paying attention to the consensus/disagreements in outputs as function of the degree
of similarity in structural, parameters and numerical characteristics, we put in evidence

that non-informative consensuses are likely to happen in a large multi-model ensembles
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such as the CMIP3 multi-model dataset. The idea of non-informative consensuses has
been explored in the specific context of the models developed by a saine institute. Ho-
wever, it is very important to note that the non-informative consensuses are not limited
to the same-institute context, but should rather be extended beyond this scope. Two
models developed by different institutes with « priori no structural, parametric and
numerical similarities could lead to non-informative consensuses since based on com-
mon physical assumptions and processes and interactions included in the models. For
example, it is known (Knutti et al., 2010) that several CMIP3 models share common
biases that are not exclusively limited to the same-institute context. On a larger scale,
the generation of AOGCMs forming the CMIP3 multi-model dataset could also share
important biases since none of them include a dynamical vegetation component, to cite
but one example. A similar example is on the numerical assumptions for the models
that use flux adjustment in the ocean (see Randall et al. 2007; Meehl et al. 2000). An
important issue related to the independence of the climate models is that it depends on
the simulated variable. For example, the two versions of the GISS model, EH and ER,
share the same atmosphere, ice, land and coupling components, but differ in their ocean
model components. Such a set-up is liléely to result in a non-informative consensus in the
surface air temperature over land, while informative disagreements (i.e. uncertainty) arc
found over the ocean. In this case, rather little information contributes to uncertainty

over land, while an informative disagreement exists over the ocean.

The conceptual relationship between the prior (same-institute context) and posterior
(consensus/disagreement in the outputs) definitions of independence does not appear
sufficiently straightforward to be assumed blindly. In other words, one must find serious
evidence to reject a consensus and hence to consider it as non-informative. Making such
an inference should be done after paying attention to both the nature of the consensus
(e.g. simulated variable, season, region and time period) and to the structural, parame-
tric and numerical differences between the models (or versions). On the other hand, the
direct application of this assumption by including only one model per institute in the

scope of a specific study (e.g. Whetton et al. 2007) might be understood as little more
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than an “educated guess” aiming at potentially decreasing the number of non-informative
consensuses in the ensemble across the several variables, seasons, regions and time per-
iods. This approach may be considered akip to a filtering or the assignment of zero
weights to some of the models. This necessarily results in an increase of the standard er-
ror associated with the ensemble statistics since a smaller ensemble size is considered. A

second potential benefit is reducing the risk of overconfidence in the ensemble statistics.

More technically, the rule of “one model per institute” may improve in some way the
message conveyed by the ensemble statistics by reducing the risk of introducing artificial
consistencies between models’ projections. It is worth noting that further improvements
are also possible since the issue of the models independence goes beyond of the same-
institute context. Recent work has shown that the ensemble size of the CMIP3 multi-
model dataset is much smaller than it appears ﬂom its number of participating models
(e.g., Pennell and Reichler 2011, Annan and Hargreaves 2011). Moreover, given the
relatively large sample of 24 models, simply removing the supplementary models for
each centre might consist only in a slight reduction of the drawbacks related to the lack
of independence-betweenclimate-models. Using different methods forprocessing the
models output, Pennell and Reichler (2011) estimated the effective number (Ngzs) of
climate models in the CMIP3 multi-model dataset to lie between 7.5 to 9, while Annan
and Hargreaves (2011) obtained a range from 4 to 11. These estimates of the effective
sample size can be combined into a single figure by their rounded average of 8 models.
Now, by considering only the same-institute context as a proxy for model independence,
the effective sample size of the CMIP3 multi-model dataset is estimated to 18 models
when retainiﬁg only one model per institute (Tab. 2.1), with exception of the GISS
family from which two models with different atmosphere components could be retained
(AOM with EH or ER) and NCAR that provides two models (CCSM3 and PCM) with

important differences in their response to identical climate forcing.

In order to understand the effect of these effective sample sizes on the statistics of the

ensemble, let us recall the relationship of the standard error of the mean that can be
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expressed as Var(u) = o2/N, where u and o2 are the true ensemble mean and inter-
model variance and N the number of models in the ensemble. Assuming no changes .
in the mean and variance, comparing the perceived ensemble size (N) to the effective
sample size (Ngss) corresponds to a standard error of the mean that is inflated by
\/N/Teff. Hence, the ensemble mean is inflated by 73% for Ne¢ys = 8 while by only
15% when using Nesy = 18. With similar arguments, this reasoning may as well be
applied to the standard error of the inter-model spread that is sometimes used to assess
the model uncertainty. From the point of view of mitigation and adaptation strategies
to climate change, overestimating the uncertainty of projections or the standard error
of the ensemble statistics is generally more cautious, but indeed more expensive, since a
broader range of climate outcomes are considered. On the other hand, underestimating
these ranges certainly simplifies the mitigation process while increasing the risk of an
outcome that lies outside the measured range of uncertainty, and hence that might be

unexpected by the mitigation plan.

In the climate modelling community, the democratic way of thinking the message conveyed
by an ensemble such as “one model, one vote” has been discussed and questioned in the
context of model performance. Since models perform differently in reproducing the va-
rious facets of the climate system, it is sometime argued that climate projections should
be weighted according to some performance criteria. While model dernocracy would be
somewhat compromised by using such an approach (Knutti, 2010), the same concept
could be extended according to the issue of model independence as an “institutional
democracy” that should already exist in the ensemble results or being imposed through
the analysis of the results. A potential way to induce institutional democracy in the
ensemble data would be to invite the participating centres to “demonstrate” the benefits
of including a second model version as how it would contribute by potentially adding
some value to the ensemble. The latter way corresponds to-a post-filtering or weighting
of the ensemble’s models according to some independence metric, which consists in an
emerging field of research. Since the issue of model independence goes far beyond the

same-institute context, one could argue ultimately that the climate modelling science
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should tend toward some kind of “ideological democracy” since even different research
institutes may not be sufficiently independent from each other. The latter considera-
tions could help spanning a broader and more realistic range for the uncertainty around
the climate-change modelling problem, whether according to pre-selected participating

institutes or to post-filtering an ensemble of opportunity.

Of course, the climate modelling science is not the only field of research where inde-
pendence matters. In its precursory works, Levins (1966) noted that the use of several
different biological population models may lead to a same result despite their different
underlying assumptions. The author used the terminology of a “robust theorem” for a
result that is free of the details of each model. This concept can be interpreted similarly

to that of an informative consensus discussed in this chapter.
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Appendix 2.A : Statistical significance of the difference between two ensemble

means (-test)

Let px and iy be the ensemble mean climate-change signals for two models denoted by
the X and Y indices. The latter consist in true means that could be estirhated by using a
sufficiently large number of realisations differing in the initial conditions. By simplicity,
we firstly assume equal inter-member variances between the models, i.e. that ox = oy.

The null hypothesis of equal means, Hp, can be defined as

Ho : px = py (2.1)
and the ¢ statistics
$ = _'”'Xl__“_y_l_ (2.2)
99\ Nx T Wy

where Nx and Ny correspond to the models’ saniple sizes and &g to the pooled variance

Nz ~ N, A
P - Ei=1(1'i E= ;U'X)2 i Ei=y1(yz‘ = #Y)z (2.3)
P Nx + Ny -2 )

with Nx 4+ Ny — 2 degrees of freedom.

In a case where the variances can not be assumed as equal (ocx # oy), the t statistics

becomes
g MXTHY (2.4)

Nx + Nyf
that consists in an approximation of the ¢ distribution with its number of degrees of

freedom being estimated from the data such as

L (6% /Nx + 6% /Ny)*

(@Nx) | (GN)"
Nx—1 St Ny -1

(2.5)

The critical values for a given significance level can hence be found using a table of the ¢
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distribution. More details on these tests and the related tables can be found in common

statistical textbooks such as von Storch and Zwiers (1999) and Wilks (2011).




Tab. 2.1: Name of the research institutes/groups

sions to the CMIP3 multi-model archive.

85

that provided several models or ver-

Name of the research institute/group Country | Acronym
Canadian Centre for Climate Modelling & Analysis Canada CGCM
Center for Climate System Research (The University of To- Japan MIROC
kyo), National Institute for Environmental Studies, and Fron-
tier Research Center for Global Change (JAMSTEC)
The Commonwealth Scientific and Industrial Research Orga- | Australia CSIRO
nisation (Atmospheric Research)
US Dept. of Commerce / NOAA / Geophysical Fluid Dyna- USA GFDL
mics Laboratory
NASA / Goddard Institute for Space Studies USA GISS
National Center for Atmospheric Research USA NCAR
Hadley Centre for Climate Prediction and Research / Met UK UKMO
Office

Tab. 2.2: Table of the main structural, parameters and numerical differences between
pairs of models developed by a same research institute within the CMIP3 multi-model
archive. Models are compared according to their main components : atmosphere (A),
ocean (O), sea ice (1), coupling (C) and land surface (L). The differences are categorised
as resolution (R), version (V), model (M) and no change (-).

Pair

Acronym

Models

Difference

1

CGCM

T47 vs T63

Change in Az, for At. and Oc.

11

MIROC

T106 vs T42

Change in Az, for At. and Oc.

111

CSIRO

3.0vs35

Oc. eddy parameterization (transport
coefficient) & mixed-layer treatment
(turbulent kinetic energy), sea ice
(numerical scheme), coupling (wind
stress), treatment of surface runoff and
river routing scheme

e

<| ™| = O

v

GFDL

CM2.0 vs CM2.1

Numerical scheme: advection, gravity
waves and damping at the top boun-
dary for At. and leapfrog timestepping
vs staggered for Oc.

ViI

GISS
GISS

GISS

EH vs ER
AOM vs ER

AOM vs EH

Different Oc. (HYCOM vs Russelll)
Different At., sea ice, coupling and
land, different versions of the Russell
Oc.

Different At., sea ice, coupling and
land, different Oc. (Russell2 vs HY-
COM)

MR

MR

MR,
VR

MR

VIII

NCAR

CCSM3 vs PCM

Different models developped by the
same institute (NCAR).

MR

MR

X

UKMO

CM3 vs GEM1

Different models developped by the
same institute (Hadley Ceutre).

MR

MR
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Tab. 2.3: Feasibility of a i-test for the difference between ensemble means of different
pairs of models, according to the number of simulations available for the A1B scenario
within the CMIP3 multi-model dataset. Sample sizes of the two models in a pair are
denoted by Nx and Ny. In the last column (%), the pairs are denoted by “0” when the
test can not be performed, by “E” when equal variances have to be assumed and by “U”
when unequal variances can be considered.

VI GISS (AOM-ER)
VII GISS (AOM-EH)
VIII | NCAR (CCSM3-PCM)
IX | UKMO (CM3-GEM1)

Pair Name t

I CGCM (T47-T63) E

II MIROC (T106-T42) E

II1 CSIRO (3.0-3.5) 0
v GFDL (2.0-2.1) 0]

Vv GISS (EH-ER) U

U

U

U

0

H\TNMW)—‘P—‘P—‘CJIxZ
Hoow»h»h»—kp—noo»—l!z
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Fig. 2.1: Schematic of the conceptual relationship between prior and posterior defini-
tions of model independence.
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Fig. 2.2: Climate-change projections for the a) summer and b) winter surface air
temperature and for the ¢) summer and d) winter precipitation rate. These changes are
calculated over 20-year time periods compared to the 1900-1950 level for each of the
models presented in Tab. 2.2. All available realisations are averaged over the regional
domain of North America.
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Fig. 2.3: To be continued...




90

Bem Ky (2000-2020) BoHy (2040-2060) -y (2080-2100) .
2
0g
-2
5 Y -4
dmoan-t-es-e-GISSHR.eps.
t-mask (2040-2060)
msh-b-tas-a~GIESHR-SLO.025 epa.
(c) GISS : EH-ER
Bomhy (2040-2060)
&4
2
0@
=2
-

meant-des-enGI8BAR op3

t-mask (2040-2060)

magh-t-as-9-GISEAR-510.02%. e

(d) GISS : AOM-ER

Fig. 2.3: To be continued...




91

I, - 1, (2000-2020)

b, ~ b, (2040-2060) i, ~ 1, (2080-2100)

__ 1-mask (2000-2020) -
Sy S
-, 3 ‘

mak:

.025.2p8

(e) GISS : AOM-EH

I - K, (2040-2060) I~ b, (2080-2100)

t-mask (2040-2060)

t-mask (2000-2020) t-mask {2080-2100)
e

mask-tetas-o-NCAR~6L0.075 £03

(f) NCAR : CCSM3-PCM

Fig. 2.3: Difference of the ensemble mean climate-change signal for different pairs of
models (or versions) developed by the same research institute. The climate-change signal
is calculated for each simulation relatively to the 1900-1950 period. The panel at the
bottom of each difference shows the mask of rejection of the null hypothesis by using a
two-tailed ¢-test at the 5% significance level (2.5% on each side). Red and blue colours
mean positive and negative differences respectively.






CHAPTER III

THEORETICAL FRAMEWORK FOR RECONSTRUCTING MISSING
MEMBERS IN A MULTI-MODEL ENSEMBLE OF AOGCMS

ABSTRACT

Model Intercomparison Projects aim to compare climate-change projections obtained
from different modelling centres. The main value of such ensembles of simulations re-
sides in providing the scientific community with the plausible range of future climates.
However, such ensembles are often constructed in a rather arbitrary manner, mainly
based on the computing resources available to the participating centres. It follows that
studying the uncertainty in such ensembles can suffer of limitations due to the use of a
non-systematic experimental framework. In order to circumvent these limitations, one
can consider the alternative of artificially regenerating the “missing simulations” in the
ensemble in order to provide a systematic framework for the further analysis. The present
chapter investigates the feasibility of two data-reconstruction methods : the single-model
and multi-model pooling. The first method consists in regenerating new members for a
model by using only the information available from that model. The second method
consists in regenerating members by using the information available from several models
in the ensemble. The choice of the method depends on 1) the invariance of the statis-
tics when calculated over time or across the multiple realisations associated to a model
(ergodicity), and 2) the similarities in inter-member (internal) variability across models.

3.1 Introduction

Over the last years, several Model Intercomparison Projects (MIPs) have been conduc-
ted internationally by the climate modelling community in order to characterise the
main sources of uncertainty affecting the climate-change projections for the 21st cen-

tury. Among these sources, the uncertainty emerging from different modeiling approaches
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(commonly known as “model uncertainty”) can be investigated through the use of multi-
model ensembles (Tebaldi and Knutti, 2007). One basic characteristic of such ensembles
is that different models are run under similar external forcings ; popular examples are the
Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset (Meehl
et al., 2007a,b) and CMIP5. Commonly applied external forcings include anthropoge-
nic sources such as the greenhouse gases and aerosols (GHGA) emissions and land-use
scenarios (Nakicenovic et al., 2000). On the other hand, forcings from natural sources
are also applied to climate models simulations as the events of volcanic emissions (Sato
et al., 1993; Ammann et al., 2003) and the historical trends and cycles in the solar
irradiance (Lean et al., 1995). The external forcings that are prescribed in the models
are also affected by uncertainty ; for example, the anthropogenic forcings are intimately

related to the future socio-economical and political context.

Another source of uncertainty is the natural variability of the climate system that ranges
over broad time scales, from seconds to thousands of years. It is generally considered
as a source of uncertainty that is internal to the system since it appears even under
stationary climate forcing. The natural veriability -can-be-sampled—byusing—a single—
but long climate-model simulation (e.g. thousands of years). Similarly, the inter-member
variability appears as the spread between several realisations using the same model,
but with slight differences in the initial conditions. This measure of spread is generally
attributed to the natural climate variability when sampled from an Atmosphere-Ocean
General Circulation Model (AOGCM) (Sorteberg and Kvamstg, 2006; Deser et al., 2010).
Comparatively, the inter-member variability that is sampled from a Regional Climate
Model (RCM) (Alexandru et al., 2007; Lucas-Picher et al., 2008; Nikiema and Laprise,
2011) is generally smaller in magnitude. While the realisations from an RCM use the
same boundary conditions that also include the natural climate variability (e.g. from an
AQOGCM), the inter-member variability represents in this case the deviations from an

externally forced state.

For a given external forcing scenario, a multi-model ensemble (MME) implies simulations
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from several models and where each one is represented by one or several realisations
(members). Different number of members is often noted across models due to the high
cost of producing simulations for long periods (e.g. hundreds of years) with increasingly
high resolutions, while the participating centres have limited resources and their own
interests. Such a MME can be represented as a two-dimensional matrix of simulations
(models, members for each model) where some elements are “missing” compared to an

idealised ensemble where each model would have the same number of members.

Even more complex MMEs result from dynamical downscaling with Regional Climate
Models (RCMs) driven by lateral atmospheric and sea-suiface boundary conditions from
AOGCM simulations (e.g. ARCMIP !, NARCCAP %, ENSEMBLES 2, CORDEX 4). Such
framework also suffers from missing matrix elements due to the very high cost involved
in attempting to downscale each member of each AOGCM with each RCM. However, the
effects of the missing model combinations can be minimised when the missing elements
are systematically distributed across the matrix. For example in the NARCCAP project,
each AOGCM is used to drive three RCMs, while each RCM uses boundary conditions
from two AOGCMs (Mearns et al., 2009). The ENSEMBLES project on the other hand,
while attempting to account for several sources of uncertainty, suffered from an imbalance
between the sampling of the scenarios, model combinations and member realisations

(van der Linden and Mitchell, 2009).

The use of an unbalanced ensemble can involve biases and large sampling errors when
partitioning the uncertainty into several components of variability. In order to circumvent

these issues and hence reinforce the message conveyed by the analysis of the uncertainty

1. The Arctic Regional Climate Model Intercomparison (ARCMIP), http://curry.eas.gatech.
edu/ARCMIP/.

2. North American Regional Climate Change Assessment Program (NARCCAP), http://www.
narccap.ucar .edu/.

3. The ENSEMBLES Project, http://www.ensembles-eu.org/.

4. COordinated Regional climate Downscaling Experiment (CORDEX), http://www.meteo.
unican.es/en/projects/CORDEX/.
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components, Déqué et al. (2007, 2012) used data-reconstruction methods for projecting
a non-systematic framework onto a systematic one. One should keep in mind though
that an inappropriate data-reconstruction method could also result in an increase of the

uncertainty by adding arbitrary noise to the original dataset.

Since several empirical ways can be imagined in order to regenerate the missing elements
of a matrix of simulations, this chapter presents a theoretical framework that aims at
choosing the most suitable between two data-reconstruction methods. The first method,
henceforth referred to as single-model pooling (SMP), consists in a resampling from the
available realisations of one model in order to generate artificial members to that model.
The second method, referred to as multi-model pooling (MMP), uses the realisations
from different models to generate artificial members to any of the models. The choice
of the most suitable approach implies two scientific questions that are inherent to the
nature of the MME. The first one (Q1) asks for ergodicity in a single-model ensemble,
i.e. the invariance of the statistics whether computed over time or members (Peixoto
and Oort, 1992). The second (Q2) addresses the differences in the simulated climate
variability by different-models, more precisely whether these differences are physically
significant.

Sect. 3.2 presents the theoretical framework in order to make an educated guess on
which data-reconstruction method is the most appropriate for generating the missing
members in a MME. Sect. 3.3.1 describes the data used in this study, which consist in
an subset extracted from the CMIP3 multi-model dataset (MMD). Sect. 3.3.2 presents
the decomposition of the climate variability into forced and unforced components, and
Sect. 3.3.3 develops the testing frameworks related to both questions Q1 and Q2. The

results are analysed in Sect. 3.4, followed by a general discussion in Sect. 3.5.

3.2 General approach to member reconstruction

As noted in Introduction, the use of a non-systematic ensemble framework can be an

issue when applying common statistical methods (e.g. analysis of variance) to separate
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the different components of the uncertainty. In this chapter, we propose two methods for
generating the missing elements in an unbalanced ensemble such as the MMD. Basically,
both methods generate artificial simulations by resampling over a “pool of climatic da-
ta”, either from single-model or multi-model information. We will first describe the two
types of pool, and then we will integrate the two approaches within a single theoretical
framework aiming to make an educated guess on which one is the most suitable for

applying to the MMD.

An important part of our analysis is based on the fact that a single-model ensemble of
climate simulations can be considered as ergodic, i.e. that the main statistics (e.g. mean
and variance) are invariant whether calculated over time for one realisation or over seve-
ral members for one specific time. In order to apply the ergodic assumption to the case of
a single-model ensemble of AOGCM simulations, some basic conditions have to be met.
Firstly, the realisations have to be run under stationary conditions or more specifically,
with constant external forcings applied (e.s. GHGA emission and land-use scenarios,
volcanic emissions, solar irradiance). Secondly, the realisations are independent, that is
the initial conditions have been forgotten by leaving a sufficiently long spin-up time
period at the beginning of each simulation. Finally, the ensemble size and the length of
the simulations are sufficiently large. It is worth noting that seasonal, annual or longer
time-averages can be considered in order to avoid any correlation between the members
due to either the daily and annual cycles. For more details about the previous condi-
tions, Appendix 3.A presents an example of application of the ergodic assumption to a

single-model ensemble of AOGCM simulations.

By assuming the truthfulness of the ergodic assumption for a single-model ensemble of
simulations, it follows that artificial simulations can be regenerated for one model by
random sampling over the data available from the members of that model. By using such
an approach, the artificial time series are not expected to reproduce all the characteristics
of a climate model simulation, such as the sequence of weather events. However, under

the ergodic assumption, the statistics are expected to be preserved in the extended
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ensemble : i.e. the mean or variance of climate calculated for one realisation should
equal the ensemble mean at any specific time. In what follows, we refer to this method
as the single-model pooling (SMP) since the information available from one model is

used as a pool for generating artificial members for that model.

The SMP method can be extended by pooling together the realisations from several
models in order to form a multi-model pool (MMP) from which climatic data can be
resampled. While the SMP method could be limited in the case of a model providing
very few members (e.g. one), the MMP method offers a wider pool to pick from. Un-
fortunately, it is well known that different models can show relatively large differences
in their simulated climate (Greene et al. 2006, Gleckler et al. 2008). Inter-model dif-
ferences can also be expected for the natural variability, but the physical significance
of these differences could be judged small enough in some cases to consider the MMP
approach. Assuming the model biases to be removed and thus imposing equal means
between the models, the MMP generates artificial members for one model by sampling

over the climatic data available from the members of other models.

As stated previously, the two pooling methods involve an ensemble of simulations run
under stationary condition. Obviously, this condition is not met for the MMD projections
into the 21st century where the models employ transient external forcings as GHGA
emission and land-use scenarios, volcanic emissions, variations in the solar irradiance, etc.
However, one can approach stationary conditions (and hence ergodicityj by removing the
forced component in the simulations. Such an approach allows leaving only the unforced
component that represents the internal variability as simulated by the models. It is worth
noting that the forced component can be extracted by using the ensemble mean, but
doing so generally necessitates a large number of realisations (e.g. Wigley et al. 2005).
In the case of the MMD that generally provides very few members for each AOGCM, an
important part of the forced component can be removed by detrending the simulations

according to the ensemble mean of each single-model ensemble (see Appendix 3.B).

Fig. 3.1 presents a flowchart that summarises the proposed theoretical framework for
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reconstructing the missing members in a MME of AOGCMs in order to obtain a balan-
ced ensemble framework. Beginning from the top of the diagram with an MME under
transient forcing, the simulations have to be detrended to approach stationary condi-
tions and hence allows the ergodic assumption to apply. The next step is represented
in the figure by a diamond box that involves a first scientific question that is deno-
ted as Q1 ; this question aims at verifying if the detrending of the simulations satisfies
the ergodic assumption. It involves a test (Appendix 3.C) that allows detecting if a
single-model ensemble can be treated as ergodic by investigating both the statistical
and physical significance of the non-ergodic part of the signal. In the case that the
single-model ensemble is judged ergodic, the next step in the flowchart involves a second
scientific question, denoted as Q2, which checks the equality of the climate variability as
simulated by different models. To help answering this question, a second test (Appendix
3.D) is constructed for evaluating both the statistical and physical significance of the

inter-model differences in the simulated climate variability.

In the case that the answer to both questions Q1 and Q2 is “yes”, we consider as suitable
the use of a MMP for reconstructing the missing elements in the MME. In the case
that we answer “no” to Q2, a SMP should be preferred. Since ergodicity is expected for a
single-model ensemble run under stationary conditions (Appendix 3.A), it is worth noting
that answering “no” to Q1 could reflect an inappropriate detrending of the simulations.
For example, it could be due to the degree of the fitted polynomial function that is not
appropriate or that a correction should also be applied to higher statistical moments. An
alternative could be to reject the non-ergodic simulations or to consider other methods
for data reconstruction. Once the choice of the miost suitable type of pooling is done,
artificial members can be generated for any model in the ensemble. It is worth noting
that the removed trends can be “added back” to the generated members, depending on

the needs of further analysis.
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| 3.3 Experimental framework
3.3.1 Data

In this study, we consider a subset of simulations from the CMIP3 MMD. More speci-
fically the eleven models providing more than a single realisation for the A1B scenario
have been retained. This subset from the large ensemble will be referred to as the MME.
The projections for the A1B scenario have been merged with their corresponding run for
the 20th century, resulting in 42 simulations covering the period from 1900 to 2100. The
model names are .shown in Tab. 3.1 with their respective number of available members
(Nk). Also are shown in the table which models include the radiative forcing due to the
volcanic emissions and variations in the solar irradiance. The complete models’ specifi-
cations can be found on the Program for Climate Model Diagnosis and Intercomparison
(PCMDI) website at http://www-pcmdi.1lnl.gov. The present study focuses on the
time evolution of the summer-average surface air temperature over North America. The
simulations from the different models have been linearly interpolated over a common
grid of 4° x 5° degrees. The time series are-detrended-according to-4th-degree polyno——
mial functions fitted to the ensemble mean of each model. This method for detrending

the simulations is detailed in Appendix 3.B.

3.3.2 Components of variance

Fig. 3.2 schematises an ensemble of simulations performed by a single climate model.
This single-model ensemble can be seen as a matrix (X) containing time periods (t) and
realisation (member) number (k). Note that the model index (m) and spatial coordinates

are implicitly considered to lighten the notation. An element (Xy) can be described as
Xue = p+ag + ew, 3.1)

where p represents the mean climate of the single-model ensemble. As described in

Appendix 3.B, the time series are detrended in order to approach stationary conditions.
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It follows that the X are time deviations (from the trend) and hence that p tends
to zero by construction. The first component (a;) describes the deviations that are
shared across all the realisations according to the time. Because of the detrending, this
component does not reflect the GHGA or aerosols emissions, but includes faster cycles
resulting from volcanic emissions and solar irradiance when these are taken into account

and simulated by a model.

In the following analysis, we assume a; as a random effect occurring in time with some
variability defined as the forced variance cr%. For ey, it consists in the residual fluctua-
tions that are assumed to be independent and identically distributed (#d) according to
t and k. The residual fluctuations component has a variance U?V and is expected to
represent the internal variability as simulated by the model. Based on the assumption
" that a; represents the forced component, a%v can be also interpreted as the natural
variability of the modelized climate system under stationary conditions. Based on the
previous statistical model and its related assumptions, the elements Xy are distributed

with a variance that will be referred to as the total climate variability (02,) :
2
Tl = 0% + oty (3:2)
a sum of the forced variance (¢%) and the internal (natural) variability (o%;).

3.3.3 Hypotheses testing

The two questions (Q1 and Q2) that appear in the flowchart in Fig. 3.1 can be investi-
gated through the use of test statistics. Each of these statistics involves the rejection of

a null hypothesis that translates the scientific question under study.

A formulation of the test associated to the first question (Q1) can be found in Appendix
3.C. The null hypothesis is denoted as Hy °° and states that there is no forced component
of variability according to the time and hence that all the variability of the single-model

ensemble is described by the urnforced component (cr%v). A rejection of Hy ?° (using an
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F-ratio denoted as F1) means that the forced component of variability is statistically
significant, i.e. that the single-model ensemble is not ergodic from the point of view of
the test. It follows that the ergodic assumption cannot be verified directly but can only
be rejected at some significance level. In ordef to appreciate the physical significance of
the regions where the null hypothesis is rejected, P, represents the ratio between the
forced variability (¢%) and the total climate variability (0% + o%).

The second question (Q2) is addressed in Appendix 3.D and can be translated by the null
hypothesis HZ%". This hypothesis states that the simulated total climate variability (c2,)
is equal between two models (labeled as m and m'). In order to reject this hypothesis,
we use the statistics Fo(m,m’) that consists in an F-ratio between the two variances.
In order to quantify the physical significance of the difference in variability, the relative
error of variance Po(m,m’) is used, which consists in a ratio of the difference in variance

with the mean variance of the two models (Eq. 3.16 in Appendix 3.D).

3.4 Results

In the following two sections, we evaluate the feasibility of applying the SMP and MMP
member-reconstruction methods in order to regenerate the missing simulations in the
MME. The results are presented through an investigation of the two scientific questions

(Q1 and Q2) that are involved within the theoretical framework presented in Fig. 3.1.

3.4.1 Ergodicity in single-model ensembles

In this section, we present the results related to the first question (Q1) of the theoretical
framework proposed in Fig. 3.1. This question focuses on the ergodic assumption applied
to single—modél ensembles. In our analysis, we use the summer mean surface air tem-
perature for the eleven models of the MMD that provide more than a single realisation

(Tab. 3.1). The results for this test are shown for the 20th and 21st centuries separately.

Considering first the simulations over the 20th century, in Fig. 3.3 is shown the variance



103

ratio (P1) for each of the models that are sorted from the largest (Fig. 3.3a) to the
smallest (Fig. 3.3k) number of realisations. The coloured regions indicate the areas where
H{™° is rejected with a significance level of 10%. Given the significance level, the critical
values of Fy are calculated from the F-distribution and are determined by both the
number of climatic time periods Nt and ensemble size Nx as F(Np — 1; Ny x (Ng — 1))
(see Appendix 3.C). For example, the critical value of the variance ratio Py is 0.03 for
the CCSM3 model (Fig. 3.3a) and increases to 0.13 for GISS-AOM (Fig. 3.3k) due to the
reduction in the ensemble size from Ny = 7 to Nx = 2. It is worth noting that a lower -
significance level (e.g. 1%) would have a similar effect by increasing the prominence of

the non-rejecting regions (in white).

The rejecting rate can be defined as the percentage of the domain where the null hypo-
thesis is rejected. By comparing the different models in Fig. 3.3, it can be seen that some
models show rejection rates that are higher than 20% of the domain (CCSM3, GISS-ER,
PCM, GISS-EH and MIROC3.2(medres) in Fig. 3.3a, d, f, g and i respectively). The
other _models show relatively small rejection rates with values smaller than 9% of the

domain.

If we now pay attention to the spatial distribution of the ratio (P;) between the forced
and total variability (referred to as the non-ergodic signal), in Fig. 3.3a, f and g, there
are areas where P, > 20% of variance. This mainly occurs in the southeast part of
the domain, over the Gulf of Mexico and extending over the Atlantic Ocean. Weaker
signal is also noted along the east-coast of the United States for MIROC3.2(medres)
and ECHO-G (Fig. 3.3i and j), and over the Gulf of Mexico for GISS-ER (Fig. 3.3d). An
interesting feature is that the detection of a non-ergodic signal generally appears over the
oceanic or coastal regions while less occurrence appears over the land regions where the
non-ergodic signal is generally smaller than 10% of the variance, with an exception for
the PCM and GISS-EH models showing a local maximum (P; = 15%) over the Québec
province of Canada. Recalling Tab. 3.1, the models without volcanic and solar forcing

are CGCM3.1(T47), MPI-ECHAMS, FGOALS-g1.0, and GISS-AOM. In Fig. 3.3 (b, ¢, h
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and k), all four models do not display any clear signal of rejection of the null hypothesis
(Hg™®°) through very low rejecting rates. It is worth noting that the MRI-CGCM2.3.2
model does include both of the volcanic and solar forcing agents but does not show any

significant variability according to the present test.

The results for Q1 are also shown for the 21st century in Fig‘. 3.4. The occurrence of
a non-ergodic signal is relatively rare for most of the models and the rejection rate is
always smaller than 12% of the domain. Also, the non-ergodic signal present near the
" Gulf of Mexico in the simulations for the 20th century does not appear at all in the 21st
century. This result shows that after detrending the simulations, some variability due to
external forcings is remaining in the simulations for the 20th century but not in those for
the 21st. It seems that this remaining variability is mainly due to the volcanic emissions
events in the 20th century rather than to the cycles in the solar irradiance (Appendix
3.B). However, the effect of these two forcings is difficult to evaluate separately by using
the MMD since the models that include volcanic forcing also account for variations in

solar irradiance.

Recalling that the critical value of the F-distribution depends on the number of climatic
time periods (NT) and the ensemBle size (Nk), it is worth noting that a large Nk
does not necessarily involve a high rejecting rate of the null hypothesis. For example,
the CGCM3.1(T47) and MRI-CGCM2.3.2 (Fig. 3.3b and c) models that have relatively
large ensemble sizes (Nx = 5), Hg °° is rejected over only 5% and 2% of the domain
respectively. Given the level of statistical significance, a single-model ensemble can be
considered as non-ergodic from a statistical point of view over the regions where the
null hypothesis Hg ?° is rejected. From the physical point of view, one can argue for
ergodicity over the same regions if the variance ratio (P;) is judged sufficiently small.
Overall, the results suggest that we can assign a rather positive answer to Q1, i.e. that

the ergodic assumption generally holds over a great part of the domain and especially

for the land regions in the simulations for the 20th century and practically for the entire

domain in the 21st century.
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3.4.2 Inter-model differences in the simulated total climate variability

In the previous section, we analysed the non-ergodic part of the signal by comparing
the forced variability (o%) to the total climate variability (0% + o%). The forced com-
ponent generally appeared relatively small and hence the internal variability (¢2,) has
to count for the largest part of 02, due to the sum of variances (3.2). In this section,
we investigate both the statistical and physical significance of the inter-model diffe-
rences in the simulated total climate variability. Such an analysis can provide valuable
information for answering question Q2, which plays a decisive role in the selection of a
data-reconstruction method according to Fig. 3.1. As shown in Appendix 3.D, the total
climate variability simulated by two models, denoted as o2,(m) and o,(m’), can be
compared using the relative error of variance Py(m,m'). Using the 11 models of the
MME, 55 subsets of two models can be formed. These 55 comparisons are presented in
Fig. 3.6 in the form of a strictly upper triangular matrix of panels where the m models
are represented as rows (a to j) and the m’ as columns (b’ to k') (see Tab. 3.1 for the
model name associated to each letter). The P, statistics is bounded between Py = —2
(in blue) where the ratio F; = 0 and saturates to Py = 2 (in red) for F» — oo. For
equal variability between the two models (i.e. F» = 1), the relative error is P, = 0. In
Fig. 3.5, P» is plotted as function of F5 according to Eq. 3.16 in Appendix 3.D. Using
a two-tailed F-test at the 10% significance level, a white mask has been applied over
regions where the difference of variances is not statistically significant. In these regions,

not enough evidence allows to distinguish the two models’ climate variability.

In Fig. 3.6, the inter-model comparison of the total climate variability is done for the
20th century. A general feature is that the rejection rate of the null hypothesis (HE*)
is rather largé, i.e. that the inter-model differences in the total climate variability are
statistically different over large proportions of the domain. It is worth noting that the
sign of Py(m, m') is determined by the order of the comparison between m and m’. For
example, if we focus on the comparison of GISS-EH with the other models, we follow

the g’ column to be compared with the models o to f and continue on the row g for a
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comparison with the models A’ to k¥’. For this model, one can identify a maximum value
of relative error located over the Hudson Bay represented in blue in the ¢’ column and
in red in the g row. Particularly, the panel (g,h’) displays a maximum corresponding
to a total climate variability that is 10 times larger in variance for GISS-EH than for
the FGOALS-gl.0 model. Inversely the GISS-AOM model has generally smaller total
climate variability then the other models over the largest part of the domain where the
values of P, are positive (column %'). An interesting feature can be seen in the pair
(d,g’) that shows a relatively low rejection rate compared to the other pairs. These
models (GISS-ER and GISS-EH) are developed by the same institute but differ only in
their ocean component. This could probably explain the maximum of relative error of
variance (P, &~ —1.5) found over the Hudson Bay. On the other hand, the continental
values generally do not exceed P, = 0.5, which corresponds approximately to twice the
variance of the reference (i.e. Fy = 2 acicording to Fig. 3.5). These results are consistant

with the inter-model comparison done by (Santer et al., 2011).

If we now look at the cross-model comparison for the 21st century (Fig. 3.7), the results
appear very similar to those obtained-forthe20th-century(Fig-—3.6). For example, the
positive maximum value of relative error over the Hudson Bay is preserved for the GISS-
EH model (g) as for the GISS-AOM model (k) that has a total climate variability that
is smaller than the other models over a great part of the domain. Also, the total climate
variability of the GISS-ER and GISS-EH models are still statistically similar over the
land since the null hypothesis is weakly rejected.

As noted in Sect. 3.4.1, the non-ergodic part of the variability (¢%) can greatly contribute
to the total climate variability (02,,). However, the large contributions are generally
located in an area characterised by rather small total climate variability such as the Gulf
of Mexico (not shown). Added to the fact that the inter-model ratios of total climate
variability do not change much between the 20th and 21st centuries, this suggests that
the internal variability of the climate models is relatively robust over centennial periods

under the A1B emissions scenario. However, investigating shorter periods would probably
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reveal temporal changes in the simulated internal variability as obtained by Réisénen

(2002) using the previous generation of models.

3.5 Discussion and conclusions

Model intercomparison projects (MIPs) cqnsist in internationally conducted experiments
where different modelling centres provide simulations from one or several models. In
order to encourage diversity in the participating models, low requirements are generally
asked to the centres in the mimber of simulations to be provided. It follows that these )
ensembles are very likely to result in non-systematic frameworks due to an imbalance in
the sampling of scenarios, models and realisations. An unbalanced ensemble design can
induce errors in the use of some diagnosis tools (e.g. analysis of variarice). We proposed
two simple methods in order to artificially generate the members that are missing in a
multi-model ensemble in order to obtain a balanced framework. Both methods use a pool
of climatic data which are resampled to create artificial time series. The first method
involves a pool constructed using the realisations from a single-model, the second use

data from multiple models.

The single-model pooling (SMP) method requires that the single-model ensemble is
ergodic and hence that time periods can be considered in the construction of new mem-
bers and vice versa. The CMIP3 multi-model dataset (MMD) being run under transient
forcings,‘ the most important being the GHGA emissions, the simulations have been de-
trended in order to remove the main part of the forced component. It appeared from
the results that the single-model ensembles are rather ergodic even if the effect from
some transient forcings has survived to the detrending. Especially, the simulations for
the 21st century appeared more ergodic since subject to less synchronised transient for-
cings compared to the 20th century where the volcanic emissions and the solar irradiance
are modulated in time based on historical records. The non-ergodic signal for the 20th
century has been mainly detected over the Gulf of Mexico for several models while this

feature does not appear for the 21th century.
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In order to use the multi-model pooling (MMP) method, the ergodic assumption must
apply for the different single-model ensembles and with the supplementary condition that
the climate variability must be simulated with a similar intensity among the models. The
results show that the inter-model differences in variability are generally significant over
the most of the analysed domain. However, some pairs of models share some similarities
in the simulated total climate variability, such as the GISS-ER and GISS-EH models over
land, while larger differences are found over the Hudson Bay. These differences have been

attributed to the fact that the two models differ only by their ocean component.

We proposed a theoretical framework for choosing the most appropriate method for
reconstructing the missing members in a multi-model ensemble. We attributed a rather
positive answer to Q1 and then the SMP method can be applied to reconstruct artificial
time series. The second question (Q2) results in a rather negative answer and hence the
MMP method seems less appropriate for an application to this MME. It is worth noting
that a positive answer to both questions would suggest the application of both the SMP
and MMP methods, but in that case the MMP would provide a larger pool of climatic
time periods to-resample from and hence should-be preferred.

We acknowledge that more complex testing frameworks could have been implemented
for obtaining a more precise answer to questions Q1 and Q2. For example, the changes
in the internal variability of the climate system for the next century were neglected
in the present study since they are expected to be rather small for temperature over
midlatitudes (Hawkins and Sutton, 2011, 2009; Réisénen, 2002) and hardly detectable

due to the poor sampling of realisations for each model.
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Appendix 3.A : Applying the ergodic assumption to climate model simulations

The ergodic theory has been developed through research in statistical physics (e.g. Reif
1965). As a general definition, the ergodicity principle applies when a characteristic of
a system is invariant according to different coordinates (axes). In the present, we apply
the ergodicity principle between the time and the "members" axes as described in the

following example.

Let us first consider an AOGCM used to simulate the planetary weather over a long
climatic time scale (e.g. several centuries). We assume a sufficiently long spin-up period
has been removed at the beginning of the simulation (Stouffer, 2004) after which the
simulation has reached some equilibrium between the main components of the model
(e.g. atmosphere, ocean, land, sea-ice, vegetation). The model is run under stationary
conditions, i.e. that no external transient forcings are applied (e.g. GHGA emission and
land-use scenarios, volcanic emissions, variations in the solar radiation). We note that
the diurnal and annual cycles in solar radiation are included, resulting in simulations
that are cyclo-stationary. Let us now suppose that we generate a large ensemble of such
simulations by using the same model but with slight differences in the initial conditions.
After the spin-up perioci, the two simulations are expected to be totally uncorrelated
at every time scales from day-to-day variability to longer cycles as the multi-decadal

climate variability.

Suppose now that we proceed to averaging over seasonal, annual or longer time periods
in order to focus on a climatic time scale, thus removing both the daily and annual cycles
in the time series. The simulations being now stationary and assuming sufficiently long
simulation period with a large ensemble, it is expected that the time average over one
time series will tend to equal the ensemble average at any specific time. Similarly, the
temporal variance calculated from one simulation (natural variability) will tend toward
the inter-member variance at any time (internal variability), and similarly for the higher

statistical moments.
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Such an ensemble of simulations can be considered as ergodic in a similar way as used
in statistical physics. According to Reif (1965), the ergodic assumption can be stated as
"each system of [an] ensemble will in the course of a sufficiently long time pass through
all the values accessible to it". In our example, a system consists in a realisation and the
ensemble is formed by all the realisations available for a given model. If considering a
sufficiently long time scale, it is expected that each realisation will visit all its accessible
states but at different moment in time since the realisations are independent from one
another. Corollary, the statistics calculated in time for one realisation are expected to be

equal to the same statistics but calculated over all the realisations at one specific time.

It is interesting to note that for such an ensemble under ergodic conditions, the only
difference between the time and member axes is the chronology of the events that cha-
racterises the time axis. On the other hand, the member axis can be seen as time axis

but without any preferred order of chronology.

Appendix 3.B : Approaching stationary conditions by detrending the ensemble

mean

The simulations provided by the CMIP3 multi-model (MMD) dataset include impor-
tant external transient forcings and then the ergodic assumption (see Appendix 3.A) is
not expected to hold. However, stationary conditions can be approached for a particu-
lar model by "correcting” its ensemble mcan (i.e. the average over the realisations). If
the higher statistical moments are not processed as the ensemble mean, the resulting
ensemble can be seen as under “weakly stationary” conditions. One should note that a
weakly stationary process generally involves both of the two first statistical moments

(von Storch and Zwiers, 1999).

The ensemble mean represents the mean response of a model to its external transient
forcings in the limit of a sufficiently large ensemble size. In the simulations from the

CMIP3 experiment, the most important external forcing being the emission scenario,

its general effect on the simulations can be described using a 4th-degree polynomial
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regression as done by Hawkins and Sutton (2009). Another effect that can be described
by a 4th-degree function is the secular changes in solar radiation along the 20th century.
The effect of volcanic emissions and the periodic variations in the solar radiation will
survive to the detrending because those happen synchronously across all the realisations.
While the effect of the former is expected to be important compared to the latter for
the surface air temperature, the two effects are difficult to separate using the CMIP3

archive since the models generally include both or neither of these forcings.

As an example, Fig. 3.8 shows the coefficient of determination (R?) that characterises the
fit of a 4th degree polynomial function to the ensemble mean of the GISS-ER ensemble of
simulations. The coefficient of determination informs us about the proportion of variation
that is described by the regression compared to the total variability about the overall
mean (averaging over the time and the realisations). As seen on this figure, the values
of R? are higher than 90% over Pacific Ocean (PO) while relatively small (< 50%) over
' th;e Labrador Sea (LS). In Fig. 3.9a and b are shown the summer-mean time series over
two grid points that correspond to the previous regions. In these pa.nels,lthe different
realisations are shown as thin coloured lines and the ensemble mean as a black line. The
red line represents the polynomial function fitted to the ensemble mean. These curves
show that, even for regions with small R2, a 4th-degree polynomial function seems to

describe properly the general trend detected in the ensemble mean.

As noted previously, the effects from some transient forcing agents are expected to
remain in the climate simulations after the detrending of the ensemble mean. In Fig.
3.10 are shown the domain averaged (over North America) time series for the available
members of each models, the ensemble means and the related polynomial fits. The GISS-
ER model (Fig. 3.10d) shows three large peaks in the ensemble mean that corresponds to
important volcanic events throughout the 20th century : Novarupta in 1912, El Chichén
in 1982 and Mt. Pinatubo in 1991. The other models presented in the figure generally
show a weaker response to volcanic forcing compared to the GISS-ER and GISS-EH

models. Also, it can be seen from a general point of view that the structure of the
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ensemble mean is generally different between the 20th and 21st centuries (e.g. PCM in
Fig. 3.10f). In the 21st century, the ensemble mean is relatively close to the fit with
relatively short cycles while longer cycles can also be seen in the 20th century. These
oscillations are partly attributable to the numerous volcanic emissions that have been
recorded (Ammann et al., 2003) for the 20th century and that are used to force most of
the models of the MME.

Appendix 3.C Testing the ergodic assumption for a single-model ensemble

In this appendix, we describe a testing framework in order to investigate the ergodic
assumption for a single-model ensemble of simulations. This test aims to provide an
answer to the first scientific question (Q!) asked through the theoretical framework

presented in Fig. 3.1.

A single-model ensemble of simulations can be represented by a matrix X as shown in
Fig. 3.2. Using the linear model (3.1), a one-way analysis of variance (ANOVA ; von
Storch and Zwiers 1999) can be applied to decompose the total variability in X into a
sum of sd_uares, ie. §ST = SSA+ SSE, where SST is the total sum of squares, SSA
the sum of squares due to the treatment in time and SSE the residual error. These three
components are summarised in Table 3.2 where the “0” notation indicates averaging over
the missing subscript. Also is shown in this table the number of degrees of freedom (df)

associated to each sum of square.

In order to build a test statistics that translates the ergodic assumption for the ensemble
shown in Fig. 3.2, we define the null hypothesis as :

Nt
Hi®: Y a=0 (3.3)
&

The null hypothesis (3.3) means that there is no treatment along the time axis and hence
that all the variability in the ensemble matrix (Fig. 3.2) is described by the residual error

(etk). The errors are assumed to be independent and identically distributed (iid) and
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hence represent the ergodic (unforced) component of the matrix, i.e. an invariance of the
statistics according to time and members. On the other hand, a; represents the forced
variability in time and hence the non-ergodic component. It is worth noting that in the

TG0

context of a single-model ensemble including the GHGA forcing, H§ °° is expected to

be strongly rejected.

Before constructing a test statistics for the ergodic assumption, let us consider the term
SSA as shown in Tab. 3.2. Using (3.1), it can be shown that the expectation of SSA

can be written as :
E(SSA) _aE ) a?
Np-1  Np-1

+ o}y (3.4)

where
9 E(SSE)

oy = m (3.5)

is the variance of the #d process (e;x) which can be associated to the model simulated
internal variability. From (3.4), it can be seen that E(SSA)/(Nr — 1) estimates o%y,
when Hg ?° is true and a larger number if Hg' *° is false. Similarly, it can be shown that

E(SSE)/(Nr x (N — 1)) estimates 0%, independently of whether if Hg %° is true or

false. In order to test Hg °°, we then use the following ratio :

SSA/(Np —1)

B = 55E/vr x (g < 1))

(3.6)-

Under the null hypothesis, F; follows an F-distribution that is defined by its number
of degrees of freedom, i.e. F(Np — 1; Ny X (Ng — 1)). The ergodic assumption can
then be tested using a one-sided test at some significance level by using the critical
values associated to the F-distribution. The F; statistics provides information about
the rejection of the null hypothesis but tells very little about the physical relevance of
of the non-ergodic component. The proportion of variance (P;) of the matrix X that is
described by the forced component of variability can be estimated as :

)
(4
P =F

=" 3.7
T+, =0
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where &% estimates the forced variance that occurs in time, which can be defined as

2
a
0'%,1 == NZTt—tl’ (38)
and thus estimated by replacing (3.8) into (3.4) as :
42 = SSA/(Nr —1) — S;’E/(NT x (Ng — 1)) (39)
K
The ratio (3.7) is finally calculated as :
SSA - g1, SSE
P = LTI gl (3.10)
SST — SSE/Nrp
It is worth noting that Py can be written as a function of Fj :
F -1
Pl=— 3.11
TR Wg -1) -1

Recalling that a rejection of the null hypothesis at sorﬁe significance level involves an
F} ratio that exceeds some critical value calculated from the F-distribution, one can
calculate the corresponding critical value of the variance ratio (P,) by using (3.11). The
variance ratio allows to appreciate the physical significance of the non-ergodic component

when H{™° is rejected.

Appendix 3.D Testing the inter-model differences in the simulated total climate

variability

In what follows, we develop a testing framework for question @2 that investigates the
inter-model differences in simulated total climate variability. From Tab. 3.2, the total

sum of square divided by its number of degrees of freedom allows to estimate the total
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climate variability (o2, :

Plm) = Ny =1 2 2 st = T (3.12)

where m is the model index. Since the simulations have been detrended (Appendix 3.B),
the ensemble mean Xp,0, tends to zero. Also, it is worth noting that the estimate of the
total climate variability given by (3.12) tends to be equal to the sum 6% + 6%, (see Egs.
3.5 and 3.9) when N7 and Nx become large. We thus define the null hypothesis of equal

total climate variability between two models (m and m') :
HY™ 2 0oy (m) = oo, (m)). (313)
This assertion can be verified through the use of an F-test defined as the following ratio :
592
Fy(m,m') = 22—~ (3.14)

Under the null hypothesis (i.e. when HJ*" is true), the F; ratio is distributed as the
P-distribution F(Nx(m) x Nr — 1;Ni(m') x Np —1). It follows that H{®" can be

tested by using a two-sided test at some significance level.
As a measure of physical significance, we define the relative error of variance (P,) as :

&?ot (m) g at2ot (ml)

Py(m, m) = 62, (m)-+32,,(m’) (3.15)
2
This ratio can be expressed as a function of Fy as follows :
F, -1

It results that a critical value obtained for F3 can be converted into a corresponding

critical value for P and vice versa.
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Tab. 3.1: Names of the models in the CMIP3 multi-model dataset that provide two
or more realisations following the A1B emission scenario. Is also given the number of
realisations (Ng) that are available for each model. For supplementary information, the
reader is invited to refer to the PCMDI website at http://www-pemdi.1llnl.gov.

Model name Nk (m) | Volcanic | Solar
a CCSM3 7 X X
b| CGCM3.1(T47) 5 . :
c | MRI-CGCM2.3.2 5 e %
d GISS-ER 4 % X
e MPI-ECHAMS5 4 - -
f PCM 3 X X
g GISS-EH 3 x x
h FGOALS-gl.0 B - -
i | MIROC3.2(medres) 3 % 5
j ECHO-G 3 4 %
k GISS-AOM 2 - -

Tab. 3.2: One-way analysis of variance table where the total sum of squares, the treat-
ment sum of squares and the sum of squared errors are expressed with their respective
number of degrees of freedom. N is the number of time periods and Ny is the number
of realisations generated using the climate model.

Component | Sum of squares | Degree of freedom (df)
total SST =3 1"* K ( Xy — X0 )2 Nrx Ng—1
treatment | SSA= Nk Y, " (Xt — Xoo)? Np—~1

error SSE =Y Nr ZivK (Xex — Xio)? Np x (Ng — 1)
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Detrending models’
ensemble means

_________
-

e Fitted function not appropriate 7
o Detrending higher moments ?

e Rejecting non-ergodic models ?

o Considering other approaches ?

Q1: Is the

single-model
ensemble

ergodic?

Q2: Is the
climate varia-

bility the same

among models?

Single-model pool of
climatic time periods

Multi-model pool of
climatic time periods

Fig. 3.1: Theoretical framework for an educated guess in the selection of a member-
reconstruction method to be applied to a multi-model ensemble (MME) under transient
forcing.
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k

Fig. 3.2: Single-model ensemble schematised as a matrix (X) of time periods. The index
t represents the Ny time periods and & represents the Nk realisations (or members) that
differ in the initial conditions.
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(a) CCSM3 (b) CGCM3.1(T47)
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Fig. 3.3: Testing the ergodic assumption (Hj °) using a one-sided F-test at the 10%
significance level. The colored areas indicate where Hy % is rejected over the domain. The
ratio of variance (P, see Appendix 3.C) is shown in order to appreciate the physical
significance when the ergodic assumption is rejected. The results are shown for the
simulations over the 20th century with a climatic time period of 1 year (Nt = 100) and
the models are labeled from the largest (panel a) to the smallest (panel k) single-model
ensemble size (Nk) according to Tab. 3.1.
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Fig. 3.4: Idem to Fig. 3.3 but for the 21st century.




121

error (P2)

Rel.

0 5 10 L5 20
Var. ratio (F,)

Fig. 3.5: Relative error of variance (P,) as function of the variance ratio (F) of the
total climate variability as simulated by two models (see Appendix 3.D).
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Fig. 3.7: Idem to Fig. 3.6 but for the 21st century.
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Goodness—offit (Rz) in the single-model ens. mean
giss—model-e-r (N‘=200,NT=4)

n)

determinatio

{Coef. of

Fig. 3.8: Coefficient of determination (R2) obtained for the fit of a 4" degree polynomial
function to the ensemble mean of the GISS-ER model.
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Fig. 3.9: Examples of time series for the four realisations (thin colored lines) available
for the GISS-ER model. The series are shown for two grid point located over a) the
Atlantic Ocean and b) the Labrador Sea. The black lines represent the ensemble mean
and the red line the 4** degree polynomial fit to the ensemble mean.
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Fig. 3.10: (To be continued...)
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Fig. 3.10: Domain averaged (over North-America) time series of surface air temperature
covering the 1900-2100 period under the A1B scenario for the 11 AOGCMs of the multi-
model ensemble (Tab. 3.1). In each panel are shown the available realisations (colored
thin lines), the single-model ensemble mean (black) and the polynomial fit (thick red).




CHAPTER IV

SUMMARY AND EXAMPLES OF APPLICATION

ABSTRACT

In this last chapter, we proceed to a review of the main theoretical concepts that have
been developed throughout this thesis, followed by two examples of applications. The first
example compares different possible approaches for obtaining an estimate of the natural
variability representative of the entire multi-model ensemble. In the second example,
the “same-institute assumption” is once again investigated through an improved test
statistics that focuses primarily on temporal variability of the time series rather than on
the inter-member spread.

4.1 Introduction

State-of-the-art climate-change projections using Atmosphere-Ocean General Circula-
tion Models (AOGCMSs) are subject to uncertainties, which are often divided into three
main components. An important one is related to the external forcings that are ap-
plied to the models, which generally consist in the emissions of Greenhouse Gases and
Aerosols (GHGA) that are uncertain since based on scenarios representing the future
socio-economical, technological and political context. By assuming a given pathway of
GHGA emissions, another component of the uncertainty affecting the projections is
known as model uncertainty, which is clearly seen by the fact that different models of-
fer different responses to the same emissions pathways. The model uncertainty is also
sometime addressed from the point of view of a single model that may exist in an ar-

bitrary number of versions that differ in the tunings of weakly constrained parameters
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(Stainforth et al., 2005; Rowlands et al., 2012). The third component is the natural
variability that affects the projections of every model and that can be sampled by gene-
rating a large number of realisations with perturbed initial conditions. One could also
think of two supplementary levels of uncertainty that lie below the natural variability of
an AOGCM. These appear when proceeding to the downscaling of an AOGCM simula-
tion through dynamical downscaling using Regional Climate Models (RCMs) or through
statistical downscaling models (SDM) in order to obtain fine-scale details from AOGCM
simulations. In such an example, a fourth level of uncertainty could be that due to the
different RCMs or SDMs used for downscaling a given AOGCM realisation. A fifth level
of uncertainty would be the inter-member variability of the RCM that can be sampled in
the same way as for an AOGCM, that is by generating several realisations from different

initial conditions.

In the last decades, several internationally coordinated projects have been conducted
in order to sample the different sources of uncertainty. However, the latter sources of

uncertainty are generally investigated quite differently across the projects. For exarnple, ‘
the‘GMIP3 multi-model-dataset (Meehl-et-al., 2007b) sampled several GHGA scenarios,
AOGCM models and realisations thereof. At a different level, the North American Re-
gional Climate Change Assessment Program (NARCCAP ; Mearns et al. 2009) ! used a
few AOGCMs to drive a set of RCMs under a single GHGA emission scenario. Ensembles
of opportunity hence exist in a broad variety that may be seen as different attempts at

assessing the main sources of uncertainty in climate-change projections.

While these ensembles provide an appreciable number and diversity of climate-change
projections, these numerous bieces of information are sometime difficult to combine
and to interpret. In particular, these ensembles raise important conceptual issues de-
pending on the sampling of the different sources of uncertainty. A first concern is the
unclear sampling of the models. The assumption that different climate models provide

independent pieces of information about climate change is likely to be false for seve-

1. http://www.narccap.ucar.edu
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ral reasons, while quantifying this lack of independence represents a fairly difficult task
(Tebaldi and Knutti, 2007). One reason to believe that the climate models are not in-
dependent is that science develops based on the sharing of knox.avledge., for example the
modelling groups learn from each other and even share parts of model code. Models are
generally based on similar basic physical assumptions and include similar processes and
interactions. Also, through their evaluation process, models are often tuned against the
same sets of observations, what is likely to induce common biases to the models, espe-
cially since observations also contain errors. Naturally, structural similarities between
climate models are likely to be strengthen when the latter are developed by nearby ac-
tors, e.g. within a same research institute that may contribute several models or model

versions in large multi-model ensembles such as CMIP3.

Another characteristic common to most ensembles is that the entire matrix of all po-
tential combinations of models and forcing is not realised since climate simulations are
expensive to produce. For example, some experimental frameworks (e.g. NARCCAP)
are constrained in order to minimise potential biases and statistical errors related to
the incomplete sampling process. On the other hand, in unconstrained experimental fra-
meworks such as CMIP3, the missing simulations are likely to be distributed unevenly
across the ensemble ; the scenarios and the realisations are sampled unevenly among the
models. Such biases in the sampling process of an ensemble are also intimately related

to the unequal resources and the different interests of the participating groups.

In this thesis, we noted that in a multi-model ensemble such as CMIP3, some models are
represented by several realisations of a given scenario while others provide a single one.
Providing at least a few realisations is important in order to obtain a climate-change
signal that is more representative of a given model ; averaging over multiple realisations
filters noise, i.e. the natural climate variability, which might otherwise obscure some
features in the signal. Several realisations of a given experiment allow assessing the
natural climate variability at any point in time when the simulations are run under

transient forcings.
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When some elements of the matrix are missing, this may lead to situations where the
experimental framework is unbalancéd. For example, applying an analysis of variance
(ANOVA) for decomposing the uncertainty into components (e.g. scenario, model and
natural variability) on an unbalanced ensemble should involve experts’ judgement in
order to prevent potential biases. When a non-systematic ensemble design is not appro-
priate for an analysis such as ANOVA that assumes some balance in the data, qualitative
methods of comparisons can be more suitable (Rowell, 2006). On the other hand, artifi-
cially correcting the imbalance's of ensembles may allow performing an analysis as in an
ideal case. This has been done by Déqué et al. (2007, 2012) who used data-reconstruction
methods in order to transform the non-systematic framework into a systematic one and
hence to apply the ANOVA. Such an approach allows simplifying the uncertainty de-

composition while aiming at limiting biases and sampling errors.

Throughout this thesis, we focused on two specific sources of uncertainty in climate
modelling, namely the natural variability and the inter-model spread. The first source
being intrinsic to the models, the way it is quantified is very important. Another mo-
tivation for a clear quantifieation—of this source-of-uncertainty isthat it-is-of primary-
importance when investigating other sources, such as the model uncertainty. The two
examples presented below summarise this idea. In Example 1, we take an overview of the
different approaches that can be considered for combining the natural variability from
an ensemble of several models. In Example 2, we choose one of the latter methods for
assessing the natural variability in order to test the differences between climate-change
signals simulated by different models. The choice of the method has been made in order

to maximise possibilities of comparisons, including models that do not provide more

than a single realisation of a specific experiment.




131
4.2 Theoretical summary : Review of concepts
4.2.1 Pre-selection of the simulations

In Chap. 1, we developed a framework based on resampling methods (bootstrap) in order
to quantify the uncertainty of the ensenllble statistics that emerges from the numerous
choices available to the user when selecting a limited set of simulations from a large en-
semble. While this approach allows for sampling the statistical uncertainties that emerge
from a weakly constrained sampling process, we highlighted the distinction between the
known sources of uncertdinty (e.g. natural variability) and the extent to which these are

“perceived” in the ensemble statistics.

One question that we addressed in this thesis is how the natural variability affects the
ensemble statistics through the selection of a set of simulations from the large ensemble.
It has been shown in Chap. 1 that the real effect of the natural variability 'on the
ensemble statistics is underestimated due to the relatively small sample sizes of single-
model ensembles (typically from 1 to 7 realisations). Such a question could be addressed
in a more general way : How would the naturai variability really affect the ensemble

statistics given an infinite number of realisations available for each of the models ?

While the pre-stlection of realisations is often done randomly (e.g. Bombardi and Car-
valho 2011, Peings and Douville 2010, Ré’.isé'men et al. 2010), the selection of a set of
models should preferably be constrained by some criteria. A broad range of constraints
are commonly used, for example based on the same-institute criterion (Whetton et al.,
2007). Ensemble post-filtering is also sometime generalised be attributing weights to
the models, based on performance criteria (Giorgi and Mearns, 2002) or other physi-
cal constraints (Allen and Ingram, 2002). In the model-sampling method proposed in
Chap. 1, we generalised the selection process by allowing model replacement based on
the hypothesis that the CMIP3 multi-model ensemble is only a representative sample of

a notional larger population of models with similar level of complexity.
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4.2.2 Initial sampling of an ensemble of opportunity

As discussed in Chap. 2, suspected lacks of independence between modelling approaches
is likely to be an issue when using multi-modél ensembles for climate-change projections.
While it is not clear to which extent it affects the climate-change projections, it involves
a risk of biasing the estimated signal toward groups of similar models. Without any
robust measure of model independence, attributing a higher confidence to a specific
climate outcome that makes consensus between the models becomes highly questionable.
Another important point is the attribution of climate-change projections uncertainty to
the inter-model spread, which is rather unclear without a robust definition of model

independence.

The “same-institute assumption” can be used as a cautious approach to prevent non-
informative consensuses from contaminating the results of an ensemble, at the cost of
reducing its size and thus increasing errors in the statistics. This can be seen as a rather
conservative way of approaching ensembles and their results, while larger uncertainties

are not always interpreted in a positive way by the public. On the other hand, basing

adaptation and mitigation plans on overconfident results is surely not a suitable option
either. The same-institute assumption consists in attributing consensuses in the models’
output to some dependencies between climate models such as structural similarities.
While using this criterion as a rule of thumb should involve care, it is at least very useful
for pointing out groups of models that are structurally similar within a large multi-model
ensemble. On the other hand, the observed propensity of models to give similar results
when developed by nearby actors is probably only the tip of the iceberg concerning the

more general issue of a lack of independence between the existing modelling approaches.
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4.2.3 The ergodic assumption as a workaround for unbalanced ensemble frame-

works

Large intercomparison projects are often formed in a rather open manner that favours
the number and diversity of simulations over balance between experimental units. The
dimension and shape of the resulting matrix of simulations is then affected by external
factors such as the unequal resources and the different interests of the participating mo-
delling centres. Hence, such ensembles may not consist in balanced designs for specific
investigations such as decomposing the uncertainty into its main components. By ana-
lysing such an ensemble from the point of view of a perfect balanced framework, some
elements appear to be missing, which leads to approximations in the statistical theory

and possibility of biases in the results.

One way for circumventing such issues is by considering reconstruction methods in or-
der to obtain a balanced framework from the unbalanced one and hence to facilitate the
analysis by applying exact theory for analysis. Obviously, such an approach involves the
risk of adding supplementary noise to the dataset. Using robust physical assumptions in
the reconstruction methods is hence of primary importance in such a context. A credible
physical assumption has been identified in Chap. 3 that single-model ensembles are ergo-
dic in the sense that the temporal variability is statistically indistinguishable from that
occurring between members. This characteristic of single-model ensembles is expected
to occur when simulations are run under stationary conditions, while under sufficiently
strong transient forcings, the ergodic assumption has to be rejected. In the latter case,
however, ergodicity can be approxin-lately reached under “artificial stationarity” achieved

by detrending the time series.

As will be seen in Example 1, the ergodic assumption could be of use in the develop-
ment of reconstruction methods, especially in cases where imbalance makes the analysis
problematic. In Example 2, the benefits of using the ergodic assumption will be demons-

trated through the construction of a test statistics that can be applied to compare two
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models providing single realisations. In this case, the ergodic assumption allows reducing
an important imbalance in the ensemble that consists in some models providing only a

single member per experiment.

4.2.4 Analysis of variance and decomposition of the uncertainty

The analysis of variance (ANOVA) is a popular approach for decomposing variances
into a number of sub-components. This approach is known to be suitable with balanced
framework, or when imbalances are relatively unimportant. In order to understand how
the ANOVA is affected by the imbalance in the sampling of the realisations in the CMIP3
multi-model ensemble, Appendix 4.A shows how the ANOVA can be applied to such an

ensemble.

The approach is based on a statistical model of the form X, = p + am + emn, where
Xmn consists in the nt® member available for the m® model, p the theoretical mean
of the populaﬁonz, am the treatment effect due to the use of different models and
emn the residual variability that represents the natural variability as simulated by the
climate models. While in general, the latter component represents a level of nois;e that is
independent and identically distributed (#d) along both m and n axes, this assumption
is not expected to hold for a multi-model ensemble. Particularly, it has been shown in
Chap. 3 that the natural variability is sometimes simulated rather differently across the

models of the CMIP3 multi-model dataset.

Another important point is the relative importance of the different models in the calcula-
tion. In the Appendix 4.A, it is also shown how the resulting estimate of the multi-model
natural variability is biased toward the models with the largest sample sizes. Another
issue that is strictly due to the unbalanced design is that the component of inter-model

variance cannot be obtained explicitly, but only approximately. This is due to the fact

2. Since defining such a population is problematic (see Chap. 1), we assume the ensemble to be
representative of a larger population that includes other possible modelling approaches with a similar
level of complexity as the CMIP3 models.
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that we need to assume an effective sample size (/Np) in (4.20) that should represent the
different models’ sample sizes. Hence, when sample sizes differ importantly, it increases
the range of possible values that can be taken by Np, leading to a larger estimation error

in the inter-model spread.

4.3 Example 1 : Multi-model combination of the simulated natural variability

In the context of assessing the different components of uncertainty in climate-change
projections, the natural variability is the first level of uncertainty that should be estima-
ted, while the second is the model uncertainty. Natural variability represents a measure
of noise from which the physical and statistical significance of the latter can be assessed.
The ANOVA is a conventional technique for decomposing the variability into its several
components. However, such an approach is based on hypotheses that do not necessarily
hold for an ensemble of opportunity such as CMIP3. An important assumption is that
the “noise” is itd according to the model and member axes. As shown in Chap. 3, there is
compelling evidence that the natural variability is not identically distributed across mo-
dels, hence violating the assumption. Another problem related to the use of the ANOVA
in that context is that the number of members largely differs across the models. As
will be shown below, the unequal sample sizes and the non-identically distributed natu-
ra] variability across the models are important factors to consider when estimating the
primary source of uncertainty in multi-model ensembles. Also, it appears necessary to
compare different approaches in order to optimise the estimate of the natural variability

depending on the ensemble under consideration.

As a starting point, the member-sampling approach described in Chap. 1 allows to quan-
tify how the ensemble statistics are affected by a random selection of one member per
model. The uncertainty of the ensemble mean signal (U2,,,) consists in a manifestation
of the natural variability as simulated by different models. As shown in Appendix 4.B,
this measure of uncertainty can be transformed into an estimate of the natural varia-

bility by “scaling” this error of the mean to a single model by using the standard error
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relationship as VM x UA.m, M being the number of models in the ensemble. While
this treatment has been applied to climate-change projections, i.e. differences between
two climatic states, we use in the following the corresponding estimate of the natural

variability.

Let us rewrite (4.28) from Appendix 4.B as

Omem(t) = Z Z(ant Xmot) (4.1)

where the “o”

notation indicates averaging over the missing subscript. Xpp: is not a
delta but the climate state at time ¢ of the n*? realisation over Ny, members provided by
the m** model. (4.1) consists in the analytic form of the member-sampling uncertainty.
This variance is calculated at a particular time (¢) and consists in a multi-model average
of biased estimates of inter-member variances. While such a bias is more important at

small Ny, this estimate of the multi-model natural variability is not weighted according

to the models’ different sample sizes.

As a more conventional approach, the ANOVA allows to decompose the total variability
of a multi-model ensemble in two components : the inter-model spread and the natural
variability. As shown in Eq. 4.16 (Appendix 4.A), applying the ANOVA to a multi-model
ensemble leads to an estimate of the multi-model natural variability that corresponds to

M Np .
Xomot), (4.2)

6ty 1(t) =
m n

where N =} Ny, is the total number of simulations in the ensemble. (4.2) consists in a
combination of several models inter-member variability. By gathering the deviations from
different models and dividing by the number of degrees of freedom (df), this estimate
is weighted according to the number of members provided by each model and hence
biased toward the models providing the largest sample sizes. Given potentially important

differences in the natural variability simulated by the models (Chap. 3), it is relevant to
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consider an unweighted version of (4.2) such as

M

; 1 1 =1

&51(t) = M z Ny =1 Z(ant — Xmot)? (43)
m

which gives an equal weight to each model in the resulting multi-model estimate of the
natural variability. It can be seen from the latter equation that 6% (t) consists in an

average over several unbiased estimates of inter-member variances.

The variance estimates (4.1) to (4.3) consist in different approaches for combining the
inter-member variability from several models and these estimates pertain to a given
time. Under the assumption that the inter-member spread does not change significantly
with time, it is convenient to consider the information from the entire time series in our

multi-model estimate of the natural variability.

Recalling (4.2), the squared deviations can be summed by including all the time periods

from each of the models, and hence dividing by T'(N — M) the number of df, we obtain

M Nm T

0'12/VTI N M) z z z KXmnt — Xmot) . (4.4)

The latter time-averaged estimate of the multi-model natural variability is weighted
according to the sample sizes. Similarly, we can define an unweighted version of (4.4) by
summing (4.3) over time such as

Ny T

O'UT] M. 2 T(N — 1) ZZ(X‘mnt Xmot) (45)

Finally, assuming ergodicity in the single-mddel ensembles, one can imagine two additio-
nal ways of combining the natural variability from several models, namely the weighted

ergodic variance

M Np

UWE N z z T— K Z(ant - /’]'mnt)2 (4-6)
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and the unweighted ergodic variance

PR S o1 R S @
vE M4 Ny ~“T-K-14 &

The main difference between (4.4)-(4.5) and (4.6)-(4.7) is that the former consist in
multi-model time-averaged inter-member spreads relatively to single-model ensemble
means (Xmot), while the latter consider the variability of the time series relatively to
a trend denoted by fipne. The term T~ K — 1 consists in the number of df associated
with the mean squared error of a realisation around the Kth-degree trend, for which
K + 1 parameters have to be estimated. Recalling the ergodic assumption, the temporal
variability around the trend includes the non-ergodic part of the signal. On the other
hand, when considering the spread around a single-model ensemble mean such as in (4.4)
and (4.5), the non-ergodic part of the signal is included in the mean and hence does not

contribute to the final estimate of the natural variability.

4.3.1 Results

Let us now take a look to some results related to the previous estimates of the natu-
ral variability. A common feature appearing in most of the previous estimators (with
exception of Egs. 4.6 and 4.7) is that the variability emerges from deviations about
single-model ensemble means. We hence limit the following investigation to the models
from CMIP3 (A1B) that provide at least two realisations. As seen from Tab. 1.1, the

pre-selected ensemble consists in 42 simulations from 11 models.

In Fig. 4.1a to ¢ are presented three approaches for assessing the inter-member varia-
bility of the climate-change signal from a multi-model ensemble. Fig. 4.1a and b show
the ANOVA coefficient (dw) and its unweighted version (6yr) respectively, for three
20-year a\;eraging windows (2000-2020, 2040-2060 and 2080-2100). Comparing these two
approaches for each of the time periods, some differences appear in intensity but the

general shape of the patterns remains similar. By comparing with 4.1¢, i.e. the member-
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sampling coefficient Gmem, it can be seen how the intensity of the inter-member varia-
bility is systematically smaller for the member-sampling approach than for the ANOVA
coefficient and its unweighted version (Fig. 4.1a and b). This systematic bias of the
member-sampling approach is mainly due to ihe relatively small number of members
provided by the models, as can be understood from (4.1); Gmem being a multi-model

average of several biased estimates of variance.

It is possible to unbiase the member-sampling estimate of the multi-model inter-member
spread by using a correction factor (G) such as G X Gmem. Based on the approach
detailed in Appendix 1.A, the “perfect” ensemble of simulations is defined as c;msisting
in 11 models, each one being represented by 1000 realisations. On the other hand, the
“imperfect” ensemble has the same structure as the present 11-model ensemble. By using
Monte-Carlo methods, the perfect and imperfect ensembles are generated 2000 times,
where for each ensemble, 2000 iterations of the member-sampling approach are applied.
By determining the most probable value of the correction factor, the imperfect ensemble

has to be inflated by G = 1.19 in order to suppress its bias compared to the perfect case.

In Fig. 4.1d is shown the empirically unbiased estimator of the multi-model inter-member
variability (G X &mem). Compared to &w and 61 (Fig. 4.1a and b respectively), patterns
are now quite similar in both their shape and intensity. Moreover, G X 6 e, appears more
similar to 1 than &y, which is due to the fact that both &y,em and 6y are unweighted
estimators according to the number of realisations per model. By paying attention to
the temporal evolution of the multi-model inter-member variability, patterns display
a relatively important variability. These changes in time are mainly due to the poor
sampling of members rather than to real physical changes in the natural variability, for
instance due to the external transient forcings (e.g. GHGA). Also, it is worth noting
that the differences between weighted and unweighted estimators appear smaller than

the temporal variability of the inter-member spread.

In Fig. 4.2a and b is shown the estimates of inter-member variability obtained using

the member-sampling and the ANOVA methods respectively, both being applied to a
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reconstructed ensemble that has been filled up to 100 members by applying the single-
model pooling method (SMP ; see Chap. 3) to each of the models. Briefly, this application
of the SMP method consists in a random sampling over a pool of -time periods obtained
from detrended time series. Only two coefficients are shown here by simplicity, Gmem (t)
and &wi(t), referring to (4.1) and (4.2) respectively. Due to the nature of the SMP
method, a single-mode] ensemble is forced to become strongly ergodic as its size increases.
Hence, mem(t) and éwi(t) tend to be constant in time for a sufficiently large number
of reconstructed members. The unweighted coefficient (6y7r) is not shown here since the
weighting does not have any influence when the models’ sample sizgs are equal. It can
be seen from the results that for such a large ensembie, both the member-sampling and

the ANOVA lead to practically identical results.

In Fig. 4.3a and b is shown the inter-member variability averaged over time using the
weighted and unweighted coefficients (6wrr and Gy respectively). These approaches
lead to rather sﬁnilar results while differences between the time-dependent versions of
these estimators (Fig. 4.1a and b) were more important. This particularity is related to
the error of estimation according to the sample size used in these calculations. Taking
example with the weighted estimators, the sample used in the calculation of 6w cor-
responds to N deviations from M means (N — M df) while T(N — M) df are used in
the calculation of dwry.

Fig. 4.4a and b shows the weighted and unweighted ergodic variances, respectively.
Under the ergodic assumption, the temporal variability of the times series is calculated
according to a trend (calculated separately for each model, realisation and grid point)
and hence accounts for some additional variability that is due to the external forcings
(mainly the effect of the volcanoes in the 20th century) that occur synchronously between
the members of a same model. As can be seen by comparing Fig. 4.4 to Fig. 4.3, the
ergodic variances are slightly larger than the time-averaged inter-member spreads. Also,
the shape of the pattern of the weighted ergodic variance (Fig. 4.4a) is similar to the

corresponding weighted time-averaged inter-member spread (Fig. 4.3a) and similarly for
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the unweighted versions (Fig. 4.4b and Fig. 4.3b).

Let us now summarise the previous calculations. Fig. 4.5a presents histograms for three
time-dependent ratios : dw;(t)/y1(t) (in blue), Smem(t)/6u1(t) (it red) and G x
Fmem (t)/6u1(t) (in green). These are calculated for all grid points of the domain and for
each 20-year averaging window from 1900 to 2100. The blue curve represents the effect
of whether using a weighted or unweighted estimate of the inter-member spread. The
distribution is centred on 1, which means that weighting the models may increase or
decrease the estimate of the variability in a balanced manner. Another way to interpret
this is that there is no correlation between fhe sample size and the inter-member spread,
which are obviously two unrelated quantities. The red curve represents the estimate of
the inter-member spread using the member-sampling approach, and in green, its em-
pirically corrected version. By applying the correction factor, the green distribution is
relatively well centred on 1, which validate the method detailed in Appendix 1.A for cal-
culating G. The red and green distributions have rather small width, which relates the
high similarity between &p,em and 67 since both are unweighted estimators according

to the models’ sample sizes.

In Fig. 4.5b, the ratios for the estimators of the inter-member spread averaged in time
are shown. Represented by' the red cﬁrve, the ratio éwr1/6yTs is centred on 1, as was
the blue curve in Fig. 4.5a. The blue and green curves represents similar ratios for the
weighted and unweighted ergodic variances, namely éwg/éurr and 6vg/6uTI, respec-
tively. These ratios are not centred at 1, which relates the supplementary contribution of
the non-ergodic part of the variability that is accounted in these estimates. A maximum
value is obtained at 1.1, which could be interpreted as if the non-ergodic component
typically increases the inter-member spread of about 10%. Since this supplementary
amount of variability is mainly due to a natural factor (volcanic emissions), determining
whether the ergodic variance consists in a more realistic representation of the natural
variability of the climate system depends on the definition of what should be included in

that system. Assuming that these emissions are part of the climate system, the ergodic

-
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variability should consist in a more realistic estimate of the natural variability, while
the inter-member spread is simply the internal variability of the system given a set of

external boundary conditions.

The grey curve gives the ratio dwi(t)/oyri, i-e. a time-dependent inter-member varia-
bility compared to a time-averaged estimator. It gives an idea of the temporal variability
of the inter-member spread around its time-averaged value. As noted before, the tem-
poral variability of the inter-member spread (grey curve in Fig. 4.5b) is more important
than the variability due to the weighting procedure (blue curve in Fig. 4.5a, note the
different scales). Finally, the black curve represents the ratio between the inter-member
spread calculated from a reconstructed ensemble (based on the SMP method) compa-
red to the unweighted time-averaged inter-member spread. The distribution shows that
dsmp underestimates oyrr, which is probably due to an oversampling of the members.
While using 100 members in the SMP method gives robust results according to time, the
maximum number of reconstructed members should be 20 and 70 for models providing

2 and 7 members respectively.

In Sect. 4.4, the ergodic assumption will be considered in a different manner. It will
be shown how to systematically transfer the information about the natural variability
between members and temporal axes, rather than by artificially reconstructing new
realisations to an ensemble as with the SMP method. This approach will be applied
in the context of assessing the statistical significance of the difference between climate-

change signals as simulated by two models developed within a same research institute.

4.4 Example 2 : Improving statistical testing of the same-institute assumption

based on ergodicity in single-model ensembles

In Chap. 2, the same-institute criterion has been applied in order to focus on speci-
fic pairs of models that share structural similarities. The “same-institute assumption”

consists in relating these structural similarities to potential consensuses in the models’

output. In order to compare a pair of models developed by a same institute, the difference
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in the climate-change signals has been investigated by using a i{-test. This test assesses
the statistical significance of inter-model differences based on a measure of the natural
variability. While sample sizes are relatively small for assessing the inter-member spread,
a supplementary limitation to this invéstigation is that some pairs of models had to be
excluded when only one realisation was available for a model. The CMIP3 multi-model
ensemble providing a large diversity of simulations, it also consists in a great opportunity
for studying potential structural similarities between climate models. While defining a
robust metric of model independence is a rather complex task, if even possible, investi-
gating typical structural differences between climate models should at least increase our

knowledge about what should resemble such a hypothetical metric.

As discussed before, an important characteristic of AOGCM simulations that can be
used to circumvent the limitations of single-model ensembles is that they can be as-
sumed as ergodic, i.e. that the natural variability calculated over time is statistically
indistinguishable from the inter-member spread. While one should expect perfect ergo-
dicity in an ensemble of simulations run under stationary conditions, applying a strong
external forcing (e.g. GHGA emissions) results in a violation of the ergodic assumption.
As a workaround for simulations run under transient forcings, it has been shown that by

4th_degree polynomial function, the remaining forced

detrending the time series with a
variability (e.g. volcanic emissions) is relatively small ; single-model ensembles can then

reasonably be treated as ergodic under such conditions of artificial stationarity.

By imposing such artificial condition of ergodicity, our previous investigation of the same-
institute assumption can be extended to the pairs of models that provide only single
realisations. Rather than assessing the natural variability by using the inter-member
spread (see Sect. 4.3), the natural variability is now calculated from the detrended time
series of single realisations, which are then pooled together when several are available.
In the following, we show how to test the difference between two climate-change signals,

independently of how many members are provided for each model.

Let ix and [y be estimates of the ensemble mean climate-change signals from two



144

models, denoted with the indices X and Y respectively. Recognising that the simulated
natural variability is not equal among the models (Chap. 3), the ¢-statistics for the

difference of the means consists in

g2 Bx — by (4.8)

1/‘_?3(_4_& '
Nx Ny

where Nx and Ny are the sample sizes (number of members) used in the calculation
of fix and jiy, and similarly, 6'3( and af, are the natural variability associated with the
two models’ climate-change signals respectively. Particularly, both &i- and 6% consist in
variance estimates related to a difference between two climatic states. For simplicity, let
us define the climate change as the difference between two 20-year averaging windows
(e.g. 2020-2040 relative to 1980-2000). Assuming independence of the details of future
and past climatic states as a result of natural variability, the variance of the difference
between two climatic states (6%) is equal to the sum of the variances related to each
of these states, i.e. 6% = 26%,, where 6%,, is the natural variability of a time series
formed by 20-year climate periods. These estimates of the natural variability can be
assessed based on the application of the ergodic principle. In clear, the nth realisation
of the mtP model (Xmnt) has its trend (fimnt) removed and the residual mean squared

error consists in an estimate of the natural variability such as

Npm T
5’2 = iz—“—:‘l—Z(X t“,ammt)2 (4'9)
W N z T-K-1 E e ?

which consists in one particular model considered in the unweighted multi-model average
of the ergodic variance as shown in (4.7) and multiplied by 2 since it is the variance of
a difference. In (4.9), K = 4 is the degree of the polynomial function related to fiymn:
and T — K — 1 the number of degrees of freedom associated to the mean squared error
according to the trend. The natural variability of each of the N, members from the mith

model are hence averaged by summing over n and dividing by Np,.

Recalling (4.8), the denominator is not proportional to the x? distribution due to the fact
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that &% #* &32,, and hence this statistic is not {-distributed even under a true null hypo-
thesis of equal means. Well known as the Behrens-Fisher problem, a convenient solution
is to assume a t-distribution with its number of degrees of freedom being estimated from

the data as "
(6%/Nx + 6% /Ny)

42 /Nx)? (62/Nv)"
'N"!X_(T_;—K—ﬂ + Wy =KD
that has been constructed by using the Welch’s approximate t-solution as described by

Scheffé (1970). (4.10) is bounded as min(Np )(T—K —1) < df < (Nx+Ny)(T-K-1).

& =

(4.10)

‘By comparison with our previous t-test based only on the several members without
temporal averaging (Eq. 2.5 in Appendix 2.A), the approximate number of degrees of
freedom associated with this ¢-distribution is bounded as min(Ny,) —1 < df < Nx +
Ny — 2. For example, by using ' =10, K =4 and Nx = Ny =2, 1 < df < 2 for the
approach based on the multiple members (Eq. 2.5) and 5 < df < 20 for the case using
the ergodic assumption (Eq.4.10). This important increase in the number of degrees of
freedom for such a minimalist case of two members per model results in a test with a

higher power to reject the null hypothesis.

4.4.1 Results

In Chap. 2, the same-institute assumption has been investigated using six pairs of models
that allow a t-test By providing multiple members for at least one of the two models (Tab.
2.3). Hence, among the nine pairs of models shown in Tab. 2.2, three had to be excluded
from the analysis, i.e. those related to the CSIRO, GFDL and UKMO modelling groups.
The previously explained approach based on the ergodic assumption allows extending
our investigation to the three excluded pairs of models in addition to increasing the

power of the statistical test.

In Fig. 4.6a to f, the pairs of models already investigated in Chap. 2 are shown while in
Fig. 4.6g to i, the excluded pairs providing a singie realisation per model are shown. In

the following, we investigate the climate-change differences by focusing on the signal (in
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surface air temperature) relative to the reference period of 1980-2000. Fig. 4.6a and b
shows the pairs of models that differ from the point of view of their resolution, namely
the CGCM and MIROC models respectively. Recalling that the model output has been
interpolated over a coarser-resolution grid, the CGCM models show very low rejection
rates and hence these two models provide climate-change signals that are not statistically
different for 2000-2020 and 2040-2060, while subtle differences begin to emerge at 2080-
2100. For the MIROC pair, where the change in resolution is more important, significant
differences emerge in 2040-2060 and fill the oceanic part of the domain by 2080-2100.
It is worth noting that the high-resolution MIROC model has a larger climate-change
signal than the low-resolution version over the ocean. It is also true for the CGCM pair

but to a smaller extent (Fig. 4.6a).

The three GISS models are interesting to compare since differing in their atmospheric
and oceanic components. Fig. 4.6¢c shows the difference between EH and ER models
that have different ocean componénts. Significant differences in the sensitivity mainly
occur over the Hudson Bay, where lies a difference of about 3°C in their climate-change
signal in 2080-2100. The AOM and ER. models (Fig. 4.6d) differ in all their components
with different versions of their ocean component; the climate-change signal for AOM
is generally smaller over land regions and larger over the Hudson Bay relatively to ER.
These differences also increase with time, which indicates different climate sensitivities.
For the AOM-EH pair (Fig. 4.6e) that consists in a difference in all the main model
components, a negative minimum of difference becomes more intense with time over the
western part of North America and the Hudson Bay, while there is a significant positive
difference occurring over the Pacific Ocean for 2040-2060 and 2080-2100. Considering
now the NCAR models (Fig. 4.6f), CCSM3 warms significantly faster than PCM from
the 2000-2020 time period. '

Let us now take a look to the pairs of models providing only single members, from
the CSIRO, GFDL and UKMO modelling groups (Fig. 4.6g to i respectively). Versions
3.0 and 3.5 of the CSIRO model (Fig. 4.6g) differ in their parameterization (e.g. ocean
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eddy transport coefficient). Important differences occur around the Hudson Bay where
the climate-change signal differs of about 4°C in 2080-2100. On the ¢ther hand, these
models do not show significant differences in the signal over an important part of the
land area at the centre of the domain, even by the end of the 21st century (2080-2100).
Versions 2.0 and 2.1 of the GFDL model (Fig. 4.6h) has structural differences that
can be understood as minor modifications to the code (e.g. numerical scheme). They
show practically no significant differences in their climate-change signal. Finally, the
HadCM3 and HadGEM1 models from the Hadley Centre are compared in Fig. 4.6i. It
is interesting to note that these two models, which are generally thought as a priori
independent models developed within a same institute, show relatively low rejection
rates of the null hypothesis of equal means. Even for the 2080-2100 period, the two
climate-change signals are not significantly different from each other nearly over all the
continental region. Over the Pacific Ocean and the West Coast of North America, a
small area of negative difference slowly increases in magnitude with some statistical

significance in 2080-2100.

4.5 Conclusions

A generally accepted idea among the community is that the three main sources of uncer-
tainty affecting the climate-change projections consist in the natural variability of the
climate system, the model uncertainty and the GHGA scenario uncertainty. The former
source being related to the chaotic nature of the climate system, it would even affect the
simulations from a perfect climate model. Each model consisting in an approximation
of the true climate system, the second source of uncertainty represents the differences
in the results related to the use of different approaches to climate modelling. The third
source of uncertainty is sometimes considered as outside from the physical climate issue
since GHGA emissions largely depend on socio-economical, technological and political
issues. While thé latter sources of uncertainty are often sampled, analysed and discussed
using a variety of ensemble structures, fundamental issues remain in their interpretation

and quantification. Throughout this thesis, we have focused on the two first sources,
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that is the natural variability and model uncertainty.

Basically, quantifying the natural variability in climate-model simulations can be done
in two different ways. Applied to a given model, a basic way of addressing this source of
uncertainty is by using a single but very long climate simulation run under stationary
conditions (i.e. without external forcing change), from which the temporal variability
from the mean climate can be estimated. Another way for quantifying the natural varia-
bility of a climate model is by using ensembles of multiple realisations differing only in
their initial conditions. The spread between the ensemble members may hence be used

as a measure of the natural variability.

In large model inter-comparison projects such as CMIP3, the focus is generally on si-
mulations run with transient GHGA emission scenarios. However, since running climate
simulations is expensive in terms of time and computational resources, few realisations
are generally provided by the modelling centres. Overall, the explicit sampling of the
natural variability in contemporary ensembles is rather poor; in addition it is heteroge-
neously sampled across the different models. For example, in the CMIP3 (A1B), more
than half of the models are represented by a single realisation while the maximum sample
size is 7 members, a rather large ensemble from the point of view of computational cost

and data volume, but rather small in statistical sense.

In a multi-model ensemble, the imbalance of sample sizes between models firstly compli-
cates the analysis of natural variability. Because natural variability differs between mo-
dels, a multi-model combination of the simulated natural variability is beyond the scope
of common statistical methods. For example, using an analysis of variance (ANOVA) as
a way to estimate the inter-member variance involves the assumption that the natural
variability is ¢id across members and models, which is known to be false. While in the
case of equal variability, the imbalance in sample sizes leads to approximations in the
ANOVA theory, the occurrence of both the imbalance and the unequal variances tends
to bias a multi-model estimate of the natural variability. More clearly, the resulting es-

timate is weighted according to the sample size and hence is necessarily biased toward
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models that are better represented in the ensemble.

In this work, we have summarised different alternatives for calculating the natural va-
riability related to a multi-model ensemble. We presented three estimators based on
the inter-member spread that apply to a specific time. The first followed the member-
sampling approach detailed in Chap. 1, aiming at quantifying the effect of a random
selection of a single member per model when several are available. This estimator has
been shown to be a multi-model average of biased estimates of variance, unweighted,
giving the same relative importance to each of the models. The second estimator is the
mean squared error term related to the ANOVA. It is basically an unbiased estimator
of variance under the assumption that the natural variabilities are equal. Since it is not
actually the case, the ANOVA coefficient tends to be biased toward some of the models
since weighted according to the sample sizes. The third estimator of the inter-member
spread consists in an unweighted version of the ANOVA coefficient that gives equal
weight to the models no matter on how many realisations are available. The ANOVA
coefficient and its unweighted version have been also calculated by considering the entire
time series, i.e. as multi-model time-averages of the inter-member spread. A supplemen-
tary pair of weighted /unweighted coefficients has been also provided, namely the ergodic
variances that are based on the premise that single-model ensembles are ergodic. Unlike
the time-averages of inter-member spreads, the latter estimates focus on the variability

that appears in the time series once the trend is removed.

The results show that the inter-member spread varies with time, mainly due to the
limited number of realisations rather than any real physical changes in the natural
variability that could be attributed to changes in the external forcings (GHGA). For
the estimate related to the member-sampling approach, the systematic bias has been
successfully removed by applying a correction factor that depends on the structure of
the multi-model ensemble and that has been obtained empirically from Monte-Carlo
simulations. The difference between weighted and unweighted statistics appeared a little

smaller than the temporal variability of the inter-member spread. Overall, the small
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influence of the weighting could be explained by the important inter-model differences
in the simulated natural variability that are filtered through the averaging procedure
while the remaining weak component is shared by most of the models. For the time-
averaged estimates of the natural variability, the ergodic variance has shown an increase
of about 10% of the varlia,bility, which is due to the non-ergodic component of variability
that acts synchronously between the members of a same model. Also, an ensemble has
been reconstructed based on the SMP method by random sampling new members from
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