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RÉSUMÉ 

La complexité des processus physiques et les nombreuses rétroactions entre les 
différentes composantes du système climatique présentent des défis particuliers à la 
simulation du climat arctique. Cette thèse propose d'approfondir certains aspects du climat de 
1 'Arctique avec une attention particulière sur les interactions et les rétroactions entre les 
composantes majeures du système climatique de l'Arctique et comment celles-ci sont 
influencées par le changement climatique. En premier lieu, un analyse détaillée des 
mécanismes physiques responsables de la simulation d 'évènements de perte rapide de la 
glace de mer, i.e. une diminution abrupte de la couverture de glace de mer en septembre, est 
effectuée pour trois projections climatiques effectuées par le Modèle Régional Atmosphère
Océan du Centre Rossby (RCAO). Deux processus importants, agissant à différentes échelles 
temporelles, sont identifiés comme responsables de la simulation de tels évènements, soit la 
diminution progressive de l 'épaisseur de la glace de mer qui a pour effet de rendre la glace de 
mer plus vulnérable à la fonte et la présence d 'anomalies dans le transport de chaleur 
atmosphérique et océanique au-dessus du secteur Atlantique de 1 ' Océan Arctique. Notre 
analyse démontre que la propagation d ' une anomalie importante dans la circulation 
atmosphérique de grande échelle à partir de la frontière latérale située dans 1 'Atlantique est 
responsable de la synchronisation des évènements autour de 2040 se produisant dans chacune 
des trois projections climatiques effectuées avec RCAO. Cette anomalie de circulation a pour 
origine les champs atmosphériques provenant d ' une projection climatique unique d ' un 
MCCG utilisée comme données de pilotage pour toutes les projections de RCAO. Au-dessus 
du Secteur Pacifique de l' Océan Arctique, une anomalie dans le transport de la glace de mer, 
poussant la glace de la côte de l'Alaska vers le centre de la mer de Beaufort provoque une 
rétroaction positive glace de mer-albédo (Sea ice-albedo feedback) favorisant une fonte plus 
prononcée de la glace durant la même période. 

Le second aspect traité dans cette thèse a pour objectif d 'évaluer la sensibilité des 
régimes thermiques et hydrauliques du sol des continents bordant 1 'Arctique, donc par 
conséquent le pergélisol, à la formulation du modèle et de la neige ainsi que leur impacts sur 
le climat de surface en Arctique. Plus précisément, nous évaluons la sensibilité des régimes 
thermiques et hydrauliques du sol à la configuration verticale et la profondeur totale de la 
colonne de sol, à l'ajout d'un paramétrage pour la représentation de la matière organique 
ainsi que différentes formulations de la relation entre la conductivité thermique et la densité 
de la neige à l'aide d'expériences en mode non-couplé du schéma de sol Canadian LAnd 
Surface Scheme (CLASS). Les résultats démontrent des améliorations successives de la 
simulation de la température du sol résultant de l 'augmentation de la profondeur totale de la 
colonne de sol, de l'implémentation du paramétrage de la matière organique du sol ainsi que 
d ' une diminution de la conductivité thermique de la neige. Les effets de ces améliorations 
apportées au schéma de sol sur le climat simulé, en particulier sur le bilan énergétique de 
surface, sont analysés plus en profondeur à l'aide d'expériences effectuées avec le Modèle 
Régional Canadien du Climat de cinquième génération (MRCC5). L'implémentation du 
paramétrage de la matière organique du sol a pour effet en augmentation marquée des flux de 



XVI 

chaleurs sensible et latente dont les proportions respectives sont fonctions de la disponibilité 
de l'humidité du sol et du niveau de saturation. Quoique les différences obtenues dans les 
flux turbulents de surface soient statistiquement significatives, peu de changements sont 
notés dans le climat de surface au-dessus des régions couvertes par du pergélisol continu ou 
discontinu. Les résultats du MRCC5 montrent que la variabilité interannuelle de la couche 
active du sol (CAS; i.e. la profondeur de dégel maximale annuelle) est directement liée aux 
variations de la température de l'air en surface et montre une dépendance annuelle. La 
surestimation de la profondeur de la CAS est fort probablement causée par la présence de 
biais chauds observés dans la climatologie simulée du MRCC5 puisque les tendances 
simulées ne montrent pas de différences significatives avec celles des observations. 

Mots-clés: 
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ABSTRACT 

The climate simulation of the Arctic region presents distinct challenges because of the 
complexity of processes and feedbacks between the various components of the climate 
system. This thesis focuses on understanding sorne selected aspects of the Arctic climate, 
particularly the interactions and feedbacks between the major components of the Arctic 
climate system and how they are affected by climate change. To this effect, firstly, the 
physical mechanisms responsible for the Rapid lee Loss Events (RILEs), i.e. the abrupt 
reduction of the September sea ice cover, in the Rossby Centre Ocean-Atmosphere (RCAO) 
regional climate mode! simulations are investigated. Two major processes, occurring at 
different timescales, are found responsible for the RILEs in the three RCAO climate 
projections considered in this study: the long-term thinning of the sea ice leading to increased 
vulnerability of the ice cover, and the anomalous atmospheric and oceanic heat transport 
through the Atlantic Sector of the Arctic Ocean. Investigation across the three RCAO 
projections reveals that a strong large-scale atmospheric circulation anomaly originating from 
the driving GCM realization propagating through the Atlantic lateral boundary of the regional 
mode! is responsible for the synchronicity of the simulated RILEs around 2040. Over the 
Pacifie Sector of the Arctic Ocean, anomalous sea ice drift from the Alaska coast towards the 
Beaufort Sea triggers a sea ice-albedo feedback leading to increased sea ice melt over the 
same period. 

The second major aspect investigated in this thesis is the sensitivity of the Arctic soi! 
thermal and moisture regimes over the continental areas surrounding the Arctic Ocean, and 
therefore near-surface permafrost, to soil and snow formulations in land surface models and 
their impact on the surface climate. More precisely, the sensitivity of the soi! thermal and 
moisture regimes to soil layer configuration and depth, representation of soi! organic carbon 
( organically rich soils) and snow conductivity formulation are explored in stand-alone 
simulations with the Canadian LAnd Surface Scheme (CLASS). Results showed major 
improvements of the simulated soil temperatures and a reduction of the annual maximum 
thawing depth with deeper soi! mode!, representation of soi! organic carbon and modified 
snow thermal conductivity. The impact of the above improvements on the surface climate, 
particularly surface energy partitioning, is further investigated using the fifth-generation of 
the Canadian Regional Climate Mode! (CRCM5). The implementation of the soi! organic 
carbon increases both latent and sensible heat fluxes, as function of the avai lable soil 
moisture and saturation leve!. Despite statistically significant changes in the surface energy 
partitioning, little significant changes were noted in the surface climate over the continuous 
and discontinuous permafrost region. The inter-annual variability of the active layer thickness 
(AL T; i.e. the maximum annual thaw depth) within the CRCM5 experiments is found tightly 
linked with the surface air temperatures and shows yearly dependence. The overestimation of 
the simulated ALTs is likely caused by a warm bias noted in the CRCM5 surface climate, 
while simulated trends in surface climate are not significantly different from those observed. 
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INTRODUCTION 

"The Aretie biologieal, climatologie, hydrologie subsystems and their 
thermal regimes are Jully coupled and cannat be complete/y 
understood or isolated individually. (. . .) No single pie ce of the system 
is independent, and to Jully understand even a part of the system, we 
need to understand the whole. " 

- Hinzman et al. (2005) 

General context 

In the past decades, the Arctic climate has shown sorne undeniable signs of change. 

The Arctic average annual temperatures have already risen by about 2 oc to 3 oc since the 

1950s and the winter temperatures by up to 4 °C (ACIA 2004) with a more pronounced 

warming over land (Chapman and Walsh 2007). Although large inter-annual to inter-decadal 

variability in temperatures is present in the Arctic (ACIA 2004), significant part of the 

warming in the Polar Regions was attributed to human influence (Gillett et al. 2008). 

The Arctic region is expected to warm strongly as a result of the anthropogenic elima te 

change, mainly due to the positive feedbacks associated with a decrease of the surface albedo 

caused by the shrinking snow and ice cover. Climate change projections realized with 

coupled atmosphere-ocean general circulation models (AOGCMs) for the 21 51 Century 

suggest maximum warming for the Arctic region (IPCC AR4 2007; ACIA 2004). Although 

ali models agree on the warming of the Arctic, large uncertainties remains as can be seen in 

the large spread amongst the individual mode! projections (ACIA 2004). 

Understanding the environmental conditions in the Arctic is a non-trivial task. The 

isolated location and rigorous climate pose supplementary challenges for observational study 

of the climate and the environment. A growing interest exists to understand the Arctic climate 

and its interactions with the different ecosystems. The Arctic countries are also interested in 

the evolution of the Arctic climate to assure the protection of its unique habitats or for 

economie development. The economie development might threaten the unique and fragile 

ecosystems of the region. Therefore, the scientific community strongly recommends that 
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more research be conducted to insure a durable exploitation of the natural resources of the 

Arctic, with limited success until now. 

Studying the Arctic climate is challenging due to the presence of large natural 

variability combined with the effects of increased greenhouse gases concentration due to 

human activity. The combination of both signais and the limited availability, both in space 

and time, of in-situ observations of the Arctic pose problems and therefore the numerical 

modelling approach offers sorne advantages. 

The overall goal of this thesis is to address sorne uncertainties m the actual 

understanding of different aspects of the Arctic climate, namely the Rapid lee Loss Events 

and the evolution and sensitivity of near-surface permafrost. The main tools used for this are 

Regional Climate Models (RCM) and observation datasets where avai lable. A brief 

description of the Arctic climate components, their interactions and representation in climate 

models is given below to better understand the context in which these studies were 

performed. 

The Arctic climate system 

The most fundamental characteristic of the Arctic is the 24-hour summer daylight or 

winter darkness with the nurnber of days in these extremes increasing with latitude (Serreze 

and Barry 2005) . The geographical configuration of the Arctic region is characterized by a 

central ocean, nearly enclosed by the continental masses of North America and Eurasia (Fig. 

I.l ), reducing the oceanic exchanges with the lower latitudes. The multiple interactions 

between the atmosphere, land and ocean make the Arctic an interesting but challenging 

region to study. 

The Arctic Ocean co vers significant are a of the northem hemisphere high latitudes and 

plays a major role in defming the Arctic climate. The main singularity of the Arctic Ocean 

compared to the other oceans of the world is the presence of sea ice and its variability . The 

sea ice greatly affects the surface heat and moisture exchanges between the ocean and the 

atmosphere due to its important insulating properties, thereby modulating the climate 

(Washington and Meehl 1996). Due to the high albedo of the sea ice and snow compared to 
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open water, sea ice also acts as a reflective barrier limiting the absorption of incoming solar 

energy within the Arctic climate system (Peixoto and Oort 1992). Since sea ice is sensitive to 

changes in the ocean and the atmosphere temperatures, it acts as a good proxy of the 

variability in the thermal state of the region. The Arctic sea ice not only affects the 

atmospheric boundary layer by modulating the energy exchanges, it also has an impact on the 

ocean near-surface stratification. Indeed, the sea ice formation and melt affect the ocean 

surface layer stratification by the release of brine and freshwater, respectively, modulating 

the water density in the ocean surface layer (Serreze and Barry 2005). 

The ocean surface currents and sea ice motion are dependent on the near-surface winds 

and therefore the regional atmospheric circulation and its variability (Rigor et al. 2002) . The 

atmospheric large-scale circulation in the Arctic is characterized by three centers of action: 

the Icelandic Low, the Aleutian Low and the Siberian High with its extension into the Arctic 

(Beaufort High). The variability in the intensity of these centers of actions has an important 

influence not only on the near-surface circulation, but also on the poleward transport of heat 

and moisture from the lower latitudes (Hurrell et al. 2003). Sea ice distribution in the Arctic 

Ocean is a iso a direct consequence of the near-surface winds, with ice convergence leading to 

thicker ice along the Canadian Arctic Archipelago (Bourke and Garret 1987) and important 

sea ice exports through Fram Strait (Kwok and Rothrock 1999; Dickson et al. 2000; Hilmer 

and Jung 2000; Dickson et al. 2007; Condron et al. 2009; Wang et al. 2009; Tsukernik et al. 

2010). The sea leve! pressure patterns exhibit large inter-annual to inter-decadal variability. 

The dominant patterns of variability are commonly know as the North Atlantic Oscillation 

(NAO), the Arctic Oscillation (AO) or the Northern Annual Mode (NAM), depending on the 

region over which the empirical orthogonal function analysis (EOF) is performed. The EOF 

analyses are used to extract the dominant modes of variability of the sea-level pressure over 

the high latitudes . Although there are sorne limitations in the physical interpretation of such 

mathematically derived patterns (Tremblay 2001 ; Hurrell et al. 2003), the EOF analysis 

showed great capability in re la ting to physical mechanisms of the Arctic variability, through 

changes in the sea ice motion (Karcher et al. 2005) and the variability of the second EOF 

pattern, the dipole anomaly, strongly correlated with the sea ice exports through Fram Strait 

(Wang et al. 2009), surface temperature anomalies over land (Hurrell et al. 2003), summer 

cyclone activity in the Nordic Seas and in the Central Arctic (Serreze and Barrett 2008; 
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Simmonds et al. 2008), precipitation over the Arctic regwn (Peterson et al. 2006), the 

freshwater content of the Beaufort Gyre (Proshutinsky et al. 2009; Condron et al. 2009), the 

river discharge in the Arctic (Peterson et al. 2002) and the observed salinity of the Siberian 

shelves (Steele and Ermold 2004). 

The northem portion of the continental masses of North America and Eurasia are 

characterized by low vegetation with a marked latitudinal gradient from the Boreal forest in 

the southem part of the Arctic land, towards tundra in the northemmost latitudes and along 

the Arctic coastal regions. The limited annual-mean solar radiation, cold temperatures and 

small amount of annual precipitation act as limiting factors for the growth of vegetation. 

Due to the cold temperatures in the Arctic, permafrost - defined as ground that stays 

frozen for 24 consecutive months - covers approximately one quarter of ali the exposed land 

of the Northem Hemisphere (Zhang et al. 1999). The presence of permafrost affects 

significantly the hydrology by limiting the soi! infiltration capacity, thereby directly 

influencing the drainage system. Soi! temperatures, bence permafrost, are sensitive to 

changes in the near-surface air temperatures and snow cover and, as for sea ice, act as a good 

proxy to study the long-term changes in the climate. 

Observed climate variability and climate change in the Arctic 

This section briefly describes the climate variability and the observed climate change 

in the Arctic region. The limited availability of observations in time and space, especially 

before the satellite era, makes the analysis of such observational data a challenge, since the 

signais of inter-annual variability and climate change are combined in most of the available 

time series. Nevertheless, clear signs of accelerated changes were observed over the recent 

years and sorne of the important findings are brie fly summarized here. 

The September Arctic sea ice cover has shown significant reduction trends with 

estimates of -12.9% per decade over the 1976-2006 period (Stroeve et al. 2012). Minimum 

historical September sea ice cover were observed in 2007, 2011 and 201 2, showing an 

acceleration in the sea ice cover decline over the Arctic (Comiso et al. 2008 ; NSIDC). More 

importantly, sea ice thickness and volume have been rapidly decreasing over the past decades 
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(Kwok and Rothrock 2009; Kwok et al. 2009), as seen also in the marked decrease in thick 

perennial sea ice volume since the 2000s (Nghiem et al. 2007) . The anomalous sea ice motion 

responsible for Fram Strait ice exports is primarily driven by sea-level pressure anomalies 

(Tsukemik et al. 201 0) illustrating the strong physical coup ling between the sea ice and the 

atmosphere. Although large-scale atmospheric anomalies and upward trend in the NAM 

index play a role in the sea ice cover reduction, they cannot account entirely for the recent 

trends (Deser and Teng 2008) . 

Different mechanisms are responsible for the decrease in sea ice for different regions 

of the northem hemisphere high latitudes. The changes in the sea ice edge location over the 

Barents Sea are related to an increase in the sea surface temperatures (SSTs) combined with 

enhanced southerly winds, while changes over the Bering Sea are mainly influenced by the 

anomalies in the easterly winds (Francis and Hunter 2007) . Over the Pacifie Sector of the 

Arctic Ocean, detailed analysis of the September 2007 sea ice cover minimum showed 

enhanced heat transport through Bering Strait (Wood gate et al. 201 0) likely causing earl y 

melt along the Alaska coast and triggering a sea ice-albedo feedback. Reduced cloudiness 

over the region enhanced the ocean absorption of solar radiation in 2006- 2007 (Kay et al. 

2008), increasing the heat content of the ocean and energy used for bottom melting of the ice. 

These complex physical mechanisms and interactions are difficult to assess solely based on 

observations due to their limited availability, especially for ocean and sea ice. Nevertheless, 

Perovich et al. (2008), using ice mass balance buoy observations, showed large amounts of 

bottom me !ting of the sea ice in the Beaufort Sea in the summer of 2007, direct! y linked to 

the increased heat content of the ocean caused by enhanced absorption of solar radiation. 

Over the Central Arctic Ocean, sea ice cover reduction is responsible for a surface-based 

amplification of the lower tropospheric warming over the 1989-2008 period (Serreze et al. 

2009; Screen and Simmonds 2010). This Arctic amplification due to sea ice retreat is another 

illustration of positive feedbacks enhancing the warming and further reducing the sea ice 

cover. 

The combination of observational evidence on the recent sea ice cover and thickness 

suggests a growing non-linear response of sea ice cover and volume to extemal climate 

forcing (Fig. I.2). With the extensive open water observed in recent Septembers, the Arctic 
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Ocean shows increasing proportion of thin first-year ice in spring (Maslanik et al. 2007). The 

dynamical forcings acting on the ice by the winds, the ocean circulation and waves more 

effectively break the thinner first-year ice, leading to a more fragmented sea ice cover early in 

spring. This increased fraction of open water allows for more shortwave radiation to be 

absorbed at the ocean's surface, thus warming the upper ocean water, increasing the sea ice 

melt from at the ocean-ice interface during spring and summer. These interactions, supported 

by observational evidence, strongly suggest an increased contribution of the sea ice-albedo 

feedback in the recent years minimum observed in the sea ice cover and accelerated rate of 

decline (Lindsay and Zhang 2006; Perovich et al. 2007, 2008). Finally, as the Arctic climate 

bas been warming for ali seasons (Serreze et al. 2009), the likelihood of cold conditions is 

diminished. These warmer conditions decrease the possibility of temporary recovery of the 

sea ice cover and thickness through natural climate variability (Stroeve et al. 2012) . 

Over land, the permafrost temperatures have increased by up to 3 oc since the 1980s in 

the Arctic (Lemke et al. 2007). Large spatial variability of the warming is observed across the 

Arctic from maximal increases of 3 oc to 4 oc in the coastal area of Alaska, to smaller 

increases between 0.3 oc to 1 oc in the Yukon River valley (Osterkamp 2007). Across the 

Arctic, permafrost temperatures generally increased with the exception of Northem Québec 

sites that showed cooling of the order of -0.05 oc yf 1 from the mid 1980s to early 1990s 

(Allard et al. 1995), in good agreement with surface temperature changes. Despite the cold 

annual temperatures in the Arctic, sorne regions, especially in Alaska, showed signs of 

permafrost degradation clearly visible from aerial photographs (Jorgenson et al. 2006). 

Observational studies demonstrated that permafrost temperatures are primarily sensitive to 

changes in the near-surface air temperature and in the length of the freeze and thaw seasons, 

while snow cover and duration play an important but secondary role (Zhang et al. 2007; 

Lemke et al. 2007; Frauenfeld and Zhang 2011). 

The impacts of near-surface permafrost degradation are manifold. The thawing of ice

rich permafrost - where large fraction of the soi! volume is occupied by ice - causes 

subsidence of the soi! surface, dramatically changing the landscape. The thawing of ice-rich 

permafrost can lead to the formation of thermokarst ponds, which bas impacts on the 

vegetation cover by flooding the roots and destroying the trees, transforming forested areas 
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into bogs (Hinzmann et al. 2005). 

Permafrost degradation can also dramatically change the surface and sub-surface 

hydrology. lee-rich permafrost prevents the infiltration of surface waters, increasing the 

surface soil moisture. If the permafrost degrades, soil water can in sorne cases infiltrate and 

reach the groundwater network causing partial or complete drainage of lakes (Y oshikawa and 

Hinzmann 2003 ; Smith et al. 2005) . Drying of lakes and ponds changes the redistribution of 

surface energy from latent to sensible heat fluxes and thus feedback on the near-surface 

atmospheric conditions. 

Rivers can also be affected by the changes in a1r temperature, precipitation and 

permafrost degradation. Over the 1936- 1999 period, Peterson et al. (2002) showed a 7% 

increase in the river discharge from the six largest rivers across the Arctic. The increased 

discharge was related to the changes in the NAO and to the global temperature increase, 

showing the interdependence and complexity of the Arctic climate system response to 

changes in the natural variability and the anthropogenic climate change. Inconsistencies 

between the changes in river discharge and in precipitation raised questions about the quality 

of the observed fields, especially for the Yenisey River where the increased discharge could 

not be explained by the observed decrease in precipitation (Berezovskaya et al. 2004). Such 

inconsistencies are difficult to ascertain solely based on observations due to the limited 

networks of precipitation gauges and the quasi-absence of reliable data on other hydrologie 

parameters such as the evaporation, available only at sorne few measured stations and subject 

to large uncertainties in mode! estimates. Moreover, important regional differences exist in 

river discharge trends across the Arctic, with upward trends over Siberia, while North 

American Rivers show downward trends in the Hudson Bay region (McClelland et al. 2006; 

Déry and Wood 2005 ; Déry et al. 2005; Déry et al. 2009). Changes in the river discharge are 

also sensitive to the accelerated glacier melt occuring in the high latitudes. As such, river 

basins with an important glacial component generally show positive trends in runoff while 

basins with smaller or no glaciers generally show decreasing trends (Hinzmann et al. 2005). 

Finally, changes in river discharge might also affect the Arctic Ocean by changing the 

freshwater fluxes and its spatial distribution into the surface layer of the ocean, thereby 

changing the water density, which is just another illustration of the potential feedbacks 
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between the different climate components (Peterson et al. 2006). 

Soil biological processes are also sensitive to changes in the atmosphere and soil 

temperatures and to permafrost degradation. In the Arctic, cold temperatures inhibit the 

decomposition of dead vegetation, forming over time important peat deposits, reaching 

depths of over 30 rn in sorne cases (Tamocai et al. 2009). This accumulation results in the 

presence of large amounts of carbon sequestered in the Arctic soils, evaluated at - 1672 Pg of 

carbon, with approximately 88% of that carbon located in perennially frozen soils and 

deposits (Tamocai et al. 2009). While frozen, this carbon is relatively inactive but represent 

one of the least understood but important potential carbon-climate feedbacks because of the 

magnitude of the carbon pool it represents (Schuur et al. 2008). Since most of the microbial 

activity occurs in the seasonally thawed active layer (Schuur et al. 2008), increases in 

temperatures and permafrost degradation will increase the decomposition of the soil organic 

carbon, released in carbon dioxide or methane form depending on the type of decomposition, 

i.e. aerobic or anaerobie. The carbon transfer from the soil carbon pool towards the 

atmosphere is dependent on many factors , with the changes in the soil temperatures playing a 

primary role (Schuur et al. 2008; O'Connor et al. 2010). 

In summary, the Arctic Climate and its changes are composed of complex interactions 

and feedbacks between most of its components. Although the major interactions present 

between the atmosphere, ocean and land components are mostly addressed by the physics of 

climate, the understanding of local scale feedbacks requires a multidisciplinary approach 

involving hydrology, glaciology and biology. 

The main challenge in the study of the Arctic climate and climate changes resides in 

the limited observational networks and the short time period for which these observations are 

available. Prior to the satellite era, the observational data was mostly available from few 

long-term stations dispersed in the Arctic region or through field campaigns such as the 

Arctic lee Dynamics Joint Experiment (AIDJEX) campaign in the 1970s and the Russian 

North Pole Drifting Station program. The combination of a sparse observational dataset and 

high variability makes it difficult to distinguish between the signais of climate variability and 

climate change with confidence (ACIA 2004). 
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In this context, the development of numerical models significantly aided 

comprehension of the key physical processes and mechanisms that determine the Arctic 

climate. An important advantage of the mode ling approach over direct observations is that it 

provides continuous data in space and time of physically coherent variables essential to study 

the evolution of various components of the climate system. Although numerical models were 

traditionally developed separately for various major climate components such as ocean and 

sea ice, atmosphere, land surface, more efforts are now being dedicated to the interactive 

coup ling of the se components to better understand the interlinkages and feedbacks. 

Scientific objectives and thesis presentation 

This thesis is composed of two main chapters, each representing a paper accepted or 

submitted for publication in a peer-reviewed journal. The first chapter, entitled "Causes and 

consequences of mid-21 st Century Rapid Ice Loss Events simulated by the Rossby Centre 

Regional Atmosphere-Ocean model" published in Tellus A, is an analysis of the factors and 

mechanisms responsible for the Rapid Ice Loss Events (RILEs) as simulated in three climate 

projections of the regional model from the Swedish Meteorological and Hydrological 

Institute (SMHI). The second chapter, entitled "On the simulated Arctic near-surface 

permafrost and climate sensitivity to soil and snow formulations" focuses on the evaluation 

of the near-surface permafrost and its sensitivity to the representation of soil organic carbon, 

soil column depth and snow thermal conductivity using a physically based land surface 

scheme and a regional climate model - the fifth-generation of the Canadian Regional Climate 

Model (CRCM5). These studies are part of a larger effort at the Centre ESCER (Étude et 

Simulation du Climat à l' Échelle Régionale) at Université du Québec à Montréal (UQAM) to 

develop a fully coupled regional climate mode! that will include, in the future, ali physical 

components of the Arctic Climate system. Work is underway by colleagues at ESCER to 

develop and implement a lake-river system, dynamic glacier mode! and to achieve an coup led 

atmosphere-ocean system. A brief introduction and motivation for each of the chapters is 

presented below. 

As presented earlier, Rapid Ice Loss Events (RILEs) were observed in 2007, 2010 and 

2012, mainly occurring over the Pacifie Sector of the Arctic Ocean. The AOGCMs 
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participating m the World Climate Research Programme (WCRP) Coupled Mode! 

Intercomparison Project Phases 3 and 5 (CMIP3 , CMIP5) underestimate the observed 

decreasing trends in sea ice co ver (Stroeve et al 2007, 2012). Although improvements in the 

representation of the sea ice cover were achieved in CMIP5, the models do not appear to 

agree on when the Arctic Ocean might become seasonally ice-free (Stroeve et al. 2012). In 

sorne models, the simulated transition from perennial sea ice cover to nearly ice-free 

summers occurs in an abrupt and short transition period. During these transition periods, the 

simulated decreasing trends in summer sea ice cover are similar to the observed trends over 

the past decade. Amongst the CMIP models , only few models show such RILEs, but usually 

around the middle of the 21 st Century (i .e. Rolland et al. 2006), while trends over the recent 

decade are generally underestimated. Understanding the physical mechanisms leading to such 

RILEs could improve our understanding of the sea ice decline of the last decade and is 

necessary for climate mode! improvements. In the context of future climate projections, the 

state of the Arctic Ocean sea ice cover will play a major role in defining the climate change 

of the region, and it is essential to understand its interconnections to the global climate in 

order to reduce the uncertainties associated with future projections. 

In that context, the Rossby Centre Atmosphere-Ocean (RCAO) regional climate mode! 

is one of the few models to simulate such RILEs. Three climate projections were performed 

over the 1960- 2080 period driven at the atmospheric lateral boundary conditions (LBC) by 

the same realization of the Max Planck Institute's AOGCM ECHAM5-MPIIOM. Results 

showed sea ice loss events occurring around 2040 in each projection, although no RILEs 

were present in the ECHAM5-MPI/OM projection. The common LBCs and the noted 

synchronicity between the events in each projection allowed an in-depth study of the physical 

mechanisms causing the events, as weil as the role played by the extemal forcing imposed at 

the LBCs of the RCM. 

The rapid decrease of sea ice cover could also have important potential impacts on 

other parts of the Arctic climate system. Sea ice thinning and melt could enhance the beat 

transfer from the ocean towards the atmosphere especially in autumn due to a later freeze-up 

at the ocean' s surface. This increased beat and moisture in the atmosphere could potentially 

be advected over land, therefore increasing the energy transfers between atmosphere and 
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land. Lawrence et al. (2008) noted that the CRUTEM3 temperature data (Jones et al. 2006) in 

autumn of 2007 was the warmest over the previous 30 years with a significant increase of 2.3 

oc over Western Arctic. Using the Community Climate System Model (CCSM3 ; Meehl et al. 

2006), Lawrence et al. (2008) also noted that the simulated warming trend over land, in 

consequence to RILEs, was 3.5 times larger in transient climate change projections compared 

to periods outside of rapid ice Joss. This warming signal propagated approximately 1 ,500 km 

inland, influencing the permafrost on a pan-Arctic scale. Complementary experiments using 

the Community Land Mode! (Oleson et al. 2008) showed acceleration of soi! heat 

accumulation during RILEs, directly influencing the warm permafrost areas and hastening 

the permafrost degradation. 

Due to sorne limitations rn RCAO representation of near-surface atmospheric 

variables, especially over land (see section 1.4.3.3) and its shallow 2.2 rn deep land surface 

scheme (Samuelsson et al. 2006), it was decided to investigate the simulation of near-surface 

permafrost using the fifth version of the Canadian Regional Climate Mode! (CRCM5) 

coupled to the Canadian LAnd Surface Scheme (CLASS). CLASS provided important 

advantages to study permafrost as its formulation includes a flexible soi! column depth 

capability, crucial to represent high latitude soi! processes. Although the CRCM5 isn' t 

coupled with an ocean mode!, it is planned to include such capability in the near future, 

therefore motivating this study. Moreover, the first simulation results using the CRCM5 

undeniably showed the necessity to improve high latitude soi! representation due to an 

underestimation of simulated near-surface permafrost using CLASS standard configuration. 

The objective of the second paper is therefore to assess sensitivity of the near-surface 

permafrost and surface climate to soil and snow formulation. Mineral soils are generally not 

representative of the land coverage in the Arctic where organically rich soils are present over 

large areas. The soi! organic carbon (SOC) has very different thermal and hydraulic 

properties compared to mineral soils and must be taken into account in any land surface 

model (LSM) to get realistic representation of the annual cycle of soi! temperatures . The SOC 

greatly modifies the thermal and hydraulic properties of the soi! column due to its high 

porosity, low thermal conductivity and relatively high heat content (Beringer et al. 2000; 

Letts et al. 2000) . Recent studies (Nicolsky et al. 2007; Lawrence and Slater 2008; Rinke et 
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al. 2008; Dankers et al. 2011) demonstrated the need to include SOC in LSMs for improved 

simulations of soi! thermal and moisture regimes, hence near-surface permafrost. 

The presence of SOC can have significant impact on the surface energy balance by 

increasing the energy flux towards the atmosphere, caused by lower thermal conductivity and 

by impacting the partitioning of this energy into latent and sensible heat fluxes. Very few 

studies have addressed the impact of SOC on the coup led land-atmosphere system. Lawrence 

et al. (2008) and Rinke et al. (2008) obtained opposite impacts of SOC in their respective 

coupled land-atmosphere models. Results of Lawrence et al. (2008) show large increases in 

the sensible heat flux, leading to increased near-surface air temperatures, a deepening of the 

atmospheric boundary layer and a decrease in low-level clouds. Rinke et al. (2008) obtained 

increased latent heat flux, decreased air temperatures and increased low-level clouds. These 

contradictory results raised important questions on the sensitivity of the surface climate to the 

implementation of SOC. 

Permafrost warming (and degradation) has been observed in multiple regions across 

the Arctic. The use of numerical modeling to assess the Pan-Arctic permafrost changes is 

important, given the limited number of observations . Although sorne studies are available on 

such scales, most of them were performed using either LSMs driven by observational 

datasets, reanalysis products or atmospheric fields from general circulation models (GCM), 

neglecting the potential feedbacks arising from the land-atmosphere interactions. The 

objectives of the second chapter of this thesis are twofold. The first objective is to assess the 

sensitivity of the simulated Pan-Arctic soil temperature and moisture regimes to the LSM 

column depth, to the implementation of SOC parameterization and modified snow 

conductivity. This first objective is performed using the Canadian Land Surface Scheme 

(CLASS) driven by reanalysis, therefore in stand-alone mode, neglecting the land

atmosphere interactions and feedbacks. 

The second objective is to study the impact of the improvements to CLASS within the 

coupled framework using the fifth-generation Canadian Regional Climate Mode! (CRCM5) 

on the simulated near-surface permafrost, surface climate and land-atmosphere interactions. 

Analysis of the changes in the surface energy partitioning due to the implementation of the 

SOC parameterization contributes to reducing the uncertainties noted in previous studies by 



13 

Lawrence et al. (2008) and Rinke et al. (2008). Lastly, evaluation of the CRCM5 ability to 

reproduce the observed warming trend over the Arctic and its relation to the permafrost 

temperature and active layer thickness is a crucial step prior to considering any climate 

projections. 
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Figure L 1: Topography and bathymetry of the Arctic based on the ETOPOS data set, 

NOAA 1988 (AMAP 1998). 
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CHAPTERI 

CAUSES AND CONSEQUENCES OF MID-21 51 CENTURY RAPID ICE LOSS 

EVENTS SIMULATED BY THE ROSSBY CENTRE REGIONAL 

ATMOSPHERE-OCEAN MODEL 
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Abstract 

Recent observations and modeling studies suggest that the Arctic climate is undergoing 
important transition. One manifestation of this change is seen in the rapid sea ice cover 
decrease as experienced in 2007 and 2012. Although most numerical climate models cannat 
adequately reproduce the recent changes, sorne models produce similar rapid ice Joss events 
(RILEs) during the mid-21 st Century. This study presents an analysis of four specifie RILEs 
clustered around 2040 in three transient climate projections performed with the coupled 
Rossby Centre regional Atmosphere-Ocean mode! (RCAO). Analysis shows that long-term 
thinning causes increased vulnerability of the Arctic Ocean sea ice cover. In the Atlantic 
sector, preconditioning (thinning of sea ice) combined with anomalous atmospheric and 
oceanic beat transport cause large ice Joss, wh ile in the Pacifie sector of the Arctic Ocean sea 
ice-albedo feedback appears important, particularly along the retreating sea ice margin. 
Although maximum sea ice Joss occurs in fall, response in surface air temperature occurs in 
early winter, caused by strong increase in ocean-atmosphere surface energy fluxes, mainly 
the turbulent fluxes. Synchronicity of the events around 2040 in the projections is caused by a 
strong large-scale atmospheric circulation anomaly at the Atlantic lateral boundary of the 
regional mode!. The limited impact on land is caused by vertical propagation of the surface 
beat anomaly rather than horizontal, caused by the absence of low-level temperature 
inversion over the ocean. 

----------
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l.llntroduction 

Climate change, induced by increased anthropogenic emissions of greenhouse gases, is 

one of the greatest environmental issues today. These changes are being experienced 

particularly intensely in the Arctic, where the temperatures have risen at almost twice the rate 

of the rest of the world in the past few decades (ACIA 2005). The climate change projections 

realized with coup led general circulation models for the 21 51 Century for the region suggest 

further warming. It should be noted though that the uncertainties in the projections for the 

Arctic are larger compared to those for lower latitudes, as shawn by the large spread amongst 

models that participated in the third World Climate Research Program's (WRCP) Coupled 

Madel Intercomparison Project (CMIP3) . Understanding the changes in the Arctic climate is 

crucial not only for regional environmental and social issues, but also for global climate due 

to interconnections between the Arctic and global climates. 

The Arctic sea ice cover and its thickness, due to the relation to atmospheric and oceanic 

temperatures, is a sensitive indicator of climate change in the region. According to Stroeve et 

al. (2007), the September Arctic sea ice extent has decreased during the 1979- 2006 period at 

rates of 9.1% per decade. The recent years, however, showed accelerated summer sea ice loss 

with 2007, 2011 and 2012 showing historical minimum values in the satellite observation era 

(Comiso et al. 2008; NSIDC). Nghiem et al. (2007) using observations and a drift-age madel 

suggested large acceleration in the rate of decrease of thick perennial (multi-year) ice 

reaching unprecedented values of 23% between March 2005 and March 2007. The transition 

from thicker perennial ice towards thinner first-year ice over the 2006- 2007 period made the 

ice more vulnerable, leading to the summer historical minimum values of 2007 (Nghiem et 

al. 2007) . 

In addition, a number of other mechanisms also contributed to this rapid observed decrease in 

sea ice extent. The large-scale atmospheric circulation played an important role; for example, 

Deser and Teng (2008) and Wang et al. (2009) showed that trends in sea ice caver over the 

marginal ice zones can be linked to the Northem Annular Mode (NAM) through the surface 

wind anomalies. This circulation anomaly strengthened the transpolar-drift, with anomalous 

meridional wind blowing from the western to the eastern Arctic, th us enhancing export of sea 

ice through Fram Strait. Nghiem et al. (2007) also showed observational evidence of 
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increased inclusion of perennial (thick multi-year) ice in the transpolar drift, leading to 

massive ice volume exports through Fram Strait during the 2006- 2007 period. However, the 

analysis by Deser and Teng (2008) concluded that the circulation anomalies couldn't explain 

the overall summer and winter trends in the sea ice cover. 

Kay et al. (2008) studied cloud cover and its potentiallinks to the rapid decrease in sea ice 

during the 2006- 2007 period. They report a 16% decrease in summertime cloudiness over the 

Western Arctic from satellite and ground-based data in 2006 and 2007, which leads to an 

increase in downwelling shortwave radiation of32W/m2
, while little changes in downwelling 

longwave radiation ( -4 W 1m2
) were observed. Analysis of the changes in clouds and radiation 

over the summer melt season showed the potential to increase surface melting by 0.3 rn or a 

2.4 K warming of the sea surface temperature, energy potentially used for bottom melting of 

the ice. Although this anomal y of reduced cloudiness is not unprecedented in records, Kay et 

al. (2008) suggests that the presence of thinner sea ice over the region made the system more 

vulnerable. This suggests that, in the future, anomalies in cloud cover and radiative fluxes 

might play an increasingly important role in regulating summer sea ice extent. Observations 

of the ice mass balance over the Beaufort Sea confirmed a large increase in the bottom 

mel ting of the ice, main! y in 2007, caused by warmer ocean temperatures due to enhanced 

shortwave absorption, triggering an ice-albedo feedback and accelerated the sea ice melt 

(Perovich et al., 2008). 

Investigation of the Arctic climate using coup led general circulation models showed that 

none of the models contributing to CMIP3 were able to reproduce the observed acceleration 

of the Arctic sea ice Joss. Stroeve et al. (2007) clearly showed that CMIP3 coupled general 

circulation models underestimate the sensitivity of the Arctic sea ice to extemal forcing 

caused by the increase in greenhouse gas concentration. Analysis performed with the 

Community Climate System Mode! version 3 (CCSM3 ; Collins et al. , 2006) showed rapid 

decreasing trends, suggesting nearly ice-free conditions by approximately 2050 (Holland et 

al. , 2006, hereafter H06), while other models in the CMIP3 ensemble do not reach such state 

by 2100 (Stroeve et al. , 2007). These results highlight the existing uncertainties in the 

simulation of the Arctic climate and the need for further investigation. 
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The modeled transition from perennial sea 1ce cover to nearly ice-free summer often 

shows abrupt sea ice reduction periods with trends similar in magnitude to those observed 

during the recent 2006- 2012 period. These Rapid lee Loss Events (RILEs) are characterized 

by abrupt summer sea ice extent reduction over short time periods (5-10 years). Using the 

CCSM3 , Rolland et al. (2006), in an assessment of the relative roles of natural and forced 

changes in sea ice loss, identified multiple mechanisms responsible for such abrupt reduction 

in sea ice cover. The long-term thinning over multiple decades occurring before the RILEs 

increased the vulnerability of the sea ice cover, while 'pulse-like' ocean heat transport 

anomalies were found to be the triggering mechanism for rapid sea ice loss. Once the ice loss 

has been triggered, a positive sea ice-albedo feedback occurs in CCSM3, further accelerating 

the sea ice melt leading to extensive Arctic sea ice loss. Rolland et al. (2008, hereafter R08) 

suggested that the increased vulnerability of the sea ice caused by anthropogenic forcing 

results in an increase in the intrinsic variability of the sea ice co ver. 

One of the important concems related to the RILEs is the consequences on the Arctic 

climate system. Under conditions of reduced sea ice cover, the atmosphere cornes in contact 

with the warm ocean waters leading to low-level atmospheric warming through increased 

turbulent fluxes at the surface. Surface winds can later advect this warm air towards 

surrounding land masses, further accelerating the general warming due to climate change 

over the adjacent permafrost underlain regions. This accelerated warming during RILEs can 

accelerate permafrost degradation (Lawrence et al., 2008) already observed in sorne parts of 

the Arctic, thus impacting soil thermal and moisture regimes, which can have an influence 

the pan-Arctic biome. Another potential hazard is the release of soil carbon sequestered in the 

frozen ground, likely in methane form, to the atmosphere causing a positive feedback leading 

to further increase in temperature in future climate. 

In a previous study, Doscher and Koenigk (2013), hereafter DK, studied 30 sea tce 

reduction events in an ensemble of 6 regional Arctic climate scenarios from the Rossby 

Centre Atmosphere-Ocean model (RCAO, Doscher et al. 2002 and 2009). DK studied sea ice 

reduction events throughout the 1980-2080 period in order to identify physical processes 

leading to these reductions. In DK, sea ice reduction events are defined as summer sea ice 

cover reduction of 1,200,000 km2 over a single or multiple successive years. This criterion is 
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less cons training compared to th at of H08 and the present study, and allowed them to perform 

statistical analysis over 30 less extreme sea ice reduction events. DK suggested that sudden 

ice loss mechanisms were strongly related to changes in the large-scale atmospheric 

circulation and also influenced by sea ice thinning as a preconditioning. Clustering of RILEs 

during the 2030-2035 period amongst the regional scenarios was indicative of a strong 

control of large-scale atmospheric forcing from the lateral boundary condition from 

ECHAM5/MPI-OM common scenario (hereafter ECHAM). Relating RILEs to atmospheric 

circulation anomalies, DK generally concluded that RILEs in RCAO could result from 

changes to the large-scale atmospheric circulation with very limited impact of seasonal 

radiative forcing on average. 

The present study aims to provide a more comprehensive understanding of the physical 

mechanisms responsible for 4 specifie extreme RILEs simulated by RCAO clustered around 

2040 with additional analysis of aspects not addressed in the previous study by DK. These 

analysis include: detailed analysis of the surface energy fluxes and surface temperature are 

presented for the pre-RILE period, during the RILE and post-RILE period. Strong relations 

between RILEs and the changes in the atmospheric and oceanic circulation are established to 

demonstrate the important role played by the large-scale flows in the synchronicity of the 

extreme RILEs. In addition, we investigate the impacts of RILEs on the sea ice variability 

and the atmospheric structure along with the regional response of temperature over the 

nearby coastal areas. 

The outline of this paper is as follows. Section 1.2 provides a brief description of the 

RCAO formulation and the mode! integrations. RCAO present-day climatology for the 

climate projections and comparison with the driving model ECHAM is presented in Section 

1.3 while Rapid lee Loss Event analysis is presented in Section 1.4, followed by discussion 

and conclusions in Section 1.5. 
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1.2. Model description and experimental design 

1.2.1 Model description 

The Arctic regional climate projections considered in this study are performed by the 

Rossby Center coupled Atmosphere Ocean mode! (RCAO, Doscher et al. 2002 and 2009) 

which consists of RCA for the atmosphere (Jones et al. 2004a; Jones et al. 2004b; Kjellstrom 

et al. 2005) and RCO for the ocean (Meier et al. 2003). The mode! domain is centered over 

the Arctic and extends from approximately 50°N in the North Atlantic to the Aleutian Islands 

in the North Pacifie (Fig. 1.1). The RCA domain was chosen in a way to avoid large 

orographie features near the lateral boundaries while covering large enough areas to get 

realistic wind forcing over the Bering Sea. Both RCA and RCO are integrated at 0.5-degree 

horizontal resolution, on a rotated latitude-longitude grid for RCA and a spherical grid for 

RCO. 

The RCO ocean mode! is based on the parallelized 3D primitive equation mode! in 

geopotential coordinates with a free surface (Webb et al. 1997). Detailed description of the 

mode! formulation and evaluation can be found in Meier et al. (2003) and Doscher et al. 

(2009) . RCO has 59 unevenly distributed vertical levels with the bottom topography 

interpolated from ETOP05 dataset (1988) . Vertical resolution is 3m at the surface gradually 

decreasing to 200m at 5000m. The Aleutian Islands form a closed ocean boundary while an 

open boundary, following formulation by Stevens (1991), is located in the North Atlantic. 

RCO includes a 2-category dynamic-thermodynamic sea ice mode! based on elastic-viscous

plastic (EVP) rheology (Hunke and Dukovicz 1997) and Semtner-type thermodynamic 

formulation (Semtner 1976). Snow and sea ice albedo formulation is dependent on the ice 

temperature following a modified version of K0ltzow (2007). A melt pond parameterization 

based on SHEBA ice drift station data is included in the mode! (Doscher et al. 2009). 

The atmospheric component RCA, based on the limited-area weather prediction mode! 

HIRLAM (Undén et al. 2002), is a semi-implicit, semi-Lagrangian, hydrostatic grid-point 

mode! using terrain-following hybrid vertical levels. The present version uses 24 vertical 

levels with the mode! top at 15hPa. Adaptation of the physical parameterization to run in 

climate mode was performed in the earl y stage of RCA development, especially the radiation 
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and turbulence schemes (Jones et al. 2004a,b ). Recent improvements to the radiation, 

turbulence and cloud schemes are described in Kjellstrom et al. (2005). The land surface 

scheme follows the formulation discussed in Samuelsson et al. (2006) with 5 thermodynamic 

and 3 moisture levels both reaching a depth of 1.89m. 

RCA and RCO are run in parallel and use the coupler OASIS4 (Valcke and Redler 2006) 

to exchange information every 3 hours. RCA provides heat, radiation, freshwater and 

momentum fluxes to RCO, while the ocean provides sea surface temperature (SST), sea ice 

concentration and temperature, snow and ice albedo. 

1.2.2 Experiments 

Three RCAO Arctic regional projections covering the 1960- 2080 period are used; the 

projections follow SRES-AlB greenhouse emissions scenario. Ocean initial conditions for 

RCAO are obtained from the Polar Science Center Hydrographie Climatology data (PHC, 

Steele et al. 2001) which is available at 1° resolution. Sea ice is initialized with a thickness of 

2.3m and 95% sea ice concentration for ali grid points where the sea surface temperature is 

equal to or below freezing point. Previous study by Doscher et al. (2009) showed that the 

RCAO ocean near-surface layers reach advective balance after 20 years of simulation (1960-

1979). 

Atmospheric initial and lateral boundary conditions for all RCAO runs are taken from a 

single realization of the General Circulation Madel ECHAM5/MPI-OM. Land surface is also 

initialized from ECHAM5 fields. Differences between the RCAO projections reside in the 

North Atlantic Ocean boundary conditions and the sea surface salinity correction method, as 

presented in Table 1.1. The first regional projection is performed using monthly 

climatological values from PHC at the North Atlantic Ocean boundary (ECHstand2) repeated 

throughout the projection, while the other two projections (ECHMPistand and ECHMPiflux) 

use evolving monthly ocean fields from the driving ECHAM transient experiment. 

Two methods are commonly used to apply corrections to RCAO sea surface salinity due 

to the misrepresentation of freshwater fluxes into the ocean. The first method, used for 

ECHMPistand, is a relaxation method using a timescale of 240 days to correct the surface 
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salinity towards the PHC values. This relaxation is active during the entire climate projection. 

The second method, used for ECHMPiflux, is a mean monthly flux correction method. The 

annual cycle of monthly averaged surface salt flux correction was computed from the salt 

deviation between PHC and an RCAO experiment driven by ECHAM over a 20-year period 

at the end of the 20111 Century. Monthly salt-flux corrections are used without modification 

throughout the 120-year RCAO climate projection ECHMPiflux. Detailed description of the 

salinity correction methods can be found in Koenigk et al. (2011) . 

1.3 RCAO climatology 

The coupled model performance has been described in two previous papers (Doscher et al. 

2009; Koenigk et al. 2011), including transient evolution of the 2 rn-air temperature, sea ice 

extent and volume. Nevertheless, the understanding of the mechanisms and causes of the 

Rapid lee Loss Events requires description of RCAO's climatology to provide context in 

which the events are occurring and build a basis for comparison with the recent observed 

2007 and 2012 events and to other modeling studies. 

Figure 1.2 shows the 1980-1999 sea ice thickness fields and the sea ice margin location 

(SIC>15%) for the ensemble mean of the three RCAO projections and for the driving 

ECHAM realization. In March, RCAO simulated sea ice margin is in good agreement with 

sea ice data from ERA-Interim (Dee et al. 2011) except for sorne underestimation in Barents 

and Labrador Seas. ECHAM shows better agreement over these two regions but 

overestimates the sea ice caver in Bering Sea. September sea ice extent is underestimated in 

RCAO especially in Kara Sea and along Greenland while ECHAM tends to overestimate the 

sea ice extent over those regions. For sea ice thickness, RCAO produces much thinner ice 

compared to ECHAM, with maximum sea ice thickness in March located along the Siberian 

coast (3-3 .5 rn) and a secondary maximum along the Canadian Arctic Archipelago (2-2.5 

rn). ECHAM sea ice is thicker than 4m over most of the Central Arctic basin. In September, 

sea ice thins below 2 rn in RCAO except along the Siberian coast while ECHAM retains 

thick ice over most of the Arctic basin. 
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Based on numerous studies showing similar biases in the sea ice cover and thickness 

distribution in coupled models (Chapman and Walsh 2007; Bitz et al. 2002; deWeaver and 

Bitz 2006; Koldunov et al. 2010), we hypothesize that these differences mainly arise from the 

simulated atmosphere and associated surface forcings . This hypothesis is supported by results 

from Mârtensson et al. (2012) who performed RCO standalone simulations driven by ERA-

40 reanalysis (Uppala et al. 2005) where the maximal sea ice thickness is located along the 

Canadian Arctic Archipelago where present-day thickest ice is found (Bourke and Garret 

1987; Koldunov et al. 2010). Further improvements of the sea ice thickness distribution in 

Mârtensson et al. (2012) was achieved by including a multi-category sea ice scheme which 

was not included in the present RCAO experiments. Moreover, Fig. 1.3 presents the 1980-

1999 average sea leve! pressure (SLP) and 2 rn-air temperature (T2M) for ERA-Interim, the 

RCAO ensemble average and ECHAM. In March, both models overestimate SLP over 

Iceland, the Nordic Seas and parts of the Atlantic sector. In September, a positive bias is 

centered over the Central Arctic. This bias is slightly more pronounced in RCAO than in 

ECHAM. The temperature difference between RCAO and ERA-Interim (Fig. 1.4) shows 

large warm bias in March over the region of underestimated sea ice extent over Barents and 

Labrador Seas while a cold bias is present over the Central Arctic, also found in ECHAM. 

The bias in SLP indicates anomalous surface circulation from the CAA towards the Siberian 

coast in winter (not shown), which is responsible for the maximal sea ice thickness along the 

Siberian coast in RCAO. This bias in ice thickness distribution associated with biases in 

wind forcing is a common problem in many coupled models (Bitz et al. 2002; deWeaver and 

Bitz 2006; Holland et al. 2006), and the reason for this is still poorly understood (Koldunov 

et al. 201 0). In September, RCAO shows positive bi ases in SLP indicating the presence of a 

quasi-permanent high-pressure anomaly over Central Arctic basin with weak interannual 

variability within RCAO's individual projections (not shown). The biases in the SLP fie lds 

directly affect the surface winds, which in tum modify the ice dynamics. Since sea ice drift is 

nearly parallel to the isobars (Kwok 2008), the systematic high-pressure bias in RCAO 

compared to ERA-Interim is very likely responsible for an erroneous sea ice motion leading 

to thicker sea ice along the Siberian coast. The positive 2 rn-air temperature present in 

September is also likely to increase top ice melting, therefore reducing the sea ice thickness 

compared to observations. 
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Although ECHAM shows a similar SLP difference pattern, the max1mum sea 1ce 1s 

located between the coast of Greenland and Ellesmere Island and the North Pole (Koldunov 

et al. 2010), while the overestimated thickness is most likely caused by the cold bias over the 

Arctic basin (Koenigk et al. 2011). Interestingly, when computed over 2025- 2044 period, sea 

ice thickness distribution in ECHAM shows similar patterns to RCAO for the 1980-1999 

period (not shown). Differences in sea ice thickness and the resulting sea ice volume 

between RCAO and ECHAM persists throughout the simulation, with ECHAM showing 

acceleration in sea ice loss from 2020 onward (Koenigk et al. 2011). 

The focus of this paper is to understand the mechanisms responsible for triggering the 

Rapid lee Loss events and their effects on surface fields as simulated by RCAO, despite the 

mode! limitations. Albeit the impact of the mode! biases on the simulation of recent past sea 

ice conditions, this study con tri butes to improved understanding of not on ly RCAO behavior, 

but also of tho se numero us models sharing similarity in their atmospheric circulation. 

1.4 Rapid lee Loss Events 

1.4.1 Rapid lee Loss Events 

In arder to focus on extreme events, the RILE criteria used in this study are more 

conservative compared to the one used in the previous study of DK. The central year of a 

RILE is defined when the derivative of the five-year running mean of the minimum 

September sea ice extent exceeds a value of -0.5 million km2y( 1
• In the case that two 

successive years are below this threshold, the first year is defined as the central date. The 

duration of each event is defined as the period around the central year showing a Joss of 0.15 

million km2y( 1 or more included in a ±5 year radius. These criteria are adapted from a sea ice 

Joss study by H06. 

Figure 1.5 presents the time senes of the September sea ice extent from satellite 

observations (Fetterer et al. 2002, updated 2011 ), simulated by ECHAM and RCAO with 

identification of the RILEs detected using the aforementioned criteria. Firstly, RCAO 

produces realistic September sea ice caver compared to satellite observations, although 
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underestimated (see also Fig. 1.2), and the recent past decreasing trend is weil captured. The 

driving mode!, ECHAM, overestimates the sea ice cover, while it underestimate the observed 

decreasing trend, most likely related to the co id bias presented in section 1.3. 

Ali RCAO integrations show very similar behavior, with a decrease in the September sea 

ice extent during the 90 's, recuperation in the 2000-2010 period, followed by a period of 

general decrease from 2010 to 2030. Between 2030 and 2040, accelerated September sea ice 

Joss, satisfying RILE criteria is noted. An interesting aspect is the synchronicity of the RILEs 

for ali RCAO projections around 2040, suggesting strong control of the large-scale 

atmospheric boundary conditions from ECHAM (see section 1.4.2.5). Ali projections show a 

partial recovery period of September sea ice extent between 2040 and 2055, sorne years 

reaching values comparable to the sea ice extent prior to the 2040 drastic events, followed by 

a third sea ice Joss period extending from 2055 to the end of the projection. The recovery is a 

dominant factor in the study of the impacts of RILEs by limiting the period over which the 

atmosphere can react to reduced ice coverage. Although ECHAM shows large negative 

trends in sea ice extent from 2030 to 2080, no RILEs are detected using the aforementioned 

criteria in the global projection used to drive RCAO at its lateral boundaries. lt should also be 

noted that in the study by H06 using CCSM3, sea ice recovery was absent. A total of 4 rapid 

ice Joss events in the 3 RCAO regional projections are considered in this study, with average 

duration of 5.5 years, as summarized in Table 1.2. 

1.4.2 Causes and effects of RILEs 

This section investigates the characteristics of selected near-surface variables and key 

physical processes in action during the RILEs. Comparisons are performed between three 

different periods: RILE period where averages are computed over the duration of the event 

(consult Table 1.2 for event duration) and pre-RILE period (post-RILE) where averages are 

computed over the 10 years before (after) the RILE period itself. Due to the similarity of the 

pre-RILE and RILE periods for ali the events occurring around 2040, the R2 event is 

presented in details; similarities and differences with other events are discussed where 

appropriate. 
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1.4.2.1 Sea icefield morpho/ogy 

Figure 1.6 presents bimonthly averages of sea ice cover and thickness for the R2 event 

for the pre-RILE and RILE periods. For both pre-RILE and RILE periods, the Arctic ice pack 

in summer (July-August) and autumn (September-October) is characterized by high 

fractional cover extending from the East Siberian Sea shores to the Canadian Arctic 

Archipelago (CAA). In autumn, marginal seas are almost completely ice-free except the East 

Siberian Sea and the eastern parts of the Chukchi Sea. The thickest ice is located in the East 

Siberian Sea, as a result of a westward displacement of the winter high-pressure ridge over 

the Central Arctic Ocean, causing anomalous winds pushing the ice towards the East Siberian 

Sea coastal regions as presented in section 1.3 . This displacement is stronger during pre

RILE periods with winds parallel to the coast from the East Siberian Sea towards the New 

Siberian Island where ice is the thickest (not shown) . This displacement is a well-known 

large-scale near-surface circulation bias in atmosphere-ocean coupled models (Bitz et al. 

2002) accentuated by lack of sufficient number of sea ice classes in RCAO sea ice scheme 

(Mârtensson et al. 2012). A secondary maximum is located along the CAA shore at the 

location of present-day thickest ice (Bourke and Garret 1987). 

The largest differences in the sea ice cover between pre-RILE and RILE periods is noted 

for the September-October period. Sea ice cover fraction decreases over the whole Arctic ice 

pack and open water is formed principally in two distinct regions, over the Canada basin and 

in the vicinity of the North Pole. 

Although the maximal sea ice loss occurs in late autumn, changes can be noted in the sea 

ice cover in early winter (i.e. November-December) suggesting a delay in the formation of 

new ice due to accumulation of heat in the ocean. The regions that show decreasing sea ice 

fraction are along the marginal ice zone in the Atlantic sector (in the vicinity of Franz Joseph 

Land) and offshore of East Siberian Sea towards Chukchi Sea and extending weakly to 

Beaufort Sea. During RILE period, signs of early melt in summer (July-August) are visible 

along the coast of Alaska and in the Atlantic sector along the ice marginal zones, potentially 

contributing to accelerated ice melt during late summer, as suggested in Steele et al. (20 1 0). 

The Arctic ice pack is characterized by thin ice (<1 rn) over Central Arctic in the pre-RILE 

and RILE periods, suggesting high potential sensitivity of the sea ice co ver to extemal factors 
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such as modification in the large-scale atmospheric and oceanic circulations or changes in 

surface energy budget, presented in details later in this study. 

1.4.2.2 Sea lee vulnerability and long-term pre-conditioning by thinning 

Observations and numerical experiments suggest that long-term thinning of the Arctic 

ice plays a major role in increasing the ice vulnerability to extemal forcing such as changes in 

large-scale atmospheric and oceanic circulations, changes in radiative fluxes , or surface 

temperatures (Rolland et al. 2008; Kay et al. 2008; Perovich et al. 2008). This increased 

vulnerability is believed to have led to the 2007 minimum in sea ice cover. Figure 1.7 

presents the evolution of average September sea ice thickness for the Arctic for the 1980-

2070 period calculated over each grid point where sea ice cover is larger than 15%. 

Decreasing trend is clearly visible over 1980- 2040 period, in good correlation with the 

September sea ice extent (Fig. 1.5). 

To evaluate the vulnerability of the sea ice extent to the thinning of the ice, Fig. 1.7 

presents the relationship between the standard deviation of September sea ice extent and the 

average sea ice thickness for 20-year sliding windows over the 1980- 2070 period. The 

standard deviation of September sea ice extent is computed using each regional projection 

after subtracting the ensemble average. This way, we measure the natural variability in 

September sea ice extent of each simulation excluding the large-scale signal, filtered in the 

ensemble average. The small number of projections is compensated by the synchronicity of 

the events allowing reasonable removal of the large-scale signal. As shown in Figs. 1.2 and 

1.7, RCAO generally produces thinner ice compared to other climate models (Rolland et al. 

2006, 2008, 2010; Koenigk et al. 2011), with Arctic Basin maximum average September 

thickness reaching at most 120cm in the 80 ' s (Fig. 1.7). Nevertheless, Fig. 1.7 confirms 

increased variability of September sea ice extent for thinner ice for ali projections and for the 

ensemble mean. Compared to a similar plot in the study of Rolland et al. (2008) where 

asymptotic behavior was clearly visible with decreasing variability at thickness below l m, 

RCAO shows very large variability even in very thin ice conditions (<50 cm), suggesting that 

ice formation is highly sensitive to interannual changes of the exterior factors such as large-

~---------
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scale atmospheric and oceanic flows or changes in radiative fluxes, explored later in this 

study. 

1.4.2.3 Changes to selected near-surface fields during RILEs 

Changes in sea ice cover and thickness modify the surface conditions seen by the 

atmosphere. Figure 1.8a shows bi-monthly differences between the RILE and the pre-RILE 

periods for sea ice caver and thickness. Maximal ice thickness reduction during the RILE 

occurs in September-October over the East Siberian Sea causing a sea ice caver reduction 

from 90- 95% to 75%. The Central Arctic also thins from 50cm down to 15cm around 150°E, 

leading to a sea ice caver decrease from 80% to 50%. November-December shows similar 

thinning pattern and magnitude as September-October (Fig. 1.8a) but the ice is thick enough 

to effectively caver most of the Arctic Basin, causing small changes in the sea ice caver. The 

2 rn-air temperature increases during late autumn (September-October) but the maximal 

warming, up to 10°C, occurs over the ocean during early winter (November-December). 

Statistical analysis of the 2 rn-air temperature differences between the Pre-RILE and the 

RILE periods was performed using a t-test at 80%, 90%, 95% and 99% confidence levels 

(Fig. 1.8a). The 100-year trend in 2 rn-air temperature was removed prior to the testing to 

isolate the effect of the event from the background warming. Despite the limited length of 10 

years for the Pre-RILE period and 8 years for the RILE period, Fig. 1.8a show that the 

warming is mostly significant over the 95% confidence leve! for the Central Arctic Ocean 

during late autumn and winter. The warming patterns over the Nordic Seas in September

October is also significant above 90% which will be shawn later in the study to be crucial in 

the understanding of the RlLE mechanism for the Atlantic Sector of the domain. In MJ and 

JA, the large area of statistical significance over the Arctic Ocean and the weak signal in the 

trended differences is simply caused by a compensation between the long-term warming 

trends and a short term decrease in temperatures between the two period over these months in 

the detrended fields. While the detrended differences are small, between -2 and 0 °C, the very 

small interannual variability of the temperature reaches statistical significance. In the non

detrended differences, there is a net compensation between the long-term warming trends and 

the short-term cooling leaving an almost zero signal in the differences. 



31 

It is found that the 2 rn-air temperature response follows the changes in the net surface 

energy budget, and not the maximal changes in sea ice cover (Fig. 1.8b). The delay between 

the maximal increase in air temperature relative to the sea ice cover during the RILE period 

can be explained by increases in the turbulent heat fluxes, both sensible and latent, during the 

November-December period. Differences are due to the greater exposure of ice-free ocean to 

calder surface air temperature in early winter compared to milder fall air temperatures. The 

radiative contribution to the changes in net surface energy budget is limited to -5 wm-2 for 

terres trial radiation while solar contribution is zero during the polar night (Fig. 1.8b ). 

The January-February maximal warming is located at the sea ice margin of the Atlantic 

sector and over Kara Sea. Both regions show statistically significant warming caused by the 

increase in the surface turbulent fluxes due to sea ice retreat. Increased anomalies in turbulent 

fluxes towards the atmosphere are located over retreating sea ice margin, caused by increased 

exposure of the atmosphere to the relatively warm ocean causing a northward shift in the 

location of the maximum ocean-atmosphere heat trans fer. The region of decreased ocean heat 

Joss over the Barents Sea (Fig. 1.8b) is partly caused by the anomalous southerly circulation 

over the area, discussed in detail in the next section, decreasing the ocean-atmosphere vertical 

temperature gradient, thus reducing heat transfer. This dipole structure, consisting of 

decreased-increased ocean-atmosphere heat fluxes along the retreating sea-ice margin, is 

coherent with results from CAM3 simulations analyzing the effect of imposed reduction of 

sea ice cover during a hindcast experiment (Deser et al. 2010). 

The net surface solar radiation (Fig. 1.8b) increases due to the retreat of sea ice in May

June over Kara Sea (30-35 W/m2
) and Northem Baffin Bay. This increased absorption of 

solar radiation, mostly by open water, warms the ocean surface layer and increases the beat 

content of the ocean, potentially used for bottom ice melt, as suggested by many observations 

and modeling studies (Perovich et al. 2008; Kay et al. 2008; Steele et al. 2010). The role of 

increased absorbed solar radiation by the ocean before and during the RILE is found to be a 

dominant factor over the Pacifie sector of the Arctic Ocean in RCAO and will be presented in 

the next section. 

The Rl and R3 events resemble the R2 event in multiple aspects. The R3 event 

(ECHMPiflux) shows stronger sea ice loss for ali seasons, with a broader zone of thinning 
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covering the entire Arctic ice pack in September-October and also larger loss in the marginal 

ice zones of the North Atlantic sector for all other seasons. The spatial patterns of 

increase/decrease of the 2 rn-air temperature for R3 are slightly different when compared to 

the R2 event. Nevertheless, they are caused by the same mechanisms, i.e. changes in the net 

surface energy flux with the turbulent fluxes playing a dominant role in autumn and winter, 

while increase in net shortwave is important in spring. 

The sea ice cover differences are sm aller for R1, especially in the marginal ice zones of 

the North Atlantic sector, leading to milder changes in 2 rn-air temperatures and energy 

fluxes . This is linked to the oceanic heat transport and is explained in detail in section 1.4.2.5 . 

The R4 event occurs in 2063, nearly 20 years after the first period where the R1 , R2 and R3 

event occurs (~2040) and after the sea ice "recovery" of the 2050's. Therefore, sea ice is 

thinner and likely increases the sensitivity of the ice to changes in atmospheric fluxes or 

changes in circulation. Nevertheless, patterns for both sea ice cover and thickness and their 

changes during the RILE are similar to the 2040 events and shows similar changes to the 

surface energy fluxes. 

1.4.2. 4 Large-scale atmospheric circulation and sea surface temperature anomalies 

The general circulation patterns present in the decades preceding the RILEs (2020-2040) 

are very similar to those of the 1980- 1999 climatological period presented in section 1.3 . 

Both RCAO and ECHAM show continuity in the large-scale atmospheric patterns, 

suggesting a small sensitivity of the atmospheric large-scale circulation to the increased GHG 

concentrations. Therefore, the analysis of the anomalies in the large-scale circulation causing 

the RILEs is performed in the context of quasi-permanent anticyclonic circulation over the 

Arctic basin with relatively weak interannual variability . 

In this section, the impact of the short-term modifications of the large-scale atmospheric 

circulation and SSTs are analyzed. Figure 1.9 presents bi-monthly anomalies of sea-level 

pressure (SLP) and sea surface temperature (SST) between the RILE and the Pre-RILE 

periods for the R2 event along with an analysis of the statistical significance of the 

differences using at-test. 
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In July and August (JA), the SST increase over the entire Atlantic sector of the domain, 

defined as the region between the Nordic Seas extending to the Lomonossov ridge. While the 

warming is moderate over the Nordic Seas (0 .3-0.6 °C) the northernmost the region shows 

statistical significant the warming to be significant. Larger warming up to 3 °C can be 

observed over Kara Sea and along the retreating sea ice margin near the North Pole with 

statistical significance over 90% confidence leve!. Maximal SST warming for JA is 

collocated with maximum increases in 2 rn-air temperature and sea ice loss (Fig. 1.8a) near 

the North Pole, the southem regions being already ice-free in the Pre-RILE period. 

In September-October, positive SST anomalies, though reduced in magnitude, are still 

present and statistically significant at 95% over regions where sea ice cover decrease has 

been noted, namely near the North Pole and offshore of the East Siberian Sea (Fig. 1.8a). The 

SST over those regions remains above freezing point (not shown) thus delaying sea ice 

formation. The statistically significant SLP anomalies in autumn (Fig. 9) lead to anomalous 

southerly winds, advecting warmer air from the Nordic Seas towards the Arctic. Conjointly, 

changes in 2 rn-air temperature over the same region are also significant. One can clearly see 

a downward net surface energy flux anomaly (Fig. 1.8b) over broad region of the Barents 

Sea, resulting from a decreased air-ocean temperature contrast caused by the advection of 

warmer air from the south. This decrease in the energy flux from the ocean to the atmosphere 

slows the cooling of the near-surface ocean lay ers, allowing for the warm anomal y to persist, 

penetra te deeper in the Arc tic region and further delay the ice formation. W arm atmospheric 

inflow in that region during RILEs is coherent with similar finding for summer (JAS) in DK. 

During early winter, i.e. November-December, positive SST anomaly is still present and 

significant in the North Atlantic sector but in a reduced amplitude due to the change in the 

anomalous large-scale atmospheric circulation. Indeed, the positive SLP anomaly south of 

Iceland in November-December signais a weaker Icelandic low-pressure system, thus 

reducing heat transport from the North Atlantic towards the Arctic. Deprived of heat 

advection from the sou them flow, the atmosphere cools rapidly increasing ocean-air 

temperature gradient at the surface. This leads to increased turbulent surface fluxes in the 

North Pole region (Fig. 1.8b) and thereby increasing the surface cooling in the ocean 

producing favorable conditions for the onset of ice formation. 
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ln January-February, changes in the SLP anomaly show a regain of wind blowing from 

lower latitudes, directed towards the Barents Sea. The advection of warmer air over Barents 

Sea decreases the air-ocean temperature gradient, causing downward net energy flux over 

most of the region, except the location of sea ice Joss, where strong upward fluxes are 

observed (Fig. 1.8b ). Again, net downward fluxes cause the positive SST anomal y to persist 

and to remain statistically significant. 

While March-April SLP shows a deeper cyclonic Icelandic system during the RILE 

period, the circulation anomaly is mainly located over the Nordic Seas and does not 

propagate as far north as it did for January-February and September-October. This results in 

decreased amplitude of 2 rn-air temperature and net radiative balance anomalies over Barents 

Sea (Fig. 1.8b ). In May-June, significant positive SST anomalies develop over the regions of 

decreased sea ice cover although the SLP anomalies do not suggest southerly inflows. The 

positive SST anomaly is shown to be caused by the increased net shortwave absorption of 30 

wm-2 along the sea ice margin, reaching values of 40 wm-2 over the Kara Sea, which 

increases the ocean heat content near the surface, explaining large positive SST anomalies in 

the following months. 

For the Pacifie sector, Woodgate et al. (2010) showed an increase in the observed oceanic 

heat transport from the Northern Pacifie to the Arctic through Bering Sn·ait. They suggest 

that this increased beat acts as a trigger for the early onset of sea ice melt. These results are 

supported by the modeling ex periment of Steele et al. (20 1 0), where earl y melt along the 

Alaska coast is reported to be caused by the increased Bering Strait inflow, leading to the 

2007 minimum. In RCAO, Ekman convergence in the ocean, resulting from the quasi

permanent anticyclonic circulation presented in section 1.3, greatly reduces the Bering Strait 

inflow by creating a broad region of increased sea surface height covering most of the Arctic 

basin (not shown) . The above, along with the presence of a closed ocean lateral boundary 

located along the Aleutian Islands, precluding exchange with the North Pacifie, leads to 

underestimation ofthe Bering Strait inflow in RCAO. In the absence ofsignificant changes to 

the Bering Strait inflow during RILEs (not shown) and limited vertical heat transport from 

deeper ocean towards the surface (DK), other mechanisms causing the large sea ice melt over 

the Pacifie sector were investigated. Perovich et al. (2008) showed that the increase of 
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absorbed solar radiation by the ocean played a major role in the negative sea ice mass balance 

observed for the 2007 minimum, by triggering a sea-ice albedo feedback that contributed to 

the accelerated the sea ice retreat. 

Figure 1.10 shows the averaged anomalies of surface sea ice conditions, radiative fluxes, 

SST and 2 rn-air temperature computed over the period from May to October (MJJASO) 

between the year of minimum sea ice cover for event R2 (2041) and the 2010 - 2030 average. 

Sea ice cover shows strong decrease over the Beaufort Sea with signs of retreating sea ice 

margin (SIC > 15%) initialized from the Amundsen Gulf in May (contours in Fig. 1.10), 

evolving towards an ice-free region along the Alaska coast in August (green curve). The early 

sea ice retreat is triggered by anomalous sea ice velocity from the coast towards central 

Beaufort Sea (not shown). This retreat reaches a maximum in September (grey curve), where 

open water is present over most of the Beaufort Sea, leading to large negative SIC anomal y. 

Downwelling shortwave radiation at the surface shows average negative anomalies over the 

retreating sea ice margin in southwestem Beaufort Sea, caused by the increase in the low 

cloud cover (not shown) resulting from the presence of more open water associated with 

release of moisture from the ocean to the atmosphere. Nevertheless, the absorbed shortwave 

radiation by the open water shows strong increase over the same region reaching averaged 

monthly values of 30 wm·2 (45 wm·2 in May-June). This increased energy absorbed by the 

ocean leads to a warming of SSTs by up to 3 °C. The combination of early sea ice retreat, 

increased solar energy absorbed by the ocean and an ocean circulation directed from the 

coastal region towards the retreating ice edge strengthens the sea ice-albedo feedback and 

accelerates the bottom melt of the remaining thin ice present over the region . The 

contribution from downwelling longwave radiation (Fig. 1.1 0) is smaller over the en tire 

Beaufort Sea with maximum values smaller than 5 Wm-2 over the southwestem Beaufort Sea. 

The increased in downwelling longwave radiation corresponds to the near-surface 

temperature, resulting from the presence of open water and increased beat transfer from the 

ocean to the atmosphere. The increased 2 rn-air temperature over the Northem Beaufort Sea 

is the result of summertime advection from the Atlantic sector, enhancing top me !ting of the 

sea ice over the area, where little changes are observed in both downwelling shortwave and 

longwave radiation at the surface. Compared to observations of the 2007 event (Kay et al. 
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2008; Perovich et al. 2008), the simulated sea ice present over the Pacifie sector in RCAO is 

much thinner increasing its sensitivity to smaller perturbations in the radiation and clouds. 

1.4.2.5 Synchronicity of RJLE events and Ocean heat transport contribution 

The synchronicity of the RILEs during the regional climate projections, with three of the 

four events occurring around 2040 (Fig. 1.5), suggests a strong control of the large-scale 

atmospheric and oceanic circulation on the timing of the events. Figure 1.11 presents a 

comparison of the 850 hPa geopotential heights anomaly between 2036- 2042 encompassing 

the first three RILEs and the 10-year period prior (2026- 2035). Figure 1.11 shows the 

differences between those time periods for the ECHAM climate projection used to provide 

the atmospheric lateral boundary conditions to all three RCAO projections along with an 

estimation of the statistical significance using a t-test. The 850 hPa geopotential height field 

allows evaluation of lower tropospheric circulation while limiting the effect of surface 

processes. 

The comparison of the anomaly for ECHAM and the three RCAO regional projections 

shows large consistency between the four patterns for both the March-April and September

October periods, especially along RCAO lateral boundaries. As expected, differences 

between ECHAM and the regional projections and amongst individual regional projections 

grow towards the central part of the domain showing the decreased influence of the lateral 

boundary conditions towards the central part of the domain. Nevertheless, ali regional 

projections show statistically significant geopotential anomalies leading to increased 

advection from the Nordic Seas towards the Central Arctic Ocean in September-October and 

a deepening and northward extension of the Icelandic low in March-April. These results 

supports the hypothesis of increased heat transport from the Nordic Seas towards the Arctic 

during the RILE periods. Over the North Atlantic sector, one can notice that the amplitude of 

the geopotential height is, over most of the region, one order of magnitude larger compared to 

the standard deviation of the difference amongst the regional projections. The large values of 

the geopotential height anomalies compared to the variability amongst individual projections, 

their similarity compared to ECHAM and the high leve! of statistical significance of the 

signal rules out the possibility that these anomalies occurs randomly within RCAO 
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projections. Moreover, the results presented in Fig. 1.11 can be generalized over the annual 

cycle and for multiple vertical levels in the atmosphere (not shown), again reinforcing the 

conclusion that the anomaly propagates from the common lateral boundary conditions 

provided by ECHAM. 

Patterns of large-scale atmospheric circulation in events R 1 and R3 show anomalous 

winds from Nordic Seas towards the polar region. These winds generate positive anomalies 

in the annual oceanic heat transport (OHT) reaching the Barents Sea shelf (Fig. 1.12). Barents 

Sea OHT is computed over the first 290 m of the ocean (top 25 vertical levels) along a 

transect from Svalbard to the Kola Peninsula using a reference temperature of -0.1 °C. OHT 

in Barents Sea shows an increase for all RCAO projections from 2010 reaching maximum 

values around 2040, the central dates of R1 , R2 and R3 events. The large increase from 2030 

to 2040 is caused by a combination of warmer water and increased volume transport through 

the section, contributing to the SST warming observed over Barents Sea during the RILE 

events (Fig. 1.9). The differences in OHT between ECHstand2 (Rl) and the other two 

projections increase after the 2040 maximum. The OHT simulated by the ECHStand2, which 

uses repeated climatological ocean lateral boundary conditions, decreases abruptly after 2040 

reaching a minimum in 2045, followed by moderate increase until the end of the projection. 

However, the other two projections using ocean lateral boundary conditions from the global 

model scenario, responsible for the R2 and R3 events, show smaller decrease in OHT after 

2040. It suggests that the OHT decrease in ECHMPistand2 is responsible for a milder R1 

event with reduced magnitude and duration compared to R2 and R3 events. The differences 

in the ocean lateral boundary condition causes the ECHstand2 to generate a more diffuse and 

warmer North Atlantic sub-polar gyre while the ECHMPistand and ECHMPiflux favor 

warmer and stronger inflow along Ireland causing a warmer and more intense Norwegian 

Current which penetrates further North (not shawn) causing increased temperatures in the 

Nordic Seas and in the Barents Sea for those two runs. 

Results presented in this section leads the authors to comfortably conclude that the 

synchronicity of the RILE events are caused by anomalous large-scale atmospheric 

circulation propagating from the driving model ECHAM, efficiently propagating from the 

lateral boundary conditions in the North Atlantic into the regional projections. This anomaly 
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causes increased atmospheric and oceamc heat transport towards the Arctic Ocean, 

contributing to important sea ice reduction. 

1.4.3 Impacts of RILEs 

This section investigates the effects of the RlLEs on the post-RILE period from different 

aspects: variability, changes over coastal regions around the Arctic Ocean and the 

atrnospheric vertical structure. 

1.4.3.1 Post-RILE variability 

Following the events R2 and R3 , a partial recovery period is seen in September sea ice 

extent (Fig. 1.5), also characterized by increased interrannual variability. The high variability 

at low sea ice thickness (Fig. 1.7) suggests the ability of the madel to easily form thin ice, 

sufficient to caver relatively large areas of the Arctic Ocean. To illustrate the changes in the 

spatial distribution of ice and its variability, seasonal standard deviation is computed over the 

pre-RILE and post-RILE periods for all events. The respective linear trends for each period 

were subtracted prior to calculating the standard deviation. Figure 1.13 presents results for 

the R2 event; similar conclusions are valid for R3 and R4 events, while Rl shows weaker 

changes due to the smaller amplitude of the event. In summer and autumn, a transition 

towards more variable ice pack is observed from pre-RILE to post-RILE period. While a 

stable Arctic ice pack was present in summer during the pre-RILE period, represented by the 

area of low interrannual variability extending from the East Siberian Sea coast towards 

Central Arctic, very little of it remains after the RILE except over narrow regions of the East 

Siberian Sea and the CAA. In autumn, the annually present ice pack completely disappears. 

This is caused by a transition in the sea ice extent towards a more chaotic behavior with high 

sensitivity to anomalies in surface forcings and atmospheric circulation. Increased variability 

in the sea ice extent is not present in CCSM3 where September sea ice standard deviation is 

shawn to peak during the RILE to rapidly decrease in the years following the event (see Fig. 

3c and Plate 5 in H08). 
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1.4.3.2 Atmospheric and Land Response 

To determine the longer-term changes caused by the rapid decrease of sea ice caver, Fig. 

1.14 shows the average temperature anomaly for the R2 event, relative to the pre-RILE 

conditions, for bath the RILE and the post-RILE periods over the Arctic Ocean and the 

surrounding continental areas. Coherently with the bi-monthly temperature changes (Fig. 

1.8), the warming is maximal over the ocean in December (5.2 °C), mainly caused by the 

increased turbulent fluxes over remaining open water, and minimum (0.4 °C) in May. 

Important consistency is found between the annual cycle of the temperature anomalies for the 

two periods over ocean and land. W arming a ver land shows the same annual cycle as that 

a ver the ocean but with smaller amplitude, with increases of 3.3 °C and 1.3 oc for December 

and May, respectively. The similarity between the annual cycle of the temperature anomalies 

for the RILE and post-RILE periods, generally 0.5 oc apart, shows a transition towards 

warmer climate despite the relative recuperation of the sea ice caver in the post-RILE period. 

This is probably caused by the low thickness of the ice incapable of effectively insulating the 

atmosphere from the ocean combined with the general warming trend likely caused by 

increased GHG concentration, since most of the warming over land isn 't statistically 

significant when the 100-year trend is removed (Fig. 1.8a). 

The 2 rn-air temperature response during the event (Fig. 1.8) showed maximum increases 

in temperatures over the East Siberian Sea in November-December caused by a delay in the 

ice formation over that region. The regional maximum warming is clearly visible over the 

Siberian Sea sector, defined between 110-190°E and 65-90°N (Fig. 1.14) with warming from 

7.2 to 8.1 oc in December, 3 oc larger compared to the average Arctic Ocean warming. 

Despite the increased ocean warming over the East Siberian Sea, the nearby coastal area 

between 110-190 °N and from 65 °N to the coast shows sm aller response with increases of 

3.7 °C, corresponding to increased warming between 0.4 and 1 oc compared to Arctic Land. 

Nevertheless, one would expect the warmer air present over the ocean to be advected 

over land by the anticyclonic circulation over the region (not shawn) . The rapid attenuation 

of the warming over land raises the question of the atmospheric heat transport mechanism, 

which is addressed in the next section. 
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1.4.3.3 Impact of RILEs on atmospheric structure 

One would expect near-surface horizontal propagation of the warming signal due to the 

strong atmospheric stability caused by the Arctic low-level inversion. Studies by Deser et al. 

(2010) and Lawrence et al. (2008) showed propagation of a more uniform latitudinal 

warming over the continent, penetrating up to 1 ,500km inland, a signal very different in 

RCAO projections (Figs . 1.8 & 1.14). 

To understand the propagation of the warming signal, a comparison of spatially averaged 

November-December vertical temperature profiles for pre-RILE and RILE periods as 

simulated by RCAO is presented in Fig. 15 . Very weak low-level temperature inversion is 

noted from the profiles over the Arctic Ocean for both pre-RILE and RILE periods ( - 1 °C). 

Inversions of 2.8 oc and 4.2 oc are visible in the pre-RILE profiles for the East Siberian Sea 

and nearby land respectively, limited between the surface and 925 hPa. The Siberian Sea 

inversion disappears during RILE while the Siberian land inversion is reduced to 2.8 oc. 
While the warming signal is, as expected, strongest near the surface, temperature increases in 

the vertical, reaching heights of 500 hPa and above. This indicates an equivalent-barotropic 

structure to the warm anomaly; such structure is as expected associated with rather weak 

horizontal transport of beat from the oceanic region towards the continent. In present-day 

observations, strong linear relation has been demonstrated between the low-level inversion 

strength and the density of the underlying sea ice co ver (Pavelsky et al. 2011 ). lt is very 

likely that in the transient RCAO climate projections, the progressive decrease in the sea ice 

cover and thickness leads to graduai erosion of the atmospheric inversion. This reduced 

atmospheric stability might explain the vertical propagation of the surface warming during 

the events, therefore reducing their effects on surrounding continental areas. 

1.5 Discussion & conclusions 

The regional climate projections performed using the Rossby Center Atmosphere-Ocean 

modeling system produced four rapid ice loss events within three transient climate 

projections. The clustering of the major sea ice Joss events around 2040 is caused by the 

combined effects of long-term sea ice thinning and large-scale atmospheric and oceanic 
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circulation anomalies originating from the common ECHAM lateral boundary conditions 

used to drive ali three RCAO projections. The anomalous atmospheric and ocean northward 

flow causes increased beat transport from the Nordic Seas towards the Arctic region. The 

increased beat transport reaching the Barents Sea Shelf causes sea ice reduction over Barents 

Sea and in the vicinity of the North Pole. Similar mechanisms were suggested by Francis and 

Hunter (2007) based on observations and by H08 using results from CCSM3 . 

Although the maximal changes in the sea ice cover occurs in September, changes in 

surface variables are maximal during early winter (November-December) and are driven by 

the changes in the net energy flux. The net energy flux is mainly influenced by the increase in 

the turbulent latent and sensible beat fluxes . Compared to the more idealized study of Deser 

et al. (2010), results obtained in RCAO transient climate projections show more moderate 

changes in most of the atmospheric variables, especially the erosion of the Arctic wintertime 

inversion, the precipitation, and the snow cover (not shown). Nevertheless, the temporal 

changes in the surface energy fluxes are in good agreement with th at of Des er et al. (20 1 0), 

showing similar seasonality and comparable mechanisms albeit the differences in the spatial 

patterns. 

Over Beaufort Sea, a sea ice-albedo feedback occurs over the retreating sea ice marginal 

zones. This sea ice-albedo feedback is triggered by anomalous circulation pushing the ice 

from the coastal areas towards the center of the Beaufort Sea, causing an increase in the 

absorption of solar radiation by the ocean. The increase in the energy absorbed by the ocean 

causes an increase in the SSTs and bottom metting along the retreating sea ice margin. 

Although anomalies in surface fluxes are weaker compared to the observation during the sea 

ice minimum of 2007 (Kay et al., 2008), the presence of thin ice in RCAO allowed large sea 

ice cover reduction despite the smaller anomalies simulated in the surface radiative fluxes. 

RCAO shows increased variability in the sea ice cover after the RlLEs. This result 

strongly suggests an increased sensitivity of the sea ice cover to changes in the large-scale 

atmospheric circulation and the surface radiative fluxes , leading to the partial recovery period 

observed during the post-RlLE period. Despite the increased post-RlLE sea ice cover 

variability, both in space and tirne, the 2 rn-air temperature shows signs of a transition from 

colder pre-RILE to generally warmer post-RILE. This transition present over the Arctic 
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Ocean and peripheral land areas suggests decreased control of the sea ice cover on 

atrnospheric variables potentially due to reduced insulation efficiency of thin sea ice. 

The differences in the geographie location of the temperature changes between RILEs 

show a strong relationship between the regional response and the location of sea ice in 

RCAO. Lawrence et al. (2008) showed maximum warming over land in the CAA region 

while R2 event shows maximum differences over Oriental Siberia, caused by the maximum 

decrease in sea ice cover and thickness occurring upwind of that specifie location in this 

particular event. Moreover, event R3, with maximal sea ice loss in the vicinity of the North 

Pole showed very little impact on land simply because the warm anomaly was advected 

southward toward the Greenland Sea, influencing no land masses along its path. The limited 

impact on land is caused by the vertical propagation of the surface heat anomal y rather than 

horizontal, caused by the absence of low-level temperature inversion over the ocean. 

Previous studies during recent-past, showed strong relation between the inversion strength 

and the sea ice caver but in the context of a transient climate change experiment, it is likely 

that the progressive thinning of the ice causes decreased surface cooling that gradually erodes 

the inversion. 

It has been shown that RCAO sea ice caver and thickness suffers from relatively large 

biases in the atrnospheric large-scale circulation over the Central Arctic basin caused by a 

quasi-permanent anticyclonic gyre combined with underestimation of its interannual 

variability. This bias in the sea leve! pressure, present in many coupled climate models, 

causes erroneous surface fo rcing acting on the sea ice and is responsible for the displacement 

of the maximum sea ice thickness towards the Siberian coast. The causes for this artificial 

anticyclonic circulation over the Arctic basin in numerical models are still poorly understood 

at this point. Furthermore, the stability of the anticyclonic circulation throughout the RCAO 

climate projection tends to generate large region of positive sea surface height (SSH) 

anomaly over the Arctic, decreasing the gradient between Bering and Beaufort Sea, therefore 

reducing the Bering Strait inflow (not shawn). Studies of the 2007 event showed that 

increased heat transport through Bering Strait (W oodgate et al. 20 l 0) was a factor in 

triggering the early sea ice retreat along the Alaska coast, most likely allowing the onset of 

sea ice-albedo feedback (Steele et al. 2010). The underestimation of Bering Strait inflow in 
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RCAO limits the ability of the ocean to produce RlLEs originating from the Pacifie Sector of 

the Arctic Ocean, explaining the "Atlantic origin" of the events presented in this study. 

However, the 2012 September sea ice minimum was related to large sea ice reduction both in 

the Pacifie and Atlantic sectors, indicating RlLEs with "Atlantic origin" are possible and 

their analysis relevant. 

Compared to observations, to ECHAM, and other modeling studies, RCAO produces 

thinner ice for the recent past period (1980-1999), likely due to its warm near-surface 

temperature bias and the absence of a multi-category sea ice scheme. The thinner ice most 

likely increases the vulnerability of the modeled ice pack to changes in large-scale forcings 

and changes in the radiative fluxes, especially after decades of warming due to the increase in 

GHG concentration. 

The ECHAM realization used to provide the atmospheric (and oceanic) lateral boundary 

conditions shares similar large-scale atmospheric circulation biases. This circulation 

anomaly, combined with the cold biases in ECHAM climatology explains the overestimated 

sea ice volume compared to observations and the large difference in sea ice volume 

compared to RCAO throughout the climate projections (Koenigk et al. 2011). Despite very 

similar large-scale atmospheric anomalies in ECHAM propagating into RCAO, the presence 

of thicker ice in ECHAM most like1y decreases the sea ice vulnerability. This explains the 

absence of the 2040-2055 RlLEs in ECHAM. 

This study confirms that large-scale atmospheric anomaly is a key-element for triggering 

RlLEs in RCAO projections combined with the preconditioning by long-term thinning of the 

sea ice. These results strengthen the conclusions found in DK, based on a much broader range 

of events of smaller amplitude. Moreover, it demonstrates the strong control of the driving 

GCM on the timing and synchronicity of RlLEs. Future work is required to address this issue 

more thoroughly by performing ensemble of simulations driven by severa! GCMs at RCAO 

atmospheric and oceanic lateral boundaries. This will help assess the relative role of the 

driving model on RCAO solutions over the Arctic region. In-depth analysis of this relevant 

aspect will be possible within the framework of the COordinated Regional Downscaling 

Experiment, CORDEX, that is presently underway with RCAO as one of the participating 

models (http:/ /www .meteo. unican.es/en/proj ects/CO RD EX). 
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Table 1.1 : Details of RCAO projections 

Experiment North Atlantic Boundary Sea surface salinity 
correction method 

ECHstand2 PHC climatology Salinity relaxation 

ECHMPlstand ECHAM5/MPI-OM Salinity relaxation 

ECHMPlflux ECHAM5/MPI-OM Flux correction 

Table 1.2: RILE summary 

Rile identification Projection Central Date Period Length 

RI ECHstand2 2041 2039-2041 3 

R2 ECHMPlstand 2039 2036-2043 8 

R3 ECHMPlflux 2040 2036-2041 6 

R4 ECHstand2 2063 2059-2063 5 
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Figure 1.1: RCAO arctic domain and bathymetry (rn) . 
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Figure 1.2: 1980-1999 average sea ice thickness (cm) and sea ice margin (SIC> 15%; black 

contours) for the ensemble mean of the three RCAO climate projections (left) and 

ECHAMS/MPI-OM (right) for March (top) and September (bottom). ERA-Interim sea ice 

margin location is shown in magenta contour. 
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Figure 1.3: 1980-1999 average of 2 rn-air temperature (°C; co lors) and sea leve! pressure 

(hPa; contours) for ERA-Interim (left) , ensemble mean of the three RCAO projections 

(middle) and ECHAM (right) for March (top) and September (bottom). 
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Figure 1.4: 1980-1999 differences for 2 rn-air temperature (°C; co lors) and sea lev el pressure 

(hPa; contours) between RCAO minus ERA-Interim (left) and ECHAM minus Era-Interim 

(right) for March (top) and September (bottom). 
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Figure 1.5: RCAO simulated September sea ice extent is shawn in black for the 1980- 2080 

period: ECHstand2 (top), ECHMPistand (middle) and ECHMPiflux (bottom). Grey shadings 

indicate Rapid lee Loss Events considered in this study (Table 1.2). ECHAM and satellite 

observations (Fetterer et al. , 2002; updated 2011) of September sea ice extent are presented 

in light grey and blue, respectively, on ali panels. 
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Figure 1.6: Bimonthly averages of(a) sea ice cover (fraction) and (b) thickness (cm) for pre

RILE (top) and RILE (bottom) period for R2 (2039 event, projection ECHMPistand). 
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Figure 1.7: (top) Average September sea ice thickness for ECHStand2 (blue), ECHMPIStand 

(red), ECHMPIFlux (green) and ensemble average (black). (bottom) Relation between 20-

year standard deviation of September Sea lee Extent to 20-year average sea ice thickness. 

Dots are used for 1980-2040 period, while diamonds corresponds to the 2041- 2070 period. 

Same color code as in the top panel with black symbols representing the ensemble average of 

the three simulations. 
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Figure 1.8a: Bimonthly differences of RILE-(Pre-RILE) averages for R2 event: sea ice cover 

(SIC, %), sea ice thickness (SIT, cm), 2 rn-air temperature (T2M, oq and statistical 

significance of the 2 rn-air temperature following a t-test at significance levels : 80%-blue, 

90%-green, 95%-yellow and 99%-red. The 100-year trend in 2 rn-air temperature was 

removed prior to statistical significance testing. 
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Figure 1.8b: same as Fig. 1.8a but for: surface net radiative balance (Qnet. Wm-2) , combined 

latent and sensible heat fluxes (LHF+SHF, Wm-2), net surface longwave (LWnet. wm-2
), and 

net surface shortwave (Qnet. Wm-2
) . Fluxes are defined negative upward with respect to the 

surface. 
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Figure 1.9: Bimonthly differences of RILE-(Pre-RILE) averages for R2 event sea level 

pressure (1 st row), sea surface temperature (3rd row) and their statistical significance (2nd and 

41
h row) . The blue, green, yellow and red shadings correspond to 80%, 90%, 95% and 99% 

confidence levels of the statistical significance. 
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Figure 1.10: Average MJJASO anomalies between 2041 against the 2010-2030 period for: 

sea ice cover (top left) , shortwave radiation clown at the surface (top middle) , shortwave 

radiation absorbed by the ocean (top right) , longwave radiation clown at the surface (bottom 

left), sea surface temperature (bottom middle) and 2 rn-air temperature (bottom right). 

Radiative flux anomalies are presented in wm·2 and temperatures anomalies in °C. Contours 

show the location of the 2041 sea ice margin (sea ice cover > 15%) for June (yellow), July 

(cyan), August (green), September (grey) and October (black). 
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Figure 1.11: Changes in 850 hP a geopotential height for March-April (first row), statistical 

significance (second row), September-October (third row) and its statistical significance 

(fourth row) between period around RILEs (2036- 2042) and the preceding 10-year period 

(2026-2035) for the driving model ECHAM, RCAO events R1 , R2 and R3 , from left to right 

respectively. The blue, green, yellow and red shadings correspond to 80%, 90%, 95% and 

99% confidence levels of the statistical significance of a t-test. The last column represents the 

standard deviation amongst RCAO for the three projections. 
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Figure 1.12: Time series of the Barents Sea opening annual (a) oceanic beat transport (PW) 

and (b) volume transport (Sv) computed using a reference temperature of -0.1 oc over the 

first 290 rn (mode! first 25 vertical levels) for three RCAO climate projections: ECHstand2 

(grey tine), ECHMPistand (black solid line) and ECHMPiflux (black dashed li ne). 
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Figure 1.13: Summer and autumn seasonal standard deviation ofsea ice cover for post-RILE 

(left), pre-RILE (middle) and their differences (right) for R2 event. 
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Fig 1.14: 2 rn air temperatures differences for RILE minus Pre-RILE periods (dark colors) 

and Post-RILE minus Pre-RILE (light colors) over the Arctic Ocean (top left), Arctic Land 

(bottom left), Siberian Sea (top right) and Siberian Land (bottom right). Arctic land 1s 

defined between 45-290°E and between 65°N and the coast while the Siberian sector 1s 

defined between 110-190°E and 65-90°N. 
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Figure 1.15: November-December (a) spatially averaged vertical temperature profile over 

Arctic Ocean (blue), Siberian Sea (cyan), pan-Arctic land (red) and Siberian Sea land sector 

(green) for Pre-RILE (full) and RILE periods (dotted). (b) differences RILE-(Pre-RILE) for 

same regions. The Arctic Ocean here is the region between latitudes 80-90°N between 90°W 

to 60°E and from 68-90°N from 60°E to 90°W. The Siberian Sea covers longitudes between 

ll0°E to 190°E from the coastline to 90°N, while the Siberian Land covers land from 60°N to 

the coastline. 
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Permafrost and Climate Sensitivity to Soil and Snow Formulations". In review in 
Climate Dynamics. 

Abstract 

Near-surface permafrost has shown sign of warming on the Pan-Arctic scale in the 
recent decades. The fifth-generation of the Canadian Regional Climate Model 
(CRCMS) using the Canadian Land Surface Scheme (CLASS) in its standard 
configuration was underestimating the representation of the near-surface permafrost. 
This study tested successive improvements to the land surface scheme by (1) 
increasing the total soil column depth, (2) including the effects of organically rich 
soils and (3) modification to the snow density- snow thermal conductivity relation. 

Stand-alone CLASS experiments showed successive improvements to the 
representation of the near-surface permafrost and simulated active layer thickness 
(ALT). Deepening the total soil column increased the near-surface permafrost area 
although the AL Ts are generally overestimated. Adding organically rich soils 
decreased the summer ground beat flux, therefore cooling the soil column and thus 
improving the ALTs. The modification of the snow density - snow thermal 
conductivity relation reduced winter soil cooling, reducing the cold biases noted 
compared to observations. Similar effects were noted for coupled experiments. In 
coupled experiments, the decreased ground beat fluxes in summer caused by the 
representation of soil carbon, cause increased surface latent or sensible beat fluxes 
with spatial heterogeneity controlled by local soil moisture content. The inter-annual 
variability of the ALTs shows sensitivities to different atmospheric parameters 
depending on the soil and snow configuration. Over the 1960-2008 period, the 
positive AL T trends are caused by the warming of the simulated surface climate 
while the overestimated magnitude of the AL T is most likely related to the presence 
of a warm bias in the CRCM5 climatology. 
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2.1. Introduction 

Permafrost covers a significant area, i.e. approximately one quarter of ali the exposed 

land of the continental northem hemisphere (Zhang et al. 1999). Many recent studies (Lemke 

et al. 2007) suggest increases in soil temperatures in these permafrost regions, particularly 

during the last few decades. These increases in soil temperatures are reflected in the 

increasing tendency of the active layer thickness (ALT) - defined as the maximum annual 

thaw depth - and permafrost degradation. The environmental impacts of permafrost 

degradation are manifold: it can alter significantly the soil structure and hydrology of the 

region, can lead to the formation of thermokarst lakes and/or drainage of existing lakes and 

change wetlands and vegetation cover (Hinzman et al. 2005). Permafrost degradation is also 

of con cern from the viewpoint of the large amounts of carbon ( ~ 1672 Pg of carbon; Tarnocai 

et al. 2009) that are currently sequestered in the region. Since majority of the microbial 

decomposition occurs in the seasonally thawed active layer (Nelson 2004), increases in the 

ALT and permafrost thaw will increase decomposition of the sequestered organic matter, 

resulting in the release of carbon dioxide and/or methane. The decomposition process will 

release carbon dioxide or methane, depending on the type of decomposition, i.e. aerobic or 

anaerobie, to the atmosphere. This release of greenhouse gases associated with permafrost 

thaw will act as a positive feedback to climate warming. This has been evaluated to be 

between 2.8 oc and 7.8 oc by the end of the Century (Salomon et al. 2007) without the 

inclusion of this potential positive feedback. Climate models still do not consider all these 

above factors adequately, which contribute to large uncertainties in the projected climate 

changes. 

The observed changes in soi! temperatures, AL T and near-surface permafrost are not 

only related to higher temperatures, but also to changes in snow cover extent and duration 

(Zhang et al. 2005; Lemke et al. 2007; Frauenfeld and Zhang 2011). Most of the permafrost 

studies available to date are based on Land Surface Mode! (LSM) simulations driven by 

observed meteorological data (Oelke et al. 2004; Dankers et al. 2011; Burke et al. 2013) or 
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outputs from Global and Regional Climate Models (Sushama et al. 2007; Lawrence et al. 

2008; Schaefer et al. 2011; Koven et al. 2011). These offline LSM simulations have provided 

important insights related to the evolution of permafrost, but do not represent the two-way 

feedbacks between the land and the atmosphere. Efforts to simulate permafrost interactively 

in climate models , both global and regional, is currently an active area of research. Studies by 

Smerdon and Stieglitz (2006) and Alexeev et al. (2007) documented limitations of climate 

models in simulating near-surface permafrost. They report that realistic simulation of soil 

temperatures in cold permafrost regions using Land Surface Models (LSM) with a zero-flux 

bottom boundary condition requires a total soi! column depth of at !east 30 m. Furthermore, 

Nicolsky et al. (2007), Lawrence et al. (2008) and Dankers et al. (20 11) demonstrated the 

need to include soi! organic carbon (organically rich soils) in LSMs for realistic simulations 

of soi! thermal and mois ture regimes and therefore AL T and permafrost extent. This, in turn, 

is important for realistic surface energy and water partitioning at the surface (Lawrence and 

Slater 2008; Rinke et al. 2008). Indeed, organic material acts as an insulator because of its 

low thermal conductivity and relatively high beat content. Implementation of soi! organic 

carbon in LSM leads to important cooling of the soi! temperatures, especially during summer, 

allowing permafrost to be present at warmer annual temperatures than if only mineral soils 

were represented in the LSM (Lawrence and Slater 2008; Rinke et al. 2008; Dankers et al. 

2011). 

Organic material also influences the soi! moisture. In nature, orgamc soils are 

characterized by nearly saturated sub-surface conditions with a drier surface layer (Hinzman 

et al. 1991 ). Strong variability is observed in the soi! mois ture of the surface layer due to the 

efficient transport of water deeper in the soi! column. This enhanced downward transport is 

due to increased porosity, high hydraulic conductivity and weak suction of organic material 

(Quinton and Gray 2003). 

The simulated near-surface atmospheric fields in climate models will be sensitive to 

the parameterization method adopted for organic soils. Lawrence and Slater (2008) and Rinke 

et al. (2008) obtained different sensitivities of near-surface atmosphere to the implementation 

of soi! organic material in their respective models. Lawrence and Slater (2008) showed large 

increase in the sensible beat flux over most of the high-latitude regions of the northem 
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hemisphere. These changes led to increased 2 m-a1r temperature, deeper and drier 

atmospheric boundary layer and reduced occurrence of low-level clouds. On the contrary, 

Rinke et al. (2008) obtained large increases in the latent beat flux, thereby cooling the surface 

temperature and enhancing low-level clouds. Given the large uncertainties in the atmospheric 

response, there is a need for more focused studies to identify the main reasons behind these 

uncertainties related to the representation of organic material in climate models. 

The overall goal of this study is to improve the representation of the soil moisture and 

temperature regimes to better simulate the near-surface permafrost on a pan-Arctic scale. 

Two main objectives are presented in this study. The first objective is to assess the sensitivity 

of the Pan-Arctic soi! temperature and moisture regimes to the depth of the soil model and to 

the implementation of a soil organic carbon parameterization and modified snow thermal 

conductivity through a series of offline simulations with the Canadian Land surface Scheme 

(CLASS). This allows an evaluation of the Pan-Arctic representation of permafrost 

conditions in CLASS excluding the complex land-atmosphere interactions and feedbacks. 

The second objective is to study the impact of the land surface mode! improvements, 

particularly the organic soil parameterization, in the fifth-generation of the Canadian 

Regional Climate Model (CRCMS), on the simulated permafrost, surface climate and land

atmosphere interactions through a series of CRCMS simulations. lt must be noted that the 

land surface model used in CRCMS is CLASS. Evaluation of CRCMS's ability in capturing 

the observed near-surface permafrost conditions and trends is essential prior to performing 

future climate projections. 

The outline of this paper is as follows. Section 2.2 provides a brief description of 

CLASS and CRCMS . Mode! configurations and the soil organic carbon parameterization are 

presented in Section 2.3 . Section 2.4 details the observational datasets and reanalysis used in 

model evaluation. Analysis of the offline simulations performed with CLASS fo llowed by 

that of CRCMS simulations are presented in Section 2.5 . Summary and conclusions are 

presented in Section 2.6. 
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2.2. Model description 

The offline LSM simulations presented in this study are performed with CLASS 

(Verseghy 1991 ; Verseghy et al. 1993; Verseghy 2008), and the regional climate mode! used 

is a developmental version of the CRCMS (Zadra et al. 2008; Martynov et al. 2013). As 

mentioned earlier, the LSM in CRCMS is CLASS. A brief description of CLASS and 

CRCMS follows. 

2.2.1 The Canadian Land Surface Scheme 

The basic prognostic variables in CLASS consist of the temperatures and the liquid 

and frozen moisture contents of the soil layers; the mass, temperature, density and albedo of 

the snow pack; the temperature and intercepted rain and snow on the vegetation canopy; the 

temperature and depth of ponded water on the soil surface; and an empirical vegetation 

growth index (Verseghy 2008) . At each time step, CLASS calculates the characteristics of the 

vegetation canopy on the basis of the vegetation types present over the modeled area. In a 

pre-processing step, 23 surface and vegetation types with assigned background values of 

parameters such as albedo, roughness length, annual maximum and minimum leaf area index, 

rooting depth, etc. are aggregated over four main vegetation categories identified by CLASS: 

needleleaf trees , broadleaf trees, crops, and grass (Verseghy 2008). To account for subgrid

scale variability, CLASS models separately the changes to the energy and moisture budget 

over four subareas: bare soil, vegetation over bare soi!, vegetation over snow and snow over 

bare soil. 

CLASS is particularly suited for permafrost studies due to its flexible soi! layer 

formulation. Each grid cell corresponds to a single soi! profile of sand, clay and bedrock at 

the grid resolution computed independently, neglecting lateral beat and soi! moisture 

transfers. Snow is modelled as a single variable depth layer. The effective thermal 

conductivity of snow, À5, is determined from the snow density, Ps' assumed constant with 

depth, described in Mellor et al. (1977): 

Às = 2.576 • 10-6 p~ + 0.074 
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where Às, is in W m- 1 K-1 and Ps is in kg m-3
• The magnitude of P s increases exponentially 

with time from a fresh snow value of 100 kg m-3 to 300 kg m-3
, according to an expression 

derived from the field measurements of Longley (1960) and Gold (1958). CLASS treats 

refreezing of percolating melt-water or rain, which can lead to increases in snow density. 

After snowfall, p s is recalculated as the weighted average of the previous density and that of 

the new snow. 

2.2.2 The Canadian Regional Climate Model 

The CRCM5 (Martynov et al. 2013) is based on a limited-area version of the Global 

Environment Multiscale (GEM) mode! used for Numerical Weather Prediction at 

Environment Canada (Côté et al., 1998). GEM employs semi-Lagrangian transport and 

(quasi) full y implicit marching scheme. The following parameterizations are used in 

CRCM5: deep convection following Kain and Fritsch (1990), shallow convection based on a 

transient version of Kuo ( 1965) scheme (Bélair et al. 2005), large-scale condensation 

(Sundqvist et al. 1989), correlated-K solar and terrestrial radiations (Li and Barker 2005), 

subgrid-scale orographie gravity-wave drag (McFarlane 1987), low-level orographie blocking 

(Zadra et al. 2003), and turbulent kinetic energy closure in the planetary boundary layer and 

vertical diffusion (Benoît et al. 1989; Delage and Girard 1992; Delage 1997). 

2.3. Model setup 

2.3.1 CLASS and CRCMS configurations 

A number of offline experiments are set up with CLASS to evaluate the performance 

of the mode! in representing the large-scale features of the permafrost distribution. To 

evaluate the sensitivity of the soi! thermal and moisture regimes to the depth of the soi! 

column, two configurations - shallow and deep - are considered. The shallow configuration 

uses 6 soillayers that are 0.1 , 0.2, 0.3, 0.5, 0.9 and 1.5 rn thick for a total depth of 3.5 m. In 

the deep configuration, 41 additional layers of 1.5 rn thickness each were added to the 
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shallow configuration for a total of 4 7 levels reaching a total depth of 65 m. 

Ail offline simulations are performed over a Pan-Arctic domain, at 0.5° horizontal 

resolution on a rotated latitude- longitude 172xl60 points grid (Fig. 2.la). CLASS uses sand 

and clay concentrations derived from Wilson and Henderson-Sellers (1985) . Webb et al. 

(2000) is used for the depth to bedrock and therefore the depth of permeable soi! layers in 

CLASS. If the depth to bedrock occurs within a soi! layer rather than at the interface between 

two layers, CLASS assigns the specified soi! characteristics to the part of the layer above 

bedrock, and values corresponding to rock to the portion below. Thermal conductivity of rock 

is the same as for sand, i.e. 2.5 W m- 1 K 1
, with zero porosity. Figure 2.lb presents the 

number of permeable soi! lay ers over the study domain. 

The CRCM5 experiments use the exact same domain and grid as the CLASS offline 

simulations, with blending and sponge zones added to main analysis domain; CRCM5 

simulations are performed with 56 atmospheric levels, with the mode! top at 0.1 hPa. 

2.3.2 Soil carbon data and parameterization 

In CLASS 3.5, high concentration of soil organic carbon can be represented with the 

peatland parameterization of Letts et al. (2000). This parameterization assumes that the en tire 

soi! column consists of organic material or peat. Three organic soi! 1 peat classes, fibric, 

hernie and sapric, are considered for layers one, two and three and below to account for the 

effect of compaction of the organic material, with variations in the hydraulic properties of the 

uppermost 0.5 rn of organic soil (Letts et al. 2000). It is to be noted that in this 

parameterization, bedrock can be located at any depth. 

To account for organic material present outside of deep peatlands, a simple 

parameterization of soil organic carbon (SOC) has been introduced. This parameterization 

was implemeted to improve the representation of moderate concentration of organic material 

and thereby its influence on the surface fluxes , the surface and sub-surface thermal and 

hydraulic properties of the soi!. This parameterization redistributes the observed SOC from 
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Global Soi! Data Task Group of the International Geosphere-Biosphere Programme Data and 

Information System (IGBP-DIS) (Fig. 2.1c) assuming that high concentration of organic 

material is located at the surface, and the concentration decreases rapidly with depth. This 

assumption is reasonable sin ce observational data is available on! y for the first 100 cm of the 

soi! column. SOC from IGBP-DIS is interpolated from its original 1 °x1 ° grid to the mode! 

grid. Vertical layers of CLASS are "filled" with organic carbon from the surface down until 

the observed soi! carbon content is depleted. At the moment, no fractional percentage of soi! 

organic carbon is allowed within a soi! layer, resulting in either 100% organic carbon content 

or 100% mineral composition. For the verticallevels filled with organic material, the thermal 

and hydraulic properties follow Letts et al. (2000). The net effect is a 10 cm organic layer for 

most of the high latitudes (Fig. 2.1d) and 30 cm for certain grid points located in Scandinavia 

and in the Ob river valley. 

The above implementation method is similar to that used by Rinke et al. (2008) where 

they assume that soi! layers are entirely composed of SOC. Rinke et al. (2008) used three 

different organic classification: lichen, peat and moss, with parameters from Beringer et al. 

(200 1) spatially distributed based on vegetation co ver while in this study we distribute a 

single SOC with vertically varying parameters based on observed values from IGBP-DIS 

data. In this study, the net introduction of soi! organic carbon concentrated near the surface 

with pure organic carbon in the first 10 cm of the soi! column, which is similar to other 

studies although the implementation method used here is simpler. Implementation of SOC in 

the Community Land Surface Scheme (CLM; Lawrence and Slater 2008) and in the Joint UK 

Land Environment Simulator (JULES; Dankers et al. 2011) uses a redistribution of the 

observed SOC assuming vertically varying profiles and allows fractional SOC to be present 

at any soi! layer. Ali methods have important limitations caused by the spatial heterogeneity 

of the soi! carbon distribution. In reality, SOC is most! y accumula ting in valleys and wetlands 

while ridges usually show limited SOC concentration. 
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2.3.3 Model experiments 

To evaluate the impact of vanous formulations on the simulated near-surface 

permafrost and surface climate, four pairs of experiments are performed; each pair consists of 

a CLASS offline simulation and a matching CRCM5 simulation using identical CLASS 

formulations (Table 2.1). The first pair of simulations, Off_Mine6 and C_Mine6, uses the 

shallow 6-layer configuration without SOC. The second pair of simulations, Off_Mine47 and 

C _ Mine4 7, uses the deep soil column with 4 7 lay ers for a total depth of 65m without SOC. 

These simulations are used to evaluate the sensitivity of the mode) solely to the vertical 

extension of the soil column and its impact on vertical propagation of heat. The third pair of 

simulation uses the deep vertical configuration and includes both the Letts et al. (2000) 

peatland parameterization and the SOC parameterization described in Section 2.3.2. While 

the third pair of simulation, i.e. Off_OM47 and C_OM47, uses CLASS standard snow 

conductivity ofMellor et al. (1977), the fourth pair, Off_OMSC47 and C_OMSC47, uses the 

quadratic relation between snow density and snow conductivity under varying snow 

conditions from Sturm et al. (1997): 

for {p .r < 0.156} 

À.r = 0.138 -1.01p .r + 3.233 p~ for {0.156 s P.r s 0.6} 

This relation leads to reduced snow conductivity compared to the standard Mellor et al. 

(1977) formulation used in CLASS. Previous experiments using CLASS offline over selected 

sites in the Québec boreal forest showed improvements in simulated wintertime sail 

temperatures by using Sturm's formulation (Harvey et al. 2010). The fourth pair of 

simulations will th us ena ble assessment of the impact of new snow conductivity. 

The offline CLASS simulations over the Pan-Arctic domain are driven by atmospheric 

forcings, i.e. precipitation, downward solar and longwave radiation, near-surface air

temperature and specifie humidity, surface wind speed and air pressure, from ERA-40 

reanalysis (Uppala et al. 2005) for the 1957 - 1994 period and by ERA-Interim (Dee et al. 

2011) for the 1995-2008 period. ERA-40 and ERA-Interim reanalysis were spatially 
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interpolated from their original 2.5° and 1.5° grids, respectively, to the model grid at 0.5°. 

Both reanalysis were available at 6-hourly time interval, which were linearly interpolated to 

the model 30-minute time step. No temperature or precipitation corrections were applied to 

the reanalysis data. Soil temperature and moisture content were initialized using the 

respective fields from 200-year spinup runs using atmospheric boundary conditions from the 

1970- 1999 ERA-40 climatology. Two hundred year spinup runs were performed for each of 

the four CLASS offline experimental setups. 

The CRCM5 simulations are driven at its lateral boundaries by ERA-40 and ERA

Interim reanalysis. All coupled experiments were spun-up for an additional 20 years using 

initial soil temperatures and moisture from the 200-year offline spinup runs discussed above. 

The lateral boundary conditions used to drive CRCM5 during the 20-year spinup corresponds 

to the year 1957 from ERA-40. This additional spinup was executed to make sure that the soil 

layer temperatures and moisture above 20 rn depth were in equilibrium with the CRCM5 

climate before executing hindcast experiments (not shown). 

2.4. Large-scale data for model evaluation 

2.4.1 Permafrost extent 

The observed permafrost extent is derived from the International Permafrost 

Association (IPA) map (Brown et al. 2001) . IPA classifies permafrost into four different 

categories based on the areal extent of permafrost: 90- 100% coverage is considered 

continuous permafrost, 50- 90% discontinuous, 10- 50% sporadic and less than 10% isolated. 

The data from IP A represents an estima te of the permafrost extent valid mostly for the second 

half of the 20111 Century (Burke et al. 2013). Given the resolution of the simulations, both 

offline and coupled, sporadic and isolated permafrost regions cannot be expected to be 

captured by the simulations. For this reason, simulated permafrost extent only for continuous 

and discontinuous regions will be compared to that observed. 
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2.4.2 Active layer thickness 

The observed ALT dataset available from the Circumpolar Active Layer Monitoring 

program (CALM) (Brown et al. 2003; Brown 1998) is used to evaluate simulated ALTs. This 

dataset covers the 1990 to present period. The Arctic part of the CALM network consists of 

79 stations mainly located in the arctic and sub-arctic lowlands. Three methods are mainly 

used to determine the ALT: by mechanical probing on a rectangular grid of 100 rn x 100 rn at 

10 rn spacing or 1000 rn x 1000 rn at 100 rn spacing; by employing thaw tubes; or by 

inferring the thaw depth from ground temperature measurements recorded by thermistors. 

More details about the data and methodology are available on the CALM website 

(http ://www.udel.edu/Geography/calm/index .htm l). 

2.4.3 Russian historical soil temperature dataset 

The at-site soil temperature observations over Russia (Zhang et al. 2001) used for 

evaluating simulated soi! temperatures cover the 1882- 1990 period. This dataset is a 

collection of monthly soil temperatures measured at meteorological stations for 13 different 

depths from 0.02 rn to 3.2 rn using bent stem thermometers, extraction thermometers, and 

electrical resistance thermistors. The stations are located in different climatic regions of 

Russia, between 35°E and 180°E, providing useful large-scale soil information for the 

evaluation of modeled soil temperatures. Although the original dataset covers period from 

1882 to 1990, data coverage in space and time suffers from numerous gaps. Data 

concentration is relatively high in the 1980-1990 period and will constitute the reference 

period for comparison with model results . Measurements were generally performed over bare 

soil without a surface organic layer, which could lead to an overestimation of the seasonal 

cycle of temperature at depth (Gilichinsky et al. 1998). 
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2.4.4 Surface air temperature 

The CRCM5 simulated 2 rn-air temperature are compared against the European 

Reanalysis ERA-Interim (Dee et al. 2011) at 1.5° horizontal resolution and that of two 

station-based gridded observational datasets: the global gridded data from the University of 

Delaware (Udel; Willmott and Matsuura 1995) and from the Climatic Research Unit version 

3.1 (CRU3 .1; Mitchell and Jones 2005). These last two datasets combine weather station 

records and uses spatial interpolation methods to produce monthly means at 0.5° horizontal 

resolution over land. 

2.4.5 Precipitation 

As for 2 rn-air temperatures, data from ERA-Interim and UDel are used for the 

evaluation of CRCM5 simulated precipitation. Precipitation data from the Global 

Precipitation Climatology Center (GPCC; Schneider et al. 2011) is also used in this study 

(Schneider et al. 2011) . The version 6 ofGPCC includes data from global stations to provide 

gridded monthly means of precipitation at 0.5° horizontal resolution for the 1951 to present 

period. No corrections were applied to any of the station-based observational datasests for the 

undercatch of solid precipitation in the Arctic. 

2.4.6 Snow water equivalent 

Two datasets of snow water equivalent (SWE) are used for model evaluation: the 

Global Snow Monitoring for Climate Research (GlobSnow; Luojus et al. 201 0) version 1.2 

and the Canadian Meteorological Center (CMC SWE; Brown and Brasnett 2010) snow 

analysis. The GlobSnow product is derived from a combination of ground based data and 

satellite microwave radiometer-based measurements. Due to the nature of the radiometer 

observations, the SWE product is reliable only over areas with seasonal dry snow caver. 

Areas with sporadic wet snow or a thin snow layer are not reliably detected and typically not 

present in the SWE product. The CMC SWE dataset consists of Northern Hemisphere snow 

depth analysis. Snow depth data is obtained from surface synoptic observations, 
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meteorological aviation reports, and special aviation reports. Monthly averages and 

climatologies of snow depth and estimated SWE are provided, where SWE was estimated 

using a density look-up table. 

2.5. Results 

2.5.1 Offline results 

In this section, performance of CLASS in simulating the near-surface permafrost 

extent and soil temperature is evaluated by comparing with observations presented in Section 

2.4. The sensitivity of simulated soil thermal and moisture regimes to soil column depth, 

inclusion of SOC and modification of the snow conductivity is also explored. The soil thaw 

depth is diagnosed from the simulated soil temperatures by fitting a linear temperature profile 

through the midpoints of each soil layer and calculating the depth at which the profile crosses 

the 0 oc isotherm. The thaw depth is computed for each month and the annual maximum 

thawing depth is defined as the Active Layer Thickness (AL T). 

2.5.1.1 Permafrost extent 

Figure 2.2 shows the observed (Brown et al. 2001) and CLASS simulated permafrost 

extent North of 45°N. To be defined as near-surface permafrost, the temperature of at least 

one soi l layer in the top 5.0 rn must remain below 0°C for 24 consecutive months. 

The shallow 6-layer configuration, Off_Mine6, greatly underestimates the permafrost 

extent with 1.28 x 106 km2 (Table 2.2), with ALT below 2.0 rn limited to the Canadian Arctic 

Archipelago and the northernmost regions of Siberia. The model fails to capture the observed 

extent of permafrost, primarily due to the zero-flux boundary condition at 3.5 rn, which leads 

to the overestimation of the simulated annual cycle of soil temperatures, as shown by 

Smerdon and Stieglitz (2006), letting ali six soillayers to thaw regularly in summer. 
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Results from the Off_Mine47 experiment show that increasing the soil depth to 65 rn 

substantially increases the near-surface permafrost extent. Comparison between the observed 

(13 .25 x106 km2
) and simulated (12.27 xl06 km2

) permafrost extent for continuous and 

discontinuous permafrost regions shows relatively good agreement, with an average 

simulated ALT of2.2 m. 

The incorporation of organic soils (Off_ OM47) slightly increases the areal extent of 

continuous and discontinuous permafrost by 0.33 x 106 km2 to a total of 12.60 x 106 km2
. As 

can be seen from Fig. 2.2, introduction of SOC in the mode! leads to limited extension of the 

near-surface permafrost at its southem limit. The major impact is a large decrease in the 

simulated ALT (1.69 rn) over most of the permafrost regions. Since the ALT mainly 

represents the summer temperatures, the introduction of soil carbon in CLASS lowers 

summertime temperatures by insulating more effectively the deeper soi! layers from the 

atmosphere as will be shown in detail in the following sections. 

Corn bining SOC with snow conductivity from Strum et al. (1997) (Off_ OMSC47) 

decreases near-surface permafrost extent compared to the SOC only experiment (Off_OM47) 

(Fig. 2.2). Permafrost is lost from the southem edge of the near-surface permafrost 

distribution but also in the continuous and discontinuous region, reaching 11.48 million km2 

compared to 12.6 x 106 km2 for Off_OM47 (Table 2.2). Average ALT over the continuous 

and discontinuous region also increases up to 2.16 rn, similar to the 2.21 rn obtained for 

Off_Mine47. As will be demonstrated in the following sections, the decreased snow 

conductivity in Off_ OMSC47 tends to increase the wintertime soil temperatures through 

increased insulation relative to Off OM47. 

2. 5.1.2 Active Layer thickness 

In this section, the simulated and observed AL Ts are compared. It must be noted that 

comparison is only performed for those CALM sites, north of 60°N, with an altitude 

difference of less than 150 rn with the average altitude of the representative grid cel!. This 

way, stations where altitude differences could lead to significant mismatch in the surface 
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climate between the CALM site and the representative mode! grid are eliminated. As 

observed values are not available for ali sites for the entire period, average observed and 

modeled values for the 1990- 2008 period are compared. 

Generally, the AL Ts are overestimated compared to the observed values with averaged 

biases ranging from 39 cm to 122 cm (Fig. 2.3). The smali biases for Off_Mine6 is due to the 

fact that only few site comparisons are possible due to the large underestimation of 

permafrost in this simulation (Fig. 2.2), with near-surface permafrost captured only over the 

coldest regions of the Canadian Arctic Archipe1ago and Siberia. The deep mineral, 

Off_Mine47, and deep organic with modified snow conductivity Off_OMSC47 show large 

average biases in simulated ALTs, 113 cm and 122 cm respectively, while the deep organic 

run Off_OM47 shows relatively smaller average bias of71 cm. 

Careful evaluation of the AL T shows !ar ger overestimation of the AL T for CALM 

sites located inland, mostly along the Mackenzie River and Alaska where overestimation 

increases from coastal sites to those inland (not shown). 

It should be noted that CLASS is run at relatively coarse horizontal resolution (0.5° x 

0.5°), while observations are mainly point-scale or representative of a much smalier area (1 

km\ and therefore not very representative of large area means, in particular for complex 

terrain (Dankers et al. 2012; Oelke et al. 2003; Nelson et al. 1997). Moreover, grid-averaged 

soi! properties and coarse-resolution atmospheric forcings might also introduce biases in the 

comparison between observed and simulated ALTs. Therefore, comparison between observed 

and simulated AL Ts should be viewed as an indication of the mode! performance rather than 

a true in-situ validation. Nevertheless, results clearly show a general tendency to overestimate 

maximum thaw depth for ali stations. 

2.5.1.3 Sail tentperatures 

To evaluate CLASS simulated soi! temperatures, we used the Russian Historical 

Temperature dataset (Zhang et al. 2001) presented in Section 2.4. For ali observed soillevels, 
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stations located North of 55°N with at !east one available value per month were selected. 

Monthly averages were computed over the 1 0-year period. Ali observed vertical levels falling 

within a mode! layer are averaged to maximize the number of stations for the comparison. 

Then, similar to ALT comparison, soi! temperature comparisons are performed only for those 

observation stations with minimal differences in altitude with the representative grid cel!. 

Figure 2.4 shows a comparison of the mean annual soil temperatures at 0.2 rn, 0.85 rn 

and 2.75 rn corresponding to the midpoints of the 2''ct, 41
h and 61

h mode! soil layers. Ali 

simulations show relatively good agreement for regions with milder climate, while 

underestimates the mean annual soi! temperatures at ail levels for points located in colder 

regions. Nevertheless, the simulation using the deep configuration with SOC and modified 

snow conductivity (Off_ OMSC47) shows smaller biases (less than -4.5°C) at ali soil levels 

for stations between 35 and 100°E, while larger biases are noted for grid cells located 

between 100 and 190°E (Table 2.3). Interestingly, for stations in eastern Siberia, the 

experiment combining SOC and modified snow conductivity (Off_OMSC47) shows a net 

improvement of the bi ases compared to other simulations. 

Figure 2.4 also presents the annual cycle of soi! temperatures, which clearly show a 

strong wintertime cold bias. For ali the stations (35- 190°E), CLASS underestimates winter 

temperatures down to - 8 oc in February at 0.2 rn depth for ali runs except Off_ OMSC47 

which tends to have smaller biases. The cold bias propagates down with attenuation of the 

signal reaching biases of - 7 °C in April at 2.75 rn for Off_Mine47 and Off_OM47. Surface 

air temperature used to drive the mode! shows no significant difference with the gridded 

dataset from UDel suggesting that differences are most likely due to the mode! formulation 

and/or due to the deficiencies in the representation of snow coverage and snow properties 

(Fig. 2.4) . This later assumption is strongly supported by the lower biases associated with the 

simulated soi! temperatures for Off_ OMSC47, at ali vertical levels in winter. Summer soi! 

temperature is underestimated compared with observations and the introduction of the SOC 

further increases the cold biases near the surface compared to the mineral formulation. It 

must be noted that the top organic material is removed from the observational sites, most 

likely causing increased summer soi! temperature and amplified annual cycle (Gilichinsky et 

al. 1998). 
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The shallow configuration Off_ Mine6 tends to overestimate the annual cycle 

amplitude at 2.75 rn as a result of the zero-flux bottom boundary conditions imposed at 3.5 

m. This confirms the necessity to use deeper soi! column configuration especially for high 

latitudes. 

CLASS captures the annual cycle of the soi! temperature reasonably well despite the 

systematic cold bias in winter. The introduction of SOC does impact the summertime 

temperatures, while modified snow thermal conductivity plays a major role in the 

improvement of wintertime soi! temperatures. 

2.5.1.4 Impact of organic matter implementation over Northwest Siberia 

In this section, we evaluate the changes in the modeled soi! temperatures over 

Northwest Siberia, specifically the region bounded by 55- 90°E and 55- 75°N, as this region 

is characterized by more permeable soi! lay ers (Fig. 2.1 b) and hi gh concentration of SOC 

represented by deep peatlands and by the introduction of one or two layers of SOC over the 

area (Fig. 2.1 d) . Furthermore, soi! temperatures are relative! y well simulated for this region 

compared to observations (Table 2.3). Comparisons are performed relative to the 

Off_Mine47 experiments to isolate the effects of SOC and snow conductivity. 

Figure 2.5 presents the monthly averaged soi! temperatures over the West Siberian 

Plains from the surface down to 3.5 m. The shallow mineral experiment Off_Mine6 doesn ' t 

show large di fferences for the first 3 layers across the annual cycle compared to Off_Mine47, 

but the amplitude of the soi! temperature annual cycle is overestimated at deeper levels 

compared to Off_Mine47 due to the zero-flux bottom boundary condition imposed at 3.5 rn, 

as shown previously in Fig. 2.3. 

Deep SOC configuration, Off_OM47, shows decreased summer soi! temperature with 

reduced penetration of the 0 oc isotherm into the soi! column, thus decreasing the average 

ALT over the region (Fig. 2.2). Compared to Off_Mine47, this experiment shows lower 

summer maximum temperatures in July with values of - 5.4 oc and - 5.56 oc at 0.2 rn and 
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0.45 rn respectively. This is due to the reduced summertime heat exchanges between the 

atmosphere and the soil due to the lower thermal conductivity of the SOC and increased soil 

water content (addressed in the next section). The ground heat flux is indeed reduced 

compared to both simulations using mineral soils (Fig. 2.6). 

For the Off_ OMSC4 7, summer temperatures are found lower than that of Off_ Mine4 7 

resulting from the insulating effect of the SOC. The temperature differences are smaller with 

minimum values of --4.23 oc and --4.25 °C in July at 0.2 rn and 0.45 rn respectively. 

Wintertime temperatures are significantly high in this experiment compared to the other deep 

configuration experiments due to the decreased snow thermal conductivity. In February, the 

soil temperatures are warmer by +5 .03 oc and +4.25 oc at 0.2 rn and 0.85 rn respectively. 

This shows a large sensitivity of the simulated soil temperatures to the formulation of the 

snow thermal conductivity-snow density relation in CLASS. The increased winter 

temperature is caused by reduced heat flux from the soil to the atmosphere through the snow 

pack (Fig. 2.6), a direct consequence of the reduced snow thermal conductivity, which further 

reduces soil-atmosphere interactions in winter. 

2.5.1.5 Changes in hydrology and surface sail variables over Northwest Siberia 

The implementation of SOC has a direct effect on the hydrology associated with the 

increased porosity and soil hydraulic conductivity. This section evaluates the changes in the 

simulated hydrology over the Northwest Siberian Plains. Deep peatlands are present mostly 

over the sou them part of the region while over the northem region, mainly one SOC layer is 

added (Fig. 2.1 d) . The number of permeable soillayers decrease from 6 (with total permeable 

depth of 3.5 rn) in the southem part to 3 layers (with total permeable depth of 0.6 rn) in the 

coastal area (Fig. 2.l b). 

Figure 2.7 presents the average annual cycle of the mam surface hydrological 

variables, for the 1990- 2008 period. Soil liquid and frozen water contents of the first soil 

layer increases in the SOC experiments as a direct consequence of the increased soil porosity 

of the organic soil (0.93) compared to mineral soils ( <0.49). The total summer water content, 
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i.e. liquid and solid combined, is reduced compared to winter due to increased evaporation in 

summer. The deep peatlands show larger increases of both water contents with values 

approaching saturation in winter, while non-peatland points show a more moderate increase 

(not shown). 

The peaks in the surface runoff occur in May and June for ali experiments and is 

related to the springtime snowmelt. The simulated differences in the surface runoff and the 

drainage are subject to many factors : the soi! temperatures, the presence of permafrost, the 

presence of peatlands and changes in evapotranspiration. Drainage occurs at the bottom of 

the permeable soil depth , varying over the area between 0.6 rn in the northern part to 3.5 rn in 

the sou them part (Fig. 2.1 b ). Therefore, for grid cells with permafrost and ALT shallower 

than the total depth of the permeable soil, drainage is inhibited, thus increasing the potential 

for surface runoffs. This situation is mostly present for the Off_ OM47 simulation where most 

of the region doesn't allow drainage due to ALT shallower than the depth to bedrock (Fig. 

2.2). The presence of shallow frozen ground therefore explains why Off_OM47 bas 

minimum drainage and maximum surface runoff compared to other experiments. Coherently , 

the Off_OMSC47, with milder soil temperatures, earlier soil thaw and deeper ALT allows a 

higher fraction of the melt water to percolate into the soil. 

The introduction of peatlands also alters runoff. A verages computed solely over 

peatlands show that drainage is alrnost zero resulting from the combined effects of frozen 

ground and due to Letts et al. (2000) formulation allowing a higher water retention capacity 

in the organic soils. Therefore, the decrease in drainage and the increase in the surface runoff 

during the late summer (July to September) are most! y due to the presence of peatlands over 

the area. 

2 .5.2 R esults from CR CM5 exp eriments 

While the offline simulations discussed m the section above helped assess the 

sensitivity of soil thermal and moisture regimes to modifications in the LSM in isolation, it is 

essential to use coupled land-atmosphere simulations to study the interactions and sensitivity 
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of surface climate to changes in soil and snow formulations. The CRCMS simulations 

C_Mine6, C_Mine47, C_OM47 and C_OMSC47 will be analysed in this section and 

compared to the matching offline ones as required. 

2.5.2.1 General mode! evaluation 

The simulation of permafrost and soil conditions in a coup led land-atmosphere madel 

is dependent on the quality of the simulated surface climate. Renee, a general evaluation of 

the CRCMS performance against reanalysis and observational databases is presented here for 

key variables directly influencing the soil conditions: the 2 rn-air temperature, precipitation 

and snow water equivalent. The madel evaluation is presented for the deep mineral 

configuration (C _ Mine4 7). 

Figure 2.8 presents the simulated 2 rn-air temperature for winter (DJF) and summer 

(JJA) and comparison with ERA-Interim, UDel and CRU3 .1 datasets. Summer temperatures 

are relatively well simulated and biases are less than 4 oc when compared to ERA-Interim 

over most of the domain. Compared to UDel, the madel has a general cold bias over most of 

North America and East of the West Siberian Plains. Comparison with CRU3.1 dataset shows 

different bias patterns in the temperature, with severa! grid cells with warm bias es ( e.g. 

Kolyma Mountain Range). The differences in the two station-based climatological datasets 

UDel and CRU3.1 can be explained by the low density of the observational network in high 

latitudes and the differences in the interpolation methods used. One could see these 

differences between observed datasets as an approximate measure of the observational 

uncertainties. 

Winter temperature shows systematic cold bias over Western Russia, interior Alaska 

and over the Rocky Mountains. Warm biases are widespread, with biases of 4 to 6 oc around 

Hudson Bay and over the Central Siberian Upland. Maximum warm biases are located in the 

Lena River Valley and in the surrounding mountainous regions (6 to 12 °C). Although biases 

are smaller in comparison with ERA-Interim, the existence of similar patterns in the 

comparison with all datasets, despite their observational uncertainties, lead to the conclusion 

that the CRCMS has an important warm bias over these regions. 
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Figure 2.9 shows the simulated winter and summer precipitation fields and its 

comparison with ERA-Interim, UDel and GPCC datasets . Winter precipitation shows 

minimum precipitation located over the Arctic Ocean extending to the Canadian Arctic 

Archipelago and to Siberia, in good agreement with observations. Comparisons with ERA

Interim, UDel and GPCC show a general overestimation of winter precipitation over 

mountainous regions and generally over North American continental areas. A dry bias over 

West Siberian Plains is also present and is consistent in comparison with all datasets. One 

must note that uncertainties in wintertime precipitation are large mainly because of the 

undercatch of solid precipitation by ground-based observation stations, a systematic bias for 

which neither UDel nor GPCC have been corrected. One hypothesis for the underestimation 

of the precipitation over West Siberia is the underestimation of the Icelandic Low system in 

CRCM5 (not shawn) that would limit the moisture transport from the Nordic Sea region 

towards Western Siberia white good agreement is noted over Central Siberia. 

Simulated summer precipitation shows the important signature of complex topography 

over the whole domain with maximum values located over the Pacifie Coast of North 

America and over Siberian Mountains of the Altai, Central Siberian Upland, the Kolyma and 

Stanovoy Range. This signature of complex topography is hardly visible in station-based 

observational datasets, most likely due to the scarcity of the stations network, leading to the 

systematic wet biases in those regions, especially over Russia, as seen in the difference fields. 

White the comparison with both station-based datasets show coherent biases (mostly wet) 

over the high latitudes of the continental North America, comparison with ERA-Interim 

shows a very different pattern with large dry bias over Alaska decreasing in magnitude 

towards Hudson Bay. These differences again reflect the large uncertainties in the 

measurement of precipitation and the representativeness of gridded datasets derived from 

stations compared to reanalysis products. In that sense, one might consider solely the regions 

where both station-based datasets and reanalysis biases are coherent as signs of significant 

biases in the CRCM5. Two regions, the West Siberian Plains and in the vicinity of Hudson 

Bay distinctly appear as areas where the simulated CRCM5 precipitation might suffer from a 

systematic dry precipitation bias. Although an important dry bias also exists south of the 
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Stanovoy Range, this region is not significant for the present study focusing on high-latitude 

temperature and permafrost. 

Figure 2.10 presents a comparison of the average NDJFM SWE for 1990- 2008 period 

against the gridded dataset from GlobSnow and the CMC SWE. SWE data on complex 

topography is not presented in GlobSnow due to low reliability and are masked out in Fig. 

2.10. Compared to GlobSnow data, simulated SWE is underestimated over Eastern Russia, in 

good agreement with the DJF precipitation underestimation presented in Figure 2.9. SWE 

over Alaska, Yukon and the Northwest Territories in Canada also show sorne 

underestimation although the comparison with precipitation datasets showed a wet bias in the 

CRCM5 . A second comparison was performed with the CMC SWE, showing an 

overestimation of SWE over most of the domain except for an underestimation over the 

Central Siberian Upland. The discrepancies in the snow data are another illustration of the 

observational uncertainties in the Arctic region leading to difficult model evaluation over the 

region. Nevertheless, one can see the impact of topography in the simulated SWE with 

maximum values located mainly over complex topography, a feature well represented in the 

CMC SWE compared to GlobSnow. 

In general, the CRCM5 shows reasonable skill in reproducing the climatic means over 

the 1990- 2008 period. Albeit sorne strong biases in winter temperatures over Eastern Siberia, 

temperature and precipitation can generally be considered in good agreement with the 

observations and within the range of observational errors. The SWE shows large differences 

between the observational datasets with the main differences located over regions of complex 

topography. The CRCM5 and the CMC SWE show detailed pattern in mountainous areas, a 

feature missing from the GlobSnow data. 

2.5.2.2 Permafrost extent 

Figure 2.11 shows CRCM5 simulated permafrost extent North of 45°N for the 1990-

2008 period. Similar to the offline simulations, the shallow configuration C _ Mine6 

underestimates the permafrost extent with ALT below 2.0 rn limited to the northernmost 
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latitudes of Siberia and over the Canadian Arctic Archipelago. The total near-surface 

permafrost cover reaches only 350,000 km2
. 

The deep mineral configuration (C _ Mine47) shows substantially more near-surface 

permafrost compared to the shallow configuration with a total coverage of 10.5 x 106 km2 of 

continuous and discontinuous permafrost. The matching offline ex periment Off_ Mine4 7 

shows larger permafrost extent (12 .3 x 106 km2
) compared to C Mine47 with the southern 

permafrost limit extending further south, mostly on the Siberian side. This reduced extent is 

combined with generally deeper averaged ALT over the continuous and discontinuous 

permafrost regions in C_Mine47 compared to Off_Mine47, 3.08 rn versus 2.21 rn 

respectively (Table 2.2) . This increased ALT in CRCM5 is likely related to the winter warm 

biases compared to ERA-Interim (Fig. 2.8). 

Compared to C_Mine47 , the C_OM47 and C_OMSC47 experiments show increased 

permafrost extent and reduced AL Ts over the continuo us and discontinuous regions. 

Summertime changes in soil temperature resulting from the implementation of SOC (figure 

not shown) shows very similar response to offline simulations (Fig. 2.5) with maximum 

cooling near the surface. Comparison of soi! temperatures and ALTs for coup led experiments 

with observed data are similar to those for the offline simulations and are therefore not 

presented here. 

2.5.2.3 Surface energy balance 

Offline experiments showed that the implementation of SOC changes the summer 

surface energy partitioning by decreasing the ground beat fl ux (Fig. 2.5 and 2.6) . In the 

CRCM5, the decreased ground beat flux is compensated by increases in the surface turbulent 

fluxes. The surface energy partitioning between the latent and sensible beat fluxes can 

potentially have a large impact on the surface climate in coupled models. Two previous 

studies that addressed the impact of SOC on near-surface climate show conflicting results. 

Lawrence and Slater (2008) showed a large increase in the sensible beat flux over the latent 

beat flux, causing increased 2 rn-air temperatures, and a deeper and dryer atrnospheric 
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boundary layer, which decreased the low-level clouds, with SOC inclusion in the model. 

Rinke et al. (2008) on the other band showed a large increase in the latent beat flux, a 

decrease in the 2 rn-air temperature and an increase in the low-level cloud cover. The 

atmospheric response in coupled models is therefore very sensitive to the implementation 

technique and parameterization. 

Figure 2.12 presents the differences in the summer (June-July-August) latent beat flux, 

sensible beat flux and 2-m air temperature, for the 1990-2008 period, between the C_OM47 

and C _ Mine4 7 experiments. The surface turbulent beat fluxes generally show an increase 

over the domain in the C_OM47 experiment. This increased energy redistribution towards the 

atmosphere is a direct consequence of the decreased ground beat flux (figure not shown), 

similar to the results presented in Fig. 2.6. The maximum increases in the latent beat flux are 

located in the coastal regions while the increase in the sensible beat flux are mainly located 

inland, mostly over Central and Eastern Siberia. Most of the regions where differences exist 

in both fluxes are statistically significant at a 95% confidence level. Surface air temperature 

changes show a general decrease over regions where the latent beat flux increases and an 

increase over regions where the increases in sensible beat flux dominates, in good agreement 

with the results from both Rinke et al. (2008) and Lawrence et al. (2008). Despite the 

somewhat large increases in the surface turbulent fluxes, the statistically significant 

temperature changes are mostly present outside of the continuous permafrost region (Fig. 

2.11 ). As discussed in the next paragraph, the two experiments using mineral soi] simulate 

similar surface fluxes and surface temperatures while the two experiments including SOC 

present strong similarities. 

Figure 2.13 presents the mean 1990- 2008 annual cycle of the latent beat flux (LHF) 

and sensible beat flux (SHF) along with the 2 rn-air temperatures over two main vegetation 

categories present over the Arctic region; namely needleleaf trees and tundra. Besides the 

different vegetation parameters, another important difference is the geographie distribution of 

these vegetation categories (Fig. 2.13d), with the needleleaf trees present mostly in the 

southem part of the domain while tundra covers extensive] y the higher latitudes and coastal 

regions of the Arctic Ocean. Therefore, the two vegetation classes show different surface 

climates with col der temperatures over the tundra compared to the forested areas (Fig. 2.13c ). 
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For both vegetation classes, the surface energy fluxes (Fig. 2.13) are separated in two 

distinct groups, with generally larger fluxes noted for the two experiments using the SOC 

parameterization compared to the two experiments using mineral soil. This separation is 

simply the result of the decreased ground heat flux in the summer for the experiments using 

SOC (not shown) as in the offline experiments (Fig. 2.6), therefore increasing the surface 

energy redistribution towards the atmosphere. 

For the needleleaf tree regions, the SHF and LHF show differences in their annual 

cycle. The LHF (Fig. 2.13a) shows larger increases during early summer for the two SOC 

experiments. Differences in LHF are maximum in June, rapidly decreasing to reach similar 

values to the mineral experiments in August. The SHF, on the other hand, is similar between 

all four experiments until May. In July, the soil organic experiments show large increase in 

the SHF (Fig. 2.13b ). Over tundra, the LHF increase is generally larger compared to the 

changes in the SHF in good agreement with spatial distribution of LHF differences over 

tundra (Fig. 2.12). The differences between the SOC and the mineral experiments are 

maximum in June by up to 9.4 W m-2 while the LHF reaches maximum values in July. The 

SHF increases are generally smaller, as can be noted on Fig. 2.12 limited to a maximal 6.8 W 

m-2 in June. 

To understand the surface energy partitioning, one must study the availability of soi1 

water for evaporation and transpiration. CLASS allows transpiration to occur for air 

temperatures above 0 °C, provided soil liquid water is available in the soil layers with roots. 

This explains the delay in the increase of the LHF component over grasslands compared to 

the forested areas, directly related to the calder surface climate. Secondly, results for offline 

experiments (and similarly for CRCMS) showed increased soil water content in the first soil 

layer in experiments using the SOC parameterization (Fig. 2.7), largely caused by the 

increased soil porosity. Figure 2.13d presents the soil saturation for the upper two layers for 

the needleleaf vegetation category. For the organic soil experiments, the soil saturation 

reaches maximum value in May for the first layer, rapidly decreasing to reach values near the 

retention capacity of the organic soils (0.27) in July and August. Therefore , water available 

for evapotranspiration is higher in May and June compared to July explaining the larger 

-~--------------------------------------------
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increase in the LHF over that period while SHF shows the largest differences in July, when 

the surface soi! layer is drier. 

The net effect of the introduction of soi! organic carbon is a drying of the first soi! 

layer combined with an increase in the soi! saturation in deeper layers, where the depth to 

bedrock allows more than one permeable layer (Fig. 2.1 b ). The downward displacement of 

soi! water is caused by the larger hydraulic conductivity and low suction of the organic soils, 

a result also obtained by Lawrence and Slater (2008). Furthermore, in the organic soils 

parameterization, if the liquid water content of the first soi! layer is above the retention 

capacity, CLASS redistributes the water within the layer by creating a vertical gradient, 

imposing the retention capacity at the soi! surface and linearly increasing the liquid water 

content to reach saturation at the bottom of the layer (Verseghy 2008) . This formulation 

therefore presents a relatively dry surface to the atmosphere, limiting direct evaporation from 

the top soi! layer, explaining the combination of increased LHF and SHF. 

The CRCM5 shows moderate atmospheric response to the increase in the summer 

surface turbulent beat fluxes (Fig. 2.13c ). The summer 2 rn-air temperature changes are 

limited to maximal values within ±2 oc over both vegetation categories . Spatially, changes in 

2 rn-air temperatures shows summertime cooling over North America and Eastern Russia 

reaching changes of - 0.5 to - 1.5 °C, while Western Russia warms between 0.5 and 1 °C. 

These results are not statistically significant and therefore cannot be associated with the 

implementation of SOC with certainty. No clear signal is visible for the changes in the 

atmospheric boundary layer height or for the low-level cloud cover (not shown). The limited 

changes to the near-surface temperatures to the increase in the surface turbulent fluxes is 

likely explainable by the similar magnitude of the changes to both turbulent fluxes. Both 

fluxes increase in similar proportion, leading to very little changes in the Bowen ratio 

(SHF/LHF) therefore having a limited impact on the atmospheric boundary layer stability. 

In summary, CRCM5 results show a more moderate response of the surface climate to 

the implementation of SOC compared to the studies of Lawrence and Slater (2008) and Rinke 

et al. (2008) . Increases in LHF and SHF are related to the availability of water in the near

surface layers explaining the seasonality of the increases in the surface turbulent fluxes, 
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especially over the forested areas. The limited influence of the SOC implementation on the 

surface climate is likely caused by the similar increases in both fluxes, having little impact on 

the boundary layer stability, illustrating the atmospheric mode! sensitivity to the 

implementation of SOC. 

2.5.2.4 Sensitivity of simulated ALT to atmospheric parameters 

In this section, we evaluate the simulated AL T trends for the 1960- 2008 period and its 

sensitivity to atmospheric variables. Figure 2.14 presents the AL T trends for the three 

simulations using the deep soi! configuration, for those points that retain near-surface 

permafrost until the end of 2008. The experiment using mineral soils, C_Mine47, has the 

largest trend values over most of the domain, compared to C_OM47 and C_OMSC47. One 

might note large areas near the southern limit of the permafrost region showing signs of 

degradation over the simulation period, as shown in grey in Fig. 2.14. The extent of this area 

is larger in C_Mine47 compared to the experiments using SOC. For grid points where the 

ALT trend is statistically significant at 90% confidence level, the average AL T trend in 

C _Mine47 is 12.3 cm/decade, a larger value compared to the ~8 cm/decade obtained by 

Oelke et al. (2004). Maximum values are mainly located over Northwest and Eastern Siberia, 

regions where the average AL T is overestimated compared to Oelke et al. (2004) and Burke 

et al. (20 13). The ex periment C _ OM4 7 shows sm aller trends in ALT amongst all 

experiments, 6.7 cm/decade, likely a consequence of the colder winter soi! temperatures and 

the effective insulation of the SOC in summer. Nevertheless, the trend is statistically 

significant over most of the continuous and discontinuous permafrost regions except for 

Central Siberia, where ali experiments show non-significant trends that are in good 

agreement with other modeling studies (Oelke et al. 2004; Burke et al. 2013). The 

C_OMSC47 experiment shows significant trends over most of the domain, with maximum 

trends located in Southern and Eastern Siberia and over North America from Alaska to the 

Hudson Bay with an average trend of9.9 cm/decade over grid points where the ALT trend is 

significant at 90% confidence leve!. 

To understand the sensitivity of the ALT to atrnospheric variables, an analysis of the 

relation between AL T and atmospheric variables directly influencing the soi! thermal regime 
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was performed over grid points showing significant ATL trends. To identify the most 

important atmospheric variables having an impact on the AL T, trend analysis and correlation 

between atmospheric parameters and ALT were investigated. Statistically significant 

correlations at 95% confidence level are found between the ALT and the following 

atmospheric parameters: 2 rn-air temperatures (T2M), the degree-day thawing (DDT) and 

freezing (DDF) indexes and the length of both thawing and freezing season. The degree-day 

thawing (freezing) index is defined as the sum of the above-zero (sub-zero) daily average 2 

rn-air temperatures from October to September. Other parameters, such as SWE, net 

shortwave radiation at the surface, annual and seasonal precipitations show no significant 

correlation with the ALT. 

Figure 2.15 shows the relation between the AL T anomal y and selected atmospheric 

parameters T2M, DDT and DDF. For the 1960- 2008 period, the average annual 2 rn-air 

temperature warms by 0.34, 0.29 and 0.27 oC/decade for experiments C_Mine47, C_OM47 

and C_OMSC47 respectively. The differences in the magnitude of the trends between the 

experiments are due to the different spatial distribution of the grid points where the AL T 

trends are significant (Fig. 2.13b ). This increase in temperature is significantly correlated 

with increases in the ALTs (Fig. 2.15) with values of 0.68, 0.85 and 0.80 for C_Mine47, 

C_OM47 and C_OMSC47 respectively. 

Since the ALT - defmed as the annual maximal thaw depth - occurs mostly at the end 

of the summer, the thawing index should be a better indicator than the annual average 2 rn-air 

temperatures. The DDT shows an increase over the simulated period with values of 28.8, 

30.1 and 24.2 oc day/decade for C_Mine47, C_OM47 and C_OMSC47 respectively, 

coherent with a warming of the surface climate over the Arctic. The AL T and the DDT in 

C_Mine47 experiment shows the highest correlation amongst the three experiments (0.91). 

The other simulations using SOC are also highly correlated with the DDT but with smaller 

values: 0.81 and 0.79 for C_OM47 and C_OMSC47, respectively. 

The DDF shows the largest trends of ali parameters considered with values of -97.2, -

76.1 and -68.1 oc day/decade. The DDF and the ALT are negatively correlated, significant at 
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95% confidence level, with values of -0.44, -0.74 and -0.64 for C_Mine47, C_OM47 and 

C_OMSC47 respectively. 

Although all experimeuts agree on the relations between a deepening of the ALT with 

the warming of the surface climate during the 1960- 2008 period, sorne differences are 

visible, related to the soil configuration. Firstly, the mineral soil experiment, C_Mine47 

shows maximal correlation of ALT with the DDT index amongst the experiments, while 

minimal correlations are found with T2M and DDF for that particular experiment. This 

shows that the mineral configuration is most sensitive to the summer temperatures . 

According to the larger ground heat flux in the mineral experiment compared to the SOC 

experiments (Fig. 2.6), results presented in this section suggest a short-term sensitivity (or 

"memory") of the soi! to the air temperature anomalies of the same year summer with limited 

sensitivity to the previous winter or summer temperatures. On the other hand, the SOC 

experiment C_OM47 shows higher correlation with the annual temperatures, showing larger 

sensitivity of this particular ex periment to both the summer and win ter temperatures. This is 

partly due to the isolative effect of the SOC reducing the impact of summer temperatures 

while the larger snow conductivity, compared to C_OMSC47, shows relatively important 

impact of the winter air temperature on the soi! column temperature. One might note that the 

high correlations between the temperature-based atmospheric parameters and the AL T on a 

yearly basis shows similarities to the observational study of Frauenfeld and Zhang (2011) 

over Russian stations, where antecedent conditions from the previous year do not appear to 

play a major role in affecting the subsequent near-surface soi! conditions. 

Results from the CRCMS experiments showed overestimated ALT and trends over 

most of the Pan-Arctic domain compared to observations (CALM) and other numerical 

experiments using LSM (Oelke et al. 2004; Burke et al. 2013). Two hypotheses are 

formulated to explain the overestimated ALT and its trends: (1) the warm bias in the CRCMS 

and (2) an accelerated warming in the CRCMS surface climate compared to observations. 

Figure 2.16 compares the time series the DDF (Fig 2.16a) and DDT (Fig. 2.16b) indexes 

from UDel, CRU3.1 to simulated results for the grid points where the three deep sorl 

configuration experiments shows significant trends in the ALT, i.e., mostly over Eastern 

Siberia and Alaska (Fig. 2.14). Due to the limited observations of daily temperatures in the 
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Arctic, estimates of the DDF and DDT indexes were computed from the monthly 

temperatures from UDel and CRU3 .1. This method is known to introduce sorne uncertainties 

in the estima tes of the indexes between 10- 15% over the continuous and discontinuous 

permafrost regions (Frauenfeld et al. 2007). Compared to CRU3 .1 data, the simulated DDF is 

underestimated while in relatively good agreement with the UDel data. Simulated DDT is 

overestimated compared to CRU3 .1 while underestimated compared to UDel. In general, the 

CRCM5 results are between CRU3.1 and UDel estimates, showing that CRCM5 is within the 

observational uncertainties but tends to be warm biased, in good agreement with the 

simulated warm biases noted over Eastern Siberia and North America (Fig. 2.8). Statistically 

significant differences at 95% confidence leve! exist between the simulated and observational 

estimates, which highlight the CRCM5 warm bias over the region, especially when compared 

to CRU3.1 , noted to be col der than UDel especially over Eastern Siberia (Fig. 2.8). 

Standardizing the time series ofDDF (Fig. 2.16c) and DDT (Fig. 2.16d) with respect to 

their long-term mean and standard deviation, removing any biases, allows estimating and 

comparing the trends. Standardized trends and interannual variability for DDF and DDT are 

almost identical for CRU3 .1 and UDel. The CRCM5 experiments tend to overestimate both 

trends and the inter-annual variability of the indices. A t-test was performed over the 

standardized data that showed that the observed and simulated distributions are not 

significantly different at 95% confidence leve!. Therefore we can conclude that the warming 

trends are weil reproduced by the CRCM5 although the warming is slightly accelerated in the 

mode!. 

In summary, the simulated AL Ts in CRCM5 experiments are overestimated compared 

to observations and other studies using offline LSMs and significantly correlated to surface 

air temperatures and indexes. The snow and precipitation show little correlation with ALTs 

and likely play a secondary ro le in the evolution of the soi! temperatures. Despite the warm 

bias noted in the CRCM5 surface air temperatures, the warming trends over the 1960-2008 

period is not significantly different from the observations suggesting that the overestimated 

AL Ts are likely related to that warm bias. 
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2.6. Summary and conclusions 

The warming observed in the Arctic in the recent decades and the warming suggested 

by coup led general circula ti ou models for the 21 st Century could have an important impact on 

the thermal state of the Arctic soi1s. Although direct observations are invaluable sources for 

monitoring the Arctic Climate, the limitations in the available data both spatially and in time 

strongly supports the modeling approach in order to get continuous data for large-scale 

studies of the Arctic. Despite an increasing number of studies addressing the changes in the 

thermal state of the Arctic permafrost, the land surface models used generally require 

improvements to their numerica1 formulation to adequately represent the soi! organic carbon 

and its thermal and hydrological properties. Moreover, a limited number of studies actually 

focus on the land-atmosphere interactions resulting from the implementation of SOC and its 

potential feedbacks on the surface climate. 

The first objective of this study was to assess the sensitivity of simulated Arctic soi! 

temperature and moisture regimes, particularly near-surface permafrost and ALT, to soi! 

layer configuration and soi! organic carbon, using offline simulations with CLASS. In 

agreement with the work of Smerdon and Stieglitz (2006), the shallow soi! configuration 

showed overestimated annual cycle of soi! temperatures, directly affecting the permafrost 

extent in the Arctic. Analysis showed that such shallow configuration is not capable of 

reproducing high-latitude near-surface permafrost. Other modeling groups showed better 

permafrost extent using shallow (~3.5 rn) configuration, e.g. Lawrence et al. (2008) and 

Dankers et al. (2011), using the Community Land Mode! (CLM) and the Joint UK Land 

Environment Simulator (JULES), respectively. Though the above studies had similar soi! 

layers to th at of the shallow configuration considered here, there were important differences 

with respect to the depth to bedrock. In this study, depth to bedrock is based on the dataset 

from Webb et al. (2000), while Dankers et al. (2011) and Lawrence et al. (2008) assumed 

permeable soi! composed of sand, silt, clay and organic material for the entire soi! column. 

Since a large part of the study domain has Jess than 1 rn of permeable soi! according to Webb 

et al. (2000), the thermal conductivity is larger in our experiments due to the presence of 

shallow bedrock and reduced thermal inertia due to the limited soi! water content and phase 
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changes in the soil column. The combination of these effects leads to bigger thaw depths 

compared to a fully permeable soil column. 

Deepening the soil column depth to 65 rn improved the permafrost extent although the 

Active Layer Thickness (ALT) was overestimated compared to observations and other 

modeling studies (Oelke et al. 2003; Oelke et al. 2004; Lawrence et al. 2008; Dankers et al. 

2011; Burke et al. 2013) . The implementation of SOC greatly reduced the ALT and summer 

soil temperatures over the Pan-Arctic domain compared to the experiment using mineral 

soils. Combination of the SOC and the decreased snow thermal conductivity of Sturm et al. 

(1997) resulted in colder temperatures during the summer due to the SOC and warmer 

temperatures in winter because of the reduced beat flux from the soil towards the atmosphere 

through the snow pack. The land surface model CLASS therefore showed a large sensitivity 

of the soil temperatures to the snow density-snow thermal conductivity relation th at should be 

investigated further. 

The hydrological response to the SOC implementation revealed complex interactions 

between the surface runoff and drainage to the permeable soil depth, presence of deep 

peatlands and the soil temperatures. In general, simulation with cooler temperatures, near

surface permafrost and shallower AL Ts showed increased ( decreased) surface runoff 

(drainage), particularly over deep peatlands. 

CRCM5 experiments showed similar sensitivities to soil column depth and SOC 

implementation as the offline CLASS experiments. Simulated near-surface permafrost extent 

showed similar response although the CRCM5 deep mineral configuration showed reduced 

extent and larger ALT values compared to its offline counterpart due to warm biases in 

CRCM5 climatology. As for offline experiments, important decreases in simulated ALTs 

result from the implementation of SOC. 

The summer surface turbulent fluxes in CRCM5 shows important increases caused by 

the SOC implementation, as a direct response to the decreased ground beat flux. While 

Lawrence and Slater (2008) and Rinke et al. (2008) obtained opposite and significant signais 

in the surface turbulent beat fluxes, results from this study show moderate response with very 

limited impact on the surface climate and atmospheric boundary layer. This is mainly caused 
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by the similar increases in bath sensible and latent heat fluxes in the SOC experiments mainly 

controlled by the availability of near-surface soil moisture and saturation level. Only limited 

regions of the Pan-Arctic domain show significant changes to the 2 rn-air temperature, 

boundary layer height and low-level cloud cover. These results emphasized the large 

sensitivity of atmospheric models to SOC formulation. 

The warming of the near-surface climate over the 1960- 2008 period is responsible for 

the positive and significant trends in the simulated ALT, present over most of the Pan-Arctic 

domain for all CRCM5 experiments. The mineral soil experiment showed the largest trends 

and permafrost degradation amongst the experiments. The large sensitivity of that particular 

experiment to the increasing degree-day thawing (DDT) index suggests that changes in the 

summer temperatures dominate the ALT sensitivity. Although the experiments using SOC 

were also significantly correlated with the DDT index, the correlations between ALT and 

DDT departures from their mean values showed smaller values while increased correlation 

were found for the annually averaged 2 rn-air temperature and the degree-day thawing index. 

The higher correlation with annual and winter parameters shows that the SOC experiments 

are relatively less sensitive to summer temperatures while increasing winter temperatures 

play a more important role in the ALT trends for these experiments. 

Analysis of the trends in DDT and DDF showed that the CRCM5 surface climate 

trends are not significantly different from that of CRU3 .1 and UDel. The overestimated ALTs 

and trends in the mode! are likely linked to the near-surface warm biases in the model and 

would require further investigation to improve their representation. 

Based on the present study, it appears important to further improve the representation 

of snow in CLASS, given the winter cold biases associated with soil temperatures for both 

offline and coupled experiments. For example, Burke et al. (2013) showed that a more 

realistic multi-layer snow scheme significantly reduced the winter cold bias m soil 

temperatures previously observed in JULES land surface model (Dankers et al. 2011) . 

Other processes not presently included in CLASS such as ice-lenses and thermokarst 

lakes may also have important impact in the AL T simulation and trends in the model. In the 

event that detailed Pan-Arctic observations of the soil organic content and its spatial coverage 
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becomes available, a sensible next step in future work would be to use sub-grid scale 

variability of the soil type using the "mosaic option" that is available in CLASS. The main 

challenge would be the colossal amount of work required to gather and centralize the terrain 

data. 
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Table 2.1: List of experiments performed in this study 

Ex peri- Atmospheric Period Soit soc Snow 
ment mode Forcing column conductivity 

depth 
Off_Mine6 Offline ERA-40 & ERA- 1957- 3.5 rn No Mellor (1977) 

Interim 2008 
Off Mine47 Offline ERA-40 & ERA- 1957- 65 rn No Mellor (1977) 

Interim 2008 
Off OM47 Offline ERA-40 & ERA- 1957- 65 rn Y es Mellor (1977) 

Interim 2008 
Off OMSC47 Offline ERA-40 & ERA- 1957- 65 rn Y es Sturm et al. 

Interim 2008 (1997) 
C Mine6 Coup led - 1957- 3.5 rn No Mellor (1977) -

2008 
C Mine47 Coup led - 1957- 65m No Mel! or ( 1977) -

2008 
C OM47 Coup led - 1957- 65 rn Y es Mellor (1977) -

2008 
C OMSC47 Coup led - 1957- 65 rn Y es Sturm et al. -

2008 (1997) 

Table 2.2: Permafrost extent (x106 km2
) located North of 45°N and averaged Active Layer 

thickness (rn) over 1990- 2008 period 

Discontinuous Continuous Continuous+Discontinuous 
Area (xlO" ALT A rea ALT A rea ALT 

km2
) (rn) (x106 km2

) (rn) (x106 km2
) (m) 

IPA 3.14 ----- 10.12 ----- 13.25 -----
Off Mine6 0.09 0.0001 1.18 0.5869 1.27 0.55 
Off Mine47 2.47 2.82 9.79 2.06 12.27 2.21 
Off OM47 2.71 2.18 9.89 1.56 12.60 1.69 
Off OMSC47 2.10 2.74 9.37 2.03 11.47 2.16 
C Mine6 0.03 1.21 0.33 0.27 0.35 0.33 
C Mine47 1.69 3.34 8.81 3.024 10.50 3.08 
C OM47 2.622 2.23 9.53 1.45 12.15 1.62 
C OMSC47 2.02 2.78 9.30 1.91 11.32 2.10 
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Table 2.3: Annual mean soil temperature biases (0 C) relative to longitudinal position of the 
stations. 

35-190°E 35-t00°E 100-190°E 60-90°E 
Depth Experiment Bias RMSE Bias RMSE Bias RMSE Bias RMSE 
0.2m Off Mine6 -5.80 7.18 -3.38 3.91 -10.02 10.72 -3.45 3.89 

Off Mine47 -5 .95 7.37 -3.49 4.02 -10.25 11.00 -3.60 4.04 
Off OM47 -6.54 7.73 -4.36 4.79 -10.33 11.14 -4.66 4.94 
Off OMSC47 -4.40 5.59 -2.80 3.16 -7.20 8.26 -2.79 3.06 

0.85 rn Off Mine6 -5.65 6.99 -3.30 3.87 -9.93 10.52 -3.37 3.84 
Off Mine47 -5.87 7.23 -3.48 4.03 -10.21 10.85 -3.60 4.07 
Off OM47 -6.43 7.56 -4 .30 4.75 -10.30 10.96 -4.64 4.96 
Off OMSC47 -4.36 5.45 -2.76 3.16 -7.27 8.1 1 -2.80 3.13 

2.75 rn Off Mine6 -5 .60 6.92 -3.24 3.80 -9.81 10.37 -3.16 3.58 
Off Mine47 -5 .91 7.18 -3 .57 4.08 -10.10 10.68 -3 .55 3.94 
Off OM47 -6.34 7.41 -4.26 4.67 -10.04 10.68 -4.43 4.67 
Off OMSC47 -4.46 5.46 -2 .90 3.26 -7.23 8.00 -2.82 3.07 
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Figure 2.1: (a) CRCM topography (m) ; (b) Number of permeable lay ers. Dark red regions 
represent deep peatlands where Letts et al. (2000) parameterization is used. (c) Soil organic 
concentration (kg m·2) from IGBP-DJS for the first 100 cm ofsoil. (d) Number ofsoil organic 
layers considered in Off_OM47, Off_OMSC47, C_OM47 and C_OMSC47. Red regions are 
similar to those in (b), while green (blue) regions represent grid points where 10 cm (30 cm) 
of organic soil are used. 



98 

(c) Off Mine47 

5 

4 

3 

2 

0 

Figure 2.2: (a) Observed permafrost extent (continuous, discontinuous, sporadic and isolated) 
from the International Permafrost Association (IPA) (Brown et al. 1998); (b )-( e) Modeled 
average permafrost extent and AL Ts for the offline simulations for the 1990- 2008 period. 
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Figure 2.4: (left) Simulated and observed mean annual soil temperatures (0 C) for stations 
within the region bounded by 20-190°E and 55-90°N. (right) Mean annual cycle of observed 
(grey) and simulated soil temperature: Off_Mine6 (red); Off_Mine47 (green); Off_OM47 
(blue) and Off_ OMSC47 (black). Dashed line on top right plot represents 2 rn-air 
temperature for UDel (grey) and that from ERA-Interim (black) used to drive CLASS offline. 
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Figure 2.5 : Averaged mean monthly soil temperature CC) for the 1990- 2008 period for 
Northwest Siberia (55-90°N, 60-90°E; blue shaded region in the left central panel), for 
various CLASS offline simulations and differences relative to the deep mineral configuration 
(Off_Mine47). No vertical interpolation of the temperature is done therefore results are 
presented on modellevels. 
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Figure 2.6: Monthly averages of ground heat flux at the soil/snow (atrnosphere) interface for 
Northwestem Siberia (60-90°E, 55-75°N) for the 1990-2008 period for: Off_Mine6 (red), 
Off_Mine47 (green), Off_OM47 (blue) and Off_OMSC47 (black). 
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Figure 2.7: Annual cycle of (a) liquid water content and (b) frozen water content for the first 
soil layer, (c) surface runoff, (d) sub-surface runoff, (e) SWE and (f) evaporation, over 
Northwestem Siberia (60 - 90°E, 55 - 75°N) computed over the 1990- 2008 period for 
CLASS offline simulations: Off_Mine6 (red), Off_Mine47 (green), Off_OM47 (blue) and 
Off_OMSC47 (black). Numbers on top of the subpanels represent the annual average values 
for Off_Mine6, Off_Mine47, Off_OM47 and Off_OMSC47 in order. Grey lines snow 
observational data ofSWE for GlobSnow (fullline) and CMC SWE (dashed) . 
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Figure 2.8: Comparison of averaged 2 rn-air temperature (0 C) for DJF (left) and JJA (right) 
for C Mine47 (1 st row) and differences with ERA-Interim (2nd row), UDel dataset (3 rd row) 
and CRU TS3.1 dataset (4111 row) , for the 1990-2008 period. 
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Figure 2.9: Comparison of averaged precipitation (mm month- 1
) for DJF (left) and JJA (right) 

for C_Mine47 (1 51 row) and differences with ERA-Interim (2"d row), UDel dataset (3rd row) 
and GPCC dataset (4111 row), for the 1990-2008 period. 
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Figure 2.10: Comparison of average SWE (cm) for NDJFM for: (a) C_Mine47, (b) 
GlobSnow, (c) the difference C_Mine47-GlobSnow, (d) CMC SWE analysis, (e) the 
difference C Mine47-CMC. Mountainous areas are masked in GlobSnow dataset due to 
insufficient data and high uncertainties; therefore no comparison is made with modeled snow 
mass over these areas. 
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Figure 2.11: (a) Observed permafrost extent (continuo us, discontinuous, sporadic and 
isolated) from the International Permafrost Association (IPA) (Brown et al. 1998); (b )-( e) 
Mode lied permafrost extent and ALTs for the CRCM5 simulations for the 1990-2008 period. 
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Figure 2.12: (top) Comparison of summer (June-July-August) climatology of (left) latent heat 
flux , (middle) sensible heat flux and (right) 2 rn-air temperature between C_OM47 and 
C _ Mine47 over the 1990- 2008 period. (bottom) Statistical significance of the differences 
using a t-test. 
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Figure 2.13 : Average annual cycle of (a) latent heat flux , (b) sensible heat flux (Wm-2
) and 

(c) 2 rn-air temperature (0 C) for needle leaf trees (full !ines) and grasslands (dashed !ines) 
between 55-75°N and 45-270°E for the 1990- 2008 period for simulations Off_Mine6 (red), 
Off_Mine47 (green), Off_OM47 (blue) and Off_OMSC47 (black). (d) Annual cycle of soi! 
saturation for the first two soillayers: 0-10 cm (fulllines) 10-30 cm (dashed !ines) for needle 
leaf trees. Identical col or codes are used to designa te experiments. 
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Figure 2.14: (top) Trends in ALT for the 1960- 2008 period for C_Mine47 (left), C_OM47 
(middle) and C _ OMSC4 7 (right). Grey regions represent grid ce lis where permafrost is not 
present for the en tire simulation period. (bottom) Statistical significance of the trends defined 
using the Mann-Kendall test. 
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Figure 2.15: Relation between ALT departure and average annual 2 rn-air temperature (top), 
degree-day thawing index (middle) and degree-day freezing index (bottom) for experiments: 
C_Mine47 (green), C_OM47 (blue) and C_OMSC47 (black) over the respective regions 
where AL T trends are significant at a 90% confidence leve!. 
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Figure 2.16: (left) Time series of degree-day freeze (a) and degree-day thaw (b) over grid 
points where ail experiments shows statistically significant AL T trends at 90% confidence 
level. Experiments C_Mine47 (green), C_OM47 (blue), C_OMSC47 (black) and 
observations from UDel (cyan) and CRU (magenta) are presented. Normalized time series 
and statistically significant linear trends are presented for DDF (c) and DDT (d). 
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CONCLUSION 

The overall objective of this thesis was to understand the large-scale control 

mechanisms for the arctic sea ice and near-surface permafrost using numerical models. The 

important results from this study are summarized here before providing thoughts on future 

scientific questions that need to be addressed. In the first chapter of this thesis, the goal was 

to understand the physical mechanisms leading to Rapid lee Loss Events (RILEs) simulated 

by the the Rossby Centre Atmosphere-Ocean (RCAO) regional climate mode!. lt was found 

that two major mechanisms were responsible for the occurrence of RILEs. The long-term 

thinning of the sea ice cover made the sea ice more vulnerable. The timing of the RILEs were 

determined by anomalies in the large-scale atmospheric and oceanic circulations, leading to 

enhanced heat transport mostly from the Nordic Seas towards the Atlantic Sector of the 

Arctic Ocean, melting the thin ice present over the area, resulting in abrupt reduction in the 

September sea ice cover. Over the Pacifie Sector of the Arctic Ocean, anomalous sea ice 

motion from the coast of Alaska towards the centre of the Beaufort Sea triggered a sea ice

albedo feedback by increasing the absorbed solar radiation and increasing the bottom melt of 

the ice, further reducing the sea ice cover. 

To the author's knowledge, the study of Doscher and Koenigk (2013) and the current 

work presented in this thesis are the only studies of RILEs occurring within an RCM. 

Moreover, the use of common atrnospheric lateral boundary conditions (LBC) from a unique 

realization of a single AOGCM, ECHAM5/MPI-OM (hereafter ECHAM5), allowed to 

clearly identify the role played by the LBCs on the synchwnicity of the events occurring 

around 2040 within each of the three RCAO climate projections. The results demonstrate the 

propagation of the driving model large-scale atmospheric circulation anomaly within the 

RCAO domain, triggering ail the RILEs to occur within a short period, between 2036 and 

2043 . The differences in the oceanic LBCs and the internai variability within each projection 

altered the magnitude and geographie location of the maximum September sea ice co ver Joss. 

Although the results show the important role of the large-scale atmospheric and 

oceanic circulations on the timing of the RILEs, a comparison of sea ice conditions between 

RCAO and ECHAM5 showed that the sensitivity of the sea ice co ver is most likely related to 

-------------------------------------------------------------------------------------·-
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the simulated sea ice thickness by each model. Indeed, ECHAM5 generally simulates thicker 

ice compared to RCAO over the entire climate projection and no RILEs occurred within the 

ECHAM5 simulation. 

Sorne deficiencies that could directly influence the sea ice cover and thickness in 

RCAO were identified. The atmospheric circulation in RCAO, as for many numerical models 

including ECHAM5, suffers from the quasi-permanent presence of an anticyclonic 

circulation over Beaufort Sea. This sea-level pressure bias causes erroneous forcing on the 

sea ice and is responsible for the displacement of the thickest sea ice towards the Eastern 

Siberian shores . This atmospheric circulation bias, combined with the presence of a closed 

oceanic boundary condition in Barents Sea, also reduces the sea surface height gradient 

between the Beaufort and Barents Seas, leading to an underestimation of the Bering Strait 

inflow. The Bering Strait inflow played an important role in the 2007 observed September 

sea ice cover minimum, and the enhanced heat transport by the Alaska current was most 

likely a trigger for a sea ice-albedo feedback over the Pacifie Sector of the Arctic Ocean. 

Therefore, the underestimation of the Bering Strait inflow in RCAO deprives the region of 

heat transport and might help explain the absence of simulated RILEs of "Pacifie Origin" 

within the climate projections, compared to recent observations. 

The second chapter of this thesis focused on a different component of the Arctic 

climate, the study of near-surface permafrost and the interactions between the land surface 

and the atmosphere. Generally, numerical models employed for climate projections require 

improvements to adequately represent the high-latitude soil temperature and moisture 

regimes and the surface energy transfer between the land surface and the atmosphere. The 

first objective was to assess the sensitivity of near-surface permafrost and surface climate to 

soit and snow formulation, i.e. soit layer configuration and soit column depth, 

parameterization of the soil organic carbon (SOC) and changes in the formulation of the 

snow density-snow thermal conductivity relation using the Canadian LAnd Surface Scheme 

(CLASS) in stand-alone mode. The second objective was to assess the sensitivity of the 

surface climate, land-atrnosphere interactions and near-surface permafrost sensitivity to land 

surface model formulation within the fifth-generation of the Canadian Regional Climate 

Model (CRCM5). 
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In accord with prevwus studies, results from the CLASS stand-alone experiment 

showed that a shallow soil configuration (3.5 rn) combine to the zero-flux bottom boundary 

condition was not capable of realistically simulating the near-surface permafrost extent, 

leading to an overestimation of the annual cycle of soil temperatures. Deepening the soil 

column using only mineral soils, represented as percentage of sand and clay, did allow a 

greater area of near-surface permafrost to persist through summer, but the maximum annual 

thaw depth - the Active Layer Thickness (ALT) - was overestimated compared to 

observations and other modeling studies. The implementation of SOC, with its low thermal 

conductivity and relatively high beat content, reduced the summer soil temperatures by 

reducing the soil-atmosphere interactions. Decreasing the snow conductivity in parallel with 

the implementation of SOC tends to increase (decrease) the winter (summer) soil 

temperatures, decreasing temperature differences with observations. 

The impact of the SOC implementation on the soi! hydrological regime showed 

complex interactions between soil moisture, soil permeable depth, soi! temperatures (bence 

permafrost) and the presence of peatlands. In summary, simulations with colder temperatures 

showed increased (decreased) surface runoffs (drainage) especially noticeable over peatlands . 

The regions where the ALT was shallower than the depth of the permeable soi! column 

showed important signal since frozen ground does not allow infiltration and therefore no 

bottom drainage occurred over such regions . 

The second section of this chapter addressed the ability of the fifth-generation 

Canadian Regional Climate Model (CRCM5) to represent the Arctic climate, near-surface 

permafrost and to evalua te the sensitivity of the surface climate to the implementation of the 

SOC parameterization. Thi s was achieved by conducting CRCM5 experiments over the 

recent past period 1957-2008. The CRCM5 reproduced reasonably well the Arctic Climate 

despite sorne winter warm biases over Eastern Siberia and over the North American boreal 

forest. For precipitation and snow water equivalent, the CRCM5 biases were generally within 

the differences observed between different observation datasets and ERA-Interim reanalyses. 

The differences between various station-based datasets and reanalysis are an indication of the 

large uncertainties in measurements of the Arctic meteorological fields. For the CRCM5 

experiments, similar conclusions to the CLASS stand-alone experiments were generally 
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noted for the simulated soi! temperatures and hydrology in response to increased soi! column 

depth, changes in snow conductivity and the implementation of SOC. 

The surface turbulent heat fluxes showed important increase resulting from the SOC 

implementation, a direct response of the reduced ground heat flux. An important aspect of 

this work was to understand the response of the surface climate to the changes in the surface 

energy balance, in arder to reduce the uncertainties raised by contradictory results obtained in 

previous studies by Lawrence and Slater (2008) and Rinke et al. (2008). Generally, the 

CRCM5 summer surface temperature response shows good agreement with results from both 

Lawrence and Slater (2008) and Rinke et al. (2008), with increases (decreases) in 2 rn-air 

temperature where sensible (latent) heat flux increases. Despite significant changes in the 

surface turbulent fluxes , the 2 rn-air temperature changes are generally not significant over 

the continuous permafrost region. Results from CRCM5 experiments show larger spatial 

heterogeneity compared to rather uniform signal presented in the two previous studies. The 

energy partitioning in the CRCM5 is directly related to the soi! saturation and, over the 

Boreal forest, shows a distinct annual cycle with latent heat flux increasing in early summer 

when soi! water is available from snow melt, a drying of the surface layers during the 

summer and marked increase in the sensible heat flux in mid-summer when soi! moisture 

reaches minimal values. 

The last section of the second chapter evaluated CRCM5's ability in reproducing the 

recent observed trends in the soi! temperatures and sensitivity of the near-surface permafrost 

to changes in surface air temperatures. Although the simulated deepening trends are generally 

overestimated compared to observations, the experiments using the SOC generally shows 

smaller trends compared to the mineral formulation. This improvement in the simulated 

trends is a direct consequence of the insulative properties of the SOC and shows the necessity 

of including such parameterization into numerical models to increase the realism of the 

simulations. Two hypotheses were explored to explain the ALT trends: the presence of a 

warm bias in the CRCM5 climatology or an accelerated warming in the CRCM5 surface 

climate compared to observations. Results presented suggest that although the warming 

trends are slightly overestimated in the CRCM5 compared to observations, it is likely that the 
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CRCM5 warm bias also plays a significant role in the overestimation of the increasing ALT 

trends. 

In summary, the implementation of SOC improves the representation of the thermal 

and moisture regimes of the Arctic soils. The CRCM5 shows great potential for the study of 

the Arctic region and its climate change. Despite the success in representing the Arctic 

climate and climate change, current mode! formulation needs further improvements . First and 

foremost, the SOC parameterization used in this study is based on the assumption (and 

approximation) that sail organic carbon is present in greater concentration near the surface 

rapidly decreasing with depth into the soi! column. This assumption is reasonable in the 

Arctic and the observational data of the soi! carbon concentration from IGBP-DIS represent 

on! y the first meter of the soi! column. The vertical distribution of the SOC varies for other 

regions as shown by Jobaggy and Jackson (2000) and Lawrence and Slater (2008). Therefore, 

the author strongly recommends that the SOC parameterization, in its actual formulation, 

should solely be used over the high-latitude regions where Letts et al. (2000) peatland 

parameterization and approximation of the vertical distribution of SOC stays physically 

realistic. 

Suggestions for future work 

Although the R.CAO version used in this study is no longer supported nor developed at 

the Swedish Meteorological and Hydrological Institute (SMHI), a version of RCA coup led to 

the Nucleus for European Modelling of the Ocean (NEMO) mode! is presently under 

development. The coupling was successful over the Baltic and North Seas and is currently in 

its final stage of evaluation over the Arctic. A study of RILEs using this new coup led system 

within a similar framework as presented in this study would be a valuable tool to understand 

the impact of using different ocean and sea ice mode! on the internai variability of the 

coup led system and help assess the relative role of the atmosphere and ocean. 

The first chapter clearly demonstrated the influence of the LBCs from the driving 

AOGCM in triggering the RILEs. The logical next step would be to try to understand the 

relative contributions from the LB Cs compared to the internai variability of the mode! itself. 
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To assess such question, it would be useful to perform an ensemble of regional climate 

projections using multiple AOGCMs to provide the LBCs to RCAO. In that sense, one could 

take advantage of the ongoing COordinated Regional Downscaling Experiment (CORDEX) 

that is present! y underway, with the SMHI as one of the main participating institutions. 

There are severallimitations to the SOC parameterization implemented in the CRCM5, 

mostly related to the estimation of the soil carbon concentration and its horizontal and 

vertical distribution within the soil column. The spatial distribution of IGBP-DIS soi! carbon 

assumes homogenous horizontal coverage of the model grid point if the soi! carbon 

concentration is high enough to fill the first layer of the LSM. Although most of the modeling 

groups use this assumption, it does not take into account the large spatial variability and the 

natural distribution of soi! carbon. In reality, the soi! organic carbon tends to accumulate in 

valleys and peatlands while ridges or higher topographie areas tends to show lesser 

concentration of soi! carbon. By assuming homogeneous distribution of the soi! carbon, the 

model isn't capable of representing either regions adequately because of the large variability 

in the soil thermal and hydrologie properties. The author strongly recommends that future 

work should introduce updated databases of soil carbon and a measure of the fraction of the 

peatland coverage into CLASS using the already available "mosaic" option. The mosaic 

would allow distinguishing the fraction of both peatlands and region of lesser soi! carbon 

concentration by defining different sub-grid soi! column composition over each mode! grid 

point. The major challenge regarding this approach is access to such data that is, to the 

author's knowledge, available only for specifie regions of the Arctic: over the Boreal forest 

of Canada (Figs C.l and C.2) and over Western Siberia. 

The improvements in spatial representation of the peatlands and other regions of 

moderate soit carbon concentration would further improve the realism of the simulation 

regarding the soi! temperatures, hence permafrost and ALT, and hydrological variables 

required for multiple future projects within the Centre ESCER. Indeed, a more realistic 

representation of surface runoffs and drainage including the sub-grid scale heterogeneity 

might prove crucial inputs to the river-lake system actually being developed and 

implemented into CRCM5 . 
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Similarly, subgrid-scale variability and the distinction between deep wetlands and 

other soils would also prove crucial in terrestrial ecosystem models for the evaluation of the 

carbon-climate feedbacks (Bolm et al. 2007). By allowing higher water table leve! within the 

soit colurnn for wetlands (peatlands ), soi! organic carbon decomposition would result in 

methane emission while other dryer soils would release carbon dioxide, the former having a 

larger feedback on the greenhouse effect. Subgrid-scale heterogeneity would allow to better 

estimate future climate warrning. 
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Figure C.l: Map of peatland coverage for the Canadian Boreal Forest. Data Source: 
Tarnocai, C. , I.M. Kettles and B. Lacelle. 2002. Peatlands of Canada Database. 
Geological Survey of Canada, Open File 4002 
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c:J Boreal Zone Boordaly 

Figure C.2: Map of soil carbon density for the Canadian Boreal Forest. Data Source: 
Charles Tarnocai and Barbara Lacelle, Eastern Cereal and Oil seed Research Centre, 
Agriculture and Agri-Food Canada 
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