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RESUME

Un SLg-pavage est une fonction, sur ’ensemble Z x Z, a valeur dans un certain
corps de caractéristique zéro. On exige aussi que chaque mineur connexe, de format
k x k, soit égal & 'unité multiplicative du corps. Ces pavages sont intimement liés & la
résolution d’une récurrence dite “octaedrale”, dont les solutions apparaissent naturelle-
ment comme des systémes dynamiques dans le contexte de la mécanique statistique,
de méme que dans la théorie des algébres amassés. Plus précisément, via l'identité de
Desnanot-Jacobi, certains SLi-pavage (ceux satisfaisant une condition supplémentaire
de positivité) sont équivalents & une solution de la récurrence d’octaedrale dans la grille
a trois dimensions discréte. Les entrées de cette solution font intervenir toutes les
entrées, et tous les mineurs connexes dudit pavage. D’autres SLi-pavages importants
sont spécifiés par des conditions de bord, souvent prenant une forme d’escalier irrégulier.
Dans ce cas, il a été conjecturé que les entrées et les mineurs sont des polynémes de Lau-
rent & coefficients non négatifs. Plusieurs preuves de cas particuliers de cette conjecture
ont été proposées dans la littérature. Le but principal de cette these est de présenter
des propositions couvrant de nouveaux cas, et de développer des modeles combinatoires
permettant d’élaborer une preuve complete de cette conjecture. Un de nos résultats
principaux est la preuve de la conjecture pour le cas k& = 2. Cette preuve est basée
sur la combinatoire des chemins discrets pour décrire les entrées du pavage. Ce modele
fournit des formules en terme de polynémes de Laurent & coefficient positif dont les
variables sont les entrées apparaissant sur le bord spécifié. La structure combinatoire
du modele introduit est basée sur la notion d’intersection de chemins dans un graphe,
et d’une extension du lemme de Lindstrom-Gessel-Viennot qui est cohérente avec cette
nouvelle notion d’intersection de chemins.

Au cours de ce travail, nous avons été amenés a introduire des généralisations
naturelles des lemmes de Lindstrom-Gessel-Viennot et de Stembridge, permettant de
compter des ensembles de n-uples de chemins sans intersections. En particulier, ces
généralisations permettent d’énumérer des familles de tableaux de Young semi-standard
de forme gauche (skew tableaux), ainsi que de tableaux décalés (shifted tableaux).
Notre contribution dans ce contexte concerne non seulement l'obtention de nouvelles
preuves de résultats connus dans I’énumération des tableaux, mais aussi des résultats
nouveaux fournissant des formules énumératives pour de plus larges familles de tableaux.
D’autre part, nous avons développé une toute nouvelle approche permettant d’établir
des identités de déterminants, par I’énumération de chemins. Celle-ci fournit des preuves
plus courtes et plus élémentaires d’identités classiques, ainsi que de nouveaux résultats
algébriques généraux reliés aux déterminants. Nous concluons cette partie de notre
travail avec un théoréme qui contient une vaste famille d’identités déterminantales orig-
inales, et qui permet d’exprimer le déterminant d’une matrice de mineurs d’une matrice



générique. Nous utilisons ensuite ces identités déterminantales pour obtenir une preuve
récursive de la non-négativité de Laurent pour chaque entrée (et certains mineurs) de
SLi-pavages déterminés par des conditions de bords générales. Ceci produit un nouvel
algorithme efficace de calcul d’entrées et de mineurs, qui évite en particulier la division
par des polynémes autres que des monomes.

Plusieurs des résultats de notre travail relévent de contextes comme la théorie des
algebres amassées, ou les algebres de Lie, dans lesquels les calculs nécessitent 1'utilisation
de techniques algébriques complexes. Nous réussissons cependant a les aborder avec des
outils purement combinatoires, beaucoup plus simples. En particulier, nos méthodes
combinatoires se sont avérées beaucoup plus efficaces que celles utilisées auparavant,
pour démontrer la non-négativité de Laurent dans plusieurs cas particuliers d’algebres
amassées.



ABSTRACT

SL-tilings are functions on the set Z x Z, taking values in certain field of char-
acteristic zero, with the additional condition that every k X k connected minor is equal
to the multiplicative unit of the field. These tilings are closely related to the octahedron
recurrence, whose solutions appear naturally as dynamical systems in contexts of sta-
tistical mechanics, as well as in the theory of cluster algebras. More precisely, via the
Desnanot-Jacobi identity, certain SLg-tilings are equivalent to a solution to the octahe-
dron recurrence on a discrete three dimensional grid. The entries of this solution include
all of the entries and all of the connected minors of the tiling. Other important SLj
tilings are specified by boundary conditions in the shape of an irregular staircase. In this
case, it has been conjectured that the entries and the minors of the tiling are nonnega-
tive Laurent polynomials. Several partial proofs of this conjecture have been proposed
in the literature. The principal purpose of this thesis is to exhibit some propositions
covering new cases, and to present combinatorial models that could help us develop
a full proof of this conjecture. One of our most important results is the proof of the
conjecture for the case k = 2. This proof is based on the combinatorics of discrete paths
describing the entries of the tiling. Our model provides formulas for all entries of the
tiling, which are nonnegative Laurent polynomials whose variables are the entries ap-
pearing in the specified boundary. The combinatorial structure of the introduced model
is based on a generalized notion of intersection of paths in a graph, and in an extension
of the the Lindstrom-Gessel-Viennot lemma which is consistent with this notion of path
intersection.

Within our work we present natural generalizations of the Lindstrém-Gessel-
Viennot and Stembridge’s lemmas, allowing us to count sets of non-intersecting tuples
of paths in certain graphs. In particular these extensions can be used for counting fam-
ilies of semi-standard Young tableaux of skew and shifted shapes. Our contribution in
this context does not only include new proofs of some well known results on tableau
enumeration, but also some original results providing enumerative formulas for broad
families of tableaux. Additionally, we develop a simple approach allowing us to estab-
lish determinantal identities using path enumeration. We thus obtain short elementary
proofs of classic identities and some general algebraic results involving determinants.
We conclude this section of our work with a theorem which holds a large family of
original determinantal identities yielding a formula for the determinant of a matrix of
minors of a generic matrix. We use some of these determinantal identities to obtain a
recursive proof of Laurent nonnegativity for every entry (and some of the minors) of
SLg-tilings under general boundary conditions. This produces a new efficient algorithm
for calculating these entries and minors, by avoiding polynomial division other than by
monomials.




xii

Many of the results stated in this work appear in contexts such as cluster algebras
and Lie algebras, where proofs often require the use of complex algebraic techniques.
However, we have decided to approach them with purely combinatorial tools. Our
proposed combinatorial methods appear to be more effective than those used in the
past for the proof of Laurent nonnegativity in particular cluster algebras.



INTRODUCTION

The purpose of this thesis is to provide a combinatorial survey and several new results
on the theory of SLg-tilings (Bergeron and Reutenauer, 2010) and related subjects.
An SLy-tiling (k > 2) is a tiling of the integer plane 7Z x 7Z with elements of a zero-
characteristic field so that every k x k connected sub-matrix has determinant equal to

1. Figure 0.1 below shows part of an SLo-tiling with entries in Z.

The study of SLg-tilings is in part motivated by Fomin and Zelevinsky’s (2002b) theory
of cluster algebras, which enclose a very general family of dynamical systems, whose
elements (cluster variables) result from applying so called mutations to a set of genera-
tors. An important and non trivial property of these systems is that the cluster variables
turn out to be Laurent polynomials in the generators, i.e., polynomials in these gener-
ators and their reciprocals. Another apparent (yet still unproven in general) property
is that the coefficients of these Laurent polynomials are all non negative integers. A
large amount of particular cluster algebras have been investigated in great detail, and
combinatorial arguments play a very important role in most of the relevant literature

(See for example Musiker, Schiffler, and Williams, 2011).

The precise relation between SLy-tilings and cluster algebras is formalized by Di Francesco
and Kedem (2009) and Di Francesco (2010). These authors review certain discrete inte-
grable systems called type A T-systems, relevant to areas of statistical mechanics, and
showed that they yield interesting examples of cluster algebras under certain boundary
conditions-and mutations on such conditions. The type Ax_1 T-systems turn out to be
in natural correspondence with certain subsets of the positive zero-free SLy-tilings of
Bergeron and Reutenauer (2010). We explain this correspondence at the beginning of

chapter 2, page 75.




Figure 0.1 Part of an SLo-tiling.

Di Francesco (2010) describes most of the solutions of a type A, T-system (r > 1) under
general boundary conditions. Bergeron and Reutenauer (2010) focus on a smaller set
of possible boundary conditions, although their tilings are more general since they do
not restrict every minor of order < k to be non-zero. The latter also provide several

interesting results describing linear algebraic properties of SLy-tilings.

By picturing the integer plane Z x Z in matrix form (with the first coordinate increasing
downwards, and the second one increasing to the right), one can see an SLi-tiling as a
matrix P := [P;;](; j)ezxz, Which is infinite in every direction. The condition that P is

an SLg-tiling may be written as follows;
V(a) b) SYAA det(lj[a,a+k)[b,b+k)) =1, (1)

where [m,n) (m,n € Z, m < n) denotes the closed-open integer integral delimited by
m,n;

[, ) = {m,im + 1;e00 s — 1}, (2)

and Pry (I,J C Z) denotes the sub-matrix of P with entries P;; for i € I, j € J. The
interval notation (2) is often used throughout this work, along with the similarly defined

intervals [m, n], (m,n], (m,n).



It is sometimes possible to determine all entries of an SLg-tiling P from a collection of

boundary conditions of the form;

det(P [a,a+m)[b,b-|-m)) =, (3)

for a,b € Z, m € [1,k), z € R. One could identify such collection with a family
of quadruplets (a,b,m,z) from Z x Z x [1,k) x R. We are interested in very general
families of boundary conditions which we describe in Section 2.1. For the moment let us
refer to these still to be described conditions as proper families of boundary conditions
or simply proper boundary conditions. Also we refer to the elements z € R from these

conditions as boundary variables.

Di-Francesco’s work implies that, under proper boundary conditions and the additional
property that each minor of order < k is non-zero, every minor of P which does not
completely enclose any of the sub-matrices Plg g4m)[p5+m) 2ppearing in the boundary
conditions, is a Laurent polynomial with nonnegative integer coefficients in the boundary
variables. One of the main motivations of this work is to provide some steps towards
the extension of this result to every possible minor of P. We successfully achieve this
for kK = 2 and conjecture a combinatorial model providing a partial argument for all k.
This model is inspired by well-known results of Lindstrém (1973), Gessel and Viennot
(1989), and Stembridge (1990), recalled in Section 1.2, though our approach diverges

somewhat from these simple yet powerful results.

Although the paths from our model are substantially shorter than the ones appearing
in Di Francesco’s paper, it appears that a fairly simple and natural bijection may be
constructed between them. We do not pursue this bijection, but we underline that the
main innovation of our work is the much broader notion of intersection of paths, which
ultimately leads to a complete Laurent positivity result for £ = 2 and a partial proof of

this result for k& > 3.

An interesting specialization of SL,-tilings appears upon letting £ — oo. This limit
is equivalent to ignoring the SLj property (1), and having instead a proper family of

boundary conditions of the form (3) for arbitrarily large values of m. These SLq-tilings



were reviewed by Speyer (2007) in the form of solutions to the so called octahedron
recurrence. His work implies the Laurent non negativity of connected minors (minors
obtained from sub-matrices with adjacent columns and rows) of an SL-tiling P under

proper boundary conditions.

It is important to mention that our combinatorial model provides a first step towards
the proof of a conjecture by Fomin and Zelevinsky (2000) (Conjecture 19), since their
chamber minors are closely related to the minors appearing in certain boundary condi-

tions.

Hereafter in this introduction we provide a brief framework of this thesis, followed by

an outline of the original results from our work.

In Chapter 1 we furnish the reader with the preliminary tools and definitions of this
work. Section 1.1 consists mostly of notation and definitions, serving to introduce the
language and basic combinatorial objects needed to understand most of this thesis. The
Lindstrom-Gessel-Viennot and Stembridge’s Lemmas (Theorems 1 and 2), along with
some natural extensions, are introduced in Section 1.2. We use them extensively in
Section 1.3 to derive identities involving determinants, some of which are occasionally
employed in Chapter 2. Sections 1.3 and 1.4 may be viewed as standalone examples
of applications of the results from Section 1.2. In fact, they may be entirely skipped
by a reader interested in SLg-tilings, since only a few already well-known results from
Section 1.3 are referenced elsewhere. Chapter 2 comprises the main results of this work,

providing theorems and conjectures on the theory of SLg-tilings.
Our main original results are listed below, in the order that they appear in this thesis;
e Theorems 1 and 2 (pages 16, 22) provide natural extensions of the Lindstrom-
Gessel-Viennot and Stembridge’s Lemmas (Corollaries 1 and 2 on pages 17, 24).

e Theorem 3 (page 37) yields a very general determinantal identity. Bernard Leclerc
has said in private communication, that he believes this identity to be original.

He has also provided a Lie-theoretical argument for it. Our proof is entirely



elementary.
e Theorem 6 provides a general formula for the Kostka numbers of shifted shapes.

e Theorem 7 provides the Laurent nonnegativity property for the minors of an SLo-

tiling under proper boundary conditions.

The proofs presented in this work of the following well-known results were devised
independently by the author and could be valued for their simplicity. For some of them
we have found a recent proof in the revised literature using combinatorial techniques

but missing the simple path-based arguments.

e Propositions 1, 2 and 3 (pages 33-35) are well-known results for which we provide
independent elementary proofs by utilizing the very useful matrix A (defined in
page 31). See the work by Fulmek (2012) for another recent example of path-based

arguments to deriving well-known determinantal identities.

e Theorem 5 generalizes Lederer’s (2006) formula for Kostka numbers of skew shapes.
This formula may be obtained from arguments similar to those of Lederer or, as
mentioned by that author, from Schur symmetric function identities. Our proof
is based on our extension (Theorem 1) of the Lindstrém-Gessel-Viennot Lemma

(Corollary 1).

¢ In Section 2.3 (page 126) we provide an inductive approach to the proof of the Lau-
rent nonnegativity property of the entries of an SLi-tiling under proper boundary
conditions and the restriction that every minor of order < & is non-zero. Although
this Laurent nonnegativity property also results from Di Francesco’s (2010) work,
our proof has the advantage of providing a recursive formula for each of these
entries. This recursive formula involves no polynomial division other than by

monomials, which in turn provides a fast recursive algorithm for their calculation.







CHAPTER 1

NON-INTERSECTING PATHS AND DETERMINANTS

In this chapter we review some basic graph theoretical notions, along with two well-
known results involving non-intersecting paths in directed graphs, and a few impor-
tant applications of these results. In Section 1.1 we introduce the concepts of directed
_graphs, paths and tuples of paths, which constitute the elementary theoretical basis of
our research. We then use these combinatorial objects in the subsequent sections as
counting (or “weighted” counting) tools. In Section 1.2 we recall two classic results on
enumeration of tuples of non-intersecting paths, namely the Lindstrom-Gessel-Viennot
and Stembridge’s Lemmas. We also provide new natural extensions of these results.
Sections 1.3 and 1.4 are applications of these lemmas and our extensions, and may be
skipped by a reader interested in our main results involving SLg-tilings, since only a

couple of well-known identities from Section 1.3 are used in the subsequent chapters.

1.1 Digraphs and Paths

In this section we review the basic notions of directed graphs and paths, along with all

the language necessary to understand the rest of our work.

Definition 1. A directed graph or digraph is a pair G = (V, E) where V is any finite
set and E C V x V. The elements of V are called the vertices (or points) of G and
the elements of E are called the edges of G. A digraph can be pictured as a collection
of points in the plane, labeled by the elements of V, along with arrows v — w for all

v, w € V satisfying (v, w) € E (see Figure 1.1).




Figure 1.1 The digraph G = ({1,2,3,4},{(1,2),(1,3),(1,4),(3,2),(3,3), (4,3)}).

Definition 2. A directed path or simply path of a digraph G = (V, E) is an ordered
sequence vi,vg, . ..,Um € V of (not necessarily distinct) vertices such that (v;,vi41) € E
fori=1,...,m — 1 (see Figure 1.2). We denote this path by p=v; 2 v2a = -+ = vp.
We respectively call v; and vy, the starting vertez (or starting point) and ending vertez
(or ending point) of p, respectively. The terms source and sink are common in the
literature and we may occasionally use them here. We say that p is a path from vy
to vy, or that p starts ot v, and ends at vy,. Also, we say that each of the vertices
V1, ..., Um and edges (v1,v2), ..., (Um—1,Vm) are visited by (or simply are in the path) p,
and write v; € p (1 <i <m) and (v;,vi41) € p (1 <3 <m—1). The edges (v;, v;+1) are
calléd the steps of p, and the number m — 1 of steps of p is called the length of p. The
path with no vertices is called the empty path. It has length 0. Another trivial example

is the path consisting of a single vertex vertex v € V. This path has length 0 as well.

As stated above, a path does not necessarily consist of different vertices. For example
3—+3—>2and4— 3 —3— 3 — 2 are paths in the graph of Figure 1.2. However, in
the rest of our work, we focus only on acyclic digraphs (defined below), which satisfy

the property no path may visit any vertex more than once.

Definition 3. A cycle of a digraph G is a path which starts and ends at the same



Figure 1.2 The path 1 — 4 — 3 highlighted on a digraph.

Figure 1.3 An acyclic digraph.

vertex, having at least one step. A loop is a cycle with one single step. For example
3 — 3 is a loop in the graph of Figure 1.2. A graph is said to be acyclic if it contains

no cycles (see Figure 1.3).

At this point it is convenient to introduce some notation on concatenation and truncation

of paths. We define these notions for acyclic digraphs.

Right truncation. If p is a path of an acyclic digraph and v € p, then we denote
by p(— v) the path whose vertices are those of p up to the vertex v. For example, if

P = v1 — V2 = U3 — v4 — U5, then p(— v3) = vy = v2 — v3 and p(— vs) = p.
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Left truncation. If p is a path of an acyclic digraph and v € p, then we denote by
p(v —) the path whose vertices are those of p starting from the vertex v. For example,

if p = v, = v9 = v3 = v4 — vs, then p(vg =) = v4 = v5 and p(v; =) = p.

Concatenation at a common vertex. If py =v; > v9 = -+ = v, and py = v, —

Um+l — *** = Umin (P1's ending vertex is equal to po’s starting vertex), then we denote
P1p2 :=v1 V2 = = Umgp.
For example, if p is a path with v € p, then p(— v)p(v =) = p.

Acyclic digraphs may often be drawn in such a way that all the edges are oriented in
the same general direction (see Figure 1.3). A more formal statement of this property

is provided by the following lemma and remark, as a simple result of their definition.

Lemma 1. If the vertices v # w of an acyclic digraph are such that there is a path from

v to w, then there is no path from w to v.

Proof. Let py =v = v; = -+ = vs — w be a path between v and w, and suppose, in
order to obtain a contradiction, that there is a path pp = w = w1 = - 2> w = v
between w and v. This would méan that there is a path p1po =v -+ v1 = -+ = v =
w1 = - — wy — v starting and ending at v, which is not possible since the digraph is

acyclic. O
Remark. The lemma, above implies that for any acyclic digraph G, the relation
v<gw < Thereis a path from v to w, (1.1)

is antisymmetric. It is also clearly transitive and reflexive. Thus any acyclic digraph
defines a partial order on its vertices. We refer to this partial order as the order induced
by G, and denote it by < when there is no ambiguity concerning the graph G.

Next we define the notion of intersection of paths:

Definition 4. Two paths pj, ps of a digraph G are said to intersect (or to be intersect-

ing) if they share at least one vertex. Otherwise they are said to be non-intersecting.
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More generally, the paths pi, ..., pr are said to be non-intersecting if any pair of paths
pi,pj (1 <14 < j < k) is non-intersecting. We introduce the notation p; N py for the
set of vertices which are visited both by p; and ps. Thus these two paths intersect at a

vertex v if v € p1 Npy and they are non-intersecting if p; Nps = 0.

The following construction is essential to our work.

Switching two paths at a common vertex. When two paths p1,p2 of an acyclic
digraph G satisfy v € p1 N pa, We can construct two new paths Py, ph defined by p} =
p1(— v)p2(v =) and ph := pa(— v)pi(v =), which together contain exactly the same
vertices and edges as p1, pa. More generally, suppose that the paths p;, p; from the tuple

(p1,...,pk) intersect at a vertex v. We introduce the following notation:

Xij(P1y .-y PE) == (vl,---,Pk), wherefor l=1,...,k;
D it 1 # 14,7,
p= 4 pi(—=o)pi(v =)  ifl=54,
pi(—= v)pi(v =) ifl=j,
In simple words, X}’j switches the paths p;,p; at their common vertex v, while leaving
every other path intact. Notice that Xj; is an involution, i.e., for every tuple (p1, .. .,px)

of paths such that v € p; N pj, it is also true that v € p, ﬂp}, and;

ng(xgj(plv ; --,pk)) = (pl, s uail)E

Section 1.2 is concerned with the enumeration of tuples (pi,...,px) of non-intersecting
paths satisfying certain conditions. It is often convenient that the starting and ending
points of these paths are fixed or restricted to certain sets of vertices, and that these

satisfy one of the two Definitions 5 or 6 below.

Definition 5. Let G = (V, E) be an acyclic digraph. Let (u1,...,ux) and (v1,...,vm)
(k < m) be two finite sequences of distinct vertices from V. We say that these sequences
are G-compatible or simply compatible if for any function g: {1,...,k} = {1,...,m},
and any tuple (p1,...,px) of paths such that p; starts at u; and ends at vy(;), the
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following condition holds: If the paths p1, ..., px are non-intersecting, then g is strictly

increasing,.

The definition above is especially important when k& = m. In this case, the compati-
bility of the sequences (ui,...,ux), (v1,...,Vk), means that any non-intersecting tuple
(p1,--.,px) of paths from the vertices ui,...,ux to the vertices vy(y),. .., vg(x) Tespec-

tively, must necessarily satisfy that g is the identity function on the set {1,...,k}.

In particular when & = m = 2, the notion of compatibility above means that there are
no pairs (p1, p2) of non-intersecting paths such that p; starts at u; and ends at vy, and
po starts at us and ends at v;. For example, the sequences (A4, B) and (I, F') of vertices
from the graph in Figure 1.3, are compatible. An intimately related notion is that of

pairwise compatibility:

Definition 6. Let G = (V, E) be an acyclic digraph. Let (u1,...,ux) and (v1,...,Um)
(k < m) be two finite sequences of distinct vertices from V. We say that these sequences
are pairwise G-compatible or simply pairwise compatible if for any 1 < 41 < @9 < k,

1 < 41 < j2 < k, the sequences (ui,, ui,) and (vj;,vj,) are compatible.

Definitions 5 and 6 are not equivalent. For example, in Figure 1.3, the sequences
-(C, A, B) and (I, D, F) are compatible, but they are not pairwise compatible. However,

pairwise compatibility does imply compatibility:

Lemma 2. Let G = (V,E) be an acyclic digraph. Suppose that (uy,...,ux) and
(v1,...,vm) (k < m) are pairwise compatible sequences of distinct vertices from V.

Then they are compatible.

Proof. Let (u1,...,uk), (v1,...,9m) (kK < m) be pairwise compatible sequences. Let g
be a function from {1,...,k} to {1,...,m} and suppose that there are non-intersecting
paths pi,...,px such that p; starts at u; and ends at vy for i = 1,...,k. Clearly g
must be injective, since otherwise two of these paths would intersect at their ending

vertex. Suppose, in order to obtain a contradiction, that g is not increasing. Thus there
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Figure 1.4 The north-east lattice graph.

exist 4,42 such that 1 < 4; < 42 < k and 1 < g(i3) < g(31) £ m. Hence (ui,,ui,)
and (vg(i,), Vg(i;)) are not compasible (since there exist non-intersecting paths p;, from
uj; 10 vy(i,) and py, from ug, to vg(iz)), which contradicts the pairwise compatibility of

CTITTTA. VI VIR e O

We end this section by discussing some properties of the north-east lattice graph, which

we use extensively in the following sections.

Definition 7. The north-east lattice graph, which we denote by Lyg is the digraph
whose vertex set is the integer lattice Z X Z and whose edges are those of the form
(z,y) = (z+1,y) and (z,y) = (z,y + 1). This graph is visualized in Figure 1.4, as an
infinite grid with vertical edges pointing north and horizontal edges pointing east. The
paths of Lyg are called north-east lattice paths or simply lattice paths when there is no
ambiguity. North-east lattice paths may be viewed as paths in a cartesian coordinate

system (see Figure 1.5).
Let us review some of Ly g’s properties:

1. Lyg's edge set is invariant under integral vertical and horizontal translations.

More formally if for fixed values of a,b € Z we replace every edge (z,y) = (2, V)
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>

Figure 1.5 A north-east lattice path from (—3,—3) to (3,4).

of Lyg with (z + a,y + b) — (¢/ + a,y’ + b), then the new edge set obtained

is identical to the original one. This digraph is also invariant under reflections

through diagonal lines of the form y — z = ¢ (¢ being a constant). We refer to

these and similar properties as the symmetry of Lyg.
2. Lyg is acyclic.
3. The partial order < induced by this graph is given by
(z,91) < (z2,92) & 1< z2and Y <y

4. For (z1,y1) < (z2,%), the number of paths from (z1,y1) to (z2,y2) is given by

the binomial coefficient
<x2+y2—x1—y1) _ (m2+y2—x1—y1)
Zg — 1 =9
1.2 Lindstrom-Gessel-Viennot and Stembridge’s Lemmas

In this section we state some natural extensions of well-known theorems which provide

enumeration formulae for tuples of non-intersecting paths in an acyclic digraph. We
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apply these tools extensively in Sections 1.3 and 1.4 to derive determinantal identities
and tableau enumeration formulae respectively. "The results and proofs listed in this

section are also the inspiration for the combinatorial model of Section 2.1.

Lindstrom (1973), and independently Gessel and Viennot (1989) discovered a remark-
able result counting the number of k-tuples (p1,...,px) of non-intersecting paths in an
acyclic 'digraph between compatible k-tuples of vertices (uy,...,ux) and (vi,...,vg).
Recall that this compatibility relation implies that the path starting at u; will neces-
sarily end at v; for ¢ = 1,...,k. The Lindstrom-Gessel-Viennot lemma is Corollary 1
below. We remark that some sources state this result under a pairwise compatibility

hypothesis. However, compatibility turns out to be sufficient.

Stembridge (1990) later extended this result by providing a formula for the num-
ber of tuples (pi,...,px) of non-intersecting paths between pairwise compatible tuples

(u1,...,ux) and (v1,...,vn) with & < m. Stembridge’s result is Corollary 2.

Theorems 1 and 2 below are very natural generalizations of these two results. In fact
their proofs are essentially the same as those of the well-known theorems. All of these
results provide expressions for the number of elements in some collection of objects.
However, in order to preserve more information, it is convenient to state these results
in terms of weighted sums, rather than cardinalities. The weights we are interested in

are given by the following definition:

Definition 8. A weight on an acyclic digraph G = (V, F) is a function w: VUE — R,
where R is a ring. It is extended to paths by defining the weiéht of a path p to be the

product of the weights of all its vertices and edges. More precisely:

m m—1
w(vy = - D Up) = (H w(vi)> ( w(v; = v¢+1))
i=1 1

1=

A weight is also extended multiplicatively to tuples of paths by the rule:

w(p1,. .., pk) =w(p1) - w(pk)

For any set S of vertices, edges, paths or tuples of paths of G, we define the weighted
cardinality of S, denoted |S|y, as the sum of the weights of all elements of S. We may
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also refer to this sum as the weighted sum of the elements of S. Clearly the cardinality

|S| is the weighted cardinality of S for the constant weight w = 1.

Remark. Observe that the involution X}; (v € V) defined by (1.2) is weight-preserving
for any weight w on G. This is evident by definition, since pf, p;- visit together exactly

the same vertices and edges as p;, p;.

Definition 9. Let G be an acyclic digraph and let T be any finite set of k-tuples of
paths in G (k > 2). Denote by G the group of all permutations of {1,...,k}. We say
that a function F' : T — Gy is a k-arrangement of T if it satisfies the following two

properties:

Al. If (p1,...,pk) € T consists of k non-intersecting paths, then F(pi,...,px) = id
(the identity permutation).

A2. If (p,...,px) €T, and v € p; N p; (for some i % ), then XY;(p1,...,px) € T and
F(X(p1y-- -1 px)) = F(p1,...,pk) o (i7), where (i7) denotes the transposition
permutation interchangingsandj.

Remark. Not every set of k-tuples of paths admits a k-arrangement. In particular T'

has to be stable under Xj; for all Z, j, v.

Theorem 1. Let G = (V, E) be an acyclic digraph and let w : VUE — R be any
weight on G. Let T be any set of k-tuples of paths in G and suppose that T' admits a
k-arrangement F : T — G&y. Then the weighted sum of all non-intersecting tuples in T

is equal to

> sign(0)|F} (o) (1.3)

c€Gy
Proof. Denote T, := F~(o) and
To := {(p1,--.,Px) €T : p1,..., Dk are non-intersecting}
Since F is a k-arrangement, Ty C T}4. Define sign(t) € {1, -1} for all t € T by:

sign(t) := sign(F'(¢)) (the sign of the permutétion F(t))
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In particular sign(t) = 1 for all ¢t € Tp. Expression (1.3) is then equal to:
Y sign(uw(t) = Y wt)+ Y sign)w(t) = Tolw+ Y sign(tjw(?)
teT t€To teT\To teT\To
It is then enough to prove that the second sum in the right hand side cancels out, for

which it suffices to find a function:
F (TN Tp) = (T\Th)

such that for all t € T'\ T:

L w(f(2)) = w(?),
2. f(f(t)) =t, and

3. sign(f(t)) = —sign(t).

Start by fixing an arbitrary total order < on V. The tuple f(¢) is defined constructively
from t as follows: Suppose that ¢t = (p1,...,pk) € Ty. Since t ¢ Tp, there is at least
one intersection ver.tex vep;Np; (1<i<j<k). Choose v tb be the smallest such
intersection vertex, according to the total order <, then choose i; to be the smallest
possible value of 7 given v = v, and finally choose j; > i; to be the smallest possible

value of j given v = v; and i = ;. Define f(t) := X}*. (t) € Tpo(;,j5,)- Thus .

it
sign(f(t)) = sign(o)sign(i; j;) = —sign(o) = —sign(t).

On the other hand, since the paths of f(¢) have the same intersection vertices as those
of t, we know that vf) = vi. We also know that iz = 4 and jzy) = Jji, since every
path other than p;, or p]-t. remains unchanged when constructing f(t) from ¢. Hence
f(f()) = t. Finally the equality w(f(t)) = w(t) results from the fact that Xj; is
weight-preserving for all 4, j, v. Therefore the function f exists as wanted, which proves

Equation (1.3). _ O

Corollary 1 (Lindstrom-Gessel-Viennot lemma). Let G = (V, E) be an acyclic digraph
and let w: VUE — R be a weight on G. Let (uy,...,ux) and (v1,...,vx) be compatible
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sequences of vertices from G and let Si; (1 < 14,5 < k) denote the set of all paths from
u; to vj. Then the weighted sum of all non-intersecting tuples in Sy X Sag X +++ X Sk

is equal to the determinant of the square matriz [|S¢j]w]1<i’ i<k

Proof. We may assume that the u;’s are all different. Otherwise there would be no
non-intersecting tuples, and two rows from the matrix above would be equal, which
cancels out the determinant. Similarly we assume that the v;’s are all different. For

.each permutation o € Sk, define

Ty := S10(1) X S20(2) X *** X Sko(k)>

and set
T := U ; i
0€G,
Since the starting points wuj,...,ur are all different, and so are the ending points

v1,...,Vk, we have that the T,’s are disjoint. Thus the function F' : T — & given
by F(t) := o for t € T is well defined.

We claim that F is a k-arrangement of 7. Indeed if (pi,...,px) € Ty consists of non-
intersecting paths, then by the compatibility of (ui,...,ux) and (v1,...,vk) we have
that o is increasing, and so it must be the identity permutation. On the other hand, if
the path p; from u; to v,(;), intersects the path p; from u; to v,(;), at the vertex v, then
pi(— v)pj(v =) ends at vy(j) = Vgo(ij)(i) and pj(— v)pi(v =) ends at v,y = Vgo(if)(5)-

. Thus F'is a k-arrangement as claimed.

Therefore, by Theorem 1, the sum of the weights of all non-intersecting tuples in T' is

equal to:

k
E sign(0)|To|w = Z sign(o) H‘|Sz'a(i)|w = det (|Sij|w)15¢,j5k

0€6n o€G, a=1

as wanted. O

Rather than determinants, Stembridge’s lemma (Corollary 2 below) involves closely
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Figure 1.6 The matching {{1, 7}, {2,5}, {3, 9}, {4, 8}, {6,10}} of 10.

related polynomials called Pfaffians. Before presenting our extension to Stembridge’s

lemma (Theorem 2), some theoretical background is needed.

Definition 10. Let k be an even positive integer. A matching of k is a partition of the
set {1,2,...,k} into 2-element subsets.

For example {{1,6}, {2, 3}, {4, 5}} is a matching of 6. We denote the set of all matchings
of k by M. An z’nversz‘on‘ of a matching m € M} is a 4-element set {a,b,c,d} C
{1,2,...,k} with a < b < ¢ < d such that {a,c}, {b,d} € 7. If {1,j} € 7 we say that %
and j are adjacent in w. A matching m can be represented as a diagram composed of
k points labeled by the numbers 1,2,...,k in that order on a horizontal segment, and
upper semicircles joining i, j for all {4,7} € 7 (see Figure 1.6). Inversions are then the
crossings between these semicircles. The number of inversions of 7 is denoted inv(r)
and the sign of 7 is given by sign(n) := (—1)™(™), For example, if 7 is the matching

from Figure 1.6, then inv(7r) = 7 and sign(n) = —1.

Definition 11. Let k be an even positive integer and let A = [a; j]1<i<j<k be a strictly

upper triangular array. Define the Pfaﬂian of A by:

pfaff(A) := Z sign(m) H a;;j

TEMy, {i,j}em, i<j

An interesting result relating Pfaffians to determinants is that for any matrix A =
(ai,j)lsi,jsk satisfying a;; = —a;; for all 4,5 = 1,...,k (in particular a;i; = 0 for

i=1,...,k. This is called a skew-symmetric matrix), the following equality holds:

det(A) = (pfaff[ai j]1<icj<k)’
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A combinatorial proof of this result can be found in Stembridge’s (1990) paper. The

following two lemmas found in the same article are essential for the rest of this section

Lemma 3. Let 7 € My and assume that {i1,i2} € 7 for some i1,i2 with 1 < 4; <
ip < k. Let 7' be the matching obtained by exchanging the values of iy and ig in w. If

{i1,4}, {4,432} ¢ ™ for all i between i1 and iz, then sign(w) = —sign(n’).

Proof. Let 71 and jo be the numbers adjacent to ¢; and i3 respectively in w. By hypoth-

esis we know that j; and js are not between 4; and i3. Observe that:

e Any inversion {a, b,c,d} of w (respectively 7') with {a,b,c,d} N {i1,42,71,52} =0

is also an inversion of 7’ (respectively ).

e Any inversion {a, b,¢,d} of 7 (respectively 7’) with |{a, b, ¢, d} N {1, 2, j1,72}| = 2

is not an inversion of 7’ (respectively ).

o {i1,149,71,72} is an inversion of either 7 or ', and only one of them.

Thus

inv(m) —inv(7’) = 1 + |{{a,b}:{a,b,%1,/1} is an inversion of 7}
— |{{a,b} : {a,b,is,71} is an inversion of 7'}|
+ {{a,b} : {a,b,iz,j2} is an inversion of 7}|

— |{{a,b} : {a,b,41, j2} is an inversion of 7'}|
Let us find the parity of the difference
l{{a,b} : {a,b,%1,71} is inv of 7}| — |{{a, b} : {a,b,42,/1} is inv of '}, (1.4)

We say that two sets {a, b}, {c, d} are crossing if for any matching v with {a, b}, {c,d} €
7, the set {a,b,c,d} is an inversion of y. The parity of (1.4) is then equal to the parity
of

[{{a, b} € 7 N7’ : {a, b} is crossing with exactly one of {31, j1} or {i2,71}}|
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Since j; is either less than or greater than both 4; and 49, the number above is equal to:
{{a,b} e n N7’ :a € {i1,i1+1,...,42}, b & {i1,i1+ 1,...,%2}}|
Similarly, this is also the parity of the difference
[{{a, b} : {a,b,42,j2} is inv of w}| — |{{a, b} : {a,b,%1,j2} is inv of 7'}|
Hence inv(;r) — inv(n’) is odd, and so sign(r) = —sign(n’). O

Lemma 4. The Pfaffian of [1]1<i<j<k (k even) is equal to 1. Equivalently

Z sign(m) =1

TEMy
Proof. Let m € M be a matching of k. Say that the pair (i1,42) is m-admissible if
i1 < 19, {91,%2} ¢ 7, and {41,%}, {4,492} ¢ 7 for all ¢ between %; and 2. Let (i1,%2) be
the lexicographically smallest w-admissible pair and let ' be the matching resulting
from exchanging ¢; and iz in 7. By Lemma 3, sign(w) = —sign(n’). To prove that
everything but a 1 in the sum above cancels out, it suffices to show that 7" = =«
for all # € M} (where 7" is obtained from 7’ by interchanging the lexicographically
smallest 7’-admissible pair), and that the only matching 7 with no m-admissible pairs
is the matching {{1,k}, {2,k — 1},...}, which has sign 1. For the first claim notice
that (i1,%2) and every m-admissible pair (i7,45) with {4,495} N {i1,%2} = 0 are also '~
admissible pairs. Thus if there were a lexicographically smaller 7’-admissible pair, it

would have to be of either of the forms
(i,il) (Z < il), (i, iz) (Z < il) or (il,i) (il <1< iz).

For the first two cases, this would mean that (i,i3) or (4,71) (respectively) is a 7-
admissible pair, contradicting the minimality of (i;,%2). Less evidently, for the third
case, this would mean that (i1,%) is a m-admissible pair, contradicting again the mini-
mality of (41,42). Hence (41,1%2) is also the lexicographically minimal 7’-admissible pair,
and so 7" = m. It remains to find the matchings = with no m-admissible pairs. Take

{a,b},{c,d} € m with {a,b} N {c,d} = 0. The only way that no two elements of. these
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sets form a m-admissible pair is that one of these sets is completely contained in the
interval bounded by the other one. Since this must happen for every two sets in =, this
relation defines a total order in the elements of . The greatest of them is necessarily

{1, k} and the others are found to be {3,k — i} (¢ = 2,3,...) inductively. 0

Definition 12. Let G be an acyclic digraph, let I = (vy,...,vn) be a tuple of distinct
vertices of GG, and let T' be a set of k-tuples of paths in G, for some integer £k < m. We

say that T is I-stable if these three properties are satisfied:

S1. All of the paths from the tuples in T end at vertices in 1.

S2. If (p1,...,px) € T and the paths v € p;Np; (1 < i < j < k), then X¥(p1,...,px) €
T

S3. If (p1,...,px) € T and the paths p;,p; (1 <4 < j < k), ending at vg,, v respec-

tively, are non-intersecting, then a < b.

Theorem 2. Let G = (V, E) be an acyclic digraph and let w: VUE — R be any weight
on G. Let I = (v1,...,vm) be a tuple of vertices of G, and let T be an I-stable sets of
k-tuples (k even, k < m) of paths in G. Then the weighted sum of all non-intersecting

tuples in T is equal to:

Z sign(m) {(p1,...,px) €T :pi Np; =0 V {i,5} €n}|, . (1.5)
TEMy

Proof. Denote by Tr the set of all tuples (p1,...,px) in T such that p;,p; are non-
intersecting for all {4,j} € 7, and let Ty denote the set of non-intersecting tuples in 7.

Notice that To C T for all 7 € My, so (1.5) becomes:

Z sign(m)|Txlw = Z sign(m)|Tol|w + Z sign(m)|Tr \ To|w

TEMy TEM} TEM},

= |Tolw+ > sign(m)|Tx \ Tolw
TEM;
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where the last equality results from Lemma 4. Thus we just need to show that the last
sum is equal to 0. It is convenient to write this sum as;

d. 2. Wmy,

WeMk teT-)r \To

where W(r,t) = sign(m)w(t). To prove that this sum cancels out it suffices to find a

function

fr U <@\~ U {7} x (Tr \To)

TEM}, TEMy,
such that f(f(m,t)) = (m,t) and W(f(m,t)) = —W(m,t) for all (m,t) in the set union

above. To define f start by considering a total order < on V. In particular we choose
one that is consistent with the order <¢ induced by the graph G (u <¢ v if there is a
path from u to v), i.e., one that satisfies u <g v = u <X v for all u,v € V. We construct
(', 0}, ., %) = f(m, (P .- -, pk)) from t = (p1,...,pk) € T \ Tp as follows. Let v be
the minimal (in the order <) vertex of intersection between paths of ¢. Let i; < i3 be
the smallest indexes such that p;, and p;, visit v. Define ' by exchanging the values of

i1 and 4y in 7, and define t' = (p}, ..., p}) := X} ;, (t). Observe the following facts:

1. ¥ € T. This is true because T is I-stable.

2. {31,212} ¢ m,7'. Indeed, the paths p;; and p;, intersect at v, and so do the paths
p{il = pi,(— v)pi, (v =) and p{iz = pip (= v)pi, (v ).

3. t' € Tv (This clez;.rly implies that ¢’ € T \ Tp). Indeed, suppose that for some
{i,j} € 7', the paths p] and P intersect. If 4,7 # 41,42, then {,j} € m, but the
paths p; = pl, p; = p;- intersect, which contradicts that ¢ € 7. Otherwise, if
V=108 § & &, ’L..2, then the paths p = pi,(— v)pi,(v —) and p]; = p; intersect,
which means that p; intersects either p;, (— v) or pj,(v —). The first option
would contradict the minimality of v, while the second one would contradict the
non-intersection of p; and p;,, resulting from the fact that {is,j} € 7. The case

1 =19, j # 11,12 generates a similar contradiction.

4. f(f(x',t')) = (m,t). Indeed, since t' shares the same vertices and edges of t, they

have the same minimal (in the order <) intersection vertex v. Also since every
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index ¢ other than i; or iy satisfies p; = p}, we know that i;,i5 are the smallest
indexes such that both p, and pj, visit v. Hence the same construction above

yields ¢ from ' and 7 from 7'.

5. w(t') = w(t). This true because ¢t and t' share the same vertices and edges with

the same corresponding multiplicities.

6. {i1,1},{i,12} ¢ = for all i between i; and i3. Indeed we claim that for all such
i, the path p; intersects both p;; and p;,. Assume without loss of generality
that i1 < 4g, so that 4y < ¢ < 43, To show that p; intersects p;,, consider their
ending points v,, vp. If @ < b, then by the I-stability of T', we know that p; must
necessarily intersect p;,. Otherwise, if b < a, then by I-stability, p; = p, must
intersect pj, = pi,(— v)piy (v —). It must then necessarily intersect p; (v —),
to avoid contradicting the minimality of v. Thus p; intersects p;;. By :;1 similar

argument it intersects p;,.

7. sign(n’) = —sign(7). This is a result of facts 2 and 6 above, along with Lemma 3.

Therefore f exists as wanted. . |

Corollary 2 (Stembridge’s Lemma). Let G = (V,E) be an acyclic digraph and let
w:VUE — R be any weight on G. Let (uy,...,uk), (v1,...,vn) (k even, k < m) be
pairwise compatible tuples of vertices of G, and let S; denote the set of all paths from u;
to {v1,...,vm} fori=1,...,k. Then the weighted sum of all non-intersecting tuples in
S1 % -+ x Sy is equal to the Pfaffian of the array [|Nij|wli<icj<k, where Nij is the set

of all non-intersecting tuples in S; x S;.

Proof. Set T := Sy X---x Sk, and I := (v1,...,vm). Clearly T is I-stable (properties S1
and S2 are true by the definition of T', and property S3 is a result of the compatibility

of the two sequences). Thus by Theorem 2, the weighted sum of all non-intersecting
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tuples in T is equal to;

Z sign(m) [{(p1,...,px) € T : (ps,p;) € Ny for all {i,j} € 7},

TEM;
= Y I N,
TEM {i,j}em i<y

= pfaff{|Nijlw|i<i<i<k,

as wanted. ) 0

The next two sections are applications of Theorems 1, 2 and Corollaries 1, 2. Section
1.3 employs Corollary 1 to derive alternate proofs of determinantal identities, at least
one of which (Theorem 3) appears to be new. Section 1.4 lists some results on Young

tableau enumeration which arise from Theorems 1 and 2.
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1.3 Determinantal identities

A common application of the Lindstrom-Gessel-Viennot lemma (Corollary 1) is the
derivation and proof of identities involving determinants (determinantal identities) in a
combinatorial manner. There are several methods to carry out these proofs, and they
usually involve an interpretation of each entry of a matrix as the weighted sum of all
paths between two vertices of a certain graph. Here we focus on a digraph isomorphic
to the bottom-right quadrant.of the north-east lattice path, and from it we define a
matrix whose entries are weighted cardinalities of sets of paths in this digraph. We then
argue that any determinantal identity which holds for this matrix, must also hold in
general for any matrix. We thus derive some well-known identities and a very general
new one {Theorem 3), using combinatorial arguments along with some basic algebraic
ones. Some elementary concepts must be reviewed prior to defining our graph and its

weight.

Let A be an m X n matrix:

a1 G2 ‘:: Qln
a21 a2 - Q2n
A=
| Aml @m2 " Gmn |

Denote [n] := [1,n] = {1,2,...,n} for all n > 1. For each pair of subsets I =
{iy -y ip S M T = (- dg} C M With 1 <dy < -+ <ip<mand 1< j; <--- <
Jp < n, define:

Ary = [aiys.]1<6<p
1Zcq

We call this a sub-matriz of A. When |I| = |J| = k, the matrix Ay is a k X k square
matrix, and we refer to its determinant det(Ays) as a k x k minor of A. For instance the
entry a;; may be regarded as the 1 x 1 minor det(Ag;;}), more conveniently denoted

det(A;;) or simply A;.

A determinantal polynomial f is a function which assigns to each m X n matrix A4, an
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expression of the form:

k
FA) =" > Cry]] det(4rs), (1.6)
k>0 I.J i=1
where the second sum is over all pairs of k-tuples I := (I1,...,Ix),J := (J1,...,Jk)
with
LCm], S, |G|l =|&l, i=1,...,k

and the coefficients Cy, s are integer constants (not depending on A), only a finite number
of which are non-zero. In other words, a determinantal polynomial is a polynomial
of integer coefficients on the minors of a matrix. The following is an example of a

determinantal polynomial evaluated in a generic matrix A:

f(4) = det(Aq23)01,2,3)) det(A{,24){1,2,4))
—det(Aq1,2,3}{1,2,4)) det(Aq1,2,4{1,2,3}) (L.7)
— det(A1,231,2)) det(A{1,2,3,43{1,2,3,4})

A determinantal identity is an equation of the form “f = 0” (or an equivalent expres-
sion), where f is a determinantal polynomial, and such that the equality f(A) = 0 holds
true for every m x n matrix A. For example “f = 0,” where f is given by equation 1.7
above, is a determinantal identity, since the equality holds true for every 4 x 4 matrix

A (see Proposition 1).

Adding new rows to the right, or columns at the bottom of a matrix does not change
the expression of a determinantal polynomial or identity. Thus it is often convenient to

write determinantal polynomials and identities in terms of an N* x N* matrix;

ain a2
A — a21 (122 vee 3 (1-8)

One of the best known determinantal identities is the Leibniz formula for the determi-

nant of an n X n matrix:
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n
det(Aqr,.. np1,np) — D sign(o) [ aio@ =0
0EG, i=1
This is actually a list of determinantal identities, one for each value of n > 1. We
conveniently regard this formula as the definition of the determinant. The literature on
determinants is very rich in identities which are far from trivial. See for example Muir’s
(2003) survey. The following lemma allows us to simplify determinantal identities by

conveniently reordering rows and columns.

Lemma 5. Let 0 be any permutation of Nt = {1,2,3,...}. For I C N7, denote by
invr(o) the number of pairs (i,5) € I? such thati < j and (i) > o(j). Set sign;(o) :=
(=1)™v1(®), Let § be any other permutation of N"’ (possibly equal to o). Let f be any
determinantal polynomial and let f7° be the determinantal polynomial such that f”5(A)
results from f(A) by replacing every minor det(Ar,) with sign(o)sign ;(0) det(Aq(r)s(s))
(whereo(I) :={o (i) : i € I} and 6(J) :={8(j) : j € J}). Then f =0 is a determinantal

identity if and only if f°° = 0 is a determinantal identity.

Proof. Let A = [aj]; j>1 be any Z x Z matrix. Define

A% = [a,0)50) i1

Let I = {i1,...,i},J = {41, .,k } be subsets of N*. Assume without loss of generality
that 43 < --- <4 and 51 < ... < jx. Let o, 8 be the unique permutations of the set
{1,...,k} such that o(igq)) < -+ < 0(iqw) and 6(jg)) < -+~ < 8(jap)). One can
easily verify that:

As(1)6(0) = [0 (ig(0))6Gsy) 1 1<a,b<k

An inversion of « is a pair (a,b) € {1,...,k}? such that a < b and a(a) > a(b). Since
the first inequality is equivalent to o' (iq(q)) < o (i), and the second one is equivalent
t0 Gq(a) > %q(p), the inversion (a,b) of « is in natural correspondence with the inversion

(ia(b)» ta(a)) Of 0. Thus sign(a) = sign;(c). Similarly sign(B) = sign;(6). By properties



29

of determinants:

det(A%%) = det[ao(i,)s(i,)]1<ab<k
= sign(a)sign(B) det[a, (i, ,))é(ism) ] 1<ab<k

= sign;(o)sign () det(Aq(ns(s))

Therefore f(A%%) = f?®(A) and the lemma follows. O

Notice that f =0 is a determinantal identity if and only if it vanishes when expanded

as a polynomial on the entries of a generic matrix. It follows that:

Lemma 6. Let A be an Nt x Nt matriz whose entries are algebraically independent

over the rationals. Then f =0 is a determinantal identity if and only if f(A) =0.

We now proceed to introduce the combinatorial concepts which allow us to derive de-
terminantal identities. For every matrix A we define a new matrix A which greatly
simplifies the expansions of several interesting determinantal polynomials. It will turn
out (see Lemma 7) that the the entries of A are algebraically independent if those of A
are so. Start by defining a planar digraph G4 whose vertexes are the eptries ai; of A,
and whose edges are those of the form a;; — a;41); and aij — a;(j_1). This is perhaps

made clearer in a visual format:

ail] — a2 — a3 —

[ i) i

az; — a2 —> a3 —
Ga= 1 i i

as; — ag2 — asz —

T i s

For i,j > 1, let G4(i,j) denote the set of all paths starting at a;; and ending at ay;.
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For example:

GA(3, 1) = {a31 — ags — a11}
Ga(2,3) = {az1 — a11 = a1z = a3, ag1 = agx — a12 — a13,

a1 — a2 — a3 — a13}

We extend this by defining Gg) (2,7) to be the set of all paths in G 4(%, j) which do not

visit a,q for 1 < p, ¢ < r (in particular G 1,7) = Ga(,7)). For example:
Pq A
GS)(Z 3) = {a21 = agy = a12 = a13,a21 = a2 — a3 = a3}

We refer to each element of Ui’j21 Ga(i,7) as an A-path. For each A-path p, define the
weight of p, denoted by w(p), to be product of all entries of A visited by p (including
ai1 and ay;). For example w(az1 — az1 — a11) = az1asia1;. As usual we extend the

definition of the weight multiplicatively by setting

w(p1, .-+, pr) = w(p1) -+ w(pr)
for every r-tuple (p1,...,pr) of A-paths.

For I = {i1,...,ix} J = {j1,-+-»dk} With 1 < 4 < -+ < i and 1< jy < -+ < jjg,
denote by G4(I,J) the set of all k-tuples (p1,...,px) of non-intersecting A-paths such
that p; € Ga(i,5i) for { = 1,...,k. In other words, Ga(I,J) is the set of all non-
intersecting tuples in the cartesian product Ga(i1,71) X cox Ga(ig,jr)- Similarly,
denote by Gg)(I ,J) the set of all non-intersecting tuples in the cartesian product
G (g, j1) x -+ x G0, ji). In particular GP(1, J) = Ga(l, J).

Finally, denote:
Gali,®) = [JGali,d),

Jj>1

Ga(xd) = |JGali,9),
21

Gal,¥) = |J Gal,)),
[J1=l1]

Ga(xJ) = |J Gall,J),

1Z1=(J]
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and similarly define Gg) (2,%), Gg)(*,j), Gg) (I,%), and Gg)(*, I

Let A denote the matrix:

P11 P12

A = p21 p22 .« 3 Where p'[,] = IGA(ih?)lw = Z W(p)-
) L PEG 4(3,7)

The first few entries of A are given by:

a11 a11a12

A= azia11 az1a11a12 + a21a20a12

Below we see how several minors of the matrix A have simple expressions in terms of

the entries of A, for example;

aii ai1iai2
det = @11012a21a22
021011 G21011@12 + (21022612

The following lemma is essential to the development of this chapter.

Lemma 7. Let A be a matriz of algebraically independent entries a;; (i,j > 1), over

the rationals. Then

(a) The entries pi; (i,5 > 1) of A are also algebraically independent over the rationals.

-~

(b) f =0 is a determinantal identity if and only if f(A) =0.

Proof. To prove (a), consider integers r,i1,...,%,J1,..-,jr > 1 and let f be a non-
vanishing polynomial of integer coeflicients on r variables. It will be sufficient to show
that f(pi 4, Pisjas - - - »Pir,jr) 18 & Non-vanshing polynomial in the aj;’s. We proceed
by induction on 7. If r - 1, then f is a non-vanishing constant. Now assume that
r > 1. Suppose without loss of generality that the pairs (1, j1), - . -, (¢, jr) are ordered

lexicographically, and that the degree of p;.;. in f is d > 0. Thus:

d
FDiagus - »Dirge) 2= > GuBigiy- - -2 Biprjos JPE 40
k=0
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where thé gi’s are polynomials and g4 is non-vanishing. By the inductive hypothesis,
9d(Piyjrs - -+ »Pip_1js—1) 18 @ non-vanishing polynomial in the a;;’s. From the lexicograph-
ical order of the pairs (im, jm), we know that p;_;, is the only one of the p;,.;,.’s whose
expansion involves the variable a; ;.. Also we know that the degree of a;,j, in p;,;, is 1.
Hence the degree of a;_j, in f(Diyj,,Pigjar - - -+ Pir,jr) 18 k, and the coefficient of afrjr in

f(piljupizjz) cee 7pir,jr) is gd(pilju @ ’pi'r—lj'r—l) 76 0. Therefore f(piljl’pizjz’ omed ’pir,j'r)

does not vanish as a polynom'ial in the a;;’s, as wanted.
Part (b) is a result of part (a) and Lemma 6. O
Next we illustrate how, despite the complicated nature of the entries of Z, proving

determinantal identities in the matrix A turns out to be relatively easy. First recall

that by the Lindstrom-Gessel-Viennot lemma, if I, J C Nt with |I| = |J| = m, then

det(z{il,...,im}{jl,...,jm}) = |Ga(l, J)|w- (1.9)

In particular, if I = J = {1,...,m}, we know that the set G4(I,J) has exactly one

element (p1, ..., pPm), which is given by
Pt = Gt1 —> Qg2 —> cc+ —> Qg —> Qg—1)t T A1t (1.10)

for 1 <t <m, and so

det( A[m][m = H aij (1.11)

1<i,5<m
Similarly, if m < m/,

det(g[m](m’——m,m’]): H Qij, (1.12)

1<i<m
1<i<m/
and
det(A(m’—m,m’][m])z H Qij. (1.13)
1<i<m/
1<3<m

We refer to paths of the form

ail-—)ai2—+---—+aij—+a(i_1)j—+---—+a1j
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as rectangular A-paths. Observe that for each 7,5 > 1, there is exactly one rectangular

A-path in G4(i, 7).

Equations (1.11)-(1.13) provide a taste of the advantage of working with minors of A,
rather than minors of the generic matrix A. To better illustrate this advantage, we now

present a short proof of the Desnanot-Jacobi identity:

Proposition 1 (The Desnanot-Jacobi Identity). Let P be any n X n matriz (n > 3). ~

Then P satisfies the equation:
det(Pruq131uq1}) det(Prugnyiugay) — det(Prugiyiugny) det(Prugnyroqiy)
= det(Prr) det(Pru(1,n}1u{1,n})s
'wheneI={2,.'..,n—1}. '

(1.14)

Proof. From Lemma 5 we know that the equality holds in 1.14 for all P if and only if
the equality:
det(Pruin—1}5uin—1}) det(Prufn}suin})
— det(Prugn—1}0fn}) det(Prugnysuin—13) (1.15)
= det(Py) det(Prufn—1,n}Ju{n—1,n})s

holds for all P, where J = {1,...,n — 2}. We thus proceed to prove equation 1.15.
By Lemma 7(b), we only need to show this equality for P = A, where A = [aijlij>1 is
an infinite matrix whose entries are algebraically independent over the rationals. From

equation 1.9, if {b,c} C {n — 1,n} (b,c may be equal), then

det(PJu{b}Ju{c}) == |GA(J U {b}, JU {C})|w

Since py,. .., pn—2 do not intersect in the sum above, p; must necessarily be the rectan-

gular path from a;; to a15, fori=1,...,n — 2. Thus

det(Prugpyaue}) = II s ‘fonz)(b, C)Iw,

1<i,j<n—2

The left hand side of 1.14 is then equal to:

2
( 11 ai_.,-) det B, (1.16)

1<i,j<n—2
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where B is the 2 X 2 matrix with entries;
By = G(n—2) ; :
i = |Gy (n—2+i,n—2+7) .
w

Thus by the Linstrom-Gessel-Viennot lemma (Corollary 1), the expression (1.16) be-
comes .
2
3 (n—2)
[T e [652Un-1n} -1,
1<i,j<n—2 =
The set Ggl_m({n— 1,n}, {n—1,n}) has only one element, consisting of two rectangular

paths, so the expression above simplifies to:

1<i,j<n—2

2
( H aij) (a'(n—l)l"'a(n—l)(n—l)"'al(n—l))(anl"'ann'"a'ln)a

1<i,j<n—2 1<i,j<n

=( 11 aij) ( 11 aij) = det(Plp_g)n—2) det(P)

(where the last equality holds by equation 1.11), as wanted. a

Setting the (n — 1)-th column of P to be equal to ((—1)"71,0,...,0) in equation 1.15,
we get;
det(Pig,n—1)jn—2)) det(Pyy,...n—2,n}{1,...n—2,n})
— det(Pp_y)(1,....,n~2,n}) 4€t(Pp2,...n—2,n}(n—2]) (1.17)
= det(Pln_gn—2) det(Panj{1,...n—2m})
Writing the same identity for an (n+ 1) x (n + 1) matrix and then permuting columns

n and n + 1, the identity above becomes;

- det(Pla,njjn—17) det(Ppy,....n—1,n+1}[n))
— det(Pyp)n)) det(Pya,... .n—1,n+1}n—1]) (1.18)
= det(Py—1)n—1)) det(Pi2,nt1)n));

Interchanging columns 1 and n we obtain;
det(P[2,n][2,n]) det(P{l,...,n—l,n+1}[n])

— det(Pp)pn)) det(Pya,....n—1,0+1}2,m]) (1.19)
= det(Ppn_1ji2,n]) det(FPi2n+1jn])s
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These identities are useful later in this work. The same idea from the proof of proposition

1 is used to show the more general identity:

Proposition 2. If P is an n X n matriz and 1 < { < n, then

det ([det (Prugeyouiey)] e+13b,c5n> = det (Py)" 1 det (P), (1.20)

where J={1,...,£}.

Proof. We proceed as in the proof of Proposition 1, by showing the equality above
for P = 2, where A = [as;ij>1 is an infinite matrix whose entries are algebraically

independent over the rationals. By equation 1.9,

det (PJU{b}JU{C}) = 1GA('] U {b}7 JU {c})lw

The non-intersecting property of a tuple (p1, .. ., pp+1) € Ga(JU{b}, JU{c}) determines
p1, - - -, P¢ uniquely as rectangular paths. Thus the left hand side of equation 1.20 is equal
to
det o ‘G(e) b, ‘
e H @4 4 (b,c) .

1<ij<¢

£+1<b,c<n
n—4
= I as| cet [‘fo)(b,c)‘w]
1<i,5<8 £+1<b,e<n
n—~{
4
=| I as| |6Qwe+1nLie+1,m)|
1<4,<8 ¢

Any tuple (pg+1,-.-,pn) € G’Ef)([ﬂ + 1,n], [£ + 1,n]) is again determined uniquely as a
tuple of rectangular paths by the non-intersecting property. The expression above thus

simplifies to:
n—f£-1

IT as IT @) = det (Pugua)" ™" det (Pumnm)

1<i, i<t 1<i,j<n

(where the last equality holds by equation 1.11), as wanted. a
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Propositions 1 and 2 are part of a much larger family of well-known determinantal
identities on which the determinant of a matrix of minors is equated to a product of

minors. The proposition below is another example of this type of identity.

Proposition 3. Let P be an n X n matriz. Then

det([det (Prspio-14)] 2<bc<n) HPM det(P (1.21)

Proof. As before we just need to prove equation 1.21 for P = A where A = [@ij)ij>1 is
a matrix whose entries are algebraically independent over the rationals. Let us simplify
the minor;

det(Pp ppc-1,6) = [Ga({1, 0}, {c—1,c})|w = > w(f', p).
(p’,p)GGA({l,b},{C—l,C})

Since G4(1,c — 1) has exactly one element g’ = a;3 = --+ = ay(.1), the sum above
is over all paths p € G4(b,c) which avoid edges of the form ay; — ay(i41) (4 > 1). Let

G a(b,c) denote the set of such paths. The minor above becomes:

- det(Prgpie-1,6)) =011 G1e-1) ), w(p),
pEG 4(bc)

Thus the left hand side of 1.21 is equal to:

afylafy? - 'a%(n—l) det Z w(p)

pGGA(b c) 2<b,c<n
-1 _n—2
=aj; ajp al(n—l) Z w(p2; - -, Pn);
P2;-3Pn

where the last sum is over all (n — 1)-tuples (p2,...,pn) of A-paths such that px €
m for k = 2,...,n. The non-intersecting property determines these paths uniquely
as rectangular paths. Therefore the left hand side of 1.21 may be further simplified as
follows:

1 n—1
n—1_n—2 1 " - A 4 -
app G 8- | T H aij = H @11 015 H Aij

1<i,j<n j=2 1<i,j<n

n—1

= H Plj det(P)7
j=2
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(where the last equality results from equations 1.12 and 1.11), as wanted. O

Our main goal for the rest of this section is to provide a very wide generalization of

Proposition 2 (and thus of Proposition 1). We are interested in identities of the form:

l
det ([det(Pryr))1cpecm) = L] det(Prc), (1.22)
=1

where I, ..., Im, J1,...,J SNt and |I;| = |I3| = - - - = |I;n|. The following is the main

theorem of this section:

Theorem 3. Let d > 1 be an integer. Let I,..., I, be distinct d-element subsets of
N7 such that the following property is satisfied for all ¢ > 2, j € {1,...,m}:

Ifqe I andgq—1¢ I;, then (I; — {¢g}) U{g—1} e {I1,...,Im}. (1.23)
Then for every matriz P;

det ([det (Prt)1<he Sm> = T det (Pyge) 5+, (1.24)
r>1

where £, denotes the number of indices k € [m] such that r € I.
Before proving this theorem, we illustrate its scope with a few examples:

Example 1. Let n,k be integers with 1 < k <n. Taked=k+1, m =n —k and
ILi={1,...,k,k+j} for j=1,...,n —k, to obtain Proposition 2.

Example 2. Let n,d be integers with 1 < d < n. Set m = (Z) and let I,...,In
be all the d-element subsets of {1,...,n}. In this case n, = (2:11) for
£ =1,...,n and ny = 0 for every other value of /. Thus Sylvester’s

identity below holds for every n x n matrix P:
n—1
det ([det (Pryt.)) <0 S(Z)> = det(P)(im) (1.25)

Example 3. Take d = 2, m =4, I; = {1,2}, I, = {1,3}, Is = {1,4}, I, = {2,3}, to

obtain:
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P11 P12 P11 P13 P11 P14 P12 P13
P21 P22 D21 P23 P21 P24 D22 P23

P11 P12 P11 P13 P11 D14 P12 P13

P31 P32 P31 P33 P31 P34 P32 P33
det

P11 P12 P11 P13 P11 P14 P12 P13

P41 P42 P41 P43 P41 DP4g P42 P43

(1.26)
P21 D22 P21 P23 P21 P24 P22 P23

\ | P31 P32 | | P31 P33 | | P31 Paa| | P32 Ps3

P11 P12 P13 Pi4
pu P12 Pi3
D21 P22 P23 P24
=piidet | py po pos | det g

P31 P32 P33 P34
b3t P32 P33
P41 P42 P43 P44

While Examples 1 and 2 above are widely known identities, we have not found any
theorem in the revised literature which is wide enough to imply identities such as the
one in Example 3. Before presenting our proof of Theorem 3, we need to state five
lemmas, the last three of which are well-known results in the theory of determinants.
For the sake of completeness we provide combinatorial proofs for all of them. We start
by introducing three maps (namely first(:), last(:) and both(-)) on some particular
families of A-path tuples (A = [ai;];j>1 being a generic matrix). Let k& > 1 be an

integer, and let I be a k-element subset of N*. Define

first : | | Ga(i, *) x Ga(I — {i},*) — | JGa(i,¥) x Ga(I — {i}, %) (1.27)

i€l i€l

by setting first(y, p1,...,p6—1) = (v, 01, 1), where the paths v, p},..., p}_;
are constructed as follows: If ~ does not intersect any of the paths pi,...,px—1, set
Y, P s Ph_r) = (Vp1,---,pk—1). Otherwise let ap; be the first intersection (i.e.,
the one with the smallest value of ¢ — p) between v and any of the paths p1,..., pr—1,
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let p, be the path which meets v at ayq, and set:

Y = pr(— apg)¥(apg =), .
pr = ¥(= apq)pr(apg =), (1.28)
py = py for I # r.
Similarly define
last : | ) Ga(%,3) x Ga(x, I — {i}) — | JGa(*,9) x Ga(x, 1 - {i}) (1.29)
iEII iel

by setting last(y, p1,...,pk-1) := (v,01,--.,Pk_1), Where the paths v/, p},...,0,_;
are constructed as follows: If v does not intersect any of the paths pi,...,px_1, set
Yy P11 Pe_y) = (7101, ., pr—1). Otherwise let ap, be the last intersection (i.e., the
one with the greatest value of ¢ — p) between « and any of the paths py, ..., pk—1, let
pr be the path which meets v at apq, and set:

v = (= apg)or(apg =),
pr = pr(— apg)y(apg =), (1.30)
pp=p forl #r.
Finally define the map both(:) from the set
U Gl x Gali) x Gall — (31,1~ )
ijel
into itself by setting both(y,¢,p1,...,pk-1) := (v,¢, P4 -1 Pk_y), Where the paths
v',¢'s Py - -y Pr_q are constructed as follows: If «y intersects any of the paths p1, ..., pr—1
above the main diagonal (ie., at an entry ap; with ¢ > p), set ¢’ := ¢ and set
(Y, Phs ey Ph—y) == last(y,p1,...,pk—1). Otherwise, if ¢ intersects any of the paths
p1,-..,Pk—1 below the main diagonal (ie., at an entry ap, with ¢ < p), set v/ =
v and set (¢, 00,...,pk_q) = first(¢,p1,...,pk—1).- Else set (v',{,ph,...,0_1) ==
(7,65 P15 - -+, Ph—1)-

Lemma 8. The maps defined above satisfy the following properties:

(a) first(.), last(:) and both(:) are involutions which preserve the weight of tuples and

the position of each of their intersections.
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(b) For I ={u+1,...,u+k};

(bl) first(-) maps the set U; := Ga(3,*) X Ga(I — {i},%) into Ui—1 U U; U Uiz,
where the only elements whose image falls in U; are fized points.

(b2) last(-) maps the set V; := Ga(*,1) X Ga(x,I — {i}) into Vi U Vi U Vi,
where the only elements whose image falls in V; are fized points.

(b3) both(-) maps the set Wi; := Ga(*,1) x Ga(j,*) x Ga(I —{j},I — {i}) into
Wii—1); U Wiigny; U Wi U Wy_1y U Wijh1y, where the only élements whose
image falls in Wi; are fized points.

Proof. (a) The fact that first(-) preserves intersections and weight is evident by 1.28,
since the vertices of (v, pl) are the same (with multiplicities) as those of (v, p,). The
same argument holds for last(-), and the result for both(:) follows immediately by
definition. This also shows that they are all involutions, since the choice of ap, in each

definition depends uniquely on the position of intersections.

(b) We only show (b1); as the argument is similar for (b2) and (b3). Consider any
tuple p = (v,p1,...,pk—-1) € U;. If p has no intersections, then first(p) = p € U;.
Otherwise, using the notation from 1.28, we claim that p, starts at one of the entries
a(i-1)1 OF G(i4+1)1- Suppose, in order to obtain a contradiction, that p, starts at an
for some [ with |l — 4| > 1. Then there is at least one path among p1, ..., pg—1 which
starts at an entry between a;; and a;1. This path must intersect either y(— apq) or
pr(— apq). The first case would contradict the minimality of ¢ — p, while the second one
~ would contradict the fact that the paths pi,..., px—1 are non-intersecting. From this
contradiction we conclude that p, starts at a(;+1)1, and so does v = pr(— apg)y(apg ).

Therefore first(p) € U;—; U U4, as wanted. O

Lemma 9. Let u > 0; k,b,c > 1 be integers, and for I := {u+1,...,u+k}, define;

Uy = GP)x PRI {1},1- {5}
Vig = GG x GPUI -1 1-{1))
Wi = GP(,9) x G, ¢) x G - {5},1 - {&}).
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det <2[u+k] [u+k]>

Then if we denote X := , the following equalities hold;

det (A\[u] [4] >
> > Dwlp) = &(-1)X (1.31)
lel peUy;
> 2 Dwlp) = &iy(-1)X (1.32)
lel peVy; .
> Y (D) = xY |{necP,0) aen)| (39
i,J€I peWy; iel

Proof. To prove 1.31, observe that by Lemma 8, the involution first(-) sends all but the
fixed points of Uy;; to Ug_1)i; U Ug41)sj- Thus the only surviving terms in the sum are
those for which p = (v, p1,...,pk—1) consists of ¥ non-intersecting paths. This is only
possible when ¢ = j (otherwise one of the paths p1,..., px—1 would meet 7 at its ending
point). The tuple p must then be some permutation of an element of Gg‘)(I 1)y but
since this set has exactly one element (the one consisting entirely of rectangular paths),

it is necessary that [ = ¢ = j, and

II e

1<t,s<u+tk
w(p) = Hatlatz T OG(-1) 0t =
tel H Qs
1<t,s<u

which equals the desired expression by 1.11. Equation 1.32 follows from a similar argu-

ment.

To prove 1.33, observe that by Lemma 8, the involution both(-) sends all but the fixed
points of W;; to W;_1); UW(;1); UW;(j_1) U Wy 41). Thus the only surviving terms in
the sum correspond to the tuples p = (v,¢, p1,. . ., pk—1) such that v does not intersect
p1,--.,Pr—1 above the main diagonal, and { does not intersect those paths below the
main diagonal. Let us describe more precisely one of these tuples. Suppose without loss

of generality that 7 < 7. Then
(T 1 s e Pi—Tmat) EGS‘)({u+l,u.-|-2,...,i—1},{u+ Lu+2,...,i—1})

However, the set above has only one element, which consists of rectangular paths. In
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particular;
Pi—l—u = Q(i—1)1 = Qi—1)2 = " > QG-1)(i—1) > Q(i—2)(i—1) = "~ G1(i-1)-

Since v ends at a;; and does not intersect Pi—l—u(a(i—l)(i—l) —), it must necessarily be

vertical above the main diagonal. More precisely; v visits a;; and,;
Y(ai =) = i = a1y = - — au.

If j is strictly greater than 4, then p;_, starts at a;1, and so it must either intersect
pi—1—y Somewhere below the main diagonal, or meet v at the diagonal entry a;;. Both
of these options produce a contradiction. Thus these tuples occur only when j = 3.
Since ( starts at a;; and does not intersect p;—1—y(— a(i_l)(,-_l)), it must be horizontal

below the main diagonal. More precisely; ¢ visits a;; and;
C(—= ai) = a1 = a2z = -+ = ais.

Set:

p:=C(— ay)v(ais =) =ain = - = asi = -+ = ay.

The paths p, p1,. .., pr—1 must be non-intersecting, which determines them uniquely as

being the components of the only element of the set GSL)(I ,I), satisfying;

IT e

1<t,s<u+k det <A[U+k][U+k])
W(P,Pla---,Pk—1)= = o
H Qts det <A[u] [u])
1<t,s<u

Setting 1 := y(— ai;){(ai; —), the sum on the left hand side of 1.33 becomes;

det <Z[u+k][“+k]) Z Z w(7)

det <A[u] [u]) i€l nG% (byc)
ai; €N

as wanted. . O
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Note that by setting u := 0, the lemma above yields;

3 (Dwlp) = bij(—1) det (2{1,...,1‘:}{1,...,1‘:}) (1.34)

lel peUy; ‘

DY (~Dw(p) = &ij(—1) det (2{1,...,k}{1,...,k}) (1.35)

lel peVy;

k
> > (-D)Hw(p) = det (2{1,...,k}{1,...,k}) YY) wm o (1.36)
i,j€I peW;; i=1 neGu(b,c)
ai €N

" The following classical results affords a nice combinatorial proof.

Lemma 10 (Classical). For any k x k matriz P;
P adj(P) = det(P)Idg, (1.37)

where Idy, denotes the k x k identity matriz and adj(P) is the adjoint matriz of P, whose

entries are given by:

adj(P)ij = (—1)"*7 det (P1,. k)~ {5} {1k} —{i}) - (1.38)

Proof. This is not a determinantal identity by definition. However all the entries of the
matrices appearing in 1.37 are integer polynomials in the entries of P, so it is enough
to show the equality for a matrix P whose entries are algebraically independent over
the rationals. In particular it is sufficient to show it for P = 2, where A is a matrix
whose entries are algebraically independent.' In that case Pj; is the weighted sum of the
elements of G4(4,1), and from 1.38, (adj(P));; is the weighted and signed sum of the
elements of Ga(I — {j},I — {l}), where I = {1,...,k}. Thus;

k
2 2 e

=1 p€Viy;
— (16 (1) det(P)
= (Si—j det(P),

(P adj(P))s;

(1.39)

where Vii; = Ga(4,0) x Ga(I — {j},I — {I}), and the second equality holds by 1.35.
Therefore P adj(P) = det(P)Idg, as wanted. O
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Lemma 11 (Classical). Let P be an n x n matriz partitioned in blocks B, C, D, E of

orders k x k, k x (n — k), (n—k) X k and (n — k) x (n — k) respectively, as follows:

| B C
D E|’
and assume B is invertible. Then
det(P) = det(B) det(E — DB~1C). (1.40)

show it for a matrix of algebraically independent entries. Indeed, both sides of equation
1.40 are rational functions on the entries of P. We thus just need to show 1.40 for
Pi= /I, where A is a matrix of algebraically independent entries. From Lemma 10;

= L A
B 1 = m&dj(B)

= =mE |V T we|
PECAI~HI - | 1=i5<k
where I = {1,...,k}. Weindex the entries of B, C, D, E as their corresponding entries
in P (for instance, we denote the upper-left entry of D by D(k+1)1)- To be consistent with
this notation, we index the entries of DB~'C with pairs (b, ¢) such that k+1 < b,c < n.

The usual matrix multiplication yields;

(OB Ok = gy L 2 (Dl

1<6,j<k peEW;;
(1.41)

k
= > > wh
i=1 neG4(b,0)
a;; €N

where Wi; = Ga(b,1) x Ga(j,c) x Ga(I — {j},I — {i}), and the last equality holds by

1.36. Since every path from G 4(b, ¢) has exactly one diagonal element;

Epe = Z Z w(n) (1'42)
i21 neG4(bic)
Sy ]

I
|
Proof. Again this is not exactly a determinantal identity, but it would still suffice to
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Subtracting 1.41 from 1.42, we get;

(E~DB™'Che = ), D win) = )  w), )
i>k WGGA(b’c) ’fIGGE:) (b’c)
ai; €N
and so;
det(E—~DB7'C) = ) w(n), HEs
neG¥ (J,J)

where J = {k+1,...,n}. The set fo)(J, J), has exactly one element, consisting of
rectangular path, which yields;

II @

= 1<i,j< det(P)
det(E — DB_IC) = H Qi1 Qi Q1 = = o = : (1.45)
i=k+1 H Qij dotlH]
1<i,j<k
(where the last equality holds by 1.11), as wanted. O

Lemma 12 (Muir’s (2003) law of extensible determinants). Any homogeneous determi-
nantal identity can be extended by adding a new set of indices to the rows and columns
of each minor. More formally, if for some m,k > 1 and some integer coefficients
Cr.a given for all T = [Tz d5), F = (Jyycq J) with L, % € [m] end |G| = |5
(i=1,...,k), the equation

k
> Cry [[det(Prs) =0, (1.46)
_ .J i=1
is a determinantal identity, then so is the equation
k
Z Cra H det(PI,-U(m,m+n] J,-U(m,m+n]) =0, (1.47)
BT i=1

Proof. Tt will be sufficient to show 1.47 for P = A, where A is an (m+n) x (m+n) matrix
whose entries are algebraically independent over the rationals. Define the permutation
o: Nt 5 Nt by:
T+n fl<z<m
o(z):=¢ z—m ifm+1<z<m+n

z ifm+n<zx
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Notice that for all I C [m];
o(IU (mym+n]) =[] U (I +n),

where I +n:={z+n:z € I}. Also;

Signlu(m,m+n] (0) = (_1)n|I|

Thus by Lemma, 5, equation 1.47 is a determinantal identity if and only if the equation

k
Y Cry[[det(Pr) =0, (1.48)
1J i=1
is a determinantal identity, where we denote I’ := [n] U (I 4+ n) for I C [m]. Recall that

det(Pyy 1) = |Ga(li, J)|

w?
Since {1,...,n} C I}, J/, then for any tuple (p1,...,p2) € Ga(I},J!), the sub-tuple
(p1,---,pn) is the unique element of the set G4([n],[n]), which consists entirely of

rectangular paths. Hence;
det(Pry) = det(Pyjm) G (& +n, Jitn)|

= det(Pp,. n}{1,..n}) det(Qr, ),

where @ is the m X m matrix whose entry (b, ¢) is the weighted sum of the elements of

GXL) (b+ n,c+ n). Therefore the left hand side of 1.48 is equal to:

k
det(Ppm)* Y Cr.a [ det(Qus),

I.J i=1

which vanishes because 1.46 is a determinantal identity. O

We are now ready to introduce the notation and terminology which is necessary for the
proof of Theorem 3. Let N denote the family of all d-element subsets of N*. We define
a partial ordering < on Ny as follows: If I = {41,...,%4},J = {J1,-..,7a} € Ng with

i1 < -+ <igand j; < --- < jq, then;

IjJ@itgjtfort=1,...,d. (149)
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This allows us to simplify condition 1.23 of Theorem 3, by simply requiring that
{I,...,In} is an initial segment of (Ng, X), that is, a subset M C Ny such that if
J €M and I < J, then I € M. The projection map 7 : Ny — Ny_1 is defined by:

w(I) :=I — {max(I)}. (1.50)

For example 7({1,2,4,8,9}) = {1,2,4,8}. The inverse of the projection map is given
by:
7Y J) = {I eNy:w(I) = J} = {JU{j}: 7 > max(])},

for J € Ng—1. Clearly if M is an initial segment of (Ng, <), then w(M) is an initial
segment of (Mz_1, =), and if M is an initial segment of (Mz_1, =), then #~1(M) is an

(infinite) initial segment of Nj.

Let M be an inijtial segment of (Ng, <) and let N C (M) be an initial segment of
(Ng—1,=X). Denote
M/N = M N7~} (n(M) - N). (1.51)

This may be described as the set of elements of M whose projection is not in N.
Equivalently;
M/N =M — (M N7~ (), (1.52)

For example, for
M = {{17 2’ 3}7 {17 2, 4}7 {11 27 5}’ {1) 27 6}7 {1’ 3’ 4}7 {1’ 3’ 5}7 {27 3’ 4}’ {2, 3, 5}) {1, 4) 5}}7

we have that
W(M) = {{17 2}a {la 3}> {273}7 {1’4}}'

Take N = {{1,2},{1,3}} C w(M). Thus
M/N = {{2,3,4},{2,3,5},{1,4,5}}
From the definition we have;

x(M/N) = (M) — N. (1.53)
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Getting back to the subject of A-paths, for (p1,...,p4) € Ga(I,J) (I,J € Ny), define
Diag(p1,..-,pd) = {i : ai; € p; for some j € {1,...,d}}.

This set is an element of Ny, since every path visits exactly one diagonal entry. Observe
that
Diag(p1, -, pa) X

4
(1.54)
Dia'g(ph gy Pd) <J

Proof of Theorem 8. As in the previous proofs, we show the theorem for P = X, where
A is a matrix of algebraically independent entries. We actually prove a more general
statement involving A-paths. Let M be a finite initial segment of (Mg, <) and let
N C (M) be an initial segment of (Myz_1,=). Suppose that M/N = {I1,...,In}. Let

@ be the m x m matrix whose entries are given by:

Q= Y  wlp) (1.55)
pEGA(1;,15)
Diag(p)¢N
We claim that
det(Q) = H Harl...a”...alm (1.56)
IeM/N rel

We prove this claim by induction on m. We skip the induction base case m = 1, as it

follows exactly the same idea as the inductive step below (alas with kK = m = 1).

For the inductive step, observe that by being finite and non-empty, the projection set
w(M/N) = n(M) — N admits at least one minimal element with respect to <. From
its minimal elements, choose J for which the number max{max(I) : I € M Nw~1(J)}
takes the greatest value (fhis is only used at the end of the proof). Set u := max(J),
and recall that:

(N ={Ju{u+1},JU{u+2},JU{u+3},...},

Thus since M is an initial segment, there is some k > 1 for which

Mna Y J)={Ju{u+1},...,JU{u+k}}
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Applying the same permutation to the columns and to the rows of Q) leaves its determi-
nant unchanged, so we may assume that I; = JU {u+1} fori = 1,...,k. From Lemma
11;

det(Q) = det(B) det(E — DB~'C),

where B = [Qijli<ij<k, C = [Qijh<ick  » D = [Qijle+1<icm, B = [Qijlk+1<ij<m- By
kFI<j<m 1<;<k
1.55;

Bij = Z w(p). (1'57)
pEG A(JU{u+i}, Ju{u+j})
Diag(p)¢N

From 1.54, any tuple p = (p1, ..., pq) from the sum above satisfies

Dia‘g(ph peatey Pd—l) 3 8

However since J is a minimal element of 7w (M)— N, then N contains every (d—1)-element

set which strictly precedes J in the order <. Hence Diag(ps, ..., p4—1) must necessarily
be equal to J. This means that each one of the paths pi,...,p4—1 is rectangular, so
that

w(pty- -+ pa-1) = [ ] aa1+ - Gaz -+ a1z
zeJ

In particular pg-1 = ay1 = - -+ = Quy — -+ = a1y. Equation 1.57 then becomes:

Biya= (H Gzl Qgg - -alz> Z w(p), (1.58)

peGg‘) (u+i,utj)
Thus;
k
det(‘B) = (H ar1 "'azm"'alz) Z w(pla""pk)’ (159)
(EGJ PGGS‘) (I,I)
where I = {u+1,...,u+k}. There is only one element in the set GS‘) (I, I), consisting
entirely of diagonal paths, which yields;

k sk
det(B) = (H Azl Qzz " ° ala:) (H A(uti)1 " Yui) (uti) 'al(u+i)> )
5 i=1

zeJ
(1.60)

=) i il R T

IeMnm—1(J) iel
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If £ = m, then det(Q) = det(B), and we are done, since J is the only element of
w(M/N), and so MUn~(J) = M (the particular case k = m = 1 is the induction base
case which we skipped at the beginning). Otherwise, let us now compute DB~'C. By

Lemma 10 and equation 1.58;

). w(p),

PG (I-{ut} I—{u+i})

where S = {u+1,...,u +k} Indexing entries of C and D as the corresponding entries
in @ (denoting, for instance, the upper-left entry of D by D(k+1)1), and indexing entries

of DB~!C with pairs (b,c) such that k+ 1 < b,c < n, we obtain from the usual matrix

multiplication;
k—1
(Haml"'aa:a:"'alx)
(DB_IC)bC = = det(B) 3 Z Z (_1)i+jw(711 VR pk—l),
d 1S1,]Sk '71?"',23)
) FRRETAS: 2]

|y

where the paths in the sum are such that

(717 oo a’Yd) € GA(Ib) JU {u i Z}), Diag(’)’l) o 7’7(1—1‘) ¢ N7
(Ciy- -5 Ca) € Ga(JU{u+j},I), Diag(m,...,na-1) ¢ N, (1.61)
(p1, o> Pr-1) € GO — {u+ 3}, I — {u+1})

Since (71, ---,Ya—1) € Ga(ly — max(lp), J), we know that Diag(y1,...,74-1) = J, and
since all elements of N_; which strictly precede J are in N, then Diag(y1,...,v4-1)
must necessarily be equal to J, and so the paths 71, ...,74—1 are vertical above the main
diagonal. Similarly Diag((i,...,{4—1) = J and the paths (i,...,{s—1 are horizontal
below the main diagonal. Thus if j; < -+ < jg—1 = u are the elements of J, then

meets 7; at a;,;, for t =1,...,d — 1. Setting

ke = C(= @3 )Y@y, =) = Gje1 = -0 = Qggp = -0 = Gy,

m = 'Y(_) a’jtjt)C(a'jtjt _)),
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fort=1,...,d—1, it is immediate that

Wk, k) = [] az1- * Qg

z€J

and so;
k
(H Gzl Gy alz)
= J
(DB lc)bc = s Z Z )H-]w 7717 >pk—1)
det(B)
1<7',.7<k 'Yd,cd,

MyeeesNNd—1,
PlysPk—1

II e
= e Z Z l)H-]w 7717 >pk—1)7

1<7'.7<k 'Yd;cd)
| I Qi MseesMd—1,
S PlyeeesPk~1
1<i,j<utk

where the conditions 1.61 may be translated as:

(1, - Ma-1) € Ga(ly = {max(I)}, L — {max(H)}), Diag(m,...,ma1) =,
Y4 € GE;‘) (max(Ip),u + 1) does not meet 7y, . ..,74—1 below the main diagonal,
Cq € fo) (u+ j,max(I.)) does not meet 71,...,m4-1 above the main diagonal,
(Prr-- - pr1) € G = {u+ 5}, 1 —{u+1})
For fixed paths 71,...,n4_1, the set of tuples (vg,{4,P1,.--,Pk—1) as above is stable
under the map both(:) (see the text preceding Lemma 8). Hence an argument similar
to the proof of equation 1.33 in Lemma 8 yields;

utk

(DB™1C% = Y. >, wlm.ma)
i=u+1l (n1,...,nq)€GA(Ip,Ic)

Diag(n1,-..4—1)=J
S (1.62)

= Z w(nh---ﬂ?d);
(my-sma)EG A (I, 1c)
Dlag(nl v"snd—l)=']

This last equality is not evident, as it is not immediate that the path 14 must necessarily
visit a;; for some ¢ € {u+ 1,...,u + k}. It is clear, since ng_; visits ay,, that the

diagonal element which 74 visits must be some a;; for i > u+1. To prove that i < u+k,
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observe that Diag(m,...,n4) = I, so it is sufficient to show that max(ly) < u+ k. We
argue this as follows. Notice that w(ly) € w(M) — N (sincé I, € M/N). Let J' be a
minimal element of w(M) — N such that J' < w(l;). Clearly J' U {max(l)} < I, so
J'U {max(Iy)} € M. More precisely J' U {max(I;)} € M N w~1(J'). Hence:

max(J' U {max(l;)})
max{max(I): I € MN=x~(J")}
max{max(I): I € M Nw~1(J)}
u+k

ma.x(Ib)

IN IA

(where the second inequality holds by our choice of J).

Subtracting 1.62 to the definition of Ejp., we obtain;

(B BB 'Eig= Z wW(K1y .-y Kd—1,K)-
"IEG;(Ib,ch
Diag(n)¢NU{J}

By the inductive hypothesis;

det(E-DB'C)= ] [Tar - ar-ar,
IeM/(Nu{J}) rel

and since M/N = (M Nw~1(J)) U (M/(N U {J}));

det(Q) = det(B)det(E — DB'C)= [ [Jar - arr- o
IeM/N rel

concluding our proof of equation 1.56. Theorem 3 is derived by assuming N to be

empty. In this case M/N = M and Q. = det(Py,1.). Defining the numbers £, as in the
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statement of the theorem;

det(Q) = H Harl"'a'rr"‘alr

t=1 rel;

- H I det (Pypn)
det (Py,— 11[r—11)

t=1 rel;

A
det (Pyir)
51 det (Pp_yp—1)”

- = H det (I)[T][T])ZT—ZT‘FI ’

r>1

as wanted. O

To keep this work as elementary and self-contained as possible, we have provided com-
binatorial proofs of Theorem 3 and of all the lemmas that precede it. However it is
important to point out that, through private correspondence with the author, Bernard
Leclerc has provided a simple Lie-theoretic argument effectively proving Theorem 3. In
fact, both sides of 1.24 are the maximum-weight element of certain irreducible bimodule
of the action of the Lie algebra of all n x n matrices on the ring of complex polynomials

in the entries p;;.

1.4 Enumeration of Tableaux

Combinatorial proofs of enumeration formulae for standard and semistandard Young
tableaux (defined below) are popular in the algebraic combinatorics literature, valued
for their simplicity and inherent beauty. Refer to Stanley (1997), Chapter 7 for a com-
prehensive survey of some of the results and definitions presented here. The best known
application of the Lindstrom-Gessel-Viennot lemma to weighted tableau enumeration is
the Jacobi-Trudi formula for Schur symmetric functions in terms of the complete homo-

geneous symmetric functions. This formula itself provides several purely enumerative
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results when combined with certain algebraic arguments involving coefficient extraction.
Our goal for this section is to provide a direct combinatorial method to derive those
enumerative results, bypassing the use of symmetric functions or any type of algebraic
argument involving generating functions. We achieve this through our slight extensions
of Lindstrom-Gessel-Viennot and Stembridge’s lemmas (Corollaries 1 and 2), namely
Theorems 1 and 2, which allow us to enforce restrictions on some tuples of lattice paths

| accounting for the entries of certain corresponding tableaux.

1.4.1 Partitions, Compositions and Diagrams

Definition 13. Let n be a nonnegative integer. A partition A of n (written A F n)
is a tuple (A1,...,Ax) such that A\; > -+ > A\ > 0 and A1 + -+ + Ay = n. The N’s.
(1 £ ¢ < k) are called the parts of A, and the number k of parts is called the length
of A, denoted £(A). The number n is called the size of A and is denoted |A|. The only
partition of 0 is the empty partition, denoted 0.

Remark. Sometimes it might be convenient to add zeroes at-the end of a pastitien;——
without changing its value. For example (4,3,1,0,0,0) = (4,3,1,0) = (4,3,1) and
0 = (0) = (0,0). With this notation the length £()\) is defined to be the number
of positive parts of A\. This notation is useful, for example, when writing the set of all

partitions of n with at most k parts: {(A1,..., k) : Ai+ -+ =n, A1 = -+ > A\ 2 0}

In order to give a pictorial representation of partitions, we must first define cells and

diagrams:

Definition 14. A cell is a square of side 1 whose four vertices have nonnegative integer
coordinates. Cells are denoted by (%,7) where 7 — 1 and ¢ — 1 are respectively the
z-coordinate and the y-coordinate of i‘ts lower-left corner in the cartesian plane (see
Figure 1.7). Notice that the number ¢ increases upwards and j increases from left to
right. Any set D of cells is called a diagram. The number of elements of D, denoted
|D|, is called the size of D. We define the -th row (or row i) of D to be the intersection

Dn{(31),(32),(%3),...} and the j-th column (or column j) of D as the intersection
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Figure 1.7 Some cells and their names.

|

Figure 1.8 The Young diagram D(A) of the partition A = (4,2, 2).

Dn{(Q,5),(2.5),3,5),---}

Definition 15. The Young diagram (or simply diagram) of a partition A = (A1, ..., Ak)
is the set of all the cells (4, ) satisfying 1 < ¢ < k and 1 < j < A; (see Figure 1.8). We
denote this set by D(X).

Remark. Notice that the diagram D()) of the partition A = (A1,..., Ax) has exactly \;
cells in its i-th row (1 < i < k). Thus it is easy to obtain A from the diagram D(}).
In the rest of this work we refer indistinctively to a partition X and its diagram D(X),
writing for example (i,7) '€ A whenever (i,7) € D(X). We may also refer to the the

number k = £(A) as the “number of rows” of A.

A natural way to generalize the concept of partitions is by lifting the weakly decreasing

condition, as in the following definition.
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Figure 1.9 The diagram D(a) of the composition a = (2,4,0,1).

Definition 16. A composition of the nonnegative integer n is a tuple a = (a4, .. ., dk) of
nonnegative integers such that a;+- - -+ax = n. The number n is called the size of o and
is denoted |a|. Any partition is also a composition. As with partitions, any zeroes at the
right of a leave the composition unchanged. For example (1, 3,0,4,1,0,0) = (1,3,0,4,1)
and (1,0,0) = (1). The diagram of the composition a, denoted D(a), is the set of cells
(z,7) satisfying 1 <¢ < kand 1 < j < o; (see Figure 1.9). In what follows, we make no
distinction between a and its diagram D(c), making the notation “D(a)” unnecessary

in most cases.

The above visual representations of partitions and compositions (Figures 1.8 and 1.9)
suggest more simple generalizations of these objects. Definitions 18 and 19 below are

the ones more relevant to our work.

Definition 17. Given two compositions 8 = (f1,...,0k) and v = (1, ...,7k), We say
that 8 contains v (or that vy is contained in ) if ; < fB; for 1 <4 < k. This relation is
denoted Yy C Bor 82 7.

Definition 18. Given two partitions A = (A1,...,Ag) and g = (p1,. .., pk) such that
i € X (see Definition 17 above), define the skew partition A/u as the diagram containing
all cells (z,7) which satisfy (¢,7) € A and (¢, 7) ¢ u (see Figure 1.10). In other words

M= D(X)\ D(u),
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Figure 1.10 The skew partition (4,2,2)/(2,1).

where the right hand side denotes the set-theoretic difference between D(A) and D(u).

A more precise equivalent definition is
Afp={dll L4 b m+15] £ Nl

Partitions are special cases of skew partitions, since A = A/ for every partition .

The following generalizes all of the definitions above.

Definition 19. Given two compositions § = (f1,...,8) and v = (m,...,7) such
that v C 3, define the row-conver diagram [/~ as follows (see Figure 1.11):

B/y:={6G,§):1<i<k, v+1<j<B}=D(B) —D(y).

Skew partitions are special cases of row convex diagrams.

Remark. The reason for the name row-convez is that each of the rows of these diagrams
are topologically convex in the following sense: If (i,71) and (%, j2) are in the i-th row
of some row-convex diagram D, theﬁ so is (Z,7) for any integer j between j; and ja.
Similarly one could define column-convez diagrams to be such that if (i1,7), (i2,7) € D
for some 1 <4y < iy, j > 1, then (¢,5) € D for all 7 with 43 <7 <1iy. A diagram that is
both row-convex and column-convex is referred to simply as a conver diagram. We are

only interested in diagrams that are convex.
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Figure 1.11 The row-convex diagram (1, 5,4,0,2)/(0,2,2,0,1).

Figure 1.12 The shifted diagram n* for n = (6,4,2,1).
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Besides partitions and skew partitions, another interesting class of diagrams is that of
shifted diagrams. If n = (m,...,mk) is a strictly decreasing partition (i.e. 71 > -+ > mg),

then the shifted diagram n* is the one given by (see Figure 1.12)

n* = {(G,j):1<i<kandi<j<i+m—1}
= (m+0m+1,...,m+k-1)/(0,1,....,k—1)

A staircase is a shifted diagram n* where 7 is of the form (s + k,s+ k—1,...,s+ 1)

for some s >0,k > 1.

1.4.2 Young Tableaux

The enumeration of positive integer fillings of diagrams provides important results in
a wide array of areas ranging from graph theory (Adin, King, and Roichman, 2011) to
statistical mechanics, positioning them among the most important objects in algebraic

combinatorics. In this section we review some basic definitions regarding these objects.

Definition 20. A filling of a diagram D is a function ¢ : D — N*. This can be seen
as one of the possible ways of placing an integer into each of the cells of D (see Figure
1.13). Each of these numbers are called the entries of D. We say that D is the shape
of ¢ and write shape(¢) = D. The content of the filling ¢, denoted content(yp), is the

composition o = (a1, &g, ...) where ¢; is the number of times the entry j appears in ¢

(G =1).

Definition 21. Let D be a convex diagram. A semistandard Young tableau of shape
D is a filling 7 : D — N+ which is weakly increasing on every row from left to right
and strictly increasing on every column upwards (see Figure 1.14). In other words, the

following two conditions are satisfied for all 1, j, %1, %2, j1, 72 > 1:
(4,71), (i,j2) € D and j1<ja = 7(i,51) < 7(3,52)

(7:17.7')7 (7’2,.7) €D and 7:1 < 7;2 = T(il’j) < T(i27j)
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72 | 25

1043

Figure 1.13 A filling of the diagram D = {(1,1), (2, 3),(2,4), (2, 5),(3,3),(3,4), (5,2)}.

10 | 10 | 10 | 10

5 S 6
1 4 5
3 3 Tt

Figure 1.14 A semistandard Young tableau of shape (5,4,4,4)/(2,1,1).
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4 9 11
1 ) 6
2 3 8

Figure 1.15 A standard Young tableau of shape (5,4,4,4)/(2,1,1).

For any non-empty convex diagram D there is an infinite number of semistandard Young
tableaux of shape D. However the number of semistandard Young tableaux of shape D
and fixed content ¢ is always finite. A remarkable well-known result is that for every 3
resulting from permuting the entries of @, and for every skew partition A/u, the number
of semistandard Young tableaux of shape A/u and content ¢ is equal to the number
of semistandard Young tableaux of shape A\/u and content 8. This can be shown with
a tricky bijection and also as a result of the symmetry of skew Schur functions. We
make this fact evident in Section 1.4.3, in a simple way without the need of symmetric

functions.

Definition 22. A standard Young tableau 7 : D — N, where D is any convex diagram,
is a semistandard Young tableau whose entries are the numbers 1,2,...,n = |D|, each
appearing exactly once (see Figure 1.15). In other words, a standard Young tableau is

a semistandard Young tableau of content (1,1,...,1).

Counting the number of standard Young tableaux of a given convex shape D has since
long been an especially important problem in algebraic combinatorics. When D is a
partition, this is the dimension of the irreducible representation indexed by A on the
symmetric group &,. For some special shapes it counts geodesics in a graph (Adin,

King, and Roichman, 2011). The following is the well-known hook and determinant
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formulae for the number of standard Young tableaux of shape A, where X is a partition:

Theorem 4 (Frame, de B., and Thrall, 1954). Let A = (A1, ..., Ax) be a partition with
Ax > 0. For each cell (i,j) € A, define hook(i, j) to be the number of cells in A that are
above (i,7) in the same column, or to the right of (i, 7) in the same row, including (%, )
itself. The number of standard Young tableauz of shape A is equal to:

n [ Gi—Ai+i-19)
1<i<j<k n!

f)\ e . 22 !
. I] hook(i, )
T + k—1)! e

=1

(1.63)

We deduce this, along with several other determinant-like tableau-enumerating formulae

in Section 1.4.4.

1.4.3 Bijections with Collections of Lattice Paths

In this section we present a bijection between families of semistandard Young tableaux
of certain convex shapes, and collections of lattice paths. The ultimate goal is to derive,
in the next section, enumerative formulae for these families of tableaux. The basic
method for our derivation is well-known, however we have not found any source in the
literature which presents it in the general form of this work. Our lattice paths may be
horizontally or vertically flipped when compared to the ones in other sources. This is

done in order to obtain north-east lattice paths.

Let 8 = (B1,---,8%), ¥ = (71,---,7) be compositions with v C § and suppose that

B/~ is convex. Consider a filling
7:B/y = Nt,

and suppose that 7 is weakly increasing on every row. Define the north-east lattice

paths p1,...,pr from 7 as follows:

1. p; starts at the point (; — 4,0) and ends at (3; — 1, 00).
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P4 p3 D2 D1

Figure 1.16 A filling of /vy = (4,4,4,2)/(2,1) with weakly increasing rows and the

corresponding lattice paths.

2. The number of east steps of p; that are contained in the horizontal line y = yp is
equal to the number of entries equal to yo + 1 in the -th row of 7 (i = 1,...,k,

yo > 0).

See Figure 1.16 for an example of this construction: Clearly these paths are uniquely
defined by these two conditions, and the filling 7 may be obtained from p;,...,px by
counting the east steps of each p; in each horizontal line of the upper half plane, and
using the assumption that 7 is weakly increasing on each row. Recall that 7(z, j) denotes
the entry of 7 on the ¢-th row (upwards) and j-th column (from left to right), so the

entries of the i-th row of 7 are
T(ia Y a7 1) < T(i77‘i W 2) - St ! T(ia :B‘L)

We claim that the following three statements are equivalent for all ¢, j with 1 <i < k-1

and max{y;, yi+1} +1 < j < min{B;, fi1}:

a. 7(¢,7) < 7(i + 1,7).
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b. The (j — v;)-th east step of p; is strictly below the (j — 7i+1)-th east step of pj41.

c. The path p; does not intersect, and is strictly below, the path p;1+1 in the vertical

linex=j5—1—1.

Indeed, statements a and b are equivalent because, by construction, 7(i,j) — 1 (the
(j — %)-th entry of the i-th row of 7) is the y-coordinate of the (j — v;)-th east step of
pi, and 7(i+1, ) —1 is the y-coordinate of the (j—~;+1)-th east step of p;11. Statements
b and c¢ are equivalent because the line x = j — ¢ — 1 contains both the ending point of
the (5 — 7i+1)-tl; east step of p;1+1, and the starting point of the (j — ~;)-th east step of

Di.

By quantifying statements a and ¢ for all j between max{~;, ¥i+1}+1 and min{B;, Bi+1},

we obtain that the following two statements are equivalent:

a’. 7(27.7) < T(Z + 1,.7) for max{7i,7i+1} 1 S .7 S. min{lB‘i’,B‘i+l}'

¢’. The path p; does not intersect, and is strictly below, the path p;; in each of the

vertical lines z = o for max{v;, yit1} — ¢ < ©o < min{B;, Bi+1} —¢ — 1.

Now by letting 4 free in the set {1, ...,k—1}, we obtain that the following two statements

are equivalent:

A. 7 is a semistandard Young tableau.

C. For¢=1,...,k—1, the path p; does not intersect, and is strictly below, the path p;;1

in each of the vertical lines z = z¢ for max{y;, yi+1}—% < zo < min{f;, Bi+1}—i—1.

The study of semistandard Young tableaux of shape 3/+ is then “reduced” to the study
of sequences of paths satisfying statement C. We refer to any sequence (pi, ..., pg) of
paths between the points (y; —,0) and (8; —4,N —1) (i = 1,...,k), as a network of
shape /v, and we sa& that such network is semistandard if it satisfies statement C.

Thus there is a bijective correspondence between semistandard Young tableaux of shape
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B/~ and semistandard networks of the same shape. The rest of this section is dedicated
to finding meaningful interpretations of statement C for specific compositions 8 and +.
In particular it is interesting to review the cases for which this statement implies that

the paths pj, ..., px are non-intersecting.

Recall that p; starts at the line £ = +; — ¢ and ends at the line z = 8; — ¢, while p;1;

starts at the line £ = ;41 — 7 — 1 and ends at the line z = 8;4; — % — 1. Thus:

Remark. If (p1, . .. ,pk) is a network of shape 3/, then the vertical lines simultaneously

visited by paths p; and p;4+1 are those of the form z = z¢ for
max{y;, ¥it1 ~ 1} —¢ < 2o < min{ B + L, Fipq} —6— 1.

One of our main goals is to compare this range to that of statement C. In fact these
two ranges are very similar, differing on either side by at most 1. If both 8 and ~ are
partitions (8/v is a skew partition), then these two ranges are the same. Hence the

well-known equivalence:

Lemma 13. If \/u is a skew partition, then any network (p1,...,px) of shape A/u is

semistandard if and only if the paths p1,...,px are non-intersecting.

See Figure 1.17 for an example of a semistandard Young tableau of skew shape and the
corresponding non-intersecting lattice paths. Next we review more general cases for
and 4. The following lemma highlights the main difference between the skew-partition

case and all other cases;

Lemma 14. If the diagram of 8/ is connected, and either 8 or~y is not a partition, then
every semistandard network (p1,...,px) of shape B/~ is intersecting. More precisely a
network (p1,...,px) of shape B/v is semistandard if and only if it satisfies the three
properties below for everyi € {1,...,k—1};

® v; < viy1 & the paths p; and piy1 intersect in the line z = y;41 — 4 — 1.

" o B; < Biy1 & the paths p; and piy1 intersect in the line z = fB; — 1.
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P4 p3 P2 p1

Figure 1.17 A semistandard Young tableau of shape A/u = (4,4,4,2)/(2,1) and the

corresponding semistandard network of shape A/ p.

e FElsewhere-in-the planethese paths do not intersect, and-inside every other vertical

line simultaneously visited by both paths, p; is strictly below piti.

Proof. Assume first that (py, ..., pe) is semistandard.

If v; < 741 for some i € {1,...,k — 1}, then 7, — ¢ < ;43 — ¢ — 1, and so the path
p; starts to the left of p; ;. Thus p; must either intersect or be strictly above p;4; in
the line z = ;41 — % — 1, but we know by C that p; is strictly below p;1; in the line
Z = v;4+1 — ¢. Hence they must int'ersect in x = ;41 — ¢ — 1. Similarly, if 8; < fi4+1 for
some i € {1,...,k—1}, then §; —i < f;41 —i— 1, and so the path p; ends to the left of
pi+1- Thus p; must either intersect or be strictly above p;;+1 in the line z = 8; — ¢, but
we know by C that p; is strictly below p;1; in the line z = ; — i — 1. Hence they must

intersect in z = f; — 1.

Now if p; and p;4+1 intersect in the line £ = ;41 — 7 — 1, then p; must start to the left

of this line; v — 7 < vi4+1 — % — 1, or equivalently v; < 7;+1. Similarly, if p; and pi41
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intersect in the line z = B; — i, then B;11 — i — 1 > B; — 4, or equivalently, 8; < Bi+1.

Finally, the last claim of the lemma is equivalent to statement C, as a result of the

remark above Lemma, 13. O

We are now ready to use the correspondence between semistandard Young tableaux and
semistandard networks, along with Theorems 1 and 2 of Section 1.2, to derive enumer-

ation formulae for important families of semistandard and standard Young tableaux.

1.4.4 Enumeration Formulae

Next we use the theorems of section 1.2 to obtain several existing and some new enu-
r.neration formulae for certain families of standard and semistandard Young tableaux of
convex shapes. The bijection from the previous section between semistandard Young
tableaux and semistandard networks is repeatedly used as the first step for each deriva-
tion. It is important to remark that while this bijection is well-known for most important
shapes, the unifying enumeration approach presented here had not been previously im-
plemented because the Lindstrom-Gessel-Viennot and Stembridge’s lemmas (Corollaries
1 and 2) only allow for restrictions on paths which may be accounted for by modifica-
tions of the graph G. This limitation is resolved by employing our natural extensions

of these lemmas (Theorems 1 and 2).

We start by providing an elementary proof of the hook length formula (Theorem 4) for
the number of standard Young tableaux of a partition shape. This proof was devised
independently by the author. However, it is essentially the same as the one presented by
Eriksson (1993), although lattice paths are not mentioned explicitly by Eriksson, and
instead the equivalent concept of rat races was used in his work, along with a proper

involution.

Proof of Theorem 4. Let T be a standard Young tableau of shape A = (A1,...,Ax) F n.

Let (p1,...,pk) be the semistandard network corresponding to 7, so that p; starts at
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the point (—%,0) and ends at the point (A; — %,00). By Lemma 13, the paths p1,...,p
are non-intersecting. The condition that the entries of 7 are the integers 1,...,n,
each appearing exactly once, is equivalent to the condition that every horizontal line
of equation y = yo (yo =0,...,n — 1) contains exactly one east step from the paths
p1,---,Pk- In particular this means that these paths are vertical above the line y = n—1,
and so we may assume that the ending point of p; is (A; —%, n—1) rather than (\; —1, c0),

fora=ll,. .5 ks

For 0 € &g, let T, denote the set of all tuples (p1,...,pr) of (possibly intersecting)
lattice paths between the vertices (—3,0) and (Ay;—03,n—1) fori = 1, ..., k, respectively,
with n east steps in total; exactly one contained in each of the horizontal lines y = yo
(yo = 0,...,n — 1). These sets are clearly disjoint. Define T' as the union of T, over
all o € &,. The function F : T - &y, defined by F(t) = o for t € T, may be easily
verified to be a k-arrangement. Let Tp denote the set of all non-intersecting tuples in
T. By the above observation, |Tp| is the number of standard Young tableaux of shape

A. Theorem 1 yields;

Tyl = ) sign(o)|T |-

oeBGy
For any t = (p1,...,pk) € Ty, define

A; = Ai(t) :={le{l,...,n}: p; has an east step in the line y = — 1}, (1.64)

fori=1,...,k. Clearly (Ai,...,Ag) determines t. The fact that ¢t € T, is equivalent

to the conditions;

k
| = a1, (1.65)
i=1
and;
|Ast = Ky £ =64, =10, 5% (1.66)

Thus 1.64 provides a bijection between T, and the family of all k-tuples (A, ..., A) of
sets satisfying 1.65 and 1.66. Hence

n
T,| = !
i </\a1+1—01,...,/\0k+k—0k)
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where the right-hand side multinomial coefficient is assumed to be 0 whenever any of

the numbers Ay, + 7 —0; (¢ =1,..., k) is negative. Therefore:
T = 3 sign(o) " )
Kool )\al +1-01,..., 0, +k—0%
)\ +k— U')k—'
= ' o % %
n! Z sign( O')H Do T a-)‘
gcBy, J

n!
- Z sign(o) ]_—[()\,,1 +k—0i)k—s
H1_ ()\ Tk ) 0€S =1
n .
= et k—d) det[(Aj + &k — J)r—ilr<ig<ks
i=1\" =T 9y

where (a), denotes the descending factorial a(a—1) -+ (a—(b—1)). Since (A\j+k—7)k—i

is a monic polynomial of degree k—i evaluated in A;+k—j, we may apply row operations

to obtain '
n! .
ITo| = det[(Aj + & — 5 1<i i<k
M Ge+ k=gt o
¥ =% . H (M—Aj+7—1),
[T i + k=)t ek '
where the last equality is the well-known determinant of Vandermonde’s matrix. [

A similar idea provides a formula for the Kostka coefficient K}/, , which counts the

number of semistandard Young tableaux of shape A/u and content a.

Theorem 5. Let A = (Ay,..., ) and p = (p,.. ., ug) be partitions with u C A, and
let @ = (01,...,am) be a composition with |a| = |A/p| = n. The Kostka coefficient
K /u,0r which counts the number of semi-standard Young tableauz of shape A/ and
content «, is given by the formula:

{14, .., mom}
K =
Ao Z szgn(a)()\al+1—01—M1,---a)\0k+k—0k_'u'k

oceGy,
1 TR
= Zszgn(o*)( L S )
ot )\+0'1_1_#01’---a)\k+0'k_k—,u'ak
where (a1 ak) denotes the number of ways of writing the multiset A as the ordered
disjoint union of k multisets of cardinalities ay,...,ar respectively. This number is

assumed to be 0 when any of the a;’s is negative.
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Proof. Observe that a network (p1,...,px) of shape X (p; starts at (u; —4,0) and ends
at (A\; —4,00) for i = 1,...,k) corresponds to a semistandard Young tableau of content
« if and only if the paths p1, ..., py are non-intersecting and contain, among all of them,
exactly oygt1 east. steps inside the horizontal line y = yo for yo = 0,...,m — 1. Since
these paths are vertical above the line y = m — 1, we may assume that p; ends at

(A —i,m — 1) rather than (\; —4,00) fori=1,...,k.

For 0 € G, let T, denote the set of all tuples (p1,...,px) of (possibly intersecting)
lattice paths between the vertices (u; —4,0) and (Ay; — 03,m — 1) for i = 1,...,k,
respectively, with n east steps in total; exactly oy, of them contained in the horizontal
line y = yg for yo =0, ...,n — 1. These sets are clearly disjoint. Deﬁﬁe T as the union
of T, over ail o € &,. The function F : T — &, defined by F(t) = o for t € T,, may be
easily verified to be a k-arrangement. Let T denote the set of all non-intersecting tuples
in T. By the above observation, |Tp| is the number of semistandard Young tableaux of

shape A/u and content a. Theorem 1 yields;

I To] = ) sign(o)|To .

0€Gy
For any t = (p1,...,pk) € Ty, define
& )
A=) =l Y, =Tk (1.67)
=1

where 7; is the number of east steps of p; in the line y =1 — 1, and {I"} denotes the
multiset containing ! exactly r; times. Clearly (Aj,..., Ax) determines ¢. The fact that

t € T, is equivalent to the conditions;

k
||t {19y, (1.68)
i=1
and;
|Ail = Aoy +i—0i —pi, i=1,...,k, (1.69)

Thus 1.67 provides a bijection between T, and the family of all k-tuples (A,..., Ag) of

multisets satisfying 1.68 and 1.69. Hence

T o
lTa'|=( { ¢l 7m } ),
)‘01+1_0'1_/J1’---7)‘ork+k_0'k—ﬂk
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as wanted. O

We underline that our proof of this result appears to be more direct than the one
presented by Lederer (2006) for the case 1 = @, and the symmetric function approach
he mentions. However, our proof shares with Lederer’s proof the advantage of being
entirely elementary. The case o = (1,1,...,1) = (1™) yields a determinant formula for

the number of standard Young tableaux of skew shape A\/u;

n! .
K fu, i) = T ( det [(Aj + k& — J)k—i+m]1gi,jgk (1.70)

kit k—d)

As evidenced by Lemma 14, semistandard networks of shapes other than partitions or
skew partitions, do not consist entirely of non-intersecting lattice paths. However in
the case of a shifted diagram n*, we can obtain non—intersectiﬁg paths by applying a
simple transformation to each network of shape 1*, without losing any information on
the network. Details are in the proof of the next result. Recall that (al,f., ak) denotes
the number of ways of writing the multiset A as the ordered disjoint union of &£ multisets

of cardinalities aj, ..., ax respectively.

Theorem 6. Let 1 = (1m1,...,Mk) (k even) be a strictly decreasing partition and let
a=(ai,...,an) be a composition with |n| = |a| = n. Then the number of semistandard
Young tableauz of shape n* = (m,n2+1,...,m+k—1)/(0,1,...,k—1) and content «
is given by;
' = b B 81
W;ﬂ sign() Z {i’j}g’iq ((Th‘ 1 e =1) )

where A* := A—{max(A)} for every multiset A, and the second sum is over all families
{Aij : {t,j} € 7,1 < j} of multisets satisfying |As ;| =i +n; ({i,5} €7, 1< j) and
L oAy e e, fm=y, s = )

Proof. First recall that any network of shape n* consists of paths p; starting at (—1,0)
and ending at (7; — 1,00) for ¢ = 1,...,k. Suppose that the network (pi,...,pk)

corresponds to a semistandard Young tableau of shape n* and content a. Thus each
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path p; (i = 1,...,k) is vertical above the line y = m — 1 and so we may assume that
its ending point is (n; — 1,m — 1). Lemma 14 states that the semistandard condition is
equivalent to the condition that these paths intersect only in the vertical line z = —1.
Hence by removing all of their initial vertical steps we obtain a tuple (p},...,p;) of

non-intersecting lattice paths such that;

e p) (i=1,...,k) starts with a horizontal step at the segment

r=-1, 0<y<m-1,

e p,(i=1,...,k) ends at (p; — 1,m — 1),
® p1,...,Dk Possess in total exactly ay,+1 east steps contained in the line y = yo for

y0=1,...,m—1.

By translating and rotating these paths 180°, we obtain a tuple (qi,...,qx) of non-

intersecting lattice paths such that;
e ¢ (i=1,...,k) starts at (—m;,0),
e ¢; (i=1,...,k) ends with a horizontal step at the segment
z=0, 0<y<m-1,

® qi,...,Qk possess in total exactly om,—y, €ast steps contained in the line y =

foryo=1,...,m—-1.

The map (p1,...,0k) — (q1,--.,qk) is clearly invertible. Denote by T the set of all
tuples (q1,. .., gx) of (possibly intersecting) lattice paths satisfying the three properties
above. We wish to count |Tp|, where Tp is the set of all non-intersecting tuples in T.
Set I := (vy,...,v) where v; = (0,7 — 1) (this is the segment from the second property

above). Clearly T is I-stable. Suppose that k is even. Thus by Theorem 1;
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Where T is the set of tuples (g1,...,qx) € T such that g;,¢; are non-intersecting for
{i,7} € 7r Fix some m € M. For t = (qi,...,qx) € Ty and each {z,j} € 7 with i < 7,
denote by A;; = A;;(t) the multiset of all y-coordinates of east steps of ¢; and g;. We
will refer to this set as the east step height set of (g;, g;). Since g; has 7, east steps for
Ve 1,0 00 R This

|Asjl = ns +nj for all {1, 5} €7, i <j. (1.71)
Also;
] Ay ={0",1%, ..., (m—1)™}. (1.72)
{i,j}em, i<y

Now for 1 < i < j < k, and any multiset A C {0%=,1%m-1 . (m — 1)®} with
|A| = m; + n;, let T ;(A) denote the set of all pairs (g;,g;) of lattice paths starting at
(-, 0), (—n;,0) respectively, ending at I with a horizontal step, and having east step
height set A. Let fl'f)’j(A) denote the subset of all non-intersecting pairs in T; j(A). Thus;

Tl =) T 1705040,

{ij}en
where the sum is over all families {A; ;}(; j}er,i<; of multisets satisfying equations 1.71

and 1.72 above. A simple involutive argument yields;

A* A*
(5
1’1( ) U 1,77] T Mj — 1

This is because the first term counts the number of elements (p;,p;) € T;;(A) such
that p; ends weakly above p;, while the second term counts the number of elements
(i, pj) € T;,;(A) such that p; ends weakly below p;. In this last case the paths p;, p; must
necessarily intersect, and so the second term counts exactly the intersecting elements
from the first term. Therefore;
mi= Y sgm Y (28 )=( 5 ,))
€My {As;:liglemi<iy  {igemi<j g L

[As,j1=ni+n;
LIA,'J:{OO‘"‘ yeens(m—1)%1}

as wanted. For the standard case we have o = (1, 1,...,1) = (1™) and so the generalized

binomial coefficients above only depend on the cardinalities [A] ;| = |Ai;|—1 = mi+n;—1,
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and not on the sets A;;, which yields;

i e ; —n;)(mi + mj — 1!
|To| = Z sign(m) ' H ((771 "73)(7; ’ 7 — 1) )
= I m+m)t ghienic ek
{i.j}em, i<j
! -
_ kn. pfaﬁ. |:7h nj:l
M+ M5l 1<i<j<k
HTHI
i=1
GO | O
1<i<j<k

k
(Hm!) IT i+m)
i=1

1<i<j<k




CHAPTER II

SLx-TILINGS

In this chapter we study two intimately related objects, namely T-systems (Di Francesco,
2010; Di Francesco and Kedem, 2009) and S L-tilings (Bergeron and Reutenauer, 2010).
We start by defining these objects and providing a unified notation for both of them.

For this we first recall the octahedron recurrence:

T(m7 z,g)T(m—2, ’l,]) = T(m_l’ 2_17 ])T(m_]-’ 2+1, ])_T(m_la 11 .7_1)T(m_1a Z7.7+1)’
(2.1)

defined over a three dimensional array
T:D - R,

with values (entries) in some zero-characteristic field R, and whose domain D is a subset
of

{(a,b,¢) € Z3 : a+b+c=0(mod 2)}.

We call these subsets 3-dimensional grids. Suppose that the values of some entries of T'
are initially known (we refer to these values as boundary conditions or initial values),
and assume that such values, along with the octahedron recurrence, are sufficient to
compute all entries of T in its domain D. It is immediate from equation 2.1, that all
entries of T must then be rational functions on the initial values. It is often the case, for
convenient 3-dimensional grids and properly positioned boundary conditions, that all
entries of T' may in fact be written, in terms of the initial values, as Laurent polynomials.

In the related context of cluster algebras, this is referred to as the Laurent phenomenon
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by Fomin and Zelevinsky (2002a). See also Berenstein, Fomin, and Zelevinsky (2005);
Fomin and Zelevinsky (2002b, 2003, 2007). The Laurent polynomials appearing in
cluster algebras appear to satisfy the property that their coefficients are all nonnegative
integers. This positivity property in total generality is still only a conjecture, and

combinatorial arguments are often used to prove special cases.

We now proceed to review the notion of T-systems. Given an integer & > 1, a T'-system

of height k is an array
T:{(a,bc)€Z:0<a<k,a+b+c=0(mod2)} > R, (2.2)

satisfying the octahedron recurrence (2.1) in its domain, along with the additional con-
dition;

T(a,b,c) = 1 whenever a is 0 or k. (2.3)

Under the assumption that
T(a,b,c) # 0 for all a,b,c in the domain of T, (2.4)

the following relation results from inductively applying the octahedron recurrence and

the Desnanot-Jacobi identity (Proposition 1);
T(m,i,j) = det[T(L,i —m—1+p+q,j+p— Qli<pe<m- (2.5)
Indeed, for 0 < m < 1 the equality is evident. Assuming it is true for m —1 and m — 2,
we obtain;
i, 4, 4)

Tm—-1,i—1,5)T(m-1,i+1,j) —=T(m—1,4,5 — )T'(m —1,i,5+ 1)
T(m_ 2’iaj)

det A[1,m—1)[1,m—1] d€t A[2,m]j2,m] — det A[1 m_1)[2,m] det A mij1m—1]
det A m—1)2,m—1]

= det(A),
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where A = [T'(1,i—m—1+p+g,j+Dp—q)l1<p,q<m, 8s claimed. In particular for m = k,

equation 2.5 becomes;
1=det[T(L,i—k—1+p+¢j+p—qlicpq<k- (2.6)

By setting P;;j := T(1,s+ j — 1,7 — j), we obtain an Z x Z matrix P whose adjacent
minors of order < k are the entries of T'. In particular all adjacent minors of P of order

< k are non-zero (by 2.4), and all of its adjacent k x k minors are equal to 1 (by 2.6).

Conversely, given any matrix P such that every one of its adjacent (k — 1) x (k—1)
minors are equal to 1, and every one of its minors of smaller order are non-zero, we

recover a T-system of height k by setting T'(1,%,7) := P(1+i+z')(1+i~z').
2 2

Following Bergeron and Reutenauer (2010), we define an SL-tiling to be a Z x Z matrix
P = [pij](i j)ezxz such that all of its k x k adjacent minors are equal to 1. It is important
to highlight that Bergeron and Reutenauer only restrict SLg-tilings on having non-zero
(k—1) x (k—1), allowing for a wide spectrum of tilings not considered by Di Francesco

and Kedem.

Borrowing terminology from mathematical physics, a boundary condition for a non-zero
T-system of height k, is simply an equation of the form T'(a,b,c) = 244, for (a,b,c)
in the domain from 2.2, and 45, in B* = R — {0}. A solution to a T-system under
a collection B of boundary conditions is a non-zero T-system (satisfying equation 2.4)
T which satisfies all of the conditions in B. In terms of the SLi-tiling P = [T'(1,7 +
j — 1,4 — j)]ijez, boundary conditions are just equations of the form det(Prs) = z1,;
(z1,7 € R), where I, J are equipotent sets of consecutive integers (i.e., det(Prs) is an
adjacent minor of P). In the rest of this work we focus on the matrix terminology of
SLj tilings, and only mention that of T-systems when necessary as a reference to Di

Francesco’s results.

We are interested in some particularly well-behaved SLg-tiling boundary conditions
which correspond to Di Francesco’s (2010) “arbitrary” boundary conditions for 7'-

systems. Our boundary conditions are defined in terms of a sequence (called dress,
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see Definition 24) of subsets of the integer plane (called fringes, see Definition 23),

which we introduce in the next section.

In Section 2.1 we state the main results of this chapter. In Section 2.2 we provide all the
proofs that are missing from Section 2.1, along with some new definitions and lemmas

which become necessary to complete those proofs.

2.1 General boundary conditions

We proceed to introduce the combinatorial notions of fringes and dresses. As we outline
later, each dress defines a general collection of boundary conditions determining an
unique SLy, tiling. The entries of this SLy, tiling turn out, as we prove later, to be positive
Laurent polynomials in terms of the field elements from the boundary conditions. We
also give a general proof for the minors in the case k = 2 and conjecture a combinatorial

model for all £ which may lead to a general proof of Laurent positivity.

Picture the integer plane Z X Z in matrix form, so that the first coordinate increases
downwards while the second one increases to the right. Informally, a fringe is an infinite
'subset of the plane which resembles a staircase of constant width. See for example Figure
2.1, where the dots represent the elements of F' (For instance, the leftmost dot means

that (3,—2) € F). The set F' in this figure is a 3-fringe. The formal definition follows.
Definition 23. For m > 1, define an m-fringe to be a subset I of the integer plane
ZxZ={(74):ij €L},

satisfying the following properties:

1. Diagonal property: For all r € Z, the intersection between F' and the r-th main

diagonal
Dr:={(3,j):j—i=r},

is a set of m consecutive points of D,. More formally, there exist i,, j, € Z such




(17 1) N\ ‘ ‘
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@ ¢ @ ® & ond main diag.

' ~2nd main diag.

Figure 2.1 Part of a 3-fringe.
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Figure 2.2 Part of a 6-dress whose 1-fringe F(!) has been highlighted.
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that j, — 4, =r and

F‘r =FnD ={(ir,j’l‘)a(‘i1‘+1aj1‘+1)a"'7(i‘r+m_1,j"‘+m_1)}'

The set F.. is called the r-th diagonal of F', and the number 4, is called the r-th
handle of F. In the 3-fringe of Figure 2.1, only the —5-th, —4-th, —3-rd, —2-nd,
—1-st, 0-th, 1-st, 2-nd, 3-rd and 4-th diagonals are visible. Some handles of this

i arei i =1, 4 =1, =5 =09 =0 = =1, fo= =2
2. Adjacency property: For all r € Z;
B & b =L ' (2.7)
In particular, this means that the sequence {i,}rez is non-increasing.

3. Staircase property: There are arbitrarily large and arbitrarily small integers r
for which ¢,4; = 4, — 1, as well as arbitrarily large and arbitrarily small integers
r for which 4,41 = %,. In simple terms this means that a fringe is not eventually

vertical or eventually horizontal in any direction.

Observe that a set F' satisfying the diagonal property above is an m-fringe if and only
if the set {(ir,%r +7) : r € Z} is a 1-fringe. Before we continue with the definition of
dresses, let us state and prove a result highlighting an important algebraic connection

between SLj-tilings and fringes.

Lemma 15. Let P := [Pyl pez be an infinite matriz over a field of characteristic zero,

let F:={(iy,ir +7):7 € Z} be a 1-fringe, and let k > 1 be an integer. Suppose that;

o The minor det[P;, +q i, +b+r|o<ap<k—1 5 equal to 1 for all T € Z.

o Every (k+1) x (k+1) connected minor of P is equal to zero.
Then P is an SLyg-tiling.

Proof. The first hypothesis above may be rewritten as;
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e P is an SLg-tiling over H (i.e., it satisfies the SL; condition when restricted to

H), where H is the k-fringe whose handles are the same as those of F.

Let r be an integer so that 4,41 = 4, and %,—1 = 4» + 1. Clearly the set H’ obtained
from H by replacing i, with 4, + 1 is also a k-fringe. We claim that P is an SL-tiling
over H' as well. Indeed, by the Desnanot-Jacobi identity;

det[P, +1+a,ir+1+b+r)0<ab<k

_ det[P;, 4,4, +b+r—1]0<a,b<k 9€E[Piy 1 +a,ir 1 +b+r+1]0<a,bgh + 0
det[P;, 444, +b+r)0<ab<k

=1.

Similarly, if r is such that 4,41 =%, — 1 and ¢,_; = %,, then P is an SLy-tiling over the
k-fringe H', resulting from H by replacing ¢, with 4, — 1. It is evident by the staircase
property of F' that by applying these transformations successively, we may obtain a new
fringe containing any desired point of the plane. Therefore P must be an SLg-tiling over

the whole plane, as wanted. £

We now introduce a new object which may be regarded as a finite increasing sequence
(meaning that every term is contained in its successor) of fringes.
Definition 24. A k-dress (k > 2) is a function

FiZxZ—{1,...,k},

such that the set
7 {L,...,mp) CZ X

is an m-fringe for m =1, ...,k — 1. We identify a k-dress with the increasing sequence
{(F™} 1 cmek1

of fringes F(™ := f~1({1,...,m}). The function f is constantly equal to k outside

these fringes.
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Following the notation from the above definition of fringes, form =1,...,k—1,r € Z;
let Fr(m) = D, N F(™) denote the r-th diagonal of F(m), and let z'$’”) denote its r-th
handle, so that;

Fm = {60 4™ £ 7), 60 4+ 1,50 +147),.., 6™ +m—1,4" +m—1+7r)}.

The main motivation of our research is trying to show the following conjecture;

Conjecture 1. Let f := {F(m be a k-dress with handles {ism)} and

)
}15m5k—1 1<m<k—1"

let X = {z$’”) be a family of algebraically independent (over the rationals)

}15m5k—1
reZ
formal variables. There exists an unique SLg-tiling P = [Dijlijez whose entries are
rational functions in X, such that for each m = 1,...,k — 1 and each r € Z, the
following “boundary condition” is satisfied;
det [p o i _ o) (2.8)
(#™+a) (5™ +r-40) G

Moreover, each minor of this SLg-tiling, of order smaller than k, is a non-zero Laurent

polynomial with non-negative integer coefficients in X.

When written in terms of the non-zero T-system T'(1,4, 5) := P( Lishiy(Lbizd), this con-
jecture is equivalent to Di Francesco’s (2010) Corollary 4.13. However, Di Francesco’s
proof is partial in the sense that it only shows the Laurent non negativity for determi-
nants of sub matrices which are weakly below or above F(1), while disregarding those
containing entries from both regions of the plane. Additionally, his results are obtained
under the additional condition that every minor of order < k is non-zero. Bergeron and
Reutenauer (see Proposition 9) lift this restriction and prove Conjecture 1 when the
boundary conditions satisfy ™ = &) form =1, ...,k — 1 and for determinants of sub

matrices which are weakly below F(1,

There are three aspects to this conjecture, namely uniqueness, existence, and Lau-
rent non negativity. The first one is proven below using induction and simple alge-
braic arguments, and the last two are proven at the end of this section for £ = 2 employ-

ing constructive combinatorial arguments involving weighted tuples of non-intersecting
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paths within certain particularly complicated graphs dendted G~ and G, which are
defined from the 2-dress f. Our proposed combinatorial model appears to hold for every

k and it might provide a first step towards a complete proof of this conjecture.

Proof of the uniqueness statement of Conjecture 1. Aloné with uniqueness, we also show
that every adjacent minor of order smaller than or equal to k£ must necessarily be a non-
zero rational function in X, whose numerator and denominator have nonnegative integer

coefficients. For this we denote those minors as follows;
M; jm = det[p(i+a)(j+b)lo<abm—1,
and define a partial order < on the set of indices
{(3,3,k) : 4,7 € Z,1 <m < k},

by;

(g 5,m) £ ({f,m) £ Uim)=[ 7 m"
or; m'>m=0
or; mM<m=k
or; m,m’ < k and i > z',(.m) and ¢ > i,(.ml) and i <4 and j < 7',
or; m,m'<kandi§z',(.m) a.ndi'Sif.ml) and i >4 and j > 7/,

where r := j — ¢ and 7’ := j' — ¢. This partial order is inductive, as a result of the

defining properties of fringes, and its minimal elements are those triplets (i, j, m) such

(m) (m

that m € {0,k}, or, m < k and (¢,5) = (4 % big r) for some r € Z. For these

minimal elements we have M;;m = 1 and M jm = x,(m) respectively. Let (4,4, m) be

an element which is not minimal. Thus 0 < m < k and 4 # &™. If i < i™, then;

i+1<im
i <™ - 1< 47)
41 <),

i <im —1 < gfmtD),
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i+1 <™ < gfmh,

These inequalities imply respectively that each of the triplets (i + 1,5 + 1,m), (¢,7 +
L,m),(E+1,5,m), (& jm+1),(i+1,7+1,m—1)is < (¢,5,m), and so the equation;

?

_ Mijv1mMiv1jm + Mijmy1Mit1,j+1,m—1
Mijm = M : &5
i+1,j+1,m

resulting from the Desnanot-Jacobi identity, writes M; jm as a fraction of positive integer

polynomials on adjacent minors indexed by triplets which precede (4, j, m) in the order
<. Similarly, if i > i™, then;
i—1>4m
i>i™ 41> 4™

i-12i" 247,
=124 > imHD),
i > ™ 41> mD,
These inequalities imply respectively that each of the triplets (¢ — 1,5 — 1,m), (4,5 —
L,m),(i—1,5,m), (i —1,5 —1,m+1),(i,j,m — 1) is < (4,5, m), and so the equation;

T M; ;1 mMi1jm + Mi—1j-1m+1M; jm—1
i,5m =

, 2.10
M 15 1m ]

also resulting from the Desnanot-Jacobi identity, again writes M; ;.. as a fraction of
positive integer polynomials on adjacent minors indexed by preceding triplets. Hence
we have shown by induction that each one of these minors is uniquely determined by
equation 2.8, and is a non-zero rational function with positive integer coefficients in X.

In particular this is true for the minors M; ;1 = pi; (4,7 € Z). “

"The inductive argument from the uniqueness proof above fails to conclude the Lau-
rent nonnegativity of the entries of P, due to the inconvenient fact that a quotient of
nonnegative-coefficient polynomials is not necessarily nonnegative as well. For example
the polynomials a® + b and a+b are both nonnegative, but their quotient a —ab+b? is

not. In fact, it appears that due to this type of complications, basic inductive arguments
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are virtually inexistent in published proofs of Laurent non negativity for systems where

this phenomenon is not trivial.

The rest of this section is intended to describe a proposed combinatorial model for the
minors of Conjecture 1. We prove that this model holds for £ = 2 and conclude the
Laurent non negativity statement for this case. Subsequently, in Section 2.3, in an at-
tempt to break the spell against simple inductive arguments for Laurent non negativity,
we present another proof of this phenomenon, albeit on_ly for -the entries p;; (and some
other particular minors), which is based entirely on the Desnanot-Jacobi identity and
two of its corollaries. Although that proof does not tackle every possible minor of P,
it has the advantage of providing a simple algorithm for expanding the entries of P in

terms of the variables X.

Our combinatorial model is constructed from a (k 4 1)-dress, rather than a k-dress, so
our first step is to consider an arbitrary k-fringe F® containing F&*=1) 5o that the
sequence g := {F™},cnek is a (k+ 1)-dress. A trivial way to define this k-dress is by
letting the r-th handle of F® be ¢®) .= i where 5*=Y s the r-th handle ofthe
(k—1)-fringe F&=1)_ But we do not limit ourselves to this particular extension, allowing
g to be any (k+1)-dress which coincides with f up to F*=1, All of the definitions and
results that follow are in terms of a generic (k + 1)-dress g = {F™}; <<k, although
we should keep in mind that it was constructed by extending the k-dress f as just

described.
Lemma 16. Let g be a (k+1)-dress. For allr € Z, m € {1,...,k}, there ezists ezactly

one point (i,j) € D, such that g(i,j) = m.

Proof. We just need to show that the set D, Mg~ (m) has exactly one element. Indeed:

D,Ng 'm) = D,N(g7'({L,...,m})-g1({1,...,m}))
= DN (F(m) [ F(m—l)) = Egm) _ Fr(m_l),

where we set F'9 = F(O) .= §. Recall that F(™1) C F(™ and so Fr(m—l) C Fr(m).
Fr(m—l)’ =m-—1and

Furthermore,

Fr(m)' = m. Therefore

Fr(m) —Fr(m_l)‘ =1, as
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Figure 2.3 Positions of the points v,(-m) for the 6-dress of Figure 2.2.
wanted. A N

As per the Lemma above, for r € Z, m € {1,...,k}, let v,(-m) denote the only element of

D, which satisfies g (v,(-m)) = m. We refer to the sequence {vﬁm)}rez as the defining
- 1<m<k

sequence of g.

The positions of the points o™ (r € Z, 1 < m < 5)'for the 6-dress of Figure 2.2, may
be observed in Figure 2.3. The original 6-dress may be retrieved from Figure 2.3 by
efasing everything but the numbers in brackets, and then filling up the rest of the plane
with 6’s. Although somewhat redundant, this new way of drawing k-dresses in terms of
its defining sequence may be preferable to the original one of Figure 2.2, since it is now
easier to locate the diagonals D, (r € Z), and because we have omitted the implicit &’s

(in this case 6’s) around F(-1),
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It is essential for our combinatorial model to split the complement Z x Z — F!) of
the 1-fringe F(), into two sections, namely its lower complement F()~ consisting of
all points of the plane which are strictly below FO) and its upper complement F W+

consisting of all points of Z x Z which are strictly above F(1).

Although rarely used in our work for m # 1, we extend this notation to every fringe
F(m) (1 <m < k), by letting F(m)‘, F(m)+ denote the sets of all points of Z x Z which

are strictly below or strictly above F(m), respectively. Furthermore, set;
Fm)— .= p(m) y plm)—
Fm)+ .= pim) y plm)+

and for all r € Z;
F{™~ .= D, N F{™—

Fm+ .= D, n Fmt

F¥™~ .= D, N Fm)—

It is immediate by definition that;

F1§m)— C F,,gm_l)_, F1§m)— C Fl’{m—l)—,
F,,gm)+ = F,,gm—l)-}_

T F,.(m"l)"', for =3, ...,k {2.11)

&

Also the same relations are true if we omit the subindices r. An important fact resulting

from these relations is the following:

Lemma 17. Every (k+1)-dress g = {F(m)}lgmgk is non-decreasing in both coordinates
within FO—=. Moreover it is striétly increasing within FXV~™ N F® . Also it is non-

increasing in both coordinates within F()+ and strictly decreasing within Fr(l)+ NF®,

Proof. We need to show that for all (i,7) € F()—;

9(i,5) < g(i+1,7),
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and

(i, 5) < (3,5 +1).
This is evident if g(i,7) = 1. Otherwise, if g(s,5) = m > 1, then (4,5) ¢ F™ 1, or
equivalently, (i, ) € Fm=D-y FMm-1+_ Since Fm~D+ C F(D+ is disjoint with FOO-
we deduce that (i, §) € F™~D= which by definition implies that (s +1,7), (3,5 + 1) €
Fm=0~C 7 x Z— F™1 = g=1({m,m + 1,m +2,...}). Thus g(i +1,5) > m and

g(i,7 + 1) > m, as wanted. Similarly we deduce that g is non-increasing within F(1+,

For the strict monotonicity, we argue that g takes different values within F,gl)— N F&)

FOT

and within N F®  In fact we claim that g takes different values within the union

of these two sets. Indeed;

(Fr‘l" N F“") U (F}”* N F(")) =D, NF® = F® = @, o®},

andg(’uﬁm))=mform=1,...,k. ' O

We are now ready to introduce the graphs G—(g)-and G*(g), which are the main
combinatorial objects from our model. The deﬁnit.ion of these graphs relies on the
notion of neighbouring points: We say that two po'ints v,v" € Z x Z are neighbours
or neighbouring, if they differ by 1 at only one coordinate. For example (1,—25) and
(2, —25) are neighbours, while (1,2) and (2,3) are not.

Given the (k 4 1)-dress g, define an infinite acyclic digraph G—(g) := (V(g), E~(g))
with vertex set V(g) := {v$m) }Egz s F®) | 5o that every one of its edges goes from
Fr(k) to Fr(i)l for some r € Z, b_ymt_he following rule: For r € Z, m,m' € {1,:..,k},
the edge o™ 'ui’_f;) is in E~(g) if and only if thére exist ¢,¢' € {1,...,k+ 1} and

neighbouring points v € Fr(l)_, v € F,S_IH_ satisfying g(v) = ¢, g(v') = ¢, such that
eitherquSrﬁ’Sq’oqumZm’Zq’.

Similarly define another acyclic digraph G*(g) := (V(g), E*(g)) with the same vertex

set V(g) := {vﬁm) }rez = F®), but with every edge going from Fr(i)l to F® for some
1Zm<k

r'€ Z, by the analogous rule: For r € Z, m,m’ € {1,...,k}, the edge vﬁ’_ﬂ — vﬁm')
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Figure 2.4 Some edges of G~ (g) for a 6-dress g.

is in ET(g), if and only if there exist ¢,¢' € {1,...,k + 1} and neighbouring points

v E Fr(_li_)f', o € FOt satisfying g(v) = ¢, g(v') = ¢/, such that either g <m < m/ < ¢

org>m>m >¢.

We exemplify this construction by deducing a few edges of the digraph G~ (g) where g

is the 6-dress from Figure 2.4. The fact that v := v(_ls) € Ffls)_ and v/ = vﬂ € F&)_

(m) (m”)

are neighbours satisfying g(v) = 1 and g(v') = 4, implies that v2';’ — v, ’ is an edge

of G=(g) for all m,m’ with 1 < m < m/ < 4. These are the ten edges between F£55) and
Fﬂ) which are visible in Figure 2.4. Also the fact that the point v := (5,3) € F£12)_
with g(v) = 6 neighbours the pomt v/ := v@ = Fill)ﬁ with g(v') = 4, implies that

o™ 5 ™) is an edge of G=(g) for all m,m’ € {1,2,3,4,5} with 6 > m > m’ > 4.

These are the three edges between Fg) and Fﬁ‘r’l) which are visible in the figure.
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Figure 2.5 Part of a 6-dress g and the corresponding section of G~(g).

The two digraphs G~ (g) and G*(g) are often far from planar, and their shape is gen-
erally very intricate, although they have some very regular properties which we review
next. See Figure 2.5 for a Maple-generated example of G~ (g) (arrows omitted) for

certain 6-dress g.

We introduce a new simpler notation for paths of the digraphs G~ (g), G*(g) as follows;

\
7

m Mpy1 Mpyg - Myt
T +1 T+2 ’/r — 'U,,(-mr) - U,,(_TI‘H) - U’I(_Té‘+2) L OPPa 'USn"') e (g)
v P T+ cee '

Mr Mri1 Met o0 My ) B
T T 1 T : :‘ e 1(_711-’) - 1)1(_71'1 1) - '01(_‘1"12' 2) =Sy ater=H ,U"('m,-) € G+(g)

7 r+l r+ S

Observe that paths of G (g) are read fromright to left in this notation. This is indicated
by the arrow on top. We may often omit this arrow as long as it is obvious whether

the path is in G~ (g) or G*(g). For any path p of G~(g) or G*(g), denote by m9(p) (or
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simply m(p) when the dress g is implicit) the set of all integers s for which there exists

some m € {1,...,k} such that vﬁ"‘) € p. In the notation above, this is just the set

{r,r+1,...,7'} of all integers in the second line. Moreover, for any s € 79(p), denote

by p[s] the only number such that v§” 5D ¢ p. In our new notation, this is the number

placed immediately above s. A simple example of these notations follows;

1 1 2 4 2
. = o 5 o) 5 o) S of®

=3 —2 =1 & 1

o

ﬂ-(p) = {—3’ —2,-1,0, ]-}
p[=3]=p[-2]=1, p[-1]=p[l]=2, p[0]=4.

We are interested in paths of G~(g) and G*(g) which start and end at some particular

vertices in F(l), described below.
For (a,b) € F(U—, denote by;
«(a,b): The rightmost point of F(1).which is in the same horizontal line and weakly to
the left of (a,b).
A(a,b): The bottommost point of F(1) which is in the same vertical line and weakly below
(a,0).
For (a,b) € F(U+, denote by;
»(a,b): The leftmost point of F(1) which is in the same horizontal line and weakly to the
right of (a,b).
v(a,b): The topmost point of F) which is in the same vertical line and weakly above

(a,b).

See Figure 2.6 for examples of this notation. Notice that for each point (a,b) in the

1-fringe FO) = FO- N PO+,

<(a,b) = A(a,b) = »(a,b) = v(a,b). (212)




93

(c,d) »ed) adab)

v(c, d)

(a,b) (a,b)

Figure 2.6 Two points (a,b) = (4,5), (¢c,d) = (—2,3) along with their images under

<, A and », v respectively, inside the 1-fringe F(1),
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of?
v§3) '04(12) o
,Ué3) v§2)

— o W

8 o oY v ) L
v(_55) ) vg), 3) vé‘l) vgs)
v(_s}), ) v§4) vgs)

Figure 2.7 A 6-dress whose 1-fringe F(O has been highlighted, along with two paths
in #(5,3) and « (v((,5)) = ¢(0,0) respectively.

For (a,b) € F()~, denote by #(a,b) the set of all paths in G~(g) between «(a,b) and
A(a,b) (see Figure 2.7). Similarly, for (a,b) € F(U+, denote by +(a,b) the set of all
paths in Gt(g) between »(a,b) and v(a,b). Observe from (2.12) that for (a,b) € FQ,

2(a,b) = ¢ (a,0) = {(a, )}, (2.13)

where the (a,b) on the right hand side denotes the length-zero path between (a,b) and

itself.

It is convenient to distinguish the vertices of V(g) which are below or above F(1. To
this end, denote;

VH(g) = FOt n pk)

V=(g) :== FO~nF®),
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VH(g) := FO+ N F®),

V—(g) :== FO-nF®),

We now proceed to define weights w—,wt for the graphs G—(g) and G1*(g), over the
ring R := Z[X,X™!] of Laurent polynomials with integer coefficients in the set of
algebraically independent (over the rationals) formal variables X = {xﬁ’") }5%1 .
We call them respectively the lower weight and the upper weight associated to g over
Z[X, X~1]. We first define these weights on the vertex set V(g) = F*), and later on

the edge sets E~(g), E*(g).

Define y : V(g) = R by;
A

v(o) = ey

forr € Z, m € {1,...,k}, where we set :z:so) = xgk) :=1 for all » € Z. Now define

functions 27, 2zt : Z x Z — R, as follows;

'4
y(3,4) if (i,5) € FO,
e ) Gy -1, - e
z(4,7) = o . e if (i,5) € V=(g),
1) Wi— T ~T). (i) € V()
| 1 otherwise,
[ (i, 5) it (i,5) € FO,
o b b . 1 ‘+1)1—9+(i,j) . o
2, g) = 4 YU+, y c vt
Vo G+ LG s T GNEVTE),
[ otherwise,

where 6= (i, j) and 67 (3, ) denote the cardinalities of the sets FM N{(i—1,4), (4,5 — 1)}
and F® 0 {(i + 1,7), (5,5 + 1)} respectively. Observe that 8~(3, j),6% (3, 5) € {0,1,2}
for all (4,7) € Z x Z. Finally for (3, ) € V(g), set;

o0

Z(i-tj-t) i (Gj)eV(g)
1

- T
w (i, 5)

Wi (e i (2.14)

if (i,5) € V¥{g)
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o0
[IzMG+ti+t) i (,5) eVH(g)

ti,5) = § =1 Y (2.15)
) (5,4) € V=(9)

Despite referencing each other, the two definitions above are not conflicting, since

w

V=(9) CV—(g) and V*(g) C V*(g). Observe that for (3,5) = o e FO,
w”(i,) = w(i,5) = =, (2.16)

and in general for (4,7) = o™ € Vig);

w(i, H)wt G, g) = 1.

We still need to define w~,w™ on edges. For any choice =+ of sign, we set w®(e) to be

equal to 1 whenever e € E* — (F() x F(1)), and we set;

1
o) if w—wv is horizontal,
u
wE (u =) = ¥ y
—— if uw—wv is vertical,
y(v)

for every edge u — v € EX N (FO x FO).

As stated before, we use the weight w™ for paths of G~ (g), and the weight w* for
paths of G*(g). More precisely we are interested in the weighted sums | 2 (a, b)l,,~
((a, b) € f(lT) and | 2 (a, b)|y+ ((a, b) € ﬁ)—"') For (i,j) € Z x Z we conveniently
denote;
. { o) () €FO,
cGg) i (5,5) € FOT,
and for each p € PI(i, j) we set;
wi(p) i (i5) € FO-,
{ wtp) i (4,4) € FO,
Equations (2.13) and (2.16) ensure that the set P9(%,5) ((¢,) € Z X Z) and the weight
w(p) (p € PI(4,7)) are well defined. Following the same weighted cardinality notation

from before, we denote;

ng(i’j)lw = Z w(p),

PEPS (4.5)
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for (i,j) € Z x Z. Note that w is a weight on paths, and unlike w™,w*, it is not well

defined on vertices or edges. We call w the weight associated to g over R = Z[X, X 1].

Next we state a new conjecture relating the matrix from Conjecture 1 and the combi-
natorial objects described above. We then proceed to state some results which will lead

to the proof of both conjectures for the case k = 2.

Conjecture 2. Let f be a k-dress and let g be a (k+1)-dress obtained from g by adding
a k-fringe F®) | Then the matriz

PX8 = [|P9(a, ) ul(apyezxz

satisfies the determinantal equations from Conjecture 1, including the SLg-condition

(the condition that every k x k connected minor of PX+9 is equal to 1).

To show Conjectures 1 and 2 for k = 2 it is necessary to introduce a broader notion of

intersection of paths from
o= | PHad) .
(a,b)EZXZ
We introduce this broader notion later, and proceed now to state some general properties

of the graphs G—(g),G*(g) and their paths, for all values of k. The following property,

which we use often, is immediate from the definition of these graphs.

Lemma 18. Let g be the (k + 1)-dress with defining sequence {vﬁm)}rez . Suppose
1<m<k

that m,m’ € {1,...,k} and let I, be integers such that either m <li<l<m

4

—_’_} __)
ovm 2420 2m. If (Tr’jfl) € E~(g), then (irﬂ_l) € E~(g). Similarly, if

' l ll
(Tr?l) € E+(g), then ( 1'1'+1) € E_(g),

A less immediate property is the following:

Lemma 19. Let g be the (k + 1)-dress with defining sequence {v,(-m) }rez . For all
1<m<k -
reZ,me{l,...,k};
_—
m m

€G (9)
r r+1
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—_

m m
€ G*(g)
r r+1

Proof. We show this only for G~(g), as the result for G*(g) is analogous. Consider
the set A := F(D-n (Dy U Dyyq). Order the elements vy, vs,v3,... of A increasingly
by the sum of their coordinates. Thus for all 2 > 1; The neighbouring points v;, v;4+1
are on different diagonals among Dy, D11, and satisfy g(v;) < g(vi41) (since g is non-
decreasing within W) Moreover, g(v1) = 1, and for n large enough, g(v,) = k + 1.
Hence for all m € {1,...,k}, there exists ¢ > 1 such that g(v;) < m < g(viy1). More

precisely, there exist g,q’ such that ¢ < m < ¢ and either vﬁ‘J),vS_{)l or vﬁ‘fl,vﬁql) are

neighbours. In either case we obtain by definition that u™ 5 vﬂﬂ € G (g), as

wanted. A

Using the same idea we get the next two lemmas;

Lemma 20. Let g be a (k+1)-dress. For allr € Z, LLI',m,m/ € {1, ... k} with either Ll

l<m<l <m orl>m>U>m, and for any fized choice of sign +;

/. m m I m m U

: €GHg) « : € G¥(g).
r r+1 r r+1 r r+1 r r+1

Lemma 21. Let g be a (k+1)-dress. For allr € Z, [,lI',m,m’ € {1,...,k} withl <,
m>m', and '

HiL,i+1,...,0 0 {m,m—1,...,m'}| > 2,

and for any fized choice of sign %, the two statements below cannot happen simultane-

ously;

€ G¥(g),

€ G*(g),

r r+1
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Some of the results that follow are proven in the next section, as a way to keep this

section lighter and easier to read.

Lemma 22 (Proof in page 106). Let g be a (k + 1)-dress. The restriction of G™(g) to

V—(g) is the north-east lattice graph on V—(g). Similarly, the restriction of G*(g) to

V+(g) is the south-west lattice graph on V+(g).

Lemma 23 (Proof in page 110). Let g be a (k+ 1)-dress. If two points of V—(g) are in
the same horizontal line or in the same vertical line, then there is ezactly one path in
G~ (g) joining them. Similarly, if two points of V+—(g) are in the same horizontal line
or in the same vertical line, then there is exactly one path in Gt(g) joining them. In
either case, this unique path is a straight (horizontal or vertical) segment between the

two points.

Lemma 24. Let g be a (k+1)-dress. For (a,b) € V(g), the only path in PI(a,b) which
visits (a,b) is the the path p satisfying that p(— (a, b)) is horizontal and p((a,b) —) is

vertical.

Proof. This is a direct result of Lemma 23, since for each (a,b) € V—(g), the two

points (a,b), €4(a,b) € V—(g) are in the same horizontal line, while the two points

(a,b), A(a,b) € V—(g) are in the same vertical line. Also for (a,b) € V*(g), the

two points (a,b), »(a,b) € V—(g) are in the same horizontal line, and the two points

(a,b), w(a,b) € V—(g) are in the same vertical line. O

Lemma 25 (Proof in page 112). Let g be a (k + 1)-dress. Let p be a path in P9(a,b)
for some (a,b) € Z x Z. Then g(c,d) < g(a,b) for all (c,d) € p.

We are ready to introduce our broader notion of path intersection between paths of
P9 = UppezxzP?(a,b). We do this in three different definitions. The first one is
the usual intersection (sharing one common vertex) with an additional restriction. The
other two notions, namely those of crossing paths and bonding paths, are remarkably

different.
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We need some new notation. For (a,b) € Z x Z, observe that for p € P9(a,b), the
set m9(p) depends only on (a,b). We thus use the notation m9(a,b) for this set. Recall
that the set m9(a,b) is an integer interval (a sequence of consecutive integers). More
precis‘ely: If either (a,b) € FO—, (i,5) = «(a,b), (¢,5) = a(a,b), or (a,b) € FO)-,
(i,7) = w(a,b), (#,5') = »(a,b), then; :

79(a,b) :={j —4,j—i+1,5—i+2,...,7 —i}

For example, for the points (a,b) = (4,5), (¢,d) = (—2,3) of Figure 2.6, we ha.ve
m9(a,b) = {—4,-3,-2,-1,0,1,2,3,4,5,6,7} and n9(c,d) = {4,5,6}. Observe tha.t
m9(a,b) = {b— a} for all (a,b) € F). Furthermore;

|79(a,b)| = 1 |79(a,b)| < 2 (a,b) € FO,

Definition 25. Let g = {F(™}1<m<k be a (k + 1)-dress. Let (a,b), (c,d) be points
in Z x Z. Suppose that |79(a,b) N 79(c,d)| > 2 and either; (a,b),(c,d) € FI=, or;
(a,b), (c,d) € FO*. Then two paths p € P9(a,b), n € PI(c,d) are said to be in-
tersecting if they share a common vertex. If they intersect at a point v,_(-% some

m € {1,...,k}, then we say that they intersect in the diagonal D, = {(¢,j) : j—i=r}.

See Figure 2.8 for an example of two intersecting paths.

Definition 26. Let ¢ = {F(™},<n<x be the (k + 1)-dress with defining sequence

{v,(-m) }rez . Suppose that (a,b), (c,d) € F()* for some fixed choice % of sign. Then
1<m<k

two paths p € P9(a,b), n € PI(c,d) are said to be (mutually) crossing if there exist

integers r € Z, I,I',m,m’ € {1,...,k}, satisfying the following conditions;
r r+1 )
m
P
T

r r+1

) € G*(g).
+1
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Figure 2.8 Intersecting paths in p € P9(4,2) = #(4,2) and n € PI(5,3) = ~(5,3).
These paths intersect at v(_2§ = (4,1) in D_3 and at v(_zl) = (3,2) in D_;.
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We say that these two paths cross between D, and D,y;. See Figure 2.9 for an example

of a pair of crossing paths.

Definition 27. Let g = {F(™}i<mek be the (k + 1)-dress with defining sequence
{’uﬁm) },l.iz - Suppose that (a,b), (c,d) € Z x Z. We say that two paths p € P9(a,b),
n € Pg—(z—d) are bonding, if W e p,n (equivalently p[r] = n[r] = 1) for all r €
79(a,b) N79(c,d). In other words, the paths p and 7 remain within F(1) across all the

| diagonals D, which they both visit. See figure 2.10 for an example of bonding paths.

Definition 28. Let g be a (k + 1)-dress. A tuple (p1,...,pn) of paths from the set
P9 = UgpyezxzP?(a,b) is said to be non-intersecting, non-crossing or not-bonding, if

no pair of paths among p1, ..., pn is intersecting, crossing, or bonding, respectively.

Lemma 26 (Proof in page 125). Let PX:9 be as in Conjecture 2. Let a,b,c,d be integers

with a < ¢, b < d. The minor; .
det(Pid )

is equal to the weighted sum of all non-intersecting, non-crossing and non-bonding pairs

(p,m) € P9(a,b) x PI(c,d).

Theorem 7 (Proof in page 125). Conjectures 1 and 2 hold for k = 2. More formally;

let FO be o 1-fringe with handles {1}9)} , and let X = {z.f-l)} be a family of
r€Z Z

algebraically independent (over the rationals) formal variables. The;ee ezists an unique
SLa-tiling P = [pi;]i,jez whose entries are rational functions in X, such that for each
r€Z;

p(ig))(ig) +T) =g, (2.17)
Moreover, each entry and each 2 X 2 minor of this SLa-tiling is a non-zero Laurent

polynomial with non-negative integer coefficients in X.

2.2 Proofs of results from section 2.1

We note, since we often use arguments based on symmetries, that each one of the

defining properties of fringes is invariant under any translation of the points of F, and
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Figure 2.9 Drifting paths p € P9(—2,—1) = ¢(-2,-1) and € P9(0,0) = (0,0).

These paths cross between Dy and Dy because v§4) — 'v((,4)

: € p v§3) = 'vt(,s) € n
vg‘t) - v(()s) € G*(g), v§3) - 084) € G*(g). Similarly they cross between Dg and D_;.
They do not cross between D_; and D_,, since the condition vgl) - v_(_12) € G~ (g) does

not hold (all the other conditions hold). Observe that these paths are not intersecting.
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< TR o = ! -
=2y
._ e
\

Figure 2.10 Cuddling paths p € P9(2,5) = #(2,5) and 7 € P9(0,—2) = «(0,-2).
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also under the transposition (¢, j) — (j,%) and the 180° rotation (i, j) — (—i, —j). We
denote by Tr F' and R;jgge F' the transpose and the 180° rotation of F', respectively. We
denote the r-th diagonal of Tr F' by [Tr F|,. This must not be confused with Tr F;,
which is just the transpose of the set F,. Similarly we denote the r-th diagonal of
ngoé F by [Risge Fr. It is not difficult to see that

[T Flp = TeFp=d4{7d » (47} 2 s},
and that
[Risoe Flr = Rigoe Fr ={(—1,—j) : (4,5) € F+}.
Let [Tr F]* and [Tr F|~ denote respectively the upper and lower complement of the
m-fringe Tr F'. Similarly define [Risp0 F|* and [Rige F|~, and naturally set [Ty F|t :=
(Tr F) U[Tx FI*, X F]- == (Tx F) U [Tx F|~, TRisoe FI* := (Riso F) U [Rusoe F]*, and
[ng()o F]_ = (R180° F) ] [R180° F]— Observe that;
[MeF|” ="TeF,
[Tr F|* = Tx F*,
[Risoe F]™ = Rugoe F'Y,
[Risoe FI* = Ragoo F™.

Moreover;
[TrFl-=TrF-,
[T F]* = Tr F¥,
[Risoe F]~ = Risoe F'T,

[R180° F]+ = R180° ==,

For a (k + 1)-dress g := {F™};<m<k new (k + 1)-dresses;
Tr g := {TF™}1 ek,

Risoe 9 := {Risoo F™ hi<mer,
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These transformations correspond to the functional compositions g o Tr and g o Rjgge,

since both Tr and Rqgge are their own inverse.

We may also apply these transformations to graphs. For any graph G with vertices
in Z x Z, define Tr G and Rjigge G respectively to be the graphs resulting from rela-
belling the vertices of G by the corresponding transformation, and denote by revG the
graph resulting from reversing the direction of each one of G’s edges. A careful yet
straightforward examination of the definitions of the graphs G~ (g) and G* (g) reveals
that;

G (Trg) =revITrG~(g)

G*(Trg) = rev Tt G (g)
G~ (Risoe 9) = Risoe GT(9)
G*(Risoe 9) = Risoe G (g)

Now let G¥Z(g) denote the graph with vertex set V—(g) and whose edges are all the
unit north steps and all the unit east steps between vertices of V—(g). Analogously, let
G5% (g) denote the graph with vertex set V+(g) and whose edges are all the unit south

steps and all the unit west steps between vertices of V+(g). We have;
GVE(Trg) = rev Tt GV E(y)

GV (Trg) = rev Tr G5V ()
GNE(R1gp0 9) = Rusoe G°7 (g)

GSW(Rlsoo g) = 1:{:1800 GNE (g)

Proof of Lemma 22 (Section 2.1, page 99). Consider any (i, 5) = 'v,(-m) € V7 (g). As-
sume that (3,5 + 1),(z — 1,5) € V7(g) (all the other cases, for example (i,j +1) €
V~=(9), G —1,7) ¢ V~(g), are quite similar). We need to show that the only edges
of G~(g) departing from (i,5) and ending within V+(g), are (4,5) — (3,5 + 1) and
(z, J) = (i—1,7). These are in fact edges of G~ (g) by definition (simply set v := (4, ),

i {(7‘).7 a3 l)a (7‘ — l,j)}, qg:=m= g(’U) and q, =m':= g(’U’)).
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Suppose that for some m' € {1,...,k}, the vertex vﬁ’fll) is in V~(g) and the edge
o™ v,(.:r_‘/l) is in E~(g). We need to prove that v,(.fl) is either (4,7 +1) or (¢ —1, ), or
equivalently, that m/ is either g(z, j+1) or g(i—1, ). By definition of G~(g) we know that

there exist ¢,¢’ € {1,...,k+ 1} with either g<m <m' < ¢ org>m >m' > ¢, such

that g(v) = q, g(v') = ¢’ for some neighbouring vertices v € Fr(l)—, v e Fr(i)f . Clearly
there is some integer ¢ such that v = (i+t, j+t), and v/ € {(i+t, j+t+1), (i+t—1,j+¢)}.

Let us first consider the case v/ = (i +¢,5 +t + 1):

Ift <0, then g6 +t,j+t) <gli+t,i+t+1) <g(E-1,5) < g(i7) (since g is
non-decreasing within F(1)-) andso ¢ < ¢ < g(i —1,5) <m <m/. Thus m =m/ =

¢ = g(i - 1,7), as wanted.

If t > 0, then g(5,5) < g(¢,5 +1) < g(i+t,j+1t) <gli+t,j+t+1)andsom <
g(i,j+1) < g<¢. Thus m = ¢ = g(¢,j + 1), which means that ¢t = 0, a contradiction.

Ift=0, then m = ¢ =g(i,7) < g(4,7+1) = ¢ and so g(i,5) <m' < g(4,j + 1). Thus
g(i —1,7) <m' < g(4,7+1). This means that vy_fll) is located between (¢ — 1,7) and
(4,7 +1), but these are consecutive points of Dy;;. Hence 1),(.7_':;) is equal to one of them,

as wanted.
Let us now consider the case v = (i +¢— 1,5 +1¢):

Ift <0, then g(i +t—1,5+1¢) < g(i+t,j+1t) <g(i—1,5) <g(5,j) andso ¢’ <g <
g(i—1,5) <m. Thus m = ¢’ = g(i — 1, j), which means that ¢t = 0, a contradiction.

If t >0, then g(4,5) < g(4,j+1) < gli+t—1,j+t) < g(i+t,j+t)andsom’ <m <
g9(,j+1)<¢ <q. Thusm=m'=¢ =g(i,j+ 1), as wanted.

If t = 0, then m = ¢ = g(4,§) > g(¢ — 1,j) = ¢, and so0 g(i,j) = m’ > g(i — 1,5). Thus
g(i,j+1) > m' > g(i — 1,7). This means that ”(T;) is located between (,j + 1) and

r

(i — 1, ), so as before, it must be equal to one of them, as wanted.

We have shown that the restriction of G~(g) to V—(g) is equal to GNZ(g). We now show
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that the restriction of G*(g) to V+(g) is equal to G°% (g). Recall that G~ (Rigee 9) =
Risoo GF(g), GNE(Rigee g) = Rigoe G°%, and V—(Risee g) = Rusoe VF(g). Thus the

proven claim for the (k + 1)-dress Rigpo g reads;
The restriction of Rigge GT(g) to Rigoe V‘_(w is equal to Rigge G5V (g).
Equivalently;
The restriction of GT(g) to V—(g) is equal to G (g),

as wanted. O

The following Lemma is helpful in the proofs that succeed it.

Lemma 27. Let i,j,l,7 be integers with g(i,i + 1) < g(j,j + ) (respectively <). If

(G, d+r) € V=(9) and (i,i+r) = (I, 1+7+1) € E~(g), then g(l,1+7+1) < g(j, j+7+1)
(respectively <). Similarly, if (,5+71) € V*(g) and (5,i+7) = (L,I+7—1) € ET(g),
then g(L,1+7—1) < g(§,j + 7 — 1) (respectively <).

Proof. Let us show the first claim. We may assume that
(j’j+7'+ 1) € V(g) = F(k)7

since otherwise we would easily obtain g(j,j+r+1)=k+1>k>g(l,l+7r+1). Set

(m)

m = g(i,i+7) and m’ := g(l,l+r+1), so that (3,i+71) = »™ and (Li+r+1) =9 ).
If m’ < m, then;
gll+r+1) <gGi+7)<g(,j+7r)<g(Gji+r+1),
respectively,
g(li+r+1)<g@i+r)<g(,j+r)<g(j+r+1),

because g is non-decreasing within F'()-. Otherwise, if m’ > m, there exist neighbour-

ing vertices v € F,gl)_, v e Fr(_li_l_ with g(v) = ¢ <m <m' < ¢ = g(v). The inequality

g(v) < g(v') implies that v’ is to the right (not above) v, so there must be an integer ¢
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such that v= (j+t,j+t+7)and v = (j+¢t,5 +t+7+1). Moreover, ¢t must be <0

(respectively < 0), since otherwise the following contradiction would aiise;
m=g(i,i+r) <g(qj+r)<gli+tj+t+r)=q<m,
respectively,
m=g(i,i+7) << gG,j+r)<gli+t,j+t+r)=g<m.
Therefore
g+t j+t+r)Sgli+ti+t+r+1)<glij+r+1),
respectively,

g+t j+t+r)<gli+t,i+t+r+1)<g(i+r+1)

(since g is strictly increasing within D, NV~ (g) = F)™n F®)), and so;
¢<qd <g(i+r+1),
respectively,

9<q' <g(,j+r+1),

which implies that m' < g(j,j + 7+ 1), respectively m' < g(j,j + 7 + 1), as wanted.

Finally we deduce the second claim from the first one by considering the (k + 1)-dress
Risge 9. Indeed the first claim for this dress reads; '
Let 4, 4,1, r be integers with g o Rigge (2,4 + 1) < g o Rigee (4,7 +7) (respectively <).
If (j,7 +7) € Rigge V(g) and (4,4 +7) = (1,1 + 7 + 1) € Rygoo E(g),
then g o Rigee (I,l + 7+ 1) < goRugge (4,7 + 7 + 1) (respectively <)
This is the same as;
Let i, 7,1,7 be integers with g(—%,—1 — ) < g(—j, —j — ) (respectively <).
If (—j,—j —r) € V¥(g) and (—i,—i — 1) = (=, —l —r — 1) € E*(g),
then g(—l,—l —r —1) < g(—j,—j —r — 1) (respectively <),

which is equivalent to the second statement under the map (%, 4,{,7) — (=i, —3, =, —r).

O
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Proof of Lemma 23 (Section 2.1, page 99). Let us show the first claim (the one involv-
ing points of V—(g) and paths in G~ (p)). Recall that the restriction of G~ (p) to V—(g)
is the graph GV¥(g), consisting of all north and east unit steps between points of V——(g_)-
Thus if two points of V‘_(Q are in the same horizontal line, or in the same vertical line,

there is a straight path between them, consisting of vertices of V—(g) and either only

north steps, or only east steps. Next we show the uniqueness statement.

Suppose that (4,5 +p), (4,7 +¢) € V=(g9) (p < ¢). Thus (j,j+7) € V- (g) for all
between p and gq. Let

Pi=Up —>Upyl = - —> g (vp = (.7,.7+p)7 Vg = (.7:.7 +Q))

be a path between (j,7 + p) and (4,7 + ¢) in G—(g), and let vy = vpy1 = (5,0 +7) =
(I,1+ 7+ 1) be any step of this path. From Lemma 27 we have;

9(vr) < 90,5+ 1) = g(vr41) < 96,5 +r+1),

Hence we deduce inductively that g(v,) < g(j,7 +7) for r =p,p+1,...,q. Also from

Temma 27 we have;

g(vr) < 94,5 + 1) = g(vr1) < g(4,5 +r +1),

which we write; ‘

9(vry1) 2 (G, 5+ +1) = g(vr) = 90,5 +7),
Hence we deduce, also inductively, that g(v,) > g(j,j +r) for 7 = p,...,q. Therefore
g9(v;) =g(j,j+ 1), and so v, = (§,j +r) for r =p,...,q, as wanted.

We now show the same for points in the same vertical line. Above we proved;

For (4,7 +p), (4,7 + q) € V—(g) with p < g, the only path between
(J:j+p) and (j,j+¢q) in G (9),is (,j+p) > (i +p+1) == (J,i+9).

We write this statement in terms of the (k + 1)-dress Tr g;

For (4,7 +p), (4,7 + q) € Tt V—(g) with p < g, the only path between

(j1j+p) and (JaJ+Q) in I‘GVT&'G_(Q), is (Ja]+p) =¥ (jaj+p+ 1) =299 T (JaJ+Q)
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Equivalently;
For (j +p,7),(j +4,7) € V—(g) with p < g, the only path between
(j+aj)and (j+p,5)in G (9),is +¢,5) 2 (G+a—1,5) == (G +p),

as wanted.

For the second claim (the one involving points of V+(g) and paths in G*(p)), we write

the first claim in terms of the (r + 1)-dress Rigpe g;

If two points of Rjgpe V*(g) are in the same horizontal line or in the same

vertical line, then there is exactly one path in Rjgge GT(p) joining them.
Equivalently;

If two points of V+(g) are in the same horizontal line or in the same

vertical line, then there is exactly one path in G*(p) joining them.

Moreover this unique path is either consisting entirely of west steps, or of south steps,

respectively, as claimed in the lemma’s statement. Ll

The functions », A, 4, v, 2 and ¢, introduced in the previous section, depend on the
(k+1)-fringe g. To avoid ambiguity we denote them also by by, Ay, 44, ¥y, Fgand ¢y
when the (k + 1)-fringe being used is not evident. Next we characterize these functions

for the (k + 1)-fringes Tr g and Rjgge g. All of the equalities below are straightforward.
P1rg(a,b) =Tr w,Tr(a,b) =Tr v, (b, a),
Ay (o;b) = Te 45 Telo,b)= Tt 4 (b;4),
d1rg(a,b) =Tr A;Tr(a,b) =Tr A, (b a),
v1rg(a,b) =Tr by Tr(a,b) =Tr »y (b, a).
For (a,b) € [Tr FD]- = Tr FO- (ie., (b,a) € FU-);

Irvgla,b) =revTr 24 Tr(a,b) =revTr 24 (b,a).
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For (a,b) € [Tr FD]*+ = Tr FO+ (ie., (b,a) € FO);
Eppglenb) =rewTr 75 Tr(a,8) =tevTr 75 (ba).

Furthermore:

PRgo0 g(3; ) = Rigoo €4 Rigeo (a,0) = Rigoe 44 (—a,—b),

AR .00 (@, 0) = Rigoe wg Rigeo (a,b) = Rigpe wy (—a, —b),

AR50 (@, b) = Rigoo »g Risee (a,b) = Rigoe Py (—a,—b),

¥ Rus00 9(@ b)) = Risoe Ag Rigoo (a,b) = Rigoe &g (—a,—b),
For (a,b) € [Rigoe FV]~ = Rygoe FIT (ie., (—a, —b) € FDH);

2 Rygeo 9(@50) = Ragoo g Rusoe (a,0) = Rugoe ¢ (—a,—b).
For (a,b) € [Rigee FVIF = Rygoo FO (ie., (—a,—b) € F(l?"');

¢ Rygeo 9(@ b) = Ragoe + Rigoe (a,b) = Rigoe 2 (—a,—b).

Proof of Lemma 25 (Section 2.1, page 99). The result is evident for (a,b) € Z x Z —
V(g) = g~(k +1). Let us show the statement for (a,b) € D, NV—(g). Suppose that
<(a,b) € Dy and A(a,b) € Dy, where clearly p < r < g. Observe that (a,b) = (a,a+r),
<(a,b) = (a,a+p), and A(a,b) = (a+7r—¢q,a+7). Set p:=vp = Vpy1 = -+ = Vg,
where v, = 4(a,b), v; = A(a,b). From Lemma 27, we obtain inductively that g(vs) <

gla,a+s) for s =p,...,r. Since g is non-decreasing within F(1)=, we have;
g(vs) € gla,b) for s=1,...,m (2.18)

Consider the path revTrp = Trv, = Trvgy — -+ = Trup in Fyg(a+ r,a). This
path is between Tr (a + 7 — q,a+7) = (a+7,a+ 7 — ¢) and Tr(a,a + p) = (a + p, a).
Again from Lemma 27 we obtain that Trg(Trvs—s) < Trg(a+ra+7—gq+s) for
s=0,...,9—r. Thus by the non-decreasingness of Tr g within ’I‘rf‘(_l)t;

Trg(Trig—) < Trglb, &) for g=0.. 50—
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or equivalently;

g(vg) < ga,b)fort=r,...,q. (2.19)

Hence from 2.18 and 2.19, we obtain the desired inequalities.

To prove the statement for (a,b) € V*(g), write the original statement for the (k + 1)-

dress Rigge g;

If (a,b) € Risoe V*(g) and p € Rigoar (—a,—b), then g(—c, —d) < g(—a,—b) for (¢,d) € p.

Equivalently;

If (—a,—b) € V*(g) and Rigpe p € ¢ (—a, —b),
then g(—¢, —d) < g(—a,-b) for (—c, —d) € Rigpe p,

as wanted. O

The rest of this section is dedicated to providing some weight-preserving involutions
on pairs of intersecting, crossing, and bonding paths. This is done to extend the usual

notion of switching two paths at a common vertez (see page 11).

The involution X, (r € Z) on intersecting pairs of paths: This is the usual
“switching” involution on paths. Assume that (a,b) and (c, d) are both in F()~ or both
in FO+ with |79(a, b)N719(c, d)| > 2. Let p, 1 be paths in P9(a, b), PI(c,d) respectively.
If they are intersecting at a point vf™ in D,, set X, (o) = (p', ) € PI(a,d) x PI(b,c),
where;

o' = p(= ™ n(ef™ =)
7 = (= o™)p(ei™ —)

This is clearly an involution and it is weight preserving, since the vertices and edges
of (o', 1) are the same as those of (p,7), and because (a, b), (c,d) € FU~ if and only
if (a,d),(c,b) € FO~ as well (similarly for F(U+). Notice also that because of this

preservation of vertices and edges;

79(a,b) N79(c,d) = n¥(a,d) N 79(c, b),
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and;

79(a, b) UnI(c,d) = m(a,d) Un3(c,b).

The involution X o (r € Z) on crossing pairs of paths: Assume that (a,b) and
(c,d) are both in F()-. Let p, n be paths in P9(a,b), PI(c,d) respectively. If these

(t ) (l ) (m). (m’)

paths cross between D, and D, with v, €pand vy "= vy € 7, then set

Xep2(prm) = (¢'sn') € P9(a,d) X P(b, ), where;

o = p(= o) (o0 — o7 n(oF? =)

o = (= o) @™ = v ) n(vih =)
Similaﬂy, if (a,b), (c,d) are both in FO+ with v(l) —+ o) € p and vﬁﬁ o™ e,
then set Xr+% = (¢, n') € PI(a,d) x PI(b,c), where;

7 = p(= 020 @y = of™) m(ef™) =)

7 = (=) (@7 = o) n®) =)

As before this is a weight preserving involution on crossing pairs of paths.

The involution X,,,q on bonding pairs of paths: For every path ¢, let V(o) denote

the set of vertices of a. The following three lemmas are essential to define Xpong.

Lemma 28. Let g be a (k + 1)-dress. If p € P9(a,b), n € PI(c,d) are bonding, then
for all r € w9(a,b) UnI(c,d), the set V(p) UV (n) contains ezactly one point from the

diagonal D,.

Proof. Let o ,'v£ ™ be elements of V(p) N V(n). If they are both in the same set
V(p) or V(n), then clearly | = m. Otherwise, if they are on different sets, then r €
m9(a,b) Nm9(c,d) andsom =1=1. a

Lemma 29. Let g be a (k+ 1)-dress. Let (a,b) be a point of the plane Z X Z, let s,t be

nonnegative integers, and suppose that the set

A = {(a+s,b),(a+s—l,b),...,ka,b),(a,b+l),...,(a,b+t)}
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is entirely contained in FV, "Let p be any path in G~(g) which visits D, for r =
b—a—s,b—a—s+1,...,b+t—a. Then;

(a,b) € p=> A C V(p). : (2.20)
Sihilarly, if we suppose that the set
B :={(a,b—1t),(a,b—t+1),...,(a,b),(a—1,b),...,(a—s,b)}

is entirely contained in F(D, and that p is any path in G*(g) which visits D, for r =
b—t—a,b—t—a+1,...,b—a+s, then,

(a,b) € p= B CV(p). (2.21)

Proof. Let us show (2.20). Assume ¢t > 1. We show that (a,b+u) € V(p) for0<u<t
by induction on u. The base case u = 0 is given. Suppose that (a,b+ u) € V(p) for
some u < t. Since b+u+1—a < b+t — a, then p visits a vertex in Dpyqyy1-q. Let
(a+1,b4+u+1+ 1) be that vertex, for some [ € Z. By the definition of G~(g), there
must exist neighbouring vertices v € Dpyy—q ﬂV_—@, v € Dpyyti—a ﬂV‘_(g) such that
either; ‘

g(v) > g(a,b+u) =1>g(a+1,b+u+l+1) > g(v),

or;

g(v) < gla,b+u)=1<gla+,b+u+l+1) < g().

In the first case we have g(a+1,b+u+1+1) =1, and so by Lemma 16 we deduce that
[ = 0, as wanted. In the second case we have g(v) = 1, and since v € Dpyy—q, we deduce
from Lemma 16 that v = (a, b+ u), but the only neighbour of v in Dpyyi1-4 rﬂ—/‘_(a is
(a,b+u+1). Hence v’ = (a,b+u+1) and g(v’) = 1. This yields g(a+1,b+u+14+1) =1,

and again by Lemma 16 we obtain that [ = 0, as wanted.

Now assume s > 0. We show that (a + u,b) € V(p) for 0 < u < s by induction on u.
As before, the base case u = 0 is given. Suppose that (a + u,b) € V(p) for some u < s.
Since b—a—u—1 > b—a—s, then p visits a vertex in Dp_g—y—1. Let (a+u+1+1,b+1) be
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that vertex, for some I € Z. By the definition of G~(g), there must exist neighbouring

vertices v € Dp_g 1NV —(g), v/ € Dy_q_, N V—(g) such that either;
gw) <gla+u+1+1,b+1) < gla+u,b) =1<g(),

or;
9() 2 gla+u+l+1,b+1) > gla+u,b) =12 g(v).

In the first case we have g(a+u+1+1,b+1) =1, and so by Lemma 16 we deduce that
I =0, as wanted. In the second case we have g(v') = 1, and since v' € Dy_,_,,, we deduce
from Lemma, 16 that v = (a+u, b), but the only neighbour of v’ in Dy_y_q_1 NV~ (g) is
(a+u+1,b). Hence v = (a+u+1,b) and g(v) = 1. This yields g(a+u+I1+1,0+1) =1,

and again by Lemma 16 we obtain that [ = 0, as wanted.
Analogous arguments yield (2.21). O

Lemma 30. Let g be a (k + 1)-dress. Suppose that p € P9(a,b), n € PI(c,d) are
bonding paths. Then there is ezactly one path p' € PI(a,d) such that;

Vg = ﬁi""’ V() UV(n) i r € 79(a,d) N (x%(a,B) Ur(c,d)) }

2.22
U {vﬁ” . € 79(a,d) — (n9(a, b) Un9(c, d))} S

Proof. Let S denote the right hand side of (2.22). We start by verifying that S contains

no more than one vertex within every diagonal D, for r € n9(a, d). This is evident by

definition for every r in 79(a, d) — (79(a,b) Un9(c,d)). It is also true for r in 79(a,d) N

(79(a, b)UnI(c, d)), as a result of Lemma 28. Now for all r € 79(a,d), let m, € {1,...,k}
(mr)

be the unique integer such that vy > € S. To complete the proof we split into cases,

most of which are straightforward:

Case 1. If (a,d) € F~, we need to show that for all » with r,r + 1 € 79(a,d), the

edge ol Y v,,(.:'_l{“) is in G7(g). The following sub cases refer to the possible values

of r.

Case 1.1. If r,7+1 € 79(a, d) — (79(a, b) Un9(c, d)), then m, = my4; = 1, and so from

Lemma 19 we know that v{™ — v,(.:'_l{'“) € G~ (g), as wanted.
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Case 1.2. If r € n9(a,d)—(79(a, b) Un9(c,d)) and r+1 € n9(a, d)N(79(a,b) U nI(c,d)),
then m, = 1, and r + 1 must be an initial point of one of the integer intervals 79(a, b)
or 79(c, d), from where we deduce that mr41 = 1 as well (because the paths p,7n begin
at F(), and so o™ v,(.TI“) € G~(g), as wanted. The same argument holds when
r+1 € n9(a,d) — (79(a,b) UnI(c,d)) and r € 79(a,d) N (79(a,b) UnI(c,d)), except this

time r must be an ending point of either 79(a, b) or 79(c, d).
Case 1.3. If r,r + 1 € 79(a,d) N (7%(a,b) UnI(c,d)), we have three more subcases;

Case 1.3.1. If r,7+1 € n9(a,b) N79(c, d), then since p, n are bonding, m, = m,41 = L.

As before, from Lemma 19, we know that v{™ — vﬁf_‘{“) e G (9).

Case 1.3.2. If r € n9(a,b) —79(c,d) and r+1 € 79(c, d) — 79(a, b) (or vice versa), then
by the same argument from Case 1.2, the points vﬁm’), vﬁT{*’l) are endpoints of p or 7,

and so my = mypy1 = 1.

Case 1.3.3. If r,r + 1 € n9(v) for some v € {(a,b),(c,d)}. Let a denote the path
among p,n which is in P9(v), so that 'vﬁmr), vﬁ’_ﬁ“) € a. Observe that v is either in the

same vertical line, or in the same horizontal line as (a, d). We have two more subcases;

Case 1.3.3.1. If v € F(U~, then a € #(v), and so o) v,(.ﬁ“) € o, which implies

that v{™) — vf’_:{“) € G (g), as wanted.

Case 1.3.3.2. If v € F(U*, then the intersection 79(a,d) N 79(v) is either empty, or
consists of one common endpoint between the integer intervals 79(a,d), 79(v). This

contradicts that r,r + 1 € m9(a, d) N 719 (v).

Case 2. If (a,d) € FU+, we need to show that for all r with r,7 + 1 € 79(a, d), the
edge v,(.Ti“) — o™ is in G*(g). As before we consider some sub cases for the value
of r. Cases 2.1, 2.2, 2.3.1, 2.3.2 are the same as Cases 1.1, 1.2, 1.3.1, 1.3.2
above, and their reasoning is similar (only the direction of the edges are inverted, and
the graph G*(g) is used instead of G~(g)). Cases 2.3.3.1, 2.3.3.2 are also similar to

Cases 1.3.3.1, 1.3.3.2 above, with the additional modification that F(1)- is replaced
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by F(U+ and F(D* is replaced by F(1)—,

We have shown that p’ is a path of G~ (g) if (a,d) € FO- and a path of G*(g) if
(a,d) € FO+. Also it is clear by definition that this path visits D, for all r € 79(a, d).
In order to conclude that p' € P9(a,d), it remains for us to show that p’ starts and ends
at F(1). More precisely, if s := min#9(a,d), ¢t := max79(a, d), we need to show that

mg = my = 1. We split again into a few cases for s:

If (a,d), (a,b) € F(D~, since they are in the same horizontal line, then s = min 79(a, b)

and so 'ung) € F1), as wanted.

If (a,d) € FU~, (a,b) € FD+ and 79(a,b) N 79(a,d) # 0, then s = min79(a,d) =
max 79(a, b), and so 'ugm’) e FO), as wanted.

If (a,d) € FO~, (a,b) € FO+, 79(a,b)N79(a,d) = 0, and ¢ < a, then s = min 79(a, d) ¢

79(a,b) UnI(c,d), and so 'ugm’) e F(, as wanted.

If (a,d) € FO~, (a,b) € FD+, 79(a,b) N 79(a,d) = 0, and ¢ > a, then s € 79(c,d) and
(¢,4) := maxn9(a,b) € m9(c,d). Thus since p,n are bonding; vj(-l:)i € p,n, and since 1)3( )
is in F) in the same horizontal line and to the right of vj(.l_)i, we deduce by Lemma 29

that vgl) € n, and so ms; = 1, as wanted.

We have shown that ms; = 1 when (a,d) € F()~. Analogously, by symmetry; ms =
ms = 1 whenever (a,d) ¢ FO),

If (a,d) € FO), then s =t = d — a. If s € 79(a,b), then since (a,b), (a,d) are in the
same horizontal line; s € {minn9(a,b), maxn9(a,b)}, and so ms; = 1, as wanted. The
same holds if s € 79(c, d), because (c,d), (a,d) are in the same vertical line. Finally if

s ¢ m9(a,b) Um9(c,d), then mgs = 1 by the definition of p’, as wanted. O

We are now ready to define Xponq. For two bonding paths p € P9(a,bd), n € PI(c,d),

set Xbond(p,7m) = (p',n’), where p/,n’ are the unique (see Lemma 30 above) paths in
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P9(a,d), PI(c, b) respectively, satisfying;
V() = {o™ eV(p)UV(n):ren(a,d)n (m(a,b) Und(c,d)}
U {UP .+ € 79(a, d) — (79(a, b) U n9(c, d))}

v(r) = {s™ eV(p)uV(n):reni(eb)n (n(a,b) Und(c,d))}
U {v,(-l) .1 € 79(c, b) — (9(a, b) Un9(c, d))}

Later (Lemmas 33, 35 and 36) we show that Xpong is & weight-preserving involution. We
support these claims with a few other lemmas for which we need some new notation.
For (a,b) € Z x Z, define 0n9(a,b) := {min79(a,b), maxn9(a,b)}. In particular for
(a,b) € FO) we have 8n9(a,b) = n9(a,b) = {b — a}, and for (a,b) ¢ F) we have
|09 (a, b)| = 2.

Lemma 31. Let g be a (k+ 1)-dress. Fora,b,c,d € Z;

79(a,b) N 79 (a,d) N79(c,b) C n9(c,d) UonI(a,b).

Proof. Observe that (a,b), (a,d) are on the same horizontal line. It is easy to check that
if they are on different sides of F(!) (one is in FO— while the other one is in W),
then 79(a, b) N79(a,d) is either empty or consisting of a single common endpoint of the
intervals 79(a, b), 79(a,d). In that case 79(a,b) N 79(a,d) C On9(a,b). The same holds
if (a,b), (c,b) are on different sides of F(!). Thus we may assume that the three points
(a,b), (a,d), (c,b) are in F)E, for some choice of — or +. In the rest of this proof we
use ‘+’ for this same choice and ‘F’ for the opposite choice. If (c,d) € FMF, then
clearly 79(a,d) N79(c,b) = 0 or 79(a,d) N7I(c,b) = 79(c,d) (the last one holds under
certain conditions when (c,d) € F(1)), so we may assume that (c,d) € FU* as well.
If +a > +c, then (a,d) is closer to F(1) than (c,d) and so m9(a,d) C 79(c,d). Also if
+b > +d, then (c,b) is closer to F) than (c,d) and s0 79 (¢,b) C 79(c,d). Hence we
may assume that +a < £c and +b < +d. Considering both choices + or — it is easy to
verify that 79(a,d) N79(c,b) = 79(c, d). (W

Lemma 32. Let g be a (k+ 1)-dress. If p € P9(a,b),n € PI(c,d) are bonding and
r € m9(a,b) — (79(a,d) U n9(c,b) U n9(c,d)) for some a,b,c,d € Z, then o e p-
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Proof. By symmetry we may assume without loss of generality that (a,b) € F(1)—. The
result is obvious for (a,b) € F(), so we assume that (a,b) € F(U~. We must have ¢ < a

and d < b since otherwise we would obtain 79(a,b) C 79(a,d) U m9(c,b). Thus
min79(a,d) < min79(c,d) < maxnI(c,d) < maxnI(c,b),

and

min m9(a,d) < min79(a,b) < maxn9(a,b) < maxnI(c,b).

These inequalities imply that any number in 79(a, b) — (79(a, d)Un9(c, b)UnI(c, d)) must
be between max 79(a,d) and min79(c,d) or between maxn9(c,d) and min79(c,b). If
r is between maxm9(a,d) and minn9(c,d), then necessarily (a,d) € F(U~, (¢, d) €

FOF, and oV

e & B (this last relation happens because p,n are bonding and

min79(c,d) € m9(a,b) N 7I(c,d)). Also the point oY is in FO below vgi)mg(c d)"
Hence by Lemma 29; vﬁl) € p, as wanted. Similarly, if 7 is between max 79(c, d) and

1) (1)

min 79(c,b), then LAY is in p, and v’ is in FU) to its right. Hence, again by

Lemma, 29; v,(nl) € p, as wanted. |

Lemma 33. If p € P%(a,b), n € PI(c,d) are bonding paths, then Xpona(p,n) is a pair
of bonding paths as well,

Proof. Set (p',1') := Xpond(p,n). For every r € m9(a, d), let m, be the unique integer in
{1,...,k} such that o™ ¢ ', and for every r € m9(c,b), let n, be the unique integer
in {1,...,k} such that o) € n'. Consider any s € m9(a,d) N7I(c,b). We need to show
that ms = ny = 1. By hypothesis;
{o{m), v} C V() UV () SV(P) UV () U : 7 ¢ m9(a,b) Un(c, d)}.
The sets V(p) UV (n) and {v,(nl) :r ¢ m(a,b)UnI(c,d)} are disjoint. In fact, no diagonal
D, contains points from both of them. Thus we have either;
{v{™),0{")} C {vV : 7 ¢ 79(a,b) Un9(c, d)},

in which case mg = ng = 1, or;

{v{ma) y{m)} C V() UV (n).
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In this case s € m9(a,b) Un9(c, d), and from Lemma 30; ms = ns. To simplify the rest
of this proof, set m := my; = ns. If s € m9(a,b) N 79(c,d), then since p,n are bonding,

we deduce that m = 1, as wanted.

It remains for us to consider the case s € 79(a, b)—n9(c, d) (the case s € 79(c, d)—79(a,b)
is analogous). This means that o™ e V(p)—V(n). Since s € 79(a,b)N7I(a, d)N7I(c,b)
and s ¢ 79(c,d), by Lemma 31, we have that s € 979(a,b), from where we obtain that

mg = 1- D
Lemma 34. Let g be a (k + 1)-dress. If p € P9(a,b),n € PI(c,d) are bonding and
(0',1") = Xoond(p;m), then

Vi) uV(n) - FO =v()uV(y) - FO. (2:23)
Proof. Let us first show the inclusion 2. Take any vﬁm) € V(o) with m > 1. We need

to show that o™ e V(p) U V(n). Since r € n9(a,d), it would suffice to show that

r € m9(a,b) Un9I(c,d). Suppose the opposite;
r € 19(a,d) — (79(a,b) UnI(c,d)),

in order to obtain a contradiction. Notice that r ¢ 79(c, b), since otherwise 7 would be

in 79(a,d) N 79(c,b) and so m would be equal to 1. Thus;
r € m(a,d) — (79(a, b) U m9(c,d) UnI(c,b))

By Lemma 32, we obtain that 'vsl) € ¢ and so m = 1, which contradicts the assumption

m > 1, concluding the proof.

We now show the inclusion C. Take any v.,(-m) € V(p) with m > 1. We need to show
that o™ € V(0')UV(n), for which it would suffice to prove that 7 € 79(a, d) Un9(c, b).

Suppose the opposite;

r € 7¥(a,d) — (79(a,d) UnI(c, b)) .
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Notice that 7 ¢ 79(c, d), since otherwise r would be in 79(a, b) N79(c,d) and so m would

be equal to 1. Thus;

" rem9(a,b) — (19(a, d) Um9(c,b) Un9(c, d)).

(1)

By Lemma 32, we obtain that vr’ € p and so m = 1, which again contradicts the

assumption m > 1, concluding the proof.

Moreover it is easy to check that r must be in 79(3, 7) for some (3, 5) € {(a,d), (¢,b)} N
F)~, since otherwise, if (i,7) € FO+, then 79 (a,b)N7I(i,7) C On9(a,b), which again
yields the contradiction m = 1. As a result, the vertices from (2.23) also preserve
their weights along both sides of the equality (recall that the weight of a vertex from
V(p)UV(n) or V(') UV(7) depends. on the path it inhabits, by the definition of w in

terms of w™, wt). O

Lemma 35. Xpond 5 an involution on pairs of bonding paths. More formally;

Xbond (Xbond (s 7])) = (p, 77)'

Proof. To be consistent with the previous lemmas, assume that p € P9(a, b),n € PI(c,d)
for some a,b,c,d € Z, and set (p',n") := Xpona(p,n). Define p”,n" to be the only paths
in P9(a,b), P9(c,d) respectively so that;

V(") = {vﬁm) e V()L V() :r € n¥(a,b) N (n¥(a,d) Uns(c, b))} (2.24)
U {’Uﬁl) i1 € m9(a,b) — (19(a,d) UnI(c, b))} |
ver) = {d VUV emean@adume} o

U {vg) :r € (e, d) — (79(a,d) UnI(c, b))}
We need to show that p” = p and n” = n. We only prove the first equality, since
the second one is analogous. We show the equivalent equality V(p”) = V(p). Recall
from Lemma 34 that V(p) UV (n) — FO) = V(p") U V(5") — FU. Choose any o™ €
V(p") — FO, Thus o™ € V(") UV (") and by Lemma 28, since r € 79(a,b), we

deduce that v{™ ¢ p”. More specifically 0™ e V(p") — F) (because m > 1). Hence
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V(p) — FO C V(p") — FO and similarly V(p") = F® C V(p) — F(. Therefore
V(p) — FO) = V(p") — F( and since p, p” visit the same diagonals; V(p) = V ("), as
wanted. 5

Lemma 36. Xponq is weight-preserving. More formally;

w(xbond(p, 77)) = ’U)(p, n)-

Proof. Lemma 34, along with the remark from the last paragraph of its proof, imply
that the equality
w(p,n) = w(p', 1),

holds if and only if the equality
w(a(a, b)a a(c7 d)) = w(a(a, d)aa(c’ b)))

also holds, where a(3, j) is'the path in P9(s, §) whose vertices are all in F(). We thus
proceed to show the second equality. It is easier to write this equality as

w(a(a,b)) _ w(efoh))
w(a(,d) ~ w(aled)

This is equivalent to the statement that the left hand side of the equality does not
depend on the value of a. It is easy to check by definition of w, that for (i, j) € FO)E,

M

re (A% (4,/)Nm9 (i,5))UBS (i,5)

w(a(i 1)) = wH(a(i 1) = T ©

r€AF (i,5)Nm9()

where;

A= 0 I £ £0) e R

It is thus straightforward to verify that for b > d;

z(™)
w(a(a,b))  reA(bd)
waled) [ o7

r€B(b,d)
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where A(b, d), B(b, d) are the following sets;
{G—i:(,5) € FY d<j<byU{d—min{i: (4,d) € FO},b—max{i: (,b) € FV}},

{§—i:(6,7) e FY, d<j<blu{d—min{i: (5,d) € FO},b—max{i: (i,b) € F(V}},

respectively, which do not depend on a, as wanted. O

We have shown that the functions X, (r € %Z), Xbond are weight preserving involutions.

Lemma 37. Let g = {F(™},.,,< be a (k+1)-dress. Suppose that (a,b),(c,d) € F1)~
or (a,b), (c,d) € FDt and that p,n are paths in P9(a,b), PI(c,d), respectively. If p,n
are non-intersecting and non-crossing, then either p[r] > n[r] for all r € 79(p) N 79(n),

or p[r] < nr] for all r € w9(p) NI (n).

Proof. Assume that p € P9(a,b), n € PI(c,d) are non-intersecting and non-crossing,.
Suppose, in order to obtain a contradiction, that there exists some r € 79(p) N 79(n)
such that p[r] < n[r] and p[r + 1] > n[r + 1]. We consider the following six possible

cases;

plr] <nlr] <nlr+1] < plr +1],
nfr +1] < plr] < plr + 1] < ],
nlr+1] < plr +1] < plr] <nlr],
plr] < mlr +1] <nr] < p[r + 1],
nlr +1] < plr] < nlr] < plr + 1],
plrl < nlr+1] < plr + 1] < nlr].

Each of the first three cases implies, by Lemma 18, that p,n are crossing, producing a

contradiction, while each of the last three cases are impossible by Lemma 21. O

Lemma 38. Let g be a (k+ 1)-dress. If a,b,¢c,d € Z are such that a < ¢ and b > d,
then every pair of paths (p,n) € P9(a,b) x PI(c,d) is either intersecting, crossing, or
bonding.
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Proof. If (a,b), (c,d) € F()~, then by the in‘equa.lities a < ¢, b> d, we know that;
min 79(c, d) < min79(a, b),
max 79(c,d) < maxn9(a,b).
If |79(a, b) N79(c,d)| < 1, then p,n are trivially bonding. Otherwise we have;
min79(c, d) < min79(a,b) < max (¢,d) < maxn9(a,b).

Thus p[r] = 1 < n[r] for r = min79(a, b) and p[r'] > 1 = n[r’'] for ' = maxn9(c, d), and
so by Lemma 37, p,n must be intersecting or crossing. A similar argument yields the
statement for (a,b), (c,d) € FW+_1f (a,b), (c, d) are on different sides of FO, it is easy

to see that 79(a,b) N79(c,d) = 0 and so p,n are trivially bonding. O

Proof of Lemma 26 (Section 2.1, page 102). Write;

.
det(Piorey b,a)

) = |P¥(a,b) X PI(c,d)|w — |P(a,d) X PI(c,b)|w-

Observe that by Lemma 38, every pair in P9(a,d) x P9(c,b) is either intersecting,
crossing or bonding. Thus we just need to find a weight-preserving involution f between
PX9(a,d) x PX9(c,b) and the set of all intersecting, crossing, or bonding pairs from

PX9(a,b) x PXI(c,d).

For (a,b), (c,d) € F(U~ or (a,b),(c,d) € FD+ and for every pair (p,n) € PX9(a,d) x
PX9(c,b), let r be the smallest element of %Z such that X, is defined on the pair (p, 7).
Set f(p,n) == Xr(p, ).

For (a,b) € F(D+, (¢,d) € F()~ we simply set f := Xpond concluding the proof. O

Proof of Theorem 7 (Section 2.1, page 102). Let us first prove Conjecture 2 for k = 2.
Condition 2.8 holds trivially for m = 1, since the only path in P9 (z',(-l),z',(-l) + 7) is the
point (isl),isl) + r) itself, whose weight is a;sl). For m = 2; it is immediate from the
definition of bonding paths and Lemma 24, that the only non-intersecting, non-crossing,

non-bonding pair from

PO, if) + 1) x PG, i +7),
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is ((iﬁ”,#) + r),p), where p is the unique path from Pg(z'g),i?) + r) which visits

(ig), 2'52)-1-1"). From the definition of the path weight w we obtain that w(p) = z? i 2 =
1 /:1:51) and so w((z'gl), 2'51) +7),p) =1 as wanted.

For the SL; condition; consider (a,b),(a + 1,b+ 1) € FU~ (the case € FO+ is
analogous). From Lemma 37, any pair (p,n) of non-intersecting, non-crossing, non-
bonding paths from P9(a,b) x P9(a + 1,b + 1) satisfies that p[r] < n[r] for all r €
m9(a,b) N7 (a+1,b+1). Since 7m9(a,b) C 9(a+ 1,b+ 1), this means that p[r] =1 for
all » € m9(a,b) and from Lemma 29; n[r] = 1 for all » € dn9(a+ 1,5+ 1) and n[r] =2
for all 7 € 79(a+ 1,b+ 1) — 079(a + 1,b+ 1). These properties describe the paths p, 7

uniquely, and a straightforward calculation yields w(p,n) = w(p)w(n) = 1, as wanted.

We have proven Conjecture 2 for k = 2. Conjecture 1 is then immediate by Lemma 26,

since we have already proved the uniqueness statement.

2.3 Inductive approach

As mentioned before, one of our main motivations is to step closer to a complepe proof
of Conjecture 1. Several authors (Di Francesco, 2010; Di Francesco and Kedem, 2009;
Speyer, 2007) have provided very general partial proofs of this conjecture. In particular
the two reviewed partial proofs imply the Laurent positivity property for all the entries
(1 x 1 minors) of an SLg-tiling under the general boundary conditions of Conjecture 1.
In this section we provide a new proof of this property. This proof has the advantage
that it is purely inductive, and thus provides a fast algorithm to compute entries of an

SLk-tilihg in terms of boundary conditions.

The idea is to prove a series of determinant identities that recursively allow us to isolate
each entry in terms of preceding ones according to some inductive partial ordering.

To understand these identities we need to examine some properties of a generic dress

f = {F(™}i<, and to introduce some new parameters.
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Let f = {F™};<m<k—1 be a k-dress as in Conjecture 1. Let g be a (k + 1)-dress

obtained from f by adding a k-fringe F(*¥), As in the previous sections, denote by vﬁm)

the elements of the defining sequence of g. For r € Z, m € {1,...,k}, define uﬁm)
to be the first entry of o™, so that v{™ = (uﬁm),uﬁm) + 1), and define the sequence
{e$"‘) }m>1, in terms of the sequence {ism) }m>1 as explained next. Observe that for

r€Z T€EZ
reZ me{l,..., k};

{ul®, . uf™y = ™™ em - 1),

This means that for all » € Z,m > 1, the set {u,(-l), - ,u,(-m)} consists of consecutive

integers, which forces usm) to be equal to either max{up), oy uﬁm) } == z'$’") +m—1or
min{u,(-l), = ,uﬁm)} = z'sm). Set eﬁm) := 0 in the first case, and eﬁm) := 1 otherwise. One

could easily verify that for r € Z,m > 2;

) = ifm=1 _ ifm),

Let us exemplify these parameters on the dress of Figure 2.2. For r = —1 we have;

(D @ B (4 (5)

( B B W &y G ) =0 5y G =4 =1 =1 )
Cu® u® W® WPy = (1,0 -1, 2, 3 )
( 61(-1), 61(-2), 61(-3), 61(-4), e ) [, 3 1y & 8 3
It is straightforward from a successive application of the Desnanot-Jacobi identity, that
every (k — 1) x (k — 1) connected minor of the matrix P from Conjecture 1, must be
different from zero. Again by the Desnanot-Jacobi identity, this implies that every
(k+ 1) x (k+ 1) connected minor of the matrix P from Conjecture 1, is equal to 0.
Thus P has rank & and so every (k+ 1) x (k + 1) minor of P is equal to 0. We extend
the (k + 1)-dress g to an oo-dress by adding fringes F() for m > k. This also extends
)

all the sequences above to m > k. To be consistent with this extension we set z

for m > k.

Even though it makes for redundant notation, it is convenient to consider the bijections

Uy : Nt 5 Z (r € Z), defined by

Up(m) == u{™ for m > 1,
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and V, : N* — Z (r € Z), given by
Vo(m) :=Up(m) +r = ul™ +r for m > 1.
We may then rewrite equation (2.8) as;

det(Py, q1,...m} vif1,...mp) = 2™ (m < k). (2.26)

Recall that for any bijection ¢ and any subset I of its domain, the inversion number
of o over I, denoted invy(c), is the number of pairs (a,b) € I x I such that a < b and
o(a) > o(b). Recall also the notation sign;(c) := (—1)"v7(®), It can be shown that for

I={my,....,mg} CNt with1<my <--- <myg;

d
invy(Uy) = invy(V;) = ) (¢ — 1)el™).

We wish to prove that under equation (2.8), the entries of P are Laurent polynomials
with positive integer coefficients in the x( ). We first show that certain particular
family of minors of P are positive Laurent polynomials by showing that they satisfy
some convenient recurrence relations. Let r € Z, m,%,j € {1,...,k} be integers with

1,7 2> m + 1. Define;

P(’I‘, m, Za]) = det(PUr{l,...,m,i} V,-{l,...,m,j})

The following is immediate from (2.26). It is conveniently stated as a lemma for the

purpose of future reference.

Lemma 39. Forr € Z, me {1,...,k — 1}, we have P(r,m,m+1,m + 1) :xsm).

The following lemma allows for the expansion of some of these minors in terms of other

minors.
Lemma 40. Forr € Z, m,4,j € {1,...,k} withi,7 >m+1;

P(r,m,1,j)
1
———P(r,m,m+ 1,§)P(r,m,i,m+ 1)

(m+1) (2.27)

Dy D x$ &
( m+1)

(1) ¥+ 2P m+1,i,5)
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Proof. By the Desnanot-Jacobi identity (Proposition 1) and Lemma 5 (with the per-

mutations U, and V;) we have;

det(Py, (1,...,m,i} Ve{l,imis}) €LY (1,....m+1} Vo {1,...om+1})
— det(Py, (1,...,m+1} Ve {1,.;m,}) 46(PU, (1,...m,i} Vo {1,...m+1})

@4 0)
= (—1)& e det(Py, {1,....m} Ve {1,...m}) €E(PU, {1,...,m+14} Vi {L,...m+1,5})»

which is equivalent to 2.27. O

This recurrence, however, is not sufficient for expanding P(r,m,%,j) in terms of the
m,(-m), since the right hand side contains minors of the form P(r,m,7, ;') which do not

satisfy 4/, 7/ > m + 1. This situation is partially addressed in the next lemma.
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Lemma 41. Let r € Z, m,i € {1,...,k} be integers with i > m+ 1, m > 1, and
eg) =0. Set
{=UhWY), 7= U +1), 5= U™ +m),
M = max(lh{1, .. ym)).

Then P(r,m,i,m+1) is equal to;

( , ( 6g‘m+1) 10,
E(ﬁm%lr)P(r, m—1,4,m) + ;(—(—:;P(r -1,m,7,7") AR zgf)l -1
r—1 r—1 \ eg‘m) 5 1
[ &+l —p,
E:';—E%)P(r —1,m-1,7,m)+ %P(r -1,m,#,j") i < = 2572 -1
\ e&m) =00
(m+1) _
Pl — Lm iy m+ 1) + B Pr — L,m,d ) i 4
Zr Zr iT(,m) e ZS-T)I
f €$m+1) )
T if ™ =™ T
< L ug) =M+1
(Do,
s (m) _ (m)
%P(r,m—l,i,m)+f;%P(r—l,m,i’.,m+1) if { Zg) ;;;_:_1 i
{ eﬁ"‘) =1
( €£m+1) =
~ (m) _ (m) _
%P(r —1,m—1,d,m) + f%P(r —Lm,d\m+1) i :ﬁ") ;;;‘:_ 1 :
{ e&m) =0
(m+1) _
L P(r—1,m,4,j") if Zm) ) 25731)1,

Moreover, in each of the cases that i’ appears, it is > m + 1 and satisfies e,gii)l = 0.

Similarly for j' and §”.
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Proof. Case 1: With the given conditions, the r-th and (r—1)-th diagonals of the dress

f are as follows;

Vi{l,...,m} =V,_1{1,...,m}

| |

A 4

—] m
’J—\
Eﬁ = 4 .
~ p
g s
4 = #
i D
&= - .
|
=3
L U£m+1) — # m+1
ul) - .
ug) = ug'_)l - il {
4

(i could be equal to j'), where the *’s represent all the numbers from 1 to m — 1, and

the #’s represent all the numbers from 1 to m in some order. From equation 1.18;

det(Py,_,(1,..m} V_1{1,..;m}) 9€(PU, (1,...m.3} Vi{1,..m+1})
— det(Py, (1,....;m+1} Vi (1,....m+1}) A€t (Py,1,....m—1,4} Vi-{1,...,m})
= det(Py, (1,....m} Vi (1,...m}) 4€t(PU,_ 1 (1,..m,} Vo1 {1,...;m,5'})>

which is equivalent to the desired recurrence.

Case 2: The picture is the same as the one for Casell, except that the m is now on the

position of the bottom *. This forces an m at the position of the bottom # (otherwise
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the adjacency property of fringes would be contradicted). Again from 1.18;

det(Py,_,{1,....m} Voi{L,...m}) € Pr(1,... 53 Vo {L,..m+1})
— det(Py, {1,...m+1} Vi{1,....m+1}) € (Py,_ . (1,.. . m—1,4} Vo1 {1,..;m})

= det(Py,{1,...,m} Ve {1,...m}) €t (Pu,_ {1,....m"} Vo_1{L,...m,j'})-

Case 3: In this case the (r — 1)-th and r-th diagonals of f are as follows;

v

(as before, i’ could be equal to j'), where both the *’s and the #’s represent all the
numbers from 1 to m in some order, and [ is some integer greater than m. In fact, [ has
to be equal to m + 1, since otherwise the adjacency property would be contradicted.

The Desnanot-Jacobi identity hence yields;
det(Py,_; ({1,...m+1}) Vo1 ({L,...m+1})) 4t Py, ({1,...,m.a}) Ve ({1,....;m+1}))

— det( Py, ((1,...n 1) Vel{Lom+11)) 98Py, ({1, D) Voo ({1, 13))
= det(Py, ({1,...m}) %({L,...m})) W€ (Pu, _1 ({1,....m4+1,#}) Vi1 ({L,im+ 17D
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Case 4: The r-th and (r — 1)-th diagonals of the dress f are as follows;

Vellyo.. s =1 {1 syt

| |

L 4

’U"S-m+l) j mA41
= uy(-_’)l — j’ *
——
% i
~ :
£ i
1 4
d o
i
A R :
=3 B bk
= U(z) = u,f.?:_)l ] # ?

where both the *’s and the #’s represent all the numbers from 1 to m in some order.
Notice that 4" has to be equal to m + 1 to avoid contradicting the adjacency property.
Hence; '

det(Py,(1,....m i} Vi {1,..sm+1}) = €6(Py,_, {1,...m+1} Vo1 {L,..om+1}) = w.fff-fl),

as wanted.
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Case 5: The r-th and (r — 1)-th diagonals of the dress f are as follows;

Viil,...,m} = Ve_y{L,...,m}

| .

L 4

u$m+1) -1 B
g USJ—, )1 — jl m
X E:\ ; # *
g 3
S i
4 D
=i
B =M — *
|
i
#
M —] ' E g
3

where the *’s represent all the number from 1 to m — 1, and the #’s represent all the

numbers from 1 to m in some order. By the adjacency property we have that j' = m+1.

From the identity 1.19;

det(Py,_{1,....;m} Vy_1{L,....,m}) A€6( P {1,....m,3} Ve {1,..m+1})
— det(Py, _y{1,...m41} Voo {L,..sm+1}) Q86 (PY{1,....m—1} V{1,...m})

= det(Py, {1,...m} Vi (1,...m}) € (P, _ {1,...m "} Vo1 {L,..,m+1})-

Case 6: The picture in this case is the same as the one for Case 5, except that the

m is now on the position of the bottom x. This forces an m at the bottom #, since

the opposite would contradict the 'adjacency property. As before 7/ = m + 1. Thus the
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same identity yields;

det{Py,_, {1,...;m} Vi_1 {1,...;m}) € Py, {1, . .m 8} Vil 1})
—det(Py, _,{1,....m+1} Vo {1,.om+1}) 98P _; (1,...on—18} Voo 1 {L,.0.im})

= det(Py, 1,....m} Ve {1,..m}) € (Pu, _ 1 {1,...m 4"} Vo1 {1,...m+1})-

Case 7: The r-th and (r — 1)-th diagonals of f are as follows;

Ve dl, oo )
l
Vr—1{1,...,m}
[ | m

&
: u1(_m+1) — ml
=
imka=l |
)
ll =i 3
E‘\
:E # *

u’] i
ut = uf-ii)l 1 7 i

(' could be equal to j”). Thus;
det(Py, (1,...mi} Ve {1,...m+1}) = det(Py, 1 1,...mi"} Vo1 {1,.m,i} )

as wanted. O

The next three lemmas are proven using the same identities case by case as those from

the previous proof. For Lemma 42, the minors from each identity are transposed. For
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Lemma 43 they are reflected along the anti-diagonal. For Lemma 44, they are reflected
along both diagonals.

Lemma 42. Let r,m,j be integers with j > m+1, m > 1, and e(J) =0. Set
= U;_Fll(uﬁj) e} R =% £ i (u(m"'l)) ' = UZLGE™ +m - 1),

M = max(U,{1,...,m}).

Then P(r,m,m+1,j) is equal to;

( (

(m+1) = 0
(m+1)P(r —1,m,j)+ BP(r + 1,m,4, j') T
-—Lg::—i— ) 7.7 _,{:Z )J ,’.+1 = ’Lr
; em) _
\ 73
( (m+1) — 0
—ﬁ—(m+1)P(r+1 m—-1,m,j) + Z5P(r + 1,m,#, §) i L g = gl
wr+1 J _r-l-f_l N bpyy = = g,
™ =0
=g T
m+1 ==
PO+ Lmm+ L)+ Pl Lmd,f) i
Zri1 Fre1 (m) - (m) g
r+1 tr
( E’g‘m+1) _
1 . ?
il . if ™= z$ -
4 { uﬁj) =M+1
( (m+1) =t 1
2(m+1) (m) = zg")
_f(‘mL)_P(rm 1m,_7)+—(—,;yP(r+1mm+lj) if 4 et
Tryl Tl (J) >M+1
{ eﬁm) =1
[ D)
M) (m)1 - zﬁm)
r(+n1,) Pir+1,m— 1m3)+—{;yP(r+1mm+1]) if 4 T("')
Tt Rar T =y Y |
{ e$'”) =0
(7n+1) o
Il ! 5
P(r+1,m,i",5") if o (m) 2
\ r+1 r
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. !
Moreover, in each of the cases that V' appears, it is > m + 1 and satisfies e,(,’_,_)l = 0.

Similarly for j' and i".
Lemma 43. Let r,m, j be integers with j > m+1, m 2> 1, and e(:’) = 1. U=
F=ULP+1), ¢ =U@™), = ot [,

Then P(r,m,m+1,j) is equal to;

4 ) ( (m+1) == 1
2D T g ; §m) _ s(m)
—;Wp(r,m——l,m,])—l-jazp("'—l,m,z,]) if b1 =ir

r—1 ne
\ e&m) =0
( (m+1) =1,
Zm+D) 45,10 g gt ; im) _ (m)
e Pr — Lm —1,m,§') + o P(r — 1,m, 7, §') f 4=
r—1 r—1
| ™ =1
. i (m+1) — 1
z . ./ z . =y Sl =
;’fz‘—_{ﬁp(’f‘ 1,m,m+1,])+z7r-{lﬁp(7' 17m’7'7.7) if (mi_zs.m)—}-l
( (m+1) =0,
24 7] =i
| =i
[ Mt _ ¢
" § = it
2(mFD) N g™ o , b1 =
?m—%-P(r,m—1,m,J)+;{;n—)1P(7‘—1vm’m+1’J) i () o ;m _ 4
\ €$m) =1
( (m+1) =l 0
:c(fn+1) ) gﬂ - ’7('m)
P(r—lm—lm,]’)+—(—yP(r—1mm+lj) i ! )
A z$ g
g s
\
+1
P(r— 1,m,i", /) if i )= ;
\ 5’72{ — z's'm) +1

Moreover, in each of the cases that i’ appears, it is > m + 1 and satisfies e(i) = 0.
r—1

Similarly for ' and i".
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Lemma 44. Let r,m,1i be integers withi > m+1, m > 1, and e() =1. Set
P=UE ), R AT, e Ui 1),

Then P(r,m,i,m+1) is equal to;

( mtD)
(m+1) 2
zm,; =P (r,m—1,i,m)+ —(—;P(r +1,m,#,3") if g:r_t)l = ng) 1
r+1 r+1
eﬁ"‘) =0
(m+1) =i
(7n+1) P( - i (m) (m)
_TY_T r+1,m-—1,7 m)+—(—)—P(r+1mz,J) g RETn =" =l
r+1 Trt1 e(m) _
N\
(m+1) , (m+1) - 1
—fmTP(r+1mz m+ 1)+ (m+1)P(r+1 Tt o ) if Am) _ m)
Try1 Tri1 =1
Yryl o
>
(m+1) e O
i Al
( (m+1) = 0
jm) _ (m)
(m+1) =1 1
m’“ =Pl =y, m)—f——(—;P(r-{—l m,i,m+1) if =
mr+1 Tril u(z) < 1,( m) _ 1
L eﬁm) =1
( (m+1) =1,
m+1 ;M) _ o(m)
( Ry i r+1 =1 =}
—l{irP(r-l—lm 1.4 m)+—f—P(r+1mz m+1) if |
Trtl Tryl u‘f‘l) < z( m) =
{ eﬁm) =1
(m+1) =,
A/ i .
P(r+1,m,7,35") if m) _ (m)
\ r+1 = er
Moreover, in each of the cases that i appears, it is > m + 1 and satisfies eﬁ:_)l =1

Similarly for j' and j".
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Observe that Lemmas 39, 40, 41, 42 write each minor of the forms

P(r,m,i,j), P(r,m,i,m+1), P(r,m,m+1,j7), P(r,m,m+1,m+1)

: . (2.28)
(4,7 >m+1, eg) = GS-J) = [

. . . . m .
either as a Laurent monomial in the variables :1:$ ) or as a sum of other such minors

times Laurent monomials in the x$m) . On the other hand Leminas 39, 40, 43, 44 do the

same for minors of the form;

P(r,m,3,5), P(r,m,i,m +1), P(r,m,m+ 1,3), P(r,m,m+1,m+1) (2.29)

(1,7 >m+1, Y =¥ =1).

We use the first observation to show that every minor of the forms 2.28 is a Laurent
polynomial with positive integer coeflicients in the a,-$"‘) . An analogous argument works

for minors of the forms 2.29.

Lemmas 40-42 write every minor det(Prs) of the forms 2.28 in terms of determinants

of submatrices Py for I' x J' contained in the region;
R(I,J) := {(a,b) € FYmax(D)mex(1)) . g < max(I), b <max(J)},

The region R(I,J) is always finite (and thus it contains a finite number of submatrices)
as a result of the staircase property of the fringe F(f(max(I),max(J))) " Hence one cannot

apply these Lemmas indefinitely, and so every minor of the forms 2.28 may be written

by iteration of these Lemmas) as a Laurent polynomial in the :zzsm) with positive integer
¥ g

coefficients. Similarly we also conclude that every minor of the forms 2.29 is a Laurent
polynomial in the a:$"‘) with positive integer coefficients.

Consider now any (a,b) € Z x Z. Set r := b — a, so that (a,b) € D,. If U7l(a) = 1
(equivalently (a,b) € FV), theﬁ (a,b) = (uﬁl),uﬁl) +7) and so Py = 2. Otherwise,
if Um(a) = i > 1 (equivalently (a,b) € F® — F@-1)) then (a,b) = (ug),ug) + 7).
Notice that the statement ) = 0 means that (a,b) € F~. Next we prove that for all

(a,b) € F~, pgp is a Laurent polynomial with positive integer coefficients in the a:ﬁm).

The same result for (a,b) € F* follows from an analogous argument. Write pgp as
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follows;
— . P o
Pab = m <10u£1) @D yp)Pab = Py 1)y g aul® +r)pu$1)b)
1 iy
. ;m <P(r) 1a7'17') +pa(u£1)+r)pu£1)b) .
i
Clearly (a, ugl) +7), (uﬁl),b) € F~UFY, and R(a, ug) +r), R(u$1), b) C R(a,b). Hence
this recurrence may not be applied indefinitely, and by iteration we can write every pqp
((a,b) € F7) as a Laurent polynomial with positive integer coefficients in X. Anal-

ogously for (a,b) € F*. Therefore every entry of P is a positive integral Laurent

polynomial in X, as wanted.




CHAPTER III

CONCLUSIONS AND FUTURE WORK

This chapter is intended as a short conclusion for the main portion of this thesis; Chapter
2, as we consider the original results from Chapter 1 to be self-contained and less relevant

to our ongoing research.

As mentionéd several times in this work, one of our main motivations has been to
step closer to a proof of Conjecture 1. Several authors (Bergeron and Reutenauer,
2010; Di Francesco, 2010; Di Francesco and Kedem, 2009; Speyer, 2007) have provided
very general partial proofs of this conjecture. Our main result of the previous chapter,
Theorem 7, is less general in the sense that it only deals with the case k& = 2, but it
considers minors which the other mentioned proc;fs ignore, namely those which enclose
the entries from the boundary conditions of the SLo-tiling. Our combinatorial model
provides hope for a gerieral proof for any value of &, which would likely require a stronger

definition of path intersection extending the notion of bonding paths.

Our inductive calculation (Section 2.3) of the Laurent positive entries of an SLy-tiling
under general boundary conditions involves division only by monomials, which is gen-
erally more efficient than a division by polynomials of more than one term. This may
be a first step towards a complete inductive proof of Conjecture 1. Such proof may be
achieved in the future with the use of identities similar to those a._rising‘from Theorem

3.
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