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RÉSUMÉ 

Dans une perspective d'avenir pour le développement durable, les gisements de zinc 
non-sulfurés seront favorisés relativement aux gisements sulfurés conventionnels. Les 
marbres mésoprotérozoïques du Supergroupe de Grenville ainsi que leurs équivalents dans 
les terrains grenvi lliens exposés au New Jersey contiennent deux types de minéralisations 
zincifères SEDEX: (1) Les gisements plus communs et compris de zinc sulfuré SEDEX (i.e. 
district de classe-mondial de Balmat-Edwards, New York), et (2) les gisements hypogènes et 
stratiformes rares, et moins compris, de zinc non-sulfuré (i .e. gisements de classe-mondial de 
Franklin et Sterling Hill, New Jersey). La rareté et la localisation isolée des gisements de 
Franklin et Sterling Hill ne permettent pas d'imaginer une relation entre les gisements 
SEDEX sulfurés et non-sulfurés de zinc. Cependant, un horizon de marbre contenant un 
oxyde de zinc est présent près du village de Bryson (Québec), à environ 30 kilomètres au 
nord du gisement SEDEX de zinc sulfuré de Cadieux (Renfrew, Ontario). La région de 
Bryson-Renfrew nous offre conséquemment l'opportunité d'étudier la relation pouvant 
exister entre les deux pôles de minéralisation zincifère SEDEX. 

La région de Bryson-Renfrew est caractérisée par (1) une abondance de marbres 
dolomitiques pures, (2) par la présence d'horizons stratiformes d' anhydrite ainsi que (3) par 
des niveaux riches en magnésium (i.e. brucite). De telles caractéristiques indiquent une 
précipitation de carbonates dans un environnement évaporitique peu profond. Ce type 
d 'environnement est typique des gisements SEDEX de zinc sulfuré du type McArthur (i.e. 
district de Balmat-Edwards). La région de Bryson-Renfrew contient plusieurs indices de zinc 
sulfuré, associés aux unités de marbres dolomitiques riches en minéraux silicatés. Elle 
contient aussi plusieurs indices de zinc non-sulfuré également encaissées dans des marbres 
dolomitiques riches en silicates. Ainsi, les minéralisations SEDEX zincifères non-sulfurés et 
sulfurés de zinc se forment dans un environnement géologique similaire. Les études 
pétrographiques sur l'assemblage zincifère non-sulfuré révèlent des exsolutions dendritiques 
de wurtzite/sphalerite dans des grains de magnétite. De plus, des analyses de diffraction au 
rayons-X et à la microsonde révèlent que le silicate zincifère est une serpentine contenant 
jusqu ' à 4.31% de ZnO. D'autres serpentines sont plutôt caractérisées par la présence 
d ' inclusions fines de pyrophanite zincifère ((Fe,Mg,Zn,Mn)Ti03) , une ilmenite zincifère rare 
mais connue aux gisements de Franklin et Sterling Hill. Les exsolutions dendritiques de 
wurtzite/sphalerite sont interprétés comme résultant de la déstabilisation rétrograde de la 
franklinite . De plus, le produit d'altération de la willémite (Zn2Si04) , le principal minerai de 
zinc aux gisements de Franklin et Sterling Hill, résulte en une serpentine lors d' une 
déstabil isation métamorphique rétrograde. 

Des minéralisations zincifères non-sulfurées de type-Franklin sont ainsi confirmées. 
Un lien entre les gisements SEDEX zincifères sulfurés et non-sulfurés existe donc puisqu ' ils 
se présentent dans le même environnement géologique. La présence de minéralisations 
SEDEX zincifères non-sulfurées pourrait de ce fait être expliquée et indiquer la présence 
d'un système exhalatif à haute température plutôt qu'un système à température moyenne 
déposant des sulfures de zinc. 

Mots-clés: Supergroupe de Grenvi lle, sulfures de zinc, silicates de zinc, oxydes de zinc 



ABSTRACT 

In a sustainable development perspective, environmentally-friendly non-sulfide zinc 
deposits will possibly be favored relative to conventional sulfide types. Mesoproterozoic 
Grenville Supergroup marbles of the Canadian Shield and adjacent outliers in Appalachian 
uplifted terranes (New Jersey) are characterized by basting two end-members of hypogene 
zinc deposits: (1) The better understood and widely distributed SEDEX zinc sulfide deposits 
(i.e. world-class district ofBalmat-Edwards, New York), and (2) the Jess weil understood and 
much rarer stratiform hypogene non-sulfide zinc deposits (i.e. world-class Franklin and 
Sterling Hill deposits in New Jersey). The paucity of examples and location of Franklin­
Sterling Hill away from other deposits does not permit relationship studies between non­
sulfide and SEDEX sulfide zinc deposits to be easily studied. However, the presence of a 
marble-hosted zinc oxide occurrence near the town of Bryson (Qc), 30 kilometers north of 
the Cadieux (Renfrew, Ont) SEDEX zinc sulfide deposit, affords a unique opportunity to 
determine if a relationship exists between both end-members of zinc deposits. 

The Bryson-Renfrew region is characterized by (1) an abundance of pure dolomitic 
marble units, (2) the presence of stratiform anhydrite beds and (3) magnesium-rich (brucite­
rich) horizons. Such features are characteristic of a shallow-water, evaporitic and oxidized, 
carbonate platform geological environment. Such an environment hosts the McArthur­
subtype SEDEX zinc sulfide deposits (i.e. Balmat-Edwards district) . Stratiform zinc sulfide 
occurrences and deposits reported in the Bryson-Renfrew region are associated with a 
silicate-rich dolomitic marble unit. Severa! new non-sulfide zinc occurrences are also 
reported around the town of Bryson. Here, stratiform zinc silicates and oxides are associated, 
once again, with silicate-rich dolomitic marble units . SEDEX zinc sulfide and non-sulfide 
mineralization thus occurs in the same geological environment. 

Ore-microscopy of the non-sulfide zinc assemblage reveals dendritic 
wurtzite/sphalerite exsolutions inside magnetite grains. X-Ray diffraction and microprobe 
analysis reveal that the zinc silicate is a serpentine containing up to 4.31% weight ZnO. Other 
zincian serpentine nodules present fine inclusions of zincian pyrophanite 
((Fe,Mg,Zn,Mn)Ti03) , a rare zincian ilmenite also known to occur in the Franklin-Sterling 
Hill camp. Bryson pyrophanite contains up to 8.91% ZnO. Such assemblages are observed at 
Franklin and Sterling Hill deposits. Dendritic wurtzite/sphalerite exsolutions are interpreted 
as retrograde destabilization of granulite-facies franklinite. Moreover, the alteration of 
willemite (Zn2Si04), the main zinc ore mineral in the Franklin and Sterling Hill deposits, 
produces a serpentine during retrograde metamorphism. 

Franklin-type non-sulfide zinc mineralization is thus confirmed to exist in a marble 
belt basting SEDEX zinc sulfide deposits and occurrences. A relationship therefore exists 
between both end-members of SEDEX deposits because they occur in the same geological 
environment. SEDEX non-sulfide zinc deposits could indicate the presence of a hot 
exhalative system operating in a shallow-water evaporitic carbonate environment, rather than 
a warm one which would rather deposit zinc sulfides. 

Keywords: Grenville Supergroup, zinc sulfides, zinc silicate, zinc oxides 
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INTRODUCTION 

New environmental and social considerations have a direct impact on zinc 

exploration strategy, as reviewed by Sangster (2003). With the continuous need for low-cost 

zinc resources, environmentally-friendly non-sulfide zinc deposits will be favored relatively 

to conventional sulfide ones. With advances in hydrometallurgical techniques (i.e. acid­

leaching, solvent extraction and electrowinning technology), the economie potential of non­

sulfide ores has been greatly enhanced allowing these ores to be possibly envisaged as a 

major source for zinc in the twenty-first century (Hitzman et al. , 2003 ; Heffernan, 2006). 

Non-sulfide zinc deposits are generally poor in Iead, sulfur and other environmentally 

deleterious elements and their grades can be higher (>20% Zn) than the majority of their 

sulfide counterparts. 

Direct 
replacement 

example: 
Accha, Peru 
Angouran , Iran 
Mehdiabad , Iran 
Tynagh, lreland 
Shaimerden, 

Kazakhstan 

Non-sulfide 
Zinc Deposits 
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Figure 1.1: Classification ofNon-Sulfide Zinc deposits by Hitzman et al. (2003). 
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A recent classification of non-sulfide zinc mineralization recognizes two maJOr 

deposit types (Fig. 1.1 ): ( 1) The widely distributed and common supergene deposits and (2) 

the uncommon hypogene deposits (Hitzman et al., 2003). The most important examples of 

the hypogene-type are Franklin (21.8 Mt at 19.5% Zn) and Sterling Hill (10.9 Mt at 19% Zn) 

located in marbles of the Grenville Province in New Jersey (Fig. 1.2) (Johnson and Skinner, 

2003). The Grenville Supergroup marbles of the Canadian Shield share the same 

characteristics as those in New Jersey (Johnson and Skinner, 2003). 

In this perspective, Mesoproterozoic Grenville Supergroup marbles of the Canadian 

Shield and correlative adjacent outliers in Appalachian uplifted terranes are of interest 

because they are characterized by hosting two end-members of hypogene zinc deposits : ( 1) 

the more understood and widely distributed sedimentary exhalative (SEDEX) zinc sulfide 

deposits (e.g. world-class district ofBalmat-Edwards (N.Y.) 40.8 Mt at 9% Zn) (deLorraine, 

2001) and (2) the more controversial and much rarer stratiform hypogene non-sulfide zinc 

deposits (e.g. Franklin and Sterling Hill deposits (N.J.)) (Hitzman et al. , 2003). The latter 

group constitutes the world 's largest hypogene stratiform non-sulfide zinc-type district with a 

total of 34Mt of ore grading 20% Zn, 9% Mn and 17% Fe (Fronde] and Baum, 1974; Johnson 

et al. , 1990, Johnson and Skinner, 2003; Hitzman et al. , 2003). 

The paucity of examples and isolated location of Franklin and Sterling Hill non­

sulfide zinc deposits in New Jersey does not permit a clear relationship to be established with 

conventional SEDEX sulfide zinc deposits (Fig 1.2). Is Franklin and Sterling Hill non-sulfide 

mineralization an exceptional anomaly in the Grenville Province? Is there a link between 

non-sulfide and sulfide SEDEX deposits? 

Unmetamorphosed carbonate-hosted Zn-Pb sulfide deposits occur throughout the 

world and geological time, from the Proterozoic SEDEX zinc belt in Australia (McArthur 

River) (Cooke et al. , 2000), to the Paleozoic Irish-type deposits of Ireland (Hitzman and 

Beaty 1996), and up to the Atlantis II Deep hydrothermal deposits currently in operation in 

the Red Sea (Pottorf and Barnes, 1983). Unmetamorphosed carbonate-hosted hypogene non­

sulfide zinc deposits examples also occur across geological time, from the Proterozoic 
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Vazante deposit in Brazi 1 (Monteiro et al., 1999), to the Cam brian Beltana deposit in 

Australia (Brugger et al., 2003), and also under the form of hydroxides exhalites in the Red 

Sea Atlantis II Deep modern hydrothermal system (Pottorf and Bames, 1983). 

Metamorphism of SEDEX zinc sulfide is weil documented by Vokes (2000) and Cartwright 

and Oliver (2000), white metamorphism of hypogene non-sulfide zinc deposits is weil 

studied by Frondel and Baum (1980), Johnson et al. (1990), Johnson and Skinner (2003) and 

Hitzman et al. (2003). Recent research on stratiform carbonate-hosted Zn-Pb sulfide SEDEX 

deposits, that contain more than 50 percent of the world's resources of zinc, resulted on a 

better understanding of the ore forming hydrothermal brines and the subdivision of the 

SEDEx-type into two sub-types (Cooke et al., 2000). In parallel, new research by Brugger et 

al. (2003) on the stability of willemite, the main ore mineral of hypogene non-sulfide zinc 

deposits, suggests that willemite is capable of direct precipitation from hydrothermal brines 

similar to those found in SEDEX environments. The observation of a willemite-sphalerite 

intrgrowth at the Vazante deposit in Brazil (Monteiro et al. , 1999) supports this affirmation 

and suggests that a continuum could exist between the two types of zinc mineralization. 

Therefore, could hypogene stratiform non-sulfide zinc mineralization exist in the geological 

environment of the Grenville Supergroup SEDEX zinc sulfide deposits? 

To determine whether or not a relationship between hypogene stratiform non-sulfide 

and sulfide zinc deposits exists we need to confirm that both types exist in the same marble 

belt and geological environment. The first part of this study will present a review of the 

marble-hosted Grenville Supergroup SEDEX zinc sulfide deposits in the light of recent 

scientific advances in our understanding of the SEDEX deposit-type. We then present a 

review for the unconventional Franklin and Sterling Hi ll hypogene non-sulfide zinc deposit­

type. These reviews are necessary to properly understand and place each deposit-type in its 

geological context. The next part of the study presents field work data for the Bryson(Qc)­

Renfrew(Ont) area. This data is used to characterize the geological environrnent and the 

SEDEX zinc mineralization of this area to permit comparison studies with the Balmat­

Edwards district. Further field work, petrologic and geochemical around the town of Bryson, 

where a non-sulfide occurrence is known, is presented to characterize the mineralogical 

characteristics of stratabound non-sulfide zinc mineralization. Results are then compared to 

Franklin and Sterling Hill non-sulfide mineralization . The final section discusses the 
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significance of the acquired data to determine if a relationship exists between Franklin and 

Sterling Hill non-sulfide zinc mineralization and Balmat-Edwards SEDEX zinc sulfide 

deposits. 
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GENERAL SEDEX-TYPE DEPOSIT REVIEW 

Discovery and acceptance of plate tectonics and sea-floor hydrothermal vents 

deposits in the 1960s led to the recognition of sedimentary exha1ative deposits (Large, 1980). 

The acronym "SEDEX" was proposed by Carne and Cathro (1982) for these deposits. 

SEDEX deposits can be simplified as fault-driven metalliferous hydrothermal brines exhaling 

into sea-floor local sub-basins where the metals precipitation occurs as chemical sediments 

(Large, 1980; Goodfellow et al. , 1993; Lydon, J. W., 1996). Sub-basins in extensional 

tectonic regime are important for the control of where fluid mixing (i.e. hydrothermal fluid 

with seawater for example) occurs because it initiates metal deposition (Cooke et al. , 2000; 

Hitzman et al., 2003). SEDEX deposits are known to be hosted by turbiditic shales and also 

carbonates (Cooke et al. , 2000). 

Shale-hosted SEDEX deposits are weil known in Canada with those of the Selwyn 

basin in northwestern Canada (total of about 174.1 Mt at 5.6% Zn) and also the Sullivan 

deposit (170 Mt at 5.5% Zn and 5.8% Pb) in British Columbia (Goodfellow et al., 1993; 

Lydon, 1996). Carbonate-hosted SEDEX deposits examples are found in the Grenville 

Superg~·oup marbles of the Grenville Province (i.e. Balmat-Edwards district). Although the 

Grenville Supergroup SEDEX zinc sulfide deposits were metamorphosed up to granulite­

facies, the SEDEX nature of the deposits is still recognizable (Gauthier and Brown, 1986; 

Easton, 1992; deLorraine, 2001 ; Gauthier et al., 2004). 

Unmetamorphosed and undeformed Proterozoic equivalents for the Grenville 

Supergruop SEDEX deposits are the Proterozoic carbonate-hosted SEDEX zinc sulfide 

deposits in the McArthur River basin (237 Mt at 9.2% Zn and 4.1% Pb) in central northern 

Australia (Cooke et al. , 2000). With the stratigraphically equivalent Mount Isa basin, they 

host most of the world's known Proterozoic SEDEX deposits (i.e. McArthur River (HYC), 

Mount Isa, Hilton, George, Fischer, Century, Dugald River and Lady Loretta deposits) and 

are part of the Australian Proterozoic zinc belt (Cooke et al. , 2000). An unmetamorphosed 
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Paleozoic analogue would be the Irish-type stratabound carbonate-hosted zinc deposits 

exemplified by the world's major zinc district of the Irish Zinc-Lead Orefield (including the 

world-class Navan deposit with over 70Mt of ore grading 10% Zn and 2.6% Pb, and also 

Lisheen, Silvermines, Galmoy and Tynagh deposits) (Hitzman and Beaty, 1996). A modern 

example of a SEDEX zinc sulfide ore is the Red Sea Atlantis II Deep that is still operating 

today (Pottorf and Barnes, 1983). There, metalliferous brines pools in axial rifts are 

depositing zinc ore mainly under its sulfide form, sphalerite. The Atlantis II Deep contains 

l .8Mt of ore at 2.06% Zn (Pottorf and Barnes, 1983; Nawab, 1994; Scholten et al. , 2000). 

Hypogene non-sulfide zinc deposits are represented by a small number of deposits 

recognized throughout the world (i.e. Vazante in Brazil, Beltana in Australia, Berg Aukas in 

Namibia, Franklin and Sterling Hill, etc.) and these deposits dominantly contain willemite or 

a willemite-franklinite-zincite assemblage (Hitzman et al. , 2003). While only Franklin and 

Sterling Hill are stratiform hypogene deposits in the above examples, they share certain 

genetic features with the other deposits that are structurally controlled. lt is more a matter of 

where the hydrothermal zinc bearing fluid mixed with another fluid and/or rock unit 

(Hitzman et al. , 2003; Brugger et al. , 2003). Franklin and Sterling Hill deposits were affected 

by granulite-facies metamorphism (Johnson et al. , 1990) but unmetamorphosed non-sulfide 

zinc deposits examples exists. Notably, the Vazante deposit in Brazil (28 .5 Mt at 18% Zn), 

currently the nation' s main zinc producer, consists mainly of hypogene willemite hosted by 

an unmetamorphosed Proterozoic carbonate sequence (Montiero et al. , 1999; Montiero et al. , 

2006). Willemite is intergrown with sphalerite at Vazante suggesting that they coprecipated 

(Monteiro et al., 1999). This feature is shared among other non-sulfide zinc deposits such as 

Berg Aukas (Namibia) and Kabwe (Zambia) with mineral assemblage ranging respectively 

from wi llemite-(sphalerite) to sphalerite-(willemite) (Hitzman et al. , 2003). This suggests that 

a mineralogie and geochemical continuum may exist between the deposit types (Hitzman et 

al. , 2003). A Cambrian unmetamorphosed hypogene non-sulfide zinc deposit example is the 

Beltana deposit in southern Australia. The Beltana epigenetic deposit occurs within a 

dolomite rock unit and is willemite dominant (no sulfides) (Groves et al. , 2003; Brugger et 

al. , 2003; Hitzman et al., 2003). Hitzman et al. (2003) suggests that the closest analogue for 

stratiform non-sulfide mineralization could be the Langban stratiform manganese and iron 

deposit in Sweden. This deposit-type is believed analogue to stratiform mixed oxide-sulfide 
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submarine accumulations of the Atlantis II Deep deposits in the Red Sea (Potto rf and Barn es, 

1983; Hitzman et al., 2003). 

So, unmetamorphosed SEDEX zinc sulfide and non-sulfide zinc deposits examples 

are known and are weil documented in the literature. However, high grade metamorphism is 

present in the Grenville Supergroup and adjacent outliers in New Jersey. 

Metamorphism of SEDEX zinc sulfide deposits is documented (Vokes, 2000 and 

references therein) from subgreenschist to granulite facies. In central northern Australia, 

adjacent to the McArthur basin, the stratigraphically equivalent Mount Isa basin has a strong 

southeast-trending metamorphic gradient from subgreenschist to amphibolite facies which 

permitted to study the metamorphism of carbonate-hosted SEDEX zinc deposits (Pietsch et 

al., 1991 ; Cooke et al., 2000). The Studies by Cartwright and Oliver (2000) on the Mount lsa 

and Broken Hill zinc-lead deposits (Australia) indicates that the formation of massive zinc­

lead deposits, such as those in Australia, during regional metamorphism should be rare 

because of the moderately low salinities of most metamorphic fluids. Therefore, white 

secondary zinc-lead concentration during metamorphism may occur, evidence points toward 

a premetamorphic syngenetic or diagenetic origin for the zinc ores, such as observed at the 

Broken Hill and Mount Isa orebodies (Large et al., 1996). 

Metamorphism of non-sulfide zinc deposits is discussed by Hitzman et al. (2003), 

Squiller and Sclar (1980) and Johnson et al. (1990). Willemite is the dominant mineral 

present in hypogene non-sulfide zinc deposits (i.e. Vazante, Beltana, etc.) and has been 

commonly associated with metamorphism (Hitzman et al., 2003). However, recent research 

on SEDEX deposits ore forming fluids (Cooke et al., 2000) and on willemite stability in 

hydrothermal environments (Brugger et al., 2003) brings new insights on the formation of 

sulfide and non-sultïde zinc deposits and raises the possibility that a relationship between the 

two deposits could exists. 



GEOLOGICAL CONTEXT OF THE GRENVILLE SUPERGROUP 

Mesoproterozoic Grenville Supergroup marble-hosted zinc deposits are part of the 

Grenville Province which forms the south eastern part of the Canadian Shield. The Grenville 

Province can be considered as an orogenie belt that developed on the southeastern margin of 

Laurentia during the Proterozoic (Rivers, 1997). Replacing the original expression 

"Grenville Series" described by Logan (1863), the Grenville Supergroup represents the 

metasedimentary and metavolcanic units which characterize the Central Metasedimentary 

belt (CMB) as defined by Wynne-Edwards (1972). This Mesoproterozoic supracrustal 

sequence occupies the southwestern part of the Grenville Province (Fig. 1.2) and consists 

mainly of a succession of gneisses and marbles with minor amphibolites, metavolcanics, 

quartzites and cale-silicate rocks (Easton, 1992). Marbles are an important constituent of the 

Grenville Supergroup (Davidson, 1998). High metamorphic grades (from local greenschist 

up-to granulite facies) and polyphase deformation characterize the Grenville Supergroup 

(Easton, 1992) and resulted from a continent-continent type collision during the Grenvillian 

orogeny at about 1.1 Ga (Rivers et al. , 2002). 

The northwestern margin of the Grenville Supergroup, where SEDEX zinc sulfide 

zinc deposits occur, is characterized by thick sequences of dolomitic and calcitic marbles 

dominating the stratigraphy with abundant quartz arenites and minor metavolcanics (Easton, 

1992). Dolomitic marbles locally contain preserved stromatolites (where deformation such as 

shearing was limited) which imply a shallow-water depositional environment (Easton, 1992). 

Moreover, meta-evaporites are locally observed and are characterized by thick stratiform 

anhydrite beds (Brown and Engel , 1956; Brown, 1973). Sulfur isotope studies on anhydrite 

occurrences, notably in the Balmat-Edwards district and in Ontario, confirm the evaporitic 

nature (oS34 consistently highly positive) and th us an origin from direct precipitation of 

marine sulfate (Brown, 1973; Whelan et al. , 1990). The dolomitic marble units also host the 

numerous stratiform SEDEX zinc sulfides of the Grenville Supergroup (e.g. Balmat-Edwards 

district, Cadieux and Maniwaki) (Fig. 1.3) (deLorraine, 2001 ; Easton, 1992; Gauthier and 
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Brown, 1986). The depositional environment is therefore characterized by a metamorphosed 

shallow-water evaporitic carbonate platform. More detai led geological setting for the zinc 

deposits will occupy the following sections of the paper. 
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Figure 1.3: Distribution of SEDEX zinc sulfide deposits throughout the Grenville 
Supergroup marbles of the southwestem Grenvi lle Province. The most important example 
is the Balmat-Edwards district located in the southeastem part of the Grenville 
Supergroup. The Maniwaki-Gracefield area and the Cadieux deposit are discussed in this 
thesis and are localized here on this map. Stratiform meta-evaporites associated with these 
SEDEX deposits (i .e. anhydrite, tourmaline and siderite/magnesite) are reported on this 
map. Modified from Gauthier and Chartrand (2005). 
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CHAPTERI 

BALMAT-EDWARDS SEDEX ZINC SULFIDE DEPOSITS 

1.1 INTRODUCTION 

As mentioned earlier, the best known, the most important and longest commercially 

producing SEDEX zinc sulfide mines in the Grenville Supergroup are the Balmat-Edwards 

zinc orebodies with past production and reserves totaling 40 .8 metric tonnes (Mt) at grades of 

9.4% zinc (deLorraine, 2001). This zinc mining district began production at the Edwards 

mine in 1908 and continued on other zinc deposits until 2008. 

1.2 GEOLOGICAL CONTEXT 

The Balmat-Edwards district is located in the Adirondack Lowlands. The Adirondack 

lowlands form part of the southern extension of the Grenville Province and the Grenville 

Supergroup of Canada and are underlined by marbles, cale-silicate rocks and subordinate 

paragneiss and metavolcanic rocks of upper amphibol ite grade ( deLorrraine, 2001 ). Although 

the Adirondack Lowlands are transected by severa) major lineaments and fault zones, 

detailed mapping revealed that specifie stratigraphie markers exist among the faul -bounded­

panels, th us permitting construction of a regional sequence ( deLorraine, 2001 ). Regarding 

this regional sequence, deLorraine (200 1) points out that apparent structural discontinuities 

exists between sorne of the major formations and proposes that the section may reflect 

lithotectonic stacking rather than a true stratigraphie sequence. 

The basement of the Adirondack Lowlands, and the structurally lowermost 

recognized rock unit, is a leucogranitic gneiss named the Hyde School Gneiss that has been 

reinterpreted as intrusive in origin by McLelland et al. (1992). Overlying this basement is the 
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Lower Marble Formation composed mainly of calcitic, locally graphite-bearing, marbles. The 

Popple Hill Gneiss, a migmatitic gneiss of overall dacitic composition structurally overlies 

these marbles (Carl, 1988, deLorraine, 2001). The Upper Marble Formation, also referred to 

as the Balmat-Edwards marble belt, occurs at the stratigraphie top. The zinc deposits occur in 

this marble belt which is characterized by Mesoproterozoic pure dolomitic and siliceous 

dolomitic marble units, including meta-evaporites and stromatolitic-bearing strata 

( deLorraine, 2001 ). 

The Grenvillian orogeny (1130 to 1170 Ma) resulted in polyphase deformation of the 

metasedimentary rocks of the Adirondack Lowlands with metamorphic grades reaching 

upper amphibolite facies. At Balmat, temperatures reached 640°C based on calcite-dolomite 

geothermometry (Whelan et al. , 1984). At !east four phases of deformation are recognized . 

First-phase deformation occurred at metamorphic peak conditions, defining the dominant 

regional foliation. It is characterized by intrafolial isoclinal folds with a well-developed axial 

pl anar foliation. The second phase of deformation produced the region 's dominant northeast­

trending fold structures (deLorraine, 2001). It is characterized by isoclinal folds refolding 

early isoclines and their axial-planar foliation. The best example of second-phase folds is the 

Sylvia Lake syncline between Balmat and Edwards where the zinc deposits of this district 

occur ( deLorraine, 2001 ). Third-phase folds are more or Jess coaxial with second phase folds 

and locally produced crescent-and hook-shaped interference patterns. Finally, phase four is 

characterized by regional-scale inflections of northwest trending folds. Although polyphase 

deformation occurred in the Balmat-Edwards district, the presence of intercalated 

stratigraphie marker beds enabled Brown and Engel (1956) to decipher the detailed 

stratigraphie column of the Upper Marble formation, and revealing the stratiform nature of 

the zinc deposits. 

In the Balmat-Edwards district area, marbles have a thickness of approximately 1000 

meters (Brown and Engel, 1956; deLorraine, 2001). The detailed stratigraphie column for the 

Upper Marble Formation or Balmat Marble belt is characterized by a dominance and 

alternation of nearly pure dolomitic marbles with siliceous dolomitic marbles distributed 

throughout 16 units (Brown and Engel, 1956). These 16 units will not be individually 

described in this thesis. Coarse-grained grey to white dolomitic marble containing more than 
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95% dolomite characterizes approximately half of the units . They are generally not 

mineralized and silicate poor. Four units are characterized by dolomitic marbles rich in fine 

diopside-forsterite Jayers (Brown and Engel, 1956), and these silicate-rich marbles host the 

zinc mineralization (deLorraine, 2001). Noteworthy is the fact that stromatolites were 

identified in the Balmat-Edwards stratigraphie sequence (lsachsen and Landing, 1983). 

Stratiform anhydrite layers are present through the dolomitic marble and siliceous dolomitic 

marble units . Medium-to coarse-grained lavender anhydrite forms from 50 and up to 100% of 

these horizons and were demonstrated to be meta-evaporite layers (Whelan et al. , 1990). 

Anhydrite thickness varies from 1 to 60 meters (Brown and Engel, 1956; Whe1an et al. , 

1990). 

Figure 1.4: Stratiform lavender anhydrite bed observed underground at Balmat-Edwards 
district.Typical Balmat-type stratiform massive sphalerite is also present on this figure. Zinc 
minera1ization at Balmat-Edwards often occurs in close spatial association with evaporite 
deposition, as seen on this figure. 
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1.3 ZINC MINERALIZA Tl ON 

Zinc sulfide mineralization is present as stratiform massive to semi-massive lenses 

hosted by silicate-rich dolomitic marble units (Fig 1.4). While non-stratiforrn zinc 

mineralization is also present, it is known that these correspond to structural features due to 

Grenvillian deformation and that the pre-metamorphic nature of the deposit is stratiforrn 

( deLorraine, 2001 ). These cross-cutting sulfide remobilizations are explained by the 

"Mother-daughter" mode! of deLorraine (2001), where "daughter" remobilizations are linked 

to a "Mother" source bed (stratiforrn sphalerite deposit). This led deLorraine (200 1) to 

conclude that three primary ore forming cycles are present in the Balmat sequence, rather 

than six or eight. Meta-evaporites are also spatially associated with the ore forrning cycles 

(Fig 1.4) (Whelan et al., 1990). Zinc mineralization consists mainly of coarse-grained 

sphalerite grains deposited and is in close spatial association with an evaporitic layer (Fig. 

1.4) (deLorraine, 2001). 

1.4 STABLE ISOTOPE STUDIES 

Stable oxygen and sulfur isotopie data from the Balmat-Edwards district reveal key 

features for the geological environment in which the hydrothermal brines were deposited. 

A stable oxygen isotopie study of the carbonates hosting the Balmat-Edwards 

deposits was conducted by Whelan et al. (1990). Oxygen isotopes were preferred because in 

a restricted basin, evaporation fractionates the two stable oxygen isotopes 0 16 and 0 18 

because it is easier to evaporate the lighter 0 16 isotope rather than the heavier 0 18
. With time 

and following this fractionation pattern, the basin seawater is gradually enriched in 0 18 

because 0 16 is taken out of the system by evaporation (Rollinson, 1993). Therefore, high 

0 18/0 16 ratios indicate an arid evaporitic environment. The stable oxygen isotop ie signature 

of the dolomitic marbles hosting the Balmat-Edwards deposits is 0 18-enriched with values 

ranging from 22.6 to 26.6 per mil (Whelan et al. , 1990). This records an arid climate and 

evaporation in a restricted shallow-water basin. 

The sulfur isotopie data of anhydrite indicates that anhydrite layers were deposited in 

an isolated evaporation basin that was the site of accumulation of highly saline brines and 

extensive bacterial sulfate reduction (Whelan et al. , 1990). The stratigraphie isotopie record 
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at Balmat shows a significant increase in 8S34 from the bottom to the top of the anhydrite 

lenses (Whelan et al., 1990). Brine formation results from the evaporation of seawater at 

basin surface. As evaporation proceeds, the denser brine serties at the bottom of the restricted 

basin, stagnates and becomes anoxie. These conditions are ideal for bacterial sulfate 

reduction. Isotopie fractionation occurs during bacterial sulfate reduction; sulfate reduction of 

S32 demands Jess energy and is faster than the reduction of S34 in the conversion of sulfate 

H2S04 (oxidized state) to H2S (reduced state) (Whelan et al. , 1990). Therefore S32 is 

preferably converted in H2S relatively to the isotope S34
. This result in brines enriched in S34 

relatively to S32 because S34 is preferably left in the brine. Anhydrite precipitated from such 

hypersaline brines will be enriched in S34 and have a high 8S34 isotope signature. Sulfides (i.e. 

sphalerite and pyrite) are formed by the combination of metal (iron and/or zinc) with reduced 

sulfur (H2S) and are brought in the system by hydrothermal activity. Thus, the more metals 

are available, the more H2S is combined to form sulfides and the Jess S32 stays in the system. 

This as the effect of rising the 8S34 ratios of the deposited anhydrite and sulfides because the 

system becomes more and more enriched in S34
, resulting from a restricted evaporation basin . 

Hydrothermal activity can thus amplify and/or accelerate the increase of S34 of the 

sulfate in the dense brine by providing metals for the extraction of bacterially produced H2S. 

Hydrothermal activity might also promote anhydrite precipitation by slightly rising the basin 

water temperature (Whelan et al. , 1990). 

Stable isotopie data demonstrates that the Balmat-Edwards deposits were formed in a 

shallow-water evaporitic carbonate platform environment. The high 80 18 signature of 

carbonates and the high 8S34 signature of anhydrite and sulfides from the Balmat-Edwards 

district record such an environment. 

1.5 CONCLUSION 

Balmat-type SEDEX zinc deposits can therefore be characterized by zinciferous 

hydrothermal brines deposited in a shallow water evaporitic carbonate platform environment. 

The zinc mineralization consists in sphalerite. The mineralization is stratiform and spatially 

associated with anhydrite beds. Dolomitic silicate-rich marble ( diopside and forsterite) hosts 

the zinc mineralization. 



CHAPTERII 

MANIW AKI-GRACEFIELD SEDEX ZINC SULFIDE DEPOSITS 

2.1 INTRODUCTION 

SEDEX zinc sulfide deposits also occur in Grenville Supergroup marbles of the 

Mont-Laurier basin in southwestern Quebec. These deposits were studied and considered to 

be comparable to Balmat-type deposits by Gauthier and Brown (1986) and have been 

historically the target of many exploration companies. A significant deposit is the Leitch 

deposit with 75 000 t of ore grading 8% zinc (Gauthier and Brown, 1986). Even today, high 

grade zinc deposits are actively being explored for in the sector, thus demonstrating the 

continuing potential for Balmat-type deposits in this marble belt. The deposits and showings 

are located in the northwestern extension of the Grenville Supergroup along its western 

boundary, more than 300 km north of the Balmat-Edwards district (Fig. 1.3). This marble belt 

is Mesoproterozoic in age and directly comparable to the marble belt present at the Balmat­

Edwards district (Gauthier et al., 1986). 

2.2 GEOLOGICAL CONTEXT 

ln this area Balmat-type stratiform SEDEX zinc sulfide mineralizations occur in a 50 

by 30 square kilometer area around the town of Maniwaki (Quebec) (Gauthier and Brown, 

1986). The geological environment of the Maniwaki-Gracefield SEDEX deposits consists of 

calcitic and dolomitic marbles that form part of the Median Marble Formation, as defined by 

Gauthier and Brown ( 1986). The marbles are underlain by a locally rusty and graphitic 

quartzitic paragneiss, itself in contact with amphibolites (Gauthier and Brown, 1986). Biotite 
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paragneiss overlay the Median Marble Formation (Gauthier and Brown, 1986; Gauthier et al. , 

1987). Polyphase deformation and granulite-facies metamorphic conditions affected the 

Man iwaki area (Indares and Martignole, 1984). Wh ile, most primary features of the country 

rocks were obliterated by dynamo-metamorphic effects, primary bedding is still preserved in 

the marble units (Gauthier et al., 2004). Polyphase deformation resulted in isoclinal Pl folds 

being refolded by P2 open fold plunging towards the northeast (Gauthier and Brown, 1986). 

Thickening at fold hinges and stretching of fold flanks are characteristic structural features of 

the area. 

The Maniwaki-Gracefield SEDEX zinc deposits are hosted by silicate-rich dolomitic 

marbles. Marble units with low silicate content are zinc-poor or not mineralized. In fact, the 

zinc deposits are closely associated with an increase in silicate content in the dolomitic 

marble (Gauthier and Brown, 1986). Mineralization occurs in coarse grained diopside­

forsterite (up-to 40%) dolomitic marbles. While calcitic marbles dominate the Grenville 

Supergroup in Quebec and Ontario, dolomitic marbles constitute an important part of the 

Maniwaki area stratigraphy. This abundance ofthick dolomitic marble sequences reflects that 

it resulted from the metamorphism of dolostone formed in a pre-metamorphic magnesian 

shallow water depositional environment (Gauthier and Brown, 1986). Moreover, tourmaline 

horizons, rich in boron, are sporadically found throughout the area. Stable isotopie studies 

conducted on these tourmalines confirm that they formed in an evaporitic environment 

(Nantel, 1994). 

2.3 ZINC MINERALIZA TION 

Zinc ulfide mineralization m the Maniwaki area is stratiform and consists of 

massive, semi-massive and disseminated coarse-grained sphalerite found at the contact 

between si licate-rich dolomitic marbles and a quartzitic-diopsidic rock unit. The zinc 

mineralization is characterized by an increase in silicate and magnesium in the dolomitic 

marble unit. An increase in the diopside-forsterite content is an exploration guide towards 

greater concentrations of sphalerite (Gauthier and Brown, 1986). There is a vertical zoning 

profile that characterizes the Maniwaki-Gracefield area mineralizations as fo llow: The 

mineralized contact grades from a silicate-rich dolomitic marble containing disseminated 

sphalerite devoid of iron sulfides into a massive sulfide horizon, followed by massive 
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spha1erite minera1ization which is then overlain by a pyrrhotite-pyrite-rich diopside bearing 

quartzite (hanging wall) (Gauthier and Brown, 1986). Therefore, massive SEDEX zinc 

su1fide minera1ization of the Maniwaki area is restricted to the contact between a do1omitic 

carbonate p1atform and a thick pelitic sequence as suggested by the presence of biotite 

paragne1ss. 

2.4 CHEMIN-PICHÉ IRON FORMATION 

However, where zinc and iron mineralization occurs without the reduced overlying 

clastic rock unit, an iron formation is observed instead . In fact, magnetite-graphite­

breunnerite (iron-rich magnesite)-forsterite zinc sulfide bearing iron formations are regionally 

present and associated with the SEDEX zinc deposits (Gauthier et al. , 2004). Named the 

Chemin Piché iron formation, this lithology forms a continuous stratiform 50 centimeter­

thick horizon hosted by dolomitic marble (Gauthier et al. , 2004). Zinc is present as a 

disseminated sphalerite horizon in an adjacent underlying dolomtitic bed. The geochemical 

profile of this iron formation shows an enrichment in magnesium and silica towards the top 

of the stratigraphie sequence (Gauthier and Brown, 1986; Gauthier et al. , 2004), as 

demonstrated by the appearance of diopside and forsterite resulting from the addition of silica 

in the pre-metamorphic environment. During metamorphism at granulite facies, dolomite 

reacts with quartz to form diopside and forsterite (Pomeral et al. , 2000; Winter, 2001). The 

Chemin Piché iron-formation is interpreted to be a stratigraphically equivalent distal horizon 

to the SEDEX sulfide zinc deposits of the Maniwaki area (Gauthier et al. , 2004). The iron 

formation and SEDEX deposits are therefore related. 

The pre-metamorphic nature ofthis iron formation would be a siderite-rich carbonate 

bed. With granulite facies metamorphism, magnesium-rich siderite reacts with silica to form 

the magnetite-breunerite-forsterite-graphite assemblage observed today. The prograde 

dossicoation react ion is as follow: 

(1) 6FeC03 (siderite)= 2Fe3Ü4 (magnetite)+ C (graphite) + SC02 

The presence of iron formation as a distant equivalent to the SEDEX zinc sulfide 

deposits indicates that an iron halo surrounds the deposits . 
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2.5 CONCLUSION 

The Maniwaki-Gracefield SEDEX zmc sulfide deposits units are m many ways 

comparable to th ose observed at Balmat-Edwards. Like th ose of Balmat-Edwards district, the 

zinc deposits in Quebec are stratiform, grade from disseminated to massive and consist of 

sphalerite-rich ore which is poor in other metals such as copper and lead. Furthermore, zinc 

mineralization occurs in siliceous dolomitic marble units that deposited in a shallow-water 

evaporitic carbonate platform environment. The high magnesium content of the marble and 

the presence of tourmaline-rich layers is suggestive of formation in an evaporitic basin . 

Therefore, the Maniwaki-Gracefield zinc sulfide deposits are SEDEX in origin and are hosted 

by a similar to Balmat-Edwards geological environment. 



CHAPTERIII 

CADIEUX SEDEX ZINC SULFIDE DEPOSIT 

3.11NTRODUCTION 

In the Bryson-Renfrew area, another SEDEX zinc sulfide deposit is known to occur. 

The Cadieux deposit is located in Mesoproterozoic Grenville Supergroup marbles south of 

the Maniwaki-Gracefield SEDEX zinc sulfide deposits (central-western part of the CMB) 7 

kilometers south of the town of Renfrew (Ont) (Fig. 1.3). The Cadieux deposit was first 

discovered in 1922 and sporadically worked by various companies including Breakwater 

Resources Ltd. Later exploration work by Noranda Exploration in the 90s increased resources 

from 750 OOOt of ore grading 10% zinc to 1.5 Mt of ore grading 9% zinc (Roger and 

Lapointe, 1998). The Cadieux deposit is the most important SEDEX zinc sulfide deposit in 

the southeastern part of the Grenville Supergroup of Ontario (Easton, 1992). 

3.2 GEOLOGICAL CONTEXT 

Th geological environment of the Cadieux deposit is characterized by a dolomitic­

calcitic marble belt bounded by siliceous clastic metasedimentary rocks to the northwest and 

granitic rocks to the southeast (Lumbers, 1982; Easton, 1992; Roger and Lapointe, 1998). 

The Grenville Orogeny produced polyphase deformation with metamorphic grades reaching 

upper greenschist to amphibolite in the Renfrew region (Easton, 1992). As is the case in the 

Maniwaki-Gracefield area, while metamorphism and deformation obliterated the primary 

features of most lithology-types, bedding can still be observed in the marble sequence due to 

the reactive nature of marbles during prograde metamorphism (Gauthier and Brown, 1986). 
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Regional-scale variations of sedimentary and diagenetic facies appear to be easter to 

recognize than local features which have been obliterated by anatexis, folding, boudinage and 

transposition (Easton, 1992). 

The Cadieux deposit is hosted in dolomitic marbles in a similar way to the Balmat­

Edwards SEDEX zinc deposits (Soever and Meusy, 1987; Easton and Fyon, 1992). 

Mineralization is hosted in a tremolite-diopside-rich dolomitic marble, which corresponds to 

a metamorphosed siliceous dolostone unit. Tremolite and diopside are coarse-grained 

(millimetric to centimetric) and represent up to 40% of the volume of the marble unit. 

Dolomite crystals are also coarse-grained and enclose minor amounts of interstitial calcite 

(Jess than 2%). A key feature of the stratigraphie column at Cadieux is the presence of a 

lavender anhydrite layer associated with the deposit. This anhydrite layer is stratiform, metric 

in scale and interpreted as a meta-evaporite layer. This anhydrite layer at the Cadieux deposit 

can only be observed in drill cores completed by Noranda Exploration lnc. because of the 

rapid dissolution of meta-evaporites by surficial waters (Roger and Lapointe, 1998). Thus, 

the depositional environment of the Cadieux deposit is a dolomite-dominated carbonate 

evaporitic platform shelf, like the one found in the Batmat-Edwards district. 

3.3 ZINC MINERALIZA TION 

The zinc mineralization at the Cadieux deposit is closely associated with the silicate­

rich (tremolite-dioside) dolomitic marble unit. The Cadieux zinc deposit is characterized by 

stratiform disseminated zinc sulfide mineralization which consists of coarse-grained dark 

colored sphalerite (ZnS) crystals. Noteworthy is the fact that iron sulfides (i .e. pyrite and 

pyrrhotite) are not abundantly associated with the mineralization, rendering the geophysical 

characterization of the deposit difficult (Chouteau et al., 2005). 

3.4 STABLE I SOTOPE STUDIES 

Stable sulfur isotopie studies were conducted on the Cadieux deposits in the 90s. 

Results have shown that 8S34 isotopie data from sphalerite varies from -2 .5 per mil to high 

(> 10 per mil) 8S34 values (Easton, 1992). High 8S34 values are characteristic of a few zinc 

sulfide deposits, most notably those of the Balmat-Edwards district (Brown, 1973; Easton, 

1992; Wh elan et al. , 1984 ). 
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3.5 CONCLUSION 

The Cadieux deposit features are consistent with those of a SEDEX zinc sulfide 

deposit. Zinc sulfide mineralization is stratiform, hosted by a silicate-rich dolomitic marble 

unit, stratigraphically associated with meta-evaporites and has a stable sulfur isotopie 

signature typical of Grenville Supergroup SEDEX deposits . Thus, the Cadieux deposit is 

considered to be a SEDEX zinc sulfide deposit similar to those of the Balmat-Edwards 

district. Furthermore, the pre-metamorphic depositional environment of the deposit consists 

of a shallow water evaporitic carbonate platform environment, similar to the environment 

proposed for the Balmat-Edwards district. 



CHAPTERN 

DISCUSSION OF GRENVILLE SUPERGROUP SEDEX ZINC SULFIDE DEPOSITS 

The marble-hosted stratiform zinc sulfide deposits of the Grenville Supergroup are 

SEDEX-type. They are characterized by stratiform sphalerite mineralization hosted in 

silicate-rich dolomitic marbles deposited in a shallow water evaporitic carbonate platform. 

However, these are not the features of classic SEDEX deposits which are hosted by siliclastic 

turbidites. The genetic mode! used to characterized these zinc sulfide deposits was based on 

shale-hosted deposits such those of the Selwyn Basin in northwestern Canada or 

Rammelsberg in Germany (Large, 1980). Exploration guidelines and the genetic mode! for 

the SEDEX zinc sulfide deposits of the Grenville Supergroup were designed accordingly 

(Gauthier and Brown, 1986; de Lorraine, 2001). Since the 1990's, the Australian Proterozoic 

zinc belt has emerged as the world's largest SEDEX district, an ore deposit type that now 

represents more than 50% of the world's reserve oflead and zinc (Cooke et al., 2000). Recent 

research by the Australian Mineral Research Association (AMIRA) resulted in a division of 

the SEDEX deposits into two subtypes: Selwyn-type deposits and the new McArthur subtype, 

exemplified by the McArthur deposit in Australia (Cooke et al. , 2000) (Table 4.1). Which 

type of SEDEX corresponds to the zinc deposits found in the Grenville Supergroup? 

Selwyn sub-type SEDEX deposits are characterized by deep-water basin and are 

dominated by carbonaceous siliclastic turbidites. The best example for this sub-type is the 

Selwyn basin in northern Canada (Cooke et al. , 2000). Selwyn-type SEDEX are also 

characterized by reduced high temperature (>200°C) brines deposited in a reduced basin and 

are not associated by a distal iron halo. On the other hand, McArthur-type SEDEX deposits 

are characterized by warm ( <200°C) oxidized hydrothermal brin es deposited in an oxidized 
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shallow water carbonate evaporitic platform. Furthermore, a distal iron halo is associated 

with the zinc deposits (siderite-rich beds) (Cooke et al. , 2000). 

Table 4.1: Comparaison of the major geologie features ofMcArthur and Selwyn­
subtype SEDEX deposits 1 

Basin 
stratigraphy 

Carbonates 

Redox state of 
the fluid 

Temperature 

Depositional 
mechanisms 

Fe carbonate 
halo (i .e. 
siderite) 

McArthur-subtype 

Broad carbonate evaporite 
platforms (shallow marine to 
lacustrine) 

Commonly underlie the 
deposits; carbonate is also an 
important component in the 
mineralized environment 

Oxidized (SO/ > H2S) 

Moderate to low (>200°C) 

Reduction, interaction with H2S 
reservOir 

Present 

1 Modified from Cooke et al. (2000). 

Selwyn-subtype 

Dominated by 
cabonaceous siliclastic 
turbidites 

Mostly adsent 

Moderate to high 
(>200°C) 

Temperature decrease, pH 
increase, dilution 

Absent 

Grenvi lle Supergroup SEDEX zinc sulfides deposits are hosted by metamorphosed 

carbonates that were deposited in a shallow water, evaporitic, carbonate platform-shelf 

environment. The following features support this affirmation: (1) the presence of anhydite 

(meta-evaporite) layers at the Balmat-Edwards district and the Cadieux deposit, (2) the 
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ommpresence of dolomitic marbles associated with these deposits, (3) the presence of 

evaporitic boron in tourmalines of the Maniwaki-Gracefield area and ( 4) the results of stable 

oxygen and sulfur isotope studies on anhydrite and sulfides at the Balmat-Edwards district. 

Moreover, stromatolites were identified and described at the Balmat-Edwards district, thus 

confirming a shallow water environment. Finally, a distal magnetite-magnesite iron­

formation, interpreted as the remnant of a metamorphosed breunnerite (magnesium-rich 

siderite) horizon (iron halo), is associated with the Maniwaki-Gracefield SEDEX deposits. 

These features are ail characteristics of the McArthur subtype SEDEX deposits and are 

summarized in Appendix A. 

The Grenville Supergroup SEDEX zinc sulfide deposits can therefore be considered 

to be of the McArthur subtype. Thus, for the purpose of this thesis, Balmat-type SEDEX zinc 

sulfide deposits are defined as hydrothermal brines deposited in a shallow water evaporitic 

dolomitic carbonate platform environment. The brines are warm (about <200°C) and 

deposited in an oxidized environment. This carbonate platform was later metamorphosed to 

granulite facies forming the mineral assemblages described herein throughout the Grenville 

Supergroup SEDEX deposits. 



SECTION TI 

HYPOGENE STRATIFORM NON-SULFIDE ZINC DEPOSITS: 
FRANKLIN-TYPE SEDEX 



CHAPTERV 

FRANKLIN AND STERLING HILL DEPOSITS 

5.1 INTRODUCTION 

The most important examples of Hitzman ' s et al. (2003) non-sulfide zinc deposit 

classification for the hypogene stratiform non-sulfide zinc deposit subtype are the Franklin 

and Sterling Hill zinc-manganese-iron deposits located in New Jersey (Fig 1.1 ). These 

deposits constitute the world's largest known stratiform non-sulfide zinc district with a total 

of 34Mt of ore grading 20% zinc, 9% manganese and 16% iron (Fronde) and Baum, 197 4; 

Megster et al., 1958; Johnson et al. , 1990; Hitzman et al., 2003). 

The Franklin and Sterling Hill deposits are also famous among mineral collectors 

because they host a great diversity of different minerais species. More than 300 minerais 

were described at both deposits and of these, 65 were first recognized at the deposits and 33 

currently have no other known occurrences (Dunn, 1985; Johnson, 1990). 

Franklin and Sterling Hill were mined from the beginning of American colonial times 

(around 1640) until 1954 and 1987, respectively. The Franklin and Sterling Hill deposits 

were mined to a depth of 370 (Fronde) and Baum, 1974) and 564 meters (Megster, 2001), 

respectively. A combined total of 6.5 million metric tons (Mt) of zinc was produced by both 

mines (Johnson and Skinner, 2003). Thus, Franklin and Sterling Hill constitute a world-class 

zinc deposit district. 

5.2 GEOLOGICAL CONTEXT 

Franklin and Sterling Hill are located in the New Jersey Highlands, an uplifted 

tectonic window of a Grenvi ll ian basement outlier exposed in the Appalachian orogenie belt 
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of the eastern coast of North America (Fig 5.1 ). The Highlands are therefore part of the 

Grenville orogenie belt that developed along the southeastem margin of Laurentia during the 

Proterozoic (Rivers, 1997; Johnson and Skinner, 2003 ; Volkert et al. , 2004). The New Jersey 

Highlands are located more than 500 kilometers south of southernmost extension of the 

Grenville Province in New York State (Fig 1.2). The basement of this Grenvillian terrane 

consists of a remnant of a calc-alkaline magmatic arc which was later deformed, 

metamorphosed and partially melted during the Grenvillian Orogeny to form leucocratic 

gneiss, charnockite gneiss and amphibolites (Volkert, 2001 ; Johnson and Skinner, 2003). 

These rock units form the Losee metamorphic suite and constitute the oldest rocks of the 

New Jersey Highlands (Puffer and Volkert, 1991). Overlying the metamorphic basement is a 

metamorphosed and isoclinally folded supracrustal metasedimentary sequence. This 

metasedimentary sequence was affected by polyphase deformation and granulite-facies 

metamorphism from 1.06 to 1.03 Ga (Volkert, 2001). Approximately 2 kilometers thick, the 

supracrustal sequence dominates part ofthe New Jersey Highlands (Volkert, 2001). 
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Figure 5.1: Distribution of the marble-hosted Franklin and Sterling Hill SEDEX non­
sulfide zinc deposits in the New Jersey Highlands Mesopeoterozoic terrane after Johnson 
and Skinner (2003) and Volkert (2004). Modified from Gauthier and Chartrand (2005). 
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The stratigraphie sequence of the metasedimentary supracrustal belt can be simplified 

as a (1) basal quartzofeldspathic metasediment-metavolcanic section overlain by an important 

series of (2) cale-silicate gneisses and marbles and finally an uppermost section characterized 

by a (3) quartzo-feldspathic metasediment-metavolcanic section. Noteworthy is the fact that 

the middle series of marbles contains stromatolites and also probable evaporitic horizons 

(Volkert and Drake, 1999; Volkert, 2001). Differences between the basal and the uppermost 

metasedimentary-metavolcanic sections are that the sediments of the latter section are Jess 

mature and also that the proportion of mafic metavolcanic rock units are higher (Volkert and 

Drake, 1999). A transition from a shallow-water evaporitic basin to an immature clastic 

sequence and mafic metavolcanic rock is thought to reflect initiation of basin closure 

(Johnson and Skinner, 2003). Although no anhydrite-bearing units have been recognized, 

Kearns (1975;1977) has described boron-rich zones within the marble belt. Such a horizon 

has also been described in Grenville Supergroup marbles of the Balmat-Edwards district 

where their interpretations with evaporites is strengthened with the presence of stratiform 

anhydrite in the sequence (Fronde) and Baum, 1956). Spry et al. (2000) also points out that 

nearly ali boron and tourmaline associated with stratiform deposits are formed by evolved 

seawater and of marine origin (Swihart and Moore, 1989; Palmer and Slack, 1989). 

This supracrustal metasedimentary belt is comparable to the Grenville Supergroup 

present in Northwestem Adirondacks and in southwestem Quebec, where clastic and 

carbonate metasedimentary units are observed. As described earlier in section 1, a world­

class stratiform SEDEX zinc sulfide district is known to occur in the dolomitic marbles units 

ofnorthwestern Adirondacks. At Balmat-Edwards, it has been suggested that the sedimentary 

protoliths were deposited between 1.3 to 1.25 Ga (Rivers, 1997; Hanmer et al. , 2000) while 

ages between 1. 18 and 1.10 Ga have been suggested for the New Jersey sequence (Volkert, 

2001). This implies a somewhat younger depositional age for the New Jersey Highlands 

metasedimentary sequence. Nevertheless, the New Jersey metasedimentary belt shares many 

similarities with the Grenville Supergroup and is considered a distal equivalent (Johnson and 

Skinner, 2003). 

The Franklin and sterling Hill deposits are located within the Franklin marble, a 

distinctive unit contained in the middle series of the metasedimentary supracrustal sequence 
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described above. The Franklin marble is subdivided into two units, (1) the Lower Franklin 

Band, with thickness of 335 to 457 meters, hasts the Franklin and Sterling Hill zinc deposits, 

and the 91 meter-thick upper un-mineralized Wildcat Band (Hague et al., 1956). The Franklin 

marble is medium-ta coarse-grained, white to light-gray and is calcitic to locally dolomitic. 

Common accessory minerais include graphite, phlogopite, chondrotite, amphibole and 

pyroxene (Volkert, 2001). The Franklin deposit occurs in the upper part of the Franklin band 

while the Sterling Hill deposit occurs in the lower part. Both deposits were subjected to 

multiple folding events. The Franklin deposit is folded in a hook-shaped synform that 

plunges 25° to the northeast (Fronde) and Baum, 1974).The Sterling Hill deposit is folded in 

a similar way, as a hook-shaped synform that plunges 45° to the north east (Megster, 2001 ). 

The Franklin marble becomes thinner and progressively interlayered with pellitic 

clastic metasedimentary units towards the east of the New Jersey Highlands. This indicates 

basin deepening from shallow water to deeper water to the east (Volkert, 2001 ). 

The Franklin marble belt shares many similarities with the marble belts of the 

Grenville Supergroup in Canada and northwestern New York State. Both marble belts were 

subjected to polyphase deformation and granulite-facies metamorphism. Furthermore, both 

marbles belts exhibit shallow-water features as weil as the presence of evaporitic horizons. 

However, both marbles belts are isolated by more than 500 kilometers of Paleozoic caver. 

The Franklin marble belt is dominated by calcitic marbles whereas the Balmat-Edwards 

district is dominated by dolomitic marbles. Now that the geological environment of Franklin 

and Sterling Hill was summarized and shawn to be similar in many ways to the one present at 

Balmat-Edwards district, the characteristics of the unusual ore will be described in the 

following sub-section. 
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5.3 ZINC MINERALIZA TION 

The Franklin and Sterling Hill deposits are noteworthy because the zinc ore is 

composed of zinc silicates and oxides rather than sulfides. The uncommon and exotic ore 

mineral assemblage is composed of willemite (Zn2Si04), franklinite 

((Zn,Mn2+Fe2+)+(Fe3+,Mn3+)204) and zincite (ZnO) (Fig. 5.2, 5.3, 5.4, and 5.5) rather than 

sphalerite (ZnS), which is the common and well-known constituent of zinc deposits . 

Moreover, the Franklin and Sterling Hill deposits are zinc-rich and poor in lead and copper 

(Johnson et al. , 1990), which also seems to be a feature of the Grenville Supergroup SEDEX 

Figure 5.2: Stratiform non-sulfide zinc mineralization (willemite-franklinite-zincite) 
observed along the wall of the Sterling Hill open-pit. 
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zinc deposits (i.e. Balmat-Edwards, Maniwaki, etc. ; Gauthier and Brown, 1986; deLorraine, 

2001). 

Layers rich in willemite-franklinite-zincite that characterize bath deposits are 

stratiform (Fronde) and Baum, 1974; Megster, 2001 ; Johnson et al., 1990; Johnson and 

Skinner, 2003). The evidence for the stratiform nature of the deposits cornes from detailed 

structural studies which indicate that the ore bodies were composed of a continuous strata 

characterized by the same isoclinal folding pattern and mineral lineation (Fronde) and Baum, 

1974; Megster, 2001 ). Furthermore, mineralogical studies indicate th at high temperature 

minerais characteristic of granulite-facies metamorphism are present. The Franklin and 

Sterling Hill deposits were metamorphosed to granulite-facies conditions before undergoing 

retrometamorphism (Johnson, 1990). Finally, geochemical studies on minerais have shawn 

that there were little or no variations in composition along the strata while important 

chemical differences occur across the bedding (Squiller and Sclar, 1980). 

Figure 5.3: Franklin and Sterling Hill ore assemblage of willemite (Sh04) and franklinite 
(((Zn,Mn2+Fe2+)+(Fe3+,Mn3+)z0 4). 

Although the Franklin marble contains graphite as an accessory mineral, there is no 

graphite present near the zinc ore. In fact, a two meter thick graphite- free halo surrounds the 
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zinc deposits. This phenomenon was also observed at the Ducktown stratiform exhalative 

massive copper sulfide deposit in southeastern Tennessee (Nesbitt and Kelly, 1980). During 

prograde metamorph ism, which reached granulite facies, sulfide ore bodies interact with their 

surroundings as oxidizing agents, which is the opposite of what workers would intuitively 

think. While it is true that sulfides form in a reducing environment, during metamorphism 

they can act as an oxidizing mass and oxidize any near graphite grains (Nesbitt and Kelly, 

1980). The same phenomenon is observed at Balmat-Edwards where graphite-free zones 

envelope the massive sulfides ore horizons. 

Figure 5.4: Franklin and Sterling Hi ll ore assemblage of zinc silicates and oxides 
observed under ultraviolet (UV) light. Willemite (Si20 4) is characterized by a green 
fluorescence while manganese-calcite is red. 

Franklin and Sterling Hill deposits can therefore be considered as stratiform marble­

hosted willemite-franklinite-zincite layers that occur in a Grenville Supergroup equivalent 

supracrustal belt. The stratiform and geochemical features of the deposits suggest a 

premetamorphic origin for the zinc ore. Moreover, the depositional environment for these 

non-sulfide zinc deposits is a shallow water carbonate platform environment with probable 
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evaporitic boron-rich layers. The origin and genesis of Franklin and Sterling Hill will be 

discussed in the following section. 

Figure 5.5: Microscopie features of Franklin and Sterling Hill willemite-franklinite zinc 
ore observed un der a) natural reflected light and b) natural transmitted light. 
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5.4 GENETIC MODEL 

The origin of Franklin and Sterling Hill stratiform non-sulfide zinc deposits is very 

controversial and has been extensively debated for many years. A genetic mode! has to 

explain the many features observed at the deposits, such as the exotic zinc ore mineralogy 

which can reach very high zinc grades (average of 20% and reaching locally up to 40% 

(Frondel and Baum, 1974; Megster 2001 )) relatively to classic SEDEX zinc sulfide deposits. 

Moreover, the metal assemblage (Zn > Fe > Mn) is quite uncommon when compared to other 

deposits. Until recently, Franklin and Sterling Hill were the only locality where willemite­

franklinite-zincite stratiform deposits were known . Willemite mineralization is known to 

occur at the Vazante deposit in Brazil, while it is not stratiform in character but rather 

structurally-controlled, similarities exists between the deposits (Section V) (Monteiro et al. , 

1999). 

Arguments for the origin of Franklin and Sterling Hill varied considerably from 

epigenetic and syngenetic hypotheses. The first evidence of discussion on the topic goes back 

to Rogers ( 1836). Before the discovery and acceptation of plate tectonics, sorne workers 

argued that favorable horizons of the Franklin marble were replaced with non-sulfide ore 

following a reaction with magmatic fluids (Spencer, 1908; Ries and Bowen, 1922; Pinger, 

1950; Ridge, 1952). Others favored a syngenetic mode! in which the metals were deposited 

on an ancient sea-floor, or in shallowly buried sediment, in the form of sulfides which were 

later subjected to oxidization (Wolff, 1903; Tarr, 1929; Palache, 1935) or even under the 

form of zinc-manganese-iron rich sediments (Callahan, 1966; Megster et al. 1969; Squiller 

and Sclar, 1980). Fronde! and Baum (1974) even suggested that the zinc was volcanically 

derived . 

Johnson and Skinner (2003) states that, following the discovery of sea-floor 

hydrothermal vents and systems and their associated deposits, in the 1960 ' s, opinion has 

increasingly swung to the view that Franklin and Sterling Hill deposits were syngenetic in 

origin and formed by hydrothermal systems operating beneath the floor of the Middle 

Proterozoic sea (Callahan, 1966; Megster et al. 1969; Squiller and Sclar, 1980). ln this case, 

metal emplacement was either syngenetic or diagenetic. ln both cases, because of intense 

deformation and metamorphism, the primary features required to distinguish both types were 
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obliterated. Whether the metaliferous brines settled from the water column or whether they 

formed diagenetically by replacement reactions in shallowly buried sediments remains an 

open question (Johnson and Skinner, 2003). Either way, the ore would be pre-metamorphic 

and hypogene in origin. 

The most accepted mode) for the genesis of Franklin and Sterling Hill (Johnson et al. , 

1990; Johnson and Skinner, 2003) was proposed by Squiller and Sclar (1980). The mode) 

would later be further confirmed and adjusted with detailed geochemical and isotopie studies 

(Johnson et al., 1990; Johnson and Skinner, 2003). lt is now mostly accepted by the scientific 

community that Franklin and Sterling Hill are sedimentary exhalative (SEDEX) deposits. 

Squiller and Sclar (1980) and Johnson et al. (1990) explain that oxidized hydrothermal brines 

would have deposited zinc, manganese and iron-rich sedimentary beds mostly in the form of 

carbonates, clays and hydroxides (Fig. 5.6). Zinc ore was deposited in an oxidized form. 

Therefore, the main zincian mineral was originally a zinciferous dolomitic carbonate 

containing various proportions of magnesium, iron and manganese (Squiller and Sclar, 1980; 

Johnson, 1990). With prograde metamorphism reaching granulite-facies conditions, the 

smithsonite (zinc carbonate) particule contained in solid-solution in the dolomite grains 

dissociates into zinc oxide (ZnO). Whether willemite, franklinite or zincite was formed 

depends of the on-site availability of silicon, manganese and iron. Where silica gel was 

available and manganese and iron virtually absent, the zinc oxide particle would combine 

with silica (Si02) to form willemite (Zn2Si04)(1l. If manganese and iron was abundant on site 

comparatively to silica gel, franklinite ((Zn,Mn2+pe2+)+(Fe3+,Mn3+)20 4) would form(2). 

Finally, if no silica, manganese or iron were present, zincite (ZnO) would form (3) (Squiller 

and Sclar, 1980). 

(1) 2ZnC03 (smithsonite) + Si02 (quartz) = Zn2SÏÜ4 (willemite) + 2C02 

(2) ZnC03 (smithsonite)+ Fez03 (hematite)= ZnFez04 (franklinite) + C02 

(3) ZnC03 = ZnO (zincite) + C02 
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Therefore, the exotic mineralogy which characterizes Franklin and Sterling Hill 

deposits was formed during granulite-facies prograde metamorphism and subsequent 

retrometamorphism. Franklin and Sterling Hill are therefore considered of SEDEX origin, 

Jike the more common SEDEX zinc sulfide deposits occurring in the Mesoproterozoic 

Grenville Supergroup marbles, but with zinc silicates and oxides rather than sulfides. 

5.5 STABLE ISOTOPIC STUDIES 

Stable carbon and oxygen isotopie studies were conducted at Franklin and Sterling 

Hill deposits and the host Franklin marble belt. The isotopie signature for the deposits and 

marbles enabled the characterization of the depositional environment for the zinc deposits 

and to further refine the genetic model. 

Dolomitic Mud 
(zincian dolomite progenitor containing variable contentrations 

and variable proportions of zn•', Fe•' and Mn" proxying for Mg.') 

+ 
Local concentrations of Silica gel and/or 

Oxides of iron and/or Manganese 

Dedolomitization during Regional metamorphism and Reaction of 
Oxide Solid Solution of (Zn055) with Local Constituents in 

Volumes of 0.05 - 0.5 cm' 

Zincite (ss) (where 
si/ica gel and oxides of 
iron and manganese 
are locally absent) 

Willemite (where silica 
gel is present and oxides 
of iron and manganese 
are virtually absent) 

Franklinite (where si/ica 
gel is absent and oxides 
with a high Fe/Mn ratio 
are local/y abundant) 

Figure 5.6: Prograde metamorphic dissociation of a dolomitic mud containing variable 
proportions of zinc, iron and manganese into willemite, franklinite and zincite. Modified 
from Squiller and Sclar (1980). 
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An important characteristic of the Franklin and Sterling Hill deposits is that, as stated 

above for geochemical layer compositions, the isotopie composition of individual minerais 

varies between lithologie strata while compositions within a stratum are uniform (Johnson et 

al. , 1990). This further confirms the stratiform nature of the non-sulfide zinc ore layers and 

the syngenetic model. 

Stable oxygen and carbon isotopes conducted on the Franklin marble hosting the 

Franklin and Sterling Hill deposits yielded 8180 and o13C signatures comparable to average 

Mesoproterozoic marine compositions (Veizer and Hoefs, 1976). Thus, the Franklin marble 

is thought to have accumulated in a marine environment (Johnson and Skinner, 2003). Such 

an assumption was also inferred for the Grenville Supergroup marbles which also originated 

from Mesoproterozoic marine environment. Moreover, stromatolites and fluoborite-rich 

layers probably representing evaporite were also observed near the Franklin and Sterling Hill 

deposits (Keams, 1977; Volkert, 2001 ; Johnson et al. , 1990). This is strong evidence of a 

shallow-water evaporitic carbonate platform environment. 

Whole-rock chemical and oxygen isotope compositions completed at the Sterling Hill 

deposit results consistent with a model protolith composed of carbonate, clay and hydroxide 

minerais that formed at a temperature of about 150±50°C (Johnson et al. , 1990). Sorne 

authors suggested that Franklin and Sterling Hill could also have originated from the 

oxidizing of a pre-existing SEDEX zinc sulfide orebody. Results of oxygen isotopes on the 

zinc ore revealed a signature enriched in 8180 for the hydrothermal fluid (Johnson et al., 

1990). With these results, Johnson et al.· (1990) argued that the estimated 150°C temperature 

for the ore bearing fluids was too high for sub-aerial weathering or seawater oxidation. This 

implies that sulfur-poor zinciferous mineral assemblages precipitated directly from warm 

meta1-bearing hydrothermal brines in a sulfur (H2S) depleted oxidizing environment (Johnson 

and Skinner, 2003). The paucity of sulfides minerais within the Franklin and Sterling Hill 

deposits is strong evidence that the ore bearing flu ids were oxidized and H2S poor. In such an 

environment, sulfur is rather stable in its oxidized sulfate form and dissolved in seawater. 

Another feature present in the Franklin marble, near the non-sulfide zinc deposits, is 

the presence of stratiform magnetite. Johnson and Skinner (2003) propose that this represents 
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small iron formations associated with the zinc deposits . These iron formations could be distal 

equivalent to the zinc deposits, as it has been described at the Maniwaki-Gracefield SEDEX 

zinc deposits. Johnson and Skinner (2003) propose a similar genetic mode! for the formation 

of this distal iron formation. Pro grade dissociation of a siderite into magnetite and graphite is 

discussed by Johnson and Skinner (2003). Results of isotopie studies reveal that 

metamorphism of a iron oxide-calcite assemblage rather than a decarbonation of siderite 

would better explain the observed isotopie signature. The evidence supporting this 

assomption is that prograde dissociation of siderite in magnetite-graphite would shift the 

oxygen isotopie ratios. In fact, the measured isotopie ratios on the iron formations (Franklin 

Furnace bed) do not vary according to the dissociation mode! but are rather consistent with a 

nearly isochemical metamorphism of a iron-oxide-rich layer (Johnson and Skinner, 2003). 

The iron formation thus resulted from seawater oxidation of hydrothermally transported iron 

near a brine conduit and/or on the basin floor at the interface between anoxie deep waters and 

oxygenated surface waters (Johnson and Skinner, 2003). The presence of an iron-rich halo 

surrounding a zinc deposit was also a feature described earlier for the McArthur-subtype 

SEDEX zinc sulfide deposits of the Grenville Supergoup. 

Stable oxygen and carbon isotopie studies at the Franklin and Sterling Hill deposits 

confirmed the hypogene characteristic of the deposit. They also permitted a shallow-water 

evaporitic carbonate platform environment to be proposed in which a iron-rich halo 

surrounds the sedimentary exhalative zinc deposits. 

5.6 DISCUSSION OF THE DEPOSITIONAL ENVIRONMENT 

The depositional environment for the Franklin-type SEDEX non-sulfide zinc deposits 

shares many features with the McArthur SEDEX sub-type depositional environment (Cooke 

et al. , 2000), describe earlier in this paper. Grenville Supergroup SEDEX zinc sulfides 

deposits (i.e. Balmat-type) were previously reinterpreted as being ofMcArthur-subtype rather 

than Selwyn-subtype. McArthur SEDEX zinc deposits are characterized by warm 

hydrothermal brines deposited in an oxidized shallow-water evaporitic carbonate platform 

environment. 



41 

Evidence brought forward at Franklin and Sterling Hill describes the depositional 

environment as a shallow-water evaporitic carbonate platform environment. The 

hydrothermal ore forming fluids were H2S poor and oxidized. An iron-rich halo is also 

present around the zinc deposits (Johnson and Skinner, 2003). These are ali features of the 

McArthur-subtype SEDEX zinc deposits. 

Franklin and Sterling Hill are formed by sulfate-stable oxidized metalliferous brines 

similar to those that form the McArthur-subtype sediment-hosted zinc deposits. Oxidized 

brines such as these develop in sedimentary dominates by carbonates, evaporates and 

hematitic sandstones (Cooke et al., 2000). Sulfate-stable brines are characteristically poor in 

gold, barium and tin owing to the inability of sulfate-bearing brines to transport these metal s. 

This could explain the zinc-rich metal content for the Franklin and Sterling Hill deposits 

(Johnson and Skinner, 2003). Thus, a key feature of the Franklin and Sterling Hill zinc ores is 

that metals were deposited in an oxidizing environment where sulfate was stable rather than 

in a reduced H2S-stable environment. In contrast, H2S-stable environments characterize the 

depositional environment for McArthur-subtype SEDEX zinc sulfide deposits, such as those 

of the Balmat-Edwards district. 

5. 7 CONCLUSION 

The Franklin and Sterling Hill deposits are therefore hypogene stratiform non-sulfide 

SEDEX zinc deposits which we will refer to as Franklin-type SEDEX deposits for the 

purpose of this paper. Franklin-type deposits are characterized by oxidized, sulfate-bearing 

hydrothermal brines depositing zincian carbonates-clays-hydroxides in an oxidized 

environment, rather than a H2S-rich environment which would form zinc sulfides. With 

prograde metamorphism reaching granulite-facies, the smithsonite particle in the carbonate 

dissociates into zinc oxide and combines with silica, manganese and iron to form the exotic 

willemite-franklinite-zincite ore assemblage present at Franklin and Sterling Hill (Fig. 5.6). 

The New Jersey Highlands Franklin marble belt shares many characteristics with the 

Mesoproterozoic Grenville Supergroup marbles. Both are similar in age and formed in a 

similar tectonic setting. Both marbles belts are shallow-water, evaporitic, carbonate platform 

environments. 
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Furthermore, the hydrothermal tluids that form Franklin-type SEDEX deposits share 

many similarities with Balmat-type McArthur-subtype SEDEX zinc sulfide deposits. 

Oxidized sulfate-stable brines are deposited in a shallow-water evaporitic carbonate platform. 

Johnson and Skinner (2003) propose that a difference could be the redox state of the 

depositional site. Franklin-type deposits would be deposited in an oxidized environment 

rather than a H2S stable environment in which SEDEX zinc sulfide deposit are formed. 

Further relationship studies between Balmat-type and Franklin-type SEDEX deposits 

are difficult because they are separated by more than 500 kilometers of Paleozoic cover. 

Franklin-type deposits are scarce and were only known to occur in New Jersey where they 

represent the biggest example of hypogene stratiform non-sulfide zinc deposit-type (Hitzman 

et al., 2003). To facilitate the relationship study between the two end-members of SEDEX 

deposits (i.e. non-sulfide and sulfide SEDEX zinc deposits), both types have to occur in the 

same marble belt. The Grenville Supergroup marbles of Quebec and Ontario are similar to 

those found at Franklin and Sterling Hill and also at Balmat-Edwards district. Moreover, the 

discovery by Gauthier et al. (1987) of a zincian magnetite in Quebec suggests that there is a 

potential for Franklin-type deposit in the Grenville Supergroup. 



SECTION ID 

ZINC SILICATES, OXIDES AND SULFIDES IN THE MESOPROTEROZOIC 
GRENVILLE SUPERGROUP MARBLES OF QUEBEC AND ONTARIO, CANADA 



CHAPTER VI 

INTRODUCTION 

Mesoproterozoic Grenville Supergroup marbles and their widespread zinc sulfide 

deposits were discussed in section 1 (i.e. Balmat-Edwards district, Cadieux, Maniwaki­

Gracefield, etc). This SEDEX zinc deposit-type is characterized by stratiform sphalerite 

mineralization hosted by a silicate-rich dolomitic marble deposited in a shallow-water 

evaporitic carbonate platform environment (i.e. McArthur sub-type SEDEX deposit) . 

Grenvillian marbles are also known to host hypogene stratiform non-sulfide zinc deposits 

(i.e. Franklin and Sterling Hill deposits), as outlined in section 2 and referred to as Franklin­

type. The almost unique Franklin-type deposit is characterized as being SEDEX in origin 

with stratiform zinc silicate and oxides hosted by dolomitic marbles deposited in a shallow­

water evaporitic carbonate platform environment. 

While Balmat and Franklin-type deposits are both SEDEX in origin, no relationship 

has ever been proposed to exist between these two types of deposits. However, as reviewed in 

sections 1 and 2, both end-members of SEDEX deposits occur and form in a simi lar 

g ological nvironment (i.e. in a shallow water evaporitic carbonate platform environment). 

These similar features bring forward the possibility that a relationship could exist between 

Balmat sulfide and Franklin-type zinc deposits. However, Franklin-type mineralization has 

only ever been reported to exist in the New Jersey Highlands. This isolated occurrence of 

exclusively non-sulfide zinc mineralization, more than 500 kilometers south of the Grenville 

Supergroup, has hindered the study of possible relationship between both types of SEDEX 

deposits. 
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However, in a publication about Precambrian iron formations, Gauthier et al. (1987) 

report the unusual existence of a zincian magnetite horizon near the village of Bryson, in 

Quebec. This occurrence seems to have mineralogical similarities with Franklin-type 

mineralization. The Bryson area is located in Grenville Supergroup marbles near the frontier 

between Quebec and Ontario. This Mesoproterozoic marble belt, which extends from 

southeastem Ontario and southwestem Quebec, is known to host Balmat-type SEDEX 
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Figure 6.1 : Location of the Bryson-Renfrew region in the black rectangle, relatively to 
the Mesoproterozoic Grenville Supergroup marble belt. Gauthier et al. (1987) discovered 
zincian magnetic spinel of the franklinite-magnetite solid-solution near the town of 
Bryson (Qc) and identified on this map by a star. Modified from Gauthier and Chartrand 
(2005). 
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deposits (i.e. Cadieux and Maniwaki-Gracefield) (Fig. 6.1 ). The existence of this 

mineralization in the Bryson area raises the possibility that there ts potential for other 

Franklin-type deposits outside the New Jersey Highlands. 

The discovery by Gauthier et al. (1987) discovery of the Bryson occurrence affords 

us an opportunity to study (1) the existence of Franklin-type SEDEX non-sulfide zinc 

deposits in the Grenville Supergroup of Que bec and Ontario, and (2) the relationship between 

both end-members of SEDEX deposits. Moreover, the Cadieux SEDEX zinc sulfide deposit 

lies about 30 kilometers south of the town ofBryson. The Bryson-Renfrew region is therefore 

a unique opportunity to study the possible link between sulfide and non-sulfide SEDEX zinc 

deposits. Study of this occurrence and its regional geological context is required to conclude 

if both types of SEDEX deposits occur in the same environment and this is the main 

objective of the present thesis. 

To constrain and establish the coexistence of both end-members of SEDEX deposits 

in the Bryson-Renfrew region, we will: (1) review available data from previous studies for 

the Bryson-Renfrew region, (2) report upon geological mapping data for the Bryson-Renfrew 

region which characterizes the occurring zinc sulfide mineralization and the geological 

environment hosting them, (3) review, visit and present geological mapping data in the area 

near Gauthier's et al. (1987) zincian magnetite discovery, and (4) present petrologic and 

geochemical data used to characterize the Bryson non-sulfide zinc occurrence and 

demonstrate this mineralization as Franklin-type. 



CHAPTER VII 

IDSTORICAL GEOLOGICAL WORK 

Franklin-type non-sulfide zinc deposits are frequently considered to be "exotic" 

because of their uncommon mineralogy and genesis (Squiller and Sclar, 1980; Johnson and 

Skinner, 2003). Furthermore they were never considered, nor studied, in another geological 

environment in relation with other deposit-types, because of the isolated location of its most 

important examples (i.e. Franklin and Sterling Hill). Therefore, Franklin-type deposits have 

not been studied, associated and linked with other deposits in past scientific literature. 

Balmat-type SEDEX zinc-sulfides deposits, on the other hand, are widely spread, common 

and weil understood (DeLorraine, 2001). The objective of this thesis is to complete this 

"missing link" by finding a new non-sulfide zinc occurrence and to describe its hosting 

environment and metallogeny. 

The Bryson-Renfrew region has never been studied in this regard. The state of 

geological mapping and data is heterogeneous in the area, due in part to its position 

straddling the provinces of Quebec and Ontario. Each si de of the border were mapped by the 

respective Provincial government survey during regional mapping campaigns and 

compilation. The Ontario portion of the area has seen much more geological mapping work 

(Lumbers, 1982) than the Quebec side, which was surveyed, relatively speaking, at a more 

regional scale and mostly limited to road/riverside outcrops (Osborne, 1944; Katz, 1976). 

However, Grand-Calumet Island in Quebec has been mapped in more detail due to the 

presence of the New Calumet Mine, a volcanogenic polymetallic massive sulfide deposit that 

will be briefly discussed below (Osborne, 1944). With the greater level of detail available in 

Ontario, dolomitic marbles were broadly differentiated from calcitic marbles (not the case for 

the Quebec side), but the silicate mineral phases and the dolomite-calcite ratios of the 
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marbles were not characterized (Lumbers, 1982). Exploration for zinc deposits also remains 

very limited in the Bryson-Renfrew area, and was concentrated near the Cadieux zinc sulfide 

deposit (as descried in section 1). Finally, although Noranda Exploration Inc. and Gauthier et 

al. (1987) rapidly examined the area in the 80s and 90s in the search for zinc deposits, only 

Gauthier' s et al. (1987) Bryson discovery was reported and not considered further because it 

was not a zinc sulfide occurence. Therefore, one can easily conclude that from a metallogenic 

point ofview, the area has not been intensively studied. 

Thus, the available level of geological data m the Bryson-Renfrew area was 

inadequate and incomplete for the purpose of this study. A detailed geological mapping 

campaign was therefore required to refine and unify the geology between Bryson (Qc) and 

Renfrew (Ont). 



CHAPTER VIII 

THE BRYSON-RENFREW REGION 

8.1 INTRODUCTION 

Since the Bryson-Renfrew regwn provides a umque opportunity to study the 

relationship between SEDEX zinc and non-sulfide deposits, the first step that must be 

undertaken is to characterize the pre-metamorphic geological environment of the area and to 

characterize its zinc mineralization. This will enable us to compare and relate the Bryson­

Renfrew region geological environment with the one associated with Balmat-type and 

Franklin-type deposits. 

In order to accomplish this, we will (1) geographically locate the studied area and 

present its regional geological context, (2) explain the methodology used during the 

geological campaign, (3) present and discuss the results in order to demonstrate that the 

Bryson-Renfrew region is characterized by a typical SEDEX geological environment similar 

to Balmat and Franklin-type. 

8.2 LOCATION AND GEOLOGICAL CONTEXT 

The Bryson-Renfrew area is located approximately 75 kilometers northwest of the 

city of Ottawa (Ont). The region extends from the small town of Bryson, in Quebec, to the 

town of Renfrew (Ontario), 30 kilometers to the south (Fig. 6.1). The region is covered by 

good ground transportation infrastructures (roads and railways) and crosses the provincial 

border between Quebec and Ontario. Rugged low to medium topography characterizes the 

area with small hills and valleys. Flat fields with a thick sediment caver are also present in 

the central portion of the area where outcrops are scarce. 
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The Bryson-Renfrew area is located within the Grenville Supergroup which extends 

from Quebec and Ontario towards northwestern New-York State where the Balmat-Edwards 

district is located . The studies area is more precisely located in the southwestem portion of 

the Grenville Supergroup, partly in Quebec. The geological context of the Grenville 

Supergroup has been discussed in a previous section and can be summarized as a marble­

dominated metasedimentary belt that was metamorphosed to granulite-facies and affected by 

polyphase deformation during the Grenvillian orogeny (1.0 Ga). The Grenville Supergroup 

rock units covering the regional Bryson-Renfrew region are Mesoproterozoic in age, and is 

estimated at ~ 1290-1250 Ma (Rivers and Corrigan, 1999). However, the only available 

radiometrie age available to characterize the upper age bracket for the Grenville Supergroup 

marble belt of our studied region, cornes from the Chenaux gabbro, a stock that intruded the 

marbles of the Bryson-Renfrew region at about 1100 Ma (Lumbers, 1982). 

Known marble-hosted mineral deposits in the area include the Cadieux SEDEX zinc 

sulfide deposit (Balmat-type) 1ocated near the town ofRenfrew. Two dolomite quarries were 

also operational during the early 2000s. A first dolomite quarry, at Haley in Ontario, has been 

operated by Timminco Metals Inc. since 1944 to extract magnesium metal directly from pure 

dolomite layers (Easton, 1992). The second quarry, which was located at Portage-du-Fort in 

Quebec, was mainly used as agricultural fertilizers and as industrial mineral. This quarry was 

operated by Dolomex and later closed in the mid 2000's by Placer Dome when they acquired 

the company. There are also broad references to a historical small scale brucite quarry near 

the town of Bryson (Osborne, 1939). Moreover, Gauthier et al. (1987) discovery of a zincian 

magnetite is located near the bridge crossing the Ottawa River at the town of Bryson. Other 

non-ma bi -host d min rai deposits occur m the area. An amphibolite-hosted 

metamorphosed volcanogenic polymetallic massive sulfide deposit, the Calumet Mine, 

occurs on the western part of the Grand Calumet Island, in the Ottawa River west of the town 

of Bryson. The discovery of the mine dates to 1893 and it was exploited by New Calumet 

Mines Limited from 1942 to 1968. A total of 3.8 million tons with an average grade of 5.8% 

zinc, 1.6% lead, 65 grams-per-ton (g/t) silver and 0.4 g/t gold was extracted during this 

period (Sangster, 1967). A Jater re-evaluation of this mining property in 1985 by Lacana 

Mining Corp. demonstrated that gold mineralization was present in the wall-rock of the 

deposit mined by the New Calumet Mines Limited (Bishop and Villeneuve, 1987). This gold 



51 

mineralization shares many similarities with the Montauban Mine deposit (Bernier et al., 

1987; Bishop and Jourdain, 1987; Villeneuve, 1987; Jourdain, 1993), which is located in the 

Grenville Province of Quebec severa) hundred kilometers northeast of the Bryson-Renfrew 

region. However, as opposed to the Montauban deposit, the Calumet deposit is associated 

with a thin calcsilicate marble horizon hosted by a biotite quartzo-feldspathic gneiss and 

amphibolite sequence. Although the Montauban volcano-sedimentary sequence was dated at 

~ 1.45 - 1.39 Ga (Nad eau and Van Breeman, 1994 ), and the Calumet deposit sequence never 

dated, Gauthier et al. (2004) assumed that they were of the same age. This hypothesis implies 

that the Calumet deposit would be much older than the marbles of the adjacent Grenville 

Supergroup marbles (see above) and would thus represent an underlying basement not 

associated with the zinc mineralization. Apart from these occurrences and deposits, no other 

notable mineralization is reported in the Bryson-Renfrew area. 

The geological context of the Bryson-Renfrew area is thus similar to the one 

observed for Balmat-type SEDEX zinc sulfide mineralization. However, further geological 

datais required to retine and characterize the geological environment of the Bryson-Renfrew 

zinc deposits. The next section presents our methodology used to achieve this goal. 

8.3 METHODOLOGY 

The geological environment of the Bryson-Renfrew reg1on was characterized 

following detailed outcrops description. For this study, a total of more than 500 different 

outcrops (Appendix F) were studied, enabling us to retine (1) the general stratigraphie 

column of the area, (2) the general structural characteri stics, (3) differentiate seven marbles 

units and ( 4) report on known and new occurrences of zinc sul fi de mineralization in the study 

area. Selected samples were collected for the purpose of obtaining a radiometrie age for the 

rock units hosting the Calumet deposit. 

8.3.1 Outcrop Characterization 

General geological and structural data were collected during field traverses. Road­

side and inland traverses were first concentrated in areas where marbles were regionally 

thought to be present and then extended throughout the Bryson-Renfrew study area. Each 

outcrop was first systematically described following these steps: (1) Each outcrop was 
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precisely located using a Global Positioning System (GPS) deviee and physically described 

(i .e. width, length and type of outcrop). Aerial photographs and topographie maps were 

routinely used to verify outcrop positions. (2) The main rock lithology was then 

macroscopically identified and the overall rock texture was thoroughly described . Classic 

field equipment (such as a magnifying lens, magnet-pen, ceramic plate, etc.) was used to 

identify the main lithology and to describe each mineral phase (i.e. mineral type, abundance, 

grain size, structure). Typical unaltered samples representing a specifie lithotype were 

carefully chosen and brought back to camp for future reference. (3) Structural characteristics 

were also systematically measured when outcrop quality was adequate. Acquired structural 

data included stratigraphie plane, foliation, fold hinge plane and plunge, fault plane and shear 

zone plane when these were available. High metamorphic grades and intense deformation 

characterizes the Grenville Supergroup in the studied region and it was shown by Gauthier 

and Brown (1986) and Gauthier et al. (2004) that most primary sedimentary features were 

obscured. However, extensive geological mapping work in the Balmat-Edwards district by 

Brown and Engel (1956) has shown that bedding may be recorded by laminated and 

persistent layers of quartz + diopside. In a similar way, bedding has also been preserved 

locally inside marbles units of the Maniwaki-Gracefield area (Gauthier and Brown, 1986). A 

more regional perspective is required to see through the metamorphic overprint. This 

phenomenon is explained by the plastic and malleable nature of anhydrite ("soap layers") 

units at high metamorphic grades and the high reactivity of carbonabtes with other minerais 

during prograde metamorphism (i.e. prograde reaction of dolomite + quartz= diopside). The 

best example of salt layer decollement is the Jura decollement where Triassic evaporates 

accommodates ali the deformation (Pomerol et al. , 2000). This phenomenum is also observed 

at Balmat where primary features are loca lly preserved because the thick anhydrite layers 

absorb the most of the deformation (Whelan et al. , 1990). In fact, this pennitted the 

conservation of Proterozoic stromatolites are observed in the Balmat stratigraphy (lsachsen 

and Landing, 1983). So, primary stratigraphie structural data was measured inside qualify ing 

marble outcrops. These systematic steps enabled us to characterize the outcrops in the 

Bryson-Renfrew area and were used to retine the stratigraphie sequence of the region and its 

structural style. What we observed in the Bryson-Renfrew area is conform to what is 

observed to the north in the Maniwaki area (Gauthier and Brown, 1986) and to the south by 
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Lumbers (1982). Furthermore, the general stratigraphy of the area is weil established by 

Lumbers (1982) because metamorphism decreases (to sub-greenschists facies) towards the 

south in the Ontario Grenville Supergroup. There, primary features are stiJl present (Lumbers, 

1982; Easton, 1992). Following metamorphic isograds, as defined by Barrow (1893) in 

Scotland, from the low metamorphic area up to the studied area in Ontario permitted 

Lumbers (1982) to define the regional stratigraphy which we used in our study. 

Marble units are the rock type that hasts SEDEX zinc sulfide and non-sulfide zinc 

deposits in the Grenville Supergroup and equivalent outliers. Therefore, marble units were 

our priority and were thus investigated in greater detail when encountered. As mentioned 

above, differences in marble composition were never mapped and reported in past studies of 

the Bryson-Renfrew area. This data is necessary and will enable us to characterize the 

geological and depositional environment of the marble-hosted SEDEX mineralization 

identified therein. When marble units were present, special attention was given to the 

dolomite-calcite ratio of the marble unit to characterize its dolomitic of calcitic nature. We 

evaluated the most effective way of systematically determining this ratio. Hydrochloric acid 

(HCI) (specifically diluted to 10%) proved to be successful and practical for determination of 

the dolomite-ratio directly on the field . Acid tests were systematically conducted on clean, 

:fresh cuts, marble samples from each marble outcrop encountered. At ambient temperatures, 

calcite actively reacts to 10% HCI ac id as opposed to dolomite which must be grinded up. 

Dolomite-calcite ratio was estimated by observation of the acid reaction under an magnifying 

lens. To ensure precision of this method we regularly conducted a carbonate coloration test 1 

(calcite turns red, dolomite re mains uncolored and siderite turns blue) on the field and also x­

ray diffraction analyses hich confi ms th hyd ochloric acid method. The presence of other 

mineral phases and their proportions were also systematically evaluated and reported using 

classic field equipment. The presence of key indicative minerais, used for characterization of 

the geological environment associated with the marbles was reported on qualifying outcrops. 

Typical, unaltered samples representing a specifie marble unit type were carefully chosen for 

1 A 0.2 g of Alzarin red (CO 6H4 CO C6H (OH) 2S03 Na+ H20) in 1 OOcc of 1.5% HCI mixed 
in equal proportion with 2 g of potassium ferricyanide (K3Fe(CN)6) dissolved in 100cc of 15% HCI 
(Evamy, 1983; Dickson, 1965). 
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future reference. This more detail led study of the marble outcrops enabled us to divide the 

marble belt into seven distinct units. 

Finally, since the objective of this thesis includes the study of SEDEX zmc 

mineralization, ali encountered outcrops, were prospected for the presence of zinc sulfides, 

silicates and/or oxides. Observation under magnifying lens and the use of classic field 

identification equipment was carried out on ali outcrops to identify any mineralization. Due 

to the varying physical properties of certain zinc silicates (i .e. willemite) and oxides and 

because zinc sulfides, silicates and oxides can be present as finely disseminated 

mineralization, we used a chemical reactant that reacts when zinc is present to aïd us in the 

prospection for zinc. This zinc reactant, called "Zinc-Zap2
" among mineral prospectors, gives 

a bright red coloration after a couple of seconds of application on rock sample or outcrop 

(Landry et al. , 1995). lts chemical recipe is given at the bottom of this page. Zinc-Zap is most 

effective on zinc silicate and oxide mineralization but it will also react when disseminated 

zinc sulfide mineralization is present on an altered rock/outcrop surface. Noteworthy is the 

fact that direct application of Zinc-Zap on freshly-cut massive zinc sulfide mineralization 

does not yield conclusive results. Zinc silicates and oxides of the Franklin-Sterling Hill 

district are known for their ultraviolet luminescence. The zinc silicate willemite can be 

brightly fluorescent (green to orange) when observed with a UV light (Fig 5.4). Therefore, 

night prospecting using a UV lamp was conducted in areas where zinc silicates and oxides 

where identified and at other areas we judged pertinent. When marble-hosted zinc 

mineralization was encountered, a unaltered and representative sample was collected to 

conduct more in-depth laboratory studies. Systematic prospecting and the use of Zinc-Zap 

enabl d us to id ntify n w zinc mineralization occurrences throughout the Bryson-Renfrew 

region. 

8.3.2 Sampling fo r Age Determination of the Calumet Deposit 

The volcano-sedimentary sequence hosting the Calumet deposit bas never been 

dated. However, the Calumet deposit is referred to share severa! characteristics with the 

Montauban deposit which is dated to be aider than the Grenvi lle Supergroup (Jourdain, 1993; 

2 A 3% potassium ferricyanide (K3Fe(CN)6) solution mixed in equal proportion with a 3% oxalic acid solution 
containing 0.5% dissolved diethylaniline (Landry et al. , 1995). 
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Nadeau and Can Breeman, 1994). In order to determine if this deposit is older or part of the 

Grenville Supergroup we had to collect samples for radiometrie studies. This date will also be 

used to determine the bottom age bracket for the Grenville Supergroup marbles of the 

Bryson-Renfrew region. 

Two attempts were made to successfully obtain a valid sample. Sample selection was 

based on the qua1ity of the outcrop/diamond drilling core. Only unaltered and representative 

samples were collected for zircon radiometrie studies. The first attempt at dating the Calumet 

deposit volcano-sedimentary sequence was made in 2004 and the sample consisted in a 

biotite quartzo-feldspathic gneiss constituting the deposit's wall-rock (Jourdain, 1993). 

However, insufficient zircons were recovered from the samples. Resampling in 2005 of the 

fragmented amphibolite unit, this time, was successful in obtaining four zircons. The 

fragmented amphibolite is interpreted by Jourdain (1993) has a detritic volcanic rock unit 

(deformed intermediate tuf) and hosts the Calumet volcanic exhalative mineralization. This 

rock unit is thus directly related to the deposit and consists of an aerial volcanic rock 

deposited in a sedimentary context. The fragmented amphibolite samples were collected from 

diamond drilling core completed by Lacana Mining Corporation in 1987 (Jourdain, 1993; 

Bischop, 1987). The amphibolite layer from drilling holes 87-25 and 87-26 were sampled 

(Bishop, 1987). While the drilling core is available on site at the Calumet Mine, the location 

of the diamond drilling ho les can be observed in Appendix B. The radiometrie zircon dating 

was performed by M. Jean David at the GEOTOP laboratory, located at the Université du 

Québec a Montréal, using established methods. Detailed methodology and results of David 

(2009) are presented in Appendix C. 

8.3.3 Geological Data Compilation and Treatment 

In order to achieve a global understanding of the geological environment of the 

Bryson-Renfrew region, it was necessary to process ali the geological data acquired 

throughout the campaign. This processing and compilation were successful in establ ish ing 

geological maps and a better comprehension of the geological environment. The steps used 

for data compilation includes (1) database treatment and (2) the use of Geographical 

Information System (GIS) software. 
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Ali geological data acquired during outcrop descriptions were entered into a 

computer database. The database was programmed using SQL language and Visual Basic, on 

a Microsoft Access platform. Ali the location, geological, structural and mineralization data 

was entered and classified in the database. Specifie compiled tables were extracted from the 

main database and organized under a specifie theme, to be incorporated into a GIS system. 

The GIS software used was Mapinfo Professionnal. Ali data were georeferenced into the GIS 

environment permitting various spatial analyses to be peformed. Ali general geological units 

were thus defined and linked together on a geological map. Ali defined marbles units were 

also traced following the same procedure. Ali mineral mineralization were located as weil. 

Again, spatial analyses oftheir relations with a specifie lithology were conducted. 

The final product of this database compilation is the building of a compiled 

geological and metallogenic map for the Bryson-Renfrew area. 

8.4 RESULTS 

8.4.1 Geological Map of the Bryson-Renfrew Area 

As cited above, areas of the Bryson-Renfrew region were mapped at different scales 

by past govermnent geological campaigns and by mining companies. For instance New 

Calumet Mine Ltd. and Lacana Mining Corp. mapped the Calumet deposit while the Cadieux 

SEDEX zinc deposit was worked by Noranda Exploration Inc. (Roger and Lapointe, 1998). 

The objective of our campaign was not to completely re-map the Bryson-Renfrew region. 

Our goals were to (1) consolidate the geological data across the provincial border, (2) refine 

the geological data and description of the marble belt, and (3) investigate zinc metallogeny 

and its depositional environment. Once this has been done, the Bryson-Renfrew region can 

then be compared to the Balmat-Edwards and Franklin-Sterling Hill districts. 

The result of this work is the publication of a geological compilation of the Bryson­

Renfrew that is focused on the region's zinc metallogeny and its depositional environment. A 

total ofthree maps are presented in this study. The first map represents the general geological 

compilation of the Bryson-Renfrew area, based on previous cartography and our work (Fig. 

8.1). The geology of the Quebec and Ontario are linked and the marbles are undifferentiated 

on this map. The second map shows the structural data measured on outcrops and traced on 
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aerial photographs used, in part, to trace lithological contacts (Fig. 8.4). Finally the third map 

produced concentrates on the different marble units identified during the field campaign (Fig. 

8.7). This map also syntheses the wide range of SEDEX zinc mineralization and mineral 

occurrences encountered. 

Results will be presented in the following arder: (1) The general geological map and 

its geological units, (2) the structural features of the area, (3) the identified and differentiated 

marble units, ( 4) description of non-zinc particular mineral occurrences and features observed 

in the region, and (5) the description of the newly discovered and known zinc occurrences 

encountered during the campaign. 

8.4.2 General Geological Map 

The Bryson-Renfrew region has a wide range of lithologies. Since marbles were our 

priority the other lithologies were not described in equivalent detail. The lithologie 

descriptions of Lumbers (1982) were used for non-marble lithologies. Overall the Bryson­

Renfrew area is characterized by an important marble belt that can be continuously traced 

from Bryson, to the north, to Renfrew to the south. Observed and compiled lithologies 

include a sequence of basal amphibolites, metavolcanic rocks and quartz-feldspar gneisses. 

Marbles dominate the area. Pure to diopside-bearing (up to 35% with a grain size of 2 

millimeter) quartzite is observed near the town of Bryson, in the central-eastern and southern 

part of the Bryson-Renfrew region (Fig. 8.1 ). Bioitite paragneiss units containing up to 30% 

medium-grained biotite (2 to 4 millimeters) are mostly present to the south-southwest of the 

town of Renfrew. 
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Figure 8.1: General geological map compilation of the Bryson-Renfrew region showing 
the dominance of marbles. Marbles are un-differentiated on this map. Map compiled from 
our field data combined with those ofLumbers (1982), Osborne (1944) and Katz, 1976). 
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The Bryson-Renfrew region was partly intruded by the Chenaux gabbro intrusion. 

This gabbro stock cross-cuts the marble sequence in the central area of the studied region and 

also east of the town of Bryson (Fig. 8.1 ). Outcrops showing the contact between the marbles 

and the Chenaux gabbro were observed on the islands in the middle of the Ontario Chenaux 

dam at Portage-du-Fort. The contact aureole between the marble and the gabbro is 3 to 10 

centimeters thick and characterized by a reddish-pinkish co lor due to metasomatic addition of 

manganese inside calcite (Fig. 8.2 and 8.3) (Deer et al., 1992). The contact between the 

gabbro and the marble belt is un-mineralized and contains cale-silicate minerais such as fine 

grained diopside. 

Figure 8.2: Contact between the gabbro and the marble belt on the Island along the 
Cadieux dam, near Portage-du-fort. The metasomatic effect of the gabbro intrusion is 
characterized and restricted to a 10 centimeter-thick pink calcite and cale-silicate fringe. 
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Figure 8.3: Calcitic marble fragment isolated inside the gabbro intrusion showing the 
pink calcite metasomatic rim. Picture taken from the Cadieux dam near Portage-du-Fort. 
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8.4.3 General Structural Features 

Structural measurements throughout the Bryson-Renfrew area were compiled and 

shown on figure 8.4. This map was produced by positionning outcrops structural 

measurements onto a interpreted aerial photograph background. The local detail structural 

analysis confirms that the rocks units of the area were subject to strong metamorphism and 

polyphase deformation. It is why we mostly refer to the work of Lumbers (1982) were the 

lithologie units could be traced from Jow metamorphic grades to granulite facies in our area. 

The structural interpretation is a compilation from the work of Lumbers and our outcrops in 

the era. Because zinc mineralization in the Grenville Supergroup is stratiform (Gauthier and 

Brown, 1986), more attention was regarded to the mineralogy of the marbles and the 

structure within than the regional structural study. The results in support of this statement are 

presented below. 

The gneissic and amphibolitic rock units of the Bryson-Renfrew stratigraphie 

sequence are characterized by a well-developed foliation that is often parallel to their 

stratigraphie contact. Primary structural features in these units were mainly obliterated during 

metamorphi sm. However, local features in the amphibolitic rock units, such as fragmented 

facies, provide additional elues regarding the primary structures of the rock units. Matie and 

felsic intrusions present in the area are characterized by strong linear trends visible on aerial 

photographs and exhibit foliation structures when they are pre-metamorphic in nature. 

Marble units, on the other hand, are characterized by silicate mineral Iayeri ng which 

may represent the original stratigraphie plane, as used by Brown and Engel (1956) in the 

Balmat-Edwards district and Gauthier and Brown (1986) in the Maniwaki area. This 

phenomenon, as mentioned earlier, is explained by the high reactivity of carbonates with 

nearby minerais during prograde metamorphism and by the presence of anhydrite layers that 

absorb most of the deformation (Pomerol et al. , 2000; Gauthier et al. , 2004). Thin clastic 

sedimentary layers interlayered with carbonates will react to form cale-silicate minerais along 

that specifie horizon. The primary bedding inside the marble belt is thus generally presumed 

preserved. 
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Figure 8.4: Structural map of the Bryson-Renfrew regwn showing linear trend 
interpretation from satellite imagery. 
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Local structural study of the marble outcrops in the Bryson-Renfrew region reveals that there 

are at least two phases of deformation evident. The detailed study of the Maniwaki region, 

north ofthe Bryson-Renfrew area, by Gauthier and Brown (1986) was used to understand and 

interpret what was locally observed in our outcrops. The first phase of deformation is 

characterized by tight isoclinal folds which thicken the sequence. The second phase is 

characterized by northeast-plunging open to tight folds that refold the first phase isoclinal 

folds (Fig 8.5). These two major deformational events produced structural interference 

patterns (hook-shaped folds) and also flow and fold-hinge thickening. This type of folding 

occurs at high metamorphic grades where the marbles flow plastically. More competent 

horizons, such as quartzite and cale-silicate layers respond to the intense deformation and 

stretching caused by the dynamo-metamorphic processes by boudinage. This boudinage was 

observed at a centimeter-scale but also at a plurimetric-scale and indicates the unit's 

resistance to flow during tectonic deformation. 

Figure 8.5: Example of structural style of polyphase deformation in calcit ic marbles of 
the Bryson-Renfrew area. Pl (blue) isoclinal folds are refolded by P2 (orange). Observed 
along the Ottawa River at the Chenaux dam, near Portage-du-Fort. View towards the 
north east. 
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The Bryson-Renfrew region was therefore subject to polyphase deformation and high 

grade metamorphism with development of a foliation in respective units. Primary structures 

were mostly obliterated by the high metamorphic grade and deformation. However, primary 

stratigraphie layering was considered preserved in the marble units allowing correlation of 

marble units throughout the region. 
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8.4.4 Characterization ofMarbles Units 

Detailed study of the marbles of the Bryson-Ren:frew region is important to 

characterize its geological environment and associated zinc mineralization . Our field 

campaign was successful in identifying seven distinct marbles units. These marbles units are 

represented on figure 8.7 throughout the entire marble belt between the town of Bryson and 

Renfrew. The marble units were distinguished on the basis of the relative proportion ofthree 

common features which are (1) the proportion of dolomite, (2) the proportion of calcite and 

(3) the proportion of the silicate minerais diopside, forsterite and tremolite. A ternary 

diagram that illustrates the identifying criteria for each marble unit was constructed and used 

for classification (Fig. 8.6). The seven marbles units are described in detail in the following 

paragraphs. 

SILICATE 
(FORSTERITE-DIOPSIDE-TREMOLITE) 

DOLOMITE CALCITE 

Figure 8.6: Classification of the marble units in the Bryson-Renfrew area based on 
relative proportions of dolomite, calcite and silicates (diopside-forsterite-tremolite): MOl: 
Dolomitic marble, M02: Calcaro-dolomitic marble, M03: Calcitic marble, M04: Siliceous 
calcitic marble, M05 : Siliceous calcaro-dolomitic marble, M06: Siliceous dolomitic 
marble, M07: Siliceous marble. 
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Do/amitie Marble (MOI): This rock unit can be recognized in the field by its dark 

grey alteration color on exposed surfaces. Fresh cuts of the rock are of a pure white color. 

The unit does not directly react with 10% HCL ac id, except locally between grains. The 

dolomitic marble unit consists of more than 80% dolomite and Jess than 10% calcite and 10% 

silicate. Traces of millimeter-scale disseminated pyrite were observed locally. Pure dolomitic 

marble (more than 99% dolomite) was recognized throughout the Bryson-Renfrew region and 

also near the two dolomite quarries described earlier. The presence of diopside-forsterite­

tremolite is scarce in this unit. This unit is coarse-grained with an average grain size of 4-6 

millimeters. 

Calcaro-Dolomitic Marble (M02) : This rock unit is a transitional unit towards the 

calcitic marble end-member. lt is medium grey on altered surfaces and white on a fresh 

surface. This unit reacts moderately with HCI acid. This unit is composed of 20 to 80% 

dolomite, 20 to 80% calcite and up to 10% silicate. Locally, traces of pyrite are observed. 

This unit is coarse-grained with an average grain size of 4-6 millimeters. 

Ca/cilie Marble (M03): The calcitic marble unit is characterized by a whitish-grey 

alteration color on weathered surfaces. The color of the marble on a fresh surface tends 

towards the grey. The unit reacts strongly with direct application of 10% HCI acid. More than 

80% calcite composes this unit and up to 10% silicates are present. The grey col or of the 

calcitic marble unit is due in part to the presence of millimetric disseminated graphite flakes. 

Disseminated phlogopite is observed locally. Grain size is smaller relative to the dolomitic 

marbles with an average of2-4 millim ters . 

Siliceous Calcitic Marble (M04) : This unit is a pale greenish color when fresh, and is 

characterized by a grey co lor with a weathered surface. Also, because of differentiai erosion 

between carbonates and si licate, the si licate minerais stand out in re lief in outcrops. The unit 

produces a strong reaction to the HCI solution and is composed of more than 10-30% silicate 

minerais, Jess than 20% dolomite and 50-70% calcite. Disseminated fine-grained graphite 

flakes (traces to 1 %) are present in this marble unit. Grain size is, again, smaller than the 

dolomitic marble unit with an average of2-4 mill imeters. 
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Siliceous Calcaro-Dolomitic Marble (M05): This unit is a pale greenish-whitecolor 

on a fresh surface. Dolomite and silicate stand out in relief relative to calcite in outcrops due 

to calcite ' s more soluble nature. The weathered surface color is a pale grey. The unit 

produces a moderate reaction to co id application of 10% HCI ac id. The unit is mainly 

composed of 10-30% silicate minerais (diopside, forsterite and/or tremolite), 20-50% 

dolomite and 20-50% calcite. Grain size averages 2-4 millimeters. 

Siliceous Dolomitic Marble (M06): The fresh surface is green and white in color 

whereas the weathered surface is medium to dark grey due to the higher abundance of 

dolomite. The weathered surface is rough because dolomite and silicate minerais are more 

resistant to erosion. This unit is characterized by Jess than 20% calcite, 20-60% silicate and 

80% dolomite. White to pale-orange chondrodite is common locally and can represent up to 

15% volume of the unit. Forsterite grains are frequently altered into serpentine throughout the 

region. 

Siliceous Marble (M07): This unit is dark greenish colored on fresh surfaces and dark 

brown-grey-green color on altered surfaces. This rock unit is composed of more than 70% 

silicate minerais and by 30% calcite-dolomite. Diopside with fesser forsterite are the main 

minerais present in this lithological unit. Pyrite is common around diopside nodules and is 

associated with phlogopite. Grain size is generallyin the 2-4 millimeter range but can locally 

be up to 1 cm. 

Forsterite is commonly retrograded to serpentine nodules throughout the Bryson­

Renfrew area. To recapitulate, the Bryson-Renfrew marble belt is divided into seven distinct 

lithological units based on the relati abundance of do lomite, calcite and si licate minerais. 

The next section presents mineral particularities that occur in the studied area. 



MARBLE-TYPE 
Bryson(Qc)-Renfrew(Ont) Region 

• M07 Silicate-rich marble 
• M06 Silicated dolomitic marble 
• M05 Silicated calcaro-dolomitic marble 

M04 Silicated calcitic marble 
0 M03 Calcitic marble 

M02 Calcaro-dolomitic marble 
• MOI Dolomitic marhle 
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Figure 8.7: Metallogenic map of the Bryson-Renfrew region showing the distribution of 
SEDEX mineralization and marble-type. 
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8.4.5 Other Significant Mineral Occurrences 

Significant non-zinc mineral occurrences that were encountered during the fi e ld 

campaign are discussed below. The presence of these occurrences provides additional 

information regarding the geological environment of the Bryson-Renfrew region. They 

include the presence of (1) pure dolomitic marbles, (2) brucite-rich horizons and (3) 

anhydrite layers. 

Figure 8.8: (a) The road to the Timminco magnesium plant at Haley (Ont), showing the 
abundance of magnesium in the area. (b) Panoramic view ofTimminco' s dolomite quarry 
at Haley viewing to the south. Picture clearly shows the pure dolomitic horizon from 
which magnesium metal is extracted. 



70 

Thick pure dolomitic marbles are mostly encountered in the western-central portion 

of the Bryson-Renfrew region. These marbles are coarse grained and extremely pure in the 

Haley areaallowing Timminco Metals Inc. to extract magnesium metal directly from the 

dolomite in a nearby quarry (Fig. 8.7). The quarry is 300 meters long and 50 meters thick and 

Figure 8.9: Pure dolomitic marble mined at Haley's Timminco dolomite quarry. Notice 
the purity of the sample with no traces of silicates. 



tOm 

Dolomitic marblc 
(silicate~poor) 

Figure 8.10: Panoramic view of Dolomex's rehabilitated dolomite quarry at Portage-du­
fort where a silicate-poor dolomitic marble was exploited for industrial mineral and 
fertilizers purposes. Demonstrate the abondance of pure dolomitic marbles in the Bryson­
Renfrew area. 
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follows a stratiform horizon of pure dolomitic marble (Fig. 8.8). This layer clips steeply 

towards the east and is about 50 meters thick. This horizon can be traced for severa) hundred 

meters in the area around Haley. Pure white dolomite is the only mineral present in this unit 

(Fig. 8.9). Grain ize averages around 4-6 millimeters. 
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Another dolomite quarry was exploited by Dolomex Inc. near Portage-du-Fort (Fig. 

8.7). In this quarry, dolomite constitutes the main component but up to 10% diopside can be 

present throughout (Fig. 8.10 and 8.11 ). Outside the quarry diopside can locally constitute up 

to 20% of volume of the unit and is concentrated in centimetric bands that define 

stratigraphy. Like the quarry at Haley, dolomite units strike roughly north-south and dips 

towards the east. Grain size again is coarse and averages from 4 to 6 millimeters. The impure 

nature of the dolomite exp lains why the Portage-du-Fort quarry su pp lied industrial minerais 

and fertilizers instead of magnesium metal extraction. 

Figure 8.11: Pure dolomitic marble that was exploited at Portage-du-Fort' s Dolomex 
dolomite quarry. 
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Brucite is also encountered in the Bryson-Renfrew area. Brucite is a magnesium 

hydroxide derived from the alteration of magnesium-rich silicate and carbonate. Brucite is 

magnesium-rich and was once mined for magnesium. In the vicinity of the Bryson area, 

Figure 8.12: a) The Maxwell stratiform brucitic dolomitic marble quarry at Bryson (Qc). 
b) Brucitic dolomitic marble sample showing brucite nodules (white) in a silicate-poor 
dolomitic marble. Surface alteration dissolves brucite and leaves behind cavites indicating 
where brucite was present. This can be observed on the top-left corner of the figure. 
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historical records indicate a small-scale extraction of brucite from a quarry (Osborne, 1939). 

This brucite occurrence was located in the southern part of the Bryson village in two old 

quarries (30 meters wide/long) (Fig. 8.7). Here, stratiform disseminated white millimetric to 

centimetric brucite nodules are present in a dolomitic marble unit (Fig. 8.12). The silicate 

content of the marble is mostly composed of brucite. The alteration surface is characterized 

by negative relief because of differentiai erosion resistance between brucite (soft) and 

dolomite (harder). The brucite nodules can constitute up to 50% of the rock unit. The host 

marble is a dolomitic marble containing residual silicate minerais such as forsterite and 

diopside. Another brucite occurrence was discovered during the course of our study, this time 

on the other side of the Ottawa River, west of the old Bryson brucite quarry. This new 

showing is stratiform and is contains up to 50% brucite nodules by volume. The nodules are 

white and their grain sizes vary from 4 millimeters to 1 centimeter. 

Finally, another feature identified in the Bryson-Renfrew region is the presence of 

Figure 8.13: Lavender coloured anhydrite in a deep drill hole from the Swamp zone of the 
Cadieux zinc deposit by Noranda Exploration Inc. 

anhydrite layers. However, anhydrite layers are easily dissolved by surface water, so 

anhydrite does not normally occur on surface outcrops and can only be observed in diamond 
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drill core and new fresh unaltered exposures. Therefore the unit could not be uniformly traced 

over the Bryson-Renfrew region because of the scarcity of diamond drilling ho les available. 

In fact, available drill holes are only available on the Cadieux SEDEX zinc deposit, near 

Renfrew, and on the Calumet Mine, west of Bryson (Roger and Lapointe, 1998; Osborne, 

1941; Osborne, 1944). This irregular distribution of drill data hindered the regional study of 

anhydrite complicated. Even though drill holes are scarce throughout the area, anhydrite 

layers are reported in New Calumet Mine logs from the Calumet Mine deposit (Osborne, 

1944). Anhydrite was also reported in drill logs and observed at the Cadieux deposit (Fig. 

8.13). Anhydrite layers in the Bryson-Renfrew area are stratiform, occurring in association 

with the dolomitic and silicate dolomitic marble units. The total thickness of the horizon is 

hard to estimate with the available data. Anhydrite composes from 80% to 100% of the unit. 

Grain size varies between 4 to 6 millimeters. 

To summarize, results show that the marble units of the Bryson-Renfrew region are 

characterized by pure dolomitic marbles, stratiform brucite horizons and by the presence of 

anhydrite in the stratigraphie sequence. 

8.4.6 Zinc Metallogeny 

The known and newly discovered SEDEX zinc sulfide deposits were investigated 

during this study. As mentioned above, although the Cadieux and Calumet Mine deposits 

were known to exist, the Calumet Mine deposit is a volcano-sedimentary hosted massive 

sulfide deposit that was thought to be older (Gauthier et al., 2004) than the marble-hosted 

SEDEX deposit, so it was not firstly investigated in depth. Zinc metallogeny was first studied 

at the Cadieu deposit and then the region was prospected to the north towards Bryson. ln 

this sub-section, we first report (1) geological data from the review of the Cadieux zinc 

sulfide deposit and the surrounding areas, then (2) geological data from the newly discovered 

Portage-du-Fort zinc occurrence and then (3) geological data from newly-discovered and 

historical work from the western part of the Grand-Calumet Island. Gauthier's and al. (1 987) 

discovery of a zinciferous magnetite will be reviewed and investigated later in chapter 9. 



76 

The Cadieux SEDEX zinc sulfide deposit, located 5 kilometers south ofthe town of 

Renfrew, was reviewed in detail in section 2 (Fig. 8.7). Outcrops and samples studied from 

the deposit revealed the following: The deposit is hosted by silicate-rich dolomitic marbles. 

Coarse-grained tremolite with a grain size of 4 millimeters to 1 centimeter constitutes up to 

40% of the rock composition (Fig. 8.14 ). Zinc mineralization is stratiform and can be traced 

for hundreds of meters along old trenches excavated in the 1990s. Zinc mineralization is in 

the form of sphalerite which is coarse-grained, dark colored "blackjack" sphalerite due to its 

high iron content. The mineralization is disseminated and represents up to 60% of the rock 

unit. Mineralization is several meters thick and Jacks the presence of iron sulfides, such a 

pyrite or pyrrhotite, and galena. Only zinc sulfide is present at the Cadieux deposit. 

Figure 8.14: Typical semi-massive to disseminated stratiform sphalerite mineralization 
hosted by a tremolite-forsterite-rich dolomitic marble unit at the Cadieux deposit near 
Renfrew (Ont). Brown mineral is disseminated sphalerite. 

Another zinc sulfide occurrence was identified 3 ki lometers north east of the Cadi eux 

deposit and named Renfrew North (Fig. 8.7). This occurrence is characterized by 
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disseminated sphalerite hosted by a siliceous dolomitic marble. Sphalerite forms from 1 to 

2% of the rock unit and averages 2 millimeters in size. Mineralization is stratiform, one 

centimeter thick, and can be followed for 5 meters in an exposed outcrop along a small 

stream. The narrow marble belt in this area did not permit extension of the mineralized zone 

at surface. 

Figure 8.15: Portage-du-Fort zinc sulfide showing discovered along the dolomite quarry. 
Disseminated stratabound sphalerite hosted by a silicate dolomitic marble unit. Red 
coloration is due to the applicat ion of Zinc Zap (highlighted in a red dashed line ). 
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A new zinc sulfide occurrence was discovered in the central section of the Bryson­

Renfrew area, near the town of Portage-du-Fort. The Portage-du-Fort zinc sulfide occurrence 

was observed along the eastern flank of Dolomex' s quarry and discovered using Zinc-Zap 

(Fig. 8.7 and Fig 8.15). The showing is hosted by a siliceous dolomitic marble unit present in 

the southern wall of the dolomite quarry. The dolomitic marble contains 20% diopside and 

15% forsterite, 55% dolomite and Jess than 5% calcite. Average grain size is 4 to 6 

millimeters for the carbonates and silicates. Forsterite grains are altered into greenish 

serpentine nodules. Sphalerite grains are about 2 millimeters in size and are disseminated in 

the marble unit where they form up to 3% of the rock. The mineralized horizon follows the 

stratigraphie bedding measured in the marbles and is about 30 centimeters thick. To 

summarize, the Portage-du-Fort zinc sulfide showing is stratiform in nature and was 

stratigraphically followed for 10 meters along the edges of the quarry. 

Figure 8.16: Disseminated stratabound sphalerite mineralization hosted by a silicate-rich 
dolomitic marble unit in the trenches south of the New Calumet Mine on the Grand­
Calumet Island. 
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On Grand-Calumet Island west of the town of Bryson, the marble belt present west 

and south of the Calumet Mine along the Ottawa River were prospected for zinc 

mineralization. New Calumet Mines Ltd. archives revealed that the company explored the 

area immediately around the mine for zinc mineralization. In their search they excavated 3 

trenches reported south of the mine site. No further work on these occurrences is reported in 

the company' s archives, which were preserved and consulted at the original mine office 

building present on the mine site, which is now converted into a house. We undertook a 

search for these old small trenches and were successful in locating them about 2.5 kilometers 

south of the Calumet mine (Fig. 8.7). The trenches were overgrown by vegetation, partially 

covered by sediments and filled with water. The three trenches are a meter-wide and tens of 

meters long and separated by tens of meters. A particular feature of these trenches is th at they 

occur in the marble rather than in a volcano-sedimentary sequence like the one present at the 

Calumet deposit. Mineralization in these trenches is also different from Calumet in that they 

Figure 8.17: Another example of disseminated stratiform sphalerite mineralization hosted 
by a si licate-rich dolomitic marble unit in the trenches south of the New Calumet Mine on 
the Grand-Calumet Island. 
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are not polymetallic and zinc dominant. Re-investigation of these trenches revealed the 

following features. The trenches are located in a siliceous dolomitic marble horizon 

containing up to 25% diopside and 15% forsterite and Jess than 5% calcite. The marble unit is 

characterized by a typical coarse grain size (average of 4-6 millimeters). Disseminated and 

semi-massive sphalerite mineralization occurs within this dolomitic marble where coarse­

grained sphalerite (up to 4 millimeter in size) locally forms up to 40% of the unit by volume 

(Fig. 8.16 and 8.17). The meter-thick sphalerite mineralization occurs along a specifie 

horizon along the stratigraphie bedding observed in the marble and intercepted along strike 

by the three trenches. The Calumet-Trenches showing is th us an occurrence of stratiform zinc 

sulfide mineralization hosted by a siliceous dolomitic marble. 

Further prospecting in the area brought forward the discovery of a new zinc sulfide 

showing (Southem Calumet Island showing), to the south (Fig. 8.7). This new occurrence, 

located west ofBryson and 1.5 kilometers south of the Calumet Trenches showing consists of 

a roadside (6 by 3 meters) vertical outcrop of silicate-rich dolomitic marble. This showing 

was discovered by the use of the Zinc-Zap chemical indicator. The dolomitic marble unit is 

characterized by coarse-grained diopside (25%) and forsterite (1 0%) grains and Jess than 5% 

fine-grained interstitial calcite. Disseminated medium-grained sphalerite mineralization 

occurs along a 20 centimeter-thick horizon and is characterized by an average of 2 

millimeter-thick grains, which can represent up to 6% of the rock by volume. The 

mineralized zone is concordant with the stratigraphie bedding observed on the outcrop and is 

traced along the entire length of the exposed outcrop (6 meters).The Southem-Calumet-Island 

showing is therefore characterized by stratiform disseminated zinc sulfide mineralization 

hosted by a silicate-rich dolomitic marble unit. 

Geological mapping and prospecting along the Bryson-Renfrew area revealed the 

presence of severa! stratiform zinc sulfide occurrences throughout the entire area. A total of 

five discovered and newly-discovered zinc sulfide occurrences were described and 

investigated during the study. They are summarized in Appandix D. This data will be used to 

characterize the geological environment of the zinc deposits of the Bryson-Renfrew region. 
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8.4.7 Age Results for the Calumet Mine Sequence 

Sampling from the fragmented amphibolite rock unit (Fig. 8.18a) hosting the 

Calumet Mine exhalative volcano-sedimentary massive-sulfide deposit was successful in 

extracting 4 zircons adequate for isotopie radiometrie dating (Appendix C). Analyses ofthese 

zircons yielded an age of 1232+3.9/-2.7 Ma (Fig. 8.18b) (Appendix C). This age is 

Mesoproterozoic and refines the age bracket of the Grenville Supergroup marbles of the 

Bryson-Renfrew area as discussed below. 

Figure 8.18a: Fragmented amphibolite sampled at the New Calumet Mine for radiometrie 
zircon dating. 
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Figure 8.18b: Zircon U-Pb dating results are distributed along a regressed lines. The 
intersection of this line with Concordia yield an age of 1232.8+3 .9/-2 .7 (Appendix C) 
(David, 2009). 

82 



83 

8.5 DISCUSSION OF THE BRYSON-RENFREW REGION RESULTS 

The detailled field investigation and compilation of the Renfew-Bryson region has 

produced important new information regarding the geological environment. The data 

described in sub-section 8.4 will be used to discuss and define the geological environment. 

The data also enables us to compare the Bryson-Renfrew region and its zinc sulfide 

mineralization with the mineralixation present in the Balmat-Edwards district. 

The following subjects will be discussed in this section. We will first present the 

general geological features resulting from the compilation and field data acquired during the 

study. We will then discuss the geological environment from the data acquired during our 

marble mapping campaign. Specifie mineral occurrences will also be discussed in a regional 

overview of the Bryson-Renfrew marble belt. The zinc sulfide occurrences present in the area 

will be discussed and compared to Balmat-type SEDEX zinc mineralization, followed by 

discussion of the newly acquired radiometrie age and its consequence on our understanding 

of the area. 

Finally, ali key features from the above discussions will be presented and reviewed in 

a geological environment perspective to determine if the Bryson-Renfrew area has a similar 

to the Balmat-type geological and depositional environment. 

8.5.1 General Geological Features 

The results from the general field campa1gn yields interesting features for the 

Bryson-Renfrew region . The geological sequence will firstly be discussed and compared to 

the geological environment of Balmat-type deposits . The structural features will then briefly 

be compared to the ones observed for the Balmat-Edwards district and the Maniwaki­

Gracefield area. 

The stratigraphie sequence of the area is characterized by amphibolites, which 

overlies a quartzo-feldspathic gneissic basement. The sequence is then overlain by quartzite 

and marbles. On top of the marbles lies a biotite paragneiss unit. The sequence was later 

intruded by granitic and anorthositic intrusions and also by the Chenaux gabbroic stock in the 

central and northern part of the Bryson-Renfrew region. The pre-metamorphic interpretation 



84 

for this sequence is a mafic volcanic basement deposited on an older gneiss basement (paleo­

basement). The sequence is then overlain by quartz-rich pelitic sediments. With basin 

deepening, the sequence then grades into carbonates and finally black shales. This 

environment is typical of a local rift milieu with opening of an ocean basin. Variations in 

marble units in the area will be discussed in the following section. The same stratigraphie 

sequence was defined for the Balmat-Edwards district and for the Maniwaki-Gracefield 

SEDEX zinc su1fide deposits (deLorraine, 2001; Gauthier and Brown, 1986). Balmat-type 

SEDEX deposits form in a carbonate p1atform environment and such an environment is 

present in the Bryson-Renfrew area. Furthermore, like at the Balmat-Edwards district, the 

Bryson-Renfrew was affected by a strong regional metamorphism. 

The Bryson-Renfrew region is characterized by polyphase deformation where at least 

two clearly phases of deformation have occurred. This type of deformation is observed 

throughout the Grenville Supergroup of Quebec, Ontario and northern New York state 

(Gauthier et al., 2004; Roger and Lapointe, 1998; deLorraine, 2001). For example, the 

Ba1mat-Edwards mining camp and the Maniwaki-Gracefield area are both characterized by a 

first phase of isoclinal folding which was later deformed and folded by a second deformation 

event. The folds observed at the exposed bedrock under the Portage-du-Fort dam represent an 

example of the regional folding pattern of the region (Fig. 8.5). ln terms of deformation, what 

is observed at the outcrop scale usually reflects what is observed at a regional scale. While 

the structural deformation of the marble can locally be complicated, it is interesting from a 

metallogenic point of view because the type of folds observed in the region can concentrate 

and even thicken massive sulfide minera1ization at folds hinges as is the case in the Balmat­

Edwards district (deLorraine, 2001) and the Maniwaki-Gracefie1d area (i .e. Leitch deposit) 

(Gauthier et al., 2004). ln conclusion, the Bryson-Renfrew structural features are in ali ways 

simi1ar to the type of deformation observed for Balmat-type SEDEX zinc sulfide deposits. 

A feature that characterizes the Bryson-Renfrew area, when observing the geological 

map, is the abundance of marbles. Moreover, the marb1e belt can be continually traced 

between Bryson and Renfrew. This abundance of marb1es, the typica1 stratigraphie sequence, 

the structural features and metamorphic grades are ali similar and point towards Balmat-type 
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SEDEX zinc deposits geological environment. Detailed studies of the marble belt provide 

further evidence in favor of this hypothesis and are discussed in the next section. 

8.5.2 Marbles Features 

Results from our classification of the marbles into seven distinct units, and their 

distribution throughout the Bryson-Renfrew region, yields further key features to define the 

geological environment. Moreover, the mineral occurrences and particularities encountered in 

the marble belt provide evidence that will be discussed in the paragraphs below. General 

features of the marble belt will be discussed first, followed by the special features observed 

throughout the region. Finally, the environment will be compared to the Balmat-Edwards 

district. 

Although, m general, calcitic marbles predominate in the Grenville Supergroup 

(Easton, 1992), the region under study is remarkable by the abundance of dolomitic marble 

units. The distribution of the different marble units is presented in figure 8.7. The established 

marble stratigraphie sequence grades from pure dolomitic marbles to silieous dolomitic 

marbles. The sequence then grades to calcaro-dolomitic marbles and finally to calcitic 

marbles. Dolomitic and silicate dolomitic marbles units dominate the western northern, 

central and southem part of the studied region. Towards the central eastern section of the 

region, the marble sequence gradually grades to calcaro-dolomitic marbles to calcitic marbles 

on the eastern part of the map. An increase of the presence of calcite towards the east 

characterizes the region. 

Prograde metamorphic reaction between carbonates and other minerais during 

metamorphism is used to characterize the pre-metamorphic characteristics of the defined 

marble sequence. At high metamorphic grades, dolomite reacts with quartz to form diopside 

and at higher temperatures, forsterite (reactions are presented below). Therefore the relative 

abundance of diopside-forsterite in the marble unit reflects the pre-metamorphic presence of 

petitie quartz-rich sediments interlayered with the carbonates and/or the addition of silica in 

the system by hydrothermal activity. This relative abundance of diopside-forsterite, at a 

regional scale, also reflects the depth at which the sediments were deposited. A shallow-water 
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carbonate environment is more likely to have peletic sediments (sand layers) eroded from the 

mainland interlayered with carbonates. 

Prograde metamorphism of pure dolostone in the area does not result in mineral 

transformation and dolomite is simply recrystallized with increasing metamorphism. The 

prograde metamorphic reactions responsible for the mineral assemblage observed in the 

Bryson area are as follow (Winter, 2001). During prograde metamorphism of an impure 

dolostone, dolomite will react with quartz du form talc at temperatures from 150° to 250°C, 

following the reaction (1): 

(1) 3CaMg(C03)2 (dolomite)+ 4Si02 (ebert or detrical quartz) + H20 (water) = Mg3Si4Ü1o(OH)2 (talc) 

+ 3CaC03 (calcite)+ 3C02 

With increasing metamorphism and abundance of calcite the following reaction 

forms tremolite which occurs between 250° and 450°C: 

At medium-high metamorphic grades, tremolite is replaced by diopside as further 

dehydration occurs. Note the Joss of C02 and H20 with prograde metamorphism. The 

following (3) reaction occurs from 450° to 600°C: 

(3) Ca2MgsSis0 22(0H)2 (tremolite) + 3CaC03 (calcite) + 2Si02 (quartz) = 5CaMgSi20 6 (diopside) 

+ 3C02 + H20 (water) 

At higher metamorphic grade there is formation of a forsteri te-bearing dolomitic 

marble which is characterized by the progressive dehydratation of diopsid to form forsterite 

(magnesium olivine). Reaction (4) highlights this prograde transformation: 

(4) CaMgSh06 (diopside) + 3CaMg(C03)2 (dolomite)= 2Mg2Si04 (forsterite) + 4CaC03 (calcite) 

+ 2C02 + H20 (water) 

The Bryson-Renfrew area was later affected by retrometamorphism which 

retrograded the granulite-facies mineral paragenesis. Rehydration of forsterite and diopside 

into serpentine nodules by retrometamorphic fluids was extensive in the region. This intense 
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retrometamorphism can be related to the Cambrian rifting episode association with the 

Ottawa-Bonnechère graben after the grenvillian orogeny (Easton, 1992). This graben follows 

the Ottawa River where Paleozoic cover and glacial-lacustrine sediments can be observed as 

it is the case just north ofRenfrew along highway 17 (Lumbers, 1982). 

The pre-metamorphic characteristics of the Bryson-Renfrew marble sequence 

indicates that dolomite was initially precipitated in a shallow water basin. Sand layers were 

also deposited at the edge of the basin. The pre-metamorphic environment of the Bryson­

Renfrew area indicates that the water basin was shallow to the west with direct dolomite 

precipitation and became progressively deeper to the east with the transition to calcite 

precipitation. The abundance, thickness and purity of the dolomitic marble unit in general are 

in agreement with this assumption. As the basin deepened, calcite precipitation became 

dominant. The marble sequence in the Bryson-Renfrew region is therefore characterized by 

deposition in a shallow-water environment, with typical calcite precipitation as the basin 

deepens towards the central-east of the region. Furthermore, the presence of pure dolomitic 

marble units, stratiform brucite and anhydrite layers enables us to further retine the 

geological environment as discussed below. 

As mentioned above, not only dolomitic marble dominate the Bryson-Renfrew 

region, but their extreme purity also permitted exploitation of pure dolomitic marbles for 

magnesium metal, by Timminco in Haley(Ont) (Fig. 8.8 and 8.9). The presence of these 

highly pure dolomitic marble units strongly suggests an evaporitic environment. Further 

evidence of such an environment is given by the presence of meta-evaporites in the Bryson­

Renfrew marble belt. These meta-evaporites consist of stratiform brucite and anhydrite 

layers. 

Brucite is a magnesium hydroxide (Mg(OH)2) produced from the alteration of 

magnesium-rich minerais (Deer et al. , 1992). Advanced serpentinisation and further alteration 

of forsterite, for example, can form brucite. Brucite is also commonly the alteration product 

of periclase (MgO), a commonly found mineral in marble produced by metamorphism of 

dolomitic limestone or dolostone. At near surface conditions, periclase readily alters into 

brucite (Deer et al., 1992). Brucite is therefore a mineral that directly indicates an abundance 

of magnesium. The stratiform brucite layers of the Maxwell deposit (1 2 million tons of 
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brucitic marble; Osborne, 1939), south of the town of Bryson, are particularly rich in brucite 

and generally devoid of silicate minerais. This paucity of silicate minerais and almost 

exclusive presence of brucite nodules strongly suggests that these layers were derived from 

the alteration of periclase-rich dolomitic marbles formed during the metamorphism of 

magnesium-rich dolomite limestone. The presence of stratiform brucite layers at Bryson 

therefore indicates that the area was characterized by a certain leve! of magnesium saturation 

during metamorphism. Moreover, this abundance of magnesium is characteristic of an 

evaporitic environment. Modern analogues can be found along the Persic Golf where 

sabkhas-type environments are present (Pomerol et al. , 2000). Evaporation of seawater in a 

restricted basin or sabkha environment will initiate precipitation of gypse (CaS04 + 2H20), a 

hydrated anhydrite. This precipitation gradually enriches seawater with magnesium with 

progressive removal of calcium forming a magnesium-rich brine (Pomerol et al. , 2000). 

Anhydrite, an anhydrous calcium sulfate (CaS04), is also occurs in the Bryson­

Renfrew area. We noted its presence in drill core near the Calumet Mine west of the town of 

Bryson, and near Cadieux south of Renfrew (Osborne, 1944; Roger and Lapointe, 1998). We 

explained earlier that because of the rapid dissolution of anhydrite by surface waters, 

anhydrite could only be observed in core from deep diamond drilling holes. This feature 

rendered the study of the presence of anhydrite difficult when no drilling data was present. 

Nevertheless, anhydrite layers do occur in the Bryson-Renfrew area and they are stratabound 

and probably stratiform (Brown, 1973). Stratiform anhydrite forms in an evaporitic 

environment (Whelan et al., 1990; Pomerol et al., 2000). Direct precipitation of primary 

anhydrite can occur from evaporitic brines rich in dissolved calcium and sulfate (SO/ ) when 

certain ch mica! conditions are met (for example, when the brine contains an excess of 

sodium or potassium chloride with temperatures above 40° Celsius) (Deer et al. , 1992; 

Pomerol et al., 2000). Hydrated calcium sulfate, gypsum (CaS04 + 2H20) also precipitates 

from sulfate stable evaporitic brines (Deer et al., 1992). With prograde metamorphism and its 

dehydration of hydrous minerais, gypsum is dehydrated into anhydrite at granulite-facies 

condition. Because polyphase deformation and prograde metamorphism obliterated the 

primary sedimentary features of these anhydrite layers, we cannot determine whether 

anhydrite of gypsum was the primary mineral without more geochemical work. However, for 

the purpose of this study, it does not matter because both anhydrite and gypsum are indicative 
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of an evaporitic environment. Sulfate-stable evaporitic brine also points out that the 

environment is oxidized. If sulfate in dissolved water were to be introduced into a reducing 

anoxie environment, the su lfate (SO/-) would convert into its reduced form H2S by the action 

of sulfate-reduction bacteria (Whelan et al., 1990; Pomerol et al., 2000). The stratiform 

nature of the layers makes us conclude that anhydrite is characteristic of the regional 

depositional environment and not a exclusive local phenomenon. 

The marble belt of the Bryson-Renfrew region is therefore characterized by the 

dominance of dolomitic marbles. The presence of pure dolomitic marbles and stratiform 

meta-evaporites both strongly indicate that the geological environment of the northern, 

western and southern part of the studied region was a shallow-water, oxidized (sulfate-stable) 

evaporitic carbonate platform environment. Such an environment is in many ways similar to 

the one proposed for Balmat-type SEDEX zinc deposits. Balmat-type SEDEX deposits were 

defined and characterized by hydrothermal brines deposited in a shallow-water, oxidizing and 

evaporitic carbonate platform environment. The same depositional environment prevails in 

the Bryson-Renfrew region. The next section presents a discussion on the zinc sulfide 

occurrences encountered during the mapping campaign and their association with specifie 

marble lithologies and facies. 

8.5.3 Zinc Sulfide Mineralization 

The systematic reconnaissance of the marble facies of the Bryson-Renfrew region 

and their associated zinc mineralization enables us to study the association between them. In 

this section, we will summarize ail known and newly-discovered zinc sulfide mineralization 

and link them to a particular stratigraphie position. They will then by classified by deposit­

type and compared to Balmat-type SEDEX deposits . 

Geological marble mapping and zinc prospecting in the Bryson-Renfrew area reveals 

the following features : Ail zinc sulfide mineralization is stratiform, consists of disseminated 

to semi-massive coarse-grained sphalerite mineralization, is generally poor in iron and lead 

sulfides, is associated with dolomitic marble horizons, and is characterized by the presence of 

nearby stratiform anhydrite in the stratigraphie sequence. Moreover, finely-disseminated 

sphalerite mineralization presents an affinity with silicate-poor dolomitic marble units while 
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higher sphalerite concentrations are associated with silicate-rich dolomitic marbles. Siliceous 

dolostones are then the pre-metamorphic host unit for this zinc sulfide mineralization. These 

features confirm the particular lithological associations (i.e. disseminated sphalerite in 

dolomitic marbles and higher concentrations in silicate dolomitic marbles) that have been 

first described by Sangster ( 1970) and later by Gauthier and Brown ( 1986) for SEDEX zinc 

sulfides deposits and occurrences. 

Thus, the Bryson-Renfrew zinc sulfide mineralizations are SEDEX-type and are 

hosted by a siliceous dolomitic marble unit. These features are similar in many way to those 

observed for Balmat-type SEDEX zinc sulfide deposits. Our geological marble 

reconnaissance mapping and zinc prospecting campaign was successful in tracing the 

different marble units and their zinc sulfide mineralization throughout the entire Bryson­

Renfrew region. 

8.5.4 Grenville Supergoup Age Determination 

The Grenville Supergroup of Quebec and Ontario is Mesoproterozoic in age (Easton, 

1992). Until the present study, the Bryson-Renfrew area only had an upper age bracket as 

determined from the timing of the Chenaux gabbro stock in the central region . The Grenville 

Supergroup marbles of the area do not contain abundant favorable lithologies for radiometrie 

age determination (i .e. marbles do not contain zircons). We reported about that the Chenaux 

gabbro which crosscuts the marble belt was dated at about 1100 Ma (Lumbers, 1982). We 

also pointed out that the region is host to an amphibolite-hosted massive polymetallic sulfide 

of unknown age. A radiometrie age determination of the fragmented amphibolite horizon 

from the Calulmet deposit was undertaken to determine the lower age bracket of the region ' s 

marble belt and determine the age of the Calumet mineralization . 

Results confirm that the Bryson-Renfrew marble belt is Mesoproterozoic. The age 

bracket from the underlying amphibolite unit and from the Chenaux intrusion yields 

1232.8+3 .9/-2.7 Ma (Appendix C) and 1100 Ma (Lumbers, 1982)) respectively. 

Two hypothesis exist for the age of the Calumet Mine (refer to chapter 2): (1) 

Calumet is an older basement for the Grenville Supergroup like the Montauban gold deposit, 

or (2) the Calumet deposit is Grenville Supergroup age. The radiometrie datation results 
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yie1ded 1232.8+3.9/-2.7 Ma (Appendix A). This contirms that the po1ymetallic Calumet 

deposit belongs to the metallogenic epoch of the Grenville Supergroup rather than the epoch 

of the Montauban Group ( ~ 1.45-1.39 Ga). The tirst hypothesis as proposed by Gauthier et al. 

(2004) can therefore be rejected. This conclusion forces us to consider the exhalative event at 

the origin of the Calumet deposit as contemporaneous to the SEDEX zinc sulfide deposits 

and occurrences present in the marbles of the Bryson-Renfrew region. This has important 

considerations on our study and we therefore must include the Calumet volcanic exhalative 

Zn-Pb-Au-Ag mineralization in our metallogenic interpretation. 

Our objective with this study is not to re-eva1uate the Calumet deposit because it is 

extensively weil studied and is the main subject of a memoir and two theses: A.L. Sangster 

(1967; 1970) and later Jourdain (1993 ). However the Calumet deposit was never considered 

in a regional context before and it is why we decided to obtain a radiometrie age 

determination for the mineralization. Jourdain (1993) compared the Calumet and Montauban 

deposits and proposed that they are similar, which incited Gauthier et al. (2004) to propose 

that both deposits belong to the same metallogenic epoch and represent an older basement on 

which the Grenville Supergroup rests. The work ofNadeau and Van Breeman (1994) on the 

metamorphosed matie pyroclastic rock unit hosting the Montauban deposit determined the 

age of 1.45-1.39 Ga for the mineralization, which is older than the Grenville Supergroup 

marbles. The metallogenic epoch for the deposition of grenvillian polymetallic exhalative 

zinc-lead-gold-silver mineralization was thus considered to be around 1.45-1.39 Ga. But our 

determined age for the Calumet mineralization (1232.8+3.9/-2 .7 Ma) now suggests that there 

is a second event of deposition of volcanogenic massive sultide deposits in the Grenville, a 

tirst one at 1.45-1.39 Ga and a second pisode at 1.23 Ga. 

The Calumet volcanic exhalative massive su1tide deposit (VMS) can now be included 

in a regional context and depositional environment with the deposition of SEDEX zinc 

deposits. This indicates that the age of hydrothermal exhalative activity for the VMS and 

SEDEX deposits in the area is post emplacement of the Chenaux intrusion and therefore not 

re lated with it. So along the same chronostratigraphic horizon there is simultaneous 

deposition of matie volcanic and carbonate rock units and with the presence of an active 

VMS hydrothermal system, regional zinc-dominant exhalites are also deposited. Gauthier and 
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Brown (1986) and Gauthier et al., (1987) demonstrated the formation of Zn-Fe meta­

exhalites in the extensions of the SEDEX massive sulfide deposits in the Maniwaki­

Gracefield area. In the same matter, distal exhalites issuing from the Calumet VMS deposit 

could precipitate zinc-dominant horizons such as those observed on the Grand-Calumet 

Island zinc sulfide showing. 

Our study is focused on the marble-hosted SEDEX zinc deposits but further 

discussion in section 4 will put the Calumet VMS and SEDEX deposits in its regional 

geological context. 

8.5.5 Bryson-Renfrew Geological Environment 

Our study of the Bryson-Renfrew region enabled us to characterize its geological 

environment for the first time. Marble lithology differentiation and the in-depth study of its 

zinc mineralization were conducted to identify the key evidence required to characterize such 

an environment. This section will summarize the geological environment of the Bryson­

Renfrew region and compare ali the discussed features with those of Balmat-type SEDEX 

zinc sulfides deposits. 

The Bryson-Renfrew is characterized by a stratigraphie sequence dominated by 

marbles, underlain by amphibolites and quartzo-feldspathic gneiss and overlain by diopsidite, 

quartzite and paragneiss units. Similar stratigraphie sequences were first described by Brown 

and Engel (1956) for the Balmat-Edwards district and later by Gauthier and Brown (1986) for 

the Maniwaki-Gracefield area. Both areas are characterized by Balmat-type SEDEX zinc 

mineralization. Moreover, the Bryson-Renfrew region was affected by metamorphic grades 

reaching granulite-facies and polyphase deformation resulting in refolded isoclinal fold. Such 

features are also present at the Balmat-Edwards district and the Maniwaki-Gracefield area 

(Brown and En gel, 1956; Gauthier and Brown, 1986). However, deLorraine (200 1) 

demonstrate that zinc mineralization was premetamorphic in origin. Furthermore, Cartwright 

and Oliver (2000) argue that the formation of massive Zn-Pb deposits by metamorphic fluids 

during regional metamorphism is not likely. The marble mapping campaign revealed that the 

Bryson-Renfrew region is dominated by dolomitic marble units and by the presence of meta­

evaporite. These features enabled us to propose that the Bryson-Renfrew region formed in a 
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shallow-water, oxidizing and evaporitic, carbonate platform environment. Cooke et al. (2000) 

described a similar environment for the McArthur SEDEX deposits in Australia (McArthur­

subtype SEDEX). ln section 1, we reviewed and further classified the Balmat-Edwards and 

Maniwaki-Gracefield SEDEX deposits as McArthur subtype SEDEX deposits, because of the 

similar geological environment. We can then conclude that the Bryson-Renfrew region 

geological environment is similar to the depositional environment for Balmat-type SEDEX 

zinc sulfide deposits. Moreover, the Bryson-Renfrew region does not only possesses a similar 

environment, but similar to Balmat-type SEDEX zinc sulfide occurrences (Calumet Island, 

Calumet Trenches, Portage-du-Fort and Renfrew) and deposits (Cadieux) were encountered 

in the area. Sangster' s (1970) and Gauthier' s and Brown (1986) lithologie association of 

disseminated sphalerite hosted by dolomitic marbles and higher concentration of sphalerite 

associated with silicate-rich dolomitic marbles is confirmed in the Bryson-Renfrew region . 

The stratiform nature of the mineralization with the presence of nearby meta-evaporites in the 

stratigraphie sequence are ali features characteristic of Balmat-type SEDEX mineralization . 

The comparison of the Bryson-Renfrew region with the well-understood and widely 

distributed Balmat-type SEDEX zinc sulfide mineralization reveals that they are both similar. 

The Bryson-Renfrew region can therefore for the first time be classified as a common 

Balmat-type SEDEX zinc sulfide environment. 

8.6 CONCLUSION 

The Bryson-Renfrew regton was selected for our study because of the untque 

opportunity it afforded to study the relationship between SEDEX zinc sulfide and non-sulfide 

deposits (i.e. Balmat-type versus Franklin-type). In order to do this, the first step was to 

confirm that the Bryson-Renfrew region geological milieu was similar to the Balmat-type 

geological environment. The main reason for this step is, as previously stated, that Balmat­

type SEDEX zinc sulphide deposits genesis and formation are weil understood, widely 

distributed and common throughout the Grenville Supergroup. On the other hand, Franklin­

type SEDEX non-sulfide zinc deposits are Jess weil understood, scarce and restricted to the 

New Jersey Highlands more than 500 kilometers south of the Grenville Supergroup. 

Therefore, studying Franklin-type mineralization in the weil understood geological 



94 

environment of the Balmat-type SEDEX zinc mineralization could propose that they can 

occur outside the New Jersey Highlands associated with SEDEX mineralization. 

Our study revealed that the Bryson-Renfrew region is similar to the Balmat-type 

geological environment. The region's SEDEX zinc sulfide mineralization was deposited in a 

shallow-water, oxidized and evaporitic, carbonate platform environment. The first part of our 

study is thus successfully completed: The Bryson-Renfrew region is characterized by a 

conventional geological environment typical of Balmat-type SEDEX mineralization. 



CHAPTERIX 

BRYSON ZINCIAN MAGNETITE OCCURRENCE 

9.1 INTRODUCTION 

To study the relationship between Balmat and Franklin-type SEDEX deposits, two 

conditions, that were never previously met, were required : 1) The Balmat-Renfrew region 

must contain Balmat-type zinc mineralizations in a Balmat-type SEDEX geological 

environment. 2) Franklin-type SEDEX non-sulfide zinc mineralization must be confirmed in 

the same area. The first condition was addressed and answered in the previous chapter 3. The 

second step consists in confirming the presence of Franklin-type mineralization outside the 

New Jersey Highlands. Gauthier's et al. (1987) discovery of a zincian magnetite near the 

town of Bryson raised the possibility that other Franklin-type deposits could be found 

elsewhere. However, the Bryson occurrence was never studied further and determined to be a 

Franklin-type mineralization. The Bryson-Renfrew region was thus selected to solve our 

problem, specifically is there a relationship between both end-members of SEDEX deposits? 

To resolve this issue, we firstly need to find evidence of non- ulfide zinc 

mineralization in the Grenvi lle Supergroup marbles of the Bryson-Renfrew region. We will 

therefore review the Bryson zincian magnetite occurrence (Gauthier et al. , 1987). 

9.2 D ESCRIPTION OF THE BRYSON ZINCIAN-MA.GNETITE SHOWING 

In a review of Precambrian iron deposits, Gauthier et al. (1987) present a synthesis of 

marble-hosted iron formations present in the Man iwaki region (Que bec). This iron formation 

called the Chemin-de-Piché iron formation was described in section 1. As mentioned above, 

this magnetite-breunnerite-fosterite horizon is interpreted to be a metamorphosed iron-rich 
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siderite halo enveloping and related to the SEDEX zinc sulfide deposits. Local disseminated 

sphalerite is present along this iron formation. With prograde metamorphism, the iron-rich 

siderite dissociates to form magnetite and graphite. In their synthesis, Gauthier et al. (1987) 

also noted the presence of a magnetite horizon near the village of Bryson, Quebec, 90 

kilometers to the southwest of the town of Maniwaki. However, further analysis revealed that 

this iron formation was different than the Chemin-de-Piché iron formation. 

Microprobe analysis of the Bryson occurrence revealed the presence of a zinciferous 

magnetite (Gauthier et al. , 1987). Analyses revealed that up to four percent ZnO occurred in 

the magnetite grains (Gauthier et al., 1987). The pre-metamorphic nature of this horizon was 

interpreted as a zincian and iron rich carbonate "mud" (Gauthier et al., 1987). Prograde 

granulite-facies metamorphism dissociated zinc and iron from the carbonate "mud" which 

then combined to create the zinciferous magnetite. Gauthier's et al. (1987) interpretation is in 

many ways similar to that of Squiller and Sclar (1980) for the origin of Franklin-type 

deposits. This suggests that the Bryson zincian magnetite occurrence could be related to 

Franklin-type SEDEX mineralization. 

9.3 CONCLUSION 

The discovery of the Bryson zincian magnetite shawn by Gauthier et al. (1987) raises 

the possibility that Franklin-type mineralization might occur outside the Franklin-Sterling 

Hill district. However, a re investigation of the Bryson occurrence is required at the original 

site of discovery and the surrounding area to unequivocally demonstrate the presence of 

Franklin-type mineralization in the Grenville Supergroup marbles near Bryson. 

To accomplish this task, additional geological mapping and prospecting 111 the 

vicinity of the Bryson zincian magnetite occurrence was undertaken. The next section 

describes the data collected in the Bryson area and its significance. 
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CHAPTERX 

THE BRYSON AREA 

lO.liNTRODUCTION 

The discovery at the town of Bryson (Qc) of a magnetite occurrence containing 4 

percent franklinite component (ZnFe20 4) suggest that there could be a potential for other 

Franklin-type deposits. The objective of our thesis is to determine if a relationship exists 

between SEDEX zinc sulfide and non-sulfide deposits, and goes without saying that the 

Bryson area was selected because of its potential for this mineralization type, as identified by 

Gauthier et al. (1987). The Bryson area is part of the Bryson-Renfrew region, described 

previously in chapter 8, which is characterized by a shallow-water evaporitic carbonate 

platform environment hosting SEDEX zinc sulfide deposits (Balmat-type). Thus, as 

mentioned earlier, this area affords us a unique opportunity to study the relationship between 

both end-mem bers of SEDEX deposits. Reinvestigation of the Bryson non-su lfide occurrence 

and surrounding area should enable us to conclude if the Bryson occurrence is a Franklin­

type mineralization. 

ln order to accomplish this we wi ll firstly briefly present the Bryson occurrence 

location area and geological context, obtained by our regional Bryson-Renfrew study. We 

then explain the methodology used for the geological mapping and prospecting campaign 

around the town of Bryson. We will then present and discuss the geological data obtained 

during the campaign in order to demonstrate that the Bryson region hosts non-sulfide zinc 

mineralization. 

10.2 LOCATION AND GEOLOGICAL CONTEXT 
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The Bryson area is located in the northern part of the Bryson-Renfrew region 

(chapter 8), 30 kilometers north of the Cadieux SEDEX zinc sulfide deposit near the town of 

Renfrew (Ont). The area around the town of Bryson is characterized by medium topography 

characterized by hills and valleys. 

The Bryson area, as mentioned in chapter 8, is located in Mesoproterozoic Grenville 

Supergroup marbles. The Bryson-Renfrew area is characterized by a metamorphosed 

shallow-water evaporitic carbonate platform environment where SEDEX zinc sulfide 

deposits were deposited. High metamorphic grade and polyphase deformation characterizes 

the Bryson-Renfrew region. The Bryson area is characterized by an abundance of dolomitic 

and silicate-rich dolomitic marbles units (Fig. 8.7). The Calumet Mine amphibolite-hosted 

polymetallic volcanogenic massive sulfide deposit is located approximately 6 kilometers 

west-northwest from the town of Bryson. SEDEX zinc sulfide occurrences (Calumet Island 

and Calumet Trench) occur 5 kilometers west of the town of Bryson. The Bryson zincian 

magnetite discovery is located along a roadside outcrop 30 meters east of the bridge between 

the town of Bryson and Grand Calumet Island. 

The Bryson area, like the Bryson-Renfrew region, was mapped at a regional (1: 125 

000) scale by the government ofQuebec (Katz, 1976). Osborne (1944) compiled a geological 

map of the Grand-Calumet Island around the Calumet polymetallic deposit at a scale of about 

1 :40 000. However, the available data in the Bryson area was inadequate and incomplete for 

the purpose of evaluating the presence of Franklin-type mineralization. Thus, further 

geological data is required to refine and characterize the geological environment of the 

Bryson non-sulfide zinc occurrence around the Bryson zincian magnetite discovery. The next 

section presents our methodology used to achieve this goal. 

10.3 METHODOLOGY 

The geological context of the Bryson area was characterized following detailed 

outcrops description. For this study, a total of more than 120 different outcrops (Appendix F) 

were mapped, enabling us to define (1) the local general stratigraphie column of the Bryson 

area, (2) the local structural characteristics, (3) identify the different marble units present in 

the area, and (4) report on known and new occurrences of non-sulfide zinc mineralization in 
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the studied area. Selected outcrop sam pies were collected for the purpose of obtaining further 

mineralogical data for a detailed laboratory mineralogical study which will be discussed in 

chapter 11 below. 

The same approach used for the geological mapping of the Bryson-Renfrew region 

was used for the mapping campaign conducted at a higher leve! of detail around the town of 

Bryson. Outcrops were described along the roadside and then along traverses following 

favorable marble lithology. Each outcrop was studied as described in chapter 8.3.1 (site 

description, localization, lithology, marble type, structural measurements, etc.). When 

marbles were present, a more detailed description was made (dolomite/calcite ratio, 

mineralogy, structural measurements of the stratigraphie horizon, etc.). The objective of this 

campaign was to characterize and resample the Bryson zincian magnetite occurrence and to 

uncover new non-sulfide zinc occurrences in the nearby surroundings. Therefore, special 

attention was given to zinc prospecting. As in chapter 8.3.1 , the use of the Zinc-Zap (Landry 

et al., 1995) reactant proved useful in identifying zinc mineralization. Disseminated zinc 

silicates and/or oxides are more di ffi cult to distinguish from other minerais ( exotic 

uncommon mineralogy) when they are fine-grained and mixed with carbonates and silicates. 

White we previously explained that Zinc-Zap is more effective on disseminated sphalerite 

than massive sulfides, the reaction is even stronger on zinc silicates and oxides. Chapter 

8.3.1 presents in further detail the methodology used for the geological mapping and zinc 

prospection of the Bryson area. Ali collected data were compiled into a computer database 

and spatially analyzed with the use of GIS software (refer to chapter 8.3.3 for more details) . 

In summary, systematic geological mapping and prospecting with the use of Zinc­

Zap enabled us to identify severa! new non-sulfide zinc occurrences in the surrounding area 

of the town of Bryson. The following section presents the data collected during our study. 

10.4 RESULTS 
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Figure 10.1: Geological map of the immediate area around the town of Bryson(Qc) 
showing the distribution of non-sulfide zinc occurrences reported. Name and sample 
number of reported showings is shown on this map. 
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10.4.1 Geological Map 

To determine if the Bryson occurrence area can be related to Franklin-type non­

sulfide zinc mineralization, we must characterize the local geologie features and identify and 

map zinc occurrences. These steps required us to conduct a detailed geological mapping and 

zinc prospecting campaign around the Bryson zincian magnetite occurrence. The main result 

of this study is the publication of a geological map of the Bryson area (Fig. 10.1) showing 

marble lithology and its zinc mineralization. 

Systematic mapping, at a 1:1 0 000 scale, in a 6 km2 area surrounding the original 

discovery site the Bryson zincian magnetite showing has provided us the required geological 

data necessary to identify the deposit-type of the region 's zinc mineralization. The data will 

be presented in the following order: (1) The general geological and structural features of the 

area, (2) lithological characteristics of the marble belt present at Bryson and its non-zinc 

particular mineral occurrences, and (3) observations made on the known and newly 

discovered non-sulfide zinc mineralization. 

10.4.2 Geological and Structural Features 

Description and compilation of outcrops provided the necessary data to establish the 

stratigraphie column of the Bryson area. Lithological units were differentiated and structural 

measurements were used to trace the units throughout the Bryson area. The lithological units 

will be described in the following paragraphs and then their structural features will be briefly 

described. 

The established stratigraphie column for the Bryson area includes a 

amphibolite/gneiss unit overlain by quartzite and then by marble. Finally, a gabbro intrudes 

the sequence in the western part of the area. Each unit is described below: 

Gneisslamphibolite: This unit is characterized by medium-ta fine-grained quarzto­

feldpathic gneiss with inclusions of black biotite-amphibole-rich layers. Biotite and 

amphibolite typically represent up to 40% by volume with an average grain size of 1 to 2 

millimeters. Quartz, plagioclase and potassic feldspars are equally distributed and possess a 

grain size of 1 to 2 millimeters. The unit is generally not magnetic (weakly locally when 
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amphibolite is present). The amphibolite layers are characterized by 20% biotite and 40% 

dark amphibole. Mafic minerais are concentrated in millimetric melanosomes along the 

developed foliation and grain size averages 1 to 2 millimeters. 

Quartzite: Quartzite layers are Jocally present along the west shore of the Ottawa 

River west of Bryson. Medium-ta fine-grained quartz is the main constituent of this unit. 

Quartz grain size averages 2 millimeters. Quartz represents more than 85% of the rock unit. 

Other accessory minerais include white diopside, forsterite grains altered to serpentine 

nodules, tremolite and feldspar locally. 

Marble: Marble units and their facies will be described in more detail in the 

following section. However, marble is the main lithologie constituent of the Bryson area and 

characterizes the central portion of the map. 

Gabbro: A coarse-grained gabbro intrusion is present in the western part of the 

Bryson area. This gabbro contains 35% pyroxene, 35% amphibole and 30% plagioclase with 

an average grain size of 2 to 4 millimeters. This unit is magnetic and is in cross-cutting 

relationship with the marble belt. This gabbro belongs to the Chenaux intrusive also present 

in the Bryson-Renfrew region near Portage-du-Fort. Contact between the marble belt and the 

gabbro it not weil exposed in the area and does not reveal an intensive metasomatic event in 

the Bryson area. However, the metasomatic effect of the Chenaux gabbro has been observed 

at the Portage-du-Fort Island road-cut. There, as described in chapter 8, a ten-centimeter thick 

metamorphic contact aureole was observed. Chemical metasomatic manganese exchanges 

between the marble and the gabbro resulted in a red-colored marble and were limited to a 

couple of centimeters at most (Fig 8.2). 

Structural measurements were made in the Bryson area. The gneiss/amphibolite unit 

1s characterized by a well-developed foliation. Primary stratigraphie features, such as 

bedding, are therefore not preserved in this unit because of the effects of dynamo­

metamorphic processes. However, as presented in a previous section, bedding was preserved 

and observed in the marble units . Again, this feature, first described by Gauthier and Brown 

(1986) and later by Gauthier et al. (2004), is explained by the high reactivity of carbonates 

with silicate minerais during prograde metamorphism and the presence of evaporitic 
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decollement that absorbs the deformation (Pomerol et a., 2000). Because primary bedding is 

preserved, we can characterize the stratiform nature of the zinciferous beds. Our structural 

study of the marble outcrops indicates that the first phase of deformation is characterized by 

isoclinal folding. A second phase of deformation refolds the first phase into wider open folds 

(i.e. observed near Portage-du-fort, figure 8.5). Such features are identical to the ones 

observed throughout the Bryson-Renfrew area, and therefore typical of other marble-hosted 

SEDEX environments in the Grenville Supergroup (i.e. Balmat-Edwards, Maniwaki­

Gracefield, Franklin-Sterling Hill district). 

Because the marble sequences host the Bryson zincian magnetite showing and that 

there is potential for others, marbles were more studied. Therefore, Jess attention was given to 

the description of the other lithological units. The next section presents our results and 

observations for the Bryson marble belt. 

10.4.3 Marble Features 

The Bryson marble belt yields particular features that are presented in this section. 

The marble belt of the Bryson area is characterized by two marble units. These two marble 

units will be described as weil as the particular presence of brucite horizons (outlined during 

the regional Bryson-Renfrew compilation in chapter 8). 

Marbles units were distinguished into seven different marble units by our mapping in 

the Bryson-Renfrew area (Fig. 8.6). This marble classification system was applied to the 

Bryson area. Field data show that dolomitic marbles (pure and silicate-rich) dominate the 

Bryson area where they are also exclusive. Two different marble units were encountered 

during the systematic mapping around the town of Bryson; common and abundant relatively 

silicate-poor and dolomite-rich dolomitic marble and local layers of silicate-rich dolomitic 

marble horizons. 

The major marble unit present in the Bryson area is a crystalline coarse-to medium­

grained dolomitic marble. This unit generally contains more than 85% euhedral to 

idiomorphic dolomite grains with a varying grain size between 3 to 9 millimeters. Interstitial 

fine-grained xenomorphic calcite (Jess than a 1 millimeter grain size) can represent up to 5% 

volume of the rock unit. Thus, the dolomite to calcite plus dolomite ratio of this unit is 
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greater than 90% throughout the Bryson area. This silicate-poor unit is observed to contain up 

to 10% silicate minerais. These silicate minerais include, in order of decreasing abondance, 

forsterite altered into serpentine nodules, diopside, chondrodite, phlogopite, pyrite, pyrrhotite 

and finally graphite. The sulfides and graphite are uncommon and occur as traces (Jess than 

1% volume). Silicate minerais are concentrated in centimetric bands. This dominant marble 

unit ranges from dolomite-pure metric horizons to centimetric bands containing up to 10% of 

the above listed silicate minerais. 

The second marble unit identified in the Bryson area is again a dolomitic marble. 

However, this unit is rich in silicate minerais. Like the previous unit, the marble is crystalline 

and coarse-to medium-grained, due in part to the high metamorphic grades that affected the 

region . But, euhedral to idiomorphic dolomite grains generally represent up to 55% volume 

of the unit with an average grain size between 3 and 9 millimeters. Interstitial fined-grained 

(Jess than 1 millimeter) calcite constitutes up to 5% of the marble unit. The dolomite to 

calcite plus dolomite ratio is greater than 90% and reflects the strong dolomitic nature of the 

Bryson marble belt. This silicate-rich marble unit contains up to 40% volume silicate 

minerais disseminated and concentrated in centimetric to metric bands. This layering 

represents the primary bedding. Forsterite grains altered in serpentine nodules and diopside 

grains are the most common cale-silicate minerais found in the unit. Forsterite altered to 

xenomorphic yellow to dark greenish serpentine nodules can represent up to 25% volume 

with a grain size between 3 and 8 millimeters. Idiomorphic diopside grains are commonly 

dark to pale green-colored, have an average grain size of 4 millimeters and represent up to 

1 0% of the rock. The other subordinate common minerais, in decreasing relative abondance, 

are chondrodite, pyroauri e, phlogopite, apatite, pyrite and pyrrhotite. Pyrite and pyrrhotite 

are very scarce and are usually spatially associated with phlogopite-diopsidite pluri­

centimetric nodules. 

Severa) notable features were observed during the study of the Bryson area marble 

belt. First of ali, the marble belt is exclusively composed of dolomitic marbles, as described 

in the previous paragraphs. Secondly, a brucite deposit occurs south of the town of Bryson. 

Finally, the presence of pyroaurite along certain marble outcrops around the town of Bryson 

is interesting and wi ll be discussed below. 
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The old Maxwell brucite deposit (12 Million tons ofbrucitic marble; Osborne, 1939) 

in the town of Bryson was discussed in our study of the Bryson-Renfrew area. Stratiform 

xenomorphic coarse-grained brucite nodules are hosted by the silicate-poor dolomitic marble 

of the Bryson area. This unit contains up to 50% bru cite nodules with an average size of 3 to 

12 millimeters. The brucite nodules are disseminated and are concentrated in a 3 meter-thick 

dolomitic marble horizon (Fig. 8.12). Accessory minerais, representing less than 10% of the 

unit, include white to pale-orange colored chondrotite with a 5 millimeter grain size. A new 

stratiform brucite occurrence was di scivered on the western bank of the Ottawa River, 

south west of the town of Bryson ( described in chapter 8). A part from the presence of brucite­

rich dolomitic marble horizons, the Bryson area also contains pyroaurite-rich layers (Fig. 

10.3). Pyroaurite is observed along the road-cut east of the Bryson bridge and also along a 

second road-cut near the Cadieux power station to the south . Pyroaurite 

(Mg6Fe2(COJ)(OH) 16*4(H20)) occurs as 3 to 4 millimeter yellowish nodules in the silicate­

rich facies of the dolomitic marbles. 

Field work show that the Bryson's area marble belt is characterized by a silicate-rich 

and also a silicate-poor dolomitic marble unit. Brucite and pyroaurite occurrences are 

reported in this marble belt and their significance will be discussed below. The next section 

presents our field data results obtained from prospecting for zinc silicates and oxides. 

10.4.4 Non-Sulfide Zinc Mineralization 

The main objective of our research in the Bryson area is to confirm the presence of 

non-sulfide zinc mineralization and characterize the host environment. The first step was to 

visit the Bryson zincian spinel occurrence and then to search the Bryson area for other non­

sulfide zinc mineralization. This section presents data collected during the visit of the original 

discovery site and the general prospecting campaign. 

The Bryson zincian magnetite discovery outcrop was successfully located on the field 

near the bridge between Bryson and the Grand Calumet Island. Investigation and resampling 

of this outcrop revealed the following features . A stratiform disseminated magnetite horizon 

is present in a silicate-rich dolomitic marble horizon. Idiomorph magnetite grains are up to 5 

millimeters in size and form 25% volume of the marble horizon by volume. Coarse-grained 
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serpentine nodules averaging 4 millimeters in size are associated with this magnetite bed 

(Fig. 1 0.2). The total thickness of the magnetite bed is one meter and has been traced for six 

meters to the end of the outcrop. Greenish to yellowish pyroaurite is also associated with the 

horizon. Application of Zinc-Zap on the magnetite bed reveals a strong positive red 

coloration. Moreover, a second mineral phase in the same horizon also reacts positively with 

Zinc-Zap. This second phase is the serpentine nodules which are associated with the 

magnetite bed. Figure 10.3 shows a sample of the Bryson zincian magnetite showing partly 

sprayed with Zinc-Zap. No sulfides are present on this outcrop and a zinc oxide and silicate 

are reacting positively with Zinc-Zap. Gauthier et al. (1987) reported analytical results of 

1435 ppm of zinc from this outcrop. 

lem 

:\1agnetite 

Figure 10.2: Magnetic zinciferous spinel and serpentine nodules from Gauthier's et al. 
( 1987) discovery outcrop. Silicate-rich dolomitic marble sample from the road-cut outcrop 
near the bridge to Grand-Calumet Island at Bryson. 
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Figure 10.3: Positive Zinc-Zap reaction of the zincian magnetite (Mt) and zinciferous 
serpentine (Serp) in a pyroaurite-bearing silicate-rich dolomitic marble. Zinc-Zap only 
applied inside red-dashed lines. Sample from the Bryson bridge to Grand Calumet Island 
road-cut. 

Further prospecting m the Bryson area allowed us to identify severa! new 

occurrences of non-sulfide zinc mineralization. The two most significant and characteristic 

occurrences are the Bryson Hydroelectric Dam and the Bryson Water Treatment Trail 

showings. Other noteworthy discoveries include the Cadieux Power Station showing. 

The Bryson Hydroelectric Dam showing (Fig. l 0.1 ), located in front of Hydro­

Quebec's gate on Grand Calumet Island, occurs in a 15-meter wide and 3-meter-high road­

side outcrop (Fig. 10.4). The outcrop is characterized by a silicate-rich dolomitic marble unit 

hosting a one meter-thick magnetite bed. Idiomorphic coarse-grained (average of 5 

millimeters) magnetite represents up to 50% of the horizon. Greenish to yellowish serpentine 

nodules are also present and disseminated throughout the horizon (Fig. 10.5a). The outcrop is 

devoid of sulfide. The magnetite bed is concordant with the stratigraphie bedding and the 

outcrop permits us to trace it for more than 10 meters. The horizon strikes 355° north with a 

dip of 66°. This magnetite bed reacts positively with the Zinc-Zap. Like the Bryson zincian 

magnetite showing, magnetite and serpentine nodules both react to the Zinc-Zap (Fig. 10.5b). 

The magnetite bed and its positive Zinc-Zap reaction is stratiform and was sporadically 
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traced 300 meters further down the hill to the south, behind Hydro-Quebec gate in scattered 

outcrops (Fig. 10.6). Figure 10.7 shows the outcrop behind Hydro-Quebec's gate. Analytical 

results from the two occurrences returned respectively 2580 and 942 ppm zinc (Table 10.1) 

(Chartrand, pers. comm., 2006). 

Figure 10.4: Stratiform zincian magnetic spinel and zinciferous serpentine-bearing 
dolomitic marble. The one-meter thick horizon is represented by the red dashed-line. 
Showing located at Bryson's hydroelectric dam. 
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Figure 10.5: a) Bryson hydroelectric dam stratiform zincian magnetic spin 1 and 
zinciferous serpentine-bearing dolomitic marble horizon (Sample 065-Bl). b) Zinc Zap 
reaction of this non-sulfide zmc showing inside the red-dashed line. 
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Figure 10.6: Close-up of the area near the Bryson hydroelectric dam stratiform zincian 
magnetic spinel and zinciferous serpentine dolomitic-marble horizon. The horizon was 
intercepted, along strike, 300 meters to the south behind Hydro-Quebec's gate near the 
dam. 

Mg 

Mn 
Zn 

Table 10.1: Geochemical Rock Analyses' 

percent 

ppm 

ppm 

065-B1 

12.25 

1355 

2580 

161-5 

13.55 

509 

942 

1 Analyses from grab samples from the Bryson hydroelectric dam 
showing (065-Bl) and its extension 300 meters to the south behind 
Hydro-Quebec's gate (161-5). 
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Figure 10.7: Stratiform zincian magnetic spinel and zinciferous serpentine-bearing 
dolomitic marble. Extension along strike of Bryson's hydroelectric dam showing, about 
300m behind Hydro-Quebec's gate. The green and/or red colourations is due to 
application of Zinc Zap (green no zinc red zinc is present). 
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The Bryson Water Treatment Plant occurrence is located in the southwestern part of 

the town of Bryson along the trail leading to the water treatment plant. The outcrop is 20 

meters long and 1.5 meters high and is characterized by a silicate-rich dolomitic marble. 

Xenomorphic serpentine nodules (with an average size of 3 to 4 millimeters) form up to 40% 

of the unit. These serpentine nodules are concentrated in a meter thick band that was only 

traced for 2 meters due to limited outcrop limitation. The serpentine-rich horizon is 

concordant with stratigraphie bedding and is thus stratiform. The zinc-bearing horizon strikes 

to the north (345°) with a dip of 53°. The marble progressively becomes silicate-poor (Jess 

th an 10% silicate minerais) on either si de of this horizon in the rest of the outcrop. The 

outcrop is devoid of magnetite and sulfide and is similar to common silicate-rich dolomitic 

Figure 10.8a: Positive Zinc-Zap reaction of the zinciferous serpentine (Serp) in a silicate­
rich dolomitic marble devoid of magnetite from the Bryson water treatment plant showing 
(Sample 013-8A). Zinc-Zap only applied inside red-dashed !ines. 
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marble bands found throughout the Bryson area. Because we systematically tested ali 

outcrops with Zinc-Zap, we successfully identified this showing following a strong positive 

red reaction along the one meter-thick serpentine-rich dolomitic marble layer (Fig. 1 0.8a and 

b ). Macroscopic study of outcrop sam pies only revealed the presence of serpentine nodules 

that had reacted to Zinc-Zap. 

The Cadieux Power Station showing is located on top of the hill near the Cadieux 

power station south of the town of Bryson along route 148 (Fig. 10.1 ). The outcrop is 40 

meters long and 3 meters high and is characterized by a silicate-rich dolomitic marble. 

Xenomorphic serpentine nodules (with an average size of 4 millimeters) form up to 40% of 

the unit. These serpentine nodules are concentrated along a one meter thick band. The 

serpentine-rich horizon is concordant with stratigraphie bedding and strikes 360° north with a 

dip of 46°. Here again, serpentine-type nodules react positively to Zinc Zap (Fig. 1 0.9). 

Figure 10.8b: Dolomitic silicate-rich marble horizon from the Bryson water treatment 
plant showing. A zinc silicate is reacting with Zinc Zap. Sprayed area is oulined in a red 
dashed line 
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. Severa! other non-sulfide zmc occurrences were discovered during our study. Their 

positions are located on figure 1 0.1. They are ali characterized by the presence of silicate-rich 

dolomitic marbles where Zinc-Zap identified stratiform zinc-bearing serpentine layers which 

are less than a meter-thick. They are ali similar to the types of occurrences described in the 

above paragraphs. 

Figure 10.9: Dolomitic silicate and oxide-rich marble horizon from a road-cut outcrop 
along route 148 near the Bryson's Cadieux power station (Sample 008-9). Zinc Zap 
sprayed area outlined in a red-dashed li ne. 

10.5 DISCUSSION 

The study of the Bryson area was critical in determining if a relationship exists 

between SEDEX zinc sulfide and non-sulfide zinc deposits. The first step to study such a 

topic was to confirmthe existence of a SEDEX zinc sulfide geological environment. The 

Bryson-Renfrew region was demonstrated as being one in chapter 8. However, non-sulfide 
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zinc mineralization also has to be confirmed in the same type of environment in the Bryson­

Renfrew region. This is the reason we refined the work of Gauthier et al. (1987) on the 

Bryson zincian magnetite showing, following theur suggestion that it could represent similar 

to Franklin and Sterling Hill (Franklin-type) non-sulfide zinc mineralization. For the purpose 

of this thesis, it is a necessary to demonstrate that the Bryson area hosts Franklin-type 

mineralization. 

The results will be discussed in the following order: (1) General geological, structural 

and marble features used to determine the geological environment, (2) non-sulfide zinc 

occurrences and their similarities with Franklin-type mineralization, and (3) the consequences 

of the presence of Franklin-type non-sulfide zinc mineralization in the Bryson-Renfrew 

region and its spatial relationship with SEDEX zinc sulfide. 

10.5.1 The Bryson Geological Environment 

The Bryson area is dominated by dolomitic marbles that were affected by high-grade 

metamorphism (presumed granulite-facies) and polyphase deformation. This assumption is 

supported by the isoclinal folding observed on the field and by the presence of serpentine 

nodules in the marbles. During prograde metamorphism, dolomite reacts with quartz to form 

forsterite at granulite-facies conditions. Retrograde metamorphism is responsible for the 

alteration of forsterite into serpentine nodules. 

Brucite and pyroaurite-rich marble horizons are present in the Bryson area. 

Pyroaurite is a magnesium and iron-rich carbonate hydroxide that is not commonly observed 

around the world (Deer et al., 1992). However, pyroaurite is present and associated with 

willemite-rich layers at Sterling Hill (Dunn, 1995). On the other hand, brucite layers were 

previously interpreted as meta-evaporites in chapter 8. Therefore, the dominance of dolomite 

and the presence of brucite (meta-evaporite) and pyroaurite (a magnesium-rich mineral) 

strongly suggest an evaporitic environment. 

Thus, the Bryson area, at a local scale, is characterized by a shallow water evaporitic 

carbonate platform environment like the Bryson-Renfrew region. Such an environment 

characterizes the Franklin and Sterling Hill non-sulfide deposits as explained in section 2. We 

therefore conclude that the geological environment of the Bryson area is similar in many 
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ways to the one present for Franklin-type SEDEX non-sulfide zinc deposits, which also 

shares many depositional environment characteristics with Balmat-type SEDEX zinc sulfide 

deposits . 

10.5.2 Non-Sulfide Zinc Mineralization 

Reinvestigation of the Bryson zincian magnetite discovery outcrop confirms the 

presence of zinc oxides in the Bryson area. Furthermore, our study also reveals that on the 

same outcrop, and along the same horizon, a zinc silicate reacts to Zinc-Zap. This feature was 

not described by Gauthier et al. (1987). Severa] new stratiform non-sulfide zinc 

mineralization were discovered around the Bryson area (summarized in Appendix D). These 

include magnetic zincian spinels and/or zinciferous serpentine. These showings are reported 

on figure 10.1 and also on high detail geological maps in Appendix E. 

Franklin-type mineralization is characterized by stratiform zinc silicate and oxide 

hosted in a dolomitic marble. The Bryson area also hosts stratiform zinc silicate and oxide 

mineralization in a dolomitic marble. To be more specifie, the non-sulfide zinc mineralization 

is hosted by silicate-rich (serpentine) dolomitic marbles. These paragenetic and structural 

features strongly suggest that the Bryson occurrences are related to Franklin-type 

mineralization. 

10.6 CONCLUSION 

The Bryson area non-sulfide zinc mineral paragenesis shows severa! similarities with 

Franklin-type mineralization. The Bryson occurrences are located in the Bryson-Renfrew 

region where severa! SEDEX zinc sulfide showings were found. In chapter 3, we confirmed 

the lithologie association of SEDEX zinc sulfide mineralization with silicate-rich dolomitic 

marbles that was first proposed by Sangster (1970) and Gauthier and Brown (1986). As 

discovered during our study, non-sulfide zinc occurrences are also associated with silicate­

rich dolomitic marble horizons. It follows that the pre-metamorphic host-rock of non-sulfide 

zinc mineralization is a siliceous dolostone (dolomite). 

The presence of SEDEX zinc sulfide occurrences and a volcanogenic polymetallic 

massive sulfide deposit Jess than six kilometers away from the Bryson ' s occurrences is 
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interesting. Although analytical results from samples of Bryson's non-sulfide ztnc 

mineralization retumed uneconomical grades of Jess than one percent zinc (i.e. compared to 

Franklin and Sterling Hill district with 20% zinc), the similar mineral paragenesis to 

Franklin-type mineralization invited more profound mineralogical study. These mineralogical 

studies will fumish additional evidence for the comparison between the Bryson non-sulfide 

zinc occurrences and Franklin-type mineralization . Once this has been described and 

Franklin-type mineralization confirmed in the same marble belt, we will discuss the 

relationship between both end-member of SEDEX deposits. 



CHAPTERXI 

MINERALOGICAL PROPERTIES OF ZINC SILICATES AND OXIDES FROM 
THE BRYSON AREA 

11.1 INTRODUCTION 

The resemblance between the zinc silicates and oxides encountered during our field 

work in the Bryson area and those observed at the Franklin and Sterling Hill district led us to 

conduct more detailed mineralogical studies. The confirmation of Franklin-type non-sulfide 

zinc mineralization in the same type of geological environment as Balmat-type SEDEX zinc 

deposits would for the first time permit relationship studies between them to be undertaken. 

In chapter 10, we established that the Bry son area is the site of severa! stratiform 

non-sulfide zinc occurrences hosted by dolomitic marbles rich in silicates (i.e. serpentine 

nodules). Two minerais reacted to Zinc-Zap; a zinc oxide and a zinc silicate. This reaction 

was observed on magnetic spinels and on serpentine nodules occurring in marble units 

containing magnetic spinels and serpentine, and only serpentine nodules. 

In this ection e ill study th mineralogical prop rti s of th Bryson zincian 

magnetite showing and also the newly discovered zinc and silicate occurrences. We will 

discuss petrologic, x-ray diffraction and geochemical data conducted on magnetic spinels and 

silicates of the Bryson area zinc occurrences. We use these data to identify the zinciferous 

mineral phases and constrain their metamorphic evolution. We also compare the Bryson 

occurrences and those observed at Franklin and Sterling Hill deposits to establish if the 

Bryson paragenesis is related to Franklin-type mineralization as proposed in chapter 1 O. 

11.2 METHODOLOGY 
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11.2.1 Sample Selection 

For the purpose of our mineralogical study, a total of 20 zinc-bearing samples were 

chosen from the non-sulfide zinc occurrences in the Bryson area. Samples were selected 

based on their quality (unaltered) and overall representivity of the zinc mineralization. Ali 

samples were collected from stratiform non-sulfide zinc mineralizations that were 

characterized by a clear Zinc-Zap reaction. 

11.2.2 Microscope Petrologic Studies 

Mineral assemblages were studied under a reflected and transmitted polarized 

microscope. A total of 18 polished thin sections were prepared and studied . Polished thin 

sections lack of a glass lamellae cover plate normally found on regular thin sections. They 

and are polished, and thus permit observation under reflected and transmitted light 

microscopy on the same thin section. 

Thin sections were observed at the Metallogenic Laboratory of the Université du 

Québec à Montréal (Canada). Further research was also conducted at the Mineralogy and 

Crystallography Laboratory of the Université de Liège (Belgium) under the supervision of 

professor André-Mathieu Fransolet. Thin sections were studied under a polarized Leica 

DMLP microscope equipped with the following objectives: Sx, 1 Ox, 20x and 50x. An 

additional oil immersion objective (125x) was also used when judged necessary to observe 

smaller mineral phases. 

11.2.3 X-Ray Diffraction Studies 

X-Ray diffraction was used to identify specifie mineral phases and assemblages from 

the Bryson zinc silicate and oxide occurrences. A total of 20 analyses were conducted on 12 

different rock samples. X-Ray diffraction enabled us to identify mineral species and to obtain 

whole-rock semi-quantitative mineral assemblages. For X-Ray diffraction, samples were 

manu ally cru shed into a uniform ~ 10 f.!m powder. 

X-Ray diffraction was carried out at the Mineralogy and Crystallography Laboratory 

in Liege's (Belgium), operated by professor A.-M. Fransolet on a Philips PW-1 730/1 0 iron 

anode automated powder diffractometer equipped with a PW371 0 computer controlled 
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goniometer. Single-mineral diffraction patterns were conducted usmg a Deybe-Scherrer 

camera mounted on a Philips PW-1729 power generator equipped with an iron anode. 

Operating conditions for the power generators were 40 kV and 30 mA. 

11.2.4 Microprobe Studies 

Microprobe analysis was conducted directly on selected thin sections. A total of 40 

analyses were obtained on the zinciferous silicates and oxides of the Bryson area to 

determine their composition and identify mineral phases. 

Microprobe study was carried out at McGill University Departement of Earth and 

Planetary Science microprobe laboratory under the supervision of Shi Leng. Equipment used 

was a JEOL JXA-8900 electron microprobe with five WDS spectrometers and a fully 

integrated Si(Li) EDS detector. Each analyzed thin section was coated with approximately 

150 Angstroms of carbon and operation conditions were 20kV and 15 to 20 nA. Calibration 

of the microprobe was done using the 1aboratory's internai standards. 

11.3 RESUL TS 

The microscopie characteristic of the Bryson area non sulfide- zinc mineralization are 

going to be presented in two steps. First, we will describe the zincican magnetitic spinel 

observed at the Bridge showing, at Gauthier et al. (1987) discovery site, and at the Bryson 

Hydroelectric Dam occurrence. We will then characterize the zincian silicate that is and is not 

associated with the zinc oxide. 

11.3.1 Magnetic Zincian Spinel 

Micro probe analysis of the Bryson zincian spinel by Gauthier et al (1987) suggested 

that the spinel could be an intermediate phase between magnetite and franklinite. However, 

our microscope observation reveals the presence of dendritic sphalerite and/or wurzite 

exsolutions. Sphalerite/wurtzite exsolutions constitute up to 35% by volume of the magnetite 

and have an average size of 0.01 millimeter (Fig. 11.1). Similar dendritic wurtzite/sphalerite 

is observed in the serpentine-type nodules associated with the magnetite bed (Fig. 11 .2) 
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Figure 11.1: Agregate of fine dendritic wurtzite/sphalerite exsolutions in magnetite from 
the Bryson hydroelectric dam showing (Sample 065-Bl). Photo taken under polarized 
reflected light. 

X-Ray diffraction (XRD) and cell parameter calculations on the magnetic spinels 

were undertaken to identify the spinel-type and to evaluate its franklinite solid-solution 

component. XRD confirms the mineralogical structure of magnetite. Figure 11.3 shows the 

diffractogram obtained from magnetite of the Bryson Hydroelectric Dam showing. The 

presence of franklinite in solid-solution in magnetite has the effect of increasing the cell 

parameter "a" (magnetite-franklinite crystallizes in the cubic system, therefore the 3 

crystallographic axes a, b and c are equal) because of the presence manganese. Cell 

parameter calculations from the XRD powder diffractograms obtained from samples of the 

Bridge (sample 003-1) and Hydroelectric Dam (065-B1) showings (Fig. 10.1) retumed 

a=8.39358 and a=8.39316 respective1y (Table 11.1). Pure magnetite has a cell parameter of 

8.396 whereas franklinite has a parameter of 8.43 (Deer et al. , 1992). This result is consistent 
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with a strong magnetite component which does not have a considerable franklinite portion in 

solid-solution. 

Microprobe analysis of magnetite confirms the XRD results and indicates that 

magnetite has manganese (0.00 to 0.12 % Mnü) and is zinc-poor (0.00 to 0.22% Znü; Table 

11.2). Figures 11.4 and 11.5 show dendritic exsolutions of wurtzite/sphalerite inside 

magnetite grains. Analyses of the dendritic sphalerite/wurtzite intergrowths are shown in 

table 11.3. These analyses do not enable us to differentiate sphalerite from wurtzite in our 

sample. There are no significant chemical zinc exchanges observed between magnetite and 

the sphalerite/wurtzite exsolutions along contacts (Table 11.3). 

11.3.2 Zinc Silicate and Oxide 

Petrographie observations of the zincian silicate reveal the presence of subrounded 

fibrous serpentine-talc-type nodules. The alteration process is extensive and no relie mineral 

is systematically observed inside the serpentine nodules, limiting our petrographie study. The 

xenomorphic nodules are 3 to 4 millimeter in size. While relies are uncommon in the 

serpentine nodules, severa) relie grains of spinel inside serpentine-type nodules were 

observed on the sample from the Bridge showing (sample 003-1). This spinel is not opaque 

when observed in transmitted light (Fig. 11.6a and 11.6c) and contains fine exsolutions of a 

highly reflective mineral (Fig. 11.6b) visible under reflected light. A total of 10% fine 

exsolutions are present in the relie spinel. XRD and microprobe analysis are needed to 

identify the different mineral phases. 

XRD investigation of the serpentine-type nodules confirms that the mineral is 

serpentine. Table 11.4 shows the Debye-Scherrer camera results from a serpentine-type 

nodule of the Water Treatment Plant showing (sample 0 13-8A) that confirms it is a 

serpentine. The spinel did not undergo XRD analys is because of the difficulty involved in 

identifYing and isolating the rare spinel from the serpentine nodules. Microprobe analysis of 

this spinel is required to further study this mineral assemblage. 

Microprobe analys is was conducted in serpentine nodules and also on the spinel and 

its exsolutions. Analysis oft.he serpentine nodules shows that they contain up to 4.28% Znü 

in their structure. F igure 11.7 shows a back-scatter microprobe image of a typical serpentine 
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from the Bryson Water Treatment Plant showing (sample 013-8A). Table 11.5 shows the 

serpentine microprobe analysis results obtained from the Cadieux Power Station and Water 

Treatment Plant showings while table 11.6 shows the same results but for the Bridge and 

Hydroelectric Dam showings. Back-scatter microprobe imagery (density-dependent image) 

of serpentine nodules from the Cadieux Power Plant showing (008-9) locally shows the 

presence of fine inclusions of a denser mineral , which can represent up to 15% by volume of 

the nodule (Fig. 11.8). Larger pyrophanite grains are also present and are shown in figures 

11.9 and 11.1 O. The analysis ofthese fine inclusions identifies them as pyrophanite having an 

intermediate composition from the pyrophanite-ecandrewsite solid-solution. Pyrophanite 

(MnTi03) is the manganese end-member of the ilmenite group whereas ecandrewsite ((Mn, 

Mg, Zn)Ti03) is the manganese- magnesium-zinc end-member of the ilmenite group (Deer et 

al., 1992). These serpentine-hosted pyrophanites are zincian with up to 8.91 % weight zinc 

oxide (Table 11.7). The composition of the zincian pyrophanites present in the Bryson 

occurrences varies as follows : (Feo.oJJ-0.698, Mgo.oi0-0.269, Zno-o21s, Mno30I-ons)Tio.967- 1.2730 3. 

Microprobe analysis of the spinel relie shows that it has a transitional composition 

between spinel (MgAh04) and gahnite (ZnAh04). The zinc content of this spinel is up to 

1.881 % ZnO (Table 11.8). Back-scatter microprobe imagery of the spinel confirms the 

petrological observation of fine exsolutions (Fig 11.11). Analysis ofthese exsolutions reveals 

that they have an intermediate composition between pyrophanite (MnTi03) and geikielite 

(MgTi03) (member of the ilmenite group). However, these manganese and magnesium 

ilmenite exsolutions are devoid ofzinc (Table 11.7). 

To summarize, mineralogical studies of the zinc silicate at Bryson reveal the presence 

of zincian serpentine nodules containing inclusions of zincian pyrophanite, and of zincian 

spinel relie belonging to the spinel-gahnite family which is characterized by non-zincian 

pyrophanite exsolutions. 
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Figure 11.2: Aggregate of fine dendritic wurtzite/sphalerite in a magnetite-bearing 
dolomitic marble unit from the Bryson hydroelectric dam showing (Sample 065-Bl). 
Photo aken under na ural reflected light. 
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Figure 11.4: Back-scatter microprobe imagery showing dendritic wurtzite/sphalerite 
exsolutions in a magnetite from the Bryson hydroelectric dam showing (Sample 065-B 1 ). 
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Figure 11.5: Back-scatter microprobe imagery showing a second example of dendritic 
wurtzite/sphalerite exsolutions in a magnetite from the Bryson hydroelectric dam showing 
(Sample 065-B 1 ). 



128 

Figure 11.6: a) A relie zineian spinel, of the spinel-gahnite solid-solution, inside a 
zineiferous serpentine nodule from outerop 003-1. Observed under natural transmitted 
light. b) Pyrophanite exsolutions inside the zineian spinel is revealed by observation under 
natural reflected light. c) Close-up of the zincian spinel relie inside the zinciferous 
serpentine nodule. 
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F"gure 1 .7: Back-scatter microprobe imagery showing zincian serpentine without 
pyrophanite inclusions from the Bryson water treatment showing (Sample 013-8A). 
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Figure 11.8: Back-scatter microprobe imagery of a zincian serpentine from the road-cut 
near the Bryson Cadieux power plant (Outcrop 008-9). The serpentine is zinciferous and 
also contains inclusions of fine zincian pyrophanite (transitory composition between 
ecandrewsite-pyrophanite solid-solution). 
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Figure 11.9: Back-scatter microprobe imagery showing a coarser zincian pyrophanite 
from the road-cut near the Bryson Cadieux power plant (Outcrop 008-9). 
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Figure 11.10: Back-scatter microprobe imagery showing a coarser zincian pyrophanite 
hosted in a zincian serpentine from the road-cut near the Bryson Cadieux power plant 
(Sample 008-9). 
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Figure 11.11: Back-scatter microprobe imagery of the zincian spinel (Sample 003-1) 
confirms the presence of fine pyrophanite exsolutions. 
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Table 11.1: XRD Data for Lattice Parameter Calculation 1 

Bryson bridge: 003-1 Bryson hydroelectric dam: 065-Bl 

28 2 d 3 28 2 d 3 

7.535 14.742 7.740 14.352 

13.123 8.477 14.314 7.775 

17.294 6.443 23 .029 4.853 

23.050 4.848 28.826 3.892 

29.099 3.856 30.374 3.698 

33.573 3.354 32.579 3.453 

37.228 3.035 33.420 3.369 

38.090 2.969 37.325 3.027 

39.218 2.886 38.094 2.968 

44.992 2.532 39.228 2.886 

47.132 2.423 44.997 2.531 

49.585 2.310 47.592 2.401 

52.432 2.193 52.481 2.191 

54.931 2.100 54.982 2.098 
55.112 2.094 55.112 2.094 

57.356 2.018 57.525 2.013 

60.353 1.927 60.451 1.924 

65 .750 1.785 65.726 1.785 

68.820 1.714 68.852 1.713 

73 .644 1.616 73 .693 1.615 

74.336 1.603 73 .865 1.612 

Lattice calculation results 

a 4 : 8.39358 4 a : 8.39316 

1 Chemical formulas were calculated by normalizing total cations to 4. 

2 28 measured from diffractogram. FeKa.: 1.9373 Angstrom. 

3 dis the spacing between atomic lattice planes of the mineral. d is calculated using Bragg's 
law (nÀ=2dsin(J). 

4 Lattice a obtained using a computer program (Burnham, 1991). 
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Table 11.4: Debye-Scherrer Camera Data' 

Bryson water treatment showing (013 -8A) 

48 2 Intensity d 3 

23 .5 Medium-strong 9.50 

49.3 Weak 4.54 

66.5 Weak 3.39 

72.2 Medium-strong 3.13 

75.0 Very strong 3.01 

87.5 Weak 2.60 

91.7 Strong 2.49 

100.5 Medium 2.28 

110.5 Medium 2.09 

122.1 Medium 1.91 

124.7 Medium 1.87 

136.5 Weak 1.73 

141.7 Weak 1.67 

148.7 Weak 1.60 

157.7 Strong 1.53 

165.0 Weak 1.47 

169.1 Weak 1.44 

172.1 Weak 1.42 

1 Analyse (wt %) from a zincian serpentine from the Bryson water 
treatrnent plant showing. Peak positions and d spacing corresponds 
to that of a serpentine-type mineral. Sorne weak peaks are due to the 
presence of traces of carbonates. 

2 Four 8 is obtained directly from measuring (in millimeters) the 
exposed bands on the film. 

3 d is calculated using Bragg's law. The X-Ray tube emitting FeKa: 
1.9373 Angstrom. 
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Table 11.8: Electron Microprobe Analyses of Spinel 1 

Bryson bridge showing 

003-1-C1 003-1-C2 003-1-C3 

Si02 <0.01 <0.01 <0.01 

AI20 3 70.45 70.75 69.72 

ZnO 1.62 1.77 1.88 

CaO 0.01 0.00 0.01 

FeO 2 0.48 0.46 0.51 

MgO 27.38 27.26 27.46 

Ti02 0.03 0.09 0.99 

MnO 0.01 0.03 0.02 

Cr20 3 0.03 0.02 0.00 

Total 100.01 100.37 100.59 

Si 0.000 0.000 0.000 

Al 1.988 1.990 1.962 

Zn 0.029 0.031 0.033 

Ca 0.000 0.000 0.000 

Fe 0.010 0.009 0.010 

Mg 0.977 0.970 0.977 

Ti 0.001 0.002 0.018 

Mn 0.000 0.001 0.000 

Cr 0.001 0.000 0.000 

1 Analyses (wt %) from zincian spinel relies inside 
serpentine nodules from the Bryson bridge showing. 
Chemical formulas were calculated by normalizing total 
cations to 3. 

2 Total iron expressed as FeO. 
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11.4 DISCUSSION 

11.4.1 Magnetic Zincian Spinel 

Reinvestigation of the Bryson zincian magnetite showing shows that while a 

magnetite-franklinite solid-solution exists (Valentino et al., 1990), the magnetite at the 

Bryson Bridge and Hydroelectric Dam showings has no significant manganese or zinc and 

does not contain 4% franklinite component. Thus, Gauthier's et al. (1987) conclusion is 

probably in error which is most likely due to the lower electron bearn precision of 

microprobes used in the early 1980. 

Our new observations reveal that the magnetic spinels are magnetite which locally 

contains dendritic sphalerite/wurtzite exsolutions. Wurtzite (ZnS) is a polymorph of 

sphalerite which is known to form as a metastable phase in low temperature sulfur deficient 

environments. Thus, wurtzite has a sulfur deficiency relatively to sphalerite (Deer et al., 

1992). Wurtzite and sphalerite usually occur as intergrowths (Ramdohr, 1980) and are 

therefore difficult to distinguish. Dendritic wurtzite exsolution is an uncommon phenomenon 

(Ramdohr, 1980), but one of the localities where dendritic wurtzite exsolutions occur is in the 

Franklin and Sterling Hill district. Here, wurtzite exsolutions were described as the 

destabilization process of franklinite (Fronde) and Klein, 1965; Squiller and Sclar, 1980; 

Ramdhor, 1980; Carvalho and Sclar, 1988). 

Mineralogical features of magnetite in the stratiform magnetite beds near the bridge 

and hydroelectric dam of the town of Bryson strongly suggest that they were formed by the 

destabilization of franklinite, similar to the phenomenon observed at Franklin and Sterling 

Hill. 

11.4.2 Zinc Silicate and Oxide 

Investigation of the stratiform zincian silicates associated with and without magnetite 

reveals a complex assemblage of zincian serpentine nodules, locally containing zincian 

pyrophanite inclusions. As mentioned above, pyrophanite is a manganese-magnesium-and 

zinc-bearing mineral belonging to the ilmenite group (Deer et al., 1992). The presence of 

zincian pyrophanite confirms the metal association of Fe-Mn-Zn observed in Franklin-type 
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deposits. Pyrophanite is not commonly observed throughout the world but one locality where 

it is known to occur is at Franklin and Sterling Hill (Valentino et al., 1990). 

Our observation of a relie zincian spinel of the gahnite-spinel group has important 

consequences for our study. The presence of pyrophanite exsolution inside this spinel 

indicates us that the mineral paragenesis observed in the Bryson area was metamorphosed to 

granulite-facies conditions. These metamorphic conditions are required to incorporate the 

manganese and magnesium-ilmenite inside the structure of the spinel in sol id-solution (Deer 

et al. , 1992). During retrograde metamorphism, pyrophanite becomes incompatible in the 

solid-solution and exsolves as fine lamellae inside the spinel. 

Willemite (Zn2Si04) is a common zinc silicate at Franklin and Sterling Hill hypogene 

stratiform non-sulfide zinc deposits. Moreover, it possesses the same chemical formula as 

olivine ((Fe,Mg)2Si04) although zinc is the main cation rather than iron and/or magnesium. 

Therefore, the alteration of willemite could form a zincian serpentine, such as the reaction 

proposed to have occured at Sterling Hill (Johnson, 1990). Robert Megster, the former 

Sterling Hill mine geologist, observed these features and and confirmed that willemite 

destabilizes into a serpentine-type product (pers. comm., 2006). These observations strongly 

suggest that the stratiform zincian serpentine nodules observed in the Bryson area cou Id have 

had such a protolith. 

11.5 INTERPRETATION OF THE BRYSON NON-SULFIDE ZINC PARAGENESIS 

The mineralogical study of the non-sulfide zinc occurrences of the Bryson area was 

successfu l in providing further evidence towards the determination of their deposit-type. The 

presence of pyrophanite exsolutions inside a zincian spinel indicates that the Bryson region 

was metamorphosed to granulite-facies conditions before retrograding into a serpentine 

assemblage. A retromorphic path also affects the granulite-facies mineral assemblage of 

Franklin and Sterling Hill (Fronde! and Baum, 1974). This retrograde metamorphism renders 

the recognition of primary facies difficult at the Franklin and Sterling Hill district. Our data 

enables us to conclude that the Bryson area was affected by a dynamo-metamorphic 

evolution similar to the one present for Franklin-type deposits. However a notable difference 

is the stronger retrometamorphic overprint present in the Bryson-Renfrew area compared to 
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the Franklin and Sterling Hill district. This is explained by presence of the Ottawa­

Bonnechere graben and its intensive retrometamorphic fluid circulation that occurs in the 

Bryson-Renfrew region (Easton, 1992). 

Our interpretation of the mineralogical features of the Bryson non-sulfide zmc 

occurrences is discussed below. The Bryson zincian stratiform magnetite bed paragenesis is 

interpreted as the product of destabilization of granulite-facies franklinite. ln a similar 

manner, the observed zincian serpentine nodules are interpreted as being the result of the 

destabilization of granulite-facies willemite. Thus the Bryson non-sulfide zinc mineralization 

would be a retrograde equivalent of a granulite-facies willemite-franklinite assemblage like 

the one observed at Franklin and Sterling Hill districts. 

Thus, we demonstrated that there are severa! similarities between the mineralogical 

assemblage and the dynamo-metamorphic process of the Bryson non-sulfide occurrences and 

those from Franklin and Sterling Hill. At peak metamorphic conditions reached at the 

Bryson-Renfrew area, willemite-franklinite solid-solution minerais existed. These similarities 

lead us to conclude that the Bryson area hosts Franklin-type hypogene stratiform non-sulfide 

zinc mineralization, comparable to the Franklin and Sterling Hill district. Therefore Franklin 

and Sterling Hill are no longer the only known examples of non-sulfide zinc mineralization in 

the Grenville Province. 

11.6 CONCLUSION 

Our mineralogical study of the zmc1an silicates and oxides of the Bryson area 

revealed the presence of zinc-free magnetite containing dendritic exsolutions of sphalerite 

and/or wurtzite, zincian serpentines locally hosting zincian pyrophanite inclusions, and 

zi ncian spinel of the spinel-gahnite group containing non-zincian pyrophanite exsolutions. 

These features indicated that the Bryson marble belt underwent granulite-facies 

metamorphism before retrograding to serpentine-rich assemblages. Severa! of these features 

are also present at Franklin and Sterling Hill. 

The zincian magnetite bed and zincian serpentine nodules are interpreted has being 

retrograded granulite-facies franklinite and willemite. The Bryson area is thus confirmed to 

host Franklin-type mineralization, and for the first time, the presence of Franklin-type non-
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sulfide zinc mineralization is confirmed outside the New Jersey Highlands. Our study opens 

up new exploration perspectives for Franklin-type hypogene stratiform non-sulfide zmc 

mineralization outside of the New Jersey Highlands in the Grenville Supergroup. 



~-----

SECTION IV 

DISCUSSION OF SEDEX ZINC SULFIDE AND NON-SULFIDE 
MINERALIZATION IN THE BRYSON-RENFREW REGION 



CHAPTERXII 

GENERAL DISCUSSION 

12.1 INTRODUCTION 

Our study of the Bryson-Renfrew area marble-hosted SEDEX deposits enabled us to 

successfully test our hypotheses and bring forward new data for the scientific community. 

The final discussion is divided into four sections: (1) Conclusion of our non-sulfide zinc 

study in the Bryson area, (2) conclusions can be made from our study in the Bryson-Renfrew 

region, (3) Implications of having both SEDEX end-members of deposit in the same marble 

belt, and ( 4) Discussion of ideas that could exp lain the presence of both types of deposits in 

the same geological environment and their relation with a nearby VMS deposit. 

12.2 BRYSON: FRANKLIN-TYPE MINERALIZATION 

Three hypotheses were considered in the past for the genetic origin of the Bryson 

non-sulfide zinc mineralization: (1) lt could be linked to the opening of the Ottawa­

Bonnechère graben at the end of the Precambrian; (2) it could be related to metasomatism 

associated with the intrusion of the henaux gabbro into the marbles of the Bryson-Renfrew 

area at about 1100 Ma; (3) it could be syngenetic, stratabound or even epigenetic 

mineralization within the marbles of the Grenville Supergroup. The observation of a zincian 

spinel having a transitional composition between spinel and gahnite with pyrophanite 

exsolutions demonstrate that the Bryson non-sulfide zinc mineralization was brought to 

granulite-facies metamorphic conditions, like its hosting marbles. The age determination of 

the exhalative event for the Calumet deposit indicates that the zinc mineralization occurred 

before the intrusion of the Chenaux gabbro. Moreover, geological mapping and zinc 



148 

prospection has shown that the non-sulfide zinc mineralization is stratiform. Thus, the first 

two hypotheses can be rejected. Bryson 's non-sulfide zinc horizons are hypogene and 

stratiform. Although they could also have been discordant or stratabound at the time of 

deposition, granulite-facies metamorphism and polyphase deformation obliterated the 

primary features erquired to distinguish between these hypotheses. It is also the case for the 

Balmat-Edwards district and the deposits of the Maniwaki-Gracefield area ( deLorraine, 2001 ; 

Gauthier and Brown, 1986). Based on the McArthur River unmetamorphosed carbonate­

hosted stratiform zinc-lead deposit (Cooke et al., 2000), we believe that the Grenville 

Supergroup marble-hosted zinc deposits are also stratiform. 

Although the Bryson non-sulfide zinc horizons contains a sub-economic quantity of 

zinc, the similarities of the ir dynamo-metamorphic evolution and the ir mineralogical features 

with Franklin and Sterling Hill enables us to conclude that they are Franklin-type 

mineralizations (i .e. formation of high temperature assemblage of willemite-franklinite; the 

presence of pyroaurite, pyrophanite, etc.). Franklin-type mineralization is thus confirmed 

outside the New Jersey Highlands for the first time in Mesoproterozoic Grenville Supergroup 

marbles of Quebec and Ontario. Franklin-type SEDEX deposits are therefore not 

exceptionally anomaleous in the Grenville Province and our study suggests that there is a 

potential for finding others. 

12.3 BRYSON-RENFREW: BALMAT-TYPE SEDEX GEOLOGICAL ENVIRONMENT 

The detailed geological mapping survey conducted from the town of Bryson to the 

north, to Renfrew to the south, had two objectives: (1 )To determine the geological 

nvironment of deposition of the marble belt and its SEDEX zinc sulfide deposits, and (2) to 

trace the primary facies variations that could explain the gradation of non-sulfide zinc 

mineralization to disseminated/semi-massive sphalerite horizons such as those of the Cadieux 

deposit. 

The mappmg program was successful in permitting us to define the geological 

environment. For the first time, the Bryson-Renfrew area is defined as a shallow-water, 

evaporit ic and oxidized, carbonate platform environment. This hypothesis is supported by the 

abundance of magnesium in the marble belt (i.e. dominance of pure dolomitic marbles) and 
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the presence of meta-evaporites (i.e. stratiform anhydrite and brucitic horizons). We were 

also successful in identifying severa! new SEDEX zinc sulfide occurrences throughout the 

Bryson-Renfrew region. Sorne of these occurrences are located much closer to the town of 

Bryson than the Cadieux deposit. We successfully traced these disseminated sphalerite 

silicate-rich dolomitic marble horizons from Grand-Calumet Island to the town of Bryson, a 

distance of 4 to 5 kilometers. These SEDEX zinc sulfide occurrences are found along a 

stratigraphie continuity linking the Bryson non-sulfide mineralization to these SEDEX zinc 

sulfide occurrences. This spatial relationship is discussed in the next section. 

In our review of the Balmat-type marble-hosted SEDEX zinc sulfide deposits (i.e. 

Balmat-Edwards district) we pointed out that this type of deposit is deposited in a shallow­

water evaporitic and oxidized carbonate platform environment. This geological depositional 

environment is characteristic of McArthur-subtype SEDEX deposits (Cooke et al. , 2000). 

Therefore, we proposed in section 1 that Balmat-type SEDEX zinc sulfide deposits are 

McArthur-subtype SEDEX deposits metamorphosed to granulite-facies. The same geological 

environment and same zinc sulfide mineralization characterizes the Bryson-Renfrew region. 

The Bryson-Renfrew area is therefore also typical Balmat-type geological 

environ ment, like those present throughout the Grenville Supergroup of Quebec, Ontario and 

New York State (i.e. Balmat-Edwards district, Cadieux and Maniwaki-Gracefield). lt should 

then be possible to find other Balmat-type sphalerite-rich deposits in the Bryson-Renfrew 

area. 

12.4 BRYSON: THE MISSING LINK BETWEEN SEDEX SULFIDE AND NON-SULFIDE 

DEPOS S 

Our identification of Franklin-type mineralization in the Mesoproterozoic Grenville 

Supergroup marbles of the Bryson-Renfrew area further retines our understanding of the 

formation of these deposits. For the first time, Franklin-type mineralization is confirmed to 

exist inside a continuous marble belt also hosting Balmat-type mineralization in the Bryson­

Renfrew area. Because the Bryson-Renfrew area is characterized by a typical Balmat-type 

SEDEX environment, we can conclude that Franklin-type SEDEX non-sulfide deposits also 

occur in such an environment. Our review of the most important examples for Franklin-type 

deposits (i.e. Franklin and Sterling Hill) in section 2 showed that these SEDEX deposits were 
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deposited in a shallow-water carbonate platform environment. However, Franklin and 

Sterling Hill , the most important examples of non-sulfide mineralization were considered 

unique and restricted to the New Jersey Highlands (Frondel et Baum, 1974, Johnson, 1990). 

However, our work demonstrate that Franklin-type mineralization does occur in the more 

widely distributed Balmat-type SEDEX zinc sulfide environment. Because this environment 

is recognized throughout the world and is well understood, it is possible to study the genetic 

differences between both end-member of marble-hosted SEDEX deposits. 

The less than 2 kilometer long lateral variation from SEDEX disseminated zinc 

sulfide mineralization on Grand Calumet Island to SEDEX non-sulfide zinc mineralization at 

Bryson is similar to a facies variation observed by Gauthier and Brown (1986) in the 

Maniwaki-Gracefield area, 90 kilometers to the northeast of Bryson. Here, we observe the 

lateral facies change is from massive to semi-massive SEDEX zinc sulfide deposits to 

stratiform magnetite-breunnerite (iron magnesite)-graphite horizon with traces of sphalerite 

(Gauthier et al., 2004; Gauthier et al., 1987; Gauthier and Brown, 1986). This particular 

mineral assemblage is interpreted as the prograde metamorphic dissociation of a magnesian 

siderite-rich horizon (Gauthier and Brown, 1986). In fact, the presence of a siderite halo is 

one of the features ofMcArthur subtype SEDEX deposits (Cooke et al., 2000) as discussed in 

section 1. This subtype of deposit is deposited by oxidized, neutra! and warm hydrothermal 

brines. 

The non-sulfide zmc horizon in the Bryson area is also characterized by the 

abundance of iron (i.e. magnetite) and magnesium (i.e. pyroaurite). However, silica is much 

more abundant in the dolomitic marbles (silicate-rich dolomitic horizon hasts non-sulfide 

zinc mineralization) and is expressed by the presence magnesium-rich silicates (i.e. 

magnesium-rich olivine: forsterite). With prograde metamorphism and locally present zinc, 

zincian olivine from the forsterite-willemite solid-solution formed at Bryson. The Maxwell 

brucite quarry is Jess than fifty meters way from the Bryson Water Treatment non-sulfide 

zinc occurrence. This nearby presence of brucitic marble shows that the ab un dance of silicate 

is not a regional feature of these dolomitic marbles, but rather seems associated with the 

appearance of zinc mineralization. Such a phenomenon is already well described by Sangster 

(1970) and Gauthier and Brown (1986) respectively for the SEDEX zinc deposits of 
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southeast Ontario and the Maniwaki-Gracefield region. A new fact outlined by our study is 

that SEDEX zinc sulfide and non-sulfide zinc mineralization are both associated with the 

deposition of a siliceous dolostone. 

The objective of this thesis was to determine if a relationship exists between marble­

hosted SEDEX zinc sulfide and non-sulfide zinc deposits (i.e. Balmat-Edwards and Franklin­

Sterling Hill). Our studies successfully established this by demonstrating that both end­

members of SEDEX deposits exist in the same continuous marble belt in the Bryson-Renfrew 

area and that they occur in a similar geological environment (the better understood geological 

environment for Balmat-type SEDEX deposits). Therefore, Bryson (Qc) is proposed to be the 

"missing link" between SEDEX zinc sulfide and non-sulfide deposits, as conventional 

SEDEX zinc-sulfide and unconventional stratiform non-sulfide zinc mineralization are 

believed to form in the same environment. 

12.5 RELA TIONSHIP BETWEEN BOTH END-MEMBERS OF SEDEX DEPOSITS 

A question arises: what is the relationship between Balmat-type and Franklin-type 

SEDEX deposits? Mineral assemblage comparisons between both types of SEDEX deposit 

raises the possibility that the following dichotomy exists: a magnetite-sphalerite association 

for Balmat-type SEDEX deposits and a willemite-magnetite (magnetite-franklinite solid­

solution) association for Franklin-type deposits. For example, the Bryson zincian serpentine, 

without inclusions of pyrophanite, is interpreted as the retromorphic destabilization of 

willemite (which has the same chemical formula as olivine and where complete substitution 

of magnesium by zinc is possible). Moreover willemite-franklinite are the main ore minerais 

for th Franklin and Sterling Hill deposits. 

The explanation for the first mineral association (sphalerite-magnetite) may come 

from the recent research on the SEDEX deposit-type. Has mentioned in section 1, the genetic 

model and exploration guidelines established for the Grenville Supergroup Balmat-type 

mineralization (i.e. Balmat-Edwards district, Maniwaki-Gracefield, Cadieux) was based on 

shale-hosted SEDEX deposits such as those of the Selwyn Basin in Canada and 

Rammelsburg in Germany (Large, 1980; deLorraine and Dili, 1982; Gauthier and Brown, 

1986). Research during the 80's has shown that this genetic model was not perfect for the 
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Grenville Supergroup SEDEX zinc sulfide deposits. For example, isotopie study of sulfur and 

lead by Whelan et al. (1984) on the zinc ore from the Balmat-Edwards district has shawn that 

the mineralization fluids for the synsedimentary zinc ore was chemically simi1ar to the fluids 

responsible for Mississippi Valley-Type (MVT) deposits rather than those forming the 

Selwyn Basin SEDEX deposits . For this reason and those presented in section 1, we proposed 

that the Grenville Supergroup SEDEX deposits rather belong to the McArthur-subtype of 

SEDEX deposits, as defined by Cooke et al. (2000). McArthur-subtype SEDEX are 

characterized by moderate to law temperature oxidized (S02
-4 > H2S) hydrothermal brines 

operating in a broad carbonate-evaporite platform. Zinc deposition under its sulfide form is 

due to the mixing of this hydrothermal fluid with a second fluid such as H2S-rich anoxie 

seawater in sub-basins (Cooke et al. , 2000). A link to tectonism (extensional regime) with 

sub-basins is then required to form the anoxie trap environment and control bacterial sulfate 

reduction (Whelan et al. , 1990) and to control the release of hydrothermal brines into the 

hydrosphere and on the sea-floor. Such relation to sub-basin is mentioned at the Balmat­

Edwards district (de Lorraine, 2001) and Maniwaki-Gracefield area (Gauthier and Brown, 

1986). 

Similar to McArthur-subtype hydrothermal ore fluids also characterize (l) the Irish­

type stratabound carbonate-hosted zinc-1ead deposits (Hitzman and Beaty, 1996), and (2) 

sorne Mississipi Valley-Type zinc-lead deposits (Cooke et al. , 2000). McArthur SEDEX, 

Irish-type and sorne MVT deposits share these characteristics: ( 1) They are carbonate-hosted, 

(2) deposited by similar oxidized hydrothermal brines, and (3) metal deposition occurs 

because offluid mixing (Hitzman and Beaty, 1996; Cooke et al. , 2000; Hitzman et al., 2003). 

For example, he Irish-typ or bodies in Ireland share chemically analogue hydrothermal 

brines and were formed in a carbonate sequence which overlies an oxidized clastic sequence, 

the Old Red Sandstone Formation which is very similar to the environment present ar the 

McArthur River basin in Australia (Cooke et al., 2000). The presence of colloform textured 

sphalerite in unmetamorphosed environments of these deposits suggest rapid deposition and 

fl uid mixing is the simplest means of inducing rapid mineral precipitation (Hitzman et al. , 

2003). The fluid mixing with the oxidized hydrothermal fluid could be seawater, reduced 

anoxie H2S-rich bas inal brines, reduced ground water or basinal fluid which equilibrated with 

an oxidized or reduced rock mass such as a red-bed sequence or graphite-bearing sediments 
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(Hitzman et al., 2003). Although they are morphogically and genetically distinct (i.e. 

McArthur SEDEX are syngenetic white Irish-type and MVT are epigenetic), this difference 

has mainly to do with where fluid mixing actually occurred. If the zinc-bearing oxidized 

hydrothermal fluid mixes with a reduced H2S-bearing fluid before reaching the surface, it 

would form an epigenetic stratabound zinc-lead deposit with replacement mineralization for 

example. However, if fluid mixing occurs with reduced H2S basinal seawater brines in an 

anoxie sub-basin, syngenetic zinc sulfide precipitation occurs forming McArthur SEDEX 

subtype deposits. 

Oxidized McArthur SEDEX-subtype hydrothermal fluids are capable of depositing 

sphalerite and magnetite (Cooke et al., 2000) such as it is observed for example in the 

Maniwaki and Bryson area. The recent research advances in the SEDEX deposit-type can 

thus explain the sphalerite-magnetite mineral association observed with the Grenville 

Supergroup SEDEX zinc deposits . But what can explain the willemite-magnetite mineral 

association? 

Willemite is the main constituent of hypogene (straturally-controlled and stratifom) 

non-sulfide zinc deposits and can be though as the defining mineral for these types (Hitzman 

et al., 2003). White hypogene structurally-controlled and stratiform non-sulfide zinc deposits 

are morphogically distinct, they seem similar in many ways and their difference could have to 

do with where mineralization occurred and the fact that the biggest example for stratiform 

deposit-type (i .e. Franklin and Sterling Hill) has been metamorphosed to granulite-facies 

(Hitzman et al., 2003). Willemite has been considered a metamorphic mineral by several 

authors because of its abundant presence in the highly metamorphosed Franklin and Sterling 

deposits (Hitzman et al., 2003). Moreover, the high temperature stability ofwillemite is weil 

documented and supported by its presence in slags from zinc smelters, in alkaline intrusions, 

in ceramic glazes and even lunar fragments (Hitzman et al., 2003 and reference therein). At 

the Franklin and Sterling Hill district, Squiller and Sclar (1980), Johnson et al. (1990) and 

Johnson and Skinner (2003) suggests that willemite is formed by prograde metamorphic 

dissociation of a zincian dolomite or a carbonate zinc hydroxide mud (section 2). However, 

hypogene willemite is present in the unmetamorphosed deposits of Vazante in Brazil and 

Beltana in Australia (Monteiro et al., 1999; Brugger et al., 2003; Hitzman et al. , 2003). 
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Franklinite is also present and associatied with willemite at the Vazante mine (Monteiro et 

al. , 1999). The presence ofwillemite at these deposits clearly indicates that willemite did not 

form under extreme high temperature conditions and raises the possibility that pnmary 

precipitation ofwillemite, and even franklinite, from hydrothermal fluids is possible. 

So, another question arises: Is this willemite formed by prograde metamorphic 

dissociation of a zincian dolomite reacting with available silica, as proposed by Squiller and 

Sclar (1980) for Franklin and Sterling Hill deposits, or is it rather primary and 

contemporaneous to the exhalative system? 

Recent experimental research on willemite stability in hydrothermal environments 

suggests the latter possibility and could help explain the existing dichotomy between Balmat­

type and Franklin-type deposits. According to Brugger and al. (2003), willemite is more 

stable than sphalerite and will precipitate in neutra! and oxidized (sulfate stable) conditions. 

Balmat and Franklin-type SEDEX deposits are characterized by a shallow-water oxidized 

evaporitic carbonate platform environment where such conditions exist. Moreover, willemite 

is more stable than sphalerite at high temperatures (>300°C) and can coexist with magnetite 

(Brugger et al., 2003). Therefore, willemite will precipitate in a hot environrnent whereas 

sphalerite will precipitate when the environment is warm (<300°C). The mineral association 

of willemite and magnetite is th us possible in hydrothermal unmetamorphosed environments. 

The hydrothermal fluid capable of precipitating hypogene hydrothermal willemite (Brugger 

et al., 2003) share severa! features with the one for depositing McArthur SEDEX Zinc sulfide 

deposits (Cooke et al., 2000). The similarities include (1) a carbonate platform environment, 

a (2) sulfate-stable oxidized hydrothermal brines, and (3) deposition by fluid mixing. 

Therefore, the differences between SEDEX sulfide zinc and Franklin-type non-sulfide zinc 

deposits could be an indication of a hot exhalative system rather than a warm one operating 

in an evaporitic carbonate platform environment. Both deposits could be primary and 

hydrothermal in origin and therefore be found in the same districts as sphalerite-rich SEDEX, 

Irish-type and MVT deposits . 

Such scenario exits in Brazi l in the unrnetamorphosed carbonate platform hosting the 

Vazante hypogene non-sulfide zinc deposit. The Morro Agudo zinc-lead sulfide deposit is 

located approximately 100 kilometers north of the Vazante deposits. The Morro Agu do 
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deposit is interpreted as a classic Irish-type deposit and occurs in rocks equivalent and 

stratigraphically above those hosting the Vazante mineralization (Monteiro et al., 1999; 

Hitzman et al., 1995; Hitzman et al., 2003). Both deposits thus occur in the same carbonate 

belt and in the same district. Thus, the mixing of hot(< 300°C) zinc-bearing oxidized (sulfate 

stable) hydrothermal brines with oxidized sulfur-poor seawater would precipitate willemite 

and the mixing of a similar fluid with basinal H2S-rich anoxie brine pools on the ocean floor 

would form sphalerite. The existence of co-precipitation of willemite and sphalerite at the 

Vazante deposit (Monteiro et al., 1999) also confirms that temperature control on the brine is 

an efficient way to precipitate willemite and sphalerite (Brugger et al., 2003). 

It is then possible to consider that Franklin and Sterling Hill willemite-franklinite 

mineralization could be deposited as a primary assemblage by hydrothermal brines and later 

metamorphosed to granulite facies. Such metamorphism would not change the mineral 

assemblage because of the high range of stability for willemite (Hitzman et al., 2003). Such 

an interpretation could also apply to the Bryson-Renfrew area with primary hydrothermal 

precipitation of stratiform hypogene willemite locally associated with magnetite. This genetic 

mode! exp lains the existing dichotomy between both end-member of SEDEX zinc deposits A 

continuum is therefore possible between carbonate-hosted SEDEX non-sulfide and sulfide 

zinc deposits. Franklin-type SEDEX mineralization could be typical of a hot hydrothermal 

system operating in a shallow-water evaporitic and oxidized carbonate platform environment 

with the direct precipitation of willemite and franklinite . As the hydrothermal brines cool 

down, by distance from the hydrothermal source, Balmat-type mineralization precipitates. 

Thus, Franklin-type mineralization could indicate the nearby presence of Balmat-type 

mineralization, and vice versa. 

Our age determination for the Calumet exhalative volcanogenic polymetallic (Zn-Pb­

Au-Ag) sulfide deposit, located west of the Bryson non-sulfide zinc occurrence, enables us to 

surpass the objectives of this thesis. As mentioned earlier, the Calumet deposit has been 

extensively studied but never but in a regional context (Sangster, 1967; Sangster, 1970; 

Jourdain, 1993). Shown to be comparable to the Montauban deposit which was historically 

dated, the Calumet deposit was thought to be older than the Grenville Supergroup, like 

Montauban, and to represent a basement of sorne kind (Gauthier et al., 2004). However, our 
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radiometrie datation of the Calumet deposit indicates that it belongs to the metallogenic 

epoch of the Grenville Supergroup rather than the one of the Montauban Group. This 

conclusion forced us to consider the exhalative event associated with the deposition of the 

Calumet deposit as being contemporary with the deposition of SEDEX non-sulfide and 

sulfide zinc deposits in the Grenville Supergroup of the Bryson-Renfrew area. 

Putting the Calumet deposit in the regional context of the Bryson-Renfrew area for 

the first time reveals new insights for the region's zinc mineralization and geological 

environment. Volcanogenic polymetallic massive sulfide (VMS) activity can form distal 

SEDEX-type mineralization (Goodfellow et al., 1993; Lydon, 1996). During the deposition 

of Grenville Supergroup carbonates there is simultaneous deposition of volcanic rocks. 

During the volcanogenic exhalative event forming the Calumet Zn-Pb-Au-Ag massive sulfide 

deposit, there is contemporaneous distal deposition of zinc-dominant sedimentary exhalites. 

A mineral zonation can be established from the volcanogenic polymetallic (Zn-Pb-Au-Ag) 

massive sulfide mineralization which then regionally grades to distal zinc dominant 

sedimentary exhalative deposits away from the center of hydrothermal activity. This zonation 

is weil documented for VMS deposits and mostly results in temperature decrease 

(Goodfellow et al., 1993; Lydon, 1996). The observed mineralization zonation in the Bryson­

Renfrew basin reflects that the Calumet volcanogenic exhalative event is contemporaneous. 

The hydrothermal brines, that are regionally exhaled in the carbonate platform gradually, 

cool down as the distance from the VMS deposit raises. This temperature cool-down as a 

direct implication for the type of SEDEX mineralization deposited. We propose that close to 

the VMS deposit, hotter SEDEX hydrothermal brines would precipitate willemite and 

magn tit hi l furth r away, with brin cooling, sphalerite and magnetite mineral 

association becomes stable and precipitates. This mode) also explains why sub-economic 

values were obtained for the Bryson non-sulfide zinc occurrences and why disseminated 

sphalerite mineralization was encountered throughout the Bryson-Renfrew area (0.2% zinc). 

We propose that the SEDEX mineralizations discovered in the Bryson area are distal 

exhalites from the Calumet deposit. Exhalites usually contains sub-economic metals 

(Goodfellow et al. , 1993). Therefore, hypogene non-sulfide zinc mineralization could also 

indicate the presence of a hot volcanogenic massive sulfide deposit in the area. 
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Not only do we propose that a continuum exists between SEDEX non-sulfide and 

sulfide zinc deposits, but we also propose that such mineral association can also be linked to 

a geological environment hosting a volcanogenic exhalative deposit. 



CONCLUSION 

Our studies show the existence of Franklin-type non-sulfide zinc occurrences in the 

marbles of the Bryson-Renfrew region. We show that Franklin-type non-sulfide zinc deposits 

occur in the same environment as SEDEX zinc sulfide deposits providing elues on the 

relationship between both end-members of hypogene zinc deposits. Moreover, both end­

members of zinc deposits are hosted by metamorphosed siliceous dolostone units. 

So SEDEX deposits could then present themselves as chameleons: sometimes under 

the form of stratiform sulfide beds and more rarely under the appearance of disseminated 

non-sulfide zinc mineralizations. This difference in mineralogy could be explained by the 

operation of a hot exhalative system (willemite) rather than a warm one (sphalerite). The 

results of our study reveal new exploration perspectives which were unsuspected until-now 

and confirrn that Franklin-type deposits are not an exceptional anomaly in the Grenville 

Province. Franklin-type deposits are to be sought throughout the Mesoproterozoic Grenville 

Supergroup marbles of Canada. Such mineralization can also indicate the presence of a 

nearby polymetallic volcanogenic massive sulfide deposit. 



APPENDIXA 

GEOLOGICAL FEATURES OF BALMAT-TYPE 
AND FRANKLIN-TYPE SEDEX DEPOSITS 
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APPENDIXB 

LOCATION OF DIAMOND DRILLING HOLES USED FOR THE U-PB 
GEOCHRONOLOGY OF THE NEW CALUMET MINE 
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APPENDIXC 

U-PB GEOCHRONOLOGY OF A SAMPLE FROM 
THE NEW CALUMET MINE 



GÉOCHRONOLOGIE U-PB D'UN ÉCHANTILLON PROVENANT DE 
LA MINE CALUMET- MAI 2009 

TEL QUE SOUMIS PAR 

JEAN DAVID (2009) 

Un échantillon (#GT080605-l) de roche de composition intermédiaire présentant une bonne 

foliation a été traité afin d' en établir l'âge de mise en place par la technique de datation utilisant le 

géochrononmètre U-Pb sur zircon. L' échantillon constitué de morceaux de carotte de forage 

provenant de la mine Calumet semble relativement homogène. 

RÉSULTATS 

Les zircons récupérés de l'échantillon sont de dimension moyenne avec quelques grains 

pouvant atteindre près de 220 Jlm de longueur. On retrouve 2 types de cristaux soit des zircons à 

section prismatique courte et à terminaisons pyramidales asymétriques, soit des cristaux 

équidimensionels à multifacettes. Les cristaux sont généralement incolores avec quelques spécimens 

ayant une coloration brune dorée. Ils ne contiennent généralement pas d' inclusion . 

Grossissement ca. 1 OOX 
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Quatre fractions analytiques, chacune constituée de 1 à 2 cristaux, ont été analysées 

en mode solution (ID-TIMS). Les résultats indiquent qu ' il s'agit de zircon ayant des 

concentrations en uranium relativement élevées jusqu'à 1400 ppm pour la fraction constitué 

de cristaux brun doré et des rapports Th/U faible variant entre 0.193 et 0.284. Les résultats 

sont tous considérés comme étant discordant et ont livré des âges 207Pb/206Pb qui varient 

entre 123 1.5±1.1 Ma (discordance de 0.6%) et 1221.1±1 Ma (discordance de 5.5%). Les 

quatre résultats se répartissent sur une même droite qui peut être établie par un calcul de 

régression linéaire. L'intersection supérieure de la droite avec la courbe Concordia représente 

un âge de 1232.8+3.9/-2.7 Ma (probabilité de concordance de 47%). 

0.208 

::;) .. 0.204 .., 
~ 
.a 
0.. 
"' 0 
N 

0.196 
/ 

/ 

/ 

_,--# 

data-point error ellipses are 2cr 

325±100 & 1232.8+3.9/-2.7 Ma 
FIT= 0.47 

/ 

0.192 L...____. _ __._ _ _._ _ _.__....___..___,'--__._ _ _..._ _ _.__...._____J 

2.16 2.20 2.24 2.28 2.32 2.36 2.40 

MÉTHODOLOGIE 

Récupération des minéraux lourds et sélection des zircons 

Les échantillons sont préalablement nettoyés sous l' eau et avec une brosse pour 

éviter toute contamination. Tous les appareils sont rigoureusement nettoyés encore une fois 

afin d' éviter une contamination des poudres d'un échantillon précédemment traité. 
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L'échantillon est réduit à l'aide d' un broyeur à mâchoire puis d' un pulvérisateur à disques 

pour obtenir une poudre ayant la granulométrie d'un sable fin à très fin. Une première étape 

de concentration des minéraux lourds est effectuée en utilisant une table à secousse de type 

Wilfley. La fraction la plus lourde, après avoir été asséchée, est tamisée pour n'en conserver 

que le matériel inférieur à 200 f.!m. La deuxième étape est effectuée en utilisant une liqueur 

dense à base d'iodure de méthylène (d= 3.3). Finalement les minéraux lourds sont séparés en 

fonction de leur susceptibilité magnétique en utilisant un séparateur isodynamique Frantz. 

Les zircons se caractérisant par des propriétés diamagnétiques sont examinés à la loupe 

binoculaire et sélectionnés sur la base de leur qualité (absence de micro-fractures, 

d'évidences d'altération et d'inclusions) pour ensuite être classés en fonction de critères 

typologiques: morphologie, développement des faces cristallines et couleur. 

Analyse par dilution isotopique et spectrométrie de masse à ionisation thermique (ID­
TIMS) 

Les analyses effectuées par mise en solution du zircon exigent que les surfaces des 

zircons sélectionnés soient préalablement enlevées par abrasion dans une chambre à pression 

d'air (Krogh, 1982) afin de retirer la portion métamicte souvent affectée par une perte en Pb. 

Après avoir nettoyé les zircons à l' acide nitrique (HN03 4N) dans un bain ultrasonique, les 

cristaux choisis sont placés dans des capsules en téflon dans lesquelles on ajoute de l'acide 

fluorhydrique concentré (HF) et quelques milligrammes d' un étalon isotopique de 205Pb et 

233-235U, pour être mis au four à 22o·c. Les produits de décomposition sont traités avec de 

l' acide chlorhydrique (HCI) pour assurer une dissolution complète. Les solutions sont 

subséquemment purifiées pour le plomb et l' uranium grâce à l'utilisation de colonnes 

chromatographiques utilisant des résines d'échange anioniqu en mode chlorydrique. Cette 

méthode présentée par Krogh (1973) a été modifiée pour des capsules de dissolution et des 

colonnes de taille réduite afin de minimiser la contamination. 

Le plomb et l'uranium, pour être ionisés, sont déposés sur un même filament de 

rhénium dans un mélange de gel de silice et d'acide phosphorique. Les analyses sont 

effectuées en mode dynamique en utilisant le compteur d' ions du détecteur Daly d' un 

spectromètre de masse VG Sector54. Les facteurs de correction, prenant en considération à la 

fois la discrimination thermique des masses et celle du détecteur, sont de 0,15 %/AMU pour 
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le plomb et 0,16-0,18 %/AMU pour l ' uranium. Ces corrections sont déterminées grâce à 

l' analyse répétée d' une solution standard de plomb (SRM981) et des isotopes 233-235U 

contenus dans l'étalon isotopique. 

Les "droites discordia" sont établies en utilisant un calcul de régression linéaire 

(Davis 1982). Il s'agit d'une d ' un calcul qui prend en considération, 1) les erreurs corrélées 

des rapports Pb/U et Pb/Pb; 2) la discordance des points par rapport à l' intersection 

supérieure de la droite avec la 'courbe concordia' . Lorsque les données se distribuent à 

proximité ou sur la "courbe concordia" l' intercept supérieur est calculé en forçant l'extrémité 

inférieure de la droite de régression vers un âge de 0 Ma. La validité statistique de la droite 

obtenue par le calcul de régression linéaire s' exprime par un indice de probabilité de 

coïncidence ("probability of fit" ) qui devrait normalement être de ca. 0.50. On considère 

qu ' une valeur de 0.10-0.15 est statistiquement acceptable (cf Ludwig 2003 pour une 

discussion sur ces considérations). Les incertitudes sur les rapports sont présentées à 1 sigma 

(intervalle de confiance de 65%) alors que les incertitudes sur les âges sont présentées à 2 

sigma (intervalle de confiance de 95%). 
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GEOLOGICAL CHARACTERISTICS OF THE BRYSON-RENFREW REGION 
SEDEX ZINC SHOWINGS 
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APPENDIXE 

DETAILLED GEOLOGICAL MAPS OF THE 
BRYSON-RENFREW SHOWINGS 
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