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RÉSUMÉ 

Nous étudions un problème de chirurgie de Dehn, à savoir la caractérisation des 
noeuds dans les espaces lenticulaires qui admettent des chirurgies intégrales homéomor­
phes à S1 x S 2 . Nous montrons que ces nœuds sont fibrés et qu 'ils bordent des surfaces 
de Seifert planaires. De façon équivalente, les nœuds induits dans S 1 x S 2 sont isotopes 
à des tresses. 

Le principal outil que nous avons utilisé est l'homologie de Heegaard-Floer, un 
ensemble d 'invariants de type théorie de jauge développés par Ozsvath-Szab6 à partir 
de 2000. En outre, nous montrons que ces nœuds sont simples au sens de Floer , donc 
conjecturalement simples. Compte tenu de cette dernière conj ecture, nous avons initié 
une étude de nœuds simples dans les espaces lenticulaires appropriés et nous avons donné 
une list e potentiellement complète de tous les nœuds simples avec des chirurgies inté­
grales S1 x S 2

. Ces nœuds se révèlent être les nœuds induits dans les espaces lenticulaires 
obtenues en effectuant une chirurgie de Dehn sur certains nœuds doublement primitifs 
dans S 1 x S2, exactement ceux construits par Baker. 

Mots clés : chirurgie de Dehn , espace lent iculaire, homologie de Heegaard-Floer , 
nœud fibré. 





ABSTRACT 

We study a Dehn surgery problem, namely the characterisation of knots in lens 
spaces which admit longitudinal 8 1 x 8 2 surgeries . We prove that such knots are fibred 
and rationally bound planar Seifert surfaces . Equivalently, the induced lmots in 8 1 x 8 2 

are isotopie to braids. 

The main tool we used is Heegaard-Floer homology, a gauge-t heoretic package of 
invariants developed by Ozsvath-Szab6 from 2000 onwards. We further show that these 
knots are Floer simple, hence conjecturally simple. In view of this conj ecture, we init iate 
a study of simple knots in the relevant lens spaces and give a potentially complete list of 
all simple knots with longitudinal 8 1 x 8 2 surgeries. These knots turn out to be exactly 
the knots in lens spaces obtained by performing Dehn surgery on some doubly primitive 
knots in 8 1 x 8 2 , as constructed by Baker. 

Keywords: Dehn surgery, lens space, Heegaard-Floer homology, fibred knot. 





INTRODUCTION 

Dehn surgery is the process of removing a tubular neighbourhood of a knot inside a 

tl1ree-manifold and gluing it back via a different attaching map. All closed, orientable 

three-manifolds can be constructed by sur gery on a link (collection of knots) inside 

the three-sphere, the complexity of the manifolds being reflected in the complexity of 

the link. It is interesting to know when some fixed manifold M can be obtained from 

another manifold N by performing surgery on a single knot and, if possible, determine 

all the knots with this property. A particularly intriguing setting is when M and N are 

homeomorphic, in which case the surgery is called cosmetic. 

Even when A1 and N are simple (with respect to some notion of complexity), this 

is a very challenging problem. Some famous success stories in this regard are: the 

knot complement problem (Gordon and Luecke, 1989) , Property "P" (Kronheimer and 

Mrowka, 2004), Property "R" (Gabai , 1987), cosmetic surgeries on the solid torus (Gabai, 

1989), (Gabai, 1990), (Berge, 1991). A very important question in the field is the Berge 

Conjecture, which gives a possibly complete list of all knots in 8 3 which admit lens space 

surgeries (Berge, 1984) . 

It is a curious feature of the examples above that t he knots encountered tend to have 

'small' genus (to be made precise in what follows) and are fibred. 

A three-manifold M is said to fib re over the circle with fibre ~ if there exists a surj ective 

submersion p : M --+ 8 1 su ch that the preimage of every x E 8 1 is an embedded 

2-dimensional submanifold of M homeomorphic to ~ . 

It was observed by Gordon that all knots which are known to admit surgen es with 

fini te fundamental group (or equivalently are covered by 8 3
) are fibred. This fact 

has been afterwards proved using the powerful new gauge theoretic techniques devel-
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oped by Ozsvâth-Szab6 from 2002 onwards, collectively called Heegaard-Floer homology 

(Ozsvâth and Szab6, 2006c),(Ozsvâth and Szab6, 2004c) . 

Heegaard-Floer homology grew out of the search for methods of computation for Monopole­

Floer homology, and , while achieving that goal, it developed into a new theory with 

unique applications. Among the most celebrated results we mention the detection of the 

Thurston norm of three-manifolds (Ni , 2009) and of fibredness (Ni , 2007). 

The main motivation behind this work was to investigate and extend these type of results 

to more general Dehn surgery problems. We achieved this goal in two directions. Firstly 

we proved a fibredness theorem in the setting of orbifolds and orbifold Dehn surgery, and 

secondly, we provided several restrictions on knots in lens spaces which admit S 1 x S 2 

surgen es. Conjecturally, these restrictions are strong enough to characterise all such 

knots. 

0.1 Orbi-lens spaces and Berge-Gabai knots 

An important research direction in hyperbolic geometry is the study of commensurability 

classes of manifolds. 

Two manifolds are said commensurable if they have a common fini te cover. This relation 

is easily seen to be an equivalence relation and its classes are called commensurability 

classes. 

In the general category of hyperbolic three-manifolds, describing these commensurability 

classes seems a very difficult problem. It is natural to restrict orres attention to special 

classes of manifolds, for example complements of hyperbolic knots in S 3 . Here, one is 

led to further distinguish between two very different situations, according to whether or 

not t he knot complements admit hidden symmetries. 

A hidden symmetry of a manifold M is a symmetry of a finite cover M of M which is 

not t he lift of a symmetry of M. 

An orbi-lens space is the quotient of S 3 by a cyclic group of (orientation preserving) 
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isometries. The underlying manifold of an orbi-lens space is a lens space. The singular 

locus (wh en non-empty) consists of one or both of the cores of the solid tori in the 

Heegaard genus one decomposition of the lens space. 

In the non-hidden symmetries case, in (Boileau et al. , 2011) it was shown that non­

trivial commensurability classes of knot complements are obtained from lmots in orbi­

lens spaces having non-trivial orbi-lens space surgeries. Here the knots are assumed 

disjoint from the singular locus. 

The situation should be contrasted with the similar problem of a knot complement cover­

ing another knot complement, which was reduced to the Berge Conjecture by Gonzalez­

Acuna and Whitten in (Gonzalez-Acuna and Whitten, 1992). 

More precisely, a knot K (whose complement admits no hidden symmetries) which is not 

unique in its commensurability class , is the lift of a knot K in an orbi-lens space which 

admits a non-trivial orbi-lens space surgery (Boileau et al. , 2011 , Proposition 4.13). 

In the case when the orbi-lens space is a manifold, the knot K is fibred by a Heegaard­

Floer argument due to Rasmussen (Boileau et al., 2011 , Theorem 6.5). It immediately 

follows that K is fibred as well, by pulling back the fibration of K. 

A Berge-Gabai knot is a knot in the solid torus S 1 x D 2 which admits a non-trivial 

cosmetic surgery. 

Gabai showed that such a knot is a 1-bridge braid, i.e. it can be isotoped to be everywhere 

transverse to the D 2 fibres and lie in the boundary of the solid torus, except for the bridge, 

which is an unknotted arc in the interior of the solid torus. 

In the case when the orbi-lens space (say L) has connected, non-empty singular locus, 

K is necessarily a Berge- Gabai knot in the exterior of the singular locus. It is important 

to observe that the natural fibration by punctured disks of K does not extend to ILl for 

homological reasons, but there is a fibration on L \ K given by the same Heegaard-Floer 

argument. However, due to t he presence of the singular locus, this fibration cannot be 
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lifted a priori to S 3 \ K. 

Theorem (Boileau et al. , 2011 , Theorem 6.1) . Let K be a 1-bridge braid on n strands 

in a solid torus V . For any essential simple closed curve C on av whose algebraic 

winding number in V is coprime to n there is a locally trivial fibring of the exterior of 

R in v by surfaces whose intersection with av has n components, each a curve parallel 

to C . 

This theorem proves that the exterior of a Berge-Gabai fibres over the circle in more 

than one way, and indeed one of these fibrations can be lifted to S 3 \ K. 

The aforementioned fibration theorem in the context of orbifolds is a corollary of the 

previous result. 

Theorem. Let K be a knot in an orbi-lens space L which is primitive in ILl . If K 

admits a non-trivial orbi-lens space surgery, then the exterior of K admits a fibring by 

2-orbifolds with base the circle. 

Note that a fibration p: M----+ S 1 determines by pull-back a cohomology class p*(dB) E 

H 1(M; JR), where dB is the angle form on S1. We cali p*(dB) the direction of the fibration. 

The previous t heorem provides new examples of hyperbolic manifolds which fibre over 

the circle in every possible direction allowed by t he Thurston norm theory (Thurston, 

1986) . 

Corollary (Boileau et al., 2011, Proposition 1.6) Let M be the exterior of a hyperbolic 

1-bridge braid in a solid torus V . Then each top-dimensional face of the Thurston norm 

bali in H 1(M; JR) ~ JR 2 is a fibred face. 

Equivalently, the set of directions {p*(dB) : p: M----+ S 1 fibration} is dense in H 1(M ; JR). 

Furthermore, theorem 6.1 of (Boileau et al. , 2011) gives more information about the 

fibration of the induced Berge knots in lens spaces, namely in the standard 1-bridge 

position, the induced Berge knot 's fibration is ( up to isotopy) transverse to one of the 
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cores of the Heegaard solid tori, ( conjecturally to both). 

0.2 Knots in lens spaces admitting S1 x S2 surgeries 

Consider a Berge-Gabai knot K C V where V is a solid torus. By embedding V in 

5 1 x 5 2 in the canonical way, i.e . as one of the Heegaard solid tori in the unique 

Heegaard decomposition of 5 1 x 5 2 of genus 1, K c 5 1 x S2 will admit (longitudinal) 

lens space surgeries. We call this process the Berge- Ga bai construction. 

This surgery exhibits an interesting property of the lens spaces obtained, namely they 

bound smooth, rational homology four-balls , by classical handle theory (Gompf and 

Stipsicz, 1999). These lens spaces were classified by Lisca using gauge-theoretic methods 

(Lisca, 2007), and Rasmussen observed that the list he obtained coincides with the list 

of lens spaces obtained through the Berge-Gabai construction above (Greene, 2010). 

In the same paper (Greene, 2010), Greene conjectured that this is the only way in which 

lens spaces can be obtained from S 1 x S2 by Dehn surgery. 

A doubly primitive knot in M is a knot which can be isotoped to lie in a Heegaard 

surface of genus 2 of M with the extra property that it carries a free generator of the 

fundamental group of each handlebody. 

Berge proved that doubly primitive knots in any three-manifold have lens space surgeries. 

It turns out that Greene's conjecture is false . Baker (Baker, 2012) constructed more 

examples of knots in S1 x S2 with lens space surgeries. All of his knots are doubly 

primitive in S1 x S2 . It was checked that in S1 x 5 2 they can be isotoped to be braids. 

A simple lmot in a lens space L is a knot which can be decomposed into two arcs which 

are contained in the meridian disks of the two solid tori forming the ge1ms 1 Heegaard 

splitting of L. 

Baker 's knots have t he remarkable property that the induced knots in the lens spaces 

are simple. 
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Theorem Let K C L(p, q) be a knot in a lens space which admits longitudinal 8 1 x 8 2 

surgeries. Then K is fibred and the generalised Seifert surface of K is a m-punctured 

disk, where m 2 =p. 

From the point of view of S1 x 8 2 , 

Theorem If K c 8 1 x 8 2 admits longitudinal lens space surgeries, then K is isotopie 

to a braid. 

Corollary A doubly-primitive knot in 8 1 x 8 2 is a braid. 

The restriction to longitudinal surgeries is not drastic, by the Cyclic Surgery Theorem 

(Culler et al., 1987) , which states that if K c M with 7ri(M) cyclic is a knot whose 

exterior is not Seifert fibred, then any other surgery on K which gives a manifold with 

cyclic fundamental group, is longitudinal. 

Knots with Seifert fibred exteriors in lens spaces are classified , and so are surgeries on 

them. 

The proofs of these results rely heavily on Heegaard-Floer homology. Indeed, lens spaces 

are L spaces, manifolds with the smallest Heegaard-Floer homology possible. 

An L space Y is a rational homology three-sphere with HF(Y ; Z) free of rank #H1 (Y; Z). 

There is a corresponding notion for knots, we say that a knot K c Y is Floer simple if 

rk(HFK(Y,K)) = rk(HF(Y)). 

Theorem Let K c L(p, q) be a knot in a lens space which admits a longitudinal 8 1 x 8 2 

surgery. Then K is Floer simple. 

It has been conjectured (Rasmussen, 2007) that Floer simple knots in lens spaces are 

simple. In view of this, it is natural to ask which simple knots in lens spaces admit 

8 1 x 8 2 surgeries . 

We only give partial results here, namely 
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Theorem For the first two families of lens spaces which bound rational homology four­

balls, (out of 4) ' the simple knots which admit S 1 x S 2 surgeries are exactly the knots 

induced by doing Dehn surgery on the doubly-primitive knots in S1 x S2 constructed 

by Baker. 

We conjecture that this is t rue for the other families as well. A positive resolut ion of 

this conjecture would imply that the doubly-primitive knots constructed by Baker are 

all the doubly-primitive knots in S1 x S2 . 

As evidence for this conjecture, we mention that we verified it for lens spaces of orders up 

top= m 2 = 5002 and we also provide a technique for proving it, which we successfully 

used for the first two families. 

0.3 Organisation 

The rest of this thesis is organised as follows: 

In Chapter 1 we prove the orbifold fibredness theorem and describe the relevance for 

the commensurability problem. In Chapter 2 we provide the necessary background on 

Heegaard-Floer homology. In Chapter 3 we prove the results about the knots in lens 

spaces with S 1 x S 2 surgeries. Finally, in Chapter 4 we make an analysis of simple knots 

in lens spaces which bound rational homology four-balls. 





CHAPTER 1 

KNOT COMMENSURABILITY AND FIBREDNESS 

1.1 Dehn surgery on knots 

In this section we present sorne background material concerning basic three-manifold 

topology and Dehn surgery, in view of completeness and establishing the notation used 

throughout the thesis. 

A slope in the torus S 1 x S 1 is an isotopy class of unoriented simple closed curves in 

S 1 x S 1 . We will identify slopes with ± primitive homology classes in H 1 ( S 1 x S 1). 

The distance between two slopes a and {3 is the minimal number of (transverse) inter­

sections of the curves representing a, resp. {3. 

A knot manifold Mis a compact oriented three-dimensional manifold with one boundary 

component homeomorphic to S 1 x S 1 . 

A knot K C Y where Y is a closed, oriented three-manifold is a smooth embedding of S 1 

in Y. The exterior of K , denoted Ext(K) or Y \\K is the knot manifold Y\ I nt(N(K)) 

where N(K) is a tubular neighbourhood of K. 

Dehn filling a knot manifold M along a slope a on 8M is the process of gluing a solid 

torus D 2 x S 1 to 8M with the gluing map that identifies 8D2 with a. 

Dehn surgery on a knot K c Y along a slope a on 8(Y \\K) is the process of removing 

an open tubular neighbourhood of K and Dehn filling along the slope a. 



10 

For K C Y, there is a distinguished slope IL on B(Y \\K), called the meridian of K , 

which is characterised by the fact that IL= 8D2 where D 2 is a properly embedded disk 

in N(K) which cannat be isotoped into BN(K). 

A slope À at distance 1 from IL is called a longitudinal or integral slope, and Dehn surgery 

on a longitudinal slope is called longitudinal surgery or Morse surgery. 

A rational homology three-sphere Y is an oriented, closed three-manifold with H*(Y; Q) ~ 

H*(83
; Q). 

A lmot K c Y is (rationally) null-homologous if the homology class that it represents, 

denoted by [K], is 0 in H1(Y;Z), resp . H1(Y, Q) . 

A Seifert surface F properly embedded in Ext(K) (in sorne ambient three-manifold Y) 

is a smooth surface with BF a collection of simple closed curves in BExt(K), none of 

which bounds a disk in BExt(K). One can always arrange that these curves are parallel 

(including orientation). 

1.2 Berge-Gabai knots and cyclic commensurability 

In a joint project with M. Boileau, S. Boyer, and G. S. Walsh (Boileau et al., 2011), 

we investigate commensurability classes of hyperbolic knot complements in 8 3 . In this 

chapter we present a fibredness theorem for knots which are not unique in their cyclic 

commensurability class. The material is all taken from (Boileau et al., 2011) with minor 

modifications. 

Definition 1.2.1. Two oriented orbifolds are commensurable if they have orientation­

preserving homeomorphic finite sheeted covers. If the covers are cyclic, we say that the 

orbifolds are cyclically commensurable. 

For knot complements, we say (abusively) that the knots are commensurable if their 

complements are. The commensurability class of K c 8 3 is the set 

C = { K' C 8 3 : K' commensurable with K} 



11 

It is natural to restrict attention to non-arithmeticknots without hidden symmetries. 

Definition 1.2.2. We say that K has no hidden symmetries if all the symmetries of 

any finite sheeted caver of S 3 \ K are lifts of symmetries of S 3 \ K. 

We will not define what {non)-arithmetic knots are, we simply recall a clasic result of 

Margulis which gives an equivalent condition, namely that there exists a unique minimal 

orbifold in the commensurability class of S3 \ K. 

An outstanding question in the field is the Reid-Walsh Conjecture 

Conjecture 1.2.3. {Reid and Walsh, 2008) For a hyperbolic knot K C S 3 , IC(K )I ~ 3. 

The main theo rem of (Boileau et al. , 2011) is the following 

Theorem 1.2.4. (Boileau et al., 2011){Theorem 1.4/ 

1. K nots without hidden symmetries which are commensurable are cyclically commen­

surable. 

2. A cyclic commensurability class contains at most three hyperbolic knot comple­

ments. 

The cyclic commensurability class of K \ S 3 is denoted as follows 

CC(K) = {K' c S3 : K' cyclically commensurable with K} 

We also provide several obstructions for a knot which is not unique in its cyclic com­

mensurability class 

Theorem 1.2.5. (Boileau et al., 2011)(Theorem 1.1} Let K c S 3 be a hyperbolic knot. 

If ICCI ?: 2, then 

1. K is fibred. 
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2. the genus of K is the same as the genus of any K' CCC. 

3. the volume of K is different from that of any K' E CC\ K. In particular, the only 

mutant of K contained in CC is K. 

4. K is chiral and not commensurable with its mirror image. 

We will focus here on the proof of 1, more precisely for the case where K is periodic : 

Definition 1.2.6. We say that K is periodic if it admits a non-free symmetry with an 

axis disjoint from K. 

The quotient of S3 by this symmetry is an orbi-lens space: 

Definition 1.2.7. An orbi-lens space is the quotient orbifold of S3 by a finite cyclic 

subgroup of S0(4). 

We denote the singular set of an orbifold 0 by I;( 0) and by lOI its underlying manifold. 

The first homology group of an orbifold is the abelianisation of its fundamental group. 

A knot in an orbi-lens space L is primitive if it carries a generator of H 1 (L). 

Lemma 1.2.8. (Boileau et al. , 2011){Corollary 3.2] A 3-orbifold Lis an orbi-lens space 

if and only if ILl is a lens space which admits a genus one Heegaard splitting ILl = V1 UV2 

such that I;(L) is a closed submanifold of the union of the cores C1 , C2 of V1, V2 , and 

there are coprime positive integers b1, b2 2: 1 such that a point of Cj has isotropy group 

7Ljbj . In the latter case, 7TI(L) ~ 7L/ (blb2I7Tl(ILI)I) . 

We will use L(p, q; b1 , b2) to denote the orbifold described in the lemma. As we are mainly 

concerned with the case b1 = 1 and b2 =a, we use L(p, q; a) to denote L(p, q; 1, a). When 

a= 1, L(p, q; a) is just L(p, q). 

Recall that a cusp of a complete, finite volume, orientable, hyperbolic 3-orbifold is of 

the form T 2 x JR, where T2 is a Euclidean the two-dimensional torus. 
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A slope r in a torus cusp of a complete, non-compact , fin i te volume hyperbolic 3-orbifold 

0 is a cu ·p i otopy class of essential simple dosee! curves which lie on ·ome torus section 

of the cusp. 

Th positive solution of the Smith conjecture implies that I.-om+(S3 \ K ) is cyclic or 

dihedral and the subgroup of Isom+ (53 \ K) which acts freely onK is cyclic of index at 

most 2. We denote this subgroup by Z(K) and the quotient (S3 \ K )/Z (K ) by Z(K ). 

Call r(K ) the proj ction of the meridian of J{ (a slope in the cusp of S3 \ K) to the 

cusp of Z ( K ) . 

Proposition 1.2.9. (Boileau et al. , 2011)/Pmposition 4.1 3/ A commensurability class 

contains cyclically commensurable knot complem ents S 3 \ K and S 3 \ K' wher-e K' f. J{ 

if and only if it contains the complem ent of a knot R in an or-bi-lens space L such that R 

is pr-imitive in L and L admits an orbi-lens space surgery L ' along R of slope r-' f. r-(K). 

Fur-ther-mor-e, we may assume that L \ 1? = ZJ< and if 1ï
1

: 5 3 ---+ L' i the universal 

covering and i?' c L ' is the core of the r-'-Dehn filling of Zg , then K' = 7ï -
1 (!{' ). 

D efinition 1.2 .10. A B erge-Gabai knot in a solid torus is a 1-bridge braie! in a solid 

torus which admit · a non-trivial cosmetic surgery slope. 

D efinition 1.2 .11. (Boileau et al., 2011)/Definition 5.5} 

1. Let w,p, q,a be integer-s with w , a , p 2 1 and gccl (p, q) = gccl (w.ap) = 1. A B erge­

Gabai knot 1? of winding number- w in L (p, q: a ) consists of a knot R C L (p , q; a ) 

and a genus one Heegaard splitting V1 U V2 of IL (p , q; a ) 1 such that R is a B er-ge­

Gabai knot of winding number win V1 and 'E(L (p , q; a)) is a closed submanifold of 

the COTe of V2 . 

2. A (p , q; a )-unwrapped B er-ge-Gabai knot in S 3 is a knot in S 3 which is the inver-se 

image of a B er-ge-Gabai knot in L (p , q; a) under- the univer-s al caver S 3 ---+ L (p , q; a). 
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Figure 1.1 A B rge-Gabai knot K C L(2 , 1) and the un­

wrapped Berge-Gabai knot in S 3 

Note that the inverse image in S 3 of a Berge-Gabai knot in .L (p , q; a) is a knot (i.e. 

connected) as its winding number w is coprime to ap. 

Theorem 1.2 .12. (Boileau et al. , 2011}/Theorem 6.1} Let K be a 1-bridge braid on 

n strands in a solid torus V. For any essential simple closed cuTve C on aV wh ose 

algebraic winding number in V is coprime to n there is a locally trivial fibring of the 

exterioT of J( in V by surfa ces whose intersection with aV has n components, each a 

curve parallel to C. 

Corollary 1.2.13. (Boileau et al. , 2011)/Comllary 6. 2] An unwrapped BeTge-Gabai knot 

is a fibred knot . 

Proof of Corollary 1. 2.1 3. Let K be an unwrapped Berge-Gabai knot in S 3 . Th en K is 

the inverse image in S 3 of a Berge-Gabai knot 1? C .L (p, q; a) of winding number n , say, 

under the universa.l cover S 3 -t [(p , q; a) . T hus there is a ge1ms one Heegaard split t ing 

vl u v2 of II (p, q; a) 1 such tha.t 1? is a Berge-Gabai knot of winding number n in vl 

and I:(f (p, q;a)) is a closed submanifold of the core C2 of V2. As II (p, q;a)l = L(p , q) , 

th a.lgebra.ic intersection number of a meridian curve of V1 wit h one of V2 is ±p. By 
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definition, gcd(p, n) = 1, so Theorem 1.2.12 implies that there is a loca.lly trivial fibring 

of the xterior of R by surfaces which intersect av in curves parallel to the m ridian of 

V2 . Therefore we can extend the fibrat ion over the exterior of K in L(p, q) = I.C(p. q: a) 1 

in such a way that it is everywhere transv rse to L-( .C(p , q; a)) . Hcnce the fibrat ion lifts 

to a fibring of the exterior of K. 0 

Proof of Theor-em 1.2.1 2. Let K b the closed 1-bridge braid coutained iu the interior 

of a solid torus V determined by the three parameters: 

• n , th braid index of K ; 

• b, the bridge index of K ; 

• t , the twist ing number of K. 

See (Gabai, 1990) for an explanation of these parameters aud Figure J .2 for an cxamplc. 

(Our conventions differ from those of (Gabai, 1990) by minoring and changing orienta-

t i on. This modification is convenient for presenting the knot 's fundamental group. ) 

Number the braid 's strands successively 0 to n- 1 and let CJi denot the i th elementary 

braid in which the ith strand passes over th ( i + 1) t The braid associa t d to K has the 

followin g form: (3 (K ) = CTb - l · · · CJoOt where 0 = CTn - 2 · · · CJo is the po:-;itive 27f / n twist. 

Denote by 1r the permutation of Z/n determined by (3 (K ). It has the following simple 

form: _ l ~ + t + 1 if 0 :::; a < b 

1r(a) = t if a= b 

a+ t if b < a < n 

(l.J ) 

for some a E ii . As K is a knot , 1r is an n-cycle. 

Let T , = é)V and T2 = 8N(K ) the boundary of a closed tubular neighborhood of K in 

int(V). There is a meridian class /L l E H 1 (Tl) well-defined up to ± 1 and represcntcd 

by the boundary of a meridian disk of V1 . Let À1 E H1 (Tl) be any class which forms a 

basis of H 1(T1) with f..iJ· Then À1 generates H1(V). 
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Figure 1.2 The Fintushel-Stern lmot (n = 7, b = 2, t = 4). 

The curve x ' is obtained from the arc labelled x ' by closing 

it in the boundary of the tunnel with an arc parallel to the 

bridge and y' is obtained similarly by closing the arc y' in the 

boundary of the tunnel. 

Here Ris: y x y .x x y x x y- 1x- 1y- 1x- 1 x - 1y- 1x-1x- 1 . 

Let M denote the exterior of K in V and fix an essential simple closed curve C on av. 
Vve arc clearly done if C is a meridian curve of V , so assume that this is not the case . 

Then we can orient C and find coprime integers p 2:: 1, q so that 

Note that p is the algebraic winding number of C in V. Assuming that gcd(p, n) = 1 we 

must show that there is a locally trivial fibring of M by surfaces which inters ct av in 

curves pa.rallel to C. The tools we use to prov this are Bruwn's theorem (Brown, 1987) 

and Sta.llings' fibration criterion (Stallings, 1962). See also (Ozsvath and Szab6 , 2005) 

where a simila.r argument is invoked; our proof is only slight ly more involved. Brown 's 

theorem gives necessary and sufficient conditions under which a homomorphism from a 

two-generator one-relator group to Z has finitely generated kernel and Sta.llings ' theorem 

produces a. fibration of a 3-ma.nifold given such a. homomorphism of its funda.menta.l 

group. More precisely: 

Theorem 1.2.14. (Theorem 4.3 and Proposition 3.1 of (Brown, 1987)) Let G = (x, y : 



17 

R ) be a two-generator one-relator group with R = R1R2 .. . Rm , RiE {x, x-1, y, y-1 }, a 

cyclically reduced and non-trivial relator. Let S1, . .. Sm be the proper initial segments of 

the relator R, i.e. Si = R1 . .. Ri- l· Finally let <p : G -+ lR be a non-zero homomorphism. 

If <p( x) #- 0 and <p (y) #- 0, then ker( <p) is finitely generated if and only if the sequence 

{ <p(Si)}~ 1 assumes its maximum and minimum values exactly once. 

It is easy to see that the exterior M of K is homeomorphic to a genus 2 handlebody with 

a 2-handle attached to it. Start with a solid torus U' c int(V) obtained by removing a 

small open collar of T1 in V. Denote au' by T3. As K is 1-bridge, i t can be isotoped into 

U' so that the bridge is a properly embedded arc and its complement, Î say, is contained 

in T3. Fix a disk neighborhood D C T3 of Î and let a = aD. Let U be the exterior 

of the bridge in U' , a genus two handlebody. We can assume that T3 \au c int(D) 

and therefore ac au. By construction, a bounds a 2-disk properly embedded in V\ U 

(i.e. a copy of D isotoped rel aD into V\ U). It is easy to see that M is a regular 

neighborhood of t he union of U and this disk. 

The fundamental group of U is free on two generators x, y represented by two curves 

in T3 representing À1 . (See Figure 1.2. ) There are a pair of dual curves x', y' c au to 

these generators. This means that 

• x' and y' bound disks in U; 

• x intersects x' transversely in one point and is disjoint from y'; 

• y intersects y' transversely in one point and is disjoint from x'. 

See Figure 1.2. The word RE 1r1(U) in x, y represented by the curve a can be read off 

in the usual way: each signed intersection of a with x' , resp. y', con tri butes x±l, resp. 

y±l, while travelling around a . 

We introduce the auxiliary function f : Z/n \ {b} -+ {x, y} given by: 
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{ 

y if 0 ::; a < b 
f(a) = 

x if b < a < n 
(1.2) 

for sorne a E a. Let Wj = f( 1rj (b)) and consider the word w = w1 w2 . .. Wn_ 1 . Then 

R = ywxy- 1w-1x-1 . To see this, start wit h y from the base point w (c.f. Figure 1.2); 

then follow the knot until the b strand, which contributes w; then turn at the lower 

foot of the handle, which contributes x y- 1 ; then walk along the knot in the opposite 

direction un til the strand b is reached , which con t ri butes w-\ then close by passing x' , 

which contributes to t he final x-1. Notice that Ris cyclically reduced. It follows that 

Let /L2 E H1 (T2) be a meridinal class of K . The reader will verify that we can choose 

the longitudinal class À1 for V , a longitudinal class À2 E H1 (T2) for K , and possibly 

replace /Ll by -f.Ll so that in H1(M ): 

• [yx- 1] = f.L2 (i. e. [yx- 1] is represented by a meridian of Kat the bridge); 

• À1 + t/L2 = [x] (i.e. À1 and [x] co-bound an annulus in V which K punctures t 

t imes). 

Consider the homomorphism 1r1 (U) --+ Z which sends x to pt- nq i= 0 and y t o pt- nq + 
pi= O. Since the exponent sum of both x and y in Ris zero, it induces a homomorphism 

<p : 1r1 (M) --+ Z. Since gcd(p, nq) = 1, <p is surjective. From t he above, it can t hen be 

verified t hat <p(À1) = - nq and <p( f.L1) = np. Renee <p(f.Li >.f) =O. 

Lemma 1.2.15. Let S1, 82 , .. . , S2n+2 be the proper initial segments of R = ywxy- 1w-1x-1 = 

R1R2 .. . R2n+2 where lîi, E {x,x-I, y , y- 1
} . Then the sequence { cp(Si)}I~i2 achieves its 

maximum and minimum values exactly once. 
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Proof. By construction, cp(x) =1- 0, <p(y) =1- 0, and cp(y) > cp(x). The conclusion of the 

lemma is easily seen to hold when cp(x) and cp(y) have t he same sign , so assume that 

<p(x) < 0 < <p(y). 

SetS= max{cp(Si): 1:::; i:::; 2n + 2} and s = min{cp(Si): 1:::; i:::; 2n + 2}. 

Sin ce cp( x) < 0 < <p(y) we have 

s:::; cp(Sn+i) = <p(Sn-i+2) + cp(x) - <p(y) < cp(Sn-i+2) :::; S for 3 :Si :Sn+ 1 (1.3) 

Th us t he maxima of {cp( Si)} ;~i2 can only occur in t he sequence <p( S1), cp( S2), ... , <p( Sn) 

and the minima in <p(Sn+2), <p(Sn+3), . .. , <p(S2n+l)· 

We look at the maxima of {cp( Si)} ;~t2 first. Suppose th at 1 :::; l < r :::; n. We daim 

that cp(Rt+l) + · · · + <p(R,.) =/= 0 (mod n). If so, <p(St) =1- cp(Sr) and therefore S occurs 

precisely once amongst the values { <p(Si)}f=l· 

Let <p be the reduction of <p modulo n. Since gcd(p, n) = 1, we can define 

Th en cp( x) = t and cp(y) = t + 1 and therefore 

cp(f(a)) = 7r(a)- a 

for all a E 7L/n\ {b}. Renee cp(Rt+d + · ·+ cp(R,.) = cp(wt)+· · ·+ cp(wr-1) = cp(f(7r1(b)))+ 

. .. + cp(f(7rr-l(IJ))) = (7rl+l(IJ) _ 1fl (IJ)) + ... + (7rr(IJ)- 'lfr-l(IJ)) = 1fr(b)- 1fl(b). Since 

1f is an n-cycle and 1 :::; l < r :::; n we see t hat 1fr (b) =1- 1f1 (b). It follows that cp( Rt+ 1) + 

· · · + cp(R,.) =/= 0 (mod n). 

The uniqueness of the minimum follows along the same lines. We saw above that 

the minima of { cp(Si)};~t2 only occur in <p(Sn+2),cp(Sn+3), . .. ,<p(S2n+d· As before, 
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tp(Rz+d + · · · + tp(Rr) ::j. 0 (mod n) for all n + 2 ::; l < r ::; 2n + 1 and therefore 

tp(Sn+2), tp(Sn+3) , ... , tp(S2n+l) are pairwise distinct. This implies the desired conclu-

SlOn. D 

We can now complete the proof of Theorem 1.2.12. The previous lemma couples with 

Theorem 1.2.14 to show that the kernel of tp is finitely generated. Stallings' fibration 

criterion (Stallings, 1962) implies that M admits a locally trivial surface fibration with 

fibre F su ch that 1r1 ( F) = ker( tp). Sin ce tp(f.Ll) = np =/= 0 while tp(f.Lf Àf) = 0, ker( VJI 7q (T1 )) 

is the infinite cyclic subgroup of 1r1 (Tl) generated by [C]. Bence the fibration meets T1 

incurves parallel to C. To complete the proof, we must show that the intersection of a 

fibre F with T1 has n components. 

To that end, note that as tp is surjective we can orient F so that for each ( E H1 (M) we 

have tp(() = ( · [F]. Let <j;1 E H1 (M) be the class represented by the cycle FnT1 with the 

induced orientation. Clearly, <P1 =±IF n T1I[C]. Since tp(À 1) = -nq and tp(J.L1) =np, 

tp(n1 (T1)) = nZ. Thus if ( E H1(M) is represented by a dual cycle to [C] on T1, then 

This completes the proof. D 

An interesting consequence of the proof above is the following 

Proposition 1.2.16. (Boileau et al., 2011}[Proposition 1.6} Let M be the exterior of 

a hyperbolic 1-bridge braid in a solid torus V . Then each top-dimensional face of the 

Thurston norm ballin H2(M, oM; JR) is a fibred face. 

Proof. Let K be a hyperbolic 1-bridge braid on n strands in a solid torus V. We 

use the notation developed in the proof of Theorem 1.2.12. In particular, M is the 

exterior of Kin V and H1(M) ~ Z EB Z with basis )q , f.L2· By construction there are 

classes 6,6 E H2 (M,8M) such that if 8: H2 (M,8M)---+ H1 (8M) is the connecting 

homomorphism, then 86 = f.Ll - nf.L2 and 86 = nÀ1 - À2. Since IÀ1 · Çjl = 01j and 

IJ.L2. Çjl = 02j, {6, 6} is a basis for H2(M, oM) ~ H 1(M) ~ z EB Z. 
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Consider the homomorphism 'lj.; given by the composition H2(M, ôM) ~ H1(ôM) = 

H1(Tl) FB H1(T2)--+ H1(Tl). Then 'lj.; (aô +b6) = ap,1 +nbÀ1, and therefore 'lj.; is injective. 

Let p, q be coprime integers such that gcd(n,p) = 1. According to Theorem 1.2.12, there 

is a fibre F in M which can be oriented so that 'lj.;( [F]) = [F n T1] = nqp,1 + npÀ1 = 

'lj.; (nqf.l + P6). Renee [F] = nqf.l + P6 so that nqf.l + P6 is a fibre class in H2(M, ôM) . 

Fix coprime integers a, band consider the class Ç = af.l +b6. The proposition will follow 

if we can show that the projective class of Ç can be arbitrarily closely approximated by 

fibre classes (Thurston, 1986, Theorem 2). By the previous paragraph Ç is a fibre class 

when a = 0, so suppose this is not the case. It suffices to show that Q = limm !zm. a am 

where amô + bm6 are fibre classes . This is easy to verify: for each integer m > 0 set 

Pm= nmba+ 1 and Qm = mb2 . Then gcd(pm, nqm) = 1 and from the previous paragraph 

we see that nqmô + Pm6 is a fibre class. Finally, limm nqm = !!. , which completes the 
Pm a 

pro of. D 

Here is a curious consequence, more precisely a reformulation of Theorem 1.2.12 

Proposition 1.2.17. (Boileau et al., 2011}(Theorem 1.5] Let K be a knot in an orbi­

lens space (with non-empty singular set) L which is primitive in ILl . If K admits a 

non-trivial orbi-lens space surgery, then the exterior of K admits a fibring by 2-orbifolds 

with base the circle. 

Proof. Suppose L = !:(p , q; a , b) . Set Lo = !:(p, q; a , b) \ N(L,(f:(p , q; a, b))) and 

if IL,(/:(p, q; a, b))l = 1 

if IL,(/:(p, q; a, b))l = 2 

Since K admits a non-trivial orbi-lens space surgery in /:, Lo admits a non-trivial cos­

metic surgery . Because S1 x S1 x I has no non trivial cosmetic surgeries (Boileau et al. , 

2011) [Lemma 5.1], Lo ~ S1 x D 2 (so we can suppose that b = 1) and K is a Berge­

Gabai knot in Lo . Let n be t he winding number of Kin Lo. Our hypotheses imply that 

gcd(p, n) = 1. Thus Theorem 1.2.12 implies that there is a locally trivial fibring of the 
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exterior of K in Lo by surfaces which intersect 8Lo in curves parallel to the meridian 

slope of the solid torus N('E(L(p, q; a))). Therefore we can extend the fibration over the 

exterior of Kin L(p, q; a) in such a way that it is everywhere transverse to 'E(L(p, q; a)). 

We endow each fibre F of this surface fibration with the structure of a 2-orbifold by 

declaring each point ofF n 'E(L(p, q; a)) to be a cone point of order a. In this way the 

exterior of K in L(p, q; a) admits an orbifold fibring with base the circle. 0 

It is known that any knot in S 3 which admits a lens space surgery (and more generally 

a 1-space surgery ) is fibred (Ni , 2007). As an application of Theorem 1.2.12, we can 

say something more about the fibration of a Berge knot. Recall that the Berge knots 

are the doubly primitive knots in S3 and conjecturally they are all the knots with lens 

space surgeries . It was proved by Berge that the induced knot in the surgered lens space 

is simple (Berge, 1984) In particular , it is a 1-bridge knot. 

Proposition 1.2.18. Let K' be the induced knot in a lens space L(p, q) obtained by 

surgery on a doubly primitive K c S3 . Th en, wh en K' is supported in a tubular neigh­

borhood of the Heegaard torus T of L(p, q) as a simple knot, the cores of the Heegaard 

solid tori determined by T can be isotoped (perhaps not simultaneously) to be transverse 
0 

to the fibration of L \ K' . 

Proof. Call U1 and U2 the Heegaard solid tori bounding T. View K' in U1 first . Then 

K' is a braid in U1 and because of the primitivity of K', the winding number w(K') 

is coprime top. We can apply theorem 1.2.12 to conclude that there is a fibration of 
0 

U1 \ N(K') which meets U2 in meridian disks, hence the fibration can be extended to 

the fibration of L(p, q) \ K. 

Now repeat this argument for U2 . 0 

Remark 1.2.19. We conjecture nevertheless that the two cores of L(p, q) can be simul­

taneously isotoped to transverse positions with respect to the fibration of K. 

·-- - --- - -·-· ------ -
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CHAPTER II 

BACKGROUND ON HEEGAARD-FLOER HOMOLOGY 

In this chapter we describe the construction of Heegaard-Floer homology, introduced 

by Ozsvath-Szab6 in 2000, which will play an essential role in the proof of our main 

theo rems. 

2.1 Heegaard splittings 

Throughout this chapter, Y will denote a closed, connected, oriented three-manifold. 

Definition 2.1.1. A Heegaard splitting (decomposit ion) of Y is a tuple (2::, Ua , U!) , 

where 2:: c Y is a separating, closed, oriented surface, Y \ 2:: = Ua U U1 with each Ui an 

open handlebody. 2:: is called a Heegaard surface. 

We will always assume that Y, 2::, Ua , U1 are oriented using the following convention: 

2:: = 8Ua = -8U1 and the orientation on Y coïncides with the orientations of Ua and 

U1. Two Heegaard splittings (2::, Uo, Ul), (2:: ' , Ub, U{) of Y, resp. Y', are (orientation 

preserving) homeomorphic if there exists an (orientation preserving) homeomorphism 

cp : Y --+ Y' such that c.p(I:) = 2::' and c.p(Ui) = Uf. 

Any closed, connected, orientable t hree-manifold admits Heegaard splittings. To con­

struct one, take Ua to be a regular neighborhood of the 1-dimensional skeleton of a 

triangulation of Y (which always exists. See e.g. (Moise, 1977)). See (Scharlemann, 

2000) for a survey of Heegaard splittings. The genus of 2:: is by definition the genus of 

the splitting and the smallest genus among all splittings of Y is the (Heegaard) genus of 
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Y. 

The genus gives a measure of the complexity of three-manifolds. There is one manifold of 

genus 0, namely S3 . Manifolds of genus 1 form a simple family: they are lens spaces and 

S1 x S2 .1 All genus 1 manifolds have cyclic fundamental group and except for S1 x S2 

have spherical geometry. The manifolds of genus 2 form a much more complicated class, 

which in particular contains hyperbolic manifolds. A complete classification is currently 

out of reach. 

Given two manifolds Y, Y' with sorne Heegaard splittings (~, Uo , U1), resp . (~', Ub, U{) , 

one can construct a Heegaard splitting on t he connected sum Y #Y' by choosing the 

three-balls B, resp B', on which the sum is performed such that B n ~ ~ D 2 , resp. 

B'n~' ~ D2 and oBis identified with oB' by a homeomorphism <p such that <p(~nB) = 

~'nB'. 

Observe that ~#L,' will be a Heegaard surface in Y #Y' . We call this Heegaard split ting 

the connected sum of the two splittings, we can write it as: (L,, Uo, U1)#(~', Ub, U{) = 

(~#~' , Uo#aUb, U1 # aU{). 

From a given splitting (~, Uo, Ul) of Y, one can obtain new splittings by: isotopy and 

( de)stabilisation. Isotopy refers to the ambient isotopy of ~ in Y , whereas stabilisation 

is the connect sum (L,, Uo , U1)#(T2
, Vo, VI) , where (T 2

, Vo , V1) is the unique (up to iso­

topy) genus 1 splitt ing of S3. Conversely, we say that (~, Uo , U1) was obtained from 

(~ , U0 , Ul)#(T2 , V0 , V1 ) by destabilisation. 

It is a classical theorem of Reidemeister (Reidemeister, 1933) and Singer (Singer, 1933) 

that any two Heegaard splittings of Y become isotopie after a finite number of stabili­

sations. 

1 We adopt the convention that S 1 x S 2 is not a lens space. 
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2.2 Heegaard diagrams and Morse theory 

Given a decomposition (E , Uo, U1) of Y , one can specify the handlebodies Ui by complete 

sets of attaching cir'Cles: 

D efinit ion 2.2 .1. A complete sets of attaching circles for E - an oriented compact 

surf ace of genus g - is a collection a = { a1 , . .. , a9 } of essential simple closed curves in 

E which are linearly independent in H 1 (E; IZ). 

To describe Uo, say, one chooses g curves a 1, . .. , a9 which bound disks in Uo , the condi­

tion that they are linearly independent in H1(E, IZ) implies that E \ {Uiai} is a punctured 

sphere. Note that the curves a 1 , ... , a9 are not unique (up to isotopy). 

Conversely, starting with E and a = { a1 , . .. , a 9} , one can construct a handlebody in 

which the ai curves will bound disks by attaching to E x {0} C E x I 2-handles along 

ai x {0} and gluing a three ball to the sphere boundary component of the result ing 

manifold. 

Heegaard splittings can be specified up to (oriented) homeomorphism by Heegaard dia­

grams: 

D efinit ion 2.2.2 . A Heegaard diagram is a tuple (E, a , (3) where E is a compact, ori­

ented surface of genus g and a, resp. (3 are complete sets of attaching circles. Two 

Heegaard diagrams (E, a , (3) and (E' , a' , (3') are diffeomorphic if there exis ts an orien­

tation preserving diffeomorphism cp : E ---+ E' su ch th at cp( a) = a' and cp(f3) = (3'. 

From a Heegaard diagram one constructs a splitting by attaching 2-handles along ai x 

{ 0} c E x I and 2-han dl es along f3i x { 1} C E x I and gl uing 2 three-balls along the 

resulting two-sphere boundary components. By convent ion, we orient the manifold thus 

obtained consistently with the product orientation on E x I. 

The t heory of Heegaard diagrams is equivalent to Kirby calcul us ( also called handle 

attachment calculus) in dimension 3, see (Gompf and Stipsicz, 1999), (Milnor, 1965) for 
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the theory of handle attachment in general, which in its turn is closely related to Morse 

theory and Cerf theory. See (Milnor, 1963), (Cerf, 1970) as references for the latter. 

Endow Y with a Riemannian metric. Choose a self-indexing Morse function f : Y --7 

[0, 3], with one index 0, resp. one index 3 cri ti cal point. Then the level set ~ = f - 1 ( ~) 

is a Heegaard surface of Y , Uo = f-1 [0 ,~ ], U1 = f- 1 [~ ,3]. Moreover, the ascending 

manifolds (under the flow of the negative gradient of f) of the index 1 critical points 

intersect ~ in a complete set of attaching circles, denoted a and similarly the descending 

manifolds of index 2 critical points intersect ~ in (3. Then (~,a, (3) becomes a Heegaard 

splitting of Y. We say that fis compatible with (~,a, (3). Conversely, given a Heegaard 

diagram, there exists a compatible Morse function (Milnor, 1965). 

One defines several moves on Heegaard diagrams (~,a, (3) : 

• isotopy : replace a =: ao, a complete sets of attaching circles, with a1 , where 

at, tE [0, 1], is a (smooth) isotopy such that for all tE [0, 1], at is a complete set 

of attaching circles; the same for (3. 

• handleslide the set of attaching circles a = { a 1, . .. , ag } is replaced by the set of 

attaching circles a' = {a~ , ... , ag}, where a1, a~ and a2, bound a pair of pants, 

i. e. a thrice punctured sphere in~- {a3 U .. . U ag}; similarly for (3. 

• stabilisation replace ~ with ~' = ~#T2 , a = { a 1 , ... , ag} and (3 = {,81 , ... , ,Bg } 

with a'= {al,···,ag,ag+I} and (3' = {,Bl , .. . ,,Bg,,Bg+l} where ag+l,,Bg+l C T 2 

are two simple closed curves intersecting transversely in one point and disjoint 

from the disk on which the connected sum is performed. The inverse operation is 

called destabilisation. 

Any two Heegaard diagrams representing the same manifold become diffeomorphic after 

applying a finite number of moves, by classical Cerf the01·y (Cerf, 1970). 
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2.3 Heegaard-Floer homology 

Heegaard-Floer homology is a package of invariants of smooth three- and four- dimen­

sional manifolds, developed by Ozsvath and Szab6 from 2000 onwards. It was conjec­

tured right from the beginning to be equivalent to the Sei berg-Witten-Floer homology 

developed by Kronheimer and Mrowka (Kronheimer and Mrowka, 2007) and the moti­

vation for its construction was to provide ways to compute the latter. The conjecture 

was recently proved by two independent groups (Colin, Ghiggini and Honda, 2011 ), 

(Kutluhan, Lee and Taubes, 2011) . 

Heegaard-Floer homology is indeed more easily computable and was extended to abjects 

which had no corresponding monopole invariant, for example knots in the three-sphere, 

where the invariant (discovered independently by Rasmussen (Rasmussen, 2003)) , is a 

categorification of the Alexander polynomial. It is known to detect geometrie properties 

of three-manifolds, such as the minimal genus of embedded surfaces in a given homology 

class , in particular the ge1ms of a knot . Also, Donaldson's diagonalisation theorem 

(Donaldson, 1983) can be proved within the framework of Heegaard-Floer homology 

(Ozsvath and Szab6, 2003a). 

We will give a summary of the construction for the abjects we are interested in , the 

reader is referred to the original papers for a complete account (Ozsvath and Szab6, 

2004c) ,(Ozsvath and Szab6, 2004b) ,(Ozsvath and Szab6, 2004a) ,(Rasmussen, 2003), see 

also the expository papers (Ozsvath and Szab6, 2006c), (Ozsvath and Szab6, 2006a). 

As the name suggests, Heegaard-Floer homology is defined using a Heegaard diagram 

(2:: , a, {3) of Y , with an addit ional basepoint z E 2.:: - (aU {3) . 

Definition 2.3.1. A pointed Heegaard diagram is a tuple (2:: , a , {3 , z ), where (2:: , a , {3) is 

a Heegaard diagram for Y and z E 2.::-a - {3 . Two pointed Heegaard diagrams (2::, a , {3 , z) 

and (2.:: ' , a ' , {3 1
, z' ) are diffeomorphic if the underlying Heegaard diagrams (2:: , a , {3) , resp. 

(2.:: ' , a ', {3 ' ) are diffeomorphic by a # ffeomorphism which respects the basepoints. 

There is a natural notion of pointed m aves for pointed Heegaard diagrams. These are 
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just the moves on Heegaard diagrams described above with the extra conditions that: 

• isotopies are supported in the complement of the basepoint , 

• the pair of pants in the definition of handleslide does not contain the basepoint, 

• the connected sum with T 2 in the stabilisation move is made on a disk not con-

taining the basepoint. 

It is shown in (Ozsvath and Szab6, 2004c, Proposition 7.1) that any two pointed Hee­

gaard diagrams of Y become diffeomorphic after a finite sequence of pointed moves. 

2.3.1 The construction of Heegaard-Floer homology 

Heegaard-Floer homology is a version of Lagrangian-Floer homology in t he g-fold sym­

metric product of :E : Sym9(:E) = :Ex9 / s , where :Ex9 = :Ex ... x :E, 89 denotes the 
g ~ 

9-times 

symmetric group on g elements and the action on :E x9 is the natural one- permutation 

of the factors. Denote by n: I; X9 -t Sym9(:E) the canonical projection. 

The usual setup for Lagrangian-Floer homology is a symplectic manifold (M,w) with a 

generic almost complex structure J and a pair of Lagrangian submanifolds (Lo , L1). One 

then analyses the moduli space of holomorphie disks with certain boundary conditions. 

See (Gromov, 1985),(Floer, 1988) and (McDuff and Salamon, 2004) for an introduction 

to this field. 

Choose a Kahler structure on :E. The product complex structure on :Ex9 descends to the 

symmetric product , making n a holomorphie ma p. The proof that Sym9 (:E) is a com­

plex manifold follows from the fact that Sym9(<C) is a complex manifold biholomorphic 

to ([:9. This biholomorphism is constructed by associa ting to a monic degree g polyno­

mial (which can be seen as a vector of ([:9 - t he coordinates being the non-dominant 

coefficients) its unordered set of roots (with multiplicities)- an element of Sym9(<C) . 

The two sets of attaching circles a and (3 give rise to the tori 'If a, resp. 1f ,a c Sym9 (:E) : 
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1I' a = 1r( 0:1 x · · · x o:9 ) , 1I' ,8 = 1r((31 x . .. x (39 ). Note that 1r is a branched cover with 

singular locus the diagonal~ c E xg , where by definition (z1, ... , z9 ) E ~ Ç::::::} Zi = Zj 

for some i 1- j. Since the ai curves are disjoint , o:1 x ... x o:9 n ~ = 0, therefore 'li' a is 

an embedded torus in Sym9 (E), and similarly 1I' ,8. We will suppose that they intersect 

transversely, which is equivalent to the transversality of each O:i with each /3j. 

Intersection points of 1I' a and 1I' ,8 have an interpretation in tenns of the Heegaard di­

agram: let x E 'li' an 'li' ,a. Then x is an unordered g-tuple of points (xl, ... , x9) with 

Xi E E, where Xi 1- Xj if i 1- j (since 'li' an~ = 0) and each Xi belongs to an a curve 

and a (3 curve. By relabelling the elements Xi, we can suppose that Xi E O:i, and so 

XiE O:i n f3cp(i) for some permutation Œ E S9 . In words, an intersection point between 1I'a 

and 1I' ,8 is a choice of intersection points between the a and (3 curves, where each curve 

in the Heegaard diagram appears exactly once. 

1I'a and 1I',a will play the role of the Lagrangian submanifolds. At the time of writing 

of (Ozsvâth and Szab6, 2004c), there was no known way to push forward the product 

Kahler structure (in particular the symplectic form) on L_;Xg to Sym9(E). This was clone 

later by Perutz (Perutz, 2008). The two tori are totally real with respect to an almost 

complex structure coming from the product complex structure on L_; Xg . Ozsvâth and 

Szab6 were able to adapt the Floer homology techniques to this case. We will not go 

into the analytical details , we just note that work of Perutz (Perutz, 2008) , shows that 

Heegaard-Floer homology can be viewed as a classic Lagrangian-Floer homology. See 

also (Lipshitz, 2006) for a 'cylindrical' reformulation of Heegaard-Floer homology, where 

the ambient symplectic manifold is [0, 1] x lR x E , but one allows pseudo-holomorphie 

curves of higher genus. 

It is convenient to suppose that E has genus g > 2, see (Ozsvath and Szab6, 2004c, 

Section 2.4) and below. This is not an essential restriction since one can always stabilise 

a Heegaard diagram. We note that for genus 1 and 2 Heegaard diagrams one can still 

compute the F loer homology of t he manifold, but some definitions require modifications. 

Ci ven two intersection points x , y E 1I' a n 1I' ,a, one is interested in the moduli space of 
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pseudo-holomorphie disks connecting x to y. These disks are analogous to the trajectories 

between critical points of a Morse function in classic Morse theory. In the Floer homology 

setting, the existence of these trajectories is homologically obstructed. As a result , the 

invariant splits according to Spinc structures on Y. This is made more precise in what 

follows. 

Let ][J) be the unit disk in C and e 1 be the arc of 8][J) of points with positive real part, 

and e2 t he arc in 8][J) with negative real part. 

Denote by O(x, y) the set of maps 

{ uo Il ---> SymY(E) 

Such a disk u is called a Whitney disk connecting x to y . Two Whitney disks ua and 

u1 are said to be homotopie if there is a continuous one-parameter family ( Ut)tE[ü,l] 

of Whitney disks interpolating them. The set of homotopy classes of Whitney disks 

connecting x to y will be denoted by 1r2 (x, y) . 

There is a natural splicing operation *: 1r2(x , y) x 1r2(y , z) ---t 1r2(x, z) which simply 

concatenates two Whitney disks. 

The structure of 1r2(x, y ) is determined by algebraic-topological data on the triple 

(Sym9(Z:), 'lfa, 'li' ,a) which in its turn can be rephrased in terms of the homology of Y. 

Proposition 2.3.2. (Ozsuath and Szab6, 2004c, Sections 2.3 and 2. 4) We have the 

following isomorphisms: 

Given an element u of 1r2(x, y), one sees that the cycle u( e1)-u( e2) is zero in H1 (Sym9 (Z:); Z). 

The image of this cycle in Hl(Sym9(Z:)) /(Hl (1I'a) EB H1 ('lf,e) is independent of the arcs 

u(el), u(e2), in particular it is independent of u. This motivates the following: 

Definition 2.3.3. (Ozsvdth and Szab6, 2004c, Definition 2. 11) Let a : [0 , 1] ---t 1I'a, 

b: [0 , 1] ---t 'JI',13 be two arcs from x to y in Sym9(Z:). Define c(x , y ) to be the image 
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of the cycle a - b in H 1(Y; Z) under the isomorphisms from Proposition 2.3.2. This 

quantity is sometimes referred ta as the c grading. 

It is immediate from the definition of c that c(x, y) + c(y , z) = c(x, z), for x , y , z E 

'1I'a n 1l'iJ . 

The c grading is the aforementioned obstruction to the existence of Whitney disks con­

necting x to y . 

Proposition 2.3.4. {Ozsvath and Szab6, 2004c, Proposition 2.15) When g > 2, 1r2(x , y) 

is nonempty {::==} c(x, y) =O. If this happens, 

as principal /Z El7 H 1(Y; Z) spaces. 

By t he above discussion, intersection points of 1I'a and 1!' iJ are partitioned into equivalence 

classes in affine bij ection with H 1 (Y; Z), by declaring x and y to be equivalent if c(x , y ) = 

O. These equivalence classes turn out to be in natural bijection with Spinc structures on 

Y, once we fix a basepoint for the Heegaard diagram. 

2.4 Spinc structures 

Recall that the Lie group Spinc(n) , (n 2 3) , is the quotient (Spin(n) x Spin(2)) / z
2

, 

where the generator of Z2 acts on each Spin(r )r=n,2 factor by the non trivial deck trans­

formation of t he cover Spin(r) -t SO (r) . Note that there is a canonical homomorphism 

Spinc (n) -t SO(n), see (Gompf and Stipsicz, 1999) for details. 

Endow our three-manifold Y with a Riemannian metric g and consider the principal 

S0(3) bundle of orthonormal oriented frames fy: Fr -t Y. 

Definition 2.4.1. A Spinc structure on (Y, g) is a lift of the S0(3) bundle fy ta a 

principal SpiniC bundle. 
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Two Spinc structures so, resp. s1 on (Y, go) , resp. (Y, gl) are said to be equivalent if 

there is a 1-parameter family of metrics (gt)tE[O,lJ and a continuous 1-parameter family 

of Spinc structures St on (Y, 9t). Therefore, equivalence classes of Spinc structures on 

Y do not depend on any particular metric, they are associated to the manifold itself. 

Abusively, we will call these equivalence classes simply Spinc structures and we will 

denote by Spinc(Y) the set of Spinc structures on Y. 

In dimension 3, Spinc structures admit a topological interpretation, due to Turaev (Tu­

raev, 1997). 

Definition 2.4.2. Two non-zero vector fi elds v1, v2 on Y are homologous if they are 

homotopie in the complement of a three-ball (or equivalently in the complement of a fini te 

number of three-balls) in Y. 

Proposition 2.4.3. (Turaev, 1997) Spinc structures on Y are in natural bijection with 

homology classes of vector fields. 

The homology classes of vector fields form an affine space over H 2(Y, Z). To see this, 

choose a trivialisation of the tangent bundle of Y, T: TY ----+ Y x JR3 ; this way one 

can identify unit vector fields on Y with maps v : Y -t S2 C JR3 . Then homotopy 

classes of vector fields are in one-to-one correspondence with homotopy classes of maps 

v: Y -t S2 . The homology classes of vector fields are uniquely determined by the induced 

maps v*: H 2(S2 ; Z) ----+ H 2(Y; Z), hence, after fixing a generator of H 2(S2 ; Z), they are 

in one-to-one correspondence with elements of H 2 (Y; Z). This correspondence is not 

canonical, since it depends on T. However, the difference between the corresponding 

elements in H 2 (Y; Z) is independent of the trivialisation (Ozsvath and Szab6, 2004c, 

Section 2.6), hence there is a well-defined difference between two Spinc structures, which 

is an element of H 2(Y; Z). This shows that Spinc(Y) is an affine space over H 2 (Y; Z). 

In a pointed Heegaard diagram (2:, a, (3, z), an intersection point x of 11.' a n 11.' ,e deter­

mines a Spinc structure on Y in the following way: suppose x consists of the g-tuple 

(x1 , ... , x9 ), where Xi E CXi n f3<p(i) for sorne permutation <p E 89 . 
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Fix a Morse function f : Y ~ [0 , 3] compatible with the Heegaard diagram. Consider 

the vector field v := - \? (!) . Each intersection point Xi E x determines a t rajectory from 

the index 2 crit ical point corresponding to f3cp (i ) to the index 1 critical point corresponding 

to Œi · A regular neighborhood of t his t rajectory is a ball , in which one can isotope v to a 

non-zero vector field v' . This is al ways possible when t he indexes of t he two critica.l points 

in t he ba.ll have different pa.rity. After performing this operation for ea.ch xi,iE{l , ... ,g}, 

we obta.in a. vector field which we still call v' . The basepoint z determines a. tra.jectory 

from the index 3 crit ica.l point to t he index 0 critical point . A regula.r neighborhood of 

this tra.jectory is a.ga.in a. three-ball , in which one ca.n isotope v' to a. non-zero vector 

field v" . Notice that by definit ion, the homology class of v" does not depend on the 

part icular isotopies performed in the above three-balls. Renee we have a well-defined 

map Sz : 'li' a n 'Jl'f3 ~ Spinc(Y) , sending x to t he homology class of v". 

The following result justifies the split ting of the intersect ion points between 'JI' a and 'JI' f3 

according to Spinc structures on Y. 

P roposition 2.4 .4 . (Ozsvath and S zab6, 2004c, Lemma 2.19) For x, y E 'li' a n 1I'f3, 

Sz(Y )- Sz(x ) = P D[c(x , y)], 

where PD [r] is the Poincaré dual of '!' E H 1(Y;Z) . 

A Spinc struct ure ha.s a. well-defined Chern cla.ss , an element of H 2 (Y ; Z) . 

Definition 2.4.5 . For a Spinc structure Ç on Y, given as the homology class of the 

vector fi eld v , one defines its Chern class by c1(f,) =[v] - [-v]. 

An equivalent formulation which will be useful later is the following: 

Proposit ion 2 .4 .6. (Ozsvath and Szab6, 2004c, Section 2.6) The Chern class of the 

Spinc structure [v] is equal to the Euler class of the orthogonal complem ent of v , an 

oriented rank 2 vector bundle, or its first Chern class when viewed as a complex line 

bundle. 
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For Ç E Spinc(Y) represented by the homology class [v], the Spinc structure~ := [-v] 

is called the conjugate Spinc structure. It is obvious from the definitions that q(Ç) = 

-cl(~). 

2.5 The invariants 

There is one more ingredient in the definition of the homology groups, namely orientation 

systems. They do not play an essential role, in general, since it was proved by Ozsvath­

Szab6 in (Ozsvath and Szab6 , 2004b)[Theorem 10.12] that there is a canonical choice 

of a (equivalence class of) orientation system for a three-manifold. This is why they 

are generally omitted from the notation of the Floer homology groups. See Section 3 of 

( Ozsvath and Szab6, 2004c) for a complete discussion. They arise at a certain point in 

our proofs, so we include a brief introduction. 

D efinition 2.5.1. {Ozsvath and Szab6, 2004b}(Definition 3.11] For afixeds E Spinc(Y) , 

a coherent system of orientations o is a chai ce of non-vanishing sections o (cp) of the 

determinant line bundle of the linearisation of the [) operator over each cp E 1r2(x, y) 

for each x, y representing s and each cp E 1r2 (x, y), which are compatible with respect ta 

gluing: 

and 

o(u * S) = o(u) 

where 1\ denotes the splicing of Whitney disks and S is the holomorphie sphere generating 

7r~(Sym9(Z::)). 

In order to orient the moduli spaces of holomorphie representatives of Whitney disks, 

one chooses an orientation system. Unless otherwise specified , this will always be the 

canonical one given in (Ozsvath and Szab6 , 2004b) [Theorem 10.12]. 

As mentioned above, there are several versions of Heegaard-Floer homology. The differ­

ence lies in the role played by the basepoint z . We are interested in this work mostly in 
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the Hp+ and HF versions. 

The simplest invariant defined in (Ozsvath and Szab6, 2004c) is HF. It is t he homology 

of a complex CF, defined in terms of a pointed Heegaard diagram (L::,o,,B,z) , and a 

path of almost complex structures in Sym9 (L::). We will not go into the analytical details 

regarding moduli spaces of pseudo-holomorphie disks, almost complex structures, but 

we will define the main concepts and state the necessary t heorems which justify the 

definition of Floer homology. The reader is referred to Section 3 of (Ozsvath and Szab6, 

2004c) for the complet e account. 

In classical Morse theory, one analyses the moduli space of trajectories ( under the gra­

dient flow) from one critical point to another. ln Heegaard-Floer theor·y, the critical 

points are replaced by the intersection points bctween the two tori 1!' a and 1!' .B, and the 

trajectories are the Whitney disks which are moreover pseudo-holomorphie maps. 

The expected dimension of the moduli space M(x , y) of holomorphie Whitney disks in 

a given homotopy class 1/J E 1r2(x, y) is given by the Maslov index of 1/J - denoted by 

~( 1/J ). 

The unit disk]])) in <C has a one-pararneter family of automorphisms preserving the points 

i and -i. These are easily seen as vertical translations in a biholomorphic model for ]])), 

nam ely the band { z E q - 1 < Re( z) < 1} , for which ±i correspond to ± oo. Therefore 

one is mainly interested in 1-dimensional moduli spaces of holomorphie Whitney disks, 

for which the unparametrised moduli spaces 

have dimension O. 

M( tjy ) = M(x ,y ) 
IR 

Theorem 2.5.2. (Ozsvath and Szab6, 2004c, Theorem 3.18) For 1I'a and 1I',e in general 

position and for generic choices of (paths of) almost-complex structures the following 

are true: there is no non-constant holomorphie Whitney disk in any homotopy class 

1/J E 1r2(x, y) with ~(tjy) = 0; for any 1/J E 1r2(x, y) with ~(tjy) = 1, M(tjy) is a compact, 

zero-dimensional manifold. 
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Recall (cf. Proposition 2.3.4) that for x, y E 1I'a n 'li',a, 1r2(x,y) is an affine space over 

Z EB H 1(Y; Z). The action of the Z factor on 1r2(x, y) can be seen as the action of 

?T2 (Sym9(~)) by gluing spheres to the Whitney disks. Consequently, one can compute 

the change in the Maslov index when changing the homotopy class of Whitney disks. 

To identify the elements of n2(Sym9(~)) , one employs the subvariety Vz = zx Sym9- 1 (~) C 

Sym9 (~) in view of the fact that the genera tor of 1r2 (Sym9 (~)) intersects Vz transverse! y 

once (Ozsvath and Szab6, 2004c, Proposition 2.7). 

Definition 2.5.3. Let nz: 1r2(x, y)-+ Z be the function defined by nz(cP) =#(un Vz), 

for some u E c/J . 

Lemma 2.5.4. (Ozsvath and Szab6, 2004c, Lemma 3.3) LetS E 1r2(Sym9 (~)) be the 

positive generator. Then for c/J E 1r2 (x, y) , 

f.L(cP + k[S]) = f.L(cP) + 2k. 

The chain complex CF(~, a , {3 , z) is freely generated over Z by intersection points xE 

One defines a relative grading (degree) on the genera tors: 

gr (x, y) = f.L(cP)- 2nz(c/;) 

for sorne c/J E 1r2(x , y). This quantity is independent of c/; , as a consequence of Lemma 

2.5.4 , together with the fact that ( c1 (Sym9(~), [S]) = 1 (Ozsvath and Szab6, 2004c, 

Lemma 2.8) and the excision principle for the Maslov index (McDuff and Salamon, 

2004). 

The differentiai is the map [): CF(E, a , {3 , z) -+ CF(E, a , {3 , z) given by: 

ax = z 2: # (Nl(x, y)) y 
y E'lfon'll'/3 {cj>En2(x ,y) 1 J-L (4>) = 1,nz(4>)=0} 

and extended to CF(~ , a , {3 , z) by linearity. Note that if y appears in ox, then neces­

sarily gr(x, y)= 1. 
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It is proved by Ozsvath-Szab6 in (Ozsvath and Szab6, 2004c, Theorem 4.1) when 

b1(Y) = 0 and (Ozsvath and Szab6, 2004c, Theorem 4.15) in general that 8 above 

is a differentiai, i.e 8 o 8 = o and the homology groups of (éiF(L, , a , /3, z ), a) are denoted 

by HF(L, , a , {3 , z ). Moreover , they prove that the isomorphism class of these homology 

groups does not depend on the choice of (paths of) complex structures (Ozsvath and 

Szab6, 2004c, Theorem 6.1) and on the topological choices: the Heegaard surface L, , 

the complete sets of attaching circles a and {3 , and the basepoint z . This is achieved by 

showing that the the complexes corresponding to two pointed Heegaard diagrams relat ed 

by pointed Heegaard moves are chain homotopie (Ozsvath and Szab6, 2004c, Sections 

7-11) . This is true for the other versions Hp+ , Hp- , H F 00 and H Fred, see below. 

One must make the observation that when computing the Heegaard-Floer homology of 

a manifold Y with b1 (Y) > 0, one must impose additional admissibility assumptions on 

the Heegaard diagram (Ozsvath and Szab6, 2004c, Definition 4.10). We will not go into 

the details, we simply note that any pointed Heegaard diagram for Y is isotopie to an 

admissible one (Ozsvath and Szab6 , 2004c, Lemma 5.4) . 

More refined versions of the homology the01·y are defined by allowing the holomorphie 

disks in the definition of 8 to intersect Vz. 

The CF00 (L,, a , {3 , z ) complex (Ozsvath and Szab6 , 2004c, Equation 11) is the chain 

complex freely generated over Z by pairs [x, i], with x E 1!'0 n 'li' .a and i E Z with the 

differentia! 800
: CF00 (L, , a , {3 , z ) --+ CF00 (L, , a , {3 , z ) given by: 

[)
00 [x, i ] = I: I: # (M(x, y)) [y , i - nz(4> )] 

y E1I'a n 1I'J3 {</JE7rz(x,y ) 1 J.L (<fJ)=l} 

Note that there is a natural chain map U: CF00 (L, , a , {3 , z ) --+ CYXY (L, , a , {3 , z ) which 

sends [x, i ] to [x, i- 1], thus lowering the degree by 2. 

Because the (transverse) intersection of a holomorphie disk u E D(x, y) with the sub­

manifold Vz is posit ive, we have that [y ,j] can be a term in the sum defining o00 [x, i] only 

if j ::; i . This allows Ozsvath-Szab6 to consider the subcomplex (cp- (L,, a , {3 , z ), 800
) c 

CF00 (L,, a , {3 , z) , z ), 800
) and the induced quotient complex CF 00 (L, , a , {3, z )/CF - (L,, a , {3 , z ). 
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Their homologies are denoted by CF±(L-, a , (3, z ). 

In view of their independence on analytical and topological choices (Ozsvâth and Szab6, 

2004c, Theorem 11.1) , the homology groups above are in fact topological invariants of Y 

itself. The discussion in the previous section shows that [) and 800 respect the splitting 

of the generators with respect to Spinc structures, bence, for a fixed Spinc structure E on 

Y, one can speak of t he Floer homology groups HF (Y , E) , Hp± (Y , E) and H F 00 (Y, s). 

It is an algebraic consequence of the definitions that the homology theories above are 

related by the long exact sequences (Ozsvâth and Szab6, 2004c, Theorem 11 .1) : 

· · · -t HF-(Y ,s) -t HF00 (Y,s) -t HF+(Y ,s) -t · · · 

and 

In particular, it follows that HF(Y,s) is non-zero if and only if HF+(Y ,s) is non-zero 

(Ozsvâth and Szab6, 2004b, Proposition 2.1 ). 

2.6 Four-manifolds 

The invariants defined above are functorial with respect to cobordisms, turning Heegaard 

Floer homology into a version of topological quantum field theory (TQFT). The maps 

associated to cobordisms are defined using counts of holomorphie triangles. 

An arbitrary cobordism between two three-manifolds Y and Y' can be decomposed into 

a number of simpler cobordisms, corresponding to longitudinal surgeries on knots in Y. 

Recall that given a knot K C Y and a framing À, there is a canonical cobordism WÀ 

from Y to YÀ(K), constructed in the following way: thicken Y toY x [0, 1] and add a 

four-dimensional two-handle D 2 x D 2 toY x 1 with the attaching map specified by the 

framing À. 

In this setting Ozsvâth-Szab6 define a map in Floer homology which is an invariant of 

the cobordism and splits according to Spinc structures on WÀ. 
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---------~---------'-----, 
L x [0 , 1] 

Figure 2.1 A schemat ic representat ion for the cobord i~m WÀ 

Therc is a topological interpretation of Spinc structures on four-manifolds due to Turaev 

(Turaev, 1997), analogous to the thr e-dimensional interpretation, so wc will u.-e this 

interpret ation as definition, as in (Ozsvàth and Szab6, 2004c) . 

D efinition 2.6 .1. (Ozsvath and Szab6, 2004c) fSection 8.1} A Spinc structur-e on a f our· 

manifold W is an equivalence class of almost complex structures J de.fined on W \ A , 

where A C W is a finite set of points and the equivalence relation is the f ollowing: J 

defined on W \ A is equivalent to J' defined on W \ A' ~f there exists a compact one­

dim ensional manifold with boundary B such that A U A' C B and J is isotopie to J' on 

W \ B. 

D efinition 2.6.2 . The Chern class of a Spinc str-ucture represented by the complex 

structure J on W \ A is the (unique) extension of the first Chern ciass of the induced 

complex tangent bundle of W \ A. 

Remark 2.6 .3. Similarly to the thr-ee- dim ensional case, J on W \ A can be thought of 

as an oriented 2-dimensional plane fi eld, which together with its orthogonal, allow one 

to def ine a complex multiplication (up to isotopy) . This is one way to see the restriction 

of a Spinc structur-e on a fo ·ur manifold to its boundar-y, if any. 

2.7 Chern class formulae 

In order to prove equat ion 3.2, we will use the formulas for the evaluation of the Chern 

clas · of a Spinc stru cture on a thre , resp. four-dimensional manifold against a two-
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dimensional homology class repr sented by a periodic domain. F ix a pointed Heegaard 

diagram (~ , a , {3 , z). 

D efinit ion 2 . 7.1. (Ozsvrith and Szab6, 2004 c) A region is a connected component of 

~ \ (a U {3). A domain is a (finite) formal sum of regions with integer coeffici ents . 

A domain has a naturally defined boundary which consists of linear combinations of arcs 

of the a and {3 curves . The coefficient of a region R in P is called the multiplicity of R 

in P. 

D efinit ion 2.7.2. (Ozsvrith and Szab6, 2004 c) A periodic domain P is a domain whose 

boundary is a combination of a and {3 curves and the region containing the base point z 

has multiplicity 0 in P. 

Periodic dornains are in one-to-onc correspondence with elements of H2(Y, Z) (by seeing 

the periodic domain as a two-chain in Y , to which one adds capping disks along the a 

and {3 curves in the boundary of the domain) . 

1\!Iore precisely, there is an oriented two-manifold with boundary F and a map <P: F--+ 

~- One defines the Euler m easure of P by 

x(P) = ( c1 ( êi?*T~ ; a) , F) 

One defincs the multiplicity nx(P ) of a point x E ~ with respect to a domain P 

L i ai R i (Ozsvàth and Szab6, 2004c, Section 7.1 ) 

1 

1 
2 

1 
4 

0 

if x is in the interior of R i 

if x is in the interior of some edge of R i 

or two vertices of R i are identified with x 

if x is a vertex of R i 
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Lemma 2.7.3. (Ozsvdth and Szab6, 2004b, Proposition 7.5} Consider a class A E 

H2 (Y, Z), represented by the periodic domain P. An intersection point x E 1f a n 1f .B 

together with the basepoint z give rise ta a Spinc structure sz(x). Then: 

(cl (sz(x)), A) = x(P) + 2 L fix; (P). 
X;Ex 

In a four dimensional manifold X given by a pointed Heegaard triple diagram , there 

is an analogous equation (Ozsvath and Szab6, 2006b, Section 6.1). Let P be a triply 

periodic domain . 

An ingredient in the formula is the dual spider number a-( u, P) of a Whitney triangle 

u: 6. -----+ Sym9 (E) and the tri ply periodic domain P. 

u(u, P) = nu(x)(P) + #(an fJ~P) + #(b n fJ~P) + #(c n fJ~P) 

Proposition 2 . 7.4. Given a Whitney triangle u and a triply periodic domain P which 

represents the two-dimensional homology class H(P) E H2(X; Z), we have the following 

formula: 

(cl(sz(u)),H(P)) = x(P) + #(fJP)- 2nz(P) + 2u(u, P) 

2.8 Triple cobordisms and induced maps 

The maps induced by cobordisms are defined with the help of Heegaard triple diagrams, 

which are sim ply surfaces E with three sets of attaching circles a , {3 and 1 , for the 

handlebodies Uc, U,e and U.y. 

We cau form the three-manifolds Ya ,,B = Ua u Uf3, Yf3,, = Uf3 u U1 and Ya,1 = Ua u U1 . 

Moreover, there is a natural four-dimensional manifold associated to this diagram: 

Consider 6. to be the two-simplex with vertices Va, v,e, v, in clockwise order and let ei 

be the edge opposite to Vi, for i =a, (3, 'Y· Then define 

X _ (6. XE) U(Ua X ea) U(Uf3 x ef3) U(U1 x e1) 

a,,B,,- (ea xE)"' (ea x 8Ua), (ef3 xE)"' (ef3 x fJUf3), (e, xE)"' (e1 x fJU1 ) 

where the quotient is by the identifications in the denominator. 
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Note that 8Xa. ,f3,1 = -Ya.,fl U -Y/3,1 U Ya. ,,. It is useful to know how to compute from 

this data the relevant homology groups of Xa.,/3 ,1 · 

Proposition 2.8.1. (Ozsvath and Szab6, 2004c)[Proposition 8.2] For Xa. ,f3, 1 as above, 

we have 

and 

D 

Several notions generalise in a straightforward manner from the three-dimensional case. 

A triple Heegaard diagram with an additional basepoint z in the complement of the 

attaching circles is called a pointed Heegaard diagram, denoted (L, , a , (3 , /, z ). A two­

chain in (L,, a, (3 , /, z ) which vanishes at the basepoint is called a triply periodic domain. 

As stated before, maps are constructed using holomorphie triangles. 

Definition 2.8.2. (Ozsvath and Szab6, 2004c)[Section 8.1] Let x E 1I'a.n1!'13 , y E 1!'13 n1!'1 

and w E 1!' a. n 1!' 1 . A map 

u: f). ---+ Sym9 (.E) 

satisfying the extra conditions u(v1 ) = x, u(va.) = y , u(v13 ) = w and u(ea.) c 'll'a. , 

u(e13 ) C 1!'13, u(e1 ) c 1!'1 , is called a Whitney triangle connecting x , y and w. 

Two Whitney triangles connecting x, y and w are homotopie if they are homotopie 

through maps which are also Whitney triangles connecting x, y and w. The set of ho­

motopy classes of Whitney triangles connection x , y and w is denoted by 1r2(x, y , w). 

Given x, y and w as above, there is a homological obstruction to the existence of a 

Whitney disk connecting them. It takes the form of a map 
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constructed as follows: Choose an a arc in 'JI' ,B ( equivalently a multiple arc in the f3i 

curves) connecting x to y , an arc b in 11'1 connecting y and w and an arc c C 1I'a 

connecting w to x. Th en E(x , y , w) = [a+ b + c] - the class of the cycle in H 1 (X; Z). 

Proposition 2.8.3. {Ozsvath and Szab6, 2004c)(Proposition 8.3} For x E 1I'a n 1I',e, 

y E 1I',e n 11'1 and w E 'li' a n 11'1 , 

7r2(x, y , x) =f 0 ~ E(x, y , z) =O. 

Moreover, for g(L;) > 1, if E(x, y, w) = 0, then 

as principal spaces over Z EB H2(X ; Z). 

Remark 2.8.4. The action of Z on 7r2(x, y , w) corresponds to splicing a number of 

spheres generating H2(Sym9(L;)) {it is recorded by nz(u)) and the action of H2(X ; Z) is 

by adding triply periodic domains. 

There is a natural map .5z : 7r2(x, y, w) --t Spinc(X) defined in (Ozsvâth and Szab6, 

2004c)[Section 8.1] which we won't describe here, we only mention that it is analogous 

to the corresponding map for three-dimensional manifolds, and from its definition it is 

immediate to see how .5z(u) restricts to Spinc(Ya,,B ) x Spinc(Y,e,1 ) x Spinc(Ya,1 ) 

.5z(u) lspinc(Y<> ,!3 ) = .5z(x) 

and the same for y , w . 

There is an analogous notion of admissibility for triple Heegaard diagrams , which we 

won't define, it is sufficient to know that any triple Heegaard diagram can be modified 

to become admissible by Heegaard moves . 

The moduli space of holomorphie Whitney triangles in a given homotopy class 7/J E 

7r2(x , y, w) is denoted by M('lj;) . For an admissible Heegaard triple diagram (~, a , /3, [ , z) 

and a Spinc structure .s on X , Ozsvath-Szab6 define a map: 
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by 

j 00 ([x, i] 0 [y , j];s) = L (#M('lj;)) · [w, i + j- nz('l/J )] 
w E1l'<> n 1l'"i {1/JE7T2(x ,y ,w ): Sz(1/J)= O,J.L (1/J) =O} 

It is proved in (Ozsvath and Szab6, 2004c)[Theorem 8.12] that the map FXJ induces a 

well-defined map 

which is invariant und er perturbations of the complex structure on Sym9 (2::) and iso­

topies of the attaching curves . 

Using these triple cobordisms, Ozsvath-Szab6 define in (Ozsvath and Szab6, 2006b) 

maps associated to cobordisms between the Heegaard-Floer homologies of two 3-manifolds, 

by decomposing the cobordism into handle attachments. The maps split naturally ac­

cording to Spinc structures on the cobordism. 

For torsion Spinc structures s, one can define an absolute grading on HF(Y,s) (any 

variant) and the cobordism maps F(W, z:) shift this absolu te grading by the quantity 

c1(z.:)2 - 2x(W)- 3a(W) 
4 

see ( Ozsvath and Szab6, 2006b) for details. 

2.9 The integral surgeries long exact sequence 

One of the most important properties of Heegaard-Floer homology is the surgery long 

exact sequence (Ozsvath and Szab6, 2004b)[Theorem 9.1] which relates the Floer ho­

mologies of three manifolds obtained by Dehn filling a knot manifold , such that the 

slopes are respectively at distance 1 from each other. The sequence has been generalised 

in several ways, see (Ozsvath and Szab6, 2004b)[Theorems 9.12, 9.14 9. 19] and (Ozsvath 

and Szab6, 2008b)[Theorem 3.1] . We reproduce here Theorem 9.19 of t hat paper, since 

it is most useful fo r our purposes. 

Theorem 2.9.1. (Ozsvath and Szab6, 2004b)[Theorem 9.19} Let Y be an integer homol­

ogy sphere, K C Y a knot, Yo , resp. Yp (p E N) the manifold obtained by Dehn surgery 
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along K with slope 0, resp. p. There exists a surjective map Q: Spinc(Yo) ----+ Spinc(Yp) 

with the property that for each Spinc structure tE Yp, we have a U - equivariant exact 

sequence 

2.10 Knot Floer homology 

Ozsvath-Szab6 (Ozsvath and Szab6, 2004a) and independently Rasmussen (Rasmussen, 

2003) extended the Heegaard-Floer package to ( rationally null-homologous) lmots in 

three manifolds. The invariant takes the form of a filtration of the chain complex com­

puting the Heegaard-Floer homology of the underlying three-manifold. The associated 

--graded object is a bi-graded abelian group , denoted by HF K. 

We will in introduce the necessary material by following (Ozsvath and Szab6, 2004a) 

and (Ozsvath and Szab6, 2011). Note that in the former reference, where only null­

homologous knots are considered, relative Spinc structures are defined as absolute Spinc 

structures on the 0-surgery on the knot, whereas in the latter, relative Spinc structures 

are defined entirely within the knot complement. We will follow the second approach , 

though we note that it is easy to see that for null-homologous knots the two definitions 

describe essentially the same abjects (Ozsvath and Szab6, 2011, Section 3.1) 

The data needed to define IfiiR is that of a doubly pointed Heegaard diagram. 

Definition 2.10 .1. (Ozsvath and Szabô, 2004a, Definition 2.4) A doubly pointed Hee­

gaard diagram describing a knot K c Y is a tuple (2:, a:, {3 , w, z), such that (2:, a , (3) is 

a Heegaard diagram for Y and w, z determine the knot K in the following way: choose 

a properly embedded arc la in the Ua handlebody with endpoints w and z, oriented from 

z to w and disjoint from the a cutting disks. Similarly, choose a properly embedded arc 

/ (3 C Uf3 with Ô!b = z -w. Then the resulting knot will be K := ! a U/(3 with the induced 

orientation. 

Note that the two arcs are uniquely determined, up to isotopy, by the doubly pointed 
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Heegaard diagram, hence K is well-defined. It is proved (Ozsvath and Szab6, 2004a, 

Proposition 3.5) that any pair (Y, K) admits a doubly pointed Heegaard diagram and 

any two doubly pointed Heegaard diagrams differ by a fini te sequence of Heegaard maves, 

natural analogues of the pointed Heegaard maves. 

The various Heegaard-Floer type invariants for (Y, K) are constructed from the complex 

CFK 00 (L., a. ,{3 ,w, z ) - the free abelian group generated by pairs [x, i , j] where x E 

1!' a n 1!' ,B is an intersection point between the tot ally real tari in Sym9 (L-) and i, j E Z. 

The differentiai 800 is defined as follows: (Ozsvath and Szab6, 2004a, Section 3.1) 

aoorx, i , j J = 2:::: 2:::: # (M'(x, y)) [y, i- nw(<P),j- nz(<P) l 
yE'lra n 'lr.B {</>En2(x,y ) 1 J.L( </>)= 1} 

where, as in the absolute case, # (M(x, y)) denotes a count of elements in the zero­

dimensional moduli space of unparametrised pseudo-holomorphie disks connec ting x and 

y. The analytic details are entirely omitted, we just note that the discussion is similar 

to the one in t he absolute case, see (Ozsvath and Szab6, 2004a, Theorem 3.1 and its 

proof). 

One sees that the indices i , j keep t rack of the intersection of holomorphie disks with 

the subvarieties Vw = w x Sym9- 1 (L-) , resp. Vz = w x Sym9-1 (L.). 

These intersection numbers nz(<P) = #<P n Vz resp. nw(<P) = #<P n Vw are non-negative 

since bath these manifolds are (pseudo) holomorphie, hence there is a Z x Z filtration 

Fon CFK00 (L. , a. , {3 ,w, z ) given by F[x, i,j] = (i,j). 

As in the absolute case, the existence of a holomorphie disk connecting two intersection 

points is homologically obstructed, as a result , the complex CF K 00 (L. , a. , {3 , w , z ) splits, 

and it turns out that the resulting summands are in ane-to-one correspondence with 

relative Spinc structures on Y \ K : 

0 

Let V(Y, K) be the set of non-vanishing vector fields on Y \ N(K) whose restriction to 

fJN(K) belongs to vr. Declare two vector fields in V(Y, K ) to be homologous if they are 

isotopie in the complement of a finite number of three-balls supported in Y\ N(K). 
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Definition 2.10.2. (Ozsvath and Szab6, 2011, S ection 2.2) and (Ozsvath and Szab6, 

2008a, Section 3.2) (Note that in the former reference the behaviour on 8N(K) differs 

slightly) The equivalence classes of vector fi elds in V(Y, K) under the above relation are 

called relative Spinc structures, and they form the set denoted by Spinc(Y, K). 

Spinc(Y, K) is an affine space H 2 (Y, K ; Z) by the same construction as in the absolute 

case. The Chern class of a relative Spinc structure [v], with v E V(Y, K) , is the co­

homology class c1 ([v]) = [v] - [-v] E H 2 (Y, K; Z). Equivalently, the Chern class of [v] 

can be defined as follows: choose a Riemannian metric on Y and consider the orient d 

plane field v.l. This plane field has a cano ni cal non-zero section on 8N ( K) , nam ely the 

outward-pointing unit vector field ur in v.l. Then c1([v]) = e(v.l,ur), i.e. it is the 

relative Euler class of v.l with respect to the trivialisation Ut · 

The relationship between Spinc structures and intersection points x E 1!' a n 1!' f3 is the 

following (Ozsvath and Szab6, 2008a, Section) , (Ozsvath and Szab6, 2011, Section 2.4) : 

The Heegaard diagram (L:, a , {3, w, z) is obtained as the ~ level of a self-indexing Morse 

function f : Y ----+ [0, 3], where, as in the absolu te case, the ex curves are the intersection 

of the ascending submanifolds of the index 1 critical points with the Heegaard surface, 

and the fJ curves the intersection of the descending submanifolds of the index 2 critical 

points with L:. The knot K is then the union of the trajectories under-V (j) containing 

w and z . Now given an intersection point x E 1l'a: n 1!'(3 , one can construct a non-zero 

vector field on Y \ \K : suppose x = { x1, , ... , x9 }. In a neighborhood of Xi, one can 

modify V(f) such that the new vector field is non-zero (in that neighborhood). Let V 

be a tubular neighborhood of K , there is a standard procedure to modify t he - V(j) 

on V to a nowhere zero vector field v, uniquely characterized by the property that v 

is everywhere transverse to the meridian disks of V and K (as an oriented curve) is a 

trajectory of v. 

This construction provides a non-zero vector Vx field on Y \\K with the restriction 

to 8N(K) the vector field vr. Therefore Vx determines a relative Spinc structure [vx]· 
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Note that [vx] doesn't depend on the choices made in its definition, hence there is a 

well-defined map &w,z : 'Il'a n'Il' ,a ----+ Spinc(Y, K) , given by &w,A x) = [vx]· 

As in the absolute case, there is a map which quantifies the obstruction to the existence 

of holomorphie disks between two intersection points x , y E 1!' a n 1!' ,B : there exist paths 

a: [0, 1]----+ 'Il'a, b: [0 , 1]--+ 'Il' ,a such that 8a = 8b = x- y. These paths can be seen in 

:E as a collection of g paths with the images in a1 U · · · U ag, resp. (31 U ... (3g. Then the 

closed mul ticurve a- b is a cycle in H 1 (Y\ K , Z), th en define f: 1!' an 1!' .B ----+ H 1 (Y \ K, Z) 

by: f(x , y) = [a-b]. lt is easily seen that fis well-defined, i. e. different choices of a and 

b lead to the same homology class. 

We have the following: 

Lemma 2. 10.3. (Ozsvath and Szab6, 2011 , Lemma 2. 1) For x, y E 'Il' an 'Il' ,a, we have : 

&w z(Y)- &w z(x) = P D[f(x , y)] 
' ' 

This implies th at, if there is a holomorphie disk cp E 1r2 (x, y ), Th en 

Consequently, there is a splitting of CF K 00 (:E, a , {3 , w, z) into subcomplexes associated 

to relative Spinc structures on Y \ K : fix Ç E Spinc(Y, K) and consider the subgroup 

CF K 00 (:E, a , {3, w, z, 0 of CF K 00 (:E , a , {3 , w, z) freely generated by the elements [x, i, j] 

with xE 'Il' an 'Il' ,a such that &w,A x) + (i - j) · P D[J.L] = Ç. It is immediate from Lemma 

2.10.3 that indeed 8(CFK00 (:E ,a ,{3,w,z,Ç)) c CFK00 (:E,a , {3 ,w,z). 

It is proved in (Ozsvath and Szab6, 2004a) and (Ozsvath and Szab6, 2011) that the 

filtered chain homotopy type of CF K 00 (:E, a, {3 , w, z, 0 is an invariant of the pair (Y, K) 

and of the Spinc structure Ç, i.e. it does not depend on the doubly-pointed Heegaard 

diagram and on the analytical choices made in its definition. Therefore, this complex 

will be denoted by CFK00 (Y,K,O. 

One can form the associated graded object , namely the induced quotient complex de­

noted êJFK(Y, K, Ç) generated by the elements [x, 0, 0] E CF K 00 (Y, K , Ç) with the 
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induced differentia! â. Its homology, H*(CFK(Y, K, Ç)) is denoted by J.fiiR(Y, K, Ç) 

and is called the Knot Floer homology of K in the Spinc structure Ç. 

For the case of knots in 8 3 , there is a nat ur al identification of relative Spinc structures 

on Y \ K with integers: note that in this case, relative Spinc structures are determined 

by their Chern class, since there is no 2-torsion in H1 (Y\ K ; Z), (recall that Cl (Ç + h) = 

c1(Ç) + 2h). Also, since H1(Y \ K; Z) ~ Z, the evaluation of this Chern class on the 

Seifert surface of K gives the above mentioned identification. T herefore, one denotes by 

J.fiiR(83 , K,i) the group J.fiiR(83 ,K, Ç) , where Ç E Spinc(83 , K) is the unique Spinc 

structure Ç with (c1(Ç), [F]) = 2i - 1. 

R emark 2.10.4. The term - 1 in this equation does not appear in (Ozsvath and 8zab6, 

2004a), it is a consequence of the different notion of relative Spinc structure for null­

homologous knots ( Ozsvath and 8zab6, 2011 , Section 3.1). 

With this notation, the Euler characteristic of IfFR(83 , K) takes the following remark­

able form: 

Theorem 2 .10.5. (Ozsvath and Szab6, 2004a,) Let K c 8 3
. Then: 

L x(H FK(83, K , i)). y i = tJ. K(T) 
iEZ 

where tJ.K(T) I:i ai · Ti is the Alexander polynomial of K , normalized such that 

Remark 2. 10.6. Note that the sum above is finite since J.fiiR is finitely generated. 





CHAPTER III 

KNOTS IN LENS SPACES HAVING 8 1 x 8 2 SURGERIES 

3.1 The Berge-Gabai construction 

As in (Boileau et al. , 2011 , Definition 5.4) , we call the knots in 8 1 x D 2 which admit a 

non trivial cosmetic surgery - Berge-Gabai knots. We will call the slope of this surgery a 

distinguished slope. 

It was proved by Gabai in (Gabai, 1989) that such a knot must necessarily be a 1-bridge 

braid wi th respect to both the initial solid torus and the surgered solid torus. 

Here is one way to obtain 8 1 x 8 2 by surgery on a knot in a lens space: start with 

a solid torus V with meridian J.-L and a B erge- Gabai knot K C V. There is a slope 

a E H1(8N(K)) such that V' := V0 (K) is another solid torus, with meridian J.-L
1

. Do 

Dehn filling on V along J.-L
1 to obtain a lens space L . Then K c L has an 8 1 x 8 2 surgery: 

indeed L 0 (I{ ) has a genus 1 Heegaard splitting in which the meridians of the two solid 

tori coincide (this common meridian is J.-L
1

) . 

I t is a pleasant fact that these knots are embedded in a very part icular way in the lens 

space: 

Definition 3.1.1. A simple knot in a lens space L is a 1-bridge knot which can be 

isotoped such that the 2 bridges are contained respectively in the meridian disks of the 2 

Heegaard solid tari. 

T heorem 3.1.2. Let K C V be a Berge-Gabai knot with distinguished slope a in the 
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solid torus V . Assum e that V is further embedded in a lens space L as a Heegaard torus . 

If L 00 (K ) ~ S1 x S2 , then K is a simple knot in L . 

Proof. As before, call J.L the meridian of V. K c V is a braid of index n - say. There 

exists a closed n-punctured disk D C V \ N (K) wit h boundary components J.L and n 

copies of the meridian of K . Let D be the meridinal disk of V containing D. Let K' be 

t he induced knot in the surgered solid torus V' := V00 (K). K' C V' is also a braid, hence 

there is an analogous n'-punctured disk D' c V' \ N(K'). It is a fact proved by Gabai 

(Gabai, 1990, Corollary 3.3) that n =n' ; also, in the case when K is not a torus knot, 

the slope a is a longitude of K (Gabai, 1989, Lemma 2.3) . 

Consider the graph of intersection between D and D' : (as in (Gabai, 1989, Lemma 2.3) 

where the analysis of this intersection is employed to show that t hese knots are 1-bridge) . 

After an isotopy of D and D' , we can suppose that their intersection consists of n 2 arcs, 

all with endpoints on av , resp . aN (K). The orientation on these arcs is by convent ion 

from the endpoints on aN(K ) to the endpoints on av . As in t he proof of (Gabai, 1989, 

Lemma 2.3), t here is a boundary component m' of D' such t hat all of the n arcs incident 

t o it are parallel (in D' ); let these n arcs be e1, ... , en, labelled by their appearance on 

m' when walking along the oriented knot K. Since a is a longit ude, K is isotopie to m' ; 

m' is isotopie to the reunion e1 U JoU (- en) U go , where Jo is t he arc in J.L between e1 

and en and go is the arc in m' between en and e1 with respect to the given orientation 

on m '. The isotopy sweeps the squares in D' realising the parallelism between the ei's . 

The arc - en U go has its end points on the same meridinal disk D and winds once around 

the solid torus V. It can be isotoped rel endpoints in V to a union of arcs fr U e where: 

fr is the arc in v between the end point of en and the next (as walking along v with the 

orientation inherited from K) point of intersection between v and D; e is an arc in D 

joining the end of fr to the start of e1. This isotopy is sweeping the rectangle formed by 

a continuous family of segments joining the points of go and fr belonging to the same 

D 2 fibre of V = S1 x D 2 . The segment in the D fibre is en . 
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N ow Jo U fl will be the first bridge of the isotoped K , which can be pushed in the 

meridinal disk of V and e U e1 is the other bridge, contained in D - the meridinal disk 

of V. 

D 

The notion of simple knot appeared in (Hedden, 2011) as part of a program to prove 

the Berge conjecture: 

Conjecture 3.1.3. The only knots in S 3 having lens space surgeries are doubly primi­

tive knots, i. e. knots in the genus 2 Heegaard surfa ce of S 3 which represent generators 

of the fundamental group of bath handlebodies. 

It was proved by Berge that the knot induced in the lens space by surgery on a doubly 

primitive knot in S 3 is a simple knot . In fact , the Berge conjecture can be rephrased in 

terms of the induced knot in the lens space and it is equivalent to: 

Conjecture 3.1.4. Let K be a knot in a lens space L which admits an S 3 surgery. Then 

K is simple. 

In the rest of this chapter we will analyse the Knot Floer homology of knots in lens 

spaces which admit an S1 x S2 surgery. 

3.2 Topological preliminaries 

Consider a knot K in a lens space Y = L (p , q) which has a S1 x S2 surgery along a 

slope ± [>.]. Knots in lens spaces whose exteriors admit Seifert fibred structures have 

been classified, see (Brin, 2007) for example, and surgeries on t hem are well understood. 

We make the assumption that Y \\K is irreducible and not Seifert fi bred, bence by the 

Cyclic Surgery Theorem (Culler et al. , 1987), the slope ± [>,] is at distance 1 from the 

meridian of K. Denote by YÀ(K) the result of Dehn surgery along ± [À]. 
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We fix an orientation onK and denote by K the resulting oriented knot. K determines 

a class [K] in H1(Y) ~ Z/p whose order k is by definition the arder of K (ord(I<)). 

From now on we will consider À to be oriented coherently with K. We investigate under 

which conditions YÀ ( K) is a homology 8 1 x 8 2
. 

Definition 3.2.1. The rational longitude of K C Y is the unique slope in 8N(K) which 

is 0 in H1(Y \\K;<Q). 

The proof that there is a unique such slope is a straightforward application of Poincaré 

duality, see for example (Hatcher, 2007). Note that only surgery along the rational 

longitude of K can produce a non Q-homology sphere, soin view of the above discussion, 

we will only consider knots for which the rational longitude is a longitude. 

Lemma 3.2.2. A knot K C Y, where Y is a Q-homology sphere of arder p , with 

ord(K) = m, has an integer surgery which is a homology 8 1 x 8 2 ~ the rational 

longitude of K is a longitude and p = m 2 . 

Proof. Consider the long exact sequence associated to the pair (Y, N(K)) : 

One sees from the sequence that #H1(Y, N(K)) = pjm. Denote this group by G. Write 

the long exact sequence for the pair (M, 8M) 

By Poincaré duality and the universal coefficients theorem, H1 (M) ~ Z EB G. Consider 

the base of H1(8M) formed by [f.l] (the meridian of K) and [À] and observe that the 

connecting homomorphism 8 has image the subgroup 8pan([mÀ]) c Z EB Z, hence Z EB 

Z/m Y Z EB G, som <5. pjm . 

For the direct implication, since H1(YÀ(K)) ~ Hl(M)/Im([À]) ~ Z, we must have 
a 

Z/m-» G, som = pjm. 



For the converse, since #G 

H1(Y>.(K)) ~ Z. 

- --------·----- --------
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m, the map o:lz;m Y G must be bijective, hence 

D 

Remark 3.2.3. The arder of a lens space which bounds a !Q-homology 4-ball is a perfect 

square. See (Lisca, 2001) for instance. 

3.3 An integral surgery long exact sequence 

In this section we present a long exact sequence for integral surgeries on a knot in a 

rational homology three-sphere, defined in Theorem 6.2 of (Ozsvath and Szab6, 2011), 

with additional refinements given by Spinc structures as in Theorem 9.19 of (Ozsvath 

and Szab6, 2004b). 

Let K c Y be an oriented knot , where Y is a rational homology three sphere. Let À 

be the rational longitude of K , which we will suppose to be a longitudinal slope and 

oriented coherently with K. Suppose also that Hl(Y>.(K)) ~ Z. Pick a minimal genus 

Seifert surface F, oriented such that 8[F] = m ·À, for sorne m > 0; m is thus the order of 

the knot. (One can al ways assume that the boundary of the Seifert surface consists of m 

coherently oriented copies of the same simple closed curve representing À by tubing any 

consecutive components of oF with opposite orientation.) Fix also the meridian p, of K , 

oriented such that p,· F > O. Finally, consider an integer p > O. We will be interested in 

the manifold YpJ.L+>.(K), denoted from now on as Yp, and, of course, in Y>. := Y>.(K). 

Lemma 3.3.1. (Ozsvath and Szab6, 2004b)[Lemma 9.2] One can construct a Heegaard 

diagram (L: , a , ,L3 , , ,6, z) of genus g with thefollowing properties: 

1. The Heegaard diagram (L:, a, ,6 , z) is a Heegaard diagram for K c Y, as in Defi­

nition 2.1 0.1, with the extra property that (39 is a meridian of K. We will assume 

(3g = 1-l· 

2. The curves f3i, l i and oi, for i E {1, .. . , g -1 }, are small isotopie translates of each 

other and intersect each other transversely in two points, and the isotopies do not 

cross the basepoints. 
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3. the curve "tg is isotopie in the boundary of the knot complement, i.e. in the manifold 

described by the Heegaard diagram (L:, (cxi)f=1, (f3i)f;:{) ta À 

4. the curve 89 is isotopie ta the juxtaposition of 89 and p copies of j39 , i.e. 89 is the 

Pf..l +À slope. 

5. The diagram is admissible. 

Proof. Apply the proof of Lemma 9.2 of (Ozsvath and Szab6, 2004b) and stabilize the 

Heegaard diagram obtained in a neighbourhood of a point of K. See Figure 3.4 for the 

part of the Heegaard diagram containing f..l , called the the winding region. D 

FortE Spinc(Yp), consider the following set 

where [À] is seen here as an element of H1(Yp ; Z). 

Remark 3.3.2. Spinc structures (for all abjects: three-manifolds, four-manifolds, knot 

complements) form affine spaces over H 2
, in what follows we will sometimes fi nd it more 

convenient to use homology classes rather than cohomology classes, the two are identified 

of course by the version of Poincaré duality relevant for each case. 

Similarly, we define Ay(.s) to be the orbit of .s E Spinc(Y) under the action of Span([À]) C 

H1(Y;Z). Note that #(Ayp(t)) = #(Ay(.s)) =m. 

Consider the cobordism Wp obtained by reversing the two-handle attachment corre­

sponding to the Morse surgery onK with slope Pf..l +À. Note that there exists a unique 

Span([À]) orbit Ay(b) C Spinc(Y) which is cobordant in Wp tot, for sorne bE Spinc(Y). 

This follows from the fact that Spinc structures on Ywhich are cobordant to a fixed 

Spinc structure on Yp fonn an affine space over 

and this image is Span([À]) C H1(Y;Z). 
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We have now all the ingredients to write the aforementioned long exact sequence. 

Theorem 3.3.3. {Ozsvath and Szab6, 2004b, Essentially Theorem 9.19} There zs a 

map Q: Spinc(Y.À(K)) --7 Spinc(Yp)/span(À) such that for any tE Spinc(Yp) there is a 

U- equivariant long exact sequence 

where b is a Spinc structure on Y cobordant to t in Wp. 

Proof. The construction of the long exact sequence is a generalisation of the long exact 

sequence of (Ozsvath and Szab6, 2004b)[Theorem 9.19], it appeared also in (Ozsvath and 

Szab6, 2008b) for the case of null-homologous knots. We sketch the proof of (Ozsvath 

and Szab6, 2004b) [Theorem 9.19] focusing on the parts which need to be slightly modified 

for our situation, i. e. for knots which are only rationally null-homologous, with the extra 

property that their rational longitude is a longitude. 

Start with the Heegaard diagram from the previous lemma. For i E {1 , .. . , g- 1 }, we 

denote the intersection points of f3i, '"Yi and c5i by 

with the sign indicating the intersection sign. Also, 

Note that there are p intersection points between '"'tg and 89 . We choose one - call it v9 , 

which will be fixed by Claim 3.3.4 below. 

Then the elements 813,-y = [8/3,1'' 0], 81',8 = [8"~ ," ' 0] and e/3,8 = [813,8, 0] are cycles 

in CF00 (Tf3, T'Y ), CF00 (T'Y, 1l'c5) and CF00 ('IT'f3 , 1l'c5) , respectively (Ozsvath and Szab6, 

2004 b) [Proposition 9. 3]. 
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(3 

Figure 3.1 The intersection point v of --y and D 

Note that Y-y,8, i.e. the manifold described by the Heegaard diagram (E, / , c5) is the lens 

space L(p, 1) . 

Claim 3.3 .4. (Ozsvdth and Szab6, 2004b}[ Proposition 9.15] There is a choice ofvg E 

'Yg n Dg su ch th at there are homotopy classes of triangles { 1/1~ } ;::1 E 1r2 ( 8 /3,-y, 8 -y,8, 8 /3,8 ) 

satisfying the following properties: 

Moreover, each triangle in 7r2(8iJ,-y, 8 -y,8, 8 13,8) is Spinc equivalent to some 1/Jt. There 

are also choices of perturbations of the complex structure on Symg (E) su ch that for 

1/J E 1r2(x, 8 -y,8, 8 13,8 ), where xE 1!'13 n 11'-y with J-L( ?/J) = 0, we have 

{

±1 
# M(?j; ) = 

0, otherwise 

Proof of claim. This daim is the analogue of (Ozsvath and Szab6, 2004b) [ Proposition 

9.5]. There one is interested in % surgeries and it is /3g and bg that intersect more than 

once. By the gluing result of Theorem 9.4 of the same paper, it is enough to establish 

the daim for a Heegaard diagram (E, (3,--y, l5,z) of genus 1, with the three curves (3,--y,b 

in the same position as our curves /3g, "fg, Dg· 
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Figure 3.3 shows how to choose the intersection point v of 'Y and 6 with respect to the 

basepoint z such that the homotopy classes of triangles exist. Note that nz ( 'l/J~ ) 

p · k(kil) . Since our Heegaard diagram (I;, (3, / , 8, z) is an iterated stabilisation of 

(E , /3, "'(, 6, z ), the proof of Proposition 9.5 of (Ozsvath and Szab6, 2004b) applies without 

any other changes . 0 

Now choose our v9 in the same position as v above. 

Using the Heegaard diagram defined above , we define two maps via counts of holomor­

phie triangles, as in (Ozsvath and Szab6, 2004b)[Theorem 9.19]. Let t 'Y ,8 be the Spinc 

structure in which e "f, <Î is supported. 

For a given t' E Spinc(Y>,) , there is a unique À orbit AyP(t) , for sorne t E Spinc(Yp) with 

the property that there exists a Spinc structure .5a ,"( ,8 on the triple cobordism X a,"f,<Ï 

determined by the Heegaard diagram (I;,a , "( , 8) which extends t',t and t "f,<Ï · Then , by 

definition , Q(t) = AyP(t). 

The map h: CF00 (L;,a ,"(,z) ---t CF00 (L; ,a,6, z) is obtained by counting holomorphie 

triangles in the triple Heegaard diagram (I; , a ,"'(, 6, z). More precisely, 

h(Ç) = 

where Y"f, <Ï is the three-manifold det ermined by the Heegaard diagram (I; , "'(, 6). 

Similarly, the map h: CF00 (I; , a , 6, z ) ---t CF00 (L; , a, /3, z ) is defined by 

h(Ç) = L t :,5,13 (ç ® e 6,f3, .s) 
{sESpinc(X o,a,iJ ): SyPEAYp(t) } 

Denote by F2 , resp. F3 the maps induced in homology by h , resp. h · Note that the 

image of F3 is supported on a A y or bit of some b E Spinc(Y ) cobordant tot in Wp seen 

here as the fi lling by #g-l 8 1 x D 3 along the (Y, 6, /3) part of the triple cobordism Xa,5,/3 . 

T he maps defined by t riple cobordism satisfy an associativity property, (Ozsvath and 
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Szab6, 2004c, Theorem 8.16) which in our context states that the composition F3 o F2 

factors through the sum of functions F~J,13 (_, s"f ,8,{3) applied to 8 "f,8 0 Go,/3 · But this 

element is 0 by Claim 3.3.4 since 

The signs in the sum above depend on the orientation systems on the four-manifold 

given by the triple diagram (L:, "(, 8, /3) which can be chosen to be always " - " since the 

triangles belong to different 8H1(Ycx,8) + oH1 (Y"( ,{3) orbits in Spinc(xŒ,"(,0,/3) · 

The curve 69 is isotopie to the juxtaposition of "/g and p copies of (39 , denote by o9 (s), 

s E [0, 1] the isotopy. Th en the intersections of the curve 69 ( s) , for s close enough to 

1, partition into two sets, according to the curve they are most close to, "/g or (39 . As in 

(Ozsvath and Szab6, 2004b)[Theorem 9.19], we define a map 

by sending an intersection point between a and"( to the unique nearby intersection point 

between a and o. Similarly, we define a map 

by sending an intersection point of a and 6 to the nearby intersection point between a 

and (3. Since we are fixing a Ayp(t) orbit, only one of the p corresponding intersection 

points between a and 6 is taken into consideration. These two facts imply that there is 

a short exact sequence 

which has a splitting map R, since the last group is free. These maps are not necessarily 

chain maps, but with their help one can construct two such maps which will determine 

by simple homological algebra the desired long exact sequence. 
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When o9 (s) is sufficient ly close to t he juxtaposition of {39 and /g, one can define area 

filtrations on CF+(Y), CF+(Y;.) and CF+(Yp) which are strictly decreasing for bound­

ary maps , such that the maps defined above h and h decompose as h = z+ lower 

order terms and also h = n+ lower order terms. Also ho h is chain homotopie to 0 by 

a U- equivariant homotopy H : CF+(Yo, Q-1 (AyP (t))) --7 CF+(Y, Ay(b )) obtained 

by counting holomorphie squares in the quadruple cobordism given by the Heegaard 

diagram (I;, a, {3, /, o) which moreover decreases the filtration. More precisely, 

Then one defines 

and 

H ([x , i]) = [y, -nz(D)] 
0Ew2(x,GJ3,.y ,8-y,J,y) ,!J.(0)=0 

00 

R' = Ro ~(Id-h o Rtk 
k=O 

92 := h- (8(R' o H )+ (R' o H )8) 

Then Ozsvath-Szab6 show that h is chain homotopie to 92 and the maps fit into the 

short exact sequence 

which then gives the long exact sequence in the statement of the t heorem. 0 

Remark 3.3.5. I t is important to observe that the map 92 also has the property that 

92 = z + lower arder terms w. r. t. the filtration . 

3.4 The top grading in Knot Floer homology 

Theorem 3.4 .1. Let K C L(p, q) be a knot with a longitudinal S 1 x S 2 surgery. Then 

g(K) :::; 1. 

Proof. We want to show that our knot K has genus 0 or 1. We will suppose that it has 

genus g > 1 and arrive at a contradiction. The proof is modelled on Corollary 4.5 in 

(Ozsvath and Szab6, 2004a) for the case of knots in S3 . 
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The idea is that the 'top grading' in the knot Floer homology of K is identified with the 

Floer homology ( to be made precise shortly) of Y>. ( K) in a certain Spinc structure. 

--The top grading in HF K(Y, K) is related to the genus of K by work of Ni (Ni, 2009) . 

There it is proved more generally that Heegaard Floer homology detects the Thurston 

norm of a three-manifold. We recall Ni 's theorem with the necessary background: 

An Alexander grading is defined on the space of relative Spinc structures on Y \ N(K) 

by the following formula: 

Recall that we have chosen the orientations of the Seifert surface and of the meridian 

such that the Seifert surface F is oriented coherently with K and f.L nF > O. 

For a rational homology class hE H2(M, aM; Q) one defines the funct ion: 

y(h) = rn~ (SJ(Ç) , h) 
{~ESpinc (Y,K) IHFK(Y,k , ~) ~O} 

then we have: 

Theorem 3.4.2. (Ni, 2009) Fix a minimal genus Seifert surface F for K and denote 

by h = [F] E H2(M, aM; Z) where here M is the exterior of K. Then: 

-x(F) + lh · [J.L]I = 2y(h) 

Let 9 be the genus ofF and ÇM be a relative Spinc structure for which y(h) = (SJ(ÇM ), h) 

We find that (c1 (ÇM),h) = 2g- 2 + 3m. Denote by F the closed surface in Y>.(K) 

obtained by capping off F and by S the surface obtained by capping off F in Wp. Note 

that [S] 2 = -m2p (the self intersection number) . 

By choosing p large enough, we can suppose that there is a unique Spinc structure 

~Mon Y>.(K) which restricts (in the canonical way, see below) to ÇM on Ext (K) with 

HF+(Y>.(K) , ~M ) :f: O. 

To find ~M' we take v (a non-zero vector field on M) as a representative for Ç with the 

restriction on aM to be the translation invariant vector field on S1 x S1 (unique up to 
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isotopy) and extend it canonically over Y>-(K) such that the induced knot in Y>-(K) is an 

oriented trajectory. This extension process is described in (Ozsvath and Szab6, 2008a). 

By our orientation conventions, we have: 

(3.1) 

We will use the shorthand notation CçM = CFK00 (Y,K,ÇM) 

We can find a doubly-pointed Heegaard diagram (2:, a, {3, w, z) for our knot K such that 

the meridian is the curve {39 and w, z are on either side of p, as in figure 3.4. Also, the 

slopes o and ..\ intersect {39 transversely once as in the figure. We will fix this diagram 

in what follows. 

Consider now the following short exact sequence: 

-- --------------- -

Observethat H *CçM {i < 0 and j 2: -1} ~ IiFR(Y, K ,ÇM ) because itisthetop-dimensional 

summand. 

Also H*(CçM {i 2: 0 or j 2: -1}) ~ HF+(Yp ,tç) for sorne tç E Spinc(l'P) by (Ozsvath 

and Szab6, 2011, Section 4). These groups are identified with the F loer homologies of 

'large enough' surgeries on K. 

The natural projection CçM{i 2: 0 or j 2: - 1} ~ CçM{i 2: 0} is in fact modelled 

on the cobordism map F:,o,(3 : H F+(Yp, tç) ----+ HF K +(Y, ÇM - p,) in a certain Spinc 

structure J:, to be made precise below. 

Ozsvath-Szab6 define the following map (Ozsvath and Szab6, 2011) <I?: CF+(Yp, tç) ----+ 

CF K + (Y, K , ÇM) given by 

<I? [x, i] = L L ( #M(~)) [y, i- nw(~), i - nz(~)] 
y E'll'an'll'/3 {1/JE7r2(x,E>0,f3 ,Y) E(sw('l/J ))=é.M M( 'l/J )= O} 

for a triangle ~ E n2(x, 8 0,(3 , y) where x , resp. y are generators in CF(l:, a, o) resp. 

CF(l:,a ,fJ). Here E: Spinc(Wp)----+ Spinc(Y,K) is a restriction map on Spinc struc-
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tures defined in (Ozsvath and Szab6, 2011 , Proposition 2.2) by 

for x , y generators in C F("E, a, {3) res p. C F("E, a, 6). 

Then p +,(3 is ci? followed by the vertical projection v given by v[y,i,j] = [y,i] . a,u, 

We have the following formula, for a triangle '1/; with E(Ew('I/J)) = f.M, analogous to 

equation (14) of (Ozsvath and Szab6, 2004a). 

For the small triangle this is an application of the first Chern class formula (in 3 and 4 di­

mensions of Section 2. 7). Ad ding a domain q/ E 1r2 (x~, x') leaves the formula unchanged 

since the points w and z are separated by a f3 curve, and also adding a homotopy class 

cp E 1r2 (x, y) leaves the formula true by a simple calculation. Adding a triply periodic 

domain corresponding to [S] also leaves the equation unchanged. 

From Equation 3.2, we have that (c1 (t:), S) = 2g - 2 -pm. We write the long exact 

sequence of Theorem 3.3.3 for the AyP orbit of t~. 

and we compare it to the sum of long exact sequences induced by the short exact sequence 

where 

CAy(~M) {i < 0 and j 2': -1} = E9 c~ {i < 0 and j 2': -1} 
~EAy(~M) 

similarly for the others, and the maps are sim ply the direct sums of the respective maps. 

The second map cp is the sum of the maps induced by Spinc structures of type t: with 

the same Chern class. In fact one can see that these Spinc structures differ by torsion 

elements of H 2 (Wp; Z). 



A part of the Heegaard diagram for the triple cobordism L L>. Lp 

Figure 3.2 The winding region, Note that the periodic do­

main associated to F has À as a boundary component with 

multiplicity m. 
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It is easy to see that cp is surj ect ive in homology, becaus Y is an L-space and in large 

enough degrees, cp is an isomorphism. 

We verify that t induces the map with the highest shift in the absolute grading among 

ail other Spinc with the same restrictions on Y, resp. 1-';J· 

Let Q be the core of the two-handle which gives Wp. For tn := t + n · P D [Q] E S(Ç) we 

have: 

and therefore, 

W multiply this equa.tiou by m and use the fact tha.t [mr2] is the image of [S] undcr 

the natural map H2(W ) -----+ H2(W, aW ). Then 

One sees that indeed ail other Spinc structures shift t he absolute grading with a smaller 

amount ( 29-
2

) than t· Then the map F3 is a sum of ma.ps on different Spinc structures, m 

the highest of them (in terms of ci being the sum of the induced maps in the t' s Spié 

structures) . 
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Vve use now another filtration in Heegaard-Floer homology, namely the one given by 

t he absolute grading, to conclude t hat F3 has essent ially the same behaviour as its top 

grading component , i.e. it is also surjective and the kernel of F3 is identified with the 

kernel of (the sum of) J:. 

Therefore from the previous long exact sequence, one can deduce ifFR(Y, K , A y (f, M )) ~ 

HF+(Y;..(K),~M- f.l} Note that (c 1 (~M- f.L , S2 )) = 2g - 2 -1- O. Since HF+(S 1x S 2 , s ) = 

0 for all Spinc st ructures with non-zero Chern class, we must have g(K ) :S 1. D 

3. 5 The genus 1 case 

The proof above breaks down for knots K of ge11US 1. The Chern class formula does not 

give the required filtration, also HF+(S1 x S 2 , s o) '#- 0, wher sais th unique Spinc 

structure of S 1 x S 2 with Chern class O. In fact , this group is not even finitely generated, 

so we cannot hope for an isomorphism with a subgroup of ifFR(Y, K ). 

However, as we will see below, a sim il ar statement is true, provided that we use Heegaard­

Floer homology groups with twisted coefficients. 

3.5.1 Heegaard-FloeJ homology with twisted coefficients 

Fix a manifold Y given by an admissible pointcd Hccgaard diagram (I: , a , (3 , z) . Heega.a.rd­

Floer homology is already a version of the more general Lagrangian-Floer homology 

with twisted coefficients. ln the lat ter theory, for two Lagrangian manifolds Lo , r sp. 

L1 of a symplectic manifold M , the universal coefficient system for H F*(M , Lo, L1) 

is n1( S1 (Lo , L1 )). In the Heegaard-Floer setting, n1(S1 (1I'et , 'li' ,a )) ~ Z EB H 1(Y ; Z) , when 

g(I:) > 1 and n 1(S1 (1I'et, 1f!l )) Y Z EB H 1 (Y ; Z) if g(I:) = 1 (Ozsvath and Szab6, 2004c, 

P roposition 2.1 5). T he basepoint z in the Heegaard diagram, together with the mor­

phism n z : n2 (x. y ) -----+ Z a.ccount for the Z summand in the coefficient system above. 

For manifolds Y with b1 > 0 there is a variant of Heegaard-Floer homology which cor­

responds to t he universally twisted Lagra.ngian-Floer homology (Ozsvath and Szab6, 

2004b , Remark 8.1 ) . This variant , denot ed HF(Y ), was introduced by Ozsvàth-Szab6 
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in ( Ozsvath and Szabô, 2004b) and was used by Ni (Ni , 2007) for proving that Heegaard 

Floer homology detects fibred manifolds with genus 1 fibres. 

We give a brief description of the the01·y by following closely Section 8 of (Ozsvath 

and Szab6, 2004b). The coefficient system is constructed with the help of an additive 

assignment A: 1r2(x, y) ----7 H 1 (Y, Z) and a complete set of paths for the Spinc structures 

of Y. 

Definition 3.5.1. (Ozsvath and Szab6, 2004c, Definition 2. 12) An additive assignment 

is a collection of functions {Ax,y: 1r2(x, y) ----7 Z} with the property that: 

for any <P E 1r2(x, y) and 'fE 1r2(y, z ). 

Definition 3.5.2. (Ozsvath and Szab6, 2004c, Definition 3. 12) Lets E Spinc(Y), where 

Y is presented as a pointed Heegaard diagram (L;, Œ, {3, z). A complete set of paths for 

sis an enumeration S= {xo, x1, ... ,xm} of all the intersection points between 'll'e> and 

'lf,e representing S together with a collection of homotopy classes 8i E 7r2(xo , Xi), for 

i = 1, ... , m , with nz(ei) =O. 

A complete set of paths gives rise to identifications 

by the following convention 

Since 1r2(xo, xo) ~ Z EB H 1(Y; Z), with the automorphism given by the n z function, 

when g(L:;) > 1, one can define a map A: 1r2(xi, Xj) ----7 H 1(Y; Z) by 1r2(xi, xj) ~ 

1r2(xo, xo) ---+ H 1 (Y; Z) where the second map is t he canonical projection onto the 

second factor. The associativity of * implies that A is an additive assignment. 

Pick a formal parameter e and let 
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The differential is given by: 

Th en t he Heegaard Floer homology with twisted coefficients H p oo (Y, s ) = H* ( C P 00
) is 

an invariant of the manifold Y and of the Spinc structure s (Ozsvâth and Szab6, 2004b, 

Subsection 8. 2.3) . 

As in the untwisted case, there are sever al versions of the theory : Hp+ , Hp- , etc. 

3.5.2 A particular coefficient system 

For our purposes we will choose as coefficient system a N ovikov ring V , in fact a field, 

as in (Ai and Ni , 2008). 

V = {I.:aT er: # {aT 1 aT =1- O, r :::;: c} < oo,Vc E JR} 
rE IR 

Given a cohomology class [w] E H 2 (Y; JR) and a representative cocycle w, one can define 

t he addit ive assignment 

A(c/>) = i w. 

Also, V can can be endowed with the structure of a Z[H1(Y; Z)]-module by the ring 

homomorphism 

V with this module structure is denoted by Vw. 

T hen H P 00 (Y; Vw) is t he homology of the chain complex CP00 (Y; Vw) = CP00 (Y) Q9 Vw 

with the differential 

and similarly for H P+(Y ; Vw), etc. 
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Remark 3.5.3 . Since V is a field, the modules above are vector spaces. 

There are maps induced by cobordisms for the twisted version as well. They are some­

what simpler to define for our particular coefficient system Vw than in general, see 

(Ozsvath and Szab6, 2004b) for the full generality and (Ozsvath and Szab6, 2003b) for 

V w . 

As before, to a four-dimensional 2-handle attachment W (i. e. Morse surgery on sorne 

knot K c Y), one can associate a Heegaard triple diagram (L:;, a, {J, /, z ), where (L:;, a, fJ ) 

defines Y, (:E, {J, 1) describes a connected sum of 8 1 x S2 and (L:;, a, 1) describes the 

surgered manifold YI<(À) for sorne integral slope À. Consider a cocycle w representing 

[w] E H 2 (W; IR). 

Then the map induced by W in twisted Floer homology 

is given by 

[ )()( [x, i];.s) = L L (#M(7j;) ) · ef1/J w · [w, i- nz(7fJ )] 
w E'lr"'n'lr.., {1/!En2(x ,8 ,w ): Sz(1/J)=O,t.t(1/J)=O} 

It is proved in (Ozsvath and Szab6, 2006b) that [)() induces a well-defined map 

which is invariant under perturbations of the complex structure on Sym9 (L:;) and iso­

topies of the attaching curves. 

3.5.3 The long exact sequence for twisted coefficients 

Associativity follows the same way, and we can adapt the long exact sequence of Theo rem 

3.3.3: 

Theorem 3.5.4. With the setup from section 3.3, let [w] = P D[JL x I] E H 2(X, IR) be 

the Poincaré dual of the cylinder over the meridian of K and tE Spinc(Yp), there is a 
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U- equivariant long exact sequence 

where b is a Spinc structure on Y cobordant to t in Wp. 

Proof. The proof is similar to the untwisted case, for associativity the count of holomor­

phie triangles red uces to the untwis ted case as in (Ai and Pet ers, 2006, Theo rem 3.1) 

and the rest follows similarly. 0 

3.5.4 The top grading in Knot Floer homology and twisted coefficients 

In the case of rational homology three-spheres, the Heegaard Floer homology with 

twisted coefficients is essentially the same as t he untwisted version. More precisely, 

Hp+ (Y, Vw) ~ Hp+ (Y, Z) 0 Vw. Th en the previous long exact sequence reads 

and the map F3 is related to the untwisted F3 (in a fixed Spinc structure) by 

As before, the absolute grading shows that the map F3 has the same behaviour (surjec­

tivity and the same kernel) as its top grading, but this time, because the genus of K is 

1, equation 3.3 shows that there are two (for a fixed Spinc structure on Y and 2m in 

a Span(À) orbit) Spinc structures with largest shift in absolute grading, namely r. and 

t) = t-- PD[O]. 

Note that we can write 

&, = (&,, l-) + e - m (&,, l-) + lower order 

This situation was studied in (Ai and Ni, 2008) , Lemmas 5.1 and 5.2 , it is proved that 

ker(F 3) ~ ker(F3) 0 Vw and both these maps are surjective. But it is also proved in (Ai 

and Peters , 2006) that Hp+ (S1 x S 2 , 0) ~ 0 which then implies that IfFR(Y, K , top) ~ 

0 so K cannat have genus 1. 
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3.6 More information from Floer homology 

From the long exact sequence above it follows that the map F3 is an isomorphism (wit h 

V coefficients, hence also with Q coefficients). This implies th at Yp is almost an L-space, 

i.e. it has t he smallest rank possible in Floer homology, though there could be torsion. 

This situation was studied in (Ozsvath and Szab6, 2005), where it is proved that K --must have HF K (Y, K, Ç) ~ Q or 0, for any relative Spinc structure Ç. 

T heorem 3.6.1. A knot K in a lens space Y with a longitudinal 8 1 x 8 2 surgery is 

Floer simple (with rational coefficients). 

Proof. Since x(ifFK(Y, K ,s) ) = 1 fors an absolute Spinc structure on Y, we see that 

there must be an odd number of relative Spinc structures Ç which res trict to s with 

IfFR(Y, K , Ç) -=/: O. But for two such relative Spinc structures 6 -=/: 6, 

and if there are at least 3 such Spinc structures, then 

max 1 (cl (6) - c1 (6), [F]) 1 ;:: 4m 
6,6 extend 5 

contradiction with 3.1 for knots of genus O. (just apply equation 3.1 to Ç and ~) 0 

3. 7 Fibredness 

One of our main results is the following 

Theorem 3. 7 .1. Let K c L be a knot in a lens space which admits a longitudinal 

8 1 x 8 2 surgery. Then K is fibred. 

Proof. Recent work of Ni and Wu (Ni and Wu, 2012) shows, using the absolute grading 

in Knot Floer homology, that in an arbitrary lens space, Floer simple knots have monic 

F loer homology if and only if the simple knots in the same homology have monic Floer --homology, monic meaning that HFK(Y, K, top)~ Q. In the next Chapter we will see 
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that indeed simple knots of the relevant order in lens spaces with S 1 x S 2 surgeries are 

fibred. 0 



CHAPTER IV 

SIMPLE KNOTS IN LISCA'S FAMILlES OF LENS SPACES 

In this chapter we investigate the simple knots K in lens spaces Y = L( m 2 , q) belonging 

to Lisca's families (see below) with the property that [K] is an element of order m in 

H 1(Y; Z). This condition is necessary for K to admit a longitudinal 5 1 x 5 2 surgery, cf. 

Lemma 3.2.2. 

Remark 4.0.2. A computer experimentation showed that simple knots of arder m with 

m < 500 in lens spaces L (m2, q) , with q arbitrary (of course satisfying gcd(m2, q) = 1} 

are fibred . 

Based on this, we formulate the following 

Question 4.0.3. Is any simple knot of arder m in a lens space of arder m2 fibred? 

Below we show that t he answer to t his question is 'yes ' for Lisca's families of lens spaces. 

As the reader will see, the extra conditions on q, described in Definition 4.0 .4 below, 

play an essential role in t he proof. 

We describe here Lisca's family of lens spaces and the main t heorem of his paper (Lisca, 

2007): 

Definition 4 .0.4. (Lisca, 2001, Definition 1.1) Let Q>o :={xE Q : x> 0} , and define 

the maps f , g : Q>o --+ Q>o by setting, for~ E «db o, with p > q > 0 and (p , q) = 1, 

f (!!.) = _P 
q p- q' 
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where p > q' > 0 and qq' = 1 (mod p) . Define R c <Cha ta be the smallest subset of <Q>o 

such that f(R) Ç R , g(R) Ç R and R contains the set of rational numbers ~ such that 

p > q > 0, (p , q) = 1, p = m2 for some m E N and q is one of the following types: 

1. md ± 1 with m > d > 0 and ( m, d) = 1; 

2. md± 1 with m > d > 0 and ( m , d) = 2; 

3. d(m ± 1) , where d > 1 divides 2m =f 1; 

4- d(m ± 1) , where d > 1 is odd and divides m ± 1. 

R emark 4 .0 .5. It is easy ta see that a lens space Y which admits a longitudinal S 1 x S2 

surgery along some knot K c Y bounds a smooth rational homology four-ball. 

R emark 4. 0. 6 . Family (2) does not appear explicitly in {Lisca, 2007, Definition 1.1), 

we learned aboutit from K en Baker (Baker, 201 2). 

Theorem 4 .0.7. {Lisca, 2007, Theorem 1.2) Letp > q > 0 be coprime integers . Then, 

the following statements are equivalent: 

1. The lens space L(p, q) smoothly bounds a rational homology ball. 

2. There exist: 

(a) A surface with boundary I: , homeomorphic ta a disk if p is odd and ta the 

disjoint union of a disk and a Mobius band if p is even; 

{b) A ribbon immersion i: I: 9--t S 3 with i(ai:) = K(p, q). 

3. ~ belongs ta R . 

Remark 4 .0.8. Condition 2 refers ta a naturally associated two-bridge link K(p, q) ta 

a lens space with the same parameters, see {Rolfsen, 1990) f or details. We will have no 

use fo r K(p, q) , it was included only for completeness. 

The rest of this section will be devoted to the proof of the following 
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Theorem 4.0 .9. Simple knots of arder min a lens space L(m2 , q) belonging to any of 

the Lis ca 's famili es are fibred. 

The general trategy is to use Brown's algorithm combined with Stallings ' fibration 

theorem, since a simple knot 's complement in a lens space admits a genus 2 Heegaard 

spli tting, or, equivalently, in terms of H gaard-Floer homology, it can be dcscribecl by a 

doubly pointed Heegaard diagram of genus 1, for which it i · trivial to compute its Knot 

Floer homology. 

R emark 4 .0.10. This m ethod has been used by Ozsvath-Szab6 in (Ozsvath and Szab6, 

2005, S ection 5) to prove that Berge knots are fibred. They show more genemlly that 

any primitive simple knot in a lens space is .fibred, so this result does not apply to 

our situation. The presentation for the fundamental group is nevertheless the same, 

we include it here for the reader 's convenience. We also use d~fferent notation and 

con ventions . 

Remark 4.0.11. ft can be easily seen that using either Brown's theorem or Knot Floer 

homology, the calculations turn out to be identical. More precisely, the sequence of num­

bers in Brown's theorem, see below, is identical to the sequence of evaluations of Chern 

classes of r·elative Spinc structures of Y \ K in which JiliR(Y, K ) is supported, against 

the Seif ert surface of K . Then bath theories guamntee the existence of a .fibmtion of 

Y \ !{ as saon as this common sequence of numbers assumes its maxim·um and m inimum 

exactly once. Also, bath theories exhibit a formula foT the genus of K in terms of the 

width (i .e. the différence between the maximum and the minimum) of this sequence. See 

the proof of TheoTem 4. 8.5 for more details. 

We will give a proof for each family in D finition 4.0.4, but first we will fix some notation 

and state some facts which are indepenclent of the special form of q. 

We will denote classes modulo m 2 by n and classes modulo m by n. 

It is easy to observe that K c L (m2 , q) has orcier m if and only if [K] = k · m , for some 

integer k E {1 , .. . ,m -1} with gcd(k , m) = 1. Given kas above, there is essentially 
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3 4 5 6 

Figure 4.1 A Heegaard diagram for the simple knot 

K(9 , 4, 3) c L(9, 4) 

one doubly pointed Heegaard diagram (T 2
, ex , {3, w, z) specifying K , where (T 2

, ex, {3 ) 

represents the st andard H egaard ge1ms 1 diagram of L (m 2 ,q) (with the ex and f3 curves 

being geodesies for a Euclidean metric on T 2
) and the basepoints are situated slightly 

ab ove the ex curve ( see figure 4). The generator I E Z/ m 2 is taken to be the homology 

class of the core of the ex handlebody, oriented 'upwards' . Let ex be oriented from left 

to right and let 1 be an arc parallel to ex connecting w and z and oriented such that 

8--y = z - w . 

Note t hat there are two essentially different ways of choosing --y , one which is coherently 

oriented with ex and one which is oppositely oriented , and th ir union fo rms a circle 

parallel to ex . Vve will denote the shortest one (measured by the number of intersection 

points with {3 ) by 1 and the other one by --y'. 

T he relative posit ion of w and z in the Heegaard diagram is determined by k. More 

precisely, # (1 n {3 ) = k · q ( mod p) and given the propert ies of k and the discussion 

about --y, we obtain #('Y n fJ ) = t · m , with t E {1 , ... , l ~ J} aud gcd (t , m ) = 1. 

Remark 4.0.12. Given a simple knot K in a lens space L (p , q), described by a doubly 
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pointed genus 1 Heegaard diagram as above, the quantity e = #(! n /3 ) determines K v,p 

to isotopy, so we can denote K by K(p , q, B). 

Denote by Ua the solid torus bounded by the a curve (hence having a meridinal disk 

D a with boundary a) and let 1'1 be a properly embedded arc in Ua connecting w and 

z which doesn't intersect D a . Such a 1'1 can be obtained by pushing the interior of 1' 

into Ua. The exterior of 1'1 in Ua is then a genus 2 handlebody, caU it U~. The exterior 

of Kin L(m2 , q) is then homeomorphic to the handlebody U~ with a 2-handle attached 

along the f3 curve. 

Therefore n1 (Y \ K) admits a presentation with two genera tors and one relation. The 

fundamental group of u~ is the free group on two generators which we can choose to be 

two simple closed curves, x and y, supported on oU~ in such a way that #(x n ry) = 

0, #(x n ry') = 1, resp. #(y n 1' = 1) , #(y n ry' = 0). Moreover , we will suppose that 

both x and y are isotopie in Ua to the core of Ua and oriented coherently (i .e. upwards, 

which by the above choices means that [x] = [y] = I E H 1(L(m2 , q)).) The relator -caU 

it R - is represented by the f3 curve, which we will also assume to be oriented upwards. 

It is easy now to write the presentation for n 1 (Y \ K) : sim ply foUow the f3 curve 

and record the intersection points with the 1' and ry' arcs - for each intersection with 

1' add a y to the relator , and for each intersection with 'Y' add an x . We obtain then: 

n1(Y \ K) ~ (x , y 1 R). 

It is immediate to see that the resulting word has m2 letters, it is cyclically reduced and 

that changing the position on the f3 curve from which we start indexing the intersection 

points with the 1' arcs has the effect of replacing R with a cyclic permutation of its 

letters. 

Since w and z were chosen slight ly above a, for each intersection point between f3 and ry, 

(resp. ry') there is a nearby intersection point of f3 with a - simply foUow f3 downwards 

until it meets a. Then R contains tm letters y and (m- t)m letters x . 

To check fibredness, we must write the morphism <P: n1 (Y \ K) --+ Z, represented 
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geometrically by the algebraic intersection of loops in Y \ K with the Seifert surface F 

of K . Since tjJ factors through H 1(Y \ K) 3:! Z EB Z/m (cf. 3.2.2) and tjJ is surjective (F 

is nonseparating) 1/J must be then ( up to sign) the map 

where the second map is the obvious one. 

In the presentation that we found , 1/J can be written as: 

{ 
1/J(x) = -t 

1/J(y)=m-t 

It is convenient at this point to number the intersection points of a and {3 with numbers 

(in fact classes modulo p) starting at the right of the w point and continuing towards 

the right along a, (again, see figure 4). This way we identify the intersection points with 

Z/p. The intersections of f3 with 'Y correspond to {TI, ... , tm- 1} and the intersections 

of {3 with "(1 correspond to {tm, ... , p - 1} . 

...-.... 

For i E Z, t he quantity l~J (recall that n denotes the class of n modulo m) depends 

only on the class of i modulo m 2 , so we defi.ne the function 'll/ m2 --+ Z/m by 2--+ lïkJ, 
for sorne i E 2. From now on, we will denote this class modulo m by [ ïkJ . 

Then the intersections of f3 with 'Y (resp. 1 ') correspond to the classes 2 E 'll/p with 

[ïkJ E {ô, .. . ,t-1} (resp. [ïkJ E {t, ... ,m:=-1}) . 
The following function will be useful : Let f : 7l/m --+ {x, y} be given by: 

for sorne a E â. 

Our relator R becomes 

J(â) = { : 
if 0 :::; a < t 

if t:::; a< m 

R = f(Ô) f ([!]) ... f ([(p~1 )q ]) (4. 1) 
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Let 'ljJ be the map (cp o!): Z/m ~ Z. Observe that 'ljJ(Ô) + · · · + '1/J(m-=î) =O. 

With this notation, Brown's theorem, 1.2.14, coupled with Stallings fibration criterion 

(Stallings, 1962) say that K is fibred if and only if the sequence: 

~ ~ ( [ q ] ) ~ ( [ (p - 1) . q]) '1/J(O) , '1/J(O) + '1jJ m , · · · , '1/J(O) + · · · + '1/J m 

achieves its maximum and minimum exactly once. 

Call the sums above Si, i. e. Si= t 'ljJ ( [j ~q]) , foriE {0, · · · ,p- 1} . 
J=Ü 

Remark 4.0.13. We will also use classes modulo p ta index the sums above, with the 

obvious interpretation. This is unambiguous because Sp- 1 = 0 ( Sp-1 = cp(R) = 0 by 

definition). 

Now we will prove a series of lemmas concerning Rand the sequence (Si)f,;;-~. 

Lemma 4 .0.14. For all I,J E Z/p, we have that SI = Sy (mod m) {:::::=:} i J 

(mod m). 

Proof. Note t hat cp(x) = cp (y) =: -t (mod m), so Si 

gcd( t, m) = 1, the conclusion follows. 

i · ( -t) (mod m) and since 

0 

Lemma 4.0.15. The sequence (Si)f,;;-~ achieves its maximum only once if and only if it 

achieves its minimum only once. 

Proof. We daim that for any I E Zjp, 

(4.2) 

Since I E {0, ... , tm - 1} {:::::=:} tm- 1- i E {0, ... , tm- 1} , VIE Z/p, we have 
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and the claim is proved. 

Let l E {I, ... , p- 1} be the unique number with the property l · q = tm - 1. Then, for 

I E Zjp: 

S; = t, ;& œm = t, ;& ([lq ~jq]) =Sr- S,_,_1 

The conclusion of the lemma follows from the equalities: 

where by #max (Xi) ( resp. #min (Xi) ) we denote the number of maxima (resp. 

minima) of the sequence xi. 

D 

4.1 Lisca's family (1) 

Theorem 4.1.1. The sequence (Si)f~~ for a lens space L(p, q) belonging to Lisca 's 

family (1) achieves its maximum only once. 

Proof. We know that q = d · m ± 1, with 0 < d < m and gcd(d, m) = 1. After a possible 

change q----+ (p- q) , which has the effect of changing the orientation of L(p, q) , we can 

suppose q = dm + 1. 

Then, for j, i E {0, ... ,m -1}, 

[
(jmm+ i)q] -­=j +id (4.3) 

This implies that { [ (j~i)q J : i E {0, ... , m- 1}} = {ô, ... , .;:;=-r}, and in particular 

Sjm+m- 1 =O. ( 4.4) 

By lemma 4.0.14, the numbers Sjm+O , Sjm+l , ... , Sjm+m- 1 are all distinct and exactly 

one of them is the maximum of this sequence, say Smi, for sorne mj E {0, ... , m - 1 }. 
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Let Si. := S jm+i for j , i E {0, ... , m - 1} and let dt := J-1 . 
t 

By equations 4.3 and 4.4 , 

s; = ~ (3) + ... + ~ (J+id) = ~ ((ci;)d) + .. . + ~ ((d'j + i)J) = -s~ + s~ 
(4.5) 

Remark 4.1.2. In the above formula we can index the sequences SJ by classes m odulo 

m because Sjm+m- 1 = 0 cf. eq 4-4· 

We deduce that fiij = mo - d7J . 

By Lemma 4.0.14, the maxima (Smi )j=(/ are all distinct , hence exactly one of them is 

the maximum of the sequence (Si )f~~ . 0 

Let Wi = [~ ] , foriE {0, ... ,p-1} i.e. we can write the relator R = f (Wo) , . .. , f(Wp _ 1). 

It will also be convenient to denote the m subsequences of (Wi )f~~ by W f = Wjm+i, 

for i , j E {0, . . . , m- 1 }, we will also frequently use classes modulo m to index the sub­

sequences Wl, with the obvious interpretation: Wl = W( where i E i is the canonical 
t t 

representative i E {0, ... , m- 1}. 

4.1.1 An example 

Let m = 5, d = 2, i. e. (p , q) = (25 , 11) and fix also t = 2, then rf; ( x )= -2 and rj;( y) = 3. 

The intersections of the f3 curve wit h the a curve are: 

o,IT, 22,8, 19,5,16,2, 13,24,10,21 ,7, 18,4,15,I , 12, 23,9,20 ,6,17,3, 14 

Then W becomes Ô, 2, 4, Î, 3, Î, 3, Ô, 2, 4, 2, 4, Î, 3, Ô, 3, Ô, 2, 4, Î, 4, Î , 3, Ô, 2. 

Below we see on the left the values of the word (W/)i ( hats omitted ) and on the right 

the sequences (S/)i, arranged as matrices. Since d! = 3, the maxima in the sequences 
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(S{)i occur in positions: 0, 2, 4, 1, 3 respectively. 

0 2 4 1 3 3 1 - 1 2 0 

1 3 0 2 4 3 1 4 2 0 

wJ = 
l 2 4 1 3 0 sJ = 

l -2 -4 -1 - 3 0 

3 0 2 4 1 -2 1 -1 -3 0 

4 1 3 0 2 - 2 1 - 1 2 0 

4.1.2 The width of the knot's Heegaard-Floer homology 

We compute here the width of the sequence (Si )f~ci- , since this quantity determines the 

genus of K. We will use this information to give a complete classification of simple knots 

in Lisca's family 1 with an S 1 x S 2 surgery. 

D efinition 4.1.3. The width of a finit e sequence of (integer) numbers (Si) is w(Si ) = 

Theorem 4.1.4. Let K = K(m2 , dm+ 1, tm) (see Remark 4.0.12 for this notation) be 

a simple knot of arder m in a lens space L(m2 , q) in Lisca 's f amily (1 ). Then 

w(K) = 2 · w(K(m, d, t)). 

For the proof we state an easy result which will be useful for the other families as well. 

Recall the definition of W given before the example in section 4.1.1. 

Proposition 4.1.5. Let L(m2
, q) be a lens space given by a Heegaard diagram as in 

S ection 4. Then 

wJ+i = w1 +(] 
l l 

Proof. 

[ 
(j m + i) q + mq] - wi ~ - -:- +q 

m z 

0 
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Proof of Theorem 4.1.4. By Equation 4.3, W--9 = i.d, in particular 
t 

wL- w~ = d. 
i+1 t 

By the previous proposit ion , the same is true for all t he sequences SJ. This says tha t 

the sequences si are all the cyclic p ermutations of the sequence sô. 

By Equation 4. 5, w(sJ) = w(Sô), \fj E Z/m and also note that w(Sô) = w(K(m , d, t)). 

Also by Equation 4.5, we see that 

A:= { sj : i, ] E Z/ m} = { S~ - sF : f, rE Z;m} =: B 

We have 

{ 

max( (Si)f==-5) = max(A) 

min((Si )f==-5) = min(A) 

1 -
hence w((Si)f==-0 ) = 2w(S0

) = 2w(K(m, d, t) ). 

4.2 Lisca's family (2) 

= max(B) = w(SÔ) 

= min(B) = -w(SÔ) 

D 

In this case, q = dm+ 1 with gcd(d, m) = 2. As for family (1 ), t here is no essential 

difference between the cases q = dm+ 1 and q = dm- 1 (one can interchange d with 

m-d). 

Theorem 4 .2.1. The sequence (Si )f,:-5 for a lens space L(p , q) belonging to Lisca's 

f amily (2) achieves its maximum only once. 

In this case, t he m subsequences WJ of W do not contain ali t he classes modulo m , thus 

Sim+m- 1 -=/= 0 generically. However , we can cyclically permute W so t hat this desired 

property becomes true. 

Lemma 4.2 .2. Let Wf = WI+ ~' Vt E Z;p· Then W'J contains all the classes modulo 

m . 
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Proof. Since m is even, it makes sense to speak about even (resp. odd) classes modulo 

m. 

wô has the following form: 

foriE {0, ... , m- 1 }. 

Since gcd(d, m) = 2, WJ = W~ ~ i = i} or i -i} = ~· This means that wô contains 
t t 

all the even classes modulo m, and each su ch class appears exactly twice in wô. 

By Proposition 4.1.5 , WJ contains all even (resp. odd) classes modulo m (and only 

those) exactly when J is even, (resp. odd). 

Again by Proposition 4.1.5, we see that W'J contains all classes modulo m, and moreover 

foriE {0, ... ,!!}- 1}. See 4.2.1 below for a concrete example. 0 

4.2.1 Example 

Let m = 6, d = 4, then p = 36, q = 25 and the intersections of the a and (3 are 

0, 25, 14, 3, 28, 17, ... , hence W =Ô, 4, 2, Ô, 4, 2, ... 

Then (hats omitted): 

0 4 2 0 4 2 0 4 2 1 5 3 

1 5 3 1 5 3 1 5 3 2 0 4 

w! = 
2 0 4 2 0 4 2 0 4 3 1 5 

=W'1 -v-> 
t t 

3 1 5 3 1 5 3 1 5 4 2 0 

4 2 0 4 2 0 4 2 0 5 3 1 

5 3 1 5 3 1 5 3 1 0 4 2 
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Take t = 1 and th en the sums s? ( see below) are the following 

5 4 3 2 1 0 

- 1 -2 -3 -4 1 0 

-1 4 3 2 1 0 

-1 -2 -3 -4 -5 0 

-1 -2 3 2 1 0 

-1 -2 -3 2 1 0 

Rem ark 4 .2.3. We will work from now on with W' . Consequently we will adapt the 

notation of abjects relating ta W by adding the symbol ' ta the analogous abject relating 

ta W'. For example, the sequence ta which we will apply Brown's algorithm will be 

i 

s: := L ?j;(Wj) 
j=O 

By the previous lemma, S~m+m- 1 = 0, fors E {0, ... , m -1}, and like in the family (1) 

case, we will analyse each sequence S'J separately, and then compare the 'local' maxima 

obtained. 

Lemma 4 .2.4 . For JE 7l/m, 

if) is even 

if) is odd 

Proof. Note that t is odd, since gcd(t, m) = 1. Therefore 

respectively 

t+1 # {a : 0 ~ a < t, a even } = -
2
-

t - 1 
# {a : 0 ~ a < t , a odd } = -

2
-

Let) E 7l;m even. Then 

;y (t+1) (m t+l) m 8 !!f-1 = -2- . (m-t)+ 2--2- . (-t) = 2 
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and for] odd, 

s'J -T-1 - (t-1) (m t-1) m -2- ·(m -t)+ 2--2- . (-t) = - 2. 

0 

Lemma 4.2.5. The maximum of some sequence s1i, for] E Z/ m can be the maximum 

of (snr~~ only if] is even. 

Proof. 

R emark 4.2.6. It 's easy to see that proposition 4.1.5 applies to any cyclic permutation 

of W, in particular to W ' . 

Then, using Proposition 4.1.5, s6+'2 = s1I + 2. Also, from t he definition of W' , we see 

that for 0 ::::; i < rg- - 2, resp. rg- :'S i < m - 2, 

These two facts imply that 

• if ] is even , the sequences (W/):!~ 1 , resp. (W?)~-;i are cyclic permutations of 
-2 

- _!!!_ 1 -
(W'o) 2 resp. (W'o)m-1 

2 2=o , 2 2= T 

~ /j .!!! -1 ,.-, 1 î .!!! - 1 
• if j is odd, (Wi ) i~O , resp. (W/)~~ are cyclic permutations of (Wf ) i~O , resp. 

(w'îrn-,;. 
2 2=2 

Also from the definition of W ', for JE Z/m and i E {0, ... , rg-- 1} , we have that 

Suppose that max((Snf,:-~) 

i E {0, . . . ,m- 1}. 

We have two cases: 

max S'J , with j odd. Then max S'J 

(4.6) 

s? for some 
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1. iE{0, ... ,~ -1}. 

By Equation 4.6, 

but sinceY is odd, s'f-!-1 = ~ (by Lemma 4.2.4), we get the contradictionS~~ > 
- 2 2 

S l j 
2 • 

2. iE{ ~, ... ,m- 1}. 

Again by Equation 4.6, 

and sinceY is odd, S~_ 1 = - ~ (by Lemma 4.2.4) and we arrive at a contradiction 
- 2 

with s? being the maximum of the sequence (SDf~5. 

D 

Proof of Theorem 4. 2.1. We need to consider only the partial sums s1I with Y even. 

By Lemma 4. 0.14, for i, i ' E {0, . .. , m- 1} , s:Y = s~f implies i = i' . Suppose that 

max( ( SDf~~ ) = s;~ 1 for sorne l E { 1, ... , m} and ~ E 27L /m . Th en other potential 

maxima can only occur as the numbers s;~l for j E 27L/ m· 

As before, we have two different cases 

1. l E {1 , .. . ,~ } 

2. ZE {~+l, ... ,m}. 

We introduce sorne terminology first: 

Definition 4.2.7. Let A be a non-empty set and nEZ. 

1. A circular sequence Mi indexed by 'lL/ n is a function M: Z/ n ---+ A. 
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2. for l E {1, ... , n}, a subsequence Ni of Mi of length l is a function MoN: {0, . .. , l - 1} -----+ 

A, where N: {0, ... , l - 1} ----t 7l/ n is given by N( i) = a+ i, for some a E Z/ n· 

We say that Ni starts at a. 
l-1 

3. Given afunction 'ljJ : A-----+ 7l, the sum of the subsequence Ni by 'ljJ is L',( Ni) := 2.:= '1/J (Ni)· 
i=O 

Remark 4.2.8. In OUT setting, we denote by a classes modulo If. 

Remark 4.2.9. Since the fun ctions '1/J, {; (see below) are fixed throughout the prooj, we 

will not mention them in the text and sim ply say 'the sum of a subsequence' instead of 

'the sum of a subsequence by '1/J.' 

We will suppose that M := max((Snf,;:-~) is achieved twice and we'll arrive at a contra­

diction. Each case will be dealt with separately. 

In case 1, let Wi be the circular sequence indexed by Z/ Tf1, given by W-y = W[ô, for 

i E { 0, . .. , If - 1} and the function {; : Z/ T -----+ 7l defined by 

{;(a) = 1/J( W~) , 

Va E {0, ... , If- 1}. The sequences (W?)l=o are, by the proof of the previous lemma, 

all the subsequences of length l of the circular sequence Wi, hence their sums by '1/J, 
,..., - ~ 

namely S/_1 , are the sums by '1/J of the subsequences of length l of Wi, by the definition 

of '1/J . 

By our assumption, there are two subsequences of length l with sum equal to M . CaU 

the two subsequences (Ai)~:6 and (Bi) ~:;6 . Suppose that A starts at a and B starts at b. 

It is, of course, natural to think of the numbers Wi as being arranged in a circle, with 

indices ordered clockwise, say, see figure 4.2.1 

Modulo switching A with B, there are essentially two possible relative positions for the 
-~ ~ 

indices a, b, a+ l, b + l in Z/.!!!. : 
2 

(i) The indices appear in the order a, b, a+ l , b + l 
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a a 

a + l 

b+ l b+l 

Figure 4.2 The two orderings on circular sequences 

(ii) The indices appear in the order êi, a+ l, b, b + l 

Given two classes i,) E Z/ !!! , we will denote by W-:--o- the subsequence W-:-, W.+l' .. . , W-:-----1 2 t,J t t J-

and by ~_,."' its sum. 
t,J 

With this notation, 2:;a,~ = 21;-,b+l = M and 

~ m 
~- /3- + ~/3-- = ~ (W-:-) = -a, ,a t 2 (4.7) 

Va, 'jj E Z/ !.'!. , by Lemma 4.2.4 . 
2 

In case (i), 

• if ~a,b > 0, then ~a,b+l = ~a,b + 21;-,b+l > M - contradiction . 

• if ~- -b < 0, then U:-b~+l = ~-~1 - ~--b > M- cont radiction . 
a, ,a a,a+ a , 

• 2:;_-b = 0 is impossible by Lemma 4.0. 14 
a, 

In case ii , 

• if ~a,'b > 0, then ~a,b+l = ~a,'b + 21;-,b+l > M - contradiction. 

• if ~-b - > 0, then U:-b~+l = ~-b- + ~-~+l > M - contradiction. ,a ,a ,a a,a 

By Equat ion 4. 7, at least one of the situations above arise, and we ob tain a contradiction. 
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In case 2, again from the proof of Lemma 4.2.5, we have 

s'J - m + s'i+I 
l - 1- 2 l - ~-1 

t""'+T l - !.!l-1 
As before, t he sequences (W/ )i=O are the subsequences of length l- 9 of the circu-

lar sequence Wt := Wfî , for i E { 0, . . . , 9 - 1} . We define the function 7j;1 : Z/ ~ ----+ Z 

by 

and then the sums s;~_ 1 become the sums by ;p of the subsequences of length l- 9 
2 

ofWJ.. 
2 

Let l' = l - 9. We suppose again that there are two subsequences A and B of length l' 

of Wl where A starts at êi and B starts at b. 

We denote the sum of a subsequence of Wl by ;p with L: 1, for example, 

1 1 m L: ~ =L:-~ =M - -
a ,a+ l' b,b+l' 2 . 

As in case 1, we distinguish the two subcases, 

(i) The indices appear in the arder êi, b, a+ l' , b +l' 

------- ~ -------(ii ) The indices appear in the arder êi , a+ l', b, b +l' 

Subcase (i) is analogous to subcase i of case 1 

• if L:~ - > 0, then L: 1
- = L:~- + L:I - > M - 9 - contradiction. 

a,b a ,b+l a,b b,b+ l 

• if L:~ - < 0, then L:l~ = L: 1 ~- L:~ - > M - 9 - contradiction. 
a,b b,a+l a,a+l a,b 

Subcase (ii) is more involved than subcase (ii) of case 1 

• if L:~- > 0, then L:~ - = L:~ -b + L:;l: _ > M - 9 -contradiction. 
a,b a,b+l a, b,b+l 



• if ~l_ > 0, then ~~~ = ~l _ + ~ 1 ~ > M- Tf} -contradiction. 
b,a b,a+l b,a a,a+l 

Sin ce 

,, 1 "1 m 
LJ_-b + L.r.-b_ = --2 a, ,a 

a priori both sums can be negative. 

Nevertheless, we prove that this can 't happen. 

Suppose that ~~-, ~-b1 _ < O. By the previous equation, we obtain 
a,b ,a 

m 1 1 - - < ~--b' ~-b- < o. 2 a, ,a 

Recall the circular sequence Wi from case 1. 

By Lemma 4. 1.5 we have Wl = W-:- + Î , ViE Z/ '!!!:. . This implies that 
2 2 2 

, if w7 -:1 t-l 
, ifW7 =t-î 

Let î: E Z/ '!!!:. be the class with Wz =t-l. 
2 

We have two (equivalent) cases: 

• î: E W!-: By Equation 4.9, 
a,b 

but by Equation 4.8, 

bence 
m l 

~a,b+l > 2 + Bt;,b+l 
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(4.8) 

(4.9) 

contradiction with the fact that !!!:2 + ~- was the maximum of the sequence 
b,b+l 

(s,)p-1 
2 2=0 · 
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• T E W )_ : replace b with a and apply the previous argument . 
b,a 

4.2.2 The width of the knot 's Heegaard Floer homology 

D 

We will not compute the width of all the simple knots of order m in Lisca's family 2, it 

is enough for our purposes to verify when the width is minimal. 

Lemma 4.2.10. Let K = K(m2 , q, mt) a simple knot of arder m in a lens space belong­

ing to Lis ca 's family 2. Then 

• if t = 1, w(K) = 2(m- 1) 

• ift -=J 1, w (K) 2: 2m 

Prao]. If t = 1, it is trivial to verify that w (K) = 2(m- 1) . 

If t > 1, we have 

tÔ tÔ (~) m S!IJ:. = S!IJ:._ 1 +1/J 1 = -
2 

+m-t 
2 2 

by Lemmas 4.2.4, 4.1.5 and Equation 4.6. 

........... ,~ ----
Choose now jE 7l/m odd with the property that S~ = m - 1 Then 

2 

by the same argument as above. 

It follows t hat w (K) 2: 2m. D 

4.3 Lisca's family (3+) 

For the lens spaces in Lisca's family 3, the situatioll is not symmetric when we change 

the sign in the definition , i.e. q = d( m ± 1). Therefore, we treat each case separately. 
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Suppose then that L(m2 , q) is a lens space with q = d(m+ 1) for sorne dE {1 , . . . , m-1} 

which divides 2m - 1. This family of lens spaces is denoted by 3+. 

Theorem 4 .3.1. The sequence (Si)f,:~ for a lens space L (p, q) belonging ta Lisca's 

family (3+) achieves its maximum only once. 

As before, generically, the sequences Wj (we use the notation from 4. 1) do not contain 

all the classes modulo m, so the partial sums sj are not zero. 

Lemma 4.3.2. There is a cyclic permutation W ' of W such that the sequences W'j 

contain all the classes modulo m, in particular S'J = 0, V] E Z/ m· 

1 . - d'+l Prao . Let ~o - - 2- . 

Then the word W' defined by 

w~ = w~+~ 
t l lü 

for I E Z/ P> has the required property. 

We verify that the classes [
ioq ] [ioq+q] [ioq+(m-l)q ] 
m ' m , ... , m are all distinct . 

Since q = dm + d, then 

Wf- Wf_l E {d, d+J.} 

for i E { 1, ... , p - 1}. 

Claim4.3.3. LetiE{l, .. . ,m + io-1} . Then 

Wi - Wi - 1 = d+J. {::::::::} i E { io, 2io, 3io - 1, 4io - 1, .. . , m + 1 - io, m}. ( 4. 10) 

The set above can be written as A= {rio - lr21 J Il S r S d} . 

Proof of claim. By the formula for q = dm+ d, we have that 

[
iq] [(i- l)q] --- -:-- ~ ---m - m = d + 1 {::::::::} ~q E {0, ... , d- 1} ( 4.11) 

A simple computation shows that, for rE {1, ... , d}, 
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rm ~ (rio -lr; 1 J) · d < rm + d (4.12) 

and this implies that exactly for those values of i that belong to A, Wi - W i-l 

----d+ 1. D 

Translating by io, we obtain 

Wf - Wf_1 = J+1 {:::::::} i E { io , 2io - 1, 3io - 1, ... , m - io} =: B 

foriE {0, .. . , m- 1} . 

Consider now the numbers 0, d, 2d, . . . (m-2)d and let ao , a1 , . . . , am-2 E {0, ... m-2} be 

the canonical representatives of these numbers modulo m-1 , i.e. ai = d ·i mod (m - 1). 

Form the sequence âo , âi, ... , ~' ~ where by definition ~ = rn:-=1. 

Claim 4.3.4. We have 

d, 

--d + 1, 

ifi ~ B 

ifi E B 

Pro of of claim. Note that 

B ={rio - l~J Ir E {1 , . .. , d- 1}}. 

Denote by br = rio - l ~ J , r E { 1, . .. , d - 1}} For r E { 1, .. . , d - 1} , 

hence 

and then 

d - 1 lrJ b · d = rm + r- - - - · d 
r 2 2 

d - 1 lrJ { abr = r + r -2- - 2 d = 
r 
2> 

d+r 
- 2- , 

if r is even 

if r is odd 

if r is even 
a'" 1 ~ { 

~ -d+m-1 , 

d+r - d + m - 1 
2 ' 

if r is odd 
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and for i E B , the daim is proved. Notice that the values ai for i E {b1 , ... , bd-d are 

distinct and they belong to the set { 1, . . . , d - 1} hence for all i tf. B , a i ~ d and th en i t 

follows that ai - a i- l = d. 

Also note that am-2 = (m- 2)d- (m - 1) (d-1) = m- d-1 and the d aim is proved. D 

Putting together the daims 4.3.4 and 4.3.3 gives t he conclusion of the lemma. D 

Thanks to the above lemma, the problem of the maximum of the sequence (8~)~ 1 

is reduced to finding the maxima of the length m subsequences (Sm~~m-1, for r E 

{0, ... , m -1} . By Proposition 4.1.5 , there is one sequence W'Jo which starts with Ô. 

Remark 4.3.5. For the rest of this section we will denote (abusing slightly the language) 

by W'J the sequence of length m of W' which starts with ], but its elem ents will be the 

canonicat representative of the classes modulo m in the segment {0, .. . , m- 1}. We will 

also use indices modulo m to denote the sequences W'J = (W~j)~-0 1 and their sums s!J . 
~ ,_ ~ 

By the previous lemma, this is unambiguous. 

Claims 4.3.4 and 4.3.3 imply that 

(4. 13) 

for i E {0, ... , m - 1} . 

Proof of Theorem 4.3. 1. We will prove that max(SDZ:ü1 is achieved only once and is 

equal to w(S'0 ) . To this end, we compare the sequences W'J wit h corresponding cydic 

permutations of W'0 . 

Claim 4 .3.6 . Let jE {1 , .. . , m - 1} and ij E {1 , ... , m- 1} be the index of j in W'0, 
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'l.e. Wf0 = j . Then 
J 

w !2.._ 
i+ij' 

if i < m- ij and w:~ij > " _J 

W)J = 
w !2.._ - 1 

i+ij ' 
if i < m- ij and w:~ij <j 

t W'~ if i >m - i· dW'0 · 
i+ij+ l ' - J an i+ij+l > J 

W'~ - 1 
i+ij+ l ' 

ifi >m-i - J and w:~ij+ l ~ j 

Proof of claim. By equation 4.13, fo r i E {0, ... , m- ij - 1} , 

hence 

W 'o - w'o . i+ij = i + J (mod m -1) 

{ 

W'0 . r W'0 > . w;o = i+ij - J, 1 i+ij _ J 

W 'o 1 . .f W'o . i+iJ + m - - J, 1 i+ij < J 

(4 .14) 

By Lemma 4.1.5 , w? is the canonical representative modulo m of Wf0 + j , hence by t he 

previous equation, 

w'J = 
t 

for i E {0, ... , m- ij - 1}. 

"fW'0 >. 
1 "+" J t tj -

"fW'0 . 
1 "+" < J t 2j 

ForiE {m- i1, . .. , m- 2} , the number i + ij is out of the range {0, ... , m -1} and 

we must use classes modulo m. Since the numbers ao, a1 , ... , am-2 are the canonical 

representatives modulo m- 1 of the numbers 0, d, ... , (m- 2)d, by equation 4.13, 

hence 

w'o - w'o . 
i+i;-(m-1) = i + J 

{ 

w'o _ · 
w;o = i+i;-(m-1) J, 

W'0 - 1 - · i+i ·-(m- 1'1 + m J, J • 

mod (m- 1) 

"fW'0 >. 1 i+ij-(m-1) - J 

"fW'o . 1 i+i;-(m-1) < J 

Passing to classes modulo m, we obtain 

W'~ 
i+ij+l' 

W'~ -1 
i+ij+ l ' 

ifW'~ >. 
i+ij+l - J 

ifW'~ < j 
i+ij+ l 

-··-·---------------------- -------------- --------- ---
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for i E { m- ij, . .. , m - 2}. 

Finally, note that W~_1 = j- 1, and the daim is proved. D 

Let w > 0 be the width of the sequence (S'0)Z:(/. Since 1ji(Wf0 ) = -t (mod m) , t he 

numbers (s:0)Z:(/ are all distinct, bence S'0 has a unique maximum and a unique min­

imum. Let imin, resp. imax denote the index of min(S'0 ), resp . of max(S'0). By the 

definition of w , it follows that 

for all j E {0, . . . , m- 1} and the equality is obtained only for ij = imin + 1. 

Claim 4.3.7. For j E {0, .. . , m - 1}, 

max(S'])m-1 < w 
~ ~=0 -

Remark 4.3 .8. The i'th partial sum of the sequence (3~):0 1 can be written as s:~i -
~+~j J 

S IO 
i - 1· J 

Proof of claim. We distinguish two cases: 

1. j < t 

In this situation, notice that if j' :s; j , then 1/J(f) = m - t . Then, for E 

{0, ... ,m- ij -1} , 1/J(W{i) = 1jJ( Wf~i1 ), by equation 4. 14, bence 

(4. 15) 

for i E {0, ... , m- ij - 1}. 

Th en 1/J (W~-i ) :s; m-t = Sb0 bence we can extend equation 4. 15 to an inequality 
J 

S l j < s 'o - s'o 
i - ~+~j ~j-1 

for i E {0, ... , m- ij} . 



98 

ForiE {m- ij, ... , m- 1}, we have 

( 4.16) 

and from this, 

i-1 

s'j - s'J . = 
2 m-2j-l L 1/;(W~j) :S 1/; (0) + L 1/;(W~j) = L 1/;(W~~i) 

k=m-ij 

where the last equality cornes from equation 4.16. 

But 
i+ij 

L 1/J(W~~i) = L V; (W~0 ) = s~~ij - s~_ 1 
k=m-ij k=m 

Now use equation 4.15 for i = m- ij- 1 and the conclusion is proved. 

Remark 4.3.9. (a) Note that we have proved something stronger than the claim, 

namely 

foriE {O, ... ,m -1} . 

{b) From equation 4 .16, we can write directly 

foriE {m- ij, .. . , m- 1}. Since V;(W0°) = 0, we have that 

for i E { m- ij , . .. , m - 1} , hence the partial sum S/ is strictly smaller than 

the sum of a {circular) subsequence of W'0 . 

2. j 2: t 

In this case, we will prove the following inequality: 

( 4.17) 



fori E {0, . .. , m- 1} , with equality if i;:: m- ij-1- 1. 

For i E {0, .. . , m- ij-1 - 1} , by applying equation 4.14, we obtain: 

but by Lemma 4.1.5, 

Th en 

W'9..-­
i+ij- 1) 

W'9..-- -1 
i+ij-1 ) 

if W'~ ;:: j - 1 
t+tj -1 

ifW'~ < j -1 
t+tj -1 

w?-1 = w?- 1 (mod m). 

w? = t+tj-1 t+tj-1 
. { W'~ + 1, if W'~ ;:: j -1 

W'~ , if W'9..-- < j - 1 
t+tj-1 t+tj -1 

for i E {0, ... , m- ij -1 - 2} and W 'J -:-- = 0. 
m-tj-1-1 
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Note that for i E {1 , ... , m - ij-1 - 2} , '1/J(W?) = '1/J( W'~) since j > t and 
t+tj-1 

i -:ti; 1 -:/= t-l, ~. Therefore 

foriE {1, . .. , m- ij-1- 2} . 

R emark 4 .3 .10. Binee 'if;(J) < 0, the last equality implies that 

s'J < S'f}___ - S'!l.._ 
t i+ij-1 ij-1' 

i.e. the partial sum s? of W'J is strictly smaller than the sum of a subsequence 

ofW'0 , fori E {0, ... ,m- ij-1 - 2}. 

In particular, 

Since '1/J(~) = 'ljJ(j), 

Let i E {m- ij-1, ... ,m -1}. By equation 4.14, 

if W'0-- < . - 1 
"+" +1 - J t tj-1 

(4 .18) 



100 

By Lemma 4.1.5, 

ifW'0~ > j -1 
~+~j-1 + 1 

ifW'0- < . -1 . . 1- J 
~+~j-1+ 

since W'0 ~ =/:- m- 1 (because i > m- iJ-l- 1). Note that 
~+~j - 1+1 

for i E { m- ij - 1, . . . , m- 1 }. This implies that 

S'J - s'J - s'a - s'a 
. -- - 0 t m -ij_ 1-l i+ij-1+l 

for i E { m - ij -1, ... , m - 1}. 

(4.19) 

( 4.20) 

Now simply add the equations 4.18 and 4.20 to get the conclusion of the daim. 0 

Claim4.3.11. Thereisatmostonepairofvalues(i , j) E {O, ... ,m -1}2 withs:J =w. 

Proof of claim. Suppose that there are two such values (i1,jl) and (i2,j2). By Lemma 

4.0.14, the two sequences have the same length, i.e. i1 = i2. 

If both j 1 , J2 < t th en the previous daim shows that 

w = s~ol+i . - s~o - 1 = s~2o+i - s~o -1 ' 
J) 11 ]2 12 

which is a contradiction because w is the sum of a unique subsequence of W'0 . 

Similarly, for j 1,j2 ~ t, we obtain that 

which is again a contradiction by the same argument. 

If j 1 < t and ]2 ~ t , t hen the equality cases in the d aim, more precisely Remarks 

4.3.9 and 4.3.10 imply that the width w is realised as a partial sum of a subsequence 

of W'0 which contains W6° for the case (i2,]2) and it doesn't contain W6° for (i1,jl)-

contradiction. 0 
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We prove now that w is realised as the maximum of S'J , for sorne j E {0, . .. , m- 1}. 

We distinguish again two cases 

1. imin < imax 

In this case, simply consider j = Wf~in+l' hence ij = imin + 1. By the minimality 

of min, we get j < t and then 

for i E { 0, ... , m - ij - 1} which in particular contains the index imax - imin - 1. 

w b . s'j - S'0 S'0 -e 0 tain imax -imin - 1 - imax - imin - w. 

2. imax < imin 

Let j = W[min + 1. By the minimality of SI~in, we ob tain j ~ t and j > m-d and 

we are in the situation analysed in t he previous claim. lts proof implies that 

R emark 4.3.12. The class ima-;=-;min - 1 is represented by imax -imin + m- 1 ~ 

m - ij-1 - 1 = imin- 1, hence we are in the case of equality in Claim 4.3. 7. 

D 

4.3. 1 An example 

Let m = 5, d = 3 (hence (p, q) = (25, 18) and d' = 3) 

T he intersections of the a and (3 curves are: 0, 18, 11 ,4, 22 , 15,8, 1, 19, 12,5, ... , 14 and 

the words W, resp. W' are listed below 

0 3 2 0 4 2 0 4 3 1 

3 1 0 3 2 0 3 2 1 4 

wj = 1 4 3 1 0 """ 3 1 0 4 2 =W'J 
t t 

4 2 1 4 3 1 4 3 2 0 

2 0 4 2 1 4 2 1 0 3 
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Consider t = 2. Then f(Ô) = f(Î) =y= 3 and !(2) = f(3) = f(4) = x = -2 and the 

sums s? are 

-2 1 -1 -3 0 

3 1 -1 2 0 

-2 1 4 2 0 

3 1 -1 -3 0 

-2 -4 -1 2 0 

4.4 Lisca's family (3_) 

This family is somewhat similar to family (3+), but the situation is slightly more com­

plicated. 

Let L(p, q) be a lens space belonging to Lisca's family (3) with p = m 2 and q =dm- d 

for sorne d < m a divisor of 2m + 1. Let d'= 2
md+

1
. 

Theorem 4.4.1. The sequence (Si)f~~ for a lens space L(p , q) in Lisca's family (3-) 

achieves its maximum only once. 

Remark 4.4.2. We will use the same techniques and notations from the previous case: 

W j w'J s'J i ' i ' i etc. 

Observation 4.4.3. Generically, the sequences WJ of W do not contain all the classes 

modulo m, sa their sum is non-zero in general. 

Lemma 4.4.4. There exist a cyclic permutation W' of W such that the sequences W'J, 

for j E {0, ... , m- 1} , contain all the classes modulo m, therefore S'J = O. 

Proof. Choose io = d't l and let 

W~=W~+ . 
2 2 20 

Th en 

W' = [ io~ q] , [ ( io +~) · q] , ... , [ ( io + p r: 1) · q] . 
We will prove that the first m letters of W' are distinct, and this together with Lemma 

4.1.5 will give the desired conclusion. 
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Since q = dm - d, 

for i E { 1, ... , p}. 

Claim 4.4 .5 . For iE {2, ... , m + 1 }, 

Wi- Wi-1 = él-1 {::::::::} i E {io,2io - 1, 3io -1, . . . ,m + 1}. 

Proof of claim. Denote by A the set on the right . Then 

A= {r · io -l~J 1r E {1 , . .. , d}} 

Since q = dm - d, 

(4.21) 

For r E {1 , ... , d} , we have 

if ris odd 

if ris even 

Note that 

{~l iEA}={~ , ... ,~} , 

--which implies that for i E A, Wi - Wi- 1 = d- 1 and for any other value of i E 

{2 .. .. , m + 1} , Wi- Wi- 1 = d. 0 

By Lemma 4.1.5, we have that for i E {1 , ... , m + io - 1 }, 

--wi- Wi-1 = d-1 {::::::::} i E {1,io ,2io - 1, . . . ,m+ 1} = {1} UA 

Translating by io, we obtain 

Wf- W[_1 = él-1 {::::::::} i E {io - 1, 2io -1, . . . ,m+ 1- io} (4.22) 



104 

foriE {1, ... , m - 1} . Call this set B. Then 

B = { r · io -l r ; 
1 J 1 r E { 1, ... , d - 1}} ( 4.23) 

Denote by br = r · io - l rt 1 J , r E { 1, . .. , d - 1}. 

Let ai be the canonical representatives modulo m + 1 of the classes d - 1 + i · d, for 

i E {0, ... , m - 1 }; in other words ai = d- 1 + i · d (mod m + 1) and ai E {0, ... , m }. 

Remark 4 .4.6 . Since d is a divisor of 2m + 1, gcd(d, m + 1) = 1, so the numbers ai 

are all distinct. 

Claim 4.4.7. ForiE {1, . .. ,m}, 

if i E B. 

if i tf_ B. 

Proof of claim. It is immediate to see that 

âi - ai=1 = r=J. Ç:=} ai E {0, ... , d- 1} 

Let i E B , i.e. i = r · io -lrt1J for sorne rE {1 , ... , d -1}. A simple computation 

shows that 

{

d- r_ 1 
2 ' ai = 

d-1-:C 
2' 

if r odd 

if r even 

which shows that, for i E B , âi - ai=1 = r=J.. Note that 

{ai 1 i E B} = { 0, ... , d - 2} 

and a0 = d - 1. Together with Remark 4.4.6, this implies that for all indices E 

{1, ... ,m-1} \B,âi-ai=l=d. 0 

The previous daim, coupled with equation 4.22, show that 

W td-1 ~ 
i =ai, ( 4.24) 
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for i E { 0, .. . , m - 1} . 

Note that am = m - d, hence ai f. m, for i E {0, . .. , m- 1 }, which implies that the 

classes âi are distinct, for i E { 0, . . . , m - 1} . D 

It is convenient to extend the sequence (ai)Z!,01 with am = m, by definition. We can 

write then 

ai = d - 1 + d · i ( mod m + 1) (4.25) 

foriE {0, ... , m}. 

As in the previous argument , we will compare the sequences W'J with cyclic permutations 

of the sequence W'd- 1 . 

Remark 4.4.8. From now on, by abusing language, we will denote by W {l the canonical 

representative modulo m of the class W{l and we will frequently use indices modulo m 

with the obvious interpretation, i.e. w:j = W{l for i E {0, . .. , m - 1}. Finally, we will 
t 

denote by i1 the index of the number j in W'd- 1 , i.e. w ;d- 1 = j. 

Lemma 4.4.9. For i,j E {0, ... , m- 1} with j 2: d- 1, 

w~1 if i < m- i1 and w:tJ 2: j- (d- 1) 
i+ij ) t tj 

w~1 +1 if i < m- ij and W~1 < j - ( d - 1) 
i+ij ) t+tj 

w'J = 
t 0, if i = m- ij 

w'd-1 if i > m- ij and W'~ 2: j - ( d - 1) 
i-+ij:=l) t+tj - 1 

W'~ +1 
i+ij - 1 ) 

if i > m- ij and W'~ < j - ( d - 1) 
t+tj-1 

Proof. By Claim 4.4. 7, for i E {0, ... , m- ij - 1}, 

W'd-:- 1 := W'd- 1 + J.- (d- 1) (mod m + 1). 
t+tj t 

Therefore, 

{ 

w'd- 1 + j - ( d - 1), if w:d- 1 ~ m - j + ( d - 1) 
W td- 1- t • 

i+ij -

w:d- 1 + j - d - m, if w:d-1 > m - j + ( d - 1) 
(4.26) 
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Equivalently, 

w:d-1 = {w:~~1- J + (d- 1) , 

W ld-1 . d 
i+ij - J + + m, 

if W'+d-:- 1 > J. - (d- 1) 
~ ~j -

if w:~~ 1 < .7 - ( d - 1) 

By Lemma 4. 1.5, 

w? = w:d-1 + j- (d- 1) (mod m) 

hence 

0 ~ ) . {w'd-1 +J.- (d -1) 

wi = w:d-1 + j- (d- 1)- m , 

if w;d-1 < m - j + ( d - 1) 

if w:d-1 > m - j + ( d - 1) 

Remark 4.4.10. A simple computation shows that 

w:.::.=F = m - j + ( d - 1), 
J 

( 4.27) 

therefore we canuse strict inequalities in the previous fo rmula, fo r i E {0, . . . , m- ij - 1}. 

Together with equations 4.26 and 4.27, this gives 

if i < m- ij and Wf~~1 ?:. j- (d- 1) 

if i < m - ij and Wf~~1 < j- (d- 1) 

For i = m- ij, by Remark 4.4 .10 and Lemma 4.1.5, 

W l j -0 
m-i· - · 

J 

By Remark 4.4.10, 

W td-1 · d _ rxrtd-1 ( d 1) 
m-i

1
+1 - m + J- = vv 0 mo m + 

and by finite induction on i E {m- ij + 1, ... , m- 1}, we deduce 

W'~ = w:d-1 + j- (d- 1) (mod m + 1), 
~+~j- 1 ~ 

hence 

{
w:d-1 + j- (d - 1) , 

W'~ = t 

i+ij-1 td-1 . 
W..,_ +J -d-m, 

~ 

if w;d- 1 ~ m - j + ( d - 1) 
~ 

if w;d-1 > m - j + ( d - 1) 
~ 

( 4.28) 

( 4.29) 

( 4.30) 



and 

{ 

W'~ - j + ( d - 1), wtd-1 = z+tj-1 
t 

W'~ -j+d+m 
i+ij- 1 ' 

if W'~ > . - (d - 1) '+' 1- J t Zj-

These two equations and Lemma 4. 1.5 imply 

if i > m - ij and W'~ < j - ( d - 1) 
z+tj- 1 

for i E { m - i j + 1, . . . , m - 1}. 

Lemma 4.4 .11. For i, j E {0, .. . ,m -1} with j < d - 1, 

W!j = .{ - m - 1, 

W'~ -1 
i+ij- 1 ' 

if i < m- iJ and w:!~1 < m + j- (d- 1) 

if i < m- ij and w:!~1 > m + j- (d- 1) 

if i = m - iJ 

if i > m- ij and W'~ < m + j- (d - 1) 
Htj - 1 

if i > m - ij and W'~ > m + j - ( d - 1) 
z+tj- 1 

Proof. The proof is similar to the proof of Lemma 4.4.11. 

By Claim 4.4 .7, foriE {0, ... , m- ij -1} , 

W'd-:- 1 = W'd- 1 + J. - (d- 1) (mod m + 1) . 
z+zj z 

Therefore, 

W'd- 1- z 

{ 

W'd- 1 + j - ( d - 1), 

i+ij - w:d- 1 +j -(d- 1)+ m+1 , 

Equivalent ly, 

W' - 1 = J d 
{

w:+dil- j + (d- 1) , 

z w:!~ 1 
- j + ( d - 1) + m + 1, 

if w:d-1 ;:: (d- 1) - j 

if w:d-1 < ( d - 1) - j 

if w:!~ 1 < m + j - ( d - 1) 

if W '+d-:-1 > m + J.- (d- 1) 
t Zj -
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(4.31) 

0 

( 4.32) 

( 4.33) 
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By Lemma 4.1.5 , 

he nee 

w? = w:d-1 + j - ( d - 1) ( mod m) 

IJ ~ ' 
. {w'd-1 +J. - (d - 1) 

wi = w:d-1 + j - (d - 1) + m , 

if w;d-l ;:::: (d - 1) - j 

if w;d-1 < ( d - 1) - j 

By the previous equat ion and equations 4.32 and 4.33, 

if i < m - ij and w;!~1 < m + j - (d - 1) 

if i < m - ij and w;!~1 > m + j - (d- 1) 

( 4.34) 

( 4.35) 

R emark 4.4.12. Once again, the equality case in the previous equation does not occur 

f or i E { 0, . .. , m - ij - 1} , sin ce it is easy to observe that 

w;d.=-f = m + j - ( d - 1). 
J 

For i = m - ij, by Remark 4.4 .10 and Lemma 4. 1. 5, 

W tj -
m -i· - m - 1. 

J 

By equation 4.30 , 

W'~ = w:d- 1 + j - ( d - 1) ( mod m + 1), 
~+~j- 1 ~ 

for i E { m - ij + 1, ... , m - 1} hence 

and 

W'~ = ~ 
if w.:d- l > ( d - 1) - j 

i -

{
w_:d-1 + j- (d- 1), 

i+ij-1 w.;d-1 + j - (d - 1) + m, if w.:d-1 < ( d - 1) - j 
~ 

{ 

W'~ - j + ( d - 1), W'd-1 = ~+~1 - 1 

~ W'~ - j + ( d - 1) - m, 
~+~j- 1 

if W'~ < m + j - ( d - 1) 
~+~j - 1 

ifW'~ > m + J. - (d -1) 
i+ij-1 -

( 4.36) 

( 4.37) 

The two equations and Lemma 4.1.5, or more precisely equation 4.34, give t he last part 

of the conclusion of the lemma: 

{ W'~ w-? = i+i1- 1' 

W'~ -1 
i+ij- 1 ' 

if i > m - i j and W'~ < m + j - ( d - 1) 
~+tj -1 

if i > m - ij and W'~ > m + j - ( d - 1) 
t+~j -1 

( 4.38) 
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for i E { m - ij + 1, ... , m - 1}. 

Remark 4.4.13. There is no equality case in the formula above by remark 4.4.10. 

0 

The two lemmas allow us to compare the sequences W'] with W'd- l and estimate their 

maxima. 

Proof of Theorem 4.4.1. As above, there are two different situations, depending on j 

and d. We treat them separately. 

l.j > d-1 

Depending ont E {2, ... , m/ 2} , there are two different possibilities : 

(a) t?:. j- (d- 1) 

Using Lemma 4.4.9 we can write 

if i < m- i j 

if i = m - ij (4.39) 

·'·(W.'d=.___ l ) , .f . . <v _ _ 1 z > m - Zj 
t+ t j-1 

for i E {0, ... , m- 1}. 

Remark 4.4.14. The condition t ?:. j- (d- 1) implies that j - d < t , i.e. 

1/J (w:d~f) = 1/J (O). 
J 

Claim 4.4.15. In this situation, for i E {0, . . . , m- 1} , we have 

if i < m- ij 

ifi > m - i - J 

Moreover, for i < m - ij , 
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Proof of claim. For i < m - ij, by equation 4.39, we have 

and since 'lj;(W!d~f) = 'lj;(O) > 0, 
J 

and the inequality in t he last part of the claim follows . 

Since 'lj;(O) = 'lj;( W[d~f), we can extend the previous equation to: 
J 

and th en continue by fini te induction on i E { m - ij + 1, ... , m - 1} using 

equation 4.39 to extend the equality to 

s'J = s'~ - s'!!::!. 
t i+ij-1 ij-2 

0 

(b) t < j - ( d - 1) 

In this case, 'lj;(W[d~f ) < 0, and of course, 'lj;(W!d- 1
) < O. 

J J 

Claim 4.4.16. With the hypothesis above, foriE {0, ... , m - 1}, we have 

Slj 
i <w. 

Proof of claim. Consider first the case j < m - 1. By Lemma 4.4.9, 

if i < m- iJ+1 and W'~ ?. j + 1- (d - 1) 
t+tj+ l 

W'~ +1 
i+ij+l ) 

if i < m- iJ+1 and W'~ < j + 1 - (d- 1) 
t+tj+l 

w'1+1 = o 
t ) if i = m- iJ+1 

if i > m- ij+1 and W'd::::..!-_ ?. j + 1- (d -1) 
t+tj+ l - 1 

if i > m- iJ+1 and W'd::::..!-_ < j + 1 - (d- 1) 
t+tj+l-1 

--------------------------------------------
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w'i = 
2 m -1, 
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if i < m- ij+1 and W'~ :=: j + 1- (d- 1) 
2+2j+ l 

if i < m - ij+l and W'~ < j + 1 - ( d - 1) 
2+2j+l 

if i = m- ij+l 

if i > m- ij+1 and W'd:=.!._ :=: j + 1 - (d- 1) 
2+2j+l-1 

·f · · d w'd-1 · 1 (d 1) 1 ~ > m - ~j+1 an . -:---- < J + - -
2+2j+l-1 

Sin ce t < j - ( d - 1), the previous equation gives 

if i < m- ij+1 

if i = m- ij+l 

From this, it is immediate to see that 

(4.40) 

fori<m-ij+1· 

Th en, 

s~ i = s~ - s'~ + 1/J(m- 1) < s~ - s'~ , - J+l m- 1 ij+1 - 1 m-1 ij+I-1 

and finally, by induction on i E { m- ij+1, ... , m- 1 } , we have 

Since 1jJ(w::~1 ) < 0, we haves?< w, for all iE {0, ... , m- 1} . 

For j = m- 1, from Lemma 4.1.5, 

for i E {0, ... , m- 1}. 

Also, from equation 4.24, we know that 

w:d-1 = w:!11 - d (mod m + 1) 
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for i E {0, ... , m- 2}. These two equations imply 

{ 

W /m-1 'f w/m- 1 d 
+1 , 1 ;+1 < m-

w ;d-1 = ~ " 

W /m-1 1 'f wtm-1 > - d 
i+1 + ' l i+1 - m 

for i E {0, ... , m- 2} (see also 4.3.6 for a similar argument) . 

The condition t < (m- 1)- (d- 1) implies that 

for i E {0, .. . , m- 2} , hence 

foriE {1 , . . . ,m- 1}. Since 7J;( W~d- 1 ) < 0, we obtain 

for i E {1, .. . , m- 1} and the daim is proved. 

2. j < d- 1 

(a) t:Sm+j-(d-1) 

Note that this implies that '1/J( Wfd~{) < O. Also, by Lemma 4.4.11 , 
) 

·'·(W'd~1) 
'f/ ~+~j ' if i < m- ij 

· '·(W'd-1) 
'f/ m-1 ' if i = m- ij 

7J;(Wf!0~ 1 ), if i > m- ij 

Claim 4.4.17. For i E {0, ... , m- 1} , we have 

if i < m- ij 

if i> m -i· - J 

Also, for i 2: m - ij, 

S lj 
i <w. 

D 

( 4.41) 
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Proof of claim. From equation 4.41 , we immediately see that 

for i < m- ij. 

For i = m- ij, 

and for i > m- ij, also from equation 4.41, 

( 4.42) 

for j E {m - ij + 1, ... , m - 1}. Now use t he observation that 'lj; (w;d~{) = 
J 

'lj; (w:;;=i) to get the equality stated in the daim. By equation 4.42 , the 

inequality in the daim is also established. 0 

(b) t > m + j - ( d - 1) 

In this case 'lj; (w::~;) > O. 

Claim 4.4.18. For j > 0 we have the following formula 

if i < m- ij-1 

if i 2: m- ij- 1 

Moreover, for i < m- ij-1 , 

For j = 0, 

s'J _ S'd-l _ S'd-l 
i - i+m-d m-d-1 

Vi E { 0, ... , m - 1} . 
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Proof of claim. Suppose j > 0 first . By Lemma 4.4.11 applied to j - 1, we 

ob tain 

W l.j - 1 -_ 
t m -1 , 

Using Lemma 4.1.5 , 

w'J = o t , 

.f . . d W'd- 1 . d 
1 2 < m - 2j-1 an i+ij_ 1 < m + J-

.f . . d W'd- 1 . d 
1 2 < m- 2j-1 an i+ij _ 1 > m + J-

if i = m - iJ-1 

.f . . d W'd- 1 . d 1 2 > m- 2j-1 an . ..,..-- < m + J -
t+tj-1-1 

.f . . d W'd- 1 . d 1 2 > m- 2j-1 an . ..,..-- > m + J -
t+tj-1- 1 

.f . . d W'd- 1 d 1 2 < m- 2j-1 an i+ij_ 1 < m + j -

.f . . d W'd- 1 . d 
1 2 < m- 2j - 1 an i+ij_1 > m + J -

if i = m- iJ-1 

.f . . d W'd- 1 . d 1 2 > m- 2j - 1 an . ..,..-- < m + J -
t+tj -1-1 

.f . . d W'd- 1 . d 1 2 > m- 2j-1 an . ..,..-- > m + J -
t+tj-1- 1 

and using the inequality t > m + j- (d- 1) , 

if i < m- ij - 1 

if i = m- ij-1 

"'·(W.'d-__ 1 ) , .f . . 'f' _ _ 1 2 > m- 2j-1 
t+tj-1 -1 

I t follows that 

for i E {0, ... , m- ij- 1} and also, since 7J;(WJ:~~ 1 ) = 7J;(WJ:~f) > 0, 

for i in t he same range. For i = m- ij -1, by the previous observation, 



Continuing by induction on i E {m- ij - 1, . .. , m- 1} , we obtain 

for i 2: m- ij-1 and the first part of the claim is proved. 

Suppose now j = O. 

By Lemma 4.1.5, 

Wf0 = w:d- l- (d- 1) (mod m) 

We also know from equation 4.24 that 

W'd-l- d = W'd-l (mod m + 1) 
t t- 1 

for i E { 1, ... , m - 1}. 

Together, these two equations allow us to write 

{

w'd- 1 + 1 
lÜ t-1 ) wi = 

for i E { 1, . .. , m - 1} . 

W'd- 1 
i -1 , 

By the hypothesis on t , we have 

for i in the same range. 

if w;~1 1 < m + 1 - d 

if w;~1 1 2: m + 1 - d 

By equation 4.24, we know that w::;=i =m-d hence 'lj;(w::;=Î) > O. 
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Use now the fact that 'f/; (W6°) = 'lj;( w;~=i) to conclude the claim. D 

The previous four daims imply that 

max (S') ::; w. 

We prove now that the width w is realised as s? for sorne i , j E {0, ... , m- 1} . 

By definition, w = max( S'd-l) - min(S'd-l ). Suppose that max( S'd-l) = S~~~: and 

. (S'd-l ) - S'd- l f . . . {0 1} nun - imin OI SOlDe Zmax, Zmin E , ... , m - . 
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Th en 

w =S'd-l_ S'd- l 
?.max 1.min 

Also, by Lemma 4.0.14 there is only one value of i E {0, ... , m- 1} for which s? = w, 

(independently of j). 

We distinguish again several possibilities 

1. imin < imax 

In this case we observe that w:d-l = 0 for sorne i E {imin + 1, ... ,imax}, be-

th · 1 tl w'd-l w'd-l ·th w'd- l cause o erw1se we can rep ace 1e sequence imin + 1 , ... , imax Wl imin + 1 -

1, ... , w;:~; - 1 to obtain a subsequence of W'd- l with sum ~ w. (This new 

sequence of numbers is indeed a subsequence of W'd- 1 by equation 4.24). 

Consider the number j = w;d-:-1+1, equivalently iJ = imin + 1. Claims 4.4.15 and 
mm 

4.4.16 imply that one cannot have j > d- 1, because otherwise we can find a 

subsequence of W'd- 1 with sum strictly greater than w : 

Remark 4.4.19. If we are in the case of Claim 4.4.15, the fa ct that imin < imax 

implies that w = s~d+i 1 - s~d=î for some i < m- ij, more precisely i = imax-
J J 

imin - 1, hence we are in the bran ch with the strict inequality. 

Then we must have j :::; d- 1. 

Note that j =f. d- 1 because otherwise we would have imin = m- 1. 

Then j + 1 :::; d- 1 and for j + 1 < d- 1 Claim 4.4.18 (applied to j + 1) implies 

that we cannot have t > m + j- (d- 1) because of the maximality of w. 

For j = d - 2, we can apply Claim 4.4.17 to conclude that w is achieved as 

S'd-2 . . 
?.max -tm in -1 

Otherwise we must have t :::; m + j - ( d - 1) and again Claim 4.4.17 gives us a 

i E {0, ... , m- ij - 1} with w = St 
2. imin > imax 
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If j > d- 1, Claim 4.4. 15 applies and gives a unique pair ( i, j) with i 2: m- ij for 

which s? =w. 

If j < d- 1, then if j + 1 < d- 1, Claim 4.4. 18 applies (to j + 1) and again there 

is a unique pair (i , j) with i 2: m- ij and S'H1 =w. 

There are two values which are not covered: j = d- 1 and j = d- 2. We will show 

however that they cannat occur, i. e. Sjd_-;} cannat be the minimum of S'd- l. 

• j=d -1. 

Then imin = m - 2, and since S~=~ is the minimum of S'd-l, we must have 

1/;(w::;=i) > 0, and since w;~=i = m- d, we must have t > m- d. ln 

particular, d > ~· But dis a proper divisor of 2m + 1, hence d'= 3. We can 

then compute 

w::;.=j = m- 3d (mod m + 1) 

i.e. w;;.::-j = O. But 

S'd-l =S'd-l _ S'd-l _S'd-l <S'd-l_ (m _ t) + t 
?.min -2 1.min 'tmin-1 tmin - tmin 

contradiction with s:d~l being the minimum of S'd- 1. 
"mtn 

• j=d-2 

In this case one can compute w;d.=J = m- 1, hence ij - 2 cannat be im.in, 
J 

. S'd- l S'd-l ·'·( 1) smce i ·-l = i·-2 + 'P m- . 
J J 

For the uniqueness, consider again the two cases: 

1. imin < imax 

Th en the only daim that applies is 4.4.17, in the other situations there is a strict 

inequali ty s? < w for i < m- iJ. But for different j < d - 1, 

hence only for one j is the right hand side equal to w. 
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2. imin > imax 

Here only Claims 4.4.15 and 4.4.18 can achieve w and one can see that they are 

mutually exclusive. One cannot have simultaneously j > d - 1 and j + 1 < d - 1. 

We have shown that w cannot be achieved as s? twice for j =/:: d- 1. For j = d- 1, 

imin = m- 1 > imax and then only Claims 4.4.15 and 4.4.18 can achieve w. But at a 

careful examination one sees that for equality in Claim 4.4.15 one would have to take 

i1 = 1 and there is practically no case i 2: m- ij, and for Claim 4.4.18 one needs to take 

j = 2d, but the hypothesis of the claim is j < d - 1. 0 

4.4.1 An example 

The first interesting example is m = 7, d = 3 (hence (p, q) = (49, 18) and d'= 5) 

The intersections of the a and f3 curves are: 0, 18, 36, 5, 23, 41, 10, 28, ... , 31 and the 

words W, resp. W' are given below 

0 2 5 0 3 5 1 0 3 5 1 4 6 2 

4 6 2 4 0 2 5 4 0 2 5 1 3 6 

1 3 6 1 4 6 2 1 4 6 2 5 0 3 

wJ = 5 0 3 5 1 3 6 -v-7 5 1 3 6 2 4 0 = w'J 
2 2 

2 4 0 2 5 0 3 2 5 0 3 6 1 4 

6 1 4 6 2 4 0 6 2 4 0 3 5 1 

3 5 1 3 6 1 4 3 6 1 4 0 2 5 
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Consider t = 3. The sums s? are 

4 1 - 2 2 - 1 -4 0 

-3 1 5 2 6 3 0 

4 1 -2 2 - 1 3 0 

-3 1 - 2 -5 - 1 -4 0 

4 1 5 2 - 1 3 0 

- 3 1 - 2 2 - 1 -4 0 

-3 -6 - 2 - 5 - 1 3 0 

4.5 Lisca' family ( 4+) 

Here, p = m 2 and q = dm + d where dd' = m + 1 and d odd. 

Theorem 4 .5.1. The sequence (Si ) f,:-~ for a lens space L(p, q) belonging to Lisca 's 

family ( 4+) achieves its maximum only once. 

As before, we will gather informat ion about the relator W and in this part icular case, 

we will notice t hat W' has similar properties with the word W ' of family (3+) and the 

same argument applies. 

Lemma 4 .5 .2. There is a cyclic permutation W' of W such that the partial sums 

(S~);:~;n-l = 0, where r E {0, .. . , m- 1}. 

Proof. Define 

w~ = w~+-,--
~ ~ ~0 

where io = m-f+1 . 

We will verify that the classes [ ~ J , [ io;.;tq J , .. . , [ io q+~-l)q J are all distinct . 

Since q = dm + d, 
1 ~--w: -wi- l E { d, d + 1} 

for i E { 1, ... , m - 1}. 



120 

Claim 4.5.3. For i E {1, ... , m }, 

Wi- Wi-1 = W {:::::::? i E {d' , 2d', ... , (d- 1)d'} U {m} =:A (4.43) 

?roof of claim. For r E {1, ... , d- 1 }, 

(rd')q = (rd')d = r (mod m) 

and, of course, 

mq = 0 (mod m) 

hence, by equation 4.11, exactly for those values of i E A, Wi- Wi-1 =W. D 

Let 

A= { i E {1,. 00, m2
} [3~ E A such that i = ~ (mod m)} 

By Lemma 4.1.5, foriE {1 , . .. , m 2 } , 

--wi - w i-1 = d + 1 {:::::::? i E A 

After cyclically permuting by io, for -iE {1, ... , m- 1} , 

w;-w;_1 =W {:::::::? iE (li- i0)n{1 , oo. ,m- 1}=:B 

This set can be written as 

{ / 1 d-1,d+1, (d+1 )' 1} B = d , 2d , ... , -
2
-d, -

2
-d - 1, -

2
- + 1 d - 1, 00. , (d- 1)d - 1 

As for family 3+ , we will compare this sequence of numbers with the corresponding 

sequence for (ai)~0 , where 

ai = d · i (mod m - 1) 

and ai E {0, ... , m- 2}, for i E {0, ... , m- 2} and am-1 = m- 1 by definition. 

Claim 4.5.4. ForiE {1, ... , m- 1}, 

ai- ai-l= d + 1 (mod m) {:::::::? i E B. 
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Proof of claim. Since ai -ai- l = d (mod m - 1), for i E {1, .. . , m - 1 }, we have 

By hypothesis, d is an odd divisor of m + 1, hence gcd(d, m- 1) = 1, therefore the 

numbers ai, for i E {1 , ... , m- 1 }, are distinct and non-zero . Since #(B) = d - 1, it 

suffices to show that for iE B , aiE {1 , ... , d- 1}. 

We can write 

B = { d' r 1 r E { 1, .. . , d ; 
1 

} } U { d' r - 1 1 r E { d ; 
1 

, ... , d - 1 } } , 

and we treat each component separately. 

1. For r E { 1, ... , d2l } , 

a (d'r) = dd'r = 2r (mod m- 1) 

hence a(d'r) E {1, ... , d - 1 }. 

2. For r E { d! l , . . . , d- 1} , 

a(d'r-1) = (d'r- 1)d = 2r- d (mod m- 1) 

and again a(d'r-1) E {1 , . .. , d- 1 }. 

Putting together the d aims above, we obtain 

for i E {0, ... , m- 1} and the lemma is proved. 

0 

(4.44) 

0 

Proof of Theorem 4.5.1. By Lemma 4.1.5, the subsequence W'0 of W' determines the 

whole word W'. 

By a careful investigation of the proof of Theorem 4.3.1, we observe that this special 

form of W'0 , described in equation 4.44 ab ove, is all the hypothesis used, so t hat proof 

applies verbatim to our W '. D 
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4.5 .1 An example 

Let m = 8, d = 3 (hence (p , q) = (64, 27) and d'= 3) Then 

0 3 6 2 5 0 4 7 2 5 0 4 7 3 6 1 

3 6 1 5 0 3 7 2 5 0 3 7 2 6 1 4 

6 1 4 0 3 6 2 5 0 3 6 2 5 1 4 7 

wJ = 
1 4 7 3 6 1 5 0 3 6 1 5 0 4 7 2 

=W'J ""'"* t t 
4 7 2 6 1 4 0 3 6 1 4 0 3 7 2 5 

7 2 5 1 4 7 3 6 1 4 7 3 6 2 5 0 

2 5 0 4 7 2 6 1 4 7 2 6 1 5 0 3 

5 0 3 7 2 5 1 4 7 2 5 1 4 0 3 6 

Consider t = 3. The sums s~J are 

5 2 7 4 1 -2 -5 0 

-3 2 -1 -4 1 -2 3 0 

5 2 -1 4 1 6 3 0 

-3 -6 -1 - 4 1 -2 - 5 0 

-3 2 -1 4 1 -2 3 0 

5 2 -1 -4 - 7 -2 -5 0 

-3 -6 -1 -4 1 -2 3 0 

-3 2 -1 4 1 6 3 0 

4.6 Lisca's family ( 4_) 

Here, we have q =dm - d for sorne d > 1 odd and divisor of m- 1, and let d' > 0 be 

the quotient d'= m;t1 . This family is similar to family 3_ . 

Lemma 4.6.1. There is a cyclic permutation W' of W such that the partial sums 

(SDZ:~;n-l = 0, where r E {0, ... , m- 1 }. 

Proof. Let io = m-g' +1 . We will verify that the classes 

[ i: ] , [ (io :1 )q ] , ... , [ ( io + (:- 1) )q] 
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are distinct. Since q =dm- d, Wi- Wi- l E { d, éi-=î }. 
Claim 4 .6.2. Pori E {1, ... ,m}, 

--wi - Wi-l = d - 1 {:::=? i E { 1, d' + 1, 2d' + 1, ... , m - d'} = : A. 

Proof of claim. By equation (4.21), the conclusion is equivalent to 

Wi E { -Î, .. . , -d} {:::=? i E A. 

Note that the cardinality of these sets is d and since the classes (Wi)~~ 1 are distinct, it 

is sufficient to show one inclusion. 

Let i E A. Then i =rd'+ 1, for sorne rE {0, . .. ,d - 1} . We have 

(rd'+ 1)(dm- d) =-(rd'+ 1)d =r-d (mod m) 

and the claim is proved. D 

As before, define 

A= { i E {1 , . . . , m2
} 1 ::lz E A such that i = z (mod m)} 

Then, by Lemma 4.1.5, we have 

--wi- wi-l = d- 1 {:::=? i E A. 

Consider now W' defined by Wy = Wi+iü' foriE {0, ... , m2
- 1}. From the previous 

observation we deduce that for iE {1 , ... , m- 1} , 

w: - w;_l = n {:::=? i E An { 1' ... ' m - 1} =: B. (4.45) 

Explicitly, the set on the right is 

{
/ 1 d - 1,d+1, (d+1 )' ( )'} B = d , 2d , .. . , -

2
- d , -

2
-d + 1, -

2
- + 1 d + 1, .. . , d- 1 d + 1 . 
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Consider now the sequence of number (ai )~~o E {0, .. . , m} defined by: 

{

ai = ( d - 1) + i · d ( mod m + 1), if i < m 

am=m 

Since ai- a i- l = d (mod m + 1), we deduce that ai- ai- l = d or d- 1 (mod m) . 

Claim 4.6.3. ForiE {1, . . . , m- 1}, 

ai- ai-l = d- 1 (mod m) {:::==} i E B. 

Proof of claim. lt is easy to see that 

Note that the numbers a i, for i E {0, ... ,m} , are distinct, since gcd(d,m + 1) 1 

(because dis a divisor of m- 1 and dis odd). 

Since ao = d- 1, ai E {0, .. . , d- 2}, for i E {1, ... , m- 1 }. 

Note that #B = d- 1 hence by the previous observations, it is enough to verify that 

ai E {0, ... , d- 2}, foriE B. 

Sin ce 

we distinguish two cases: 

1. r E { 1' ... ' d21 } 

Then, by the definition of a i, 

a (rd' ) = (d- 1)- 2r E {0, . . . , d - 2} 

2. r E { d! l , . .. , d - 1} 

In this case, 

a(rd' + l) = 2d- 1 - 2r E {0, . .. , d- 2} 
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D 

The previous daim and equation (4.45) imply that 

w:d-1 = ( d - 1) + i 0 t ( mod m + 1) (4.46) 

for i E {0, ... , m- 1} . D 

Theorem 4.6.4. The sequence (SDZ:ë/ corresponding ta the ward W' for a lens space 

in Lis ca 's family 4_ achieves its maximum only once. 

Proof. By the proof of the previous Lemma, we have found that the subsequence W'd- 1 

has exactly the same form (cf .. equations (4 .45) and (4.24)) as the subsequence W'd- 1 of 

family 3_ . By examining the pro of of Theorem 4.4.1 , we see that this is what we use from 

the hypothesis dd' = 2m + 1, except for dealing with the special values j = d- 1, d - 2, 

so that proof applies without changes to our sequence W'd- 1 . We treat the two cases 

here, the point is to show that imin -:/= ij - 2. 

• j=d-1 

Then 'lj;( W:~=i) > 0, i.e. m-d < t and in particular d > ~. But this is impossible 

since d is a proper divisor of m- 1. 

• j=d-2 

A . . W 'd-1 1 . 2 b . . S'd-1 S'd- 1 gam, i ._1 = m - , so ~j - cannot e Zmin smce i ._1 < i ._ 2 . 
J J J 

D 

4.6.1 An example 

The first interesting example is m = 7, d = 3, but the lens ::;pace obtained, namely 

L(49, 18) , belongs to family 3_ as well. 
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We illustrate then the next example m = 10, d = 3, which gives the lens space L(100, 27). 

0 2 5 8 0 3 6 8 4 

79257035 8 1 

4 6 9 2 4 7 0 2 5 8 

1 3 6 9 1 4 7 9 2 5 

8 0 3 6 8 1 4 6 9 2 

5703581369 

2 4 7 0 2 5 8 0 3 6 

9147925703 

6 8 1 4 6 9 2 4 7 0 

3581369147 

Consider t = 3. The SUffiS s? are 

0 3 6 8 1 4 7 9 2 5 

7 0 3 5 8 1 4 6 9 2 

4 7 0 2 5 8 1 3 6 9 

1 4 7 9 2 5 8 0 3 6 

8 1 4 6 9 2 5 7 0 3 

5 8 1 3 6 9 2 4 7 0 

2 5 8 0 3 6 9 1 4 7 

9 2 5 7 0 3 6 8 1 4 

6 9 2 4 7 0 3 5 8 1 

3 6 9 1 4 7 0 2 5 8 

7 4 1 -2 5 2 -1 -4 3 0 

-3 4 1 -2 -5 2 -1 -4 -7 0 

-3 -6 1 8 5 2 9 6 3 0 

7 4 1 -2 5 2 -1 6 3 0 

-3 4 1 -2 -5 2 -1 -4 3 0 

-3 -6 1 -2 - 5 -8 -1 -4 -7 0 

7 4 1 8 5 2 -1 6 3 0 

-3 4 1 -2 5 2 -1 -4 3 0 

-3 -6 1 -2 -5 2 -1 -4 -7 0 

-3 -6 -9 - 2 -5 -8 -1 6 3 0 

4. 7 Proof of the fibredness theorem for simple knots 

Summing up the analysis for each family of lens spaces above, we arrive at the 

= w'j 
l 

Proof of Theorem 4.0.9. For each of Lisca's families of lens spaces, we proved (cf. Theo­

rems 4.1.1, 4.2.1, 4.3.1, 4.4.1, 4.5.1 and 4.6.4) that the sequence (Si)f~~ (or the induced 
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sequence of sums associated to a circular permutation of W) achieves its maximum ex­

actly once. By Lemma 4.0.15, the sequence achieves its minimum exactly once. Now 

apply Brown's Theorem 1.2.14 and Stallings' Theorem (Stallings, 1962) to get the desired 

conclusion. 0 

4.8 Towards the classification of simple knots of genus 0 in Lisca's lens spaces 

In this section we gather our partial results regarding the ge1ms of the simple knots in 

Lisca's families above and speculate about the general picture. 

Conjecture 4 .8 .1. Given a lens space L (m2 ,q) belonging to one of Lisca's families 

above, the simple knot K(m2 , q, tm) (s ee Remark 4.0.12 for the explanation of this no­

tation) has a planar ( genus 0) Seif ert surface if and only if: 

• Family 1. t E {1, d, m- 1, m-d} 

• Family 2. t E { 1, m - 1} 

• Family 3+. t E { 1, d, m - 1, m - d} 

• Family 3_. 

- t E { 1, d, m - 1, m - d} or 

- (m,d,t) E {(7, 3, 2),(7, 5, 3)} 

• Family 4+ . 

- t E {1, d, m- 1, m-d} or 

- m = 2d- 1 and t E {2, m- 2} 

• Family L. 

- tE {1 , d, m - 1, m-d} or 

- m = 2d + 1 and t E {2, m- 2} 
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Remark 4.8.2. It is interesting to compare the list above with the knots obtained by 

Baker (Baker, 201 2) as the induced knots from performing surface-framed surgery on 

doubly-primitive knots in 8 1 x 8 2 . 

We present now sorne evidence supporting Conjecture 4.8.1. 

A brief computer experimentation showed that 

Proposition 4 .8.3. For m :::; 500, the conjecture is true. 

Proof. Simple knots are combinatorial objects, described as above by 3 natural numbers: 

p, q and t, cf. Remark 4.0.12. The sequence used in Brown's theorem is algorithmically 

computable from p , q and t by modular ari thmetic. Also, d aims 4.8.6 and 4.8.7 below 

show that the genus of the simple knot is also encoded in this sequence. It is straight­

forward to enumerate all simple knots in lens spaces up to sorne fixed order and check 

for each the genus ok the simple knots in the relevant homology classes. We used code 

written in C. 0 

Remark 4 .8.4. Note that the proposition applies for lens spaces of arder up to 250000. 

Theorem 4.8.5. For Lisca's famili es 1 and 2, Conjecture 4 .8.1 is true. 

Proof. We begin by explaining the similarity between the Brown algorithm and Heegaard­

Floer homology in establishing the fibredness of simple knots in lens spaces, cf. Remark 

4.0.11. 

Recall the setup from Section 4, where we consider a genus 1 Heegaard diagram for 

Y := L(p, q), with two curves a and (3 intersecting t ransversely in p points, denoted 

0, ... ,p - 1. These points also represent generators of the complex CJiiR(Y). When 

considered in the doubly-pointed Heegaard diagram (~,a, (3, w, z), these points represent -- --generators for CF K (Y, K ) and even for HF K (Y, K ), sin ce there are no differentiais. For 

consistency with the established notation in Chapter 2, we will also denote these points 
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by x i, i E {0, ... , p- 1} or even x-y with the obvious interpretation. Refer to figure 4 for 

a concrete example. 

By the discussion done in Section 4, Brown's algorithm leads us to the analysis of the 

following sequence: 

where e: 7L/ p ---+ 7L is given by 

B(I) = 

si= I::e (jq) 
j=O 

{

m-t 

-t 

ifi E {o, ... , tm - 1} 

if I E {tm, ... ,p- 1} 

Equivalently, with the notation from Section 4, B(I) = 1/J ( [ ~ J) . 

(4.47) 

On the Heegaard-Floer side, we will use the E grading 2.3.3 to compute the evaluation 

(up to an overall additive constant) of the relative Chern classes in which the points X i 

are supported on the Seifert surface of K . 

Note that the points x i, when recorded in the order in which they appear on the (3 curve, 

form the sequence x0, Xq, . . . , x (p-l)q· 

Fix I E 7L/ p· By defini t ion 2.3.3 , E(xy, x i+q) is the homology class (in H1 (Y \ K) ) of a 

path in aU (3 starting at x-y, walking along a until x i+l and returning along (3. But by 

the definition of x and y in 1r1 (Y \ K) , we have 

{

-y, 
E(xy, x i+q) = 

x, 

if i E { 0, ... , tm - 1 } 

if i E {tm, ... , p - 1} 

It is known (see the discussion in (Boileau et al. , 2011)) that for two Spinc structures 

.s1,.s2 E Spinc(M) , where M is a compact, oriented three-manifold with boundary (if 

any) consisting of tori, we have 
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By Poincaré duality, 

{ 

([F], x) = -t 

([F], y) =m-t 

These values are the images of x, resp . y in Z ~ H1 (Y \ K) / tors · The previous three 

equat ions give 

{

2(m - t) , 
(cl(Sw,z(xi+q)) , [F])- (cl(sw,z (xy)) , [F]) = 

-2t, 

Compare t his to equation (4.47) to obtain 

if i E {0, . .. , tm- 1} 

if i E {tm, ... , p - 1} 

( 4.48) 

by Lemma 2.7.3 , we can compute the genus of a simple knot in a lens space: 

Claim 4.8 .6. Let K (p , q, s) c L (p , q) be a simple knot in the lens space Y = L (p , q) . 

Let k be the arder of K and let F be a minimal genus Seifert surface for K. Then 

x (F) = k-w ((Si)i) ( 4.49) 

where (Si)f,:5 is the sequence of partial sums obtained by applying Brown's algorithm to 

K , as above. 

Proof of claim. By equation (4 .48), 

where max, resp . min are taken over the set of relative Spinc structures Spinc(Y, K ). 

Let ÇM E Spinc(Y, K) be a relative Spinc structure which realises the maximum evalua­

tion above. 

By Theorem 1.1 of (Ni, 2009), 

- x (F) + k = (cl (ÇM ), [F]) - k. 
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0 1 2 3 4 5 6 7 8 

Figure 4 .3 Brown's algorithm and Spinc structures 

Also, by Lemma 4.1 of the same paper , Çm := J (ÇM) + PD [J.L] reali.-es the minimum. 

Now, by defini t ion, 

and since 

(cl ( J (ÇM) + P D [J.L]) , [F]) = (cl (J (ÇM )) + 2 · P D [J.L], [F ]) = -(cl (Ç1u ), [F]) + 2k 

we obtain 

and inserting t his into equation (4 .49), we obtain t he desired formula . See figure 4.8 fo r 

a concrete example. 

D 

We can apply t he formula above in two situations that are particularly relevant to our 

problem: 

Claim 4.8. 7. Let K(m2 , q, tm) c L(m2 , q) be a simple knot of arder m in a lens space 

of arder m 2 with the rational longitude a longitude. Then 

g(K) = 0 ~ w ((Si)i) =2m-2 

where (Si)~:
2

0- 1 is the sequence of partial sums given by Brown's algorithm. 
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Proof of claim. Sim ply apply equation ( 4.49) to K. The hypoth sis that the rational 

longitude of K is a. longitude implies tha.t the Seifert surface of K ha.s m bounda.ry 

components. 0 

Claim 4.8.8. Let K(m , d , t) C L (m, d ) be a primitive simple knot in a lens space. Then 

K is a core of L (m,d) {:::::::} w ((Si)i) =rn. -1. 

where, as above, (Si)~~(/ is the sequence of partial sums given by Brown's algorithm. 

Proof of claim. The direct implication is trivially verified. For the converse, by the 

width hypothesis , we ob tain that K ha.s a. Seifert surface of Euler characterist ic 1, which 

ca.n only be a. disk. Also, primitive simple knots are fibred, (Ozsvàth and Sza.b6, 2005) 

hence K must be a. core of L (p, q). 0 

VIle ca.n now finish the proof of Theorem 4.8.5. For fa.mily 1, by The01·em 4.1.4 and the 

two cla.ims a.bove 

K(m2
, dm+ 1, tm) ha.s ge1ms 0 {:::::::} K (m, d , t ) is a core of L (m, d). 

Now just observe tha.t the cores of L ( m, d) are K ( m , d , 1) and K ( m, d, d ) (and by cha.ng­

ing orientation also K (m, d , m- 1) and K (m, d , m. - d )) . 

For family 2, Lemma. 4.2. 10 t ogether with Cla.im 4.8 .7 give the conclusion. 

0 

We summa.rise now the relevant results proved in our a.nalysis of the words 11\1[ for the 

fa.milies 3 and 4. 

Lemma 4.8.9. Let Y := L( m 2
, q) be a lens space belonging to Lis ca 's families 3+ or 

4+, i.e. q =dm+ d for some d with some divisibility properties cf. 4.0.4. Let (ai ) ~~0 1 

be a sequence of numbers with the properties : 

• aiE {0, . .. ,rn- 2} , foriE {0, ... ,m- 2} 
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• ai= i · d (mod m- 1) , i E {0, ... , m- 2} 

• am-1 = m- 1 

FortE {1 , .. . , l ~ J}, with gcd(m, t) = 1, let <P: {0, ... , m- 1} ---+ Z be the function 

{

m-t 
<j;(s) = ' 

-t , 

ifs E {0, ... , t- 1} 

ifs E { t, .. . , m- 1} 

and let w be the width of the sequence (L;i)~ë/ given by 

Th en 

i 

L;i = L </;(ai)· 
j=O 

w(ifFK(Y, K(m2
, q, tm)) )= 2w. 

Remark 4.8.10. The sequence above does not come from applying Brown's algorithm 

to a simple knot in a lens space, but we observed that it is related to the Brown sequence 

for the knot K ( m - 1, d, t). We hope to come back to this question in a future work. 

Proof of Lemma 4.8.9. It follows from (the proof of the) The01·ems 4.3.1 and 4.5.1 that 

We show now that this implies that 

. (S )p-1-mm i i=O - -w. 

This happens because of a symmetry satisfied by the numbers ai above. More precisely, 

we will prove that for j E {0, . .. , m- 1} , :J j' E {0, ... , m- 1} with the property 

Claim 4.8.11. R ecall the following set defined in 4.3 for Lisca's family 3+ and in 4.5 

for family 4+. 

B = { i E {1 , ... , m- 1} lai - ai- l = d + 1 (mod m)} . 
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For bath of the famili es the following is true: 

i E B ~m-iE B. 

Proof of claim. We treat each family separately: 

1. Family 3+ 

Recall that io = d'tl where dd' = 2m - 1 and 

B = {rio - l ~ J r E { 1, ... , d - 1}} 

N ow note that for r E { 1, ... , d - 1}, d - r E { 1, ... , d - 1} and 

lrJ ld -r j d - 1 rio- 2 + (d - r)io- -
2

- =dio- -
2

- = m 

2. Family 4+ 

Here io = m-g'+l where dd' = m + 1 and dis odd. 

B = { d' r 1 r E { 1, ... , d ; 
1 

} } U { d' r - 1 1 r E { d ; 
1 

, .. . , d - 1 } } . 

and a simple computation shows that, for r E {1, ... , d2l }, 

d' r + d' ( d - r) - 1 = dd' - 1 = m. 

D 

Note that this implies that, foriE {0, . .. , m - 1} and jE { -i, -i + 1, ... , 0, 1, ... , m-

1 - i}, 

w:~J- w:o = W::Î-1 - i- W::Î- 1-i-J 

by finite induction on j. 

The same argument as in the proof of Lemma 4.0.15 shows that 'lj;(â) = 'lj;( t ~a) for 

a E Z. 
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Now fix j E {0, .. . , m - 1} and let ~o E {0, ... , m- 1} be the index of Ô in W'J. There 

exists a unique j' E {0, ... , m- 1} with the property W~~l-to = t-l. Together with 

the previous equality, this implies that 

(4.50) 

for i E {0, .. . , m- 1} . To see this, note that it is true for i = ~o and then use induction 

on i- ~0 . 

Th en, 
i m-1 

s? = L 1/J( W~) = L tj' - tj' 
?j;(Wk ) - - Sm-2-i. 

k=O k=m-1-i 

0 

Similarly, we have: 

Lemma 4.8.12. Let Y:= L(m2 , q) be a lens space belonging to Lisca's famili es 3_ or 

L , i.e. q =dm- d for some d cf. 4.0.4. Let (ai)~0 1 be a sequence of numbers with the 

properties: 

• ai E {0, .. . , m- 1 } , foriE {0, .. . , m- 1} 

• ai= i · (d- 1) + i · d (mod m + 1), i E {0, ... , m- 1} 

FortE {1 , ... , l9 j}, with gcd(m, t) = 1, let <fy : {0, ... , m- 1} ~ Z be the fun ction 

{

m-t, ifsE{O, . .. , t-1} 
<P(s) = 

-t, ifs E { t, . . . , m- 1} 

and let w be the width of the sequence (Si)~0 1 given by 

Th en 

i 

si = L <P(ai) · 
j=O 

w(ifFK(Y, K(m2
, q, tm)))= 2w. 
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Proof. As before, it follows from (the proof of the) Theorems 4.4.1 and 4.6.4 together 

with equation (4.48) that max(Si) =w. We will show, using the same argument as in 

the previous lemma, that min(Si) = -w. 

Claim 4.8.13 . Consider the sets B defined in 4.4 and 4.6. Then 

i E B Ç=> m-iE B. 

Proof of claim. 1. Family 3_ 

Cf. Section 4.4, dd1 = 2m + 1, and io = d'~ 1 . By equation (4.23), 

B={r·io-lr;
1j lr E{1, ... ,d-1}} 

and we observe that 

. r+1 . d-r+1 . d+1 
no- l--J + (d- r)~o- l J = d~o- -- = m 

2 2 2 

2. Family 4_ 

In this case, dd' = m- 1, io = m-g'+l From section 4.6 , 

B = {rd' 1 r E { 1, . . . , d ; 
1 

} } U {rd' + 1 1 r E { d ; 
1 

, ... , d - 1} } 

we obtain, for rE {1 , ... , d2l }, 

rd'+ (d- r)d' + 1 = dd' + 1 =m. 

0 

Now simply apply t he argument from Lemma 4.8.9 to obtain the desired conclusion. 

0 

Proposition 4 .8.14. A fibred knot K c Y= L(p, q) has an S 1 x S 2 surgery if and only 

if g(K) =O. 
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Proof. Let F be a Seifert surface for K. Recall that only surgery along the slope À= 8F 

yields a non-rational homology three-sphere. 

For the direct implication, let (Ft)tESl be the generic fibre in the fibration of Y \ N(K). 

Note that g(Ft) = g(F) , Yt E 8 1 . We cap off every fibre Ft in Y>,(K) with meridinal 

disks of the surgery solid torus, and ob tain a fibration Ft of 8 1 x 8 2
. Th en Ft has to be 

the two-sphere. 

The converse follows similarly, Y>.(K) becomes an oriented 8 2 bundle over 81, hence it 

is homeomorphic to 8 1 x 82 . D 





CONCLUSION 

From the results in Chapters 3 and 4, a similarity with the Berge Conjecture emerges . 

Knots in lens spaces which admit integer 8 3 or 8 1 x 8 2 surgeries are fibred, have small 

genus and simple Floer homology. By this work and work of Baker, we can say that 

their status is roughly the same: in both cases we have strong enough restrictions so 

that conj ecturally the restrictions determine the knots, they are both implied by the 

conjecture that Floer simple knots in lens spaces are simple, hence it is somewhat natural 

t o expect that they are simultaneously true or false. 

We remark here that an arbitrary Berge-Gabai knot standardly embedded in one of t he 

Heegaard tori of a lens space has non-trivial lens space surgeries . A brief computer 

experimentation using Brown's algorithm showed that 'most of the time' the lmot in the 

lens space is not fibred. For example, the Berge-Gabai knot B (5, 2, 3) is not fibred when 

st andardly embedded in L (15, 11) . 

We also remark that arbitrary simple knot s in lens spaces are not fibred. There are two 

special situations however. One is the case of primitive knots, which were shown to be 

fibred by Ozsvath-Szab6, and the other is the case when K is a knot of arder m in a lens 

space of arder m 2 . lt seems plausible t hat these knots are again fibred. This special case 

deserves sorne more analysis in our opinion. We plan to investigate the problem further. 

In another direction, it may be true that a knot K in an L-space which admits longit u­

dinal 8 1 x 52 surgeries is fib red , and hence it is a braid in 8 1 x 8 2 . 
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