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RESUME

Nous étudions un probléme de chirurgie de Dehn, & savoir la caractérisation des
noeuds dans les espaces lenticulaires qui admettent des chirurgies intégrales homéomor-
phes & S x $2. Nous montrons que ces nceuds sont fibrés et qu’ils bordent des surfaces
de Seifert planaires. De fagon équivalente, les nceuds induits dans S* x S? sont isotopes
& des tresses.

Le principal outil que nous avons utilisé est I’homologie de Heegaard-Floer, un
ensemble d’invariants de type théorie de jauge développés par Ozsvath-Szabé & partir
de 2000. En outre, nous montrons que ces nceuds sont simples au sens de Floer, donc
conjecturalement simples. Compte tenu de cette derniére conjecture, nous avons initié
une étude de nceuds simples dans les espaces lenticulaires appropriés et nous avons donné
une liste potentiellement compléte de tous les nceuds simples avec des chirurgies inté-
grales S* x S2. Ces noeuds se révélent étre les nceuds induits dans les espaces lenticulaires
obtenues en effectuant une chirurgie de Dehn sur certains nceuds doublement primitifs
dans S! x S?, exactement ceux construits par Baker.

Mots clés: chirurgie de Dehn, espace lenticulaire, homologie de Heegaard-Floer,
neeud fibré.






ABSTRACT

We study a Dehn surgery problem, namely the characterisation of knots in lens
spaces which admit longitudinal S* x §2 surgeries. We prove that such knots are fibred
and rationally bound planar Seifert surfaces. Equivalently, the induced knots in S? x S2
are isotopic to braids.

The main tool we used is Heegaard-Floer homology, a gauge-theoretic package of
invariants developed by Ozsvath-Szabé from 2000 onwards. We further show that these
knots are Floer simple, hence conjecturally simple. In view of this conjecture, we initiate
a study of simple knots in the relevant lens spaces and give a potentially complete list of
all simple knots with longitudinal S! x §2 surgeries. These knots turn out to be exactly
the knots in lens spaces obtained by performing Dehn surgery on some doubly primitive
knots in S* x S2, as constructed by Baker.

Keywords: Dehn surgery, lens space, Heegaard-Floer homology, fibred knot.






INTRODUCTION

Dehn surgery is the process of removing a tubular neighbourhood of a knot inside a
three-manifold and gluing it back via a different attaching map. All closed, orientable
three-manifolds can be constructed by surgery on a link (collection of knots) inside
the three-sphere, the complexity of the manifolds being reflected in the complexity of
the link. It is interesting to know when some fixed manifold M can be obtained from
another manifold N by performing surgery on a single knot and, if possible, determine
all the knots with this property. A particularly intriguing setting is when M and N are

homeomorphic, in which case the surgery is called cosmetic.

Even when M and N are simple (with respect to some notion of complexity), this
is a very challenging problem. Some famous success stories in this regard are: the
knot complement problem (Gordon and Luecke, 1989), Property “P" (Kronheimer and
Mrowka, 2004), Property “R" (Gabai, 1987), cosmetic surgeries on the solid torus (Gabai,
1989), (Gabai, 1990), (Berge, 1991). A very important question in the field is the Berge
Conjecture, which gives a possibly complete list of all knots in S which admit lens space

surgeries (Berge, 1984).

It is a curious feature of the examples above that the knots encountered tend to have

‘small’ genus (to be made precise in what follows) and are fibred.

A three-manifold M is said to fibre over the circle with fibre T if there exists a surjective
submersion p: M —3 S! such that the preimage of every x € S! is an embedded

2-dimensional submanifold of M homeomorphic to .

It was observed by Gordon that all knots which are known to admit surgeries with
finite fundamental group (or equivalently are covered by S3) are fibred. This fact

has been afterwards proved using the powerful new gauge theoretic techniques devel-



oped by Ozsvath-Szabé from 2002 onwards, collectively called Heegaard-Floer homology
(Ozsvath and Szabo, 2006¢),(Ozsvath and Szabo, 2004c).

Heegaard-Floer homology grew out of the search for methods of computation for Monopole-
Floer homology, and, while achieving that goal, it developed into a new theory with
unique applications. Among the most celebrated results we mention the detection of the

Thurston norm of three-manifolds (Ni, 2009) and of fibredness (Ni, 2007).

The main motivation behind this work was to investigate and extend these type of results
to more general Dehn surgery problems. We achieved this goal in two directions. Firstly
we proved a fibredness theorem in the setting of orbifolds and orbifold Dehn surgery, and
secondly, we provided several restrictions on knots in lens spaces which admit S! x S?

surgeries. Conjecturally, these restrictions are strong enough to characterise all such

knots.

0.1 Orbi-lens spaces and Berge-Gabai knots

An important research direction in hyperbolic geometry is the study of commensurability

classes of manifolds.

Two manifolds are said commensurable if they have a common finite cover. This relation
is easily seen to be an equivalence relation and its classes are called commensurability

classes.

In the general category of hyperbolic three-manifolds, describing these commensurability
classes seems a very difficult problem. It is natural to restrict ones attention to special
classes of manifolds, for example complements of hyperbolic knots in S%. Here, one is
led to further distinguish between two very different situations, according to whether or

not the knot complements admit hidden symmetries.

A hidden symmetry of a manifold M is a symmetry of a finite cover M of M which is

not the lift of a symmetry of M.

An orbi-lens space is the quotient of S2 by a cyclic group of (orientation preserving)




isometries. The underlying manifold of an orbi-lens space is a lens space. The singular
locus (when non-empty) consists of one or both of the cores of the solid tori in the

Heegaard genus one decomposition of the lens space.

In the non-hidden symmetries case, in (Boileau et al., 2011) it was shown that non-
trivial commensurability classes of knot complements are obtained from knots in orbi-
lens spaces having non-trivial orbi-lens space surgeries. Here the knots are assumed

disjoint from the singular locus.

The situation should be contrasted with the similar problem of a knot complement cover-
ing another knot complement, which was reduced to the Berge Conjecture by Gonzélez-

Acufia and Whitten in (Gonzalez-Acuifla and Whitten, 1992).

More precisely, a knot K (whose complement admits no hidden symmetries) which is not
unique in its commensurability class, is the lift of a knot K in an orbi-lens space which

admits a non-trivial orbi-lens space surgery (Boileau et al., 2011, Proposition 4.13).

In the case when the orbi-lens space is a manifold, the knot K is fibred by a Heegaard-
Floer argument due to Rasmussen (Boileau et al., 2011, Theorem 6.5). It immediately

follows that K is fibred as well, by pulling back the fibration of i,

A Berge-Gabai knot is a knot in the solid torus S! x D? which admits a non-trivial

cosmetic surgery.

Gabai showed that such a knot is a 1-bridge braid, i.e. it can be isotoped to be everywhere
transverse to the D? fibres and lie in the boundary of the solid torus, except for the bridge,

which is an unknotted arc in the interior of the solid torus.

In the case when the orbi-lens space (say L) has connected, non-empty singular locus,
K is necessarily a Berge-Gabai knot in the exterior of the singular locus. It is important
to observe that the natural fibration by punctured disks of K does not extend to |L| for
homological reasons, but there is a fibration on L\IN{ given by the same Heegaard-Floer

argument. However, due to the presence of the singular locus, this fibration cannot be



lifted a priori to S3\ K.

Theorem (Boileau et al., 2011, Theorem 6.1). Let Kbea 1-bridge braid on n strands
in a solid torus V' . For any essential simple closed curve C' on 0V whose algebraic
winding number in V is coprime to n there is a locally trivial fibring of the exterior of

KinV by surfaces whose intersection with OV has n components, each a curve parallel

to C.

This theorem proves that the exterior of a Berge-Gabai fibres over the circle in more

than one way, and indeed one of these fibrations can be lifted to S3\ K.

The aforementioned fibration theorem in the context of orbifolds is a corollary of the

previous result.

Theorem. Let K be a knot in an orbi-lens space L which is primitive in |L|. If K
admits a non-trivial orbi-lens space surgery, then the exterior of K admits a fibring by

2-orbifolds with base the circle.

Note that a fibration p: M — S* determines by pull-back a cohomology class p*(df) €
H'(M;R), where df is the angle form on S*. We call p*(df) the direction of the fibration.

The previous theorem provides new examples of hyperbolic manifolds which fibre over
the circle in every possible direction allowed by the Thurston norm theory (Thurston,

1986).

Corollary (Boileau et al., 2011, Proposition 1.6) Let M be the exterior of a hyperbolic
1-bridge braid in a solid torus V' . Then each top-dimensional face of the Thurston norm

ball in H1(M;R) = R? is a fibred face.
Equivalently, the set of directions {p*(df) : p: M — S* fibration} is dense in H!(M;R).

Furthermore, theorem 6.1 of (Boileau et al., 2011) gives more information about the
fibration of the induced Berge knots in lens spaces, namely in the standard 1-bridge

position, the induced Berge knot’s fibration is (up to isotopy) transverse to one of the




cores of the Heegaard solid tori, (conjecturally to both).

0.2 Knots in lens spaces admitting S x S? surgeries

Consider a Berge-Gabai knot K C V' where V is a solid torus. By embedding V in
S! x §? in the canonical way, i.e. as one of the Heegaard solid tori in the unique
Heegaard decomposition of S1 x S? of genus 1, K C S* x S§? will admit (longitudinal)

lens space surgeries. We call this process the Berge-Gabai construction.

This surgery exhibits an interesting property of the lens spaces obtained, namely they
bound smooth, rational homology four-balls, by classical handle theory (Gompf and
Stipsicz, 1999). These lens spaces were classified by Lisca using gauge-theoretic methods
(Lisca, 2007), and Rasmussen observed that the list he obtained coincides with the list

of lens spaces obtained through the Berge-Gabai construction above (Greene, 2010).

In the same paper (Greene, 2010), Greene conjectured that this is the only way in which

lens spaces can be obtained from S! x $? by Dehn surgery.

A doubly primitive knot in M is a knot which can be isotoped to lie in a Heegaard
surface of genus 2 of M with the extra property that it carries a free generator of the

fundamental group of each handlebody.
Berge proved that doubly primitive knots in any three-manifold have lens space surgeries.

It turns out that Greene’s conjecture is false. Baker (Baker, 2012) constructed more
examples of knots in S! x S? with lens space surgeries. All of his knots are doubly

primitive in S* x S2. It was checked that in S* x S2? they can be isotoped to be braids.

A simple knot in a lens space L is a knot which can be decomposed into two arcs which
are contained in the meridian disks of the two solid tori forming the genus 1 Heegaard

splitting of L.

Baker’s knots have the remarkable property that the induced knots in the lens spaces

are simple.



Theorem Let K C L(p, q) be a knot in a lens space which admits longitudinal S x 52
surgeries. Then K is fibred and the generalised Seifert surface of K is a m-punctured

disk, where m? = p.
From the point of view of S1 x §2,

Theorem If K C S' x S? admits longitudinal lens space surgeries, then K is isotopic

to a braid.
Corollary A doubly-primitive knot in S! x S? is a braid.

The restriction to longitudinal surgeries is not drastic, by the Cyclic Surgery Theorem
(Culler et al., 1987), which states that if K € M with m1(M) cyclic is a knot whose
exterior is not Seifert fibred, then any other surgery on K which gives a manifold with

cyclic fundamental group, is longitudinal.

Knots with Seifert fibred exteriors in lens spaces are classified, and so are surgeries on

them.

The proofs of these results rely heavily on Heegaard-Floer homology. Indeed, lens spaces

are L spaces, manifolds with the smallest Heegaard-Floer homology possible.
An L spaceY is a rational homology three-sphere with ﬁ‘(Y; Z) free of rank #H1(Y; Z).

There is a corresponding notion for knots, we say that a knot K C Y is Floer simple if

rk(HFK(Y, K)) = rk(HE(Y)).

Theorem Let K C L(p, q) be a knot in a lens space which admits a longitudinal S* x 52

surgery. Then K is Floer simple.

It has been conjectured (Rasmussen, 2007) that Floer simple knots in lens spaces are
simple. In view of this, it is natural to ask which simple knots in lens spaces admit

S1 x S§? surgeries.

We only give partial results here, namely




Theorem For the first two families of lens spaces which bound rational homology four-
balls, (out of 4), the simple knots which admit S* x S? surgeries are exactly the knots
induced by doing Dehn surgery on the doubly-primitive knots in S* x S? constructed

by Baker.

We conjecture that this is true for the other families as well. A positive resolution of
this conjecture would imply that the doubly-primitive knots constructed by Baker are

all the doubly-primitive knots in St x §2.

As evidence for this conjecture, we mention that we verified it for lens spaces of orders up
to p = m? = 500? and we also provide a technique for proving it, which we successfully

used for the first two families.

0.3 Organisation

The rest of this thesis is organised as follows:

In Chapter 1 we prove the orbifold fibredness theorem and describe the relevance for
the commensurability problem. In Chapter 2 we provide the necessary background on
Heegaard-Floer homology. In Chapter 3 we prove the results about the knots in lens
spaces with S x §2 surgeries. Finally, in Chapter 4 we make an analysis of simple knots

in lens spaces which bound rational homology four-balls.






CHAPTER I

KNOT COMMENSURABILITY AND FIBREDNESS

1 Dehn surgery on knots

In this section we present some background material concerning basic three-manifold
topology and Dehn surgery, in view of completeness and establishing the notation used

throughout the thesis.

A slope in the torus S! x S! is an isotopy class of unoriented simple closed curves in

St x S'. We will identify slopes with & primitive homology classes in H;(S* x S?).

The distance between two slopes a and f§ is the minimal number of (transverse) inter-

sections of the curves representing «, resp. S.

A knot manifold M is a compact oriented three-dimensional manifold with one boundary

component homeomorphic to S x S*.

A knot K C Y where Y is a closed, oriented three-manifold is a smooth embedding of S*
in Y. The exterior of K, denoted Ext(K) or Y \ K is the knot manifold ¥ \ Int(N(K))
where N(K) is a tubular neighbourhood of K.

Dehn filling a knot manifold M along a slope a@ on M is the process of gluing a solid
torus D? x S* to M with the gluing map that identifies 8D? with a.

Dehn surgery on a knot K C Y along a slope a on (Y \\K) is the process of removing
an open tubular neighbourhood of K and Dehn filling along the slope a.
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For K C Y, there is a distinguished slope p on 0(Y \\K), called the meridian of K,
which is characterised by the fact that u = 8D? where D? is a properly embedded disk
in N(K) which cannot be isotoped into N (K).

A slope A at distance 1 from p is called a longitudinal or integral slope, and Dehn surgery

on a longitudinal slope is called longitudinal surgery or Morse surgery.

A rational homology three-sphere Y is an oriented, closed three-manifold with H,.(Y; Q) =
H.(5%Q).

A knot K C Y is (rationally) null-homologous if the homology class that it represents,
denoted by [K], is 0 in H1(Y;Z), resp. H1(Y,Q).

A Seifert surface F properly embedded in Ext(K) (in some ambient three-manifold Y")
is a smooth surface with OF a collection of simple closed curves in 0Ezt(K), none of
which bounds a disk in Ezt(K). One can always arrange that these curves are parallel

(including orientation).

LZ Berge-Gabai knots and cyclic commensurability

In a joint project with M. Boileau, S. Boyer, and G. S. Walsh (Boileau et al., 2011),
we investigate commensurability classes of hyperbolic knot complements in S3. In this
chapter we present a fibredness theorem for knots which are not unique in their cyclic
commensurability class. The material is all taken from (Boileau et al., 2011) with minor

modifications.

Definition 1.2.1. Two oriented orbifolds are commensurable if they have orientation-
preserving homeomorphic finite sheeted covers. If the covers are cyclic, we say that the

orbifolds are cyclically commensurable.

For knot complements, we say (abusively) that the knots are commensurable if their

complements are. The commensurability class of K C S3 is the set

C = {K' c §*: K’ commensurable with K}
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It is natural to restrict attention to non-arithmeticknots without hidden symmetries.
Definition 1.2.2. We say that K has no hidden symmetries if all the symmetries of

any finite sheeted cover of S®\ K are lifts of symmetries of S°\ K.

We will not define what (non)-arithmetic knots are, we simply recall a clasic result of
Margulis which gives an equivalent condition, namely that there exists a unique minimal

orbifold in the commensurability class of $3\ K.
An outstanding question in the field is the Reid-Walsh Conjecture

Conjecture 1.2.3. (Reid and Walsh, 2008) For a hyperbolic knot K C S, |C(K)| < 3.

The main theorem of (Boileau et al., 2011) is the following
Theorem 1.2.4. (Boileau et al., 2011)[Theorem 1.4]
1. Knots without hidden symmetries which are commensurable are cyclically commen-
surable.
2. A cyclic commensurability class contains at most three hyperbolic knot comple-

ments.

The cyclic commensurability class of K \ §% is denoted as follows
CC(K) = {K' C §%: K’ cyclically commensurable with K}

We also provide several obstructions for a knot which is not unique in its cyclic com-

mensurability class

Theorem 1.2.5. (Boileau et al., 2011)[Theorem 1.7] Let K C S® be a hyperbolic knot.
If|CC| > 2, then

1. K is fibred.
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2. the genus of K is the same as the genus of any K' C CC.

3. the volume of K is different from that of any K’ € CC\ K. In particular, the only
mutant of K contained in CC is K.

4. K 1is chiral and not commensurable with its mirror image.

‘We will focus here on the proof of 1, more precisely for the case where K is periodic:
Definition 1.2.6. We say that K s periodic if it admits a non-free symmetry with an
azxis disjoint from K.

The quotient of S® by this symmetry is an orbi-lens space:

Definition 1.2.7. An orbi-lens space is the quotient orbifold of S® by a finite cyclic

subgroup of SO(4).

We denote the singular set of an orbifold O by ¥(O) and by |O| its underlying manifold.
The first homology group of an orbifold is the abelianisation of its fundamental group.

A knot in an orbi-lens space L is primitive if it carries a generator of Hy(L).

Lemma 1.2.8. (Boileau et al., 2011)[Corollary 3.2] A 3-orbifold L is an orbi-lens space
if and only if |L| is a lens space which admits a genus one Heegaard splitting |L| = V1UV3
such that X(L) is a closed submanifold of the union of the cores C1,Co of V1,Va, and

there are coprime positive integers by, by > 1 such that a point of C; has isotropy group

Z/b;. In the latter case, m (L) = Z/(biba|m1(|L])]).

We will use L(p, g; b1, b2) to denote the orbifold described in the lemma. As we are mainly
concerned with the case by = 1 and by = a, we use L(p, g; a) to denote L(p, ¢;1,a). When
a=1, L(p,q;a) is just L(p, q).

Recall that a cusp of a complete, finite volume, orientable, hyperbolic 3-orbifold is of

the form T2 x R, where T? is a Euclidean the two-dimensional torus.
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A slope r in a torus cusp of a complete, non-compact, finite volume hyperbolic 3-orbifold
O is a cusp isotopy class of essential simple closed curves which lie on some torus section

of the cusp.

The positive solution of the Smith conjecture implies that Isom™ (S \ K) is cyclic or
dihedral and the subgroup of Isom™ (5% \ K) which acts freely on K is cyclic of index at
most 2. We denote this subgroup by Z(K) and the quotient (S®\ K)/Z(K) by Z(K).

Call 7(K) the projection of the meridian of K (a slope in the cusp of S*\ K) to the
cusp of Z(K).

Proposition 1.2.9. (Boileau et al., 2011)[Proposition 4.13] A commensurability class
contains cyclically commensurable knot complements S3\ K and S®\ K' where K' # K
if and only if it contains the complement of a knot K in an orbi-lens space L such that K
is primitive in £ and £ admits an orbi-lens space surgery L' along K of slope r' # r(K).
Furthermore, we may assume that L\ K = Zx and if 7' S* — L' is the universal

covering and K' C L' is the core of the r'-Dehn filling of Zk, then K' = n~1(K").

Definition 1.2.10. A Berge-Gabai knot in a solid torus is a 1-bridge braid in a solid

torus which admits a non-trivial cosmetic surgery slope.

Definition 1.2.11. (Boileau et al., 2011)[Definition 5.5]

1. Let w,p,q,a be integers with w,a,p > 1 and ged(p, q) = ged(w, ap) = 1. A Berge-
Gabai knot K of winding number w in L(p, q;a) consists of a knot K C L(p,g;a)
and a genus one Heegaard splitting Vi U Va of |L(p, g;a)| such that K is a Berge-
Gabai knot of winding number w in Vi and X(L(p,q;a)) is a closed submanifold of
the core of Va.

2. A (p,q; a)-unwrapped Berge-Gabai knot in S is a knot in S® which is the inverse

image of a Berge-Gabai knot in L(p, ¢; a) under the universal cover S* = L(p, g; a).




14

K

Figure 1.1 A Berge-Gabai knot K C L(2,1) and the un-

wrapped Berge-Gabai knot in S3

Note that the inverse image in S% of a Berge-Gabai knot in L(p,q;a) is a knot (i.e.

connected) as its winding number w is coprime to ap.

Theorem 1.2.12. (Boileau et al., 2011)[Theorem 6.1] Let K be a 1-bridge braid on
n strands in a solid torus V. For any essential simple closed curve C on OV whose
algebraic winding number in V is coprime to n there is a locally trivial fibring of the
exterior of K in V by surfaces whose intersection with OV has n components, each a

curve parallel to C.

Corollary 1.2.13. (Boileau et al., 2011)[Corollary 6.2] An unwrapped Berge-Gabai knot
is a fibred knot.

Proof of Corollary 1.2.13. Let K be an unwrapped Berge-Gabai knot in S3. Then K is
the inverse image in S® of a Berge-Gabai knot K C L(p, ¢;a) of winding number n, say,
under the universal cover S = £(p, ¢; a). Thus there is a genus one Heegaard splitting
Vi U V; of |£(p,q;a)| such that K is a Berge-Gabai knot of winding number n in V;
and X(L(p, g;a)) is a closed submanifold of the core Cy of V2. As |L(p,¢;a)| = L(p,q),

the algebraic intersection number of a meridian curve of V; with one of V; is £p. By
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definition, ged(p,n) = 1, so Theorem 1.2.12 implies that there is a locally trivial fibring
of the exterior of K by surfaces which intersect OV in curves parallel to the meridian of
Vy. Therefore we can extend the fibration over the exterior of K in L(p,q) = |L(p, g; a)|
in such a way that it is everywhere transverse to £(L(p, ¢;a)). Hence the fibration lifts

to a fibring of the exterior of K. O

Proof of Theorem 1.2.12. Let K be the closed 1-bridge braid contained in the interior

of a solid torus V determined by the three parameters:

e 7, the braid index of K
e b, the bridge index of K;

e %, the twisting number of K.

See (Gabai, 1990) for an explanation of these parameters and Figure 1.2 for an example.
(Our conventions differ from those of (Gabai, 1990) by mirroring and changing orienta-

tion. This modification is convenient for presenting the knot’s fundamental group.)

Number the braid’s strands successively 0 to n — 1 and let o; denote the i elementary
braid in which the i** strand passes over the (i+1)%. The braid associated to K has the
following form: B(K) = op_1 006" where 6 = oo --0g is the positive 27/n twist.
Denote by 7 the permutation of Z/n determined by S(K). It has the following simple

form:
a+t+1 if0<a<d

@) =14 1 ifa=b (1.1)
a+t ifb<a<n

for some a € @. As K is a knot, 7 is an n-cycle.

Let Ty = 8V and Ty = ON(K) the boundary of a closed tubular neighborhood of K in
int(V). There is a meridian class p1 € Hi(T1) well-defined up to &1 and represented
by the boundary of a meridian disk of V. Let A\; € Hi(T1) be any class which forms a
basis of H(T1) with ;. Then A; generates Hi (V).
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Figure 1.2 The Fintushel-Stern knot (n =7, b = 2, ¢t = 4).
The curve z’ is obtained from the arc labelled z’ by closing
it in the boundary of the tunnel with an arc parallel to the
bridge and 4/’ is obtained similarly by closing the arc 3’ in the
boundary of the tunnel.

1,.-1,-1

Here Ris: yzyzryzzy ‘o~ ly 1]

1=, =1

x‘ly_ R A
Let M denote the exterior of K in V and fix an essential simple closed curve C on dV.
We arc clearly done if C is a meridian curve of V| so assume that this is not the case.

Then we can orient C' and find coprime integers p > 1, ¢ so that
[C] = g1 +pA1 € Hi(Th)

Note that p is the algebraic winding number of C in V. Assuming that gcd(p,n) =1 we
must show that there is a locally trivial fibring of M by surfaces which intersect OV in
curves parallel to C. The tools we use to prove this are Brown’s theorem (Brown, 1987)
and Stallings’ fibration criterion (Stallings, 1962). See also (Ozsvath and Szabo, 2005)
where a similar argument is invoked; our proof is only slightly more involved. Brown’s
theorem gives necessary and sufficient conditions under which a homomorphism from a
two-generator one-relator group to Z has finitely generated kernel and Stallings’ theorem
produces a fibration of a 3-manifold given such a homomorphism of its fundamental

group. More precisely:

Theorem 1.2.14. (Theorem 4.3 and Proposition 3.1 of (Brown, 1987)) Let G = (z,y :
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R) be a two-generator one-relator group with R = R1Ry... Ry, R; € {z,z L, y,97'}, a
cyclically reduced and non-trivial relator. Let S1,...Sm be the proper initial segments of
the relator R, i.e. S; = Ry...R;_1. Finallylet p : G — R be a non-zero homomorphism.
If o(z) # 0 and p(y) # 0, then ker(yp) is finitely generated if and only if the sequence

{(Si)}2, assumes its mazimum and minimum values ezactly once.

It is easy to see that the exterior M of K is homeomorphic to a genus 2 handlebody with
a 2-handle attached to it. Start with a solid torus U’ C int(V') obtained by removing a
small open collar of T} in V. Denote U’ by T5. As K is 1-bridge, it can be isotoped into
U’ so that the bridge is a properly embedded arc and its complement, v say, is contained
in T3. Fix a disk neighborhood D C T3 of v and let @« = 8D. Let U be the exterior
of the bridge in U’, a genus two handlebody. We can assume that 73 \ U C int(D)
and therefore @ C OU. By construction, a bounds a 2-disk properly embedded in m
(ie. a copy of D isotoped rel D into V \ U). It is easy to see that M is a regular
neighborhood of the union of U and this disk.

The fundamental group of U is free on two generators z,y represented by two curves
in T3 representing A;. (See Figure 1.2.) There are a pair of dual curves /',y C 9U to

these generators. This means that

e z' and 3/ bound disks in U;
e z intersects z’ transversely in one point and is disjoint from ¥/;

e y intersects y’ transversely in one point and is disjoint from z’.

See Figure 1.2. The word R € 71(U) in z,y represented by the curve a can be read off
in the usual way: each signed intersection of o with z/, resp. g/, contributes z*!, resp.

y*1, while travelling around o.

We introduce the auxiliary function f : Z/n \ {b} = {z, y} given by:
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(@) = y if0<a<b (1.2)

z ifb<a<n

for some a € @. Let w; = f(n9(b)) and consider the word w = wjws...wy_1. Then

1 1

R = ywzy lwlz~1. To see this, start with y from the base point w (c.f. Figure 1.2);
then follow the knot until the b strand, which contributes w; then turn at the lower
foot of the handle, which contributes zy~!; then walk along the knot in the opposite
direction until the strand b is reached, which contributes w™!; then close by passing z’,

which contributes to the final z71. Notice that R is cyclically reduced. It follows that
m(M) = (z,y : ywry wtz™1)
Let po € Hi(T>) be a meridinal class of K. The reader will verify that we can choose

the longitudinal class A; for V, a longitudinal class Ay € H;(T3) for K, and possibly
replace uy by —p; so that in Hy(M):

nA1 = Ag;
o u1 = nu;

o [yz~'] = o (i-e. [yz~] is represented by a meridian of K at the bridge);

A1 + tpe = [z] (i.e. A1 and [z] co-bound an annulus in V' which K punctures ¢

times).

Consider the homomorphism 71 (U) — Z which sends z to pt—ng # 0 and y to pt —ng+
p # 0. Since the exponent sum of both z and y in R is zero, it induces a homomorphism
@ : (M) — Z. Since ged(p,ng) = 1, ¢ is surjective. From the above, it can then be
verified that (A1) = —ng and ¢(u;) = np. Hence p(piN]) = 0.

Lemma 1.2.15. Let S1,Ss,. .., Sont2 be the proper initial segments of R = ywzy lw™!

RiRy...Ronyo where R; € {z,271,y,y'}. Then the sequence {(p(.S’i)}?g'l"2 achieves its

mazimum and minimum velues ezactly once.

s

1:
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Proof. By construction, ¢(z) # 0, ¢(y) # 0, and ¢(y) > ¢(z). The conclusion of the

lemma is easily seen to hold when ¢(z) and ¢(y) have the same sign, so assume that

p(z) <0< @(y).
Set S = max{p(S;): 1 <i<2n+2} and s = min{p(S;) : 1 <3 < 2n+2}.
Since ¢(z) < 0 < p(y) we have

)
8 < @(Snt2) < @(Snt1) <9(Sn) < S

8 < @(Snti) = @(Snit2) + 9(@) — P(y) < P(Sn—i+2) < Sfor3<i<n+1 (1.3)

L 8 < 9(Sont1) = p(Sont2) + ¢(2) < p(Sant2) =0 < @(y) = (1) < S

Thus the maxima of {(S;)}2%F2 can only occur in the sequence ¢(S1), ¢(S2), - -, ©(Sn)

and the minima in ¢(Sp+2), P(Sn+3);- -, ©(San+1)-

We look at the maxima of {p(S;)}2"F2 first. Suppose that 1 <1 < r < n. We claim
that p(Ri41) + - + @(Rr) # 0 (mod n). If so, ¢(S;) # ¢©(Sr) and therefore S occurs

precisely once amongst the values {p(S;)}2 ;.
Let i be the reduction of ¢ modulo n. Since ged(p,n) =1, we can define
p=7"%: m(M)—~Z/n
Then @(z) =% and @(y) =t + 1 and therefore
#(£(@) = v(@) - a

for all a € Z/n\{b}. Hence p(Rit1)+ - +@(Rr) = @(wy)++ - -+ @(wr—1) = G(f('(b)))+
+ GUED)) = (E) — ) + -+ (17 6) — 77 1(F) = 77 () — m(B). Since
7 is an n-cycle and 1 < I < r < n we see that 77(b) # 7'(b). It follows that ¢(Ry4+1) +
++@(Rr) # 0 (mod n).

The uniqueness of the minimum follows along the same lines. We saw above that

the minima of {p(S;)}2"F? only occur in ¥(Snt2), P(Snt3);-- -1 ©(S2n+1). As before,
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Y(Riy1)+ -+ @(Rr) £ 0(modn) forall n+2 <1 < r < 2n+ 1 and therefore
©(Sn+2); (Sn+3), - - -, 9(Son41) are pairwise distinct. This implies the desired conclu-

sion. |

We can now complete the proof of Theorem 1.2.12. The previous lemma couples with
Theorem 1.2.14 to show that the kernel of ¢ is finitely generated. Stallings’ fibration
criterion (Stallings, 1962) implies that M admits a locally trivial surface fibration with
fibre F' such that m1(F) = ker(). Since ¢(p1) = np # 0 while p(uiNF) = 0, ker(¢|, (1))
is the infinite cyclic subgroup of 71 (T1) generated by [C]. Hence the fibration meets T}
in curves parallel to C. To complete the proof, we must show that the intersection of a

fibre F' with T} has n components.

To that end, note that as ¢ is surjective we can orient F' so that for each ¢ € Hy1(M) we
have ¢(¢) = ¢-[F). Let ¢1 € H1(M) be the class represented by the cycle FNT} with the
induced orientation. Clearly, ¢1 = £|F N T1|[C]. Since ¢(\1) = —ng and ¢(u1) = np,
p(m1(T1)) = nZ. Thus if ( € H;1(M) is represented by a dual cycle to [C] on T, then

n=¢(()=(-[Fl=I[C-o| = |[FNTIC-[C]] = |FNTy

This completes the proof. O

An interesting consequence of the proof above is the following

Proposition 1.2.16. (Boileau et al., 2011)[Proposition 1.6] Let M be the exterior of
a hyperbolic 1-bridge braid in a solid torus V . Then each top-dimensional face of the

Thurston norm ball in Hy(M,OM;R) is a fibred face.

Proof. Let K be a hyperbolic 1-bridge braid on n strands in a solid torus V. We
use the notation developed in the proof of Theorem 1.2.12. In particular, M is the
exterior of K in V and Hy(M) = Z & Z with basis A1, us. By construction there are
classes &1,&2 € Ho(M,0M) such that if 9 : Ho(M,0M) — H1(OM) is the connecting
homomorphism, then 8¢; = p1 — nug and 8 = nA1 — Ag. Since |A1 - §;| = 61; and
lp2 - €| = 824, {&1,&2} is a basis for Hy(M,0M) = HY (M) 2 Z & Z.
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Consider the homomorphism % given by the composition Ho(M,0M) __H Hi(OM) =
Hi(Th)®H:1(Ty) — Hi(T1). Then(abi+b&2) = apq+nbAi, and therefore 1 is injective.

Let p, g be coprime integers such that ged(n,p) = 1. According to Theorem 1.2.12, there
is a fibre F' in M which can be oriented so that ¥([F]) = [F NT1] = ngus + npr =
P(ngé1 +péa). Hence [F| = ngé1 + péa so that ngéi + pés is a fibre class in Ho(M, OM).

Fix coprime integers a, b and consider the class £ = a€; +b€s. The proposition will follow
if we can show that the projective class of £ can be arbitrarily closely approximated by
fibre classes (Thurston, 1986, Theorem 2). By the previous paragraph £ is a fibre class
when a = 0, so suppose this is not the case. It suffices to show that % = limy, %;L
where amé1 + bméa are fibre classes. This is easy to verify: for each integer m > 0 set
Pm = nmba+1 and g, = mb?. Then ged(pm, ngm) = 1 and from the previous paragraph
ngm _

we see that ngmé1 + pmée is a fibre class. Finally, lim,, -

m

b, which completes the

proof. O

Here is a curious consequence, more precisely a reformulation of Theorem 1.2.12

Proposition 1.2.17. (Boileau et al., 2011)[Theorem 1.5] Let K be a knot in an orbi-
lens space (with non-empty singular set) L which is primitive in |L|. If K admits a
non-trivial orbi-lens space surgery, then the exterior of K admits a fibring by 2-orbifolds

with base the circle.

Proof. Suppose £ = L(p, g;a,b). Set Ly = L(p,q;a,b) \ N(Z(L(p,q;a,b))) and

S! x D? if [2(L(p, ¢; a,b))| = 1
St x 8' x [0,1] if |2(L(p,g;a,b))| =2

Since K admits a non-trivial orbi-lens space surgery in £, Lo admits a non-trivial cos-
metic surgery . Because S' x S x I has no nontrivial cosmetic surgeries (Boileau et al.,
2011)[Lemma 5.1], Ly & S! x D? (so we can suppose that b = 1) and K is a Berge-
Gabai knot in Ly . Let n be the winding number of K in Lg. Our hypotheses imply that
ged(p,n) = 1. Thus Theorem 1.2.12 implies that there is a locally trivial fibring of the
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exterior of K in Lg by surfaces which intersect dLg in curves parallel to the meridian

slope of the solid torus N(X(L(p, ¢;a))). Therefore we can extend the fibration over the
exterior of K in L(p,g;a) in such a way that it is everywhere transverse to £(L(p, ¢; a)).
We endow each fibre F' of this surface fibration with the structure of a 2-orbifold by
declaring each point of F' N X(L(p, g;a)) to be a cone point of order a. In this way the
exterior of K in L(p,q;a) admits an orbifold fibring with base the circle. a

It is known that any knot in $° which admits a lens space surgery (and more generally
a L-space surgery ) is fibred (Ni, 2007). As an application of Theorem 1.2.12, we can
say something more about the fibration of a Berge knot. Recall that the Berge knots
are the doubly primitive knots in S® and conjecturally they are all the knots with lens
space surgeries. It was proved by Berge that the induced knot in the surgered lens space

is simple (Berge, 1984) In particular, it is a 1-bridge knot.

Proposition 1.2.18. Let K’ be the induced knot in a lens space L(p,q) obtained by
surgery on a doubly primitive K C S3. Then, when K’ is supported in a tubular neigh-
borhood of the Heegaard torus T of L(p,q) as a simple knot, the cores of the Heegaard
solid tori determined by T can be isotoped (perhaps not simultaneously) to be transverse

to the fibration of L\ K.

Proof. Call U; and U, the Heegaard solid tori bounding T. View K’ in Uy first. Then
K’ is a braid in U; and because of the primitivity of K’, the winding number w(K")
is coprime to p. We can apply theorem 1.2.12 to conclude that there is a fibration of
Ui\ N (OK’ )} which meets U in meridian disks, hence the fibration can be extended to
the fibration of L(p,q) \ K.

Now repeat this argument for Us. O

Remark 1.2.19. We conjecture nevertheless that the two cores of L(p,q) can be simul-

taneously isotoped to transverse positions with respect to the fibration of K.



CHAPTER II

BACKGROUND ON HEEGAARD-FLOER HOMOLOGY

In this chapter we describe the construction of Heegaard-Floer homology, introduced
by Ozsvath-Szab6 in 2000, which will play an essential role in the proof of our main

theorems.

2.4 Heegaard splittings

Throughout this chapter, Y will denote a closed, connected, oriented three-manifold.

Definition 2.1.1. A Heegaard splitting (decomposition) of Y is a tuple (X, Up, Uy),
where ¥ C Y is a separating, closed, oriented surface, Y \ ¥ = Ug U U; with each U; an

open handlebody. X is called a Heegaard surface.

We will always assume that Y, X, Uy, U; are oriented using the following convention:
¥ = OUg = —OU; and the orientation on Y coincides with the orientations of Uy and
U;. Two Heegaard splittings (X, Up,U1), (¥',Up, Uy) of Y, resp. Y’, are (orientation
preserving) homeomorphic if there exists an (orientation preserving) homeomorphism

¢ :Y — Y’ such that p(X) = X' and o(U;) = U].

Any closed, connected, orientable three-manifold admits Heegaard splittings. To con-
struct one, take Uy to be a regular neighborhood of the 1-dimensional skeleton of a
triangulation of Y (which always exists. See e.g. (Moise, 1977)). See (Scharlemann,
2000) for a survey of Heegaard splittings. The genus of ¥ is by definition the genus of
the splitting and the smallest genus among all splittings of Y is the (Heegaard) genus of
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¥.

The genus gives a measure of the complexity of three-manifolds. There is one manifold of
genus 0, namely S. Manifolds of genus 1 form a simple family: they are lens spaces and
S1 x §2.1 All genus 1 manifolds have cyclic fundamental group and except for St x $?2
have spherical geometry. The manifolds of genus 2 form a much more complicated class,
which in particular contains hyperbolic manifolds. A complete classification is currently

out of reach.

Given two manifolds Y, Y” with some Heegaard splittings (X, Up, Uh), resp. (X', Ug,U1),
one can construct a Heegaard splitting on the connected sum Y#Y’ by choosing the
three-balls B, resp B/, on which the sum is performed such that BN Y = D2, resp.
B'NY’ = D? and 8B is identified with 8B’ by a homeomorphism ¢ such that ¢(XNB) =
¥ NnB.

Observe that X#%’ will be a Heegaard surface in Y#Y”. We call this Heegaard splitting
the connected sum of the two splittings, we can write it as: (X, Uy, U1)#(X', U, U7) =
(Z#XT', Uo#aUg, Ur#U1).

From a given splitting (X,Up,U1) of Y, one can obtain new splittings by: isotopy and
(de)stabilisation. Isotopy refers to the ambient isotopy of X in Y, whereas stabilisation
is the connect sum (%, Ug, U1)#(T?, Vo, V1), where (T?, Vo, V1) is the unique (up to iso-
topy) genus 1 splitting of S3. Conversely, we say that (3, Uy, U;) was obtained from
(2, Uo, U1)#(T?, Vo, V1) by destabilisation.

It is a classical theorem of Reidemeister (Reidemeister, 1933) and Singer (Singer, 1933)
that any two Heegaard splittings of Y become isotopic after a finite number of stabili-

sations.

We adopt the convention that S* x S? is not a lens space.
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2.2 Heegaard diagrams and Morse theory

Given a decomposition (X, Uy, U1) of Y, one can specify the handlebodies U; by complete

sets of attaching circles:

Definition 2.2.1. A complete sets of attaching circles for 31 - an oriented compact
surface of genus g - is a collection o = {1, ..., 04} of essential simple closed curves in

¥ which are linearly independent in Hy(%;Z).

To describe Uy, say, one chooses g curves oy, ..., ag which bound disks in Up, the condi-
tion that they are linearly independent in H1(%, Z) implies that 3\ {U;;} is a punctured

sphere. Note that the curves oy, ..., 4 are not unique (up to isotopy).

Conversely, starting with ¥ and a = {ay,..., a4}, one can construct a handlebody in
which the «; curves will bound disks by attaching to ¥ x {0} C £ x I 2-handles along
a; x {0} and gluing a three ball to the sphere boundary component of the resulting

manifold.

Heegaard splittings can be specified up to (oriented) homeomorphism by Heegaard dia-

grams:

Definition 2.2.2. A Heegaard diagram is a tuple (X, ¢, B) where ¥ is a compact, ori-
ented surface of genus g and o, resp. (3 are complete sets of attaching circles. Two
Heegaard diagrams (X, 3) and (X', ', 8') are diffeomorphic if there ezists an orien-

tation preserving diffeomorphism ¢ : ¥ — X' such that p(a) = o and p(8) = B

From a Heegaard diagram one constructs a splitting by attaching 2-handles along «; x
{0} C £ x I and 2-handles along B; x {1} C £ x I and gluing 2 three-balls along the
resulting two-sphere boundary components. By convention, we orient the manifold thus

obtained consistently with the product orientation on & x I.

The theory of Heegaard diagrams is equivalent to Kirby calculus (also called handle
attachment calculus) in dimension 3, see (Gompf and Stipsicz, 1999), (Milnor, 1965) for
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the theory of handle attachment in general, which in its turn is closely related to Morse

theory and Cerf theory. See (Milnor, 1963), (Cerf, 1970) as references for the latter.

Endow Y with a Riemannian metric. Choose a self-indexing Morse function f : Y —
[0, 3], with one index 0, resp. one index 3 critical point. Then the level set & = f~1(3)
is a Heegaard surface of Y, Uy = f~1[0, %], th-= f~L %,3]. Moreover, the ascending
manifolds (under the flow of the negative gradient of f) of the index 1 critical points
intersect X in a complete set of attaching circles, denoted « and similarly the descending
manifolds of index 2 critical points intersect X in 3. Then (X, e, B) becomes a Heegaard
splitting of Y. We say that f is compatible with (%, ar, 3). Conversely, given a Heegaard

diagram, there exists a compatible Morse function (Milnor, 1965).

One defines several moves on Heegaard diagrams (X, o, 3) :

e isotopy : replace o =: g, a complete sets of attaching circles, with «;, where
az,t € [0,1], is a (smooth) isotopy such that for all ¢ € [0,1], a is a complete set

of attaching circles; the same for 3.

o handleslide the set of attaching circles & = {a1,..., 04} is replaced by the set of
attaching circles &’ = {of,...,aq}, where a1, 0} and a3, bound a pair of pants,

i.e. a thrice punctured sphere in ¥ — {a3 U... U ay}; similarly for 8.

o stabilisation replace T with X = S#T2, a = {o1,...,q,} and B = {B1,...,5,}
with @' = {a1,...,ag,0¢11} and B’ = {B1,..., By, Bg+1} where agy1,Bg+1 C T?
are two simple closed curves intersecting transversely in one point and disjoint
from the disk on which the connected sum is performed. The inverse operation is

called destabilisation.

Any two Heegaard diagrams representing the same manifold become diffeomorphic after

applying a finite number of moves, by classical Cerf theory (Cerf, 1970).
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2.3 Heegaard-Floer homology

Heegaard-Floer homology is a package of invariants of smooth three- and four- dimen-
sional manifolds, developed by Ozsvath and Szabé from 2000 onwards. It was conjec-
tured right from the beginning to be equivalent to the Seiberg-Witten-Floer homology
developed by Kronheimer and Mrowka (Kronheimer and Mrowka, 2007) and the moti-
vation for its construction was to provide ways to compute the latter. The conjecture
was recently proved by two independent groups (Colin, Ghiggini and Honda, 2011),
(Kutluhan, Lee and Taubes, 2011).

Heegaard-Floer homology is indeed more easily computable and was extended to objects
which had no corresponding monopole invariant, for example knots in the three-sphere,
where the invariant (discovered independently by Rasmussen (Rasmussen, 2003)), is a
categorification of the Alexander polynomial. It is known to detect geometric properties
of three-manifolds, such as the minimal genus of embedded surfaces in a given homology
class, in particular the genus of a knot. Also, Donaldson’s diagonalisation theorem
(Donaldson, 1983) can be proved within the framework of Heegaard-Floer homology
(Ozsvath and Szabé, 2003a).

We will give a summary of the construction for the objects we are interested in, the
reader is referred to the original papers for a complete account (Ozsvath and Szabo,
2004c),(Ozsvath and Szabd, 2004b),(Ozsvath and Szabo, 2004a),(Rasmussen, 2003), see
also the expository papers (Ozsvath and Szab6, 2006¢), (Ozsvath and Szabo, 2006a).

As the name suggests, Heegaard-Floer homology is defined using a Heegaard diagram

(%, ¢, B) of Y, with an additional basepoint z € £ — (a U 3).

Definition 2.3.1. A pointed Heegaard diagram is a tuple (¥, o, B, 2), where (X, o, B) is
a Heegaard diagram for Y and z € L—a—3. Two pointed Heegaard diagrams (X, o, 3, z)
and (X', &', 3, 2') are diffeomorphic if the underlying Heegaard diagrams (T, a, B), resp.
(X, &, B") are diffeomorphic by a diffeomorphism which respects the basepoints.

There is a natural notion of pointed moves for pointed Heegaard diagrams. These are
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just the moves on Heegaard diagrams described above with the extra conditions that:

e isotopies are supported in the complement of the basepoint,
e the pair of pants in the definition of handleslide does not contain the basepoint,

e the connected sum with 72 in the stabilisation move is made on a disk not con-

taining the basepoint.

It is shown in (Ozsvath and Szab6, 2004c, Proposition 7.1) that any two pointed Hee-

gaard diagrams of Y become diffeomorphic after a finite sequence of pointed moves.

2.3.1 The construction of Heegaard-Floer homology

Heegaard-Floer homology is a version of Lagrangian-Floer homology in the g-fold sym-

metric product of ¥ : Sym9(X) = £*9/g, , where ¥*9 = ¥ x ... x &, §; denotes the
g—times
symmetric group on g elements and the action on ¥*9 is the natural one - permutation

of the factors. Denote by 7 : £*9 — Sym9(X) the canonical projection.

The usual setup for Lagrangian-Floer homology is a symplectic manifold (M,w) with a
generic almost complex structure J and a pair of Lagrangian submanifolds (Lg, L; ). One
then analyses the moduli space of holomorphic disks with certain boundary conditions.
See (Gromov, 1985),(Floer, 1988) and (McDuff and Salamon, 2004) for an introduction
to this field.

Choose a Kibhler structure on X. The product complex structure on 3*9 descends to the
symmetric product, making m a holomorphic map. The proof that Sym9() is a com-
plex manifold follows from the fact that Sym9(C) is a complex manifold biholomorphic
to CY. This biholomorphism is constructed by associating to a monic degree g polyno-
mial (which can be seen as a vector of C9 - the coordinates being the non-dominant

coefficients) its unordered set of roots (with multiplicities) - an element of Sym9(C).

The two sets of attaching circles a and 3 give rise to the tori Ty, resp. Tg C Sym9(X) :
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To = m(ay X +-- X ag) , Tg = w(B1 X ... X By). Note that 7 is a branched cover with
singular locus the diagonal A C £*9, where by definition (z1,...,24) € A <= 2z; = 2;
for some i # j. Since the o; curves are disjoint, oy X ... x ag N A = {, therefore T, is
an embedded torus in Sym?(X), and similarly Tg. We will suppose that they intersect

transversely, which is equivalent to the transversality of each o; with each S;.

Intersection points of T, and Tg have an interpretation in terms of the Heegaard di-
agram: let x € T, N Tg. Then x is an unordered g-tuple of points (zy,...,z4) with
z; € X, where z; # ; if i # j (since To N A = () and each z; belongs to an a curve
and a g curve. By relabelling the elements z;, we can suppose that z; € «;, and so
T; € ;N Py(3) for some permutation o € S,. In words, an intersection point between T,
and Tp is a choice of intersection points between the a and g curves, where each curve

in the Heegaard diagram appears exactly once.

T, and Tg will play the role of the Lagrangian submanifolds. At the time of writing
of (Ozsvath and Szabd, 2004c), there was no known way to push forward the product
Kahler structure (in particular the symplectic form) on ¥*9 to Sym9(X). This was done
later by Perutz (Perutz, 2008). The two tori are totally real with respect to an almost
complex structure coming from the product complex structure on X*9. Ozsvath and
Szab6 were able to adapt the Floer homology techniques to this case. We will not go
into the analytical details, we just note that work of Perutz (Perutz, 2008), shows that
Heegaard-Floer homology can be viewed as a classic Lagrangian-Floer homology. See
also (Lipshitz, 2006) for a ‘cylindrical’ reformulation of Heegaard-Floer homology, where
the ambient symplectic manifold is [0,1] X R x X, but one allows pseudo-holomorphic

curves of higher genus.

It is convenient to suppose that ¥ has genus ¢ > 2, see (Ozsvath and Szabd, 2004c,
Section 2.4) and below. This is not an essential restriction since one can always stabilise
a Heegaard diagram. We note that for genus 1 and 2 Heegaard diagrams one can still

compute the Floer homology of the manifold, but some definitions require modifications.

Given two intersection points x,y € T N Tg, one is interested in the moduli space of
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pseudo-holomorphic disks connecting x to y. These disks are analogous to the trajectories
between critical points of a Morse function in classic Morse theory. In the Floer homology
setting, the existence of these trajectories is homologically obstructed. As a result, the
invariant splits according to Spin® structures on Y. This is made more precise in what

follows.

Let D be the unit disk in C and e; be the arc of 0D of points with positive real part,

and eg the arc in 0D with negative real part.

Denote by Q(x,y) the set of maps

u(_z) = IB,U(%) =Y

u: D — SymI(%)
u(e1) C To,ule2) C Tg

Such a disk u is called a Whitney disk connecting x to y. Two Whitney disks ug and
u; are said to be homotopic if there is a continuous one-parameter family (ut)sc(oy)
of Whitney disks interpolating them. The set of homotopy classes of Whitney disks

connecting x to y will be denoted by ma(x,y)-

There is a natural splicing operation *: mo(x,y) X ma(y,z) — ma(x,z) which simply

concatenates two Whitney disks.

The structure of m2(x,y) is determined by algebraic-topological data on the triple

(Sym? (%), To, Tg) which in its turn can be rephrased in terms of the homology of Y.

Proposition 2.3.2. (Ozsvdth and Szabd, 2004c, Sections 2.8 and 2.4) We have the
Sollowing isomorphisms:
H(Symi(E)) H(2)
Hy(To) ® Hi(Tp)  [eal, - [eg], [B1]; -y [Bg]

~ Hy(Y; 7).

Given an element u of m3(x,y), one sees that the cycle u(e;)—u(ez) is zero in H; (Sym?(X); Z).
The image of this cycle in H;(Sym?9(X))/(H1(T,) @ Hi(Tp) is independent of the arcs
u(e1), u(ez), in particular it is independent of u. This motivates the following:

Definition 2.3.3. (Ozsvith and Szabd, 2004c, Definition 2.11) Let a: [0,1] — T4,
b: [0,1] — Tp be two arcs from x to y in Sym9(X). Define e(x,y) to be the image
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of the cycle a — b in H1(Y;Z) under the isomorphisms from Proposition 2.3.2. This

quantity is sometimes referred to as the € grading.

It is immediate from the definition of ¢ that e(x,y) + ¢(y,z) = e(x,z), for x,y,z €
Ta m ’]]."B.

The ¢ grading is the aforementioned obstruction to the existence of Whitney disks con-

necting x to y.

Proposition 2.3.4. (Ozsvdth and Szabd, 2004c, Proposition 2.15) When g > 2, ma(X,y)
is nonempty <= e(x,y) = 0. If this happens,

ma(x,y) 2 Z® H(Y;Z)

as principal Z & H*(Y'; Z) spaces.

By the above discussion, intersection points of T, and Tp are partitioned into equivalence
classes in affine bijection with Hy(Y; Z), by declaring x and y to be equivalent if e(x,y) =
0. These equivalence classes turn out to be in natural bijection with Spin® structures on

Y, once we fix a basepoint for the Heegaard diagram.

2.4 Spin® structures

Recall that the Lie group Spin®(n),(n > 3), is the quotient (Spin(n) x Spin(2)) /Zz’
where the generator of Zy acts on each Spin(r);=n 2 factor by the nontrivial deck trans-
formation of the cover Spin(r) — SO(r). Note that there is a canonical homomorphism

Spin€(n) — SO(n), see (Gompf and Stipsicz, 1999) for details.

Endow our three-manifold ¥ with a Riemannian metric g and consider the principal

SO(3) bundle of orthonormal oriented frames fy: Fr — Y.

Definition 2.4.1. A Spin® structure on (Y, g) is a lift of the SO(3) bundle fy to a

principal Spin® bundle.
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Two Spin® structures sp, resp. s1 on (Y, go), resp. (Y, g1) are said to be equivalent if
there is a 1-parameter family of metrics (gt)te[o,l] and a continuous l-parameter family
of Spin® structures s; on (Y, gt). Therefore, equivalence classes of Spin® structures on
Y do not depend on any particular metric, they are associated to the manifold itself.
Abusively, we will call these equivalence classes simply Spin® structures and we will

denote by Spin®(Y’) the set of Spin® structures on Y.

In dimension 3, Spin® structures admit a topological interpretation, due to Turaev (Tu-

raev, 1997).

Definition 2.4.2. Two non-zero vector fields v1,v9 on Y are homologous if they are
homotopic in the complement of a three-ball (or equivalently in the complement of a finite

number of three-balls) in Y.

Proposition 2.4.3. (Turaev, 1997) Spin® structures on'Y are in natural bijection with

homology classes of vector fields.

The homology classes of vector fields form an affine space over H2(Y,Z). To see this,
choose a trivialisation of the tangent bundle of Y, 7: TY — Y x R3; this way one
can identify unit vector fields on Y with maps v : ¥ — S§? C R3. Then homotopy
classes of vector fields are in one-to-one correspondence with homotopy classes of maps
v: Y — S2. The homology classes of vector fields are uniquely determined by the induced
maps v*: H2(S?;Z) — H2(Y;Z), hence, after fixing a generator of H?(S?;Z), they are
in one-to-one correspondence with elements of H?(Y;Z). This correspondence is not
canonical, since it depends on 7. However, the difference between the corresponding
elements in H%(Y;Z) is independent of the trivialisation (Ozsvath and Szabé, 2004c,
Section 2.6), hence there is a well-defined difference between two Spin® structures, which

is an element of H?(Y';Z). This shows that Spin®(Y’) is an affine space over H2(Y;Z).

In a pointed Heegaard diagram (3, o, 8, z), an intersection point x of T, N Ty deter-
mines a Spin® structure on Y in the following way: suppose x consists of the g-tuple

(z1,...,24), where z; € a; N By(;) for some permutation ¢ € Sg.
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Fix a Morse function f: Y — [0, 3] compatible with the Heegaard diagram. Consider
the vector field v := —V/(f). Each intersection point z; € x determines a trajectory from
the index 2 critical point corresponding to B,(;y to the index 1 critical point corresponding
to ;. A regular neighborhood of this trajectory is a ball, in which one can isotope v to a
non-zero vector field +’. This is always possible when the indexes of the two critical points
in the ball have different parity. After performing this operation for each z;;c(1,.. 4},
we obtain a vector field which we still call v. The basepoint z determines a trajectory
from the index 3 critical point to the index 0 critical point. A regular neighborhood of
this trajectory is again a three-ball, in which one can isotope v’ to a non-zero vector
field v". Notice that by definition, the homology class of v” does not depend on the
particular isotopies performed in the above three-balls. Hence we have a well-defined

map s,: To N Tg — Spin®(Y), sending x to the homology class of v".

The following result justifies the splitting of the intersection points between T, and Tg

according to Spin® structures on Y.

Proposition 2.4.4. (Ozsvdth and Szabd, 2004c, Lemma 2.19) For x,y € To N'Tg,

52(y) — 82(x) = PD[e(x,y)];

where PDIv] is the Poincaré dual of v € H1(Y; Z).

A Spin® structure has a well-defined Chern class, an element of H*(Y; Z).

Definition 2.4.5. For a Spin® structure £ on Y, given as the homology class of the
vector field v, one defines its Chern class by c1(€) = [v] — [—v].

An equivalent formulation which will be useful later is the following:

Proposition 2.4.6. (Ozsvdth and Szabd, 2004c, Section 2.6) The Chern class of the
Spin® structure [v] is equal to the Fuler class of the orthogonal complement of v, an
oriented rank 2 vector bundle, or its first Chern class when viewed as a complex line

bundle.
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For ¢ € Spin®(Y) represented by the homology class [v], the Spin® structure & := [~v]
is called the conjugate Spin® structure. It is obvious from the definitions that ¢;(¢) =

—c1(€).
2.5 The invariants

There is one more ingredient in the definition of the homology groups, namely orientation
systems. They do not play an essential role, in general, since it was proved by Ozsvath-
Szabé in (Ozsvath and Szabd, 2004b)[Theorem 10.12] that there is a canonical choice
of a (equivalence class of) orientation system for a three-manifold. This is why they
are generally omitted from the notation of the Floer homology groups. See Section 3 of
(Ozsvath and Szabo, 2004c) for a complete discussion. They arise at a certain point in

our proofs, so we include a brief introduction.

Definition 2.5.1. (Ozsvdth and Szabd, 2004b)[Definition 8.11] For a fized s € Spin°(Y’),
a coherent system of orientations o is a choice of non-vanishing sections o(¢) of the
determinant line bundle of the linearisation of the O operator over each ¢ € Ta(x,y)
for each x,y representing s and each ¢ € ma(x,y), which are compatible with respect to
gluing:

o(¢1) A o(¢2) = o(d1 * $2)

and

o(uxS) = o(u)

where A\ denotes the splicing of Whitney disks and S is the holomorphic sphere generating
m5(Sym?(X)).

In order to orient the moduli spaces of holomorphic representatives of Whitney disks,
one chooses an orientation system. Unless otherwise specified, this will always be the

canonical one given in (Ozsvath and Szab6, 2004b)[Theorem 10.12].

As mentioned above, there are several versions of Heegaard-Floer homology. The differ-

ence lies in the role played by the basepoint 2. We are interested in this work mostly in
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the HF+ and HF versions.

The simplest invariant defined in (Ozsvath and Szabé, 2004c) is HF. It is the homology
of a complex EF‘, defined in terms of a pointed Heegaard diagram (¥, e, 3, 2), and a
path of almost complex structures in Sym9(%). We will not go into the analytical details
regarding moduli spaces of pseudo-holomorphic disks, almost complex structures, but
we will define the main concepts and state the necessary theorems which justify the
definition of Floer homology. The reader is referred to Section 3 of (Ozsvath and Szabd,

2004c) for the complete account.

In classical Morse theory, one analyses the moduli space of trajectories (under the gra-
dient flow) from one critical point to another. In Heegaard-Floer theory, the critical
points are replaced by the intersection points between the two tori Ty and Tg, and the

trajectories are the Whitney disks which are moreover pseudo-holomorphic maps.

The expected dimension of the moduli space M(x,y) of holomorphic Whitney disks in
a given homotopy class ¢ € ma(x,y) is given by the Maslov index of ¢ - denoted by

().

The unit disk D in C has a one-parameter family of automorphisms preserving the points
i and —i. These are easily seen as vertical translations in a biholomorphic model for D,
namely the band {z € C| — 1 < Re(z) < 1}, for which =i correspond to +oco. Therefore
one is mainly interested in 1-dimensional moduli spaces of holomorphic Whitney disks,

for which the unparametrised moduli spaces

M(x,y)

M(¢) =—%

have dimension 0.

Theorem 2.5.2. (Ozsvdth and Szabd, 2004c, Theorem 3.18) For Ty, and Tg in general
position and for generic choices of (paths of) almost-complex structures the following
are true: there is mo non-constant holomorphic Whitney disk in any homotopy class
¢ € ma(x,y) with u(¢) = 0; for any ¢ € ma(x,y) with u(é) =1, /T/t\(qS) is a compact,

zero-dimensional manifold.
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Recall (cf. Proposition 2.34) that for x,y € Tq N Tp, m2(x,y) is an affine space over
Z @& HY(Y;Z). The action of the Z factor on ma(x,y) can be seen as the action of
mo(Sym9 (X)) by gluing spheres to the Whitney disks. Consequently, one can compute
the change in the Maslov index when changing the homotopy class of Whitney disks.

To identify the elements of n1o(Sym? (X)), one employs the subvariety V, = zxSym9~1(X) C
Sym?(X) in view of the fact that the generator of m3(Sym?(X)) intersects V, transversely
once (Ozsvath and Szabo, 2004c, Proposition 2.7).

Definition 2.5.3. Let n,: mo(x,y) — Z be the function defined by n,(¢) = #(uNV,),

for some u € ¢.

Lemma 2.5.4. (Ozsvdth and Szabd, 2004c, Lemma 3.3) Let S € mo(Sym?(X)) be the

positive generator. Then for ¢ € ma(x,y),
(¢ + k[S]) = p(e) + 2k.
The chain complex EF(E,Q, B, z) is freely generated over Z by intersection points x €
To N Tg.
One defines a relative grading (degree) on the generators:

gr(x,y) = u(¢) — 2n.(¢)

for some ¢ € mo(x,y). This quantity is independent of ¢, as a consequence of Lemma
2.5.4, together with the fact that (c1(Sym9(X),[S]) = 1 (Ozsvath and Szabd, 2004c,
Lemma 2.8) and the excision principle for the Maslov index (McDuff and Salamon,

2004).
The differential is the map & : 6‘?’(2, a,B,z) — 6’?‘(2, a, B, z) given by:

ox= Y 5 #(Mey))y

yY€TNTg {penz(x,y) | u(¢)=1n2(4)=0}

and extended to 6’?(2, a, B, z) by linearity. Note that if y appears in 9x, then neces-
sarily gr(x,y) = 1.
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It is proved by Ozsvith-Szabé in (Ozsvath and Szabé, 2004c, Theorem 4.1) when
b1(Y) = 0 and (Ozsvath and Szabd, 2004c, Theorem 4.15) in general that 9 above
is a differential, i.e 3o d = 0 and the homology groups of (6’?(2, a, B, z),0) are denoted
by FIT‘(E, a, B3, z). Moreover, they prove that the isomorphism class of these homology
groups does not depend on the choice of (paths of) complex structures (Ozsvath and
Szab6, 2004c, Theorem 6.1) and on the topological choices: the Heegaard surface X,
the complete sets of attaching circles o and 3, and the basepoint z. This is achieved by
showing that the the complexes corresponding to two pointed Heegaard diagrams related
by pointed Heegaard moves are chain homotopic (Ozsvath and Szabé, 2004c, Sections

7-11). This is true for the other versions HFt, HF~, HF® and H F}4, see below.

One must make the observation that when computing the Heegaard-Floer homology of
a manifold ¥ with b;(Y") > 0, one must impose additional admissibility assumptions on
the Heegaard diagram (Ozsvath and Szabé, 2004c, Definition 4.10). We will not go into
the details, we simply note that any pointed Heegaard diagram for Y is isotopic to an

admissible one (Ozsvath and Szab6, 2004c, Lemma 5.4).

More refined versions of the homology theory are defined by allowing the holomorphic

disks in the definition of & to intersect V.

The CF*(Z, a, B, z) complex (Ozsvath and Szabé, 2004c, Equation 11) is the chain
complex freely generated over Z by pairs [x,4], with x € To N Tg and i € Z with the
differential 8° : CF*(%, a, 8, 2) — CF*(%, ., B, z) given by:
Fli= Y > #(Mey) byi- ()
y€TaNTg {¢€m2(x,y) | u(¢)=1}
Note that there is a natural chain map U : CF*(Z, a, 8, 2) — CF*(%, a, B, z) which

sends [x, i| to [x,i — 1], thus lowering the degree by 2.

Because the (transverse) intersection of a holomorphic disk u € Q(x,y) with the sub-
manifold V; is positive, we have that [y, j] can be a term in the sum defining 9*°[z, 7] only
if 7 < 4. This allows Ozsvath-Szabé to consider the subcomplex (CF~ (X, at, B, 2),0%°) C
CF*(%, o, B, 2), 2),0°) and the induced quotient complex CF®(X, e, 8, 2)/CF~ (2, a, B3, 2).
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Their homologies are denoted by CF* (%, a, 3, 2).

In view of their independence on analytical and topological choices (Ozsvath and Szabd,
2004c, Theorem 11.1), the homology groups above are in fact topological invariants of Y’
itself. The discussion in the previous section shows that @ and > respect the splitting
of the generators with respect to Spin® structures, hence, for a fixed Spin® structure s on

Y, one can speak of the Floer homology groups ﬁ‘(Y, s5), HF*(Y,s) and HF®(Y,s).

It is an algebraic consequence of the definitions that the homology theories above are

related by the long exact sequences (Ozsvath and Szab6, 2004c, Theorem 11.1):
. —y HF(Y,s) — HF®(Y,s) — HF(Y,5) — - --

and

- HF(Y,s) -5 HF(Y,s) -5 HF(U,5) — -+

In particular, it follows that ﬁ‘(Y, s) is non-zero if and only if HF*(Y,s) is non-zero
(Ozsvath and Szabé, 2004b, Proposition 2.1).

2.6 Four-manifolds

The invariants defined above are functorial with respect to cobordisms, turning Heegaard
Floer homology into a version of topological quantum field theory (TQFT). The maps

associated to cobordisms are defined using counts of holomorphic triangles.

An arbitrary cobordism between two three-manifolds Y and Y can be decomposed into

a number of simpler cobordisms, corresponding to longitudinal surgeries on knots in Y.

Recall that given a knot K C Y and a framing A, there is a canonical cobordism Wy
from Y to Y)(K), constructed in the following way: thicken Y to Y x [0,1] and add a
four-dimensional two-handle D? x D2 to Y x 1 with the attaching map specified by the

framing .

In this setting Ozsvath-Szab6 define a map in Floer homology which is an invariant of

the cobordism and splits according to Spin® structures on W,.
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Figure 2.1 A schematic representation for the cobordism W)

There is a topological interpretation of Spin® structures on four-manifolds due to Turaev
(Turaev, 1997), analogous to the three-dimensional interpretation, so we will use this

interpretation as definition, as in (Ozsvath and Szabé, 2004c).

Definition 2.6.1. (Ozsvdth and Szabd, 2004c)[Section 8.1] A Spin® structure on a four
manifold W is an equivalence class of almost complex structures J defined on W \ A,
where A C W is a finite set of points and the equivalence relation is the following: J
defined on W \ A is equivalent to J' defined on W \ A’ if there exists a compact one-
dimensional manifold with boundary B such that AU A’ C B and J is isotopic to J' on
W\ B.

Definition 2.6.2. The Chern class of a Spin® structure represented by the complex
structure J on W \ A is the (unique) extension of the first Chern class of the induced

complex tangent bundle of W \ A.

Remark 2.6.3. Similarly to the three-dimensional case, J on W\ A can be thought of
as an oriented 2-dimensional plane field, which together with its orthogonal, allow one
to define a complex multiplication (up to isotopy). This is one way to see the restriction

of a Spin® structure on a four manifold to its boundary, if any.

T Chern class formulae

In order to prove equation 3.2, we will use the formulas for the evaluation of the Chern

class of a Spin® structure on a three, resp. four-dimensional manifold against a two-
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dimensional homology class represented by a periodic domain. Fix a pointed Heegaard

diagram (%, a;, 3, z).

Definition 2.7.1. (Ozsvdth and Szabd, 2004c) A region is a connected component of

Y\ (aUpB). A domain is a (finite) formal sum of regions with integer coefficients.

A domain has a naturally defined boundary which consists of linear combinations of arcs
of the a and 3 curves. The coefficient of a region R in P is called the multiplicity of R
in P.

Definition 2.7.2. (Ozsvdth and Szabé, 2004c) A periodic domain P is a domain whose
boundary is a combination of a and 3 curves and the region containing the base point z

has multiplicity O in P.

Periodic domains are in one-to-one correspondence with elements of Ha(Y, Z) (by seeing
the periodic domain as a two-chain in Y, to which one adds capping disks along the o

and B curves in the boundary of the domain).

More precisely, there is an oriented two-manifold with boundary F' and a map ®: F' —»

Y. One defines the Fuler measure of P by

X(P) = (a(®*T%;0), F)

One defines the multiplicity 7, (P) of a point z € ¥ with respect to a domain P =
> aiR; (Ozsvath and Szabd, 2004c, Section 7.1)

1 if z is in the interior of R;
% if z is in the interior of some edge of R;
ﬁz(z a;Ri) = ﬁ or two vertices of R; are identified with z
i ;11— if z is a vertex of R;
| 0 itz @ Ry
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Lemma 2.7.3. (Ozsvdth and Szabd, 2004b, Proposition 7.5) Consider a class A €
Hy(Y,Z), represented by the periodic domain P. An intersection point x € To N Tg
together with the basepoint z give rise to a Spin® structure s,(x). Then:
(e1(5:(x)), A) = x(P) +2)_ 7z, (P).
Z;EX
In a four dimensional manifold X given by a pointed Heegaard triple diagram, there
is an analogous equation (Ozsvath and Szab6, 2006b, Section 6.1). Let P be a triply

periodic domain.

An ingredient in the formula is the dual spider number o(u,P) of a Whitney triangle

u: A — Sym9(X) and the triply periodic domain P.
o(u, P) = nyg)(P) + #(a N3, P) + #(bN GP) + #(cN I, P)

Proposition 2.7.4. Given a Whitney triangle u and o triply periodic domain P which
represents the two-dimensional homology class H(P) € Ho(X;Z), we have the following
formula:

(c1(s2(u)), H(P)) = x(P) + #(0P) — 2n,(P) + 20(u, P)
2.8 Triple cobordisms and induced maps

The maps induced by cobordisms are defined with the help of Heegaard triple diagrams,
which are simply surfaces ¥ with three sets of attaching circles «, 8 and <, for the

handlebodies Uy, Ug and U,.

We can form the three-manifolds Y, g = Uy U Ug, Ygy = UgUU, and Y, 4 = Uy UU,.

Moreover, there is a natural four-dimensional manifold associated to this diagram:

Consider A to be the two-simplex with vertices vq, vg, vy in clockwise order and let e;

be the edge opposite to v;, for i = a, §,. Then define

X _ (A X B)[1(Ua X €a) [1(Up x ep) [1(Uy X &)
@B ™ (eq X 5) ~ (€a X 0Uq), (€5 X T) ~ (e X Up), (ey X 5) ~ (ey X IUy)

where the quotient is by the identifications in the denominator.
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Note that 0Xq,5y = —Yaps U —Ypgy U Yy, It is useful to know how to compute from
this data the relevant homology groups of X, g ..

Proposition 2.8.1. (Ozsvdth and Szabd, 2004c)[Proposition 8.2] For Xq . as above,

we have
Hoy(Xa,p,4; Z) = Ker (Span(ci); ® Span(B;); ® Span(vi)i) — H1(Z;Z)
and

H1(Xa,py; Z) = Coker (Span(a;); ® Span(B;)i ® Span(v)i) — Hi1(Z; Z).

O
Several notions generalise in a straightforward manner from the three-dimensional case.

A triple Heegaard diagram with an additional basepoint 2 in the complement of the
attaching circles is called a pointed Heegaard diagram, denoted (Z,a, B,7,2). A two-

chain in (X, @, B8, , 2) which vanishes at the basepoint is called a triply periodic domain.

As stated before, maps are constructed using holomorphic triangles.

Definition 2.8.2. (Ozsvdth and Szabd, 2004c)[Section 8.1] Let x € ToNTg, y € TgNT,
andw € ToNT,. A map

u: A — Sym9(%)
satisfying the extra conditions u(vy) = x, u(vy) =y, u(vg) = W and u(e,) C Tq,

u(eg) C Tg, u(ey) C Ty, is called a Whitney triangle connecting x, y and w.

Two Whitney triangles connecting x, y and w are homotopic if they are homotopic
through maps which are also Whitney triangles connecting x, y and w. The set of ho-

motopy classes of Whitney triangles connection x, y and w is denoted by ma(x,y, w).

Given x, y and w as above, there is a homological obstruction to the existence of a

Whitney disk connecting them. It takes the form of a map

e: (TaNTg) x (TgNT,) X (To N'Ty) — Hi(X;Z)
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constructed as follows: Choose an a arc in Tg (equivalently a multiple arc in the f;
curves) connecting x to y, an arc b in T, connecting y and w and an arc ¢ C Ty,

connecting w to x. Then e(x,y,w) = [a + b+ ] - the class of the cycle in H;(X;Z).

Proposition 2.8.3. (Ozsvdth and Szabd, 2004c)[Proposition 8.8] For x € T, N Tg,
y€eTgNT, and w € ToNT,,

m(X,y,X) # 0 < e(x,y,2z) =0.
Moreover, for g(X) > 1, if e(x,y,w) = 0, then
mo(X,y, W) 2 Z & Hy(X;Z)
as principal spaces over Z & Ho(X; Z).

Remark 2.8.4. The action of Z on ma(X,y,w) corresponds to splicing a number of
spheres generating Ha(Sym9(X)) (it is recorded by n,(u)) and the action of Ha(X;Z) is

by adding triply periodic domains.

There is a natural map s, : my(x,y,w) — Spin®(X) defined in (Ozsvath and Szabo,
2004c)[Section 8.1] which we won’t describe here, we only mention that it is analogous
to the corresponding map for three-dimensional manifolds, and from its definition it is

immediate to see how s,(u) restricts to Spin®(Yy,g) x Spin®(Yg,) x Spin®(Yy,4)

5"'(“) | Spin®(Ya,s) =i 5z(x)

and the same for y,w.

There is an analogous notion of admissibility for triple Heegaard diagrams, which we
won’t define, it is sufficient to know that any triple Heegaard diagram can be modified

to become admissible by Heegaard moves.

The moduli space of holomorphic Whitney triangles in a given homotopy class ¥ €
ma(x%,y, w) is denoted by M (9). For an admissible Heegaard triple diagram (%, ¢, 8,4, 2)

and a Spin® structure s on X, Ozsvath-Szabé define a map:

F(,5): CF®(Yp5,50,8) ® CF® (Y3, 567) — CF®(Yar,507)
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by

Pxiely.dis)= ) > #H#MW)) - [w, i+ j — nz(¥)]

WETNTy {ypema(x,y,w): 52 (¥)=0,u(¢)=0}

It is proved in (Ozsvath and Szab6, 2004c)[Theorem 8.12] that the map f*° induces a
well-defined map

F+ : (.’ 5) : HF+ (Yarﬂ’ savﬂ) ® HFSO(Yﬂ{Y’ 5ﬂ’7) — HF+ (Yavq’ 501,’7)

which is invariant under perturbations of the complex structure on Sym9(X) and iso-

topies of the attaching curves.

Using these triple cobordisms, Ozsvath-Szab6é define in (Ozsvath and Szabé, 2006b)
maps associated to cobordisms between the Heegaard-Floer homologies of two 3-manifolds,
by decomposing the cobordism into handle attachments. The maps split naturally ac-

cording to Spin® structures on the cobordism.

For torsion Spin® structures s, one can define an absolute grading on HF(Y,s) (any
variant) and the cobordism maps F(W, ) shift this absolute grading by the quantity

c1(x)? — 2x(W) — 3a(W)
4

see (Ozsvath and Szab6, 2006b) for details.

2.9 The integral surgeries long exact sequence

One of the most important properties of Heegaard-Floer homology is the surgery long
exact sequence (Ozsvath and Szabd, 2004b)[Theorem 9.1] which relates the Floer ho-
mologies of three manifolds obtained by Dehn filling a knot manifold, such that the
slopes are respectively at distance 1 from each other. The sequence has been generalised
in several ways, see (Ozsvath and Szab6, 2004b)[Theorems 9.12, 9.14 9.19] and (Ozsvath
and Szabd, 2008b)[Theorem 3.1]. We reproduce here Theorem 9.19 of that paper, since

it is most useful for our purposes.

Theorem 2.9.1. (Ozsvdth and Szabd, 2004b)[Theorem 9.19] Let Y be an integer homol-
ogy sphere, K C'Y a knot, Yy, resp. Yp (p € N) the manifold obtained by Dehn surgery
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along K with slope 0, resp. p. There exists a surjective map Q: Spin®(Yp) — Spin®(Yy)
with the property that for each Spin® structure t € Yy, we have a U—equivariant eract

sequence

o=y e ) By mEHGe o - B mRh) — 1
2.10 Knot Floer homology

Ozsvath-Szab6 (Ozsvath and Szabé, 2004a) and independently Rasmussen (Rasmussen,
2003) extended the Heegaard-Floer package to (rationally null-homologous) knots in
three manifolds. The invariant takes the form of a filtration of the chain complex com-
puting the Heegaard-Floer homology of the underlying three-manifold. The associated
graded object is a bi-graded abelian group, denoted by HFK.

We will in introduce the necessary material by following (Ozsvath and Szab6, 2004a)
and (Ozsvath and Szab6, 2011). Note that in the former reference, where only null-
homologous knots are considered, relative Spin® structures are defined as absolute Spin®
structures on the O-surgery on the knot, whereas in the latter, relative Spin® structures
are defined entirely within the knot complement. We will follow the second approach,
though we note that it is easy to see that for null-homologous knots the two definitions

describe essentially the same objects (Ozsvath and Szab6, 2011, Section 3.1)

The data needed to define HFK is that of a doubly pointed Heegaard diagram.

Definition 2.10.1. (Ozsvdth and Szabd, 2004a, Definition 2.4) A doubly pointed Hee-
gaard diagram describing a knot K C Y is a tuple (3, o, B, w, 2), such that (X, o, B) is
a Heegaard diagram for Y and w,z determine the knot K in the following way: choose
a properly embedded arc v, in the U, handlebody with endpoints w and 2, oriented from
z to w and disjoint from the a cutting disks. Similarly, choose a properly embedded arc
78 C Up with Oy, = z—w. Then the resulting knot will be K := v, U7y with the induced

orientation.

Note that the two arcs are uniquely determined, up to isotopy, by the doubly pointed



46

Heegaard diagram, hence K is well-defined. It is proved (Ozsvath and Szabé, 2004a,
Proposition 3.5) that any pair (Y, K) admits a doubly pointed Heegaard diagram and
any two doubly pointed Heegaard diagrams differ by a finite sequence of Heegaard moves,

natural analogues of the pointed Heegaard moves.

The various Heegaard-Floer type invariants for (Y, K') are constructed from the complex
CFK®(Z, e, 8,w,z) - the free abelian group generated by pairs [x,%,j] where x €
T, N Tg is an intersection point between the totally real tori in Sym?(X) and i,j € Z.
The differential 0° is defined as follows: (Ozsvath and Szabé, 2004a, Section 3.1)
i gl = Y > # (M) i — me(9),5 — ne(9)

y€TaNTp {pema(x,y) | n(¢)=1}

where, as in the absolute case, # (M\(x, y)) denotes a count of elements in the zero-
dimensional moduli space of unparametrised pseudo-holomorphic disks connecting x and
y. The analytic details are entirely omitted, we just note that the discussion is similar

to the one in the absolute case, see (Ozsvath and Szabd, 2004a, Theorem 3.1 and its

proof).

One sees that the indices 7, 7 keep track of the intersection of holomorphic disks with

the subvarieties V;, = w x Sym9~1(X), resp. V; = w x Sym9~}(Z).

These intersection numbers n,(¢) = #¢ NV, resp. ny(¢) = #¢é N V,, are non-negative
since both these manifolds are (pseudo) holomorphic, hence there is a Z x Z filtration

F on CFK®(%, o, B, w, 2) given by F[x,1,j] = (i, 7).

As in the absolute case, the existence of a holomorphic disk connecting two intersection
points is homologically obstructed, as a result, the complex CFK* (%, «, 3, w, z) splits,
and it turns out that the resulting summands are in one-to-one correspondence with

relative Spin® structureson Y\ K :

Let V(Y, K) be the set of non-vanishing vector fields on Y \ N(K) whose restriction to
ON (K) belongs to vr. Declare two vector fields in V(Y, K) to be homologous if they are
isotopic in the complement of a finite number of three-balls supported in Y\ N(K).
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Definition 2.10.2. (Ozsvdth and Szabs, 2011, Section 2.2) and (Ozsvdth and Szabd,
2008a, Section 8.2) (Note that in the former reference the behaviour on ON(K) differs
slightly) The equivalence classes of vector fields in V(Y, K) under the above relation are

called relative Spin® structures, and they form the set denoted by Spin¢(Y, K).

Spin®(Y, K) is an affine space H 2(Y, K;Z) by the same construction as in the absolute
case. The Chern class of a relative Spin® structure [v], with v € V(Y, K), is the co-
homology class c¢;([v]) = [v] — [~v] € H%(Y, K;Z). Equivalently, the Chern class of [v]
can be defined as follows: choose a Riemannian metric on Y and consider the oriented
plane field v*. This plane field has a canonical non-zero section on N (K), namely the
outward-pointing unit vector field ur in vt. Then ¢;([v]) = e(vt,ur), ie. it is the

relative Euler class of v1 with respect to the trivialisation ;.

The relationship between Spin® structures and intersection points x € Ty, N Tg is the

following (Ozsvath and Szabd, 2008a, Section), (Ozsvath and Szab6, 2011, Section 2.4):

The Heegaard diagram (%, o, 3, w, 2) is obtained as the % level of a self-indexing Morse
function f: Y — [0, 3], where, as in the absolute case, the o curves are the intersection
of the ascending submanifolds of the index 1 critical points with the Heegaard surface,
and the 8 curves the intersection of the descending submanifolds of the index 2 critical
points with X. The knot K is then the union of the trajectories under —V/(f) containing
w and z. Now given an intersection point x € T, N Tg, one can construct a non-zero
vector field on Y \\K : suppose x = {z1,,...,%4}. In a neighborhood of z;, one can
modify V(f) such that the new vector field is non-zero (in that neighborhood). Let V'
be a tubular neighborhood of K, there is a standard procedure to modify the —V(f)
on V to a nowhere zero vector field v, uniquely characterized by the property that v
is everywhere transverse to the meridian disks of V' and K (as an oriented curve) is a

trajectory of v.

This construction provides a non-zero vector vk field on Y \\K with the restriction

to ON(K) the vector field vp. Therefore vx determines a relative Spin® structure [vy].
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Note that [vx] doesn’t depend on the choices made in its definition, hence there is a

well-defined map s,, ,: To N T — Spin®(Y, K)), given by 5,, ,(x) = [vx]-

As in the absolute case, there is a map which quantifies the obstruction to the existence
of holomorphic disks between two intersection points x,y € T, NTp : there exist paths
a: [0,1] — Ty, b: [0,1] — Tp such that da = 0b = x — y. These paths can be seen in
¥ as a collection of g paths with the images in oy U+ - Uay, resp. B1U...By. Then the
closed multicurve a—b is acycle in H,(Y'\ K, Z), then define e: T,NTg — H(Y'\ K, Z)
by: e(x,y) = [a—b]. It is easily seen that ¢ is well-defined, i.e. different choices of a and

b lead to the same homology class.

We have the following:

Lemma 2.10.3. (Ozsvdth and Szabd, 2011, Lemma 2.1) For x,y € To NTp, we have :

§w,z(y) = §w,z(x) =PD [E(x’ y)]

This implies that, if there is a holomorphic disk ¢ € mo(x,y), Then

5,2 (%) = 8w,z (¥) = (n2(¢) — nw(¢)) - PD[y]

Consequently, there is a splitting of CFK*®(X, «, 3, w, z) into subcomplexes associated
to relative Spin® structures on Y \ K: fix £ € Spin®(Y, K) and consider the subgroup
CFK*(Z, a, B,w, 2,&) of CFK®(Z, a, B, w, z) freely generated by the elements [x, i, j]
with x € T N Tp such that s, ,(x) + (i — ) - PD[y] = £. It is immediate from Lemma
2.10.3 that indeed H(CFK* (X, o, B,w, 2,§)) C CFK®(Z, o, B, w, 2).

It is proved in (Ozsvath and Szabé, 2004a) and (Ozsvath and Szab6, 2011) that the
filtered chain homotopy type of CFK®(Z, e, B, w, 2, £) is an invariant of the pair (Y, K)
and of the Spin® structure &, i.e. it does not depend on the doubly-pointed Heegaard
diagram and on the analytical choices made in its definition. Therefore, this complex

will be denoted by CFK®(Y, K, §).

One can form the associated graded object, namely the induced quotient complex de-

noted C/F?(Y,K, &) generated by the elements [x,0,0] € CFK*™(Y, K,¢) with the
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induced differential 8. Its homology, H*(C/'FT{(Y, K,¢)) is denoted by AFK (Y,K,¢)
and is called the Knot Floer homology of K in the Spin® structure .

For the case of knots in S, there is a natural identification of relative Spin® structures
on Y \ K with integers: note that in this case, relative Spin® structures are determined
by their Chern class, since there is no 2-torsion in H1 (Y \ K;Z), (recall that ¢;(é+h) =
c1(€) + 2h). Also, since H (Y \ K;Z) = Z, the evaluation of this Chern class on the
Seifert surface of K gives the above mentioned identification. Therefore, one denotes by
@(53,K,i) the group @(53,1{, £), where ¢ € Spin®(S®, K) is the unique Spin®
structure & with (c;(¢), [F]) = 2i — 1.

Remark 2.10.4. The term —1 in this equation does not appear in (Ozsvdth and Szabd,
2004a), it is a consequence of the different notion of relative Spin® structure for null-

homologous knots (Ozsvdth and Szabd, 2011, Section 3.1).
With this notation, the Euler characteristic of HFK (83, K) takes the following remark-

able form:

Theorem 2.10.5. (Ozsvdth and Szabd, 2004a, ) Let K C S3. Then:

S x(HFR(S3, K, 1)) - T* = Ak (T)
i€Z

where Ag(T) = Y, a; - T" is the Alezander polynomial of K, normalized such that

a; =a_j.

Remark 2.10.6. Note that the sum above is finite since HFE is finitely generated.







CHAPTER III

KNOTS IN LENS SPACES HAVING S* x $? SURGERIES

3.1 The Berge-Gabai construction

As in (Boileau et al., 2011, Definition 5.4), we call the knots in S* x D? which admit a
nontrivial cosmetic surgery - Berge-Gabai knots. We will call the slope of this surgery a

distinguished slope.

It was proved by Gabai in (Gabai, 1989) that such a knot must necessarily be a 1-bridge

braid with respect to both the initial solid torus and the surgered solid torus.

Here is one way to obtain S! x S2 by surgery on a knot in a lens space: start with
a solid torus V with meridian p and a Berge-Gabai knot K C V. There is a slope
a € Hi(8N(K)) such that V' := V,(K) is another solid torus, with meridian p’. Do
Dehn filling on V along 4’ to obtain a lens space L. Then K C L has an S* x S? surgery:
indeed Lo(K) has a genus 1 Heegaard splitting in which the meridians of the two solid

tori coincide (this common meridian is p').

It is a pleasant fact that these knots are embedded in a very particular way in the lens

space:

Definition 3.1.1. A simple knot in a lens space L is a 1-bridge knot which can be
tsotoped such that the 2 bridges are contained respectively in the meridian disks of the 2

Heegaard solid tori.

Theorem 3.1.2. Let K C V be a Berge-Gabai knot with distinguished slope o in the
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solid torus V. Assume that V 1is further embedded in a lens space L as a Heegaard torus.

If Lo(K) =2 S x S?%, then K is a simple knot in L.

Proof. As before, call u the meridian of V. K C V is a braid of index n - say. There
exists a closed n-punctured disk D C V \ N(K) with boundary components y and n
copies of the meridian of K. Let D be the meridinal disk of V containing D. Let K’ be
the induced knot in the surgered solid torus V' := V,,(K). K’ C V' is also a braid, hence
there is an analogous n/-punctured disk D’ ¢ V' \ N(K"). It is a fact proved by Gabai
(Gabai, 1990, Corollary 3.3) that n = n’; also, in the case when K is not a torus knot,
the slope « is a longitude of K (Gabai, 1989, Lemma 2.3).

Consider the graph of intersection between D and D’ : (as in (Gabai, 1989, Lemma 2.3)

where the analysis of this intersection is employed to show that these knots are 1-bridge).

After an isotopy of D and I, we can suppose that their intersection consists of n? arcs,
all with endpoints on AV, resp. ON(K). The orientation on these arcs is by convention
from the endpoints on N (K) to the endpoints on V. As in the proof of (Gabai, 1989,
Lemma 2.3), there is a boundary component m’ of D’ such that all of the n arcs incident
to it are parallel (in D'); let these n arcs be e, ..., en, labelled by their appearance on
m' when walking along the oriented knot K. Since « is a longitude, K is isotopic to m/;
m/ is isotopic to the reunion e; U fo U (—ep) U go, where fp is the arc in u between e;
and e, and gp is the arc in m’ between e, and e; with respect to the given orientation

on m'. The isotopy sweeps the squares in D’ realising the parallelism between the e;’s.

The arc —e, Ugo has its endpoints on the same meridinal disk D and winds once around
the solid torus V. It can be isotoped rel endpoints in V' to a union of arcs f; U e where:
f1 is the arc in v between the endpoint of e, and the next (as walking along v with the
orientation inherited from K) point of intersection between v and D; e is an arc in D
joining the end of f; to the start of e;. This isotopy is sweeping the rectangle formed by
a continuous family of segments joining the points of gg and f1 belonging to the same

D2 fibre of V = S x D2. The segment in the D fibre is e,.
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Now fo U fi will be the first bridge of the isotoped K, which can be pushed in the
meridinal disk of V and eU e; is the other bridge, contained in D - the meridinal disk

of V.

The notion of simple knot appeared in (Hedden, 2011) as part of a program to prove

the Berge conjecture:

Conjecture 3.1.3. The only knots in S° having lens space surgeries are doubly primi-
tive knots, i.e. knots in the genus 2 Heegaard surface of S® which represent generators

of the fundamental group of both handlebodies.

It was proved by Berge that the knot induced in the lens space by surgery on a doubly
primitive knot in S® is a simple knot. In fact, the Berge conjecture can be rephrased in

terms of the induced knot in the lens space and it is equivalent to:

Conjecture 3.1.4. Let K be a knot in a lens space L which admits an S® surgery. Then

K is simple.

In the rest of this chapter we will analyse the Knot Floer homology of knots in lens

spaces which admit an S* x S? surgery.

3.2 Topological preliminaries

Consider a knot K in a lens space Y = L(p,q) which has a §* x §2 surgery along a
slope £[)]. Knots in lens spaces whose exteriors admit Seifert fibred structures have

been classified, see (Brin, 2007) for example, and surgeries on them are well understood.

We make the assumption that Y \\ K is irreducible and not Seifert fibred, hence by the
Cyclic Surgery Theorem (Culler et al., 1987), the slope £[}] is at distance 1 from the
meridian of K. Denote by Y)(K) the result of Dehn surgery along +[A].
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We fix an orientation on K and denote by K the resulting oriented knot. K determines
a class [K] in H1(Y) 2 Z/p whose order k is by definition the order of K (ord(K)).
From now on we will consider A to be oriented coherently with K. We investigate under

which conditions Y3(K) is a homology St x S2.

Definition 3.2.1. The rational longitude of K C Y is the unique slope in ON(K) which
s 0 in H1(Y \ K;Q).

The proof that there is a unique such slope is a straightforward application of Poincaré
duality, see for example (Hatcher, 2007). Note that only surgery along the rational
longitude of K can produce a non Q-homology sphere, so in view of the above discussion,

we will only consider knots for which the rational longitude is a longitude.

Lemma 3.2.2. A knot K C Y, where Y is a Q-homology sphere of order p , with

ord(K) = m, has an integer surgery which is a homology S* x S? <= the rational

longitude of K is a longitude and p = m?.

Proof. Consider the long exact sequence associated to the pair (Y, N(K)) :

0 —— Hy(Y,N(K)) — Hi(N(K)) —— Hi(Y) —— Hi(Y,N(K)) — 0

One sees from the sequence that #H; (Y, N(K)) = p/m. Denote this group by G. Write
the long exact sequence for the pair (M, M)

=2 Ho(M,0M) —°— H,(OM) —— Hy(M) —— Hy(M,0M) —— 0

By Poincaré duality and the universal coefficients theorem, H;(M) = Z @& G. Consider
the base of H1(OM) formed by [u] (the meridian of K) and [A] and observe that the
connecting homomorphism @ has image the subgroup Span([ml\]) C Z & Z, hence Z &
Z/m S 2. G, som < p/m.

For the direct implication, since H1(Yx\(K)) = H1(M)/Im([\]) = Z, we must have

Z/m S G, so m = p/m.
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For the converse, since #G = m, the map a|z/, — G must be bijective, hence

Hi(YA(K)) 2 Z. O

Remark 3.2.3. The order of a lens space which bounds a Q-homology 4-ball is a perfect

square. See (Lisca, 2007) for instance.

S8 An integral surgery long exact sequence

In this section we present a long exact sequence for integral surgeries on a knot in a
rational homology three-sphere, defined in Theorem 6.2 of (Ozsvath and Szabé, 2011),
with additional refinements given by Spin® structures as in Theorem 9.19 of (Ozsvath

and Szab6, 2004b).

Let K C Y be an oriented knot, where Y is a rational homology three sphere. Let A
be the rational longitude of K, which we will suppose to be a longitudinal slope and
oriented coherently with K. Suppose also that Hi(Y)(K)) £ Z. Pick a minimal genus
Seifert surface F, oriented such that O[F] = m- A, for some m > 0; m is thus the order of
the knot. (One can always assume that the boundary of the Seifert surface consists of m
coherently oriented copies of the same simple closed curve representing A by tubing any
consecutive components of F with opposite orientation.) Fix also the meridian y of K,
oriented such that u- F > 0. Finally, consider an integer p > 0. We will be interested in

the manifold Yp,4(K), denoted from now on as Y}, and, of course, in Y}, := Y)(K).

Lemma 3.3.1. (Ozsvdth and Szabd, 2004b)[Lemma 9.2] One can construct a Heegaard

diagram (X, o, 8,7, 9, z) of genus g with the following properties:

1. The Heegaard diagram (X, o, B, 2) is a Heegaard diagram for K C Y, as in Defi-
nition 2.10.1, with the extra property that By is a meridian of K. We will assume

By = -

2. The curves B;,7v; and &;, fori € {1,...,g—1}, are small isotopic translates of each
other and intersect each other transversely in two points, and the isotopies do not

cross the basepoints.
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3. the curve g is isotopic in the boundary of the knot complement, i.e. in the manifold

described by the Heegaard diagram (%, (0:)?_, (B:)721) to A

4. the curve 8y is isotopic to the juztaposition of 65 and p copies of By, i.e. Og is the

pu+ A slope.

5. The diagram is admissible.

Proof. Apply the proof of Lemma 9.2 of (Ozsvath and Szab6, 2004b) and stabilize the
Heegaard diagram obtained in a neighbourhood of a point of K. See Figure 3.4 for the
part of the Heegaard diagram containing u, called the the winding region. O

For t € Spin®(Y}), consider the following set
Ay, (t) = {¢ € Spin®(Y;): € — t € Span([A])}
where [A] is seen here as an element of Hy(Yp;Z).

Remark 3.3.2. Spin® structures (for all objects: three-manifolds, four-manifolds, knot
complements) form affine spaces over H 2 in what follows we will sometimes find it more
convenient to use homology classes rather than cohomology classes, the two are identified

of course by the version of Poincaré duality relevant for each case.

Similarly, we define Ay (s) to be the orbit of s € Spin®(Y') under the action of Span([\]) C
H,(Y; Z). Note that #(Ay, (1)) = #(Ay(s)) = m.

Consider the cobordism W) obtained by reversing the two-handle attachment corre-
sponding to the Morse surgery on K with slope pu + A. Note that there exists a unique
Span([)]) orbit Ay (b) C Spin®(Y’) which is cobordant in W, to t, for some b € Spin(Y").
This follows from the fact that Spin® structures on Ywhich are cobordant to a fixed

Spin® structure on Y} form an affine space over
Im[(Ho(Wp,Y;Z)) — H1(Y; Z)]

and this image is Span([A]) C H1(Y;Z).



57

We have now all the ingredients to write the aforementioned long exact sequence.

Theorem 3.3.3. (Ozsvdth and Szabd, 2004b, Essentially Theorem 9.19) There is a
map Q: Spin®(Y)\(K)) — Spin®(Yp)/span(n) such that for any t € Spin®(Y) there is a

U —equivariant long exact sequence
F (o F F
= HF Y (Y3, Q7 Ay, (1) = HF (Y, Ay, (1) — HF* (Y, Ay (b)) — -

where b is a Spin® structure on Y cobordant to t in Wp.

Proof. The construction of the long exact sequence is a generalisation of the long exact
sequence of (Ozsvath and Szab6, 2004b)[Theorem 9.19), it appeared also in (Ozsvath and
Szabo, 2008b) for the case of null-homologous knots. We sketch the proof of (Ozsvath
and Szabo, 2004b)[Theorem 9.19] focusing on the parts which need to be slightly modified
for our situation, i.e. for knots which are only rationally null-homologous, with the extra

property that their rational longitude is a longitude.

Start with the Heegaard diagram from the previous lemma. For i € {1,...,9 — 1}, we

denote the intersection points of §;,v; and §; by
¥ = BiN %, v =% N&,wE = Bing;
with the sign indicating the intersection sign. Also,

yg:ﬁgm”fgawg:ﬁgmég'

Note that there are p intersection points between -y, and d;. We choose one - call it vy,

which will be fixed by Claim 3.3.4 below.
Let ©g, = {y7,.. .,y;'_l, Yo} Oy = {07,... ,v;'_l,vg} and Og5 = {w],.. .,w;'_l, wg }.

Then the elements 03, = [0p,,0], 8,5 = [0,,5,0] and g5 = [Op4,0] are cycles
in CF*(Tg,T,), CF*(T,,Ts) and CF*(Tg, Ts), respectively (Ozsvath and Szabd,
2004b)[Proposition 9.3].
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Figure 3.1 The intersection point v of v and §

Note that Y, 5, i.e. the manifold described by the Heegaard diagram (X,+, d) is the lens
space L(p, 1).

Claim 3.3.4. (Ozsvdth and Szabd, 2004b)[ Proposition 9.15] There is a choice of vy €
Y4 N8, such that there are homotopy classes of triangles {1[),:5}:0:1 € m2(Op,y, ©4,5:©38.,6)
satisfying the following properties:

o u(yi) =0

o n(¥y) = na(¥y)

» ’nz('gb;:) S n1(¢:+1)
Moreover, each triangle in m3(0p,,©y.6,0p,5) is Spin® equivalent to some . There

are also choices of perturbations of the complex structure on Sym9(X) such that for

P € ma(x,0,,4,0p,), where x € Tg NTy with u(yp) = 0, we have

1 iy e {vihl

0, otherwise

#M() =

Proof of claim. This claim is the analogue of (Ozsvath and Szab6, 2004b)| Proposition
9.5]. There one is interested in % surgeries and it is B; and §, that intersect more than
once. By the gluing result of Theorem 9.4 of the same paper, it is enough to establish
the claim for a Heegaard diagram (E, 3,7, 4, 2) of genus 1, with the three curves j,7,d

in the same position as our curves Sg, vy, dg-
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Figure 3.3 shows how to choose the intersection point v of v and § with respect to the
basepoint z such that the homotopy classes of triangles exist. Note that nz(¢'z‘) =
D - @ Since our Heegaard diagram (X, ,4,4d,2) is an iterated stabilisation of
(E, B,7,6, z), the proof of Proposition 9.5 of (Ozsvath and Szabé, 2004b) applies without

any other changes. (]

Now choose our vy in the same position as v above.

Using the Heegaard diagram defined above, we define two maps via counts of holomor-
phic triangles, as in (Ozsvath and Szab6, 2004b)[Theorem 9.19]. Let t,s be the Spin®

structure in which ©, 5 is supported.

For a given t' € Spin®(Y)), there is a unique A orbit Ay, (¢), for some ¢ € Spin®(Y,) with
the property that there exists a Spin® structure s, on the triple cobordism X, s
determined by the Heegaard diagram (X, @, <y, ) which extends t',¢ and ¢, 5. Then, by
definition, Q(t) = Ay, (%)

The map fo: CF®(X, 0,7, 2) — CF*®(X, ¢, 6, z) is obtained by counting holomorphic
triangles in the triple Heegaard diagram (%, o, v, 6, 2). More precisely,

fa(&) = > 56 ®645,5)

{sGSpinC(Xa,.y,g) : SYA :t’5Y1,5=t1,5 }

where Y, 5 is the three-manifold determined by the Heegaard diagram (X, 1, §).

Similarly, the map f3: CF*(X%, 0, d,2) — CF*® (%, a, B, z) is defined by

fs(8) = > 556 ®65p,9)

{s€Spin®(Xa,s,8): 5v, €AY, (1)}

Denote by F», resp. F3 the maps induced in homology by fa, resp. f3. Note that the
image of F3 is supported on a Ay orbit of some b € Spin®(Y’) cobordant to ¢ in W), seen
here as the filling by #9715 x D3 along the (Y, 4, B) part of the triple cobordism X, 5 4.

The maps defined by triple cobordism satisfy an associativity property, (Ozsvath and



60

Szabé, 2004c, Theorem 8.16) which in our context states that the composition Fz o F}
factors through the sum of functions F,fgﬂ(_,smg,ﬂ) applied to ©,5 ® Osg. But this

element is 0 by Claim 3.3.4 since

= k(k+1 k(k + 1
2 Frup(0159005)=) [@m, —:v#] 8 [@w, —;v%]

S€5y,6,8 k=1

where Sy 55 = {5158 € SPIN*(Xy6,8) Sv.6,8lY, 5 = tv.6:57,68lvsp =t}

The signs in the sum above depend on the orientation systems on the four-manifold
given by the triple diagram (X,, d, 8) which can be chosen to be always “ — " since the
triangles belong to different §H*(Ya,5) + 6H* (Y, g) orbits in Spin®(Xy4.58)-

The curve dy is isotopic to the juxtaposition of v, and p copies of B4, denote by d4(s),
s € [0,1] the isotopy. Then the intersections of the curve d4(s) , for s close enough to
1, partition into two sets, according to the curve they are most close to, v4 or B4. Asin

(Ozsvath and Szab6d, 2004b)[Theorem 9.19], we define a map
1 CF* (Y3, Q7' (Ay, (1)) — CF* (¥, Ay, (1))

by sending an intersection point between o and -y to the unique nearby intersection point

between « and §. Similarly, we define a map
m: CF* (¥, Ay, () — CF* (Y, Ay (b))

by sending an intersection point of a and ¢ to the nearby intersection point between
and . Since we are fixing a Ay, (;) orbit, only one of the p corresponding intersection
points between o and § is taken into consideration. These two facts imply that there is

a short exact sequence
0 — CF* (Y3, Q  (Ay, (£))) — CF* (Y, Ay, 1) — CFH(Y, Ay (t)) — 0

which has a splitting map R, since the last group is free. These maps are not necessarily
chain maps, but with their help one can construct two such maps which will determine

by simple homological algebra the desired long exact sequence.
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When d,4(s) is sufficiently close to the juxtaposition of B4 and g4, one can define area
filtrations on CF*(Y), CF*(Y)) and CF*(Y,) which are strictly decreasing for bound-
ary maps, such that the maps defined above fs and f3 decompose as fa = 1+ lower
order terms and also f3 = m+ lower order terms. Also f3 o fs is chain homotopic to 0 by
a U— equivariant homotopy H: CF*(Yp, @ }(Ay,(t))) — CF*(Y,Ay(b)) obtained
by counting holomorphic squares in the quadruple cobordism given by the Heegaard
diagram (X, o, 3,7, ) which moreover decreases the filtration. More precisely,

H([X, 7’]) == Z [y7 _nz(l:l)]

Oem2(x,0p,y,04,5,¥),4(0)=0

Then one defines

o0
R'=Ro) (Id— fso )
k=0
and

g2 :=fo— (8(R' o H)+ (R' 0 H)8)

Then Ozsvath-Szabé show that fs is chain homotopic to g2 and the maps fit into the

short exact sequence

0 — CFH1,Q Y (Ay, (1) —2> CF* (%, Ay,) —2— CFH(Y,Av(f)) — 0
which then gives the long exact sequence in the statement of the theorem. O
Remark 3.3.5. It is important to observe that the map g2 also has the property that

go =1 + lower order terms w. r. t. the filtration.

3.4 The top grading in Knot Floer homology

Theorem 3.4.1. Let K C L(p,q) be a knot with a longitudinal S* x S? surgery. Then
g(K) < 1.

Proof. We want to show that our knot K has genus 0 or 1. We will suppose that it has
genus ¢ > 1 and arrive at a contradiction. The proof is modelled on Corollary 4.5 in

(Ozsvath and Szabé, 2004a) for the case of knots in S°.
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The idea is that the ‘top grading’ in the knot Floer homology of K is identified with the

Floer homology (to be made precise shortly) of Y)(K) in a certain Spin® structure.

The top grading in HFK (Y, K) is related to the genus of K by work of Ni (Ni, 2009).
There it is proved more generally that Heegaard Floer homology detects the Thurston

norm of a three-manifold. We recall Ni’s theorem with the necessary background:

An Alexander grading is defined on the space of relative Spin® structures on ¥ \ N(K)

by the following formula:

c1(§) — PD[y]

H(€) = 5

Recall that we have chosen the orientations of the Seifert surface and of the meridian

such that the Seifert surface F is oriented coherently with K and puNF > 0.
For a rational homology class h € Ho(M,0M; Q) one defines the function:

y(h) = max _ (5(8), h)
{€eSpin°(Y,K)|HFR (V;k.£)#0}

then we have:

Theorem 3.4.2. (Ni, 2009) Fiz a minimal genus Seifert surface F for K and denote
by h = [F] € Ho(M,0M;Z) where here M is the exterior of K. Then:

=x(F) + k- [u]] = 2y(h)

Let g be the genus of F' and £us be a relative Spin® structure for which y(h) = (H(&n), )
We find that (c;(éx),h) = 2g — 2 + 3m. Denote by F' the closed surface in Y\ (K)
obtained by capping off F' and by S the surface obtained by capping off F' in W},. Note

that [S]? = —m?p (the self intersection number).

By choosing p large enough, we can suppose that there is a unique Spin® structure
&) on Yy (K) which restricts (in the canonical way, see below) to &3 on Ext(K) with

To find £, we take v (a non-zero vector field on M) as a representative for £ with the

restriction on OM to be the translation invariant vector field on S* x S (unique up to
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isotopy) and extend it canonically over Y)(K) such that the induced knot in Y} (K) is an
oriented trajectory. This extension process is described in (Ozsvath and Szabé, 2008a).

By our orientation conventions, we have:
(1) F) = (c1(ém), F) — (PD[u], F) = 29 — 2+ 2m. (3.1)
We will use the shorthand notation C¢,, = CFK*(Y, K, {ur)

We can find a doubly-pointed Heegaard diagram (X, a, 8, w, 2) for our knot K such that
the meridian is the curve §; and w, z are on either side of u as in figure 3.4. Also, the
slopes ¢ and X intersect B, transversely once as in the figure. We will fix this diagram

in what follows.

Consider now the following short exact sequence:
0— Ce{i<0and j> -1} — Cgp, {i > 00r j> -1} — C\, {i 20} — 0

Observe that H,Cy,, {i <0 and j > —1} = HFK (Y, K, £ar) because it is the top-dimensional

summand.

Also Hy(Cgp {i > 0or j > —1}) = HF*(Yp,t¢) for some t¢ € Spin®(Yp) by (Ozsvath
and Szabd, 2011, Section 4). These groups are identified with the Floer homologies of

‘large enough’ surgeries on K.

The natural projection Cg, {i >0 or j > —1} — Ce,{i > 0} is in fact modelled
on the cobordism map Fié,ﬁ : HF (Y, te) — HFK*(Y,&p — p) in a certain Spin®

structure g, to be made precise below.

Ozsvath-Szabé define the following map (Ozsvéath and Szab6, 2011) @ : CF (Y, te) —
CFK™*(Y, K, &u) given by

JEREESY) 3 H#M@))[y, i — nw(®), i — n2(1)]
YETaNTp {¢pem2(x,05,8,¥) E(5u(¥))=Enr p(1h)=0}

for a triangle ¢ € ma(x,©s4,y) where x, resp. y are generators in CF(X, a, §) resp.
CF(Z, o, B). Here E: Spin®(Wp) — Spin®(Y, K) is a restriction map on Spin® struc-
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tures defined in (Ozsvath and Szabé, 2011, Proposition 2.2) by

P e 7r2(x, e&,ﬂ,)’) =7 5w,z(x) + (nw(¢) - nz(¢))u
for x, y generators in CF (X%, o, 8) resp. CF (%, e, 9).
Then F: 5,5 18 @ followed by the vertical projection v given by vy, %, J1= [¥,1].

We have the following formula, for a triangle ¢ with F(s,(v)) = €u, analogous to
equation (14) of (Ozsvath and Szabo, 2004a).

(c1(sen)s [F]) — 2m(nu (¥) — nz(¥)) = (e1(sw(¥)), [S]) + pm (3.2)

For the small triangle this is an application of the first Chern class formula (in 3 and 4 di-
mensions of Section 2.7). Adding a domain ¢’ € ma(x],x’) leaves the formula unchanged
since the points w and z are separated by a  curve, and also adding a homotopy class
¢ € ma(x,y) leaves the formula true by a simple calculation. Adding a triply periodic

domain corresponding to [S] also leaves the equation unchanged.

From Equation 3.2, we have that (c1(x),S) = 29 — 2 — pm. We write the long exact
sequence of Theorem 3.3.3 for the Ay, orbit of .

= F:

coo — HFF(Y\(K),Ep — ) — HF (Yp, Ay, (te)) = HF (Y, Ay (épr — p)) — -+
and we compare it to the sum of long exact sequences induced by the short exact sequence
0— CAY(EM) {i<Qendj= -1} — CAY(EM){i >0Qorj>-1} j’_) CAY(EM){i >0}—0

where

Cayp{i<Oandj>-1}= @ Ce{i<Oandj>-1}
E€hy (Em)

similarly for the others, and the maps are simply the direct sums of the respective maps.

The second map ¢ is the sum of the maps induced by Spin® structures of type ¢ with
the same Chern class. In fact one can see that these Spin® structures differ by torsion

elements of H?(W,; Z).
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A part of the Heegaard diagram for the triple cobordism L Ly L,

Figure 3.2 The winding region, Note that the periodic do-
main associated to F has A as a boundary component with

multiplicity m.

It is easy to see that ¢ is surjective in homology, because Y is an L-space and in large

enough degrees, ¢ is an isomorphism.

We verify that ¢ induces the map with the highest shift in the absolute grading among

all other Spin® with the same restrictions on Y, resp. Yp.

Let € be the core of the two-handle which gives Wp. For t, :=r+n - PD[Q] € S(§) we
have:

c1(tn) = c1(s) + 2n - []
and therefore,
c1(ta)? — a1(r)? = 4n (a1 (z), PD[) + 4n® (PD[Q] - PD[A2)) (3.3)

We multiply this equation by m and use the fact that [m)] is the image of [S] under
the natural map Ho(W) — Ho(W,0W). Then

m (c1(tn)® — c1(x)?) = 4n (29 — 2 — pm) — 4n’pm

One sees that indeed all other Spin® structures shift the absolute grading with a smaller
amount (2%2) than r. Then the map F3 is a sum of maps on different Spin® structures,
the highest of them (in terms of ¢? being the sum of the induced maps in the ¢'s Spin®

structures).
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We use now another filtration in Heegaard-Floer homology, namely the one given by
the absolute grading, to conclude that F3 has essentially the same behaviour as its top
grading component, i.e. it is also surjective and the kernel of F3 is identified with the

kernel of (the sum of) z.

Therefore from the previous long exact sequence, one can deduce HFK (Y, K, Ay (&) =
HF*(YA(K), & —p). Note that (c1(Epr—p, S?)) = 2g—2 # 0. Since HF+(S' x 52%,5) =

0 for all Spin® structures with non-zero Chern class, we must have g(K) < 1. 1

3.5 The genus 1 case

The proof above breaks down for knots K of genus 1. The Chern class formula does not
give the required filtration, also HF+(S! x 52 50) % 0, where s¢ is the unique Spin®
structure of S x §? with Chern class 0. In fact, this group is not even finitely generated,

so we cannot hope for an isomorphism with a subgroup of HFK LS e

However, as we will see below, a similar statement is true, provided that we use Heegaard-

Floer homology groups with twisted coefficients.

3.5.1 Heegaard-Floer homology with twisted coefficients

Fix a manifold Y given by an admissible pointed Heegaard diagram (£, «t, 3, ). Heegaard-
Floer homology is already a version of the more general Lagrangian-Floer homology
with twisted coeflicients. In the latter theory, for two Lagrangian manifolds Lg, resp.
L; of a symplectic manifold M, the universal coeflicient system for HF*(M, Lg, L)
is 71((Lo, L1)). In the Heegaard-Floer setting, m1((Tq,Tp)) & Z & H*(Y;Z), when
g(X) > 1 and m (T, Tp)) = Z® HY(Y;Z) if g(X) = 1 (Ozsvath and Szabs, 2004c,
Proposition 2.15). The basepoint z in the Heegaard diagram, together with the mor-
phism n,: mo(x,y) —> Z account for the Z summand in the coefficient system above.
For manifolds Y with b; > 0 there is a variant of Heegaard-Floer homology which cor-
responds to the universally twisted Lagrangian-Floer homology (Ozsvath and Szabd,

2004b, Remark 8.1). This variant, denoted HF(Y'), was introduced by Ozsvath-Szabo
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in (Ozsvéth and Szabo, 2004b) and was used by Ni (Ni, 2007) for proving that Heegaard

Floer homology detects fibred manifolds with genus 1 fibres.

We give a brief description of the theory by following closely Section 8 of (Ozsvath
and Szabé, 2004b). The coefficient system is constructed with the help of an additive
assignment A: mo(x,y) — H'(Y,Z) and a complete set of paths for the Spin® structures
of Y.

Definition 3.5.1. (Ozsvdth and Szabd, 2004c, Definition 2.12) An additive assignment
is a collection of functions {Axy: ma(x,y) — Z} with the property that:

Ax,y(¢) £ Ay,z (w) = Ax,z(¢ * 1/))

for any ¢ € ma(x,y) and ¥ € ma(y, z).

Definition 3.5.2. (Ozsvdth and Szabd, 2004c, Definition 8.12) Let s € Spin®(Y'), where
Y is presented as a pointed Heegaard diagram (X, a, B,2). A complete set of paths for
s 1is an enumeration S = {Xo,X1,...,Xm} of all the intersection points between Tq and
Tp representing s together with a collection of homotopy classes 6; € ma(xo,x;), for

i=1,...,m, with n,(0;) =0.

A complete set of paths gives rise to identifications
mo(X;, X;) = ma(Xo0, o)
by the following convention
0; * mo(xi,X5) = m2(X0,X0) * 0;
Since ma(xq,%0) = Z ® H(Y;Z), with the automorphism given by the n, function,
when g(X) > 1, one can define a map A: ma(x;,x;) — HY(Y;Z) by mo(xi,x;) =

ma(xg,%X0) — H'(Y;Z) where the second map is the canonical projection onto the

second factor. The associativity of * implies that A is an additive assignment.

Pick a formal parameter e and let

CF>(Y,5) = CF®(Y,s) ®z Z[H'(Y, Z)]



68

The differential is given by:

Fixf= ), > #M@B) Py, i—ny(9)]

YET.NTs \@ema(x,y)

Then the Heegaard Floer homology with twisted coefficients HF°(Y,s) = H,(CF%®) is
an invariant of the manifold Y and of the Spin® structure s (Ozsvath and Szab6, 2004b,
Subsection 8.2.3).

As in the untwisted case, there are several versions of the theory: HFt, HF~, etc.

3.5.2 A particular coefficient system

For our purposes we will choose as coefficient system a Novikov ring V, in fact a field,

as in (Ai and Ni, 2008).

V= {Zarerz #{a, | @, £0,7 = £} <oo,Vc€R}

reR

Given a cohomology class [w] € H?(Y;R) and a representative cocycle w, one can define

Ap) = /¢ w.

Also, V can can be endowed with the structure of a Z[H!(Y;Z)]-module by the ring

the additive assignment

homomorphism
ZHY(Y;2)]3 Y an-h— Y ap- el ey
V with this module structure is denoted by V,,.
Then HF®(Y;V,,) is the homology of the chain complex CF*(Y;V,,) = CF>*(Y)®V,

with the differential

lxil= Y 3 #M@)Cly,i—na(9)]

YETNTs \gpema(xy) u(¢)=1

and similarly for HF*(Y;V,,), etc.
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Remark 3.5.3. Since V is a field, the modules above are vector spaces.

There are maps induced by cobordisms for the twisted version as well. They are some-
what simpler to define for our particular coefficient system V,, than in general, see
(Ozsvéth and Szabé, 2004b) for the full generality and (Ozsvath and Szabo, 2003b) for
Vw.

As before, to a four-dimensional 2-handle attachment W (i.e. Morse surgery on some
knot K C Y), one can associate a Heegaard triple diagram (X, o, 8,7, 2), where (Z, o, 8)
defines Y, (X, 8,7) describes a connected sum of S* x 52 and (Z,a,v) describes the
surgered manifold Yx () for some integral slope A. Consider a cocycle w representing

[w] € H}(W;R).
Then the map induced by W in twisted Floer homology

ioo(”s)i CF*(Yy,8,80,8) — CF®(Ya,y:5a,7)
is given by

oxdis) = Y > (#M()) - el - [w,i = ny(9)]

WETaﬂTq {1,[)67r2(x,®,w): 5Z(¢)=0>”(¢)=0}

It is proved in (Ozsvath and Szabd, 2006b) that f* induces a well-defined map
E+ : ('75) : ﬂF_+(Ya,ﬁ)5a,ﬂa Vw) — M(Ya,'yysam; Vw)

which is invariant under perturbations of the complex structure on Sym?(X) and iso-

topies of the attaching curves.

3.5.8 The long exact sequence for twisted coefficients

Associativity follows the same way, and we can adapt the long exact sequence of Theorem

3.3.3:

Theorem 3.5.4. With the setup from section 3.3, let [w] = PD[u x I] € H*(X,R) be

the Poincaré dual of the cylinder over the meridian of K and t € Spin®(Yp), there is a
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U—equivariant long exact sequence

By HEH (Y, QM Ay, () Vo) £2 HE(Y,, Ay, (£); Vo) =% HE*(Y, Ay(b); Vi) —

where b is a Spin® structure on'Y cobordant to t in W,

Proof. The proof is similar to the untwisted case, for associativity the count of holomor-
phic triangles reduces to the untwisted case as in (Ai and Peters, 2006, Theorem 3.1)

and the rest follows similarly. O

3.5.4 The top grading in Knot Floer homology and twisted coefficients

In the case of rational homology three-spheres, the Heegaard Floer homology with
twisted coefficients is essentially the same as the untwisted version. More precisely,

HF*(Y,V,) 2 HF*(Y,Z) ® V,,. Then the previous long exact sequence reads
- S HEY (%, Q (A, (0) Vo) 25 HE*(Y,, Ay, (9)8Ve =5 HE*(Y; Ay (5)&V,, —
and the map F3 is related to the untwisted F3 (in a fixed Spin® structure) by

(F3,5) = +e°(Fs, 5) - elc1(UPDIxILIW)

As before, the absolute grading shows that the map F3 has the same behaviour (surjec-
tivity and the same kernel) as its top grading, but this time, because the genus of K is
1, equation 3.3 shows that there are two (for a fixed Spin® structure on Y and 2m in
a Span()) orbit) Spin® structures with largest shift in absolute grading, namely r and
y=z— PD[Q).

Note that we can write
Fa=(F3,1) + e ™(Fs5,z) + lower order

This situation was studied in (Ai and Ni, 2008), Lemmas 5.1 and 5.2, it is proved that
ker(F3) = ker(F3) ® V,, and both these maps are surjective. But it is also proved in (Ai
and Peters, 2006) that HF*(S! x §2,0) 2 0 which then implies that HFK (Y, K, top) =

0 so K cannot have genus 1.
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3.6 More information from Floer homology

From the long exact sequence above it follows that the map F3 is an isomorphism (with
V coeflicients, hence also with Q coeflicients). This implies that Y is almost an L-space,
i.e. it has the smallest rank possible in Floer homology, though there could be torsion.
This situation was studied in (Ozsvath and Szabé, 2005), where it is proved that K
must have HFK (Y,K, &) = Q or 0, for any relative Spin® structure &.

Theorem 3.6.1. A knot K in a lens space Y with a longitudinal S* x S? surgery is

Floer simple (with rational coefficients).

Proof. Since x(ﬁ( (Y,K,s)) =1 for s an absolute Spin® structure on Y, we see that
there must be an odd number of relative Spin® structures £ which restrict to s with

HFR (Y, K, &) # 0. But for two such relative Spin® structures &; # &,

[{c1(é1) — c1(&2), [F])] = 2m

and if there are at least 3 such Spin® structures, then

l{c1(é1) — c1(&a), [F]Y| = 4m

max
£1,62 extend s

contradiction with 3.1 for knots of genus 0. (just apply equation 3.1 to £ and £) O

S0 Fibredness

One of our main results is the following

Theorem 3.7.1. Let K C L be a knot in a lens space which admits a longitudinal
St x §? surgery. Then K is fibred.

Proof. Recent work of Ni and Wu (Ni and Wu, 2012) shows, using the absolute grading
in Knot Floer homology, that in an arbitrary lens space, Floer simple knots have monic
Floer homology if and only if the simple knots in the same homology have monic Floer

homology, monic meaning that HFEK (Y, K,top) =2 Q. In the next Chapter we will see
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that indeed simple knots of the relevant order in lens spaces with S! x S2 surgeries are

fibred. O



CHAPTER IV

SIMPLE KNOTS IN LISCA’S FAMILIES OF LENS SPACES

In this chapter we investigate the simple knots K in lens spaces Y = L(m?, q) belonging
to Lisca’s families (see below) with the property that [K] is an element of order m in
H1(Y'; Z). This condition is necessary for K to admit a longitudinal S* x S? surgery, cf.
Lemma 3.2.2.

Remark 4.0.2. A computer experimentation showed that simple knots of order m with
m < 500 in lens spaces L(m?,q), with q arbitrary (of course satisfying ged(m?,q) = 1)
are fibred.

Based on this, we formulate the following
Question 4.0.3. Is any simple knot of order m in a lens space of order m? fibred?
Below we show that the answer to this question is ‘yes’ for Lisca’s families of lens spaces.

As the reader will see, the extra conditions on ¢, described in Definition 4.0.4 below,

play an essential role in the proof.

We describe here Lisca’s family of lens spaces and the main theorem of his paper (Lisca,

2007):

Definition 4.0.4. (Lisca, 2007, Definition 1.1) Let Qso := {z € Q : z > 0}, and define
the maps f,g : Qso — Qg by setting, for % € Qso, withp> g >0 and (p,q) = 1,

(-5t +(0)-5
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where p > ¢ > 0 and q¢' =1 (mod p). Define R C Qs to be the smallest subset of Qo
such that f(R) C R, g(R) C R and R contains the set of rational numbers g such that

9>430 @eg=1p= m? for some m € N and q is one of the following types:

1. md+1 withm >d >0 and (m,d) = 1;
2. md+1 withm >d> 0 and (m,d) =2;
3. d(m £ 1), where d > 1 divides 2m F 1;

4. d(m £1), where d > 1 is odd and divides m 1.

Remark 4.0.5. It is easy to see that a lens space Y which admits a longitudinal S* x S2

surgery along some knot K C'Y bounds a smooth rational homology four-ball.

Remark 4.0.6. Family (2) does not appear explicitly in (Lisca, 2007, Definition 1.1),
we learned about it from Ken Baker (Baker, 2012).

Theorem 4.0.7. (Lisca, 2007, Theorem 1.2) Let p > q > 0 be coprime integers. Then,

the following statements are equivalent:

1. The lens space L(p,q) smoothly bounds a rational homology ball.

2. There exist:

(a) A surface with boundary ¥, homeomorphic to a disk if p is odd and to the

disjoint union of a disk and a Mdbius band if p is even;

(b) A ribbon immersion i: & % S* with i(9X) = K(p, q).
3. g belongs to R.

Remark 4.0.8. Condition 2 refers to a naturally associated two-bridge link K(p,q) to
a lens space with the same parameters, see (Rolfsen, 1990) for details. We will have no

use for K(p,q), it was included only for completeness.

The rest of this section will be devoted to the proof of the following
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Theorem 4.0.9. Simple knots of order m in a lens space L(m?2,q) belonging to any of

the Lisca’s families are fibred.

The general strategy is to use Brown’s algorithm combined with Stallings’ fibration
theorem, since a simple knot’s complement in a lens space admits a genus 2 Heegaard
splitting, or, equivalently, in terms of Heegaard-Floer homology, it can be described by a
doubly pointed Heegaard diagram of genus 1, for which it is trivial to compute its Knot

Floer homology.

Remark 4.0.10. This method has been used by Ozsvdth-Szabd in (Ozsvdth and Szabd,
2005, Section 5) to prove that Berge knots are fibred. They show more generally that
any primitive simple knot in a lens space is fibred, so this result does not apply to
our situation. The presentation for the fundamental group is nevertheless the same,
we include it here for the reader’s convenience. We also use different notation and

conventions.

Remark 4.0.11. It can be easily seen that using either Brown’s theorem or Knot Floer
homology, the calculations turn out to be identical. More precisely, the sequence of num-
bers in Brown’s theorem, see below, is identical to the sequence of evaluations of Chern
classes of relative Spin® structures of Y \ K in which HFK (Y, K) is supported, against
the Seifert surface of K. Then both theories guarantee the existence of a fibration of
Y\ K as soon as this common sequence of numbers assumes its mazimum and minimum
exactly once. Also, both theories exhibit a formula for the genus of K in terms of the
width (i.e. the difference between the mazimum and the minimum) of this sequence. See

the proof of Theorem 4.8.5 for more details.

We will give a proof for each family in Definition 4.0.4, but first we will fix some notation

and state some facts which are independent of the special form of q.
We will denote classes modulo m? by 7@ and classes modulo m by 7.

It is easy to observe that K C L(m?, g) has order m if and only if [K] = k - m, for some

integer k € {1,...,m — 1} with ged(k,m) = 1. Given k as above, there is essentially
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0 1 2 3 45 6 7 8

Figure 4.1 A Heegaard diagram for the simple knot
K(9,4,3) C L(9,4)

one doubly pointed Heegaard diagram (T2, a,f3,w, z) specifying K, where (T2, , )
represents the standard Heegaard genus 1 diagram of L(m?, q) (with the o and 3 curves
being geodesics for a Euclidean metric on T?) and the basepoints are situated slightly
above the a curve (see figure 4). The generator 1 € Z/,,2 is taken to be the homology
class of the core of the a handlebody, oriented ‘upwards’. Let o be oriented from left
to right and let 4 be an arc parallel to a connecting w and z and oriented such that

oy=z—w.

Note that there are two essentially different ways of choosing <y, one which is coherently
oriented with o and one which is oppositely oriented, and their union forms a circle
parallel to a. We will denote the shortest one (measured by the number of intersection

points with 8) by « and the other one by 7'.

The relative position of w and z in the Heegaard diagram is determined by k. More
precisely, #(yN B) = k- ¢ (mod p) and given the properties of k£ and the discussion
about -y, we obtain #(yNpB)=t-m, with t € {1,...,| 7]} and ged(t,m) = 1.

Remark 4.0.12. Given a simple knot K in a lens space L(p,q), described by a doubly
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pointed genus 1 Heegaard diagram as above, the quantity 6 = #(yN ) determines K up
to isotopy, so we can denote K by K(p, g, 6).

Denote by U, the solid torus bounded by the « curve (hence having a meridinal disk
D,, with boundary «) and let y; be a properly embedded arc in U, connecting w and
z which doesn’t intersect Dg. Such a 7; can be obtained by pushing the interior of
into U,. The exterior of 7, in U, is then a genus 2 handlebody, call it U},. The exterior
of K in L(m?, q) is then homeomorphic to the handlebody U/, with a 2-handle attached

along the g curve.

Therefore 71(Y \ K) admits a presentation with two generators and one relation. The
fundamental group of U}, is the free group on two generators which we can choose to be
two simple closed curves, z and y, supported on U] in such a way that #(zN~) =
0, #(zNv) =1, resp. #(yN~y =1),#(y N+ = 0). Moreover, we will suppose that
both z and y are isotopic in U, to the core of U, and oriented coherently (i.e. upwards,
which by the above choices means that [z] = [y] =1 € H1(L(m?,q)).) The relator -call

it R - is represented by the 8 curve, which we will also assume to be oriented upwards.

It is easy now to write the presentation for m1(Y \ K) : simply follow the 8 curve
and record the intersection points with the o and 4 arcs - for each intersection with
v add a y to the relator, and for each intersection with 4/ add an z. We obtain then:
m(Y\K) = (z,y | R).

It is immediate to see that the resulting word has m? letters, it is cyclically reduced and
that changing the position on the 3 curve from which we start indexing the intersection
points with the -y arcs has the effect of replacing R with a cyclic permutation of its

letters.

Since w and z were chosen slightly above «, for each intersection point between 8 and v,
(resp. v’) there is a nearby intersection point of 8 with « - simply follow S downwards

until it meets a. Then R contains tm letters y and (m — t)m letters z.

To check fibredness, we must write the morphism ¢: (Y \ K) — Z, represented
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geometrically by the algebraic intersection of loops in Y \ K with the Seifert surface F°
of K. Since ¢ factors through H1(Y \ K) 2 Z ® Z/m (cf. 3.2.2) and ¢ is surjective (F

is nonseparating) ¢ must be then (up to sign) the map
Ab ~
m(Y \K) — Hi(Y \K) — Hi(Y \ K)/70ors 2 Z,
where the second map is the obvious one.

In the presentation that we found, ¢ can be written as:

#la) = ¢
¢(y) =m —1

It is convenient at this point to number the intersection points of o and § with numbers
(in fact classes modulo p) starting at the right of the w point and continuing towards
the right along «, (again, see figure 4). This way we identify the intersection points with
Z/p. The intersections of B with ~ correspond to {0,...,Zm — 1} and the intersections
of B with ' correspond to {tm,...,p— 1}.

For i € Z, the quantity PE\J (recall that 7o denotes the class of n modulo m) depends

only on the class of : modulo m?, so we define the function Z/,,2 — Z/m by i — [#J ,

for some 4 € 7. From now on, we will denote this class modulo m by [£].

Then the intersections of B with v (resp. ') correspond to the classes i € Z/p with
[#] € {6,,t/—\1} <resp. [#] € {ﬁ,’rﬁ})
The following function will be useful: Let f: Z/m — {z,y} be given by:

N y- d0<azt
f@)=

z ift<a<m

for some a € a.

Qur relator R becomes

w018 -1 (2524
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-~

Let 1 be the map (¢ o f): Z/m — Z. Observe that (0) + - - +7,D(n7—\1) =10

With this notation, Brown’s theorem, 1.2.14, coupled with Stallings fibration criterion
(Stallings, 1962) say that K is fibred if and only if the sequence:

(), w0+ (] D""’m“'“W([(ﬁ_—l)'—qD

g
m m
achieves its maximum and minimum exactly once.

i ;
Call the sums above S;, i.e. §; = Zw ([%]), forie {0,---,p—1}.
=3

Remark 4.0.13. We will also use classes modulo p to index the sums above, with the
obvious interpretation. This is unambiguous because Sp_1 = 0 ( Sp—1 = ¢(R) = 0 by
definition).

Now we will prove a series of lemmas concerning R and the sequence (Si)f;é b

Lemma 4.0.14. For all i,j € Z/p, we have that S; = S; (mod m) <= 1

Il
.

(mod m).

Proof. Note that ¢(z) = ¢(y) = —t (mod m), so S; = i - (—t) (mod m) and since
ged(t,m) = 1, the conclusion follows. 1

Lemma 4.0.15. The sequence (Si)f;(} achieves its mazimum only once if and only if it

achieves its minimum only once.
Proof. We claim that for any i € Z/p,

(8- ()

Sinceze{ﬁ,...,tm—l} “— tm—l—ie{6,...,tm—1},‘v’7€Z/p, we have

()= = o(=571) -
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and the claim is proved.

Let l € {T, e, p— 1} be the unique number with the property [ -§ = tm — 1. Then, for

1€Z/p: _
= ([8) -5 (452) -5

The conclusion of the lemma follows from the equalities:

# max ((Si)g) = # max ((Sf - Sl—i_—l)g) = # min ((Sl—z—- );%’ti) ,

where by # max (X;) ( resp. #min(X;) ) we denote the number of maxima (resp.

minima) of the sequence X;.

4.1 Lisca’s family (1)

Theorem 4.1.1. The sequence (Sz)z_0 for a lens space L(p,q) belonging to Lisca’s

family (1) achieves its mazimum only once.

Proof. We know that g =d-m =1, with 0 < d < m and ged(d,m) = 1. After a possible
change ¢ — (p — ¢), which has the effect of changing the orientation of L(p, g), we can
suppose ¢ = dm + 1.

Then, for 5,7 € {0,...,m —1},

[(J’m +i)q

] —j+id (4.3)
This implies that { [(J":ni—} i€{0,...,m— 1}} { m}, and in particular

Sjm+m_1 =), (4.4)

By lemma 4.0.14, the numbers Sjm40, Sjm+1,.--,Sjm+m—1 are all distinct and exactly

one of them is the maximum of this sequence, say Sp,;, for some m; € {0,...,m —1}.
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Let .S'?J := Sjm+i for j,1 € {0,...,m —1} and let d=d.

By equations 4.3 and 4.4,

=9 () 9 (TTB) = (@) -0 (05+90) =50+ 5

(4.5)
Remark 4.1.2. In the above formula we can index the sequences S7 by classes modulo
m because Sjmim—1 =0 cf. eq 4.4.
We deduce that mj = mg — ;.

By Lemma 4.0.14, the maxima (Sp, );’:01 are all distinct, hence exactly one of them is

the maximum of the sequence (S;)7,. O

Let W; = {:_nq] ,fori € {0,...,p—1}i.e. wecan write the relator R = f(Wp), ..., f(Wp-1).

It will also be convenient to denote the m subsequences of (Wi)f;()l by Wf = Wim+i,
for i,7 € {0,...,m — 1}, we will also frequently use classes modulo m to index the sub-
sequences W,g , with the obvious interpretation: W,z? = Wf where i € i is the canonical

representative ¢ € {0,...,m — 1}.
4.1.1 An example

Let m =5,d =2, i.e. (p,q) = (25,11) and fix also t = 2, then ¢(z) = —2 and ¢(y) = 3.

The intersections of the 8 curve with the a curve are:

P o o e R e N N N N N N N N R N

Then W becomes 0,2,4,1,3,1,3,0,2,4,2,4,1,3,0,3,0,2,4,1,4,1,3,0,2.

Below we see on the left the values of the word (WzJ )i ( hats omitted ) and on the right

the sequences (S} );, arranged as matrices. Since d' = 3, the maxima in the sequences
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(Sg )i occur in positions: 0,2,4, 1,3 respectively.

0241 3) (3 1 -1 2 0)
130 24 3 1 4 2 0
Wi=|9 41 30|8=|=8 4« 1 301
30241 9 1 -1 =30
41302 2 1 -1 2 0

4,12 The width of the knot’s Heegaard-Floer homology

We compute here the width of the sequence (Si)’i:(} , since this quantity determines the
genus of K. We will use this information to give a complete classification of simple knots

in Lisca’s family 1 with an S x §2 surgery.

Definition 4.1.3. The width of a finite sequence of (integer) numbers (S;) is w(S;) =

max S; — min §;.

Theorem 4.1.4. Let K = K(m?,dm + 1,tm) (see Remark 4.0.12 for this notation) be

a simple knot of order m in a lens space L(m?2,q) in Lisca’s family (1). Then

w(K) =2 w(K(m,d,t)).
For the proof we state an easy result which will be useful for the other families as well.
Recall the definition of W given before the example in section 4.1.1.

Proposition 4.1.5. Let L(m? q) be a lens space given by a Heegaard diagram as in

Section 4. Then

Proof.

WA {((j+1)m+i)q] - [(J'm+i)q+mq] —Wi+3
1 m m

)
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Proof of Theorem 4.1.4. By Equation 4.3, W»ig = z'/-Ti, in particular

-~ .

Wi _wd=d
i+1

7

By the previous proposition, the same is true for all the sequences S7. This says that

the sequences S7 are all the cyclic permutations of the sequence S0,
By Equation 4.5, w(Sy) = w(Sa), V4 € Z/m and also note that w(Sﬁ) = w(K(m,d,1)).

Also by Equation 4.5, we see that

-~

A= {Sg e Z/m} = {Sf—&f: T,?ez/m} — B

We have
max((S)fzy) =max(A) =max(B) =w(SP)
min((S;)P-3) =min(4) =min(B) = -w(S0)
hence w((S;)P}) = 2w(S0) = 2w(K (m, d, t)). 0

4.2 Lisca’s family (2)

In this case, ¢ = dm + 1 with ged(d,m) = 2. As for family (1), there is no essential
difference between the cases ¢ = dm + 1 and ¢ = dm — 1 (one can interchange d with

m—d).

Theorem 4.2.1. The sequence (Si)f;(} for a lens space L(p,q) belonging to Lisca’s

family (2) achieves its mazimum only once.

In this case, the m subsequences W7 of W do not contain all the classes modulo m, thus
Sim+m—1 7 0 generically. However, we can cyclically permute W so that this desired

property becomes true.

Lemma 4.2.2. Let WZT’ =W; +m Vi € Zyp. Then W' contains all the classes modulo

m.
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Proof. Since m is even, it makes sense to speak about even (resp. odd) classes modulo

m.

WO has the following form:

forie {0,...,m—1}.

Since ged(d,m) = 2, W? = Wg e i=iori—7 = % This means that W0 contains
all the even classes modulo m, and each such class appears exactly twice in wo.

By Proposition 4.1.5, W7 contains all even (resp. odd) classes modulo m (and only

those) exactly when 7 is even, (resp. odd).

Again by Proposition 4.1.5, we see that W' contains all classes modulo m, and moreover

for i € {0,..., % — 1}. See 4.2.1 below for a concrete example. O

4.2.1 Example

S p— A e, P A

0,25,14,3,28,17,..., hence W =0,4,2,0,4,2,. ..

Then (hats omitted):

042042 04215 3)
L&6 1 53 15320 4

; 204204 204315 >
315315 315420
420420 4205 31
531531/ \53104 2
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Take ¢t = 1 and then the sums S;j (see below) are the following

5 4 3 2 1
-1 -2 -3 -4 1
-1 4 3 2 1
-1 -2 -3 -4 -5
-1 -2 3 2 1
-1 -2 -3 2 1

0
0
0
0
0
0

Remark 4.2.3. We will work from now on with W'. Consequently we will adapt the
notation of objects relating to W by adding the symbol ’ to the analogous object relating

to W'. For ezample, the sequence to which we will apply Brown’s algorithm will be

Si =D v(Wj)
j=0

By the previous lemma, S’ ; =0, for s € {0,...,m— 1}, and like in the family (1)

sm+m—

case, we will analyse each sequence S separately, and then compare the ‘local’ maxima

obtained.

Lemma 4.2.4. For/]? € Z/m,

. m
i 2
-5, ifjisodd

if 3 1S even

Proof. Note that t is odd, since ged(t,m) = 1. Therefore

t+1
#{a 0§a<t,aeven}=%

respectively

-1
#{a : 0§a<t,aodd}=t—é——

Let 56 L/, even. Then
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and for 3 odd,

O

Lemma 4.2.5. The mazimum of some sequence 5’7, fOTF € Z/m can be the mazimum

of (S’)z_0 only if 7 is even.

Proof.

Remark 4.2.6. [t’s easy to see that proposition 4.1.5 applies to any cyclic permutation

of W, in particular to W'.
Then, using Proposition 4.1.5, S+ = §7 43, Also, from the definition of W', we see

that for 0< i< 2 —2,resp. £ <i<m—-2,

Wzl-Jl-l il sz = (,1\
These two facts imply that

e if 7 is even, the sequences (W] )z-—O , TESp. (W] M- are cyclic permutations of
=T12x

(Wilo)i=0 ,resp. (W)

e if 7 is odd, (Wj)z_0 , TESP. (WJ) M- are cyclic permutations of (W’l)z 01, resp.
2

v

Also from the definition of W’, for 7 € Z/r, and i €{0,..., % — 1}, we have that

7 F+1
Wiim =Wy (4.6)
Suppose that max((S])?—)) = max S5, with § odd. Then maxS7 = S7 for some

1€40,... m—1}

We have two cases:
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1. i€{0,...,2 —1}.
By Equation 4.6,
;a1 F—1
SZ SZ+m — S%——l

- but since 7 is odd, S'J 1

S7.

1

= 7 (by Lemma 4.2.4), we get the contradiction Sﬁ_—ﬂl >
2

d bE{Tjene =1}
Again by Equation 4.6,
P = st+1 + sm i

]

and since j is odd, s3, n_g = —2 (by Lemma 4.2.4) and we arrive at a contradiction

with S; g being the maximum of the sequence (S!)i_,

Proof of Theorem 4.2.1. We need to consider only the partial sums S with 3\ even.
By Lemma 4.0.14, for i,s' € {0,...,m —1}, S'J = SJ implies 7 = 7. Suppose that
ma.x((S’)i_O) = Sl']fl for some [ € {1,...,m} and jo € 2Z/r,. Then other potential

maxima can only occur as the numbers S ;| for j € 2Z/m.
3 -1

As before, we have two different cases

Lle{1,..., 2}

2.le{Z+1,...,m}.

We introduce some terminology first:

Definition 4.2.7. Let A be a non-empty set and n € Z.

1. A circular sequence M; indezed by Z/n is a function M: Z/, — A.
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2. forl € {1,...,n}, asubsequence N; of M of lengthl is a function MoN: {0,...,1 -1} —
A, where N: {0,...,1— 1} — Z/,, is given by N(i) = @ + i, for some @ € Z/n.
We say that N; starts at a.

=i
3. Given a function: A — Z, the sum of the subsequence N; by ¢ is X(N;) := Z PY(ING).
i=0

Remark 4.2.8. In our setting, we denote by a classes modulo .

Remark 4.2.9. Since the functions 1&,1; (see below) are fized throughout the proof, we
will not mention them in the text and simply say ‘the sum of a subsequence’ instead of

‘the sum of a subsequence by J.’

We will suppose that M := max((S{)f;(} ) is achieved twice and we’ll arrive at a contra-

diction. Each case will be dealt with separately.

In case 1, let W; be the circular sequence indexed by Z/ m, given by W; = Wi’a, for
ie{0,..., 2 - 1} and the function 9: Z/n — Z defined by

P(@) = (WD),

Va € {0,...,2 — 1} . The sequences (WI'J )i_, are, by the proof of the previous lemma,
all the subsequences of length ! of the circular sequence ’VV»{, hence their sums by 1,
namely S{J_ 1» are the sums by 7’,5 of the subsequences of length I of W;, by the definition
of J

By our assumption, there are two subsequences of length ! with sum equal to M. Call

the two subsequences (Ai)é;%J and (Bi)ﬁ;(lj. Suppose that A starts at @ and B starts at b.

It is, of course, natural to think of the numbers ’VV; as being arranged in a circle, with

indices ordered clockwise, say, see figure 4.2.1

Modulo switching A with B, there are essentially two possible relative positions for the

indices 5,3,;;—_/1,1;;—7 in Z/% -

—— —

(i) The indices appear in the order @, ba+ b+l
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21

a+1

S

1>}
+
S

b+1 b+1
Figure 4.2 The two orderings on circular sequences

—— o~ —

(i) The indices appear in the order @,a + ! ,b,b+1

Given two classes ?,3 €Z/ m, we will denote by W;; the subsequence ’V\V}, Wm, ey WfIT

and by E;; its sum.

With this notation, ¥.—~ = ¥+ = M and
a,a+l

bb+H

—~ m
Tgp+ Tpa=2Wp) =

z (4.7)

V&,E € Z/%, by Lemma 4.2.4.

In case (i),

Y.+ + 3>~ > M - contradiction.

o if EE,Z > 0, then ¥ @b T “bbri

AT

o if EE,Z < 0, then 25;3—7 = Ei,a-/l - EE,E > M - contradiction.

e 3.7 =0 is impossible by Lemma 4.0.14
In case ii,

o if Y55 > 0, then EE,E:I =X;5+ EE,BTZ > M - contradiction.

o if Z}gﬁ > (J, then 25;3—7 = 25,’6 + Zﬁ,ﬁi > M - contradiction.

By Equation 4.7, at least one of the situations above arise, and we obtain a contradiction.
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In case 2, again from the proof of Lemma 4.2.5, we have

/3 I]+1
Sy = 2 Sz———1
m_y
As before, the sequences (W'J +1) i—g  are the subsequences of length [ — 3 of the circu-

lar sequence W;1 = I/Vi’l, fori e {0, e = 1} . We define the function ;j)\i: Z/% — Z
by

PL(@) = (W)
and then the sums S;’_ 4'%1_1 become the sums by 1;51 of the subsequences of length [ — %
of ﬁ/}l

Let I' =1 — . We suppose again that there are two subsequences A and B of length '
of W} where A starts at @ and B starts at b.
We denote the sum of a subsequence of W}l by 1,51 with !, for example,

1 m

1 = St Iy
S sty

As in case 1, we distinguish the two subcases,

(i) The indices appear in the order a,b, atl A b+ 1

(ii) The indices appear in the order a, a+l ,3, m

Subcase (i) is analogous to subcase i of case 1

o if 21 > 0, then 21 == 21 + B - 3 - contradiction,
b+ b,b+1
o if 21 < 0, then XLN =3 ¥l . SsM- ’—;— - contradiction.
+1 a,a+! a,b

Subcase (ii) is more involved than subcase (ii) of case 1

1 -
a5 + Z‘,Em >M contradiction.

. 1fZ)1 S 08 then21~—2
b+




a,a+l

e ifTl_>0,then Bl =% +3%l > M- 2. contradiction.
b,a b,a+l b,a 2

Since
1 R .
EE,E + EE,E )
a priori both sums can be negative.

Nevertheless, we prove that this can’t happen.

Suppose that Eéi," E%E < 0. By the previous equation, we obtain
m

1 1
5 < Ea,g,zﬁa < 0.

b,

Recall the circular sequence /V\V/'; from case 1.

By Lemma 4.1.5 we have ﬁél = ﬁ/’;-l- 1,¥ie Z/%. This implies that

T NS A
TCARS S

P +m W =F—1

~—~

Let 7€ Z/m be the class with Wy =£— 1.
We have two (equivalent) cases:

—

o€ ngg : By Equation 4.9,

but by Equation 4.8,

hence

m il
) g 5 t %
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(4.9)

contradiction with the fact that 3 + 2%33—7 was the maximum of the sequence

(5D

1/1=0"
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: replace b with a and apply the previous argument.

4.3.2 The width of the knot’s Heegaard Floer homology

We will not compute the width of all the simple knots of order m in Lisca’s family 2, it

is enough for our purposes to verify when the width is minimal.
Lemma 4.2.10. Let K = K(m?,q, mt) a simple knot of order m in a lens space belong-
ing to Lisca’s family 2. Then

o ift=1 wK)=2m-1)

o ift#£1, wK)>2m

Proof. If t = 1, it is trivial to verify that w(K) = 2(m — 1).
Ift > 1, we have
S9 =50 1+ =T +m—t
2 2 2
by Lemmas 4.2.4, 4.1.5 and Equation 4.6.
Choose now ; € Z/m odd with the property that Sg =m—1 Then
7 = _m _t

by the same argument as above.

It follows that w(K) > 2m. O

4.3 Lisca’s family (3;)

For the lens spaces in Lisca’s family 3, the situation is not symmetric when we change

the sign in the definition, i.e. ¢ = d(m % 1). Therefore, we treat each case separately.
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Suppose then that L(m?2, q) is a lens space with ¢ = d(m+1) for somed € {1,...,m-1}
which divides 2m — 1. This family of lens spaces is denoted by 3.

Theorem 4.3.1. The sequence (Si)f;(% for a lens space L(p,q) belonging to Lisca’s

family (34+) achieves its mazimum only once.

As before, generically, the sequences wi (we use the notation from 4.1) do not contain

all the classes modulo m, so the partial sums S7 are not zero.

Lemma 4.3.2. There is a cyclic permutation W' of W such that the sequences Wi

contain all the classes modulo m, in particular S = 0,V7e Tl s3>

Proof. Let ig = d—'2"—'l.

Then the word W’ defined by
Wi = Ws

i i+ig

for 7 € Z/,, has the required property.

We verify that the classes [%’] 5 [i""%] SRR [M;Ll)_q] are all distinct.

Since ¢ = dm + d, then
Wi —W,_, € {(?,d/+\1}

forie{l,...,p—-1}.

Claim 4.3.3. Leti€ {1,...,m +1i9—1}. Then

W; — Wi_y =d+ 1 <= i € {io, 260,360 — 1,45 — 1,...,m+1—ig,m}.  (4.10)
The set above can be written as A = {rip — [75%] [1 < r < d}.

Proof of clatm. By the formula for ¢ = dm + d, we have that

[g]_[ﬁ;_l)‘l]zm et B ensd = 1] (4.11)

A simple computation shows that, for r € {1,...,d},
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-1
rm < (rio - V—Q—J) -d<rm+d (4.12)
and this implies that exactly for those values of 7 that belong to A, W; — W;_; =
d+1. O

Translating by g, we obtain
W/ —W!_ =d+1 < i€ {io2%—1,3—1,...,m—ig} =: B
fori € {0,...,m—1}.

Consider now the numbers 0, d, 2d, . . . (m—2)d and let ag, a1, . ..,am—2 € {0,...m—2} be

the canonical representatives of these numbers modulo m—1,i.e. a; = d-¢ mod (m—1).

— —

-~ -~ .. —— —_—
Form the sequence ay, dy, ..., @m—2, @m—1 where by definition a1 =m — 1.

Claim 4.3.4. We have

——— d, ifi¢B
a; — a;—1 = sl =
d+1, ifieB

Proof of claim. Note that

r

Bz{rio— bJ |re{1,...,d—1}}.

Denote by b, =rig— |5], 7 €{1,...,d=1}} Forre {1,...,d -1},

br-d=rm+rd_1 — [ZJ -d

2 2
hence
d—1 z if r is even
wmrertztfife-{
d—;’, if r is odd
and then
f—d+m-1, ifriseven
ap.—1 =

&r —d+m-—1, ifrisodd



95

and for ¢ € B, the claim is proved. Notice that the values a; for ¢ € {b1,...,bg—1} are
distinct and they belong to the set {1,...,d — 1} hence for all ¢ € B, a; > d and then it

follows that a; — a;_1 = d.

Also note that am—2 = (m—2)d—(m—1)(d—1) = m—d—1 and the claim is proved. [

Putting together the claims 4.3.4 and 4.3.3 gives the conclusion of the lemma. O

Thanks to the above lemma, the problem of the maximum of the sequence (S!)7p!

is reduced to finding the maxima of the length m subsequences (S)I™+™1 for r €

{0,...,m — 1}. By Proposition 4.1.5, there is one sequence W' which starts with 0.

Remark 4.3.5. For the rest of this section we will denote (abusing slightly the language)
by W' the sequence of length m of W' which starts with _/7'\, but its elements will be the
canonical representative of the classes modulo m in the segment {0,...,m —1}. We will
lj)m—l

also use indices modulo m to denote the sequences W' = (W,{ ivo and their sums ng .

By the previous lemma, this is unambiguous.
Claims 4.3.4 and 4.3.3 imply that
WP =q; (4.13)
fori e {0,...,m—1}.
Proof of Theorem 4.3.1. We will prove that max(S] Z’;Bl is achieved only once and is

equal to w(S"). To this end, we compare the sequences W with corresponding cyclic

permutations of W0,

Claim 4.3.6. Letj € {1,...,m— 1} and i; € {1,...,m — 1} be the indez of j in W',
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i.e. W) =j. Then

(
,0 o p . — ./0 . .
W;H\J, ifi<m—1i; and Wity, 27
we_—1 ifi<m—i; and W0, <3j
R ifi<m—i; and Wi, <j (4.14)
10 ipl . 10 .
10 = BTt R O 10 .
\ Wi_ri;1 1, fi>m—i; and Wi+i,-+1 <jJ
Proof of claim. By equation 4.13, for i € {0,...,m —i; — 1},
Wi, =W+ (modm—1)
hence
M—?—ij = j’ if W‘L/-(I)-zj 2 ]

w0 =
' WO +m—1—j WP <;j
itiy T Dy W Wai; <J

By Lemma 4.1.5, Wz-'j is the canonical representative modulo m of W/° + j, hence by the
previous equation,
W — Wik WD, >3
Wiy -1 HEWR, <j

forie {0,...,m—i; —1}.

For i € {m —ij,...,m — 2}, the number i + ¢; is out of the range {0,...,m — 1} and
we must use classes modulo m. Since the numbers ag,aq,...,am—2 are the canonical

representatives modulo m — 1 of the numbers 0,d, ..., (m — 2)d, by equation 4.13,

w;° p=W+j mod (m-1)

z+i_,-—(m-—

hence
WIO -
W — i+i;—(m—1) Ve
1

Wiiymmyy Tm—1=3, WS, o 1) <J

% i+i;

i Wi, —me1) 2

Passing to classes modulo m, we obtain

Wil ifWo___ >34
W = iti;+1’ it +1
(3
w" I, BEWie <5

iFFL i¥i; 1
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Finally, note that W’ _1 =7 —1, and the claim is proved. g

Let w > 0 be the width of the sequence (S"0)7*;". Since $(W/°) = —t (mod m), the
numbers (S10)7;! are all distinct, hence S™ has a unique maximum and a unique min-
imum. Let 4min, resp. imqs denote the index of min(S™), resp. of max(S™). By the
definition of w, it follows that
10 ym—1
(Sz+z) =0 sw

for all j € {0,...,m — 1} and the equality is obtained only for i; = imn + 1.

Claim 4.3.7. For j€{0,...,m —1},

max(S7 )5t < w
Remark 4.3.8. The i'th partial sum of the sequence (S’0 );’iol can be written as Sz gl =
s,

Proof of claim. We distinguish two cases:

k. § <t

In this situation, notice that if 5/ < 7, then ¢(5’) = m — t. Then, for i €
{0,. s gom=-=1}, ¢(Wi'j) = 1&(1/171'2_z ), by equation 4.14, hence

S7 =50, -8 (4.15)

for i € {0,...,m —i; —1}.

Then (W _;.) £m—t = SY hence we can extend equation 4.15 to an inequality
m—i; 0
i 0 /0
B £ Sy =85

for i € {0,...,m —i;}.
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For i € {m —i;,...,m — 1}, we have

(W) = $(Wits,41) (4.16)
and from this,
S =S iyr = Z Y(WY) < 9(0) + Z Y(W, Z Y(Wis,)
k=m—i; k=m~i; k=m—i;
where the last equality comes from equation 4.16.

But
i+i;

Z P( k+7,_7) = Z Y(W; z+1, Sr’g—

k=m—i;

Now use equation 4.15 for ¢ = m —4; — 1 and the conclusion is proved.

Remark 4.3.9. (a) Note that we have proved something stronger than the claim,

namely
'3 n__ gl
S < Sf—i-'Z Szj—1
foried{0,...,m—1}.

(b) From equation 4.16, we can write directly

0 10 10 \
S S"+"J +1 Sii"l 1/)(le +(m—1_7))

fori€ {m—ij,...,m—1}. Since p(W’) = 0, we have that

13 10 10
S < S'L-HJ +1 517—\1

fori € {m—i;,...,m—1}, hence the partial sum S;j is strictly smaller than
the sum of a (circular) subsequence of W'°.
2. §>1t
In this case, we will prove the following inequality:

1§ 10 _ ¢l
8 <8, ~ 5 (4.17)
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fori € {0,...,m — 1}, with equality if ¢ > m —¢;_1 — 1.

For i € {0,...,m —i;_1 — 1}, by applying equation 4.14, we obtain:

. W IO/\ ) if W > ] —1
wil = i+ i
1
. -1, 1fW’° € G=1
t+i5-1 ‘LJ 1

but by Lemma 4.1.5,
-
W™ =W -1 (mod m).

Then
, W +1, 1fW’° >§—1
WiIJ= i+i5-1 +ij-1
WO 1fW L G=1
1,+1.J 1 1.1_1
forie {0,...,m—i;_ 1—2}andW] . =1
m—i;_1—

Note that for i € {1,...,m —ij_1 — 2}, Y(WJ) = d)(W';%\) since j > ¢ and
i—1
i+4j_1 #t—1,m — 1. Therefore

— () =8%— —S{OA

i+ij— -1

forie {1,...,m—i;_1 —2}.
Remark 4.3.10. Since "P(]\) < 0, the last equality implies that

S SIO _ S’g\ .

i+i-1 151
i.e. the partial sum S;j of W' is strictly smaller than the sum of a subsequence

of WP, forie {0,...,m—i;_1 — 2}.

In particular,

§7<80 - — -8,
1.+1.,_1+1 Szj_l

Since ¢(m — 1) = (),
1j _ o0 _ f0
59 = =8 —S;j:. (4.18)

m—ij—1—1

Let i € {m —4j_1,...,m — 1}. By equation 4.14,

Wo____ if Wo___ =
le—l = i+ij_1+1’ Wl+7',—1+1 * el
w1, e .. i1

‘I:+ij_1+1 'I,+‘LJ_1+1 =
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By Lemma 4.1.5,

Wo_— +1, W0 — >j-—-1

WiIJ — i+i5-1+1 i+i5-1+1 (419)
Wo— ik g Y, 3 |
j—1t1 i+i5-1+1

since W°_—_  #m —1 (because i > m — ij-1 — 1). Note that
1.+1.j_1+1

(W) =p(Wo~, )

4 1+1

for ¢ € {m —4;_1,...,m — 1}. This implies that

Gl . =g . —gF (4.20)

t m—i;_1—1 it+-1+1

fori € {m—i;_q,...,m—1}.

Now simply add the equations 4.18 and 4.20 to get the conclusion of the claim. O

Claim 4.3.11. There is at most one pair of values (i, j) € {0,...,m — 1}2 with Sz{j = w.

Proof of claim. Suppose that there are two such values (i1, 71) and (ig, j2). By Lemma

4.0.14, the two sequences have the same length, i.e. i; = is.
If both ji, j2 < t then the previous claim shows that

_ Qo _ Q0 _ Ql0 _ Qo
W= i, — O 1= B, — 8 1y

which is a contradiction because w is the sum of a unique subsequence of W.

Similarly, for j1,j2 > t, we obtain that

10 10 10 S 10

f1+45,-1+1 15,1 igtijp—1+1 1jp—1

which is again a contradiction by the same argument.

If 7 < t and jo > t, then the equality cases in the claim, more precisely Remarks
4.3.9 and 4.3.10 imply that the width w is realised as a partial sum of a subsequence
of W' which contains W for the case (iz, j2) and it doesn’t contain W§ for (i1, j1) -

contradiction. O
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We prove now that w is realised as the maximum of S, for some j € {0,...,m —1}.

We distinguish again two cases

In this case, simply consider § = W'Z-’gin +1, hence i; = imin + 1. By the minimality

of min, we get § < t and then

W) = p(WiSs)

for i € {0,...,m —; — 1} which in particular contains the index imaz — tmin — 1.
. 17
We obtain S =80 S0 =y,
mar min malz mn

Let j = W] . +1. By the minimality of S{?m,n, we obtain j >t and j > m —d and

we are in the situation analysed in the previous claim. Its proof implies that

g4 __  =g0

3 - 3
imaz—tmin—1 e

- S'E'ronin = w(slo)

Remark 4.3.12. The class imw/—\imin —1 is represented by ipmae —tmin + m—12>

m — 41 — 1 = imin — 1, hence we are in the case of equality in Claim 4.3.7.

4.3.1 An example

Let m =5, d = 3 (hence (p,q) = (25,18) and d’ = 3)

The intersections of the o and f curves are: 0,18,11,4,22,15,8,1,19,12,5,...,14 and
the words W, resp. W’ are listed below

03204y (2043 1)
310 32 03214
Wi=|14310|~]31042|=wW
42143 14320
20421/ \4210 3
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Consider t = 2. Then f(0) = f(I) =y =3 and f(2) = f(8) = f(4) = © = —2 and the

"
sums Si" are

(5 1 -1 871
3 1 -1 2 0
21 4 2 0

0

3
\-2 —4 =1 % O
4.4 Lisca’s family (3-)

This family is somewhat similar to family (34), but the situation is slightly more com-

plicated.

Let L(p,q) be a lens space belonging to Lisca’s family (3) with p=m? and ¢ = dm —d
for some d < m a divisor of 2m + 1. Let d' = 2L,

Theorem 4.4.1. The sequence (Si)fz“ol for a lens space L(p,q) in Lisca’s family (3-)

achieves its mazimum only once.

Remark 4.4.2. We will use the same techniques and notations from the previous case:

o o
Wi, Wi, SH ete.

Observation 4.4.3. Generically, the sequences W7 of W do not contain all the classes

modulo m, so their sum is non-zero in general.

Lemma 4.4.4. There ezist a cyclic permutation W' of W such that the sequences W',

for 5 €{0,...,m—1}, contain all the classes modulo m, therefore S = 0.

Proof. Choose ig = -‘1/2i1- and let

W; = Wiy
Then
w— [foga] [(otl)-q (lo+p—1)-q
— = = .

We will prove that the first m letters of W’ are distinct, and this together with Lemma

4.1.5 will give the desired conclusion.
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Since ¢ =dm — d,
W; —W,_1 € {:f, d/—\l},

forie{1,...,p}.

Claim 4.4.5. Fori€ {2,...,m+1},

Wi—Wii=d—1 <> i€ {io, 20~ 1,3i0—1,...,m+1}.

Proof of claim. Denote by A the set on the right. Then
. T
A={r-io- [EJ [re{l,....d}
Since g =dm — d,

m

[i_q] - [&i)q] =d-1 = fge{-T..,~d} (4.21)

# rm+ ¢, if ris odd
(o= |31) -2
i+ 5 if 7 is even

Note that

(Wliea)={,..., 5},
which implies that for ¢ € A, W; — W;_; = d—1 and for any other value of i €
{2....,m+1}, Wi — Wi, = d. O

By Lemma 4.1.5, we have that for i € {1,...,m+1ip — 1},
Wi—Wii=d—1 < i€{l,ip,2o—1,...,m+1}={1}UA
Translating by ig, we obtain

W —W_ =d—1 &> i€ {ip—1,2ip—1,...,m+1—ig} (4.22)
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for i € {1,...,m — 1}. Call this set B. Then

B={r.¢o_[’";1J |re{1,...,d—1}} (4.23)

Denote by b, =r-ip— ||, r e {1,...,d—1}.

Let a; be the canonical representatives modulo m + 1 of the classes d — 1 + i - d, for

i €{0,...,m —1}; in other words a; =d—~1+1i-d (mod m+ 1) and a; € {0,...,m}.

Remark 4.4.6. Since d is a divisor of 2m + 1, ged(d,m + 1) = 1, so the numbers a;

are all distinct.

Claim 4.4.7. Fori€ {1,...,m},

d—1, ifieB.

ai — @i—1 =

d, ifi ¢ B.

Proof of claim. It is immediate to see that

—
—~ —

a;—ai1=d—1 < aiE{O,...,d—l}

Let i € B, ie. 1 =71-4g— ]_T‘E—IJ for some r € {1,...,d — 1}. A simple computation
shows that
&r 1, ifrodd
Gy =
G~1=35; I'fews

e —

which shows that, for i € B, a@; — a@;—1 = d — 1. Note that
{a;|ie B} ={0,...,d—2}

and ag = d — 1. Together with Remark 4.4.6, this implies that for all indices i €
{1,...,m—=1}\B, & —ai_i = d. O

The previous claim, coupled with equation 4.22, show that

VVild—l = G/;i, (424)
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for i € {0,...,m —1}.

Note that a,, = m — d, hence a; # m, for i € {0,...,m — 1}, which implies that the

classes a; are distinct, for 7 € {0,...,m —1}. |

It is convenient to extend the sequence (a;)%;" with ap, = m, by definition. We can
write then

a;=d—1+d-i (mod m+1) (4.25)

for i € {0,...,m}.

As in the previous argument, we will compare the sequences W" with cyclic permutations

of the sequence W41,

Remark 4.4.8. From now on, by abusing language, we will denote by W'i'j the canonical
representative modulo m of the class Wi'j and we will frequently use indices modulo m
with the obvious interpretation, i.e. W,ifj = W'i'j fori e {0,...,m —1}. Finally, we will
denote by i; the index of the number j in W1, i.e. w1l = 4.

Lemma 4.4.9. Fori,j € {0,...,m — 1} with j > d—1,

(

Wi, if i< m—ij andW,’/d;IZj—(d—l)
i+ +ij
W:dzl ,  fi<m—i; andW"ﬂ1 <j—(d-1)
3 .7
Wy =10, ifi=m—i
= ifi>m—i; andW’d1 >_7—(d—1)
1+i;—1 +ij—

Wil 11, ifi>m—ij andW'/\ <j—(d-1)

\  i+i—1 +i5—

Proof. By Claim 4.4.7, for i € {0,...,m —4; — 1},

Wit =W+~ (d—1) (mod m+1).

Therefore,

wiElyg—(d—1), EWElcm—j+{d—1
w1 -} ¢ ( ) ¢ ( ) (4.26)

Weltj—d-m, €W '>m—j+(d-1)
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Equivalently,
d—1 . . d—1 5
W!d_l _ Wi,+ij > s (d 5 1)’ if Wi,+ij Z p= (d - 1) (4 27)
; .
W{i;jl —j+d+m, ifWi'_f;jl <j—=(d-1)
By Lemma 4.1.5,
W =w/e1l4j—(d—1) (mod m)
hence
il W/l 4§ —(d—1), WSl <m—j+(d-1)
i =
WAl j—(@d—1)—m, W >m-j+(d-1)
Remark 4.4.10. A simple computation shows that
Wl =m—j+(d-1),
therefore we can use strict inequalities in the previous formula, fori € {0,...,m —i; — 1}.
Together with equations 4.26 and 4.27, this gives
— || e if i <m—i; and W' >~ (d—1)
Wy = " 4 (4.28)
Wit +1, ifi<m—i; and Wi <j—(d-1)
For i = m — i, by Remark 4.4.10 and Lemma 4.1.5,
=
Wy =0 (4.29)
By Remark 4.4.10,
W,',‘f:,-lj_,_l ~wmt+i—=d= W(',d_l (mod m + 1)
and by finite induction on i € {m —i; +1,...,m — 1}, we deduce
Wi'i;jl_l =W +j—(d-1) (modm+1), (4.30)
hence
a1 )T HI-(@-1), EWT <m—j+(d-1)
-1

Wl j—d—m, W >m—j+(d-1)
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and
-1 _ T g
W1 _ Wzﬂ;?1 j+@-1), i W,J;J\_l 2j—(d-1)
1
1d-1 cp Tr7id—1 e
Wi-fi;:l j+d+m, if Wz_ﬁ;1 <j—(d-1)

These two equations and Lemma 4.1.5 imply

= if i >m—i; and WL >j—(d—1)
W’.{J = i+i;—1 i+i;—1 (431)
rd—1 B | iy 1d—1 C Sl —
Wi_ﬁ;:1 +1, ifi>m—i; and W,.ﬁFl <j—(d-1)
forie{m—i;+1,...,m—1}. O

Lemma 4.4.11. Fori,j € {0,...,m —1} withj<d—1,

’

Wit if i <m—i; and Wil <m+j—(d-1)
Wit -1, di<m—i; and W >m+j—(d-1)
WY = qm-1, ifi=m—q
Z%l, if i >m—i; andW{%l<m+j_(d_1)
i’i;jl_l—l, ifi>m—i; andWi’%T;_ltl>m+j__(d_1)

Proof. The proof is similar to the proof of Lemma 4.4.11.
By Claim 4.4.7, for i € {0,...,m —i; — 1},

Wel=we 15— (d—1) (modm+1).

i+i;
Therefore,
Wl L= —T1) if Wi > (d—1)—j
i = ™ d-1) i =0 (4.32)
Equivalently,
-1 _ ; = if W1 ) —(d—
Wi = Wity —3+(@d—1), My = (4.33)

W=+ (=D +m+1, EWEI>m+j-(d-1)
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By Lemma 4.1.5,
Wi=we1lei—(d—1) (modm)

hence

le_ Wild_l +j—(d—1), if Wild—lz (d'_l)— ' (434)
i .
Wi tlti—(d—1)+m, W< (d~1)~j

By the previous equation and equations 4.32 and 4.33,

Wi ifi<m—ijand Wl <m+j5—(d—1)
VV{J - i+t J i+ (4'35)
W{_‘f_zl i ifi<m—ijandW'Z'le>m+j—(d—1)

Remark 4.4.12. Once again, the equality case in the previous equation does not occur

fori€ {0,...,m—1i; — 1}, since it is easy to observe that

W’_1 =mg+ 7= (d—1)- (4.36)

For i = m — i, by Remark 4.4.10 and Lemma 4.1.5,

o
W, =m-1 (4.37)
By equation 4.30,

Wld 1 = Id_ +] (d — ]_) (mod m+ 1))

iti;—1

forie {m—i;+1,...,m—1} hence

i W -1, W 2 (d-1) -
e i —(d =1 +m, EW <(d-1) -]
and
w1 = WL —j+@-1),  EWEL <m+j-(@d-1)
Wz'_‘li_%_1 j+{d—-1)—m, lszld:J >m+j—-(d-1)

The two equations and Lemma 4.1.5, or more precisely equation 4.34, give the last part

of the conclusion of the lemma:

" _'d/f.l\l, 1fz>m—1,]andW'/-\ <m+j—-(d-1)
Wl =¢ T e (4.38)
1d—1

We— —1y Hi>m—y andW'/-\ >m+j—(d-1)

i+ij—1 i+i;—
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forie {m—i;+1,...,m—1}.

Remark 4.4.13. There is no equality case in the formula above by remark 4.4.10.

O

The two lemmas allow us to compare the sequences W' with W/~ and estimate their

maxima.

Proof of Theorem 4.4.1. As above, there are two different situations, depending on j

and d. We treat them separately.

1. j>d-1
Depending on t € {2,...,m/2}, there are two different possibilities:
() t>j—(d—1)
Using Lemma, 4.4.9 we can write
¢(W’d‘1), if i <m—1ij
(W) = § 4(0), if i =m—i (4.39)
1d—1 e &
1/1(Wi+/ij\_1), ifi>m—i;
forie {0,...,m—1}.

Remark 4.4.14. The condition t > j — (d — 1) implies that j —d < t, i.e.
Y(Wimh) = $(0).

Claim 4.4.15. In this situation, fori € {0,...,m — 1}, we have

td—1 1d—1 i -

g _ Sivi; — Sy i<m—i;

?

SEL —SE, ifizm—i
i+i;—1 i—

Moreover, for i < m — ij,

1d—1 1d—1
S S’H—’L S’i 3—2
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(b)

Proof of claim. For i < m — i;, by equation 4.39, we have

S/d—-

1j _ atd—1
8 = Si+i, ij—1

and since 1/1(1’1’,-']‘.1:1) = 1(0) > 0,

fd—1 Id
Sl > 8973,

and the inequality in the last part of the claim follows.

Since (0)

and then continue by finite induction on ¢ € {m —¢; +1,...,

so

= 1/;(Wi'f__11), we can extend the previous equation to:

/d
m—i; — S

/d—1
— 51

m — 1} using

equation 4.39 to extend the equality to

t<j-—(d-1)

In this case, ¢(Mf_—11) < 0, and of course, w(W{f*l) <0.

Claim 4.4.16. With the hypothesis above, for i € {0, ...,

S =gl

=3 e

L 1.+z,-—1 1;—2

m — 1}, we have

S';j < w.

Proof of claim. Consider first the case j < m — 1. By Lemma 4.4.9,

W{j+1 =

1

\

W/d—

1.+zJ+1

WL

i+ij41

0,
1d—1
i+ij+1_1,

W/d—l
i+ijr1—1

& 1

if i <m—ij4 andW'd L i+1={d=1)
+ij+1

ifi<m—ijn andW’d/L <j+1-(d-1)

i+
fi=m-— ’ij+1
1d—1
if i >m—1;47 and W
+ijp1-1

ifi>m—ij andW_’d/l\ <]+1—(d—1)

+ij+1~-1

2j+1-(d-1)
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By Lemma 4.1.5,

,
w1 1fz<m—z,+1andW"’l1 >j+1—(d-1)

i+ii41 ! +i541
e, 1fz<m—z]+1andW ~l <j+1—-(d-1)
itij’ +ij41
W ={m-1, if i =m i
1d—1 1d— .
e — ~ > - -
) 1, ifi>m—i51 and W j5a=y = j+1-(d-1)
1d—1 _ 1d— 3 —(d_
\Wi+ﬁ~1’ if i >m —1;41 and W zg+1 Th bs 1-(d—-1)

Since t < j — (d — 1), the previous equation gives

L. ifi<m-—i,
¢( Z+ZJ+1), 4+1

YW =qp(m—1),  ifi=m—i

w1 ifi>m—i;
i+ij+1—1)’ j+1

From this, it is immediate to see that

gl aftl —gil, (4.40)
itii41 t541—1
for i <m —ij41.
Then,
j — qrd—1 -1 td—1 td—1
S'"""’J'+1 S’rf—\l 1J+1— +¢( 1< Sm 1 S1,3+1 12

and finally, by induction on ¢ € {m — ij41,...,m — 1}, we have

S S/d 1 /d— e ¢ ( )

1+1J+1 1 1,J+1—-1
Since @b(W/i'J‘_i:ll) < 0, we have S;j <w,foralie{0,...,m—1}.

For j = m — 1, from Lemma 4.1.5,

m—1 _ 1x7/d—1

forie {0,...,m—1}.

Also, from equation 4.24, we know that

Wl =w/4' —d  (mod m +1)




112

for i € {0,...,m — 2}. These two equations imply

wiet =

k)

Wi 1, W >m—d

for i € {0,...,m — 2} (see also 4.3.6 for a similar argument).

The condition ¢ < (m — 1) — (d — 1) implies that
YW = (W)
fori € {0,...,m — 2}, hence
§m=1 _ gp(wim-1y = g1
fori € {1,...,m — 1}. Since z/)(Wéd'l) < 0, we obtain
ST < s
for i € {1,...,m — 1} and the claim is proved.
Z j<d-=1

(8) t<m+j—(d-1)

Note that this implies that ¢(W;4"}) < 0. Also, by Lemma 4.4.11,

YWis D, ifi<m—i;

'(/)(VV:]) = (W’d_l), if’i =m - ’ij

gy . !
P( zl+z—1) if i >m—i;

Claim 4.4.17. Fori€ {0,...,m — 1}, we have

1d—1 1d—1 Y z

gl = Si+zJ Sz»—l? fi<m—i;
=

1d—1 1d: Y "

Si+ij—1 =8 2 »~2, fizm—ij

Also, for i > m —ij,

S7 < w.

m—1 ; m—1
Wi, Wil <m-d

(4.41)
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Proof of claim. From equation 4.41, we immediately see that

1§ qu-1 _ qu-1
S’i . S‘i+ij - S’ij—

fori<m—ij.

For i = m — ij,

87 = St} = Sl W) < S - si

15— i+i; i—1
and for 4 > m — i;, also from equation 4.41,

15 d—1 d—1 d—1
SH = Sﬁri;l — S + (Wi (4.42)

for j € {m —i;+1,...,m — 1}. Now use the observation that ¢(Wi/;i_—1) =
1,/)(W'd:11) to get the equality stated in the claim. By equation 4.42, the

m
inequality in the claim is also established. O
t>m+j—(d-1)

1

In this case 1/1(W.';_i__11 y> 0.

Claim 4.4.18. For j > 0 we have the following formula

td—1 1d—1 o cle
g _ Si+ij_1 - Si,-_l—l’ ifi<m-—ij
s
gl gl | ficm—i
i+i5-1 ij_1—2

Moreover, fori<m — i1,

S,:J Z S{d—l __ Sld—l

i+i51 1j—1—2°

For =0,

i __ qrd—1 td—1
Si - Si+m—d i Sm— —1

vie {0,...,m—1}.
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Proof of claim. Suppose j > 0 first. By Lemma 4.4.11 applied to 7 — 1, we

obtain

A
g if { <m—ij_y and W/l <m+j—d
Id‘—l e . . Id—l 2

Wi+ij_1—1, iHé<m—=1-1 6nd Wi+z‘,-_1 >m+j—d

/j—1 o 5
W =4{m-1, ifi=m—1d;1
1d—1 L ; 1d—1 .
—— fi>m-—tjand W <m+4+j—d

Thrael | =4 N +7J

LW’dLl\ — 1 ifi>m—ij_1andWi'd;1\ >m+j—d

i+i;_1-1 ===l
Using Lemma 4.1.5,

r

1d—1 e o : 5 '

Wi+z‘,-_1 +1, ifi<m-— 751 and Wi+i,-_1 <m+j—d
1d—1
i+i;-1?

W{jzﬁo, ifi=m—i;1

ifi<m—ij1 andWi'j'll_fjl_1 >m+4j—d

Wizl 41, fi>m—idj_gand Wl <m4j—d

i+ij_1—l 1+1j_1—1

Wld—l
L i+i5_1—-1

ifi>m—1;_1 and W'i_/l\ >m+j—d

i+i;_1—1

and using the inequality t > m+ 7 — (d — 1),

YWEL Y,  fi<m—ijg

i+i5_1
w(WZIJ) =40, ifi=m— -1
1d—1 o Ry
It follows that
1j __ qid-1 td—1
By = Si‘l"ij—l T M-l

for i € {0,...,m —i;_1} and also, since w(Wz’Jd__ll_l) = w(Wi'in__l) > 0,

13 1d—1 1d—1
S < Sty —Sii-2

for i in the same range. For ¢ = m — 4;_1, by the previous observation,

i __ qtd—1 rd—1
Si = Si+1:j—1 T Ri_—2
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Continuing by induction on i € {m —i;_3,...,m — 1}, we obtain
1j _ qrd—1 1d—1
57 = Si+ij_1 T Vi -2

for 4 > m —i;_; and the first part of the claim is proved.
Suppose now j = 0.

By Lemma 4.1.5,
WPl=w/41—(d—1) (modm)
We also know from equation 4.24 that

Wit —d =W/ (mod m+1)

[

forie{1,...,m—1}.

Together, these two equations allow us to write

o Wil 41, W <m+1-d

i 1 |
Wit fWel>m+1-d

forie{l,...,m—1}

By the hypothesis on ¢, we have

$(WP) = (W)

for ¢ in the same range.
By equation 4.24, we know that W,',‘f:ll = m — d hence zb(W,',‘f:ll) = s

Use now the fact that ¢ (W®) = (W91} to conclude the claim. O
The previous four claims imply that
max (S’ ) < w.
We prove now that the width w is realised as Sz{j for some 4,5 € {0,...,m —1}.

By definition, w = max(§'4"!) — min($"4-1). Suppose that max(S'4~!) = S/~! and

tmax

min($"41) = S:i:: for some imaz, tmin € {0,...,m —1}.
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Then

w= S{d—l _ qud-1

imaz Imin

Also, by Lemma 4.0.14 there is only one value of 7 € {0,...,m — 1} for which Sl{j = g

(independently of 7).

We distinguish again several possibilities

L imin < imaa:
In this case we observe that Wi'd_1 = 0 for some ¢ € {imin + 1,...,%maz}, be-
: 1d—1 d—1 _ . 1d—1
cause otherwise we can replace the sequence W; ™ ,,..., W;*~ with W;”"", —
1,...,Wi'i;1 — 1 to obtain a subsequence of W'@1 with sum > w. (This new

sequence of numbers is indeed a subsequence of W’@~1 by equation 4.24).

Consider the number j = Wi'i;lﬂ, equivalently i; = 4, + 1. Claims 4.4.15 and
4.4.16 imply that one cannot have j > d — 1, because otherwise we can find a

subsequence of W’¥~1 with sum strictly greater than w :

Remark 4.4.19. If we are in the case of Claim 4.4.15, the fact that imin < tmaz
tmplies that w = Sz{i;jl — Sgg:ll for some i < m — i;, more precisely i = imgg —

imin — 1, hence we are in the branch with the strict inequality.

Then we must have j < d — 1.
Note that j # d — 1 because otherwise we would have i,;, =m — 1.

Then j+1<d—1and for j+1 < d—1 Claim 4.4.18 (applied to 7 + 1) implies
that we cannot have ¢ > m + j — (d — 1) because of the maximality of w.

For j = d — 2, we can apply Claim 4.4.17 to conclude that w is achieved as
1d—2

imaz—imin—1"
Otherwise we must have t < m + j — (d — 1) and again Claim 4.4.17 gives us a

i€{0,...,m—i;— 1} with w = S7.

2 imin > Z.mtz:z:
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Here, consider j = W.'dm "+ OF 5 = tmin + 2.

If j > d—1, Claim 4.4.15 applies and gives a unique pair (%, §) with ¢ > m —i; for
which S7 = w.

If j <d—1, then if j +1 < d—1, Claim 4.4.18 applies (to j + 1) and again there
is a unique pair (3, ) with i > m —i; and S7+! = w.

There are two values which are not covered: j = d—1 and j = d — 2. We will show

however that they cannot occur, i.e. S;d__; cannot be the minimum of $"4-1.

8 j=d—1.
Then %y, = m — 2, and since S'd _5 is the minimum of S'4-1 we must have
YW 1) > 0, and since W4l = m — d, we must have t > m — d. In
particular, d > . But d is a proper divisor of 2m + 1, hence d = 3. We can
then compute
W42 =m—3d (modm+1)

m-3 =

ie. W!4—1=0.But

S/d 1 o Sld— Sld— Sld— Sld-— (m bt t) 4t

Tmin— Tmin Tmin— tmin —
contradiction with S::in:: being the minimum of §'¢-1.
e j=d—-2
In this case one can compute I/Vi'fﬁ_ll = m — 1, hence i; — 2 cannot be imin,

: 1d—1 _ qld—1
since 537"y = 8; 75 + ¥(m —1).
For the uniqueness, consider again the two cases:

1. imin < imaa:
Then the only claim that applies is 4.4.17, in the other situations there is a strict

inequality S < w for i < m — i;. But for different j <d — 1,
i J

-1 _ qrd~1
s7 = Siti; — Si-

hence only for one j is the right hand side equal to w.
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2. 1/m1n > Zmam

Here only Claims 4.4.15 and 4.4.18 can achieve w and one can see that they are

mutually exclusive. One cannot have simultaneously j >d—1and j+1<d—1.

We have shown that w cannot be achieved as Sz{j twice for j #d— 1. For j =d— 1,
tmin = M — 1 > imqe and then only Claims 4.4.15 and 4.4.18 can achieve w. But at a
careful examination one sees that for equality in Claim 4.4.15 one would have to take
i; = 1 and there is practically no case i > m —1i;, and for Claim 4.4.18 one needs to take

j = 2d, but the hypothesis of the claim is j < d — 1. O

441 An example

The first interesting example is n = 7, d = 3 (hence (p, q) = (49, 18) and d’ = 5)

The intersections of the o and B curves are: 0,18,36,5,23,41,10,28,...,31 and the

words W, resp. W' are given below

0250351 035146 2)

4624025 4025136

136146 2 1462503
Wi=|5035136[~[5136240]=W

2402503 2503614

6 146240 6 240351

3513614 3614025
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Consider t = 3. The sums Sz{j are

4.5 Lisca’ family (44)

Here, p = m? and ¢ = dm + d where dd’ = m + 1 and d odd.

Theorem 4.5.1. The sequence (Si)f:_& for a lens space L(p,q) belonging to Lisca’s

family (44) achieves its mazimum only once.

As before, we will gather information about the relator W and in this particular case,
we will notice that W’ has similar properties with the word W’ of family (3;) and the

same argument applies.

Lemma 4.5.2. There is a cyclic permutation W’ of W such that the partial sums

(Shprtm=1 = 0, where r € {0,...,m —1}.

=mr

Proof. Define

a —a
where jg = & g+1‘

We will verify that the classes [M] 5 [i" +q] - [i"—q"'%ﬁ] are all distinct.

~

Since ¢ = dm + d,
Wi - Wi_, € {d, d/'i'\l}

fori e {1,...,m=1}.
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Claim 4.5.3. Fori€ {1,...,m},

Wi-Wisi=d+1esic{d,2d,...,(d—1)d'}U{m} =4 (4.43)

Proof of claim. Forr € {1,...,d —1},
(rd)g=(rd)d=r (mod m)

and, of course,

mg=0 (modm)

hence, by equation 4.11, exactly for those values of 1 € A, W; — W;_1 = d/—i—\l O

Let
A= {ie{1,...,m*} |3 e Asuchthat i =1 (mod m)}

By Lemma 4.1.5, for i € {1,...,m2},

Wi—Wi_1=d/+\1 “==- iEZ

After cyclically permuting by g, fori € {1,...,m — 1},
W -W  =d+1 < ic (X—io) n{l,...,m-1} =B

This set can be written as

_ 1, a4
B:{d’,zd',...,fi—i—d',%d’—1,(dzil+1>d’—1,...,(d—1)d'—1}

As for family 34, we will compare this sequence of numbers with the corresponding
sequence for (a;)/%,, where

ag;=d-i (modm-—1)
and a; € {0,...,m —2}, fori € {0,...,m — 2} and ap,—1 = m — 1 by definition.

Claim 4.54. Forie {l,...,m—1},

e —a;-1=d+1 (mod m) & i€ B.
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Proof of claim. Since a; — a;—1 =d (mod m — 1), for 5 € {1,...,m — 1}, we have
a;—ai—.1=d+1 (mod m) <~ q; € {0,...,d—1}.

By hypothesis, d is an odd divisor of m + 1, hence ged(d,m — 1) = 1, therefore the
numbers a;, for ¢ € {1,...,m — 1}, are distinct and non-zero. Since #(B) =d -1, it

suffices to show that for i € B, a; € {1,...,d—1}.

We can write

Bz{d'r]re {1,...,§;—1}}U{d'r—1|r€{d—;—1,...,d—1}},

and we treat each component separately.

1. Forre{1,..., %1},
a(gr) =ddr=2r (modm—1)
hence gy € {1,...;d —1}.
2 Forre{d—;—l,...,d—l},
a(@r—1) = (dT —1)d=2r —d (mod m — 1)

and again a(gr—1) € {1,...,d —1}.

O

Putting together the claims above, we obtain
WP = a;, (4.44)
for 7 € {0,...,m — 1} and the lemma is proved. O

Proof of Theorem 4.5.1. By Lemma 4.1.5, the subsequence W0 of W' determines the
whole word W'.

By a careful investigation of the proof of Theorem 4.3.1, we observe that this special
form of W', described in equation 4.44 above, is all the hypothesis used, so that proof

applies verbatim to our W'. a
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4.5.1 An example

Let m = 8, d = 3 (hence (p,q) = (64,27) and &’ = 3) Then

(0 36 2504 7\ /2 5 0 4 7 3 6 1\
3 615 037 2 5 037 2614
6 1 4 03 6 25 0 36 25147
W'ijz 14736150 . 3 615 0472 =W/ilj
4 72 61 403 6 1 4 037 25
7258 1473°€¢6 147 386 22580
25047 261 4 72615 03
\5 037251 4) \7 2514036

Consider t = 3. The sums Sz{j are

/ 5 2 7 4 1 -2 -5 0\
-3 2 -1 -4 1 -2 3 0
5 2 -1 4 1 6 3 0
-3 6 -1 -4 1 -2 -5 0
-3 2 -1 4 1 -2 3 0
h 2 =l =4 =<F =2 =5 4
-3 6 -1 -4 1 -2 3 0
-3 2 -1 4 1 6 3 O

4.6 Lisca’s family (4-)

Here, we have ¢ = dm — d for some d > 1 odd and divisor of m — 1, and let d’ > 0 be

the quotient ¢’ = ™31, This family is similar to family 3.

Lemma 4.6.1. There is a cyclic permutation W' of W such that the partial sums
(Shmr+m=1 — 0 where r € {0,...,m—1}.

i=mr

Proof. Let ig = m_—gl‘*‘-l. We will verify that the classes

) o5 . [

m m m
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are distinct. Since g =dm —d, W; — W;_; € {c/i\, d/—\l} .
Claim 4.6.2. Fori € {1,...,m},

Wi—Wia=d—1 < ic{l,d+1,2d +1,...,m~d} = A

Proof of claim. By equation (4.21), the conclusion is equivalent to
W;e{-1,...,-d} = icA

Note that the cardinality of these sets is d and since the classes (W;)%, are distinct, it

is sufficient to show one inclusion.

Let i € A. Then i = rd' + 1, for some r € {0,...,d — 1}. We have
(rd +1)(dm—d)=—(rd +1)d=r—d (mod m)

and the claim is proved. O

As before, define

E={i€{1,...,m2} | 1€ Asuch that i=+ (mod m)}

Then, by Lemma 4.1.5, we have
W;—Wi1=d—1 <> icA.

Consider now W’ defined by W;’ = W- — fort € {0, e, m? — 1} . From the previous

i+ig?

observation we deduce that for i € {1,...,m — 1},

W —W_,=d—1 + ic An{l,...,m—1} = B. (4.45)

(3

Explicitly, the set on the right is

B={d’,2d’,...,d—;—1d',dL21d'+1, <d—;—1+1)d’+1,...,(d-1)d’+1}.
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Consider now the sequence of number (a;)ir, € {0,...,m} defined by:

a;=(d-1)+i-d (modm+1), ifi<m
g, = TR
Since a; — ai—; =d (mod m + 1), we deduce that a; —a;—1 =d or d — 1 (mod m).

Claim 4.6.3. Forie {l,...,m —1},

a;—a;i-1=d—1 (modm) <= i€ B.

Proof of claim. It is easy to see that
a;—ai—1=d—1 (modm) < a; €{0,...,d—1}

Note that the numbers a;, for 7 € {0,...,m}, are distinct, since ged(d,m + 1) = 1

(because d is a divisor of m — 1 and d is odd).
Sinceag =d—1,a; € {0,...,d—2},fori € {1,...,m —1}.

Note that #B = d — 1 hence by the previous observations, it is enough to verify that
a; € {0,...,d—2}, fori € B.

d—1 d+1
B:{rd"re{1,...,——2——-}}U{rd'+1|re{%,...,d—-l}}

we distinguish two cases:

Since

1. re{l,...,%}

Then, by the definition of q;,
Argry = (d—].) —2re {O,...,d—Q}

2. re {4, .., d-1}

In this case,

a(rd,_H)=2d—1—27‘€{0,...,d—2}
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O

The previous claim and equation (4.45) imply that
Wi l=(d-1)+i-t (modm+1) (4.46)
fori e {0,...,m—1}. O

Theorem 4.6.4. The sequence (1), corresponding to the word W’ for a lens space

wn Lisca’s family 4_ achieves its mazimum only once.

Proof. By the proof of the previous Lemma, we have found that the subsequence wrd-1
has exactly the same form (cf.. equations (4.45) and (4.24)) as the subsequence W'4~! of
family 3_. By examining the proof of Theorem 4.4.1, we see that this is what we use from
the hypothesis dd’ = 2m + 1, except for dealing with the special values j =d—1,d -2,
so that proof applies without changes to our sequence W41, We treat the two cases

here, the point is to show that imn # i; — 2.

e j=d-1

Then ¢(W,’7‘f:%) > 0, i.e. m—d < t and in particular d > 3. But this is impossible

since d is a proper divisor of m — 1.

e j=d—2

Again, Wi'f__ll =m — 1, so i; — 2 cannot be i, since Sl{f:% & Sl{;i:l.

4.6.1 An example

The first interesting example is m = 7,d = 3, but the lens space obtained, namely

L(49,18), belongs to family 3_ as well.
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We illustrate then the next example m = 10, d = 3, which gives the lens space L(100, 27).

025803681 4) 0368147892 5)
78 2 BT 0858 7035814609 2
46 92470258 4702581369
1369147925 1479258036
Wijz8036814692w8146925703:Wi,j
57035813639 58136092470
2497 0358@36 2580369147
9147925703 9257036814
6 814692470 6 9247035381
\3 5813609147/ 3691470258
Consider t = 3. The sums Sz{j are

(741—252—1—430\

-5 4 1 9 -5 8 <1 <4 KB

-3 -6 1 8 5 2 9 6 3 0

7 4 1 2 5 2 -1 6 3 0

=8 4 ¥ =8 =F § <t -4 B O

-8 - 1 B =5 -8 =1 —4 -7 B

7 4 1 & 5 2 -1 6 3 0

-3 4 i 2 B 2 -1 -4 340

-5 6 1 q=5 § <L =4 F

8 =6 -0 -5 5 =8 -4 & B

o
¥

4.7 Proof of the fibredness theorem for simple knots

Summing up the analysis for each family of lens spaces above, we arrive at the

Proof of Theorem 4.0.9. For each of Lisca’s families of lens spaces, we proved (cf. Theo-

rems 4.1.1, 4.2.1, 4.3.1, 4.4.1, 4.5.1 and 4.6.4 ) that the sequence (Si)f;(} (or the induced
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sequence of sums associated to a circular permutation of W) achieves its maximum ex-
actly once. By Lemma 4.0.15, the sequence achieves its minimum exactly once. Now
apply Brown’s Theorem 1.2.14 and Stallings’ Theorem (Stallings, 1962) to get the desired

conclusion. 0

4.8 Towards the classification of simple knots of genus 0 in Lisca’s lens spaces

In this section we gather our partial results regarding the genus of the simple knots in

Lisca’s families above and speculate about the general picture.

Conjecture 4.8.1. Given a lens space L(m?,q) belonging to one of Lisca’s families
above, the simple knot K (m2,q, tm) (see Remark 4.0.12 for the explanation of this no-
tation) has a planar (genus 0) Seifert surface if and only if:

Family 1. t € {1,d,m — 1,m — d}

Family 2. t € {1,m — 1}

Family3;. te {1,d,m —1,m — d}

Family 3_.

—-te{l,dym—1,m—d} or

= [m,d,%) & {(7,3,2),(7,5,3)}

Family 4.

-te{l,d,m—1,m—d} or

—-m=2d—1 andt€ {2,m—2}

Family 4_.

-te{l,d,m—1,m—d} or

—m=2d+1andte {2,m—2}
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Remark 4.8.2. It is interesting to compare the list above with the knots obtained by
Baker (Baker, 2012) as the induced knots from performing surface-framed surgery on

doubly-primitive knots in S* x §2.

We present now some evidence supporting Conjecture 4.8.1.

A brief computer experimentation showed that

Proposition 4.8.3. For m < 500, the conjecture is true.

Proof. Simple knots are combinatorial objects, described as above by 3 natural numbers:
p,q and ¢, cf. Remark 4.0.12. The sequence used in Brown’s theorem is algorithmically
computable from p, q and ¢ by modular arithmetic. Also, claims 4.8.6 and 4.8.7 below
show that the genus of the simple knot is also encoded in this sequence. It is straight-
forward to enumerate all simple knots in lens spaces up to some fixed order and check
for each the genus ok the simple knots in the relevant homology classes. We used code

written in C. =

Remark 4.8.4. Note that the proposition applies for lens spaces of order up to 250000.

Theorem 4.8.5. For Lisca’s families 1 and 2, Conjecture 4.8.1 is true.

Proof. We begin by explaining the similarity between the Brown algorithm and Heegaard-
Floer homology in establishing the fibredness of simple knots in lens spaces, cf. Remark

4.0.11.

Recall the setup from Section 4, where we consider a genus 1 Heegaard diagram for
Y := L(p,q), with two curves o and S intersecting transversely in p points, denoted
0,...,p— 1. These points also represent generators of the complex C/'F-‘T((Y) When
considered in the doubly-pointed Heegaard diagram (%, @, B, w, z), these points represent
generators for CFK (Y, K) and even for HFR (Y, K), since there are no differentials. For

consistency with the established notation in Chapter 2, we will also denote these points
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by x;, 4 € {0,...,p— 1} or even x; with the obvious interpretation. Refer to figure 4 for

a concrete example.

By the discussion done in Section 4, Brown’s algorithm leads us to the analysis of the

following sequence:
%
Si =Y 6(j9)
§=0
where 6: Z/, — 7Z is given by

s m—t ifie{0,...,tm—1}
0(3) = (4.47)
~t ifie {tm,...,p—1}

m

Equivalently, with the notation from Section 4, 6(3) = 9 ([i]) :

On the Heegaard-Floer side, we will use the € grading 2.3.3 to compute the evaluation
(up to an overall additive constant) of the relative Chern classes in which the points x;

are supported on the Seifert surface of K.

Note that the points x;, when recorded in the order in which they appear on the § curve,

form the sequence x3, Xg, . - -, Xp—Dg'

1

Fix i € Z/,. By definition 2.3.3, e(x;, X;7) is the homology class (in H(Y"\ K)) of a
path in a U j starting at x;, walking along a until x;77 and returning along 8. But by

the definition of z and y in m1 (Y \ K), we have

-y, ifie{0,...,tm—1}
(x5, X7g) =
z, ifie{tm,...,p—1}
It is known (see the discussion in (Boileau et al., 2011)) that for two Spin® structures
$1,52 € Spin®(M), where M is a compact, oriented three-manifold with boundary (if

any) consisting of tori, we have

01(52) = 61(51) =23 (52 —51).
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By Poincaré duality,
([Fl,2) = —t
([Fl,y) =m—t
These values are the images of z, resp. y in Z = Hi(Y \ K)/iors- The previous three

equations give

Zm_t, if 2 0,...,tm—1
(ex(su,2x5r2) [P — (o) [P = 4 HEEA }

—2t, ifie {tm,...,p—1}
Compare this to equation (4.47) to obtain
w((8:)85) = w (HFR(Y, K)) (4.48)

by Lemma 2.7.3, we can compute the genus of a simple knot in a lens space:

Claim 4.8.6. Let K(p,q,s) C L(p,q) be a simple knot in the lens space Y = L(p,q).
Let k be the order of K and let F be a minimal genus Seifert surface for K. Then

X(F) =k —w((8:)s) (4.49)

where (Sz 0 18 the sequence of partial sums obtained by applying Brown’s algorithm to

K, as above.

Proof of claim. By equation (4.48),

W)= omex @O w0

where max, resp. min are taken over the set of relative Spin® structures Spin®(Y, K).

Let éa € Spin®(Y, K) be a relative Spin® structure which realises the maximum evalua-

tion above.

By Theorem 1.1 of (Ni, 2009),

—x(F) + k= (c1(ém), [F]) -
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0 1.2 3 4 5 6 7 8

Figure 4.3 Brown’s algorithm and Spin® structures

Also, by Lemma 4.1 of the same paper, &, = J(€m) + PD[p| realises the minimum.
Now, by definition,

<Cl(£M)’ [F]) - <cl(£m)’ [F])
2

w (Iﬁ?{(Y, K)) 2
and since

(c1(J(Em) + PD)), [F]) = (c1(J(énr)) + 2 - PD{), [F1) = —(e1(ém), [F]) + 2k

we obtain

(c1(ém), [F)) = w(HFE (Y, K)) + k

and inserting this into equation (4.49), we obtain the desired formula. See figure 4.8 for

a concrete example.

]

We can apply the formula above in two situations that are particularly relevant to our

problem:

Claim 4.8.7. Let K(m?2,q,tm) C L(m?,q) be a simple knot of order m in a lens space

of order m? with the rational longitude a longitude. Then
g(K)=0 <= w((Si)i) =2m -2

where (S,-);":O_1 is the sequence of partial sums given by Brown’s algorithm.
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Proof of claim. Simply apply equation (4.49) to K. The hypothesis that the rational
longitude of K is a longitude implies that the Seifert surface of K has m boundary

components. O
Claim 4.8.8. Let K(m,d,t) C L(m,d) be a primitive simple knot in a lens space. Then

K is a core of L(m,d) <= w((Si)i) =m—1.

where, as above, (Si)?:ol is the sequence of partial sums given by Brown’s algorithm.

Proof of claim. The direct implication is trivially verified. For the converse, by the
width hypothesis, we obtain that K has a Seifert surface of Euler characteristic 1, which
can only be a disk. Also, primitive simple knots are fibred, (Ozsvath and Szab6, 2005)
hence K must be a core of L(p,q). O

We can now finish the proof of Theorem 4.8.5. For family 1, by Theorem 4.1.4 and the

two claims above
K(m? dm + 1,tm) has genus 0 <= K(m,d,t) is a core of L(m,d).

Now just observe that the cores of L(m, d) are K(m,d, 1) and K(m,d,d) (and by chang-
ing orientation also K(m,d,m — 1) and K(m,d,m — d)).

For family 2, Lemma 4.2.10 together with Claim 4.8.7 give the conclusion.

O

We summarise now the relevant results proved in our analysis of the words W] for the

families 3 and 4.

Lemma 4.8.9. Let Y := L(m?,q) be a lens space belonging to Lisca’s families 34 or
44, i.e. ¢=dm+ d for some d with some divistbility properties cf. 4.0.4. Let (ai)?;f)l

be a sequence of numbers with the properties:

e a;€{0,....,m—2}, fori€{0,...,m -2}
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e a;=i-d (mod m—1),i€{0,...,m—2}

e gp_1=m—1

Forte{l,..., 2]}, with ged(m,t) =1, let ¢: {0,...,m — 1} — Z be the function

=i 4 ol — 4
o) = m—t, ifse t—1}
—t, ifse{t,...,m —1}

and let w be the width of the sequence (Ei)?:ol given by

Si=) éas).
=0

Then
w(HFR(Y, K(m? q,tm))) = 2w.

Remark 4.8.10. The sequence above does not come from applying Brown’s algorithm
to a simple knot in a lens space, but we observed that it is related to the Brown sequence

for the knot K(m — 1,d,t). We hope to come back to this question in a future work.
Proof of Lemma 4.8.9. Tt follows from (the proof of the) Theorems 4.3.1 and 4.5.1 that
max (S))g = w
We show now that this implies that
min (Si)f;ol = —w.

This happens because of a symmetry satisfied by the numbers a; above. More precisely,
we will prove that for j € {0,...,m — 1}, 3 ' € {0,...,m — 1} with the property

2

Y(W) =pWi_,_)).

Claim 4.8.11. Recall the following set defined in 4.8 for Lisca’s family 34 and in 4.5
for family 4.

B={iefl,....m-1} |ai—a,-_15d+1 (mod m)} .
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For both of the families the following is true:

1€B <<= m-i€B.
Proof of claim. We treat each family separately:

1. Family 3+

Recall that ig = d—lgl where dd' = 2m — 1 and

B={m’o— [%J re{l,...,d—l}}
Now note that for r € {1,...,d—1},d—re{l,...,d — 1} and

. r . d—r ) d—1
rzo—[-z—J+(d—r)zo—[ 7 szzo—sz

2. Family 4,

Here ig = m—¢21'+1 where dd’ = m + 1 and d is odd.

B———{d’r Ir € {1,...,d—;1}}u{d’r—1 r e {d—;—l—,...,d—l}}.

and a simple computation shows that, for r € {1,...,%},

dr+d(d—r)—-1=dd - 1=m.

Note that this implies that, for i € {0,...,m—1} and j € {—i,—i+1,...,0,1,...,m—
1-—4},

10 10 _ 10 10
Wip; =Wy =Whn1i— Wi

by finite induction on j.

The same argument as in the proof of Lemma 4.0.15 shows that ¢(a) = (¢ = a) for
a € Z.
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Now fix j € {0,...,m — 1} and let 35 € {0,...,m — 1} be the index of 0 in W". There

exists a unique j' € {0,...,m — 1} with the property W,’.,Jl ={—1. Together with

—1—19

the previous equality, this implies that

YW =W, ) (4.50)

for i € {0,...,m — 1} . To see this, note that it is true for i = 19 and then use induction

ont—1g.

Then,
) 3 ) m—1 = P
ST= vWi)= D, W) =-S5 o
k=0

k=m—1—1¢

Similarly, we have:

Lemma 4.8.12. Let Y := L(m?2,q) be a lens space belonging to Lisca’s families 3_ or
4_,i.e. ¢q=dm—d for somed cf. 4.0.4. Let (ai);’;?,l be a sequence of numbers with the
properties:

e a;€{0,...,m—1}, fori € {0,...,m—1}

ea;=i-(d-—1)+i-d (mod m+1),i€{0,...,m—1}

Forte{l,...,|%2]}, with ged(m,t) =1, let ¢: {0,...,m~ 1} — Z be the function

m—t, ifse{0,...,t—1}
—t, ifse{t,...,m-1}

and let w be the width of the sequence (S;)™y' given by

Si=Y_ ¢(as).
=0

Then
w(HFR(Y, K(m?2, q,tm))) = 2w.
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Proof. As before, it follows from (the proof of the) Theorems 4.4.1 and 4.6.4 together
with equation (4.48) that max(S;) = w. We will show, using the same argument as in

the previous lemma, that min(S;) = —w.

Claim 4.8.13. Consider the sets B defined in 4.4 and 4.6. Then

1€ B <= m-—i¢€ B.

Proof of claim. 1. Family 3_

Cf. Section 4.4, dd' = 2m + 1, and i = %. By equation (4.23),

B={7"i0— {%J lre{l,...,d—l}}

and we observe that

| d—p %1 gl
’"; J+(d—r)@0—L—#’—J=dio—~;i—=m

Tio — |

2. Family 4_

In this case, dd' =m —1, ip = %'H From section 4.6,
d—1 d+1
B= {rd’ |re {1,...,—5—}}U{rd'+1 |re {%,...,d—l}}
we obtain, for r € {1,...,d;21},

rd +(d—-r)d +1=dd +1=m.

Now simply apply the argument from Lemma 4.8.9 to obtain the desired conclusion.

O

Proposition 4.8.14. A fibred knot K C Y = L(p,q) has an S x S? surgery if and only
if g(K) = 0.
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Proof. Let F be a Seifert surface for K. Recall that only surgery along the slope A = 0F

yields a non-rational homology three-sphere.

For the direct implication, let (F});cg1 be the generic fibre in the fibration of Y\ N(X).
Note that g(Fi) = g(F),Vt € S'. We cap off every fibre F; in Y\(K) with meridinal
disks of the surgery solid torus, and obtain a fibration Fy of S! x $2. Then F; has to be

the two-sphere.

The converse follows similarly, Y3 (K) becomes an oriented S? bundle over S', hence it

is homeomorphic to S x S2. a







CONCLUSION

From the results in Chapters 3 and 4, a similarity with the Berge Conjecture emerges.
Knots in lens spaces which admit integer S or S x §2 surgeries are fibred, have small
genus and simple Floer homology. By this work and work of Baker, we can say that
their status is roughly the same: in both cases we have strong enough restrictions so
that conjecturally the restrictions determine the knots, they are both implied by the
conjecture that Floer simple knots in lens spaces are simple, hence it is somewhat natural

to expect that they are simultaneously true or false.

We remark here that an arbitrary Berge-Gabai knot standardly embedded in one of the
Heegaard tori of a lens space has non-trivial lens space surgeries. A brief computer
experimentation using Brown’s algorithm showed that ‘most of the time’ the knot in the
lens space is not fibred. For example, the Berge-Gabai knot B(5, 2, 3) is not fibred when
standardly embedded in L(15,11).

We also remark that arbitrary simple knots in lens spaces are not fibred. There are two
special situations however. One is the case of primitive knots, which were shown to be
fibred by Ozsvath-Szabo, and the other is the case when K is a knot of order m in a lens
space of order m?. It seems plausible that these knots are again fibred. This special case

deserves some more analysis in our opinion. We plan to investigate the problem further.

In another direction, it may be true that a knot K in an L-space which admits longitu-

dinal S x S$? surgeries is fibred, and hence it is a braid in S x §2.
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