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and by the Kolmogorov-Smirnov test (KS = 0.03, p = 0.5). However, after the
application of Discrete Fourier Transform, the data deviate from normality as shown
in the graph (case b) and by the Kolmogorov-Smirnov test (KS = 0.06, p = 0.0018).....
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3.2 True positive rate and total number of false positive and false negative hits (i.e., total
number of false conclusions) per assay for 96-well plate assays estimated under the
condition that at most two columns and two rows of each plate were affected by
systematic error. Panels (a) and (b) present the results obtained for datasets with the
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3.3 True positive rate and total number of false positive and false negative hits (i.e., total
number of false conclusions) per assay for 384-well plate assays estimated under the
condition that at most four columns and four rows of each plate were affected by
systematic error. Panels (a) and (b) present the results obtained for datasets with the
fixed systematic error standard deviation of 1.28D. Panels (c) and (d) present the
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Correction (0), B-score (A), MEA (D), t-test and MEA (0), SMP (+), t-test, and SMP
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3.4 True positive rate and total number of false positive and false negative hits (i.e., total
number of false conclusions) per assay for 1536-well plate assays estimated under
the condition that at most eight columns and two eight of each plate were affected by
systematic error. Panels (a) and (b) present the results obtained for datasets with the
fixed systematic error standard deviation of 1.2SD. Panels (c) and (d) present the
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XV
RESUME

Durant le criblage a haut débit (High-throughput screening, HTS), la premiére étape
dans la découverte de médicaments, le niveau d'activité de milliers de composés chimiques
est mesuré afin d'identifier parmi eux les candidats potentiels pour devenir futurs
médicaments (i.e., hits). Un grand nombre de facteurs environnementaux et procéduraux peut
affecter négativement le processus de criblage en introduisant des erreurs systématiques dans
les mesures obtenues. Les erreurs systématiques ont le potentiel de modifier de maniére
significative les résultats de la sélection des hits, produisant ainsi un grand nombre de faux
positifs et de faux négatifs. Des méthodes de correction des données HTS ont été
développées afin de modifier les données regues du criblage et compenser pour I’effet
négatifs que les erreurs systématiques ont sur ces données (Heyse 2002, Brideau et al. 2003,
Heuer et al. 2005, Kevorkov and Makarenkov 2005, Makarenkov et al. 2006, Malo et al.
2006, Makarenkov et al. 2007).

Dans cette thése, nous évaluons d’abord l'applicabilité de plusieurs méthodes
statistiques servant a détecter la présence d'erreurs systématiques dans les données HTS
expérimentales, incluant le 7* goodness-of-fit test, le t-test et le test de Kolmogorov-Smirnov
précédé par la méthode de Transformation de Fourier. Nous montrons premiérement que la
détection d’erreurs systématiques dans les données HTS brutes est réalisable, de méme qu’il
est également possible de déterminer I'emplacement exact (lignes, colonnes et plateau) des
erreurs systématiques de I’essai. Nous recommandons d’utiliser une version spécialisée du t-
test pour détecter l'erreur systématique avant la sélection de hits afin de déterminer si une
correction d'erreur est nécessaire ou non.

Typiquement, les erreurs systématiques affectent seulement quelques lignes ou
colonnes, sur certains, mais pas sur tous les plateaux de I’essai. Toutes les méthodes de
correction d'erreur existantes ont ét¢ congues pour modifier toutes les données du plateau sur
lequel elles sont appliquées et, dans certains cas, méme toutes les données de l'essai. Ainsi,
lorsqu'elles sont appliquées, les méthodes existantes modifient non seulement les mesures
expérimentales biaisées par l’erreur systématique, mais aussi de nombreuses données
correctes. Dans ce contexte, nous proposons deux nouvelles méthodes de correction d'erreur
systématique performantes qui sont congues pour modifier seulement des lignes et des
colonnes sélectionnées d’un plateau donné, ie., celles ou la présence d'une erreur
systématique a ét¢ confirmée. Apres la correction, les mesures corrigées restent comparables
avec les valeurs non modifiées du plateau donné et celles de tout ’essai. Les deux nouvelles
méthodes s'appuient sur les résultats d'un test de détection d'erreur pour déterminer quelles
lignes et colonnes de chaque plateau de 1’essai doivent €tre corrigées. Une procédure générale
pour la correction des données de criblage a haut débit a aussi été suggérée.

Les méthodes actuelles de sélection des hits en criblage a haut débit ne permettent
généralement pas d'évaluer la fiabilité des résultats obtenus. Dans cette thése, nous décrivons
une méthodologie permettant d'estimer la probabilité de chaque composé chimique d’étre un
hit dans le cas ou I'essai contient plus qu'un seul réplicat. En utilisant la nouvelle
méthodologie, nous définissons une nouvelle procédure de sélection de hits basée sur la
probabilité qui permet d’estimer un niveau de confiance caractérisant chaque hit. En plus, de
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nouvelles mesures servant a estimer des taux de changement de faux positifs et de faux
négatifs, en fonction du nombre de réplications de I’essai, ont été proposées.

En outre, nous étudions la possibilité de définir des modéles statistiques précis pour la
prédiction informatique des mesures HTS. Remarquons que le processus de criblage
expérimental est trés coliteux. Un criblage virtuel, in silico, pourrait mener a une baisse
importante de coiits. Nous nous sommes concentrés sur la recherche de relations entre les
mesures HTS expérimentales et un groupe de descripteurs chimiques caractérisant les
composés chimiques considérés. Nous avons effectué 1'analyse de redondance polynomiale
(Polynomial Redundancy Analysis) pour prouver l'existence de ces relations. En méme
temps, nous avons appliqué deux méthodes d'apprentissage machine, réseaux de neurones et
arbres de décision, pour tester leur capacité de prédiction des résultats de criblage
expérimentaux.

Mots-clés : criblage & haut débit (HTS), modélisation statistique, modélisation
predictive, erreur systématique, méthodes de correction d'erreur, méthodes d'apprentissage
automatique



ABSTRACT

During the high-throughput screening (HTS), an early step in the drug discovery
process, the activity levels of thousands of chemical compounds are measured in order to
identify the potential drug candidates, called Aits. A number of environmental and procedural
factors can affect negatively the HTS process, introducing systematic error in the obtained
experimental measurements. Systematic error has the potential to alter significantly the
outcome of the hit selection procedure, thus generating eventual false positives and false
negatives. A number of systematic error correction methods have been developed for
compensating for the effect of this error in experimental HTS (Heyse 2002, Brideau et al.
2003, Kevorkov and Makarenkov 2005, Heuer et al. 2005, Makarenkov et al. 2006, Malo et
al. 2006, Makarenkov et al. 2007).

In this thesis, we first evaluate the applicability of several statistical procedures for
assessing the presence of systematic error in experimental HTS data, including the 2
goodness-of-fit test, Student’s t-test and Kolmogorov-Smirnov test preceded by the Discrete
Fourier Transform method. We show that the detection of systematic error in raw HTS data is
achievable, and that it is also possible to determine the most probable assay locations (rows,
columns and plates) affected by systematic error. We conclude that the t-test should be
preferably used prior to the hit selection in order to determine whether an error correction is
required or not.

Typically, systematic error affects only a few rows and/or columns of the given plate
(Brideau et al. 2003, Makarenkov et al. 2007). All the existing error correction methods have
been designed to modify all the data on the plate on which they are applied, and in some
cases, even all the data in the assay. Thus the existing methods modify not only the error-
biased measurements, but also the error-free measurements. We propose two new error
correction methods that are designed to modify (i.e., correct) only the measurements of the
selected rows and columns where the presence of systematic error has been confirmed. After
the correction, the modified measurements remain comparable with the unmodified ones
within the given plate and across the entire assay. The two new methods rely on the results
from an error detection test to determine which plates, rows and columns should be corrected.
Our simulations showed that the two proposed methods generally outperform the popular B-
score procedure (Brideau et al. 2003). We also describe a general correction procedure
allowing one to correct both plate-specific and screen-specific systematic error.

The hit selection methods used in the modern HTS do not allow for assessing the
reliability of the selected hits. In this thesis, we describe a methodology for estimating the
probability of each compound to be a hit when the assay contains more than one replicate.
Using the new methodology, we define a new probability-based hit selection procedure that
allows one to estimate the probability of each considered compound to be a hit based on the
available replicate measurements. Furthermore, new measures for computing the false
positive and false negative change rates depending on the number of experimental assay
replicates (i.e., how these two rates would change if an additional screen replicate will be
performed), are introduced.

Further, we investigate the possibility of developing accurate statistical models for
computer prediction of HTS measurements. Note that the experimental HTS process is very
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expensive. The use of virtual, in silico, HTS instead of experimental HTS could lead to an
important cost decline. We first focus on finding relationships between experimental HTS
measurements and a group of descriptors characterizing the given chemical compounds. We
carried out Polynomial Redundancy Analysis (Polynomial RDA) to prove the existence of
such relationships. Second, we evaluate the applicability of two machine learning methods,
neural networks and decision trees, for predicting the hit/non-hit outcomes for selected
compounds, based on the values of their chemical descriptors.

Keywords: high-throughput screening (HTS), statistical modeling, predictive
modeling, systematic error, error correction methods, machine learning methods



CHAPTER I

INTRODUCTION

1.1 High-Throughput Screening

High-throughput screening (HTS) is a large-scale highly automated process used

widely within the pharmaceutical industry (Broach and Thorner 1996, Carnero 2006, Malo et

al. 2006, Janzen and Bernasconi 2009). It is employed in the early stages of the drug

discovery process during which a huge number of chemical compounds are screened and the

compounds activity against a specific target measured. The goal of HTS is to identify among

all tested compounds those showing promising “drug-like” properties. As specified in Sirois

et al. (2005) and Malo et al. (2006), the drug discovery could be described as a multi-step

process (Figure 1.1):

1.

Hit identification: target selection (i.e., researchers typically focus on enzymes
or proteins that are essential to the survival of an infectious agent), assay

preparation, primary screening;

Hit verification: re-testing, secondary screening and dose response curve

generation;

Lead identification: structure-activity relationships (SAR) analysis,

establishing and confirming the mechanism of action;

Clinical studies: drug effectiveness evaluation, drug-to-drug interactions,

safety assessment studies;

Regulatory approval for a new drug.



High-throughput screening is the backbone of the first step of the drug discovery
process. At that stage, thousands of chemical compounds are tested in an initial primary
screen. The identified compounds are marked for follow-up in the second step of the process
when HTS is employed again for performing secondary screens of a group of pre-selected
(i.e., hit) compounds (e.g., 1% of the most active compounds from the primary screen,
Nelson and Yingling 2004). Typically, at least duplicate compound measurements are

recommended (Malo et al. 2006).
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Figure 1.1 Drug development process (source: Malo et al. 2006)



HTS is a relatively new technology that continues to advance at fast pace. The recent
progress in computer technologies and robotic automation reduced significantly the cost of
operating high-throughput screening facility and made the technology feasible for many
small and moderate-sized organizations. The price of experimental screening per unit also
dropped significantly bringing a considerable increase in the number of tested compounds.
Figure 1.2 (Macarron et al. 2011) shows that the use of HTS in the four selected
pharmaceutical companies more then doubled for three of them and increased by 10 times for

the fourth company during the period from 2001 to 2009.
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Figure 1.2 Size of corporate screening collections over time. This figure shows that the
screening collections of four pharmaceutical companies in 2001 differ dramatically
from those in 2009. Data taken from GlaxoSmithKline [E], Novartis [F], Sanofi-Aventis
[G] and Wyeth [H] (now part of Pfizer) companies (source: Macarron et al. 2011)

The steadily decreasing prices, as well as a number of governmental programs and
initiatives (Austin 2008) allowed HTS to penetrate rapidly into the academic settings (Stein
2003, Verkman 2004, Kaiser 2008, Silber 2010). In May 2012, the website of the US Society

for Laboratory Automation and Screening listed 93 academic institutions that have




established HTS facilities (SLAS 2012), while the Molecular Libraries Initiative has
generated a collection of more than 360,000 compounds in a screening library for academic
investigators (MLP 2012).

The modern drug discovery is no more exclusively based on chemistry. It is a product
of interdisciplinary cooperation of engineers, chemists, biologists and statisticians. Massive
libraries of millions of compounds have been created using combinatorial chemical synthesis
and are used as a drug-candidate base. The contemporary HTS technology is an almost fully
automated process. Robots are used in all steps of the process. They retrieve compounds from
the libraries, combine them with the selected biological target, convey the compound
solutions through the HTS readers and record the measured activity levels. The recent
dramatic improvements in miniaturization, low-volume liquid-handling and multimodal
readers increased drastically the throughput of the screening process. Figure 1.3 depicts two
typical high-throughput screening systems.

Figure 1.3 High-throughput screening equipment (source: http://www.ingenesys.co.kr)

The contemporary HTS systems are capable of screening more than 100,000
compounds per day (Mayr and Fuerst 2008). At the same time, the screening-collection sizes
constantly increase and are expected to grow, given the fact that the size of the “drug like”
chemical space is estimated to be greater than 1x10* compounds (Fink and Reymond 2007).
High-throughput screening involves many steps, such as target selection and characterization,

assay development, reagent preparation and compound screening. Each of those steps adds



cost proportional to the number of the compounds in the assay. Thus, despite the

technological advances, HTS remains an expensive technology.

High-throughput screening assays are organized as a sequence of plates. HTS plate is a
small container, usually disposable and made of plastic. It includes a grid of small, open
concavities called wells. During the assay preparation, every compound of interest is placed

in a separate well.
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Figure 1.4 HTS plates with: 96 wells (8 rows x 12 columns), 384 wells (16 rows x 24

columns) and 1536 wells (32 rows x 48 columns), (source: Mayr and Fuerst 2008)

A typical HTS plate consists of 96 wells arranged in 8 rows and 12 columns. Along
with the tendency of miniaturization in HTS, plates with 384 and 1536 were also created (see
Figure 1.5). The plates with more wells usually have the same dimensions but contain smaller
wells. During the screening process, all the wells on the plate are examined and the activity
level of their content is registered as a single numeric value. Thus, the results of screening
one plate can be represented as a matrix of numeric values where the measurements are

arranged in the same layout as the compounds on the plate.

1.2 HTS experimental errors

Since the appearance of the first HTS systems, 15-20 years ago, a lot of efforts have
been made to improve the speed, the capacity and the precision of HTS equipment (Macarron
2006, Pereira and Williams 2007, Houston et al. 2008). The contemporary HTS systems are

capable to rapidly handle great number of compounds while detecting even slightest



differences in the compounds’ activity levels. That remarkable sensitivity, otherwise an asset,
makes the HTS process prone to errors. Many environmental factors, including variations in
the electricity, temperature, air flow and light intensity, may affect HTS readers (Makarenkov
et al. 2007). Equipment malfunctions, such as robotic failures, poor pipette delivery, glass
fogging or needle clogging, may also cause erroneous readings. Assay miniaturization and
especially work with very small liquid volumes can cause fast and significant concentration
changes due to reagent evaporation. Therefore, procedural factors such as differences in the
time compounds await to be processed create inequalities among the experimental
measurements. In the context of HT'S, an experimental error (or simply an error) denotes the
case when the measurement obtained during the screening does not reflect the real compound
activity either because of a failure during the reading procedure or because the conditions at
which the activity was measured differed from the planned ones. Systematic error affects the
HTS data by either over- or underestimating the measurements of some of the compounds.
With the appearance of the second generation HTS systems in 2001 (Mayr and Fuerst 2008),
a strong focus was put on the quality of the selected hits, i.e., to ensure lower readout
artifacts. HTS laboratories have pioneered and implemented rigorous quality assurance
methods (Macarron et al. 2011), such as liquid handler and reader performance monitoring
(Taylor et al. 2002), Z trend monitoring (Zhang et al. 1999) and regular usage of
pharmacological standards (Coma et al. 2009). Despite the remarkable quality improvements,
the experimental error remains a major hindrance in high-throughput screening, and handling
this error becomes even of a greater importance as our dependence on the technology

increases.

1.3 Hit selection

Hit selection is the last step of the high-throughput screening process. At this step, the
compounds with the best activity values are selected for further investigation. The
compounds selected in such a way are called hits (Malo et al. 2006). The hit selection is
based on comparability of the activity measurements. Depending on the type of the screened
assay the researches may be interested either in the compounds showing the highest
activation properties (activation assays - the goal here is to activate the given target) or the

highest inhibition properties (inhibition assays - the goal here is to inhibit the given target).



There exist four different strategies for selecting hits (Malo et al. 2006):

1. Hits are selected as a fixed percentage of all compounds, those having the highest
activity levels (for example: top 1%). This strategy, and especially the number of
selected hits, is dictated by resource availability and other project constraints. This
method is not usually recommended because a fixed, in advance, number of
compounds does not usually reflects the number of really active compounds in the
assay;

2. Hits are identified as compounds whose activity measurements exceed some fixed
threshold. The hit-cutting threshold can be specified as an absolute value or as a
percentage of the maximum possible activity level. In order to achieve quality
results using such a threshold, the advanced knowledge about the expected

activity levels is required;

3. Similar to the second strategy, hits are selected to exceed a hit-cutting threshold,
but the threshold is calculated to reflect the specifics of the actual data. This
threshold is usually expressed in terms of the mean value u (the median can be
also used) and the standard deviation o of the measurements, with the most
widely used threshold of /+3 0o (inhibition assays) and x+3 0o (activation assays).
This strategy can be applied globally for the whole assay when the mean and
standard deviation are calculated using all measurements of the assay, or
alternatively, on the plate-by-plate basis when the mean and the standard
deviation are calculated separately for each plate using only the associated plate’s

measurements.

4. Statistical testing with replicates was recommended by Malo et al. 2006) for a
better hit identification. More specifically, to get around the small sample size
problem that is known to produce serious problems with the t-test, Malo et al.
2006) recommended using “shrinkage tests” (see also Allison et al. 2006). They
provided a specific example of one particular shrinkage test — the Random

Variance Model.



1.4 False positive and false negative hits

The presence of error in experimental HTS data may affect the accuracy of the hit
selection campaign. Working with the measurements that do not correctly represent the real
compound activity levels may cause the situation where some compounds are mistakenly
selected as hits: this situation is known as Type I error and the selected compounds are called
false positives (FP). It is also possible that some active compounds are overlooked, i.e., they
have not been selected as hits: this situation is known as Type II error and the affected
compounds are called false negatives (FN). All the active compounds that are correctly
identified as hits are defined as true positives (TP) and the correctly identified inactive

compounds are defined as frue negatives (TN).

1.5 Sensitivity and specificity of a statistical model

With its ability to separate the compounds into two groups, hits and non-hits, the high-
throughput screening process constitutes a binary classifier. Sensitivity (Se) and Specificity
(Sp) are two statistical measures used to evaluate the performance of such classifiers. The

sensitivity of the model can be defined as follows:

TP
Se=—"—
TP+ FN

In the context of HTS, Sensitivity represents the proportion of the active compounds
that were selected as hits. The sensitivity value of 1 (or 100% if expressed as a percentage)
indicates that all active compounds were successfully identified as hits, whereas the value of

0 means that all active compounds were overlooked as false negatives.
The value of Specificity can be calculated using the following formula:

IN

Sp=——
P~ IN + FP




In the context of HTS, Specificity represents the proportion of the non-hit compounds
that were not selected as hits. Specificity value of 1 (or 100% if expressed as a percentage)

indicates that no inactive compounds were incorrectly identified as hits.

1.6 Types of experimental error

Momentary variations in the HTS experimental conditions introduce random errors in
the screening data that affect single or limited number of compounds only. Random error
unpredictably lowers or raises the values of some of the screened measurements. Random
errors can affect as well the hit selection process (Kevorkov and Makarenkov 2005). If a
further increase of the HTS precision is required, in regards to random error, then replicated
measurements should be used, i.e., multiple instances of the compounds should be screened
(Lee et al. 2000, Nadon and Shoemaker 2002). It is also important to note that this type of
error is usually very difficult to detect in HT'S using standard quality control and performance

monitoring techniques.

Another type of error, systematic error, can as well be present in HTS data. Systematic
error biases experimental HTS results by systematically over- or underestimating the
compounds true activity levels and affects multiple compounds of the given plate or given
assay. Systematic error is usually location dependent (Brideau et al. 2003). It generates
repeatable local artifacts that may affect only a single plate, a group of several plates or even
all plates of the assay. Within the plates, the compounds affected by systematic error are
usually located in the same row or column, very often at the edges of the given plate -
situation known as edge effect (Cheneau et al. 2003, Iredale et al. 2005, Carralot et al. 2012).
It is also possible that systematic error affects only the compounds located at the specific well

locations on all the plates or majority of plates across the assay (Makarenkov et al. 2007).

Systematic error has the potential to affect significantly the hit selection process, thus
resulting in the generation of false positive and false negative hits (Kevorkov and
Makarenkov 2005, Makarenkov et al. 2007). Therefore, eliminating or at least reducing the
impact of systematic error on experimental HTS data was recognized as one of the major
goals for achieving reliable, high quality high-throughput screening results (Brideau et al.
2003, Makarenkov et al. 2007). Several specialized statistical data correction methods have
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been proposed for correcting different types of systematic errors (Brideau et al. 2003,
Kevorkov and Makarenkov 2005, Makarenkov et al. 2007, Malo et al. 2010, Carralot et al.
2012).

1.7 Within-plate HTS controls

The controls are substances with stable and well-known activity levels for the specific
assay. They are placed in separate wells within plates and then processed and measured as
regular compounds of interest. Controls with different reference activity levels can be used.
The most commonly used controls are positive controls, with the observed high activity
effects, and negative controls, with the observed low activity effects (or no activity at all). It
is also possible that some wells of the plate are left empty and are used as negative controls
(Figure 1.5). It is a common practice that the controls are placed in the first and in the last
columns on the plates while the regular compounds are located in the inner wells. Figure 1.5
shows a typical 96-well HTS plate layout with 80 compounds and the first and the last

columns occupied by control.

Positive controls

Compound 1
P Compound 2
1 5 6 7 8 9 10 11 12| Negalive

¥ controls

PR DX XK X XN
.....p....
......

e Empty wells

I O Mmoo w>P

= Compound 80

12 Columns

Figure 1.5 A typical HTS plate layout (source: Malo et al. 2006) for a 96-well plate
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The within-plate controls can be used for both quality control and data normalization.
They are most commonly used for the measurements normalization needed to account for the
plate-to-plate differences throughout the assay. The values of the controls are often omitted
when HTS results are presented. For example, the screening result for the HTS plate on
Figure 1.5 are usually reported as for a plate that has wells arranged in 8 rows and 10

columns containing regular compounds only.

1.8 Systematic error correction and data normalization

Normalization of raw HTS data allows one to remove systematic plate-to-plate
variations and makes the results comparable across plates. Here we present the three most

popular normalization methods used in HTS:

1.8.1 Percent of control

Percent of control is a simple normalization procedure that relies on the presence of
positive controls in every plate. It allows for elimination of the plate-to-plate environmental
differences by aligning the measurements of the positive controls on the plates. As the

method name suggests, the compounds measurements are reported as a percentage of the

. A X
control measurements. The normalized measurements are calculated as follows: x; = <,

lupos

where x;; is the raw measurement of the compound in well (, /) of the plate, %; is the new

normalized value, and 24, is the mean of the positive controls.

1.8.2 Normalized percent inhibition

Normalized percent inhibition is another normalization procedure that relies on the
presence of both positive and negative controls in every plate. It allows for elimination of the
plate-to-plate environmental differences by aligning the measurements of both the positive

and negative controls on the plates. The normalized measurements are calculated using the
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xy' T /uneg
Kpos — HFreg

following formula: X; = , where x;; is the raw measurement of the compound in

well (i, ) on the plate, i,.j is the new normalized value, 1, is the mean of positive controls

and f4,.¢ is the mean of the negative controls.

1.8.3 Z-score

Z-score is a well known statistical normalization procedure that does not require the
presence of controls. It ensures comparability of the measurements on different plates by

aligning the mean values of the measurements of the plates and by eliminating the plate-to-

X, —
plate variations. The normalization is carried out using the following formula: X; = B .
o

where x; is the raw measurement of the compound in well (7, /) on the plate, X, is the new

normalized value, u is the mean of all the measurements within the plate, and ¢ is the
standard deviation of all the measurements within the plate. After the Z-score normalization,

the plate’s data are zero-centered, i.e., their mean value is 0, and their standard deviation is 1.

1.8.4 Assay quality and validation

A lot of efforts were put for validating and improving quality of experimental high-
throughput screening assays. Zhang et al. (1999) explored the criteria for evaluating the
suitability of an HTS assay for hit identification. The latter authors argued that the classical
approach for quality assessment by examining the signal-to-noise (S/N) ratio and signal-to-
background (S/B) ratio is difficult to apply in the context of experimental HTS. Zhang and
colleagues defined a new screening coefficient called Z-factor, which reflects both the assay
signal dynamic range and the data variation. This makes it suitable for comparison and
evaluation of the assays quality, including assay validation. Zhang et al. (1999) defined Z-

Jactor as follows:

3o, ~0,)

Z=1- ,
|:us_:uc|
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where 1 is the mean value of the screened data, 4 is the mean value of the controls, o; is the
standard deviation of the screened data and o is the standard deviation of the controls. These
authors stated that in the case of activation assays, positive controls should be used, whereas
in the case of inhibition assays, negative controls should be employed. In the same study,
Zhang et al. (1999) also defined the Z’-factor coefficient that can be calculated as follows
using the control data only:

3(0'

pos O-neg)

Z'=1-
Iﬂpos—”neg

2

where 14, is the mean value of the positive controls, i, is the mean value of the negative
controls, o is the standard deviation of the positive controls and ;. is the standard
deviation of the negative controls. Zhang et al. (1999) stated that Z-factor can be used for
evaluating the quality and the performance of any HTS assay, while Z’-factor can be used to
assess the quality of the assay design and development process. Zhang and colleagues also
provided directions for how Z-factor can be used to assess the quality of an HTS assay (see

Table 1.1).

Z-factor Screening

1 An ideal assay. Z-factors can never exceed 1.

05<Z<1 | Anexcellent assay.

0<Z<0.5 | Amarginal assay.

0 A "yes/no" type assay.

Screening essentially impossible. There is too much overlap

< v .
&= between positive and negative controls for the assay to be useful.

Table 1.1 Categorization of an HTS assay quality depending on the value of Z-factor.

Since its introduction, Z-factor has become the most commonly used criterion for the
evaluation and validation of HTS experiments. The publication of Zhang et al. (1999) is now
one of the most cited papers in the field of HTS (Sui and Wu 2007). Most of the large

laboratories, including the National Institutes of Health Chemical Genomics Center
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(http://ncge.nih.gov) and the National Screening Laboratory for the Regional Centers of
Excellence in Biodefense and Emerging Infectious Diseases (http://nsrb.med.harvard.edu) in

the United States, recommend Z > 0.5 as an indication of proper assay optimization.

In Inversen et al. (2006), the authors conducted a simulation study and compared the
performance of Z-factor to that of the signal window and assay variability ratio, and

recommended Z-factor as a preferred assay performance measure.

The negative impact of systematic error on the HTS hit selection process and on the
overall assay quality was ascertained in many scientific publications (Woodroffe and
Ginsberg 1998, Brideau et al. 2003, Cheneau et al. 2003, Iredale et al. 2005). Many efforts
were put on solving the problem by altering assay preparation methodologies and procedures
(Lundholt et al. 2003, Nelson et al. 2004) as well as on developing new data correction or
normalization techniques (Heyse 2002, Brideau et al. 2003, Kevorkov and Makarenkov 2005,
Makarenkov et al. 2006, Makarenkov et al. 2007, Birmingham et al. 2009, Malo et al. 2010,
Carralot et al. 2012).

Heyse (2002) performed a comprehensive study of the complexity and statistical
practice in data analysis of high-throughput screening data as a valuable raw material for the
drug-discovery process. He concluded that the quantity, complexity and heterogeneity of the
HTS data require novel, sophisticated approaches of data analysis. The latter author outlined
five major steps which, according to him, are of high importance for performing an HTS data

analysis:

1. Quality Assurance: Checking data for experimental artifacts and eliminating low

quality data;

2. Biological Profiling: Clustering and ranking compounds based on their biological

activity, taking into account specific characteristics of HTS data;

3. Rule-based Classification: Applying user-defined rules to biological and chemical
properties, and providing hypotheses for the biological mode-of-action of

compounds;
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4. Joint Biological-Chemical Analysis: Associating chemical compounds data to HTS

data, providing hypotheses for structure-activity relationships;

5. Integration with genomic and gene expression data and assessing the compounds'

modes-of-action, toxicity, and metabolic properties.

In the same publication, Heyse stated that “screening data tend to be very complex and
they must be analyzed with care”, and also “thorough quality control is a must” and HTS data

should be “preprocessed in a suitable way”.

1.8.5 B-score

A well-known paper by Brideau et al. (2003) was one of the first to propose a
systematic error correction method in the context of experimental HTS. The latter authors
argued that processing HTS data requires more than simple control-based or basic statistical
normalizations such as Z-score. Brideau et al. (2003) pointed out the main drawbacks of the
Z-score normalization and especially its failure to deal with positional effects, i.e., systematic
error. They presented a new statistics score, B-score (i.e., “Better score”), a robust
nonparametric analog of the Z-score normalization which is also resistant to outliers.
Assuming the following data model:

b =up+Rip+ij+8

ip ip>

where x;;, is the measurement in row i and column j of plate p, 4, is the mean value of the
plate measurements, Rj, is the row i effect, C, is the column j effect and ¢, is the random
noise affecting the well (i, j) of plate p. The B-score method starts by carrying out a two-way
median polish procedure (Tukey 1977) to account for row and column effects of the plate.
The median polish procedure has been preferred over several alternative methods, like
ANOVA, because of its robustness regarding the outliers. The residual (ry,) of the
measurement in row / and column j of the plate p, is obtained as follows by a two-way

median polish:
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Yoo = Fip ™ Fip = Fijp ‘(l‘p +R, +CJ'p)'
The residual is defined as the difference between the observed measurement (x;;,) and its

fitted value X,,, which is defined as a sum of the estimated average of the plate p, (1, ), the

ijp>

estimated systematic measurement offset (l},p) for row i of p and the estimated systematic

measurement column offset ((:‘ jp) for column j of p.

The residuals obtained after carrying out the median polish procedure within each plate are
then scaled by the plate’s Median Absolute Deviation (MAD)). For each plate p, the adjusted
median absolute deviation is obtained from the 7;;,’s as a robust estimate of the spread of the

ryp’s values:

MAD,= medz‘an{l Tip — median(r,]p ) \ }
The B-score of the compound in row i and column j of plate p is then calculated as follows:

P
1
B-score =—%—

1.8.6 Well correction

Makarenkov et al. (2007) proposed a new advanced systematic error correction
method, called Well Correction, which was designed to remove row and column systematic
biases as well as systematic error that affects compounds located at the same well location
and repeats for all of the assay plates. As described by Makarenkov et al. (2007), the Well

Correction method consists of the two following main steps:

1) Least-squares approximation of the data carried out separately for each well

location of the assay;

2) Z-score normalization of the data within each well location of the assay.
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In the simulations carried out by Makarenkov et al. (2007), the Well Correction
method generally outperformed the Median polish and B-score methods as well as the
classical hit selection procedure not implying any data correction. All the conducted tests
suggested that the Well Correction procedure is a robust method for systematic error

correction and the authors recommended its use prior to the hit selection process.

1.8.7 Other HTS-related research

Jenkins et al. (2003) introduced a method for improving the quality of HTS hit lists by
using computationally-based virtual screening (VS), which, according to the authors,
typically provides a large percentage of false positives and requires costly follow-ups to
distinguish between the active and inactive compounds. The proposed method is based on the
expectation that the false positive hits are not likely to dock well to the target’s active sites
unlike to the truly active compounds. Therefore, the biological false positives could be
identified computationally with minimal time and expense. The latter authors tested their
hypothesis in a study using the angiogenin enzyme, screened for small-molecule inhibitors.
Jenkins et al. (2003) also used VS as a tool to enrich given chemical libraries prior to
performing experimental HTS. They reported that VS can be a highly effective and facile
tool for enriching the hit rate from high-throughput screens, noting that VS methods may be
less valuable as a pre-HTS filter than as a tool for minimizing false positives in HTS. It is
worth noting that, except this paragraph, the term “false positive™ refers to statistical false
positives everywhere else in the thesis. From a statistical perspective, if a feature is selected
as a hit, it is a false positive if its true signal is null. If its true signal is non-null, then it is a
true positive. However, from a biological perspective, a statistical true positive may
nonetheless be a biological false positive. This would be the case if the true signal did not
reflect the biological mechanism of interest. By pre-selecting molecules with desired
molecular structures via VS methods, researchers may minimize the number of biological

false positives.

Hu and Sung (2004) described a method for data mining and outlier detection in the
HTS context. The proposed method uses a local trimmed mean approach for estimating

spatial outlier factors. Spatial outliers are different from non-spatial outliers in the way that
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they are outlying in their local neighbourhood, though, they may not be outlying globally.
The described approach allows for estimating and removing spatial trend, i.e., systematic

error, in HTS data what can be used to improve the quality of the hit selection process.

Kelley (2005) presented a software package using Microsoft Excel that can detect
spatially correlated artefacts, for example: “row effects”, “column effects” or “edge effects”,
in HTS data. The software presented by Kelley, and called Array Validator™, is based on the
Discrete Fourier Transform method and the analysis of the resulting periodograms. It
provides a sensitive assessment of the randomness of an array of values. According to the
author, Array Validator™ provides a way for an automatic validation of screening data and

generation of alert messages when spatial non-randomness, i.e., systematic error, is detected.

Kevorkov and Makarenkov (2005) described a method for evaluation and topological
analysis of the background surface of HTS data. The described method allows for
determination of trends and local fluctuations in experimental HTS assays and can also be

used for the elimination of systematic error.

Gagarin et al. (2006) discussed the hit selection process in high-throughput screening.
Three new clustering techniques, designed to identify quality hits in the observed
measurements were proposed in the publication and can be used to improve the hit selection
in experimental HTS. The three proposed methods are the following: k-means partitioning,
sum of the average squared inside-cluster distances (SASD) and average inter-cluster
distance (AICD). The authors claimed that two of the proposed techniques: k-mean

partitioning and SASD can bring a significant improvement to the hit selection process.

Wu et al. (2008) reviewed several widely-used normalization and error correction
methods. Two new statistical procedures, called BZ-score and R-score, were also proposed in
this article. Both BZ-score and R-score methods are based on the classical B-score method
(Brideau et al. 2003). The BZ-score procedure is a modification of the B-score method in
which an extra step is added after the application of the 2-way Median Polish procedure.
During that step Z-score is carried out to normalize the obtained residual values. R-score
method is a variant of the B-score method in which the model fitting Median Polish

procedure is replaced by the alternative Robust Linear Model (RLM). After fitting the data
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model, the obtained residuals can be standardized by the scale estimate from RLM in order to
generate a Z statistic, called R-score by the authors. The value of R-score can be used to
decide if the positional effects are statistically significant and whether an error correction is
needed. The authors underlined the importance of the last step, because their experiments
showed that “when there is absolutely no positional effects, the R-score adjustment sacrifices
the ability to detect hits”. In their study, Wu et al. (2008) used a rich set of experimental HTS
data in which all compounds were tested 42 times over a wide range of 14 concentrations.
The latter authors compared the new R-score and BZ-score procedure with the clasical B-
score method, Z-score and control-based methods. The authors reported that the R-score
performed significantly better than the other competing methods, followed by BZ-score
whose performance was very close to the performance of the classical B-score method. In the
same article, the authors evaluated the following three hit selection methods in the case of
duplicate screenings, i.e., when for each compound X, two measurements x; and x, are

available:

1. “Either-or” — the compound is selected as a hit if at least one of the measurements
exceeds the hit-cutting threshold, or equivalently, the combined score for the

compound is x = max(x;, X,);

2. “Both” — the compound is selected as a hit if both measurements exceed the hit-
cutting threshold, or equivalently, the combined score for the compound is x =

min(xy, xp);

3. “Average” — the compound is selected as a hit if the average compound’s
measurement exceeds the hit-cutting threshold, or equivalently, the combined score

for the compound is x = (x; +x,)/2.

Wu et al. (2008) concluded that the “Average” hit selection strategy is the best way to

combine duplicate measurements in order to identify hits.

Malo et al. (2010) presented a novel approach for maximizing true-positive rates in an
HTS study without increasing the false-positive rate. The latter authors stated that they “have
noted recently that the B-score (Brideau et al. 2003) method can potentially generate
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excessive false positives because normally distributed null data generate long-tailed B-score
distributions”. In this paper, Malo et al. (2010) proposed a modification of the B-score
method. The authors claimed that the robustness of the B-score method could be increased by
replacing the originally used model fitting procedure, the two-way median polish, with a
trimmed-mean polish. The authors reported that they have achieved particularly good results
when a trim value of 0.1 (10%) was used. Malo et al. (2010) recommended that the trim
parameter should be chosen to reflect the expected maximum number of hits in the rows and
columns of the assay (10% in their simulations) and also that the proposed modification is
equivalent to the original B-score method when a trim value of 0.5 (50%) is used. The
simulations were conducted using the commercial S-Plus software (TIBCO Spotfire,

Somerville, MA).

Shun et al. (2011) reviewed the current practice in high-throughput screening with
respect to ensuring appropriate hit selection quality. In this study, a 3-step statistical decision
methodology is described for achieving quality HTS results. At the first step, the criteria for
quality assessment should be established by calculating for each plate of the assays a number
of quality measures: Z-factor, Z'-factor (Zhang et al. 1999), the percent coefficient of
variation (the standard deviation of the compounds expressed as a percentage of the standard
deviation of the controls). Then, a 2-way ANOVA test should be carried out to assess the
presence of the row/column effects. The second step consists of selecting an appropriate HTS

data processing method by using the following rules:

e B-score or BZ-score methods should be used if systematic error is present or if the

data do not follow normal distribution.

e Z-score method should be used for normally distributed data of bad quality,
determined by Z-factor or percent coefficient of variation, which are not affected by

systematic error.

e Control-based methods should be used for normally distributed data of good quality

data which are not affected by systematic error.
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During the final step of the proposed method, the data quality of each plate should be
retested. The plates that failed the test should be screened again, whereas those that passed

the test should be used for the hit selection.

Carralot et al. (2012) developed of a novel edge effect correction algorithm suitable for
RNA interference (RNAI) screening. The authors stressed that their goal was providing a
specific method that targeted a recurrent type of artefact known as edge effect, and not a
generic method for correcting any type of systematic error that may corrupt experimental
HTS data. The proposed method estimates edge effects for each assay plate separately by
using the data from a single control column. The computations are based on a diffusion
model. Multiplicative bias values have been assumed and datasets with different signal-to-
noise ratios were used in the study. The authors reported that the quality of the test datasets,
measured using the Z-factor coefficient, had improved significantly after applying the new
method. Carralot et al. (2012) concluded that their method can be successfully used to detect
systematic error and obtain a robust estimation of the edges-related spatial biases in RNAi

screening data.

1.9 Machine learning algorithms in HT'S

The cost of pharmaceutical development has increased dramatically in recent years,
and many approaches have been developed to decrease both the time and the cost associated
with bringing a drug to the market. Among the proposed methods, it is worth noting the use
of in silico screening of compounds for detecting new drug leads, commonly referred to as
virtual high-throughput screening (VHTS) (Sirois et al. 2005). One of the promising branches
of VHTS is the application of machine learning methods for in silico prediction of the
compounds biological activity based on their chemical properties and previous experiences of

screening similar compounds.

Briem and Giinther (2005) evaluated the three following machine learning techniques
to distinguish between kinase inhibitors and other molecules with no reported activity on any
protein kinase: support vector machines (SVM), artificial neural networks (ANN) and k-
nearest neighbors (kKNN). Using the majority vote for all tested techniques, the authors



22

concluded that ANN provided the best prediction of experimental results, followed by SVM.
On the other hand, Miiller et al. (2005) described an application of SVM to the problem of
assessing the “drug-likeness” of a compound based on a given set of molecular descriptors.
The authors concluded that in the drug-likeness analysis the polynomial SVM with a high
polynomial degree (d = 11) allows for a very complex decision surface which could be used

for prediction.

Harper and Pickett (2006) reviewed the current state of the application of data mining
techniques in the field of HTS. Data mining has been described as “the exploration and
analysis, by automatic or semi-automatic means, of large quantities of data to discover
meaningful patterns and rules”. In their publication, Harper and Pickett stated that there has
been a recent increase in the application of data-mining techniques in high throughput
screening. The authors argued that given the large quantity of data generated during an HTS
campaign and the importance of analyzing those data effectively, the use of data-mining

techniques in HT'S data analysis is expected to increase steadily.

Burton et al. (2006) carried out a recursive partitioning, based on decision trees, for
predicting the CYP1A2 and CYP2D6 inhibition. The latter authors reported that with mixing
2D and 3D descriptors, they were able to achieve 2% to 5% gain in accuracy compared to the

3D descriptors alone.

Fang et al. (2006) presented results of a type I methionine aminopeptidases (MetAPs)
inhibition study. Fang and colleagues employed support vector machines for mining HTS
data, while testing a compound library of 43,736 small organic molecules. The authors
discovered that half of the active molecules could be recovered after screening only 7% of

compounds of the test set.

Plewczynski et al. (2007) reported that an SVM model was able to achieve
classification rates up to 100% in evaluating compounds activity with respect to specific
protein targets. In the latter study, the authors concluded that the obtained sensitivities for all

targets exceeded 80%.
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Simmons et al. (2008a) compared 10 different machine learning methods by
employing them to develop classifiers on data derived from an in vivo HTS campaign. The
authors compared the methods’ predictive performances in terms of the number of false
negatives and false positives. The set of descriptors used by Simmons et al. (2008a) consisted
of 825 numerical values, representing 55 possible atom-type pairs mapped to 15 distance
ranges. The same team of researchers (Simmons et al. 2008b) described an ensemble-based

decision tree model used to virtually screen and prioritize compounds for acquisition.

Mballo and Makarenkov (2010) analyzed the Test assay from McMaster University
Data Mining and Docking Competition (Elowe et al. 2005) using binary decision trees,
neural networks, support vector machines, linear discriminant analysis, k-nearest neighbors
and partial least squares. The authors first compared separately the sets of molecular and
atomic descriptors in order to establish which of them provides a better prediction. Then, the
comparison of the six considered machine learning methods was carried out in terms of false
positives and false negatives, method’s sensitivity and enrichment factor. Finally, a variable
selection procedure allowing one to improve the method’s sensitivity was presented and

applied in the framework of polynomial SVM.

Each of these studies was conducted in particular statistical and experimental contexts,
i.e., the sampling strategies, the type of HTS data, the proportions of confirmed hits in the
data and the available descriptors differed between the studies, making the comparison of the

obtained results very difficult.

1.10 Decision trees

Here we present two machine learning approaches we applied in our study. Decision
trees are hierarchical data structures implementing the divide-and-conquer strategy. They can
be used as an efficient classification method (Breiman et al. 1984). A decision tree is

composed of internal decision nodes and terminal leaves as shown below (Figure 1.6):
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Figure 1.6 An example of a decision tree where c; and c; are constants such that c;>c;

Each f,(X) defines a discriminant in the input space dividing it into smaller regions
which are further subdivided as we descend down toward the leaves. Different decision tree
strategies assume different models f,(X). Those models define the shape of the discriminants
and the regions. A leaf defines a region in the input space where the instances falling in this

region are classified as belonging to the same class.

1.11 Neural networks

Artificial Neural Networks (ANN), or simply neural networks (NN), are a powerful
modeling tool which is largely used in various disciplines such as chemistry, economics,
medicine and pharmaceutical science. Inspired by the power and adaptability of the human
brain, NN models are composed of numbers of small units, called rneurons, interconnected
and operating in parallel (Bishop 1995, Gurney 1997, Ripley 1996). Mathematical model of a
neuron states that a neuron has multiple inputs x; € R, j=1, 2, ..., m. Associated with each
input is a connection weight w; € R. The total input received by a neuron can be computed as

the weighted sum of all its inputs:
m
v= 2 WX, + W,
j=1

where w is a bias associated with the given neuron. It is convenient to think of the bias as of
the weight for an extra input x, coming from a neuron whose output value is always equal to

1. A neuron has one output and implements a monotone activation function g that maps v into
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g(v), which is the output value of the neuron. While there are numerous different neural
network architectures that have been studied by researchers, the most successful NN
applications in data mining and artificial intelligence have been multilayer feed-forward

networks, Figure 1.7.

Input Hidden Output
layer layer layer

Input #1 ”

Input #2

- Output

Input #3

Input #4

Figure 1.7 An example of a multilayer feed-forward network

In a typical neural network there exist an input layer consisting of nodes needed to
define the input values and successive layers of nodes that are neurons as depicted above.
The outputs of neurons in a layer are the inputs to neurons in the next layer. The last layer is
called the output layer. Layers between the input and output layers are called hidden layers.
When a neural network is used to predict a numerical quantity, there is one neuron in the
output layer and its output is the prediction. When the network is used for classification, the
output layer typically has as many nodes as the number of classes and the output layer node

with the largest output value gives the network’s estimate of the class for a given input.

An important characteristic of NNs is that they can be trained, to recognize inputs from
different classes. It is said that NN learns by example. During the training a number of

instances and their expected output values are supplied. A machine learning algorithm is used
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to calculate the input weights of all neurons in a way that minimizes the total error while

predicting the training data.

Once trained, the neural network is used for prediction. During this phase test, the data
are entered as an input to the network, which then generates an output. The output value is a

prediction to which class the test data belong.




CHAPTER II

SYSTEMATIC ERROR DETECTION IN EXPERIMENTAL HIGH-THROUGHPUT
SCREENING

This chapter is a reproduction of the following article:

Dragiev P., Nadon R. and Makarenkov V. (2011) Systematic error detection in
experimental high-throughput screening. BMC Bioinformatics, 12:25.

This chapter is at the fundament of the research work presented in this thesis. It focuses
on the problems addressing the quality and reliability of the high-throughput screening (HTS)
results. As an important first step of the complex and expensive drug development process,
HTS identifies among thousands and sometimes even millions of compounds, those, called
hits, that have the potential of becoming a successful medicine. Any wrong decision during
the HTS hit selection, i.e., choosing incorrect compounds for further development or
overlooking some promising drug candidates, turns out to be very costly. Errors during the
compound screening cause the activity levels of some compounds to be systematically over-
or underestimated. The effect of the systematic error is usually location dependent. The
affected compounds are typically located at the edges of one or several plates of the assay.
Working with systematically biased measurements during the hit selection magnifies the
number of false positives and false negatives and, in general, undermines the quality of the

obtained screening results.

Because of the considerable negative effects that systematic error has on the whole

drug development process, many efforts have been made to improve the reliability and the
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robustness of the HTS equipment. Despite of recent technological advances, it has become
clear that systematic error is often caused by procedural and environmental factors beyond
the control of the equipment. The increase in assay sizes and duration of HTS experiments
makes it very difficult to ensure that all the measurements are taken at absolutely the same
conditions, the main of which are temperature, humidity, light intensity and solution

concentrations.

Different methods have been developed for processing raw HTS data before the hit
selection (Brideau et al. 2003, Kevorkov and Makarenkov 2005, Makarenkov et al. 2007,
Malo et al. 2006). Each of the existing methods modifies the data in order to eliminate or
reduce the effect of a given type of systematic error, or to compensate for differences
between the plates in the assay. Despite their power to diminish the error effects if systematic
error is present, all existing methods have one significant disadvantage — when applied on
data not containing any error or data affected by an error of a different type than the
considered method is intended to treat — they introduce an important bias affecting the correct

HTS measurements (Makarenkov et al. 2007).

Chapter 1I focuses on the development of the tests for estimating the presence of
systematic error in raw HTS data. The ability to detect systematic error is of a significant
practical importance. The error detection tests can be used for decreasing the risk of a wrong
application of the error correction methods. The proposed tests not only detect the presence
of systematic error in general but also pinpoint the most probable locations of the error, i.e.,
indicate which plates, rows and columns are affected. The information provided by these
tests can be used to decide whether the considered data require error correction to be carried

out and, if so, which error correction method is the most appropriate for the dataset in hand.
We will describe the application of Student’s t-test, the z* goodness-of-fit test and the

Kolmogorov-Smirnov test combined with the Discrete Fourier Transform method in the

context of experimental HTS and compare the obtained results.




29

2.1 Abstract
2.1.1 Background

High-throughput screening (HTS) is a key part of the drug discovery process during
which thousands of chemical compounds are screened and their activity levels measured in
order to identify potential drug candidates (i.e., hits). Many technical, procedural or
environmental factors can cause systematic measurement error or inequalities in the
conditions in which the measurements are taken. Such systematic error has the potential to
critically affect the hit selection process. Several error correction methods and software have
been developed to address this issue in the context 6f experimental HTS (Brideau et al. 2003,
Heuer et al. 2005, Heyse 2002, Kevorkov and Makarenkov 2005, Makarenkov et al. 2006,
Makarenkov et al. 2007, Malo et al. 2006). Despite their power to reduce the impact of
systematic error when applied to error perturbed datasets, those methods also have one
disadvantage — they introduce a bias when applied to data not containing any systematic error
(Makarenkov et al. 2007). Hence, we need first to assess the presence of systematic error in a
given HTS assay and then carry out systematic error correction method if and only if the

presence of systematic error has been confirmed by statistical tests.

2.1.2 Results

We tested three statistical procedures to assess the presence of systematic error in

experimental HTS data, including the z? goodness-of-fit test, Student’s t-test and

Kolmogorov-Smirnov test (D'Agostino and Stephens 1986) preceded by the Discrete Fourier
Transform (DFT) method (Cooley and Tukey 1965). We applied these procedures to raw
HTS measurements, first, and to estimated hit distribution surfaces, second. The three
competing tests were applied to analyze simulated datasets containing different types of
systematic error, and to a real HTS dataset. Their accuracy was compared under various error

conditions.

2.1.3 Conclusions

A successful assessment of the presence of systematic error in experimental HTS

assays is possible when the appropriate statistical methodology is used. Namely, the t-test
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should be carried out by researchers to determine whether systematic error is present in their
HTS data prior to applying any error correction method. This important step can significantly

improve the quality of selected hits.

2.2 Background

High-throughput screening (HTS) is a modern technology used by drug researchers to
identify pharmacologically active compounds (Dove 2003). HTS is a highly automated early-
stage mass screening process. Contemporary HTS equipment allows for testing more than
100,000 compounds a day. HTS serves as a starting point for rapid identification of primary
hits that are then further screened and evaluated to determine their activity, specificity, and
physiological and toxicological properties (Heuer et al. 2005). As a highly sensitive test
system, HTS requires both precise measurement tools and dependable quality control. The
absence of standardized data validation and quality assurance procedures is recognized as one
of the major hurdles in modern experimental HTS (Gunter et al. 2003, Kaul 2005, Malo et al.
2006). Acknowledging the importance of automatic quality assessment and data correction
systems, many researchers have offered methods for eliminating experimental systematic
artifacts which, if left uncorrected, can obscure important biological or chemical properties of
screened compounds (false negatives) and can seemingly indicate biological activity when
there is none (false positives) (Brideau et al. 2003, Dove 2003, Gagarin et al. 2006, Gunter et
al. 2003, Heuer et al. 2005, Heyse 2002, Kaul 2005, Kevorkov and Makarenkov 2005,
Makarenkov et al. 2006, Makarenkov et al. 2007, Malo et al. 2006, Malo et al. 2010, Zhang
et al. 1999, Zhang et al. 2000).

Systematic error may be caused by various factors, including robotic failures and
reader effects, pipette malfunction or other liquid handling anomalies, unintended differences
in compound concentrations due to agent evaporation or variation in the incubation time and
temperature differences, and lighting or air flow present over the course of the entire screen
(Heuer et al. 2005, Makarenkov et al. 2007). Unlike random error that produces measurement
noise and usually has minimal impact on the whole process, systematic error produces
measurements that are systematically over- or underestimated. Systematic error may be time

dependent, introducing biases in individual plates or subsets of consecutive plates, but it may
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also affect an entire HTS assay (i.e., all screened plates). In practice, systematic error is
almost always location related. The under- or overestimation affects compounds located in
the same row or column or in the same well location across the screened plates. The row and
column effects may be persistent across the assay affecting repeatedly the same rows and
columns on different plates or may vary from plate to plate, perturbing some rows and
columns within a particular plate only (Makarenkov et al. 2007). Plate controls are used in
HTS to ensure the accuracy of the activity measurements being taken. Controls are
substances with stable well-known activity levels. They might be positive (i.e., a strong
activity effect is observed) or negative (i.e., no any activity effect is observed). Controls help

to detect plate-to-plate variability and determine the level of background noise.

The following normalization and pre-processing methods have been widely used in
experimental HTS to remove plate-to-plate variation and make plate measurements

comparable across plates (Malo et al. 2006, Makarenkov et al. 2007):

e Percent of control — the following formula is used:

Xe
A [ . . . A .
%, =—2—, where x; is the raw measurement of the compound in well (i, j), X, is
H pos

the normalized value of x;;, and 4, is the mean of positive controls.

. Control normalization (known also as normalized percent inhibition

transformation) is based on the following formula:

" Xi —H . . .
%, =———"% where x; is the raw measurement of the compound in well (i, j),

M pos Auneg

X; is the normalized value of x;, £4s is the mean of positive controls, and £ is the

mean of negative controls.

e Z-score normalization is carried out as follows:

e Xy —H ; ; ; 3
X, = , where x;; is the raw measurement of the compound in well (i, ), x;; is
if 5 y Y

the normalized value of x;, x4 is the mean of all the measurements of the given plate,

and o is the standard deviation of all the measurements of the given plate.
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B-score (i.e., Best score normalization (Brideau et al. 2003) is carried out as follows:
First, a two-way median polish procedure (Tukey 1977) is performed to account for
row and column effects of the plate. The resulting residuals within each plate are then
divided by their median absolute deviation, MAD. It is worth noting that there is an
additional smoothing step that could be applied across plates (see the original article
(Brideau et al. 2003) for a description of the smoothing). This optional smoothing
step was not applied however in (Makarenkov et al. 2006, Makarenkov et al. 2007,
Tukey 1977).

The residual (r;,) of the measurement in row i and column j on the pth plate is

obtained as follows by a two-way median polish procedure (Equation 2.1):
Tip = Xip ~ Xip = Xgp _(ﬁp +R, "‘ij)- 2.1)

The residual is defined as the difference between the observed result (x;;,) and the

fitted value x; , defined as the estimated average of the plate (i ») Dlus the

ip>
estimated systematic measurement offset (f?,.p) for row i of plate p and plus the
estimated systematic measurement column offset (é jp) for column j of plate p. For

each plate p, the adjusted median absolute deviation (MAD),) is then obtained from

the 7;,’s.

Median absolute deviation (MAD) — a robust estimate of spread of the 7;;,’s values is

computed as follows: median{l Tip — median(r,.jp )| }

The B-score normalized measurements are then calculated as follows:

ri .
B-score = —AZIJPD— . 2.2)

The B-score normalization was introduced by a team of Merck Frosst researchers

(Brideau et al. 2003) as a systematic error correction method.
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o Well correction is another advanced systematic error correction technique
(Makarenkov et al. 2006, Makarenkov et al. 2007) used to remove systematic biases
affecting the assay’s wells, rows or columns, and spread across all the plates of the

assay. It consists of two main steps:

1. Least-squares approximation of the data carried out separately for each well
location of the assay;
2. Z-score normalization of the data within each well location of the assay (i.e.,

the Z-score normalization is performed across all the plates of the assay).

In the HTS workflow, the normalization/data correction phase is usually followed by
the hit selection process. During this process the most active compounds are identified as hits
and selected for additional screens. A predefined threshold is usually established to select hits
(Malo et al. 2006). Depending on the specifics of the research study, one may be looking for
compounds whose activity level is greater than the defined threshold (i.e., activation assay) or
interest may lie in the compounds whose measurements are below the defined threshold (i.e.,
inhibition assay). In this study, we always assume the latter case where the hits are the
compounds with the smallest measurement values. The threshold for defining hits is usually
expressed using the mean value and standard deviation of the considered measurements. The
most widely used threshold is @30, where u is the mean value and o is the standard
deviation of the considered measurements. Hits can be selected globally, over the whole
assay, when the mean and standard deviation of all assay compounds are calculated, or on a
plate-by-plate basis, when the mean and standard deviation of the compounds of each single
plate are considered (Makarenkov et al. 2007, Malo et al. 2006).

The presence of systematic error in a HTS assay can be identified and visualized using
its hit distribution surface (Kevorkov and Makarenkov 2005, Makarenkov et al. 2007). Such
a surface can be computed by determining the number of selected hits for each well location.
In the ideal case when systematic error is absent, we expect that the hits are evenly
distributed over the well locations. However, this expectation is not always fulfilled in real
datasets (see Figure 2.1). This figure presents the hit distribution surfaces computed for two
hit selection thresholds, ;20 and 30, of two experimental HTS screens performed at
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McMaster (Figure 2.1 a, b — Elowe et al. 2005) and Princeton (Figure 2.1 ¢, d — Helm et al.
2003) Universities. The row and column effects in the hit distributions across plates are

easily noticeable here, especially in the case of a lower (i.e., -20) hit selection threshold.

(c) @

Figure 2.1 Systematic error in experimental HTS data. Hit distribution surfaces for the
McMaster (cases (a) and (b) - 1250 plates — Elowe et al. 2005) and Princeton (cases (c)
and (d) - 164 plates — (Helm et al. 2003) Universities experimental HTS assays. Values

deviating from the plate means for more than 2 standard deviations - cases (a) and (c),
and for more than 3 standard deviations - cases (b) and (d) were selected as hits. The
well, row and column positional effects are shown (the wells containing controls are not

presented).
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The dataset provided by the Chemistry Department of Princeton University consists of
a screen of compounds that inhibit the glycosyltransferase MurG function of E. coli (Helm et
al. 2003). The experimental data for 164 plates were considered. According to the ChemBank
description, this assay has been obtained during a screen that measured the binding of MurG
to a fluorescent (fluorescein-labelled) analogue of UDP-GlcNAc. Positives were defined as
compounds that inhibit binding of GlcNAc to MurG. The McMaster assay was originally
used as a benchmark in McMaster Data Mining and Docking Competition (Elowe et al.
2005). The McMaster dataset, which will be examined in detail in this study, consists of
compounds intended to inhibit the E. coli Dihydrofolate reductase (DHFR). The screen of
50,000 training molecules selected by the organizers of McMaster Competition yielded 96
primary hits, then, 12 potent hits (i.e., hits confirmed by dose response analysis), the majority
of which were novel DHFR inhibitors that fell into 3 broad structural classes (Elowe et al.
2005).

It is worth noting that the application of sophisticated pre-processing HTS techniques
does not always guarantee data improvement. Moreover, the application of systematic error
correction methods on error-free HTS assays will produce data in which certain activity
measurements will be biased (Makarenkov et al. 2007). The result of such a misuse of data
pre-processing methods can lead to a dramatically inaccurate hit selection. Makarenkov et al.
2007 (see Figure 2 and Figure 4, cases a and c, in Makarenkov et al. 2007) showed that all
data correction methods introduce a bias when applied to error-free HTS data. This bias can
be less important (e.g., in the case of the Well correction procedure) or very significant (e.g.,
in the case of the B-score method). Hence, the data correction methods should be applied
with caution and only in situations when the presence of systematic error in the given assay
has been demonstrated by an appropriate statistical methodology. Assessing the presence of

systematic error in experimental HTS is the main focus of this article.

2.3 Materials And Methods
2.3.1 Data description

In this study we consider an experimental assay provided by the HTS laboratory of
McMaster University. This assay was called Test assay and used as a benchmark in

McMaster Data Mining and Docking Competition (Elowe et al. 2005). McMaster Test assay
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consists of 50,000 different chemical compounds whose potential to inhibit the E. coli DHFR
was tested. Each of the 50,000 considered compounds was screened in duplicate; two copies
of each of the 625 plates were run through the HTS equipment; 1250 plates in total, with
wells arranged in 8 rows and 12 columns, were screened; columns 1 and 12 of each plate
were used for positive and negative controls and were, therefore, not considered in our study.
Thus, every plate comprised 80 different compounds. The exact experimental conditions of
Test assay are reported in (Elowe et al. 2005). The competition organizers defined as primary
hits the compounds that reduced the DHFR of E. coli to 75% of the average residual activity
of the high controls. Two lists of hits were published (for more details, the reader is referred
to: http://hts.mcmaster.ca/Downloads/82BFBEB4-F2A4-4934-B6A8-804CADSE25A0 _
files/experimental_actives.pdf). The first list, called a consensus hits list, contained all
compounds that were classified as hits in both of their replicate measurements (i.e., both
measurement values were lower than or equal to 75% of the reference controls). Only 42 of
all the 50,000 tested compounds were declared consensus hits. The second list, called an
average hits list, contained 96 compounds classified as hits when the average value of the
two HTS measurements was lower than or equal to 75% of the reference controls. Obviously,
all consensus hits were also average hits. A secondary screening of the 96 average hits was
also performed in order to determine their activity in different concentrations. As result of the
secondary screening, 12 of the average hits were identified as D-R hits (i.e., hits having well-

behaved dose-response curves).

2.3.2 Generating systematic error

We simulated data in order to evaluate the performances of the systematic error
detection tests. First, we generated error-free datasets consisting of random normally
distributed data. The basic data format adopted here was that of the McMaster dataset - 1250
plates, each containing 96 wells arranged in 8 rows and 12 columns. In addition, we also
generated two other basic datasets which were 4 and 16 times bigger. They also included
1250 plates, each of them comprising 384 (16 x 24) and 1536 (32 x 48) wells, respectively. It
is worth noting that 96, 384 and 1536-well plates are the most typical plate formats used in
the modern HTS.



An assay was defined as an ordered set of plates PL,, where p (1 < p < 1250) is the

plate number. Each plate, PL,, can be viewed as a matrix of experimental HTS measu-

rements Xiip >

Nz and N¢ are, respectively, the number of rows and columns in PL,. The generated values
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where i (1 £i< Np) is the row number, j (1 <j < N¢) is the column number, and

x;;»’s followed the standard normal distribution ~N(0, 1).

Error type

Generation of error-affected
measurements

A. Datasets with both column and row
systematic errors which are constant across
all assay plates.

!

ip =Xp T +C + Rand,, ,
1<i<8,1<j<12,1<p<1250.

X

B. Datasets with the column systematic
error only which is constant across all
plates.

!

Xyp =Xyp € +Randy.p,
1<i<£8, 1 £j<12,1 Sp<1250.

C. Datasets with the well systematic error
which is constant across all plates.

’ —
i =Xip TWy t Randg.p s

1<i<8,1<j<12,1<p<1250.

X

D. Datasets with the variable column and p

row systematic error which are different for *ip . . iip»
each plate. 15i=8,15j=512, I'sp= 1230.

=Xy, +1, +c,, + Rand

E. Datasets with the random error only (i.e., Xjp =%, + Rand,,
systematic error was absent). 1<i<8,1<j<12,1<p<1250.

where: x;,, is the error-affected value in well i,j (row i, column j) of plate p.

X;p is the original value in well i,j of plate p in the error-free dataset.

r; is the systematic error in row i (constant over all plates); it had a normal distribution
with the parameters ~N(0, C).

¢; is the systematic error in column j (constant over all plates); it had a normal distribution
with the parameters ~M0, C).

wy is the systematic error that affects well ij (row i, column j) and is the same for all
plates; it had a normal distribution with the parameters ~N(0, C).

rp is the systematic error in row i of plate p; it had a normal distribution with the
parameters ~N(0, C).

cjp is the systematic error in column i of plate p; it had a normal distribution with the
parameters ~ M0, C).

Randy, is the random error affecting well i,/ (row i, column j) of plate p; it had a normal
distribution with the parameters ~M0, 0.35D).

Datasets for C =0, 0.65SD, 1.25D, 1.85D, 2.4SD and 3SD were generated and tested, where
pis the mean and SD is the standard deviation of the error-free dataset.

Table 2.1 - Five types of HTS datasets containing different kinds of systematic and/or

random error generated and tested in this study.
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Then, the hits were added to the datasets. Several hit percentages, 4, were tested in our
simulations: 2 = 0.5, 1, 2, 3, 4 and 5%. The locations and values of hits were chosen
randomly. The probability of each well in each plate to contain a hit was #%. The values of
hits followed a normal distribution with the parameters ~MuO-5SD, SD), where u and SD

are the mean value and standard deviation of the error-free dataset.

In total, five types of datasets, presented in Table 2.1, containing different kinds of
systematic and/or random error were generated and tested. In order to render our simulation
study more realistic, we limited the number of rows, columns and wells affected by
systematic error. Typically, in real HTS assays only some of the error parameters (i.e., ;, cj,
Wy, rip and cjp, see Table 2.1) are non null and only a few columns and rows are biased by
systematic error. In datasets of types A and B, the number of rows and columns affected by
systematic error as well as their locations were chosen randomly. These parameters were
identical for all the plates of the assay. In datasets of type D, the number of rows and columns
affected by systematic error as well as their locations were also randomly selected, but these
parameters were different for different plates of the assay. In datasets of type C, the number
of biased wells and their locations were randomly selected and were the same for all assay
plates. The datasets used in our simulations were subject to the following constraints. For the
96-well plates, at most 2 rows and 2 columns (cases A, B and D), and not more than 10% of
the wells (case C) were affected by systematic error. For the 384-well plates, the limits were
4 rows, 4 columns and 10% of the wells, whereas for the 1536-well plates, systematic error

affected at most 8 rows, 8 columns and 10% of wells.

2.3.3 Systematic error detection tests

Three systematic error detection methods, including the t-test, the * goodness-of-fit
test and Discrete Fournier Transform procedure followed by the Kolmogorov-Smirnov test,

were examined in this study in the context of experimental HTS.

2.3.3.1 t-test

The first systematic error detection test was based on the classical two-sample

Student’s t-test for the case of samples with different sizes. In Simulation 1, we carried out
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this test on every row and every column of each assay. In Simulation 2, we applied it to the
rows and columns of the assay’s hit distribution surfaces. In both cases, we divided the data
into two independent subsets (i.e., samples). The first subset contained the measurements of
the tested row or column while the second subset consisted of all remaining plate
measurements. In this test, the null hypothesis A, was that the selected row or column does
not contain systematic error. If systematic error is absent, then the mean of the given row or
column is expected to be close to the mean of the rest of the data in the given plate or hit

distribution surface. For the two samples in hand: S; with N; elements and S; with N,
elements, we first calculated the two sample variances s and s?, and then their weighted

average (Equation 2.3):

2 (N =1)xs? +(N, -1)xs2

sy = 23
P N 1 + N 2 S 2 ( )
The value of the #-statistic was then obtained as presented in Equation 2.4:
PR . SN , (2.4)

1(1 1)
By ===
N] N2

where g4 is the mean of the sample S; and & is the mean of the sample S,. The calculated 7
statistic was then compared to the corresponding critical value for the chosen statistical
significance level « (the « values equal to 0.01 and 0.1 were used in our simulations) in order
to decide whether or not H, should be rejected. While assuming homogeneity of variance in
the construction of the t-test, the computation can be optimized using the equivalent contrasts

in the context of an analysis of variance.

2.3.3.2 i goodness-of-fit test

The second tested method was the ¥* goodness-of-fit test. This test was performed in
Simulation 2 only in order to assess the presence of systematic error in the hit distribution
surfaces. It was first recommended in (Makarenkov et al. 2007) in order to identify

systematic error in HTS data. The null hypothesis Hp, here, is that no systematic error is
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present in the data. If Hj is true, then the hits are evenly distributed across the well locations
and the observed counts of hits x;; in each row i and each column j of the hit distribution
surface is not significantly different from the expected value calculated as the total counts

across the entire surface divided by the number of wells. The rejection region of Hj is
P(;(2 > Ca)> a, where C, is the 7/ distribution critical value corresponding to the selected

a parameter (the « values equal to 0.01 and 0.1 were tested here) and to the number of

degrees of freedom of the model.

For a hit distribution surface with Ny rows and N columns, we can assess the presence
of systematic error in a given row r by computing the test statistic z> by means of Equation

2:5¢

2ies
R R (2.5)

where E is the total hits count of the whole hit distribution surface divided by the number of
wells (Ng x N¢) with the number of degrees of freedom equal to Nz — 1.

Similarly, the columns of the hit distribution surface affected by systematic error can

be identified by calculating the test statistic y2, using Equation 2.6 below:

& (xic =5 ) :
A (2.6)
m B
where E is the total hits count of the whole hit distribution surface divided by the number of

wells (Ng x N¢) with the number of degrees of freedom equal to N — 1.

The presence of systematic error in the assay can be detected even if systematic error
affects particular wells of the assay, not necessarily located in the same row or column. We
can achieve it by calculating the test statistic 7° over all well locations of the given hit

distribution surface (Equation 2.7):
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NR N (x; —E)

2 =
C Iy e s @.7)

i=1 j=1

where E is the total hits count of the whole hit distribution surface divided by the number of
wells (Ng x N¢) with the number of degrees of freedom equal to Ny x No — 1.

2.3.3.3 Discrete Fourier Transform and Kolmogorov-Smirnov test

The third tested method consisted of the Discrete Fourier Transform (DFT) procedure
(Cooley and Tukey 1965) followed by the Kolmogorov-Smimov goodness-of-fit test
(D'Agostino and Stephens 1986). DFT has been widely used in the frequency analysis of
signals and, in particular, for building the signal’s density spectrum. The power density
spectrum shows the energy contained in each frequency component existing in the signal. In
order to apply DFT to HTS data we need first to unroll a plate measurement matrix into a
linear sequence of measurements. There are two natural ways to do so: (a) to build the
sequence starting by the first row of the plate, followed by the second row, then third one,
and so on, and (b) to start by the first column of the plate, followed by the second column,
third one, and so on. The analysis of sequences (a) and (b) would allow us to detect column
and row effects, respectively. DFT detects frequencies of signals that repeat every two, three,

four, and so on, positions in the sequence. DFT calculates the amplitudes of every possible
frequency component. Let y (1 <k < N) be the power density spectrum generated by the

DFT analysis for the plate p with N wells.

As a second step of this method, we carry out the Kolmogorov-Smirnov test to
compute the probability of the density spectrum y/ occurring under the null hypothesis of
no effect. The test statistic D can be calculated as follows:

D= max (F(y,f)—%, —F(y,{’)j, 2.8)

1<k< N

=]~

where F (y,f’) is defined as the number of values in the density spectrum that are lower than

or equal to yf,ie., F(y,f )E n {y,”, 1<ISN,yf <y? }" . Big values of D lead to the rejection
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of the null hypothesis (i.e., x;;’s have been drawn from random normally distributed data).
The method consisting of the DFT analysis followed by the Kolmogorov—Smirnov test was
included in some commercial software focusing on the detecting systematic error in

experimental data (e.g. in Array Validator described in Kelley 2005).

2.4 Results And Discussion
2.4.1 Simulation 1: Detecting systematic error in individual plates

Simulation 1 consisted of the detection of systematic error on a plate-by-plate basis.
Artificial HTS data for three different plate sizes: 96 wells — 8 rows and 12 columns, 384
wells — 16 rows and 24 columns, and 1536 wells — 32 rows and 48 columns were first
generated. We started by creating basic error-free datasets for which the well measurements
followed a standard normal distribution ~M0,1). For all datasets the number of plates was set
to 1250 —the same as in McMaster Test assay (Elowe et al. 2005). Then, we added 1% of hits
to each of the generated basic datasets. The hits were added in such a way that the probability
that a given well contained a hit was 1%. All the hit values followed a normal distribution
with the parameters ~N(u5SD, SD), where u and SD are the mean value and standard
deviation of the basic dataset (without hits).

Using these error-free datasets, we generated datasets comprising different types of
systematic error, labelled A to E, as reported in Table 2.1. Systematic error was added only to
some of the assay rows (columns, wells). The number of rows (columns, wells) affected by
systematic error as well as the indexes of the affected rows, columns and wells were
determined randomly for each considered dataset. Six types of error-affected sets were
produced for each error-free dataset by varying the standard deviation of systematic error.
The following values of the systematic error standard deviation were used: 0, 0.6SD, 1.25D,
1.8SD, 2.4SD and 3.08D, where SD is the standard deviation of the basic dataset. The t-test
and K-S test were then applied to error-affected data. Both tests produced a binary result for
each row and column of each plate: Systematic error was detected or not detected in this row
or column. The output was then compared to the information from the data generation phase

to determine whether the result of the test was correct.
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Cohen’s kappa coefficient (Cohen 1960, Fleiss 1981) was calculated to estimate the
accuracy of both statistical tests. Cohen's kappa is a measure of inter-rater agreement or inter-
annotator agreement. The kappa coefficient, which takes into account the agreement

occurring by chance is computed as follows (Equation 2.9):

_ Pr(a)- Pr(e)

1-Pr(e) 29

where Pr(a) is the relative observed agreement among raters (i.e., statistical tests in our
study) and Pr(e) is the hypothetical probability of chance agreement. If the raters are in
complete agreement, then x = 1. If there is no agreement among the raters, other than what

would be expected by chance, then x <0.

In our HTS context, Pr(a) and Pr(e) were calculated as follows:

TP+TN (TP + FN)x (TP + FP)+ (TN + FN)x(IN + FP)

Pr(a)=—————-— and Pr(e) = 5 , where
RTINC (Px(Ng+Nc))

P is the number of plates in the assay, Nz and N, are, respectively, the number of rows and
columns per plate, TP (true positives) is the sum of the numbers of rows and columns where
systematic error was added during the data generation and then detected by the test, FP (false
positives) is the sum of the numbers of rows and columns where systematic error was not
added but detected by the test, TN (frue negatives) is the sum of the numbers of rows and
columns where systematic error was not added and not detected by the test, and FN (false
negatives) is the sum of the numbers of rows and columns where systematic error was added

but not detected by the test.

For all generated variants of error-affected data, 500 different sets were created. The
averages of obtained Cohen's kappa coefficients are represented in Figures 2.2, 2.3 and 2.4
(for the 96, 384 and 1536-well plates, respectively). Also, the sensitivity (Figures 2.9, 2.10
and 2.11, see the section Supplementary Figures), specificity (Figures 2.12, 2.13 and 2.14)
and success rate (Figures 2.21, 2.22 and 2.23) of the two tests are depicted. The sensitivity
and specificity of the two tests were calculated as follows (Equations 2.10):



Sensitivity = m

b
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IN

——— 2.10
IN + FP ( )

Specificity =

Since datasets of types C and E did not contain row or column systematic error, the

sensitivity and Cohen's kappa coefficient of both competing statistical tests for these data

were undefined (i.e., TP = FN = 0 for these data types).
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Figure 2.2 Simulation 1, Plate Size: 96 wells — Cohen’s Kappa vs Error Size Systematic

error size: 10% (at most 2 columns and 2 rows affected). First column: (a) - (¢): a=

0.01; Second column: (d) - (f): @= 0.1. Systematic Error Detection Tests: (0) t-test and
(O) K-S test.
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Figure 2.3 Simulation 1, Plate Size: 384 wells — Cohen’s Kappa vs Error Size Systematic
error size: 10% (at most 4 columns and 4 rows affected). First column: (a) - (¢): a=
0.01; Second column: (d) - (f): &= 0.1. Systematic Error Detection Tests: (Q) t-test and
(O) K-S test.

The kappa coefficient curves in Figures 2.2, 2.3 and 2.4 show that the t-test clearly
outperforms DFT followed by the K-S test for all selected sizes of systematic error,
confidence levels and plate sizes. The accuracy of the t-test grows as the size of systematic
error increases. It also grows slightly as the plate size increases. The accuracy of the K-S test
remains very low and usually varies between 0.0 and 0.1, thus suggesting a very poor

systematic error recovery by this test.
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Figure 2.4 Simulation 1, Plate Size: 1536 wells - Cohen’s Kappa vs Error Size.
Systematic error size: 10% (at most 8 columns and 8 rows affected). First column: (a) -
(¢): a=0.01; Second column: (d) - (f): a= 0.1. Systematic Error Detection Tests: (0) t-

test and (O) K-S test.

Figures 2.21, 2.22 and 2.23 indicate that the success rate of the t-test is largely
independent of the systematic error variance and remains very steady for all tested types of
systematic error and plate sizes. In contrast, the success rate of the K-S test decreases as the
standard deviation of systematic error increases. The performance of the K-S test is also
affected by the size of the plate (Figures 2.2, 2.3 and 2.4). The K-S test success rate decreases
significantly, and often falls below 50%, for larger plates (Figure 2.23). The chosen
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confidence level a affects the accuracy of both statistical tests. For instance, the use of a =
0.1 generally causes a decrease in the kappa coefficient (the decrease of 0.2 on average, see
Figures 2.2, 2.3 and 2.4) and in the success rate (the decrease of 10% on average, see Figures
2.21, 2.22 and 2.23) of the t-test, when compared to a = 0.01. The sensitivity charts (Figures
2.9, 2.10 and 2.11) show that the increase in the variance of systematic error leads to the
increase in sensitivity of both tests. In terms of sensitivity, the t-test outperforms the K-S test
for all data types and all sizes of systematic error, the only exception being large plates tested

with the confidence level = 0.1 (Figure 2.11).

Similarly to real HTS assays, our artificially generated datasets had systematic error in
only a few rows and/or columns. They contained many negative and only a few positive
samples. Such an imbalance between positive and negative samples implies that the overall
accuracy of the tests will depend much more on the test specificity than on its sensitivity.
Figures 2.12, 2.13 and 2.14 confirm this observation — most of the specificity charts resemble

the corresponding success rate charts (see Figures 2.21, 2.22 and 2.23).

2.4.2 Simulation 2: Detecting systematic error on hit distribution surfaces

The second simulation, Simulation 2, consisted of the detection of systematic error on
the hit distribution surfaces. The recommendation to use statistical tests to examine hit
distribution surfaces of experimental HTS assays was first formulated in (Makarenkov et al.
2007), in the case of the 3/ test. In Simulation 2, we also considered artificially generated
assays with plates of three different sizes (i.e., 96-, 384- and 1536-well plates as well as
1250-plate assays) with the measurements following the standard normal distribution. From
every basic dataset we generated 6 error-free datasets comprising 0.5%, 1%, 2%, 3%, 4% and
5% of hits. All the hit values followed a normal distribution with the parameters ~N(u—5SD,
SD). Using the error-free datasets, we generated assays containing different types of
systematic error (i.e., from A to E). Systematic error, added to some of the assay rows
(columns, wells) only, followed the normal distribution with the mean value of 0 and the
standard deviation of 1.2S8D. For each such an assay, we calculated its hit distribution surface
for the hit selection threshold of 43 o. Then we applied, in turn, the t-test, and the K-S and

2 goodness-of-fit tests to detect the presence of systematic error.
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For each error variant, 500 different datasets were generated and the averages of
obtained Cohen’s kappa coefficients were plotted in Figures 2.5, 2.6 and 2.7. The sensitivity
and specificity of the three tests were depicted in Figures 2.15 to 2.20, and the success rate in
Figures 2.24, 2.25 and 2.26. The hit distribution surfaces for the assays of types C, D and E
(these assays don’t contain systematic error that repeats along all assay plates) cannot be used
to retrace row or column systematic error. Hence, the sensitivity and Cohen’s kappa

coefficient for datasets of types C, D and E were undefined.
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Figure 2.5 - Simulation 2, Plate Size: 96 wells, Cohen’s Kappa vs Hit Percentage.
Systematic error size: 10% (at most 2 columns and 2 rows affected). First column: cases
(a) - (b): @a=0.01; Second column: cases (c) - (d): a= 0.1. Systematic Error Detection

Tests: (Q) t-test, () K-S test and (A)  goodness-of-fit test.

The kappa coefficient curves presented in Figures 2.5, 2.6 and 2.7 illustrate that the t-
test clearly outperforms they’ goodness-of-fit test as well as the combination of DFT and the
K-S test for all selected sizes of systematic error, confidence levels and plate sizes. The
accuracy of the t-test generally grows as the size of systematic error increases, but this trend
is not as steady as in Simulation 1: The curve’s minimum is not always associated with the

lowest systematic noise (e.g., see cases ¢ and d in Figure 2.5).
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Figure 2.6 Simulation 2, Plate Size: 384 wells, Cohen’s Kappa vs Hit Percentage.
Systematic error size: 10% (at most 4 columns and 4 rows affected). First column: cases
(a) - (b): @=0.01; Second column: cases (c) - (d): &= 0.1. Systematic Error Detection

Tests: () t-test, ((I) K-S test and (A) 7 goodness-of-fit test.

The kappa values for the 3’ and K-S tests usually varies between 0.0 and 0.25, thus
suggesting a poor systematic error recovery provided by both of them. As in Simulation 1,
the success rate of the t-test is largely independent of the systematic error variance (Figures
2.24, 2.25 and 2.26). Moreover, the success rate of the t-test varies between 90% and 100%
in the most of simulated experiments. At the same time, the accuracy of the K-S test is
extremely low in almost all of the considered situations. The success rate analysis of the
goodness-of-fit test suggests that this test follows different patterns for different types of data.
For datasets of types D and E, whose hit distribution surfaces did not contain systematic
error, the accuracy of the 77 test is very close to that of the t-test (Figures 2.24, 2.25 and 2.26,
cases d, e, i and j). However, for the datasets that contained row and/or column systematic
error and well systematic error, the success rate of the 7 goodness-of-fit test is significantly
lower than that of the t-test (Figures 2.24, 2.25 and 2.26, cases a to ¢ and f to h) and shows a
tendency to deteriorate when the percentage of hits in the data increases. The sensitivity

patterns shown in Figures 2.15, 2.16 and 2.17 demonstrate that the sensitivity of the three
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statistical tests grows as the percentage of hits contained in the data increases. Similarly to

Simulation 1, choosing a bigger value of « led to a decrease in the accuracy of all tests.
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Figure 2.7 Simulation 2, Plate Size: 1536 wells, Cohen’s Kappa vs Hit Percentage.
Systematic error size: 10% (at most 8 columns and 8 rows affected). First column: cases
(a) - (b): @=0.01; Second column: cases (c) - (d): @= 0.1. Systematic Error Detection

Tests: (O) t-test, (0) K-S test and (A) 7 goodness-of-fit test.

2.4.3 Application to the McMaster data

As a final step in our study we applied the three discussed systematic error detection
tests on real HTS data. We examined the impact that the presented methodology would have
on the hit selection process in McMaster Data Mining and Docking Competition Test assay
(Elowe et al. 2005). Similarly to Simulations 1 and 2 carried out with artificial data, we
performed two types of analysis. First, we studied the raw HTS measurements, and then

calculated and analyzed the hit distribution surfaces of Test assay.

We carried out the t-test on every plate of Test assay, scanning all rows and columns of

each plate for the presence of systematic error. We performed the calculation for several
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confidence levels including: = 0.01, 0.05, 0.1 and 0.2. In each case, we counted the number
of rows and columns in which the test reported the presence of systematic error and also the
number of plates in which at least one row or column contained systematic error. The

collected results are presented in Table 2.2.

a Plates Rows Rows % Columns Columns %
0.01 159 76 0.76% 94 0.75%
0.05 814 575 5.76% 606 4.86%

0.1 1121 1148 11.50% 1296 10.38%
0.2 1241 2242 22.46% 2583 20.70%

Table 2.2 - Number of rows, columns and plates (where at least one row or column
contains systematic error) of McMaster Test assay in which the t-test reported the
presence of systematic error, depending on the a parameter. Only 8 rows and 10
columns of McMaster Test assay were examined because the first and twelfth columns

of the (8 by 12) plates were used for controls.

- Original Obtained Preserved Added Removed
hits hits hits hits hits
0.01 96 123 57 66 39
0.05 96 125 53 70 41
0.1 96 126 52 74 44
0.2 96 130 55 75 41

Table 2.3 - Number of hits selected in McMaster Test assay for the u-3SD threshold
after the application of the B-score correction, depending on the & parameter. The t-test

was carried out to detect systematic error.

The obtained results suggest that the number of positives for the row and column
effects is almost exactly what we would expect by chance (e.g., approximately 1% when we
used a = 0.01, 5 % when we used @ = 0.05, etc.). This means that there is no statistical

evidence of bias for columns and rows in McMaster Test assay.
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" Original Obtained Preserved Added Removed
hits hits hits hits hits
0.01 96 357 79 278 17
0.05 96 419 79 340 17
0.1 96 411 79 332 17
0.2 96 417 76 341 20

Table 2.4 - Number of hits selected in McMaster Test assay for the u—2.295D threshold
(i.e., threshold used by the McMaster competition organizers to select the 96 original
average hits) after the application of the B-score correction, depending on the a

parameter. The t-test was carried out to detect systematic error.

For comparative purposes, we corrected the raw McMaster data using the B-score
method in all plates where systematic error was detected by the t-test. Unlike the artificially
generated data used in the simulation study, McMaster Test assay contained replicated plates
- every compound of the assay was screened twice (Elowe et al. 2005). We adjusted our hit
selection procedure to search for average hits. Thus, we first calculated the average of the
two compound measurements and then used it in the hit selection process. If systematic error
was detected only in first plate and, therefore, corrected using the B-score method, then the
residuals produced by B-score were incomparable with the values of the second (i.e.,
replicated) plate. In order to make the measurements in both plates comparable, we
normalized both plates by means of the Z-score method prior to calculating the average
compound activity. Using the corrected dataset, we determined the assay hits for two hit
selection thresholds: 35D — the most popular hit cutting threshold employed in HTS, and
4#-2.298D — the threshold used by the McMaster competition organizers to identify the
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