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RÉSUMÉ 

Durant le criblage à haut débit (High-throughput screening, HTS), la première étape 
dans la découverte de médicaments, le niveau d'activité de milliers de composés chimiques 
est mesuré afin d'identifier parmi eux les candidats potentiels pour devenir futurs 
médicaments (i .e., hits). Un grand nombre de facteurs environnementaux et procéduraux peut 
affecter négativement le processus de criblage en introduisant des erreurs systématiques dans 
les mesures obtenues. Les erreurs systématiques ont le potentiel de modifier de manière 
significative les résultats de la sélection des hits, produisant ainsi un grand nombre de faux 
positifs et de faux négatifs. Des méthodes de correction des données HTS ont été 
développées afin de modifier les données reçues du criblage et compenser pour l'effet 
négatifs que les erreurs systématiques ont sur ces données (Heyse 2002, Brideau et al. 2003, 
Heuer et al. 2005, Kevorkov and Makarenkov 2005, Makarenkov et al. 2006, Malo et al. 
2006, Makarenkov et al. 2007). 

Dans cette thèse, nous évaluons d' abord l'applicabilité de plusieurs méthodes 
statistiques servant à détecter la présence d'erreurs systématiques dans les données HTS 
expérimentales, incluant lei goodness-of-fit test, le t-test et le test de Kolmogorov-Smirnov 
précédé par la méthode de Transformation de Fourier. Nous montrons premièrement que la 
détection d'erreurs systématiques dans les données HTS brutes est réalisable, de même qu ' il 
est également possible de déterminer l'emplacement exact (lignes, colonnes et plateau) des 
erreurs systématiques de l' essai. Nous recommandons d'utiliser une version spécialisée dut­
test pour détecter l'erreur systématique avant la sélection de hits afin de déterminer si une 
correction d'erreur est nécessaire ou non. 

Typiquement, les erreurs systématiques affectent seulement quelques lignes ou 
colonnes, sur certains, mais pas sur tous les plateaux de l'essai. Toutes les méthodes de 
correction d'erreur existantes ont été conçues pour modifier toutes les données du plateau sur 
lequel elles sont appliquées et, dans certains cas, même toutes les données de l'essai . Ainsi, 
lorsqu'elles sont appliquées, les méthodes existantes modifient non seulement les mesures 
expérimentales biaisées par l'erreur systématique, mais aussi de nombreuses données 
correctes. Dans ce contexte, nous proposons deux nouvelles méthodes de correction d'erreur 
systématique performantes qui sont conçues pour modifier seulement des lignes et des 
colonnes sélectionnées d'un plateau donné, i.e., celles où la présence d'une erreur 
systématique a été confirmée. Après la correction, les mesures corrigées restent comparables 
avec les valeurs non modifiées du plateau donné et celles de tout l' essai . Les deux nouvelles 
méthodes s'appuient sur les résultats d'un test de détection d'erreur pour déterminer quelles 
lignes et colonnes de chaque plateau de l'essai doivent être corrigées. Une procédure générale 
pour la correction des données de criblage à haut débit a aussi été suggérée. 

Les méthodes actuelles de sélection des hits en criblage à haut débit ne permettent 
généralement pas d'évaluer la fiabilité des résultats obtenus. Dans cette thèse, nous décrivons 
une méthodologie permettant d'estimer la probabilité de chaque composé chimique d'être un 
hit dans le cas où l'essai contient plus qu'un seul réplicat. En utilisant la nouvelle 
méthodologie, nous définissons une nouvelle procédure de sélection de hits basée sur la 
probabilité qui permet d' estimer un niveau de confiance caractérisant chaque hit. En plus, de 
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nouvelles mesures servant à estimer des taux de changement de faux positifs et de faux 
négatifs, en fonction du nombre de réplications de l'essai, ont été proposées . 

En outre, nous étudions la possibilité de définir des modèles statistiques précis pour la 
prédiction informatique des mesures HTS. Remarquons que le processus de criblage 
expérimental est très coûteux. Un criblage virtuel, in silico, pourrait mener à une baisse 
importante de coûts. Nous nous sommes concentrés sur la recherche de relations entre les 
mesures HTS expérimentales et un groupe de descripteurs chimiques caractérisant les 
composés chimiques considérés. Nous avons effectué l'analyse de redondance polynomiale 
(Polynomial Redundancy Analysis) pour prouver l'existence de ces relations. En même 
temps, nous avons appliqué deux méthodes d'apprentissage machine, réseaux de neurones et 
arbres de décision, pour tester leur capacité de prédiction des résultats de criblage 
expérimentaux. 

Mots-clés : criblage à haut débit (HTS), modélisation statistique, modélisation 
predictive, erreur systématique, méthodes de correction d'erreur, méthodes d'apprentissage 
automatique 



ABSTRACT 

During the high-throughput screening (HTS), an early step in the drug discovery 
process, the activity levels of thousands of chemical compounds are measured in order to 
identify the potential drug candidates, called hits. A number of environmental and procedural 
factors can affect negatively the HTS process, introducing systematic error in the obtained 
experimental measurements. Systematic error has the potential to alter significantly the 
outcome of the hit selection procedure, thus generating eventual false positives and false 
negatives. A number of systematic error correction methods have been developed for 
compensating for the effect of this error in experimental HTS (Heyse 2002, Brideau et al. 
2003 , Kevorkov and Makarenkov 2005, Heuer et al. 2005, Makarenkov et al. 2006, Malo et 
al. 2006, Makarenkov et al. 2007). 

In this thesis, we first evaluate the applicability of severa! statistical procedures for 
assessing the presence of systematic error in experimental HTS data, including the ;( 
goodness-of-fit test, Student's t-test and Kolmogorov-Smirnov test preceded by the Discrete 
Fourier Transform method. We show that the detection of systematic error in raw HTS datais 
achievable, and that it is also possible to determine the most probable assay locations (rows, 
columns and plates) affected by systematic error. We conclude that the t-test should be 
preferably used prior to the hit selection in order to determine whether an error correction is 
required or not. 

Typically, systematic error affects only a few rows and/or columns of the given plate 
(Brideau et al. 2003 , Makarenkov et al. 2007). Ali the existing error correction methods have 
been designed to modify ali the data on the plate on which they are applied, and in sorne 
cases, even ail the data in the assay. Thus the existing methods modify not only the error­
biased measurements, but also the error-free measurements. We propose two new error 
correction methods that are designed to modify (i.e. , correct) only the measurements of the 
selected rows and columns where the presence of systematic error has been confirmed. After 
the correction, the modified measurements remain comparable with the unmodified ones 
within the given plate and across the entire assay. The two new methods rely on the results 
from an error detection test to determine which plates, rows and columns should be corrected. 
Our simulations showed that the two proposed methods generally outperform the popular B­
score procedure (Brideau et al. 2003). We also describe a general correction procedure 
allowing one to correct both plate-specifie and screen-specific systematic error. 

The hit selection methods used in the modem HTS do not allow for assessing the 
reliability of the selected hits. In this thesis, we describe a methodology for estimating the 
probability of each compound to be a hit when the assay contains more than one replicate. 
Using the new methodology, we defme a new probability-based hit selection procedure that 
allows one to estimate the probability of each considered compound to be a hit based on the 
available replicate measurements. Furthermore, new measures for computing the false 
positive and false negative change rates depending on the number of experimental assay 
replicates (i.e., how these two rates would change if an additional screen replicate will be 
performed), are introduced. 

Further, we investigate the possibility of developing accurate statistical models for 
computer prediction of HTS measurements. Note that the experimental HTS process is very 
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expensive. The use of virtual, in silico, HTS instead of experimental HTS could lead to an 
important cost decline. We first focus on finding relationships between experimental HTS 
measurements and a group of descriptors characterizing the given chemical compounds. We 
carried out Polynomial Redundancy Analysis (Polynomial RDA) to prove the existence of 
such relationships. Second, we evaluate the applicability of two machine learning methods, 
neural networks and decision trees, for predicting the hit/non-hit outcomes for selected 
compounds, based on the values oftheir chemical descriptors. 

Keywords: high-throughput screening (HTS), statistical modeling, predictive 
modeling, systematic error, error correction methods, machine learning methods 



CHAPTERI 

INTRODUCTION 

1.1 High-Throughput Screening 

High-throughput screening (HTS) is a large-scale highly automated process used 

widely within the pharmaceutical industry (Broach and Thomer 1996, Carnero 2006, Malo et 

al. 2006, Janzen and Bernasconi 2009). lt is employed in the early stages of the drug 

discovery process during which a huge number of chemical compounds are screened and the 

compounds activity against a specifie target measured. The goal of HTS is to identify among 

ali tested compounds those showing promising "drug-like" properties. As specified in Sirois 

et al. (2005) and Malo et al. (2006), the drug discovery could be described as a multi-step 

process (Figure 1.1 ): 

1. Hit identification: target selection (i.e., researchers typically focus on enzymes 

or proteins that are essential to the survival of an infectious agent), assay 

preparation, primary screening; 

2. Hit verification: re-testing, secondary screening and dose response curve 

generation; 

3. Lead identification: structure-activity relationships (SAR) analysis, 

establishing and confmning the mechanism of action; 

4. Clinical studies: drug effectiveness evaluation, drug-to-drug interactions, 

safety assessment studies; 

5. Regulatory approval for a new drug. 
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High-throughput screening is the backbone of the first step of the drug discovery 

process. At that stage, thousands of chemical compounds are tested in an initial primary 

screen. The identified compounds are marked for follow-up in the second step of the process 

when HTS is employed again for performing secondary screens of a group of pre-selected 

(i .e., hit) compounds (e.g., 1% of the most active compounds from the primary screen, 

Nelson and Yingling 2004). Typically, at !east duplicate compound measurements are 

recommended (Malo et al. 2006). 

A biological assay 
(specifie target 
& reagents) 

'Hils' 

Secondary screen 
& oounter screen 

'Contirmed llits~ 

Structure-ac!ivity relationsll ip (SAR) 
& medicinal chemistry 

'Leads' 

'Drug' 

A large 
libraf)'of 

cllemfcal oompounds. 

Figure 1.1 Drug development process (source: Malo et al. 2006) 

-----, 
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HTS is a relatively new technology that continues to advance at fast pace. The recent 

progress in computer technologies and robotic automation reduced significantly the cost of 

operating high-throughput screening facility and made the technology feasible for many 

small and moderate-sized organizations. The priee of experimental screening per unit also 

dropped significantly bringing a considerable increase in the number of tested compounds. 

Figure 1.2 (Macarron et al. 2011) shows that the use of HTS in the four selected 

pharmaceutical companies more th en doubled for three of them and increased by 10 times for 

the fourth company during the period from 2001 to 2009. 

2,000,000 
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'"0 2005 c 
~ 1,500,000 
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1,000,000 -0 
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Figure 1.2 Size of corporate screening collections over time. This figure shows that the 

screening collections of four pharmaceutical companies in 2001 differ dramatically 

from those in 2009. Data taken from GlaxoSmithKline [E], Novartis [F], Sanofi-Aventis 

[G] and Wyeth [H] (now part ofPfizer) companies (source: Macarron et al. 2011) 

The steadily decreasing priees, as weil as a number of govemmental programs and 

initiatives (Austin 2008) allowed HTS to penetrate rapidly into the academie settings (Stein 

2003, Verkman 2004, Kaiser 2008, Silber 2010). In May 2012, the website of the US Society 

for Laboratory Automation and Screening listed 93 academie institutions that have 
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established HTS facilities (SLAS 2012), while the Molecular Libraries Initiative has 

generated a collection of more than 360,000 compounds in a screening library for academie 

investigators (MLP 2012). 

The modem drug discovery is no more exclusively based on chemistry. lt is a product 

of interdisciplinary cooperation of engineers, chemists, biologists and statisticians. Massive 

libraries of millions of compounds have been created using combinatorial chemical synthesis 

and are used as a drug-candidate base. The contemporary HTS technology is an almost fully 

automated process. Robots are used in ali steps of the process. They retrieve compounds from 

the libraries, combine them with the selected biological target, convey the compound 

solutions through the HTS readers and record the measured activity levels. The recent 

dramatic improvements in miniaturization, low-volume liquid-handling and multimodal 

readers increased drastically the throughput of the screening process. Figure 1.3 depicts two 

typical high-throughput screening systems. 

Figure 1.3 High-throughput screening equipment (source: http://www.ingenesys.co.kr) 

The contemporary HTS systems are capable of screening more than 100,000 

compounds per day (Mayr and Fuerst 2008). At the same time, the screening-collection sizes 

constantly increase and are expected to grow, given the fact that the size of the "drug like" 

chemical space is estimated to be greater than I x1030 compounds (Fink and Reymond 2007). 

High-throughput screening involves many steps, such as target selection and characterization, 

assay development, reagent preparation and compound screening. Each of those steps adds 
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cost proportional to the number of the compounds in the assay. Thus, despite the 

technological advances, HTS remains an expensive technology. 

High-throughput screening assays are organized as a sequence of plates. HTS plate is a 

small container, usually disposable and made of plastic. It includes a grid of small, open 

concavities called wells. During the assay preparation, every compound of interest is placed 

in a separate well. 
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Figure 1.4 HTS plates with: 96 wells (8 rows x 12 columns), 384 wells (16 rows x 24 

columns) and 1536 wells (32 rows x 48 columns), (source: Mayrand Fuerst 2008) 

A typical HTS plate consists of 96 wells arranged in 8 rows and 12 columns. Along 

with the tendency ofminiaturization in HTS, plates with 384 and 1536 were also created (see 

Figure 1.5). The plates with more wells usually have the same dimensions but contain smaller 

wells. During the screening process, ali the wells on the plate are examined and the activity 

leve) of their content is registered as a single numeric value. Th us, the results of screening 

one plate can be represented as a matrix of numeric values where the measurements are 

arranged in the same layout as the compounds on the plate. 

1.2 HTS experimental errors 

Since the appearance of the first HTS systems, 15-20 years ago, a lot of efforts have 

been made to improve the speed, the capacity and the precision of HTS equipment (Macarron 

2006, Pereira and Williams 2007, Houston et al. 2008). The contemporary HTS systems are 

capable to rapidly handle great number of compounds while detecting even slightest 
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differences in the compounds' activity levels. That remarkable sensitivity, otherwise an asset, 

makes the HTS process prone to errors. Many environmental factors, including variations in 

the electricity, temperature, air flow and light intensity, may affect HTS readers (Makarenkov 

et al. 2007). Equipment malfunctions, such as robotic failures, poor pipette delivery, glass 

fogging or needle clogging, may also cause erroneous readings. Assay miniaturization and 

especially work with very small liquid volumes cao cause fast and significant concentration 

changes due to reagent evaporation. Therefore, procedural factors such as differences in the 

time compounds await to be processed create inequalities among the experimental 

measurements. In the context of HTS, an experimental error (or simply an error) denotes the 

case when the measurement obtained during the screening does not reflect the real compound 

activity either because of a failure during the reading procedure or because the conditions at 

which the activity was measured differed from the planned ones. Systematic error affects the 

HTS data by either over- or underestimating the measurements of sorne of the compounds. 

With the appearance of the second generation HTS systems in 2001 (Mayr and Fuerst 2008), 

a strong focus was put on the quality of the selected hits, i.e. , to ensure lower readout 

artifacts. HTS laboratories have pioneered and implemented rigorous quality assurance 

methods (Macarron et al. 2011), such as liquid handler and reader performance monitoring 

(Taylor et al. 2002), Z trend monitoring (Zhang et al. 1999) and regular usage of 

pharmacological standards (Coma et al. 2009). Despite the remarkable quality improvements, 

the experimental error remains a major hindrance in high-throughput screening, and handling 

this error becomes even of a greater importance as our dependence on the technology 

increases. 

1.3 Hit selection 

Hit selection is the last step of the high-throughput screening process. At this step, the 

compounds with the best activity values are selected for further investigation. The 

compounds selected in such a way are called hits (Malo et al. 2006). The hit selection is 

based on comparability of the activity measurements. Depending on the type of the screened 

assay the researches may be interested either in the compounds showing the highest 

activation properties (activation assays - the goal here is to activate the given target) or the 

highest inhibition properties (inhibition assays -the goal here is to inhibit the given target). 
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There exist four different strategies for selecting hits (Malo et al. 2006): 

1. Hits are selected as a fixed percentage of ali compounds, those having the highest 

activity levels (for example: top 1 %). This strategy, and especially the number of 

selected hits, is dictated by resource availability and other project constraints. This 

method is not usually recommended because a fixed, in advance, number of 

compounds does not usually reflects the number of really active compounds in the 

assay; 

2. Hits are identified as compounds whose activity measurements exceed sorne fixed 

threshold. The hit-cutting threshold can be specified as an absolute value or as a 

percentage of the maximum possible activity leve!. In arder to achieve quality 

results using such a threshold, the advanced knowledge about the expected 

activity levels is required; 

3. Simi1ar to the second strategy, hits are selected to exceed a hit-cutting threshold, 

but the threshold is calculated to reflect the specifies of the actual data. This 

threshold is usually expressed in terms of the mean value f.1 (the median can be 

also used) and the standard deviation CJ of the measurements, with the most 

widely used threshold of .u--3Œ(inhibition assays) and f..1+3Œ(activation assays). 

This strategy can be applied globally for the whole assay when the mean and 

standard deviation are calculated using ali measurements of the assay, or 

altematively, on the plate-by-plate basis when the mean and the standard 

deviation are calculated separately for each plate using only the associated plate ' s 

measurements. 

4. Statistical testing with replicates was recommended by Malo et al. 2006) for a 

better hit identification. More specifically, to get around the small sample size 

problem that is known to produce serious problems with the t-test, Malo et al. 

2006) recommended using "shrinkage tests" (see also Allison et al. 2006). They 

provided a specifie example of one particular shrinkage test - the Random 

Variance Mode!. 
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1.4 False positive and false negative bits 

The presence of error in experimental HTS data may affect the accuracy of the hit 

selection campaign. Working with the measurements that do not correctly represent the real 

compound activity levels may cause the situation where sorne compounds are mistakenly 

selected as hits: this situation is known as Type 1 error and the selected compounds are called 

false positives (FP). It is also possible that sorne active compounds are overlooked, i.e. , they 

have not been selected as hits: this situation is known as Type II error and the affected 

compounds are called jalse negatives (FN). Ali the active compounds that are correctly 

identified as hits are defined as true positives (TP) and the correctly identified inactive 

compounds are defined as true negatives (TN). 

1.5 Sensitivity and specificity of a statistical model 

With its ability to separate the compounds into two groups, bits and non-hits, the high­

throughput screening process constitutes a binary classifier. Sensitivity (Se) and Specificity 

(Sp) are two statistical measures used to evaluate the performance of such classifiers. The 

sensitivity ofthe model can be defined as follows: 

TP 
Se =- --

TP+FN 

In the context of HTS, Sensitivity represents the proportion of the active compounds 

that were selected as hits. The sensitivity value of 1 (or 100% if expressed as a percentage) 

indicates that all active compounds were successfully identified as hits, whereas the value of 

0 means that ali active compounds were overlooked as false negatives. 

The value of Specificity can be calculated using the following formula: 

S _ TN 
p- TN + FP 
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In the context of HTS, Specificity represents the proportion of the non-hit compounds 

that were not selected as hits. Specificity value of 1 (or 100% if expressed as a percentage) 

indicates that no inactive compounds were incorrectly identified as hits. 

1.6 Types of experimental error 

Momentary variations in the HTS experimental conditions introduce random errors in 

the screening data that affect single or limited number of compounds only. Random error 

unpredictably lowers or raises the values of sorne of the screened measurements. Random 

errors can affect as weil the hit selection process (Kevorkov and Makarenkov 2005). If a 

further increase of the HTS precision is required, in regards to random error, then replicated 

measurements should be used, i.e., multiple instances of the compounds should be screened 

(Lee et al. 2000, Nadon and Shoemaker 2002). It is also important to note that this type of 

error is usually very difficult to detect in HTS using standard quality control and performance 

monitoring techniques. 

Another type of error, systematic error, can as weil be present in HTS data. Systematic 

error biases experimental HTS results by systematically over- or underestimating the 

compounds true activity levels and affects multiple compounds of the given plate or given 

assay. Systematic error is usually location dependent (Brideau et al. 2003). lt generates 

repeatable local artifacts that may affect only a single plate, a group of severa] plates or even 

ali plates of the assay. Within the plates, the compounds affected by systematic error are 

usually located in the same row or column, very often at the edges of the given plate -

situation known as edge effect (Cheneau et al. 2003, Iredale et al. 2005, Carralot et al. 2012). 

It is also possible that systematic error affects only the compounds located at the specifie weil 

locations on ali the plates or majority of plates across the assay (Makarenkov et al. 2007). 

Systematic error has the potential to affect significantly the hit selection process, thus 

resulting in the generation of false positive and false negative hits (Kevorkov and 

Makarenkov 2005, Makarenkov et al. 2007). Therefore, eliminating or at ]east reducing the 

impact of systematic error on experimental HTS data was recognized as one of the major 

goals for achieving reliable, high quality high-throughput screening results (Brideau et al. 

2003, Makarenkov et al. 2007). Severa] specialized statistical data correction methods have 
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been proposed for correcting different types of systematic errors (Brideau et al. 2003 , 

Kevorkov and Makarenkov 2005, Makarenkov et al. 2007, Malo et al. 2010, Carralot et al. 

2012). 

1.7 Within-plate HTS controls 

The controls are substances with stable and well-known activity levels for the specifie 

assay. They are placed in separate wells within plates and then processed and measured as 

regular compounds of interest. Controls with different reference activity levels can be used. 

The most commonly used controls are positive contrais, with the observed high activity 

effects, and negative contrais, with the observed low activity effects (or no activity at ali) . lt 

is also possible that sorne wells of the plate are left empty and are used as negative controls 

(Figure 1.5). It is a common practice that the controls are placed in the first and in the last 

columns on the plates while the regular compounds are located in the inner wells. Figure 1.5 

shows a typical 96-well HTS plate layout with 80 compounds and the first and the last 

columns occupied by control. 
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Figure 1.5 A typical HTS plate layout (source: Malo et al. 2006) for a 96-well plate 
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The within-plate contrais can be used for both quality control and data normalization. 

They are most commonly used for the measurements normalization needed to account for the 

plate-to-plate differences throughout the assay. The values of the contrais are often omitted 

when HTS results are presented. For example, the screening result for the HTS plate on 

Figure 1.5 are usually reported as for a plate that has wells arranged in 8 rows and 10 

columns containing regular compounds only. 

1.8 Systematic error correction and data normalization 

Normalization of raw HTS data allows one to remove systematic plate-ta-plate 

variations and makes the results comparable across plates. Here we present the three most 

popular normalization methods used in HTS: 

1.8.1 Percent of control 

Percent of control is a simple normalization procedure that relies on the presence of 

positive contrais in every plate. It allows for elimination of the plate-ta-plate environmental 

differences by aligning the measurements of the positive contrais on the plates. As the 

method name suggests, the compounds measurements are reported as a percentage of the 

, x iJ 
control measurements. The normalized measurements are calculated as follows: xu = -- , 

f.1 pas 

where xu is the raw measurement of the compound in weil (i, j) of the plate, xu is the new 

normalized value, and f.ipos is the mean of the positive contrais. 

1.8.2 Normalized percent inhibition 

Normalized percent inhibition is another normalization procedure that relies on the 

presence ofboth positive and negative contrais in every plate. It allows for elimination of the 

plate-to-plate environmental differences by aligning the measurements of both the positive 

and negative contrais on the plates. The normalized measurements are calculated using the 
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folJowing formula: Xi) = Xi) - f-Lneg , where Xij is the raw measurement of the compound in 
JL pos - f-L neg 

weil (i,j) on the plate, xiJ is the new normalized value, f..Lpos is the mean of positive controls 

and f..Lneg is the mean of the negative controls. 

1.8.3 Z-score 

Z-score is a we11 known statistical normalization procedure that does not require the 

presence of controls. lt ensures comparability of the measurements on different plates by 

aligning the mean values of the measurements of the plates and by eliminating the plate-to-

plate variations. The normalization is carried out using the following formula: x iJ = x iJ - JL 
Œ 

where xu is the raw measurement of the compound in weil (i, j) on the plate, xiJ is the new 

normalized value, JL is the mean of ali the measurements within the plate, and (J is the 

standard deviation of ail the measurements within the plate. After the Z-score normalization, 

the plate's data are zero-centered, i.e. , their mean value is 0, and their standard deviation is 1. 

1.8.4 Assay quality and validation 

A lot of efforts were put for validating and improving quality of experimental high­

throughput screening assays. Zhang et al. (1999) explored the criteria for evaluating the 

suitability of an HTS assay for hit identification. The latter authors argued that the classical 

approach for quality assessment by examining the signal-to-noise (SIN) ratio and signal-ta­

background (S/B) ratio is difficult to apply in the context of experimental HTS. Zhang and 

colleagues defined a new screening coefficient called Z-factor, which reflects both the assay 

signal dynamic range and the data variation. This makes it suitable for comparison and 

evaluation of the assays quality, including assay validation. Zhang et al. (1999) defined Z­

factor as follows : 

Z=l- 3(o-s -o-J 
IJLs -JLc l ' 
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where Ils is the mean value of the screened data, Ile is the mean value of the controls, os is the 

standard deviation of the screened data and G"c is the standard deviation of the controls. These 

authors stated that in the case of activation assays, positive controls should be used, whereas 

in the case of inhibition assays, negative controls should be employed. In the same study, 

Zhang et al. (1999) also defined the Z'-factor coefficient that can be calculated as follows 

using the control data only: 

Z' = 1- 3(a pos - (J"neg ) 

111 pos - llneg 1 ' 

where J.lpos is the mean value of the positive controls, J.lneg is the mean value of the negative 

controls, G"pos is the standard deviation of the positive controls and G"neg is the standard 

deviation of the negative controls. Zhang et al. (1999) stated that Z-factor can be used for 

evaluating the quality and the performance of any HTS assay, white Z '-factor can be used to 

assess the quality of the assay design and development process. Zhang and colleagues also 

provided directions for how Z-factor cao be used to assess the quality of an HTS assay (see 

Table 1.1). 

Z-jactor Screening 

1 An ideal assay. Z-factors can never exceed 1. 

0.5 ~Z < 1 An excellent assay. 

0 < Z < 0.5 A marginal assay. 

0 A "yes/no" type assay. 

Z < O 
Screening essentially impossible. There is too much overlap 
between positive and negative controls for the assay to be useful. 

Table 1.1 Categorization of an HTS assay quality depending on the value of Z-factor. 

Since its introduction, Z-factor has become the most commonly used criterion for the 

evaluation and validation ofHTS experiments. The publication of Zhang et al. (1999) is now 

one of the most cited papers in the field of HTS (Sui and Wu 2007). Most of the large 

laboratories, including the National Institutes of Health Chemical Genomics Center 
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(http://ncgc.nih.gov) and the National Screening Laboratory for the Regional Centers of 

Excellence in Biodefense and Emerging Infectious Diseases (http://nsrb.med.harvard.edu) in 

the United States, recommend Z ~ 0.5 as an indication of proper assay optimization. 

In Inversen et al. (2006), the authors conducted a simulation study and compared the 

performance of Zjactor to that of the signal window and assay variability ratio, and 

recommended Z-factor as a preferred assay performance measure. 

The negative impact of systematic error on the HTS hit selection process and on the 

overall assay quality was ascertained in many scientific publications (Woodroffe and 

Ginsberg 1998, Brideau et al. 2003, Cheneau et al. 2003, Iredale et al. 2005). Many efforts 

were put on solving the problem by altering assay preparation methodologies and procedures 

(Lundholt et al. 2003, Nelson et al. 2004) as weil as on developing new data correction or 

normalization techniques (Heyse 2002, Brideau et al. 2003, Kevorkov and Makarenkov 2005, 

Makarenkov et al. 2006, Makarenkov et al. 2007, Birmingham et al. 2009, Malo et al. 2010, 

Carralot et al. 20 12). 

Heyse (2002) performed a comprehensive study of the complexity and statistical 

practice in data analysis of high-throughput screening data as a valuable raw material for the 

drug-discovery process. He concluded that the quantity, complexity and heterogeneity of the 

HTS data require novel, sophisticated approaches of data analysis. The latter author outlined 

five major steps which, according to him, are ofhigh importance for performing an HTS data 

analysis: 

1. Quality Assurance: Checking data for experimental artifacts and eliminating low 

quality data; 

2. Biological Profiling: Clustering and ranking compounds based on their biological 

activity, taking into account specifie characteristics ofHTS data; 

3. Rule-based Classification: Applying user-defined rules to biological and chemical 

properties, and providing hypotheses for the biological mode-of-action of 

compounds; 
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4. Joint Biological-Chemical Analysis: Associating chemical compounds data to HTS 

data, providing hypotheses for structure-activity relationships; 

5. Integration with genomic and gene expression data and assessing the compound s' 

modes-of-action, toxicity, and metabolic properties. 

In the same publication, Heyse stated that "screening data tend to be very complex and 

they must be analyzed with care", and also "thorough quality control is a must" and HTS data 

should be "preprocessed in a suitable way". 

1.8.5 B-score 

A well-known paper by Brideau et al. (2003) was one of the first to propose a 

systematic error correction method in the context of experimental HTS. The latter authors 

argued that processing HTS data requires more than simple control-based or basic statistical 

normalizations such as Z-score. Brideau et al. (2003) pointed out the main drawbacks of the 

Z-score normalization and especially its failure to deal with positional effects, i.e., systematic 

error. They presented a new statistics score, B-score (i.e., "Better score"), a robust 

nonparametric analog of the Z-score normalization which is also resistant to outliers. 

Assuming the following data model: 

where xu/J is the measurement in row i and column j of plate p, flp is the mean value of the 

plate measurements, R;p is the row i effect, C1p is the column j effect and &iJp is the random 

noise affecting the weil (i,j) of plate p. The B-score method starts by carrying out a two-way 

median polish procedure (Tukey 1977) to account for row and column effects of the plate. 

The median polish procedure has been preferred over severa! alternative methods, like 

ANOV A, because of its robustness regarding the outliers. The residual (rup) of the 

measurement in row i and column j of the plate p, is obtained as follows by a two-way 

median polish: 
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The residual is defined as the difference between the observed measurement (xup) and its 

fitted value xiJP, which is defined as a sum of the estimated average of the plate p, (fi P ) , the 

estimated systematic measurement offset (.Rip ) for row i of p and the estimated systematic 

measurement column offset (ê1P) for columnj of p . 

The residuals obtained after carrying out the median polish procedure within each plate are 

then scaled by the plate's Median Absolute Deviation (MADp). For each plate p , the adjusted 

median absolute deviation is obtained from the ru/ s as a robust estimate of the spread of the 

ru/ s values: 

The B-score of the compound in row i and columnj of plate pis then calculated as follows: 

1.8.6 Weil correction 

r iJP B-score = - -'-'-----
MADP 

Makarenkov et al. (2007) proposed a new advanced systematic error correction 

method, called Weil Correction, which was designed to remove row and column systematic 

biases as weil as systematic error that affects compounds located at the same weil location 

and repeats for all of the assay plates. As described by Makarenkov et al. (2007), the Well 

Correction method consists of the two following main steps : 

1) Least-squares approximation of the data carried out separately for each well 

location of the assay; 

2) Z-score normalization of the data within each welllocation ofthe assay. 
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In the simulations carried out by Makarenkov et al. (2007), the Weil Correction 

method generally outperformed the Median polish and B-score methods as weil as the 

classical hit selection procedure not implying any data correction. Ali the conducted tests 

suggested that the Weil Correction procedure is a robust method for systematic error 

correction and the authors recommended its use prior to the hit selection process. 

1.8. 7 Other HTS-related research 

Jenkins et al. (2003) introduced a method for improving the quality of HTS hit lists by 

using computationally-based virtual screening (VS), which, according to the authors, 

typically provides a large percentage of false positives and requires costly follow-ups to 

distinguish between the active and inactive compounds. The proposed method is based on the 

expectation that the false positive hits are not likely to dock weil to the target's active sites 

unlike to the truly active compounds. Therefore, the biological false positives could be 

identified computationally with minimal time and expense. The latter authors tested their 

hypothesis in a study using the angiogenin enzyme, screened for small-molecule inhibitors. 

Jenkins et al. (2003) also used VS as a tool to enrich given chemical libraries prior to 

performing experimental HTS. They reported that VS can be a highly effective and facile 

tool for enriching the hit rate from high-throughput screens, noting that VS methods may be 

Jess valuable as a pre-HTS filter than as a tool for minimizing false positives in HTS. lt is 

worth noting that, except this paragraph, the term "false positive" refers to statistical false 

positives everywhere else in the thesis . From a statistical perspective, if a feature is selected 

as a hit, it is a false positive if its true signal is nul!. If its true signal is non-null, then it is a 

true positive. However, from a biological perspective, a statistical true positive may 

nonetheless be a biological false positive. This wou id be the case if the true signal did not 

reflect the biological mechanism of interest. By pre-selecting molecules with desired 

molecular structures via VS methods, researchers may minimize the number of biological 

false positives. 

Hu and Sung (2004) described a method for data mining and outlier detection in the 

HTS context. The proposed method uses a local trimmed mean approach for estimating 

spatial outlier factors. Spatial outliers are different from non-spatial outliers in the way that 
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they are outlying in their local neighbourhood, though, they may not be outlying globally. 

The described approach allows for estimating and removing spatial trend, i.e., systematic 

error, in HTS data what can be used to improve the quality of the hit selection process. 

Kelley (2005) presented a software package using Microsoft Excel that can detect 

spatially correlated artefacts, for example: "row effects", "column effects" or "edge effects", 

in HTS data. The software presented by Kelley, and called Array Validator™, is based on the 

Discrete Fourier Transform method and the analysis of the resulting periodograms. It 

provides a sensitive assessment of the randomness of an array of values. According to the 

author, Array Validator™ provides a way for an automatic validation of screening data and 

generation of alert messages when spatial non-randomness, i.e., systematic error, is detected. 

Kevorkov and Makarenkov (2005) described a method for evaluation and topological 

analysis of the background surface of HTS data. The described method allows for 

determination of trends and local fluctuations in experimental HTS assays and can also be 

used for the elimination of systematic error. 

Gagarin et al. (2006) discussed the hit selection process in high-throughput screening. 

Three new clustering techniques, designed to identify quality hits in the observed 

measurements were proposed in the publication and can be used to improve the hit selection 

in experimental HTS. The three proposed methods are the following: k-means partitioning, 

sum of the average squared inside-cluster distances (SASD) and average inter-cluster 

distance (AICD). The authors claimed that two of the proposed techniques: k-mean 

partitioning and SASD can bring a significant improvement to the hit selection process. 

Wu et al. (2008) reviewed severa! widely-used normalization and error correction 

methods. Two new statistical procedures, called BZ-score and R-score, were also proposed in 

this article. Both BZ-score and R-score methods are based on the classical B-score method 

(Brideau et al. 2003). The BZ-score procedure is a modification of the B-score method in 

which an extra step is added after the application of the 2-way Median Polish procedure. 

During that step Z-score is carried out to normalize the obtained residual values. R-score 

method is a variant of the B-score method in which the mode! fitting Median Polish 

procedure is replaced by the alternative Robust Linear Mode! (RLM). After fitting the data 
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mode!, the obtained residuals can be standardized by the scale estimate from RLM in order to 

generate a Z statistic, called R-score by the authors. The value of R-score can be used to 

decide if the positional effects are statistically significant and whether an error correction is 

needed. The authors underlined the importance of the last step, because their experiments 

showed that "when there is absolutely no positional effects, the R-score adjustment sacrifices 

the ability to detect hits". In their study, Wu et al. (2008) used a rich set of experimental HTS 

data in which ali compounds were tested 42 times over a wide range of 14 concentrations. 

The latter authors compared the new R-score and BZ-score procedure with the clasical B­

score method, Z-score and control-based methods. The authors reported that the R-score 

performed significantly better than the other competing methods, followed by BZ-score 

whose performance was very close to the performance of the classical B-score method. ln the 

same article, the authors evaluated the following three hit selection methods in the case of 

duplicate screenings, i.e. , when for each compound X, two measurements x1 and x2 are 

available: 

1. "Either-or" - the compound is selected as a hit if at !east one of the measurements 

exceeds the bit-cutting threshold, or equivalently, the combined score for the 

compound is x= max( x~, x2); 

2. "Both" - the compound is selected as a hit if both measurements exceed the bit­

cutting threshold, or equivalently, the combined score for the compound IS x = 

min(x~, x2 ); 

3. "Average" - the compound is selected as a hit if the average compound's 

measurement exceeds the bit-cutting threshold, or equivalently, the combined score 

for the compound is x = (x1 + x2)12. 

Wu et al. (2008) concluded that the "Average" hit selection strategy is the best way to 

combine duplicate measurements in order to identify hits. 

Malo et al. (20 1 0) presented a novel approach for maximizing true-positive rates in an 

HTS study without increasing the false-positive rate. The latter authors stated that they "have 

noted recently that the B-score (Brideau et al. 2003) method can potentially generate 
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excessive false positives because normally distributed null data generate long-tailed B-score 

distributions". In this paper, Malo et al. (2010) proposed a modification of the B-score 

method. The authors claimed that the robustness of the B-score method could be increased by 

replacing the originally used madel fitting procedure, the two-way median polish, with a 

trimmed-mean polish. The authors reported that they have achieved particularly good results 

when a trim value of 0.1 (10%) was used. Malo et al. (2010) recommended that the trim 

parameter should be chosen to reflect the expected maximum number of bits in the rows and 

columns of the assay (1 0% in their simulations) and also that the proposed modification is 

equivalent to the original B-score method when a trim value of 0.5 (50%) is used. The 

simulations were conducted using the commercial S-Plus software (TIBCO Spotfire, 

Somerville, MA). 

Shun et al. (2011) reviewed the current practice in high-throughput screening with 

respect to ensuring appropriate bit selection quality. In this study, a 3-step statistical decision 

methodology is described for achieving quality HTS results. At the first step, the criteria for 

quality assessment should be established by calculating for each plate of the assays a number 

of quality measures: Z-factor, Z '-factor (Zhang et al. 1999), the percent coefficient of 

variation (the standard deviation of the compounds expressed as a percentage of the standard 

deviation of the controls). Then, a 2-way ANOVA test should be carried out to assess the 

presence of the row/column effects. The second step consists of selecting an appropriate HTS 

data processing method by using the following rules: 

• B-score or BZ-score methods should be used if systematic error is present or if the 

data do not follow normal distribution. 

• Z-score method should be used for normally distributed data of bad quality, 

determined by Z-factor or percent coefficient of variation, which are not affected by 

systematic error. 

• Control-based methods should be used for normally distributed data of good quality 

data which are not affected by systematic error. 
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During the final step of the proposed method, the data quality of each plate should be 

retested. The plates that failed the test should be screened again, whereas those that passed 

the test should be used for the hit selection. 

Carralot et al. (2012) developed of a novel edge effect correction algorithm suitable for 

RNA interference (RNAi) screening. The authors stressed that their goal was providing a 

specifie method that targeted a recurrent type of artefact known as edge effect, and not a 

generic method for correcting any type of systematic error that may corrupt experimental 

HTS data. The proposed method estimates edge effects for each assay plate separately by 

using the data from a single control column. The computations are based on a diffusion 

model. Multiplicative bias values have been assumed and datasets with different signal-to­

noise ratios were used in the study. The authors reported that the quality of the test datasets, 

measured using the Z-factor coefficient, had improved significantly after applying the new 

method. Carralot et al. (2012) concluded that their method can be successfully used to detect 

systematic error and obtain a robust estimation of the edges-related spatial biases in RNAi 

screening data. 

1.9 Machine learning algorithms in HTS 

The cost of pharmaceutical development has increased dramatically in recent years, 

and many approaches have been developed to decrease both the time and the cost associated 

with bringing a drug to the market. Among the proposed methods, it is worth noting the use 

of in silico screening of compounds for detecting new drug leads, commonly referred to as 

virtual high-throughput screening (VHTS) (Sirois et al. 2005). One of the promising branches 

of VHTS is the application of machine learning methods for in silico prediction of the 

compounds biological activity based on their chemical properties and previous experiences of 

screening similar compounds. 

Briem and Günther (2005) evaluated the three following machine leaming techniques 

to distinguish between kinase inhibitors and other molecules with no reported activity on any 

protein kinase: support vector machines (SVM), artificial neural networks (ANN) and k­

nearest neighbors (kNN). Using the majority vote for ali tested techniques, the authors 
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concluded that ANN provided the best prediction of experimental results, followed by SVM. 

On the other hand, Müller et al. (2005) described an application of SVM to the problem of 

assessing the "drug-likeness" of a compound based on a given set of molecular descriptors. 

The authors concluded that in the drug-likeness analysis the polynomial SVM with a high 

polynomial degree (d = 11) allows for a very complex decision surface which could be used 

for prediction. 

Harper and Pickett (2006) reviewed the current state of the application of data mining 

techniques in the field of HTS. Data mining has been described as "the exploration and 

analysis, by automatic or semi-automatic means, of large quantities of data to discover 

meaningful patterns and rules". In their publication, Harper and Pickett stated that there has 

been a recent increase in the application of data-mining techniques in high throughput 

screening. The authors argued that given the large quantity of data generated during an HTS 

campaign and the importance of analyzing those data effectively, the use of data-mining 

techniques in HTS data analysis is expected to increase steadily. 

Burton et al. (2006) carried out a recursive partitioning, based on decision trees, for 

predicting the CYP1A2 and CYP2D6 inhibition. The latter authors reported that with mixing 

2D and 3D descriptors, they were able to achieve 2% to 5% gain in accuracy compared to the 

3D descriptors alone. 

Fang et al. (2006) presented results of a type 1 methionine aminopeptidases (MetAPs) 

inhibition study. Fang and colleagues employed support vector machines for mining HTS 

data, while testing a compound library of 43 ,736 small organic molecules. The authors 

discovered that half of the active molecules could be recovered after screening only 7% of 

compounds of the test set. 

Plewczynski et al. (2007) reported that an SVM madel was able to achieve 

classification rates up to 100% in evaluating compounds activity with respect to specifie 

protein targets. In the latter study, the authors concluded that the obtained sensitivities for ali 

targets exceeded 80%. 
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Simmons et al. (2008a) compared 10 different machine leaming methods by 

employing them to develop classifiers on data derived from an in vivo HTS campaign. The 

au thors compared the methods' predictive performances in terms of the number of false 

negatives and false positives. The set of descriptors used by Simmons et al. (2008a) consisted 

of 825 numerical values, representing 55 possible atom-type pairs mapped to 15 distance 

ranges. The same team of researchers (Simmons et al. 2008b) described an ensemble-based 

decision tree mode! used to virtually screen and prioritize compounds for acquisition. 

Mballo and Makarenkov (2010) analyzed the Test assay from McMaster University 

Data Mining and Docking Competition (Elowe et al. 2005) using binary decision trees, 

neural networks, support vector machines, linear discriminant analysis, k-nearest neighbors 

and partial !east squares. The authors first compared separately the sets of molecular and 

atomic descriptors in order to establish which of them provides a better prediction. Th en, the 

comparison of the six considered machine leaming methods was carried out in terms of fa ise 

positives and false negatives, method ' s sensitivity and enrichment factor. Finally, a variable 

selection procedure allowing one to improve the method's sensitivity was presented and 

applied in the framework of polynomial SVM. 

Each of these studies was conducted in particular statistical and experimental contexts, 

i.e., the sampling strategies, the type of HTS data, the proportions of confirmed hits in the 

data and the available descriptors differed between the studies, making the comparison of the 

obtained results very difficult. 

1.10 Decision trees 

Here we present two machine leaming approaches we applied in our study. Decision 

trees are hierarchical data structures implementing the divide-and-conquer strategy. They can 

be used as an efficient classification method (Breiman et al. 1984). A decision tree ts 

composed of internai decision nodes and terminalleaves as shown below (Figure 1.6): 
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Class 2 Class 3 

Figure 1.6 An example of a decision tree where c1 and c2 are constants such that c1>c2 

Each fm(X) defines a discriminant in the input space dividing it into smaller regions 

which are further subdivided as we descend down toward the leaves. Different decision tree 

strategies assume different models fm(X). Those models define the shape of the discriminants 

and the regions. A leaf defines a region in the input space where the instances falling in this 

region are classified as belonging to the same class. 

1.11 Neural networks 

Artificial Neural Networks (ANN), or simply neural networks (NN), are a powerful 

modeling tool which is largely used in various disciplines such as chemistry, economies, 

medicine and pharmaceutical science. Inspired by the power and adaptability of the human 

brain, NN models are composed of numbers of small units, called neurons, interconnected 

and operating in parallel (Bishop 1995, Gumey 1997, Ripley 1996). Mathematical mode) of a 

neuron states that a neuron has multiple inputs x1 E R, j = 1, 2, .. . , m. Associated with each 

input is a connection weight w1 E R. The total input received by a neuron can be computed as 

the weighted sum of ali its inputs: 

rn 

v = Iw1x1 +w0 , 
J=l 

where w0 is a bias associated with the given neuron. lt is convenient to think of the bias as of 

the weight for an extra input x0 coming from a neuron whose output value is always equal to 

1. A neuron has one output and implements a monotone activation function g that maps v into 
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g(v), which is the output value of the neuron. While there are numerous different neural 

network architectures that have been studied by researchers, the most successful NN 

applications in data mining and artificial intelligence have been multilayer feed-forward 

networks, Figure 1.7. 

Iuput # 1 

Input # 2 

Input #3 

Tnpu , #4 

lupnt 
layer 

Hidden 
la cr 

Ont put 
la re t• 

· Output 

Figure 1.7 An example of a multilayer feed-forward network 

In a typical neural network there exist an input layer consisting of nades needed to 

define the input values and successive layers of nades that are neurons as depicted above. 

The outputs of neurons in a layer are the inputs to neurons in the next layer. The last layer is 

called the output layer. Layers between the input and output layers are called hidden layers. 

When a neural network is used to predict a numerical quantity, there is one neuron in the 

output layer and its output is the prediction. When the network is used for classification, the 

output layer typically has as many nodes as the number of classes and the output layer node 

with the largest output value gives the network's estimate of the class for a given input. 

An important characteristic ofNNs is that they can be trained, to recognize inputs from 

different classes. It is said that NN leams by example. During the training a number of 

instances and their expected output values are supplied. A machine leaming algorithm is used 
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to calculate the input weights of ali neurons in a way that minimizes the total error while 

predicting the training data. 

Once trained, the neural network is used for prediction. During this phase test, the data 

are entered as an input to the network, which then generates an output. The output value is a 

prediction to which class the test data belong. 



CHAPTERII 

SYSTEMATIC ERROR DETECTION IN EXPERIMENTAL HIGH-THROUGHPUT 
SCREENING 

This chapter is a reproduction of the following article: 

Dragiev P., Nadon R. and Makarenkov V. (2011) Systematic error detection in 

experimental high-throughput screening. BMC Bioinformatics, 12:25. 

This chapter is at the fundament of the research work presented in this thesis. lt focuses 

on the problems addressing the quality and reliability of the high-throughput screening (HTS) 

results. As an important first step of the complex and expensive drug development process, 

HTS identifies among thousands and sometimes even millions of compounds, those, called 

hits, that have the potential of becoming a successful medicine. Any wrong decision during 

the HTS hit selection, i.e., choosing incorrect compounds for further development or 

overlooking sorne promising drug candidates, turns out to be very costly. Errors during the 

compound screening cause the activity levels of sorne compounds to be systematically over­

or underestimated. The effect of the systematic error is usually location dependent. The 

affected compounds are typically located at the edges of one or severa( plates of the assay. 

Working with systematically biased measurements during the hit selection magnifies the 

number of false positives and false negatives and, in general, undermines the quality of the 

obtained screening results. 

Because of the considerable negative effects that systematic error has on the whole 

drug development process, many efforts have been made to improve the reliability and the 
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robustness of the HTS equipment. Despite of recent technological advances, it has become 

clear that systematic error is often caused by procedural and environmental factors beyond 

the control of the equipment. The increase in assay sizes and duration of HTS experiments 

makes it very difficult to ensure that ail the measurements are taken at absolutely the same 

conditions, the main of which are temperature, humidity, light intensity and solution 

concentrations. 

Different methods have been developed for processing raw HTS data before the hit 

selection (Brideau et al. 2003 , Kevorkov and Makarenkov 2005, Makarenkov et al. 2007, 

Malo et al. 2006). Each of the existing methods modifies the data in arder to eliminate or 

reduce the effect of a given type of systematic error, or to compensate for differences 

between the plates in the assay. Despite their power to diminish the error effects if systematic 

error is present, ali existing methods have one significant disadvantage - when applied on 

data not containing any error or data affected by an error of a different type than the 

considered method is intended to treat- they introduce an important bias affecting the correct 

HTS measurements (Makarenkov et al. 2007). 

Chapter II focuses on the development of the tests for estimating the presence of 

systematic error in raw HTS data. The ability to detect systematic error is of a significant 

practical importance. The error detection tests can be used for decreasing the risk of a wrong 

application of the error correction methods. The proposed tests not only detect the presence 

of systematic error in general but also pinpoint the most probable locations of the error, i.e., 

indicate which plates, rows and columns are affected. The information provided by these 

tests can be used to decide whether the considered data require error correction to be carried 

out and, if so, which error correction method is the most appropriate for the dataset in hand. 

We will describe the application of Student's t-test, the x2 goodness-of-fit test and the 

Kolmogorov-Smirnov test combined with the Discrete Fourier Transform method in the 

context of experimental HTS and compare the obtained results . 
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2.1 Abstract 

2.1.1 Background 

High-throughput screening (HTS) is a key part of the drug discovery process during 

which thousands of chemical compounds are screened and their activity levels measured in 

order to identify potential drug candidates (i.e., hits). Many technical, procedural or 

environmental factors can cause systematic measurement error or inequalities in the 

conditions in which the measurements are taken. Such systematic error has the potential to 

critically affect the hit selection process. Severa! error correction methods and software have 

been developed to address this issue in the context of experimental HTS (Brideau et al. 2003, 

Heuer et al. 2005, Heyse 2002, Kevorkov and Makarenkov 2005, Makarenkov et al. 2006, 

Makarenkov et al. 2007, Malo et al. 2006). Despite their power to reduce the impact of 

systematic error when applied to error perturbed datasets, those methods also have one 

disadvantage -they introduce a bias when applied to data not containing any systematic error 

(Makarenkov et al. 2007). Hence, we need first to assess the presence of systematic error in a 

given HTS assay and then carry out systematic error correction method if and only if the 

presence of systematic error has been confirrned by statistical tests. 

2.1.2 Results 

We tested three statistical procedures to assess the presence of systematic error in 

experimental HTS data, including the x2 goodness-of-fit test, Student's t-test and 

Kolmogorov-Smirnov test (D'Agostino and Stephens 1986) preceded by the Discrete Fourier 

Transforrn (DFT) method (Cooley and Tukey 1965). We applied these procedures to raw 

HTS measurements, first, and to estimated hit distribution surfaces, second. The three 

competing tests were applied to analyze simulated datasets containing different types of 

systematic error, and to a real HTS dataset. Their accuracy was compared under various error 

conditions. 

2.1.3 Conclusions 

A successful assessment of the presence of systematic error in experimental HTS 

assays is possible when the appropriate statistical methodology is used. Namely, the t-test 
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should be carried out by researchers to determine whether systematic error is present in their 

HTS data prior to applying any error correction method. This important step can significantly 

improve the quality of selected hits. 

2.2 Background 

High-throughput screening (HTS) is a modern technology used by drug researchers to 

identify pharrnacologically active compounds (Dove 2003). HTS is a highly automated early­

stage mass screening process. Contemporary HTS equipment allows for testing more than 

100,000 compounds a day. HTS serves as a starting point for rapid identification of primary 

hits that are theo further screened and evaluated to determine their activity, specificity, and 

physiological and toxicological properties (Heuer et al. 2005). As a highly sensitive test 

system, HTS requires both precise measurement tools and dependable quality control. The 

absence of standardized data validation and quality assurance procedures is recognized as one 

of the major hurdles in modern experimental HTS (Gunter et al. 2003, Kaul 2005, Malo et al. 

2006). Acknowledging the importance of automatic quality assessment and data correction 

systems, many researchers have offered methods for eliminating experimental systematic 

artifacts which, if left uncorrected, cao obscure important biological or chemical properties of 

screened compounds (false negatives) and cao seemingly indicate biological activity when 

there is none (false positives) (Brideau et al. 2003, Dove 2003 , Gagarin et al. 2006, Gunter et 

al. 2003, Heuer et al. 2005 , Heyse 2002, Kaul 2005, Kevorkov and Makarenkov 2005, 

Makarenkov et al. 2006, Makarenkov et al. 2007, Malo et al. 2006, Malo et al. 2010, Zhang 

et al. 1999, Zhang et al. 2000). 

Systematic error may be caused by various factors , including robotic failures and 

reader effects, pipette malfunction or other liquid handling anomalies, unintended differences 

in compound concentrations due to agent evaporation or variation in the incubation time and 

temperature differences, and lighting or air flow present over the course of the entire screen 

(Heuer et al. 2005 , Makarenkov et al. 2007). Unlike random error that produces measurement 

noise and usually has minimal impact on the whole process, systematic error produces 

measurements that are systematically over- or underestimated. Systematic error may be time 

dependent, introducing biases in individual plates or subsets of consecutive plates, but it may 
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also affect an entire HTS assay (i.e. , ali screened plates). In practice, systematic error is 

almost always location related. The under- or overestimation affects compounds located in 

the same row or column or in the same weil location across the screened plates. The row and 

column effects may be persistent across the assay affecting repeatedly the same rows and 

columns on different plates or may vary from plate to plate, perturbing sorne rows and 

colurnns within a particular plate only (Makarenkov et al. 2007). Plate controls are used in 

HTS to ensure the accuracy of the activity measurements being taken. Controls are 

substances with stable well-known activity levels. They might be positive (i.e. , a strong 

activity effect is observed) or negative (i.e., no any activity effect is observed). Controls help 

to detect plate-to-plate variability and determine the leve! of background noise. 

The following normalization and pre-processing methods have been widely used in 

experimental HTS to remove plate-to-plate variation and make plate measurements 

comparable across plates (Malo et al. 2006, Makarenkov et al. 2007): 

• Percent of control - the following formula is used: 

x 
xu = _ u_, where xu is the raw measurement of the compound in weil (i, j), xu 1s 

li pos 

the normalized value of xu, and f.lpos is the mean of positive contrais. 

• Control normalization (known also as normalized percent inhibition 

transformation) is based on the following formula: 

xu = Xu - lineg , where xu is the raw measurement of the compound in weil (i, j ), 
li pos - lineg 

xu is the normalized value of xu, lipos is the mean of positive contrais, and lineg is the 

mean of negative control s. 

• Z-score normalization is carried out as follows: 

xu = xu- li, where xu is the raw measurement of the compound in weil (i, j), xiJ 1s 
(Y 

the normalized value of xu, li is the mean of ali the measurements of the given plate, 

and ais the standard deviation of ali the measurements of the given plate. 
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• B-score (i.e., Best score normalization (Brideau et al. 2003) is carried out as follows: 

First, a two-way median polish procedure (Tukey 1977) is performed to account for 

row and column effects of the plate. The resulting residuals within each plate are th en 

divided by their median absolute deviation, MAD. lt is worth noting that there is an 

additional smoothing step that could be applied across plates (see the original article 

(Brideau et al. 2003) for a description of the smoothing). This optional smoothing 

step was not applied however in (Makarenko v et al. 2006, Makarenko v et al. 2007, 

Tukey 1977). 

The residual (rup) of the measurement in row i and column j on the pth plate is 

obtained as follows by a two-way median polish procedure (Equation 2.1): 

(2.1) 

The residual is defmed as the difference between the observed result (xup) and the 

fitted value xiJP, defined as the estimated average of the plate ( jL P) plus the 

estimated systematic measurement offset (.Rip ) for row i of plate p and plus the 

estimated systematic measurement column offset (ê
1
P) for column j of plate p. For 

each plate p, the adjusted median absolute deviation (MADp) is then obtained from 

Median absolute deviation (MAD)- a robust estimate of spread of the rup' s values is 

computed as follows: median{ ! riJP - median~iJP ) I }. 

The B-score normalized measurements are then calculated as follows: 

riJP B-score = _..:..:....__ 
MADP 

(2.2) 

The B-score normalization was introduced by a team of Merck Frosst researchers 

(Brideau et al. 2003) as a systematic error correction method. 
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• Well correction is another advanced systematic error correction technique 

(Makarenkov et al. 2006, Makarenkov et al. 2007) used to remove systematic biases 

affecting the assay's wells, rows or columns, and spread across ali the plates of the 

assay. lt consists of two main steps: 

1. Least-squares approximation of the data carried out separately for each weil 

location of the assay; 

2. Z-score normalization of the data within each weil location of the assay (i.e., 

the Z-score normalization is performed across ali the plates of the assay). 

In the HTS workflow, the normalization/data correction phase is usually followed by 

the hit selection process. During this process the most active compounds are identified as hits 

and selected for additional screens. A predefined threshold is usually established to select hits 

(Malo et al. 2006). Depending on the specifies of the research study, one may be looking for 

compounds whose activity leve) is greater than the defined threshold (i .e., activation assay) or 

interest may lie in the compounds whose measurements are below the defined threshold (i.e., 

inhibition assay). In this study, we always assume the latter case where the hits are the 

compounds with the smallest measurement values. The threshold for defining hits is usually 

expressed using the mean value and standard deviation of the considered measurements. The 

most widely used threshold is ;r3 a; where J..L is the mean value and (J' is the standard 

deviation of the considered measurements. Hits can be selected globally, over the whole 

assay, when the mean and standard deviation of ali assay compounds are calculated, or on a 

plate-by-plate basis, when the mean and standard deviation of the compounds of each single 

plate are considered (Makarenko v et al. 2007, Malo et al. 2006). 

The presence of systematic error in a HTS assay can be identified and visualized using 

its hit distribution surface (Kevorkov and Makarenkov 2005, Makarenkov et al. 2007). Such 

a surface can be computed by determining the number of selected hits for each weil location. 

In the ideal case when systematic error is absent, we expect that the hits are evenly 

distributed over the weil locations. However, this expectation is not always fulfi lled in real 

datasets (see Figure 2.1). This figure presents the hit distribution surfaces computed for two 

hit selection thresholds, ;r2(J' and ;r3o; of two experimental HTS screens performed at 
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McMaster (Figure 2.1 a, b - Elowe et al. 2005) and Princeton (Figure 2.1 c, d - Helm et al. 

2003) Universities. The row and column effects in the hit distributions across plates are 

easily noticeable here, especially in the case of a lower (i.e., ;..t-20') hit selection threshold. 

{a) {b) 

(c) (d) 

Figure 2.1 Systematic error in experimental HTS data. Hit distribution surfaces for the 

McMaster (cases (a) and (b)- 1250 plates- Elowe et al. 2005) and Princeton (cases (c) 

and (d)- 164 plates- (Helm et al. 2003) Universities experimental HTS assays. Values 

deviating from the plate means fo r more than 2 standard deviations - cases (a) and (c), 

and for more than 3 standard deviations- cases (b) and (d) were selected as bits. The 

weil, row and column positional effects are shown (the wells containing controls are not 

presented). 
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The dataset provided by the Chemistry Department of Princeton University consists of 

a screen of compounds that inhibit the glycosyltransferase MurG function of E. coli (He lm et 

al. 2003). The experimental data for 164 plates were considered. According to the ChernBank 

description, this assay has been obtained during a screen that measured the binding of MurG 

to a fluorescent (fluorescein-labelled) analogue of UDP-GlcNAc. Positives were defined as 

compounds that inhibit binding of GleNAc to MurG. The McMaster assay was originally 

used as a benchmark in McMaster Data Mining and Docking Competition (Elowe et al. 

2005). The McMaster dataset, which will be examined in detail in this study, consists of 

compounds intended to inhibit the E. coli Dihydrofolate reductase (DHFR). The screen of 

50,000 training molecules selected by the organizers of McMaster Competition yielded 96 

primary bits, then, 12 potent bits (i .e. , hits confirmed by dose response analysis), the majority 

of which were novel DHFR inhibitors that feil into 3 broad structural classes (Eiowe et al. 

2005). 

It is worth noting that the application of sophisticated pre-processing HTS techniques 

does not always guarantee data improvement. Moreover, the application of systematic error 

correction methods on error-free HTS assays will produce data in which certain activity 

measurements will be biased (Makarenkov et al. 2007). The result of such a misuse of data 

pre-processing methods can lead to a dramatically inaccurate hit selection. Makarenkov et al. 

2007 (see Figure 2 and Figure 4, cases a and c, in Makarenkov et al. 2007) showed that ali 

data correction methods introduce a bias when applied to error-free HTS data. This bias can 

be less important ( e.g., in the case of the Weil correction procedure) or very significant ( e.g., 

in the case of the B-score method). Renee, the data correction methods should be applied 

with caution and only in situations when the presence of systematic error in the given assay 

has been demonstrated by an appropriate statistical methodology. Assessing the presence of 

systematic error in experimental HTS is the main foc us of this article. 

2.3 Materials And Methods 

2.3.1 Data description 

In this study we consider an experimental assay provided by the HTS laboratory of 

McMaster University. This assay was called Test assay and used as a benchmark in 

McMaster Data Mining and Docking Competition (Elowe et al. 2005). McMaster Test assay 



-----------------

36 

consists of 50,000 different chemical compounds whose potential to inhibit the E. coli DHFR 

was tested. Each of the 50,000 considered compounds was screened in duplicate; two copies 

of each of the 625 plates were run through the HTS equipment; 1250 plates in total , with 

wells arranged in 8 rows and 12 columns, were screened; columns 1 and 12 of each plate 

were used for positive and negative controls and were, therefore, not considered in our study. 

Thus, every plate comprised 80 different compounds. The exact experimental conditions of 

Test assay are reported in (Elowe et al. 2005). The competition organizers defined as primary 

hits the compounds that reduced the DHFR of E. coli to 75% of the average residual activity 

of the high contrais. Two lists of hits were published (for more details, the reader is referred 

to: http://hts.mcmaster.ca/Downloads/82BFBEB4-F2A4-4934-B6A8-804CAD8E25AO_ 

files/experimental_actives.pdf). The first list, called a consensus hits list, contained ai l 

compounds that were classified as hits in both of their replicate measurements (i .e., both 

measurement values were lower than or equal to 75% of the reference contrais). Only 42 of 

ali the 50,000 tested compounds were declared consensus hits. The second list, calied an 

average hits list, contained 96 compounds classified as hits when the average value of the 

two HTS measurements was lower than or equal to 75% of the reference contrais. Obviously, 

ali consensus hits were also average hits. A secondary screening of the 96 average hits was 

also performed in order to determine the ir activity in different concentrations. As re suit of the 

secondary screening, 12 of the average hits were identified as D-R hits (i.e., hits having well­

behaved dose-response curves). 

2.3.2 Generating systematic error 

We simulated data in order to evaluate the performances of the systematic error 

detection tests. First, we generated error-free datasets consisting of random normally 

distributed data. The basic data format adopted here was that of the McMaster dataset - 1250 

plates, each containing 96 wells arranged in 8 rows and 12 columns. In addition, we also 

generated two other basic datasets which were 4 and 16 times bigger. They also included 

1250 plates, each of them comprising 384 (1 6 x 24) and 1536 (32 x 48) wells, respectively. It 

is worth noting that 96, 384 and 1536-well plates are the most typical plate formats used in 

the modem HTS. 
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An assay was defined as an ordered set of plates PLp, where p (1 :::: p:::: 1250) is the 

plate number. Each plate, P Lp, can be viewed as a matrix of experimental HTS measu­

rements xiJP, where i (1 ::; i::; NR) is the row number, j (1 :Sj::; Ne) is the column number, and 

NR and Ne are, respectively, the number of rows and columns in PLp. The generated values 

xu/ s followed the standard normal distribution -N(O, 1). 

Errortype 
Generation of error-affected 

measurements 
A. Datasets with both column and row 

x~P = x iJP +ri + c1 + RandiJP, 
systematic errors which are constant across 
ali assay plates. 1:::: i:::: 8, 1 :Sj:::: 12, 1:::: p:::: 1250. 

B. Datasets with the column systematic 
x~P = x iJP + c 1 + RandiJP , 

err or only which IS constant ac ross ali 
plates. 1 :Si:S8, 1 :Sj:S 12,1 :Sp:S 1250. 

C . Datasets with the weil systematic error x~P =xiJP +wu +RandiJP' 
which is constant across ali plates. 1 :Si:S 8,1 :Sj:S 12,1 :Sp:S 1250. 
D. Datasets with the variable column and 

x~P = xiJP + rip + c1P + RandiJP, 
row systematic error which are different for 
each plate. 1 :Si:S8, 1 :S}:S 12, 1 :Sp:S 1250. 

E. Datasets with the random error only (i .e ., x~P = xiJP + RandiJP , 
systematic error was absent). 1 :Si:S8, 1 :S} :S 12,1 :S p:S 1250. 

where: x~P is the error-affected value in weil i,j (row i, columnj) of plate p. 

xiJP is the original value in weil i,j of plate p in the error-free dataset. 
ri is the systematic error in row i (constant over ali plates); it had a normal distribution 
with the parameters -N(O, C). 
c1 is the systematic error in columnj (constant over ali plates); it had a normal distribution 
with the parameters -N(O, C). 
wu is the systematic error that affects weil i,j (row i, column }) and is the same for ali 
plates; it had a normal distribution with the parameters -N(O, C). 
r ip is the systematic error in row i of plate p; it had a normal distribution with the 
parameters - N(O, C). 
c1P is the systematic error in column i of plate p; it had a normal distribution with the 
parameters- N(O, C). 
RandiJP is the random error affecting weil i,j (row i, column j) of plate p; it had a normal 
distribution with the parameters -N(O, 0.3SD). 
Datasets for C = 0, 0.6SD, 1.2SD, 1.8SD, 2.4SD and 3SD were generated and tested, where 
J1 is the mean and SD is the standard deviation of the error-free dataset. 

Table 2.1- Five types ofHTS datasets containing different kinds ofsystematic and/or 

random error generated and tested in this study. 

- - - - - -----
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Then, the hits were added to the datasets. Severa! hit percentages, h, were tested in our 

simulations: h = 0.5, 1, 2, 3, 4 and 5%. The locations and values of hits were chosen 

randomly. The probability of each weil in each plate to contain a hit was h%. The values of 

hits followed a normal distribution with the parameters -N(JL0 - 5SD, SD), where JL and SD 

are the mean value and standard deviation of the error-free dataset. 

In total, five types of datasets, presented in Table 2.1 , containing different kinds of 

systematic and/or random error were generated and tested. In arder to render our simulation 

study more realistic, we limited the number of rows, columns and wells affected by 

systematic error. Typically, in real HTS assays only sorne of the error parameters (i.e. , r i, c1, 

wu, r ip and c1P, see Table 2.1) are non null and only a few columns and rows are biased by 

systematic error. In datasets of types A and B, the number of rows and columns affected by 

systematic error as weil as their locations were chosen randomly. These parameters were 

identical for ali the plates of the assay. In datasets oftype D, the number ofrows and columns 

affected by systematic error as weil as their locations were also randomly selected, but these 

parameters were different for different plates of the assay. In datasets of type C, the number 

of biased wells and their locations were randomly selected and were the same for ali assay 

plates. The datasets used in our simulations were subject to the following constraints. For the 

96-well plates, at most 2 rows and 2 columns (cases A, Band D), and not more than 10% of 

the wells (case C) were affected by systematic error. For the 384-well plates, the limits were 

4 rows, 4 columns and 10% of the wells, whereas for the 1536-well plates, systematic error 

affected at most 8 rows, 8 columns and 10% of wells. 

2.3.3 Systematic error detection tests 

Three systematic error detection methods, including the t-test, the ;( goodness-of-fit 

test and Discrete Fournier Transform procedure followed by the Kolmogorov-Smimov test, 

were examined in this study in the context of experimental HTS. 

2.3.3.1 t-test 

The first systematic error detection test was based on the classical two-sample 

Student's t-test for the case of samples with different sizes. In Simulation 1, we carried out 
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this test on every row and every column of each assay. In Simulation 2, we applied it to the 

rows and columns of the assay's hit distribution surfaces. In both cases, we divided the data 

into two independent subsets (i.e., samples). The first subset contained the measurements of 

the tested row or column while the second subset consisted of ali remaining plate 

measurements. In this test, the null hypothesis H0, was that the selected row or column does 

not contain systematic error. If systematic error is absent, then the mean of the given row or 

column is expected to be close to the mean of the rest of the data in the given plate or hit 

distribution surface. For the two samples in hand: S1 with N1 elements and S2 with N2 

elements, we first calculated the two sample variances s1
2 and si , and then their weighted 

average (Equation 2.3): 

(2.3) 

The value of the t-statistic was then obtained as presented in Equation 2.4: 

(2.4) 

where f.1J is the mean of the sample S1 and J12 is the mean of the sample S2• The calculated t­

statistic was then compared to the corresponding critical value for the chosen statistical 

significance lev el a (the a values equal to 0.01 and 0.1 were used in our simulations) in order 

to decide whether or not Ho should be rejected. While assuming homogeneity of variance in 

the construction of the t-test, the computation can be optimized using the equivalent contrasts 

in the context of an analysis of variance. 

2.3.3.2 ;( goodness-of-jit test 

The second tested method was the ;( goodness-offit test. This test was performed in 

Simulation 2 only in arder to assess the presence of systematic error in the hit distribution 

surfaces. It was first recommended in (Makarenkov et al. 2007) in arder to identify 

systematic error in HTS data. The null hypothesis H0, here, is that no systematic error is 
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present in the data. If Ho is true, then the hits are evenly distributed across the weil locations 

and the observed counts of hits xu in each row i and each column j of the hit distribution 

surface is not significantly different from the expected value calculated as the total counts 

across the entire surface divided by the number of wells. The rejection region of H0 is 

P(x 2 >Ca)> a, where Ca is the;( distribution critical value corresponding to the selected 

a parameter (the a values equal to 0.01 and 0.1 were tested here) and to the number of 

degrees offreedom of the mode!. 

For a hit distribution surface with NR rows and Ne columns, we can assess the presence 

of systematic error in a given row r by computing the test statistic x; by means of Equation 

2.5: 

2 ~ (x,1 -E/ 
X, = L --=----

J=l E 
(2.5) 

where E is the total hits count of the whole hit distribution surface divided by the number of 

wells (NR x Ne) with the number of degrees of freedom equal to NR- 1. 

Similarly, the columns of the hit distribution surface affected by systematic error can 

be identified by calculating the test statistic X~ , using Equation 2.6 below: 

NR ( -E)2 
2 _"' X;c Xc - tt .c___:c::...._E_.:..._ ' (2.6) 

where E is the total hits count of the whole hit distribution surface divided by the number of 

wells (NR x Ne) with the number of degrees of freedom equal to Ne - 1. 

The presence of systematic error in the assay can be detected even if systematic error 

affects particular wells of the assay, not necessarily located in the same row or column. We 

can achieve it by calculating the test statistic ;( over ali weil locations of the given hit 

distribution surface (Equation 2.7): 
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(2.7) 

where E is the total bits count of the who le hit distribution surface divided by the number of 

wells (NR x Ne) with the number of degrees of freedom equal to NR x Ne - 1. 

2.3.3.3 Discrete Fourier Transform and Kolmogorov-Smirnov test 

The third tested method consisted of the Discrete Fourier Transform (DFT) procedure 

(Cooley and Tukey 1965) followed by the Kolmogorov-Smimov goodness-of-fit test 

(D'Agostino and Stephens 1986). DFT has been widely used in the frequency analysis of 

signais and, in particular, for building the signal's density spectrum. The power density 

spectrum shows the energy contained in each frequency component existing in the signal. In 

order to apply DFT to HTS data we need first to unroll a plate measurement matrix into a 

linear sequence of measurements. There are two natural ways to do so: (a) to build the 

sequence starting by the first row of the plate, followed by the second row, theo third one, 

and so on, and (b) to start by the first column of the plate, followed by the second column, 

third one, and so on. The analysis of sequences (a) and (b) would allow us to detect column 

and row effects, respectively. DFT detects frequencies of signais that repeat every two, three, 

four, and so on, positions in the sequence. DFT calculates the amplitudes of every possible 

frequency component. Let yf (1 ::::; k::::; N) be the power density spectrum generated by the 

DFT analysis for the plate p with N wells. 

As a second step of this method, we carry out the Kolmogorov-Smirnov test to 

compute the probability of the density spectrum y f occurring under the null hypothesis of 

no effect. The test statistic D cao be calculated as follows: 

(2.8) 

where F&f ) is defined as the number of values in the density spectrum that are lower than 

or equal to yf, i.e. , F(yf )=Il ~~, 1 :-:;:; l :-:;:; N, yf < yf } Il· Big values of D lead to the rejection 
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of the null hypothesis (i.e., xu/s have been drawn from random normally distributed data). 

The method consisting of the DFT analysis followed by the Kolmogorov-Smimov test was 

included in sorne commercial software focusing on the detecting systematic error in 

experimental data ( e.g. in Array Validator described in Kelley 2005). 

2.4 Results And Discussion 

2.4.1 Simulation 1: Detecting systematic error in individual plates 

Simulation 1 consisted of the detection of systematic error on a plate-by-plate basis. 

Artificial HTS data for three different plate sizes: 96 wells- 8 rows and 12 columns, 384 

wells - 16 rows and 24 columns, and 1536 wells - 32 rows and 48 columns were first 

generated. We started by creating basic error-free datasets for which the weil measurements 

followed a standard normal distribution ~N(0,1). For ali datasets the number of plates was set 

to 1250- the same as in McMaster Test assay (Elowe et al. 2005). Theo, we added 1% of hits 

to each of the generated basic datasets. The hits were added in such a way that the probability 

that a given weil contained a hit was 1%. Ali the hit values followed a normal distribution 

with the parameters ~N(j..i-5SD, SD), where fL and SD are the mean value and standard 

deviation of the basic dataset (without hits). 

Using these error-free datasets, we generated datasets comprising different types of 

systematic error, labelled A to E, as reported in Table 2.1. Systematic error was added only to 

sorne ofthe assay rows (columns, wells). The number ofrows (columns, wells) affected by 

systematic error as weil as the indexes of the affected rows, columns and wells were 

determined randomly for each considered dataset. Six types of error-affected sets were 

produced for each error-free dataset by varying the standard deviation of systematic error. 

The following values of the systematic error standard deviation were used: 0, 0.6SD, 1.2SD, 

1.8SD, 2.4SD and 3.0SD, where SD is the standard deviation of the basic dataset. The t-test 

and K-S test were theo applied to error-affected data. Bath tests produced a binary result for 

each row and column of each plate: Systematic error was detected or not detected in this row 

or column. The output was theo compared to the information from the data generation phase 

to determine wh ether the result of the test was correct. 
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Cohen's kappa coefficient (Cohen 1960, Fleiss 1981) was calculated to estimate the 

accuracy of both statistical tests. Cohen's kappa is a measure of inter-rater agreement or inter­

annotator agreement. The kappa coefficient, which takes into account the agreement 

occurring by chance is computed as follows (Equation 2.9): 

Pr(a)- Pr(e) 
K= 

1- Pr(e) 
(2.9) 

where Pr(a) is the relative observed agreement among raters (i .e. , statistical tests in our 

study) and Pr(e) is the hypothetical probability of chance agreement. If the raters are in 

complete agreement, then K = 1. If there is no agreement among the raters, other than what 

would be expected by chance, then K:::::; O. 

In our HTS context, Pr(a) and Pr(e) were calculated as follows: 

TP+TN 
d P ( ) 

(TP + FN) x (TP + FP) + (TN + FN) x (TN + FP) h 
an r e = 

2 
, w ere 

(P x (N11 +Ne )) 

P is the number of plates in the assay, N11 and Ne, are, respectively, the number of rows and 

columns per plate, TP (true positives) is the sum of the numbers of rows and columns where 

systematic error was added during the data generation and then detected by the test, FP (fa/se 

positives) is the sum of the numbers of rows and columns where systematic error was not 

added but detected by the test, TN (true negatives) is the sum of the numbers of rows and 

columns where systematic error was not added and not detected by the test, and FN (fa/se 

negatives) is the sum of the numbers of rows and columns where systematic error was added 

but not detected by the test. 

For ali generated variants of error-affected data, 500 different sets were created. The 

averages of obtained Cohen's kappa coefficients are represented in Figures 2.2, 2.3 and 2.4 

(for the 96, 384 and 1536-well plates, respectively). Also, the sensitivity (Figures 2.9, 2.10 

and 2.11 , see the section Supplementary Figures), specificity (Figures 2.12, 2. 13 and 2.14) 

and success rate (Figures 2.21 , 2.22 and 2.23) of the two tests are depicted. The sensitivity 

and specificity of the two tests were calculated as follows (Equations 2.1 0): 

------------ - --
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S 
. . . TP 

ensztzvzty = , 
TP+FN 

S iji
. TN 

pecz zczty = ----
TN+FP 

(2 .1 0) 

Since datasets of types C and E did not contain row or column systematic error, the 

sensitivity and Cohen's kappa coefficient of both competing statistical tests for these data 

were undefined (i.e., TP = FN = 0 for these data types). 

(a) Sim 1 Cohen's Kappa (A96, a = 0.01) (d) Sim 1 Cohen's Kappa (A96, a = 0.1) 
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(b) Sim 1 Cohen's Kappa (896, a = 0.01) (e) Sim 1 Cohen's Kappa (896, a = 0.1) 
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(c) Sim 1 Cohen's Kappa (096, a= 0.01) (f) Sim 1 Cohen's Kappa (096, a = 0.1) 
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Figure 2.2 Simulation 1, Plate Size: 96 wells - Cohen's Kappa vs Error Size Systematic 

error size: 10% (at most 2 columns and 2 rows affected). First column: (a)- (c): a= 

0.01; Second column: (d)- (f): a = 0.1. Systematic Error Detection Tests:(<>) t-test and 

(D) K-S test. 
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Figure 2.3 Simulation 1, Plate Size: 384 wells- Cohen's Kappa vs Error Size Systematic 

error size: 10% (at most 4 columns and 4 rows affected). First column: (a) .. (c): a= 

0.01; Second column: (d) .. (f): a= 0.1. Systematic Error Detection Tests: (0) t-test and 

(D) K-S test. 

The kappa coefficient curves in Figures 2.2, 2.3 and 2.4 show that the t-test clearly 

outperforms DFT followed by the K-S test for ali selected sizes of systematic error, 

confidence levels and plate sizes. The accuracy of the t-test grows as the size of systematic 

error increases. It also grows slightly as the plate size increases. The accuracy of the K-S test 

remains very low and usually varies between 0.0 and 0.1 , thus suggesting a very poor 

systematic error recovery by this test. 
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(a) Sim 1 Cohen's Kappa (A1536, a= 0.01) (d) Sim 1 Cohen's Kappa (A 1536, a = 0.1) 
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(b) Sim 1 Cohen's Kappa (81536, a = 0.01) (e) Sim 1 Cohen's Kappa (81536, a= 0.1 ) 
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(c) Sim 1 Cohen's Kappa (01536, a = 0.01) (f) Sim 1 Cohen's Kappa (01536, a = 0.1) 
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Figure 2.4 Simulation 1, Plate Size: 1536 wells - Cohen's Kappa vs Er ror Size. 

Systematic error size: 10% (at most 8 columns and 8 rows affected). First column: (a) -

(c): a= 0.01; Second column: (d) - (f): a = 0.1. Systematic Error Detection Tests: (0 ) t­

test and (0 ) K-S test. 

Figures 2.21, 2.22 and 2.23 indicate that the success rate of the t-test is largely 

independent of the systematic error variance and remains very steady for ali tested types of 

systematic error and plate sizes. In contrast, the success rate of the K-S test decreases as the 

standard deviation of systematic error increases. The performance of the K-S test is also 

affected by the size of the plate (Figures 2.2, 2.3 and 2.4). The K-S test success rate decreases 

significantly, and often falls below 50%, for larger plates (Figure 2.23). The chosen 
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confidence leve! a affects the accuracy of both statistical tests. For instance, the use of a= 

0.1 generally causes a decrease in the kappa coefficient (the decrease of 0.2 on average, see 

Figures 2.2, 2.3 and 2.4) and in the success rate (the decrease of 10% on average, see Figures 

2.21, 2.22 and 2.23) of the t-test, when compared to a= 0.01. The sensitivity charts (Figures 

2.9, 2.10 and 2.11) show that the increase in the variance of systematic error leads to the 

increase in sensitivity of both tests. In terms of sensitivity, the t-test outperforms the K-S test 

for ali data types and ali sizes of systematic error, the only exception being large plates tested 

with the confidence lev el a= 0.1 (Figure 2.11 ). 

Similarly to real HTS assays, our artificially generated datasets had systematic error in 

only a few rows and/or columns. They contained many negative and only a few positive 

samples. Such an imbalance between positive and negative samples implies that the overall 

accuracy of the tests will depend much more on the test specificity than on its sensitivity. 

Figures 2.12, 2.13 and 2.14 confirm this observation- most of the specificity charts resemble 

the corresponding success rate charts (see Figures 2.21, 2.22 and 2.23). 

2.4.2 Simulation 2: Detecting systematic error on hit distribution surfaces 

The second simulation, Simulation 2, consisted of the detection of systematic error on 

the hit distribution surfaces. The recommendation to use statistical tests to examine hit 

distribution surfaces of experimental HTS assays was first formulated in (Makarenkov et al. 

2007), in the case of the ;( test. In Simulation 2, we also considered artificially generated 

assays with plates of three different sizes (i.e., 96-, 384- and 1536-well plates as weil as 

1250-plate assays) with the measurements following the standard normal distribution. From 

every basic dataset we generated 6 error-free datasets comprising 0.5%, 1%, 2%, 3%, 4% and 

5% of hits. Ali the hit values followed a normal distribution with the parameters ~N(j..i-5SD, 

SD). Using the error-free datasets, we generated assays containing different types of 

systematic error (i.e., from A to E). Systematic error, added to sorne of the assay rows 

(columns, wells) on1y, followed the normal distribution with the mean value of 0 and the 

standard deviation of 1.2SD. For each such an assay, we calculated its hit distribution surface 

for the hit selection threshold of j..i-3 Œ. Then we applied, in tum, the t-test, and the K-S and 

;( goodness-of-fit tests to detect the presence of systematic error. 
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For each error variant, 500 different datasets were generated and the averages of 

obtained Cohen' s kappa coefficients were plotted in Figures 2.5, 2.6 and 2.7. The sensitivity 

and specificity of the three tests were depicted in Figures 2.15 to 2.20, and the success rate in 

Figures 2.24, 2.25 and 2.26. The hit distribution surfaces for the assays of types C, D and E 

(these assays don 't contain systematic error that repeats along ali assay plates) cannot be used 

to retrace row or column systematic error. Hence, the sensitivity and Cohen ' s kappa 

coefficient for datasets of types C, D andE were undefined. 
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Figure 2.5- Simulation 2, Plate Size: 96 wells, Cohen's Kappa vs Hit Percentage. 
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5% 

Systematic error size: 10% (at most 2 columns and 2 rows affected). First column: cases 

(a)- (b): a= 0.01; Second column: cases (c)- (d): a= 0.1. Systematic Error Detection 

Tests: (0) t-test, (0) K-S test and (.6.) i goodness-of-fit test. 

The kappa coefficient curves presented in Figures 2.5, 2.6 and 2.7 illustrate that the t­

test clearly outperforms thei goodness-of-fit test as weil as the combination of DFT and the 

K-S test for all selected sizes of systematic error, confidence levels and plate sizes. The 

accuracy of the t-test generally grows as the size of systematic error increases, but this trend 

is not as steady as in Simulation 1: The curve's minimum is not always associated with the 

lowest systematic noise (e.g., see cases c and d in Figure 2.5). 
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Figure 2.6 Simulation 2, Plate Size: 384 wells, Cohen's Kappa vs Hit Percentage. 
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Systematic er ror size: 10% (at most 4 columns and 4 rows affected). First column: cases 

(a) - (b): a= 0.01; Second column: cases (c) - (d): a= 0.1. Systematic Error Detection 

Tests: (0 ) t-test, (D) K-S test and (b.) i goodness-of-fit test. 

The kappa values for the i and K-S tests usually varies between 0.0 and 0.25, thus 

suggesting a poor systematic error recovery provided by both of them. As in Simulation 1, 

the success rate of the t-test is largely independent of the systematic error variance (Figures 

2.24, 2.25 and 2.26). Moreover, the success rate of the t-test varies between 90% and 100% 

in the most of simulated experiments. At the same time, the accuracy of the K-S test is 

extremely low in almost ali of the considered situations. The success rate analysis of the i 
goodness-of-fit test suggests that this test follows different patterns for different types of data. 

For datasets of types D and E, whose hit distribution surfaces did not contain systematic 

error, the accuracy of the i test is very close to that ofthe t-test (Figures 2.24, 2.25 and 2.26, 

cases d, e, i and j). However, for the datasets that contained row and/or column systematic 

error and weil systematic error, the success rate of the i goodness-of-fit test is significantly 

lower than that of the t-test (Figures 2.24, 2.25 and 2.26, cases a toc and fto h) and shows a 

tendency to deteriorate when the percentage of hits in the data increases. The sensitivity 

patterns shown in Figures 2.15, 2.16 and 2.17 demonstrate that the sensitivity of the three 
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statistical tests grows as the percentage of hits contained in the data increases. Similarly to 

Simulation 1, choosing a bigger value of a led to a decrease in the accuracy of ali tests. 
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Figure 2.7 Simulation 2, Plate Size: 1536 wells, Cohen's Kappa vs Hit Percentage. 
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Systematic error size: 10% (at most 8 columns and 8 rows affected). First column: cases 

(a)- (b): a= 0.01; Second column: cases (c)- (d): a= 0.1. Systematic Error Detection 

Tests: (0) t-test, (D) K-S test and (.6) i goodness-of-fit test. 

2.4.3 Application to the McMaster data 

As a final step in our study we applied the three discussed systematic error detection 

tests on real HTS data. We examined the impact that the presented methodology would have 

on the bit selection process in McMaster Data Mining and Docking Competition Test assay 

(Elowe et al. 2005). Similarly to Simulations 1 and 2 carried out with artificial data, we 

performed two types of analysis. First, we studied the raw HTS measurements, and then 

calculated and analyzed the hit distribution surfaces of Test assay. 

We carried out the t-test on every plate of Test assay, scanning ali rows and columns of 

each plate for the presence of systematic error. We performed the calculation for severa! 
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confidence levels including: a= 0.01, 0.05, 0.1 and 0.2. In each case, we counted the number 

of rows and colurnns in which the test reported the presence of systematic error and also the 

number of plates in which at !east one row or column contained systematic error. The 

collected results are presented in Table 2.2. 

a Plates Rows Rows% Columns Columns% 

0.01 159 76 0.76% 94 0.75% 

0.05 814 575 5.76% 606 4.86% 

0.1 1121 1148 11.50% 1296 10.38% 

0.2 1241 2242 22.46% 2583 20.70% 

Table 2.2- Number of rows, columns and plates (where at least one row or column 

con tains systematic error) of McMaster Test assay in which the t-test reported the 

presence of systematic error, depending on the a parameter. Only 8 rows and 10 

columns of McMaster Test assay were examined because the first and twelfth columns 

of the (8 by 12) plates were used for con trois. 

Original Obtained Preserved Added Removed 
a bits bits bits bits bits 

0.01 96 123 57 66 39 

0.05 96 125 55 70 41 

0.1 96 126 52 74 44 

0.2 96 130 55 75 41 

Table 2.3- Number of bits selected in McMaster Test assay for the p-3SD threshold 

after the application of the B-score correction, depending on the a parameter. The t-test 

was carried out to detect systematic error. 

The obtained results suggest that the number of positives for the row and column 

effects is almost exact! y what we would expect by chance ( e.g. , approximately 1% wh en we 

used a= 0.01 , 5 % when we used a= 0.05, etc.). This means that there is no statistical 

evidence of bias for columns and rows in McMaster Test assay. 
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Original Obtained Preserved Added Removed 
a bits bits bits bits bits 

0.01 96 357 79 278 17 

0.05 96 419 79 340 17 

0.1 96 411 79 332 17 

0.2 96 417 76 341 20 

Table 2.4 - N umber of bits selected in McMaster Test assay for the f.J-2.29SD threshold 

(i.e., threshold used by the McMaster competition organizers to select the 96 original 

average bits) after the application of the B-score correction, depending on the a 

parameter. The t-test was carried out to detect systematic error. 

For comparative purposes, we corrected the raw McMaster data using the B-score 

method in ali plates where systematic error was detected by the t-test. Unlike the artificially 

generated data used in the simulation study, McMaster Test assay contained replicated plates 

- every compound of the assay was screened twice (Eiowe et al. 2005). We adjusted our hit 

selection procedure to search for average hits. Thus, we frrst calculated the average of the 

two compound measurements and then used it in the hit selection process. If systematic error 

was detected only in frrst plate and, therefore, corrected using the B-score method, then the 

residuals produced by B-score were incomparable with the values of the second (i.e., 

replicated) plate. In order to make the measurements in both plates comparable, we 

normalized both plates by means of the Z-score method prior to calculating the average 

compound activity. Using the corrected dataset, we determined the assay hits for two hit 

selection thresholds: j.r3SD - the most popular hit cutting threshold employed in HTS, and 

j.r2.29SD - the threshold used by the McMaster competition organizers to identify the 

original 96 average hits. The obtained results are reported in Tables 2.3 and 2.4, respectively. 

A comparison between the original set of hits and the newly selected hits is also made in 

these tables. In fact, these tables report how many of the original hits remained hits, how 

many of them were removed and how many new hits were selected. For the threshold j.r3SD, 

only about half of the original hits were preserved, whereas for the threshold Jr2.29SD about 

four times more hits were selected for the B-score corrected data. The presented results 
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demonstrate how significantly the selected error correction method and confidence leve! a 

can affect the hit selection process in experimental HTS. 

In our second experiment, we computed and analyzed the hit distribution surfaces of 

McMaster Test assay for the hit selection thresholds: j.1-3SD and j.1-2SD. We assessed the 

presence of systematic error in the assay by applying the three discussed systematic error 

detection tests: t-test, K-S test and i goodness-of-fit test. Ali three tests detected the 

presence of systematic error in both surfaces for both considered confidence levels a= 0.01 

and 0.1. While the hit distribution surface is useful for detecting the presence of overall bias, 

it does not capture the variability of the bias on a plate-by-plate basis. 

Tbreshold 
Original Obtained Preserved Added Removed 

bits bits bits bits bits 

J.1-3SD 96 26 26 0 70 

)1- 2.29SD 96 102 72 30 24 

Table 2.5- Number of bits selected in McMaster Test assay for the j.1-3SD and j.1- 2.29SD 

thresbolds after the application oftbe Weil Correction metbod. 

Finaily, we also applied the Weil correction method to remove systematic error from 

McMaster Test assay. After Weil correction was performed, the hit selection was carried out 

again for the hit selection thresholds: J.1-3SD and j.1-2.29SD. Table 2.5 reports the 

comparative results of the two hit selections. When analyzing the obtained hits for the f.1-

2.29SD threshold, one can notice that 24 of the original hits were not detected and, at the 

same time, 30 new compounds were selected as hits. 

Figure 2.8 presents a summary of our experiments conducted with McMaster Test 

assay. The pairwise intersections between the three obtained sets of hits are presented. The 

dashed grey area in the middle represents the intersections between the three hit sets and thus 

defines the consensus hits for McMaster Test assay. The results provided by the B-score 

method ( 414 hits in total) shows that this data correction procedure tends to overestimate, at 

!east when compared to Z-score and Weil correction, the number of hit compounds. On the 

other hand, the results provided by the Weil correction method suggest that about one third of 
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the original hits could be, in fact, false positives and that about the same percentage of fa! se 

negatives could be ignored if systematic error present in the raw McMaster data is not 

identified and removed adequately. 

Original Hits 
96 

Well Correction 
102 

Figure 2.8 Intersections between the original set of bits (96 bits in total) and the sets of 

bits obtained after the application of the B-score (411 bits in total; the method was 

carried out only on the plates where systematic error was detected) and Weil correction 

methods (102 bits in total) computed for McMaster Test assay. The Ji.- 2.29SD bit 

selection threshold was used to select bits. 

2.5 Conclusions 

In this article we discussed and tested three methods for detecting the presence of 

systematic error in experimental HTS assays. We conducted a comprehensive simulation 

study with artificially generated HTS data, constructed to mode! a variety of real-Iife 

situations. The variants of each dataset, comprising different hit percentages and various 

types and Ievels of systematic error, were examined. The experimental results show that the 
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method performances depend on the assay parameters - plate size, hit percentage, and type 

and variance of systematic error. We found that the simplest and computationally fastest 

method, the t-test, outperformed the Kolmogorov-Smimov (K-S) and i goodness-of-fit tests 

in most of the practical situations. The t-test demonstrated a high robustness when applied on 

a variety of artificial datasets. The success rate of the t-test was, in most situations, well 

above 90%, regardless the plate size, noise leve! and type of systematic error, while the 

values of Cohen's kappa coefficient computed for this test suggested its su peri or performance 

especially in the case of large plates and high leve! of systematic noise. We can thus 

recommend the t-test as a method of choice in experimental HTS. On the contrary, advocated 

in sorne works (Kelley 2005, Root et al. 2003) Discrete Fourier Transform followed by the 

K-S test yielded very disappointing results. Moreover, the latter technique required a lot of 

computational power but provided the worst overall performance among the three competing 

statistical procedures. The K-S test can still be used to examine HTS data located in small 

plates (i.e., 96-well plates), but we strongly recommend not using it for the analysis or large 

plates (i.e., 384 and 1536-well plates) and hit distribution surfaces. The main reason for such 

a disappointing performance of the K-S test is it that was applied, as recommended in (Kelley 

2005), on the data already transformed by the Discrete Fourier method. Figure 2.27 presents 

an example of data from one of the simulated 96-well plates before and after the application 

of Discrete Fourier Transform. The raw data followed a normal distribution and contained 

random error only (i.e., systematic error was not added). The raw data did not deviate from 

the normal distribution, as shown both graphically (Figure 2.27a) and by the K-S test (KS = 

0.03, p = 0.5). However, after the application of Discrete Fourier Transform, the data deviate 

from normality as shown in the graph (Figure 2.27a) and by the K-S test (KS = 0.06, p = 

0.0018). The third method, the;i goodness-of-fit test suggested in (Makarenkov et al. 2007), 

cao be employed to assess hit distribution surfaces for the presence of systematic error. In 

general, its performances were lower than those of the t-test and were very sensitive to the 

type of systematic error as well as to its variance. The i goodness-of-fit test could be 

recommended, especially to analyze HTS assays with small plate sizes, but we suggest 

carrying out the t-test as weil to confirm its results. 
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In addition to the experiments with simulated data, we applied the three discussed 

systematic error detection tests to real HTS data. Our goal was to evaluate the impact of 

systematic error on the hit selection process in experimental HTS. The obtained results (see 

Tables 2.2-2.5 and Figure 2.8) confirm the following fact: If raw HTS data are not treated 

properly for eliminating the effect of systematic error, then many (e.g., about 30% of hits in 

the case of McMaster Test assay, as reported in Table 2.5) of the selected hits may be due to 

the presence of systematic error and, at the same time, many promising compounds may be 

missed during hit selection. A special attention should be paid to control the resu lts of 

aggressive data normalization procedures, such as B-score, that could easily do more damage 

by introducing biases in raw HTS data and, therefore, lead to the selection of many false 

positive hits even in the situations wh en the data don 't con tain any ki nd of systematic error. 

Our general conclusion is that a successful assessment of the presence of systematic 

error in experimental HTS assays is achievable when the appropriate statistical methodology 

is used. Namely, the t-test should be carried out by HTS researchers to pre-process raw HTS 

data. This test should help improve the "quality" of selected hits by discarding many 

potential false positives and suggesting new, and eventually real, active compounds. The t­

test should be used in conjunction with data correction techniques such as: Weil correction 

(Makarenkov et al. 2006, Makarenkov et al. 2007), when row or column systematic error 

( detected by the test) repeats across ail plates of the assay, and B-score (Brideau et al. 2003) 

or trimmed-mean polish score (Malo et al. 2010), when systematic error varies across plates. 

Thus, we recommend adding an extra preliminary systematic error detection and correction 

step in ali HTS processing software and using consensus hits in order to improve the overall 

accuracy ofHTS analysis. 
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2.6 Supplementary Figures 

(a) Sim 1 Sensitivity (A96, a= 0.01) (d) Sim 1 Sensitivity (A96, a = 0.1) 
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(b) Sim 1 Sensitivity (896, a= 0.01) (e) Sim 1 Sensitivity (896, a= 0.1) 
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(c) Sim 1 Sensitivity (096, a= 0.01) (f) Sim 1 Sensitivity (096, a = 0.1) 
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Figure 2.9 Simulation 1, Plate Size: 96 wells- Sensitivity (True Positive Rate). 

Systematic error size: 10% (at most 2 columns and 2 rows affected). First column: cases 

(a)- (c): a= 0.01; Second column: cases (d)- (f): a= 0.1. Systematic Error Detection 

Tests: (0) t-test and (0) K-S test. 
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Sim 1 Sensitivity (A384, a = 0.1) 
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Figure 2.10 Simulation 1, Plate Size: 384 wells- Sensitivity (True Positive Rate). 
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Systematic error size: 10% (at most 4 columns and 4 rows affected). First column: cases 

(a)- (c): a= 0.01; Second column: cases (d)- (f): a= 0.1. Systematic Error Detection 

Tests: (0) t-test and (D) K-S test. 
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(a) Sim 1 Sensitivity (A1536, a= 0.01) (d) Sim 1 Sensitivity (A 1536, a = 0.1) 
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(b) Sim 1 Sensitivity (81536, a= 0.01) (e) Sim 1 Sensitivity (81536, a= 0.1) 
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(c) Sim 1 Sensitivity (01536, a= 0.01) (f) Sim 1 Sensitivity (01536, a= 0.1) 
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Figure 2.11 Simulation 1, Plate Size: 1536 wells- Sensitivity (True Positive Rate). 

Systematic error size: 10% (at most 8 columns and 8 rows affected). First column: cases 

(a)- (c): a= 0.01; Second column: cases (d)- (f): a= 0.1. Systematic Error Detection 

Tests: (0) t-test and (D) K-S test. 
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(a) Sim 1 Specificity (A96, a = 0.01 ) (f) Sim 1 Specificity (A96, a = 0.1) 
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(b) Sim 1 Specificity (896, a = 0.01) (g) Sim 1 Specific ity (896, a = 0.1) 
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(c) Sim 1 Specificity (C96, a = 0.01) (h) Sim 1 Specific ity (C96, a = 0.1 ) 
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(d) Sim 1 Specificity (096, a = 0.01 ) (i) Sim 1 Specificity (096, a = 0.1) 
100 100 

90 90 

80 80 

70 70 

60 60 

50 50 

40 40 

30 30 

20 20 

10 10 

0 0 
EF 0.0 0.6 1.2 1.8 2.4 3.0 EF 0.0 0.6 1.2 1.8 2.4 3.0 

(e) Sim 1 Specificity (E96, a = 0.01 ) U) Sim 1 Specif icity (E96, a = 0.1) 
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Figure 2.12 Simulation 1, Plate Size: 96 wells- Specificity (True Negative Rate). 
Systematic error size: 10% (at most 2 columns and 2 rows affected). First column: cases 

(a) - (e): a= 0.01; Second column: cases (f) - (j): a= 0.1. Systematic Error Detection 
Tests: (<>) t-test and (0) K-S test. 
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(f) Sim 1 Specificity (A384, a= 0.1) 
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{h) Sim 1 Specificity (C384, a= 0.1) 
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(i) Sim 1 Specificity (0384, a = 0.1) 
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U) Sim 1 Specificity (E384, a = 0.1) 
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Figure 2.13 Simulation 1, Plate Size: 384 wells- Specificity (True Negative Rate). 
Systematic error size: 10% (at most 4 columns and 4 rows affected). First column: cases 

(a)- (e): a= 0.01; Second column: cases (f)- G): a= 0.1. Systematic Error Detection 
Tests: (<>) t-test and (D) K-S test. 
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(a) Sim 1 Specificity (A1536, a= 0.01) (f) Sim 1 Specificity (A1536, a= 0.1) 
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(b) Sim 1 Specificity (81536, a= 0.01) (g) Sim 1 Specificity (81536, a = 0.1) 
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(c) (h) Sim 1 Specificity (C1536, a = 0.1) 
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U) Sim 1 Specificity (E1536, a = 0.1) 
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Figure 2.14 Simulation 1, Plate Size: 1536 wells- Specificity (True Negative Rate). 
Systematic error size: 10% (at most 8 columns and 8 rows affected). First column: cases 

(a)- (e): a= 0.01; Second column: cases (f)- (j): a= 0.1. Systematic Error Detection 
Tests: (0 ) t-test and (0) K-S test. 
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Figure 2.15 Simulation 2, Plate Size: 96 wells- Sensitivity (True Positive Rate). 
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Systematic error size: 10% (at most 2 columns and 2 rows affected). First column: cases 

(a)- (b): a= 0.01; Second column: cases (c)- (d): a= 0.1. Systematic Error Detection 

Tests: (0) t-test, (D) K-S test and (.6.) i goodness-of-fit test. 
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Figure 2.16 Simulation 2, Plate Size: 384 wells - Sensitivity (True Positive Rate). 
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Systematic error size: 10% (at most 4 columns and 4 rows affected). First column: cases 

(a)- (b): a= 0.01; Second column: cases (c)- (d): a= 0.1. Systematic Error Detection 

Tests: (0) t-test, (0) K-S test and (.6.) i goodness-of-fit test. 
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Figure 2.17 Simulation 2, Plate Size: 1536 wells - Sensitivity (True Positive Rate). 

Systematic error size: 10% (at most 8 columns and 8 rows affected). First column: cases 

(a)- (b): a= 0.01; Second column: cases (c)- (d): a= 0.1. Systematic Error Detection 

Tests: (0) t-test, (D) K-S test and (.6.) i goodness-of-fit test. 
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Figure 2.18 Simulation 2, Plate Size: 96 wells- Specificity (True Negative Rate). 
Systematic error size: 10% (at most 2 columns and 2 rows affected). First column: cases 

(a)- (e): a= 0.01; Second column: cases (f)- (j): a= 0.1. Systematic Error Detection 
Tests: (0) t-test, (D) K-S test and (b.) i goodness-of-fit test. 
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Figure 2.19 Simulation 2, Plate Size: 384 wells- Specificity (True Negative Rate). 
Systematic error size: 10% (at most 4 columns and 4 rows affected). First column: cases 

(a)- (e): a= 0.01; Second column: cases (f)- (j): a= 0.1. Systematic Error Detection 
Tests: (<>) t-test, (D) K-S test and (.6.) i goodness-of-fit test. 
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(h) Sim 2 Specificity (C1536, a= 0.1) 
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Figure 2.20 Simulation 2, Plate Size: 1536 wells- Specificity (True Negative Rate). 
Systematic error size: 10% (at most 8 columns and 8 rows affected). First column: cases 
(a)- (e): a 0= 0.01; Second column: cases (f)- (j): a 0 = 0.1. Systematic Error Detection 

Tests: (0) t-test, (D) K-S test and (..6.) i goodness-of-fit test. 
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(a) Simulation 1 (A96, a= 0.01) (f) Simulation 1 (A96, a = 0.1) 
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(b) Simulation 1 (8 96, a = 0.01) (g) Simulation 1 (896, a = 0.1) 
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(c) Simulation 1 (C96, a = 0.01 ) (h) Simulat ion 1 (C96, a = 0.1) 
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(e) Simulation 1 (E96, a = 0.01) U) Simulation 1 (E96, a = 0.1) 
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Figure 2.21 Simulation 1, Plate Size: 96 wells- Success Rate. Systematic error size: 
10% (at most 2 columns and 2 rows affected). First column: cases (a)- (e): a = 0.01; 

Second column: cases (t)- G): a= 0.1. Systematic Error Detection Tests: (0) t-test and 
(0) K-S test. 
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(a) Simulation 1 (A384, a= 0.01) (f) Simulation 1 (A384, a= 0.1) 
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(b) Simulation 1 (8384, a= 0.01) (g) Simulation 1 (8384, a= 0.1) 
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(c) Simulation 1 (C384, a= 0.01) (h) Simulation 1 (C384, a = 0.1) 
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(d) Simulation 1 (0384, a= 0.01) (i) Simulation 1 (0384, a = 0.1) 
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(e) Simulation 1 (E384, a= 0.01) U) Simulation 1 (E384, a = 0.1) 
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Figure 2.22 Simulation 1, Plate Size: 384 wells - Success Rate. Systematic error size: 
10% (at most 4 columns and 4 rows affected). First column: cases (a)- (e): a = 0.01; 

Second column: cases (f)- (j): a= 0.1. Systematic Error Detection Tests: (0) t-test and 
(D) K-S test. 
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Simulation 1 (A1536, a= 0.01) (f) Simulation 1 (A1536, a= 0.1) 
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Simulation 1 (81536, a= 0.01) (g) Simulation 1 (81536, a = 0.1) 
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(c) (h) Simulation 1 (C1536, a= 0.1) 
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Simulation 1 (01536, a= 0.01 ) (i) Simulation 1 (01536, a = 0.1) 
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(e) U) Simulation 1 (E1536, a = 0.1 ) 
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Figure 2.23 Simulation 1, Plate Size: 1536 wells- Success Rate. Systematic error size: 
10% (at most 8 columns and 8 rows affected). First column: cases (a)- (e): a= 0.01; 

Second column: cases (f)- (j): a = 0.1. Systematic Error Detection Tests: (0) t-test and 
(0) K-S test. 
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(f) Simulation 2 (A96, a= 0.1) 
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Figure 2.24 Simulation 2, Plate Size: 96 wells- Success Rate. Systematic error size: 10% 
(at most 2 columns and 2 rows affected). First column: cases (a)- (e): a= 0.01; Second 
column: cases (f) - (j): a= 0.1. Systematic Error Detection Tests: (0) t-test, (D) K-S test 

and (.6.) i goodness-of-fit test. 
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Figure 2.25 Simulation 2, Plate Size: 384 wells - Success Rate. Systematic error size: 
10% (at most 4 columns and 4 rows affected). First column: cases (a) - (e): a = 0.01; 

Second column: cases (f)- (j): a= 0.1. Systematic Error Detection Tests: (<>) t-test, (D) 
K-S test and (b.) i goodness-of-fit test. 
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(h) Simulation 2 (C1536, a = 0.1) 
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(i) Simulation 2 (01536, a = 0.1) 
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(e) (j) Simulation 2 (E1536, a= 0.1) 
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Figure 2.26 Simulation 2, Plate Size: 1536 wells- Success Rate. Systematic error size: 
10% (at most 8 columns and 8 rows affected). First column: cases (a)- (e): a = 0.01; 

Second column: cases (t) - (j): a= 0.1. Systematic Error Detection Tests: (0) t-test, (0 ) 
K-S test and (~) i goodness-of-fit test. 
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Figure 2.27 Data dist ribution before and after the application of the Discrete Fourier 

Transform (DFT) method. Data from one of the simulated 96-well plates before and 

after the application of Discrete Fourier Transform. The raw data followed a normal 

distribution and contained random error only (i.e., systematic error was not added). The 

raw data show agreement with the normal distribution, both graphically (case a) and by 

the Kolmogorov-Smirnov test (KS = 0.03, p = 0.5). However, after the application of 

Discrete Fourier Transform, the data deviate from normality as shown in the graph 

(case b) and by the Kolmogorov-Smirnov test (KS = 0.06, p = 0.0018). 



CHAPTERIII 

TWO EFFECTIVE METHODS FOR CORRECTING EXPERIMENTAL HIGH­

THROUGHPUT SCREENING DATA 

This chapter is a reproduction of the following article: 

Dragiev P., Nadon R. and Makarenkov V. (2012) Two effective methods for 

correcting experimental high-throughput screening data. Bioinformatics, 28 (13), 

1775-1782. 

Latest scientific and technical progress allowed millions of chemical compounds to be 

tested in a single HTS campaign. Working at large scale makes it difficult to ensure that the 

experimental conditions remain constant throughout the whole experiment. Many technical 

and procedural factors as weil as changes in the environmental factors can cause the situation 

when the activity Ievels of certain compounds are systematically over- or underestimated. 

The presence of systematic error in the raw HTS data affects negatively the hit selection 

process, generating false positives and false negative hits (Makarenkov et al. 2007). 

Different error correction methods have been developed to eliminate or reduce the 

effect of systematic error in experimental HTS (Brideau et al. 2003, Kevorkov and 

Makarenkov 2005, Makarenkov et al. 2007, Malo et al. 2010, Carralot et al. 2012). Ail these 

methods modify ail the data of the given plate or the given assay. Therefore, when applied to 

error-free data, such an error correction introduces a bias into the data (see also Chapter II). 

In addition, the most widely-used error correction methods, Iike B-score (Brideau et al. 
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2003), change the scale of the corrected data, making them incomparable with the remaining 

unmodified data of the assay. 

Chapter III presents two new systematic error correction methods meant to address the 

above-mentioned issues. Here, we assume that the assay plates affected by systematic error 

are known. Those plates and the error locations can be determined using the error detection 

tests described in Chapter IL The two new methods were designed to modify only the data 

affected, or supposed to be affected, by systematic error. The error correction is carried in 

such a way that after the correction, the corrected measurements remain on the same scale 

with the original raw data. Moreover, we also propose a general data correction framework 

capable of correcting screen-based and plate-based types of systematic error. 
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3.1 Abstract 

Motivation: Rapid advances in biomedical sciences and genetics have increased the pressure 

on drug development companies to promptly translate new knowledge into treatments for 

disease. Impelled by the demand and facilitated by technological progress, the number of 

compounds evaluated during the initial high-throughput screening (HTS) step of drug 

discovery process has steadily increased. As a highly-automated large-scale process, HTS is 

prone to systematic error caused by various technological and environmental factors. A 

number of error correction methods have been designed to reduce the effect of systematic 

error in experimental HTS (Brideau et al. 2003, Carralot et al. 2012, Kevorkov and 

Makarenkov 2005, Makarenkov et al. 2007, Makarenkov et al. 2007, Malo et al. 2010). 

Despite their power to correct systematic error when it is present, the applicability of those 

methods in practice is limited by the fact that they can potentially introduce a bias when 

applied to unbiased data. We describe two new methods for eliminating systematic error from 

HTS data based on a prior knowledge of the error location. This information can be obtained 

using a specifie version of the t-test or of the;( goodness-of-fit test as discussed in Dragiev 

et al. (2011). We will show that both new methods constitute an important improvement over 

the standard practice of not correcting for systematic error at ali as weil as over the B-score 

correction procedure (Brideau et al. 2003) which is widely used in the modern HTS. We will 

also suggest a more general data preprocessing framework where the new methods can be 

applied in combination with the Weil Correction procedure (Makarenkov et al. 2007). Such a 

framework will allow for removing systematic biases affecting ali plates of a given screen as 

weil as those relative to sorne of its individual plates. 

3.2 Introduction 

A typical drug development project starts with a candidate identification phase in 

which a large chemical compound library is tested against a given biological target (Malo et 

al. 2006). Complex high-throughput screening equipment is employed at this stage to obtain 

precise estimates of compound activity levels. The collected data are then used to identify the 

compounds that show the most promising "drug-like" activity behavior (Brideau et al. 2003, 

Malo et al. 2006). The selected compounds, called hits, typically undergo further testing to 

confirm their reproducibility and suitability for drug development. Depending on the nature 
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of the study, the hits may be compounds with the highest activation capacity (i .e., activation 

assays), inhibition capacity (i.e., inhibition assays), or both. The hit selection process assumes 

that the measurements taken by HTS equipment accurately represent the activity levels of the 

tested compounds. An important consideration for this to be true is that experimental 

conditions are the same for ali compounds of the screen. Biases in the measurements can 

nonetheless appear, due to inconsistencies in the environmental factors , such as electricity, 

temperature, humidity or lighting changes (Heyse 2002, Makarenkov et al. 2007). 

Organizational factors can also have a significant systematic impact on the results of an HTS 

campaign. For example, differences in the incubation time allow the solvent evaporation to 

cause unintended variations in the solution concentrations. Highly sensitive readers in 

particular can detect subtle differences among the tested molecules which misdirect follow­

up efforts when they are due to bias rather than to biology. 

As a result of systematic bias causing under- or over-estimation of biological activity, 

inactive compounds may be incorrectly selected as hits (false positives), while promising 

(active) compounds may remain undetected (false negatives). In HTS, systematic error is 

usually column or row dependent (Brideau et al. 2003, Makarenkov et al. 2007). lt is 

important to note that systematic error can either affect compounds placed in the same weil, 

column or row location in ali plates of the screen (i.e., screen-specific error) or affect a 

column or row of a specifie single plate of the screen (i.e. , plate-specifie error). 

Figure 3.1 illustrates the presence of positional effects in two publicly available 

experimental HTS datasets: McMaster Test dataset, used as a benchrnark for the McMaster 

Data Mining and Docking Competition (Elowe et al. 2005; it contained the compounds 

intended to inhibit the E. coli Dihydrofolate reductase, DHFR) and a dataset provided by the 

Chemistry Department of Princeton University and consisting of a screen of compounds 

meant to inhibit the glycosyltransferase MurG function of E. coli (Helm et al. 2003). Figures 

3.1 a and 3.1 c show activity levels averaged across ali plates (i.e., assay background surfaces), 

whereas Figures 3.1 b, and 3.1 d show the activity levels of two selected single plates (from 

the McMaster and Princeton datasets, respectively). These examples demonstrate that 

systematic biases in HTS may have different screen-specific and plate-specifie systematic 

deviations. For instance, in the McMaster dataset, the measurements in the column 10 are 
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globally over-estimated (Figure 3.1a), but m plate 1036 they are rather under-estimated 

(Figure 3.lb). 
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Figure 3.1 Hit maps showing the presence of positional effects in the McMaster 1250-

plate assay (Eiowe et al. 2005)- (a) whole assay background surface, (b) plate 1036 

measurements; and in the Princeton 164-plate assay (Helm et al. 2003)- (c) whole assay 

background surface, (d) plate 144 measurements. Color intensity is proportional to the 

compounds' signallevels (higher signais- potential target inhibitors, are shown in red). 

Similarly, Figure 3.lc reveals apparent "edge effects" in the Princeton dataset with the 

values of the outer rows and colurnns being below the screen average. This effect was not 

observed, however, for ali plates of the Princeton screen, with an evident over-estimation of 

the first column measurements detected in plate 144 (Figure 3.1d). Thus, systematic error 
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correction methods should be able first to recogmze the character of systematic error 

affecting the data at hand and then remove it either from the whole assay and/or only from 

the specifie plates where it was detected. In this article we describe two new methods for 

eliminating plate-specifie systematic error and show how these methods can be applied in a 

more general correction framework that also includes the Weil Correction procedure 

(Makarenkov et al. 2007) which allows for removing screen-specific systematic biases. 

3.3 Methods 

3.3.1 Data preprocessing in HTS 

In order to analyze experimental HTS assays, a data preprocessing treatment should be 

performed before the hit selection. Severa! data normalization and correction techniques, 

including the step of the quality control, have been proposed to preprocess experimental HTS 

data (Brideau et al. 2003, Carralot et al. 2012, Chapter II or Dragiev et al. 2011 , Kevorkov 

and Makarenkov 2005, Makarenkov et al. 2007, Malo et al. 2006, Malo et al. 2010, Shun et 

al. 20 11, Zhang et al. 1999, Zhang 2008). The most popular data normalization procedures 

used in HTS are as follows (see Chapter 1): Percent of control that normalizes the 

measurements of the given compounds relative to the mean value of the plate's positive 

controls, Normalized percent inhibition in which the normalization is carried out relative to 

both positive and negative controls, and Z-score that consists in a zero mean and unit 

standard deviation normalization of the plate ' s measurements (Malo et al. 2006). Regarding 

data correction, mention the B-score (Brideau et al. 2003) and Weil Correction (Makarenkov 

et al. 2006, Makarenkov et al. 2007) methods which will be considered in this study. Their 

main steps of these methods are as follows: 

B-score (Brideau et al. 2003) is a robust normalization procedure commonly used in 

experimental HTS. Similarly to the above-mentioned normalizations, B-score sensibly 

handles plate-to-plate variability. In addition, it also corrects the raw plate measurements by 

removing the existing row and column positional effects. It assumes the following statistical 

mode! of HTS measurements (equation 3.1 ): 

(3.1) 
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where xiJP is the raw measurement of the compound in weil (i, j) of a given plate p, f.lp is the 

plate average, R;p is the systematic error affecting row i, C1P is the systematic error affecting 

columnj and euP is the random noise affecting weil (i, j) of this plate. B-score first employs a 

2-way median polish procedure (Tukey 1977) to obtain the estimated values ofxiJP' f.lp, R;p and 

C;l> (equation 3.2): 

(3.2) 

The residual, ru!>, for the measurement in weil (i, j) is th en calculated as the difference 

between the raw measurement Xijp and its fitted value xijp : rijp = xijp - xijp . Finally, the raw 

compound measurement is replaced with the corresponding residual adjusted by the plate's 

median absolute deviation (MADp, equation 3.3): 

, riJP 
xiJP = MAD , MAD P = median {1 'iJp -median ( riJP) IJ , 

p 

(3.3) 

where x~P is the normalized measurement value. 

Weil Correction (Makarenkov et al. 2006, Makarenkov et al. 2007) is another 

combined data normalization and correction method designed to compensate for positional 

effects affecting rows, columns or individual wells, and appearing in ali plates of the screen 

(i.e., screen-specific error). Weil Correction includes the two following steps: 

1. For each weil location of the screen, a linear or polynomial !east-squares appro­

ximation is carried out for the compound measurements located in that weil over ali 

plates of the screen. This approximation is performed separately for each weil 

location. 

2. The approximated entities within the same weil location are then normalized over 

ali plates of the screen using Z-score. This normalization is performed separately for 

each weil location. 
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Once the data normalization and correction steps are completed, a hit selection 

procedure, meant to identify the compounds that will be promoted to leads, is carried out. 

The most popular strategy for bit selection proceeds by the identification of the compounds 

whose activity levels exceed a predefined threshold (Malo et al. 2006). Typically, the bit 

selection threshold is expressed in terms of the mean, J.l, and the standard deviation, SD, of 

the observed measurements. A commonly used approach selects as hits the compounds 

whose activity levels deviate from the mean value J1 for more than 3SD. 

Despite their ability to eliminate systematic error, HTS preprocessing techniques 

cannot guarantee the recovery of correct bits. In our previous works (Makarenko v et al. 2007, 

Chapter II or Dragiev et al. 2011), we showed that a misapplication of error correction 

methods on error-free HTS data introduces a significant bias that affects very negatively the 

accuracy of the bit selection process. For instance, a simulation study described in 

Makarenkov et al. 2007) suggests that the B-score method is unable to cope with screen­

specific systematic error (see Figures 2 and 3 in the latter article) and that the Weil 

Correction method is not suited for eliminating plate-specifie systematic error (see Figure 4 

in the latter article). Renee, error correction methods should be used with caution and only 

when the presence of systematic noise in the data has been confirmed by statistical tests. In 

our recent work (see Chapter II or Dragiev et al. 2011), we described how individual HTS 

plates can be assessed for presence of systematic error, thus facilitating the decision 

regarding the application of data correction techniques. 

3.3.2 Two new data correction methods 

Here we present two new methods for HTS systematic error correction, called Matrix 

Error Amendment (MEA) and Partial Mean Polish (PMP). Both methods rely on prior 

information conceming the location of rows and columns of individual plates that are 

systematically over- or underestimated. Such information might be available through the 

analysis of an individual plate (or entire screen) background (Kevorkov and Makarenkov 

2005) or can be acquired using a specifie version of the t-test or of the;( goodness-of-fit test 

(Chapter II or Dragiev et al. 2011; see also the Supplementary Materials section for the 
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application of these tests in the HTS context)o Both MEA and PMP methods are applied on a 

plate-by-plate basiso 

Let X be a plate of HTS measurements with rn rows and n columnso Let xu be the 

measurement of the compound located in weil ( i, j) of X and let f.1 be the mean value of al 1 

measurements of plate X that are not affected by systematic error. 

In the case wh en plate X is free of systematic error, we can expect th at the mean of the 

values in a given row i (i = 1, 2, 0 0 0, m) does not deviate substantially from f.l, which in this 

n 

case is the mean of ali measurements on the plate: I xu ~ nJlo Similarly, for a given column 
j=I 

m 

j (j = 1, 2, 0 0 0, n) of X, we expect that: Ixu ~ mJlo 
i=l 

Assume that X is affected by systematic error. Let r 1, r 2, 0 0 0 , rp (p<m) be the set of rows 

of X, and c1, C2, 0 0 0 ' Cs (c<n) be the set of columns of X, where the presence of systematic 

error bas been confirmedo It is worth noting that the set r 1, r2, 0 0 0 , rp can represent any subset 

of the complete set of rows 1, 2, 0 0 0, m and the set c~, c2, 0 0 0 , c5 can represent any subset of the 

complete set of columns 1, 2, 0 0 0, n of plate X The only necessary condition for the 

application of the new methods is the presence in X of at least one row and at !east one 

column not affected by systematic error. Let e, be the unknown value of systematic error 
1 

affecting row r ; and ec . be the unknown value of systematic error affecting column c1o The 
J 

following fourfold set of linear equations can be composed: 

n s 

L Xr; J - ne,; - L ecJ = nj.l, 
j=I j=I 

(3 .4) 

(305) 

n s 

I xu- _L ecJ = nJl, (306) 
j =I j =I 

m p 

L XiJ - ,Le,; = mJl, (307) 
i=l i= l 
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where equation (3.4) corresponds to rows r1, r2o ... , rp affected by row systematic error, 

equation (3.5) to columns c1, c2, . .. , Cs affected by column systematic error, equation (3.6) to 

rows not affected by row systematic error, and equation (3. 7) to columns not affected by 

column systematic error. 

3.3.2.1 Matrix Error Amendment Method 

Systematic error in HTS does not typically affect ail the columns and rows of a plate. 

The affected columns and rows are often those located on the plate edges (Brideau et al. 

2003, Kevorkov and Makarenkov 2005). Thus, typically, p is much smaller than m and s is 

much smaller than n. The presence of rows and columns not affected by systematic error 

allows us to estimate fl and leaves er and ec the only unknowns in the linear system of 
1 1 

equations (3.4-3.7), which have m+n equations and fewer than m+n unknowns. 

The Matrix Error Amendment method consists of the two following steps: 

1. Estimate the values of the row and column systematic errors êr and êc (i = 1, 2, 
1 1 

... , p and)= 1, 2, .. . , s), independently for every plate of the assay, by solving the 

system oflinear equations (3.4-3.7). 

2. Adjust the measurements of all compounds located in rows and columns of the 

plates affected by systematic error using the error estimates ê, and êc . determined 
1 1 

in step 1. 

Two approaches of solving the system of linear equations (3.4-3.7) were tested in our 

study. First, by combining all equations (3.4-3.7), we composed an overdetermined system 

of linear equations Ae = b with m+n equations and fewer than m+n unknowns, where A was 

the matrix of the coefficients for the unknowns e, and ec (i = 1, 2, .. . , p and}= 1, 2, ... , s) 
1 1 

combined in the vector e of size p+s, and b was the vector offree terms. We found that in all 

cases the matrix AT A was singular, thus rendering inapplicable the standard least-square 

approximation method for solving overdetermined systems of linear equations. We were 

able, however, to find an approximate solution of this system by using the singular value 
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decomposition (SVD) method. Second, we also tested a simpler and computationally Jess 

intensive approach consisting of combining only equations (3.4) and (3.5) into the linear 

system (3.8), having exactly m+n equations and m+n unknowns. When m+n > 5 the system 

(3.8) always has a unique solution which can be found using standard methods for solving 

linear equations systems (e.g., Gaussian elimination). 

n 0 0 0 e'l b'I 

0 n 0 0 e"l b"l 

0 0 n 0 e,p-1 b 'p-i 
0 0 0 n 1 1 1 e,P b, p (3.8) 

0 0 0 bei ' m eel 

0 m 0 0 eez bez 

1 0 0 m 0 ees-1 bes-1 
1 0 0 0 m ees bes 

n m 

where b,; = L Xr; J - nj.l and be
1 

= L X;cJ - mj.l. 
j; ] j;] 

According to our simulation study, the second approach, which requires Jess computer 

power, generally provided better results in terms of systematic error identification (i.e., it 

yielded a higher hit detection rate, see the section Simulation study). Thus, its detai led results 

are presented in the section Results and Discussion. 

The final step of the MEA method proceeds by subtracting the obtained systematic 

error estimates ê, and êc from the raw plate measurements (equations 3.9-3.1 0). For ali 
1 J 

rows r; (i = 1, 2, ... , p) affected by systematic error, we have: 

1 
- - ' fi Il . ·1< "< x,.

1
. - x,.

1
. e,., or a J . _ J _ n, 

1 1 1 
(3.9) 

and for ali colurnns c1 U = 1, 2, ... , s): 

'- _' fi ll " ·l< "< X;c. - X;c . ec . , or a l . _ l _m. 
J J J 

(3.10) 
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3.3.2.2 Partial Mean Polish Method 

Denote by Ji; the mean value of ail measurements in row i and by J..iJ the mean value of 

ail measurements in columnj of plate X: 

1 n 1 m 

Ji;=- 'l:Xu and J..i1 =-L.:Xu 
n J=l m i= l 

Equations (3.4) and (3.5) can be rewritten as equations (3.11) and (3.12): 

n s 

neri= LXriJ -nJ..l- Lecj' 
J= l J=l 

m p 

mec . = "'X;c . - mJ..i- "'er· , 
J L.. , L..l 

i=l i=l 

where Ji is the mean value of ail measurements of X not affected by systematic error. 

Dividing equations (3.11) and (3.12) by n and m, respectively, we obtain: 

1 s 
e-u -11--"e ,.,. - ,-,.,. r L..J c · ' 

1 1 n J=l ' 

1 p 

ec =f..ic- -J..l--Ie~. 
' ' m i= l 1 

(3 .11) 

(3.12) 

(3 .13) 

(3.14) 

Since systematic error usually affects only a few columns and rows of HTS plates 

( e.g., row and column measurements on plate edges are often biased; for more details see 

Brideau et al. 2003 or Kevorkov and Makarenkov 2005) and causes an over or under­

estimation of the affected measurements (i.e., the error values can be negative or positive), 

we can assume that the term consisting of the total colurnn error divided by the number of 

columns has a negligible impact compared to the other terms in equation (3.13) and thus that 

the row systematic error of row r; can be estimated as the difference between the mean value 
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of the entities in that row and the mean value J.1 of the plate measurements that are not 

affected by systematic error: 

(3 .15) 

Similarly, for the column ci, we cao expect that: 

(3.16) 

Based on the assumptions above, we cao formulate the Partial Mean Polish iterative 

procedure (only a part of the plate's rows and columns, i.e. , those affected by systematic bias, 

will be "polished" by the method). The means in this procedure cao be easily replaced by the 

medians giving rise to Partial Median Polish method which could be viewed as an extension 

of a well-known Median Polish procedure by Tukey 1977 for the case when the error 

locations are known. 

The main steps of the Partial Mean Polish method are the following: 

1. Compute the mean value J.1 of ail entities of the given plate that are not affected by 

systematic error: 

L>ij 
ieR.jeC 

J.1 = ' (m- p )(n- s) 
(3.17) 

where R = {r" r 2, ••• , rp 1 0 ~ p < m} is a set of rows of X affected by systematic 

error and C = {c1, c2. ... , Cs 1 0 ~ s < n} is a set of columns of X affected by 

systematic error. 

2. For each i (1 ~ i ~ p), compute the mean value J.l , of row ri as: J.l~ = ..!_ Ï, x,J , and 
1 1 n J=l 1 

th en, using equation (3 .15), the estimate of the row bias êr; as: er; = J.lr; - J.1 • 
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1 m 
For eachj (1 S'o j S'os) compute the mean value J.lc. of column c1 as: J.lc. =-'L X;c. , 

1 1 rn i=l 1 

and theo, using equation (3.16), the estimate of the colurnn bias ecj as: 

3. For ali rows affected by systematic bias, adjust their measurements using the error 

estimates determined in step 2, i.e., for each i (1 S'o i S'op), and for each j (1 S'o j S'o n ): 

For ali columns affected by systematic error, adjust their measurements using the 

error estimates determined in step 2, i.e., for eachj (1 S'o j S'os), and for each i (1 S'o i S'o 

p s 

4. Compute the value of the convergence parameter 5: 5 = 'L iêr;l + l: iêc). 
i=l J= l 

5. If 5 < &, where & is a selected convergence threshold, or if a fixed maximum 

number of iterations has been already carried out theo return X, otherwise, repeat 

steps 2 to 5. 

3.4 Results And Discussion 

To evaluate the performances of the two introduced systematic error correction 

methods we first carried out simulations with artificialiy generated HTS measurements. We 

also applied both MEA and PMP methods to analyze the 1250-plate HTS screen produced at 

the HTS Laboratory of McMaster University (i.e. , the Test dataset proposed as a benchmark 

for the McMaster Data Mining and Docking Competition, see Figure 3.1 and Elowe et al. 

2005). 

3.4.1 Simulation study 

The simulated data also consisted of 1250-plate assays. Plate sizes were 96-well plates 

(8 rows x 12 columns), 384-weli plates (16 rows x 24 colurnns), and 1536-well plates (32 

rows x 48 columns). Inactive compound measurements were generated according to the 
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standard normal distribution. Active compounds (hits) were added randomly to the plates to 

form assays with the following hit percentages: 0%, 0.5%, 1%, 2%, 3%, 4%, and 5%. Hit 

locations were chosen randomly within each plate (i .e. , the probability that a given weil 

contained a hit compound was the same for ali wells of the plate, regardless of the weil 

location within the plate). The hit measurements were generated according to the normal 

distribution with parameters - N(j.1-5SD, SD), where f.1 and SD were the mean and standard 

deviation of the original dataset ( obtained bef ore the addition of hits; i.e., f.1 = 0 and SD = 1 ). 

Systematic row and column errors were added to randomly selected rows and columns of 

each plate. The rows and columns affected by systematic error were selected separately for 

each plate, and thus their locations differed from plate to plate. The values of systematic bias 

followed a normal distribution with parameters -N(O, C). The following values of the error 

standard deviation, C, were considered to generate assays affected by different degree of 

systematic error: 0, 0.6SD, 1.2SD, 1.8SD and 2.4SD. In order to mimic empirical HTS data, 

in our first simulations the effect of systematic error was limited to a few rows and columns 

only. Thus, at most 2 rows and 2 columns for 96-well plates, at most 4 rows and 4 columns 

for 384-well plates, and at most 8 row and 8 columns for 1536-well plates were affected by 

systematic bias. A small random error was also added to both hit and non hit measurements. 

The random error in ali datasets followed a normal distribution with parameters - N(O, 

0.6SD) . 

Formula 3.18 specifies the mode! we used to generate an error-affected measurement 

of the compound located in weil (i,j) of plate p: 

(3.18) 

where x~P is the resulting measurement value, x iJP is the original error-free measurement, e,;p 

is the systematic error affecting row i of plate p, ec. is the systematic error affecting column 
JP 

j of plate p and randup is the random error in weil (i,j) of plate p . 

Six data correction/hit selection methods were tested in our simulations. Ali tested 

methods comprised an identical hit selection step, but differed in the way the data were 
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processed before the hit selection. The hits were selected globally for each assay using the hit 

selection threshold of Ji hs - 3SDhs (i.e., all compounds with the measurements lower than 

Jihs - 3SDhs were declared hits, where Jihs and SDhs were respectively the mean and 

standard deviation of the entire assay after the addition of hits and systematic error). The six 

methods evaluated in our simulation study were the following: 

• Original data processing without any data correction; 

• B-score correction method (Brideau et al. 2003); 

• MEA method performed under the assumption that the exact locations of the error­

affected rows and columns on each plate of the assay are known; 

• MEA method performed for the rows and columns where systematic error was 

detected by the t-test (for more details, see Chapter II or Dragiev et al. 2011); 

• PMP method performed under the assumption that the exact locations of the error­

affected rows and columns on each plate of the assay are known; 

• PMP method performed for the rows and columns where systematic error was 

detected by the t-test (for more details, see Chapter II or Dragiev et al. 2011). 

In all experiments, we assessed the performances of the six data preprocessing 

methods by measuring the total number of false positives and false negatives, and by 

estimating the methods hit detection rate (i .e., true positive rate). 

We conducted two series of experiments to evaluate the methods ' performances 

depending on the hit percentage and the variance of systematic error. The first series of 

experiments used datasets with the fixed systematic error standard deviation of 1.2SD and the 

hit percentage rate varying from 0% to 5% (there are no true positives for the case of 0% of 

hits; see Figures 3.2-3.4a). 

The second series of experiments considered datasets with the fixed hit percentage of 

1% and the systematic error standard deviation varying from 0 to 2.4SD. Sorne 500 datasets 

were generated for both series of experiments and for each parameter combination. Figures 

3.2, 3.3 and 3.4 present the average results obtained for the two series of experiments for the 
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96-well, 384-well and 1536-well plates, respectively. Furthennore, we conducted additional 

simulations in order to assess the perfonnances of the MEA and PMP methods in the 

situation wh en up to 50% of the plates' rows and columns were affected by systematic bias. 

The graphies depicting relative perfonnances of the MEA, PMP, B-score and no-correction 

strategies in this case are presented in Figures 3.5 to 3.7. 
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Figure 3.2 True positive rate and total number of false positive and false negative bits 

(i.e., total number of false conclusions) perassay for 96-well plate assays estimated 

under the condition that at most two columns and two rows of each plate were affected 

by systematic error. Panels (a) and (b) present the results obtained for datasets with the 

fixed systematic error standard deviation of l.2SD. Panels (c) and (d) present the results 

for datasets with the fixed bit percentage rate of 1%. Methods legend: No Correction 

(o), B-score (~), MEA (D), t-test and MEA (0), SMP (+), t-test, and SMP (x). 
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Figure 3.3 True positive rate and total number of false positive and false negative bits 

(i.e., total number of false conclusions) perassay for 384-well plate assays estimated 

under the condition that at most four columns and four rows of each plate were affected 

by systematic error. Panels (a) and (b) present the results obtained for datasets with the 

fixed systematic er ror standard deviation of 1.2SD. Panels (c) and (d) present the results 

for datasets with the fixed bit percentage rate of 1%. Methods legend: No Correction 

(o), B-score (M, MEA (D), t-test and MEA (0), SMP (+), t-test, and SMP (x). 
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Figure 3.4 True positive rate and total number of false positive and false negative bits 

(i.e., total number offalse conclusions) perassay for 1536-well plate assays estimated 

onder the condition that at most eight columns and two eight of each plate were affected 

by systematic error. Panels (a) and (b) present the results obtained for datasets with the 

fixed systematic error standard deviation of 1.2SD. Panels (c) and (d) present the results 

for datasets with the fixed bit percentage rate of 1%. Methods legend: No Correction 

(o), B-score (~), MEA (D), t-test and MEA (0), SMP (+), t-test, and SMP (x). 
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Figure 3.5 True positive rate and total number offalse positive and false negative hits 

(i.e., total number offalse conclusions) perassay for 96-well plate assays estimated 

under the condition that systematic error affects up to 50% of rows and columns of 

each plate (the exact number of affected rows and columns on each plate was 

determinate randomly according to the uniform distribution). Panels (a) and (b) present 

the results obtained for datasets with the fixed systematic error standard deviation of 

1.2SD. Panels (c) and (d) present the results for datasets with the fixed bit percentage 

rate of 1%. Methods legend: No Correction (o), B-score (il), MEA (D), t-test and MEA 

(0), PMP (+), t-test, and PMP (x). 
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Figure 3.6 T rue positive rate and total number of false positive and false negative bits 

(i.e., total number of false conclusions) perassay for 384-well plate assays estimated 

under the condition that systematic error affects up to 50% of rows and columns of 

each plate (the exact number of affected rows and columns on each plate was 

determinate randomly according to the uniform distribution). Panels (a) and (b) present 

the results obtained fo r datasets with the fixed systematic error standard deviation of 

1.2SD. Panels (c) and (d) present the results for datasets with the fixed bit percentage 

rate of 1% . Methods legend : No Correction (o), B-score (~), MEA (D), t-test and MEA 

(0), PMP (+), t-test, and PMP (x). 
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True posit ive rate (%). 1536-well plates (a) FP+FN total, 1536-well plates (b) 

95 
5000 

85 0000 

76 

65 

55 15000 

45 
10000 

5000 

35 0 

0.5% 1% 2% 3% 4% 5% 0% 0.5% 1% 2% 3% 4% 5% 

Hi! percentage Hlt pere enta ge 

True positive rate (%). 1536-well plates (c) FP+FN total. 1536-well plates (cl) 

95 10000 

9000 
90 

8000 

86 7000 

6000 
80 

6000 

75 4000 

70 
3000 

2000 

65 1000 

O.OSD 0 .6SD 1.2SD 1.8SD 2.4SD O.OSD O.GSD 1.2SD 1.8SD 2.4SD 

Systematlc error Systematlc error 

Figure 3.7 True positive rate and total number of false positive and false negative bits 

(i.e., total number of false conclusions) perassay for 1536-well plate assays estimated 

under the condition that systematic error affects up to 50% of rows and columns of 

each plate (the exact number of affected rows and columns on each plate was 

determinate randomly according to the uniform distribution). Panels (a) and (b) present 

the results obtained fo r datasets with the fixed systematic error standard deviation of 

1.2SD. Panels (c) and (d) present the results for datasets with the fixed bit percentage 

rate of 1%. Methods legend: No Correction (o), B-score (M, MEA (D), t-test and MEA 

(0), PMP (+), t-test, and PMP (x). 

The simulation results suggest that both proposed methods outperformed the B-score 

and no-correction procedures when the number ofthe plate's rows and columns affected by 

systematic error was low (e.g., in case of commonly observed edge effects), regardless of 

plate size, hit rate and systematic error variance (see Figures 3.2 to 3.4). In the situations 

when the number of affected rows and columns of each plate affected by systematic bias 
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could attain 50% of the plate ' s total number ofrows and columns (see Figures 3.5 to 3.7), the 

MEA and PMP methods generally yielded better results than B-score when the hit percentage 

was under 3% (see Figures 3.5 to 3.7, cases a and b) or when the leve! of systematic error 

was under 1.8SD (see Figures 3.5 to 3.7, cases c and d). However, in the situations when the 

hit percentage or systematic error variance was high, the B-score procedure generally showed 

a more stable behaviour than the new methods. This was largely due to the fact that the 

performance of the t-test, carried out prior to MEA and PMP, decreases as the amount of data 

affected by systematic error grows (Chapter II or Dragiev et al. 2011). In general, the MEA 

method tumed out to be the best performing method for correcting systematic error within 

96-well plates when the systematic error variance or the hit percentage was low (see Figures 

3.2 and 3.5), whereas the PMP method provided better results than MEA for the 96-well 

plates when the systematic error variance or the hit percentage was elevated as well as for the 

384 and 1536-well plates (see Figures 3.3, 3.4, 3.6 and 3.7). lt is worth noting that the B­

score method was very prone to generating false positives. 

3.4.2 Ana/y sis of the M cMaster Test assay 

We also carried out the MEA and PMP methods to analyze the McMaster Data Mining 

and Docking Competition Test assay (see Elowe et al. 2005 and Figures 3.la and b). We 

examined their impact on the hit identities determined during the HTS phase of the project. 

This dataset consisted of 625 , 96-well plates (with 8 rows and 12 columns) screened in 

duplicate. Columns 1 and 12 of ali plates contained controls and thus were not considered in 

our study. The assay conditions were identical for ali plates. They were as follows: Each 200 

).!L reaction mixture contained 40 ).LM NADPH, 30 ).LM DHF, 5 nM DHFR, 50 mM Tris (pH 

7.5), 0.01% (w/v) Triton and 10 mM ~-mercaptoethanol. The compounds from the screening 

library were added to the reaction before initiation by enzyme at a final concentration of 1 0 

).LM. Ali measurements were taken at 25° C. 

The threshold of j.J-2 .29SD was used to identify hits. This threshold led to the 

identification of 96 average hits which were reported by the competition organizers (Elowe et 

al. 2005). Our previous works showed that the measurements in the McMaster Test dataset 

were affected by systematic error (Makarenko v et al. 2007, Chapter II or Dragiev et al. 2011 ), 
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especially when sorne higher hit selection thresholds were used (e.g., j.i-SD or j.i-2SD). The 

hit sets provided by the six following methods were compared: uncorrected data processing, 

B-score, and the introduced MEA and PMP methods applied as such and in the combination 

with the Weil Correction procedure (Makarenkov et al. 2007) allowing for removing screen­

specific systematic error. Both MEA and PMP methods were carried out on a plate-by-plate 

basis and were preceded by the t-test, which was necessary to recover systematic error row 

and column locations. The t-test was performed with the a parameter value set to 0.01 (see 

Supplementary Materials) . As the McMaster Test dataset contained replicates, the hit 

selection procedure was adjusted to search for average hits (i.e., the average of the two 

measurements of every compound was calculated and the obtained result was supplied to the 

hit selection procedure). The totals of hits retraced by the six considered methods are 

presented in Tables 3.1 and 3.2-3.13 (the detailed results). 

Data correction method Number ofhits 

No Correction 96 

B-score 186 

Matrix Error Amendment (MEA) 100 

Partial Mean Polish (PMP) 115 

Weil Correction+ Matrix Error Amendment (MEA) 109 

Weil Correction + Partial Mean Polish (PMP) 109 

Table 3.1 Number of bits selected by the six data correction methods for the 

McMaster Test dataset. The bit selection threshold of j.i-2.29SD was used. 

Both proposed methods identified more potential hits (1 00 for MEA and 115 for PMP) 

than the organizers of the McMaster competition (i.e., 96 hits for the uncorrected dataset), 

wh ile rejecting a few of the original hits as false positives. The MEA method found 8 extra 

hits, wh ile rejecting 4 of the original hits as false positives. The PMP method extended the set 

of original hits with 24 new hits, while rejecting only 5 of them. In contrast, the B-score 

method rejected 28 original hits, and provided 118 new potential hits (according to our 

simulation results, many ofthose new hits can be in fact false positives). The total overlap of 

ali the six considered methods consisted in 55 consensus average hits that could be 

recommended for further testing including the structure-activity relationships (SAR) analysis 
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Row\Column 1 2 3 4 5 6 7 8 9 10 

1 19 39 32 59 50 41 26 14 21 24 

2 42 63 81 82 69 63 34 30 17 16 

3 27 30 22 27 25 14 18 25 29 7 

4 31 45 41 21 22 13 21 15 19 12 

5 42 40 62 30 18 18 16 16 26 5 

6 51 86 97 52 47 29 38 22 21 5 

7 40 76 65 65 73 45 48 16 20 9 

8 107 85 101 71 56 48 23 23 24 13 

Table 3.2 Hit distribution of the raw McMaster dataset computed for the j.J-SD 

threshold (mean value of hits per weil is 37.69 and standard deviation is 24.27). The i 
goodness-of-fit test provided the following results (i value= 1234.23, critical value 

111.14 fo r a = 0.01; Ho is rejected and data correction is recommended). 

Row\Column 1 2 3 4 5 6 7 8 9 10 

1 1 2 1 5 1 0 0 0 2 1 

2 1 1 3 2 1 0 1 1 5 1 

3 0 0 0 0 3 0 0 0 3 1 

4 2 1 1 1 1 1 1 0 2 1 

5 2 0 0 1 2 1 2 0 0 0 

6 0 1 4 2 1 0 3 0 0 1 

7 2 3 1 2 3 3 2 1 1 0 

8 3 1 2 0 0 0 1 1 3 0 

Table 3.3 Hit distribution of the raw McMaster dataset computed for the jr2.29SD 

threshold (mean value of hits per weil is 1.20 and standard deviation is 1.19). The i 
goodness-of-fit test provided the following results <i value= 94.0, critical value 111.14 

for a= 0.01 ; H 0 is not rejected and data correction is optional). 

and various clinical trials. As shows the examp1e of the consensus hits set of the McMaster 

Test assay (see E1owe et al. 2005 or Table 9SM in Makarenkov et al. 2007), consensus hits 

can also contain an important percentage of fa1se negatives and false positives. The 

consensus hits list of this assay, which included 42 hit compounds in total, comprised only 14 

of 26 hit compounds confirmed by the SAR analysis conducted by the McMaster competition 
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organizers (i.e., 12 of 26 confirmed hits false negatives and 28 of 42 consensus hits were 

false positives). Thus, SAR investigations should be always conducted in conjunction with 

data correction and hit selection techniques in order to confirm the selected hits. 

Row\Column 1 2 3 4 5 6 7 8 9 10 

1 21 41 33 61 57 61 50 34 43 60 

2 39 51 47 64 58 73 43 47 31 28 

3 31 35 31 33 35 32 28 38 58 32 

4 39 43 39 33 31 21 25 30 34 47 

5 59 37 54 40 25 26 29 26 50 24 

6 39 55 51 34 45 27 27 24 29 10 

7 30 39 36 42 67 44 45 20 21 15 

8 97 48 61 46 51 44 27 25 29 23 

Table 3.4 Hit distr ibution of the McMaster dataset after applying B-score normalization 

and computed for the f.J;-SD threshold (mean value of bits per weil is 39.48 and standard 

deviation is 14.67). The i goodness-of-fit test provided the following results (J value= 

430.96, critical value 111.14 for a= 0.01; Ho is rejected and data correction is 

recommended). 

Row\Column 1 2 3 4 5 6 7 8 9 10 

1 1 2 1 10 5 1 1 0 2 3 

2 3 2 4 4 2 3 1 1 4 1 

3 1 0 1 1 3 1 1 0 7 2 

4 5 4 2 2 2 3 1 1 1 4 

5 4 1 2 2 3 2 4 1 0 2 

6 3 1 5 1 3 0 5 1 1 1 

7 2 3 0 3 5 5 2 1 2 2 

8 4 2 1 1 0 3 2 3 9 1 

Table 3.5 Hit distribution of the McMaster dataset after applying B-score normalization 

and computed for the jr2.29SD threshold (mean value of bits per weil is 2.33 and 

standard deviation is 1.89). The i goodness-of-fit test provided the following results (f 

value= 121.10, critical value 111.14 for a= 0.01; Ho is rejected and data correction is 

recommended). 
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Row\Column 1 2 3 4 5 6 7 8 9 10 

1 23 42 30 61 51 45 30 14 24 26 

2 42 61 80 82 67 66 32 32 16 16 

3 28 29 24 28 27 16 20 29 29 7 

4 31 45 41 21 24 13 21 15 20 13 

5 44 37 60 31 20 20 17 17 26 5 

6 52 87 93 53 49 29 39 22 20 6 

7 39 76 64 68 74 50 52 16 21 11 

8 108 87 99 70 58 51 24 23 24 15 

Table 3.6 Hit distribution of the McMaster dataset after applying Matrix Error 

Amendment (MEA) method and computed for the p-SD threshold (mean value of bits 

per weil is 38.48 and standard deviation is 23.96). The J goodness-of-fit test provided 

the following results (j value = 1178.53, critical value 111.14 for a= 0.01; H 0 is rejected 

and data correction is recommended). 

Row\Column 1 2 3 4 5 6 7 8 9 10 

1 1 2 1 5 1 0 0 0 1 1 

2 2 1 2 2 1 0 1 1 5 1 

3 0 0 0 0 3 0 0 0 3 1 

4 2 1 1 2 1 1 1 0 2 1 

5 2 0 0 1 2 2 3 0 0 0 

6 0 1 4 3 1 0 3 0 0 1 

7 3 3 1 2 3 3 2 1 1 0 

8 4 1 2 0 0 0 1 1 2 0 

Table 3.7 Hit dist ribution of the McMaster dataset after applying Matrix Error 

Amendment (MEA) method and computed for the J,r2.29SD threshold (mean value of 

bits per weil is 1.25 and standard deviation is 1.24). The J goodness-of-fit test provided 

the following results (j value= 96.80, critical value 111.14 fo r a= 0.01; Ho is not 

rejected and data correction is optional). 
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Row\Column 1 2 3 4 5 6 7 8 9 10 

1 27 49 33 64 49 47 33 16 26 32 

2 41 60 81 78 67 67 34 29 18 22 

3 30 28 24 29 27 16 24 30 36 17 

4 32 41 42 21 25 15 21 13 20 22 

5 45 41 61 32 20 21 20 19 29 14 

6 51 85 93 50 49 34 41 25 25 10 

7 42 72 65 69 72 52 47 15 25 19 

8 104 85 99 70 55 55 22 26 24 23 

Table 3.8 Hit distribution of the McMaster dataset after applying Partial Mean Polish 

(PMP) method and computed for the jJ-SD threshold (mean value of bits per weil is 

39.90 and standard deviation is 22.41). Thel goodness-of-fit test provided the following 

results (j'value = 994.27, critical value 111.14 for a= 0.01; Ho is rejected and data 

correction is recommended). 

Row\Column 1 2 3 4 5 6 7 8 9 10 

1 1 2 1 5 3 0 0 1 2 1 

2 2 1 3 2 1 0 1 1 5 1 

3 0 1 0 0 2 0 0 0 3 0 

4 2 1 1 1 1 1 1 0 2 1 

5 1 0 0 1 3 3 2 0 0 0 

6 1 1 4 2 2 0 3 0 0 1 

7 2 4 2 2 4 4 3 1 2 2 

8 4 2 2 0 1 0 1 1 4 0 

Table 3.9 Hit dist ribution of the McMaster dataset after applying Partial Mean Polish 

(PMP) method and computed for the j.J;-2.29SD threshold (mean value of bits per weil is 

1.44 and standard deviation is 1.32). The i goodness-of-fit test provided the following 

results (j'value = 95.78, critical value 111.14 for a= 0.01; Ho is not rejected and data 

correction is optional). 

It is worth also noting that MEA and PMP agreed on most of the bits they selected (i.e ., 92 of 

the bits identified by MEA were also detected by PMP). Furthermore, after the appl ication of 

Weil Correction, the MEA and PMP methods provided an identical set of 109 bits. Figure 3.8 
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and Tables 3.2 to 3.13 present the hit distribution surfaces (i.e. , bit totals obtained for each 

weil location and computed over ali plates of the given assay) of the Master Test assay 

obtained for the bit selection thresholds j.i-SD and j.r2.29SD. 

Row\Column 1 2 3 4 5 6 7 8 9 10 

1 31 22 45 50 22 31 42 42 41 27 

2 22 44 44 52 33 45 37 44 31 31 

3 44 40 29 34 35 51 26 39 43 14 

4 25 40 42 38 22 35 39 26 30 35 

5 20 38 44 37 32 34 35 32 45 17 

6 46 54 55 40 46 41 40 30 39 24 

7 27 33 34 50 19 34 36 22 29 32 

8 40 41 55 31 41 47 21 23 31 20 

Table 3.10 Hit distribution of the McMaster dataset after applying Weil Correction 

followed by Matrix Er ror Amendment (MEA) method and computed for the JJ-SD 

threshold (mean value of bits per weil is 35.48 and standard deviation is 9.55). The J 
goodness-of-fit test provided the following results (j value = 203.18, critical value 

111.14 fo r a = 0.01; Ho is rejected and data correction is recommended). 

Row\Column 1 2 3 4 5 6 7 8 9 10 

1 1 0 1 5 0 0 1 1 2 0 

2 0 1 2 2 0 0 1 2 6 1 

3 2 0 0 0 3 1 0 0 7 0 

4 0 2 1 2 1 2 1 0 2 2 

5 0 0 1 1 2 3 3 2 1 0 

6 1 1 4 3 2 0 3 1 3 1 

7 0 3 0 2 2 1 2 1 1 2 

8 2 0 2 0 0 2 1 1 2 1 

Table 3.11 Hit distribution of the McMaster dataset after applying Weil Correction 

followed by Matrix Error Amendment (MEA) method and computed for the J.f-2.29SD 

threshold (mean value of bits per weil is 1.36 and standard deviation is 1.37). The J 
goodness-of-fit test provided the following results (j value= 108.98, critical value 

111.14 for a= 0.01; Ho is not rejected and data correction is optional). 
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Row\Column 1 2 3 4 5 6 7 8 9 10 

1 32 22 45 50 22 31 42 42 41 27 

2 22 44 44 52 33 45 37 44 31 32 

3 44 40 29 34 35 51 26 39 43 14 

4 25 40 42 38 23 36 39 26 30 35 

5 20 38 44 37 34 34 35 32 45 18 

6 46 53 55 40 46 41 41 30 40 25 

7 27 34 34 50 19 34 37 22 29 31 

8 40 43 55 31 41 47 21 23 31 21 

Table 3.12 Hit distribution of the McMaster dataset after applying Weil Correction 

followed by Partial Mean Polish (PMP) method and computed for the 1-f-SD threshold 

(mean value of bits per weil is 35.64 and standard deviation is 9.47). The 1 goodness-of­

fit test provided the following results (/value= 198.68, critical value 111.14 for a= 

0.01; Ho is rejected and data correction is recommended). 

Row\Column 1 2 3 4 5 6 7 8 9 10 

1 1 0 1 5 0 0 1 1 2 0 

2 0 1 2 2 0 0 1 2 6 1 

3 2 0 0 0 3 1 0 0 7 0 

4 0 2 1 2 1 2 1 0 2 2 

5 0 0 1 1 2 3 3 2 1 0 

6 1 1 4 3 2 0 3 1 3 1 

7 0 3 0 2 2 1 2 1 1 2 

8 2 0 2 0 0 2 1 1 2 1 

Table 3.13 Hit distribution of the McMaster dataset after applying Weil Correction 

followed by Partial Mean Polish (PMP) method and computed for the jr2.29SD 

threshold (mean value of bits per weil is 1.36 and standard deviation is 1.37). The 1 
goodness-of-fit test provided the following results (/value= 108.98, critical value 

111.14 for a = 0.01; H 0 is not rejected and data correction is optional). 
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Figure 3.8 Hit distribution surfaces of the McMaster Test dataset for the bit selection 

thresholds fi. -SD (cases a, c, e, g, i and k) and fi. -2.29SD (cases b, d, f, h, j and 1) 

obtained for: the raw (i.e., uncorrected) data (a, b), and the data corrected by B-score 

(c, d), MEA (e, f), SMP (g, h), Weil Correction+ MEA (i, j), and Weil Correction+ 

SMP (k, 1). 

The consecutive appl ication of two data correction methods, Weil Correction and 

MEA (Figures 3.8i and j ) or Weil Correction and PMP (Figures 3.8k and 1), allowed us to 

eliminate screen-specific systematic error, first, and plate-specifie systematic error, second 

(see Tables 3.11 and 3.13). For instance, the MEA and PMP hit distribution surfaces provide 

better fits to the corresponding plain surfaces (which represent a perfect uniform distribution 

of the assay hits across ali weil locations) when Weil Correction is applied beforehand 

(Figures 3.8i and k) . After the application of Well Correction, the hit distribution surface ;( 

goodness-of-fit statistic for the hit selection thresholds JL -SD decreased from 1178.53 
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(Figures 3.8e and Table 3.6) to 203.18 for MEA (Figures 3.8i and Table 3.10) and from 

994.27 (Figures 3.8g and Table 3.8) to 198.68 for PMP (Figures 3.8k and Table 3.12). 

3.5 Conclusion 

We described two new methods, called Matrix Error Amendment (MEA) and Partial 

Mean Polish (PMP), allowing for elimination of plate-specifie systematic error from 

experimental HTS data. Both methods rely on the prior information concerning the location 

of the rows and columns of the given plate affected by systematic bias. Such information can 

be obtained by using the methodology described in Chapter II or Dragiev et al. 2011. 

We conducted a simulation study with different HTS plate sizes, hit percentages and 

systematic error magnitudes. In this study, the MEA and PMP methods were compared to the 

B-score (Brideau et al. 2003) and no-correction strategies. Both new methods always 

outperformed the B-score and no-correction procedures when the number of the plate's rows 

and columns affected by systematic error was low (Figures 3.2 to 3.4). In the simulations 

where the number of rows and columns affected by systematic error could reach 50% of the 

plate's total number of rows and columns (Figures 3.5 to 3.7), the MEA and PMP methods 

generally yielded better results than B-score when the hit percentage was under 3% (in a 

typical HTS campaign the hit percentage is usually un der 1%) or wh en the lev el of 

systematic error was under 1.8SD. The B-score method showed a more stable behaviour than 

MEA and PMP only wh en the number of rows and columns affected by systematic error, hit 

percentage and systematic error variance were high (mainly due to a mediocre performance 

of the t-test in this case). MEA was generally the best method for correcting systematic error 

within 96-well plates, while PMP performed better for 384 and 1536-well plates. 

The analysis of the McMaster Data Mining and Docking Competition Test assay 

(Eiowe et al. 2005) showed that the new methods can be also applied in the combination with 

the Well Correction technique (Makarenkov et al. 2007) aiming to remove screen-specific 

systematic error. Hence, a general data correction phase in HTS, permitting for the 

elimination of both screen- and plate-specifie systematic biases, can be conducted in the 

fo llowing way: 
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1. Normalize the raw measurements using Percent of control, Normalized 

percent inhibition or Z-score transformation. This normalization step can 

be carried out either on a plate-by-plate basis or for all assay measurements 

together (i.e., when ail plates have been processed under the same 

experimental conditions); 

2. Perform the t-test or J! goodness-of-fit test on the hit distribution surface for 

the selected hit selection threshold; 

3. If systematic error is detected theo carry out the Weil Correction method; 

4. Perform the t-test or J! goodness-of-fit test on each individual plate of the 

assay to identify its rows and columns affected by systematic error as weil 

as the error locations; 

5. For ali plates where systematic error IS detected correct the plate 

measurements by carrying out the PMP or MEA method (or, altematively, 

the B-score procedure). 

In this study we addressed the issue of the commonly considered additive systematic 

artifact that can be described using equation (3 .17). lt is worth noting that the multiplicative 

type of systematic bias affecting weil (i, j) of plate p and defined by equation (3 .18): 

(3 .19) 

can be also treated using the proposed methods. While the MEA method should undergo 

substantial changes in order to treat multiplicative type of systematic error because the linear 

equations systems (3.4 to 3.7) and (3.8) will be transformed into the corresponding nonlinear 

equations systems, the PMP method can be easily adapted for the identification and 

correction of multiplicative bias by adding the fo llowing equations: ê, = Jl. ) Jl. and 
1 1 

êc =Ile 1 Jl. to step 2, and then x,1. = x,.11ê, and X;c = X;c lêc to step 3, of the method 
1 1 l Il 1 11 

instead of the corresponding equations containing the subtraction sign. 
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A version of the PMP method, in which a median is used instead of the mean, could be 

viewed as a direct extension of the well-known median polish (MP) algorithm (Tu key 1977), 

applicable in the situations when the exact error location is known (the traditional median 

polish assumes that systematic error is present in ali rows and columns of the given matrix). 

Another advantage of the PMP method over MP and its B-score analog is that our method 

does not reduce the original data to residuals, keeping the corrected data on the same scale 

with the original ones, and not modifying the unbiased data at ali. Moreover, both of the 

proposed methods could be interesting in general, from the statistical point of view, and 

applied as data correction methods in any other field. 

A new program implementing the two data correction methods described in this article, 

and including also the Weil Correction, B-score and Z-score procedures, is freely available at 

the following URL: http://www. info2.uqam.ca/~makarenkov _ v/HTS _ Helper. 

3.6 Supplementary Materials 

3.6.1 t-test applied in the HTS context 

This test is based on the classical two-sample Student's t-test in the case of samples 

with different sizes (for more details, see Chapter II or Dragiev et al. 20 11). The test was 

carried out separately for each row and column of each assay plate. We divided the data into 

two independent subsets . The first subset contained the measurements of the tested row or 

column, while the second consisted of ali remaining plate measurements. In this test, the nu li 

hypothesis Ho was that the selected row or column does not contain systematic error. If 

systematic error is absent, then the mean ofthe given row or column is expected to be close 

to the mean of the rest of the data in the given plate or hit distribution surface. For the two 

samples in hand: S1 with N1 elements and S2 with N2 elements, we first calculated the two 

sample variances s1
2 and s~, and then their weighted average (Equation 3.20): 

(3.20) 

The value of the t-statistic can then be obtained as follows (Equation 3.21): 
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(3.21) 

where f..JJ is the mean of the sample S1 and j.J2 is the mean of the sample S2• The calculated t­

statistic was then compared to the corresponding critical value for the chosen statistical 

significance level a. The a parameter equal to 0.01 was used in our simulations. 

3.6.2 i goodness-of-fit test applied in the HTS context 

The i goodness-olfit test in the HTS context was recommended in Makarenkov et al. 

2007 and Chapter II or Dragiev et al. 2011 in order to identify systematic error in HTS hit 

distribution surfaces. The null hypothesis, H0, in this test is that no systematic error is present 

in the data. If Ho is true, then the hits are supposed to be evenly distributed across the weil 

locations and the observed number of hits xiJ in row i and colurnn j of the hit distribution 

surface is not significantly different from the expected value calculated as the total number of 

hits in the assay divided by the number of wells per plate. The rejection region of Ho is 

P(z2 >Ca )> a , where Ca is the i distribution critical value corresponding to the selected a 

parameter (in this study, we used a = 0.01) and to the number of degrees of freedom of the 

model. 

The test statistic i over all weil locations of the given hit distribution surface can be 

computed as follows (Equation 3.22): 

m n ( -E)2 
x2 =II x ij , 

i=l J =l E 
(3 .22) 

where m is the number of rows per plate, n is the number of columns per plate, DE is the total 

number of hits on the entire hit distribution surface (i.e. , who le assay) divided by the number 

of wells per plate (mxn). The number of degrees offreedom here equals to mx(n-1). For the 

McMaster dataset considered in this study m = 8 and n = 1 O. 



CHAPTER N 

STATISTICAL METHODS FOR THE ANALYSIS OF EXPERIMENTAL HIGH­
THROUGHPUT SCREENING DATA 

This chapter is a reproduction of the following article: 

Dragiev P. , Makarenkov V. , Mballo C. and Nadon R. (20 12) Statistical Methods 

for the Analysis of Experimental High-Throughput Screening Data. Advances in 

Data Analysis and Classification, Springer, submitted. 

High-throughput screening (HTS) is a large scale process intended to evaluate a vast 

number of compounds in order to determine the molecules with the best activity levels. 

Preparing and testing a large number of compounds requires various technical resources and 

involves very high costs. Continuous use of HTS generates large databases containing 

millions of tested compounds. Often the same compounds are tested more than once in 

different concentrations. 

Chapter N is devoted to techniques intended to reduce the overall cost of HTS by 

employing statistical methods and simulations to decrease the number of compounds that 

require experimental HTS testing. We first investigate the possibility of employing 

information collected during the previous tests for predicting the outcomes of the current 

ones. We consider the case that ali compounds are characterized by a set of chemical 

descriptors which we can use to establish similarities and differences between the current 

compound and the compounds that have been already tested. We also explore the 

applicability of two machine learning methods, decision trees and neural networks, for 
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predicting the hit/non-hit outcomes of HTS experiments based on the compounds similarity 

with the compounds that have been already tested. The ability to predict correct outcomes of 

screening campaigns, i.e. , performing in silico HTS instead of experimental HTS, can 

contribute to the reduction ofthe overall cost of HTS. 

Often the researchers, not confident in the quality of the obtained results, repeat the 

same tests one or more times multiplying, in this way, the cost of the experiments. However, 

the use of replicates increases the quality of HTS results (Malo et al. 2006). Currently, there 

is no formai mode! that can be applied to decide how many replicates should be tested in 

order to ensure a selected false positive or false negative rate. The decisions are taken by the 

researchers subjectively. In Chapter IV, we propose a new probability-based mode! , based on 

the analysis of replicated measurements, which allows us to estimate for every compound of 

the assays its probability to be a hit. Using such a mode! , we can define a new probability­

based hit selection procedure. Furthermore, we developed a methodology allowing one to 

estimate the effect that one extra experimental replicate would have on the quality of HTS 

results, providing objective information to the researchers for deciding whether additional 

assay screens will significantly decrease the compounds false positive and false negative 

rates. The systematic error detection and elimination methods described in Chapters II and III 

will be applied in Chapter IV to refine the obtained experimental results . 
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4.1 Abstract 

High-throughput screening (HTS) is a modern technology actively used to identify 

pharmacologically active compounds. HTS is a highly automated early-stage process that 

allows thousands of chemical compounds to be tested in a single study. lt classifies a li 

promising compounds as hits that need to be further investigated . As the experimental HTS is 

a very costly process, the development of accurate statistical models for virtual prediction of 

HTS measurements cou ld lead to an important cost decline. In this article we focus on 

finding the relationships between experimental HTS measurements and a group of 

descriptors characterizing chemical compounds. Polynomial redundancy analysis 

(Po lynomial RDA) along with neural networks and decision trees methods were applied to 

discover these relationships . We also describe a new hit selection method based on the 

estimation of the hit-outcome probabilities of the given chemical compounds . 

4.2 Introduction 

HTS is a modern technology currently available in many pharmacological laboratories 

worldwide. lt serves for automated earl y identification of active chemical compounds, called 

hils. The hits discovered during the primary screening are used as starting points for further 

optimization and development. HTS is also employed for the determination of activity, 

toxicological and physiological properties of chemical compounds as weil as for the 

verification of structure-activity hypotheses (Heyse 2002). The advances in robotic methods, 

parallel processing and miniaturization of the assays have highly increased the screening 

throughput (Malo et al. 2006). A typical HTS center in the pharmaceutical industry can 

generates millions of data points per year (Heuer et al. 2005). Along with the augmented 

throughput, the research costs have also dramatically increased. This work is aimed to 

present a methodology for reducing the cost of HTS by using computer aided statistical 

methods to accurately predict the compound measurement values. Such a methodology will 

allow one to decrease the number of experimentally screened compounds and th us lower the 

total cost of an HTS campaign . Our approach will use already co llected experimental 

measurements and the similarity between compounds as a base for prediction. We will first 

attempt to establish the re lat ionships between the obtained experimental measurements of an 

HTS assay and the values of 10 physicochemical and structural molecular descriptors widely 
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employed by chemists. The polynomial RDA analys is (Makarenkov and Legendre 2002) will 

be carried out in order to discover those re lat ionships. Second, two machine learning 

methods, decision trees (Bre iman et al. 1984) and neural networks (Haykin 1999), will be 

applied and compared to each other. Fina lly, we will describe a new hit selection method 

allowing one to estimate the probabili ty of each considered compound to be a hit. This 

probability w ill be assessed based on the available replicated measurements of the screened 

chemical compounds. The obta ined probabilities can be used as a benchmark for deciding 

which compounds should be tested in further experimental HTS trials. 

4.3 Analysis of the bit and no bit data in the McMaster Test dataset 

ln th is study, we consider an experimental HTS dataset prov ided by the HTS 

Laboratory of McMaster University. We analyze real screening data proposed origina lly as 

Test dataset and used as a benchmark fo r the McMaster Data Mining and Docking 

Competition (E iowe et a l. 2005). Thi s dataset consists of screening data of compounds that 

inhibit the Escherichia coli dihydrofolate reductase. Each of 50,000 di fferent chemical 

compounds located in plates were screened in duplicate; two copies of each of the 625 plates 

were run through the screening equipment; 1250 plates in total, with wells arranged in 8 rows 

and 12 columns, were screened ; columns 1 and 12 of each plate were used as high and low 

controls (i.e., compounds with the well-known properties whose values are used for the data 

normalization) and, therefore, not considered in this study. The exact experimental conditions 

are reported in the article of Elowe et al. 2005. 

The competit ion organizers defined the primary hits as compounds that reduced the 

DHFR activity to 75% of the average res idual activ ity of the high (uninhibited) controls. Two 

lists of hits were published (for more details, see: 

http://hts.mcmaster.ca/Downloads/82BFBEB4-F2A4-4934-B6A8-804CAD8E25AO_fi les/ 

experimental_actives.pdf). The first li st, called a consensus hit list, contained a li compounds 

that were c lass ified as hits in both of their rep licated measurements (i .e ., both obtained 

measurement values were lower or equal to 75% of the reference controls). Only 42 of ali the 

50,000 tested compounds were consensus hits. The second list, called an average hits list, 

contained 96 compounds classified as hits when the average val ue of the two HTS 

measurements was lower or equal to 75% of the reference contro ls. Obviously, ali consensus 
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hits were also average hits. A secondary screening of the 96 average hits was also performed 

in order to determine their activity in different concentrations. As result of the secondary 

screening, 26 of the average bits were identified as D-R hits (i.e. , hits having well-behaved 

dose-response curves, see E lowe et al. 2005). 

Data type 1 Average 
Consensus hits D-R hi ts Average hits Ali data 

values of chemical 
descriptors 

( 42 samples) (26 samples) (96 samples) (50,000 samples) 

Measurement 68.13 69.73 70.38 98.88 

ClogP 4.61 4.56 4.35 3.68 

Hdon 1.19 1.04 1. 18 1.06 

Ha cc 3.48 3.62 3.28 3.50 

RB 4.17 4.27 3.94 3.81 

tPSA 66.58 63.09 64.60 64.58 

MW 392.60 381.35 379.21 358.69 

SlogP 4.72 4.61 4.50 3.76 

nSSSR 3.29 3.31 3.13 2.82 

logP_5 0.31 0.38 0.36 0.14 

SumFlag 0.12 0.00 0.09 0.08 

Table 4.1 Average values of the measurements and 10 chemical descriptors for four 

types of sam pies (consensus bits - 42 sam pies, average bits - 96 sam pies, bits having 

well-behaved dose-response curves- 26 sam pies and the whole dataset- 50,000 

sam pies) from the McMaster University Test dataset. In bold, the values of chemical 

descriptors showing important variation. 

In this study we used a set of 10 chem ical descriptors considered as primary by many 

researchers: molecular weight (MW), number of H-accepting (Hacc) and H-donating (Hdon) 

atoms, number of rotatable bonds (RB) , topologie polar surface area (tPSA ), three flavors of 

log of the octanol/water partition coefficient (ClogP, SLogP and LogP _5), number of rings 

(nSSSR) and the variable representing the basic properties vio lation score of a mo lecule 

(SumFlag)- the bigger the value of SumF!ag, the less "drugable" is the molecule (see Sirois 

et al. 2005 for more details). In order to evaluate the usability of the selected descriptors for 

distingu ishing the hits from no hits, we calcu lated and compared the mean values of four 

different groups of compounds: consensus hits, average hits, average hits with well-behaved 

dose response curves and whole dataset. The resultant values are reported in Table 4.1. This 
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table shows that there are important variations in the mean measurement values of the hit and 

no hit compounds fo r the six chemical descriptors put in bold in Table 4.1 . 
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Figure 4.1 The relationship between the HTS measurement values (varying from 0 to 

200) and the molecular weight (varying from 200 to 600) depicted at 6 different Ievels of 

the ClogP descriptor. There is virtually no difference in the six presented patterns. That 

suggests that ClogP does not have any influence over the way molecular weight is 

related to the HTS measurements. 

We also looked for the relationshi ps between the values of experi mental HTS 

measurements and the associated values of chemical descriptors. Our analyses showed no 

evidence of simple (e.g. linear) relationship between the predictors and the compound 

measurements. Figure 4.1 presents one example of potential interactions. It depicts the 

relationship between the experimental measurements (denoted by M) and MW (denoted by 

Weight) at six different levels of the ClogP descriptor. The relationship between the 

experimental measurements and MW does not differ across Jevels of ClogP (i.e., there is no 

MW by ClogP interaction in predicting the measurements). The other interaction graphs also 
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showed the absence of simple linear relationships between the assay measurements and the 

associated values of chemical descriptors. 

4.4 Polynomial RDA to establisb relationships between bit/no bit outcomes and values 
of cbemical descriptors 

The traditional redundancy analysis (RDA) is a direct extension of multiple linear 

regression to the modeling of multivariate response data (Legendre and Legendre 1998). 

Makarenkov and Legendre 2002 proposed a method based on polynomial regression, cal led a 

polynomial RDA, that allows one to do away with the assumption of linearity in modeling the 

relationships between the explanatory (chemical descriptors in our case) and response (hit/no 

hit outcomes in our case) variables. To carry out polynomial RDA, we considered 42 existing 

consensus hits and 100 no hit samples selected randomly from the set of 50,000 available 

experimental measurements from the McMaster Test dataset. The values of the 1 0 considered 

chemical descriptors formed the matrix of explanatory variables X and the two binary 

variables, consisting of the hit/no hit and positive/negative dose-response behavior outcomes 

formed the matrix of response variables Y. The bi plot ordination diagram in Figure 4.2 helps 

interpret the ordination of samples in terms of Y and X. Here we used the correlation bi plot 

to represent the relationships between the samples and the variables in X and Y. ln such a 

biplot the angles between the variables from the sets X and Y reflect their correlations; 

projecting a sample at right angle on a response variable y approximates the value of the 

sample along this variable; projecting a sample at right angle on an explanatory variable x 

approximates the value of the sample along this variable. 

The k coefficient for the polynomial regression of X on Y was equal to 0.55. The 

percentage of variance of Y accounted for was 62.69% for the polynomial regression and 

only 45.51% for the multiple linear regression. The first canon ica! axis accounted for 56.24% 

of the total variance explained by the polynomial RDA, wh ile the second axis accounted for 

6.45% only. We also conducted the permutation tests for both polynomial and linear 

regressions as weil as for the differences between them. The difference test was carried out to 

estimate the possibility of overfitting by the polynomial regression (see Makarenkov and 

Legendre 2002). The tests carried out with 999 permutations showed that both models, as 

weil as the differences between them, were highly significant (p-values of 0.001 for each of 
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the three tests were obtained). Given the high significance of the difference test, the use of 

the polynomial regression and the polynomial RDA can be recommended for this dataset. 
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Figure 4.2 Polynomial RDA correlation biplot for the McMaster Test dataset. Triangles 

represent the three types of samples (D-R Hits- the consensus bits showing good dose­

response behavior; No D-R Hits- the consensus bits not showing good dose-response 

behavior; No-Hits- samples that are not bits). Dashed arrows represent two binary 

response variables Hit/No-Hit and D-R. Solid arrows represent the chemical descriptors 

(10 descriptors from Table 4.1 plus 2 extra descriptors Hdon2 and Hdon x Hacc that 

show the biggest correlations with Hit!No-Hit and D-R variables, respectively). The 

lengths of the chemical descriptor arrows were multiplied by 10; this does not change 

the interpretation of the diagram. 

The following trends can be also noticed while observing the polynomial RDA biplot 

in Figure 4.2: the Hit- No Hit outcome variable is strongly positive ly correlated with the fou r 

fo llowing chemical parameters Hdon , Hdon2
, tPSA and SlogP; the variable corresponding to 

the positive dose-response outcome, D-R, is strongly correlated with the combined Hdon x 

Hacc variable; the D-R Hits as weil as No Hits showed no particular relationships with the 
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considered chemical descriptors, but No D-R Hils had usually bigger molecular weight (MW) 

and SumFlag values. 

4.5 Prediction of experimental HTS results using decision trees and neural networks. 

ln this section we present the results of our analysis of the McMaster HTS data set 

using the machine learning approach. Based on our discovery that the relationships between 

the predictors and the compound measurements in McMaster dataset are not simple ( e.g. 

linear) we chose to use decision trees (Breiman et al. 1984) and neural networks (Haykin 

1999) as powerful ana1ytic too1s capable to discover complex data dependencies. Our 

objective here was to build and train decision trees and neural networks in arder to predict 

whether a given compound belongs to the partitions of Hits or No Hils using as input the 

values of the 10 molecular descriptors reported in Table 4.1. First, we tested severa! pre­

processing techniques consisting of scaling and normalization of the input data. The best 

prediction results were obtained wh ile scaling ali input variables to the [0, 1] interval. In each 

training experiment we computed the numbers of false positive and false negative hits 

obtained for each test data set, and then determined the specificity and sensitivity of the 

mode! (Equation 4.1 ). lt is worth noting that given a very unbalanced distribution of the Hils 

and No Hils partitions, only 96 hits (active compounds) and 49,904 no hits were present in 

the considered McMaster data set, we did not expect to obtain "perfect results" with either 

decision trees or neural networks methods. 

To build the training mode!, we considered four different data groups including each 

ti me 48 bits (randomly selected from the wh ole set of 96 average hits) and th en, in tu rn, l 00, 

500, 1000 and 2000 no hits (randomly selected from the who le set of 49,904 no hits). Four 

data groups of the same size ( 48 remaining hits and, respectively, 100, 500, 1000 and 2000 

randomly selected no hits), but containing different hit and no hit compounds were used to 

make up the test data sets. To build our decision trees and neural networks, we used the 

R2008a version of MATLAB with the Levenberg-Marquardt training function (trainlm) for 

neural networks and the classregtree function for decision trees (for more details of these 

functions, see MATLAB User 's Guide; Demuth et al. 2005). ln the neural networks, the 

number of neurons in the hidden layer was set to 10 (and, th en respectively, to 50, 100 and 

200) for the groups containing 100 no hits (and, th en respectively, to 500, 1000 and 2000 no 
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hits); 100 replicated datasets were generated for each data size and the average percentages of 

false positive and false negative hits were calculated. 
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Figure 4.3 ROC curves for four different group sizes used for training and test: 48 bits 

+ 100 (case a), 500 (case b), 1000 (case c) and 2000 (case d) no bits. The abscissa axis 

represents (1-Specijicity), and the ordinate axis represents Sensitivity. The results ofthe 

decision tree method are depicted by squares and those of the neural network method 

by triangles. 
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The ROC curve (Fawcett 2001) presentation was chosen to illustrate the results of the 

two competing machine learning methods (Figure 4.3). Equation 4.1 was used to compute the 

specificity (Sp) and sensitivity (Se) ofboth methods: 

S _ TN d Se= TP 
p - T'N + F'P an TP+FN' 

(4.1) 

where TP is the number of true positives, FN - the number of false negatives, TN - the 

number of true negatives and FP -the number of fa! se positives. Figure 4.3 shows the ROC 

curves obtained for each ofthe four considered group sizes; the results of the neural network 

method are indicated by triangles and those of the decision tree method by squares. The 

proportions of false positive and false negative hits increase as the size of No Hits partition 

grows. For a given group, these proportions vary in the opposite directions: the number of 

false positives increases as the number false negatives decreases. When comparing the cases 

a, b, c and d in Figure 4.3, one can notice that the sensitivity of the methods decreases as the 

size of the No Hits partition increases. The sensitivity was higher for neural networks than for 

decision trees for ali four considered group sizes (Figure 4.3). The sensitivity was very low 

when the number of no hits in the group was large (Figure 4.3c and 4.3d). lts greatest average 

value, obtained for the neural network method, was about 0.61 for the group containing 100 

no bits (Figure 4.3a). 

4.6 Probability-based bit selection method 

The final step in the HTS process consists of a hit selection procedure allowing one to 

identify the most promising of the tested compounds which will be selected for further 

analysis. The hit selection procedure identifies the compounds with the highest inhibition 

(inhibition assay) or activation (activation assay) properties regarding the given target (e.g. 

selected protein of a bacterium). There exist severa! hit selection strategies the most known 

of which are the following (Malo et al. 2006): hits can be determined as a fixed number, or 

percentage, of ali tested compounds ( e.g. 100, or 1%, of the most active compounds) or as 

compounds whose measurements exceed a given threshold, usually expressed as a function 

of the mean J.l. and the standard deviation a- of the obtained measurements, with the most 

common ly used thresholds of J.l.- 3 a-for inhibition assays and J.l. + 3 a-for activation assays. 
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Despite many recent technological advances and collected experience, the highly 

automated HTS process is prone to measurement errors (Makarenkov et al. 2007). Many 

environmental and technical factors can cause inaccuracy of the screening measurements or 

undesired variances in the experimental conditions, thus affecting negatively the bit selection 

process. Erroneous HTS data may result in sorne compounds incorrectly being selected as 

bits - false positives (FP) or mistakenly overlooked - false negatives (FN). Both types of 

misclassification may be extremely expensive and can undermine the results of an entire HTS 

campaign. ln order to avoid uncertainties and reduce the overall impact of the error, many 

researches use replicates in their experiments, e.g. several samples of each compound are 

tested, limiting in this way the effect that a single error may cause to the hit selection routine 

(Malo et al. 2006). 

The current practice of selecting bits in HTS suffers from the absence of probability 

models. There is no way of estimating confidence behind the decision to classify the given 

compound as a hit or no bit when the traditional hit selection methods are employed. We 

developed a method allowing one to assess the probability of each compound to be a hit. By 

using this method, one can select as bits the compounds whose probabilities are greater than a 

predefined probability-based threshold Phil (e.g. P hil can be set to 0.5) . Given that HTS is very 

costly process, further experimental screens could be carried out only with compounds whose 

hit-outcome probabilities exceed Phil· 

The new hit selection method and the procedure for estimating the probability of a 

compound to be a hit require the presence of experimental assay replicates. Assume that we 

already have the screening results for the N (N?:. 2) assay replicates. The probability-based hit 

selection method consists of the five following steps: 

1) From the N available experimental replicates, we first estimate the mean, jiiJP , and the 

standard deviation, êiiJP, of each tested compound XiJpo where p is the plate number, i is the 

row number and) is the column number. 

2) We generate in silico K (Kwas set to 1000 in our simulations described below) additional 

assay replicates R, , R2, ... , RK, using the estimates of each compound, jiiJP and êi iJP, obtained 
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111 Step 1. In our simulations ali compound measurements were normally distributed, I.e., 

Rk = lxup(kJ - N {.u!iP, éi !iP )j, 1 ~ k ~ K. 

3) For ali assay replicates Rk (1 ~ k ~ K), we identify the hits using the conventional hit 

selection method and a fixed hit-cutting threshold (in our simulations the hit cutting threshold 

was set to J.1 - 3 o; where J.l.k was the mean and Œk was the standard deviation of the assay Rk, 

computed over ali measurements of the assay). 

4) For each compound xuP' we count the number of times, euP' when it was identified as a hit 

and estimate the overall probability of the compound xu/J to be a hit as follows: 

pr !iP = c !iP 1 K . 

5) We select as hits the compounds with the associated probability values pr!iP ~ P11i1, where 

Phil is a predefined probability-based hit selection threshold computed using replicate 

measurements. 

ln order to evaluate the performances of our new hit selection method we carried out 

experiments with simulated data. We generated inhibition assays with N replicates, N = 2, 3, 

... , 10, following the format of the McMaster Test dataset - 1250 plates with 80 wells 

arranged in 8 rows and 10 columns. Ali datasets had fixed percentage of hits h%. Values of h 

= 0.5 % and h = 1% were used in our simulations. The locations of the hits were chosen 

randomly in such a way that the probability of each weil on each plate to contain a hit was 

h%. The standard hit selection was performed using the threshold of j.1 - 3Œ (i .e., ali the 

compounds wh ose measurements were smaller than or equal to J.1 - 3 Œ were declared hits). 

For each compound xuP (located in row i, co lumnj and plate p), we generated N original (i.e., 

experimental) replicated measurements Xijp(n), 1 ~ n ~ N, such that Xijp(n/ s values were 

normally distributed with parameters -N(J.1w1, Œup). For the no hit compounds, the J.l.u/ s values 

followed standard normal distribution. Two types of datasets were examined: those in which 

the J.l.u/s values of the hit compounds followed normal distribution with parameters - N(-4,1) 

and those with parameters -N(-5 ,1). The standard deviations, Œijp, for both hits and no hit 
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compounds were selected fo llowing standard normal distribution. The five steps of the hit 

selection method presented above were then carried out. 

(a) FP+FN, hits: 0.5%, hits mean: -5.0 (b) FP+FN, hits: 1%, hits mean: -5.0 
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(c) FP+FN, hits: 0.5%, hits mean: -4.0 (d) FP+FN, hits: 1%, hits mean: -4.0 
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Figure 4.4 Total number of false positives (FP) and false negatives (FN) obtained for the 

simulated data with the following parameters: (a) Hit mean= -5.0, bit percentage = 

0.5%; (b) Hit mean= -5.0, bit percentage = 1 %; (c) Hit mean= -4.0, bit percentage = 

0.5%; (d) Hit mean= -4.0, bit percentage = 1%. The results are shown for the following 

numbers of in silico replicates: K= 0 (depicted by triangles) and K = 1000 (depicted by 

squares) and represent the averages obtained after 100 iterations (i.e., 100 different 

initial assays). The x-axis represents the number of experimental replicates. 

Figure 4.4 shows the results of our simulations. Cases (a) and ( c) of Figure 4.4 present 

the results obtained for the datasets with the hit percentage of 0.5%, and cases (b) and (d) 

those for the datasets with the hit percentage of 1%. Typically, HTS data contain a very small 

hit percentage. For example, the official average hits in the McMaster Test dataset accounts 

for Jess than 0.2% of the total number of screened compounds. In the simulations, we 

considered the two following cases: when there was a clear distinction between the activities 

of the hit and no hit compounds (i .e., hit mean set to -5 in cases (a) and (b )) and wh en this 
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difference was much smaller (i .e., hit mean set to -4 in cases (c) and (d)). We studied how the 

new method performed depending on the number of experimental replicates N (depicted on 

the x-axis). We compared the results yielded by the new method for the case of 1000 in silico 

replicates (i.e., K = 1 000) with those provided by the strategy based on the experimental 

replicates only (i.e., K = 0) by measuring the totals of false positives and false negatives in 

each case. The probability-based hit selection threshold, P11i1, was set to 0.5. 

phil ~umber of bits New bits Removed bits Preserved bits 

~0.95 7 0 89 7 

~0.90 10 0 86 10 

~0.85 15 0 81 15 

~0.80 22 0 74 22 

~0.75 25 0 71 25 

~0.70 27 0 69 27 

~0.65 33 0 63 33 

2:0.60 37 0 59 37 

~0.55 44 0 52 44 

~0.50 55 0 41 55 

~ 0.45 77 4 23 73 

2:0.40 110 29 15 81 

~0.35 142 59 13 83 

~0.30 186 lOO 10 86 

~0.25 275 188 9 87 

~ 0.20 393 304 7 89 

~ 0.15 684 593 5 91 

~ 0.10 1187 1096 5 91 

~0.05 2201 2108 
., 

93 .) 

Table 4.2 Results obtained after applying the new probability-based bit selection 

method on the raw McMaster Test datas et. Results are shown for different values of the 

probability-based bit selection thresholds, Phit• varying from 0.05 to 0.95. For each 

threshold value, the list of selected bits was corn pa red to the official McMaster average 

bit list. 

Analyzing the results illustrated in Figure 4.4, we can notice that in silico experiments 

bring an important improvement in the case oftwo experimental replicates. lt is worth noting 

that two-replicate screens are the most frequent case in HTS campaigns. Also, for a lower hit 
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percentage cases (a) and (c), what represents a real-life situation in HTS, the results provided 

for a high number of in silico replicates were often equivalent to those obtained with one 

additional experimental replicate of the assay. The strategy using in silico replicates yields 

better results when the hits are clearly distinguishable (cases (a) and (b)). The unstable (i .e., 

zigzag-like) behavior of the strategy not using in silico data generation is due to a low 

number of experimental replicates (2 to 1 0) and to the discreteness of the establi shed 

probability-based threshold Phit = 0.5. 

phil ~umber of bits New bits Removed bits Preserved bits 

~0.95 6 0 90 6 

~0.90 10 0 86 10 

~0.85 16 0 80 16 

~0.80 22 0 74 22 

~0.75 25 0 71 25 

~0.70 27 0 69 27 

~0.65 31 0 65 31 

~0.60 34 1 63 33 

~0.55 44 1 53 43 

~0.50 57 3 42 54 

~0.45 75 4 25 71 

~0.40 110 29 15 81 

~0.35 151 68 13 83 

~0.30 206 12 1 11 85 

~0.25 284 199 11 85 

~0.20 431 34 1 6 90 

~ 0.15 727 637 6 90 

~0.10 1254 1164 6 90 

~0.05 2332 2240 4 92 

Table 4.3 Results obtained after applying the new probability-based hit selection 

method on the McMaster Test dataset corrected by the Matrix Error Am end ment 

method. Results are shown for different values of the probability-based hit selection 

thresholds, Phit' varying from 0.05 to 0.95. For each threshold value, the list of selected 

bits was compared to the official McMaster average bit list. 

In addition to the experiments with artificial data, we also applied our new probability­

based hit selection method to analyze empirical HTS data. We conducted five separate 
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experiments (see Tables 4.2 to 4.6) using the McMaster two-replicate Test dataset described 

earlier in the article (for more details, see a lso Elowe et al. 2005). In ali experiments we 

carried out the hit selection at different hit probability thresholds P hil ranging from 0.05 up to 

0.95 (with a step of 0.05). For each value of Phil, we counted the number of selected hits and 

then compared them with the li st of96 average hits published by the organizers ofMcMaster 

Data Mining and Docking Competition (see Section 4.3). We determined how many of the 

average hits were preserved with the new hit selection, how many of them were removed and 

how many new hits were identified. As in our simulation study, the number of in silico 

replicates Kwas set to 1000. 

phil INumber ofhits New bits Removed bits Preserved bits 

2:: 0.95 9 3 90 6 

2:: 0.90 13 3 86 10 

2:: 0.85 17 6 85 11 

2:: 0.80 26 6 76 20 

2:: 0.75 29 6 73 23 

2:: o. 70 33 6 69 27 

2:: 0.65 39 8 65 31 

2:: 0.60 44 9 61 35 

2:: 0.55 49 9 56 40 

2:: 0.50 64 13 45 51 

2:: 0.45 89 20 27 69 

2:: 0.40 135 56 17 79 

2:: 0.35 187 105 14 82 

2:: 0.30 268 183 JI 85 

2:: 0.25 392 306 10 86 

2:: 0.20 579 493 10 86 

2:: 0.15 931 842 7 89 

2:: 0.10 1515 1426 7 89 

2:: 0.05 2633 2543 6 90 

Table 4.4 Results obtained after applying the new probability-based bit selection 

method on the McMaster Test dataset corrected by the Partial Mean Polish method. 

Results are shown for different values of the probability-based bit selection thresholds, 

P1,it, varying from 0.05 to 0.95. For each threshold value, the list of selected bits was 

compared to the official McMaster average bit list. 
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P,it INumber ofhits New bits Removed bits Preserved bits 

2:0.95 13 0 83 13 

2:0.90 17 0 79 17 

2: 0.85 22 0 74 22 

2: 0.80 23 0 73 23 

2: 0.75 25 0 71 25 

2:0.70 29 0 67 29 

2:0.65 32 0 64 32 

2:0.60 37 1 60 36 

2:0.55 45 
,., 

54 42 .) 

2: 0.50 60 6 42 54 

2:0.45 81 19 34 62 

2:0.40 11 4 44 26 70 

2:0.35 155 81 22 74 

2:0.30 22 1 143 18 78 

2:0.25 308 227 15 81 

2:0.20 457 375 14 82 

2:0.15 749 666 13 83 

2: 0.10 1284 1198 JO 86 

2:0.05 2393 23 05 8 88 

Table 4.5 Results obtained after applying the new probability-based bit selection 

method on the McMaster Test dataset corrected by the Weil Correction followed by 

Matrix Error Amendment methods. Results are shown for different values of the 

probability-based bit selection thresholds, P11i1, varying from 0.05 to 0.95. For each 

threshold value, the list of selected bits was compared to the official McMaster average 

bit list. 

ln the first experiment, we used the raw McMaster Test dataset without any error 

correction. The obtained results are presented in Table 4.2. ln the second and third 

experiments, we used Matrix Error Amendment (MEA) and Partial Mean Polish (PMP) 

methods combined with the t-test (see Chapters Il and III) to correct the raw HTS data prior 

carrying out the hit selection. The results of the two tests are shown in tables 4.3 and 4.4, 

respectively. In the last two experiments we used a two-step error correction procedure. As it 

has been suggested that McMaster dataset contains weil systematic error (Kevorkov and 

Makarenkov 2005, Makarenkov et al. 2007), as first step we used the Well Correction (WC) 
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procedure (Makarenkov et al. 2007) to correct for the effect of well-located systematic error 

and then, similarly to the second and third experiments, we applied MEA and PMP methods 

to compensate for the plate-located systematic error (see Chapter III for more details on these 

combined systematic error correction techniques). The results of our fourth and fifth 

experiments are reported in Tables 4.5 and 4.6, respectively. 

Ptlit IN um ber of bits New bits Removed bits Preserved bits 

2:0.95 13 0 83 13 

2:0.90 17 0 79 17 

2:0.85 22 0 74 22 

2:0.80 22 0 74 22 

2: 0.75 25 0 71 25 

2:0.70 28 0 68 28 

2:0.65 34 0 60 34 

2:0.60 37 1 60 36 

2:0.55 45 
,.., 

54 42 .) 

2:0.50 61 7 42 54 

2:0.45 82 21 35 61 

2:0.40 114 45 27 69 

2:0.35 155 81 22 74 

2:0.30 221 143 18 78 

2:0.25 304 223 15 81 

2:0.20 463 381 14 82 

2:0.15 753 670 13 83 

2:0.10 1290 1204 10 86 

2:0.05 2402 23 14 8 88 

Table 4.6 Results obtained after applying the new probability-based hit selection 

method on the McMaster Test dataset corrected by the Weil Correction and Partial 

Mean Polish methods. Results are shown for different values of the probability-based 

bit selection thresholds, P11i1, varying from 0.05 to 0.95. For each threshold value, the list 

of selected bits was corn pa red to the official McMaster average hit list. 

A cl oser examination of the raw McMaster data results suggest that on ly 55 out of the 

96 offi cial average hits (i.e., average hits identified by the McMaster Competition 

Organizers) have the probability to be a hit which is greater than or equal to 0.5. Comparing 

the resu lts in Table 4.2 to the results in Tables 4.3 to 4.6, we can notice the impact of 
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systematic error on the bit selection process. The number of the preserved hits decreases to 

54 when systematic error correction was carried out (to 51, when the PMP method was 

carried out alone). Tables 4.3 to 4.6 show that the removal of systematic error allowed sorne 

compounds to be identified as bits with the probabilities greater than or equal to 0.5: 3 new 

bits when MEA method was carried out, 13 when the PMP method was carried out, 6 when 

the WC+MEA methods were carried out and 7 when the WC+PMP methods were carried 

out. 

The results provided for the probability leve! Ph;1=0.3 suggest that 10 of the original 

average hits have the probability to be a hit which is lower than 0.3 and they may be in fact 

false positives (Table 4.2). We can notice that applying MEA or PMP methods alone increase 

that number by 1 only (Tables 4.2 and 4.3), while using Weil Correction in combination with 

the Matrix Error Amendment or Partial Mean Polish methods almost double the suggested 

number of false positives (18 removed bits, see Tables 4.5 and 4.6). The obtained results for 

Ph;,=0.3 levet show that 100 other compounds have the probability to be a hit lower than 0.5 

(Table 4.2). These compounds were missed during the hit selection performed by the 

McMaster Competition organizers. We think that sorne ofthese compounds should have been 

identified as bits if a third experimental screen of the McMaster Test assay would have been 

performed. The error correction of the raw data increases significantly the number of 

compounds with the probability to be a hit greater than 0.3, i.e., from 100 to 121 in the case 

of the MEA method (Table 4.3), to 143 in the cases of WC+MEA and WC+PMP (Tables 4.5 

and 4.6), and to 183 wh en the error was corrected using the PMP method (Table 4.4 ). 

4.7 New measures for assay quality estimation depending on the number ofreplicates 

In HTS the replicates are used for improving the quality of hit selection results (Malo 

et al. 2006). Due to the excessive cost of experimental HTS, the number of replicates used in 

a single HTS study is usually limited. In practice, in order to ensure the optimal use of the 

project resources, the researchers need to decide whether carrying out an additional assay 

screen is appropriate or not, i.e. , whether an extra assay replicate would bring an important 

improvement to the results quality. Here, we describe a methodology that can be used to 

estimate how an additional experimental replicate would affect the false positive and false 

negative rates ofthe screen. 
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Let DS be a dataset including N (N 2:: 2) complete, experimentally screened replicates 

Sn, i.e. , DS = {Sn, 1 :S n :SN} = {xup(nJ : 1 :S i :S N,.ows, 1 :S j :S Ncots, 1 :S p :S Npt, 1 :S n :S N}, 

where Npt is the number of the plates in each assay rep1icate, Nrows is the number of rows and 

Ncots is the number of the columns on each plate. 

The effect th at testing an additional re pl icate wou1d have on the quai ity of the se1ected 

hits can be estimated following the steps below: 

1. Using the N availab1e experimental (i.e. , in vitro) replicates Sn, 1 :::; n :'S N, we 

estimate the mean jiiiP and the standard deviation Ci iiP of each compound xiiP in DS. 

2. Using the estimates obtained in Step 1, we gene rate Kin si/ica ( e.g., Kwas equal to 

1000 in our simulations) complete assay replicates R1, R2, ... , RK. The simulated 

measurements of each compound xiiP will be normally distributed with the mean Jiu11 

and the standard deviation Ci iiP, i.e ., Rk = { Xijp(kJ ~ N( iiu/1, Ci iiP ), k = 1, 2, ... , K}. 

3. The expectedfalse positive change rate (FPup) andfalse negative change rate (FNup) 

of the compound xiiP can be defined in the following way: 

[ 
1 K 1 N ) 

FP;1P =Max- I. Ôijp(k) -- L Àiip(n); 0 x 100%, 
K k= l N n= l 

(4.2) 

[ 
1 N 1 K ) 

FNiiP =Max - LÀiip(n) --LÔiip(k); 0 x 100%, 
N n=l K k= l 

(4.3) 

where Àiip(nJ is equal to 1 if the compound xu/1 is selected as hit in the in vitro replicate 

Sn and equal to 0 otherwise, and bup(kJ is equal to 1 if the compound xu/1 is selected as 

bit in the in silico replicate Rk and equal to 0 otherwise. 

4. Let NFP be the number of compounds xiiP whose fa! se positive change rate value FPu/1 

is positive, i.e. , NFP = {xiiP: FPijp > 0, 1 :Si :S Nraws, 1 :'Sj :S Ncats, 1 :Sp :S Npt}, and 

let NFN be the number of compounds Xijp whose false negative change rate value FNuP 

is positive, i.e. , Nt:rv = {xu/1 : FNiiP > 0, 1 :S i :S N,-ows, 1 :Sj :S Ncots, 1 :S p :S Npt}. 
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The expected false positive change rate (FPN+I) and false negative change rate 

(FNN+I) of the assay regarding an add it ional in vitro replicate N+ 1 can be defined as 

follows: 

N pl N rows N cols 

II L;FP;jp 

F'P - p=l i= l j=l 
N+ l-

N r:P 
and (4.4) 

Np/ Nrows Nco/s 

II L; FNijp 
FN _ p=l i= l J= l 

N+ l - N 
FN 

(4.5) 

5. Finally, the average probability of hit/non-hit outcome change rate POCN+I of the 

assay regarding an additional in vitro replicate N+ 1 can be defined as follows: 

I Nfs is i~±À,!Jp{n) - ~±Ô!Jp{k) l 
POC N+l = p=l 1=1 J=l n=l k=l 

Nrows X N ,.o/s X N pl 

(4.6) 

We conducted experiments with simu lated HTS data in order to evaluate the proposed 

assay quality estimators. As in our previous simulations, we generated inhibition assays with 

N initial replicates, N = 2, 3, . . . , 10, following the format of the McMaster Test dataset-

1250 plates with 80 wells arranged in 8 rows and 10 columns . The hit percentage of ali 

datasets was fixed to h% where h was equal to either 0.5 % or 1%. The hits were placed at 

randomly chosen locations within the plates in such a way that the probability of each weil on 

each plate to contain a hit was h%. The standard hit selection procedure was carried out to 

select hits using the threshold of j..l- 3 0' (i .e., ali compounds with measurements smaller than 

or equal to j..i-30'were declared hits). 

For each compound x!JP (located m row i, column j and plate p), we generated N 

original (i .e., experimental) replicated measurements x!JjJ(n)' 1 ~ n ~ N, such that X!JjJ(n) 's values 

followed a normal distribution with parameters ~N(f..luP' a;1p). For the non-hit compounds, the 

f..lu/ s values followed standard normal distribution. Two types of datasets were examined: 

those in which the J.lu/s values of the hit compounds followed normal distribution with 
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parameters ~N( -4,1) and tho se with parameters ~N( -5 ,1 ). The standard deviations, ŒiJP' for 

both hits and non-hit compounds were se lected following standard normal distribution . 

(a) FP, hits: 0.5%, hits mean: -5.0 (b) FP, hits: 1.0".4, hits mean: -5.0 
4.5% 4.5% 

4.0% 4.0% 

3.5% 3.5% 

3.0% 3.0% 

2.5% 2.5% 

2.0% 2.0% 
10 10 

(c) FP, hits: 0.5%, hits mean: -4.0 (d) FP, hits: 1.0%, hlts mean: -4.0 
4.5% 4.5% 
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2.0% 2,0,.. 
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Figure 4.5 False positive change rate (FPN+ J) obtained for the simulated data with the 

following parameters: (a) Hit mean= -5.0, bit percentage = 0.5%; (b) Hit mean= -5.0, 

bit percentage = 1 %; (c) Hit mean= -4.0, hit percentage = 0.5%; (d) Hit mean= -4.0, 

bit percentage = 1%. The results are shown for 1000 in silico replicates and represent 

the averages obtained after 100 iterations (i.e., 100 different initial assays). The x-axis 

represents the number of experimental (in vitro) replicates. 
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(a) FN, hits: 0.5%, hits mean: -5.0 (b) FN, hits: 1.0%, hits mean: -5.0 
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(c) FN, hits: 0.5%, hits mean: -4.0 (d) FN, hits: 1.0%, hits mean: -4.0 
25% 25% 

23% 23% 

21% 21% 

19% 19% 

17% 17% 

15% 15% 

13% 13% 

11% 11% 

9% 9% 

7% 7% 

5% 5% 
10 10 

Figure 4.6 False negative change rate (FNN+I) obtained for the simulated data with the 

following parameters: (a) Hit mean= -5.0, hit percentage = 0.5%; (b) Hit mean= -5.0, 

hit percentage = 1 %; (c) Hit mean= -4.0, hit percentage = 0.5%; (d) Hit mean= -4.0, 

hit percentage = 1%. The results are shown for 1000 in silico replicates and represent 

the averages obtained after 100 iterations (i.e., 100 different initial assays). The x-axis 

represents the number of experimental (in vitro) replicates. 
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(a) POC, hits: 0.5%, hits mean: -5.0 (b) POC, hits: 1.0%, hits mean: -5.0 
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(c) POC, hits: 0.5%, hits mean: -4.0 (d) POC, hits: 1.0%, hlts mean: -4.0 
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Figure 4.7 Average probability of hit/non-hit outcome change (POCN+l) obtained for the 

simulated data with the following parameters: (a) Hit mean = - 5.0, bit percentage = 

0.5%; (b) Hit mean= -5.0, bit percentage = 1 %; (c) Hit mean= -4.0, bit percentage = 

0.5%; (d) Hit mean= -4.0, bit percentage = 1%. The results are shown for 1000 in silico 

replicates and represent the averages obtained after 100 iterations (i.e., 100 different 

initial assays). The x-axis represents the number of experimental (in vitro) replicates. 

For ali generated datasets, the va lues of the fa/se positive change rate (FPN+ 1), fa/se 

negative change rate (FNN+i) and average probability of hit/non-hit outcome change rate 

(POCN+i) were calculated fo llowi ng the proposed methodology. The obtained results are 

shown on F igures 4.5, 4.6 and 4.7, respectively. In general, ali three quality assessment 

measures demonstrate similar behavior suggesti ng that the assay quality is highly dependent 

on the number of the experimental (in vitro) replicates. The highest changes in the val ues of 

the proposed statistics were obtained for the case of two and three experimental replicates; 

these values decreased rapidly when an extra replicate was tested till the number of replicates 

reached five . For five and more replicates, the change rates decrease, accounting for positive 

effects of an additional experimental replicate, was much slower. Comparing the four 
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considered practical situations (see panels (a) to (d) in Figures 4.5-4.7), we notice that the 

impact of an additional replicate is more important when the hits are more easily 

distinguishable from the non-hits (see panels (a) and (b) in Figures 4.5-4.7). Also, the 

increase of the hit percentage in the assay causes the decrease of the positive impact of an 

extra replicate in terms of the false positive rate (Figures 4.5). 

MAC ID Plate Row Column Ml M2 Hit probability FPcr FNcr 

MAC-0120363 1 8 9 91.78 50.75 0.57281 0.073 0.000 

MAC-0121481 3 8 9 97.12 50.98 0.51694 0.017 0.000 

MAC-0 121668 5 8 9 93.7 53.25 0.53064 0.031 0.000 

MAC-0122467 16 5 1 84.45 65.61 0.5 0.000 0.000 

MAC-0126835 35 5 6 41.57 100.29 0.55553 0.056 0.000 

MAC-0128437 55 7 9 90.84 52.81 0.56693 0.067 0.000 

MAC-0112108 91 1 3 71.49 62.82 0.96536 0.000 0.035 

MAC-0112764 97 2 9 69.06 64.16 0.99971 0.000 0.000 

MAC-0 1144 79 100 1 9 81.65 59.31 0.65812 0.158 0.000 

MAC-0113020 103 6 4 65.85 81.38 0.5723 0.072 0.000 

MAC-0114615 107 5 5 70.83 67.44 0.99975 0.000 0.000 

MAC-0114159 11 2 2 8 67.08 72.6 1 0.96962 0.000 0.030 

MAC-0115084 116 4 10 75.2 74.21 0.74427 0.244 0.000 

MAC-0115794 131 6 5 68.94 69.46 1 0.000 0.000 

MAC-0119733 156 2 2 59.68 69.88 0.97777 0.000 0.022 

MAC-0128921 161 7 5 74.21 68.5 0.90099 0.000 0.099 

MAC-0130772 185 7 2 68.53 73.86 0.92493 0.000 0.075 

MAC-0 130492 187 4 1 76.43 70.79 0.69271 0.193 0.000 

MAC-0130938 188 3 5 64.82 70.58 0.99454 0.000 0.005 

MAC-0131221 192 6 3 72.12 72.22 1 0.000 0.000 

MAC-0132669 209 8 2 73 .82 70.75 0.96313 0.000 0.037 

MAC-0133856 224 2 4 73.24 72.19 1 0.000 0.000 

MAC-0 134063 226 2 9 69.87 79.64 0.52245 0.022 0.000 

MAC-0 134899 232 4 7 76.39 56.65 0.80571 0.306 0.000 

MAC-0135007 240 8 1 54.51 89.2 0.57262 0.073 0.000 

MAC-0 136174 243 7 4 67.68 74.32 0.8876 0.000 0.112 

MAC-0135559 243 8 1 63.46 79 0.6876 0.188 0.000 

MAC-0136881 247 2 9 86.23 61.32 0.54013 0.040 0.000 

MAC-0 136292 254 2 3 50.17 96.6 0.52825 0.028 0.000 

MAC-0 136229 254 7 7 80.05 64.31 0.64137 0.141 0.000 

MAC-0137495 267 1 10 72.17 76.71 0.60253 0.103 0.000 
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MAC-0138159 269 2 9 70.63 78.74 0.5339 0.034 0.000 

MAC-0139408 273 6 3 65 .62 70 .86 0.99522 0.000 0.005 

MAC-0140284 285 7 4 60.16 79.77 0.69727 0.197 0.000 

MAC-0139275 287 7 6 87.72 55.3 0.58595 0.086 0.000 

MAC-0140548 292 2 10 56.26 80.66 0.70489 0.205 0.000 

MAC-0141166 306 4 4 96.16 51.14 0.52444 0.024 0.000 

MAC-0144065 325 2 3 77.28 67.31 0.70838 0.208 0.000 

MAC-0144510 332 1 1 62.2 84.51 0.55968 0.060 0.000 

MAC-0145361 333 1 4 69.55 71.72 1 0.000 0.000 

MAC-0147323 349 6 3 76.7 67.48 0.73818 0.238 0.000 

MAC-0148399 352 2 7 90.11 50.7 0.59278 0.093 0.000 

MAC-0103980 382 6 7 67.81 74.83 0.85474 0.000 0.145 

MAC-0 106260 396 7 1 76.44 73.58 0.50558 0.006 0.000 

MAC-0 1 07974 401 3 5 75 .15 74.64 0.70174 0.202 0.000 

MAC-0 108994 404 4 3 66.56 66.31 1 0.000 0.000 

MAC-0110039 408 1 4 65.28 65 .37 1 0.000 0.000 

MAC-OI10027 409 6 3 70.12 68.1 1 0.000 0.000 

MAC-0110562 410 2 3 53.25 72.71 0.89222 0.000 0.108 

MAC-0112179 415 4 9 68.87 50.68 0.95326 0.000 0.047 

MAC-OI12287 415 6 4 63.42 74.15 0.87779 0.000 0.122 

MAC-OI14842 426 5 7 67.27 54.76 0.98747 0.000 0.013 

MAC-0115469 429 1 4 74.24 62.11 0.87082 0.000 0.129 

MAC-0116655 432 8 8 58.59 71.82 0.93126 0.000 0.069 

MAC-0117240 434 8 3 69.57 74.02 0.92702 0.000 0.073 

MAC-0117820 435 5 4 74.98 50.57 0.84233 0.000 0.158 

MAC-0 117987 435 7 8 64.99 78.94 0.66982 0.170 0.000 

MAC-0 122178 448 2 5 77.42 66.88 0.70764 0.208 0.000 

MAC-0 12241 1 448 7 6 76.19 73.68 0.53017 0.030 0.000 

MAC-0122661 449 4 9 74.53 69.98 0.88873 0.000 0.111 

MAC-0122330 449 8 1 76.9 63.95 0.76152 0.262 0.000 

MAC-0122959 450 2 4 69.1 71.16 1 0.000 0.000 

MAC-0122586 451 1 4 62.32 64.19 1 0.000 0.000 

MAC-0123662 453 4 2 51.74 79.75 0.74633 0.246 0.000 

MAC-0 124103 454 2 1 76.62 67.35 0.7444 0.244 0.000 

MAC-0124476 455 7 3 84.03 65.32 0.51514 0.015 0.000 

MAC-0125372 457 7 7 85.45 62.59 0.53521 0.035 0.000 

MA C-0127264 460 3 9 71.76 69.5 0.99995 0.000 0.000 

MAC-0137845 475 7 5 54.01 81.18 0.70791 0.208 0.000 

MAC-0140989 479 7 2 74.94 72.25 0.85699 0.000 0.143 
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MAC-0140910 483 5 7 63.47 68 .77 0.9996 1 0.000 0.000 

MAC-01 43736 488 7 1 58.47 90.69 0.5 111 4 0.011 0.000 

MAC-0144119 490 5 1 75.4 72.27 0.77744 0.277 0.000 

MAC-0 144345 492 1 2 87.73 55.54 0.58353 0.084 0.000 

MAC-0144586 492 3 9 73.78 70.55 0.96197 0.000 0.038 

MAC-0145030 493 6 10 68.41 64.36 1 0.000 0.000 

MAC-0147938 513 1 5 83.04 65.26 0.53943 0.039 0.000 

MAC-0149343 518 7 5 68.77 64.42 0.99995 0.000 0.000 

MAC-0150159 525 6 7 77.25 67.42 0.70826 0.208 0.000 

MAC-0149121 526 6 7 66.52 80.39 0.58983 0.090 0.000 

MAC-0150029 528 7 6 72.84 73.31 1 0.000 0.000 

MAC-01 01192 545 1 9 68.86 78.85 0.59299 0.093 0.000 

MAC-0101115 546 1 4 76.33 50.75 0.8155 0.316 0.000 

MAC-0101665 548 7 2 75.65 60.34 0.82095 0.32 1 0.000 

MAC-0105044 557 2 9 76.51 56.61 0.80269 0.303 0.000 

MAC-0104038 563 8 "' 71.72 70.03 1 0.000 0.000 .) 

MAC-0104867 567 6 2 66.49 57.06 0.99753 0.000 0.002 

MAC-0105511 571 3 10 70.68 79.26 0.50558 0.006 0.000 

MAC-0106449 574 3 9 90.04 55.41 0.55295 0.053 0.000 

MAC-0106706 578 4 1 59.64 86.55 0.55718 0.057 0.000 

MAC-0107801 585 4 6 79.16 60.07 0.71475 0.215 0.000 

MAC-0107329 587 5 5 67.75 52.62 0.97514 0.000 0.025 

MAC-0111457 591 4 5 75.72 69.42 0.78258 0.283 0.000 

MAC-0109304 607 1 2 77.26 69.12 0.6744 0.174 0.000 

MAC-0110019 609 3 5 68 71.29 0.99947 0.000 0.001 

MAC-0 109949 609 8 7 70.79 65.17 0.99394 0.000 0.006 

Table 4.7 The 96 average bits from the McMaster Test assay with their MAC IDs, the 

first (Ml) and the second (M2) measurement values, bit probability computed from 

theoretical distribution, and false positive (FPch) and false negative (FNcr) change rates 

also computed from theoretical distributions. The consensus bit are italicized. 

We also evaluated the proposed assay quality estimators on an experimental HTS data 

- the McMaster Test dataset. The calcu lated values of hit probability, false positive change 

rate (FPch) , false negative change rate (FNch) of ali original 96 average hits are shown in 

Table 4.7. Our calculations identified 12 of the original hits as "absolute" hits with hit 

probability equal to 1 and FPch and equal to O. We determined that more than one third, 33, 
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of the original hits have hit probability greater than 90% of which 29 have hit probability 

greater th an 95% and 21 greater th an 99%. The calculations showed th at the maximum fa/se 

positive change rate of an original McMaster hit is 0.321 and the maximum fa/se negative 

change rate is 0.158. The average values of FPch and FNch for ali 96 hits are 0.074 and 

0.017 respectively. The hit probability in Table 4.7 was computed from the theoretical 

distribution. 

4.8 Discussion and future developments 

ln this article, we discussed the applications of the three well-known and one new 

statistical methods to the analysis of experimental high-throughput screening data. First, we 

carried out the polynomial RDA in arder to discover relationships between the experimental 

HTS measurements and the values of ten chemical descriptors characterizing the associated 

compounds. The polynomial RDA analysis was effective in finding relationships between the 

hit/no hit outcomes and the values of chemical descriptors when small HTS datasets were 

considered (e.g. with 42 hits and 100 no hits). 

Second, we showed that neural networks are much more effective than decision trees 

regarding the in silico prediction of HTS results. Neural networks were usually more 

discriminate then decision trees when the model 's parameters were weil fitted. We estab­

lished that the increase in the number of no hits leads to a drastic drop in the sensitivity of 

machine learning methods; this trend is particularly noticeable for the decision tree method. 

HTS is often used to screen a huge number of compounds, millions in sorne cases, but 

it yields only a few hits for further investigation. For instance, in the considered McMaster 

Test dataset only 96 of 50,000 tested compounds were identified as hits. This disproportion 

suggests that the McMaster Test dataset is extremely unbalanced: the number of hits is less 

than 0.2% of the total number oftested compounds. Having too many negative samples in the 

training set biases a neural network decision towards the negative samples. Severa! 

approaches are possible to address this problem. One of them consists of a random selection 

of balanced same-size partitions used to build and train a number of separate networks. Ali 

obtained networks can be used to predict the proposed test set and their outputs can be 
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averaged to produce the final result. Another approach, one could use to produce balanced 

training sets, is the bootstrapping hit samples. In this way, the number of hits and no hits in 

the set would be equal, while sorne of the hit samples may have been selected severa! 

numbers of times. Our experiences with the McMaster Test dataset using the above­

mentioned approaches showed that, as expected, they can efficiently reduce the bias caused 

by the imbalance in the dataset, but are not powerful enough to correct the main problem of 

HTS: Jack of positive samples for achieving a satisfactory leve! of neural networks or 

decision trees training. Thus, our future developments will be focused on the examination of 

the results provided by neural networks with higher nu rn bers of hits ( e.g. by adding to the set 

of hits, ail no hit compounds whose experimental measurements are close to the hit 

measurements) and chemical predictors (e.g. by adding to the set of 10 predictors the docking 

scores provided by certain HTS software) in the considered training and test data sets. 

We also presented a new hit selection method allowing one to assess the probability of 

each considered compound to be a hit. This probability is computed by estimating the mean 

value and the standard deviation of each compound from the available experimental 

replicates of the given HTS assay and then by generating, using th ose estimates, a sufficient 

number of in silico replicates of each compound. The obtained probabilities can be used for 

limiting the number of compounds that should be tested in further experimental trials, thus 

reducing the cost of the associated experimental HTS campaign. 

Finally, we proposed a new methodology for estimating the effect of an additional 

replicate on the quality of the obtained HTS results. Such a methodology allows researchers 

to use the available experimental data for evaluating how an additional replicate would affect 

the current false positive and false negative rates . We tested our new methodology on 

simulated data. The results of our experiments suggest that screening another replicate could 

be especially beneficiai when no more than five in vitro replicated screens have been carried 

out previously as weil as in the cases when the number of hits in the assay was small and the 

hits were easily distinguishable from the inactive compounds. 
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CONCLUSION 

High-throughput screening is a relatively new technology that was rapidly embraced 

both by the pharmaceutical industry and the academia. The complexity and the novelty of 

HTS present many challenges, which require attention, in order to derive benefits from the 

evolving technology. The importance of HTS is weil recognized, and is expected that high­

throughput screening will remain in the focus of the research community in the coming years. 

In this thesis, we addressed two fundamental issues in High-Throughput Screening 

(HTS): negative effect that systematic error has over the hit selection process and very high 

cost associated with HTS experiments. We investigated the possibility of detecting the 

presence of systematic bias in raw HTS data and determining its exact location. Three well­

known statistical tests were considered in the context of experimental HTS. Their ability to 

detect systematic error was evaluated in various practical situations. Then, we presented our 

efforts in developing new error correction methods that focus on modifying only the 

measurements located in the plate ' s rows and columns affected by systematic error and 

leaving the rest of the data unchanged . Thus, we formulated two new error correction 

techniques that efficiently eliminate systematic error from raw HTS data if it is present wh ile 

minimizing the unintended side effects of the error correction process. HTS Helper software 

implementing the new methods was made available to the scientific community. 

Furthermore, we addressed the issue of the high cost of experimental HTS campaigns by 

offering HTS researchers a methodology for deciding whether an additional assay replicate 

should be carried out for improving the results quality. The proposed methodology also 

includes a newly developed procedure allowing one to assess the probability of each 

compound of the assay to be a hit. We then used the latter procedure to define a new 

probability-based hit se lection method that guarantees that al i selected compounds have the 

probability to be a hit above a chosen in advance level. Moreover, we considered the use of 

virtual HTS, i.e. , in silico methods, for predicting the hit/non-hit outcomes of HTS tests, in 

order to reduce the number of compounds that need to be tested experimentally. We carried 

out Polynomial RDA analysis to establish first whether there exist relationships between the 
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compounds and a set of available molecular descriptors and then to determine if the detected 

relationships are sufficient for successful outcome prediction. We studied, as weil , the 

usability of two machine learning methods for constructing and training prediction models in 

the HTS context. The new methods described in this thesis represent our scientific 

contribution intended for accomplishing quality improvements of the high-throughput 

screening hit selection procedures as weil as for decreasing the overall cost associated with 

experimental HTS. 

ln Chapter II, we discussed and tested three statistical methods for systematic error 

detection in experimental HTS data. We studied Student's t-test, the ;( goodness-of-fit test 

and Discrete Fourier Transform followed by the Kolmogorov-Smirnov goodness-of-fit test. 

We examined the performances of the three tests on a wide range of artificially generated 

high-throughput screening data constructed to recreate a variety of real-life situations. The 

data parameters used in our simulations included: plate size, systematic error magnitude, hit 

percentage and systematic error location. We determined that the t-test, which is the simplest 

and computationally fastest of the three tests, outperformed, in most cases, the ;( goodness­

of-fit and Kolmogorov-Smirnov tests . The t-test demonstrated a robust behavior, which was 

often independent of the simulations parameters. The calculated values of Cohen's kappa 

coefficient suggested a good performance of this test for ali plate sizes, hit percentages and 

noise magnitudes, and, in particular, for large plates and high level of systematic error. 

Hence, we can recommend the t-test as a method of choice for systematic error detection in 

experimental HTS. 

On the contrary, highlighted in sorne works (Kelley 2005 , Root et al. 2003) Discrete 

Fourier Transform followed by the Kolmogorov-Smirnov goodness-of-fit test strategy 

provided very disappointing results. It is worth noting that the latter combined strategy was 

both the most computation-intensive and the worst performing method among the three tested 

tests. Our simulations showed that the Kolmogorov-Smirnov test can still be used to examine 

small-sized HTS plates (i.e. , 96-well plates), but we strongly suggest not using it for larger 

plates (i.e., 384 and 1536-well plates). A deeper analysis showed that the main reason for 

such a poor performance of the Kolmogorov-Smirnov test was the fact that the original 
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normally distributed data deviated from the normality after the application of Discrete 

Fourier Transform. 

The third method, the i goodness-of-fit test, suggested in Makarenkov et al. 2007), 

showed a lower than the t-test performance but can still be employed for detecting the 

presence of systematic error in HTS assays using small plate sizes . The simulation results 

demonstrated that unlike the t-test, the i goodness-of-fit test appears to be very sensitive to 

the type and variance of systematic error. The main ad v an tage of the i goodness-of-fit test is 

that it can be used to assess the assay's hit distribution surface for the presence of systematic 

error affecting compounds located at the same weil location across ali plates of the assay. 

ln addition to the experiments carried out with simulated data, we also applied the 

three considered tests for the analysis of real HTS data. Our goal was to study how 

systematic error affects the hit selection process in HTS . The obtained results confirmed that 

when uncorrected HTS data are used for hit selection, severa! selected hits (about 30%, in the 

case of the considered McMaster Test assay) may be in fact false positives . We also observed 

that the application of sorne aggressive data normalization procedures, such as B-score 

(Brideau et al. 2003), can easily bias the results of the hit selection process by introducing an 

important number offalse positives and false negatives. 

The conducted experiments demonstrated that the presence of systematic error can be 

successfully assessed by employing the t-test. Hence, it is also possible to improve the quality 

of experimental HTS results by adding a preliminary systematic error detection step to the 

HTS workflow. The information collected during that extra step should be used to determine 

the most appropriate error correction method for the given situation thus permitting the error 

correction step to be ru led out if no presence of systematic error has been detected . 

In Chapter III, we formulated two new methods, called Matrix Error Amendment 

(MEA) and Partial Mean Polish (PMP), for eliminating plate-specifie systematic error from 

experimental HTS data. Both new methods assume that the exact locations (plates, rows and 

columns) affected by systematic error are known. This information can be acquired using the 

t-test or the i goodness-of-fit test as described in Chapter II or Dragiev et al. (20 Il). Both 
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methods modify only the measurements of the compounds at the locations affected by 

systematic error. The adjusted compounds measurements remain on the same scale with raw 

data, thus permitting a global hit selection to be performed when only a part of the 

compounds of the assay have been treated for the removal of systematic error. 

We conducted comprehensive experiments with artificially generated HTS data by 

considering different plate sizes, bit percentages and systematic error magnitudes. ln ali our 

experiments we compared the proposed MEA and PMP methods with the B-score (Brideau et 

al. 2003) procedure and hit selection based on uncorrected data. We observed that bath new 

methods outperformed the B-score and no-correction procedures in ali cases when the 

number of the plate ' s rows and columns affected by systematic error was law. We observed, 

however, the situations in which B-score method yielded better results . The B-sore method 

showed a more stable behaviour than MEA and PMP only when the hit percentage was above 

3%, or the number of rows and columns affected by systematic error were high. We should 

underline that the latter cases have mainly theoretical value as in a typical HTS campaign the 

hit percentage is usually under 1% (for example the McMaster Test dataset has a hit 

percentage of 0.19% ). Comparing the two new methods between them, we noticed th at MEA 

was generally a better method for correcting systematic error within 96-well plates, while 

PMP performed better for 384- and 1536-well plates. 

Moreover, we evaluated the MEA and PMP methods on real data (McMaster Test 

assay). Our study showed that the new methods can be applied in combination with the Weil 

Correction procedure (Makarenkov et al. 2007). We agreed on the following recommended 

way to treat experimental HTS data. First, if contrais were used, the data should be 

normalized using Percent of control or Normalized percent inhibition transformation (see 

chapter 1). Second, the hit distribution surface should be tested for presence of systematic 

error affecting the assay globally. If such an error is detected, it should be corrected using the 

Weil Correction method. Third, the t-test should be carried out on the plate-by-plate basis to 

detect if local row or column systematic error is present in each plate of the assay given plate. 

Ail the plate's measurements affected by systematic error should then be treated using the 

MEA or PMP methods. We also showed how, with simple modifications, the newly proposed 

PMP method can be adapted for the correction of multiplicative systematic bias (PMP and 
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MEA were originally developed for the correction of additive type of systematic error in 

experimental HTS). 

Furthermore, we provided a program that implements the two new methods, Matrix 

Error Amendment and Partial Mean Polish, as weil as the B-score, Z-score and Weil 

Correction methods. The executables and the source code of our software can be downloaded 

from: http://www. info2.uqam.ca!~makarenkov _ v/HTS _ Helper. 

In Chapter TV, we presented a new probability-based hit selection procedure. We 

developed a methodology allowing one to assess for every compound of the assay its 

probability to be a hit. By estimating empirically the distribution parameters of every 

compound from the avai lable experimental assay replicates, we were able to simulate, in 

silico, additional assay replicates. That allowed us to estimate the probability of each 

compound to be a hit. We then used that information to identify as hits the compounds whose 

probability was higher than a predefined threshold. Using the simu lated assay replicates, we 

were also able to estimate the current false positive and false negative change rates, allowing 

the researchers to assess the effect that an additional experimental assay replicate wi ll have 

on the false positive and fa lse negative rates, and thus to decide whether screening another 

assay replicate is justified or not. 

The use of replicated high-throughput screens has became a common practice (Malo et 

al. 2006) especially during the secondary screening when relatively small number of 

compounds is tested. We believe that further work is needed for developing more precise 

probability models for evaluating the "drug-likeness" of the selected hits. The methodology 

described in Chapter IV assumes normally distributed data, however, it can be easily 

extended to include an extra step of assessing the distribution of the considered experimental 

data and to adjust in silico simulations for achieving more precise results . 

In Chapter IV, we also investigated the possibility of using a group of ten chemical 

descriptors for predicting the outcome ofHTS experiments. We carried out polynomial RDA 

in order to discover relationships between experimental HTS measurements and the available 

values of ten chemical descriptors. Our analysis showed that severa! descriptors were 
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strongly correlated with the hit/non-hit outcomes. Thus, enough information was often 

present to distinguish between hits and non-hits. 

Moreover, we evaluated two machine learning methods, neural networks and decision 

trees, for building prediction models. Our experiments showed that neural networks are much 

more effective than decision trees in terms of in si/ica prediction of HTS results. High­

throughput screening is usually used to screen large and highly unbalanced datasets that 

include thousands of non-hits and only a few hits. We established that the increase in the 

number of non-hits causes a significant decrease in the sensitivity of both machine learning 

methods. This trend was particularly noticeable for the decision trees. We tested severa! 

approaches to address that problem. For instance, we conducted training with balanced sets, 

constructing training sets by randomly selecting balanced same-size partitions to build and 

train a number of separate neural networks. The obtained networks were used for prediction 

and their outputs were averaged to produce the final result. Another approach, we applied, 

was based on the bootstrapping the hits samples. ln this way, the number of hits and non-hits 

in each training set was equal, while sorne of the hit samples were selected severa! times. 

Despite the use of balanced training sets, what, as expected, allowed us to reduce the bias in 

the decisions of the predicting models, such an adjustment was not powerful enough to 

correct the main hurdle for predicting correct hit/non-hit outcomes in experimental HTS: the 

Jack of positive sam pies for satisfactory training of the neural networks and the decision tree 

classifiers. Thus, future developments could be focused on improving the training of the 

prediction models and extending the set of chemical predictors as weil as evaluating other 

machine learning and classification methods that are Jess sensitive to the hit/non-hit 

un balance. 

ln our experiments, we considered the values of only ten common chemical 

descriptors . Sorne additional work should be done for extending the number of descriptors 

used for prediction. Burton et al. (2006) showed that not ali chemical descriptors have the 

identical prediction power. Further research is needed for determining the optimal set of 

descriptors to be used in virtual HTS. 



APPENDIXA 

HTS HELPER SOFTWARE 

A.l HTS Helper Utility 

This appendix presents a handy freeware utility, HTS Helper, which can be used to 

analyse high-throughput screening data. The HTS Helper utility and the content of this 

appendix are avai lable online at: http://www.info2 .uqam.ca/-makarenkov_v/HTS_Helper. 

HTS Helper: ~~ x 
~ -~- -- - - - - - ---

Error Correction Method: [ MauixEnor Amendment (MEA). T-testenor detection ~ J 

T-test Probabil'ity Leve!: [0.1 ~ ] 

l'nput Data File Name: McMaster_1250.mtx 

fnput Data File Format: [ .mtx.- Pseudo XMl (HTS Correctm ver 5+) ~ 1 

Input File Rows per Plate [ 0 ~_1 

Output File Name: McMaster_1250_MEA 

Output File Format: [Sa me as the Input FHe· Format ~ l 

Output Precision: 1 2 C§JI [!] 0.00, pi==3. 14 

.____E_X_ E_ C_U_T_· E_-Jj ~ 

Figure A.l HTS Helper, Windows Forms executable (version 1.0, March 22"d, 2012) 
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High-throughput screening (HTS) is a large-scale, greatly automated early step in drug 

development during which thousands of chemical compounds are screened and their activity 

levels measured in order to identify potential drug candidates (i.e. , hits). Many technical , 

environmental and procedural factors can cause systematic measurement error or inequalities 

in the conditions in which the measurements are taken . Systematic error introduces 

inaccuracy in the data by over- or underestimating compounds' true activity levels and thus it 

has the potential to critically disturb the hit selection process. The systematic error is almost 

always location related. Usually, it affects compounds located in the same row or column on 

the screening plate and it may affect only a single plate or a sequence of plates in the HTS 

assay. lt is of high importance to eliminate the effect of the systematic error on the HTS data 

before the hit selection process in order to ensure high quality results. 

The HTS Helper utility has been created to facilitate the systematic error correction of 

experimental HTS data. It implements severa! error correction and normalization methods: 

• Matrix Error Amendment 

• Partial Mean Polish 

• Weil Correction 

• Z-score normalization 

• B-score normalization 

Z-score and B-score are two widely used normalization methods designed to 

compensate for plate-to-plate differences, ensuring comparability of ali measurements 

throughout the assay. Weil Correction is a systematic error correction method designed to 

eliminate error that affects compounds located at the same weil location (row and column) 

within the plates across the assay. Most of the error correction and normalization methods 

have one serious drawback - if they are appl ied on data th at is not affected by any systematic 

error, they may a lter unnecessari ly the data causing effect simi lar to the effect of the 

systematic error itself and th us impeding the hit selection process. Matrix Error Amendment 

(MEA) and Partial Mean Polish (PMP) are two novel methods designed to modify only those 

rows and columns in each plate that are affected by systematic error while preserving their 
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comparability with the remammg unmodified measurements. ln order to determine the 

location of the systematic error HTS Helper uses methodology developed earlier by its author 

and based on the well-known t-test used in statistics. 

HTS Helper utility is available both as a Windows Form application and as a 

Command Line (Console) application. It was developed using Microsoft .NET Framework 

version 4. The source code of HTS Helper utility is also freely available. 

A.2 Using HTS Helper Utility 

By design, HTS Helper completes its work in three steps. First, it reads an HTS dataset 

from the input data file. Second, it applies the selected data processing method, if any. And 

finally, it saves the modified dataset into the output data file. Severa! parameters are avai lable 

to control the who le process: 

• What action HTS Helper should perform on the HTS dataset can be specified using 

the first drop down list in the Windows Forms Application (WF A) or using -a 

parameter in the Command Line Application (CLA). HTS Helper can apply Matrix 

Error Amendment (MEA), Partial Mean Polish (PMP), Weil Correction (WC), B­

score and Z-score methods . Two add itional composite actions are a lso supported, in 

which, MEA and PMP methods are applied on the data after it has been first treated 

using the WC method. A special extra option is available that instructs HTS Helper 

utility not to alter the data in any way, ensuring that it will be saved unchanged to 

the output file . This option can be used for converting HTS data from one format to 

another or for changing measurements' numeric precision, white preserving the 

same data format. 

• When MEA or PMP method is to be performed (alone or in combination with WC) 

HTS Helper uses t-test to estimate the location of the systematic error within each 

plate. The required t-test probability leve! can be specified using the correspondent 

field in WFA or - tta parameter in CLA. The probability leve! should be a number 

between 0.0001 and 0.9999. 
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• It is mandatory to provide the name of the input file containing the HTS data. ln 

WF A that can be done by entering the name in the corresponding field or by 

pressing the [ ... ] button and selecting the file using the standard Windows 'Open 

File' dialog. ln CLA the input file is specified using the - i parameter. 

• HTS Helper supports 4 different input file formats. It determines the input data 

format based on the file extension. ln case that the data is stored in file with non­

standard file extension then the input file format can be explicitly specified. ln CLA 

the - i ff parameter should be used. Note also that HTS Helper can distingui sh 

between the two .csv file formats based on the file content, therefore this option is 

rarely used. 

• ln case that the input file is in CSV data format HTS Helper offers two ways for 

importing the data: first, by explicitly specify ing the number of rows per plate and 

second, in the case that plates are separated by empty tines in the input file HTS 

Helper can automatically determine the number of rows per plate. In CLA the 

number of rows per plate can be explicitly specified with the -rows parameter. 

Note that if the number of rows is explicitly specified then ali empty !ines in the 

input file are ignored . 

• Specifying an output file name is optional. In CLA, that can be done using the - o 

parameter. If no output file name is specified HTS Helper saves the data in the same 

folder as the input data fi le . An output file name is automatically generated from the 

input file name by adding a short suffix corresponding to the selected action. 

• HTS Helper can save data in 5 different output file formats. The des ired file format 

can be selected in the corresponding drop down list in WFA or in CLA by using­

off parameter. If no output file format is specified HTS Helper wi ll save the result 

dataset in the same file format as the input data. 
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• HTS Helper allows the user to control the numeric precision of the output HTS data. 

In CLA it is specified by using the -pre parameter. The default numeric precision 

is 2 digits after the decimal point. 

A.3 HTS Helper Command Line Interface 

Synta.x 

HTSHelper - a ACT I ON - i I NPUT FILE [-o OUTPUT_FI LE] [ether parameters ... ] 

Parameters 

Parameter Description 

Specifies what action should be performed on the HTS data 
- a 0 : Convert data from one format to another, do not modify the data 
- a 1: B-score normalization method 
- a 2 : Weil Correction (WC) method 
- a 3 : Matrix Error Amendment (MEA) method with T-test systematic 
error detection 

-a ACTION - a 4: Partial Mean Polish (PMP) method with T-test systematic error 
detection 
- a 5: Weil Correction (WC) method followed by Matrix Error 
Amendment (MEA) method with T-test systematic error detection 
- a 6: Weil Correction (WC) method followed by Partial Mean Polish 
(PMP) with T-test systematic error detection 
- a 7: Z-score normalization method 

Specifies the probability leve! of the T-test systematic error detection . 
- tt a ALPHA ALPHA should be a number between 0.00001 and 0.99999. Tt can be 

used with - a 3,-a 4,-a 5 and - a 6. 

- i INPUT FILE Specifies the name of the input data file -
Specifies what is the format of the input data file 
- iff 2: .mtr file format, a tabbed value format used in HTS Corrector 

- iff IN PUT FORMAT -iff 3 : .mtx file format, a XML-Iike format used in HTS Corrector 
- software, version 5+. 

- iff 4: .csv data file format, every line in the input file represents a 
row ofHTS data. The measurement values are comma separated. 
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- iff 5: .csv database fi le format, every li ne in the input fi le represents 
the Value of a single compound measurement and its location in the assay 
(Plate, Row, Column) . 

De fines the number of rows per plate. It can be used with the - if f 4 - rows N 
option. 

- o OUTPUT FILE Specifies the name of the output data file -

Specifies the format of the output data file 
- off 2 : .mtr file format, a tabbed value format used in HTS Corrector 
software. 
- off 3: .mtx file format, a XML-like format used in HTS Corrector 

- off 
software, version 5+. 

OUTPUT FORMAT - off 4: .csv data file format, every row of HTS datais saved as a 
- separate li ne of comma separated values in the output fi le. 

- off 5: .csv database file format, every compound measurement is 
saved in a separate record/ tine with attributes Plate, Row, Column, Value. 
- off 6: .htm l Web Page. Every plate is saved as a separate HTML 
table. 

Specifies the prec ision with which the measurement values are 
- pre p saved in the output fi le . P defi nes the number of digits after the 

dec imal point. P shou ld be a number between 1 and 15 . 

Table A.l HTSHelper Command Line Parameters Description 



APPENDIXB 

SOURCE CODE OF THE HTS HELPER UTILITY (VER 1.0) 

Program.cs 

Il File : Program . cs , HTSHelper project 
Il Written by Plamen Dragiev 
Il Last updated : Mar 14 , 2012 
Il History: 
Il Mar 3 , 2012 - file created 
Il Mar 14 , 2012 -version 1 . 0 
Il 

namespace HTSHelper 

class Program 

Ill <summary> 
Ill HTSHelper program entry point 
Ill <lsumma r y> 
Ill <pa ram name="a rgs ">Comrnand Line Paramaters<lparam> 
static void Main( string [] args) 
{ 

Userinterface UI = new ComrnandLine (args); 

UI. Run (); 

User Interface. cs 

Il Fi le : User interface.cs, HTSHe l per pro ject 
Il Written by Plamen Dragiev 
Il Last updated : Mar 14, 2012 
Il 
Il 
Il 
Il 

His tory: 
Mar 3, 2012 - file creat ed 
Mar 14, 2012 - version 1.0 

u sing System; 
using System . Co lle ctions . Gene ric ; 

namespace HTSHe lpe r 
{ 

Ill <s ummar y> 
Ill An abstract class that defi nes how HTSHelper interacts wi th the user interface . 
Ill Base class for both the command line and Windows GUI interface. 
Ill <lsummary> 
abstract class Userinterface 



Ill <summary> 
Ill This method is called to s tart the User Int erface from Program ' s entry poi n t 
Ill <lsummary> 
public abstract void Run(); 

Ill <summary> 
Ill This method is called b y HTSHelper when the execution should be aborted 
Ill <lsummary> 
public abstract void Abort() ; 

Ill <summary> 
Ill Thi s method is called by HTSHelper when sorne text needs to be a dded 
Ill to the execution log. 
Ill <lsummary> 
Ill <param name="Text ">Text to be written to the log<lparam> 
public abstract void LogWrite( s tring Text) ; 

Ill <summary> 
Ill This method is called by HTSHelper when sorne text needs t o be added to the 
Ill execution followed by a new line . 
Ill <lsummary> 
Ill <param name=" Text">Text to be written to the log<lparam> 
public abstract void LogWriteLine( string Text) ; 

Ill <summary> 
Ill This method is called by HTSHelper when a warning message should be sho wn 
Ill to the user . 
Ill <lsummary> 
Ill <param name="Text">The text of the warning message<lparam> 
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Ill <returns>Returns false if the execution should continue and true if the execution 
Ill should be aborted<lreturns> 
public abs tra ct bool Warning( string Text) ; 

Ill <summary> 
Ill This method is called by HTSHelper when an errer message should be shown to the user. 
Ill <lsummary> 
Ill <param name="Text">The text of the errer message<lparam> 
public abstract void Error( string Text) ; 

CommandLine.cs 

Il File : CommandLine . cs , HTSHelper project 
Il Written by Plamen Dragiev 
Il Last updated : Mar 14 , 2 012 
Il Hi story : 
Il Mar 3, 2012 - file c reated 
Il Mar 14, 2012 - versio n 1 .0 
Il 
using System; 

namespace HTSHelper 
{ 

Ill <summary> 
Ill Implementa a simple command l i na user interface 
Ill <lsummary> 
c l ass CommandLine : Userinterface 

Il data fields 
protected string [] Args; 

Il temporary variables used to parsa the parameters 
protected string ActionStr ; 
p r otected string IFormatStr ; 
protected string OFormatStr ; 
protected string RowsStr; 
p r otected string PrecisionStr ; 
protected string AlphaStr ; 



Il variables used to store the parameter values 
protected int Action ; 
protected string InputFileName ; 
protected string OutputFileName ; 
protected int IFormat; 
protected int OFormat ; 
protected int Rows ; 
protected int Precision ; 
protected double Alpha ; 

Il An instance of the main worker abject 
protected HTSHelper HTS ; 

Ill <suromary> 
Ill Constructor of the User interface abject. 
Ill <lsummary> 
Ill <param name="args">Command Line Parameters<lparam> 
public CommandLine( string [) args) 
{ 

Args = args; 
Action ;;: -1 ; 
IFormat = -1 ; 
OFormat = -1 ; 
Rows = -1; 
Precision = -1 ; 
Alpha = -1.0 ; 

Ill <summary> 
Ill This method is called to start the User Interface from Program's entry point 
Ill <lsummary> 
public override void Run() 
{ 

PrintPrompt () ; 

if (ParseParameters() && ValidateParameters()) 
{ 

el se 

ExecuteAction () ; 

Console .Out . WriteLine(); 
PrintUsage(); 

Ill <summary> 
Ill This method is called by HTSHelper if the execution should be aborted 
Ill <lsummary> 
public override void Abort() 
{ 

Environment . Exit(3) ; 

Ill <summary> 
Ill This method is called by HTSHelper when some text needs to be added to 
Ill the execution log . 
Ill <lsummary> 
Ill <param name="Text">Text to be writteh to the log<lparam> 
public override void LogWrite( string Text) 
{ 

Consol e . Out . Write(Text) ; 

Ill <summary> 
Ill This method is called by HTSHelper when a text line needs to be added to 
Ill the execution log. 
Ill <lsuromary> 
Ill <param name="Text">Text to be writteh to the log as a separate line<lparam> 
public override void LogWriteLine( string Text) 
{ 

Console . Out .WriteLine(Text) ; 
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Ill <summary> 
Ill This method is called by HTSHelper when a warning message should be shown 
Ill to the user . 
Ill <lsummary> 
Ill <param name="Text">The text of the warning message<lparam> 
Ill <returns>Returns false if the execution should continue and true if the 
Ill execution should be aborted<lreturns> 
public override boel Warning( string Text) 
( 

Console .Out .WriteLine( "WARNING: " + Text) ; 
return false ; 

Ill <summary> 
Ill This method is called by HTSHelper when an errer message should be shown 
Ill to the user . 
Ill <lsummary> 
Ill <param name="Text">The text of the errer message<lparam> 
public override void Error( string Te xt) 
( 

Console . Erro r .WriteLine( "ERROR : " + Text); 

Ill <summary> 
Ill Prints a welcomelabout message at program's start 
Ill <lsummary> 
private void PrintPrompt() 
{ 

Console . Out .WriteLine( "HTSHelper utility . Version 1 . 0 1 Mar 14, 2012 . " + 
" Written by Plamen Dragiev." ) ; 

Console .Out . WriteLine() ; 

Ill <summary> 
Ill Prints short on screen instructions how to use the program . 
Ill <lsummary> 
p rivate void PrintUsage() 
{ 

Console .Out . WriteLine( "USAGE:" ) ; 
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Console . Out . Wri teLine ( "HTSHelper -a ACTION -i INPUT_ FILE [ - o OUTPUT_ FILE] [ether <}' 
parameters ... ]" ) ; 

method . " ) ; 

method . " ) ; 

file . " ); 

Console . Out.WriteLine( " 
Console .Out .WriteLine( " 
Console . Out . WriteLine( " 
Console .Out . WriteLine( " 
Console . Out . WriteLine( " 
Console .Out . Write Line( 11 

Console .Out . WriteLine( " 

Console .Out . Wri t e Line ( " 

[-a ACTION] Specifies an action to be performed" ) ; 
- a 0 : None , convert data from one format to another . " ) ; 
- a 1: BScore method . " ) ; 
-a 2: Well Correcti on method. " ) ; 
- a 3 : T- test + Matrix Errer Amendment method . " ) ; 
-a 4 : T-test +Partial Mean Polish method . " ) ; 
- a 5 : Wall Correction + T- test + Matrix Errer Amendment <}' 

- a 6 : Well Correcti on + T-test + Partial Mean Polish 

Console .Out . Wri teLine( " - a 7 : z -score normalization method . " ) ; 
Console .Out . WriteLine( " [ -i INPUT FILE] Specifies the name of t he input file . " ) ; 
Console . Out . WriteLine( " [ -o OUTPUT_FILE] Specifies the name of the output file ." ) ; 
Console . Out . WriteLine( " [ - iff FILE_ FORMAT] Specifies the format of the input file ." ) ; 
Il .asy format is not supported in ver . 1.0 
I l Console . Out .WriteLine(" -iff 1 : . asy file format . ") ; 
Console . Out . WriteLine( " -iff 2: .mtr file format . " ) ; 
Console . Out . WriteLine( " -iff 3: .mtx file f ormat . " ) ; 
Console .Out . WriteLine( " -iff 4 : . c s v data file format . " ) ; 
Con sol e .Out.Write Line ( " -iff 5 : . c s v database file f o rmat . " ) ; 
Console .Out. Wri teLine( " [-off FILE_FORMAT] Specifies the format of the output <}' 

Il . a sy f ormat i s not s upported in ver. 1. 0 
Il Console.Out.WriteLine(" -off 1: .asy file format."); 
Console .Out .Wri t eLine( " - off 2 : . mtr file format . " ) ; 
Consol e .Ou t . Write Line( " - off 3 : . mtx f ile format . " ) ; 
Console . Out.WriteLine ( " - off 4 : . csv data f ile format . " ) ; 
Console . Out . WriteLi ne( " - off 5: . c s v database f ile f ormat." ) ; 
Console .Out . Wri teLine ( " - off 6: .html file format." ) ; 
Console .Out . WriteLine( " [-rowa N] Specifiea t h e number of rowa per p l ate. Uaed <}' 

with - i f f 4 op tion." ) ; 
Consol e .Out . Wr ite Line( " [-pre N] Specifies the real number precision . l < N < 16 . " ) ; 

[ -tta X] Specifies T-test probability leval, actions <}' Console . Out.WriteLine( " 



---------------------

3,4 , 5 or 6 . O.OOOOl<=X<l" ) ; 
Console . Out . WriteLine(); 

Ill <summar y> 
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Ill Parses the command line parameters . Checks for if the input follows the basic sintax 
Ill rules , like for example if parameter -ais followed by an action code and etc . It 
Ill does validate the values of the provided parameters, only if they are present or not . 
Ill <lsummar y> 
Ill <returns>Returns false if a syntax errer was detected and true otherwise<lreturns> 
private boel ParseParameters() 
{ 

int i = 0 ; 
while (i < Args . Length) 

if (Args[i] == "-a" ) 
{ 

i++; 
if (i == Args . Length Il Args[i] . StartsWith( "-" )) 

Error( "Please, specify an action!" ); 
return false ; 

ActionStr = Args[i] ; 

else if (Args[i] == "-i" ) 
{ 

i++; 
if (i == Args.Length Il Args[i].StartsWith( "-" )) 
{ 

Error( "Please, specify an input file!" ) ; 
return false ; 

InputFileName = Args[i] ; 

else if (Args[i] 
{ 

"-on ) 

i++ ; 
if (i == Args.Length Il Args[i].StartsWith( "-" )) 
{ 

Error( "Please, specify an output file!" ) ; 
return false ; 

OutputFileName = Args[i]; 

else if (Args [i] == "-iff" ) 
{ 

i++ ; 
if (i = Args . Length I l Args[i].StartsWith( " - " )) 
{ 

Error( "Please, specify an input file format!" ) ; 
return false ; 

IFormatStr Args [il ; 

else if (Args [il = "-off" ) 
{ 

i++ ; 
if (i = Args.Length I l Args[i] . StartsWith( "- " )) 
{ 

Error( "Please, specify an output file format! " ); 
return false ; 

OFormatStr Args[i] ; 

else if (Args[i] = " -rows " ) 
{ 

i++ ; 
if (i = Args.Length Il Args[i] . StartsWith( "-" )) 
{ 

Error( " Please, specify the number of rows per plate!" ) ; 
return false ; 

RowsStr = Args[i]; 



else if (Args[i] 11 - pre" ) 

i++ ; 
if (i = Args . Length Il Args[i].StartsWith( " -" )) 
( 

Error( "Please, specify the output precision!" ) ; 
return false ; 

PrecisionStr = Args[i] ; 

else if (Args[i] = " -tta" ) 
{ 

el se 

i++; 
if (i == Args . Length Il Args[i] . StartsWith( "- " )) 
{ 

Error( "Please, specify T-test probability level!" ) ; 
return false ; 

AlphaStr Args [il ; 

Warning( "Unknown/ignored parameter : '" + Args[i ] + "' . " ) ; 

i++ ; 

return true ; 

Ill <sumrnary> 
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Ill Validates the correctness of the provided command line parameters or if a mandatory 
Ill parameter is omitted . 
Ill <lsummary> 
Ill <retur ns>Returns false if an incorrect parameter value is detected and true ~ 

otherwise</returns> 

private bool ValidateParameters() 
{ 

if (ActionStr = null ) 
{ 

el se 

Error( 11 Please, specify an action!" ) ; 
return false ; 

Action = G. Parseint(ActionStr , -1) ; 
if (Action < 0 1 1 Action > 7) 
{ 

el se 

Error ( "Bad action c o de: ' " + ActionStr + " ' • " ) ; 
return false ; 

if (InputFileName = null ) 
{ 

el se 

Error( "Pleasa, speoify an i nput data filai" ) ; 
return false ; 

if (IFormatStr != null ) 
{ 

IFormat = G. Parseint(IForrnatStr); 
if (IFormat < 1 1 1 IFormat > 5) 
{ 

Error ( "Bad input fila format : •" + IFormatStr + "' . " ) ; 
return false ; 

if (Action 
{ 

0 && OFormatStr null ) 



Ill <surnmary> 
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Error( "You should specif:f an output file format . " ) ; 
return false ; 

else if (OFormatStr != null ) 
{ 

OFormat = G. Parseint(OFormatStr) ; 
if (OFormat < 1 1 1 OFormat > 6) 

Error ( "Bad output fi le f ormat : " ' + OFormatStr + "' . " ) ; 
return fal s e ; 

if (PrecisionStr '= null ) 
( 

Precision= G.Parseint(PrecisionStr, -1); 
if (Precision < 1 1 1 Precision > 15) 

Error( "Bad numeric precision specified : , .. + PrecisionStr + 
"' . A number betweGn 1 and 15 is expactad . "); 

return false ; 

if (RowsStr != nu11 ) 

Rows ; G.Parseint(RowsStr , -1); 
if (Rows < 4 1 1 Rows > 1000) 
( 

Error( " Bad number or rows per plate specified : '" + RowsStr + 
"' . A number between 4 and 1000 is expected . " ) ; 

return fa1se ; 

if (AlphaStr != null ) 
{ 

Alpha = G. ParseDouble(AlphaStr, -1) ; 
if (Alpha< 0.00001 11 Alpha>= 1.0) 
( 

Error ( "Bad number T-test probabili ty leval specified : ' " + 
AlphaStr + "' . A number between 0.00001 and 1.0 is expected ." ); 

return false ; 

return true ; 

Ill Creates a worker instance and passes the control toit in order to execute the 
Ill requested action . On1y the parameters exp1icit1y specified on the command line are 
Ill passed to the worker objectIf an option is not defined, the defau1t value defined 
Ill in the worker object (HTSHelper) is used . 
Ill <lsurnmary> 
p rivate void ExecuteAction() 
( 

HTS = ne w HTSHe lpe r () ; 

HTS.UI = this ; 

if (InputFileName == nul l ) InputFileName 
HTS . InputFileName = InputFileName ; 

if (OutputFileName == null ) OutputFileName 
HTS . OutputFileName = Output F i leName ; 

if (!Format > -1) 
( 

FileFormats InputFormat = (Fi1eFormats )IFormat ; 
HTS.InputFormat = InputFormat; 



if (OFormat > -1) 
{ 

FileFormats OutputFormat = (Fi1eFormats ) OFormat ; 
HTS .OutputFo rmat = OutputFormat ; 

if (Rows>-1) HTS . PlateRows = Rows ; 
if (Precision > -1) HTS . Precision = Precision; 
if (Alpha > 0.0) Plate . TTest_Alpha =Alpha; 

Actions Act = (Actions ) Action; 

bool Res = HTS.Execute(Act); 

if (Res) 
Console .WriteLine( "Action completed." ) ; 

Console . Wri teLine ( "Bye . " ) ; 

HTSData.cs 

Il File : HTSData . cs, HTSHelper project 
Il 
Il 
Il 
Il 
Il 
Il 

Written by Plamen Dragiev 
Last updated: Mar 14, 2012 
History: 

Mar 3 , 2012 - file created 
Mar 14 , 2012 - version 1.0 

using System; 
using System . Collections.Generic; 

namespace HTSHelper 
{ 

Ill <summary> 
Ill An abstract class representing a set of HTS measurements 
Ill <lsummary> 
abstract class HTSData 
{ 

protected const double ZSCORE EPSILON 0.000001; 

Ill <summary> 
Ill Returns the number of items in the set of HTS measuremen t s 
Ill <lsummary> 
publi c abstract int Numitems { get ; } 

Ill <summary> 
Ill Enumerates all HTS measurements 
Ill <lsummary> 
Ill <r eturns>An enumerable object for all HTS measurements<l r etur ns> 
p ubl i c abstract IEnumerable<double > Allitems() ; 

Ill <summar y> 
Ill Calculates the sum of all HTS measurements 
Ill <lsummary> 
Ill <returns>Returns the sum of all HTS measurements<lreturns> 
public virtual double CalcSum() 
{ 

doubl e Sum = 0.0 ; 
foreach (double X in Allitems()) Sum +=X ; 
return Sum; 

Ill <summary> 
Ill Calcu lates the mean value of all measurements 
Ill <lsummary> 
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Ill <returns>The mean value of all measurernents<lreturns> 
public virtual double CalcMean() 
{ 

if (Nurnitems > 0) 
return CalcSurn() 1 Nurnitems ; 

return 0 . 0 ; 

Ill <surnmary> 
Ill Calculates the variance of all rneasurements 
Ill <lsurnmary> 
Ill <param name="Mean">The mean of all measurernents<lpararn> 
Ill <returns>Returns the variance of all rneasurernents<lreturns> 
public virtual double CalcVariance(double Mean) 
{ 

double Var= 0.0 , Diff ; 
foreach (double X in Allitems()) 
{ 

Diff = X - Mean ; 
Var += Diff * Diff; 

return Var ; 

Ill <surnmary> 
Ill Calculates the standard deviation of all measurements 
Ill <lsurnrnary> 
Ill <returns>Returns the standard deviation of all measurements<lreturns> 
public virtual double CalcSD() 
{ 

if (Nurnitems > 1) 
return Math .Sqrt(Ca1cVariance(CalcMean()) 1 (Nurnitems- 1)) ; 

return 0 . 0 ; 

Ill <surnrnary> 
Ill Calculates the mean and the standard deviation of all measurements 
Ill <lsurnmary> 
Ill <param name="Mean">On return it contains the mean of all measurernents<lpararn> 
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Ill <param name="SD">on return it contains the standard deviation of all measurements <}' 
<lpararn> 

public virtual void CalcMeanAndSD( out double Mean, out double SD) 
{ 

Mean = CalcMean() ; 
i f (Nurnitems > 1) 

SD Math . Sqrt(CalcVariance(Mean) 1 (Nurnitems- 1)) ; 
el se 

SD 0 . 0; 

Ill <surnmary> 
Ill Calculates the surn of an enumerable set of measurements 
Ill <lsurnrnary> 
Ill <para.m name= 11 Set 11 >The enumerable set of measurements</pararn> 
Ill <returns>Returns the surn of all measurements<lreturns> 
public static double CalcSurn( IEnurnerable<double > Set) 
{ 

double Surn = 0 . 0 ; 
fo r e ach (double X in Set) Surn += X; 
return Sum ; 

Ill <surnmary> 
Ill Calculates the mean value of an enurnerable set of measurements 
Ill <lsurnrnary> 
Ill <param name="Set">The enurnerable set of measurernents<lpararn> 
Ill <returns>Returns the mean of all measurernents<lreturns> 
public static double CalcMean( IEnurnerable<double> Set) 
{ 

double Surn = 0 . 0 ; 
int Count = 0 ; 
fo r each (double X in Set) 
{ 

Count++ ; 



Sum += X; 

return Count>O? Sum 1 Count 0 . 0; 

Ill <summary> 
Ill Calculates the variance of an enumerable set of measurements 
Ill <lsummary> 
Ill <pararn narne="Mean">The mean of rneasurements<lpar arn> 
Ill <pararn narne=" Set">The enumerable set of measurernents<lpa rarn> 
Ill <r e turns >Returns the variance of all rneasurements<lretur ns> 
public static double CalcVariance( IEnurnerable<double> Set , double Mean) 
( 

double Var= 0 . 0, Diff; 
foreach (double X in Set) 
{ 

Diff = X - Mean; 
Var+= Diff * Diff ; 

return Var ; 

Ill <s urnrnary> 
I l l Calculates the standard deviation of an enumerable set of measurements 
I l l <l summary> 
Ill <param name= "Me a n" >The mean of all measurements</par am> 
Ill <p a rarn narne="Set" >The enurnerable set of measurements<lpar arn> 
Ill <returns>Returns the standard deviati on of all measurements<lreturns> 
public static double CalcSD( IEnurnerable<double> Set , double Mean) 
{ 

double Var= 0 . 0, Diff ; 
int Count = 0 ; 
foreach (double x in Set) 
{ 

Count++; 
Diff = X - Mean ; 
Var+= Diff * Diff ; 

if (Count > 1) 
return Math .Sqrt(Var 1 (Count - 1)) ; 

return 0 . 0 ; 

Ill <summary> 
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I l l Calculates the mean and the standard deviation of an enurnerable set of measurements 
Ill <lsummary> 
Ill <param name ="Mea n">On return- the mean of all measureme nts<lpararn> 
Ill <param narne ="SD" >On return- the standard de v i ation of all rneasurements<lpararn> 
Ill <param narne="Set">The enurnerable set of measurernent s<lpararn> 
public static void CalcMeanAndSD( IEnumerable<double> Set , out double Mean, out double SD) 
{ 

Mean = CalcMean(Set) ; 
SD = CalcSD(Set , Mean) ; 

Ill <summary> 
Ill Adds X to all rneasurernents 
Ill <lsummary> 
Ill <param name="X">A value t o be added t o al l me a s urernents<lpararn> 
public abstract void Add( double X) ; 

Ill <summary> 
Ill Substracts X from all measurements 
Ill <lsurnrnary> 
Ill <param name= "X">A value to be substracted from all rneasurernents<lpararn> 
public virtual void Sub( double X) 
{ 

Add( - X); 

Ill <surnrnar y> 
Ill Multipl i e d al l measurernents by X 
Ill <lsummary> 



public abstract void Mul(double X) ; 

Ill <summary> 
Ill Divides all measurements by X 
Ill <lsumma ry> 
public virtual void Div (double X) 
{ 

Mul ( 1. 0 1 X) ; 

Ill <summary> 
Ill For all measurements M, M:= (M-A)IX 
Ill <lsummary> 
public virtual void SubDiv(double A, double X) 
{ 

Sub (A) ; 
Div (X) ; 

I ll <summar y > 
Il l Applies z-score method to the measurements 
Ill <lsummary> 
public virtual void Zscore ( ) 
{ 

double Mean, SD ; 

CalcMeanAndSD (out Mean , out SD ) ; 

if (SD > ZSCORE_EPSILON) SubDiv(Mean , SD ) ; 
else Sub (Mean ) ; 

Plate. cs 

Il File : Plate . cs, HTSHelper project 
Il 
Il 
Il 
Il 
Il 
Il 

Written by Plamen Dragiev 
Last updated : Mar 14 , 2012 
History : 

Mar 3 , 2012 - file created 
Mar 14, 2012 -version 1 . 0 

using System ; 
using System.Collections . Gener ic; 

namespace HTSHelper 
{ 

Ill <summary> 
Ill A class representing a HTS plate of compounds 
Ill <lsumrnary> 
class Plate : HTSData 
{ 

Il Dimensions of the plate 
prote cted int Rows ; 
protected int Columns; 

Il Compou nd meas ure ments f or e very well o f the plate 
p rotected double [ , ] Wel ls ; 

I l BSco re c onstants 
protected double BSCORE EPSILON = 0 . 00005; 
protected double BSCORE-EPS PERC = 0.0001 ; 
protected int BSCORE_MAX_ITERATIONS = 20 ; 

Il PMP constants 
protected double PMP_ EPSILON = 0.01 ; 
protect ed i n t PMP MAX ITERATIONS = 50; 

Il T- test constants 
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public static double TTest_Alpha 0 . 1 ; 

Ill <sununary> 
Ill Default Constructor 
Ill <lsummary> 
protected Plate() 
{ 

11 Empty 

Ill <summary> 
Ill Constructor 
Ill <lsummary> 
public Plate( int Rows, int Columns) 
{ 

this .Rows ~ Rows; 
this . Columns = Columns ; 
Wells = new double [Rows, Columns] ; 

Ill <summary> 
Ill Well indexer 
Ill </sununary> 
public double this [int Row , int Column] 
{ 

get 
{ 

set 

return Wells[Row, Column]; 

Wells[Row , Column] value ; 

Ill <summary> 
Ill Returns the number of items/wells on the plate 
Ill </sununary> 
public override int Numiterns 
{ 

get { return Rows * Columns ; 

Ill <sumrnary> 
Ill Enurnerates all items on the plate 
Ill </sununary> 
public override IEnurnerable<double > Alliterns() 
( 

for ( i nt i = 0; i < Rows; i++) 

for (int j = 0; j < Columns ; j++) 

yield retu r n Wells[i , j] ; 

Ill <summary> 
Ill Overwritten only for speed optirnization 
Ill </summary> 
Ill <returns>Returns the sum of all items in the plate</returns> 
public overr ide double CalcSurn() 
{ 

double Surn 0.0; 
for (int i 0 ; i < Rows; i++) 

for (int = 0; j < Colurnns ; j ++) 

Surn += Wells[i, j]; 

return Sum ; 
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Ill <sununar y> 
Ill Overwritten only for speed optimization 
Ill <lsununary> 
Ill <retu rns >Returns the variance of all items in the plate<lreturns> 
public override double CalcVariance{double Mean) 
{ 

0.0 ; double Var 
for {int i 0; i < Rows; i++) 

for {int = 0 ; < Colwnns; j++) 

double Diff Wells[i , j) -Mean ; 
Var += Diff * Diff ; 

return Var ; 

Ill <sununary> 
Ill Returns the number of rows of the plate 
Ill <lsununary> 
public int NumRows 
{ 

get { return Rows ; 

Ill <sununar y> 
Ill Returns the number of columns of the plate 
Ill <lsununary> 
public int NumColumns 
{ 

get { return Columns ; 

Ill <sununary> 
Ill Enumerates all itemslcompounds in a given row of the plate 
Ill <lsununary> 
public IEnumerable<double> Rowitems{ int Row) 
{ 

for {int j = 0 ; j < Columns ; j++) 

yield return Wells[Row, j) ; 

Ill <sununary> 
Ill Enumerates all itemslcompounds in a given column of the plate 
Ill <lsummary> 
public IEnumerable<double> Columnitems{int Column) 
{ 

for {int i = 0; i < Rows ; i++) 

yield return Wells[i, Column) ; 

Ill <sununary> 
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Ill Enumerates all itemslcompounds on the plate except the ones located in a given row 
Ill of the plate 
Ill <lsununary> 
public IEnumerabl e <double> NotRowiterns {int Row) 
{ 

for {int i = 0; i < Rows; i++) 

if {i == Row ) continue ; 
for {int j = 0 ; j < Columns ; j++) 

yield return We lls[i , j] ; 

Il l <sununary> 
Ill Enumerates all itemslcompounds on the plate except the cnes located in a given column 



Ill of the plate 
Ill <lsummary> 
public IEnumerable<double> NotColumnitems( int Column) 
{ 

for ( i nt i = 0; i < Rows ; i++) 

for (int j = 0; j < Columns; j++) 

if ( j Column) continue ; 
yield return Wells[i, j] ; 

Ill <summar y> 
Ill Adds X to all measurements in the plate 
Ill <lsummary> 
public override void Add( double X) 
{ 

for (int i = 0; i < Rows ; i++) 

for (int j = 0; j < Columns ; j++) 

Wells[i, j] +=X ; 

Ill <summary> 
Ill Multiplies by X all measurements on the plate 
Ill <lsummary> 
public override void Mul( double X) 
{ 

for (int i = 0 ; i < Rows ; i++ ) 

for (int j = 0; j < Columns; j++) 

Wells[i , j] *=X; 

Ill <surnmary> 
Ill Divides by X all measurements o n the plate 
Ill <lsummary> 
public override void Div( double X) 
{ 

for (int i = 0; i < Rows; i++) 

for (int j = 0; j < Columns ; j++) 

Wells[i , j] 1= X; 

Ill <surnmary> 
Ill Re p lies all measurements Mon the plat e wi th (M- A) 1 X 
Ill <lsurnmary> 
public override void SubDiv( double A, double X) 
( 

f o r ( int i = 0; i < Rows; i++) 

for ( i nt j = 0; < Columns; j++) 

Wells[i, j] (Wells[i , j ] -A) 1 X; 

Ill <surnmary> 
Ill Copies t he measuremen ts in row N of the plat e t o an array 
Ill <lsurnmary> 
p ublic double [ ] RowValues( int N) 
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new double [Colurnns) ; double [] R 
for (int j 
return R; 

0; j < Colurnns; j++) R[j) Wells[N, j); 

Ill <summar y> 
Ill Copies the measurements in column N of the plate to an array 
Ill <lsummary> 
public double [) ColurnnValues( i nt N) 
{ 

new double [Rows) ; double [] C 
for (int i 
return C; 

0 ; i < Rows ; i++) C[i) Wells [i , N); 

Ill <summar y> 
Ill Applies B-score 
Ill <lsummary> 
public void Bscore() 
{ 

method to the measurements on the plate 

double [) MRow 
double [] MCol 

double [) R 
double [) C 

new double [Rows]; 
new double [Columns) ; 

new double [Rows); 
new double [Colurnns] ; 

Array . Clear(R, 0, Rows) ; 
Array .Clear(C, 0, Columns) ; 

int i , j, k ; 
int Iteration BSCORE_MAX_ITERATIONS; 
double OldSum 0.0; 
b ool converge = false ; 

do 
{ 

Il Rows 
for (i = 0 ; i < Rows ; i++) 

R[i] += MRow[i] = G. Median(RowValues(i), true ) ; 

for (i = 0; i < Rows ; i++) 
for (j = 0; j < Colurnns; j++) 

Wells[i, j] -= MRow[i] ; 

double RMed G.Median(MRow); 
for (i = 0 ; i < Rows ; i++) R[i] 

Il Colurnns 
f o r (j = 0 ; j < Columns ; j++) 

RMed; 

C[j] += MCol[j] = G.Median(ColumnValues(j) , true) ; 

double WellSum = 0.0; 
for (i = 0; i < Rows; i++) 

for (j = 0; j < Columns ; j++) 
{ 

Wells[i, j] -= MCol[j] ; 
WellSum += Mat h . Abs(Wells[i, j]) ; 

G. Median (MCol) ; double CMed 
fo r (j 0; < Columns; j++) C[j] -= CMed ; 

converge= WellSum < BSCORE_EPSILON 11 Math .Abs(WellSum- OldSum) < 
BSCORE_EPS_PERC * WellSum; 

OldSum = WellSum; 
) while (--Iteration > 0 && !converge); 

double [] Resid = new double [Rows * Columns ] ; 
for (k = i = 0 ; i < Rows ; i++) 

for (j = 0 ; j < Columns ; j++) 
Res i d [k++] = Well s [i , j); 

double ResMed G.Median(Resid , true) ; 
for (i = 0 ; i < Resid.Length ; i++) Resid[i] Math .Abs(Resid[i] - ResMed); 
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double MAD= G.Median(Resid , true) ; 

Il the following line's been added for compatibility with HTS Corrector 
Il see Makarenkov V, Zentilli P, Kevorkov D, Gagarin A, MaloN and Nadon R: 
Il An efficient method for the detection and elimination of systematic errer 
Il in high-throughput screening. Bioinformatics 2007, 23:1648-1657 
MAD *= 1. 4826 ; 

if (MAD > 0.0001) 
for (i = 0; i < Rows ; i++) 

for (j = 0; j < Columns; j++) 
Wells[i , j] 1= MAD ; 

Ill <summary> 
Ill Applies Matrix Errer Amendment (MEA) method to the measurements on the plate 
Ill <lsummary> 
public void MEA( List<int> ERows, List<int> EColumns) 
{ 

int NR = ERows!=null ? ERows .Count : 0; 
int NC = EColumns!=null? ECa lumns.Count 0 ; 
int N = NR + NC ; 

Il Is there any row column affected by systematic errer? 
if (N == 0 ) return ; 

baal [] RFlag 
baal [] CFlag 

new bool [Rows] ; 
new bool [Calumns] ; 

Array . Clear(RFlag, 0, Rows) ; 
Array . Clear(CFlag, 0, Calumns); 
foreach (int r in ERows) RFlag[r] = true ; 
foreach (int c in EColumns) CFlag[c] = true ; 

double Mu = 0.0; 

int i, j ; 

for (i = 0 ; i < Rows; i++) 

if (RFlag[i]) continue ; 
for (j = 0; j < Calumns; j++) 

if (CFlag[i]) continue ; 
Mu+= Wells[i, j ] ; 

Mu 1= (Raws- NR) * (Columns- NC ) ; 

Il Exact Solution 
double [] X= new double [N] ; 

double [ , ] A= new double [N , N] ; 
double [] B = new double [N] ; 

for (i = 0; i < NR ; i++) 
{ 

int r = ERows[ i] ; 
A[i , il = Calumns; 

Il The solution- the first NR values are the 
Il row errors, the rest are the column errors 

Il A* X= B 
Il 

for (j = NR ; j < N; j++) A[i, j] = 1 . 0; 
B[i ] = -Columns * Mu ; 
for (int k = 0; k < Columns; k++) 

B[i] += Wells[r , k]; 

for (i = NR ; i < N; i++) 

int c = EColumns[i- NR]; 
A[i , il = Raws; 



for (j = 0; j < NR; j++) A[i, j] 1.0; 
B[i] = -Rows * Mu ; 
for (int k = 0 ; k < Rows ; k++) 

B[i] += Wells[k , c]; 

G. InvertMatrix(A); 

Il X= Inv(A) * B, X is the estimated row and column errer 
for (i 0; i < N; i++) 

X[i] 
for (j 

0.0; 
0; j < N; j++ ) 

X[i] += A[i, j] * B[j] ; 

Il Remove the systematic errer from the plate measurements 
for (i = 0; i < NR; i++) 

int r = ERows[i]; 
for (j = 0; j < Columns ; j++) Wells[r , j ] - X[i] ; 

for (i = NR ; i < N; i++) 

int c = EColumns[i- NR] ; 
for (j = 0; j < Rows ; j++) Wells[j , c ] - X[i ] ; 

Ill <summary> 
Ill Applies Matrix Errer Amendment (MEA) method to the measurements on the plate 
Ill <lsumma r y> 
public void MEA() 
( 

List<int> ERows; 
Li s t <int> EColumns; 

if (TTest(out ERows, out EColumns)) 
MEA(ERows , EColumns) ; 

Ill <summary> 
Ill Applies Partial Mean Polish (PMP) method to the measurements on the plate 
Ill <lsummary> 
public voi d PMP() 
{ 

List< i n t > ERows ; 
List<int> ECo lumns; 

if (TTest( out ERows, out EColumns )) 
PMP(ERows, EColumns) ; 

111 <summary> 
Ill Applies Partial Mean Polish (PMP) method to the measurements on the plate 
Ill <lsummary> 
public void PMP( List<int> ERows, List<int> EColumns) 
{ 

int NR = ERows != null ? ERows.Count : 0; 
int NC = EColumns != nul l ? EColumns . Count O· 
int N = NR + NC ; 

Il Is there any row column affected by systematic errer? 
if (N == 0 ) ret urn ; 

boel [] RFlag 
boel [] CFlag 

new bool [Rows] ; 
new bool [Columns] ; 
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Array .Clear(RFlag, 0, Rows) ; 
Array .Clear(CFlag , 0, Columns); 
foreach (int r in ERows) RFlag[r] = true ; 
foreach (int c in EColumns ) CFlag[c] = true ; 

double Mu= 0 .0; 

int i , 

for (i 

if 
for 

j ; 

= 0; i < Rows ; i++) 

(RFlag[i]) continue ; 
(j = 0 ; j < Columns; j++) 

if (CFlag[j]) continue ; 
Mu+= Wells[i , j]; 

Mu/= (Rows - NR) * (Co lumns- NC) ; 

double [] RMu 
double [ ] CMu 

new double [Rows ]; 
new double [Columns] ; 

Array .Clear(RMu, 0, Rows) ; 
Array .Clear(CMu, 0, Columns); 

int Loop = 1 ; 
double Converge 0.0 ; 

do 
{ 

double Diff ; 
Converge = 0 . 0; 
for (i = 0; i < Rows ; i++) 
{ 

if (!RFlag[i]) continue ; 
for (j = 0; j < Columns ; j++) 

RMu[i] += Wells[i, j] ; 

RMu[i] / = Columns ; 

for (j = 0; j < Columns ; j++) 

if (!CFlag[j]) continue ; 
for (i = 0; i < Rows; i++) 

CMu[j] += Wells[i, j ] ; 
) 

CMu[j] / = Rows; 

for (i = 0 ; i < Rows ; i++) 

if (!RFlag[i]) continue ; 
Diff =Mu- RMu[i] ; 
Converge+= Math . Abs(Diff); 
for ( j = 0 ; j < Columns ; j++) 
{ 

Wells[i, j] += Diff ; 

for (j = 0; j < Columns; j++ ) 
{ 

if (!CFlag [j]) continue ; 
Diff =Mu- CMu[j]; 
Converge+= Math . Abs(Diff); 
for (i = 0; i < Rows; i++) 
{ 

We lls[i, j ] += Diff ; 
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while (Converge > PMP_EPSILON && Loop++ < PMP_MAX_ITERATIONS ) ; 

Ill <sununary> 
Ill Performs T-test for all rows and columns of the plate in ordet tc assess 
Ill if they are affected by systematic errer 
Ill <lsununary> 
public boel TTest(out List<int> ERows, out List<int> EColumns) 
{ 

ERows = new List<int> () ; 
EColumns new List<int>(); 

boel Res false ; 

Il T-test by 
for (int i 

rows 
0; i < Rows; i++ ) 

{ 

double RowMean = CalcMean(Rowitems(i)); 
double RowVar = CalcVariance(Rowitems(i), RowMean); 

double RestMean = CalcMean(NotRowitems(i)) ; 
double RestVar = CalcVariance(NotRowitems(i), RestMean) ; 

double Nl 
double N2 

double Sp 

Columns ; 
Columns * (Rows- 1) ; 

(RowVar + RestVar) 1 (Nl + N2 - 2); 
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double TStat = Math .Abs((RowMean- RestMean) 1 Math .Sqrt(Sp * (Nl+N2) 1 (Nl*N2))) ; 

double CV G. TTestCV(Columns, TTest_Alpha); 

if (TStat > CV) 
{ 

Il there's errer detected by the t-test 
Res = true ; 
ERows.Add(i); 

Il T-test by Columns 
for (int j 0 ; j < Columns; j++) 

double ColMean = CalcMean(Columnitems(j)) ; 
double ColVar = CalcVariance(Columnitems(j), ColMean); 

double RestMean = CalcMean(NotColumnitems ( j) ) ; 
double RestVar = CalcVariance(NotColumnitems(j), RestMean) ; 

double Nl 
double N2 

double Sp 

Rows ; 
Rows * (Columns - 1) ; 

(Col Var + RestVar) 1 (Nl + N2 - 2) ; 

double TStat = Math .Abs( (ColMean- RestMean) 1 Math . Sqrt(Sp * (Nl+N2) 1 (Nl*N2)) ) ; 

double cv G.TTestCV(Rows, TTest_Alpha) ; 

i f (TStat > CV) 

Il there's errer detected by the test 
Res = true ; 
EColumns.Add(j); 

return Re s; 



Dataset.cs 

Il File: Dataset . cs , HTSHelper project 
Il Written by Plamen Dragiev 
Il Last updated : Mar 14 , 2012 
Il History : 
Il Mar 3, 2012 - file created 
Il Mar 14 , 2012 - version 1.0 
Il 

using System; 
using System . Collections.Generic; 

namespace HTSHelper 
{ 

Ill <summary> 
Ill A class representing a HTS dataset 
Ill <lsummary> 
class Dataset : HTSData 

Il The size of the plates in this dataset 
protected int Rows; 
protected i nt Columns; 

Il The list of plates in the dataset 
protected List<Plate> Plates ; 

Ill <summary> 
Ill Default Constructor 
Ill <lsummary> 
protected Dataset{) 
{ 

Il Empty 

Ill <summary> 
Ill Creates a dataset with 0 plates 
Ill <lsummary> 
Ill <param name="NRows">Number of rows<lparam> 
Ill <param name="NColumns">Number of columns<lparam> 
public Dataset{int NRows, int NColumns) 
{ 

Rows = NRows ; 
Columns = NColumns ; 
Plates= new List<Plate> (); 

Ill <summary> 
Ill Creat e s a d a t a set with <i>NPlates<li> plates 
Ill <lsummary> 
Ill <param name="NPlates">Number of plates<lparam> 
Ill <param name="NRows">Number of r ows<lparam> 
Ill <param name="NColumns">Number of columns<lparam> 
public Dataset( int NPlates, int NRows , i nt NColumns) 
{ 

Rows = NRows; 
Columns = NColumns ; 
Plates = ne w List<Plate> (NPlates) ; 
for (int p = 0; p < NPlates; p++) 

Plates.Add{ new Plat e (NRows, NColumns )) ; 

Ill <summary> 
Ill A plate indexer 
Ill <lsummary> 
public Plate this [int plate] 
{ 

get 
{ 

return Plates[plate]; 

173 



set 

Plates[plate) value ; 

Ill <surnmary> 
/// A well indexer 
Ill </surnmar y> 
public double this [int Plate , int Row , int Column) 
{ 

get 
{ 

return Plates[Plate) [Row, Column) ; 

set 

Plates[Plate) [Row, Column) value ; 

Ill <surnmary> 
Ill Returns the number of items/wells i n the dat aset 
Ill </surnmary> 
publ i c override int Numitems 
{ 

get { return Plates.Count * Rows * Columns ; ) 

Ill <surnmary> 
Ill Returns the number of r ows in the p lates of t he dataset 
Ill </surnmary> 
public int NumRows 
{ 

get { return Rows ; 

Ill <surnmary> 
Ill Re turns the number of columns in the plates o f the dataset 
Ill </summary> 
public int NumColumns 
{ 

get { return Columns ; 

Ill <summary> 
Ill Re turns the number of pla t es in the d ataset 
Ill </summary> 
public int NumPlates 
{ 

get { retur n Plates . Count ; 

Ill <surnmary> 
Ill Enumerates a ll i t e ms/wel l s in t he data set 
Ill </summar y> 
p ublic ov e rride IEnumerable<doubl e > Allitems() 
{ 

fo r ( i n t p = 0 ; p < Plates . Count ; p++) 

Plate PL 
fo r (int i 

Plates[p); 
0 ; i < Rows ; i++) 

for (int j = 0 ; j < Columns; j++ ) 
{ 

yield return PL[i , j) ; 

111 <summary> 
Ill Enumerates all items/wells locates at a given well location (Row, Colums) 
Ill on all plates in the dataset 
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- - ----- ------ - - --- ------------, 

Ill <lsununary> 
public IEnumerable<double> Wellitems( int Row, int Column) 
{ 

for (int p = 0; p < Plates .Count; p++) 

yield return Plates[p] [Row, Column]; 

Ill <summary> 
Ill Enumerates all plates in the dataset 
Ill <lsununary> 
public IEnumerable<Plate> AllPlates() 
{ 

for (int p = 0; p < Plates.Count; p++) 

yield return Plates[p] ; 

Ill <summary> 
Ill Adds a plate tc the dataset 
Ill <lsummary> 
Ill <param name="aPlate ">A plate tc be added to the dataset<lparam> 
public void AddPlate( Plate aPlate) 
{ 

Plates . Add(aPlate) ; 

Ill <summary> 
Ill Adds an empty plate to the dataset and returns a reference toit 
Ill <lsummary> 
Ill <returns>A reference to the newly added plate<lreturns> 
public Plate AddPlate() 
{ 

Plate PL= new Plate (Rows, Columns) ; 
Plates . Add(PL); 
return PL ; 

Ill <sununary> 
Ill Return s a reference to the last plate in the dataset 
Ill <lsununary> 
Ill <retur ns>A reference to the last plate of the dataset<lretu rns> 
public Plate LastPlate() 
{ 

if (Plates.Count > 0) 
return Plates[Plates.Count- 1] ; 

return null ; 

Ill <sununary> 
Ill Overwritten only for speed optimization 
Ill <lsununary> 
Ill <returns>Returns the sum of all items in the plate<lreturns> 
public override double CalcSum() 
{ 

d ouble Sum = 0.0; 
for e ach (Plate PL i n Plates) Sum += PL . CalcSum() ; 
return Sum; 

Ill <sununary> 
Ill Overwr itten only f o r speed o p t imization 
Ill <lsununary> 
Ill <returns>Returns the variance of all items i n the plate<lreturns> 
public override double CalcVariance(double Mean) 
{ 

double Var= 0.0 ; 
foreach (Plate PL in Plates) Var += PL . CalcVariance(Mean) ; 
return Var; 

111 <sununary> 
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Ill Adds X to all measurements in the dataset 
Ill <lsummary> 
public override void Add( double X) 
{ 

foreach (Plate PL in Plates) PL.Add(X) ; 

Ill <summary> 
Ill Multiplies all measurements in the dataset by X 
Ill <lsummary> 
public override void Mul(double X) 
{ 

foreach (Plate PL in Plates) PL.Mul(X) ; 

Ill <summary> 
Ill Divides all measurements in the dataset by X 
Ill <lsummary> 
public override void Div( double X) 
{ 

foreach (Plate PL in Plates) PL.Div(X); 

Ill <summary> 
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Ill For all measurements Min the dataset it substracts first A and the result divides 
Ill by X, i.e . , M : = (M-A) 1 X 
Ill <lsummary> 
public override void SubDiv{ double A, double X) 
{ 

foreach (Plate PL in Plates) PL.SubDiv{A, X) ; 

Ill <summary> 
Ill Applies Z-score method on the dataset, i. e . i t applies iton each plate 
Ill <lsummary> 
public override void Zscore() 
{ 

foreach (Plate PL in Plates) PL.Zscore() ; 

Ill <summary> 
Ill Applies B-score method on the dataset , i . e . i t appl i es i t on each plate 
Ill <lsummary> 
public void Bscore() 
( 

foreach (Plate PL in Plates) PL . Bscore(); 

Ill <summary> 
Ill Applies Well Correction method o n the dataset 
Ill <lsununary> 
public void WellCorrection() 
( 

for (int i = 0; i < Rows; i++} 

for (int j = 0; j < Columns; j++) 

WellData WData = new WellData (thi s , i, j); 
WData. Zscore () ; 

111 <summary> 
Ill Applies Matrix Errer Amendment (MEA) method on the dat aset , 
Ill i.e . , it applies i ton e a c h plate 
111 <1 sununary> 
public void MEA () 
{ 

f o r each (Plate PL i n Plates) PL.MEA(); 

Ill <summary> 
Ill Applies Partia l Mean Polish (PMP) method o n t he datase t, 



Ill i . e., it applies iton each plate 
Ill <lsummary> 
public void PMP() 
{ 

foreach (Plate PL in Plates) PL . PMP() ; 

WeiiData.cs 

Il File: Plate . cs, HTSHelper project 
Il Written by Plamen Dragiev 
Il Last updated: Mar 14, 2012 
Il 
Il 
Il 
Il 

History: 
Mar 3, 2012 - file created 
Mar 14, 2012 - version 1.0 

using System; 
using System . Collections . Generic ; 

namespace HTSHelper 
{ 

Ill <summary> 
Ill A class used tc access and mofify data located at a specifie well location 
Ill across the plates of an dataset 
Ill <lsummary> 
class WellData : HTSData 

Il The dataset and the well location 
protected Dataset Data ; 
pro tected int Row ; 
protected int Column ; 

Ill <summary> 
Ill Constructor 
Ill <lsummary> 
public WellData( Dataset DSet, int aRow, int aColumn) 
{ 

Data = DSet ; 
Row = aRow ; 
Column = aColumn ; 

Ill <summary> 
Ill Returns the number of items in this set (one on every plate) 
Ill <lsummary> 
publ i c overri de int Numltems 
{ 

ge t { return Data.NumPlates; 

Ill <summary> 
Ill Enumerates all itemslcompounds i n this set 
Ill <lsummary> 
publ i c overr ide IEnumerable<double > Allltems() 
{ 

for (int p = 0 ; p < Data.NumPlates ; p++) 
{ 

yield return Data[p , Row, Column] ; 

Ill <summary> 
Ill Adds X to all measurements in the set 
Ill <lsummary> 
public override void Add(double X) 
{ 

for (int p = 0 ; p < Data.NumPlates ; p++) 
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Data[p, Row, Column] +=X ; 

Ill <sununary> 
Ill Multiplies all items by X 
Ill <lsununary> 
public override void Mul( double X) 
{ 

for (int p = 0 ; p < Data.NumPlates; p++) 

Data[p , Row , Column] *= X; 

Ill <sununary> 
Ill Replaces all measurements M with (M-A) 1 X 
Ill <lsununary> 
public override void SubDiv(d ouble A, double X) 
{ 

for (int p = 0; p < Data . NumPlates ; p++) 

Data[p , Row, Column] = (Data[p , Row , Column] - A) 1 X; 

G.cs 

Il File : G.cs , HTSHelper project 
Il Written by Plamen Dragiev 
Il Last updated: Mar 14 , 2012 
Il History : 
Il Mar 3, 2012 - file created 
Il Mar 14 , 2012 - version 1 . 0 
Il 

using System; 

namespace HTSHelper 
{ 

Ill <sununary> 
Ill Global utility methods and constants . Static methods only . 
Ill <lsununary> 
class G 

Ill <sununary> 
Ill Converts a string t o an i nteger v alue. Returns -1 if there is an syn t ax e rrer. 
Ill <lsununary> 
Ill <param name="Str">String representation of an integer number<lparam> 
Ill <returns>Returns the integer value o r -1<1returns> 
public s tati c int Parseint( s tri ng Str) 
{ 

int X; 
try {X Int32 . Parse(Str) ; 
catch { X = -1 ; ) 
return X; 

Ill <sununary> 
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Ill Converts a s t r i ng t o an inte ger value. Ret urns the value of ErrorValue parameter 
Ill if there is an synt ax errer . 
Ill <lsununary> 
Ill <par am name="Str ">String representation of an integer number<lpar am> 
Ill <param name="ErrorValue">A value tc be returned i n case of an e r ror <lparam> 
Ill <returns >Returns the integer value<l r eturns> 
p ubl i c static int Parseint( string Str, int Erro r Value) 
{ 

i nt x· 
try { x Int32 .Parse (Str) ; ) 



catch { X 
return X; 

111 <swnmary> 
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ErrorValue ; } 

Ill Converts a string to an integer value and stores it in the output parameter Value. 
Ill Value is set to -1 . 0 if there is an syntax errer . 
Ill <lswnmary> 
Ill <param name="Str">String representation of an integer number<lparam> 
Ill <returns>Returns true if the conversion is successful and false otherwise<lreturns> 
public static bool Parseint( string Str, out int Value) 
{ 

try {Value= Int32 . Parse(Str) ; } 
catch { Value = -1 ; return false ; 
return true ; 

Ill <swnmary> 
Ill Converts a string to an double number . 
Ill Returns Double.MinValue if there is a syntax errer. 
Ill <lswnmary> 
Ill <param name="Str">String representation of a real number<lparam> 
Ill <returns>Returns the double value or Double.MinValue<lreturns> 
public static double ParseDouble( string Str) 
{ 

double X; 
try {X= Double .Parse(Str); 
catch { X = Double .MinValue ; 
return X; 

Ill <swnmary> 
Ill Converts a string to a double number . 
Ill Returns the value of ErrorValue parameter if there is a syntax errer . 
Ill <lswnmary> 
Ill <param name="Str">String representation of a real number<lparam> 
Ill <param name::;::;."ErrorVal ue">A value to be returned in case of an error</param> 
Ill <returns>Returns the double number<lreturns> 
public static double ParseDouble( string Str, double ErrorValue) 
{ 

double X; 
try { X = Double . Parse(Str); 
catch { X = ErrorValue ; } 
return X; 

Ill <swnmary> 
Ill Converts a string to a double number and stores it in the output parameter Value . 
Ill Value is set to Double . MinValue if there is a syntax errer. 
Ill <lswnmary> 
Ill <param name="Str">String representation of an real number<lparam> 
Ill <returns>Returns true if the conversion is successful and false otherwise<lreturns> 
public static bool ParseDouble( stri ng Str , out double Value) 
{ 

try { Value = Double . Parse(Str) ; 
catch { Value = Double .MinValue; return false ; } 
return true ; 

111 <swnmary> 
Ill Ensures that a number is in the interval [Min . . Max] . 
Ill <lswnmary> 
Ill <param name="Value">An integer number<lparam> 
111 <param name="Min">The minimal value<lparam> 
111 <param name="Max">The maximum value<lparam> 
Ill <returns>Returns the value of Min if Value is less than Min, 
Ill returns Max if Value is greater than Max and Value otherwise<lreturns> 
public static int Limit( int Value , int Min , int Max} 
{ 

if (Value > Max) Value Max ; 
if (Va l ue < Min) Value Min ; 
r e turn Value ; 



Ill <sununary> 
Ill Ensures that a number is in the interval (Min .. Max] . 
Ill <l s ununary> 
Ill <param name="Value">A double number<lparam> 
Ill <param name= "Min">The minimal value<lparam> 
Ill <param name="Max">The maximum value<lparam> 
Ill <returns>Returns the value of Min if Value is less than Min, 
Ill returns Max if Value is greater than Max and Value otherwise<lreturns> 
public static double Lirnit( double Value, double Min , double Max) 
( 

if (Value > Max) Value 
if (Value < Min) Value 
return Value ; 

Max ; 
Min ; 

Ill <sumrnary> 
Ill Calculates the format string that can be used to format a double number 
Ill with a specified precision 
Ill <lsummary> 
Ill <param name="Precis i on">Specifies the desired precision<lparam> 
Ill <returns>Returns a format string to be used to format a double<lreturns> 
public static string NumFormat( int Precision) 
( 

Precisio n= Limit{Precision, 1, 15) ; 
return "0 . 0000000000000000000" . Substring( O, Precision+ 2 ) ; 

Ill <sumrnary> 
Ill Determines the extension of a file name 
Ill <lsummary> 
Ill <param name= "FileName">A file name<lparam> 
Ill <returns>File name's extension<lreturns> 
public static string FileExtension( string FileName) 
( 

int i= FileName . LastindexOf( " . " ) ; 
if (i >= 0 && i < FileName . Length - 1) 

return File Name . Subs tring(i + 1) ; 
return 

Ill <sununary> 
Ill Removes the extension from a file name 
Ill <lsununary> 
Ill <param name="FileName">A file name<lparam> 
Ill <returns>The file name without its extension<lreturns> 
public static string FileNameWithoutExtension(string FileName ) 
( 

int i = FileName . LastindexOf( "." ) ; 
if (i >= 0 && i < File Name . Length - 1) 

return FileName.Subs tring(O , i) ; 
return FileName ; 

Ill <sumrnary> 
Ill Calculates the median value of a set of numbers 
Ill <lsununary> 
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Ill <param name="X">A set of numbers whose median value needs to be deterrnined<lparam> 
Ill <param name="InPlace">True if the content of X parameter can be destroyed and false 
Ill if X should be preserved unchanged<lparam> 
Ill <returns>Returns the median of the numbers in X<lreturns> 
public static double Media n(double [ ] X, bool InPlace ) 
( 

d ouble M = 0 . 0; 
if (X != nu ll ) 
( 

int Len X . Le ngth; 
if (Len > 0 ) 

if ( ! InPlac e ) 
X= (double [ ] ) X.Cl o ne () ; 

Array . Sort (X) ; 
if ( (Len & 1) = 1) 

M = X[Len 1 2 ] ; 
e1se 



Len 1= 2; 
M = (X[Len) + X[Len + 1)) 1 2.0; 

return M; 

Ill <summar y> 
Ill Calculates the median value of the numbers in X parameter without altering X 
Ill <lsummary> 
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Ill <param name="X">A set of numbers whose median value needs to be determined<lparam> 
Ill <returns>Returns the median of the numbers in X<lreturns> 
public static double Median( double [J X) 
{ 

return Median(X , false ) ; 

Ill <summary> 
Ill Calculates the inverse matrix of matrix A 
Ill <lsummary> 
Ill <param name="A">The matrix that needs to be inverted, Inv(A) on return<lparam> 
public static void InvertMatrix(double [ , ) A) 
{ 

if (A == null ) return; 
int N = A. GetLength(O) ; 
if (N != A. GetLength(l)) return ; 

double e ; 
for (int k 0; k < N; k++) 

e = A[k, k) ; 
A[k, k) = 1.0 ; 

for (int j = 0 ; j < N; j++) 

A[k , j) = A[k, j) 1 e; 

for (int i = 0; i < N; i++) 

if (i ·= k) 
{ 

e = A[i, k) ; 
A[i, k) = 0; 
for (int j = 0; j < N; j++) 

A[i, j) = A[i , j) - e * A[k, j) ; 

#region T-distribution critical value calculation 
Ill <summary> 
Ill Calculates the cri tical value of T dis tributi on for a give n de gree of freedom (DF) and 
Ill probability level (Alpha) 
Ill <lsummary> 
Ill <param name="DF">Degree of f r eedom paramet er<lparam> 
Ill <param name="Alpha">Probability l e ve l , a v a lue i n the interval (0, l) <lparam> 
Ill <returns>Returns the calculated critical value<lreturns> 
public static double TTestCV( int DF, double Alpha ) 
{ 

double X= 0.5; 
double Del taX = 0.5 ; 
double CV = 0.0 ; 
while (DeltaX > 0 . 000001 ) 
{ 

cv= 1.0 1 x - 1.0; 
DeltaX 1= 2; 
if (TTest_P (CV, DF) > Alpha) 

X - = DeltaX; 



el se 
X += DeltaX ; 

return CV; 

Ill <swnmary> 
Ill A helper function used to calculate T-distribution critical values 
Ill <lswnmary> 
private static double TTest_P(double X, int DF) 
{ 

X= Math .Abs (X) ; 
double F = Math .Atan(XI Mat h . Sqrt(DF)) ; 
if (DF==1) return 1-2*FI Math .PI; 
double E = Math .Sin(F) ; 
double D = Math . Cos(F); 
if {(DF & 1) == 1) 

return 1.0- 2 * (F + E * D * TTest_ Z{D * D, 2, DF- 3)) 1 Math .PI ; 
return 1.0 - E * TTest_Z(D * D, 1 , DF - 3); 

111 <swnmary> 
Ill A helper function used to calculate T-distribution criti cal values 
Ill <lswnmary> 
private static double TTest_Z{double Q, int i, int j) 
{ 

double ZStep = 1. 0; 
double z 1. 0 ; 
for {int k = i; k <= j ; k += 2 ) 

ZStep *= (Q * k) 1 {k + 1) ; 
Z += ZStep ; 

return Z; 

#endregion 

HTSFileReader.cs 

Il File : HTSFileReader . cs , HTSHe1per project 
Il Written by Plamen Dragiev 
Il Last updated: Mar 14, 2012 
Il History : 
Il Mar 3 , 2012 - f ile c r eated 
Il Mar 14 , 2 012 - vers ion 1.0 
Il 

using System ; 
using Systern.Collections.Generic ; 
using System.Linq ; 
using System.Text ; 
using System. I O; 
using System . Text.RegularExpressions; 

namespace HTSHelper 
{ 

class HTSFileReader 

Il The name and the f o rmat of the input file 
protected s tring Name; 
protected FileFormats Format; 

Il Errors and Warnings produced during the import of the HTS data 
public List<string> Messages; 
public List<string> Warnings ; 

Il The c ontent o f the input file 
protected string [] Lines; 
p rotected s tring Text; 
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Il used in case of .csv datafile 
public int RowsPerPlate = -1 ; 

protected Dataset Data ; 

Ill <summary> 
Ill Constructor 
Ill <lsummary> 
Ill <param name= "FileName">The name of the input file<lparam> 
Ill <param name="FileFormat">The format of the input file<lparam> 
public HTSFileReader( string FileName, FileFormats FileFormat) 
{ 

Name == FileName; 
Format = FileFormat ; 

Ill <summary> 
Ill Reads all lines of the input text file into Lines field 
Ill <lsummary> 
Ill <returns>True on success, false in case of an error<lreturns> 
pro tected boel ReadAllLines() 
{ 

try 
{ 

Lines = File .ReadAllLines(Name); 

catch (Exception ex) 
( 

Messages.Add(ex.Message); 
Messages.Add( 11 Cannot read the input file'" + Name + "'! 11

); 

Lines = null ; 
return false ; 

return true ; 

Ill <summary> 
Ill Reads the content of the i nput text file into Text field 
Ill <lsummary> 
Ill <returns>True on success , false i n case of an error<lreturns> 
protected boel ReadAllText() 
{ 

try 
{ 

Text = File . ReadAllText(Name); 

catch (Exception ex) 
{ 

Messages.Add(ex.Message) ; 
Messages. Add ( "Cannot re ad the input fila ' " + Name + " ' 1 " ) ; 
Text = null ; 
retur n f a l se ; 

return t rue ; 

Ill <summary> 
Ill Reads data from the input f ile and construct a Dataset abj e ct . 
Ill Dispaches to specialized methods depending on the input file f ormat 
Ill <lsummary> 
Ill <returns>A Dat aset object on success , nul l in case of an error<lreturns> 
public Dataset ReadData() 
( 

Data = null ; 

Messages 
Warnings 

new Lis t <string>() ; 
new List<s t ring> () ; 

switch (Format) 
{ 

case FileFormats .Asy: 
if (ReadAllLines()) 

Data= ProcessAsyFile() ; 

-~------ 1 
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break ; 

case Fi l e Formats .Csv: 
if (ReadAllLines() ) 

Data= ProcessCsvFile() ; 
break ; 

case File Formats .CsvData: 
if (ReadAllLines()) 

Data = ProcessCsvDataFile() ; 
break ; 

case Fi l e Formats . CsvDB: 
if (ReadAllLines()) 

Data = ProcessCsvDBFile() ; 
break ; 

case FileFormats .Mtr: 
if (ReadAllLines()) 

Data= ProcessMtrFile() ; 
break ; 

case FileFo rmats .Mtx: 
if (ReadAllText()) 

Data= ProcessMtxFile(); 
break ; 

default : 
Messages . Add( "Unknown input data format : " + (int )Format); 
break ; 

if (Data != null ) 
{ 

Messages . AddRange(Warnings); 

return Data ; 

Ill <summary> 
Ill .asy format support is not implemented in version 1 . 0 
Ill <lsummary> 
Ill <returns>A Dataset object on success, null in case of an error<lreturns> 
protected Dataset ProcessAsyFile() 
{ 

return null ; 

Ill <summary> 
Ill Reads data from a . csv file . Detecta if the input file is in CSV data or 
Ill CSV database file format . 
111 <1 summary> 
Ill <returns>A Dataset object on success, null in case of an error<lreturns> 
protected Dataset ProcessCsvFile() 
{ 

Regex R = new Regex ( @"\w" , RegexOptions .IgnoreCase); 

foreach (string Line in Lines) 

Match M = R . Match(Line); 
if (M . Success) 

if (Char .IsDigit(M.Value[OJ)) 

return ProcessCsvDataFile() ; 

el se 

return ProcessCsvDBFile() ; 

Messages.Add ( "Empty file or bad . csv file format : "' + Name + "' . " ) ; 
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return null ; 

Ill <sumrnary> 
Ill Parses aline of double numbers separated by commas 
Ill <lsununary> 
Ill <param name;"Line">A string of comma separated values, single line<lparam> 
Ill <param name;"RowData">A list of double numbers<lparam> 
Ill <param name:::;:"Msg">An errer message in case of an error</param> 
Ill <returns>True on success, false in case of an error<lreturns> 
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protected bool ParseCommaDataLine( string Line , out List<double> RowData, out string Msg) 
{ 

char [] Delim = " , " . ToCharArray(); 
string [] Arr; Line .Split{Delim) ; 
RowData; new List<double> () ; 

if (Arr . Length ;; 1) 
{ 

Msg = "Syntax errer - not cormna separated values . "; 
return false ; 

for (int i ; 0 ; i < Arr . Length ; i++ ) 

Msg 

string Str; Arr[i] .Trim() ; 
double v· 
if (G.Par seDouble(Str , out V)) 

RowData.Add(V) ; 
el se 
{ 

if (Str = "" ) Msg = "Missing value 11
; 

el se Msg ;;: "Bad number: '" + Str + "' " ; 
Msg += " , well " + (l+RowData.Count ) ; 
return false ; 

return true ; 

Ill <sumrnary> 
Ill Parses a multi-line string of double numbers separated by tab character 
Ill <lsununary> 
Ill <param name; "Line">A string of tab separated values , multi-lines<lparam> 
Ill <param name;"Plate">A Plate object containing the number values<lparam> 
Ill <param name;"Msg">An error message in case of an error<lparam> 
Ill <returns>True on success, false in case of an error<lreturns> 
protected bool ParseTabbedData( string Str, Plate PL , out string Msg) 
{ 

char [] NewLine ; "\r\n" . ToCharArray () ; 
string [] Rows ; Str . Split(NewLine, StringSplitOptions .RemoveEmptyEntries) ; 

if (Rows . Length !; PL.NumRows) 
{ 

Msg = "Bad rows number : 11 + Rows.Length + " instead of the expected " +PL . NumRo ws; 
return false ; 

for (int i 0; i < Rows.Length; i++) 

stri ng [] Arr ; Rows[i] . Split( "\t " . ToCharArray() , StringSplitOptions . 
RemoveEmptyEntries) ; 

i f (Arr.Length !; PL . NumColumns) 
{ 

Msg = "Bad number of items in row " + (i+l) + " : " + Arr.Length + 
" instead of the expected " + PL.NumColumns ; 

retu rn fal s e ; 

for (int j ; 0 ; 
{ 

double V· 

< Arr . Length ; j++) 

if (G.ParseDouble(Arr[j], ou t V)) 
PL[i, j] ; V; 

el s e 



Msg 
return true ; 

if (Str = "" ) Msg = "Missing value" ; 
else Msg = "Bad number : ' " + Str + "' 11

; 

Msg += ", row " + (1 + i) + .. , column " + (j+l) ; 
return false ; 

Ill <sununary> 
Ill Reads data from a . csv file on CSV data format . 
Ill <lsummary> 
Ill <returns>A Dataset object on success , null in case of an error<lreturns> 
protected Dataset ProcessCsvDataFile() 
( 

int LastPlateProcessed = -1; 
int CurrPlate = 0; 
int Rows = 0 ; 
int Columns = 0; 
Dataset Data = null ; 
Plate PL = null ; 
bool DefinedSize = RowsPerPlate > 0; 

Il if the nurnber of rows is not specified - calculate it 
if (RowsPerPlate < 0) 

foreach (string Line in Lines) 
( 

if (Line .Trirn() .Length > 0 ) Rows++ ; 
else if (Rows > 0) 
( 

RowsPerPlate = Rows ; 
if (Rows < 4) 
( 

Messages.Add( "Bad data format. Plates with less than 4 rows . " ); 
return null ; 

break ; 

int LNurn = 1; 
int NRows = 0; 

foreach (string Line in Lines) 
( 

List<double> RowData ; 
string Msg ; 

if (Line.Trirn() . Length > 1) 
( 

if (ParseCornrnaDataLine(Line, out RowData, out Msg)) 
( 

if (CurrPlate == 0 && NRows == 0) 
( 

Columns = RowData.Count; 
if (Columns < 4) 
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Messages.Add( "Baci data format. Plates with less than 4 columns . " ); 
return null ; 

if (Data == null ) 
Data= new Dataset (RowsPerPlate, Columns); 

if (PL == null ) 
PL = Data . AddPlate( ) ; 

if (RowData.Count < Colurnns) 
( 



187 

Messages . Add( " Plate " + (CurrPlate + 1) + ", r o w " + (NRows + 1) + <}) 
" is too short- " + RowData.Count + " inste ad o f " + Columns + " items ." ) ; 

return null ; 

e1se if (RowData . Count > Co1umns) 
( 

Messages .Add( " P1ate " + (CurrP1ate + 1) + ", r o w " + (NRows + 1) + <}) 
" is t oo l ong - " + RowData . Count + " instead of" + Columns + " items . 11 ) ; 

return nu11 ; 

if (NRows == Rows PerP1ate) 
( 

if ( !DefinedSize) 
{ 

Messages.Add( "P1ate " + (CurrP1ate + 1) + " has toc many rows , <}) 
more than " + RowsPerPlate + " . " ) ; 

return null ; 

el se 

CurrP1ate 
NRows = 0 ; 
PL = nu1l ; 

if (PL == null ) 

++LastP1ateProcessed + 1 ; 

PL Data . AddP1ate() ; 

for (i nt j = 0 ; j < Columns ; j++) 

PL[NRows , j] = RowData[j] ; 

NRows++ ; 

el se 

e 1se 

Messages.Add( "Line '' + LNum + "· '' + Msg) ; 
return null ; 

if (!DefinedSize) 
( 

if (NRows > 0) 

if (NRows < RowsPerP1ate) 

Messages . Add( "Plate " + (CurrPlate + 1) + " has tao few rows, <}) 
less than" + RowsPerPlate + 11

. " ) ; 

LNum++ ; 

return nu11 ; 

CurrPlate = ++LastP1ateProcessed + 1 ; 
NRows = 0 ; 
PL = nu11 ; 

if (NRows > 0 && NRows < RowsPerPlate) 

Mes sages .Add( "The 1ast plate has tao few rows, lesa than " + RowsPerPlate + " . " ) ; 
r eturn null ; 

return Data ; 

Ill <summary> 
Ill Reads data from a . csv file on CSV database format . 
Ill <lsummary> 
Ill <returns>A Dataset abject on success , nu11 in case of an error<lreturns> 



protected Dataset ProcessCsvDBFile() 
{ 

if (Lines.Length < 1) 

Messages. Add ( "Empty file: '" + Name + "' . " ) ; 
return null ; 

int i ; 
string [] Keys ; 
Dictionary<string , string> Dict = new Dictionary<string , string> () ; 

char [] Comma= new char [] { • , ' ); 
string Str = Lines[O] .ToLower(); 
Keys = Str.Split(Comma); 

for (i = 0 ; i < Keys.Length; i++) 

Dict.Add(Keys[i] = Keys[i].Trim(l, "0" ); 

StringBuilder SB = new StringBuilder () ; 

if ( !Dict.ContainsKey( "plate" )) SB.Append( " 'Plate'" ) ; 
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if ( ! Di ct. ContainsKey ( "row" )) { if (SB . Length > 0) SB . Append ( " , " ) ; SB. Append ( " 'Row " ' ) ; ) 
if (!Di ct. ContainsKey( "column" )) { if (SB. Length > 0) SB .Append ( " , " 1 ; SB .Append( <:l' 

11 'Column' 11
); } 

"'Value'" ) ; 
if ( !Dict.ContainsKey( " value" )) { if (SB.Length > 0) SB . Append( " , " ) ; SB . Append( <:l' 

if (SB . Length > 0) 
{ 

Messages.Add( "Bad file format - missing column(s) : " + SB .To StringO) ; 
return null ; 

List<int> PlateList = new List<int> () ; 
List<int> RowList = new List<int> () ; 
List<int> ColList = new List<int> () ; 
List<double> ValueList = new List<double> (); 

for (i = 1 ; i < Lines.Length; i++) 

Str = Lines[i] . Trim() ; 
if (Str . Length < 1) continue ; 
string [] Arr= Lines[i] .Split(Comma) ; 
if (Arr .Length != 4) 
{ 

Messages . Add( "Format errer on line " + (i+1)) ; 
return null ; 

f or (int j = 0; j < Arr.Length; j++) Dict[Keys[j]] 

bool ok; 
int X; double V; 
if (o k = G. Parselnt(Str 
{ 

Dict[ "plate" ], out X)) 

if (ok= (X >= 1 && X<= 100000 )) 

PlateList.Add(X-1) ; 

Arr [j] . Trim(l ; 

if (ok = G. Parselnt(Str Dict[ "row" ), out X)) 

i f (ok= (X >= 1 && X<= 1000)) 
{ 

RowList.Add(X-1); 
if (o k = G.Parselnt(Str 
{ 

Di ct [ "column" ], out Xl) 

if (ok= (X>= 1 && X<= 1000)) 
{ 

ColList.Add(X- 1); 
if (ok = G. ParseDouble(Str 

ValueList . Add(V) ; 

Di ct [ "value " ] , out V)) 



if (!ok) 
{ 
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Messages.Add( 11 Format error on lina " + (i+ l ) + " Bad number : 1
" + Str + "'" ); 

return null ; 

int Plates = PlateList . Max()+l; 
int Rows = RowList.Max () +l; 
int Columns = ColList.Max( ) +l; 

if (Rows < 4) 
{ 

Messages.Add ( "Bad data . Lesa than 4 rows ." ); 
return null ; 

if (Columns < 4) 
{ 

Messages.Add ( "Bad data . Lesa than 4 columns." ); 
return null ; 

Dataset Data = new Dataset (Plates, Rows, Columns); 
boel [,,] Flag new bool [Plates, Rows, Columns]; 

for ( i 0; i < PlateList.Count ; i++) 

if (Flag[Pl ateList[i], RowList[i], ColList[i ]] ) 

Messages.Add( "Repeating valu": plat" " + Pl ateList[i] + " row " + 
RowList[i] + " column " + ColList [i]); 

return null ; 

Data [PlateList[i ] , RowList[i], ColList[i]] 
Flag [PlateList [i ] , RowList[i], ColList[i]] 

for (int p 0; p < Pl ates; p++) 

for (i 0 ; i < Rows; i++) 

for (int j = 0; < Columns; j++) 

if (Flag[p, i, j] == false ) 

ValueList [i] ; 
true ; 

Messages.Add( "Missing value: plate " + (p+l) + " row " + (i+l ) + <fi 
column " + (j+l)) ; 

return null ; 

return Data ; 

Ill <summary> 
Ill Reads data from a . mtx file in HTS Corrector pseudo XML format. 
Ill <lsummary> 
Ill <returns>A Dataset object on success , null in case of an error<lreturns> 
protected Dataset ProcessMtxFile() 
( 

Regex AssayTag = new Regex (@"<\s*assay\s+([ A<] *)\s*>" , RegexOptions .IgnoreCase); 
Match M = AssayTag .Match(Text) ; 

int Plates = 0; 
int Rows = 0; 
int Columns = 0 ; 



IgnoreCase) ; 

IgnoreCase) ; 

IgnoreCase) ; 

int Pos = 0 ; 

string Msg; 

if (M. Success) 

string PlatesStr = "" ; 
string RowsStr = "" · 
string ColumnsStr = "" ; 

Pos = M.Index + M. Value . Length ; 

string S= M.Groups[1] .Value ; 
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Regex PlatesAttr = new Regex ( @"plates\s*=\s*""*\s*(\d+)\s*""*" , RegexOptions . <fi 

M = PlatesAttr.Match(S) ; 
if (M. Success) 
( 

PlatesStr = M. Groups[1] .Value ; 
Plates= G.Parseint(PlatesStr) ; 

el se 

Messages.Add( "Bad format! ASSAY tag without 'plates ' attribute!" ) ; 
return null ; 

Regex RowsAttr = new Regex ( @" rows\s*=\5* 11 "*\s*(\d+)\s*""*" , RegexOptions . 

M = RowsAttr . Match(S) ; 
if (M . Success) 

RowsStr = M.Groups [l] .Value ; 
Rows = G.Parseint (RowsStr) ; 

el se 

Messages.Add( "Bad format! ASSAY tag without 'rows' attribute!" ) ; 
return null ; 

Regex ColumnsAttr = new Regex (@"column?s\s*=\s*"" *\s*(\d+)\s*""*" , RegexOptions .<!i 

M = ColumnsAttr.Match(S) ; 
if (M. Success) 
{ 

ColumnsStr = M.Groups[1] .Value; 
Columns = G.Parseint(ColumnsStr) ; 

el se 

Messages.Add( "Bad format! ASSAY tag without 'columns' attribute!" ) ; 
return null ; 

if (Plates < 1 1 1 Plates > 100000) 
( 

Messages . Add ("Bad number of plates : "' + PlatesStr + "'! An integer number <!i 
between 1 and 100 ,000 is expected." ) ; 

return null ; 

if (Rows < 4 1 1 Rows > 1000 ) 
{ 

Messages. Add ( "Bad number of rows: ' " + RowsStr + " ' ! An integer number 
between 4 and 1000 is expected." ) ; 

return null ; 

if (Columns < 4 1 1 Columns > 1000) 

Messages.Add( "Bad number of rows: '" + ColumnsStr + "'!An integer number <!i 
between 4 and 1000 is expected. " ) ; 

return null ; 



el se 

Messages.Add( "Bad format! Missing ASSAY tag!" ) ; 
return null ; 

Data= new Dataset (Plates, Rows, Columns) ; 
int CurrPlate = 0; 
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Regex PlateTag = new Regex (@"<\s*plate\ s+([ A<J* ) \s*> " , RegexOptions . I gnoreCase ) ; 

bool [] PMap = new bool [Plates]; 

M = PlateTag .Match(Text, Pos) ; 
while (M . Success) 
{ 

int PNum = 0; 

Pos = M.Index + M.Value.Length ; 
string S= M. Groups[l] .Value; 

Regex NoAttr = new Regex {@"no\s*=\s*""*\s*(\d+)\s*""*" , RegexOptions . IgnoreCase) ; 
M = NoAttr.Match(S) ; 
if (M. Success) 
{ 

string NoStr = M.Gr oups[l] .Value ; 
PNum = G. Parseint(NoStr); 
if (PNum < 1 1 1 PNum > Plates ) 
{ 

Messages . Add( "Bad plate number : ' " + PNum + " '! An i nteger number 
between 1 and " + Plates+ 11 is expected . ") ; 

return null ; 

PNum-- ; 

el se 
PNum = CurrPlate + 1 ; 

int Ind :;;;; Te xt. IndexOf ( "<" , Pas) ; 

string Str = (Ind >= Fos ) ? Text.Substring(Pos, Ind - Fos ) 

if (PMap [PNum]) 
{ 

Text.Substring(Pos); 

Messages.Add ( nRepetition of plate number: 111 + (PNum+l) + "'!" ) ; 
return null ; 

if (!ParseTabbedData(Str , Data[PNum], out Msg) ) 

Messages .Add( " Plate " + (PNum+l) + "· " + Msg); 
return null ; 

PMap[PNum] = true ; 

CurrPlate = PNum; 
M = PlateTag .Match(Text, Pos); 

for (int i = 0; i < Plates ; i++ ) 

if (PMap[i]==fal s e ) 

Messages.Add( "Mising plate number " + (i+l) + "! " ) ; 
return null ; 

return Data; 

Ill <summary> 
Ill Reads data from a . mtr file in HTS Corrector file format . 
111 <lsummary> 
Ill <returns>A Dataset object on success , null in case of an error<lreturns> 



protected Dataset ProcessMtrFile() 
( 

Dataset Data null ; 

char [] SPACE ( ' 

int NPlates = 0; 
int NRows = 0; 
int NColumns = 0 ; 

'\t ' } ; 

if (Lines == null 1 1 Lines. Length < 2) 
( 

Messages. Add ( "Bad format or empty file: '" + Name + "' . " ) ; 
return null ; 

int Len = Lines.Length; 
string [] Arr; 

Arr= Lines[O] .Split(SPACE) ; 

if (Arr != null ) 
( 

if (Arr . Length > 0) 
( 

NPlates = G. Parsein t(Arr[O] , -1) ; 
if (NPlates < 1) 
( 

Messages. Add ( "Bad number of plates : ' " + Arr [ 0 ] + " ' . " ) ; 
return null ; 

if (Arr . Length > 1} 

NRows = G.Parseint(Arr(1], -1) ; 
if (NRows < 2 1 1 NRows > 1000) 
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Messages.Add( "Bad number of rows: "' + Arr[1] + 
and 1000 is expected." ) ; 

An integer between 2~ 

return null ; 

if (Arr . Length > 2) 

NColumns = G.Parseint(Arr[2], -1) ; 
if (NColumns < 2 1 1 NColumns > 100) 

Messages.Add( "Bad number of columns "' + Arr[2] + 
2 a nd 1000 is expec ted ." ) ; 

return null ; 

if (Lines . Length != 1 + NRows * NColumns) 
( 

An integer between~ 

Messages.Add( "Ba d fi l e f o rmat . It contains " + Lines.Length + " l ines instead of~ 
the expected " + (1 + NRows * NColumns)); 

return null ; 

Data = new Dataset (NPlates , NRows, NColumns); 

for (int 1 = 1; 1 < Lines.Length ; 1++) 

int row 
int c o l 

(1 - 1) % NRows; 
(1 - 1) 1 NRows; 

Arr= Lines[1] .Split(SPACE , StringSpl itOptions .RemoveEmptyEntries) ; 

if (Arr == null 1 1 Arr.Length != NPlates) 

Messages . Add ("Bad file format . Line " + (1+1) + " contains " + Arr.Length + ~ 



" numbers instead of the expected " + NPlates) ; 
return Data = null ; 

int p = 0; 
foreach (string s in Arr) 

try 
{ 

double X= Doubl e .Parse(s .Trim()) ; 
Data[p , r ow, col] = X; 

catch 

Data[p, row, col] = 0.0 ; 
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Warnings .Add ( "Bad number '" + s + "'on line" + (1+1) + " I gnored! 0. 0 <') 
assumed . " ) ; 

p++ ; 

return Data; 

HTSFile Writer.cs 

Il File: HTSFileWriter.cs, HTSHelper project 
Il Written by Plamen Dragiev 
Il Last updated: Mar 14, 2012 
Il History: 
Il Mar 3, 2012 - file created 
Il Mar 14, 2012 - version 1.0 
Il 

using System; 
using System.Collections.Generic ; 
using System.Text ; 
using System. IO ; 

namespace HTSHelper 
{ 

class HTSFileWriter 

Il The name and the format of the output file 
protected string Name ; 
protected FileFormats Format ; 

Il Errors and Warnings produced during the export of the HTS data 
public List<string> Messages ; 
public List<string> Warnings ; 

protected string NumFormat; 
protected int FLUSH_SIZE = 100000 ; 

protected StringBuilder Buf ; 

protected Dataset Data ; 

Ill <summary> 
Ill Constructor 
Ill <l s ummary> 
Ill <param name= "Fi leName">The name of the outpu t fi l e <lparam> 
Ill <param name="FileFormat">The format of the output file<lparam> 
public HTSFileWriter( string FileName , FileFormats FileFormat) 
{ 

Name = FileName; 
Format = FileFormat ; 



NumForinat G . NumFor~nat ( 6); 

Ill <summary> 
Ill Specifies the number for~nat to be used for outputing numbers 
Ill <lsummary> 
Ill <param name="For~nat">A number for~nat to be used<lparam> 
public voi d SetNumFor~nat ( string For~nat) 

{ 

NumFormat = For~nat ; 

Ill <summary> 
Ill Creates the output file if it does not exist or truncates it if exists 
Ill <lsummary> 
Ill <returns >Retur ns true on success and false in case of an error<lreturns> 
protected boel CreateOrTruncate ( ) 
{ 

try 
{ 

File . WriteAllText(Name, "" ) ; 

catch (Exception E) 
{ 

Messages . Add (E . Message ) ; 
Messages . Add ( "Cannet wri te to ' " + Name + " ' . " ) ; 
return false ; 

return true ; 

Ill <summary> 
Ill Writes the memory buffer to the disk 
Ill <lsummary> 
Ill <returns>Returns true on success and false in case of an error<lreturns> 
prot ected bool Flush ( ) 
{ 

i f (Buf != null && Buf . Length > 0 ) 
{ 

t ry 
{ 

File .AppendAllText(Name, Buf . ToString( ) ) ; 
Buf.Length = 0 ; 

catch 

return false ; 

return true ; 

Ill <summary> 
Ill Checks if the size of the memo ry buffer i s over the limit and writes it 
Ill to the disk if it is 
Ill <lsummary> 
Ill <returns>Returns true on success and f alse i n case of an e r r or<lreturns> 
p r o t e c t ed boel CheckFlush() 
{ 

if (Buf . Length>=FLUSH_SIZE) 
return Flush(); 

return true ; 

Ill <summary> 
Ill Writes t ext to the output fi l e 
Ill <lsummary> 
Ill <param name="Str">Text to be writtan<lparam> 
Ill <returns>Returns true on success and false in case of an error<lreturns> 
protect ed boel Write( string Str) 
{ 

Buf.Append(Str) ; 
return CheckFlush() ; 
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Ill <sumrnary> 
Ill Writes a text line to the output file 
Ill <lsumrnary> 
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Ill <param name="Str">The text of the line that should be written to the output file <Y 
<lparam> 

Ill <returns>Returns true on success and false in case of an error<lreturns> 
protected boel WriteLine( string Str) 
{ 

Buf.Append(Str) ; 
Buf.Append( Environment . NewLine) ; 
return CheckFlush(); 

Ill <sumrnary> 
Ill Experts the data of a Dataset to the output file 
Ill <lsurnmary> 
Ill <param name="DataSet">Data to b e written<lparam> 
Ill <returns>Returns true on success and false in case of an error<l r e turns> 
public bool WriteData(Dataset DataSet) 
{ 

Data = DataSet; 

Messages 
Warnings 

new List<string> () ; 
new List<string> () ; 

Buf = new StringBuilder (( int) (FLUSH_SIZE*l . l)) ; 

if (CreateOrTruncate()) 
{ 

boo l Res ; 
switch (Format) 
{ 

case FileFormats . Asy : 
Res = WriteAsyFile() ; 
break ; 

case FileFormats .CsvData : 
Res = WriteCsvDataFile() ; 
break ; 

case FileFormats . CsvDB: 
Res = WriteCsvDBFile() ; 
break ; 

case FileFormats .Mtr: 
Res = WriteMtrFile() ; 
break ; 

case FileFormats .Mtx: 
Res= WriteMtxFile() ; 
b r e ak ; 

case FileFormats .Html: 
Res = WriteHtmlFile() ; 
break ; 

defau lt : 
Messages.Add( "Unknown output data format : " + (int )Format) ; 
Res ;:;:: fal se ; 
break ; 

if (Res) Messages 
return Res ; 

Warnings; 

return false ; 

111 <summary> 
Ill .asy file format is not supported in version 1 . 0 
Ill <lsummary> 
Il l <returns>Retu r n s true on success and false in case of an error<lreturns> 
protected bool WriteAsyFile() 



return true ; 

Ill <swnmary> 
Ill Writes a Dataset to a CSV data file 
Ill <lswnmary> 
Ill <retu rns >Returns true on success and false in case of an error<lreturns> 
protected bool WriteCsvDataFile() 
{ 

for {int p 0; p < Data.NumPlates ; p++ ) 

for (int i = 0; i < Data.NumRows; i++) 

for {int j = 0; j < Data.NumColumns ; j++) 
{ 

if (j > 0) Buf.Append( " , " ); 
Buf .Append(Data[p, i, j) .ToString(NumFormat)) ; 

Buf.AppendLine() ; 
if (! CheckFlush ()) return f a lse ; 

Buf . AppendLine(); 

return Flush(); 

Ill <swnmary> 
Ill Writes a Dataset to a CSV database file 
Ill <lsummary> 
Ill <returns>Returns true on success and false in case of an error<lreturns> 
protected bool WriteCsvDBFile() 
{ 

Buf.AppendLine( "Plate , Row , Column , Value" ) ; 
for (int p = 0; p < Data . NumPlates; p++) 

for (int i = 0; i < Data . NumRows ; i++) 

for (int j = 0; < Data . NumColumns; j++) 

Buf . Append( (p + 1) . ToString ()) .Append ( " , " ) ; 
Buf . Append((i + 1) . ToString()).Append( ", " ); 
Buf . Append( (j + 1) .ToString() ) . Append( ", " ) ; 
Buf.AppendLine(Data[p, i, j) .ToString(NumFormat)) ; 

if (!CheckFlush()) return false ; 

Buf .AppendLine() ; 
return Flush() ; 

Ill <swnmary> 
Ill Writes a Dataset to a MTR data file (HTS Corrector) 
Ill <lswnmary> 
Ill <returns>Returns true on success and false in case of an error<lreturns> 
p r o tect ed bool WriteMtrFile() 
{ 

Buf.Append(Data . NumPlates.ToString()) . Append( " " ) ; 
Buf . Append(Data.NumRows.ToString()) .Append( " " ) ; 
Buf.Append(Data . NumColumns.ToString()) . Appe ndLine () ; 

for (int j = 0; j < Data.NumColumns; j++) 

for (int i = 0; i < Data.NumRows ; i++) 
( 

for (int p = 0 ; p < Data.NumPlates ; p++) 

if (p > 0) Buf . Append( "\t" ) ; 
Buf . Appe nd (Data[p , i, j) . To String(NumFormat)) ; 

Buf.AppendLine(); 
if ( ! CheckFlush()) return false ; 
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Buf.AppendLine(); 
return Flus h() ; 

Ill <summary> 
Ill Writes a Dataset to a MTX data file (HTS Corrector) 
Ill </summary> 
Ill <r eturns>Returns true on success and false in case of an error</re turns> 
protected bool WriteMtxFile() 
{ 

Buf . AppendFormat( "<ASSAY plates=\"{0}\" rows=\"{1)\" colums=\"(2)\" 
columns=\" {2)\">" , Data . NumPlates, Data.NumRows, Data.NumColumns) ; 

Buf . AppendLine() . AppendLine(); 

for (int p = 0 ; p < Data . NumPlates ; p++) 

Buf.AppendLine( "<Plate name:.\"" + (p+l) . ToString() + "\" no=\"" + 
(p+l) . ToString() + "\">" ) ; 

for (int i = 0 ; i < Data . NumRows; i++) 

for (int j = 0 ; j < Data . NumColumns ; j++) 

if (j > 0) Buf . Append( "\t" ) ; 
Buf.Append(Data[p, i, j] .ToString(NumFormat)) ; 

Buf.AppendLine(); 
if (!CheckFlush()) return false ; 

Buf.AppendLine( "</Plate>" ) .AppendLine() ; 

Buf . Append( "</ASSAY>" ) . AppendLine() .AppendLine() ; 
return Flush() ; 

Ill <summa ry> 
Ill Writes a Dataset to a html file 
Ill </summary> 
Ill <retu r n s>Returns true on success and false in case of an error</returns> 
protected bool WriteHtmlFile() 
{ 

Buf . Append( "<html>" ) . AppendLine () ; 
Buf . Append( "<head>" ) . AppendLine () ; 
Buf .Append( "<styl e>" ) .AppendLine () ; 
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Buf . Append( " .pltclass ( font-family: Arial , Helvetica ; font-size: 12pt ; font- ~ 

weight : bold; ) " ) . AppendLine () ; 
Buf . Append( " . tblclass font-family : Arial, Helvetica; font-size: llpt ; border : ~ 

lpx solid #777777 ; )" ) .AppendLine() ; 
Buf . Append( " . hdrclass ( font-family : Arial , Helvetica; font-size: llpt ; border : ~ 

lpx solid #777777 ; font-weight: bold; background-color : #FOFOFO ; text-align: center ; padding- ~ 

le ft: 8pt; padding-right : 8pt; } " ) . AppendLine () ; 
Buf.Append( " . cellclass ( font - family: Arial , Helvetica ; font-aize: llpt ; border : ~ 

lpx solid #777777 ; text-align : center ; padding-left : 3pt ; padding-right : 3pt ; }" ) . AppendLine() ; 
Buf. Append ( "</style>" ) . AppendLine () ; 
Buf.Append( "</head>" ) .AppendLine() ; 
Buf .Append( "<body>" ) .AppendLine () ; 
Buf . Append ( " <center>" ) . AppendLine () ; 

for (int p = 0 ; p < Data.NumPlates ; p++) 

Buf . AppendLine( " <div class= \ "pl t c l a ss\">Plate " + (p + 1) . ToString() + "</div>" ) ; 
Buf . AppendLine( "<table class=\"tblclass\" cellspacing=\ "0\ "> " ) ; 

Buf. AppendLine ( " <tr>" ) ; 
Buf.Append( " <t d class=\"hdrclass\ "> Il </td>" ) ; 
for (int k = 0 ; k < Data . NumColumns ; k++) 

Buf.Append( "<td class=\ "hdrclass \"> " + (k + 1) + "</ td>" ) ; 

Buf .AppendLine () . AppendLine ( " </tr>" ) ; 
for (int i = 0 ; i < Data . NumRows ; i++) 

Buf . Append.Line ( "<tr>" ) ; 



Buf.Append( "<td class=\"hdrclass\"> " + (i+1) + " </td>" ) ; 
for (int j = 0 ; j < Data.NumColumns; j++) 

Buf . Append ( "<td class=\ "cellclass\ "> " ) ; 
Buf.Append(Data[p, i, j] .ToString(NumFormat)); 
Buf.Append( " </td>" ); 

Buf. Append.Line () . AppendLine ( "</tr>" ) ; 
if (!CheckFlush()) return false ; 

Buf. AppendLine ( "</table>" ) . AppendLine ( "<br><br>" ) ; 

Buf . Append( "</center>" ); 
Buf . Append( "</body>" ) ; 
Buf . Append( "</html>" ) ; 
return Flush() ; 

HTSHelper.cs 

Il File : HTSHelper . cs , HTSHelper project 
Il Written by Plamen Dragiev 
Il Last updated : Mar 14 , 2012 
Il History: 
// Mar 3, 2012 - file created 
Il Mar 14, 2012 -version 1 . 0 
Il 

using System; 
using System.Collections . Generic; 

namespace HTSHelper 
{ 

Il List of all supported actions 
enum Actions { Undefined=-1, Convert=O, Bscore=l, WC=2, MEA=3, PMP=4, 

WC MEA=S, WC PMP=6, Zscore=7 ); 
Il List of file f o rmats -
enum FileFormats { Unknown = -1 , Auto = 0, Asy 1, Mtr 

CsvDB = 5 , Html = 6, Csv = 99 } 

c1ass HTSHe1per 
{ 

Il User Interface object 
p ublic Userinterface UI ; 

Il Parameters 
public string InputFileName ; 
public s tring OutputFileName ; 
public FileFormats InputFormat ; 
public FileFormats OutputFormat; 
public int PlateRows ; 
p ublic i n t Precision ; 

protected Actions Action ; 
protected string NumFormat ; 

protected Dataset Data; 

Ill <summary> 
Ill Default constructor 
Ill </summary> 
public HTSHelper() 
{ 

Il Default values 
Action = Actions .Undefined ; 

Inp utFileName = 

2, Mtx 3 , CsvData 
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OutputFileName = 1111
; 

InputFormat = FileFormats .Auto; 
OutputFormat = FileFormats .Auto ; 

PlateRows 

Precision 
NumFormat 

-1 ; 

6 ; 
G.NumFormat(Precision); 

public void SetUI(User interface anUI ) 
{ 

UI = anUI ; 

Ill <swnmary> 
Ill Determines the file format based on its extension 
Ill <lsummary> 
Ill <parant nante="FileNante">A file nante<lparam> 
Ill <returns>Returns the format of the file<lreturns> 
public static FileFormats FileFormatFromFileNante( string FileNante) 
( 

string Ext = G.FileExtension(FileNante) ; 
Ext = Ext . ToLower( ) ; 
if (Ext = 11 aSy 11

) 

return FileFormats . Asy ; 
if (Ext -- "mtr" ) 

return FileFormats . Mtr; 
if (Ext - "mtx" ) 

return FileForrnats .Mtx ; 
if (Ext - "csv" ) 

return FileFormats .Csv ; 
return FileFormats . Unknown ; 

Ill <swnmary> 
Ill Returns the default extension for the specified file format 
Ill <lsummary> 
Ill <parant nante="Format">A file format<lparam> 
Ill <returns>The default extension for the format<lreturns> 
public static string FileFormatExtension(FileFormats Format) 
{ 

if (Format -- FileFormats . Asy) 
return "asy11

; 

if (Format - FileFormats . Mtr) 
return "mtr" ; 

if (Format - FileFormats . Mtx ) 
return "mtx" ; 

if (Format - FileFormats . Html) 
return "html 11

; 

if (Format - Fil eFormats .CsvDB) 
r e turn "csv" ; 

if (Format - FileFormats . Csv Il Format 
return "csv" ; 

return 1111 . 

Ill <summary> 
Ill Adds an extension to the file name 
Ill <lswnmary> 
Ill <parant nante="FileNante">A file name<lparam> 

File Formats .CsvData) 

Ill <parant nante="Format">The format of the file<lparam> 
Ill <returns>Returns a full name with extension<lreturns> 
public static string AddFormatExtension( string FileName , FileFormats Format) 
{ 

string Ext = FileFormatExtension(Format); 
if (Ex t ! = "" ) 

if (G.FileExtension(FileNante) .ToLower() != Ext) 
File Name += + Ext ; 

return FileName ; 
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Ill <sununar y> 
Ill Builds an output file name based on the input file name and the acti on perforrned 
Ill <l s ummary> 
Ill <pa ram name~ "FileName">The input File name<lparam> 
Ill <pa ram name~"Action">The action performed<lparam> 
Ill <r eturns >Returns the constructed output file name<lreturns> 
public static string BuildOutputFileName(string FileName , Actions Action) 
{ 

string Name ~ G.FileNameWithoutExtension(FileName) ; 
string Sfx = "" ; 
if (Action= Actions . Convert) Sfx ~ "_CONVERTED" ; 
else if (Action Actions . Bscore) Sfx = "_BSCORE" ; 
el se Actions . WC) Sfx : "_WC " ; if (Action 
else Actions .WC_MEA) Sfx ~ "_WC_ MEA" ; if (Action 
el s e 
el s e 
el se 
el se 

if 
if 
if 
if 

(Action 
(Action 
(Action 
(Action 

return Name + Sfx ; 

Actions . WC_PMP) Sfx = "_WC_PMP" ; 
Actions . MEA) Sfx ~ "- MEA" ; 
Actions . PMP) Sfx = "_PMP" ; 
Actions .Zscore) Sfx = "_ZSCORE" ; 

Ill <sununary> 
Ill Checks the validity of the supplied parameters 
Ill <lsummary> 
Ill <returns>Returns true on success and i f a problem is detec ted<l returns> 
public boel CheckParameters() 
{ 

NumFormat ~ G.NumFormat(Precision) ; 

if (InputFormat ~~ FileFormats . Auto) 
{ 

InputFormat ~ FileFormatFromFileName(InputFileName) ; 
if (InputFormat = FileFormat s . Unknown 1 1 InputFormat 
{ 

UI. Errer ( "Unknown input file format!" ) ; 
return false ; 

if (InputFormat = FileFormats .Asy) 

FileFo rmat s .Auto ) 

UI.Error( " . asy file format is not supported in version 1. 0 !" ) ; 
return false ; 

if (OutputFormat ~~ FileFormats .Auto) 

if (OutputFileName !~ "" ) 

OutputFormat FileFo rmat FromFile Name (Outp u t FileName) ; 

if (OutputFormat ~~ FileFormats . Unknown 11 OutputFo rmat ~~ FileFormats . Auto ) 
{ 

OutputFormat ~ InputFormat ; 

i f (OutputFormat = FileFormats .Asy) 
{ 

UI . Error( ".asy file format is not supported in version 1 . 0!" ) ; 
retur n false ; 

i f (OutputFileName ~~ "" ) 

OutputFi leName ~ BuildOutputFi l eName (InputFileName, Action) ; 

OutputFil eName 
return true ; 

AddFormatExtensio n (OUtputFi leName, OUtputFormat) ; 

Il l <sununary> 
Ill Executes the required action 
Ill <lsummary> 



Ill <param name="anActi on">The code of the action that should be performed<lparam> 
Ill <returns>Returns true on sucees and false in case of an error<lreturns> 
public bool Execute(Actions anAction) 
{ 

this .Action = anAction; 

if (CheckParameters()) 
{ 

if (ReadinputFile() && Data != null ) 
{ 

s witch (Action) 
{ 

case Actions .Bscore: 
DoBscore () ; 
break ; 

case Actions . Zscore: 
DoZ score () ; 
break ; 

case Actions .MEA: 
DoMEA(); 
break ; 

cas e Actions . PMP : 
DoPMP () ; 
break ; 

case Actions .WC: 
DoWC() ; 
break ; 

c a s e Actions . WC MEA: 
DoWCandMEA() ; 
break ; 

case Actions .WC PMP: 
DoWCandPMP () ; 
break ; 

case Actions .Convert : 
I l Do nothi ng 
break ; 

default : 
UI . Error( "UnknowniUnsupported action requested!" ) ; 
Data = null ; 
break ; 

if (Data •= null ) 
return WriteOutputFile() ; 

r e t urn fal s e ; 

Ill <sununary> 
Ill Reads the data from the input file 
Ill <lsummary> 
Ill <returns>Returns true on sucees and false in case of an error<lreturns> 
p r otected bool ReadinputFile() 
{ 

HTSFileReader Reader = new HTSFileReader (InputFileName , InputFormat); 

if (PlateRows > 0) 
Reader . RowsPerPlate 

Data = Reader . ReadData() ; 

if (Dat a == null ) 
{ 

if (Reader . Messages 
{ 

Plate Rows ; 

null 1 1 Reader . Messages.Count 0) 
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el se 

UI. Error ( "Failed to read the i nput data! " ) ; 

el se 

foreach (string Msg in Reader . Messages) 

UI . Error (Msg) ; 

if (Reader . Messages != null ) 

foreach (string Msg in Reader .Messages) 
{ 

UI. Warning (Msg) ; 

return Data != null ; 

Ill <summary> 
Ill Writes data to the output file 
Ill <lsummary> 
Ill <returns>Returns true on sucees and false in case of an error<lreturns> 
protected bool WriteOutputFile() 
{ 

HTSFi leWriter Writer = new HTSFi leWriter (OutputFileName, OutputFormat) ; 
Writer .SetNurnFormat(NurnForrnat); 

if ( !Writer . Wri teData (Data)) 
{ 

el se 

if (Writer.Messages == null 11 Writer .Messages.Count 0) 
{ 

UI.Error( "Failed t o wr i t e the output data! ") ; 

el se 

foreach (string Msg in Writer . Messages) 

UI. Error (Msg) ; 

return false ; 

if (Writer.Messages '= null ) 
{ 

foreach (string Msg in Writer.Messages) 
{ 

UI . Warning (Msg) ; 

return true ; 

Ill <summary> 
Ill Applies B- score rnethod on t he dataset 
Ill <lsummary> 
protected void DoBscore() 
{ 

Data. Bscore () ; 

Ill <summary> 
Ill Applies Z- score rnethod on the dataset 
Ill <lsummary> 
protected void DoZscore() 
{ 

Data . Zscore () ; 
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Ill <summary> 
Ill Applies Matrix Error Amendment (MEA) method on the dataset 
Ill <lsummary> 
protected void DoMEA() 
( 

Data.MEA() ; 

Ill <summary> 
Ill Applies Partial Mean Polish (PMP) method on the dataset 
Ill <lsummary> 
protected void DoPMP() 
{ 

Data . PMP() ; 

Ill <summary> 
Ill Applies Well Correction method on the dataset 
Ill <lsummary> 
protected void DoWC{) 
{ 

Data.WellCorrection(); 

Ill <summary> 
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Ill Applies Well Correction method followed by Matrix Error Amendment (MEA) method on ~ 

the dataset 

dataset 

Ill <lsummary> 
protected void DoWCandMEA() 
{ 

Data .WellCorrection(); 
Data.MEA(); 

Ill <summary> 
Ill Applies Well Correction method followed by Partial Mean Polish (PMP) method on the ~ 

Ill <lsummary> 
protected void DoWCandPMP() 
{ 

Data.WellCorrection(); 
Data. PMP () ; 
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