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RÉSUMÉ 

La modélisation du climat à haute résolution est nécessaire aux études d'impact 
du climat et, de nos joms, les modèles de circulation générale (MCC) n'ont pas encore 
une résolution suffisante pour satisfaire ces besoins. Les modèles régionaux du climat 
(MRC) ont été développés dans le but de fournir des détails sur le climat à fine échelle 
sur des régions spécifiques de la Terre. Les MRC ont démontré leur capacité à produire 
de la variabilité spatiale à petite échelle qui manque dans les simulations de MCC ; pour 
cette raison, les MRC sont de plus en plus utilisés dans les études sm le climat actuel 
et futur. tliIalgré ce succès, les avantages découlant de la production d'une variabilité 
climatique de fine échelle - autres que l'effet visuel saisissant des animations réalistes 
- ont rarement été clairement identifiés. Les tentatives pour quantifier ces avantages, 
généralement désignés comme étant la valeur ajoutée (VA) d~ MRC, ont été relative­
ment rares et ont prouvé que la question de la VA est très complexe. 
Compte tenu de cette complexité, ce projet se concentre sur un aspect particulier de 
cette question: l'étude des conditions préalables que doivent satisfaire certaines statis­
tiques climatiques pom permettre aux MRC d'ajouter de la valeur aux données utilisées 
comme pilote. Ces conditions sont basées sur l'idée que la VA des MRC ne peut survenir 
que si les statistiques climatiques d'intérêt contiennent de l'information à fine échelle qui 
n'est pas négligeable. Des données observées et simulées par des MRC peuvent ensuite 
être utilisées pom quantifier l'influence relative des fines échelles dans les statistiques cli­
matiques, comme un proxy, pour estimer la valeur ajoutée potentielle (VAP) des MRC. 
Deux méthodes différentes ont été utilisées pom étudier la VAP sur l'Amérique du Nord, 
respectivement pour la température de surface et la précipitation. Les deux méthodes 
comprennent 3 étapes: l'utilisation d'une technique de décomposition pour séparer 
les variables atmosphériques en plusieurs échelles temporelles et spatiales, le calcul de 
statistiques climatiques et la définition d'une quantité pour estimer la VAP. 
Pour la température, nous constatons que la VAP se dégage presque exclusivement dans 
des régions caractérisées par des forçages de surface importants, soit la présence de to­
pographie de fine échelle ou de contrastes terre-mer. Par ailleurs, certains des processus 
qui produisent la variabilité de petite échelle semblent être liés à des mécanismes rela­
tivement simples tels que la réponse linéaire aux différentes propriétés physiques de la 
surface et la variation générale de la température avec l'altitude dans l'atmosphère. 
Le potentiel des MRC à ajouter de la valeur dans les projections futures de la température 
moyenne est brièvement étudié. L'analyse montre que la variabilité de fine échelle du sig­
nal du changement climatique est généralement très faible par rapport à celle de grande 
échelle, ce qui suggère que peu de VA est attendue pour cette statistique climatique. 
Pour les précipitations, les résultats montrent que la VAP est fortement liée à des in­
stabilité_,,> hydrodynamiques de fine échelle. La VAP est beaucoup plus élevée sur de 



courtes échelles temporelles (par exemple, pour des données sur 3 heures) et pour la 
saison chaude en raison de la proportion plus élevée de précipitations produites par de 
petits systèmes météorologiques et systèmes convectifs. Dans les régions à topographie 
complexe, le forçage orographique induit. une composante supplémentaire de VAP, peu 
importe la saison ou l'échelle temporelle considérée. Les résultats montrent aussi que les 
MRC ont tendance à reproduire relativement bien la VAP par rapport aux observations 
bien qu'ils montrent une légère surestimation de la VAP en saison chaude et dans des 
régions montagneuses. 
Les résultats démontrent l'utilité du cadre utilisé pour étudier la VAP dans le climat 
actuel et dans des projections futures. Il est souligné que l'étude approfondie de la VA 
des MRC devrait aider à comprendre comment utiliser le mielL'< les divers produits 
climatiques disponibles en appui alL'< études en impact et adaptation face au climat 
changeant. 

Mots-clés: modèles régionaux du climat, valeur ajouté potentielle, Amérique du Nord, 
température, précipitation. 



AB8TRACT 

High-resolution c1imate information is necessary to support c1imate-impact assessment 
studies, ancl present-clay General Circulation Models (GCMs) do Ilot l'un at a resolut.ion 
sufficient to satisfy these needs. Regional Climate Models (RCNls) were clevelopecl with 
the aim of providing fine-scale c1imate details over particular regions of the Earth. 
RCMs have been shown capable of producing the small-scale variability lacking in GCM 
simulations, and for this reason RCMs are widely and increasingly used in research stud­
ies of present and future c1imate. Despite this success, benefits arising from resolvecl 
fine-scale variability -other than the stunning visual effect of realistic animations- have 
seldom been c1early iclentifiecl. Attempts to quantify these benefits, generally designatecl 
as the addecl value (AV) of RCMs, have been relatively rare and proved that the AV 
issue is very complex. 
In view of this complexity, the present project focuses on a particular aspect of this issue, 
the study of prerequisite conditions that observed and RCM-derived c1imate statistics 
of interest must satisfy for RCMs having any chance of adding value over the coarser 
driving c1ata. These conditions are based on the idea that RCM's AV can arise only if 
c1imate statistics of interest contain non-negligible fine-scale information. Observed and 
RCM-simulated clata can then be used to quantify the relative influence of fine scales in 
c1imate statistics as a proxy for estimating the potential acldecl value (PAV) of RCMs. 
Two different methodologies are used to investigate the PAV in near-surface temperatme 
and precipitation respectively. Both methoclologies include the use of a decomposition 
technique to separate atmospheric variables in several temporal and spatial scales, the 
computation of various climate statistics and the definition of a P AV quantity that 
estimates the contribution to the c1imate statistics coming from those small-scales rep­
resented by RCMs but absent in the driving data. 
For temperature, we fincl that the PAV emerges almost exc1usively in regions charac­
terised by important smfa.ce forcings either due to the presence of fine-scale topography 
or land-water contrasts. Moreover, some of the processes leading to fiIle-scale variability 
appear to be related with relatively simple mechanisms such as the clistinct physical 
properties of the Earth surface and the general variation of temperature with altitude 
in the Earth atmosphere. 
The potential of RCMs to add value in the simulation of the future mean-temperature 
change is briefly studied. The analysis shows that the fine-scale variability of the c1imate 
change signal is generally very smal1 compared to its large-scale part, suggesting that 
little AV can be expected for the time-averaged temperature. 
For precipitation, results show that the PAV is strongly related with fine-scale hydrody­
namic instabilities leading to much higher P AV values for short temporal scales (e.g., 
3-hourly data) than for long temporal scales (16-clay average data) and for warm com­
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pared to cold season due to the higher proportion of precipitation falling from small-scale 
weather systems in the warm season. In regions of complex topography, the orographic 
forcing induces an extra component of PAV, no matter the season or the temporal scale 
considered. Results a1so show that R.eMs tend to reproduce relatively well the PAV 
compared to observations although showing an overestimation of the PAV in warm sea­
son and mountainous regions. 
Results demonstrate the usefulness of the framework used to study the PAV in present 
climate and future projections and suggest its application to investigate a broader spec­
trum of factors influencing AV issues, i.e. other variables, c1imate statistics, regions. It 
is highlighted that these studies should help in order to get a c1earer idea on how to use 
the several available c1imate products in various applications but particularly in support 
of impact and adaptation studies in the context of a changing climate. 

Keywords : regional c1imate models, potential added value, North America, temperature, 
precipitation. 



RESUMEN 

La informaciôn climatica de alta resoluciôn espacial es necesaria para realizar estudios 
de evaluaciôn dei impacta dei clima y, hoy en dia, la resolucion utilizada en simulaciones 
realizadas con modelos de circulaciôn general (MCG) no es suficiente para satisfaeer es­
tas necesidades. COll el objetivo de obtener informaciôn climàtica de pequena escala en 
regiones especificasse desarrollaron los modelos climaticos regionales (1vrCR). Los MCR 
son capaces de generar variabilidad de pequena escala ausente en las simulaciones de los 
MCG y, pOl' esta raz6n, los MCR han sido y son frecuentemente utilizados en estudios 
que investigan aspectos relacionados con el clima presente y futuro. 
A pesaI' de este éxito, los beneficios derivados de resolver los detalles climaticos de 
pequeîi.a escala ra.ra vez han sido claramente identificados. Los intentos de cuantificar 
estos beneficios, generalmente designados como el valor agregado (VA) de MCR, hal1 
sido relativamente escasos y han mostrado que la cuestion dei VA es muy compleja. 
En vista de esta complejidad, este proyecto se centra en un aspecta particular que 
apunta a estudiar condiciones previas que las estadisticas climaticas de interés deben 
satisfacer para que los MCR tcngan la posibilidad de agrep;ar valor a los datos utilizados 
como piloto. Estas condiciones se basan en la idea de que los MRC pueden generar VA 
si y solo si las estadisticas de interés contienen informacion de pequena escala que no es 
despreciable. Datos observados y simulados pueden sel' eutonees utilizados para cuau­
tificar la infiuencia relativa de escalas finas en las estadisticas deI clima y asi estimaI' el 
valor agregaclo potencial (VAP) cle los MRC. 
Se investiga el VAP en América deI Norte utilizanclo clos metodologfas cliferentes para 
la temperatura de superficie y la precipitacion, respectivamente. Ambas metodologfas 
incluyen el uso de una técnica de clescomposicion para separaI' las variables atmosféricas 
en varias escalas temporales y cspaciales, el câlculo de diversas estaclfsticas climaticas y 
la definicion cle variables que describen el VAP. 
Para la temperatura, los resultaclos mlw-stran que el VAP surge casi exclusivamente 
en regiones caracterizadas por forzantes de superficie, ya sea clebiclo a la presencia de 
topograffa de pequeîi.a escala 0 pOl' contrastes entre el mal' y la tierra. Se observa que 
aigunos de los procesos que conducen a generar la variabilidacl de pequena escala pare­
cen estaI' relacionaclos con mecanismos relativamente simples, tales como la variacion 
general de la temperatura con la altura en la atrnosfera 0 la mejor cliscretizacion cle 
los graclientes lîneales. El potencial de los moclelos climaticos regionales para agregar 
valor en la simulacion cle la temperatura en el futuro tarnbién se estucliô brevemente. 
El analisis muestra que la senal deI cambio cle temperatura entre el presente y el futuro 
esta principalmente clominacla pOl' la gran escala con escasa variabiliclacl de pequena 
escala, 10 que sugiere un limitado VAP para esta variable en particular. 
Para la precipitaciôn, los resultaclos muestran que el VAP esta fuertemente relacionado 



con inestabilidades hidrodinamicas de peque:6a escala que inducen mayor VAP en cortas 
escaJas temporales (por ejemplo, en datos cada 3 horas) yen la estacion câlida debido 
a la mayor proporcion de precipitacion producida por sistemas de peque:6a escala. En 
regiones de topografia compleja, el forzante orografico induce una componente extra de 
VAP, sin importar la estacion 0 la escaJa temporal considerada. Los resultados también 
muestran que los modelos climaticos regionaJes tienden a reproducir relativamente bien 
el VAP en comparacion con las observaciones, aunque presentan una ligem sobreesti­
macion deI VAP en la estacion c§.]ida y algunas regiones monta:6osas. 
Los resultados demuestran la utilidad deI marco que se utiliza para estudiar el VAP en 
el clima actual y en las proyecciones futuras y sugieren su aplicacion para investigar 
otros fadores que infiuyen el valor agregado (par ejemplo, otras variables, estadfsticas 
climaticas, regiones, etc). Se destaca que el estudio mas profundo de factores relaciona­
dos con el valor agregado debe ayudar a entender mejor la manera mas eficiente deI 
uso de los diversos productos climâticos disponibles en diversas aplicaciones, pero en 
particular en apoyo de los estudios de impacta y adaptacion en el contexto deI cambio 
climâtico. 

Palabras claves : modelos climaticos regionales, valor agregado potencial, América deI 
Norte, temperatura, precipitation. 



INTRODUCTION
 

Context 

Numerical modelling constitutes the only way to atternpt to sirnulate the evolution 

of extrernely complex non-linear systems. The Earth c1imate constitutp~ such a com­

plex system by including several complicated dynamical sub systems (e.g., atmosphere, 

land surface, oceans, ice, etc), each one exerting a considerable influence on the others. 

Atrnospheric-Oce81l General Circulation Models (AOGCMs) constitute the primary and 

rnost comprehensjve tools to study past, present and future climate. AOGCMs include 

dynamical components describing atmospheric, oceanic and land-surface processes, as 

weil as sea ice and other components of the Earth system that influpnce the climate on 

time scales ranging from minutes to several hundred and even thousand years. AOGCMs 

consist of a set of coupled differential equations that are solved using sorne numerical 

scheme, subject tü a set of external boundary conditions (e.g., intensity of solar irradi­

ance) and initial conditions. 

It is gener21ly accepted that the reduced numerica! truncation afforded by a.n ill­

crease in the horizontal and vertica.l resolution of the grid mesh used to discretize the 

differential equations in models leads to an improvement in the simulation of the climate 

compared to its coarser resolution version. There is, however, an implicit assllmption 

in the last statelUent that the parameterizations of sllbgrid-scale processes have been 

adapted to the higher resolution, as the appropriateness of these subgrid-scale repre­

sentations may be altered by changes in resolution and hcnce caJJ for new physical 

parameterizations or a retuning of the existing ones (Boer and Lazare 1988; Pope and 

Stratton 2002; Knutti 2008). Assuming that the rccalibration process was performed 

and that the mode! formulation was adapted to its "new" reso!ution, severa! arguments 

can be presented to support the expectation of an improvernent in the simulated climate 

througb an increase in resolution. 

First, the enhanced reso!ut.ion !eads to a more accurate discretization of the dif­

ferentiaJ equatiolls that describe fundamenta! physica! !aws due to a reduction in the 

truncation error. This implies that, particu!arly for those dynamical processes that are 
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little affected by parameterizations, the finer resolution generally improves the simula­

tion (Knutti 2008). 

Second, new small-scale features can appear due to a variety of processes related 

with the finer spatial scales explicitly resolved (e.g., non-linear interactions between 

large and small scales, development of hydrodynamïcs instabilities, etc). For example, 

the better representation of temperature and humidity gradients can trigger smaller­

scale hydrodynamic instabilities that may lead to a more realistic description of the 

spatio-temporal distribution patterns of precipitation. 

Third, an increase in the resolution of the atmospheric grid mesh is generally 

accompanied by a similar increase in the resolutioll of surface fields such as topography, 

lakes, coastal regions and others. The more detailed surface forcings can modify meteo­

rological variables locally, mainly those variables strongly influenced by the surface (e.g., 

2-m temperature, humidity), but also away from the surface due to the perturbation of 

planetary-scale atmospheric flows. For example, in regions of complex topography, the 

use of a finer grid mesh would resolve small-scale near-surface temperature gradients 

due to the better described mountains profiles, combined with the general variation of 

atmospheric temperature with altitude. Another example is given by the interaction 

between middle-latitude synoptic precipitating systems and a higher-resolution topog­

raphy. The presence of higher mountains a.o,d thepotential i1l1provement in the repl'e­

sentation of mountain waves may enhance the rain shadow effect in the lee side of the 

mountains, inflllencing the precipitation locally but also far from the mountaillS due to 

the conservation of water in the system (e.g. Fig. 6 of Laprise et al. (2008)). 

Notwithstanding the potential advantages of high-resolution meshes, in practice 

however, the resolution of climate models is constrained by the limited availability of 

computing resources. The CUITent resolution of climate models results from a compro­

mise between the nllmber and length of ensemble members, the desired complexity of 

physical processes described (e.g., carbon cycle, atmospheric chemistry) and the variety 

of external forcings considered (e.g., greenhouse-gases emissioll scenarios) (Randall et al. 

2007). For example, the current horizontal grid spacing of the atmospheric component 

of state-of-the-art AOGCMs is about 200 km (Randall et al. 2007). 

In order to circumvent the practical impossibility of making operational high­

resolution climatic simulations at the global scale, several downscaling techniques (DT) 

have been developed (Giorgi and Mearns 1991; Rurnmukainen 2010). DTs atternpt to 

translate the large-scale, low-resolution atmospheric fields into local, high-resolution in­
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formation of the ciimate varia,bles of interest. A description of the different downscaling 

approaches can be found in Giorgi and Mearns (1991) and a more recent discllssion 

can be found in Laprise et 21. (2008) (dynamical downscaling) and Wilby et al. (2004) 

(statistical downscaling). 

ln this thesis, we concentrate on the analysis of results derived using nested, 

limited-area, regional ciimate models (RCMs). Basically, the RCM technique allows 

for an increase in resolution by concentrating the degrees of freeciom, and hence the 

computational resources, over a limited region of the globe wherc the main interest 

of a user lies (Laprise et al. 2008). Technically, it consists of USillg time-dependent 

large-scale atmospheric fields and ocean surface boundary conditions to drive a high­

resolution atmospheric moclel integrated over a limited-area domain (Giorgi et al. 2001). 

The atmospheric driving dàta are either derived from simulations of lower resolution 

General Circulation Models (GCMs) simulations or analyses of observations. 

The concept of added value 

The paracligm behind the nesting technique is that. RCMs can be used as magnifyillg 

glasses to obtain regional or local details from coarse-resolution global fields eitber 

derived from reanalyses or GCM simulations (Giorgi et al. 2001; Laprise et al. 2008; 

Rummukainen 2010). ReMs are supposecl to improve the reprcsentation of the ciimate 

compared to tbe driving data, generating wbat is generally designat.ecl as the added 

value (A V) of RCMs. 

In order to illustrate the AV issue and the particular topie tltat is dealt with in this 

thesis, let us consider a hypothetical AV study (a more general example is discussed in 

Appendix 3.A). Lets suppose that we are trying t.o clecide whether an RCM adds value 

over a GCM in the representation of some ciimate statistics X (e.g., time-averaged 

precipit.ation). Assuming that the metrie chosen t.o a.sses::; lllodel's pC'rformance is given 

by the squared error (SE), then the AV can be clefinecl by 

AV = (XCCtV! - XOBS) 
2

- (XRCM - XOBS) 
2 = SECCM - SERCk!· (1) 

Defined in this way, the RCM generates some AV if its SE is smaJler than the GCMs 

one, i.e., if AV is larger than 0 

In order to gain more insight on the sources of AV, let \lS separate the field 
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according to different spatial scales and express the value of Xoss as follows: 

X ls XssX oss = OSS + OSS, (2) 

where the super-scripts ls and ss designate, respectively, the large scales and smalt 

scales that are permitted or not by the GCM grid. Hence by definition XYCM = 0 and 

X CCM -Xls _. CCM' (3) 

Similarly the RCM-derived c1imate statistics (XRCM) may be decomposed as 

+ X SSX X ls	 (4)RCM = RCM RCM' 

Replacing Eqs. (2), (3) and (4) in Eq. (1), rearranging and neglecting covariance terms 

(see below and in Appendix 3.A for details), we obtain: 

(5) 

AV

where 

SS - (X SS )2 SESS- OSS - RCM 

'_ (XSS )2" (XSs' xss)2- OSS - RCM - OSS , (6) 

and 

(7) 

That is, the AV can be approximately decümposed into a small-scale term (AVSS
) and 

a large-scale term (A.Vls). Three conditions must be satisfied for the RCM to generate 

small-scale added value (AVSS > 0): 

•	 the observecl ciimate statistics Xoss must contain non-negligible fine-scale infor­

mat.ion ((XtfBS)2 > 0), 

•	 the RCM-clerived ciimate statistics XRCM must contain non-negligible fine-scale 

information (( X licM )
2 > 0), and 

•	 the fine-scale RCM information must have sorne skill, 
. (XSS VSS)2 (XSS )2Le. RCM - ./\.oss < OSS· 

We recall that these equations were arrived at neglecting two covariance terms; one 
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corresponds to assuming that large-scale errors of GCM are uncorrelated with small­

scale variance of observations, and the other that large-scale and small-scale errors of 

RCM are uncorrelated. 

This analysis suggests that a measure of the potential of RCl'vIs to add value can 

be obtained by defining 
PAV,SS _ (X SS )2 (8)OES - OBS' 

The quantity PAVô~s is called potential added value (PA V) of the small scales in obser­

vations and gives an estimation of the maximum AV that an RCM can add. Assuming 

that (XJ:tcrvr)2 is a good approximation of (X8BS)2 we can clefine PAVsS in tenns of 

fine-scale RCM features: 

PAV!tCM = (XJ:tcrvr f (9) 

It is important to note that if PAVj/crvr i= PAVô11s tben the quantity PAVÎi.cM will 

under- or over- estimate the real PAV by sirnulating too much or too li ttle fine-scale 

variability. An under jover estimation of the real PAV can be related \Vith either positive 

or negative AV, depending on the values of SEytCM and (XYBS)2. The interests of 

computing P AVÎi.CM is that it allows to estimate the PAV in those cases where we do 

not have any knowledge about the true c1imate statisties. 

The term AVis in EC}. (5) represents the AV generated by an RCM due to an 

improvement in the large-scale part of the c1imate statistics X. Due to the limited 

domain size of RCMs, the lack of two-way interaction between the regional domain and 

the l'est of the globe, and the lateral boundary condition issues, it is not c1car whether 

we should expect that RCMs add value at large scales (e.g., Diaconescu et al. 2007). In 

this thesis, we will concentrate in the stucly of AVsS with no explicit consideration of 
AVis. 

Brief review of previous work 

Various studies have dealt with the added value issue either by directly considering 

some statistics of the type shown in EC}. (1) or by using a scale decomposition method 

in order to analyse sorne specifie aspect of the problem such as AVss, AVIs or P AV 

(although not named as such). Here wc will briefly describe some of thern and for a 

recent review of AV stuclies the reader is referred to Feser et al. (2011). 

In one of the first cornparisons between. the c1imate as simulated by an RCIVI 
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and its driving data, Giorgi et al. (1998) compared the precipitation as simulated by 

the National Center for Atmospheric Research (NCAR) RCM and the Australian Com­

monwealth Scientifie and Industrial Research Organization (CSIRO) GCM over a region 

located in the central part of United States that includes the states of Missouri, Iowa, 

Nebraska and Kansas (MINK region). Comparisons of seasonal-mean precipitation in 

the MINK region showed large biases for both models in aIl seasons, and there was no 

clear evidence of the RCM adding value in this particular statistics. Although the MINK 

region is not characterized by pronounced local topogTaphic variability, the seasoual­

mean spatial correlation with observations are generaIly higher in the RCM than in the 

GCM, thus showing AV in spatial correlations. In particular, an important improve­

ment in the spatial pattern was found in the Sllmmer season with correlations of 0.77 

and -0.69 between observed and RCM- and GCM-simulated fields, respectively. 

Durman et al (2001) studiee! the simulated daily precipitation in a global 

(HadCM2) and a limited-area version (HadRCM) of the same mode!. The HadRCM is 

driven by the Hae!CM2 and the comparison is pp,rformed in two HadCM2 grid boxes 

that includes Scotlane! and south-cast England. Comparisons between simulated aud ob­

served intensity-frequency distributions showee! that, in the winter season, the HadRCM 

had a large positive bias in the frequencies of heavier events and performed worse than 

the HadCM2. On the contraIT, in the summer season, the Had~CM greatly outper­

formed the HadCM2, particularly due to an improvement in the representation of the 

upper tail of the precipitation distribution. 

Using a two-dimensional Fourier transform, Castro et al. (2005) computed the 

power spectra of several atmospheric variables simulated by the Regional Atmospheric 

Modeling System (RAMS) and by the National Centers for Environmental Prediction 

(NCEP) reanalyses used to drive the RCM. They found that the RAMS simulation 

underestimated the spectral power of integrated kiuetic energy ane! moisture flux con­

vergence at large scales. Assuming that NCEP reanalyses represent "perfect" boundary 

conditions, the RAMS underestimation means a subtraction of AVis. They also found 

that, particularly in those regions with strong surface bounelary forcing, RAMS showee! 

larger spectral power of kinetic energy and moisture flux convergence at smaIl-scales 

than the coarse-mesh NCEP reanalyses data, suggesting some P AVSS. 

Feser (2006) assessed the AV generated by the REMO RCM over the driving 

NCEP reanalyses for sea level pressure and 2-m temperature in Europe. A spatial filter 

is used to separate si1l1ulated and observee! fields into two spatial-scale ranges: medium 
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scales (between 550 and 250 km; AVSS) and large scales (larger than about 700 km; 

AVis). Results showed that, when evaluating a large-scale dominated quantity such 

as sea level pressure, spatial patterns produced by the RCM are very similar to those 

obtained from the NCEP reanalysis driving data. On the other hand, when assessing 

near-surface temperature on medium spatial scales, the RCM outperforms the NCEP 

reanalyses in the representation of the seasonal-mean spatial patterns. The author 

suggested that the improvement arises from the better representation of physiographic 

data in the RCM. 

Winterfeldt and Weisse (2009) evaluated the AV produced by two RCMs over 

the NCEP reanalyses dri\'ing data for hourly time series of instantaneous lO-m wind 

speeds. Using several in situ observations in the North Atlantic and North Sea during 

the year 1998, they found that RCMs tend to irnprove the representation of .surface 

wind speeds compared to the NCEP reanalysis in coastal stations located near complex 

orographic features. vVhen assessing instantaneous wind speeds and their associated 

frequency distributions in stations located in the "open ocean", they found that RCMs 

tend to perform worse than the NCEP reanalyses. Similar results were found by Sotillo 

et al. (2005) over open-ocean stations in the Mecliterrallcan Sea area when assessing the 

AV generated by the Rmv!O RCM over the NCEP reanalyses. 

De Sales and Xue (2011) also showed that the AV of RCMs can be strongly 

dependent on the region of analysis and that the improvement of the representation of 

fine-scale topographie features can be a crucial factor in the g~neration of AV. They 

found that the better representation of the Andes Mountain Range in an RCM compared 

ta a lower-resolution GCNI is a key factor in order to improve the simulated low-level 

moisture fluxes and the resulting precipitation in some regions of South America. 

Bresson and Laprise (2009) analyzed the atmospherie water budget over North 

America as simulated by the Canadian RClvI by using a spatial scalc-decomposition tao!. 

In both summer and winter seasons, they found that the small spatial scale component 

contributes to a large part of the total temporal variability of most relevant water budget 

variables sueh as precipitation and water vapour flux divergence. Their results suggest 

that the representation of moist processes show a high potential for RCMs to add value 

over GCMs with important differences across regions (e.g., oceanic vs. continental) and 

seasons. 

It is dear from tJ1e articles already cited that RCMs do not generate AV in an 

unambiguous way. Rather, the AV seems to be contingent upon a variety of factors 
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such as the season and time scale, the variable and the climate statistics of interest, the 

region of analysis, etc. These results prompted the following question: Where, when 

and with respect to which variables and c1imate statistics should one expect to fiud 

added value generated by RCMs? 

Scientific objective and outline of the thesis 

The main goal of this research is to investigate the potential added value at small 

scales (AVSS) based on observations and RCM simulations in North America using a 

framework that a.llows to estimate P AVsS independently in each high-resolution data 

set. The thesis is composed of two scientific papers each represented as a separate 

chapter and is structured as follows. 

The first chapter, entitled "Potcntial for added value in precipitation simulated 

by high-resolution nested Regional Climate Models and observations" and published in 

Climate Dynamics in 2011, evaluates the PAV in seven regions across United States 

based on four high-resolution precipitation data sets. One reanalysis and two gridded 

observed datasets are used to estimate the PAV in the real climate system and RCM 

simulations from the North American Regional Climate Change Assessment Program 

(NARCAAP) are used to evaluate the PAV suggested by mQdels. The methodology 

uses the multi-resolution approach in order to estimate a number of statistics at dif­

ferent temporal and spatial resolutions. The multi-resolution method consists in the 

application of numerical filters in order to aggregate the original high-resolution time­

varying precipitatiou fields into lower-resolution temporal and spatial scales. Spatial 

scales vary from approximately 0.50 to 6.40 and tempora.l scales range between 3 homs 

and 16 days. The article focused in the 95th pcrcentile computed from 20-year time 

series between 1981 and 2000. 

The second chapter, entitled "Potential for added value in RCM-simulated surface 

temperature", evaluates the PAV in the temperature variable as simulated Gy the same 

NARCCAP-ensemble of RCMs used in the first article. The general framework is similar 

to that used in the first article, but sorne important methodological modifications are 

introduced. First, results are generalized to t.he North Amcrican contiu 'ut and the 

adjacent oceans Second, Reynolds decompüsition rules are used to separate the total 

variance of temperature according to the contribution of large and small spatial scales 

and of stationary and transient processes. The variance of the original temperature field 

is then cornputed and described by four different terrns including two terms that describe 
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the original contribution of RCMs. Finally, the article includes a brief discussion about 

the PAV in future c!irnate projections, together with sorne results of application of the 

PAV frarnework to the ternperature change signal. 

Concluding remarks encornpassing the main contributions of bath papers along 

with sorne possible [ines of addecl value research studies are presentpd in the conclusion's 

section. 
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Abstract 

Regional Climate Models (RCMs) constitute the most often used method to perform 

affordable high-resolution regional c1imate simulations. The key issue in the evaluatiol1 

of nested regional models is to determine whether RCM ::;imulations improve the rep­

resentation of c1imatic statistics compared to the driving data, that is, whether RCMs 

add value. In this study we examine a necessary condition that sorne c1imate statistics 

derived from the precipitation field must satisfy in order that the RCM technique can 

generate sorne added value: we focus on whether the c1imate statistics of interest contain 

sorne fine spatial-scelle variability that would be absent on a coarser grid. The presence 

and magnitude of fine-scale precipitation variance required to adequately describe a 

given c1imate statistics will then be used to quantify the potential added value (PAV) 

of RCMs. Our results show that the PAV of RCMs is much higher for short temporal 

scales (e.g., 3-hourly data) than for long temporal scales (16-day average data) due to 

the filtering resulting from the time-averaging process. PAV is higher in warm sea­

son compared to cold season due to the higher proportion of precipitation falling frorn 

small-scale weather systems in the warm season. In regions of complex topography, the 

orographic forcing induces an extra component of PAV, no matter the season or the 

temporal scale considered. The PAV is also estimated using high-resolution datasets 

based on observations allowing the eval-uation of the sensitivity of chal1ging resolution 

in the real c1imate system. The results show that RCMs tend to reproduce relatively 

well the PAV compared to observations although showing an overestimation of the PAV 

in warm season and mOWltainous regions. 

Keywords: regional c1imate model; temporal-spatial scale analysis; precipitation; added 

value. 
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1.1 Introduction 

Atmospheric-Ocean General Circulation Models (AOGCMs) con:;titute the primary and 

most comprehensive tools to study future cIimate. However, due to the large number 

and complexity of processes to be represented, the long simulations needed for climate 

studies, and the need of ensemble simulations to provide robust statistical estimates, 

computational constraints severely restrict the horizontal grid me..,h used in the di:;­

cretized equations. Present horizontal grid intervals of the atmospheric component of 

AOGCMs are usually between 125 and 400 km (Randall et al. 2007); these are insuffi­

rient to resolve the fine-scale structure of several climatic proCE'~<;ses. 

The method most often used to perform affordable high-resolution regional cli­

mate simulations is the nested regional climate modclling technique: it consists of using 

time-dependent large-scale atmospheric fields and ocean surface boundary conditions to 

drive a high-resolution atmospheric model integrated over a limited-area domain (Giorgi 

et al. 2001). The atmospheric driving data are either derived from lower resolution Gen­

eral Circulation Models (GGtvIs) simulations or analy:;es of observat.ions (reana.lyses). 

Typical Regional Climate Models (RCM:;) horizontal grids for climnte simulations are 

about 50 km, although long-term simulations are increasingly beillg performed using 

grids of 10 km (Kanamitsu and Kanamaru 2007; Suklitsch et al. 2011). For a de­

tailed description of potential merits and limitations of nested RGtvIs, reler to Laprise 

et al. (2008) and Rummukainen (2010). Alternative methods to obtain regional climate 

information also exist, such as variable-rcsolution global models, time-slices of high­

resolution global models and empirical-statistical techniques (e.g. Christensen et al. 

2007), but these will not be addressed in this paper. 

RCMs have been used in a broad spectrum of applications such as the reconstruc­

tion of recent-past cIimate on the regional scale (e.g., Mesinger et a.l. 2006; Kanamitsu 

and Kanamaru 2007); the downscaling of low-rcsolution global simulations in seasonal 

prediction investigations (e.g., Rauscher et al. 2007; Seth et al. 2007; De Sales and Xue 

2011) and the study of processes and mechanisrns in the regional scale (PieJke et al. 1999; 

Roebber and Gyakum 2003). During the last decade, RCMs have becorne increasingly 

used for dynamical downscaling of climate-change projections (Christensen et a.l. 2007; 

and references therein), by driving RCMs with GCM-silllulated climate-change projec­

tions. 

In any of these applications, the RCM's objective is to simulate small-scale cIi­
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mate processes that are absent in the coarser resolution simulation providing the driving 

data. This implies that, from a practical viewpoint, the key issue in the nesting regional 

modeUing technique evaluation is to deterllline whether RCM simulations improve the 

representation of climatic statistics compared to the driving data (Prbmmel et al. 2010). 

GeneraUy, studies evaluating the relative skiU of RCMs and the driving fields are desig­

nated as added value (AV) studies (Barring and Laprise 2005; Rockel et al. 2010). 

Despite the great importance of identifYing AV in RCM simulations, the AV issue 

has not received much attention tiU recently (Laprise 2005; Feser and von Storch 2005). 

In recent years, however, the AV problem received iucreased attention and become the 

main subject of several studies (Castro et al. 2005; SotiUo et al. 2005; Duffy et al. 2006; 

Feser 2006; Kanamitsu and Kanalllaru 2007; Rauscher et al. 2007; Sanchez-Gomez et al. 

2009; Winterfeldt and Weisse 2009; De Sales and Xue 2011; Prbmmel et al. 2010) and 

a central topic in a number of workshops (Barring and Laprise 2005; Rockel et al. 

2010). Although sorne authors (e.g. Liang et al. 2008) believe that the existence of 

AV generated by the RCM downscaling technique was already demonstrated for some 

particular measures (e.g. reduction of precipitation biases), evidence found in a large 

number of articles do not tend to univocaUy support this view, ratber sllggesting that 

AV remains aIl important open question for the community. 

For example, \Vhen d0wnscaling reanalyses data,studies generally show that 

RCMs add value to their driving data for surface va.riables (e.g., surface temperature 

and lQ-m wind speed) in regions characterized by slllall-scale orographie features such as 

mountainous regions (Feser 2006; Prommel et al. 2010) and coastal areas (Sotillo et al. 

2005; Winterfeldt and Weisse 2009); but little AV and even degradation is sometimes 

found in regions with no important smaU-scale physiographic forcings (Winterfeldt and 

Weisse 2009). Long-term large-scale features (i.e., general circulation) are generaUy 

reasonably well reproduced by RCMs (Feser 2006; Sanchez-Gomez et al 2009), but 

degradation of large-scale fields arises when considering shorter time scales (e.g., daily 

mean) (Castro et al. 2005; Sanchez-Gomez et al. 2009). 

Somewhat similar results are found when using GCM-simlllated lateral boundary 

conditions (LBCs). According to Seth et al. (2007) and De Sales and Xue (2011), RCMs 

gelleraUy improve the simulation of precipitation compared to GCMs in regions where 

small-scale surface forcings are important and/or GClvIs do not perform very weU, but 

RCIVls can degrade the simulated climate in those regions where GCMs perform weU 

and/or large-scale forcings are dominant. De Sales and Xue (2011) also showed that 
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the AV of RCMs is strongly dependent on the region considered: in their study, the 

improvement on the representation of the Andes Mountain Range by the RCM compared 

ta the GCM was a key factor ta adding value ta the simulation of low-level moisture 

fluxes and precipitation in South America. 

The value added by RCMs seems to depend on a variety of factors. A key factor is 

related with the climatic variable considered in the assessment, understanding the term 

climatic variable in a broad sense as sorne statistical measure of a variable computed for a 

given season and region. Sa sorne remaining questions are: For which climate statistics 

should one hope ta find AV from dynamical downscaling? How the AV depends on 

the temporal scale of the clilllatic variable? Where and when can sorne AV be found 

for monthly-mean values? The objective of this article is ta examine these issues by 

making a systematic characterization of a necessary condition ta be satisfied by climate 

statistics in arder that AV be generated through the lise of the ReM technique. Given 

that the ansatz behind the dynamical clownscaling technique is that an RCM, driven 

by large-scale atmospheric fields at its LBC, generates fine scales that are dynamica.lly 

consistent with these, this paper will focus specifically on the fine-scale information 

generated by the use of nested high-resolution RCM. The presence and magnitude of 

fine-scale variance required ta adequately describe a given climate statistics will then 

be used ta quantify the potential of RCMs ta add value. 

Our study will be performed using precipitation data simulated by several RCMs; 

this will a.llow ta determine which of the findings are inherent ta the downscaling tech­

nique and which are specifie ta a particular model. Datasets based on observations will 

also be analysed in arder ta highlight limitations of RCMs performance when possible 

as weil as ta indic:ate disagreements among observed datasets. The use of precipitation 

is justified because it is a variable that displays a wide range of temporal and spatial 

scales, and thus a variable that tends ta maximize the potential AV. It is also a key 

variable because sorne of the most important societal impacts of c1imate change will 

probably result from changes in precipitation (Trcnberth et al. 2003; Gutowski et al. 

2007). 

The paper is organized as follows. The next section discusses in more detail the 

issue of added value and the objectives of this article. Section 1.3 presents a brief 

description of the data used. Section 1.4 describes the method used ta analyze the 

dependence of the precipitation field on various temporal and spatial scales, together 

with the manner in which statistics are computed. Results are pre::;ented in section 1.5 
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with some general results of the method and specific results of the characterization of 

AV as function of several parameters. Some discussion of the results and conclusions is 

given in section 1.6. 

1.2 Added value issue 

1.2.1 General Characterization 

Figure 1.1 shows il diagram adapted from Orlanski (1975) and von Storch (2005) il­

lustrating the characteristic temporal and horizontal spatial scales of atmospheric pro­

cesses, together with the range of scales represented by climate models. Grey shadecl 

an~as are regions of dominant spectral power resulting from the composite of a broad 

l'ange of atmospheric variables. Due to the space and time truncation, numerical models 

can only resolve explicitly a part of the atmospheric processes; smaller scale phenomena 

are at best accounted fol' in an average sense through the subgrid-scale parameterisa­

tions. Differences between RCM- and GCM-resolved scales can be conceptually seen in 

Fig. 1.1 by comparing the areas boxed in by the blue and red solid lines. These boxes 

.. were constructed using as lower limit the· temporal and spatial intervals of discretiza­

tion, and as the upper limit the entire computational domain and length of simulations. 

For a typical RCM the lower limits are located roughly at 50 km and 5 min., and the 

upper limit at spatial scales of 10,000 km. For a standard GGM the lower limit is here 

taken as 300 km and 30 min., and the upper limit as 40,000 km. It should be noted 

that tirnestep and grid spacing of models only constitute a lower limit to temporal and 

spatial resolution (Pielke, 1991). 

Figure 1.1 highlights that the main potential advantage of an RCM over a GCM 

is related with the representation of spatial scales smaller than 300 km and/or temporal 

scales smaller than 30 min. that are ab::;ent in the GCMs. The enhanced horizontal 

resolution of an RGM implies sorne potential advantages compared to a lower resolution 

GCM: i) a more accurate discretization of equations; ii) a broader range of fine-spatial 

scales cxplicitly resolved; and iii) an implOvernent in the representation of surface forc­

ings such as topography, lakes; coastal regions and others. Figure 1.1 also shows that 

scales laI'ger than the RCM domain are not within the resolved scale interval of RClVI; 

hence planetary scales are only felt insofar as they are provided by the driving data 

through the LBC. 
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Figure 1.1 Characteristic temporal and horizontal spatial scales of atmospheric pro­
cesses (in grey) and the range of scales represented in RCMs (bine !ine) and GCMs 
(red !ine). Light- blue and red shaded regions represent AY:,s (called AVl) and AVIs 
(called AV2) respectively. Blue squares represent temporal and spatial scales of the 
data produced with the multi-resolution method. 

The original paradigm of the ne.sting technique is that RCl'vIs can be llsed as 

sophisticated magnifying glasses (MG) where the generated small scales accurately rep­

resent those that would Ge present in the driving data if they were not !imited by 

resolution (Laprise et al. 200S; hereafter referred as MG hypothesis). The idea behind 

this hypothesis is that an RCM can be llsed to represent small scales that would be 

present in a desirable but in practice unaffordable high- resolu tion GCM (HRGCM). 

The evaluation of the l'vIG hypothesis has been addressed without having to use ob­

served data, through a systematic approach devcloped by Denis et al. (2002): the Big 

Brother Experiment (BEE). In its idea.lized version, the BDE consists in comparing 

twohigh-resolution sirrllLlatioIls generated by using different configurations of the sarne 

model: a simulation conducted with a high-resolution global model (referred to as big 

brother) and a RCM simulation (referred to as little brother) l'un at the same re.solutioll 
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and with the same discretisation and parameterisation as the big brother, but forced 

by low-resolution LBCs derived from filtering out the big-brother simulated fine scales. 

The low-resolution data resulting from filtering mimics the situation when driving au 

RCM [rom GCM data. The use of the same model, run in different configurations wbile 

using the same physics, dynamics and numerics, permits to circumvent errors due to 

the model itself, through the BBE perfect model approach. As a consequence, the dif­

ferences between the little and the big brothers can be attributed solely to the nesting 

technique and to differences in LBCs due to the use of low-resolution data to drive the 

little brother. 

A low-cost version of the BBE was obtained by replacing the HRGCM by a 

very large domaiu high-resolution RCM; it was successfully used to show that the little 

brother tends to replicate the magnitude and spatial distribution of small-scale climate 

statistics present in the big brother, at least in mid-latitude climates (see Laprise et al. 

2008 and references therein). The BDE wa.<; a180 very useful to study the infiueuce of 

a variety of parameters in RCMs setup such as the impact of the size of the domain 

used to run the model (e.g., Leduc and Laprise 2009) and the impact of LBC errors 

(Diaconescu et al. 2007). 

1.2.2 Added value concept 

The evaluation of the MG hypothesis with the BBE does not depend on the model 

performance, i.e. models skill at reproducing the observed climate, which has definite 

advantages as discussed above; it has a1so its downside. Satisfying the MG hypothesis 

does not imply that the high-resolution RCM-derived statistics are closer to observed 

statistics than those that would be produced by a low-resolution GCIVI; hence the conclu­

sions are mute about whether RCM provide any real added value compared ta coarser 

resolution GClVI. Indeed, as discussed by several authors for both GGtvIs (Boer and 

Lazare 1988; Boville 1991; Boyle 1993) and RCMs (Giorgi and Marinucci 1996), higher 

resolution simulations do Ilot necessarily produce results closer to the observed values, in 

part because the approximations in models do not converge monotonically with resolu­

tion and the performance is strongly dependent on the behaviour of parameterizations. 

These days, the most popular parac.ligrn used to evaluate RCMs is through a 

pragmatic consideration about their usefulness, evaluating if RCMs are able to add value 

(AV) to, i.e. improve, the simulation of climate statistics compared to those produced by 

GCMs. The AV hypothesis has important differences compared to the MG hypothesis. 
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First, it introduces tlle necessity of using observed data in its validat.ion, thus inducing 

important constraints due to the scarceness of fine-scale observations and the limited 

number of variables (e.g., precipitation, temperature, surface pressure) available for 

validation. Second, the evaluation of the AV hypothesis implies the assessment of the 

performance of the RCM downscaling technique but also of the relative performance of 

the RCM and its driving data (i.e., the AV is model dependent). It is generally very 

difficult to determine if an improvement (degradation) of a given climate statistics cornes 

from advantages (disadvantages) of the RCM downscaling technique or because the 

RCM performed b€tter (worse) than the GCM; there may also be compensating errors 

between the driving data and the RCM that may result in apparent improvements, 

but for wrong reasons. From this vicwpoint, it seems that the only way of using the 

AV paradigm to ohtain sorne intril!sic characteristics of the clownscaling technique is 

through the use of a large ensemble of RCM-GCM pairs of simulations in arder ta 

extract common behaviours. 

In general, RCMs could simulate more realistic climate than the lower resolution 

driving data by adding value in two different ways. First by adding climate variability 

in scales that are Ilot explicitly resolved by GCMs, hereafter referrcd to as small-8cales 

added value (AVss ), as indicated by the light-bille shaclccl region in Fig. 1.1. A second 

way is by improvjng the simulation of climate in those scales that are common to both 

RCMs and GCMs, hereafter referred to as la'Tge-scales aclded value (A Vis), a.s indicated 

by the light-red snaded region in Fig. 1.1. The separation of AV in two components 

can be helpful because of the different methodological approach ncedecl ta assess bath 

large- and fine- scales AV components. The estimation of AV coming h'om the additional 

climate variability in scales only resolved in RCM simulations (AVs,) is ultimately an 

evaluation of the performance of RCMs to simulate small-scale variability. Ou the other 

hand, the evaluation of the improvements procluced by the RCM il! the range of scales 

resolved by both models (AVIs) can be donc by comparing resliits from the RCM and 

the GCM with JaJge-scale analyses of observations to determine which one produces 

better performance. This classification can be complernented with the one proposed by 

Castro et al. (2005) in which RCM dynarnical downscaling technique is separated into 

four distinct types according ta the LBCs used to drive the RCM, 

Due to the lirnitecl clomain size of RCMs, the lack of two-way interaction between 

the regional dOll1ain and the rest of the globe, and the lateral bounclary coudi tion 

issues, it is not clear whether RCMs actually improve or degracle the Im'ger scales; 

hence AVis has Hot been clearly identified ane! it is still a debatecl topic in the modelling 
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cornmunity (e.g., Laprise et al. 2008), although recent results indicate thilt there may 

be improvements under specifie circumstances (Yeljovic et al. 2010). In the following 

we will concentrate on AVss although it will be generally referred to as AY. 

1.2.3 Potential added value concept 

It is important to note that in sorne cases the absence of added value might be related 

to the failure of the assumptions from which AY is expected. For example, from Fig. 

1.1 it seems ciear that very little AY can be found when analyzing monthly-mean pre­

cipitation data in regions without important surface forcings because monthly scales 

are predominantly associated with large-spatial scales that are probably weil resolved 

by GCMs. A necessary condition for RCMs to produce AVss is that the contribution 

of the simulated fine-scale details on the ciimate statistics of interest is not negligible. 

That is, if the RCM does not produce any climatic information at small scales then, by 

defini tion, there is no AVss . 

The study of the relative contribution of fine scales in a given ciimate statistics 

has lead to the concept of potential added value (PAY) as discllssed in Bresson and 

Laprise (2009). The term potential in this definition accounts for the fact that the 

presence of small sca.les is not a sufficient condition to have AV%. A simple example 

is an RCM that generates small scales but with little resemblance between simulated 

and observed patterns or amplitude. Then, we can argue that the small scales are not 

skilflll and do not add any real value to the coarser GCM ciimate, even if they suggest 

a large PAY. Clearly however the presence of PAY in RCM simulations is a prerequisite 

for, although not a definite proof of, AVss ' 

In this article, a perfect-model approach was developed to study the PAY. The 

idea behind the PAV concept is that the high-resolution (e.g., 50-km grid spacing) 

precipitation field simulated by a RCM will be aggregated into a coarse-rcsolution (e.g., 

300-km grid spacing) in order to generate what we can call a virtllal GCM field. The 

important hypothesis behind this framework is that the virtual GCM can be interpreted 

to represent more or less the same statistics as thosp reslilting from a ciimate model 

operatinl?; at similar grid spacing. Evidcntly, a virtual GCM differs from a real GCM 

due to a number of reasons, among them that the virtual GCM fields are infiuenced 

through the upscaling of fine-scale processes that are resolved in the high-resolution 

RCM simulation but would be absent in a low-resolution GCM simulation. 
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Di Luca (2009) compared the statistics of extremes (e.g., 95th percentile) of a 

virtual GCM with those of a real GCM, for the precipitation as simulated by the Cana­

dian Global Climate Model (CGCM3) and the Canadian RCM (CnCM) driven by the 

CGCM3. The evaluation focused on time scales larger than a day and on spatial scales 

that are common to both models, i.e., the CRCM was aggregated at the CGCM3 res­

olution to generate virtual GCM datasets. Using as reference daily observational time 

series, the comparison showed that seasonal biases are of the same magnitude in the 

CGCM3 and the CRCM. Both models display also comparable skills to simulate the 

frequency and intensity of observed daily values, but the CGCM3 generally shows larger 

95th percentile vaInes. It is important to note that the performance of GCMs, under 

the assumption that model precipitation output represents an arcal mean (see Chen 

and Knutson 2008 for a detailed discussion), is evaluated using observations which are 

always made at finer spatial resolutions than the GCMs resolutiollS. This implies that 

GCMs are evalllated and sometimes calibrated using observed statistics that are similar 

in nature as virtual GCM statistics, containing for example the upscale of fine-scale 

pl'Ocesses that occnr in the rcal climate system. 

The aim of this study is to clevelop some simple measures to characterize the 

PAV of the precipitation field as simulated by a number of RCMs and as repre.sented 

in reanalyses and observations. The dcpendence of PAV on severa! parameters will be 

evaluated: the choice of the temporal scale of the data (rangillg l'rom 3-hourly to 16 

days means), the region (e.g., complex topography region versus fiat region), ancl the 

season (e.g., mostly convective in Sllmmer versus stratiform in wint.er precipitation). 

1.3 Data 

The potential added value as defined in the last section is dataset dependent. Four 

different but not independent sources of high-resolutioll precipitation data (HRD) are 

used in this study. RCM-simulations are used to evaluate the PAV suggestecl by models. 

One reanalysis and two gridded observed c1atnsets are used to estimate the PAV of 

changing resolution of data in the real c!imate system. Observed clatasets are morc 

reHable in the conterminous United States due to the higher clensity of stations compared 

to Canada and oceanic regions and, for this reason, the region of study is locatcd 

in continent.al United States. Particularly at fine temporal scales and over complex 

terrains, observed clatasets callnot be l'ully trusted and will not be considered as a 

ground trllth. 
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1.3.1 NARCCAP simulations 

The RCM simulations to be used in this study are those from the North American Re­

gional Climate Change Assessment Program (NARCAAP; http://www.narccap.ucar.edu/; 

Mearns et al. 2009). In NARCCAP, six RCMs were l'un with a horizontal grid spac­

ing of about 50 km over similar North American domains covering Canada, United 

States and most of Mexico, during the 25 years between 1980 and 2004. The RCM 

simulations to be used are those of contemporary c1imate using driving data derived 

from the National Centers for Environmental Prediction (NCEP) Department of En­

ergy (DOE) Atmospheric Model Intercomparison Project II (AMIP-II) global reanal­

ysis (R-2; Kanamitsu et al. 2002). Table 2.1 givcs the acronyms, full names and the 

modelling group of each RCM, togethel' with the number of grid points within the 

computational domain of each model available for the analysis and the map projection 

and the number of vertical levels. The computational clomain of the CRCM RCM is 

shown in Fig. 1.2 and a brief description of each NARCCAP RCM can be found at 

http://narccap.1.lcar.edu/data/rcm-characteristics.html. 

1.3.2 CPC griddecl precipitation 

An interesting source of high. spatial resolution precipitation data for daily and longer 

time scales is given by the gridded Climate Prediction Centers (CPC) product derived 

using stations l'rom the Unified Raingauge Database (URD) (Higgins et al. 2000). This 

dataset consists of daily analyses, gridded at 0.25° by 0.25°, from over 8000 stations 

each day covering the period 1948 - 1998 with no missing values. The dataset covers the 

domain 20°-60° N,140°-60° W over continental United States with an heterogeneous 

density of stations, higher in the eastern part of United States but with relatively good 

coverage in al! continental United States. 

1.3.3 UWash gricldecl precipitation 

This daily gridded precipitation dataset was obtained from the Surface Water Modeling 

group at the University of Washington (UWash) from their web site at 

http:j jwww.hydro.washington.edujLettenmaierjData/griddedj and is described by Mau­

rer et al. (2002). Within the coterminous United States, it uses daily totals of precipita­

tion from the National Oceanic and Atmospheric Administration Cooperative stations, 

a1so included in the URD database, to produce a 1j8° gridded dataset using the syner­



23 

Table 1.1 Acronyms, full names and modelling group of RCMs involved in the NAR­
CCAP project. Column 4 indicates the munber of grid points in each RCM. Column 5 
denotes the map projection and the number of vertical Icvels for each RCM. 

RCM Full Name Modelling Domain Map projection 
group (Ion x lat) N° of vertical 

levels 
CRCM Canadian Regional Climate Ouranos / 140 x 115 Polar 

Model (version 4.2.0) UQAM stereographie 
29 

ECPC Experimental Climate UC San Diego 123 x 104 Polar 
Prediction Center Scripps stereographie 

Regional Spectral Model 28 
HRM3 Hadley Regional Model Hadley Centre 155 x 130 Rotated 

(version 3) lat - Ion 
19 

MM51 MM5 - PSUfNCAR Iowa State 123 x 99 Lambert 
mesoscale model University conformaI 

23 
RCM3 Regional Climate Model UC 134 x 104 Mercator 

(version 3) Santa Cruz 18 
WRFP \iVeather Research and Pacifie Northwest 134 x 109 Lambert 

Forecasting model Nat! Lab conformaI 
35 

graphie mapping system algorithm of Shepard (1984). In order to better capture local 

variations due to complex terrain, each grid cell of the 1/8° gridded dataset is adjustcd 

using monthly-mean values computed with the parameter-eievatioll regressions on in­

dependent slopes model (PRISM). PRISM (for more details see Daly et al. 1994) is an 

analytical mode! that uses statistical relations between the observed precipitation and 

several topographical parameters (e.g., elevation, steepness of the terrain, orientation of 

the slope, and others) deIived from a digital eievatioll model (DEM) in ordf'r to provicle 

gridded precipitation products bettf'r adapted over elevated terrains where rain gauge 

data are sparse. The influence of PRISM has little effect on the acljusted precipitation 

in fiat regions and so UWash is expected to be similar to CPC in these regions. 

1.3.4 NARR reanalyses 

The North American Regional Reanalysis (NARR, 

http://wwlV.emc.ncep.Iloaa.gov/mmb/rreanl/index.html) is a product created at NCEP 
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that combines, in a dynamically consistent way, the simulated fields by the NCEP re­

gional Eta model (rvIesinger 2000) driven at its LBCs by the R-2 reanalysis, toget1ter 

with numerous additiona1 observed datasets through the use of the NCEP Data As­

similation System (Mesinger et al. 2006). NARR has a grid spacing of 32 km and 45 

layers in the vertical, and reanalysis fields are available every 3 hrs between 1979 and 

2003, over a large domain covering Canada, United States and Mexico. According to 

Mesinger et al. (2006), in addition to its higher resolution, one of the main advantages of 

these reanalyses is the assimilation of latent heating profiles derived from precipitation 

analyses (Lin et al. 1999). The precipitation dataset assimilated in NARR is a daily, 

1/8° analysis obtained by gridding rain gauge observations from the URD using the 

orographie adjustment technique PRISM already discussed (Mesinger et al. 2006). 

1.4 Methodology 

1.4.1 Multi-resolution approach 

To analyze the scale dependence of the above-described data, the multi-resolution (MR) 

approach is used. The MR method (see Mallat (1989) for details) has been used in 

several studies to analyze the temporal (Howell and IVIahrt 1997; Vickers and Mahrt 

2002) and spatial (Zepeda-Arce et al. 2000; Harris et al. 2001) variability of atmospheric 

variables. The MR method consists in the application of numerical filters in order 

to aggregate the original high-resolution tilOe-varying precipitation fields into lower­

resolution temporal and spatial scales. In both the temporal and spatial dimensions, 

the filtering is performed by aggregation of the original precipitation field into several 

lower resolution grids. A total of 5 spatial scales (~0.4°, 0.8°, 1.6°, 3.2° and 6.4°) 

and 8 temporal sca1es (ranging between 3 hours and 16 days) resolution datasets are 

considered. As it will be explained in detaillater, the dependence of several precipitation 

statistics on spatial scales will be lIsed to determine the relative importance of small 

scales and define variolls PAV quantities. 

1.4.1.1 Spatial scale analysis 

In this stlldy, a slig1ttly different version of the MR method of Mallat (1989) is developed 

by aggTegating the original HRD precipitation fields on sorne common lower resollition 

grid meshes. The precipitation aggregation is performed over severa1 resolution meshes 

occupying regions of 6.4° by 6.4° (i.e., about 550 km by 550 km at a latitude of 40°) as 
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a compromise bet,ween two opposing needs in relation to t.heir size: first, that. regions 

be large enough to estimate ciimate st.atistics at a range of spatial scales spanning the 

minimum resolved by CUITent GCMs, and second, that they be small enough to represent 

fairly homogeneous regions across North America in urder to analyze the dependcnce 

of resu\ts on different surface forcings. Figure 1.2 shows the seven regions selected for 

the analysis, together with the topography field as represcnted in t.he CRCM. In the 

following, n~gions are denot.ed by adrling to LON the wE'st.longit.ndc of their centre (c.g" 

the region centred on -118.0° of longitude is called LONI18), 

The finest scale of the MR analysis is done over grid rneshes with 0.4° of grid 

spacing, which was chosen such as to be finer than t.he griJ spacing of ail NARCCAP 

RCMs; on this scale the precipitat ion field is identical t.o that simulated by the RCM, 

ensuring that the full information of each RCM is retained. The number of RCM griJ 
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Figure 1.2 Complltational domain and topographic field as rcpresented in t.he CRCM 
together with the spf'cification of the seven regions of interest. Ail regions have the 
same dimensions (i,e., 6.4° by 6,4°). 
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points contributing to the aggregation at each scale depends on each RCM due to their 

specifie map projections and horizontal grid spacing. Table 3.2 shows the minimum and 

maximum number of grid points inside 6.4° by 6.4° regions (see Fig. 1.2) together with 

the mean grid spacing insicle each region for each HRD. 

NARR and CPC grid spacings are smaller than 0.4°. In those grid boxes with 

more than one NARR or CPC grid points, the 0.4° gricl spacing vaine is obtained simply 

by computing the aritllmetic area-average of the points every 3 hours. Hereafter, the 

finest scale will be clenoted as 0.4°, but it should be clear that for models it does 

represent the data at the original grid spacing of each NARCCAP RCM (i.e., in the 

range 0.44°-0.51°). As an example of the spatial distribution of grid points inside a 

region, Fig. 1.3a presents the location of CRCM grid points (blue squares) together 

with the O.4°-grid mesh (red crosses) ove1' the 6.4° by 6.4° LON1l8 region. 

The second scale next to the finest is obtained by aggregating the original precipitation 

field of each HRD over grid boxes defined by a grid mesh with a horizontal grid spacing 

of 0.8°. The upscaling at the 0.8° scale is made by simply computing, at each time 

interval, the average of an HRD-points inside each 0.8° grid box (i.e. by computing a 

simple arithmetic area-average value). As shown in Fig. 1.3b, grid boxes at the 0.8° 

scale contain a variable number of the original RCM grid points, that vary between 2 

and 4 in the case of the CRCM. 

In a similar \Vay, other spatial scales are calculatecl by aggregating the original 

precipi tation field over grid meshes characterizes by horizontal gricl spacings of 1.6°, 

3.2° and 6.4°, as illustrated in Fig. 1.3c, 1.3d and 1.3e, respectively. The 6.4° scale 

conesponcls to the coarser spatial scale and it is obtained by averaging, at each time 

Table 1.2 Minimum and maximum Humber of grid points and the corresponding effec­
tive grid spacing in the 6.4 by 6.4 regions of Fig. 1.2 for each high-resolution dataset. 

Numbrer of gricl points Effective grid spacing (0) 
min max min max 

CRCIVI 195 208 0.46 0.44 
ECPC 195 209 0.46 0.44 
HRM3 165 169 0.50 0.49 
MM51 145 154 0.53 0.52 
RCNI;) 159 167 0.51 0.50 
WRFP 145 1.54 0.53 0.52 
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step, the precipitatlon rate values of ail the RCM grid points inside the region (see Fig. 

1.3e) . 

Giorgi (2002) used a similar filtering approach to study the spatial-scale depen­

dence of interannual c1imate variability of temperature and precipitation over several 

regions around the Barth. Starting with a 0.5° grid spacing dataset, he cornputed a 

two-dimensional mnning spatial average at various spatial scales. 

1.4.1.2 Temporal scale analysis 

The temporal scale analysis is performed in a similar way as the spatial one. In this case, 

the finest temporalscale corresponds to the 3-hourly time series of ardüved precipitation 

for any given grid point. The second temporal scalc, the 6-h scale, is obtained by 

simply computing the arithmetic average between two consecutive 3-hourly data and 

thus reducing in a factor of two the total number of data in the time series. Similarly, 

six other temporal scales are defined. 

For each year between 1981 and 2000 (1998 for CPC griclded precipitation), we 

seledecl two subsets of 128 days in order to generate cold- and wann-season time series 

(a long season of 128 days was chosen in order to be able tü represent the amount 

of 3-hourly data as a power of 2). Cold season is defined by the four months between 

November and February and warm sea..c;on is clefinecl by those months between April and 

June. For these ]Jeriocls, a total of 19 cold seasons and 20 warm seasons are obtained. 

1.4.1.3 Spatiotemporal sr-ale analysis 

The spatial and temporal scale filtering are then appliecl simultaneously to each HRD 

in order to obtain a spatio-temporal multi-swle data.'3et composec! of a total of 40 (5 

spatial scales and 8 temporal scales) time-varying fields. For any given HRD, the multi­

scale dataset is denoted as Prn,m with index n, varying between 0 and 4, identifying the 

spatial scale and index m, varying between 0 and 7, denoting the t.emporal scales. As 

already mentiooed, the 5 spatial scales are associated with grid spacings of 0.4°, 0.8°, 

1.6°, 3.2° and 6.4°, and temporal scales vary from 3 h (m =0) to 384 h (m =7). Each 

dataset Prn,m is illustrated in Fig. 1.1 according to their minimum temporal and spatial 

scale. Filled bIlle squares denote those datasets with spatial grid spacings smaller than 

,,-,3.2° (,,-,275 km at 40° of latitude) that can only be representcd by standard RCMs. 

Datasets denoted with non-fi lied blue squares correspond to those with spatial scales 
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Figure 1.3 Location of the new grid points (red crosses) defined by upscaling the high 
resolution fields (blue dots) for spatial scales with grid spacings given by: (a) ~0.4° 

(original grid mesh), (b) 0.8°, (c) 1.6°. (d) ;~.2° and (e) 6.4°. Data con ~pond to the 
CRCM model for the LON1l8 region. Blue dots represent the grid points of the CRCM 
mode! in its original grid (similar ta red crosses for PrO,m) 
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larger or equal than 3.2° that can berepresented by both, RCMs and CCMs. 

1.4.2 Multi-scale statistics 

In order to compare results of the precipitation field at different resolutions, we will 

calculate a number of statistics over each region. 

•	 Crid point statistics (q~t ): for each time series Prn;m (red crosses in Fig. 1.3) 

at spatial scale n and temporal scale m, the corresponding temporal histograrns 

are calculated by partitioning the interval of possible wet evcnts outcomes into 

subsets of 0.1 mm/day width, and then divided by the total Humber of outcomes 

to obtain the frequency in each bin. 95th percentiles are then computed for each 

grid point frequency distribution. Wet events are defined herc as those events with 

a mean precipitation rate larger than 0.1 mm/clay (as clone in Lenderink et al. 

(2007)) . 

•	 Spatial-mean statistics (q~:n 95): for each spatial scale n, th(~ spatial-mean 95th 

percentiles computed by putting in the same histogram (poolillg) events from ail 

grid points in a given region and then computing the 95th percentile (similar to 

method 3 of quantiles computations in Déqué al\(\ Sornot (200t-l). 

•	 Spatial-maximum statistics (q~:~,95): in each region, the maximum value of the 

grid-point 95th percentile distribution at spatial scale n is taken. 

In this way, q~:n,95 constitutes a regional measure by reprcsellting the spatial­

mean statistics over any given 6.4° siùe region and q~;:r,95 a local rneasure at one grid 

point. Differences between the regional ancl local mea..<:;ures arise from the presence of 

spa.tial gradients in the temporal precipitation distributions. Several mechanisms can 

generate these gradients in instantaneous fields; when considering climatic statistics 

computed from 20-year data however, they are quite probably clue to the existence 

of stationary forcings. It should be noted that the spatial-mean quantity is roughly 

equivalent to what would be obtainecl by applying a Fourier transform at a simila.r 

wavenumber. 

In this paper results are presented only for the 95th percentile, but the analysis 

was conducted also for other qllantities and some of these results will be summarized in 

the next section. 
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1.5 Results 

1.5.1 Multiscale intensity-freqllency distributions 

The process of aggregating precipitation data in space (time) acts as a spatial (temporal) 

filter that tends ta smooth out the extremes in the spatial (temporal) distribution of 

any given field (time series), thus narrowing the intensity-frequency distribution. As a 

result, systematic changes are introduced in the original high-resolution precipitation 

field (time series) as it is upscaled into lower resolution fields (time series): 

•	 Local maximum values in the lower resolution dataset are always smaller than or 

eqllal to those in the original dataset. That is,-·higher-order percentiles (e.g., 95th 

percentile) tend to be smaller in the coarser resolution datasets than at higher 

resolution. 

•	 The absolute number of dry events (those events with precipitation rate smaller 

than 0.1 mm/day) tends to decreôse when the precipitation field is aggregated 

into lower resolution grid meshes. 

•	 Low and moderate precipitation rates tend to be more frequent in lower resolution 

datasets, cornpensating the dcficit in dry and heavier events. 

The general changes suggested in this three points can be illustrated by showing 

the spatial-mean intensity distributions in the NARR data aggregated at several tem­

poral and spatial n'lsolution (see Fig. 1.4). Results correspond to the LüN86 region 

but similar results are obtained in other regions (not shown). For 3-hourly data in 

cold (Fig. l.4a) and warm (Fig. 1.4b) seasons, dry events represent on the order of 

30-70% of the total events, with a laI'ger value in the high horizontal resolution dataset 

(70.5% in cold and 66.9% in warm season) compared to the coarser one (46.5% in cold 

and 32.3% in warm season). Low and moderate precipitation events (those oetween 0.1 

and 16 mm/day) are more freqllent in the aggTegated data at 6.40 grid spacing (42.8% 

in cold and 54.7% in warm season) compared to the 0.40 horizontal interval dataset 

(22.5% in cold and 20.5% in warm sea,c:on). Finally, 3-hourly events wiLh precipitation 

rates highcr than 64 mm/day show a relative frequency more than an order of magni­

tude larger in the 0.40 grid spacing than in the 6.40 data (0.38 versus 0.005% in cold 

and 0.57 versus 0.03% in warm seasons); that is, heavier precipitation events are more 

freqllent in high-resolution precipitation field (see Fig. l.4a and 1.4b). 
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A similar behaviour is found when computing intensity-freqllency distributions 

for several spatial resolution datas<:ts for l6-day curnulated periods (Fig. lAc and 

lAd). In this case, the temporal aggregation tends to filter out. the more extreme 

simulated precipitation (both the no-precipitation a.nd heavier evcuts), thus proclucing 

an increase in the relative frequency of low- to moderate-precipitation events for every 

spatial scale. As a result, clifferences in relative freqllencies uetween c1ifferent horizontal 

resolution c1atasets are strongly reducccl, showing that tirne averaging caIl limit the 

effect of changing the spatial resolution of the data. Neverthelf~ss, in both seasons, 

heavier precipitation events (those larger than 8 mm/day) arc more frequent in the 

higher resolution dataset. 
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Figure 1.4 LON86 spatial-mean intensity distributions of precipitation rate as simll­
lated by the NARR reanalysis for 3-hourly da.ta in (a) cold and (b) warm seasons and 
for l6-days data in (c) cold and (cl) warm seaSOllS. Colors are associated with 0.4° 
(red), 1.6° (green) and 604° (blue) spatial scales. Only freql1cncies greater tllan 0.01% 
arc shown. 
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The dissimilar sensitivity to changes in spatial resolution exhibited by different 

precipitation intensities has important implications in AV studies. It suggests that clif­

ferent statistics will show different potential for added value depending on which part 

of the distribution is sampled. That is, higher moments of the distribution (e.g., inten­

sity and frequency of heavier precipitation rate events) show a much larger sensitivity 

to changes in resolution than <.:entraI moments (e.g., low-moderate precipitation rate 

events). As already mentioned in section 1.4.2, we will use the 95th percentile of the 

wet-event distribution in order to assess the PAV for the several HRD. 

1.5.2 Regional (Spatial-mean) potential added value results 

Top panels in Fig. 1.5 show the spatial-mean 95th percentile (q~:~an,95' see section 1.4.2 

for computation details) of 3-homly precipitation over the region LüN86 as a function 

of spatial scales. Left and right panels show cold- and warm-season results, and the 

different curves represent percentiles as calClùated from NARR and NARCCAP-RCM 

simulations. In both seasons and independently of the HRD considered, there is an 

increase of the q;';;~an,95 value as the spatial resolution increases. Quantitative changes, 

however, are significantly different when considering different HRDs. For example, in 

cold season, the WRFP mode! suggests an increase of 28 mm/day in q~~an,95 between 

the 6.4° scale (",25 mm/day) and the 0.4° spatial scale (",53 mm/day). The CRCM 

model shows a change of only 8 mm/day between the same spatial scales ("'15 and ",23 

mm/day, respectively). It is also c!ear from Fig. 1.5 that differences between model 

estimations tend to be larger as the horizontal scale of the data decreases; that is, the 

model uncertainty associated with the estimation of q;';;~an,95 is higher as the horizontal 

resolution of the data increases. 

Fig. 1.5c and 1.5d show qmean,95 for 16-days precipitation datasets. In this case, 

differences between the q;';;;an,95 value in high- and low-resolution datasets are greatly 

reduced and the spatial-scale dependence of the q;';;;an 95 is very low. Differences between 

the several dataset estimations of the spatial-mean 95th percentile are somewhat less 

important than in the 3-hourly case, and the change of q;';;;an,95 between 0.4° and 6.4° 

seems to be quite similar in aH RCMs. 

The difference between small and large spatial scale c!imatic statistics can be 

highlighted by defining the P AV measure as 

PAVm _ a,m 3,m (1.1 )- qmean,95 - qmean,95' 
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where q~;~n,95 and q~:zn,95 represent the spa,tial-mean 95th percentile at temporal scale 

m and spatial grid spacings of approximately 0.4° and 3.20 respectively (i.e., a jump 

in resolution of around 8 (64) in the linear (quadratic) horizontal dimension). The 

PAVm quantity measures the difference between the representation of q;;;ean,95 at fine 

(i.e., RCMs) horizontal scale and its large-scale approximation at the temporal scale m. 

Assuming that the 3.20 spatial scale can be interpretecl as a good proxy of the statistics 

estimated from a GCM at 3.20 grid spacing, then PAVm can be used ta estimate the 

potential added value of a RCM over a GCM as diseussed in section 1.2.3. 

A near zero value of the PAV quanüty means that, for the quantity of interest 

(e.g., spatial-mean 95th percentile), the high-re$olution estimation does not add extra 

information over the coarse resolution one Analogously, P AV rv 0 can be iIlterpreted 
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as if the application of spatial filters in order to approximate the high-resolution pre­

cipitation field at lower resolutions doesnt filter out auy fine-scale variability. Sufficient 

conditions for PAV = 0 are given by a spatially uniform intensity-frequency distribution 

field or a field that only contains variability at scales larger than 3.2°. 

It should be clear, as was discussed in the introduction, that a non-zero value for 

PAV does not necessarily mean that the RCIvI is adding value, because the small-scale 

variability may not necessarily be skilful. That is, P AV 1- 0 is a necessary, but nat 

sufficient, condition for a high-resolution adding value to lower resolution fields. 

A relative measure of spatial-mean P Avm can also be obtained by defining 

PAvm q~:~n,95
rPAVm = 0 = 1- ---n--'----- (1.2),m O,m'

qmean,95 qmean,95 

so that 0 :::; r P AVm :::; 1. The r P Avm quantity evaluates the proportion of fiEe 

spatial scale 95th percentile (q~:n,95) that is not accounted by its large-scale paJt 

(q~:n,95)' Thus r P Avm 0 suggests that no fine-scale information is needed tacv 

determine q~:n,95' and r P Avm 1 means that q~r;an,95 is solely determined by thecv 

finecscale information. 

1.5.2.1 High temporal resolution data 

The improvement in the representation of surface forcings such as topography, lakes and 

coastal regions due to the higher resolution of RCMs compared to GCMs is expected to 

strongly influence the added value. A simple but partial assessment of this dependence 

can be performed by evaluating the PAV in regions with significantly different surfaCE 

conditions. We expect that the most important forcing is the topographie one, which is 

particularly relevant over western where relatively high values and large spatial gradients 

of the terrain height are found (see Fig. 1.2). It should be clear however that diflerences 

between regions are not limited to surface forcings but can also be relatecl with other 

stationary forcings such as the planetary-scale waves (e.g., summertime subsidence in 

the West Coast) or the moisture sources (e.g., Gulf ofIvIexico low-Ieveljet in the Great 

Plains). 

Figure 1.6 shows the 3-hourly PAV (top panels) and rPAV (bottom panels) as a 

function of regions (from west to east) for the spatial-mean 95th percentile (q~~an,95)' 

In cold season (see Fig. 1.6a), NARCCAP-RCMs show PAV values on the order of 12 
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mm/day with little variations between the regions, but showing some higher values in 

eastern regions (those regions to the east of LON98). Differences between RCM PAV 

estimations are on the order of ±5 mm/day (i.e., ,,-,50%) with slightly larger values 

over eastern regions. PAV values as estimated from the NARR dataset (black line) 

are also on the order of 12 mm/day, showing a large resemblance \Vith the NARCCAP 

ensemble-mean (grey line) latitudinal profile. 

In warm season (Fig. 1.6b), most RCMs show significant differences between 

eastern and western regions, with maximum valucs in LON92 and LON86 regions, and 

minimum values to the west of LON105. The maximum near central regions is probably 

due to a relative decrease of the influence of convective activity toward eastern regions. 

PAV values are on the order of 10 mm / clay in western regions and on the orcler of 25-30 

mm/day in eastern regions. Differenccs between RCM estimations are approximately 

±5 mm/clay (i.e., ,,-,50%) in western regions and ±15 mm/day (i.e., >50%) in eastern 

regions. In this season, the ECPC RCM shows much Im'ger values of PAV than other 

RCMs, particularly in western regions with va.lues 3 times larger than cvery other RCM, 

mainly due to much Im'ger values of q'~Lean,95 for fine spatial scak.s (not shown). It is 

also evident that in this season the NARR tends to produce the lowest PAV values for 

ail regions consideree\. In this c&;e, NAn.n.-Iow PAV va.lues are re!atee! with a tendency 

to procluce very low 95th percentile at fine spatial scales. 

Figures 1.6c and 1.6d show the 3-hourly rPAV measure as a function of regions 

for cold and warm season, respectively. NARCCAP ensemble-mean cole!-season values 

are on the order of 0.4, sugge::;ting that around 40% of the fine scale q.~'ean,95 cornes 

from fine-scale variability that is filterecl when spatially averaged. In warm season, the 

NARCCAP ensemble-mean value is on the order of O.G, showing that a larger part of the 

fine scale q'~ean,95 cornes from fine spatial scale variability. That is, in ail regions, warrn­

season rPAV values are higher than cole!-season values, showing that fine spatial scale 

va1'iability of precipitation is relatively more important in warm sea,c;on due to the finer 

scale of precipitation systems in Sllmmer (i,e., convection systems dominate) compared 

to winter (i.e., synoptic systems dominate). Again, in ail regions and particularly in the 

warm season, NARR tends to produce the lowest rPAV values of al! datasets with an 

average ove1' 1'egions of 0.3 and 0.4 in cold and wann seac;ons, respectively. 

Interesting changes in the regional behaviour are noted whclI analyzing the l'PAV 

measure. In both seasons, the ensemble-mean of rPAV shows higher values in western 

regions (0.45 in cold aIld 0.6 in warm seasons) compared to castern region (0.35 in 
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colel anel 0.5 in warm seasons). As a.lreaely stated, western regions are cha.racterized 

by more important surface forcings tha.n eastern regions anel so the larger rPAV values 

in western regions are probably induced by a fine-seule orogTaphic component. In the 

warm season, there is also a elecrease of rPAV from central to east regions maybe related 

with a relative decrease of the convective activity towards the Atlantic coast. 

Differences between rPAV values as estimated from the several RCMs are some­

what smaller compared to the PAV quantity, suggesting that absolute values can be very 

different but the scaling properties of precipitation are similar for the several models. 
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Figure 1.6 3-hourly regional PAV measure as a function of regions for the 95th per­
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1.5.2.2 Low temporal resolution data 

Figure 1.7 shows PAV (top panels) and rPAV (bottom panels) for the spatial-mean 95th 

percentile for the Hl-days temporal scale. In both seasons, differences between the 95th 

percentile at fine (q~:an,95) and large (q~:an,95) scales are much smaller than in the 

3-hourly case,' with PAV values generally smaller than 2 mm/day. 

Cold-season results show that there is a very good agreement, particularly in east­

em regions, betweell results produced by NARCCAP RCMs, NARR, CPC and UWash 

observations. In Viarm season and assuming that UWash observations represent the 

most reliable source of information, it seems that NARCCAP RCrvIs tend to produce 

a weak overestimation of the PAV quantity over western regions, with a large overes­

timation by the ECPC RCM. In eastern regions, NARCCAP RCi'vl values are in good 

agreement with tbose from CPC and UWash, with NARR data tcnding to produce a 

slight unc1erestimation compared to observed vaIlles. The underestilllation of NAM is 

also noted when studying daily data (l'lot shown), suggesting that the low values in the 

NARR over eastern regions at 3-hrs (Fig. 1.6b and 1.6d) are, at least partially, related 

with an underestimation of the potential AV of the NARR data. 

More inter€Sting is the behaviour of the rPAV llleasure (bottom panels in Fig. 

1.7). As for the absolute PAV measure, rPAV decreases significantly compared to the 

3-hourly vaIlles. ]11 both seasons, the rPAV ensemble-mean value decreases by a factor of 

",3-4 compared to the 3-hourly values (from 40 to 15% in cold sea.-;on and from 60 to 15% 

in warm season). This decrease is due to the fact that the application of the temporal 

filter induces a different change in high and low spatial resolution 95th percentiles. As 

shown in Fig. 1.5, the relative change of the fine spatial resolution q~ean,95 between 

3-hr and 16-day period (by a factor of 6 to 10) is much more important than the same 

change for the coarse-fCsolution q~ean,95 (by a factor of 3 only). 

The 16-days NARCCAP ensemble mean rPAV meac;ure still shows higher values 

in mountainous compared to non-mountainous regions, with valucs of 17% and 9%, 

respectively, for cold season, and 24% and 13%, respectively, for warm season. In the 

cold season, NARCCAP ensemble mean results are in very good agreement with those 

obtained using the observed datasets. In the warm season, however, CPC shows almost 

identical values of rPAV no matter the region considered, suggesting no clcar influence 

of surface forcings in this season. In contrast, UWash mean values over mOllntainous 

and non-mountainous regions are of 20% and 14% respectively, indicating that there is 
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sorne impact of surface forcings in agreement with NARCCAP mean results. Whereas aU 

datasets suggest similar values for the rPAV in non-mountainous regions, the differences 

between datasets arise in the representation of rPAV in mountainous regions. Given that 

the PRISM algorithm has exhibited a superior performance than other geostatistical 

methods in distributing point measurements of precipitation (see Daly et al. 1994), 

differences in mountainous regions may be interpreted as an underestimation of CPC 

rPAV compared to UWash data. The reasons ofthis underestimation are not weU known 

but could be related with a misrepresentation of stations in these regions. The CPC 

station density is highest in the eastern two-thirds of the United States with lowest 

values over western regions (Higgins et al., 2008) where the complex topography would 

demand for higher densities. 
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Figu e 1.7 As in Fig. 1.6 but for the 16-days regional PAV and rPAV mcasures. Reel 
and blue lines represent CPC and UWash results respectively. 
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1.5.3 Local (Spatial-maximum) potential added value results 

80 far, we have analyzecl a regional contribution to the overall PAV by computing the 

spatial-mean percentiles (q;:;:n,95)' In this section, wc present results obtained by using 

a more local measure of the fine spatial scale variability by computing the PAY quantity 

with q;:;~~,95 (see section 1.4.2). The use of the PAY measure comput,ecl l'rom q;:;~~,95 

coulcl be interpreted as an estimation of the m~'{imum value t,hat can be obtainecl l'rom 

RCM simulations by considering incliviclual gricl-point (i.e., local) rcsults over a given 

region. As was already stated, differences between q;:;~~n,95 and q;;;:,95 arise mainly 

due to the presence of horizontal structures of stationary forcings and so they shoulcl 

be more important in those rcgions with complex topography. 

1.5.3.1 High temporal resolution data 

Top panels in Fig. 1.8 show the 3-hourly q;~;:~,95 PAY for the clifferent models as a 

function of regions for colcl (Fig. 1.83) and warm (Fig. 1.8b) sea.sOl1..'3. In most of the 

regions, the PAY absolute values computecl l'rom q;;;'~~,95 are arouncl twice as large as in 

the spatial-mean case (q;:;:n 95) (see top panels in Fig. 1.6), wit.h the exception of the 

LON118 region that shows PAY values on the order of six times larger than in the mean 

case. In both seasons, cliffcrences between the several HRD estimations are somcwhat 

larger than in the mean case, with absolute differences of the order of ±25 mm/day. 

Bottom panels in Fig. 1.8 show the spatial-maximum rPAY for cold (Fig. 1.8<.:) 

and warm (Fig. 1.8d) seasons. rPAY values are also higher in the spatial-maximum case 

than in the spatial-mean case (see bottoIT! panels in Fig. 1.6), but c\ifferences are very 

dependent on the region and the season considerecl. In colcl season ancl mountainous 

regions, the NARCCAP ensemble-mean rPAY value is ,,-,40% for the regional measure 

and ",65% for the local measure. ror the same season and flatter regions, NARCCAP 

mean rPAY values are ,,-,30% and ",45% for the regional and local n10asures respectivcly. 

For the NARR dataset values are ",30% and "-'4:1% for the regional and local measures 

respectively. 

In the warm season, the NARCCAP mean rPAY values is ",70!)!i, ("-'60%) in moun­

tainous regions and ,,-,60% ("'55%) in non-mountainous regions for the local (regional) 

measure. In this season, much smaller values on the rPAY measure are present in the 

NARR dataset. As it will be clear in the next. ~ection when including in the analy­

sis CPC reslllts, differences between NARCCAP and NARR arise becallse NARR tend 
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Figure 1.8 As in Fig. 1.6 but for the 3-hourly local PAV and rPAV rneasures. 

to slightly underestimate rPAV values in both eastern and we~tern regions, and the 

NARCCAP ensemble-mean tends to overestimate rPAV values; particularly in western 

regions. 

1.5.3.2 Low temporal resolution data 

Figure 1.9 shows PAV (top panels) and rPAV (bottom panels) for the spatial-maximum 

95th percentile for the 16-day temporal scale. As in the spatial-mean case, PAV values 

are much smaller than in the 3-hourly case, generally smaller than 6 mm/day with the 

exception of western regions in cold season (see Fig. 1.9a). 

Interestingly, in bath seasons, q~:~~,95 rPAV results (Fig. 1.9c and 1.9d) show that 

the relative importance of small-scale features in western regions is quite well preserved 

after the temporal averaging, with a NARRCAP ensemble-rnean rPAV value of "-'55% 

(versus ,,-,65% in 3-hourly data) in cold season and of ,,-,60% (versus ,,-,70% in 3-hourly 
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Figure 1.9 As in Fig. 1.6 but for the 16-days local PAV and rPAV rneasures. Red and 
blue !ines represent CPC and UWash results respectively. 

data) in warm season. The fact that rPAV is barely sensitive to temporal average 

shows that locally the surface forcing component of rPAV (i.e., stationary forcings) in 

mountainous regions plays an important role. In regions with lower influence of surface 

forcings, a larger decrease ofrPAV is notcd when comparillg 3-hourly and 16-day spatial­

maximum values, with rPAV values near ~25% and ~45% (~30% ane! ~60%) for 16-day 

and 3-hourly data respectively in cold (warrn) season. 

To what extent the results obtained for the 95th perccntile can be extrapolated 

to other climate statistics? As mentioned, an analysis similar to this one was conducted 

for other climate statistics such as temporal mean, wet-events statistics and other per­

centiles. For examplc, the spatial mean of the temporal average is cOlJserved for changes 

in the spatial resolution of the data and so the PAV associated with this quantity is nil. 

However, the spatial maximum of the temporal rnean is !lot conserV(~d (i.e., locally, the 

rnean value can be different) and can be used to estilllate the associated PAV. Results 
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(not shown) suggest almost identical results as for the 95th percentile, with slight de­

cn~ase in rPAV values. That is, for local measures, the sensitivity of the temporal mean 

to changes in resolution tends to be similar to those found in high-order percentiles. 

1.6 Discussion 

The use of RCMs to dynamically downscale large-scale atmospherir: fields in present 

and future c1imate conditions has gained popularity during the last 20 years. There 

is still a need, however, to objectively quantify the added value obtained by the RCM 

downscaling technique. For example, specific knowledge about where and with respect 

to whir:h climate statistir:s R.CMs can produce more skilful results than GCMs con­

stitutes a very useful information for c1imate-scenarios users such as those performing 

impact and adaptation studies. Studies trying to validate the RCM downscaling tech­

nique are also essential to highlight the importance of developing RCMs and the use 

of its products instead of those coming from lower resolution GCMs in sorne particular 

applications. 

This article concentrated on the characterization of a necessary condition that 

RCM-simulated climate statistics must satisfy in order to generate sorne AV: that the 

c1imate statisti<:s of interest contain sorne fine spatial scale variability that is absent in 

coarser GCMs.· This prerequisite condition" and its dependence on several factors (sea­

sons, regions, etc) was assessed in the context of a perfect-model framework, designated 

as potential added value framework, that inc1udes: 

1.	 The multi-resolution (MR) method is used to aggregate to several spatial and tem­

poral scales the original high-resolution precipitation fields simulated by six RCMs 

(NARCCAP; Ivlearns et al. 2009) and as represented by a reanalysis (NARR; 

Mesinger et al 2006) and two observation gridded datasets (CPC, Higgins et al. 

2000; UWash, Ivlaurer et al. 2002). The MR method is particularly suitable for 

the precipitation variable due to its non-periodicity (both in time and space) , 

which allows performing a local analysis that cannot be done with, for example, 

Fourier-based procedures. 

2.	 95th percentiles are computed from each of the several datasets defined by the 

MR technique based on two different methods: one that estimates the spatial 

mean (regional) 95th percentile over a given region and a second that estimates 

the maximum (local) 95th percentile computed from individual grid points over a 
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given region. 

3.	 Potential added value (PAY) measures are then defined as the difference between 

95th percentiles estimated at large (GCM scale) and small (RCM scale) spatial 

scales for every high-resolution dataset. 

The methodology appeaTS to be robust to small changes in spatial scales and the location 

and size of regions. Several sensitivity tests were performed by slightly changing these 

three parameters and PAY values changes were on the arder of 5-10%, rarely exceeding 

15% in mountainous regions for longest temporal scales due to the lesser nllmber of 

data. In any case, rcgional and seasollal dependence of PAY measures remains the same 

aEter the slight changes in parameters. 

An overview of the results are summarized in Fig. L 10 for the regional (Fig. L lOa 

and 1.10b) and the local (Fig. LIOc and LlOd) rPAY measures. Reslilts are shown for 

the NARCCAP RCM enscmble-mean and for NARR, CPC and U\Vash datasets when 

available. NARCCAP ensemble error bars are estimated by llsing the standard deviation 

compllted from the ensemble of NARCCAP-RCM estimations. In general, reslilts tend 

to confirm sorne statemeuts generally ollthned with respect to the advantages of using 

high-resollition RCMs. For the regional meaSlll'e we obtain: 

•	 PAY is mllch higher for short temporal scales due ta the influence of transient 

forcings (e.g., convection) that tend ta be filtered out by the time-averaging pro­

cess. rPAY is 3-4 times larger in 3-hourly (see Fig. LlOa) data than in I6-day 

mean data (see Fig. 1.10b). 

•	 PAY i.e; higher in warm compared to cold season due to the larger fraction of 

precipitation falling from small-scalc systems (e.g., convection) in wann season 

(see Fig. 1.10a and 1.10b). 

•	 Regions of complex topography (i.e., western rcgions) induce an extra component 

of rPAY, no m,atter the season or the temporal scale considered. Its relative 

importance is larger for long-term mean qllantities and cold season due ta the 

relatively minor importance of transient PAY sources (see Fig. LIOa and LIüb). 

•	 Assurning that the UWash precipitation analysis constitlltes the most reliable 

estimation of the l'cal c1imate PAY, then the NARCCAP-RCMs enscmble-mean 

constitutes a very good approximation of the PAY measures with a slight overes­
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timation of PAV in warm seasoll and western regions. NARR tends to produce a 

slight underestimation of PAV values in warm season and in eastern regions. 

\Vhen assessing the local measure sorne differences appear: 

•	 No matter the region and season considerecl, there is an increase in rPAV values 

compared to the spatial mean rPAV estimations. 

•	 The relative importance of the orographie cornponent in the rPAV measure is 

larger than in the spatial mean case (see Fig. l.10c and l.10d), particularly for 

longer temporal scales. 
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Figure 1.10 Ensemble-mean values for the rPAV measure computecl from the regionaJ 
95th percentile for (a) 3-hourly and (b) I6-days data. Also shown is the local 95th 
percentile for (c) 3-hourly and (d) I6-days. Colors denote NARCCAP (grey squares), 
NARR (black crosses), CPC (red diamouds, when available) and UWash (blue triangles, 
when available) results. West and east designate the mean value obtained for regions 
to the west and east. of the -980 of longitude respectivel)'. Error bars are given by the 
standard deviation of the several NARCCAP-RCM estimations. 



45 

Results point out that the potential of RCMs to add some value can be very lirnited when 

considering time-averaged statistic~ for regional measures. For example, the spatial­

mean rPAY for 16-day means data is on the order of 10-15% for non-mountainous regions 

in both warm and cold seasons. The estimated PAY was derived from the precipitation 

field, a variable that is particularly characterized by a fiat power spectrum with a 

sizable variance in a wide range of spatial scales. PAY is expected to be less important 

for variables with a steeper power spectrum (e.g., geopotential height, temperature, sea 

level pressure), but this speculation remains to be confirmed and quantifieù. 
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Abstract 

Regional Climate Models (RCMs) have been developed in the last two decades in order 
to produce high-resolution climate information by downscaling Atmosphere-Ocean Gen­
eral Circulation Models (AOGCMs) simulations or analyses of observed data. A crucial 
evaluation of RClVIs worth is given by the assessment of the value added compared to 
the driving data. This evaluation is usual1y very complex due to the manifold circum­
stances that ean preclllde a fair assessment.. In order to circumvent these issues, here we 
limit ourselves to estimating the potential of RCMs to add value over coarse-resolution 
data. 'vVe do this by quantifying the importance of fine-scale RCIVI-resoived features in 
the near-surface temperature, but disregarding their skil!. The Reynolds decomposition 
technique is used to separate the variance of the t.ime-varying RCM-simulated tempera­
ture field according to the contribut.ion of large and srnal1 spatial scales and of stationary 
and transient processes. The temperature variance is then approximated by the contri­
bution of four terms, two of them associated with coarse-scales (e.g., corresponding to 
the scales that can be simulated by CGCMs) and two of them describing the original 
contribution of RCM simulations. Results show that the potential added value (PAV) 
emerges almost exclllsively in regions characterised by important surface forcings either 
due to the presence of fine-scale topography or land-water contrasts. Moreover, sorne 
of the processes leading to smal1-scale variability appear to be related with relatively 
simple mechanisms such as the distinct physical properties of the Earth surface and 
the general variation of temperature with altitude in the Earth atmosphere. Finally, 
the article includes orne reswts of the application of the PAV framework to the future 
temperature change signal due to anthropogenic greenhouse gasses. Here, contrary to 
previous studies cent.red on precipitation, findings suggest for surfa.ce temperature a 
relatively low potential of RCMs to add value over coarser resolution models, with the 
greatest potentiallocated in coastline regions due to the differential warming occurring 
in land and water surfaces. 

Keywords: regional climate mode!; temperature; surface forcings; potential acldcd value; 
variance decomposition. 
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2.1 Introduction 

Regional climate modelling consists of using time-dependent large-scale atmospheric 

fields and ocean surface boundary conditions to drive a high-resolution atmospheric 

model integrated over a limited-area domain (Giorgi et al. 2001). The models used 

for this purpose, usually called nested Regional Climate Models (RCMs), have been 

developed in order to simulate fine-scale clirnate processes and variability that cannot !Je 

resolved by lower resolution Atmosphere-Ocean General Circulation Modcls (AOGCMs) 

(Dickinson et al. 1989; Giorgi and Bates 1989). A major motivation in their development 

was, and still is, the need of detailed c1imate information at regiomd, and even local 

scales, in order to assess the possible impacts of climate changes in t.he next decades. 

Most state-of-the-art RCMs include a land surface model representing mass, mo­

rnent.um and energy exchanges between the land surface and the atmosphere. Some 

of them are also coupled with other components of the climate s:ystcm such as lakes, 

vegetation and ocean. Atmospheric variables (winds, temperature, pressure and wa­

ter vapour) at the lateral boundaries and sea surface temperatures (SSTs) and sea ice 

(SI) concentrations at the surface bounclaries are either derived frolll coarse-resolution 

AOGCMs or the analyses of observations (reanalyses). Actua! horizontal grid spacing 

used to nm mult.i-decadal RCM simulations varies bet.ween 10-50 km (e.g., Giorgi et al. 

2009) thus implying a jump in resolution of 2 to 10 compared to AOGCMs. For a de­

tailed discussion about technical issues related with the nesting RCJ\l technique and its 

potential merits and limitations, readers rnay refer to one of the several review articles 

than have been published (Giorgi and Mearns 1991; Wang et al. 2004; Laprise et al. 

2008; Rummukainen 2010). 

A crucial element in the development of uny numerical mocle! trying to describe 

some aspect of the natura! world is its evaluation. That is, in order to quantify how 

reliable a numerical model is and how confident we can be about its simulations and 

forecast, model results shoulcl be compared with observations in the real worle! (Randall 

et al. 2007). For instance, the evaluation of AOGCIVls generally proceec! by testing their 

ability to sirnulate the climate statistics of the recent pasto A similar approach can, in 

principle, be llsed to test the behaviour of RCMs assuming that. high-resollltion reliable 

observations are available (sec Prommel el al. (2010) and referenccs therein). 

Howevcr, becallse RCMs are Hot self-wntainecl tools for clill1ate simulation (i.e., 

they need boundary conditions l'rom other models or historical analyses), their evailla­
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tion must also consider a comparison against the driving data. That is, as pointed out 

by Prommel et al. (2010), the key question in RCMs evaluation is not simply whether 

the RCM-sirnulated climate compares well with the observed climate, but whether the 

RCM-simulated climate constitutes a better approximation of the observed climate, at 

least for sorne particular aspect, than the driving data., i.e., if the RCM produces some 

added value (AV) over the driving data. 

Various articles have been published about the AV issue in the last years (see, for 

example, Prommel et al. (2010), Di Luca et al. (2011a), Feser et al. (2011) and references 

therein). Several conclusions can bc drawn from the existing literature about AV. First, 

that RCMs do not seem to add value to the driving data in a consistent and systemat.ic 

way, but rather suggest that the generation of AV is conditional to a number of factors 

such as the variable and the climatic statistics of interest, the specifie performance of 

an RCM and the driving data used in the comparison, the characteristics of the region, 

etc. 

An example that illustrates this assertion can be taken from the study ofPrommel 

et al. (2010). They evaluated the added value in the 2-m temperature field as sim\!­

lated by the REMO RCM compared to the driving European Centre for Medium-Range 

Weather Forecasts 40-years reanalysis (ERA40) by using a dense station dataset over 

the Greater Alpine Region (DAR, OO-20oE and 400 -500 N). Temporal correlations be­

tween observed and ERA40 monthly-mean time series are generally slightly higher than 

between observations and REMO in most of the GAR with only the exception of the 

more complex topography subregions where REMO shows higher correlations. vVhen 

looking at 2-m temperature l'Oot mean square error, results showed that REMO tends 

to slightly outperform ERA40 in regions of complex topography but showing little im­

pl'Ovcment or even degrauation of results in flatter subregions surrounding the Alps, 

particularly during the summer season. Bence, the question is still open regarding in 

which particular cases (i.e., where, when, for which metric, etc.) an RCIvI will produce 

an impl'Ovement in the representation of the climate compared to the driving data. 

A second point is that most of the articles concentrate on an individual pair of 

RCM results and driving data, thus preciuding the generalisation of results. Particularly, 

AV results derived from a single pair of RCM-GCM could be strongly dependent on the 

c1imate models themselves, reflecting differences due to the models' performance instead 

of general conclusions about the advantages/clisadvantages of the RCM technique. 

As notecl by Feser et al. (2011), most AV studies are basecl on the comparison 
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between RCMs output and Lhcir driving data. The AV arising l'rom this kind of analysis 

can be considered as a minimum requirement to justify the addit.ional cornputational 

effort of RCMs simulations. As pointed out by Laprise et al. (2002), a more complete 

evaluation of RCMs should be done also in terms of their improvernents comparec\ to 

other statistical and/or empirical downscaling method, generally more affordable and 

cheaper in terms of computational resources. 

With the aim of contributing to the discussion about AV issues, Di Luca et al. 

(2011a) developed a framework nicknamed potential addcd value (PAV) based on the 

assumption that RCMs can add value in srnall scales if and only if they add variance 

al. these fine scales. This methodology is weil suited al. c!arifying t.he sources of added 

value in small scales, although the switch from AV to PAV is not. without drawbacks. 

In particular, tItis framework was used to evaluate t.he potential of RCMs to add value 

in a variety of precipitation climate statistics using an ensemble of RCM simulations. 

The objective of the present article is threefold: first, to dcscribe a modified 

version of the PAV framework and a new set of statistics particularly useful for the study 

of the PAV in near-surface temperature; second, to apply this met,hodology in order to 

point out which seasons and regions of North America could bencfit l'rom dynamical 

downscalillg of present clinuLte; third, to bricfly diseuss the differcllce betwccll added 

value in present climate and in the c!imate-change signal. We arc awarc that, while 

near-surface temperature is a key variable because il. is widely used in c!imate studies 

and in climate change projections, il. is not necessarily the best variable to assess the 

benefits of using high-resolution climate models. Indication about the PAV associated 

with l.emperature statistir.s, however, can be of great interest to those using il. in climate 

and climate change studies. 

The paper is strucwred as follows. The next section presents a brief description 

of the data used. Sect. 2.3 describes the general framcwork llseù ta evaluate the 

PAV together with the variance clecomposition llsed to separate large- and fine-scale 

contributions. Sect. 2.4 presents l.emperature results separated in three parts: the 

potential added value in present climate simulations, some discussion of the c:omplexity 

of this AV, and the PAV in the temperature climate-change signal for future projections. 

Lastly, concluding remarks are given in Sect. 2.5. 
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2.2 Data 

The RCM simulations used in this study were provided by the North American Regional 

Climate Change Assessment Program (NARCCAP; http://www.narccap.ucar.edu/; 

Mearns et al 2009). In NARCCAP, six RCMs were run with a horizontal grid spacing 

of about 50 km over similar North American domains covering Canada, United States 

and most of Mexico. Acronyms, full names and a reference, and the modelling group of 

each RCM are prescntcd, respectively, in the first three columns in Table 2.1. 

The NARCCAP experiments include simulations of contemporary climate using 

lateral boundary conditions (LBCs) derived from the National Centers for Environmen­

tal Prediction (NCEP) Department of Encrgy (DOE) gloual reanalysis (Kanamitsu et al. 

2002) for the 25-year period between 1980 and 2004. NARCCAP also comprises RCM 

simulations driven at the lateral and lower boundary conditions by AOGCM simulations 

for present (1971 - 2000) and future climate (2041 - 2070) using the A2 scenario (Mearns 

et al. 2009). Four AOGCMs are used to drive the RCMs: the Canadian Global Cli­

mate Model version 3 (CGCM3, Flato and Boer 2001), the NCAR Community Climate 

Model version 3 (CCSM3, Collins et al. 2006), the Geophysical Fluid Dynamics Labora­

tory Climate Model version 2.1 (GFDL, GFDL Global Atmospheric Model Development 

Team 2004]) and the United Kingdom Hadley Centre Coupled Climate Model version 

3 (HadCM3, Gordon et al 2000). The fourth column in Table 2.1 provides the LBCs 

used to drive each nCM. A total of 6 RCM-AOGCr'vl pairs are used here to analyze the 

climate change signal, with two RCMs (CRCM and RCM3) driven by two AOGCMs 

and two RCMs (WRFG and HRM3) driven by only one AOGCM. 

For each RCM simulation, several 3-hourly variables are available in their orig­

inal map projection; but in this article we will concentrate only on 2-m temperature. 

Reanalysis driven RCM simulations use AMIP II sea surface tcmperature (SST) and 

sea ice (SI) concentration observations as lower boundary conditions (Kanamitsu et al. 

2002). AOGCM driven RCM simulations use SST and SI from the Aocmd data. In 

both reanalysis- and AOGClVI-driven simulations, SST and SI surface boundary con­

ditions are updated every 6 hours by using a lincar interpolation between consecutive 

monthly-mean values. Similarly, boundary conditions are interpolated from the low 

resolution to the ,,-,50-km grid meshes by using a linear interpolation in the horizontal. 
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Table 2.1 Acronyms, full names (reference) and modelling group of RCMs involved in 
the NARCCAP project. Column 4 indicates the LBCs used to drive each RCM. 

RCM Full Name Modelling LBCs 
(Reference) group 

CRCM Canadian Regional Climate Ouranos / NCEP-DOE 
Model (version 4.2.0) UQAM CGCM3 

(Caya and Laprise 1999) CCSM 
ECP2 Experimental Climate UC San Diego NCEP-DOE 

Prediction Center Scripps 
Regional Spectral Model 

(Juang et al. 1997) 
RRM3 Radley Regional Model Radley Centre NCEP-DüE 

(version 3) HadCM3 
(Jones et al. 2004) 

MM51 MM5 - PSU/NCAR Iowa State NCEP 
mesoscale model University CCSM 

(Greil and Stauffer 1993) 
RCM3 Regional Climate Model University of NCEP-DOE 

(version 3) of California at GFDL 
(Giorgi et al. 1993) Santa Cruz CGCM3 

WRFG Weather Researdl and Pacifie Northwest NCEP-DOE 
Forecasting model National Laboratory CCSM 
(Leung et al. 2005) 

2.3 Methodology 

2.3.1 Potential added value framework 

The general eonceptual framework used to study the PAV in the ternperature field sim­

ulated by an ensemble of RelVls is described in Di Luea et al. (2011a); but in the present 

work some import.ant methodological modifications are introduced. In that article, two 

types of AV were defined according to the spat.ial scales in which the AV would be pro­

duced. Small-seales AV (AVss ) refers to tllOse RCM improvernents occurring in scales 

that. are not explieitly resolved by the driving data. Large-scales AV (AVis) denotes 

improvernents in those scales that are common to both RCMs anù the lower resollltion 

driving data. 

Given that the main objective of RCMs is tn aùd fine-scale features t.o t.he 

coarser AOGCMs, there is a general consensus in the RCM community (e.g., Feser 
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2006, Prommel et al. 2010) that the primary G\dded value of RCMs is related with AVss ' 

Much less agreement exists about whether or not RCMs can generate AV at large scales. 

Although sorne authors (e.g., Mesinger et al. (2002) and Veljovic et al. (2010)) sustain 

a potentia.l improvement of large-scale features through the use of RCMs, a large part 

of the RCM community (e.g., Castro et al. (2005) and Laprise et al. (2008)) seems to 

promote the use of large-scale nudging thus reducing large-scale differences between the 

RCM and the driving data. 

As in Di Luca et al. (2011a), the experimental design used here to study the PAV 

is explicitly conceived tü investigate AVss , that is, whether RCMs can add value in small 

scales. Since no attempt will be made here to identify AVis, the failure of a given RCM 

to potentially gcnerate AVss should not be taken to imply that the RCM is incapable 

of producing sorne AV through AVis. 

The PAV framework is based on the idea that a prerequisite condition for an RCM 

tü produce AVss is that the RCM must be able to generat.e non-negligible variability in 

spatial scales finer than the smallest scale represented by the lower resolution driving 

data (i.e., fine scales). The contribution of fine-scale processes in the description of a 

given c1imate statistics can then be used to quantify the PAV of a given RCM simulation. 

The terrn potential in this definition accounts for the fact that the presence of small 

scales is not a sufficient condition to have AVss because RCM-simulated fine sca.les may 

not necessarily resemble the observed ones. 

Instead of directly comparing RCNI ~imulations and driving data statistics, a 

perfect-model approach is used here to determine the relative importance of fine-scale 

features. It is assumed that the statistics of the driving data can be approximated by 

aggregating the high-resolutiün (e.g., ,,-,50-km grid spacing) field simulated by an RCM 

into a coarse grid mesh with an horizontal spacing similar to that used by the driving 

reanalysis or model. That is, we consider that a high-resolution field upscaled into 

a 300-km grid (i.e., a jump in resolution of around 6 in the linear horizontal dimen­

sion compared to RCMs) generates what we call a virtual GCM (VGCM) field whose 

statistics behave as thüse from a real GCM (i.e., as a model with 300-km grid spacing). 

Differences between an RCM and its corresponding VGCM can be expressed 

uSillg the Reynolds decomposition technique (Stull 1988). Let us consider an RCM­

simulated time-varying field Ti,k> with index i identifying the spatial dimension and 

k the temporal dimension, within 300-km side regions containing about 36 RCM grid 

points. By applying Reynolds decümposition we can separate the quantity T;.,k in its 
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spatial average and fluctuations arouud this average as follows, 

(2.1 ) 

where (Tk) is the 300-km s}latial average temperature, at each t.ime st.ep, representing 

a low-resolut.ion version of the RCM (i.e., the virtual GCM time series), and T* i,k 

represent.s the time series departures of the 50-km grid spaciug field from the 300-km 

average field. Figure 2.1a shows the location of MM51 RCM grid point.s in its original 

grid mesh (blue light squares) and the resulting VGCM grid point (black cross) in an 

individual region centred on -118.3° of longitude and 32.8° of latitude. 

In a similar way as done with the spatial dimension of t.he T;.,k field, Reynolds 

decomposition can be applied over the temporal dimension of both terms in Eq. (2.1) 

to obtain, 

Ti,k = (T) + (Tk)' Yi " +T*'i,k> (2.2) 

with (T) the spatio--temporal mean, (Tk)' the temporal fluctuation of the spatial meall, 

Ti * the temporal mean of spatial deviations and T*;',k the spatio-tenlporal fiuctuations of 

temperature. The Reynokls decomposition is performed in each individual VGCM grid 

box and 50 the spatial av€raged is computed over 300-km side regions. Time-averaged 

values are computed using 20 (19) summer (wint.er) 3-hourly time series betweell 1981 

and 2000. Wint.er season is defined as the three month5 betwcell December and February 
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Figure 2.1 a) Individu~l 300-krn side region centred on -118.3° of longit.ude and 32.8° 
of latitude and b) the 288 regions use in t.he analysis. The total domain of analysis is 
cornmon to ail 6 RCM domains and each sub region has the same dimeusions (i.e., 300 
km by 300 km). 
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and summer season is defined by the rnonths between June and August. 

2.3.2 Variance decomposition analysis and PAV quantities 

By using properties of the variance operator and assuming that the temporal fluctuations 

of the spatial mean are indepeudent of the spatio-temporal fluctutations (see Appendix 

2.A for more details), the variance of Eq. (2.2) can be expressed as, 

a2 = Var(Ti,k)	 = V ar( (Tk)' + Ti* + T;,k */) 

~ V ar( m,J') + Var(Ti*) + Var(Ti,k '/) 

,...., 2 +	 2 + 2 
,...., atVGCAh asRCAIi atRCMi,k'	 (2.3) 

with atVCCNh denoting the temporal variance of the spatia1-mean term, a;RCM, the 

spatial variance of the RCM time-averaged temperature in each VGCM grid box and 

aZRCM, k the variance of the residual fluctuations. The approximation in Eq. (2.3) 

results 'from the assumption that the covariance term between (Tk)' and T*;,k is much 

smaller than the other contributions. In practice, when applied to temperature, the 

covariance term is at least one order of magnitude smaller than the sum of the RCM 

variance contributions (not shown). 

The term aZVGCM is assumed to represent what a low-resolution GCM can pro­
k 

duce. The others two terms are the stationary (a;ncM) and transient (atRCM ) com­
t.	 1"k 

ponents of the RCM original contributions to the total variance. They represent the 

PAV of the RCM over the virtual GCM: 

(2.4) 

A negligible value of the PAV quantity would suggest that the total variance is not 

affected by the high-resolution information but completely determined by its low res­

olution part. A normalized form of Eq. (2.4) can be defincd in order to quantify the 

relative influence of RCM components in the total variance: 

(2.5) 

with rP AV varying between a and 1, thus allowing for a more proper comparison of 

PAV results across different regions and seasons. Again, rPAV '" a would suggest 

that no RCM information is needed to determine the total variance in that region, 
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while r P AV '" 1 would mean that ail the variance comes solely from the fine-scale 

information simulatecl by the RCM with no influence from the VGCM tei·m. 

In order to evaluate the regional dependence of PAV quantities, the variance 

analysis is performed over 300-km side, non-overlaped, regions that are common to ail 

RCM domains (see Fig. 2.1b). The VGCM grid rnesh contains a tot.al of 288 such grid 

boxes. The number of RCJVI grid points inside any given VGCM grid box depends on 

the specifie map projection and the horizontal grid spacing of each RCM. For example, 

WRFG and MM51 have 36 grid points in every region at ail latitudes because they 

use a 50-km Lambert conformaI projection that conserves the distance between two 

consecutive grid points. ECP2 and CRCM models' rcgions contain Cl varying number of 

grid points with a minimum of 25 and a maximum of 66 in t.he llorthern and sOllthern 

parts of the domah respectively. 

In this paper results are showed only for the variance decornposition of the 3­

hourly RCM time series, but the analysis was conducted abo for daily and 16-day time 

series. 

2.4 Results 

2.4.1 PAV in ClJrrent climate 

Figure 2.2 shows the RCM ensemble-mean t.otal variance of the t.emperature field in 

winter season together with the three terrns derived lIsing Reynolds decornposit.ion as 

explained in Sect. 2.3.2. Ensemble-mean variallcc tenns are obtained by simply Cülll­

puting the arithmetic average ove1' each variance term in Eq. (2.:3) as estimated From 

the individual ReMs. For exarnple, in order to get t.he ensemble-mean of the aZvecNh 

term, we computecl aZVGCM for each RCM simulation and then uw:raged over the six 
k 

R.CM variance estimat.ions. 

The ensemble-mean total variance term (sec Fig. 2.2a) shows values between ",2 

K 2 ("'1 K as standard deviation), in some subtropical oceanic regions, and ",130 K 2 

('" Il K) in continental and high-Iatitude regions wit.h a domain average of 54 K 2 . As 

is dear by cümparing Fig. 2.2a and 2.2b, most of t.he temperature variance is generated 

by the ternporôl fluctuation of the spatial-mean terrn (i.e., the tVGCM t.enn). The 

tVGClv! term is influenced by a wide range of processes with time scalps larger than 

3 hours and up tü d(-:cadal variability. Inspection of variance tcrms resulting from the 
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Figure 2.2 Ensemble-mean variance decomposition applied to the 3-hourly temperature 
field in winter sea.c;on for (a) the total varianr.e, (b) the virtual GCM variance, (c) the 
RCM stationary variance aud (d) the RCM transient variance. 

analysis of daily and Hi-day timc series (not shown) suggests that the general spatial 

pattern of variability seen in Fig. 2.2a and 2.2b is largely induced by intraseasonal 

and interannual variability, together with the influence of sub-daily (particularly in the 

south part of the dornain) and synoptic (particularly in the north) variability. 

It is also clear in Fig. 2.2a that 2-m temperature shows weak temporal variability 

over oceanic regions with values gencrally smaller than 10 K 2 due to the relatively 

weak temporal and spatial variability of SSTs, compounded 1.>y the fact that SSTs are 

updated only on a monthly basis in NARCCAP RCM simulations. 

Figures 2.3a, 2.3b and 2.3c show an 8-day period of the tVGCj\lh time series 

in JanuaTY of 1981 for three different regions located in the West Coast (centred on 
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-118.3° of longitude and 32.8° of latitude), the Rocky Mountains (centred on -106.1° of 

longitude and 40.3° of latitude) and in northern Canada (centred on -127.3° of longitude 

and 59.9° of latitude). Ali three regions are designated with black squares in Fig. 2.1b. 

Because most gTid points in the West Coast region are water grid points, this region 

shows relatively weak temporal variability, mainly dominated by tlw land diurnal cycle 

(at least in the first 6 days). The other two regions show stronger c1ay-to-day variability 

(they contain only land grid points), mainly related with the passage of synoptic-scale 

systems. 

Figures 2.2c and 2.2d show the ensemble-meall ternperature spatial variances of 

the temporal mean (i.e., IJ;RCM stationary term) and the spatio-temporal fluctuation 
k 

(i.e., IJZRCM transient term) terms in winter season (note t.hat. the colom scale is
,.k 

different from Fig. 2.2a and 2.2b). Both terms are of the same order of magnitude, 

with domain-average variances of about 4 K 2 , but spatial patterns show significant 

differences. 

The ensemble-mean spatial variance of the RCM stationary lerm tends to rnax­

imize in regions where the topographie and/or the land-water contrast forcings are 

important. The topographie forcing creates stationary temperature differences across 

grid points mainly due to the general variatioll of lllean temperature with altitude. 

A more detailed example of the topographie source of stationary variance is given in 

Fig. 2.3e (see central United States black square in Fig. 2.1b). This figure shows the 

winter-season 20-year time-averaged temperature in MM.5r grid points inside the Rocky 

Mountains' region characterised by significant fine-scale topography. The altitude effect 

induces mean horizontal temperature gradients of the order of 10 K / 2.50 km that H'$ult 

in relative large IJ;RCi\lr, values of the order of 8 K 2 

Land-sea contrast also induces stationary temperat.ure gradients simply because 

the time-averaged temperature in sea/lakes can be different from t.he mean temperature 

over land surfaces. Figure 2.3d sbows the winter-season temporal-mcan temperature in 

MM51 grid points for the region located in the West Coast (sec southernmost black 

square in Fig. 2.1b). Relatively large values of o;RCM, appcar in this region due to tlle 

differences between the wann temperatures in MM51 grid points located over the Pacifie 

Ocean and those grid points in the calder land. This effect is even more pronounced in 

some regions located along the East Coast due to the stronger land-sea contrast induced 

by the warmer SSTs over the Gulf Stream (see Fig. 2.2c). 

Figure 2.4 shows the fine-scale stationary variance term for each RClVI in winter 
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Figure 2.3 8-day period spatial-mean time series (VGCM term; top panels), 20-years 
tirne-averaged 2-m temperature (sRCM term; middle panels) and 8-day period fine-scale 
transient terril (tRCM term; bottom panels) in winter season. Left panels correspond to 
a region loeated the in the West Coast of United States; centre panels correspond to a 
region with important topographie forcing, and right. panels correspond ta a fiat region 
in northern Canada. Reslllts correspond to the MM51 RCM and the several lines in 
bottom panels represent the 2-m tcmperature evolution in individual grid points with 
colours given by the colorbar scale in middle panels. All three regions are are shown in 
Fig. 2.1b. 

season. The more important inter-model difl'erences appear over the Great Lakes, the 

HudsOll Bay and the Labrador Sea. The absence of continental contrast in the RCM3 

stationary term (see Fig. 2.4e) simply results from its land-sea mask that dnes not 

contain any lake. In sorne regions (e.g., Great Lakes), differences across RCMs appear 

to be related with differences in the land-water fraction masks used by each RCM (see 
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Appendix 2.B for more details). In other regions (e.g., Labrador Sea), differences aeross 

RCMs seern to be related with more fundamental aspects such as the representation of 

latent and sensible heat fluxesin each RCM, 

Over oceanic and relatively fiat regions (in the central ea.stern part of United 

States and rnost of Canada), the variance of the fine-scale stationary terrn is very small, 

with values smaller thcm 1 K 2 . The MM5I RCM tirne-averaged Icmperatnre field ill 

the region located in northern Canada (see Fig. 2.:3f) shows that, in fiat colltincntal 

regions, horizontal temperat.ure gradients are weaker than in mouIltaillons or coastal 

regions with a south-north gradient of about 5 K / 400 km duc to the gClleral increase 

of temperature to the Equat.or (note tlwt the scale range is the salIlt' in Fig. 2,3d, 2,3e 

and 2,3f). Interestingly, val \les laI'ger than 1 ](2 appear in sorne OCCctllic regions near the 

East Coast of US and CcUlada, a featme that arises ill the eIlscl1lbl\~-meall variaucc (sec 

Fig. 2.2c) and in indiviclllal RCI\lI simll1ations (see Fig, 2.4). This sigIlatllJ'(~ is related 

with the strong stationary SST gradients across the Gulf Stream in thcse latitudes since 

al! RCMs share the sallie SSTs, wi th changes in the time-averaged tClfl peratllrc of <\bou t 

10 K / 300 km in sorne of these regions. 

(a.) CRCM-NCEP (b) MM51-NCEP (c) ECP2-NCEP 
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Figure 2.4 RCM st.at.ionalY variance term computcd from inclividual RCM simulat,ions 
in wint.er season. 
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The ensemble-mean variance of the RCM transient term is shown in Fig. 2.2d and 

individual RCM transient tenns are shown in Fig. 2.5. In general, several mechanisms 

can procluce transient PAV. By its definition, there will be sorne transient PAV if there 

exists 50-km spatial differences in the temporal variability of the 2-m temperature. The 

comparison of the transient term variance derived using 3-hourly and daily time series 

shows that, partieularly in the southern part of the domain, most transient variability 

cornes l'rom temporal scales shorter than 24 hours. The process that seems to dominate 

sub diurnal variability arises l'rom the different diurnal cycle across RCM grid points in 

a given region. This effect tends to be larger in coastal regions where land grid points 

have a much intense diurnal cycle than water grid points explaining the relative maxima 

of transient PAV in the West Coast (e.g., Baja California coast), the south US coast 

and Great Lakes regions. 

In order to better understand the diurnal cycle spatial variability and the sub­

daily transient term, Fig. 2.3g-2.3i show the transient tenn tRCMi,k for an 8-day period 

(similar as that used in Fig. 2.3a-2.3c) in the saille three regions as before. In the West 

Coast region (Fig. 2.3g), it is c1ear that the transient variability (at least in the first 

6 days) is dominatecl by the different diurnal cycle in oceanic and land grid points. 

Differences between land (ocean) grid points and the spatial-mean term (tVGCMk) 

appear as a positive (negative) anomaly during day-time and as a negative (positive) 

anomaly dming night-time respectively. The diurnal cycle is, as expected, stronger over 

land than over ocean grid points. 

Figure 2.3h shows that the t.opographie forcing induces little sub diurnal transient 

variability because, even if time-averaged temperatures are different across grid points, 

their diurnal cycle is very similar. In the northern Canada region (see Fig. 2.3i), the 

influence of the diurnal cycle is very smaIJ due to the weak solar forcing in high latitudes 

in this time of the year. 

In winter season, the ensemble-mean fine-scale transient term (see Fig. 2.2d) 

systematicaIJy shows higher values in continental compared to oceanic regions. This 

continental transient component of PAV is a robust feature that appears in any single 

model experiment as shown in Fig. 2.5. The inspection of the fine-scale transient 

tcrm computcd using daily and 16-clay time series (not shown) reveals t.hat differences 

between oceanic and continental regions are present when looking at daily time series 

but do not appear when considering 16-days transient variability term, which seems to 

imply that the continental-oceanic feature is probably related to synoptic variability. 
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A process that can be important. to explain wntinental-oceaniC' differenccs relates 

to middle-latitude synoptic systems and their associated surface fronts. The passage of 

a synoptic-scale perturbation over a given region (generally l'rom west 1.0 east in midclle 

latitudes) incluces a spatial gradient. of temperature tltat varies in time (as the system 

moves) and in space (relative position compared to the front). The spat.ial gradient. 

incluced by the perturbation is larger over continental comparee! to oceanic re~ions 

simply because of the important clampinR from t.he ocean. 

The passage of synoptic-scale syst.ems is abo probably relat.ed t.o t.he general 

increase of the traosient term to the nortlwrIl part of th(-~ domain in wint.er season. This 

nort.h-sout.h gradient of the transient ternl is secn in the ensemble-menn term (see FiR. 

2.2d) and in most of individual RCM tenllS, particularly in the norLll- western and 

eastern parts of the dornain (see Fig. 2.5). Figllres 2.3h aml 2.3i illnstrat.e the influence 

of synoptic variability in the transicnt tenn over continclJt.al regions. The range of 

trausient variability is of the arder of ~ la K in the Rocky lVlollntains rcgion aIllI of the 

order of ~20 K in the nortllern Canada rcgion. 

Figure 2.6 Sl10WS the RCM cnscmble-mcalJ total variance and its decomposition 
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Figure 2.5 ReM transient variance tenn computed from indiviclual RCM simulations 
in wilJter seaSOIL 



term~ a.s in Fig. 2.2 for the surnmer season. In thi~ ~eason, the ensemble-mean total 

variance (standard deviation) ~hows values varying from ~ 1 1(2 in subtropical oceanic 

regions, to ~75 1(2 (~9 K) in continental mid-latitude regions, with a domain-average 

value of 29 K 2 . AgaiIl, most of the total variance is contained in the temporal fluctuation 

of the spatial-mean term. In this case, the virtual-GCM term shows maximum values 

in the central eastern part of the conterminous United States, at approximately 40° 

of latitude, a.'3 a result of a combination of illtraseasonal and interallnua! variability, 

synoptic variability and the very large diurnal cycle in this region as a product of the 

large solar forcing and the relatively dry soils. A secondary maximum appears to the 

west of the Hudson Bay mainly due to interannual and synoptic variability. Figures 

2.7a-2.7c show an 8-day period of the VGCM time series for the same regions as in Fig. 

2.3. Comparil1g with winter season result~, the most outstanding feature is that the 

diurnal cycle tends to dominate temporal variability everywhere, although mod1l1ated 
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Figure 2.6 As in Fig. 2.2 but for summer season computations. 
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by longer time scale processes. 

Figures 2.6c and 2.6d show respectively the cnsemble-mean stationary and tran­

sient variance terms in summer season. As in winter seaSOIl, the stationary and the 

transient terms show domain-average values of 2 and 3 K 2 respectively. The most im­

portant dilferences between the ensernble-mean stationary term in summer comparee! 

to winter season are the lower values in the North American Ea~t Coast and the higher 

values üver the Hudson Bay coast: these two fcatures appear in every RCM simulations 

(see Fig. 2.4 and 2.8). 

As in winter season, the transient terrIl shows higher values in continental COO1­

parcd to oceanic regions and maximum values occur in sorne regions whcre the land­

water contrast forcing is important such as the West Coast and the Great Lakes rcgions. 
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Figure 2.7 As in Fig. 2.3 but for summer season computations. 
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(a) CRCM-NCEP (b) MM5I-NCEP (c) ECP2-NCEP 
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Figure 2.8 As in Fig. 2.4 but for summer season computations. 

However, particularly on northern regions and in fiat regions with little land-sea con­

trast, the fin€-scalc transient term is generally smaUer than in winter season probably 

due to the wcaker synoptic-scale variability (see Fig. 2.3h and Fig. 2.3i). 

When looking a.t the ensemble-mean and indiviclual RCM transient terms, impor­

tant difference,'3 betwcen winter anù summer seasons appear in regions with significant 

influence of lakes. In particular, summer-season transient variances show higher values 

than winter-season ones probal>ly due to the stronger coutrast between water and land 

in this season compared to the contrast between ice and snowjpermafrost in winter 

season. That is, in winter season, the land-water contrast forcing associated with the 

presence of lakes is partially hidden due ta the presence of snow-ice layers in both land 

and watel". The more important land-sea contrasts together with the much stronger 

diurnal cycle in surnmer seaSOll tend to increase transient term values. 

2.4.2 Stationary and transient components of relative PAV 

As defined in Sect. 2.3, the relative PAV measure (rPAV; see Eq. (2.5)) is given by 

the fraction of the total variance that is accounted by the sum of the stationary and 
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the transient RCM terms (i.e., t.he original, genuine contribution of t.he RCM field) to 

the total variance. Fig. 2.10 shows the RCM ensemble-mcan r PAV in winter (Fig. 

2.10a) anù summer (Fig. 2.lOb) sea.sons. Qualitatively, reslIlts arc quite different. from 

those derived using the absolute variancc terms. For examplc, SOlllC oecanic rcgions 

(e.g., south Pacifie regions) show higher r P AV vailles thall fiat continental regions 

even if PAV t.crrns were higher in the later regiol1s Gecallse the total varianœ in the 

denorninat.or in Eq. (2.5) tends to be largc:r over land t.han ovcr ocean. Similarly, SOll1e 

mountainous regions with relat.ivcly large st.ationary varianœ valllcs show very lit.tlc 

rPAV due to the large total variance in t.hesc rcgioTls. 

In bot.h seasons, ensemble-mean rPAV values are gencrally srualkr than 15%; and 

relative maxima are relatee! with regioIlS strongly infillenœd Gy lanù-sca l'()llt.ru~t forr:ing. 

The RCM cont.ribut.ions ta the total variance arc highcr in sllmmcr ('Ornpar~:d t.o winter 

season with a domain average of 16% and 5% rcspectively. At Icast in part., sea~onal 

differellees seem to be related to the gencra! intensification of the diurmll cycle of the 

land-sea contrast forcing in surnrner s(-:ason, particularly in mid-Iati tllde and nortlrern 

regions (e.g., Great Lake rcgions). 

In winter seaSOl1, relative maxima a.re round ail along the North Amcrican West 
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Figure 2.9 As in Fig. 2.5 but for sllInmer scason computations. 
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Coast and the sonth-ea.:;t wast of tlle United States. ln summer scason, relative maxima 

are rdated mostly with coastlillc regions either near tlle sea or cllle to the presence of 

lakes. 

Figllfes 2.lOc and 2.1Üd show the fraction of TPAV that is explained by the 

stationary and the transient terl1lS computed a'3 2a;nCM)(a.;RCMi + a~ncM"J - 1. 

Positive (negativc) vaines denote those regions where the stationary (transient) tenn 

tends to be dominant wi th values equal to 1 (-1) clenoting that al! the T PAV cornes 

from the stationary (transiellt) tcrm. Black asterisks denote those regions where rPAV 

is larger than 15%. 
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Figure 2.10 Ensemble-mean TPAV in (a) winter and (b) summer seasons and the 
fraction of T P AV coming from the stationary and transient terms in (c) winter and 
(d) summer seasons. Black asterisks in bottorn panels denote those regions where the 
ensemble-mean T P AV signal is larger 10%. 
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In both seasons, ensemble-mean r P AV values larger than 15% are only found 

in regions where surface forcings are important, either due to complex topography or 

land-water contrasts. The number of regions with r P AV larger than 15% is larger 

in summer (131 regions out of 2~~) thall in winter (107 regions) scason. Ivlost of these 

regions appear in the northern part of the domain mainly due to the lower total varia.nces 

in this season and the land-sea contrast intensification. 

Winter season results show that regions with r PAV ~ 15% are c!orninated by 

the stationary term with only some exceptions in the 'West Coast and the Labrador Sea 

where the transient varia.nce term tend to be more important. It. is evident from Fig. 

2.lOc that r P AV vailles in the Atlantic Ocean regions are indnced by the permanent 

and relatively strong temperature gradients across the Gulf Stream and not as a result of 

a transient mechanism. Similar results are found in summer season with only a marked 

dominance of the transient term in the Gulf of Mexico. 

rPAV values derived from individual RCM simulations gellerally show similar 

results tü the ensemble-mean r PAV although differences can appear over the Canadian 

Archipelago, the Great Lakes and others lakE'$ in Canada. A more detailed analysis of 

the llncertainties arising in the computation of rPAV tenns is prcsented in Appendix 

2.B. 

2.4.3 Simple and more complex rPAV in mountainous rcgions 

As discussed in the previous section, the PAV of high-resolution fields is mostly cOllfincd 

to those regions with significant influence of surface forcings. A fair question to ask is 

whether this PAV arises as a result of the influence of complex snrface mechanisms 

(e.g.) land-sea breezes or terrain-enhanced triggering of hydrodynamics instabilities) or 

results from simple, maybe !inear, interactions between the fine-scale forcing and the 

variable of interest. 

One such a simple mecllanism that seems to be important to explain r P AV 

in mOlmtainous regions is related with the general relation betwœn temperature and 

terrain elevation. The more detailed reprcsentation of terrain eievatioll gradients will 

create stationary temperature gradients even when no fine-scale atmospheric processes 

occur. 

In order tü test the influence of this last effect, the r PAV I11CHsure hac; been com­

putcd t'rom a synthetic high-resolution 2-m temperature field derived using a lincar re­
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lationship between the low-resolution VGCM temperature field and the high-resolution 

50-km surface elevation field in the following way: 

T~"J~ = TVGCM + r .hHCM, (2.6) 

with TVGc/v{ the virtual GCM time series (in K), hRCM the high-resolution topogra.phy 

(in km) of the RCM and r = -6.5 K/km the middle-latitude standard atmosphere 

(SA) lapse rate (see Dutton 1976 for a brief de~cription). Equation (2.6) constitutes 

a crude way of taking into account the effects of changes in terraill-elevations when 

interpolating the temperature field into a higher resolution grid mesh. Several and 

important differences would appear between the actual 2-m temperature topographie 

lapse rate and the free air SA lapse-rate approximation, starting from the fact that the 

effects of the surface in the adjacent temperature (e.g., sensible and latent heat fluxes) 

are not taken into account in the SA lapse rate. As shown by Prommel et al. (2010), the 

use of the constant SA lapse rate along the year may lead to biases not caused by the 

models themselves, particularly in winter months where the atmosphere can be much 

more stable with mean lapse rates of the order of r = -3.0 K/km. 

In order to assess the similarity between the real stationary rPAV field and the 

artificial one, spatial correlations are computed using: 

r = cbv (r P AVstationar'Y' r P AVorog ) (2.7)
a(rPAY:stationary)a(r P AVorog ) , 

with rP AVstationary the original stationary RCM r P AV, and r P AVorog the r PA V de­

rived using Eq. (2.6) as input temperature. The linear correlation is computed only 

for those regions with relatively complex topography but with no influence of the land­

water contrast forcing. Complex terrain regions are defined by a standard deviation of 

the elevation field within the region larger than 250 m. For each RCM, the land-sea 

mask is defined by the fraction of land inside each grid box with values varying between 

oand 1. Regions with important influence of land-water contrast are then defined as 

those with a water fraction standard deviation larger than 0.2. The total number of 

regions considered in correlation calculations depends on the RCM due to the different 

representation of both surface fields and grid location and varies between 37 (ECP2 

model) and 51 (CRCM model) aCl'OSS models. 

Table 2.2 shows the 90% confidence interval of the linear correlations between 

rPAVorog and the stationary part of the :rPAV term. Correlation confidence intervals 
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are estimated usiflg a Monte Carlo approach by sampling 1000 times randomly with 

replacement over both spatial series. The 90% confidence interval is then computed by 

calculating the 5th and the 95th percentiles of the 1000-elements correlation distribution. 

Table 2.2 90% bootstrap confidence interval for the spatial correlation coefficient be­
tween the rP AV measure computed using RCM simulations ami llsing the artincial 
temperature data. Only those regions characterized by cornplex topography (see t.he 
text for its denition) with no land-sea contrast.~ are inclll(led in the calculation. 

Winter scason Summer season 
CRCM [ 0.82; 0.96] [ 0.72; 0.94] 
MM5I [ 0.87; 0.97] [ 0.72; 0.94] 
ECP2 [ 0.81; 0.93] [ 0.3.5; 0.78] 
RCM3 [ 0.88; 0.97] [ 0.68; 0.92] 
WRFG [ 0.83; 0.96] l 0.71; 0.92] 
HRM3 l 0.81; 0.96] l 0.81; 0.92] 

RCMs-MEAN [ 0.84; 0.961 [ 0.67; 0.90] 

In both seasons and for every single RCM, correlations bet.weell the rPA Vn'oq 

and the stationary r PAV are very high with an RCM-mean Gth (9:,th) percentilc value 

of 0.84 (0.96) and 0.07 (0.90) in winter and summer seasons respectively. This sllggests 

that about 80% and 65% of the RCM r PAV variance is linearly explained by the 

orographically-inducAd field in winter and surnmer seasons, respectively. 

Inter-model differences are generally small, of the order of 10% of t.he mean cor­

relations, and contained within the sampling errors as estimated from the 5th and %t.h 

percentile c1ifferences, which are generally of t.he order of 15-20%, but can be as high as 

40%. 

2.5	 PAV in the climate change signal (AOGCM driven simulations): preliminary 

results 

So far, we have analyzed the potential of ReMs to add value over their associated 

virtual-GCMs in the simulation of temperature in present-climate conditions (i.e., driven 

by NCEP reanalyses). This information can be useful in a broau spectnnD of RCM 

applications such as the reconstruction of recent-pa.st climate on the regional scale (e.g., 

Mcsinger et al. 2006; Kanamitsu and Kanamaru 2007), the c10wnscaling of low-resolution 

global simulations in sea.sonal-prediction investigations (e.g., Rauscher et al. 2007; Seth 
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et al. 2007; De Sales and Xue 2011) and the study of processes and mechanisms in the 

regional scale (Pielke et al. 1999; Roebber and Gyakum 2003). 

One of the main applications of RCMs in the last decade ha.::; been its use to 

downscale future-climate projections produced by coupIed GCMs. In order to account 

for systematic biases in RCM projections, a popular approach used to estimate high­

resolution future climate is through the "delta met.hod" (e.g., see Rummukainen 2010). 

The delta method consist of modifying the observed high-resolution climate data with 

the RCM climate change (CC) signal to obtain an unbiased version of the future pro­

jection. This suggests that t.he RCM's added value in climate projections may not come 

directly from the simulation of future scenario periods but from the climate-change sig­

nal itself. While t.he problem of looking for PAV in the CC signal is intimately related 

with that of PAV in present climate, sorne differences appear. 

The CC signal of the time-averaged ternperature field is defined in the usual 

way by computing t.he difference between the time-mean field in present and future 

conditions. Using the same notation as in Sect. 2.3 we have: 

CCRCMi == CC = Ti(future) - Ti (present) , (2.8) 

with CCRC!'vI; the high-resol~tion CC signal over the ith 300-km side region. Following 

the ideas used for the present-climate PAV framework, we can aggregate CCRCMi over 

300-km side regions in order to produce a low-resolution version of the CC signal that 

we denote by CCVGCM· 

A que'3tion that arises naturally in the context of the PAV framework is whether 

the high-resolution CC field contains fine-scale information that is absent in the low­

resolution part. Given that sorne of the most important sources of climate change are 

large scale in nature (e.g., C02 concentration changes, water vapor feedback, etc), it 

is unclear whether the CC signal should contain a large high-resolution component. 

A simple way to quantify the relative importance of fine and large scales in the high­

resolution CC signal can ?e done by defining: 

o"(CCRCMJ 
(2.9)

CCVGCiVI ' 

where 0"( CCRCM.) denotes the spatial standard deviation of the high-resolution CC 

signal field (CCRCMJ and CCVGCM the mean temperature change between future and 

present periods over the region of interest. With this definition r P AVcC '" 0 would 
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suggest that the high-resollltion estimation does not add extra information over the 

coarse-resolution one and, r PAVec '" 1 would suggest that the fine-scale contributions 

can be as large as the large-scale mean temperature change. 

Again, it should be emphasised that the PAV measure as defined in Eq. (2.9) only 

accounts for the PAV small scales (PAVss ), that is, the PAV arising from the simulation 

of fine-scale features that are absent in GCM fields. The ratio rPAVcc i~ mute about 

the potential of RCMs to add value in large scale variables (i.e., PAVLs). 

Figures 2.11a and 2.11b show the CCRCf\!f; field for the CRCM-CGCM3 simula­

tion in winter and summer seasons respectively. In both seasons, result.s show wanner 

conditions in the future with a stronger signal in continental comparee! t.o oceanic re­

gions. In winter season, the spatial patt.ern of CCR.Ci\1, shows a general increase to the 

north and to the interior of the continent that attains almost 7 K in t.he centre of the 

Hudson Bay (2041-2065 minus L971-1995). In summer season the spat.ial pattern of 

CCRCMi shows maximum values in continental-middle latitudes with changes as large 

as 4 K in central United States. Other RCM-AOGCM couples show similar spatial 

patterns of mean-temperature changes in winter season (not shown). 

Figures 2.11c and 2.11d show the r PAVee measure for the CIlClvl-CGCM3 sim­

ulation in winter and summer seasons, respectively. In both seasons, r PAV ce values 

are generally smaller than 10% with values somewhat higher in SUll1Iller compared to 

winter season, part.icularly in coastline regions. The largest values in coastline ragions 

result. from the differential warming observed in land and water surfaces. 

Figures 2.12 and 2.13 show the r P AVcC measure for t.he other individual RCM­

AOGCM simulations (Fig. 2.12a-2.12e and 2.13a-2.13e) and for the enscmble-mean 

(Fig. 2.12f and 2.13f) results in winter and summer seasons respectively. Most lDoclels 

show similar results to the CRCM-CGCM3 simulation, with relatively sruall r P AVCC 

values everywhere, maxima in coastline regions and somewhat larger values in summer 

comparee! to winter season results. The WRFG-CCSM simulatioll shows very large 

rPAVcc values over lake regions in summer season (see Fig. 2.13) bllt this seems to 

be related with a diffel'ent l'cpresp-ntation of lakes in presellt and fut.lll"e èOnditions. 

Maybe the most interesting feature is relatecl with the robllstm:ss of the r P AVCC 

results. Black asterisks in Fig. 2.12f and 2.13f clenote regions in which rPAVce sat­

isfies two conditions: that the ReM ensemble-mean r P AVec is larger than twice the 

inter-model standard deviation, and larger than 5%. That is, black asterisks identify 
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thoRe regiolls in which a significant r PAVec signal iR robust across the different nCM 

simulations. 

In winter sea..<;OIl, robust regions (59 out of 288) appear 0.11 along the North Ameri­

can West Coast and in most coastline regions in the Hudson Bay. Similar results appear 

in summer season but robust regions (60 out of 288) appear in most coastal regions and 

also in sorne regions \Vith important fine scale topography in the Rocky Mountains. 
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Figure 2.11 High-resolution c1imate change signal (top paneb) and the rPAVcC mea­
sure (bottom panels) in winter (left panels) and summer (right panels) seasons. Results 
correspond to the CRCM-CGCM3 simulation. Gnly values smaller than 0.6 are shown 
in Fig. 2.11c and 2.l1d. 
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(a) CRCM-CCSM (b) HRIVI3-HADCM3 

(d) RCM3-GFDL (e) RCM:~-CGCM3 

(c) WRFG-CCSM 
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Figure 2.12 The r PAVec llleasure in winter season as computecl [rolIJ inclividnal n,CrvI 
simulations (2.12a-e) and from the ensemble-mcan field (2.12f). 
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Figure 2.13 As in Fig. 2.12 but for snmmer season computations. 
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2.6 Discussion 

The use of RCMs to dynamically downscale large-scale atmospheric fields in present and 

future c1imate conditions has gained popularity as a way to circumvent the spatial scale 

gap that exists between the dimate information provided by AOGCMs and the input 

needed in impact and adaptation studies. There is still a need, however, to objectively 

quantifythe gains arising from the use of RCMs as c1imate downscaling tools. 

In this article we use the "potential added value" framework proposed in Di Luca 

et al. (2011a) with the aim of detecting the regions and seasons where RCMs show 

potential to improve the simulation of temperature statistics compared to the driving 

models. The mcthodological approach used in this paper can be summarised through 

three main steps: 

1.	 20-year 3-hourly time series of near-surface temperature fields simulated by 6 

RCMs are decomposed using Reynolds averaging rules. The temperature field 

over 300 km by 300 km regions (i.e., approximately equivalent to GCM gTid boxes 

and containing several RCM grid points) is separated in four terms: the spatio­

temporal mean, a time series describing the temporal fluctuations of the spatial 

mean, a time-averaged field of the spatial-mean deviations and a residual time 

varying field containirig the spatio-temporai fluctuations. 

2.	 In each 300-km side regions, the variance of the high-resolution temperature field 

is then described by three terms that result from the Reynolds decomposition. The 

first is the temporal variance of the spatial-mean field that is assumed to represent 

the GCM contributioll to the total variance. The other two terms depend on the 

spatial deviations and are related with the stationary (time mean) and transient 

RCM contributions to the total variance. 

3.	 The PAV is then defined as sum of the fine-scale stationary and transient RCM 

variances. A normalised quantity (rPAV) is defined by computing the fraction of 

the total variance that is explained by RCM variances. 

Our results indicate that, independently of the season considercd, the high-resolution 

near-surface temperature variance is mostly explained by the virtual-GCM term, with 

a contribution from the RCM terms that is generally smaller than 15% but can attain 

60-70% in sorne regions. The contribution from the fine-scale stationary and transient 
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terms is rOllghly of the same order of magnitude but they are induced by differcnt 

mechanisms and therefore they show distinct spatial patterns of variability. 

The fine-scale stationary spatial variance term is sensitive tn tirne-averagec1 tem­

perature gradients and is hence important in regions with significanL srnall-scale surface 

forcings, either due to complex topography or land-sea contrast. (i,e .. with coastlines or 

lakes). The term can also arise due to the presence of strong stationary gradients from 

other SOUlceS such as the strong SSTs variation over the Gulf Stream. 

The fine-scale transient variance t.erm is associated with spatial differences in the 

temporal variability of 2-m t.emperature and secms to be dominated by two rnechanisms. 

A first mechanism is related with the presence of land-sea contras\. and clescribes the 

differentia.1 temporal variability of temperature in land and water grid POillt.S. A c1ear 

example of this mechanism is given by the clifferent diurnal cycle over land and water 

grid points. The second mechanism is independent of the fine-scale surface forcings and 

describes the spatial variability induced by the passage of wcather disturballces, rnainly 

of synoptic scale. This last tenn appears to be more important in wint.er alld over 

high-Iatit.udes due to the stronger intensity and variability of synoptic-scale systems. In 

addition, due to the dominant thermal-inertia effect of ocean waters on 2-m t.emperat.ure, 

this term is also st ronger over the continent. 

Wben computing the fraction of the total variance explaincd by nCM terms, 

we find that relatively large values of rP AVare essentially confincd t.o regions wit.h 

important surface forcings mainly due to land-sea contrasts. In geIH.:ral, but particular!y 

in coast]iIle high-latitude regions, rPAV tends to be larger in SUIT1lller than in winter 

season due to an intensification of the land-sea contrast. forcing related with icc/snow 

cover in winter season and a much stronger diurnal cycle in sumrner season. 

In Section 2.5, the potential of RCMs to adc1 value over lowt~r resolution models 

in reproducing the c1imate-change (CC) signal is c1iscussed. It is stressed that the 

existence of PAV in present c1imate c10es not imply that PAV will be preseut in the CC 

signal. Our results show that the fine-scale spatial variability in the high-resolution CC 

temperature over the 300-km sicle regions is generally one order of magnitude smaller 

than the mean CC signal itself. The analysis indicates that the largest potential for AV 

appears in coastline regions due to the differential wanning in land and water smfaces. 

This effect tends to be more pronounced in summer than in winter season. It is seen 

that, in mountainous regions, the PAV founded in presellt c1imate is almost lost in the 

CC signal; this results mainly from t.he fad that, as shown in Sect". 2.4, the PAV in 
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mountainous regions is dominated by quasi-linear stationary processes that are very 

similar in present and future climate and hence tend to cancelled out when computing 

the CC signal. 

ln general, results point out that the potentiaJ of RCMs to add value in near­

surface temperature is rather limited in oceanic and fiat regions with little land-sea 

contrast. This result agrees with previous studies of Winterfeldt and Weisse (2009) and 

Winterfeldt et al. (2011) who showed similar results for the study of winds over oceanic 

and coastaJ regions. Furthermore, even for those regions showing relatively large T P AV 

values, it remains to be seen whether this added value could not be obtained using 

simple, maybe eveu linear, relationships between the high-resolution surface forcing 

and the low-resolution variable of interest. An example of such a simple relation was 

shown in Sect. 2.4.3. 

In agreement with results obtained by other authors (e.g., Sotillo et al. 2005; 

Feser et al. 2011; Di Luca et al. 2011a), our results suggest that efforts aiming to 

show the benefits of using RCMs over lower resolution GCMs should concentrate on 

moist processes or in climate statistics with significant fine-scale variability such as 

high-order statistics variables with large spectral power at high temporal frequencies. 

For example, as shown in Di Luca et al. (2011a), the PAV can be much larger when 

considering precipitation, higher order statistics (e.g., 95th percentile) and mOre local 

scale quantities. 

Finally, two important caveats should be discussed regarding our results. First, 

as discussed in the methodology section, this work and the previous study by Di Luca 

et al. (2011a), concentrated on the added vaJue on the small spatial scales, disregarding 

the possible impact of high-resolution simulations on larger scales. It was assumed that 

spatial average of RCM quantities within an aTea equivalent to the driving model grid­

box is identical to the driving model grid-box value. This necessarily precludes any 

analysis of possible improvements at that scale. The second caveat relates to the fact 

that our methodology may be badly suited to detect potential added value of complex 

charactel'istics. For example, phenomena snch as clownslope winds neal' mountain ranges 

or lake-effect snowfall may need a methodology tailored to that particular objective. 
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Appendix 2.A: Variance decomposition 

The high-resolution temperature field as simulated by any RCM cau be decornposed in 

its spa.tial-meau and spatial-fluctuations as: 

-i 
Ti,k = Ti,k + T* i,k 

= VGCMk + RCMi,k> (2.10) 

whcrc (.) denotes the arithmetic average over grid point::; (i) or time (k). VGCNIk is 

the vil'tuaI GCM tenu given by the time series of the spatial mean and RCMi,k the 

RCM term representing the time series of the spatial deviations: 

-i 
RCMi.,k = Ti,k - Ti,k	 . (2.11 ) 

Similarly, each time varying term in Eq. (2.10) cau be decomposed into a stationary 

and a transient part as: 

. -(.)k ( ")'VGCMk = Ti,k' = Ti,~' + Ti/ 

= sVGCM + tvGCMk>	 (2.12) 

and 

-i --k ,
RCMi.,k = Ti,k - Ti,k	 = (T*i,k) + (T\k) 

= sRCMi + tRCMi,b (2.13) 

where 

---k 

tVGCMk = T;,k 
i 

- (-Ti-,k
i
) 

= V GCMk - ~V;-;G'O":C"""J~M;-k'k	 (2.14) 

and 

=--i --k 
tRCMi,k = T;,k - Ti,k - T\,k 

",,=;-.--:;--k= RCMi,k - RCMi,k	 . (2.15) 
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From Eq. (2.10), (2.12) and (2.13) we obtain, 

Ti,k = sVGCM + tVGCMk + sRCMi + tRClVIi,k- (2.16) 

The sample variance of Eq. (2.16) is given by, 

= (tVGClv'h + sRCMi + tRCMi,kY
 

= ::;::(t::;::V;=G::=C::=M;=1;=k)~2Fki + (sRCM;)2 
ki 

+ (tRCMi,kyk 
i 
+ 2(tVGC!Vh~ ksRC.'V[/)
 

~-=-=-=-::-=-=:::;::::;;::;::::;::::::i:i Ir: k i
+ 2(tVGCNh,tRCM;,k) + 2(sRCMi tRCMi ,k) . (2.17) 

From Eq. (2.14) and (2.15) it follows that tVGCM/ = 0 and tRCMi / = O. Hence, 

without any approximation, Eq. (2.16) can be writen as: 

. k:
2 2 2 2 --'--7· 

IJ = IJWCCi\1k + IJs RCi\1; + IJt RCMik + 2(tVGCNhtRCAli,k: ) (2.18) 

The PAV tcrm can then be defined by the sum of those terms that inclllde aIlY con­
.k 

tribution from the RCM. In practice, the covariaIlce tenn 2(tVGClÎhtRCMi,k
l 

) is at 

least 10 times smaller (not shown) than théln the sum of other two contriblltions so it 

is neglected in the a.nalysis. 

The varia.nce decomposition can be applied indepenclently to eacb RC~',1I c1ataset. 

That is, for each model m we obtain: 

(2.19) 

The ensemble-mean for ea.ch varia.nce term is thCIl obtained by compnting tbe arithmetic 

mean over ail models. For the total variance the expression is given by: 

(2.20) 

and similar expressions for the other variance terms. 
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Appendix 2.B: Uncertainties in rPAY estimations 

In order to examine how robust are the PAV results, we consider some of the uncertain­

ties arising in the estimation of variances from th~ RCM simulated temperature time 

series. Two types of llncertainties are partially (roughly) assessed: uncertainty due to 

the natural variability of the c1imatc system and the RCM structural llncertainty due 

to our incomplete knowledge of the climate system and the resulting differences in the 

representation of some processes in the several ReMs. 

Inherent to the process of computing a climate statistics from a finite lengh time 

series (i.e., 20 years periods in our case) there is an lillcertainty related with sampling 

variability. In order to get a quantitative measure of this uncertainty, variances in Eq. 

(2.3) have been estimated using a Monte Carlo approach. That is, each variance term 

is computed 500 times by sampling randomly with replacement over the original time 

varying field Ti,k' Traditional bootstrapping rnethods (Efron and Tibshirani 1993) rest 

on the assumption that the data of allalysis are composed of independent samples, an 

hypothesis that is evidently not true in the case of the 3-hourly and 50-km temperature 

fields used to estimate variance terms. In order to account for the serial (or auto-) 

correlation in the temporal dimension, the temporal sampling is performed by randomly 

selecting a subset of the total data assuming that temperature values are independent 

every three days. This is equivalent to use a variance inflation factor as described in 

Wilks (2010). In the spatial dimension, the bootstrapping is performed assllming that 

adjacent grid points are independent, an hypothesis that we know is not adeqllate. 

For each RCM, an estimation of the uncertainty can then be obtained by com­

puting, for example, the standard deviation of the distribution of cach variance term 

containing the 500 samples. The PAV sampling uncertainty can then be defined as the 

sum of the stationary and transient sampling standard deviations. In a similar way, 

the rPAV sampling uncertainty for each RCM can be obtained by computing the stan­

dard deviation of the rPAV Monte Carlo distribution. Figures 2.14a and 2.14b shows 

the ratio between the inter-model mean rPAV sampling standard deviation and RCM 

ensemble-mean rPAV for winter and Sllmmer seasons respectively. In both seasons, the 

sampling uncertainty pattern resf'mble the ensemblp.-mean rPAV pattern showing rel­

atively uniform fields for the ratio between both. Inter-model mean values, but also 

individual model results (not shown), show domain-mean values of about'" 15% in 

both seasons, with values that can attain up to 50% in some regions. As clear from Fig. 

2.14a and 2.14b, the largest values of the sampling ratio arise in those regions that have 
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the borders near the coast (i.e., with maybe only one grid point that differs from ail the 

others). 

A simple measure of the RCMs' uncertainty (:a.n be obtained by qllantifying the 

spread between RCMs through the multi-model standard deviation. The unbiased for­

mula of the standard deviation (von Storch and Zwiers 1999) is desirable because of the 

small number of simulations available for the analysis (in what f01l0ws, we use always 

the unbiased formula when computing the inter-modcl spread). Figures 2.14(: and 2.14d 

show the ratio between the inter-model standard deviation and RCM ensemble-mean 

rPAV for winter and summer seasons respectively. Values of the ratio are la.rger than 

in the sarnpling uncertainty case particularly in SDme oceanic and coastline regions. 

In general, however, the standard deviation represents less than 20-3ü% of the signal 

showing that there is a relative large agreement between RCM simulat.ions. 

Assuming that robust features across RCMs are those for which t.he signal (i.e., the 

RCM ensemble-mean) is at least. two times larger than the RCM spread, sorne regions 

can be pointed out t.o be non robust (not shown). In wint.er seaSOll, non-rooust regions 

appear in the Atlantic Ocean in the southern pa.rt of the dornain, in sorne high-Iatitucle 

regions and near the Great Lakes. Uncert.ainties in sorne of these rcgions appear tu be 

related with differences in the land-water fraction masks used by each RCM. Figure 

2.14e shows the mnlti-model standard deviation of the land fraction standard deviation 

in each 300-km side region. The largest differences across RCMs arise neal' the Canadian 

Ardüpelago, the Great Lakes and others lakes in Canada, and ill the Atlantic Ocean 

near Florida due to the presence of sorne islands. 

The representation of lakes depencls on each RCM and on the LBCs used tu drive 

the RCM. Differences between RCMs arise becallse they do not share the fraction' of 

water in every grid point (i.e., the land-water IIlask is mocle! clependent). For cxamplr., 

the RCM3 model does not contain any lake and WRFG contains only the largest lakes. 
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Figure 2.14 lnter-model IllP' Il sampling unccrtainty in (a) wintcr and (b) summer 
seasons. RCMs uncertainty in (c) winter and (d) summer seasons. Figure 2.14(e) shows 
the inter-model standard-deviation of the standard deviatioll of the land-water fraction 
field. 
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3.1 Introduction 

In the context of a changing climate due to anthropogenic factors, it is gcnerally argued 

that the planning for adaptation requires climate information accountirig for specificities 

on scales at which human activities occur, for example about climatic characteristics 

within countries, provinces aml even cities (Oreskes et al. 2010). This need of very 

fine-scale ciimatic information has important consequences for climate research and it 

has pushed climate Illodeling research centres to perform increasingly higher resolution 

climate simulations and to look for alternative techniques to produce fine-sc ale climatic 

information. 

One such approach has been the developmcnt of nested, limited-area, regional 

climate moclels (RCrvIs). Basically, the RCM technique allows for aIl increase in resolu­

tion by concelltrating the degrees of freedom, and hence the computational rec;ources, 

over a limited region of the globe where the main interest of a user lies (Laprise et al. 

2008). Technically, it cOIlsists of using time-dependent large-scale atmospheric fields 

and ocean surface boundary conditions to drive a high-resolution atmospheric model 

integrated over a limited-area domain (Giorgi et al. 2001). The atmospheric driving 

data are eithcr derivcd from simulations of lower resolution coupled Atmasphere-Ocean 

General Circulation NIodels (AOGCMs) simulations or analyses of observations. 

From the beginning of RCMs developrnent, nearly 20 years ago, a large effort 

has emmed to assess their capability as climate downscaling tools by comparing RCM­

simulated climate to observed data sets. Moreover, particularly in the last decade, 

important efforts were also devoted to assess the ability of RCMs to improve the sim­

ulated climate compared ta their driving data in order to identify the value added by 

RCMs. The various added value (AV) studies (for a review of these studies the reader 

is referred to Feser et al. (2011) and references therein) have clearly shown that RCMs 

do not generate AV in an unambiguous way. Rather, the AV seems to be contingent 

upon a variety of factors such as the season and time scale, the variable and the climate 

statistics of interest, the region of analysis, etc. 

To date, most studies have concentrated in the identification of AV using prespnt 

climate simulations. However, when downscaling c1imate projections produced by AOGCMs, 

our interest is not necessarily directed towards the RCM climate simulation itself but 

sometimes towards the climate change signal computed from the clifference between 

present and future RCM simulations. For example, in order to account for system­
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atic biases in RCM projections, a popular approach used to estimate future climate is 

through the "delta method" (e.g., see Rummukainen 2010). The delta method consists 

of adding to the observed climate data the RCM-simulated climate change (CC) signal. 

This suggests that the RCM's addcd value in climate projections may not come directly 

from the simulation of future scenario periods but racher from the climate-change signal 

itself. 

Implicit in the last argument is the idea that sOllle changes in c1imate will oc­

cur in spatial scales smaller than those resolved by CUiTent AOGCîvls. Several sources 

of fine-scale clirnate change can be conceivecl. For example, fine-scale climate forcings 

(e.g., land cover) ca.n change in the future duc to the influence of human activitie.s (e.g., 

in agricultural activities). The non-linear interaction between a large-scale variable 

and fine-scale surface forcings can induce smali-scaJe changes if the largc-scale variable 

changes in the future. Feedback processes can also induce small-sC'ale changes in mete­

orological variables due to the fine scale heterogeneity of smface physical properties. 

It should be emphasised, however, that the arguments from which fine-scale fea­

tures would appear in the climate change signal are not the same as those asserted for 

the climate itself. One example can help to unders~ancl the differencc. A simple mech­

anism that can generate AV in moulltainous regions in present. clillwte simulations is 

rdat,cd with the t;eneral relation between temperature and terrain olevation. The more 

cletailecl reprcsentation of terrain elevation gradients will create statjonary temperature 

gradients even when no fine-scale atmospheric processes OCClU'. But this mechanism 

may not generate AV in the CC signal because their effects may be C'ancelled out whcn 

computing the difference between futllre and c!imatc statistics. 

The objective of this article is twofolcl. First, to quantify the fine-scale part of 

the RCM-derived CC signal and to evaluatc its relative importance compa,recl to either 

the large-scale CC part or to present c!imate statistics. Second, t.o characterise the 

robustness of the fine-scaJe quantitative results in terms of the salllpling nncertainty 

that results from interl\nnual variability. The analysis roncentratr:-; on time-averagecl 

seasonal tcmperature and precipitation clil1late change signais a;j reproducecl by several 

RCM-AOGCM pairs in a domain that covers most of North America, thl1S encompassing 

a wide range of climate regimes. 

The paper is organized as follows. The next sectioll discusscs in same detail 

the added value issue with special cmphasis 011 two particular aspects: the difference 

between AV and potential AV (hereafter PAV) and; the cliffercnce i>etween looking for 
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AV in the climate and in the CC signal. Section 3.3 presents a brief description of the 

data used. Section ;~.4 describes the methodology used to analyze the importance of fine 

scale features and the metrics used to quantify the PAV and the sampling uncertainty. 

Temperature and precipitation results are presented in Sect. 3.5.1 and 3.5.2 respectively. 

Sorne discussion of the results and conclusions is given in Sect. 3.6. 

3.2 Added Value issue 

3.2.1 Present/Future Climate simulations 

In order to illustrate the AV issue, let us consider a hypothetical AV study (a more 

general example is discussed in Appendix A). Let us suppose that we are tryillg to decide 

whether an RCM adds value over an AOGC},tl in the representation of sorne c1imate 

statistics X (e.g., time-averaged precipitation). Assuming that the metric chosen to 

assess moclel's performallce is given by the squared error (SE), then the AV can be 

defined by 

AV = (XCCM - XOBS/ - (XRCiV! - XOBS)2 = SECCM - SERCk!. (3.1) 

Defined in this'way, the RCM generates sorne AV if its SE is smaller than the GCMs 

one, i.e., if AV is positive. 

In order to gain more insight on the sources of AV, let us separate the field 

according to different spatial scales and express the value of XOBS as follows: 

XOBS = X3B5 + XêJBS, (3.2) 

where the superscripts l5 and 55 designate, respectively, the large scales and smalt scales 

that are permitted or not by the GCM gTid. Renee by definition XëCM = 0 and 

X lsX CCM -- CCM' (3.3) 

Similarly the RCM-derived c!imate statistics (Xp"·'t) may be decomposecl as 

X ls XssX RCM = RCM + RCM' (3.4) 

Replacing Eq. (3.2), (3.3) and (3.4) in Eq. (3.5), rearranging and neglecting covariance 
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terms (see below and in Appendix A for details), we obtain: 

(3.5) 

where 

AV ss - (X SS )2 SEsS- OBS - RGM 

(X SS )2 (VSS XSS)2
= OBS - '''RCM - DES )	 (3.6) 

and 

AVls SEls SEls = GCM - RCM'	 (3.7) 

That is, the AV can be approximately decomposed into a small-scal~ term (AVSS) and 

a large-scale term (AVis). We recall that these equations were nrrivecl at neglecting 

two covariance terms: one c:orresponds t.o assuming that. large-scalc errors of GCM are 

uncorrelated with srnall-sca.le variance of observations, and t.he other t,hat large-scale 

and small-scale errors of ReM are uncorrelated. 

From Eq. (3.6) it is clear that three conditions must be sati:--fied for the RCM to 

generate small-s~alcs added value (AVSS > 0): 

•	 the observed climate stat.istics XOBS must contain non-negligible fine-scale infor­

mat.ion ((XHBS)2 > 0), 

•	 the RCM-derived climate statistics X RCA4 must cont.ain non-negligible fine-scale 

information ((XJ(C,,,)2 > 0), and 

•	 the fine-scale RCM information must have sorne skill, 

i.e. (Xjbvl - X8wY < (X8RS)2. 

This analysis suggcsts that a measure of t.he potential of ReMs to add value r.an 

be obtained by quantifying the rnaximUlll or available AV \Ising observations: 

(3.8) 

The quantity M AVsS is called ma..rirnum added value of the small scales alld gives an 

est.imation of the maximum value that an RCM or any downscaJing technique can add. 

In those cases where observations are not, available, the small-scalc potcnt'ial addcd value 
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of RCMs can be defined in terms of fine-scale RCIVI features: 

PAVSS = (XSS (3.9)RCM )2 . 

It is important to note that if (XYBS)2 # (XYlCM)2 then the quantity (XYB.'3)2 will 

under- or over- estimate M AVsS by simulating too much or too little fine-scale variabil­

ity. An under/over estimation of NfAVsS can be related with either positive or negative 

AV, depending on the values of SEH'CM and (XYBS)2. The interests of computing 

P AVsS is that a.llows to estimate the small-scale part of PAV in those cases where we 

do not have any knowledge about the observed c1imate statistics. 

Figure 3.1 shows the dependence of AV 5S as a function of XNc M for three different 

values of X8BS. In the case where X8BS = 0 everywhere, an increase in fine-scale 

variance of XRCAI can only sl.lbtract value by making AVsS negative. Where X8BS # 0, 

the fine-scale feature of XRCJ'vi can add value over the GCM estimation wherever Eq. 

(3.6) is positive. The maximum AVsS is found when XèJBS = XNCM and is given by 

(XNC,'Vi)2. Furthennore, Fig. 3.1 shows that the term AVsS can pot.entially increase as 

XYBS increase, justifying the idea of using an increase in fine-scale variance as a proxy 

of an increase in the PAV. 
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Figure 3.1 Small-scales added value (AVS5) as a function of XJtCM for three different 
values of XYBS. 
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The term AVls in Eq. (3.5) represents the AV generated by an RCM due to an 

improvement in the large-scale part of the c1imate statistics X. Given that the main 

objective of RCMs is to add fine-scale featmes to the coarser AOGCMs, there is a 

general consensus in the RCM community (e.g., Feser 2006; Promillei et. al. 2010) that 

the primary added value of RCMs is related with AVss. l\1uch less agreement exists 

about whether or not RCMs can genenüe AV at large scales. Although sorne authors 

(e.g., Mesinger et al. 2002 and Veljovic et al. 2010) sustain the not.ion of a potential 

irnprovement of large-scale featmes through the use of RCMs, a large part. of the RCM 

community (e.g., Castro et al. 2005; Laprise et al. 2008) seerns t.o promot.e the use 

of large-scale nudging thus red ucing large-scale differences betwcen the RCM and the 

driving data. 

The P AVsS concept as described above was used t.o stndy the potential bene­

fits of using high-resolution RClvIs to simulatc present c1imat.e precipitation (Di Luca 

et al. 2011a) and temperatme (Di Luca et al. 2011b), and the PAy/s, dcpendence on 

severaI fact.ors such as the season, the region and the c1imate statistics of analysis. In 

what follows, the application of the PAV framework ta c1irnatechange studies will be 

considered. 

3.2.2 Climate change signal 

A variety of approaches can be llScd to show how a given clirnate statist.ics X will change 

in the future. A popular approach, generally designated &; the "delt.a rnct.hocl" (e.g., sec 

Rurnrnukainen 2010), consists on cornputing the fut.ure climate statist.ics (X/lI.ture) by 

adcling the c1imate change as estimatecl from c1imate moclel simulations (CCsirrmlated) 

to the past observecl ciimate (X6~s;nt). That is, the delta methocl approximation can 

be expressed as: 

X /uture _ XlJ"esent .+ CC . 
(j - Des s1.mulatea., (3.10) 

where CCsimulated is computecl in the usual form as the difference bptween X in future 

and present c1imate (X:;~:~;~ted - X~~~:j~~~ed) using either RCM (CCRCM) or GCM 

(CCCCM) simulations. 

Another popular approach used to show changes in c1imate stat.istics X is through 

the use of the climate dmnge signal (CCsimulated) itsclf, with no expIicit consideration 

of present and future ciimate statistics. That is, in this case, wc a.re Ilot interested in 
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the future value of the c1imate statistics but only on how much X may change between 

present and future periods. 

Following the development in Sect. 3.2, the CC signal added value (AVcc) gen­

erated by a RCM simulation over a GCM can be defined using the delta method by: 

AV; '~(X futurp. _ xfuture)2 _ (X future _ X future)2
CC	 - b,CCIV! truc b,RC/II! true , 

= (CCCCM - (X!r~t:re - Xb~sent))2 - (CCRCM - (X!r:~)'e - Xb~Senl))2, 

= (CCCCM - CCtrue )2 - (CCRCM - CCtrue )2, (3.11) 

where the subscript "true" denotes the still unknown c1imate statistics that will arise in 

future climate conditions. That is, the R.CM generates sorne AV if its eITor in the CC 

signal estimation is smaller that the GCM one, i.e., if AVcc is positive. It is important 

to note that, when using the delta method, the AV ofRCM simulations in future climate 

statistics does not depend directly on the future c1imate statistics (X;~~~.I:ted) but on 

the CC signal (CC8imulo.ted)' 

Replacing the total CC signal in Eq. (3.11) according to the contribution of large 

(CCl.S) and small (CCSS) scales we have, 

(3.12) 

with 

AV55 =	 (CCf;ue)2 - (BE't!C,Rc/VIf 

(CC'55)2 (C'CS5 CC85 )2 (3.13)= true - RC /II! - true' 

and 

(3.14) 

Again, the approximation in Eq. (3.12) results from neglecting two covariance terms. 

As with the present c!imate case, three necessary conditions for the RCM to add value 

in the fine-scale CC signal can be identified: 

•	 the true CC signal (CCtTve ) must contain non-negligible fine-scale information 

((CCf;ue)2 > 0), 

•	 the RCM-derived CC signal (CCRCtI1) must contain non-negligible fine-scale in­

formation ((CClfCM)2 > 0), and 
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• the RCM-derived CC signal must have sorne skill, 

i.e. (CCî/ue) 2 > (CCJIcl'vI - CC{/ue?' 

Given that we do not have any knowledge about the true CC signal, the first 

condition cannot be explicitly addressed, However, the CC signal PAY can be defined 

in terms of the other two conditions in the following way: 

(3.15) 

and 

PA"SSvCC2 
(CCSSRCM )2 - ( 1\ ss )2 , (3.16)= lJ.f/CM 

where 6..Ff.CM constitutes a measure of the uncertainty in the E'.,;tirnation of CC;fcM and 

is used a~ a proxy of the error (SEêfc,rlcA1)2. Defined in t.his way, relativcly large valuE'~ 

of both P AVtc1 and P AVtc2 are related with a large and robust estimation of the 

fine-scale component of the CC sigIla.l. 

Finally, for the large-scale part, the PAY can be simply defined as: 

(3.17) 

Several arguments can be presenter! to expect a large-scale cornponcnt of t.he P AVec 

quantity. For example, Gao et al. (2011) argue that because GCl\:Is do not adequatcly 

simulate higher elevations where cemperature changes have less effect on snow cover 

(where temperatmes arc still cold enough to retain snow), the large-scale ternperature 

change can be differently simulated in a RCM compared to Cl. GCNI. In this article we 

will concentrate in the study of PAVêc with no cxplidt consideration of its large-scale 

count.erpart, PAvic' 

3.3 NARCCAP data 

The RCM simulations usee! in thisstudy were provided by the North Arnerican Regional 

Climate Change Assessment Program (N ARCCAP; 

http://www.narccap.ucar.edu/; Mcarns et al. 2009). In NARCCAP, ReMs were run 

with a horizontal grid spacing of about 50 km over sirnilar North American dornains cov­

ering Canada, United States and most of Mexico. Acronyms, full narnes and a reference, 

and the modelling group of the ReMs used in this study are presented, respectively, in 

the first thrce columns in Table 3.1. 
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Table 3.1 Acronyms, full names and modelling group of RCMs involved in the NAR­
CCAP project. Columu 4 indicates the LBCs used to drive each RCM. 

RCM Full Name Modelling LBCs 
group 

CRCM Canadian Regional Climate Ouranos / CGCM3 
l'vlodel (version 4.2.0) UQAM CCSM 

(Caya and Laprise 1999) 
RCM3 Regional Clîmate Model UC CGCM3 

(version 3) Santa Cruz GFDL 
(Giorgi et al. 1993) 

HRM3 Hadley Regional Model Hadley Centre HadCM3 
(version 3) 

(Jones et al. 2004) 

Five RCM-AOGCM pairs are used in this study to analyze the climate change 

signal, with two RCMs (CRClVI and RCM3) driven by two AOGCMs and one RCMs 

(HRM3) driven by only oue AOGCM. Four AOGCMs are used to drive the RCMs: 

the Canadian Global Climate Model version 3 (CGCM3, Flato and Boer 2001), the 

NCAR Community Climate Model version 3 (CCSM3, Collins et al. 2006), the Geo­

physical Flnid Dynamics Laboratory Climate Model version 2.1 (GFDL, GFDL Global 

Atmospheric Model Development Team 2004]) and the United Kingdom Hadley Centre 

Coupled Climate Model version 3 (HadCM3, Gordon et al. 2000). The fourth columll in 

Table 3.1 provides the LBCs used to drive each RCM. A total of ten RCM simulations 

are considered, five of them simulating a present period (1971 - 1995) and the other five 

simulating the future climate (2041 - 2065) using the A2 scenario (Mearns et al. 2009). 

For each RCNI simulation, several 3-hourly variables are available in their original 

map projection; but in this article we will concentrate only on the instantaneous 2-m 

temperature and on the 3-hollrly average total precipitation. Sea surface temperatures 

(SST) and sea ice (SI) surface boundary conditions comes from AOGCM data and are 

updated every 6 homs by using a linear interpolation between consecutive monthly­

mean values. Similarly, boundary conditions are interpolated from the low resolution 

to the ,,-,50-km grid meshes by using a !inear interpolation in the horizontal. 

All NARCCAP RCMs inclllde sorne more or less sophisticated representation of 

land surface and the upper soillevels. The representation of lakes depends on each RCM 

and on the LBCs used to drive the RCM. RCMs do not share the fraction of water in 

every grid point (i.e., the land-water mask is model dependent) although most RCMs, 
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with the only exception of the RCM3, represents the Great Lakes, Winnipeg Lake and 

other relatively large lakes in the west northern part of Canada. In ail cases, as with 

oceanic regions, surface temperatures in lakes are prescribed using the driving AOGCM 

data. 

3.4 Methodology 

The methodology use to study the importance of fine scales in the dctermination of the 

ciimate change signal is based in a perfect model approach designat.ed as the potential 

added value framework. A main aclvantage of this framework is that. allows to estimate 

PAVêc quantities independently of the relative performance between the RCM and 

the driving AOGCM without necessity of having high-resolution observations. A brief 

description of the framework is given here but a more cletailed discussion can be found 

in Di Luca et al. (2011a) and Di Luca et al. (2011b). 

3.4.1 Potential added value measures 

Let us consider a two-dimensional field representing the projected change of a given 

c!imate statistics X computed using ,,-,50 :km grid-spacing RCM simulations that we 

denote by CCRCM. A domain of analysis, common to ail RCMs, is sdected and divided 

in non-overlapping boxes of 300 km by 300 km leacling to a low-resolution grid mesh 

containing a total of 288 grid boxes (sec Fig. 3.2). Using this gTid mesh, we can clefine 

a lower resolution version of CCRCM, that we clenote by the virt.ual CCM version of 

the ciimate change signal (CCVCCM), by aggregating the CCRe,\{ over each 300-km 

side grid boxes. For any RCM-AOGCM simulat.ion, the upscaling is simply performed 

by computing the arithmetic average of the statistics X over ail t.he ReM gricl points 

insicle the region of interest. 

As discussed in Sect. 3.2.2, a question that arises nat.urally in the context of the 

PAV framework is whether the high-resolution CCIICM contains filJe-scale information 

that is absent in the low-resolution part (CCvecM). Given that. some of t.he most 

important factors of anthropogenic c1imat.e change are large scale iJl nature (e.g., green­

house gases concentration changes), it is tmclear whether the CC signal would contain 

a significant high-resolut.ion component. A simple way to qnantify the importance of 

fine scales in the high-resolution CC signa~ can be done by defining: 

(3.18) 
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where (J2( CCRCtvI) denotes the spatial variance of the high-resolution CC signal field 

over a given 300-km side region. Similarly, we can define a relative PAV quantity tbat 

evaluates the proportion of the CC signal that is accounted only by the fine-scale pa.rt 

by writing 

(3.19) 

where CC~ecM is the square of the spa.tial-mean c1imate change signal in each region. 

Defined in this way, r PAVt~ varies between 0 and +00; r PAVtb '" 0 would indicate 

that the high-resolution estimation does not add extra information over the coarse­

resolution one. For a given region, r P AVtb '" 1 indicates that the change in the 

fine-scale temperature is as large as the large-scale part change. 

For the time-averaged temperature, CCveCM is always greater than zero in con­

tinental North America and Eq. (3.19) is well defined. When considering time-averaged 

precipitation, CCveCM can be near zero and so an alternative rPAV quantity should 
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Figure 3.2 Spatial-mean CRCM model land fraction over the 288 rcgions use in the 
analysis. The total domain of analysis is common to ail 6 RCM domains and each sub 
region has the same dimensions (i.e., 300 km by 300 km). Black (blue) colors denote 
those regions entirely covered \Vith land (water). 
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be considered to avoid that rPAV be inclefinite. This can be clone, for example, by 

normalising the PAVtb with the square of the mean precipitation of the region: 

rPAv'SS. = (J"2(GGRCM) (3.20)
CC (present) 2 ' 

prveCM 

w 1ere prVGCM
present J' 1 ... 1 300 k . 1 .1 represents t le spatla -mean precIpItatIOn over eac 1 - m StC e reglOn 

in present c\imate. Again, with this clefinition, r P AVt~· varies between 0 ancl +00; 

rP AVtè. rv 0 indicating that the high-resolution estimation does not adcl extra infor­

mation over the coarse-resolution one. For a given region, r PAVt'~7 rv 1 inclicates that 

the change in the fine-scale precipitation is as large as the spatial-mean precipitation 

itself. 

It should be emphasised that the quantities PAVê.b and rP AVèb clefinecl in Eq. 

(3.18), (3.20) and (3.19) only account for the potential adcled value of the small scales 

(PAVee), that is, the PAV arising 1'rol11 the simulation of fine-scale fcatures in the 

statistics X that are absellt in CClVI fields. The two quant.ities are mute about t.he 

potential of RCMs to add value in the large srale or in the covariance terms. 

3.4.2 Interannual variability of PAV measures 

Inherent to the process of computing C\imate statistics from a finit.t~ lellgth tirne series 

(i.e., 25 Yl'ars periods in our case) there is an uncertainty related to sampling. The exis­

tence of sampling uncertainty implies that two adjacent grid points can show somewhat 

different present and future statistics (e.g., tirne-averaged values), leading to differences 

in the CC signal and its derived spatial variance, l'ven if physical mccltanisrns t.hat de­

termine the climate in bath gricl points are essentially the same. IdeaJly, in any gricl 

point and for any given RCM-AOGCM simulation, the sarnpling uncl'rtainty can oe 

quantified using several RCM simulations performcd employing different oounclary con­

ditions arising From running the AOGCM with slightly diffenc;nt initial conditions (i.e., 

using several members of the clriving AOCCM). In NARCCAP, moclelling effort.s has 

been put on the number of RCM-AOCCM pairs and there is onlv one realisation of 

each pair available for analysis thus preventing the internai variability samplillg study. 

In order to cirrulDvent this pra.ctica.l limitation, the sampling lI11ccrtainty will be 

quantificd by estimating the hne-scalc CC signaJ in cadI 300-km sicle region USillg a 

Monte Carlo approach. First, for cach RCl\II-AOGCM simulation, the higIr-resolution 

climate change signal GGRCM is compllted 100 bmes by sampling randomly with rc­
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placement over the 25-year sea.'3onal averages of present (Xf{~~nt) and future (Xk~~;e) 

simulations, thus obtaining a distribution for CCRCM that we denote by CCkCM. 

Second, for eaeh sample of CCkCM' we compute the spatial variance obtaining a 

100 sampie distribution of variances in each region, denoted by a} (CCRCM), that can be 

used to f>.-stimate the mean spatial variance and sorne measure of the spread arO\md the 

mean. Defined in this way, the sampling uncertainty gives a measure of the interannual 

variability in each region. 

A similar method to estimate sampling uncertainty was used by Déqué et al. 

(2011). Using a Monte Carlo procedure and a 10 members sampling they found a very 

good agreement between the sampling unccrtainty computed using various runs only 

differing on initial conditions and the Monte Carlo approximation for t.ime-averaged 

precipitation. For time-averaged temperature, they found a good agreement in summer 

season but they found that t.he Monte Carlo approximation underestimates by nearly 

30% the "true" spread in winter. Although these results are encouraging, a more detailed 

study should be undertaken to confirm that the Monte Carlo estimation constitutes a 

good approximation. 

The existence of sampling uncertainty has implications when attempting to eval­

uate the necessary conditions for AV that were discussed in Sect. 3.2.2 (see Eq. (3.15) 

ana (3.16)). First, when trying to identify regions containing non-negligible fine-scale 

variance (i.e., P AVtè = (CCftCA'1)2 > 0), the sampling uncertainty implies that we 

cannot use a zero threshold but sorne non-zero threshold that measures the level of 

noise inside each region. That is, a "variance noise" threshold must be used in or­

der to determine whether the fine-scale variance is induced by physical mechanisms or 

only arising from sampling uncertainty. We will refer to the use of snch threshold as 

"physically significant" condition. 

The physically significant condition is defined here in a simple way by arbitrarily 

choosing a minimum value, the same for aU regions, for PAVtc to be statistically 

different from zero. In order to take into account the sampling uncertainty in the 

variance computations and the possibility of getting a value below the threshold by 

chance, the criterion imposes that 95% of the Monte Carlo-generated variances must be 

larger than the thrpshold: 

(3.21) 
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For the absolute quantity (PAV6b) , relatively small values are ehosen for both tem­

perature ((0.lK)2 threshold) and precipitation ((0.04mm/dayf thrcshold). Assuming 

that CCRCM values are normally distributed inside each region, this implies that 95% 

(99%) of the CCRCM differences between two grid points are smaller thall 0.2 K (0.3 K) 

for temperature and smalieT than 0.08 mm/day (0.12 mm/day) for precipitation. Sirn­

ilarly, for relative PAV quantities (r PA V6b) , regions will be coru:;iclered as physically 

significant when r PAV6b values are lal'ger than 0.052 and 0.022 for temperature and 

precipitation respectively. 

The second implication introduced by the existence of sarnpling uncertainty is 

related with the condition (CC;~~ue)2 > SEHc,RCM (see Eq. (3.16)) that suggests that 

a large elTor in the estimation of (CCftCM)2 can prevent the RCl\.l from adding value. 

The sampling uncertainty can be used as a proxy of the llllknown crror SE'(}C,RCM to 

quantify the potential skill of the fine-scale spatial variance estimation. 

In order to define a condition qllantifying the skill of the several RCM simulations, 

let us suppose that the mean value of a;( CCRClvl) is a good e"c;tilllation of the spatial 

variance of the truc climate-changc signal (i.e., (J2(CCRCM) (J2(CCtnLe )). In this cv 

case, fol' any sample a; (CCRCM ), there will be some AV in the fine-scale climate­

change signal if and only if a;(CCncM) < 2· a2(CCRCM) (see Eq. (3.13)). In orcier to 

guarantee some form of skiIl in the estimation of a PAV6~ we will consider as skillful 

those regions that verify: 

(3.22) 

with q95 the 95th percentile of the (JT( CCRCM) distribution. 

Several uncertainty sources can influence PAV quantities; sec Foley (2010) for a 

detailed discussion. The uncertainty relatecl with the use of different RCM and GCMs 

will not be directly addressed here, although PAV quantities derivcd From individual 

pairs of RCM-AOGCM simulations will be shown. AIso, NARCCAP fut1ll'e elimate 

simulations are available OfÙy based on the A2 scenario (see IPCC 20(7), thus preventing 

any scenario uncertainty analysis. While this can be a maiu source of uncertainty when 

looking at the end of the 21st century climate, it is proiJably less important when looking 

at thefirst half of the century. 

It should be noted that quantitative results related to the "physically signin.cant" 

and the "skill" conditions depend on the arbitrary choicc of the thres1Jold and the 
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sampling uncertainty measure, respectively. The use of other thresholds and sampling 

uncertainty measures would lead to different quantitative results. However the results 

are qualitatively similar. 

3.5 Results 

3.5.1 Temperature 

Figures 3.3 and 3.4 show the time-averaged projected temperature change (2041-2065 

minus 1971-1995) for individual RCM simulations in winter and summcr seasons re­

spectively. In both seasons, results show warmer conditions in the future with generally 

a stronger warming in continental compared to oceanic regions. In winter season, the 

spatial pattern of CCRCtoJ! shows a general increase to the north and to the interior of 

the continent that reaches almüst 7 K in the centre of the Hudson Bay for ail RCM 

simulations with the only exception of the RCM3-GFDL simulation. This pattern of 

warming is related with the positive feedback induced by the reduction of the period 

of snow sea-ice cover and the associated increase in absorbed solar radiation (see for 

example IPCC 2007). 

Warming is smaller in summer than in wintel' in northern regions and generally 

larger in central and southern regiolls. The spatial pattern of CCRCM shows maximum 

values in continental-middle latitudes with changes as large as 4 K in central United 

States in most RCM simulations. This pattern of warming is mainly explained by 

the positive feedback induced by the decreased of latent heat fluxes and the increase in 

sensible fluxes due to negative anomalies in surface soil moisture in most central-western 

regions (Seneviratne et al. 2010). 

Figures 3.5 and 3.6 show the square root of the PAV6~ measure (see Eq. (3.18)) 

for the RCM-AOGCM simulations and for the ensemble-mean results in winter and 

summer seasons, respectively. As stressed in Sect. 3.3, oceanic boundary conditions in 

NARCCAP simulations are obtained by interpolating SST and SI fields coming from 

the driving AOGCM simulations. This means that stationary fine-scale patterns in the 

ocean fields, if they exist, are artificial and do not reflect any physical processes. For 

this reason, we decided to mask oceanic regions in the PAV analysis. Oceanic regions 

are defined as those containing 100% water-fraction and the total number depends on 

the RCM considered, varying between 50 in the CRCM to 58 in the HRM3 mode!. 
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Figure 3.3 Climatc change signal for the time-averaged tcmperatnre in wint,er sea<;on 
for individual RCM-AOGCM simulations. 
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In winter season (Fig. 3.5), the largest JP AVê~ values ('"'-'1.2 K) appear in 

northern-eoastal regions mainly along the Hudson Bay and the Canadian Archipelago 

coasts with relatively large values also along the Pacifie Coast ('"'-'0.5 K) and in central 

western United States. Different mechanisms appear to produce the relatively large 

values in coastline regions depending on whether or not sea ice is present during the 

winter. For example, most RCM-AOGCM simulations show large values of P AVê~ 

over the northern part of the Pacifie Coast, associated with Im'ger warming over land 

compared to water (see Fig. 3.3), probably explained by the snow-albedo feedback 

that is present in land but absent in water surfaces. On the contrary, large values of 

P A Vê~ in the Hudson Bay and the Canadian Archipelago eoasts are generaIly related 

with a more pronounced warming over oceanic regions, maybe due to a stronger albedo 

feedback in sea ice compared to land surfaces. A mec:hanism that can be important in 

regions along the Rocky Mountains is related with the snow-albedo feedback resulting 

from the differential snow cover change in varying altitude regions. 

A large number of regions show that at least 5% of winter J P AVê~ sampie 

values are smaller than the 0.1 K threshold established for physical significance (white 

mask in Fig. 3.5 and 3.6). The number of these regions depends on the simulation and 

varies between 74 in the HRM3-HADCM3 and 170 in the RCM3-GFDL simulations, 

with aIl simulations showing "zero" values in the south-eastern part of the continent. 

Figure 3.5f shows the square root of the average of P AVê~ across the five indi­

vidual simulations (J(PAVê~)) in winter season. A total of 154 out of 230 non-oceanic 

regions appear to be physicaIly significant and thcse regions are mostly located along 

a coast (Canadian Archipelago, Hudson Bay, Pacifie and Atlantic Oceans) and in the 

central-western part of the continent. 

In summer season (Fig. 3.6), the largest -IPAVê~ values ('"'-'0.6 K) appear also 

in coastal regions along the Hudson Bay, but in this case relatively large values extend 

to the south, along the Pacifie and the Atlantic coasts and over the Great Lakes and 

other smaller lakes in Canada, at least in those simtùations containing lakes (CRCM 

and HRM3). In this season, the relatively large PAVê~ values in coastal regions seem 

to be fOl'ced mainl}' by a larger warming over land compared to oceanic regions (see 

Fig. 3.4) probably cille to the slower response of the orean beeause of its laI"ger heat 

capacity. The number of regions that verify the "physicaIly significant" criterion (see 

Eq. (3.21)) varies between 105 in the HRM3-HADCM3 and 158 in the RCM3-GFDL 

simulations, thus showing similar values although less variability than the winter case· 
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Figure 3.5 Temperature potential a.clclecl value (sec Eq. (3.18)) in winter season for 
inclividuaL RCM-AOGCM simulations and for the eusemble mean. White regions des­
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Figure 3.6 Same as Fig. 3.5 but for sumnler scason results. 
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Figure 3.7 f;hows the square root of the ensernble-mean ternperature relative 

PAV nHlasure (computed using Eq. (:'U9)) in winter a.nd SlUnmer seasons, respec­

tively. ) (r PAV~b) valucs are always smaller than 0.6, suggesting that fine-seule mean­

temperature changeA'; are generalJ.y smaller than the large scale ones. The domain­

averaged J(iPAVrYd in winter (summer) is 0.086 (0.093) with a maximum value of 

0.31 (0.58). That is, averaged over continental North America, the contribution of the 

fine seales to the total climate change signal is of the order of 10% although it can attain 

60% in specifie regions. 

In both ;;easons, &<; with the absolute PAVèb measure, the largest ensemble-mean 

r PAVêê: valucs appear along coastal regions due to the differential heating obscrved in 

land and ocean surfaces. In winter (summer), tlIere is a total of 101 (93) out of 230 

non-oceanic regions where at least 5% of )(rPA'Vèb) sample values are smaller than 

the threshold imposed for physical significance. Other than in coastal regions, rela­

tively large winter (rPAV!:ê') values appear over west-central United States (probably 

associatecl with fine-5ca\e topography) and over the Great Lake5. The general spatial 

pattern of J(rP-Avc~b) closely resembles the )(PAVêè) field suggesting that fine-scale 

variances of the CC signal tend to follow the mean CC. 

Interestingly, i).ecording to the skill condition (sec Eq. (3.22)), the estimation of 

(PAV(%) and (r PA.Vêè) qllantjtip.'3 appear to be very robust in aU regions for both .. 

summer and winter seasons. 

(a) Winler	 0.55 
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Figure 3.7 SaIlle as Fig. 3.5 but for the rPAVèb quantity. 
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Table 3.2 Number of non-oceanic regions that do not satisfy the physical (see Eq. 
(3.21)) or the skill (see Eq. (3.22)) conditions for the ensemble-mean PAY and rPAY 
measures in winter and summer seasons. Robust regions de.signate those that satisfy 
simultaneously bath conditions. 

Temperature 
Summer Winter 

Precipitation 
Summcr 'Vinter 

PAY 
(1) qs < threshold 

(2) q95 > 2 . 0 2 

Robust 

90 
0 

140 

76 
2 

154 

70 
9 

160 

123 
11 
107 

rPAY 
(1) qs < threshold 

(2) q95 > 2 . 0 2 

Robust 

134 
0 
96 

126 
0 

104 

130 
41 
91 

122 
24 
108 

3.5.2 Precipitation 

A similar analysis ta the one presented above is also perfonned for the precipitation vari­

able. Figures 3.8 and 3.9 show the time-averaged precipitation change (2041-2065 minus 

1971-1995) for individual RCM-AOGCM simulations (CCne/vI) in ,vinter and summer 

seasons, respectivel)'. The high-resolution CC signal is normalised by the present c1imate 

mean precipitation in order to account for the important mean-precipitation gradients 

across the North American continent. 

In winter, most simulations tend to producc an increase in precipitation over 

most of the continent mainly as a result of the increase of atmospheric moisture due to 

the tcmperature dependencc of the water vapour saturation pressure together with a 

displac:ement of the westerlies to the north (see IPCC 2007). Increments are generally 

smaller than 3Q...4Ü%, with maximum values generally located over the Hudson Bay. 

In absolu te terms (not shown) , the maximum illcrease in precipitation amounts appear 

along the northeru part of the Pacifie Coast, with values of the order of 3 mm/day. Most 

RCM-AOGCM simulations tend ta show a decrease of precipitation in the south-western 

part of the domain, a feature that seerns to be related with an enhanced subsidence in 

this region due to an intensification of the subtropical anticyclone in this season (IPCC 

2007). 
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Figure 3.8 Clirnate change signal for the time-averaged precipitatioll in winter season 
for inclividual RCM-AOGCM simulations. 

(b) CRCM-CCSM (c) HRM3-HADCM3 
1.00 ·135 ·90 1.00 -135 -90 1.00 
0.86 0.86 0.86 
0.73 0.73 0.73 
0.6Q 0.6Q 0.6Q 
0.46 0.46 :il 0.46 
0.33 0.33 0.33 
0.20 0.20 0.20 
O.OB ... 0.06 0 0.06 
·0.0 o ~-o.o ~ -0.0 
·0.2 ·02 ·0.2 
-0.3 ·0.3 ·0.3 

o '0.4 g ·0.4 g -0.4 
·0.6 ·0.6 ·0.6 
·0.7 -0.7 ·0.7 
-O.B :<l ·O.B l<l ·O.B 
·1.0 ·1.01!===!=:~fR-"""""~= -1.0 -'====!==~fR-";"";~= 

(e) RCM3-CGCM3 
1.00g:~'35 '~•. 0.86 
0.73 

0.6Q 0.6Q 
1l!) 0.46 0.46 

0.33 0.33 
0.20 0.20 

... 0.06 0.06I
.... ·0.0 .(l.0 

·0.2 -0.2 
·0.3 -0.3 
.(J.4 ~ -0.4 
.(l.6 -0.6 
·0.7 ·0.7 
.(l.B ~ ·0.8 
-1.0 ~===!=:k=:5i~";:;;:;,;a.:::.:JJ -1.0 

Figure 3.9 Same as Fig_ 3.8 but for summer season results. 

In surnrner, in agreement with results found in IPCC (2007), the precipitation CC 

signal is strongly dependent on the RCM-AOGCM simulation and, in sorne simulations, 
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the increase in precipitation is only limited to the northern part of the domain. Some 

simulations suggest a decrease of about 30% in mean-precipitation in the northern part 

of the Pacifie Coast. 

Figures 3.10 and 3.11 show the square root of the precipitation PAVèè measure 

for individual RCM-AOGCM simulations and for the ensemble-mean results in winter 

and summer seasons, respectively. In winter season (Fig. 3.10), the largest j PAVê~: 

values are found alollg the Pacifie coast, mainly in the northern part, with values at­

taining 1.15 mm/day. In some individual simulations, the j P AV~'è winter season field 

shows a secondary maximum in the south-eastern part of the domain, with values of 

about 0.4 mm/day. In regions locatcd in central United States and most of Canada, the 

5th percentile of the j PAVè'c distribution is generally smaller than the 0.04 mm/day 

threshold, suggesting that most of these regions are physically non-significant. 

In summer, no clear pattern of PAVêc can be identified and, in most regions, 

mean jPAVêc values are generally smaller than 0.3 mm/day. In titis season, the PAY 

precipitation analysis in individua.1 RCM-AOGCM simulations shows t.hat. a minimum 

of 107 and a maximum of 213 appear <'\5 physiCc\lly non sigTlÎficant. according to the 

criterion defined in Eq. (3.21). 

Figure 3.12 shows t.he square root of the relative PAY precipitat.ion measure (sce 

Eq. (3.20)) for the ensemble-mean results in winter and summer seasons, respectively. 

In both seasons, it is clear that the fine-scale component of the CC signal is much smaller 

tha.n the present time-averaged pr€cipitation. Domain-average j (TP AVèè) values are 

about 0.045 and 0.048 in winter and summer sea50ns respectively, sllggesting that. fine 

scales indllce a precipitation change of about 5% compared to the present t.ime-averaged 

precipi tation. 

In winter season (Fig. 3.12a), the largest changes in mean precipitation ("-' 10%) 

seem to arise related with the presence of fine-scale topographie features along the 

R.ocky Mountains and with a small-scale process taking place in tLIe northern part of 

the domain. 

In sllmmer season (Fig. 3.12b), the largest J(l'PAVêe::? values appear in the 

south-western part of the continent with values attaining 0.3 in sorne regions. Interest­

ingly, most of thesc regions seem to oe non-robust to the sampling llncertainty criterion 

indicating that in these regions negative added vaille could be th(~ net result dlle the 

generation of too much or too little fine-scule features. 
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Figure 3.10 Precipitation relative potential adued value in winter season for individual 
RCIvI-AOGCIvI simulations and for the ensemble-mean. Wlùte regions designate those 
regions that do not satisfy the "non-zero" criteria. Crooses (x) designate those regions 
that do not satisfy the "skill" criteria. Oceallic regions are in black. 

Figure 3.11 SamE' as Fig. 3.10 but for summer season results. 

According to the skill condition, the estimations of PA11c% and rP A116b for 

precipitation are much more uncertain than for the temperature case. For the PA116b 
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Figure 3.12 Same as Fig. 3.10 but for the rPAV6~,> <]uantity. 

quantity, a total of 9 (11) regions appcar to show that tIlt' 95th pO'centile of tlle sampling 

distribution is larger than two time:-; iJw mean value in summcr (willter) S(~i1S011. Table 

3.2 shows that the number of regions incrca.ses to 41 (24) in the same season:-; for the 

rPAV6c' The lasts two [("'Sults suggest tIwt, for precipitatioTl, the sampling unccrtainty 

induœ by interannllal variability can be rdativcly large not ollll' to dctennille fillE'-scale 

variances a 2(CCncivl) bu1 3olso tlw t,imC-avC'1"<1.ge precipitation CC~(;C:;H' 

3.6 Conclusion 

The need of future c1imate information at local and regiollal seales together with objec­

tive cvidence supporting t.bc irnprovement of dimate simulations arising from the use of 

higher resolution models have pushed the climate modelling community to perfonn in­

creasingly higher resolution simulations and to devclop alternative approac!Jcs to ob tain 

the fine-scale c1imatic information. 

In this article, various nested RCM simulations have been used to try to identify 

regions across North America for which the higher resolution affordecl by RCMs cali 

potent.ial!y be important co determine the future climatc cliallge. It is first noted that 

the issue of looking for added value in fllture dimate is equivalent t.() searchillg for AV 

in the climate change signal illstcad of in the c!imate itself, at !ea,o.;t whell considcring 

the "delta mcthod" to approximatc hlt.ure c!imate :-;ta.tistics. F1Il'ther, the ab:-;cnce of 

knowledge about the "truc" climate change means that onl)' nt~c('ssary (bllt not slIffi­

cient) conditions for AV can be studicd kading to the concept of potential addccl value. 
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This concept has already been discussecl for present c1imate applications in Di Luca 

et al. (2011a) and Di Luca et al. (2011b). 

Two conditions were identified for an RCM to produce added value over lower 

resolution GCMs in the fine-scale component of the climate change signal. First, the 

RCM-derived climate change signal must contain sorne non-negligible fine-scale informa­

tion. Second, the uncertainty related with the estimation of this fine-scale information 

should be small enough to suggest sorne skill in fut.ure climat.e projections. That is, since 

non-negligible fine-scale information can either add value to or deteriorate the represen­

tation of the c!imate change signal compared to its large-scale part, large spread in the 

potential added value indicates a high chance ta deteriorate the large-scale CC signal. 

The importance of fine scales in the climate change signal is studied using the 

potential added val1te framework as presented in Di Luca et al. (2011a). For each NAR­

CCAP RCM simulation, large-scale CC values are computed by aggregating the high­

resolution CC signal over a lowcr resolution 300-km grid spacing mesh (denoted as 

virtual GCM grid) that tries to emulate the grid of a reallow resolution GCM. Using 

a common North American domain for ail NARCCAP RCM simulations, a total of 288 

non-overlapping virtual GCM grid boxes are defined. An absolute potential added value 

measure is then defined by estimating the fine-scale variability of the CC signal inside 

each 300 km side region and a relative quantity is similarly deriv:ed by calculating the 

fraction of the total CC signal accounted for by the small-scale component. 

For the temperature variable, the largest potential for added value appears in 

coastal regions mainly related with differential warming in land and oceanic surfaces. 

In northern regions along the Hudson Bay and the Canadian Archipelago this seems 

to be related with a differential snow-sea-ice albedo feedback. Along the Pacifie and 

Atlantic coasts, the relatively large PAV seems to be more related with the differential 

warming due to the dissimilar thermodynamical properties (e.g., heat. capacity) ofwater 

and land surfaces. Fine-scale features can account for nearly 60% of the total CC signal 

in some coastal regions a.lthough for most regions the fine scale contributions to the 

total CC signal are of only "-'5%. 

For the precipitation variable, fine scales contribute ta a change of generally less 

than 15% of the time-averaged precipitation in present climate with a continental North 

American average of "-'5% in bath summer and winter seasons. In winter, the largest 

PAV appears in mountainous regions and in the north part of the continent. In the 

first case, fine-scale features may be related with the interaction between large-scale 
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precipitation changes in mi<l-latitudes (see IPCC (2007)) and the finc-scale topography 

of the Rocky Mountains. 

An important aspect to take into account when estimating the future change of a 

given climate statistics is related with its uncertainties. As expected, and in agTeement 

with Giorgi (2002), we found that the sampling llncertainty due to interannual variability 

tends to increase as the spatial scale of the data used to compute climate statistics 

decrease.s (not shown). 

The analysis also shows that the uncertainty due to interannual variability asso­

ciated with fine-sca·le features in the CC signal secms to be much larger in precipitation 

than in temperature. This has as a consequence that while the RCMs may adc! fine-scale 

features to precipitation fields at aB time scales, some of this gain may be lost clue to 

the relatively short time periocls usua1ly analyzed (i.e., 25 years periocls ill our case). 

This result may be of importance for impact and adaptation studies and for this reason 

de.serves further exploration. 

Probably the most Ï!nportant limitation of this study is relatccl with the choicc 

of time-averaged quantitics in the PAV analysis without. explicit, consideration of higher 

order statistics. The larger sensitivit.y of higher moments to changes in resolution is 

expected to lead to a larger potential for added value ancl an increase ill the fine-scale 

signal. It is not clear, however, how the ullccrtainty associated with these high-orcler 

statistics and the derived signal to noise ratio will evolve. 

A second important caveat is that the analysis of the "ski1l" of the RCM-dcrivecl 

PAV quantities was perfOlmed only in terms of the sampling uncertainty, with no con­

sideration of ot.hers sources of uncertaintiès such a.s structural model Ilncertainties. As a 

consequence, the number of skilful regions obtained in this stlldy probably corresponds 

to an upper limit compared ta a more complete analysis including other uncertainty 

sources. 
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Appendix 3.A: Added value as a spatial scale issue 

This section contains an extension of the analysis presented in the Introduction. Here 

we wil! develop a more detailed expression for the AV as a function of spatial scales (sce 

Eq. (3.1)). 

Let us assume that we can compute a t.wo-uilIlcnsional ciillJate stat.istics X at. 

very high-resolution based on observations and Ict us also assume t.hat a perfect spatial 

decomposition method is available that. allows t.o separate the field accore!ing to several 

spatial seales as follows: 

vis vss Xl'ssXOES = J\.oas + J\.Gas -1: OBS' (3.23) 

Super-index ls e!esignates tlle large scales that can be resolvee! by tlw GCM, ss Jenotes 

the small scales that can be resolved by the RCM ane! cne absent iu the GCM, and vss 

designates the very smal! scales that cannot be resolved by either the RCM and the 

GCM. 

Before applying the spatial decomposition methoe! to the RCi\-1- and GCM-simulatee! 

X, bot.h XRGM ane! XCGJIt fiele!s are projeetee! into some very high-œsolut.ion grid mesh 

on which an analysis of observations is availablc. For simplicity, the projection consists 

of assigning the value of the RCM ami GCM fields on each grid points of the observee! 

high-resolution mesh that fal! iusic!e the correspone!ing RCM and GCM gricl box. For 

this particular projection we have X'Ft6M = X C/6M = 0 and = X CCM 

X is XSSX (3.24)RGM = RG/lil + RG?v!' 

ane! 

X loSX G'CM = CCA1' (3.25) 

The ae!ded value can be simply definee! as t.he e!ifference bet.ween the GCM ane! t.he 

RCM errors 

AV = (XCCM - Xoas)2 - (XHCM - X0138)2 

= NISEcCM - iVISERGM, (3.26) 

wit.h (0)2 = -Iv L;:ü1 5l e!enoting the average of the square e!ifferenc:E's bet.ween observed 
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and simulated climat.e st.atistics X over ail gTicl points i. Defined in this way, an RCM 

generates some adcled value if AV is larger than 0, i.e., if the RCM constitutes a better 

approximation of the observed field compared to t.he CCM. Using Eq. (3.23), (3.24) 

and (3.25) the RCM and CCM mean square errors can be expressed as: 

MSERCM	 =(XRCM - XOBS)2 

_(Xls + xss (Xls + xss + XVSS ))2- RCM RCM - OSS OSS OSS 

_( ls + ss XVSS )2- éRCM	 éRCM - OSS 

=MSE~CM + M5EJfCA1 + ()q/~S)2 + 2· é~CMé~CM 
ls XVSS 2 ss XVSS - 2 . éRCM OSS - . éRCM OSS,	 (3.27) 

and 

MSEcCM	 =(XCCM - XOBS)2
 

_(Xls (Xls + Xss + vvss ))2
- CCM - OSS OSS ./\.OSS 

_( ls vss XVSS)2
- éCCM - ./\.oss - OSS 

-MSEls + (VSS )2 + (VVSS -)2 2 ls XSS - CCM ./\.oss ./\.oss - . éCCM OSS 

ls Xvss + 2 XSS XVSS - 2 . éCCA1 OSS . OSS OSSo	 (3.28) 

By replacing Eq. (3.27) and (3.28) in Eq. (3.26) we obtain: 

AV = AVsS + AVIs + AVcov	 (3.29) 

where 

AV
SS = (Xl:JBS)2 - MSEJtCM' (3.30) 

AVis = M5EgCM - MSE~CM'	 (3.31 ) 

and 

AVcav - 2	 XSS vvss 2 Is ss + 2 Is Xvss + 2 ss X'Uss - . OSS./\.OBS - . éRCJ'vIéRCM . éRCM OBS . éRCM OSSo (3.32) 

Rence the total AV can be decomposed in a small-scale (AVSS), a large-scale (AVis) and 

a covariancp, (AV cot') part. The term AVsS was already de.scribed in the introduction 

but its relation with XftCM is further discussed here. Fig. 3.1 shows the dependence 

of AVsS as a function of XftCM for t.hree different values of Xl:JBS' In the case where 

XtJBS = °everywhere, an increase in fine-scale variance of XRCM can only subtract 
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value by making AVsS negative. Where XO'BS i= 0, the fine-scale feature of XRCM can 

add value over the GCM estimation wherever Eq. (3.30) is positive. The maximum 

AVsS is found when XYBS = XJ:tCM and is given by (XJlCM)2. Furthermore, Fig. 3.1 

shows that the term AVSS can potent.ially increase as XYBS increase. 

Terms AVis and AVCOV are out of t.he scope of our analysis. includes the covari­

ances between observed fine- and micro- scaJes (2 . X8BSX(Y~S'), between large- and 

fine- scale RCM errors (2 . E~C M E)ic !VI) and between GCM and ReM error terms and 

observed variables. 
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CONCLUSION 

Nearly 20 years after the first application of limited-area models as dimate dowllscaling 

tools, nested Regional Climate Models (RCM) have bcen shown to be technically feasiblc 

and to be able to gencrate small-sca.le fcatures with the appropriatc amplitudes, leading 

to more realistic patterns of meteorological variables eompared to the coarser re.solution 

driving data. From the beginning of RCl\/fs devcJopmeut, a large elfort has ensuecl to 

assess their capability as climate downscaling tools by evalllating the :RCM-sirnulatecl 

climate compared to high-resolution observed data sets. Moreover. partieularly in the 

last decade, important efforts were also clevoted to assess the ability of RCMs to improve 

the simulatecl climate compared to their clriving data in order to iclentify the value added 

(AV) by RCMs. 

The effort behind the search of AV ha,') Ilot shown univocal gains, suggesting that 

there is still a neecl to objective]y quantify the :RCM's added value. In particular, a 

clearer identification of variables and cJimatc statistics for wltich RCM simulations can 

produce more skilful results would be very uscful ill the context of a changing c!imatc 

for which plans for adaptation need information at local ancl regiollal scales (Oreskes 

et al. 2010). Furthermore, a better understancling of the AV issue can hclp to incrc:ase 

our confidenee in downscaling techniques products, thus maybe sllpporting their use 

instead of those clerived from lower resolution GCMs as mostly done, for cxample, in 

the "Regional Climate Projections" chapter of the IPCC Fourth Assessment Report 

(IPCC 2007). 

ln the following sections wc will give a more det.a.iled description of sOlfie of the 

original contributions of this thesis together with sorne of tllc limit.ations of the method­

ology and possible research lines to explore in the future. 

Potential aclded value 

In this thcsis we investigated t.he potential of RCMs to add value over coarser resolu­

tion GCM data. The analysis of PAV can be interpreted as the stucly of prerequisite 

condit.ions that can lcad t.o RClvl's adcleù value. The PAV concept is relatively recent 

(Rauscher et al. 2007; Bielli and Laprise 2007; Separovic et i:1.1. 2008; Bresson anù Laprise 
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2009), although it has been implicitly used in a number of articles. For example, Castro 

et al. (2005) comp1.lted the power spedra of some atmospheric variables derived from 

an RCM simulation and from a reanalysis data set. They found that the RCM pro­

vides additional information in small scaks, particularly in those regions with strong 

surface boundary forcing, by showing larger values of fine-scale spectral power in the 

RCM compared to the NCEP reanalysis. This fine-scale added variability, which they 

designated as AV, is what we cali PAV frum the fact that adding variability does not 

guarantee that there is some effective addecl value. 

Two main cOlltributions are made in this thesis to the PAV issue: first, we provide 

an objective definition of what we mean by PAV, by establishing a distinction between 

added value (e.g., added skill) and potential added value (e.g., added variability); and 

second, as explained in the Introduction and in Appendix A, we separate the PAV in 

various terms according to whether or not processes can be resolved by the coarser 

driving data. 

We concentrat.ed the analysis in the PAV arising from the direct influence of fine­

spatial scales and we presented a framework that is explicitly designated to its study. 

The PAV framework is based on the study of two necessary conditions. The first con­

dition requires that t.he climate statistics computecl using high-resolution observations 

must contain non-negligible fine-scale information, i.e. PAV6~s = (XYBS)2 > O. This 

condition constitutes an intrinsic feature of the climate system, independent from cli­

mate model simulations, and can be viewed as a general requirement for high-resolution 

climate modelling to be meaningful. Further, as already stated in the Introduction, 

PAV6~s gives a measure of the maximum value that a RCM can add. 

The second condition requires that the climate statistics computed using high­

resolution RCM simulations must contain non-negligible fine-scale information 

(PAVAbv[ = (XJfCM)2 > 0). Even if the PAVAbM measure can give an erroneous 

estimation of the real PAV, it is still an interesting and useful quantity because allows 

to estimate PAV in those cases where high-resolution observations of the variable of 

interest are not available. 

The PAV framework pr~sented in this thesis allows to study both conditions in 

an independent way, allowing to estimate the relative influence of fine-scale features 

in a given climate statistics. When evaluating PAVAbM' the framework is based on 

two hypotheses: first, that large-scale climate statistics derived from a coarse-resolution 

model are similar to those derived from the aggregation of high-resolution reslùts into 
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a coarse-resolution grid mesh. This hypothesis, partially assessed in Di Luca (2009) 

and discussed in Sect. 1.2.3, needs to be further explored by comparing the large-scale 

representation of a variety of variables using an ensemble of RCM and CCM simulations. 

The second hypothesis is to consider that the relative importance of fine and large 

scales is weil reproduced in RCMs compared to observations. As shown in Section 1.5, 

this seems to be a reasonable hypothesis for a complex variable slIch as precipitation, 

although sorne differences between P AVf/C1VI and P AV6~s appear particularly in warm 

season and mountainous regions. No attempts were made to test this hypothesis for 

the temperature variable, but we are confident that RCMs reproduce relatively weIl the 

real PAV or, at least, their regional and seasonal variations. Ultimately, however, this 

speculation should also be confirmed and quantifieù. 

PAV in present cJimate 

The PAV framework was applied to the precipitation and temperature variables de­

rived l'rom an ensemble of RCM simulations and, in the precipitation case, using also 

high-resolution reanalysis and gridded observed data sets. CondlldiJlg remarks for pre­

cipitation and temperature were presented in Sections 1.6 alld 2.O, respectively, and 

here we will only highlight SOIlle diffcrences between PAV resllits in both variables. 

A main difference between temperature and precipitation is rc1ated with the mag­

nitude of the PAV. The use of different rnethodologies to assess PAV in both variables 

prevents to perform a direct comparison between them. In order to quantitatively com­

pare PAV results for both variables, the variance deeompositioll method as used in 

Chapter 2 for the temperature variable was applied to the tilOc-varying precipitatioll 

field. Results (not shawn) suggest that the relative influence of ReM contributions to 

the total variance is rnllch laI'ger in precipitation thall in temperatme. For example, for 

3-hourly time varying fields, the ensemhle-mean domain average l'PAV in cold (warm) 

season is ",-,5% ("'-'16%) for temperature and ",-,23% ("'-'40%) for precipitation. 

Another fundamental differencc betwecn temperatLl1'e and precipitation is rclated 

to the diffcrent mechanisms that produce PAV. The main source of PAV ill near-surface 

tempcrature is associated with tiIe presence of slll'faee forcings, maillly through the in­

fluence ofland-sea eontrast but also due to fine-seale topographie features. For example, 

the different heat eapacity of water and land surfaces ean lead to diffcrences in surface 

ternperature seasonal values (i.e., stationary PAV) and also in sub-diurnal, diurnal and 
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synoptic variability (i.e., transient PAV). 

In the case of precipitation, the dominant source of PAV is related with high­

temporal resolution fine-scale atmospheric processes (e.g., hydrodynamics instabilities) 

that tend to develop almost independently of surface forcings. This is confirmed by the 

fact that the largest r P AV precipitation values appea.r in warm season and low latitudes 

(not shown) for high-temporal resolution data (e.g., 3-hourly). Regions of complex 

topography induce an extra-component of r P AV independcntly of season or temporal 

scale considered. Its relative importance is larger for long-term mean quantities and 

cold season due to the relatively minor importance of transient PAV sources. 

Results point out that the potential of RCMs to add value can be limited when 

considering c1imate statistics computed using time-averaged values for both variables. 

For exarnple, a large number of regions show r P AV values smaller than 10-15% for both 

precipitation and temperature when considering 16-day averaged periods time series in 

both warm and cold seasons. 

A main limitation associated with our methodology is that it does not allow 

identifying the processes and phenomena that are actually responsible for the fine­

scale variability. Particularly, simply by looking at the relative importance of fine­

scale variability, one cannot assert about the complexity of the processes leading to 

the PAV (e.g., linear vs. non-linear). Forexarnple, the distinct response of water and 

land surfaces to the diurnal variation of sola.r radiation can lead to much larger PAV 

values than those resulting from land-sea breeze effects, but the representation of the 

latter effect is much more challenging than the former. This can have an impact when 

comparing the PAV generated by a RCM and other simpler downscaling techniques 

(DTs). 

Further, sorne phenomena can induce modest fine-scale variability according to 

our PAV measures but could have important societal and/or economical impacts. This 

suggests that PAV studies, at least those using similar methodologies as here, should 

be complemented with other analyses aimed at understanding the sources of variability 

by including an evaluation at the process level. 

PAV in the climate-change signal 

The PAV concept is particularly interesting when considering the problem of ascertain 

whether increasing model resolution improves c1imate projections. For future c1imate 
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simulations, there is no way to decide about the existence of added value in RCM 

simulations and we can onLy estimate the PAV. 

As discussed in Sectlon 2.5, the problem of looking for the pot.ential of RCMs to 

add value in future climate simulations is not directly related with the future climate 

itself but with the climate-change (CC) signal (i.e., the difference betwecn future and 

present climate statistics). The difference of considering PAV of c!imate statistics or 

clirnate-challge statistics rnay appear subtle but can have important implications. For 

example, a large part of the added value in the temperature variable coming from 

stationary forcings such as fine-scale topography and coastlines cali be mostly filtered 

out when computing the djfference between future and presellt climatc. 

In Section 2.5, we brieRy studied the PAV in future rnean-tmlpcrature change 

by computing the ratio between the spatial standard cleviation of the fine-scalc CC 

signal and the large-scale dimate-change signal. The analysis shows that the fine-scale 

variability of the CC signal is generally very small compared to its large-scale component, 

suggesting that Little AV can be expected for the tim~'-averaged temperature. The 

largest values of r P AV appear near coastline regions related with the' differential futme 

warming in land and watel' surfaces. 

A more comprehensive study should be lIndcrt.aken in order te> better understand 

the CC PAV. The use of higher orcier climate statist.ics (e.g., 9Gth percentiles) but 

mainly the use of other variables (e.g., precipitation) is expected to show more CC 

PAV. Maybe more importal'lt, no attempt was done here to assess the robustness of CC 

fine-scale features. As poioted out by Giorgi (2002), the interannual variability of some 

atmospheric variables (e.g., precipitation) shows a very strong sensitivity to changes in 

spatial scales. In particular, interannual variability tends to incrcl;li:lC at more refined 

spatial scales leading to a deterioration of t.he signal to noise rat.io. That is, the CC 

PAV study should include a discussion about the relative importance of fine scales in 

the CC signal but also an estimation of the natural variability of the system and the 

influence on fine-scale c1imatc prcdictability. 

Extended adcled va.lue framework 

The c.lefinition of necessary conditions for AV > 0 can be used to developed Cl seriei:l 

of evaluation steps in orcLer to decide on the existence and sources of added value in 

RCM simulations. This, in tnrn, should help to c1ecide 011 the relevance of using RCMs, 
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direct GCMs output or maybe other simpler and computationally cheaper downscaling 

techniques (e.g., geo-statistical post-processing), depending on the problem at hand. 

Figure 4.1 shows a flow chart describing a possible AVsS testbed resulting from 

the inclusion of a PAV framework type. To illustrate the chart, let us consider the 

case where high-resolution observations are available (left panel in Fig. 4.1). The 

first step when considering AVsS consists in verifying whether the climate statistics of 

interest derived from observations contains non-negligible fine-scale information (i.e., if 

PAVti3s > 0). In the case that PAV6i3s = 0, neither a RCM nor any other DT can 

add value at small scales over the GCM, sa we should either check for PAVl~ or simply 

use the GCM output. If P AV61:Js > 0 then we should ask if the RClVI-derived statistics 

contain some fine-scale information (i.e., if PAV//CM > 0). Again, if the answer is no, 

then we should inquire about the existence of PAVls or use the GCM estimation of the 

climate statistics. If there exists sorne PAVAbvI' the next step is to check whether there 

is also some AVss . Finally, in the case that there is some AVss, we should compare the 

RCM's AVsS with results obtained using other cheaper DTs such as statistical and/or 

ernpirical downscaling techniques. Gnly when cheaper DTs cannot account for the A VSS 

we should prioritise the use of costly RCM simulations. 

In the case where lugh-resolution observations are not available, the quantity 

PAVti3s cannot be computed and we can only estimate the maximum AV using PAVAbM 

(right panel in Fig. 4.1). If PAVAb1 = 0 then the RCM cannot add value to the coarser 

GCM. In the case that PAVf/CM > 0 we can ask whether or not this PAV can be gen­

erated using other simple DTs by comparing PAVAcM with PAVl/T as done in Section 

2.4.3. 

Note that this flow chart can be equally used to evaluate the AV generated by 

other techniques used to produce high-resolution results, such as high-resolution AGCM 

in time-slice mode or statistical/empirical DTs. Also, a similar set of steps may be design 

to eva.1uate the AV coming from the large-scale component of the climate statistics of 

interest (AVlS). 
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