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RESUME

La modélisation du climat a haute résolution est nécessaire aux études d’impact
du climat et, de nos jours, les modeles de circulation générale (MCG) n’ont pas encore
une résolution suffisante pour satisfaire ces besoins. Les modeles régionaux du climat
(MRC) ont été développés dans le but de fournir des détails sur le climat a fine échelle
sur des régions spécifiques de la Terre. Les MRC ont démontré leur capacité & produire
de la variabilité spatiale & petitc échelle qui manque dans les simulations de MCG ; pour
cette raison, les MRC sont de plus en plus utilisés dans les études sur le climat actuel
et futur. Malgré ce succes, les avantages découlant de la production d’une variabilité
climatique de fine échelle - autres que Deffet visuel saisissant des animations réalistes
- ont rarement été clairement identifiés. Les tentatives pour quantifier ces avantages,
généralement désignés comme étant la valeur ajoutée (VA) des MRC, ont été relative-
ment rares et ont prouvé que la question de la VA est trés complexe.

Compte tenu de cette complexité, ce projet se concentre sur un aspect particulier de
cette question : I’étude des conditions préalables que doivent satisfaire certaines statis-
tiques climatiques pour permettre aux MRC d’ajouter de la valeur aux données utilisées
comme pilote. Ces conditions sont basées sur 'idée que la VA des MRC ne peut survenir
que si les statistiques climatiques d’intérét contiennent de 'information a fine échelle qui
n’est pas négligeable. Des données observées et simulées par des MRC peuvent ensuite
étre utilisées pour quantifier 'influence relative des fines échelles dans les statistiques cli-
matiques, comme un proxy, pour estimer la valeur ajoutée potentielle (VAP) des MRC.
Deux méthodes différentes ont été utilisées pour étudier la VAP sur I’Amérique du Nord,
respectivement pour la température de surface et la précipitation. Les deux méthodes
comprennent 3 étapes : l'utilisation d’une technique de décomposition pour séparer
les variables atmospliériques en plusieurs échelles temporelles et spatiales, le calcul de
statistiques climatiques et la définition d’une quantité pour estimer la VAP.

Pour la température, nous constatons que la VAP se dégage presque exclusivement dans
des régions caractérisées par des forcages de surface importants, soit la présence de to-
pographie de fine échelle ou de contrastes terre-mer. Par ailleurs, certains des processus
qui produisent la variabilité de petite échelle semblent étre liés & des mécanismes rela-
tivement simples tels que la réponse linéaire aux différentes propriétés physiques de la
surface et la variation générale de la température avec I'altitude dans I'atmosphere.

Le potentiel des MRC a ajouter de la valeur dans les projections futures de la température
moyenne est brievement étudié. L’analyse montre que la variabilité de fine échelle du sig-
nal du changement climatique est généralement tres faible par rapport & celle de grande
échelle, ce qui suggere que peu de VA est attendue pour cette statistique climatique.
Pour les précipitations, les résultats montrent que la VAP est fortement liée a des in-
stabilités hydrodynamiques de fine échelle. La VAP est beaucoup plus élevée sur de



courtes échelles temporelles (par exemple, pour des données sur 3 heures) et pour la
saison chaude en raison de la proportion plus élevée de précipitations produites par de
petits systémes météorologiques et systémes convectifs. Dans les régions a topographie
complexe, le forgage orographique induit une composante supplémentaire de VAP, peu
importe la saison ou I’échelle temporelle considérée. Les résultats montrent aussi que les
MRC ont tendance a reproduire relativement bien la VAP par rapport aux observations
bien qu’ils montrent une légére surestimation de la VAP en saison chaude et dans des
régions montagneuses.

Les résultats démontrent I’'utilité du cadre utilisé pour étudier la VAP dans le climat
actuel et dans des projections futures. Il est souligné que 1’étude approfondie de la VA
des MRC devrait aider & comprendre comment utiliser le mieux les divers produits
climatiques disponibles en appui aux études en impact et adaptation face au climat
changeant.

Mots-clés : modeles régionaux du climat, valeur ajouté potentielle, Amérique du Nord,
température, précipitation.



ABSTRACT

High-resolution climate information is necessary to support climate-impact assessment
studies, and present-day General Circulation Models (GCMs) do not run at a resolution
sufficient to satisfy these needs. Regional Climate Models (RCMs) were developed with
the aim of providing fine-scale climate details over particular regions of the Earth.
RCMs have been shown capable of producing the small-scale variability lacking in GCM
simulations, and for this reason RCMs are widely and increasingly used in research stud-
ies of present and future climate. Despite this success, benefits arising from resolved
fine-scale variability —other than the stunning visual effect of realistic animations— have
seldom been clearly identified. Attempts to quantify these benefits, generally designated
as the added value (AV) of RCMs, have been relatively rare and proved that the AV
issue is very complex.

In view of this complexity, the present project focuses on a particular aspect of this issue,
the study of prerequisite conditions that observed and RCM-derived climate statistics
of interest must satisfy for RCMs having any chance of adding value over the coarser
driving data. These conditions are based on the idea that RCM’s AV can arise only if
climate statistics of interest contain non-negligible fine-scale information. Observed and
RCM-simulated data can then be used to quantify the relative influence of fine scales in
climate statistics as a proxy for estimating the potential added value (PAV) of RCMs.
Two different methodologies are used to investigate the PAV in near-surface temperature
and precipitation respectively. Both methodologies include the use of a decomposition
technique to separate atmospheric variables in several temporal and spatial scales, the
computation of various climate statistics and the definition of a PAV quantity that
estimates the contribution to the climate statistics coming from those small-scales rep-
resented by RCMs but absent in the driving data.

For temperature, we find that the PAV emerges almost exclusively in regions charac-
terised by important surface forcings either due to the presence of fine-scale topography
or land-water contrasts. Moreover, some of the processes leading to fine-scale variability
appear to be related with relatively simple mechanisms such as the distinct physical
properties of the Earth surface and the general variation of temperature with altitude
in the Earth atmosphere.

The potential of RCMs to add value in the simulation of the future mean-temperature
change is briefly studied. The analysis shows that the fine-scale variability of the climate
change signal is generally very small compared to its large-scale part, suggesting that
little AV can be expected for the time-averaged temperature.

For precipitation, results show that the PAV is strongly related with fine-scale hydrody-
namic instabilities leading to much higher PAV values for short temporal scales (e.g.,
3-hourly data) than for long temporal scales (16-day average data) and for warm com-



xxii

pared to cold season due to the higher proportion of precipitation falling from small-scale
weather systems in the warm season. In regions of complex topography, the orographic
forcing induces an extra component of PAV, no matter the season or the temporal scale
considered. Results also show that RCMs tend to reproduce relatively well the PAV
compared to observations although showing an overestimation of the PAV in warm sea-
son and mountainous regions.

Results demonstrate the usefulness of the framework used to study the PAV in present
climate and future projections and suggest its application to investigate a broader spec-
trum of factors influencing AV issues, i.e. other variables, climate statistics, regions. It
is highlighted that these studies should help in order to get a clearer idea on how to use
the several available climate products in various applications but particularly in support
of impact and adaptation studies in the context of a changing climate.

Keywords : regional climate models, potential added value, North America, temperature,
precipitation.



RESUMEN

La informacién climética de alta resolucién espacial es necesaria para realizar estudios
de evaluacién del impacto del clima y, hoy en dia, la resolucion utilizada en simulaciones
realizadas con modelos de circulacién general (MCG) no es suficiente para satisfacer es-
tas necesidades. Con el objetivo de obtener informacién climdtica de pequefia escala en
regiones especificasse desarrollaron los modelos climaticos regionales (MCR). Los MCR
son capaces de generar variabilidad de pequefia escala ausente en las simulaciones de los
MCG y, por esta razén, los MCR han sido y son frecuentemente utilizados en estudios
que investigan aspectos relacionados con el clima presente y futuro.

A pesar de este éxito, los beneficios derivados de resolver los detalles climdticos de
pequena escala rara vez han sido claramente identificados. Los intentos de cuantificar
estos beneficios, generalmente designados como el valor agregado (VA) de MCR, han
sido relativamente escasos y han mostrado que la cuestién del VA es muy compleja.
En vista de esta complejidad, este proyecto se centra en un aspecto particular que
apunta a estudiar condiciones previas que las estadisticas climdticas de interés deben
satisfacer para que los MCR tengan la posibilidad de agregar valor a los datos utilizados
como piloto. Estas condiciones se basan en la idea de que los MRC pueden generar VA
si vy sblo si las estadisticas de interés contienen informacién de pequena escala que no es
despreciable. Datos observados y simulados pueden ser entonces utilizados para cuan-
tificar la influencia relativa de escalas finas en las estadisticas del clima y asi estimar el
valor agregado potencial (VAP) de los MRC.

Se investiga el VAP en América del Norte utilizando dos metodologias diferentes para
la temperatura de superficie y la precipitacion, respectivamente. Ambas metodologias
incluyen el uso de una técnica de descomposicién para separar las variables atmosféricas
en varias escalas temporales y cspaciales, el céleulo de diversas estadisticas climéticas y
la definicién de variables que describen el VAP.

Para la temperatura, los resultados muestran que el VAP surge casi exclusivamente
en regiones caracterizadas por forzantes de superficie, ya sea debido a la presencia de
topografia de pequenia escala o por contrastes entre el mar y la tierra. Se observa que
algunos de los procesos que conducen a generar la variabilidad de pequena escala pare-
cen estar relacionados con mecanismos relativamente simples, tales como la variacién
general de la temperatura con la altura en la atmésfera o la mejor discretizacién de
los gradientes lineales. El potencial de los modelos climéticos regionales para agregar
valor en la simulacién de la temperatura en el futuro también se estudid brevemente.
El anélisis muestra que la senal del cambio de temperatura entre el presente y el futuro
estd principalmente dominada por la gran escala con escasa variabilidad de pequeia
escala, lo que sugiere un limitado VAP para esta variable en particular.

Para la precipitacién, los resultados muestran que el VAP esta fuertemnente relacionado
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con inestabilidades hidrodindmicas de pequena escala que inducen mayor VAP en cortas
escalas temporales (por ejemplo, en datos cada 3 horas) y en la estacién calida debido
a la mayor proporcién de precipitacidon producida por sistemas de pequena escala. En
regiones de topografia compleja, el forzante orogréifico induce una componente extra de
VAP, sin importar la estacién o la escala temporal considerada. Los resultados también
muestran que los modelos climaticos regionales tienden a reproducir relativamente bien
el VAP en comparacién con las observaciones, aunque presentan una ligera sobreesti-
macién del VAP en la estacién célida y algunas regiones montanosas.

Los resultados demuestran la utilidad del marco que se utiliza para estudiar el VAP en
el clima actual y en las proyecciones futuras y sugieren su aplicacién para investigar
otros factores que influyen el valor agregado (por ejemplo, otras variables, estadisticas
climdticas, regiones, etc). Se destaca que el estudio mas profundo de factores relaciona-
dos con el valor agregado debe ayudar a entender mejor la manera mas eficiente del
uso de los diversos productos climaticos disponibles en diversas aplicaciones, pero en
particular en apoyo de los estudios de impacto y adaptacién en el contexto del cambio
climatico.

Palabras claves : modelos climéticos regionales, valor agregado potencial, América el
Norte, temperatura, precipitation.



INTRODUCTION

Context

Numerical modelling constitutes the only way to attempt to simulate the evolution
of extremely complex non-linear systems. The Earth climate constitutes such a com-
plex system by including several complicated dynamical sub systems (e.g., atmosphere,
land surface, oceans, ice, etc), each one exerting a considerable influence on the others.
Atmospheric-Ocean General Circulation Models (AOGCMs) constitute the primary and
most comprehensive tools to study past, present and future climate. AOGCMs include
dynamical components describing atmospheric, oceanic and land-surface processes, as
well as sea ice and other components of the Earth system that influence the climate on
time scales ranging from minutes to several hundred and even thousand years. AOGCMs
consist of a sct of coupled differential equations that are solved using some numerical
scheine, subject to a set of external boundary conditions (e.g., intensity of solar irradi-

ance) and initial conditions.

It is generally accepted that the reduced numerical truncation afforded by an in-
crease in the horizontal and vertical resolution of the grid mesh used to discretize the
differential equations in models leads to an improvement, in the siinulation of the climate
compared to its coarser resolution version. There is, however, an implicit assumption
in the last statement that thc parameterizations of subgrid-scale processes have been
adapted to the higher resolution, as the appropriateness of these subgrid-scale repre-
sentations may be altered by changes in resolution and hence call for new physical
parameterizations or a retuning of the existing ones (Boer and Lazare 1988; Pope and
Stratton 2002; Knutti 2008). Assuming that the recalibration process was performed
and that the model formulation was adapted to its “new” resolution, several arguments
can be presented to support the expectation of an improvement in the simulated clunate

through an increase in resolution.

First, the enhanced resolution leads to a more accurate discretization of the dif-
ferential equations that describe fundamental physical laws due to a reduction in the

truncation error. This implies that, particularly for those dynamical processes that are



little affected by parameterizations, the finer resolution generally improves the simula-
tion (Knutti 2008).

Second, new small-scale features can appear due to a variety of processes related
with the finer spatial scales explicitly resolved (e.g., non-linear interactions between
large and small scales, development of hydrodynamics instabilities, etc). For example,
the better representation of temperature and humidity gradients can trigger smaller-
scale hydrodynamic instabilities that may lead to a more realistic description of the
spatio-temporal distribution patterns of precipitation.

Third, an increase in the resolution of the atmospheric grid mesh is generally
accompanied by a similar increase in the resolution of surface fields such as topography,
lakes, coastal regions and others. The more detailed surface forcings can modify meteo-
rological variables locally, mainly those variables strongly influenced by the surface (e.g.,
2-m temperature, humidity), but also away from the surface due to the perturbation of
planetary-scale atmospheric flows. For example, in regions of complex topography, the
use of a finer grid mesh would resolve small-scale near-surface temperature gradients
due to the better described mountains profiles, combined with the general variation of
atmospheric temperature with altitude. Another example is given by the interaction
between middle-latitude synoptic precipitating systems and a higher-resolution topog-
raphy. The presence of higher mountains and the potential iinprovement in the repre-
sentation of mountain waves may enhance the rain shadow effect in the lee side of the
mountains, influencing the precipitation locally but also far from the mountaius due to
the conservation of water in the system (e.g. Fig. 6 of Laprise et al. (2008)).

Notwithstanding the potential advantages of high-resolution meshes, in practice
however, the resolution of climate models is constrained by the limited availability of
computing resources. The current resolution of climate models results from a compro-
mise between the number and length of ensemble members, the desired complexity of
physical processes described (e.g., carbon cycle, atmospheric chemistry) and the variety
of external forcings considered (e.g., greenhouse-gases emission scenarios) (Randall et al.
2007). For example, the current horizontal grid spacing of the atmospheric component
of state-of-the-art AOGCMs is about 200 km (Randall et al. 2007).

In order to circumvent the practical impossibility of making operational high-
resolution climatic simulations at the global scale, several downscaling techniques (DT)
have been developed (Giorgi and Mearns 1991; Rummukainen 2010). DTs attempt to

translate the large-scale, low-resolution atmospheric fields into local, high-resolution in-



formation of the climate variables of interest. A description of the different downscaling
approaches can be found in Giorgi and Mearns (1991) and a more recent discussion
can be found in Laprise et al. (2008) (dynamical downscaling) and Wilby et al. (2004)
(statistical downscaling).

In this thesis, we concentrate on the analysis of results derived using nested,
limited-area, regional climate models (RCMs). Basically, the RCM technique allows
for an increase in resolution by concentrating the degrees of freedom, and hence the
computational resources, over a limited region of the globe where the main interest
of a user lies (Laprise et al. 2008). Technically, it consists of using time-dependent
large-scale atmospheric fields and ocean surface boundary conditions to drive a high-
resolution atmospheric model integrated over a limited-area domain (Giorgi et al. 2001).
The atmospheric driving data are either derived from simulations of lower resolution

General Circulation Models (GCMs) simulations or analyses of observations.

The concept of added value

The paradigm behind the nesting technique is that RCMs can be used as magnifying
glasses to obtain regional or local details from coarse-resolution global fields either
derived from reanalyses or GCM simulations (Giorgi et al. 2001; Laprise et al. 2008;
Rummukainen 2010). RCMs are supposed to improve the representation of the climate
compared to the driving data, generating what is generally designated as the added
value (AV) of RCMs.

In order to illustrate the AV issue and the particular topic that is dealt with in this
thesis, let us consider a hypothetical AV study (a more general example is discussed in
Appendix 3.A). Lets suppose that we are trying to decide whether an RCM adds value
over a GCM in the representation of some climate statistics X (c.g., time-averaged
precipitation). Assuming that the metric chosen to assess model’s performance is given

by the squared error (SE), then the AV can be defined by

AV = (Xgem — Xops)* ~ (Xrew — Xogs)? = SEcom — SErcir. (1)

Defined in this way, the RCM generates some AV if its SE is smaller than the GCMs
one, i.e., if AV is larger than 0.

In order to gain more insight on the sources of AV, let us separate the field



according to different spatial scales and express the value of Xpps as follows:
Xops = X8ps + X&ss,) (2)

where the super-scripts s and ss designate, respectively, the large scales and small
scales that are permitted or not by the GCM grid. Hence by definition X-~,, = 0 and

Xeom = X8cu- (3)
Similarly the RCM-derived climate statistics (Xrca) may be decomposed as
Xrem = Xgew + Xieu (4)

Replacing Egs. (2), (3) and (4) in Eq. (1), rearranging and neglecting covariance terms

(see below and in Appendix 3.A for details), we obtain:

AV = AV + AV, (5)
where
AV = (X8ps)* ~ SEiicu |
= (X&gs)* = (Xfiom — X5ps)%, (6)
and
AV = SEGcy — SEScy- (7)

That is, the AV can be approximately decomposed into a small-scale term (AV*%) and
a large-scale term (AV!). Three conditions must be satisfied for the RCM to generate
small-scale added value (AV®® > 0):

e the observed climate statistics Xpps must contain non-negligible fine-scale infor-
mation ((X&zg)? > 0),

e the RCM-derived climate statistics Xpcoas must contain non-negligible fine-scale
information ((X35-,,)* > 0), and

e the fine-scale RCM information must have some skill,

e (X¥onr — X&ps)” < (Xgs)™

We recall that these equations were arrived at neglecting two covariance terms; one



corresponds to assuming that large-scale errors of GCM are uncorrelated with small-
scale variance of observations, and the other that large-scale and small-scale errors of
RCM are uncorrelated.

This analysis suggests that a measure of the potential of RCMs to add value can
be obtained by defining
PAVSs = (X&ps)”. (8)

The quantity PAV5% is called potential added value (PAV) of the small scales in obser-
vations and gives an estimation of the maximum AV that an RCM can add. Assuming
that (X$.,,)% is 2 good approximation of (X&z4)* we can define PAV® in terms of
fine-scale RCM features:

PAVEEy = (Xiom)*. (9)

It is important to note that if PAV3E,, # PAV3%g then the quantity PAVEL,, will
under- or over- estimate the real PAV by simulating too much or too little fine-scale
variability. An under/over estimation of the real PAV can be related with either positive
or negative AV, depending on the values of SE3.,, and (X§gg)?. The interests of
computing PAV3E.,, is that it allows to estimate the PAV in those cases where we do

not have any knowledge about the true climate statistics.

The term AVY in Eq. (5) represents the AV generated by an RCM due to an
improvement in the large-scale part of the climate statistics X. Due to the limited
domain size of RCMs, the lack of two-way interaction between the regional domain and
the rest of the globe, and the lateral boundary condition issues, it is not clear whether
we should expect that RCMs add value at large scales (e.g., Diaconescu et al. 2007). In
this thesis, we will concentrate in the study of AV®® with no explicit consideration of
AV,

Brief review of previous work

Various studies have dealt with the added value issue either by directly considering
some statistics of the type shown in Eq. (1) or by using a scale decomposition method
in order to analyse some specific aspect of the problem such as AV, AVES or PAV
(although not named as such). Here we will briefly describe some of them and for a

recent review of AV studies the reader is referred to Feser et al. (2011).

In one of the first comparisons between the climate as simulated by an RCM



and its driving data, Giorgi et al. (1998) compared the precipitation as simulated by
the National Center for Atmospheric Research (NCAR) RCM and the Australian Com-
monwealth Scientific and Industrial Research Organization (CSIRO) GCM over a region
located in the central part of United States that includes the states of Missouri, Iowa,
Nebraska and Kansas (MINK region). Comparisons of seasonal-mean precipitation in
the MINK region showed large biases for both models in all seasons, and there was no
clear evidence of the RCM adding value in this particular statistics. Although the MINK
region is not characterized by pronounced local topographic variability, the seasonal-
mean spatial correlation with observations are generally higher in the RCM than in the
GCM, thus showing AV in spatial correlations. In particular, an important improve-
ment in the spatial pattern was found in the summer season with correlations of 0.77
and -0.69 between observed and RCM- and GCM-simulated fields, respectively.

Durman et al. (2001) studied the simulated daily precipitation in a global
(HadCM2) and a limited-area version (HadRCM) of the same model. The HadRCM is
driven by the HadCM2 and the comparison is performed in two HadCM2 grid boxes
that includes Scotland and south-east England. Comparisons between simulated and ob-
served intensity-frequency distributions showed that, in the winter season, the HadRCM
had a large positive bias in the frequencies of heavier events and performed worse than
the HadCM2. On the contrary, in the summer season, the HadRCM greatly outper-
formed the HadCM2, particularly due to an improvement in the representation of the
upper tail of the precipitation distribution.

Using a two-dimensional Fourler transform, Castro et al. (2005) computed the
power spectra of several atmospheric variables simulated by the Regional Atmospheric
Modeling System (RAMS) and by the National Centers for Environmental Prediction
(NCEP) reanalyses used to drive the RCM. They found that the RAMS simulation
underestimated the spectral power of integrated kinetic energy and moisture flux con-
vergence at large scales. Assuming that NCEP reanalyses represent “perfect” boundary
conditions, the RAMS underestimation means a subtraction of AV*. They also found
that, particularly in those regions with strong surface boundary forcing, RAMS showed
larger spectral power of kinetic energy and moisture flux convergence at small-scales

than the coarse-mesh NCEP reanalyses data, suggesting some PAVS,

Feser (2006) assessed the AV generated by the REMO RCM over the driving
NCEP reanalyses for sea level pressure and 2-m temperature in Europe. A spatial filter

is used to separate siinulated and observed fields into two spatial-scale ranges: mediuni



scales (between 550 and 250 km; AV*®) and large scales (larger than about 700 km;
AV“). Results showed that, when evaluating a large-scale dominated quantity such
as sea level pressure, spatial patterns produced by the RCM are very similar to those
obtained from the NCEP reanalysis driving data. On the other hand, when assessing
near-surface temperature on medium spatial scales, the RCM outperforms the NCEP
reanalyses in the representation of the seasonal-mean spatial patterns. The author
suggested that the improvement arises from the better representation of physiographic
data in the RCM.

Winterfeldt and Weisse (2009) evaluated the AV produced by two RCMs over
the NCEP reanalyses driving data for hourly time series of instantaneous 10-m wind
speeds. Using several in situ observations in the North Atlantic and North Sea during
the year 1998, they found that RCMs tend to improve the representation of surface
wind speeds compared to the NCEP reanalysis in coastal stations located near complex
orographic features. When assessing instantaneous wind speeds and their associated
frequency distributions in stations located in the “open ocean”, they found that RCMs
tend to perform worse than the NCEP reanalyses. Similar results were found by Sotillo
et al. (2005) over open-ocean stations in the Mediterrancan Sea area when assessing the
AV generated by the REMO RCM over the NCEP reanalyses.

De Sales and Xue (2011) also showed that the AV of RCMs can be strongly
dependent on the region of analysis and that the improvement of the representation of
fine-scale topographic features can be a crucial factor in the generation of AV. They
found that the better representation of the Andes Mountain Range in an RCM compared
to a lower-resolution GCM is a key factor in order to improve the simulated low-level

moisture fluxes and the resulting precipitation in some regions of South America.

Bresson and Laprise (2009) analyzed the atmospheric water budget over North
America as simulated by the Canadian RCM by using a spatial scale-decomposition tool.
In both summer and winter seasons, they found that the small spatial scale component
contributes to a large part of the total temporal variability of most relevant water budget
variables such as precipitation and water vapour flux divergence. Their results suggest
that the representation of moist processes show a high potential for RCMs to add value
over GCMs with important differences across regions (e.g., oceanic vs. continental) and
Seasons.

It is clear from the articles already cited that RCMs do not generate AV in an

unambiguous way. Rather, the AV seems to be contingent upon a variety of factors



such as the season and time scale, the variable and the climate statistics of interest, the
region of analysis, etc. These results prompted the following question: Where, when
and with respect to which variables and climate statistics should one expect to find
added value generated by RCMs?

Scientific objective and outline of the thesis

The main goal of this research is to investigate the potential added value at small
scales (AV*%) based on observations and RCM simulations in North America using a
framework that allows to estimate PAV®® independently in each high-resclution data
set. The thesis is composed of two scientific papers each represented as a separate
chapter and is structured as follows.

The first chapter, entitled “Potential for added value in precipitation simulated
by high-resolution nested Regional Climate Models and observations” and published in
Climate Dynamics in 2011, evaluates the PAV in seven regions across United States
based on four high-resolution precipitation data sets. One reanalysis and two gridded
observed datasets are used to estimate the PAV in the real climate system and RCM
simulations from the North American Regional Climate Change Assessment Program
(NARCAAP) are used to evaluate the PAV suggested by models. The methodology
uses the multi-resolution approach in order to estimate a number of statistics at dif-
ferent temporal and spatial resolutions. The multi-resolution method consists in the
application of numerical filters in order to aggregate the original high-resolution time-
varying precipitation fields into lower-resolution temporal and spatial scales. Spatial
scales vary from approximately 0.5° to 6.4° and temporal scales range between 3 hours
and 16 days. The article focused in the 95th percentile computed from 20-year time
series between 1981 and 2000.

The second chapter, entitled “Potential for added value in RCM-simulated surface
temperature”, evaluates the PAV in the temperature variable as simulated by the same
NARCCAP-ensemble of RCMs used in the first article. The general framework is similar
to that used in the first article, but some important methodological modifications are
introduced. First, results are generalized to the North Amcrican continent and the
adjacent oceans. Second, Reynolds decomposition rules are used to separate the total
variance of temperature according to the contribution of large and small spatial scales
and of stationary and transient processes. The variance of the original temperature field

is then computed and described by four different terms including two terms that describe



the original contribution of RCMs. Finally, the article includes a brief discussion about
the PAV in future climate projections, together with some results of application of the

PAV framework to the temperature change signal.

Concluding remarks encompassing the main contributions of both papers along
with some possible lines of added value research studies are presented in the conclusion’s
section.
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CHAPTER I

POTENTIAL FOR ADDED VALUE IN PRECIPITATION SIMULATED BY
HIGH-RESOLUTION NESTED REGIONAL CLIMATE MODELS AND
OBSERVATIONS

This chapter is presented in the format of a scientific article. Tt was published in 2011 in
the Climate Dynamics journal. The design of the research and its performance together
with the analysis of data and the redaction of this article are entirely based on my work,
with the co-authors involved in the supervision of all these tasks.

The detailed reference is:

Di Luca, A., de Elia R. and Laprise, R., 2011: “Potential for added value in
precipitation simulated by high-resolution nested Regional Climate Models and
observations”. Climate Dynamics; DOI 10.1007/s00382-011-1068-3.
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Abstract

Regional Climate Models (RCMs) constitute the most often used method to perform
affordable high-resolution regional climate simulations. The key issue in the evaluation
of nested regional models is to determine whether RCM simulations improve the rep-
resentation of climatic statistics compared to the driving data, that is, whether RCMs
add value. In this study we examine a necessary condition that some climate statistics
derived from the precipitation field must satisfy in order that the RCM technique can
generate some added value: we focus on whether the climate statistics of interest contain
some fine spatial-scale variability that would be absent on a coarser grid. The presence
and magnitude of fine-scale precipitation variance required to adequately describe a
given climate statistics will then be used to quantify the potential added value (PAV)
of RCMs. Our results show that the PAV of RCMs is much higher for short temporal
scales (e.g., 3-hourly data) than for long temporal scales (16-day average data) due to
the filtering resulting from the time-averaging process. PAV is higher in warm sea-
son compared to cold season due to the higher proportion of precipitation falling from
small-scale weather systems in the warm season. In regions of complex topography, the
orographic forcing induces an extra component of PAV, no matter the season or the
temporal scale considered. The PAV is also estimated using high-resolution datasets
based on observations allowing the evaluation of the sensitivity of changing resolution
in the real climate system. The results show that RCMs tend to reproduce relatively
well the PAV compared to observations although showing an overestimation of the PAV

in warm season and mountainous regions.

Keywords: regional climate model; temporal-spatial scale analysis; precipitation; added

value.
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1.1 Introduction

Atmospheric-Ocean General Circulation Models (AOGCMs) constitute the primary and
most comprehensive tools to study future climate. However, due to the large number
and complexity of processes to be represented, the long simulations needed for climate
studies, and the need of ensemble simulations to provide robust statistical estimates,
computational constraints severely restrict the horizontal grid mesh used in the dis-
cretized equations. Present horizontal grid intervals of the atmospheric component of
AOGCMs are usually between 125 and 400 km (Randall et al. 2007); these are insuffi-

clent to resolve the fine-scale structure of several climatic processes.

The method most often used to perform affordable high-resolution regional cli-
mate simulations is the nested regional climate modelling technique; it consists of using
time-dependent large-scale atmospheric fields and ocean surface boundary conditions to
drive a high-resolution atmospheric model integrated over a limited-area domain (Giorgi
et al. 2001). The atmospheric driving data are either derived from lower resolution Gen-
eral Circulation Models (GCMs) simulations or analyses of observations (reanalyses).
Typical Regional Climate Models (RCMs) horizontal grids for climate simulations are
about 50 km, although long-term simmnlations are increasingly being performed using
grids of 10 km (Kanamitsu and Kanamaru 2007; Suklitsch et al. 2011). For a de-
tailed description of potential merits and limitations of nested RCMs, refer to Laprise
et al. (2008) and Rummukainen (2010). Alternative methods to obtain regional climate
information also exist, such as variable-resolution global models, time-slices of high-
resolution global models and empirical-statistical techniques (e.g. Christensen et al.

2007), but these will not be addressed in this paper.

RCMs have been used in a broad spectrum of applications such as the reconstruc-
tion of recent-past climate on the regional scale (e.g., Mesinger et al. 2006; Kanamitsu
and Kanamaru 2007); the downscaling of low-resolution global simulations in seasonal
prediction investigations (e.g., Rauscher et al. 2007; Seth et al. 2007; De Sales and Xue
2011) and the study of processes and mechanisms in the regional scale (Pielke et al. 1999;
Roebber and Gyakum 2003). During the last decade, RCMs have become increasingly
used for dynamical downscaling of climate-change projections (Christensen et al. 2007,
and references therein), by driving RCMs with GCM-siinulated climate-change projec-

tions.

In any of these applications, the RCM’s objective is to simulate small-scale cli-
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mate processes that are absent in the coarser resolution simulation providing the driving
data. This implies that, from a practical viewpoint, the key issue in the nesting regional
modelling technique evaluation is to deterinine whether RCM simulations improve the
representation of climatic statistics compared to the driving data {(Prommel et al. 2010).
Generally, studies evaluating the relative skill of RCMs and the driving fields are desig-
nated as added value (AV) studies (Bérring and Laprise 2005; Rockel et al. 2010).

Despite the great importance of identifying AV in RCM simulations, the AV issue
has not received much attention till recently (Laprise 2005; Feser and von Storch 2005).
In recent years, however, the AV problem received increased attention and become the
main subject of several studies (Castro et al. 2005; Sotillo et al. 2005; Duffy et al. 2006;
Feser 2006; Kanamitsu and Kanamnaru 2007; Rauscher et al. 2007; Sanchez-Gomez et al.
2009; Winterfeldt and Weisse 2009; De Sales and Xue 2011; Prommel et al. 2010) and
a central topic in a number of workshops (Bérring and Laprise 2005; Rockel et al.
2010). Although some authors (e.g. Liang et al. 2008) believe that the existence of
AV generated by the RCM downscaling technique was already demonstrated for some
particular measures (e.g. reduction of precipitation biases), evidence found in a large
number of articles do not tend to univocally support this view, rather suggesting that
AV remains an important open question for the community.

For example, when dewnscaling reanalyses data, ‘studies generally show that
RCMs add value to their driving data for surface variables (e.g., surface temperature
and 10-m wind speed) in regions characterized by sinall-scale orographic features such as
mountainous regions (Feser 2006; Prommel et al. 2010) and coastal areas (Sotillo et al.
2005; Winterfeldt and Weisse 2009); but little AV and even degradation is sometimes
found in regions with no important small-scale physiographic forcings (Winterfeldt and
Weisse 2009). Long-term large-scale features (i.e., general circulation) are generally
reasonably well reproduced by RCMs (Feser 2006; Sanchez-Gomez et al. 2009), but
degradation of large-scale fields arises when considering shorter time scales (e.g., daily
mean) (Castro et al. 2005; Sanchez-Gomez et al. 2009).

Somewhat similar results are found when using GCM-simulated lateral boundary
conditions (LBCs). According to Seth et al. (2007) and De Sales and Xue (2011), RCMs
generally imnprove the simulation of precipitation compared to GCMs in regions where
small-scale surface forcings are importaut and/or GCMs do not perform very well, but
RCMSs can degrade the simulated climate in those regions where GCMs perform well

and /or large-scale forcings are dominant. De Sales and Xue (2011) also showed that



15

the AV of RCMs is strongly dependent on the region considered: in their study, the
improvement on the representation of the Andes Mountain Range by the RCM compared
to the GCM was a key factor to adding value to the simulation of low-level moisture
fluxes and precipitation in South America.

The value added by RCMs seems to depend on a variety of factors. A key factor is
related with the climatic variable considered in the assessment, understanding the term
climatic variable in a broad sense as some statistical measure of a variable computed for a
given season and region. So some remaining questions are: For which climate statistics
should one hope to find AV from dynamical downscaling? How the AV depends on
the temporal scale of the climatic variable? Where and when can some AV be found
for monthly-mean values? The objective of this article is to examine these issues by
making a systematic characterization of a necessary condition to be satisfied by climate
statistics in order that AV be generated through the use of the RCM technique. Given
that the ansatz behind the dynamical downscaling technique is that an RCM, driven
by large-scale atmospheric fields at its LBC, generates fine scales that are dynamically
consistent with these, this paper will focus specifically on the fine-scale information
generated by the use of nested high-resolution RCM. The presence and magnitude of
fine-scale variance required to adequately describe a given climate statistics will then

be used to quantify the potential of RCMs to add value.

Our study will be performed using precipitation data simulated by several RCMs;
this will allow to determine which of the findings are inherent to the downscaling tech-
nique and which are specific to a particular model. Datasets based on observations will
also be analysed in order to highlight limitations of RCMs performance when possible
as well as to indicate disagreements among observed datasets. The use of precipitation
is justified because it is a variable that displays a wide range of temporal and spatial
scales, and thus a variable that tends to maximize the potential AV. It is also a key
variable because some of the most important societal impacts of climate change will
probably result from changes in precipitation (Trenberth et al. 2003; Gutowski et al.
2007).

The paper is organized as follows. The next section discusses in more detail the
issue of added value and the objectives of this article. Section 1.3 presents a brief
description of the data used. Section 1.4 describes the method used to analyze the
dependence of the precipitation field on various temporal and spatial scales, together

with the manner in which statistics are computed. Results are presented in section 1.5
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with some general results of the method aund specific results of the characterization of
AV as function of several parameters. Some discussion of the results and conclusions is

given in section 1.6.

1.2 Added value issue

1.2.1 General Characterization

Figure 1.1 shows a diagram adapted from Orlanski (1975) and von Storch (2005) il-
lustrating the characteristic temporal and horizontal spatial scales of atmospheric pro-
cesses, together with the range of scales represented by climate models. Grey shaded
areas are regions of dominant spectral power resulting from the composite of a broad
range of atmospheric variables. Due to the space and time truncation, numerical models
can only resolve explicitly a part of the atmospheric processes; smaller scale phenomena
are at best accounted for in an average sense through the subgrid-scale parameterisa-
tions. Differences between RCM- and GCM-resolved scales can be conceptually seen in
Fig. 1.1 by comparing the areas boxed in by the blue and red solid lines. These boxes
_were constructed using as lower limit the-temporal and spatial intervals of discretiza-
tion, and as the upper limit the entire computational domain and length of simulations.
For a typical RCM the lower limits are located roughly at 50 km and 5 min., and the
upper limit at spatial scales of 10,000 km. For a standard GCM the lower limit is here
taken as 300 km and 30 min., and the upper limit as 40,000 km. It should be noted
that timestep and grid spacing of models only constitute a lower limit to temporal and
spatial resolution (Pielke, 1991).

Figure 1.1 highlights that the main potential advantage of an RCM over a GCM
is related with the representation of spatial scales smaller than 300 km and/or temporal
scales smaller than 30 min. that are absent in the GCMs. The enhanced horizontal
resolution of an RCM implies some potential advantages compared to a lower resolution
GCM: 1) a more accurate discretization of equations; ii) a broader range of fine-spatial
scales explicitly resolved; and iil) an iruprovement in the representation of surface forc-
ings such as topography, lakes, coastal regions and others. Figure 1.1 also shows that
scales larger than the RCM domain are not within the resolved scale interval of RCM;
hence planetary scales are only felt insofar as they are provided by the driving data
through the LBC.
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Figure 1.1 Characteristic temporal and horizontal spatial scales of atmospheric pro-
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(red line). Light- blue and red shaded regions represent AV, (called AV1) and AVj,
(called AV2) respectively. Blue squares represent temporal and spatial scales of the
data produced with the multi-resolution method.

The original paradigm of the nesting technique is that RCMs can be used as
sophisticated magnifying glasses (MG) where the generated small scales accurately rep-
resent those that would be present in the driving data if they were not limited by
resolution (Laprise et al. 2008; hereafter referred as MG hypothesis). The idea behind
this hypothesis is that an RCM can be used to represent sinall scales that would be
present in a desirable but in practice unaffordable high-resolution GCM (HRGCM).
The evaluation of the MG hypothesis has been addressed without having to use ob-
served data, through a systematic approach developed by Denis et al. (2002): the Big
Brother Experiment (BBE). In its idealized version, the BBE consists in comparing
two high-resolution simulations generated by using different counfigurations of the same
model: a simulation conducted with a high-resolution global model (referred to as big

brother) and a RCM simulation (referred to as little brother) run at the same resolution
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and with the same discretisation and parameterisation as the big brother, but forced
by low-resolution LBCs derived from filtering out the big-brother simulated fine scales.
The low-resolution data resulting from filtering mimics the situation when driving an
RCM from GCM data. The use of the same model, run in different configurations while
using the same physics, dynamics and numerics, permits to circumvent errors due to
the model itself, through the BBE perfect model approach. As a consequence, the dif-
ferences between the little and the big brothers can be attributed solely to the nesting
technique and to differences in LBCs due to the use of low-resolution data to drive the
little brother.

A low-cost version of the BBE was obtained by replacing the HRGCM by a
very large domaiu high-resolution RCM; it was successfully used to show that the little
brother tends to replicate the magnitude and spatial distribution of small-scale climate
statistics present in the big brother, at least in mid-latitude climates (see Laprise et al.
2008 and references therein). The BBE was also very useful to study the influence of
a variety of parameters in RCMs setup such as the impact of the size of the domain
used to run the model (e.g., Leduc and Laprise 2009) and the impact of LBC errors
(Diaconescu et al. 2007).

1.2.2 Added value concept

The evaluation of the MG hypothesis with the BBE does not depend on the model
performance, i.e. models skill at reproducing the observed climate, which has definite
advantages as discussed above; it has also its downside. Satisfying the MG hypothesis
does not imply that the high-resolution RCM-derived statistics are closer to observed
statistics than those that would be produced by a low-resolution GCM; hence the conclu-
sions are mute about whether RCM provide any real added value compared to coarser
resolution GCM. Indeed, as discussed by several authors for both GCMs (Boer and
Lazare 1988; Boville 1991; Boyle 1993) and RCMs (Giorgi and Marinucei 1996), higher
resolution simulations do not necessarily produce results closer to the observed values, in
part because the approximations in models do not converge monotonically with resolu-

tion and the performance is strongly dependent on the behaviour of parameterizations.

These days, the most popular paradigm used to evaluate RCMs is through a
pragmatic consideration about their usefulness, evaluating if RCMs are able to add value
(AV) to, i.e. improve, the simulation of climate statistics compared to those produced by
GCMs. The AV hypothesis has important differences compared to the MG hypothesis.
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First, it introduces the necessity of using observed data in its validation, thus inducing
important constraints due to the scarceness of fine-scale observations and the limited
number of variables {e.g., precipitation, temperature, surface pressure) available for
validation. Second, the evaluation of the AV hypothesis implies the assessment of the
performance of the RCM downscaling technique but also of the relative performance of
the RCM and its driving data (i.e., the AV is model dependent). It is generally very
difficult to determine if an improvement (degradation) of a given climate statistics comes
from advantages (disadvantages) of the RCM downscaling technique or because the
RCM performed better (worse) than the GCM; there may also be compensating errors
between the driving data and the RCM that may result in apparent improvements,
but for wrong reasons. From this vicwpoint, it seems that the only way of using the
AV paradigm to obtain some intrinsic characteristics of the downscaling technique is
through the use of a large ensemble of RCM-GCM pairs of simulations in order to

extract common behaviours.

In general, RCMs could simulate more realistic climate than the lower resolution
driving data by adding value in two different ways. First by adding climate variability
in scales that are not explicitly resolved by GCMs, hereafter referred to as small-scales
added value (AV;), as indicated by the light-blue shaded region in Fig. 1.1. A second
way is by improving the simulation of climate in those scales that are common to both
RCMs and GCMs, hereafter referred to as large-scales added value (AVj,), as indicated
by the light-red shaded region in Fig. 1.1. The separation of AV in two components
can be helpful because of the different methodological approach needed to assess both
large- and fine- scales AV components. The estimation of AV coming from the additional
climate variability in scales only resolved in RCM simulations (AVs,) is ultimately an
evaluation of the performance of RCMs to simulate small-scale variability. Ou the other
hand, the evaluation of the improvements produced by the RCM in the range of scales
resolved by both models (AVjs) can be done by comparing results from the RCM and
the GCM with large-scale analyses of observations to determine which one produces
better performance. This classification can be complemented with the one proposed by
Castro et al. (2005) in which RCM dynamical downscaling technique is separated into
four distinct types according to the LBCs used to drive the RCM.

Due to the limited domain size of RCMs, the lack of two-way interaction between
the regional domain and the rest of the globe, and the lateral boundary condition
issues, it is not clear whether RCMs actually improve or degrade the larger scales;

hence AVjs has not been clearly identified and it is still a debated topic in the modelling
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community (e.g., Laprise et al. 2008), although recent results indicate that there may
be improvements under specific circumstances (Veljovic et al. 2010). In the following

we will concentrate on AV although it will be generally referred to as AV.

1.2.3 Potential added value concept

It is important to note that in some cases the absence of added value might be related
to the failure of the assumptions from which AV is expected. For example, from Fig.
1.1 it seems clear that very little AV can be found when analyzing monthly-mean pre-
cipitation data in regions without important surface forcings because monthly scales
are predominantly associated with large-spatial scales that are probably well resolved
by GCMs. A necessary condition for RCMs to produce AV, is that the contribution
of the simulated fine-scale details on the climate statistics of interest is not negligible.
That is, if the RCM does not produce any climatic information at small scales then, by
definition, there is no AV.

The study of the relative contribution of fine scales in a given climate statistics
has lead to the concept of potential added value (PAV) as discussed in Bresson and
Laprise (2009). The term potential in this definition accounts for the fact that the-
presence of small scales is not a sufficient condition to have AV ;. A simple example
is an RCM that generates small scales but with little resemblance between simulated
and observed patterns or amplitude. Then, we can argue that the small scales are not
skilful and do not add any real value to the coarser GCM climate, even if they suggest
a large PAV. Clearly however the presence of PAV in RCM simulations is a prerequisite
for, although not a definite proof of, AV.

In this article, a perfect-model approach was developed to study the PAV. The
idea behind the PAV concept is that the high-resolution (e.g., 50-km grid spacing)
precipitation field simulated by a RCM will be aggregated into a coarse-resolution (e.g.,
300-km grid spacing) in order to generate what we can call a virtual GCM field. The
important hypothesis behind this framework is that the virtual GCM can be interpreted
to represent more or less the same statistics as those resulting from a climate model
operating at similar grid spacing. Evidently, a virtual GCM differs from a real GCM
due to a number of reasons, among them that the virtual GCM fields are influenced
through the upscaling of fine-scale processes that are resolved in the high-resolution

RCM simulation but would be absent in a low-resolution GCM simulation.
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Di Luca (2009) compared the statistics of extremes (e.g., 95th percentile) of a
virtual GCM with those of a real GCM, for the precipitation as simulated by the Cana-
dian Global Climate Model (CGCM3) and the Canadian RCM (CRCM) driven by the
CGCMS3. The evaluation focused on time scales larger than a day and on spatial scales
that are common to both models, i.e., the CRCM was aggregated at the CGCM3J res-
olution to generate virtual GCM datasets. Using as reference daily observational time
series, the comparison showed that seasonal biases are of the same magnitude in the
CGCMS3 and the CRCM. Both models display also comparable skills to simulate the
frequency and intensity of observed daily values, but the CGCMS3 generally shows larger
95th percentile values. It is important to note that the performance of GCMs, under
the assumption that model precipitation output represents an arcal mean (see Chen
and Knutson 2008 for a detailed discussion), is evaluated using observations which are
always made at finer spatial resolutions than the GCMs resolutions. This implies that
(GCMs are evaluated and sometimes calibrated using observed statistics that are similar
in nature as virtual GCM statistics, containing for example tlie upscale of finc-scale

processes that occur in the real climate system.

The aim of this study is to develop some simple measures to characterize the
PAV of the precipitation field as simulated by a number of RCMs and as represented
in reanalyses and observations. The dependence of PAV on several parameters will be
evaluated: the choice of the temporal scale of the data (ranging from 3-hourly to 16
days means), the region (e.g., complex topography region versus flat region), and the

season (e.g., mostly convective in summer versus stratiform in winter precipitation).

1.3 Data

The potential added value as defined in the last section is dataset dependent. Four
different but not independent sources of high-resolution precipitation data (HRD) are
used in this study. RCM-simulations are used to evaluate the PAV suggested by models.
One reanalysis and two gridded observed datasets are used to estimate the PAV of
changing resolution of data in the real climate system. Observed datasets are more
reliable in the conterminous United States due to the higher density of stations compared
to Canada and oceanic regions and, for this reason, the region of study is located
in continental United States. Particularly at fine temporal scales and over complex
terrains, observed datasets cannot be fully trusted and will not be considered as a

ground truth.
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1.3.1 NARCCAP simulations

The RCM simulations to be used in this study are those from the North American Re-
gional Climate Change Assessment Program (NARCAAP; http://www.narccap.ucar.edu/;
Mearns et al. 2009). In NARCCAP, six RCMs were run with a horizontal grid spac-
ing of about 50 km over similar North American domains covering Canada, United
States and most of Mexico, during the 25 years between 1980 and 2004. The RCM
simulations to be used are those of contemporary climate using driving data derived
from the National Centers for Environmental Prediction (NCEP) Department of En-
ergy (DOE) Atmospheric Model Intercomparison Project II (AMIP-II) global reanal-
ysis (R-2; Kanamitsu et al. 2002). Table 2.1 gives the acronyms, full names and the
modelling group of each RCM, together with the number of grid points within the
computational domain of each model available for the analysis and the map projection
and the number of vertical levels. The computational domain of the CRCM RCM is
shown in Fig. 1.2 and a brief description of each NARCCAP RCM can be found at
http://narccap.ucar.edu/data/rem-characteristics.html.

1.3.2 CPC gridded precipitation

An interesting source of high spatial resolution precipitation data for daily and longer
time scales is given by the gridded Climate Prediction Centers (CPC) product derived
using stations from the Unified Raingauge Database (URD) (Higgins et al. 2000). This
dataset consists of daily analyses, gridded at 0.25° by 0.25°, from over 8000 stations
each day covering the period 1948 - 1998 with no missing values. The dataset covers the
domain 20°-60° N, 140°-60° W over continental United States with an heterogeneous
density of stations, higher in the eastern part of United States but with relatively good

coverage in all continental United States.

1.3.3 UWash gridded precipitation

This daily gridded precipitation dataset was obtained from the Surface Water Modeling
group at the University of Washington (UWash) from their web site at
http://www hydro.washington.edu/Lettenmaier /Data/gridded/ and is described by Mau-
rer et al. (2002). Within the coterminous United States, it uses daily totals of precipita-
tion from the National Oceanic and Atmospheric Administration Cooperative stations,

also included in the URD database, to produce a 1/8° gridded dataset using the syner-
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Table 1.1 Acronyms, full names and modelling group of RCMs involved in the NAR-
CCAP project. Column 4 indicates the number of grid points in each RCM. Column 5
denotes the map projection and the number of vertical levels for each RCM.

RCM Full Name Modelling Domain  Map projection
group (lon x lat) N° of vertical
levels
CRCM Canadian Regional Climate Ouranos/ 140 x 115  Polar
Model (version 4.2.0) UQAM stereographic
29
ECPC Experimental Climate ~ UC San Diego 123 x 104  Polar
Prediction Center Scripps stereographic
Regional Spectral Model 28
HRM3 Hadley Regional Model Hadley Centre 155 x 130  Rotated
(version 3) lat - lon
19
MM5I MMS5 - PSU/NCAR Towa State 123 x 99  Lambert
mesoscale model University conformal
23
RCM3 Regional Climate Model UC 134 x 104 Mercator
{version 3) Santa Cruz 18
WRFP  Weather Research and  Pacific Northwest 134 x 109  Lambert
Forecasting model Natl Lab conformal
35

graphic mapping system algorithm of Shepard (1984). In order to better capture local
variations due to complex terrain, each grid cell of the 1/8° gridded dataset is adjusted
using monthly-mean values computed with the parameter-elevation regressions on in-
dependent slopes model (PRISM). PRISM (for more details see Daly et al. 1994) is an
analytical model that uses statistical relations between the observed precipitation and
several topographical parameters (e.g., elevation, steepness of the terrain, orientation of
the slope, and others) dexived from a digital elevation model (DEM) in order to provide
gridded precipitation products better adapted over elevated terrains where rain gauge
data are sparse. The influence of PRISM has little effect on the adjusted precipitation

in flat regions and so UWash is expected to be similar to CPC in these regions.

1.3.4 NARR reanalyses

The North American Regional Reanalysis (NARR,

http: //www.emec.ncep.noaa.gov/mmb/rreanl /index.hitml) is a product created at NCEP
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that combines, in a dynamically consistent way, the simulated fields by the NCEP re-
gional Eta model (Mesinger 2000) driven at its LBCs by the R-2 reanalysis, together
with numerous additional observed datasets through the use of the NCEP Data As-
similation System (Mesinger et al. 2006). NARR has a grid spacing of 32 km and 45
layers in the vertical, and reanalysis fields are available every 3 hrs between 1979 and
2003, over a large domain covering Canada, United States and Mexico. According to
Mesinger et al. (2006), in addition to its higher resolution, one of the main advantages of
these reanalyses is the assimilation of latent heating profiles derived from precipitation
analyses (Lin et al. 1999). The precipitation dataset assimilated in NARR is a daily,
1/8° analysis obtained by gridding rain gauge observations from the URD using the
orographic adjustment technique PRISM already discussed (Mesinger et al. 2006).

1.4 Methodology
1.4.1 Multi-resolution approach

To analyze the scale dependence of the above-described data, the multi-resolution (MR,
approach is used. The MR method (see Mallat (1989) for details) has been used in
several studies to analyze the temporal (Howell and Mahrt 1997; Vickers and Mahrt
2002) and spatial (Zepeda-Arce et al. 2000; Haitis et al. 2001) variability of atmospheric
variables. The MR method consists in the application of numerical filters in order
to aggregate the original high-resolution time-varying precipitation fields into lower-
resolution temporal and spatial scales. In both the temporal and spatial dimensions,
the filtering is performed by aggregation of the original precipitation field into several
lower resolution grids. A total of 5 spatial scales (~0.4°, 0.8°, 1.6°, 3.2° and 6.4°)
and 8 temporal scales (ranging between 3 howrs and 16 days) resolution datasets are
considered. As it will be explained in detail later, the dependence of several precipitation
statistics on spatial scales will be used to determine the relative importance of small

scales and define various PAV quantities.
1.4.1.1 Spatial scale analysis

In this study, a slightly different version of the MR method of Mallat (1989) is developed
by aggregating the original HRD precipitation fields on some common lower resolution
grid meshes. The precipitation aggregation is performed over several resolution meshes
occupying regions of 6.4° by 6.4° (i.e., about 550 km by 550 km at a latitude of 40°) as
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a compromise between two opposing needs in relation to their size: first, that regions
be large enough to estimate climate statistics at a range of spatial scales spanning the
minimum resolved by current GCMs, and sccond, that they be small enough to represent
fairly homogeneous regions across North America in order to analyze the dependence
of results on different surface forcings. Figure 1.2 shows the seven regions selected for
the analysis, together with the topography field as represented in the CRCM. In the
following, regions are denoted by adding to LON the west longitude of their centre (e.g.,
the region centred on -118.0° of longitude is called LON118).

The finest scale of the MR analysis is done over grid meshes with 0.4° of grid
spacing, which was chosen such as to be finer than the grid spacing of all NARCCAP
RCMs; on this scale the precipitation field is identical to that simulated by the RCM,
ensuring that the full information of each RCM is retained. The number of RCM grid
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Figure 1.2 Computational domain and topographic field as represeuted in the CRCM
together with the specification of the seven regions of interest. All regions have the
same dimensions (i.e., 6.4° by 6.4°).
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points contributing to the aggregation at each scale depends on each RCM due to their
specific map projections and horizontal grid spacing. Table 3.2 shows the minimum and
maximum number of grid points inside 6.4° by 6.4° regions (see Fig. 1.2) together with

the mean grid spacing inside each region for each HRD.

NARR and CPC grid spacings are smaller than 0.4°. In those grid boxes with

more than one NARR or CPC grid points, the 0.4° grid spacing value is obtained simply
by computing the arithmetic area-average of the points every 3 hours. Hereafter, the
finest scale will be denoted as 0.4°, but it should be clear that for models it does
represent the data at the original grid spacing of each NARCCAP RCM (i.e,, in the
range 0.44°-0.51°). As an example of the spatial distribution of grid points inside a
region, Fig. 1.3a presents the location of CRCM grid points (blue squares) together
with the 0.4°-grid mesh (red crosses) over the 6.4° by 6.4° LON118 region.
The second scale next to the finest is obtained by aggregating the original precipitation
field of each HRD over grid boxes defined by a grid mesh with a horizontal grid spacing
of 0.8°. The upscaling at the 0.8° scale is made by simply computing, at each time
interval, the average of all HRD-points inside each 0.8° grid box (i.e. by computing a
simple arithmetic area-average value). As shown in Fig. 1.3b, grid boxes at the 0.8°
scale contain a variable number of the original RCM grid points, that vary between 2
and 4 in the case of the CRCM.

In a similar way, other spatial scales are calculated by aggregating the original
precipitation field over grid meshes characterizes by horizontal grid spacings of 1.6°,
3.2° and 6.4°, as illustrated in Fig. 1.3c, 1.3d and 1.3e, respectively. The 6.4° scale

corresponds to the coarser spatial scale and it is obtained by averaging, at each time

Table 1.2 Minimum and maximum number of grid points and the corresponding effec-
tive grid spacing in the 6.4 by 6.4 regions of Fig. 1.2 for each high-resolution dataset.

Numbrer of grid points Effective grid spacing (°)

min max min max
CRCM 195 208 0.46 0.44
ECPC 195 209 0.46 0.44
HRM3 165 169 0.50 0.49
MMSI 145 154 0.53 0.52
RCM3 159 167 0.51 0.50

WRFEFP 145 154 0.53 0.52
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step, the precipitation rate values of all the RCM grid points inside the region (see Fig.
1.3e).

Giorgi (2002) used a similar filtering approach to study the spatial-scale depen-
dence of interannual climate variability of temperature and precipitation over several
regions around the BEarth. Starting with a 0.5° grid spacing dataset, he computed a

two-dimensional running spatial average at various spatial scales.

1.4.1.2 Temporal scale analysis

The temporal scale analysis is performed in a similar way as the spatial one. In this case,
the finest temporalscale corresponds to the 3-hourly time series of archived precipitation
for any given grid point. The second temporal scale, the 6-h scale, is obtained by
simply computing the arithmetic average between two consecutive 3-hourly data and
thus reducing in a factor of two the total number of data in the tiine series. Similarly,

six other temporal scales are defined.

For each year between 1981 and 2000 (1998 for CPC gridded precipitation), we
selected two subsets of 128 days in order to generate cold- and warin-season timne series
(a long season of 128 days was chosen in order to be able to represent the amount
of 3-hourly data as a power of 2). Cold season is defined by the four months between
November and February and warm season is defined by those months between April and

June. For these periods, a total of 19 cold seasons and 20 warm seasons are obtained.

1.4.1.3 Spatiotemporal scale analysis

The spatial and temporal scale filtering are then applied simultaneously to each HRD
in order to obtain a spatio-temporal multi-scale dataset composed of a total of 40 (5
spatial scales and 8 temporal scales) time-varying fields. For any given HRD, the multi-
scale dataset is denoted as Pr™™ with index n, varying between 0 and 4, identifying the
spatial scale and index m, varying between 0 and 7, denoting the temporal scales. As
already mentioned, the 5 spatial scales are associated with grid spacings of 0.4°, 0.8°,
1.6°, 3.2° and 64°, and temporal scales vary from 3 h (m =0) to 384 h (m =7). Each
dataset Pr™™ jsillustrated in Fig. 1.1 according to their minimum temporal and spatial
scale. Filled blue squares denote those datasets with spatial grid spacings smaller than
~3.2° (~275 km at 40° of latitude) that can only be represented by standard RCMs.

Datasets denoted with non-filled blue squares correspond to those with spatial scales
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larger or equal than 3.2° that can be represented by both, RCMs and GCMs.

1.4.2 Multi-scale statistics

In order to compare results of the precipitation field at different resolutions, we will

calculate a number of statistics over each region.

e Grid point statistics (g5 * ): for each time series Pr™™ (red crosses in Fig. 1.3)
at spatial scale n and temporal scale m, the corresponding temporal histograms
are calculated by partitioning the interval of possible wet events outcomes into
subsets of 0.1 mm/day width, and then divided by the total number of outcomes
to obtain the frequency in each bin. 95th percentiles are then computed for each
grid point frequency distribution. Wet events are defined herc as those events with
a mean precipitation rate larger than 0.1 mm/day (as done in Lenderink et al.
(2007)).

e Spatial-mean statistics (q;lq’gnygs): for each spatial scale n, the spatial-mean 95th
percentiles computed by putting in the same histogram (pooling) events from all
grid points in a given region and then computing the 95th percentile (similar to

method 3 of quantiles computations in Déqué and Somot (2008).

e Spatial-maximum statistics (g, g5): in €ach region, the maximum value of the

grid-point 95th percentile distribution at spatial scale n is taken.

In this way, q;z{zn,% constitutes a regional measure by representing the spatial-
mean statistics over any given 6.4° side region and qg{g.?c,gs a local measure at one grid
point. Differences between the regional and local measures arise from the presence of
spatial gradients in the temporal precipitation distributions. Several mechanisms can
generate these gradients in instantancous fields; when considering climatic statistics
computed from 20-year data however, they are quite probably due to the existence
of stationary forcings. It should be noted that the spatial-mean quantity is roughly
equivalent to what would be obtained by applving a Fourier transform at a similar

wavenumber.

In this paper results are presented only for the 95th percentile, but the analysis
was conducted also for other quantities and some of these results will be summarized in

the next section.
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1.5 Results
1.5.1 Multiscale intensity-frequency distributions

The process of aggregating precipitation data in space (time) acts as a spatial (temporal)
filter that tends to smooth out the extremes in the spatial (temporal) distribution of
any given field (time series), thus narrowing the intensity-frequency distribution. As a
result, systematic changes are introduced in the original high-resolution precipitation

field (time series) as it is upscaled into lower resolution fields (time series):

e Local maximum values in the lower resolution dataset are always smaller than or
equal to those in the original dataset. That is,-higher-order percentiles (e.g., 95th
percentile) tend to be smaller in the coarser resolution datasets than at higher

resolution.

e The absolute number of dry events (those events with precipitation rate smaller
than 0.1 mm/day) tends to decrease when the precipitation field is aggregated
into lower resolution grid meshes.

¢ Low and moderate precipitation rates tend to be more frequent in lower resolution

datasets, compensating the deficit in dry and heavier events.

The general changes suggested in this three points can be illustrated by showing
the spatial-mean intensity distributions in the NARR data aggregated at several tem-
poral and spatial resolution (see Fig. 1.4). Results correspond to the LONS6G region
but similar results are obtained in other regions (not shown). For 3-hourly data in
cold (Fig. 1.4a) and warm (Fig. 1.4b) seasons, dry events represent on the order of
30-70% of the total events, with a larger value in the high horizontal resolution dataset
(70.5% in cold and 66.9% in warm season) compared to the coarser one (46.5% in cold
and 32.3% in warm season). Low and moderate precipitation events (those between 0.1
and 16 mm/day) are more frequent in the aggregated data at 6.4° grid spacing (42.8%
in cold and 54.7% in warm season) compared to the 0.4° horizontal interval dataset
(22.5% in cold and 20.5% in warm season). Finally, 3-hourly events with precipitation
rates higher than 64 min/day show a relative frequency more than an order of magni-
tude larger in the 0.4° grid spacing than in the 6.4° data (0.38 versus 0.005% in cold
and 0.57 versus 0.03% in warm seasons); that is, heavier precipitation events are more
frequent in high-resolution precipitation field (see Fig. 1.4a and 1.4b).



31

A similar behaviour is found when computing intensity-frequency distributions
for several spatial resolution datasets for 16-day cumulated periods (Fig. 1.4¢ and
1.4d). In this case, the temporal aggregation tends to filter out the more extreme
simulated precipitation (both the no-precipitation and heavier events), thus producing
an increase in the relative frequency of low- to moderate-precipitation events for every
spatial scale. As a result, differences in relative frequencies between different horizontal
resolution datasets are strongly reduced, showing that time averaging can limit the
effect of changing the spatial resolution of the data. Nevertheless, in both seasons,
heavier precipitation events (those larger than 8 mm/day) arc more frequent in the

higher resolution dataset.
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Figure 1.4 LONS86 spatial-miean intensity distributions of precipitation rate as simu-
lated by the NARR reanalysis for 3-hourly data in (a) cold and (b) warm seasons and
for 16-days data in (¢) cold and (d) warm seasons. Colors are associated with 0.4°
(red), 1.6° (green) and 6.4° (blue) spatial scales. Only frequencies greater than 0.01%
arc shown.
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The dissimilar sensitivity to changes in spatial resolution exhibited by different
precipitation intensities has important implications in AV studies. It suggests that dif-
ferent statistics will show different potential for added value depending on which part
of the distribution is sampled. That is, higher moments of the distribution (e.g., inten-
sity and frequency of heavier precipitation rate events) show a much larger sensitivity
to changes in resolution than central moments (e.g., low-moderate precipitation rate
events). As already mentioned in section 1.4.2, we will use the 95th percentile of the
wet-event distribution in order to assess the PAV for the several HRD.

1.5.2 Regional (Spatial-mean) potential added value results

Top panels in Fig. 1.5 show the spatial-mean 95th percentile (q;‘]jgan,%, see section 1.4.2
for computation details) of 3-hourly precipitation over the region LON86 as a function
of spatial scales. Left and right panels show cold- and warm-season results, and the
different curves represent percentiles as calculated from NARR and NARCCAP-RCM
simulations. In both seasons and independently of the HRD considered, there is an
increase of the qg{ga.n,gs value as the spatial resolution increases. Quantitative changes,
however, are significantly different when considering different HRDs. For example, in
cold season, the WRFP model suggests an increase of 28 mm/day in q;r);gan,% between
the 6.4° scale (~25 mm/day) and the 0.4° spatial scale (~53 mm/day). The CRCM
model shows a change of only 8 mm/day between the same spatial scales (~15 and ~23
mm/day, respectively). It is also clear from Fig. 1.5 that differences between 1nodel
estimations tend to be larger as the horizontal scale of the data decreases; that is, the
model uncertainty associated with the estimation of q?w{ga.n,gs is higher as the horizontal

resolution of the data increases.

Fig. 1.5¢c and 1.5d show gmeqn 95 for 16-days precipitation datasets. In this case,
differences between the q?ﬁZan,gs value in high- and low-resolution datasets are greatly
reduced and the spatial-scale dependence of the q?r{Zan,gs is very low. Differences between
the several dataset estimations of the spatial-mean 95th percentile are somewhat less
important than in the 3-hourly case, and the change of qfn’zan,% between 0.4° and 6.4°

seems to be quite similar in all RCMs.

The difference between small and large spatial scale climatic statistics can be
highlighted by defining the PAV measure as

0, 3
PAV™ = g0 n05 — Gmean.9s (1.1)
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where q?ﬁ?d-n,gs and q,;o’,fg;n,gs represent the spatial-mean 95th percentile at temporal scale
m and spatial grid spacings of approximately 0.4° and 3.2° respectively (i.e., a jump
in resolution of around 8 (64) in the linear (quadratic) horizontal dimension). The
PAV™ quantity measures the difference between the representation of gj.,, o5 at fine
(i.e., RCMSs) horizontal scale and its large-scale approximation at the temporal scale m.
Assuming that the 3.2° spatial scale can be interpreted as a good proxy of the statistics
estimated from a GCM at 3.2° grid spacing, then PAV™ can be used to estimate the
potential added value of a RCM over a GCM as discussed in section 1.2.3.

A near zero value of the PAV quantity means that, for the quantity of interest
(e.g., spatial-mean 95th percentile), the high-resolution estimation does not add extra

information over the coarse resolution one. Analogously, PAV ~ 0 can be interpreted
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Figure 1.5 Spatial-mean 95th percentile as a function of spatial scales for 3-hourly
precipitation in (a) cold and (b) warm seasons. Also shown is the 16-days spatial-inean
95th percentile in (¢) cold and (d) warm seasons. Results correspond to the LON8&6
region. Symbols and colors denote the HRD used in each case. Red and blue thicker
lines represents CPC and UWash resultsrespectively (only available for 16-days results).
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as if the application of spatial filters in order to approximate the high-resolution pre-
cipitation field at lower resolutions doesnt filter out any fine-scale variability. Sufficient
conditions for PAV = 0 are given by a spatially uniform intensity-frequency distribution
field or a field that only contains variability at scales larger than 3.2°.

It should be clear, as was discussed in the introduction, that a non-zero value for
PAV does not necessarily mean that the RCM is adding value, because the small-scale
variability may not necessarily be skilful. That is, PAV # 0 is a necessary, but not

sufficient, condition for a high-resolution adding value to lower resolution fields.

A relative measure of spatial-mean PAV™ can also be obtained by defining

3,m

PAV™ q
rPAV™ = o =1 - %"95 (1.2)
qmea.n,95 qmean,95

so that 0 < rPAV™ < 1. The rPAV™ quantity evaluates the proportion of fire
spatial scale 95th percentile (q?ﬁz;n)gs) that is not accounted by its large-scale part
(qfﬁfgm,gs)- Thus rPAV™ ~ 0 suggests that no fine-scale information is needed to

0,m

determine q&;”m%, and TPAV™ ~ 1 means that ¢

mean,05 1S solely determined by the

fine-scale information.
1.5.2.1 High temporal resolution data

The improvement in the representation of surface forcings such as topography, lakes and
coastal regions due to the higher resolution of RCMs compared to GCMs is expected to
strongly influence the added value. A simple but partial assessment of this dependence
can be performed by evaluating the PAV in regions with significantly different surface
conditions. We expect that the most important forcing is the topographic one, which is
particularly relevant over western where relatively high values and large spatial gradients
of the terrain height are found (see Fig. .1.2). It should be clear however that differences
between regions are not limited to surface forcings but can also be related with other
stationary forcings such as the planetary-scale waves (e.g., summertime subsidence in
the West Coast) or the moisture sources (e.g., Gulf of Mexico low-level jet in the Great
Plains).

Figure 1.6 shows the 3-hourly PAV (top panels) and rPAV (bottom panels) as a
function of regions (from west to east) for the spatial-mean 95th percentile (qZ{ga.n,gs)-
In cold season (see Fig. 1.6a), NARCCAP-RCMs show PAV values on the order of 12
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mm,/day with little variations between the regions, but showing some higher values in
eastern regions (those regions to the east of LON98). Differences between RCM PAV
estimations are on the order of +5 mm/day (i.e., ~50%) with slightly larger values
over eastern regions. PAV values as estimated from the NARR dataset (black line)
are also on the order of 12 mm/day, showing a large resemblance with the NARCCAP

ensemble-mean (grey line) latitudinal profile.

In warm season (Fig. 1.6b), most RCMs show significant differences between
eastern and western regions, with maximum values in LON92 and LON86 regions, and
minimum values to the west of LON105. The maximum near central regions is probably
due to a relative decrease of the influence of convective activity toward eastern regions.
PAV values are on the order of 10 mm/day in western regions and on the order of 25-30
mm/day in eastern regions. Differences between RCM estimations are approximately
+5 mm/day (i.e., ~50%) in western regions and +15 mm/day (i.e., >50%) in eastern
regions. In this season, the ECPC RCM shows inuch larger values of PAV than other
RCMs, particularly in western regions with values 3 times larger than every other RCM,
mainly due to much larger values of q,?nean,gs for fine spatial scales (not shown). It is
also evident that in this season the NARR tends to produce the lowest PAV values for
all regions considered. In this case, NARR-low PAV values are related with a tendency

to produce very low 95th percentile at fine spatial scales.

Figures 1.6¢ and 1.6d show the 3-hourly rPAV measure as a function of regions
for cold and warm season, respectively. NARCCAP ensemble-mean cold-season values
are on the order of 0.4, suggesting that around 40% of the fine scale q’?nean,QS comes
from fine-scale variability that is filtered when spatially averaged. In warm season, the
NARCCAP ensemble-mean value is on the order of 0.6, showing that a larger part of the
fine scale g9, g5 comes from fine spatial scale variability. That is, in all regions, warm-
season rPAV values are higher than cold-season values, showing that fine spatial scale
variability of precipitation is relatively more important in warm season due to the finer
scale of precipitation systems in summer (i.e., convection systems dominate) compared
to winter (i.e., synoptic systems dominate). Again, in all regions aud particularly in the
warm season, NARR tends to produce the lowest rPAV values of all datasets with an

average over regions of 0.3 and 0.4 in cold and warm seasons, respectively.

Interesting changes in the regional behaviour are noted when analyzing the rPAV
measure. In both seasons, the ensemble-mean of rTPAV shows higher values in western

regions (0.45 in cold and 0.6 in warm seasons) compared to castern region (0.35 in
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cold and 0.5 in warm seasons). As already stated, western regions are characterized
by more important surface forcings than eastern regions and so the larger rPAV values
in western regions are probably induced by a fine-scale orographic component. In the
warm season, there is also a decrease of rIPAV from central to east regions maybe related

with a relative decrease of the convective activity towards the Atlantic coast.

Differences between rPAV values as estimated from the several RCMs are some-
what smaller compared to the PAV quantity, suggesting that absolute values can be very

different but the scaling properties of precipitation are similar for the several models.
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Figure 1.6 3-hourly regional PAV measure as a function of regions for the 95th per-
centile for (a) cold season and (b) warm season. Also shown is the relative PAV mea-
sure for (c) cold season and (d) warm season. Symbols denote individual NARCCAP-
RCMs results and lines denote the NARCCAP-ensemble mean (grey) and NARR results
(black).
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1.5.2.2 Low temporal resolution data

Figure 1.7 shows PAV (top panels) and rPAV (bottom panels) for the spatial-mean 95th

percentile for the 16-days temporal scale. In both seasouns, differences between the 95th

7

vangs) and large (qgizan o5) scales are much smaller than in the

percentile at fine [q?,’l
3-hourly case; with PAV values generally smaller than 2 mm/day.

Cold-season results show that there is a very good agreement, particularly in east-
ern regions, between results produced by NARCCAP RCMs, NARR, CPC and UWash
observations. In warm season and assuming that UWash observations represent the
most reliable source of information, it seems that NARCCAP RCMs tend to produce
a weak overestimation of the PAV quantity over western regions, with a large overes-
timation by the ECPC RCM. In eastern regions, NARCCAP RCM values are in good
agreement, with those from CPC and UWash, with NARR data tending to produce a
slight underestimation compared to observed values. The underestimation of NARR is
also noted when studying daily data (not shown), suggesting that the low values in the
NARR over eastem regions at 3-hrs (Fig. 1.6b and 1.6d) are, at least partially, related
with an underestimation of the potential AV of the NARR data.

More interesting is the behaviour of the rPAV measure (bottom panels in Fig.
1.7). As for the absolute PAV measure, 1IPAV decreases significantly compared to the
3-hourly values. In both seasons, the rPAV ensemble-mean value decreases by a factor of
~3-4 compared to the 3-hourly values (froin 40 to 15% in cold season and from 60 to 15%
in warm season). This decrease is due to the fact that the application of the temporal
filter induces a different change in high and low spatial resolution 95th percentiles. As
shown in Fig. 1.5, the relative change of the fine spatial resolution q%mn’% between
3-hr and 16-day period (by a factor of 6 to 10) is much more important than the same

change for the coarse-resolution ¢, ¢5 (by a factor of 3 only).

The 16-days NARCCAP ensemnble mean rPAV measure still shiows higher values
in mountainous compared to non-mountainous regions, with valucs of 17% and 9%,
respectively, for cold season, and 24% and 13%, respectively, for warm season. In the
cold season, NARCCAP ensemble mean results are in very good agreement with those
obtained using the observed datasets. In the warm scason, however, CPC shows alimost
identical values of rPAV no matter the region considered, suggesting no clear influence
of surface forcings in this seasor. In contrast, UWash mean valucs over mountainous

and non-mountainous regions are of 20% and 14% respectively, indicating that there is
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some impact of surface forcings in agreement with NARCCAP mean results. Whereas all
datasets suggest similar values for the rPAV in non-mountainous regions, the differences
between datasets arise in the representation of rPAV in mountainous regions. Given that
the PRISM algorithm has exhibited a superior performance than other geostatistical
methods in distributing point measurements of precipitation (see Daly et al. 1994),
differences in mountainous regions may be interpreted as an underestimation of CPC
rPAV compared to UWash data. The reasons of this underestimation are not well known
but could be related with a misrepresentation of stations in these regions. The CPC
station density is highest in the eastern two-thirds of the United States with lowest
values over western regions (Higgins et al., 2008) where the complex topography would

demand for higher densities.
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Figure 1.7 As in Fig. 1.6 but for the 16-days regional PAV and rPAV mcasures. Red
and blue lines represent CPC and UWash results respectively.



1.5.3 Local (Spatial-maximum) potential added value results

So far, we have analyzed a regional contribution to the overall PAV by computing the
spatial-mean percentiles (g ly, o5)- In this scction, we present results obtained by using
a more local measure of the fine spatial scale variability by computing the PAV quantity
with g% o5 (see section 1.4.2). The use of the PAV measure computed from g% o
could be interpreted as an estimation of the maximum value that can be obtained from
RCM simulations by considering individnal grid-point (i.e., local) results over a given
region. As was already stated, differences between ¢))70 o5 and g,y o5 arise mainly
due to the presence of horizontal structures of stationary forcings and so they should

be more important in those regions with complex topography.

1.5.3.1 High temporal resolution data

Top panels in Fig. 1.8 show the 3-howly g o5 PAV for the different models as a
function of regions for cold (Fig. 1.8a) and warm (Fig. 1.8b) seasons. In most of the
regions, the PAV absolute values computed from g, o5 are around twice as large as in
the spatial-mean case (q,'g‘l"g;mgs) (see top panels in Fig. 1.6), with the exception of the
LON118 region that shows PAV values on the order of six times larger than in the mean
case. In both seasons, differences between the several HRD estimations are somewhat

larger than in the mean case, with absolute differences of the order of £25 mm/day.

Bottom pamnels in Fig. 1.8 show the spatial-maximum rPAV for cold (Fig. 1.8¢)
and warm (Fig. 1.8d) seasons. rPAV values are also higher in the spatial-maximum case
than in the spatial-mean case (see bottom panels in Fig. 1.6), but differences are very
dependent on the region and the season considered. In cold season and mountainous
regions, the NARCCAP ensemble-mean rPAV value is ~40% for the regional measure
and ~65% for the local measure. For the same scason and flatter regions, NARCCAP
mean rPAV values are ~30% and ~45% for the regional and local measures respectively.
For the NARR datasct values are ~30% and ~45% for the regional and local measures
respectively.

In the warm season, the NARCCAP mean rPAV values is ~70% (~60%) in moun-
tainous regions and ~60% (~55%) in non-mountainous regions for the local (regional)
measure. In this season, much smaller values on the rPAV measure are present in the
NARR dataset. As it will be clear in the next section when including in the analy-
sis CPC results, differences between NARCCAP and NARR arise because NARR tend
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Figure 1.8 As in Fig. 1.6 but for the 3-hourly local PAV and rPAV measures.

to slightly underestimate rPAV values in both eastern and western regions, and the
NARCCAP ensemble-mean tends to overestimate rPAV values; particularly in western

regions.
1.5.3.2 Low temporal resolution data

Figure 1.9 shows PAV (top panels) and rPAV (bottom panels) for the spatial-maximum
95th percentile for the 16-day temporal scale. As in the spatial-mean casc, PAV values
are much smaller than in the 3-hourly case, generally smaller than 6 mm/day with the

exception of western regions in cold season (see Fig. 1.9a).

Interestingly, in both seasons, g o5 TPAV results (Fig. 1.9¢ and 1.9d) show that
the relative importance of small-scale features in western regions is quite well preserved
after the temporal averaging, with a NARRCAP ensemble-mean rPAV value of ~55%

(versus ~65% in 3-hourly data) in cold season and of ~60% (versus ~70% in 3-hourly
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Figure 1.9 As in Fig. 1.6 but for the 16-days local PAV and rPAV measures. Red and
blue lines represent CPC and UWash results respectively.

data) in warm season. The fact that rPAV is barely sensitive to temporal average
shows that locally the surface forcing component of 1IPAV (i.e., stationary forcings) in
mountainous regions plays an important role. In regions with lower influence of surface
forcings, a larger decrease of rPAV is noted when comparing 3-hourly and 16-day spatial-
maximum values, with rPAV values near ~25% and ~45% (~30% aud ~60%) for 16-day

and 3-hourly data respectively in cold (warm) season.

To what extent the results obtained for the 95th percentile can be extrapolated
to other climate statistics? As mentioned, an analysis similar to this one was conducted
for other climate statistics such as temporal mean, wet-events statistics and other per-
centiles. For example, thespatial mean of the temporal average is couserved for changes
in the spatial resolution of the data and so the PAV associated with this quantity is nil.
However, the spatial maximum of the temporal mean is not conserved (i.e., locally, the

mean value can be different) and can be used to estimate the associated PAV. Results
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(not shown) suggest almost identical results as for the 95th percentile, with slight de-
crease in TPAV values. That is, for local measures, the sensitivity of the temporal mean

to changes in resolution tends to be similar to those found in high-order percentiles.

1.6 Discussion

The use of RCMs to dynamically downscale large-scale atmospheric fields in present
and future climate conditions has gained popularity during the last 20 years. There
is still a need, however, to objectively quantify the added value obtained by the RCM
downscaling technique. For example, specific knowledge about where and with respect
to which climate statistics RCMs can produce more skilful results than GCMs con-
stitutes a very useful information for climate-scenarios users such as those performing
impact and adaptation studies. Studies trying to validate the RCM downscaling tech-
nique are also essential to highlight the iinportance of developing RCMs and the use
of its products instead of those coming from lower resolution GCMs in some particular

applications.

This article concentrated on the characterization of a necessary condition that
RCM-simulated climate statistics must satisfy in order to generate some AV: that the
climate statistics of interest contain some fine spatial scale variability that is absent in
coarser GCMs. This prerequisite condition and its dependence on several factors (sea-
sons, regions, etc) was assessed in the context of a perfect-model framework, designated
as potential added value framework, that includes:

1. The multi-resolution (MR) method is used to aggregate to several spatial and tem-
poral scales the original high-resolution precipitation fields simulated by six RCMs
(NARCCAP; Mearns et al. 2009) and as represented by a reanalysis (NARR;
Mesinger et al. 2006) and two observation gridded datasets (CPC, Higgins et al.
2000; UWash, Maurer et al. 2002). The MR method is particularly suitable for
the precipitation variable due to its non-periodicity (both in time and space),
which allows performing a local analysis that cannot be done with, for example,

Fourijer-based procedures.

2. 95th percentiles are computed from each of the several datasets defined by the
MR technique based on two different methods: one that estimates the spatial
mean (regional) 95th percentile over a given region and a second that estimates

the maximum (local) 95th percentile computed from individual grid points over a
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given region.

3. Potential added value (PAV) measures are then defined as the difference between
95th percentiles estimated at large (GCM scale) and small (RCM scale) spatial

scales for every high-resolution dataset.

The methodology appears to be robust to small changes in spatial scales and the location
and size of regions. Several sensitivity tests were performed by slightly changing these
three parameters and PAV values changes were on the order of 5-10%, rarely exceeding
15% in mountainous regions for longest temporal scales due to the lesser number of
data. In any case, regional and seasonal dependence of PAV measures remains the same
after the slight changes in parameters.

An overview of the results are summarized in Fig. 1,10 for the regional (Fig. 1.10a
and 1.10b) and the local (Fig. 1.10¢ and 1.10d) rPAV measures. Results are shown for
the NARCCAP RCM ensemble-mean and for NARR, CPC and UWash datascts when
available. NARCCAP ensemble error bars are estimated by using the standard deviation
computed from the ensemble of NARCCAP-RCM estimations. In general; results tend
to confirm some statemeiits generally outlined with respect to the advantages of using

high-resolution RCMs. For the regional measure we obtain:

e PAV is much higher for short temporal scales due to the influence of transient
forcings (e.g., convection) that tend to be filtered out by the time-averaging pro-
cess. TPAV is 3-4 times larger in 3-hourly (see Fig. 1.10a) data than in 16-day
mean data (see Fig. 1.10b).

e PAV is higher in warm compared to cold season due to the larger fraction of
precipitation falling from small-scale systems (e.g., convection) in warin season
(see Fig. 1.10a and 1.10b).

e Regions of complex topography (i.e., western regions) induce an extra component
of rPAV, no matter the season or the temporal scale considered. Its relative
importance is larger for long-term mean quantities and cold season due to the

relatively minor importance of transient PAV sources (see Fig. 1.10a and 1.10b).

e Assuming that the UWash precipitation analysis constitutes the most reliable
estimation of the real climate PAV, then the NARCCAP-RCMs enscmble-mean

constitutes a very good approximation of the PAV measures with a sliglit overes-
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timation of PAV in warm season and western regions. NARR, tends to produce a

slight underestimation of PAV values in warm season and in eastern regions.
When assessing the local measure some differences appear:
e No matter the region and season considered, there is an increase in rPAV values

compared to the spatial mean rPAV estimations.

e The relative importance of the orographic component in the rPAV measure is
larger than in the spatial mean case (see Fig. 1.10¢ and 1.10d), particularly for

longer temporal scales.
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Figure 1.10 Ensemble-mean values for the rPAV measure computed from the regional
95th percentile for (a) 3-hourly and (b) 16-days data. Also shown is the local 95th
percentile for (¢) 3-hourly and (d) 16-days. Colors denote NARCCAP (grey squares),
NARR. (black crosses), CPC (red diamonds, when available) and UWash (blue triangles,
when available) results. West and east designate the mean value obtained for regions
to the west and east of the -98° of longitude respectively. Error bars are given by the
standard deviation of the several NARCCAP-RCM estimations.
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Results point out that the potential of RCMs to add some value can be very limited when
considering time-averaged statistics for regional measures. For example, the spatial-
mean rPAV for 16-day means data is on the order of 10-15% for non-mountainous regions
in both warm and cold seasons. The estimated PAV was derived from the precipitation
field, a variable that is particularly characterized by a flat power spectrum with a
sizable variance in a wide range of spatial scales. PAV is expected to be less important
for variables with a steeper power spectrum (e.g., geopotential height, temperature, sea

level pressure), but this speculation remains to be confirmed and quantified.
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Abstract

Regional Climate Models (RCMs) have been developed in the last two decades in order
to produce high-resolution climate information by downscaling Atmosphere-Ocean Gen-
eral Circulation Models (AOGCMs) simulations or analyses of observed data. A crucial
evaluation of RCMs worth is given by the assessment of the value added compared to
the driving data. This evaluation is usually very complex due to the manifold circum-
stances that can preclude a fair assessment. In order to circuinvent these issues, here we
limit ourselves to estimating the potential of RCMs to add value over coarse-resolution
data. We do this by quantifying the importance of fine-scale RCM-resolved features in
the near-surface temperature, but disregarding their skill. The Reynolds decomposition
technique is used to separate the variance of the time-varying RCM-simulated tempera-
ture field according to the contribution of large and small spatial scales and of stationary
and transient processes. The temperature variance is then approximated by the contri-
bution of four terms, two of them associated with coarse-scales (e.g., corresponding to
the scales that can be simulated by CGCMs) and two of them describing the original
contribution of RCM simulations. Results show that the potential added value (PAV)
emerges almost exclusively in regions characterised by important surface forcings either
due to the presence of fine-scale topography or land-water contrasts. Moreover, some
of the processes leading to small-scale variability appear to be related with relatively
simple mechanisms such as the distinct physical properties of the Earth surface and
the general variation of temperature with altitude in the Farth atmosphere. Finally,
the article includes some results of the application of the PAV framework to the future
temperature change signal due to anthropogenic greenhouse gasses. Here, contrary to
previous studies centred on precipitation, findings suggest for surface temperature a
relatively low potential of RCMs to add value over coarser resolution models, with the
greatest potential located in coastline regions due to the differential warming occurring
in land and water surfaces.

Keywords: regional climate model; temperature; surface forcings; potential added value;
varlance decomposition.
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2.1 Introduction

Regional climate modelling consists of using time-dependent large-scale atmospheric
fields and ocean surface boundary conditions to drive a high-resolution atmospheric
model integrated over a limited-area domain (Giorgi et al. 2001). The models used
for this purpose, usually called nested Regional Climate Models (RCMs), have been
developed in order to simulate fine-scale climate processes and variability that cannot be
resolved by lower resolution Atmosphere-Ocean General Circulation Models (AOGCMs)
(Dickinson et al. 1989; Giorgi and Bates 1989}. A major motivation in their development
was, and still is, the need of detailed climate information at regiounal, and even local

scales, in order to assess the possible impacts of climate changes i1 the next decades.

Most state-of-the-art RCMs include a land surface model representing mass, mo-
mentum and energy exchanges between the land surface and the atmosphere. Some
of them are also coupled with other components of tlie climate system such as lakes,
vegetation and ocean. Atmospheric variables (winds, temperature, pressure and wa-
ter vapour) at the lateral boundaries and sea surface temperatures (SSTs) and sea ice
(SI) concentrations at the surface boundaries are either derived from coarse-resolution
AOGCMs or the analyses of observations (reanalyses). Actual horizontal grid spacing
used to run multi-decadal RCM simulations varies between 10-50 ki (e.g., Giorgi et al.
2009) thus implying a jump in resolution of 2 to 10 compared to AOGCMs. For a de-
tailed discussion about technical issues related with the nesting RCM technique and its
potential merits and limitations, readers may refer to one of the scveral review articles
than have been published (Giorgi and Mearns 1991; Wang et al. 2004; Laprise et al.
2008; Rummukainen 2010).

A crucial element in the development of any numerical model tryiug to describe
some aspect of the natural world is its evaluation. That is, in order to quantify how
reliable a numerical model is and how confident we can be about its simulations and
forecast, model results should be compared with observations in the real world (Randall
et al. 2007). For instance, the evaluation of AOGCMs generally proceed by testing their
ability to simulate the climate statistics of the recent past. A similar approach can, in
principle, be used to test the behavipur of RCMs assuming that high-resolution reliable

observations are available (see Prommel et al. (2010) and references therein).

However, because RCMs are not self-contained tools for climate simulation (i.e.,

they need boundary conditions from other models or historical analyses), their evalua-
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tion must also consider a comparison against the driving data. That is, as pointed out
by Prommel et al. (2010), the key question in RCMs evaluation is not simply whether
the RCM-simulated climate compares well with the observed climate, but whether the
RCM-simulated climate constitutes a better approximation of the observed climate, at
least for some particular aspect, than the driving data, i.e.; if the RCM produces some
added value (AV) over the driving data.

Various articles have been published about the AV issue in the last years (see, for
example, Prommel et al. (2010), Di Luca et al. (2011a), Feser et al. (2011) and references
therein). Several conclusions can be drawn from the existing literature about AV. First,
that RCMs do not seem to add value to the driving data in a consistent and systematic
way, but rather suggest that the generation of AV is conditional to a number of factors
such as the variable and the climatic statistics of interest, the specific performance of
an RCM and the driving data used in the comparison, the characteristics of the region,
etc.

An example that illustrates this assertion can be taken from the study of Préommel
et al. (2010). They evaluated the added value in the 2-m temperature field as simu-
lated by the REMO RCM compared to the driving European Centre for Medium-Range
Weather Forecasts 40-years reanalysis (ERA40) by using a dense station dataset over
the Greater Alpine Region (GAR, 0°-20°E and 40°-50°N}. Temporal correlations be-
tween observed and ERA40 monthly-mean time series are generally slightly higher than
between observations and REMO in most of the GAR with only the exception of the
more complex topography subregions where REMO shows higher correlations. When
looking at 2-m temperature root mean square error, results showed that REMO tends
to slightly outperform ERA40 in regions of complex topography but showing little im-
provement or even degradation of results in flatter subregions surrounding the Alps,
particularly during the summer season. Hence, the question is still open regarding in
which particular cases (i.e., where, when, for which metric, etc.) an RCM will produce

an improvement in the representation of the climate compared to the driving data.

A second point is that most of the articles concentrate on an individual pair of
RCM results and driving data, thus precluding the generalisation of results. Particularly.
AV results derived from a single pair of RCM-GCM could be strongly dependent on the
climate models themselves, reflecting differences due to the models’ performance instead

of general conclusions about the advantages/disadvantages of the RCM technique.

As noted by Feser et al. (2011), most AV studies are based on the comparison



o1

between RCMs output and their driving data. The AV arising from this kind of analysis
can be considered as a minimum requirement to justify the additional computational
effort of RCMs simulations. As pointed out by Laprise et al. (2002}, a more comnplete
evaluation of RCMs should be done also in terms of their imnprovements compared to
other statistical and/or empirical downscaling method, gencrally more affordable and

cheaper in terms of computational resources.

With the aim of contributing to the discussion about AV issues, Di Luca et al.
(2011a) developed & framework nicknamed potential added value (PAV) based on the
assumption that RCMs can add value in small scales if and only if they add variance
at these fine scales. This methodology is well suited at clarifying the sources of added
value in small scales, although the switch from AV to PAV is not without drawbacks.
In particular, this framework was used to evaluate the potential of RCMs to add value

in a variety of precipitation climate statistics using an ensemble of RCM simulations.

The objective of the present article is threefold: first, to describe a modified
version of the PAV framework and a ncw set of statistics particularly useful for the study
of the PAV in near-surface temperature; second, to apply this methodology in order to
point out which seasons and regions of North America could benefit from dynamical
downscaling of present climate; third, to briefly discuss the differcnce between added
value in present climate and in the climate-change signal. We are aware that, while
near-surface temperature is a key variable because it is widely used in climate studies
and in cliinate change projections, it is not necessarily the best variable to assess the
benefits of using high-resolution climate models. Indication about the PAV associated
with temperature statistics, however, can be of great interest to those using it in climate

and climate change studies.

The paper is structured as follows. The next section presents a brief description
of the data used. Sect. 2.3 describes the general framework used to evaluate the
PAV together with the variance decomposition used to separate large- and fine-scale
contributions. Sect. 2.4 presents temperature results separated in three parts: the
potential added value in present climate simulations, some discussion of the complexity
of this AV, and the PAV in the temperature climate-change signal for future projections.

Lastly, concluding remarks are given in Sect. 2.5.
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2.2 Data

The RCM simulations used in this study were provided by the North American Regional
Climate Change Assessment Program (NARCCAP; http://www.narccap.ucar.edu/;
Mearns et al. 2009). In NARCCAP, six RCMs were run with a horizontal grid spacing
of about 50 km over similar North American domains covering Canada, United States
and most of Mexico. Acronyms, full names and a reference, and the modelling group of

each RCM are prescented, respectively, in the first three columns in Table 2.1.

The NARCCAP experiments include simulations of contemporary climate using
lateral boundary conditions (LBCs) derived from the National Centers for Environmen-
tal Prediction (NCEP) Department of Encrgy (DOE) global reanalysis (Kanamitsu et al.
2002) for the 25-year period between 1980 and 2004. NARCCAP also comprises RCM
simulations driven at the lateral and lower boundary conditions by AOGCM simulations
for present (1971 - 2000) and future climate (2041 - 2070) using the A2 scenario (Mearns
et al. 2009). Four AOGCMs are used to drive the RCMs: the Canadian Global Cli-
mate Model version 3 (CGCM3, Flato and Boer 2001), the NCAR, Community Climate
Model version 3 (CCSM3, Collins et al. 2006), the Geophysical Fluid Dynamics Labora-
tory Climate Model version 2.1 (GFDL, GFDL Global Atmospheric Model Development
Team 2004]) and the United Kingdom Hadley Centre Coupled Climate Model version
3 (HadCM3, Gordon et al. 2000). The fourth colurun in Table 2.1 provides the LBCs
used to drive each RCM. A total of 6 RCM-AOGCM pairs are used here to analyze the
climate change signal, with two RCMs (CRCM and RCM3) driven by two AOGCMs
and two RCMs (WRFG and HRM3) driven by only one AOGCM.

For each RCM simulation, several 3-hourly variables are available in their orig-
inal map projection; but in this article we will concentrate only on 2-m temperature.
Reanalysis driven RCM simulations use AMIP II sea surface temperature (SST) and
sea ice (SI) concentration observations as lower boundary conditions (Kanamitsu et al.
2002). AOGCM driven RCM simulations use SST and SI from the AOCGM data. In
both reanalysis- and AOGCM-driven simulations, SST and SI swrface boundary con-
ditions are updated every 6 hours by using a linear interpolation between consecutive
monthly-mean values. Similarly, boundary conditions are interpolated from the low

resolution to the ~50-km grid meshes by using a linear interpolation in the horizontal.
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Table 2.1 Acronyms, full names (reference) and modelling group of RCMs involved in

the NARCCAP project. Column 4 indicates the LBCs used to drive each RCM.

RCM Full Name Modelling LBCs
(Reference) group
CRCM Canadian Regional Climate Ouranos / NCEP-DOE
Model (version 4.2.0) UQAM CGCM3
(Caya and Laprise 1999) CCSM
ECP2 Experimental Climate UC San Diego ~ NCEP-DOE
Prediction Center Scripps
Regional Spectral Model
(Juang et al. 1997)
HRM3 Hadley Regional Model Hadley Centre ~ NCEP-DOE
(version 3) HadCM3
(Jones et al. 2004)
MM51 MM5 - PSU/NCAR ~ Towa State NCEP
mesoscale model University CCSM
(Grell and Stauffer 1993)
RCM3 Regional Climate Model University of NCEP-DOE
(version 3) of California at GFDL
(Giorgl et al. 1993) Santa Cruz CGCM3
WRFG Weather Research and Pacific Northwest ~ NCEP-DOE
Forecasting model National Laboratory CCSM

(Leung et al. 2005)

2.3 Methodology

2.3.1

Potential added value framework

The general conceptual framework used to study the PAV in the temperature field sim-

ulated by an ensemble of RCMs is described in Di Luca et al. (2011a); but in the present

work some important methodological modifications are introduced. In that article, two

types of AV were defined according to the spatial scales in which the AV would be pro-

duced. Small-scales AV (AV;,) refers to those RCM improvements occurring in scales

that are not explicitly resolved by the driving data. Large-scales AV (AVj,) denotes

improvements in those scales that are common to both RCMs and the lower resolution

driving data.

Given that the main objective of RCMs is to add fine-scale features to the

coarser AOGCMs, there is a general consensus in the RCM community (e.g., Feser
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2006, Prommel et al. 2010) that the primary added value of RCMs is related with AV;.
Much less agreement exists about whether or not RCMs can generate AV at large scales.
Although some authors (e.g., Mesinger et al. (2002) and Veljovic et al. (2010)) sustain
a potential improvement of large-scale features through the use of RCMs, a large part
of the RCM community (e.g., Castro et al. (2005) and Laprise et al. (2008)) seems to
promote the use of large-scale nudging thus reducing large-scale differences between the
RCM and the driving data.

As in Di Luca et al. (2011a), the experimental design used here to study the PAV
is explicitly conceived to investigate AV, that is, whether RCMs can add value in small
scales. Since no attempt will be made here to identify AV, the failure of a given RCM
to potentially generate AVgs should not be taken to imply that the RCM is incapable
of producing some AV through AV,.

The PAV framework is based on the idea that a prerequisite condition for an RCM
to produce AV, is that the RCM must be able to generate non-negligible variability in
spatial scales finer than the smallest scale represented by the lower resolution driving
data (i.e., fine scales). The contribution of fine-scale processes in the description of a
given climate statistics can then be used to quantify the PAV of a given RCM simulation.
The term potential in this definition accounts for the fact that the presence of small
scales is not a sufficient condition to have AV;; because RCM-simulated fine scales may

not necessarily resemble the observed ones.

Instead of directly comparing RCM simulations and driving data statistics, a
perfect-model approach is used here to determine the relative importance of fine-scale
features. It is assumed that the statistics of the driving data can be approximated by
aggregating the high-resolution (e.g., ~50-km grid spacing) field simulated by an RCM
into a coarse grid mesh with an horizontal spacing similar to that used by the driving
reanalysis or model. That is, we consider that a high-resolution field upscaled into
a 300-km grid (i.e., a jump in resolution of around 6 in the linear horizontal dimen-
sion compared to RCMs) generates what we call a virtual GCM (VGCM) field whose
statistics behave as those from a real GCM (i.e., as a model with 300-km grid spacing).

Differences between an RCM and its corresponding VGCM can be expressed
using the Reynolds decomposition technique (Stull 1988). Let us consider an RCM-
simulated time-varying field 7} ,, with index ¢ identifying the spatial dimension and
k the temporal dimension, within 300-km side regions containing about 36 RCM grid

points. By applying Reynolds decomposition we can separate the quantity 7T; in its
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spatial average and fluctuations around this average as follows,
Ti = (Tie) + T 1k, (2.1)

where (T}) is the 300-km spatial average temperature, at each time step, representing
a low-resolution version of the RCM (i.e., the virtual GCM time series), and T%;
represents the time series departures of the 50-km grid spacing field from the 300-km
average field. Figure 2.1a shows the location of MM5I RCM grid points in its original
grid mesh (blue light squares) and the resulting VGCM grid point (black cross) in an

individual region centred on -118.3° of longitude and 32.8° of latitude.

In a similar way as done with the spatial dimension of the T,k field, Reynolds
decomposition can be applied over the temporal dimension of both terms in Eq. (2.1)
to obtain,

Tip = (T) + (To) + T + T, (2.2)

with (T') the spatio-temporal mean, (T}) the temporal fluctuation of the spatial mean,
T;* the temporal mean of spatial deviations and T*_’i)k the spatio-temiporal fluctuations of
temperature. The Reynolds decomposition is performed in each individual VGCM grid
box and so the spatial averaged is computed over 300-km side regions. Time-averaged
values are computed using 20 (19) summer (winter) 3-hourly time series between 1981

and 2000. Winter season is defined as the three inonths between December and February
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Figure 2.1 a) Individual 300-km side region centred on -118.3° of longitude and 32.8°
of latitude and b) the 288 regions use in the analysis. The total domain of analysis is
common to all 6 RCM domains and each sub region has the same dimensions (i.e., 300
km by 300 km).
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and summer season is defined by the months between June and August.

2.3.2  Variance decomposition analysis and PAV quantities

By using properties of the variance operator and assuming that the temporal fluctuations
of the spatial mean are independent of the spatio-temporal fluctutations (see Appendix
2.A for more details), the variance of Eq. (2.2) can be expressed as,

o =Var(Tig) = Var(Th) + Ti* + Ti k™)

~ Var((Ty)') + Var(Ti*) + Var(Ti™)

o 2 2 2
N OwaeM, T IsROM; + OLRCM, 40 (2.3)

with 0, ccpy, denoting the temporal variance of the spatial-mean term, oZpqy, the
spatial variance of the RCM time-averaged temperature in each VGCM grid box and
UtQRCML-,k the variance of the residual fluctuations. The approximation in Eq. (2.3)
results from the assumiption that the covariance term between (T}) and T*} x is much
smaller than the other contributions. In practice, when applied to temperature, the
covariance term is at least one order of magnitude smaller than the sum of the RCM

variance contributions (not shown).

The term otZVGC M, 8 assumed to represent what a low-resolution GCM can pro-
duce. The others two terms are the stationary (02p0y,.) and transient (o7 M) com-
ponents of the RCM original contributions to the total variance. They represent the
PAV of the RCM over the virtual GCM:

2 2
PAV = oircm, + OiroM, - (2.4)

A negligible value of the PAV quantity would suggest that the total variance is not
affected by the high-resolution information but completely determined by its low res-
olution part. A normalized form of Eq. (2.4) can be defined in order to quantify the
relative influence of RCM components in the total variance:

2 2
OsRCM, T OtRCM, 4

rPAV = - , (2.5)

o2

with 7PAV varying between 0 and 1, thus allowing for a more proper comparison of
PAV results across different regions and seasons. Again, rPAV ~ 0 would suggest

that no RCM information is needed to determine the total variance in that region,
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while rPAV ~ 1 would mean that all the variance comes solely from the fine-scale
information simulated by the RCM with no influence from the VGCM term.

In order to evaluate the regional dependence of PAV quantities, the variance
analysis is performed over 300-km side, non-overlaped, regions that are common to all
RCM domains (see Fig. 2.1b). The VGCM grid mesh contains a total of 288 such grid
boxes. The number of RCM grid points inside any given VGCM grid box depends on
the specific map projection and the horizontal grid spacing of each RCM. For example,
WRFG and MMS5] have 36 grid points in every region at all latitudes because they
use a 50-km Lambert conformal projection that conserves the distance between two
consecutive grid points. ECP2 and CRCM models’ regions contain a varying number of
grid points with a minimum of 25 and a maximum of 66 in the northern and southern

parts of the domain respectively.

In this paper results are showed only for the variance decomposition of the 3-
hourly RCM time series, but the analysis was conducted also for daily and 16-day time

series.
2.4 Results
2.4.1 PAV in current climate

Figure 2.2 shows the RCM ensemble-mean total variance of the temperature field in
winter season together with the three terms derived using Reynolds decomposition as
explained in Sect. 2.3.2. Ensemble-mean variance terms are obtained by simply con-
puting the arithmetic average over each variance term in Eq. (2.3) as estimated from
the individual RCMs. For example, in order to get the ensemble-mean of the UI,QVGCI\’[;\-
term, we computed o2 0 a, for each RCM simulation and then averaged over the six

RCM variance estimations.

The ensemble-mean total variance term (see Fig. 2.2a) shows values between ~2
K? (~1 K as standard deviation), in some subtropical oceanic regions, and ~130 K?
(~11 K) in continental and high-latitude regions with a domain average of 54 K2. As
is clear by comparing Fig. 2.2a and 2.2b, most of the temperature variance is generated
by the temporal fluctuation of the spatial-mean term (i.e., the tVGCM term). The
tVGCM term is influenced by a wide range of processes with time scales larger than

3 hours and up to decadal variability. Inspection of variance terms resulting from the
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Figure 2.2 Ensemble-mean variance decomposition applied to the 3-hourly temperature
field in winter season for (a) the total variance, (b) the virtual GCM variance, (¢) the
RCM stationary variance and (d) the RCM transient variance.

analysis of daily and 16-day time series (not shown) suggests that the general spatial
pattern of variability seen in Fig. 2.2a and 2.2b is largely induced by intraseasonal
and interannual variability, together with the influence of sub-daily (particularly in the

south part of the domain) and synoptic (particulatly in the north) variability.

It is also clear in Fig. 2.2a that 2-m temperature shows weak temporal variability
over oceanic regions with values gencrally smaller than 10 K2 due to the relatively
weak temporal and spatial variability of SSTs, compounded by the fact that SSTs are
updated only on a monthly basis in NARCCAP RCM simulations.

Figures 2.3a, 2.3b and 2.3c show an 8-day period of the tVGCM; time series
in January of 1981 for three different regions located in the West Coast (centred on
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-118.3° of longitude and 32.8° of latitude), the Rocky Mountains (centred on -106.1° of
longitude and 40.3° of latitude) and in northern Canada (centred on -127.3° of longitude
and 59.9° of latitude). All three regions are designated with black squares in Fig. 2.1b.
Because most grid points in the West Coast region are water grid points, this region
shows relatively weak temporal variability, mainly dominated by the land diuwrnal cycle
(at least in the first 6 days). The other two regions show stronger day-to-day variability
(they contain only land grid points), mainly related with the passage of synoptic-scale
systems.

Figures 2.2¢ and 2.2d show the ensemble-mean temperature spatial variances of
the temporal mean (i.e., O'ERCN[k stationary term) and the spatio-temporal fluctuation
(ie., at,QRCMZ,k transient term) terms in winter season (note that the colour scale is
different from Fig. 2.2a and 2.2bj. Both terms are of the same order of magnitude,
with domain-average variances of about 4 K2, but spatial patterns show significant
differences.

The ensemble-mean spatial variance of the RCM stationary term tends to max-
imize in regions where the topographic and/or the land-water contrast forcings are
important. The topographic forcing creates stationary temperature differences across
grid points mainly due to the general variation of mean temperature with altitude.
A more detailed example of the topographic source of stationary variance is given in
Fig. 2.3e (see central United States black square in Fig. 2.1b). This figure shows the
winter-season 20-year time-averaged temperature in MMS5I grid points inside the Rocky
Mountains’ region characterised by significant fine-scale topography. The altitude effect
induces mean horizontal temperature gradients of the order of 10 K / 250 km that result

in relative large 0254, values of the order of 8 K2.

Land-sea contrast also induces stationary temperature gradients simply because
the time-averaged temperature in sea/lakes can be different from the mean temperature
over land surfaces. Figure 2.3d shows the winter-season temporal-imcan temperature in
MMS5I grid points for the region located in the West Coast (see southernmost black
square in Fig. 2.1b). Relatively large values of 025 M, @ppear in this region due to the
differences between the warmn temperatures in MMS5I grid points located over the Pacific
Occan and those grid points in the colder land. This effect is even more pronounced in
some regions located along the East Coast due to the stronger land-sea contrast induced

by the warmer SSTs over the Gulf Strecam (see Fig. 2.2¢).

Figure 2.4 shows the fine-scale stationary variance term for each RCM in winter
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Figure 2.3 8-day period spatial-mean time series (VGCM term; top panecls), 20-years
time-averaged 2-m temperature (SRCM term; middle panels) and 8-day period fine-scale
transient term (tRCM term; bottom panels) in winter season. Left panels correspond to
a region located the in the West Coast of United States; centre panels correspond to a
region with important topograplic forcing, and right panels correspond to a flat region
in northern Canada. Results correspond to the MMb5I RCM and the several lines in
bottom panels represent the 2-m temperature evolution in individual grid points with
colours given by the colorbar scale in middle panels. All three regions are are shown in
Fig. 2.1b.

season. The more iniportant inter-model differences appear over the Great Lakes, the
Hudson Bay and the Labrador Sea. The absence of continental contrast in thc RCM3
stationary term (see Fig. 2.4e) simply results from its land-sea mask that does not
contain any lake. In some regions (e.g., Great Lakes), differences across RCMs appear

to be related with differences in the land-water fraction masks used by each RCM (see
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Appendix 2.B for more details). In other regions (e.g., Labrador Sea), differences across
RCMs seem to be related with more fundamental aspects such as the representation of

latent and sensible heat fluxes.in each RCM.

Over oceanic and relatively flat regions (in the central eastern part of United
States and most of Canada), the variance of the fine-scale stationary term is very small,
with values smaller than 1 K?. The MM5I RCM time-averaged temperatnre field in
the region located in northern Canada (see Fig. 2.3f) shows that, in flat coutinental
regions, horizontal temperature gradients are weaker than in mountainous or coastal
regions with a south-north gradient of about 5 K / 400 km duc to the general increase
of temperature to the Equator (note that the scale range is the same in Fig. 2.3d, 2.3e
and 2.3f). Interestingly, values larger than 1 K 2 appear in some oceanic regions near the
East Coast of US and Canada, a feature that arises in the ensemible-nean variauce (see
Fig. 2.2¢) and in individual RCM simmilations (see Fig. 2.4). This signature is related
with the strong stationary SST gradients across the Gulf Stream in these latitudes since
all RCMs share the same SSTs, with changes in the time-averaged tainperature of about

10 K / 300 km in some of these regions.

(a) CRCM-NCEP (b) MMSI-NCEP (c) ECP2-NCED
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Figure 2.4 RCM stationary variance term computed from individual RCM simulations
in winter season.
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The ensemble-mean variance of the RCM transient term is shown in Fig. 2.2d and
individual RCM transient terins are shown in Fig. 2.5. In general, several mechanisms
can produce transient PAV. By its definition, there will be some transient PAV if there
exists 50-km spatial differences in the temporal variability of the 2-m temperature. The
comparison of the transient term variance derived using 3-hourly and daily time series
shows that, particularly in the southern part of the domain, most transient variability
comes from temporal scales shorter than 24 hours. The process that seems to dominate
sub diurnal variability arises from the different diurnal cycle across RCM grid points in
a given region. This effect tends to be larger in coastal regions where land grid points
have a much intense diurnal cycle than water grid points explaining the relative maxima
of transient PAV in the West Coast (e.g., Baja California coast), the south US coast

and Great Lakes regions.

In order to better understand the diurnal cycle spatial variability and the sub-
daily transient term, Fig. 2.3g-2.3i show the transient term tRCM, 4, for an 8-day period
(similar as that used in Fig. 2.3a-2.3¢) in the same three regions as before. In the West
Coast region (Fig. 2.3g), it is clear that the transient variability (at least in the first
6 days) is dominated by the different diurnal cycle in oceanic and land grid points.
Differences between land (ocean) grid points and the spatial-mean term (tVGCMy)
appear as a positive (negative) anomaly during day-time and as a negative (positive)
anomaly during night-time respectively. The diurnal cycle is, as expected, stronger over
land than over ocean grid points.

Figure 2.3h shows that the topographic forcing induces little sub diurnal transient
variability because, even if time-averaged temperatures are different across grid points,
their diurnal cycle is very similar. In the northern Canada region (see Fig. 2.3i), the
influence of the diurnal cycle is very small due to the weak solar forcing in high latitudes

in this time of the year.

In winter season, the ensemble-mean fine-scale transient term (see Fig. 2.2d)
systematically shows higher values in continental cornpared to oceanic regions. This
continental transient component of PAV is a robust feature that appears in any single
model experiment as shown in Fig. 2.5. The inspection of the fine-scale transient
term computed using daily and 16-day time series (1ot shown) reveals that differences
between oceanic and continental regions are present when looking at daily time series
but do not appear when considering 16-days transient variability termi, which seems to

imply that the continental-oceanic feature is probably related to synoptic variability.
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A process that can be important to explain continental-oceanic differences relates
to middle-latitude synoptic systems and their associated surface fronts. The passage of
a synoptic-scale perturbation over a given region (generally from west to east in middle
latitudes) induces a spatial gradient of temperature that varies in time (as the system
moves) and in space (relative position compared to the front). The spatial gradient
induced by the perturbation is larger over continental compared to oceanic regions

simply because of the important damping from the occan.

The passage of synoptic-scale systems is also probably related to the general
increase of the transient term to the northern part of the domain in winter season. This
north-south gradient of the transient term is seci in the ensemble-mean term (sce Fig.
2.2d) aud in most of individual RCM termus, particularly in the north- western and
eastern parts of the domain (see Fig. 2.5). Figures 2.3h and 2.31 illustrate the influence
of synoptic variability in the transient terin over continental regions. The range of
trausient variability is of the order of ~10 K in the Rocky Mountains region and of the

order of ~20 K in the northern Canada region.

Figure 2.6 shows the RCM enscible-mean total variance and its decomposition
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Figure 2.5 RCM transient variance term computed from individual RCM simulations
In winter season.
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terms as in Fig. 2.2 for the summer season. In this season, the ensemble-mean total
variance (standard deviation) shows values varying from ~1 K? in subtropical oceanic
regions, to ~75 K2 (~9 K) in continental mid-latitude regions, with a domain-average
value of 29 K2. Again, most of the total variance is contained in the temporal fluctnation
of the spatial-mean term. In this case, the virtual-GCM term shows maxinium values
in the central eastern part of the conterminous United States, at approximately 40°
of latitude, as a result of a combination of intraseasonal and interannual variability,
synoptic variability and the very large diurnal cycle in this region as a product of the
large solar forcing and the relatively dry soils. A secondary maximum appears to the
west of the Hudson Bay mainly due to interannual and synoptic variability. Figures
2.7a-2.7¢ show an 8-day period of the VGCM time series for the same regions as in Fig.
2.3. Comparing with winter season results, the most outstanding feature is that the

diurnal cycle tends to dominate temporal variability everywhere, although modulated
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Figure 2.6 Asin Fig. 2.2 but for summer season computations.



by longer time scale processes.

Figures 2.6c and 2.6d show respectively the cnsemble-mean stationary and tran-
sient variance terms in summer season. As in winter season, the stationary and the
transient terms show domain-average values of 2 and 3 K2 respectively. The most im-
portant differences between the ensemble-mean stationary term in summer compared
to winter season are the lower values in the Northh American East Coast and the higher
values over the Hudson Bay coast: these two features appear in every RCM simulations
(see Fig. 24 and 2.8).

As in winter season, the transient term shows higher values in continental com-
parced to oceanic regions and maximum values occur in some regions where the land-

water contrast forcing is important such as the West Coast and the Great Lakes regions.
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Figure 2.7 As in Fig. 2.3 but for summer season computations.
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(a) CRCM-NCEP (b) MM5I-NCEP (c) ECP2-NCEP

2 K°2)

Figure 2.8 As in Fig. 2.4 but for summer season computations.

However, particularly on northern regions and in flat regions with little land-sea con-
trast, the fine-scale transient term is generally smaller than in winter season probably

due to the weaker synoptic-scale variability (see Fig. 2.3h and Fig. 2.3i).

When looking at the ensemble-mean and individual RCM transient terms, impor-
tant differences between winter and summer seasons appear in regions with significant
influence of lakes. In particular, summer-season transient variances show higher values
than winter-season ones probably due to the stronger contrast between water and land
in this season compared to the contrast between ice and snow/permafrost in winter
season. That is, in winter season, the land-water contrast forcing associated with the
presence of lakes is partially hidden due to the presence of snow-ice layers in both land
and water. The more important land-sea contrasts together with the much stronger

diurnal cycle in surnmer season tend to increase transient term values.

2.4.2 Stationary and transient components of relative PAV

As defined in Sect. 2.3, the relative PAV measure (r PAV; see Eq. (2.5)) is given by
the fraction of the total variance that is accounted by the sum of the stationary and
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the transient RCM terms (1.e., the original, genuine contribution of the RCM field) to
the total variance. Fig. 2.10 shows the RCM ensemble-mean rPAV in winter (Fig.
2.10a) and summer (Fig. 2.10b) seasons. Qualitatively, results arc quite different from
those derived using the absolute variance terms. For example, some occanic regions
(e.g., south Pacific regions) show higher rPAV wvalues than flat continental regions
even if PAV terms were higher in the later regions because the total variance in the
denominator in Eq. (2.5) tends to be larger over land than over occan. Similarly, some
mountainous regions with relatively large stationary variance values show very little

rPAV due to the large total variance in these regions.

In both seasons, ensemble-mean 7P AV values are gencerally smaller than 15% and
relative maxima are related with regions strongly influenced Ly land-sca contrast foreing.
The RCM contributions to the total variance are higher in summer compared to winter
season with a domain average of 16% and 5% respectively. At least in part, scasonal
differences secem to be related to the general intensification of the diurnal cycle of the
land-sea contrast forcing in summer season, particularly in mid-latitude and northern

regions (e.g., Great Lalke regions).

In winter season, relative maxima are [ound all along the North American West
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Figure 2.9 As in Fig. 2.5 but for siuumer season computations.
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Coast and the south-east coast of the United States. In sumimer season, relative maxima
are related mostly with coastline regions either near the sea or due to the presence of

lakes.

Figures 2.10¢ and 2.10d show the fraction of »PAV that is explained by the
stationary and the transient terms computed as 20250, / (O'ERCMZ__ + J?RCMq_'k) - 1.
Positive (negative) values denote those regions where the stationary (transient) term
tends to be dominant with valucs equal to 1 (-1) denoting that all the rPAV comes
from the stationary (transient) term. Black asterisks denote those regions where 7 PAV

is larger than 15%.

(a) Ens.-mean - Winter (b) Ens.-mean - Summer
_-135 -90 -45 -135 -90 -45 1.00
' ' ( ' 0.90
0.80
° S Bo.7o
0.60
& & 1050
0.40
w | @ 10.30
(=] o
Ho20
L n H0.10
o
0.00
rPAV
(¢) Station./Trans. fraction - Winter (d) Station./Trans. fraction - Summer
1.00 1.00
0.86 0.86
0.73 073
0.60 0.60
@ 110.46 0.46
0.33 10.33
L1020 020
1.0.06 -10.06
S 00 100
[1-0.2 0.2
L3 03
8 L-04 -0.4
0.6 0.6
0.7 0.7
~ 808 08
1.0 I 1.0
frac. 90 frac.

Figure 2.10 Ensenible-mean rPAV in (a) winter and (b) summer seasons and the
fraction of rPAV coming from the stationary and transient terms in {c) winter and
(d) summer seasons. Black asterisks in bottom panels denote those regions where the
ensemble-mean rPAV signal is larger 10%.
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In both seasons, ensemble-mean rPAV values larger than 15% are only found
in regions where surface forcings are important, either due to complex topography or
land-water contrasts. The number of regions with rPAV larger than 15% is larger
in summer (131 regions out of 288) than in winter (107 regions) season. Most of these
regions appear in the northern part of the domain mainly due to the lower total variances

in this season and the land-sea contrast intensification.

Winter season results show that regions with »PAV > 15% are dominated by
the stationary term with only some exceptions in the West Coast and the Labrador Sea
where the transient variance term tend to be more important. It is evident from Fig.
2.10c that rPAV values in the Atlantic Ocean regions are induced by the permanent
and relatively strong temperature gradients across the Gulf Stream and not as a result of
a transient mechanism. Similar results are found in summer season with only a marked

dominance of the transient term in the Gulf of Mexico.

rPAV values derived from individual RCM simulations generally show similar
results to the ensemble-mean » PAV although differences can appear over the Canadian
Archipelago, the Great Lakes and others lakes in Canada. A morc detailed analysis of
the uncertainties arising in the computation of rPAV terms is presented in Appendix
2.B.

2.4.3 Simple and more complex »PAV in mountainous regions

As discussed in the previous section, the PAV of high-resolution fields is mostly confined
to those regions with significant influence of surface forcings. A fair question to ask is
whether this PAV arises as a result of the influence of complex surface mechanisms
(e.g., land-sea breezes or terrain-enhanced triggering of hiydrodynainics instabilities) or
results fom simple, maybe linear, interactions between the fine-scale forcing and the

variable of interest.

One such a simple mechanism that seems to be important to explain rPAV
in mountainous regions is related with the general relation between temperature and
terrain elevation. The more detailed representation of terrain elevation gradients will
create stationary temperature gradients even when no fine-scale atmospheric processes

occur.

In order to test the influence of this last effect, the 7 PAV mecasure has been com-

puted from a synthetic high-resolution 2-m temperature field derived using a linear re-
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lationship between the low-resolution VGCM temperature field and the high-resolution
50-km surface elevation field in the following way:

Tochs =Tveem + T - hpoar, (2.6)
with Ty gopr the virtual GCM time series (in K), hgoas the high-resolution topography
(in km) of the RCM and I' = —6.5 K/km the middle-latitude standard atmosphere
(SA) lapse rate (see Dutton 1976 for a brief description). Equation (2.6) constitutes
a crude way of taking into account the effects of changes in terrain-elevations when
interpolating the temperature field into a higher resolution grid mesh. Several and
important differences would appear between the actual 2-m temperature topographic
lapse rate and the free air SA lapse-rate approximation, starting from the fact that the
effects of the surface in the adjacent temperature (e.g., sensible and latent heat fluxes)
are not taken into account in the SA lapse rate. As shown by Prommel et al. (2010), the
use of the constant SA lapse rate along the year may lead to biases not caused by the
models themselves, particularly in winter months where the atmosphere can be much
more stable with mean lapse rates of the order of I' = —3.0 K /km.

In order to assess the similarity between the real stationary rPAV field and the
artificial one, spatial correlations are computed using;:

R COU(TPAVSta,tim‘I,a'I‘y) TPAVWOg)
o (rPAVitationary)o (1P AVprog)’

(2.7)

with 7P AVgationary the original stationary RCM rPAV, and rPAV,,.g the rPAV de-
rived using Eq. (2.6) as input temperature. The linear correlation is computed only
for those regions with relatively complex topography but with no influence of the land-
water contrast forcing. Complex terrain regions are defined by a stancard deviation of
the elevation field within the region larger than 250 m. For each RCM, the land-sea
mask is defined by the fraction of land inside each grid box with values varying between
0 and 1. Regions with important influence of land-water contrast are then defined as
those with a water fraction standard deviation larger than 0.2. The total number of
regions considered in correlation calculations depends on the RCM due to the different
representation of both surface fields and grid location and varies between 37 (ECP2
model) and 51 (CRCM model) across models.

Table 2.2 shows the 90% confidence interval of the linear correlations between

rPAV,o9 and the stationary part of the TPAV term. Correlation confidence intervals
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are estimated using a Monte Carlo approach by sampling 1000 times randomly with
replacement over both spatial series. The 90% confidence interval is then computed by

calculating the 5th and the 95th percentiles of the 1000-elements correlation distribution.

Table 2.2 90% bootstrap confidence interval for the spatial correlation coefficient be-
tween the rPAV measure computed using RCM simulations and using the artificial
temperature data. Only those regions characterized by complex topography (see the
text for its denition) with no land-sea contrasts are included in the calculation.

Winter scason

Summer season

CRCM [0.82; 0.96] [0.72; 0.94]
MMS5I [ 0.87; 0.97) [0.72; 0.94]
ECP2 [ 0.81; 0.93] [0.35; 0.78]
RCM3 [ 0.88; 0.97] [0.68; 0.92]
WRFG [ 0.83; 0.96] [0.71; 0.92]
HRM3 [ 0.81; 0.96] [0.81; 0.92]
RCMs-MEAN [ 0.84; 0.96] [0.67,0.90]

In both seasons and for every single RCM, correlations between the rP AV,
and the stationary »PAV are very high with an RCM-mean 5th (95th) percentile value
of 0.84 (0.96) and 0.67 (0.90) in winter and summer seasons respectively. This snggests
that about 80% and 65% of the RCM rPAV variance is linearly explained by the

orographically-induced field in winter and summer seasons, respectively.

Inter-model differences are generally small, of the order of 10% of the mean cor-
relations, and contained within the sampling errors as estimated from the 5tli and 95th

percentile differences, which are generally of the order of 15-20%, but can be as high as
40%.

2.5 PAV in the climate change signal (AOGCM driven simulations): preliminary
results

So far, we have analyzed the potential of RCMs to add value over their associated
virtual-GCMs in the simulation of temperature in present-climate conditions (i.e., driven
by NCEP reanalyses). This information can be useful in a broad spectrum of RCM
applications such as the reconstruction of recent-past climate on the regional scale (e.g.,
Mesinger et al. 2006; Kanamitsu and Kanamaru 2007), the downscaling of low-resolution

global simulations in seasonal-prediction investigations (e.g., Rauscher et al. 2007; Seth
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et al. 2007; De Sales and Xue 2011) and the study of processes and mechanisms in the
regional scale (Pielke et al. 1999; Roebber and Gyakum 2003).

One of the main applications of RCMs in the last decade has been its use to
downscale future-climate projections produced by coupled GCMs. In order to account
for systematic biases in RCM projections, a popular approach used to estimate high-
resolution future climate is through the “delta method” (e.g., see Rummukainen 2010).
The delta method consist of modifying the observed high-resolution climate data with
the RCM climate change (CC) signal to obtain an unbiased version of the future pro-
jection. This suggests that the RCM’s added value in climate projections may not come
directly from the simulation of future scenario periods but from the climate-change sig-
nal itself. While the problem of looking for PAV in the CC signal is intimately related
with that of PAV in present climate, some differences appear.

The CC signal of the time-averaged temperature field is defined in the usual
way by computing the difference between the time-mean field in present and future

conditions. Using the same notation as in Sect. 2.3 we have:
CCreom, = CC; = Ti( future) — T;(present), (2.8)

with CCrepy; the high-resolution CC signal over the ith 300-km side region. Following
the ideas used for the present-climate PAV framework, we can aggregate CCpropy, over
300-km side regions in order to produce a low-resolution version of the CC signal that

we denote by CCvacu-

A question that arises naturally in the context of the PAV framework is whether
the high-resolution CC field contains fine-scale information that is absent in the low-
resolution part. Given that some of the most important sources of climate change are
large scale in nature (e.g., CO;y concentration changes, water vapor feedback, etc), it
is unclear whether the CC signal should contain a large high-resolution component.
A simple way to quantify the relative importance of fine and large scales in the high-
resolution CC signal can be done by defining:

o(CCrem,)  o(CCreom;)

rPAVEC - = ; 2.9
mean(CCrea,) CCvgem (2:9)

where o(CCpcum,) denotes the spatial standard deviation of the high-resolution CC
signal field (CCprehys,) and CCyv o the mean temperature change between future and
present periods over the region of interest. With this definition 7PAV Y ~ 0 would
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suggest that the high-resolution estimation does not add extra information over the
coarse-resolution one and, rPAVEC ~ 1 would suggest that the fine-scale contributions

can be as large as the large-scale mean temperature change.

Again, it should be emphasised that the PAV measure as defined in Eq. (2.9) only
accounts for the PAV small scales (PAV;g), that is, the PAV arising from the simulation
of fine-scale features that are absent in GCM fields. The ratio rPAVC is mute about
the potential of RCMs to add value in large scale variables (i.c., PAV).

Figures 2.11a and 2.11b show the CCprepy, field for the CRCM-CGCM3 simula-
tion in winter and summer seasons respectively. In both seasons, results show warmer
conditions in the futurc with a stronger signal in continental compared to oceanic re-
gions. In winter season, the spatial pattern of CCpron, shows a general increase to the
north and to the interior of the continent that attains almost 7 K in the centre of the
Hudson Bay (2041-2065 minus 1971-1995). In summer season tlie spatial pattern of
CCrem, shows maximum values in continental-middle latitudes with changes as large
as 4 K in central United States. Other RCM-AOGCM couples show similar spatial

patterns of mean-temperature changes in winter season (not shown).

Figures 2.11¢ and 2.11d show the rPAV ¢ measure for the CRCM-CGCMS3 sim-
ulation in winter and summer seasons, respectively. In both seasons, rPAVEC values
are generally smaller than 10% with values somewhat higher in summer compared to
winter season, particularly in coastline regions. Tlic largest values in coastline regions

result from the differential warming observed in land and water surfaces.

Figures 2.12 and 2.13 show the rPAV“C measure for the other individual RCM-
AOGCM simulations (Fig. 2.12a-2.12e and 2.13a-2.13¢) and for the ensemble-mean
(Fig. 2.12f and 2.13f) results in winter and summer seasons respectively. Most models
show similar results to the CRCM-CGCM3 simulation, with relatively small rPAVCC
values everywhere, maxima in coastline regions and somewhat larger values in summer
compared to winter season results. The WRFG-CCSM simulatioun shows very large
rPAVEC values over lake regions in summer season (sce Fig. 2.13) but this seems to

be related with a different representation of lakes in present and future conditions.

Maybe the most interesting feature is related with the robustness of the rPAVEC
results. Black asterisks in Fig. 2.12f and 2.13f denote regions in which 7PAVYC sat-
isfies two conditions: that the RCM ensemble-mean rPAVCC is larger than twice the

inter-model standard deviation, and larger than 5%. That is, black asterisks identify
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those regions in which a significant 7PAV S signal is robust across the different RCM

simulations.

In winter season, robust regions (59 out, of 288) appear all along the North Ameri-
can West Coast and in most coastline regions in the Hudson Bay. Similar results appear
in summer season but robust regions (60 out of 288) appear in most coastal regions and

also in some regions with important fine scale topography in the Rocky Mountains.

(a) CRCM-CGCM3 - Winter (b) CRCM-CGCM3 - Summer
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Figure 2.11 High-resolution climate change signal (top panels) and the rPAV % mea-
sure (bottom panels) in winter (left panels) and summer (right panels) seasons. Results
correspond to the CRCM-CGCM3 simulation. Only values smaller than 0.6 are shown
in Fig. 2.11c and 2.11d.
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Figure 2.13 As in Fig. 2.12 but for summer season computations.
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2.6 Discussion

The use of RCMs to dynamically downscale large-scale atmospheric fields in present and
future climate conditions has gained popularity as a way to circumvent the spatial scale
gap that exists between the climate information provided by AOGCMs and the input
needed in impact and adaptation studies. There is still a need, however, to objectively

quantify the gains arising from the use of RCMs as climate downscaling tools.

In this article we use the “potential added value” framework proposed in Di Luca
et al. (2011a) with the aim of detecting the regions and seasons where RCMs show
potential to improve the simulation of temperature statistics compared to the driving
models. The methodological approach used in this paper can be summarised through
three main steps:

1. 20-year 3-hourly time series of near-surface temperature fields simulated by 6
RCMs are decomposed using Reynolds averaging rules. The temperature field
over 300 km by 300 km regions (i.e., approximately equivalent to GCM grid boxes
and containing several RCM grid points) is separated in four terms: the spatio-
temporal mean, a time series describing the temporal fluctuations of the spatial
mean, a time-averaged field of the spatial-mean deviations and a residual time

varying field containing the spatio-temporal fluctuations.

2. In each 300-km side regions, the variance of the high-resolution temperature field
is then described by three terms that result from the Reynolds decomposition. The
first is the temporal variance of the spatial-mean field that is assumed to represent
the GCM contribution to the total variance. The other two terms depend on the
spatial deviations and are related with the stationary (time mean) and transient
RCM contributions to the total variance.

3. The PAV is then defined as sum of the fine-scale stationary and transient RCM
variances. A normalised quantity (rPAV) is defined by computing the fraction of
the total variance that is explained by RCM variances.

Our results indicate that, independently of the season considered, the high-resolution
near-surface temperature variance is mostly explained by the virtual-GCM term, with
a contribution from the RCM terms that is generally smaller than 15% but can attain

60-70% in some regions. The contribution from the fine-scale stationary and transient
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terms is roughly of the same order of magnitude but they are induced by different

mechanisms and therefore they show distinct spatial patterns of variability.

The fine-scale stationary spatial variance term is sensitive to time-averaged tem-
perature gradients and is hence important in regions with significant small-scale surface
forcings, either due to complex topography or land-sea contrast (i.e.. with coastlines or
lakes). The term can also arise due to the presence of strong stationary gradients from

other sources such as the strong SSTs variation over the Gulf Stream.

The fine-scale transient variance term is associated with spatial differences in the
temporal variability of 2-m temperature and seems to be dominated by two mechanisms.
A first mechanism is related with the presence of land-sea contrast and describes the
differential temporal variability of temperature in land and water grid points. A clear
example of this mechanism is given by the different diurnal cycle over land and water
grid points. The second mechanism is independent of the fine-scale surface forcings and
describes the spatial variability induced by the passage of weather disturbances, mainly
of synoptic scale. This last term appears to be more important in winter and over
high-latitudes due to the stronger intensity and variability of synoptic-scale systems. In
addition, due to the dominant thermal-inertia effect of ocean waters on 2-m temperature,

this term is also stronger over the continent.

When computing the fraction of the total variance explained by RCM terms,
we find that relatively large values of rPAV are essentially counfined to regions with
important surface forcings mainly due to land-sea contrasts. In gencral, but particularly
in coastline high-latitude regions, r PAV tends to be larger in summer than in winter
season due to an intensification of the land-sea contrast forcing related with ice/snow

cover in winter season and a much stronger diurnal cycle in summer season.

In Section 2.5, the potential of RCMs to add value over lower resolution models
in reproducing the climate-change (CC) signal is discussed. It is stressed that the
existence of PAV in present climate does not imply that PAV will be present in the CC
signal. Our results show that the fine-scale spatial variability in the high-resolution CC
temperature over the 300-km side regions is generally one order of magnitude smaller
than the mean CC signal itself. The analysis indicates that the largest potential for AV
appears in coastline regions due to the differential warming in land and water surfaces.
This effect tends to be more pronounced in summer than in winter season. It is seen
that, in mountainous regions, the PAV founded in present climate is almost lost in the

CC signal; this results mainly from the fact that, as shown in Scct. 2.4, the PAV in
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mountainous regions is doninated by quasi-linear stationary processes that are very
similar in present and future climate and hence tend to cancelled out when computing
the CC signal.

In general, results point out that the potential of RCMs to add value in near-
surface temperature is rather limited in oceanic and flat regions with little land-sea
contrast. This result agrees with previous studies of Winterfeldt and Weisse (2009) and
Winterfeldt et al. (2011) who showed similar results for the study of winds over oceanic
and coastal regions. Furthermore, even for those regions showing relatively large rPAV
values, it remains to be seen whether this added value could not be obtained using
simple, maybe even linear, relationships between the high-resolution swrface forcing
and the low-resolution variable of interest. An example of such a simple relation was
shown in Sect. 2.4.3.

In agreement with results obtained by other authors (e.g., Sotillo et al. 2005;
Feser et al. 2011; Di Luca et al. 2011a), our results suggest that efforts aiming to
show the benefits of using RCMs over lower resolution GCMs should concentrate on
moist processes or in climate statistics with significant fine-scale variability such as
high-order statistics variables with large spectral power at high temporal frequencies.
For example, as shown in Di Luca et al. (2011a), the PAV can be much larger when
considering precipitation, higher order statistics (e.g., 95th percentile) and more local

scale quantities.

Finally, two important caveats should be discussed regarding our results. First,
as discussed in the methodology section, this work and the previous study by Di Luca
et al. (2011a), concentrated on the added value on the small spatial scales, disregarding
the possible impact of high-resolution simulations on larger scales. It was assumed that
spatial average of RCM quantities within an area equivalent to the driving model grid-
box is identical to the driving model grid-box value. This necessarily precludes any
analysis of possible improvements at that scale. The second caveat relates to the fact
that our methodologv may be badly suited to detect potential added value of comnplex
characteristics. For example, phenomena such as downslope winds near mountain ranges
or lake-effect snowfall may need a methodology tailored to that particular objective.
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Appendix 2.A: Variance decomposition

The high-resolution temperature field as simulated by any RCM can be decomposed in

its spatial-mean and spatial-fluctuations as:

Tik =T +T ik
= VGCMy, + RCM;y, (2.10)

where (.) denotes the arithmetic average over grid points (z) or time (k). VGCMj is
the virtual GCM term given by the time series of the spatial mean and RCM, j the
RCM term representing the time series of the spatial deviations:

RCMiy = Tip ~ T (2.11)

Similarly, each time varying term in Eq. (2.10) can be decomposed into a stationary

and a transient part as:

= sVGCM +tVGCM,, (2.12)
and
— —k «
RCMj =Tig — Tip = (T*ip) + (Tik)
= sRCM; + tRCM, y, (2.13)
where
i T
tVGC M, = Tk — (Ti,k )
—VGCM,, — VGCM," (2.14)
and

tRCM;i = T~ Toe — Tage’
— RCM; ;, — RCM, " (2.15)
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From Eq. (2.10), (2.12) and (2.13) we obtain,
Tk =sVGCM + tVGCMy + sRCM; + tRCM; . (2.16)

The sample variance of Eq. (2.16) is given by,

3

0% = (Tij, — sVGOM)?"

— (tVGCMj + sROM, 1 tRCM, 1)?"

7.t . _—l o :
= (tVGCM)? + (sRCM;)?" + (tRCMi,k)Qk + 2V GC My, SRCAL)

+ 2(tVGCMARCM, ) + 2(sRCMitRCM, 5" . (2.17)

A

From Eq. (2.14) and (2.15) it follows that tVGOM;" = 0 and ﬁ?@j\mk = (. Hence,
without any approximation, Eq. (2.16) can be writen as:

ek
0% = ofvcem, + Oerom; T Oirc, . T 2(tVGCMEIRCAM, ') (2.18)

The PAV term can then be defined by the sum of those terms that include any con-
———————— K

tribution from the RCM. In practice, the covariance term 2(¢VGCMtRCM ) is at

least 10 times smaller (not shown) than than the sum of other two contributions so it

is neglected in the analysis.

The variance decomposition can be applied independently to cach RCM dataset.

That is, for each model m we obtain:

2 2 2 2
o“lm = oiygomy,lm + o5remlm + Olre, , - (2.19)

The ensemble-mean for each variance term is then obtained by computing the arithmetic

mean over all models. For the total variance the expression is given by:

——m 1
U2|mm = 1Y 202|m> (2-20)

m.

and similar expressions for the other variance terms.
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Appendix 2.B: Uncertainties in rPAV estimations

In order to examine how robust are the PAV results, we consider some of the uncertain-
ties arising in the estimation of variances from the RCM simulated temperature time
series. Two types of uncertainties are partially (roughly) assessed: uncertainty due to
the natural variability of the climate system and the RCM structural uncertainty due
to our incomplete knowledge of the climate system and the resulting differences in the
representation of some processes in the several RCMs.

Inherent to the process of computing a climate statistics from a finite lengh time
series (i.e., 20 years periods in our case) there is an uncertainty related with sampling
variability. In order to get a quantitative measure of this uncertainty, variances in Eq.
(2.3) have been estimated using a Monte Carlo approach. That is, each variance term
is computed 500 times by sampling randomly with replacement over the original time
varying field T; . Traditional bootstrapping methods (Efron and Tibshirani 1993) rest
on the assumption that the data of aualysis are composed of independent samples, an
hypothesis that is evidently not true in the case of the 3-hourly and 50-km temperature
fields used to estimate variance terms. In order to account for the serial (or auto-)
correlation in the temporal dimension, the temporal sampling is performed by randomly
selecting a subset of the total data assuming that temperature values are independent
every three days. This is equivalent to use a variance inflation factor as described in
Wilks (2010). In the spatial dimension, the bootstrapping is performed assuming that

adjacent grid points are independent, an hypothesis that we know is not adequate.

For each RCM, an estimation of the uncertainty can then be obtained by com-
puting, for example, the standard deviation of the distribution of each variance term
containing the 500 samples. The PAV sampling uncertainty can then be defined as the
sum of the stationary and transient sampling standard deviations. In a similar way,
the rPAV sampling uncertainty for each RCM can be obtained by computing the stan-
dard deviation of the rPAV Monte Carlo distribution. Figures 2.14a and 2.14b shows
the ratio between the inter-model mean rPAV sampling standard deviation and RCM
ensemble-mean rPAV for winter and summer seasons respectively. In both seasons, the
sampling uncertainty pattern resemble the ensemble-mean rPAV pattern showing rel-
atively uniform fields for the ratio between both. Inter-model mean values, but also
individual model results (not shown), show domain-mean values of about ~ 15% in
both seasons, with values that can attain up to 50% in some regions. As clear from Fig.

2.14a and 2.14b, the largest values of the sampling ratio arise in those regions that have
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the borders near the coast (i.e., with maybe only one grid point that differs from all the

others).

A simple measure of the RCMs’ uncertainty can be obtained by quantifying the
spread between RCMs through the multi-model standard deviation. The unbiased for-
mula of the standard deviation (von Storch and Zwiers 1999) is desirable because of the
small number of simulations available for the analysis (in what follows, we use always
the unbiased formula when computing the inter-model spread). Figures 2.14c and 2.14d
show the ratio between the inter-model standard deviation and RCM ensemble-mean
rPAV for winter and summer seasons respectively. Values of the ratio are larger than
in the sampling uncertainty case particularly in some oceanic and coastline regions.
In general, however, the standard deviation represents less than 20-30% of the signal

showing that there is a relative large agrcement between RCM simulations.

Assuming that robust features across RCMs ate those for which the signal (i.e., the
RCM ensemble-mean) is at least two times larger than the RCM spread, some regions
can be pointed out to be non robust (not shown). In winter season, non-robust regions
appear in the Atlantic Ocean in the southern part of the domain, in some high-latitude
regions and near the Great Lakes. Uncertainties in some of these regions appear to be
related with differences in the land-water fraction masks used by cach RCM. Figure
2.14e shows the multi-model standard deviation of the land fraction standard deviation
in each 300-km side region. The largest differences across RCMs arisc near the Canadian
Archipelago, the Great Lakes and others lakes in Canada, and in the Atlantic Ocean

near Florida due to the presence of some islands.

The representation of lakes depends on each RCM and on the LBCs used to drive
the RCM. Differences between RCMs arise because they do not share the fraction’ of
water in every grid point (i.e., the land-water mask is inodel dependent). For example,

the RCM3 model does not contain any lake and WRFG contains only the largest lakes.
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Figure 2.14 Inter-model mean sampling uncertainty in (a) winter and (b) summer
seasons. RCMSs uncertainty in (¢) winter and (d) summer seasons. Figure 2.14(z) shows
the inter-model standard-deviation of the standard deviation of the land-water fraction
field.
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3.1 Introduction

In the context of a changing climate due to anthropogenic factors, it is generally argued
that the planning for adaptation requires climate information accounting for specificities
on scales at which human activities occur, for example about climatic characteristics
within countries, provinces and even cities (Oreskes et al. 2010). This need of very
fine-scale climatic information has important consequences for climate research and it
has pushed climate modeling research centres to perform increasingly higher resolution
climate simulations and to look for alternative techniques to produce fine-scale climatic

information.

One such approach has been the development of nested, limited-area, regional
climate models (RCMs). Basically, the RCM technique allows for an increase in resolu-
tion by concentrating the degrees of freedom, and hence the computational resources,
over a limited region of the globe where the main interest of a user lies (Laprise et al.
2008). Technically, it consists of using time-dependent large-scale atmospheric fields
and ocean surface boundary conditions to drive a high-resolution atmospheric model
integrated over a limited-area domain (Giorgi et al. 2001). The atmospheric driving
data are either derived from simulations of lower resolution coupled Atmosphere-Ocean

General Circulation Models (AOGCMs) simulations or analyses of observations.

From the beginning of RCMs development, nearly 20 years ago, a large effort
has ensued to assess their capability as climate downscaling tools by comparing RCM-
simulated climate to observed data sets. Moreover, particularly in the last decade,
important efforts were also devoted to assess the ability of RCMs to improve the sim-
ulated climate compared to their driving data in order to identify the value added by
RCMs. The various added value (AV) studies (for a review of these studies the reader
is referred to Feser et al. {2011) and references therein) have clearly shown that RCMs
do not generate AV in an unambiguous way. Rather, the AV seems to be contingent
upon a variety of factors such as the season and time scale, the variable and the climate

statistics of interest, the region of analysis, etc.

To date, most studies have concentrated in the identification of AV using present
climate simulations. However, when downscaling climate projcctions produced by AOGCMs,
our interest is not necessarily directed towards the RCM climate simulation itself but
sometimes towards the climate change signal computed from the difference between

present and future RCM simulations. For example, in order to account for system-
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atic biases in RCM projections, a popular approach used to estimate future climate is
through the “delta method” (e.g., see Rummukainen 2010). The delta method consists
of adding to the observed climate data the RCM-simulated climate change (CC) signal.
This suggests that the RCM’s added value in climate projections may not come directly
from the simulation of future scenario periods but rather from the climnate-change signal
itself.

Implicit in the last argument is the idea that some changes in climate will oe-
cur in spatial scales smaller than those resolved by current AOGCMs. Several sources
of fine-scale climate change can be conceived. For example, fine-scale climate forcings
(e.g., land cover) can change in the future due to the influence of human activities (e.g.,
in agricultural activities). The non-linear interaction betwcen a large-scale variable
and fine-scale surface forcings can induce small-scale changes if the large-scale variable
changes in the future. Feedback processes can also induce small-scale changes in mete-

orological variables due to the fine scale heterogeneity of surface physical properties.

It should be emphasised, however, that the arguments from which fine-scale fea-
tures would appear in the climate change signal are not the same as those asserted for
the climate itself. One example can help to understand the difference. A simple mech-
anism that can generate AV in mountainous regions in present. climate simulations is
related with the general relation between temperature and tervain elevation. The more
detailed representation of terrain elevation gradients will create stationary temperature
gradients even when no fine-scale atmospheric processes occur. But this mechanism
may not generate AV in the CC signal because their effects may be cancelled out when

computing the difference between futire and climate statistics.

The objective of this article is twofold. First, to quantify the fine-scale part of
the RCM-derived CC signal and to evaluatce its relative importance compared to either
the large-scale CC part or to present climate statistics. Second, to characterise the
robustness of the fine-scale quantitative results in terms of the samnpling nncertainty
that results from interannual variability. The analysis concentrates on time-averaged
seasonal temperature and precipitation cliniate change signals as reproduced by several
RCM-AOGCM pairs in a domain that covers most of North America, thus encompassing

a wide range of climate regimes.

The paper is organized as follows. The next section discusses in some detail
the added value issue with special cmpliasis on two particular aspects: the difference
between AV and potential AV (hereafter PAV) and; the difference between looking for
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AV in the climate and iu the CC signal. Section 3.3 presents a brief description of the
data used. Section 3.4 describes the methodology used to analyze the importance of fine
scale features and the metrics used to quantify the PAV and the sampling uncertainty.
Temperature and precipitation results are presented in Sect. 3.5.1 and 3.5.2 respectively.

Some discussion of the results and conclusions is given in Sect. 3.6.

3.2 Added Value issue
3.2.1 Present/Future Climate simulations

In order to illustrate the AV issue, let us consider a hypothetical AV study (a more
general example is discussed in Appendix A). Let us suppose that we are trying to decide
whether an RCM adds value over an AOGCM in the representation of some climate
statistics X (e.g., time-averaged precipitation). Assuming that the metric chosen to
assess model’s performaice is given by the squared error (SE), then the AV can be
defined by

AV = (Xgom — Xoss)? — (Xrom — Xoss)? = SEcom — SErcuM- (3.1)

Defined in this way, the RCM generates some AV if its SE is smaller than the GCMs

one, i.e., if AV is positive.

In order to gain more insight on the sources of AV, let us separate the field
according to different spatial scales and express the value of Xppg as follows:

Xoss = X8ps + X&ps (3.2)

where the superscripts Is and ss designate, respectively, the large scales and small scales
that are permitted or not by the GCM grid. Hence by definition X%, ,, = 0 and

Xoom = XlGSvCM. (3.3)
Similarly the RCM-derived climate statistics (Xer 7)) may be decomposed as

; .
Xrem = Xgom + Xk (3.4)

Replacing Eq. (3.2), (3.3) and (3.4) in Eq. (3.5), rearranging and neglecting covariance
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terms (see below and in Appendix A for details), we obtain:

AV ~ AV 4 AV, (3.5)
where
AV = (XFps)® — SEfou
= (X&ps) — (XFow — X88s)%, (3.6)
and
AV = SE¢cwn — SEfcur (3.7)

That is, the AV can be approximately decomposed into a small-scale term (AVS) and
a large-scale term (AVZS). We recall that these equations were arrived at neglecting
two covariance terms: one corresponds to assuming that large-scale errors of GCM are
uncorrelated with small-scale variance of observations, and the other that large-scale

and small-scale errors of RCM are uncorrelated.

From Eq. (3.6) it is clear that three conditions must be satisfied for the RCM to
generate small-scalcs added value (AV*® > 0):

o the observed climate statistics Xopgs must contain non-negligible fine-scale infor-
mation ((X&g)? > 0),

o the RCM-derived climate statistics X gops must contain non-negligible fine-scale
information ((X§5.,)? > 0), and

e the fine-scale RCM information must have some skill,

i.e. (X}%SC]V[ - XésBS)Q < ( 8985)2'

This analysis suggests that a measure of the potential of RCMs to add value can

be obtained by quantifying the maximum or available AV using observations:
MAV® = (X&ps)”. (3.8)

The quantity M AV? is called maximum added value of the small scales and gives an
estimation of the maximum value that an RCM or any downscaling technique can add.

In those cases where observations are not, available, the small-scale potential added value
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of RCMs can be defined in terms of fine-scale RCM features:
PAV® = (X55-00)%. (3.9)

It is important to note that if (X&zs)? # (Xi5-p,)? then the quantity (X&gq)? will
under- or over- estimate M AV®® by simulating too much or too little fine-scale variabil-
ity. An under/over estimation of M AV can be related with either positive or negative
AV, depending on the values of SEjf-y, and (X&gs)® The interests of computing
PAVSS is that allows to estimate the small-scale part of PAV in those cases where we
do not have any knowledge about the observed climate statistics.

Figure 3.1 shows the dependence of AV as a function of X, for three different
values of XZzs. In the case where XFpc = 0 everywhere, an increase in fine-scale
variance of Xgcar can only subtract value by making AV*® negative. Where X&gs # 0,
the fine-scale feature of X oy can add value over the GCM estimation wherever Eq.
(3.6) is positive. The maximum AV*® is found when X5zs = X3, and is given by
(X%-0)% Furthermore, Fig. 3.1 shows that the term AV*® can potentially increase as

X&pg increase, justifying the idea of using an increase in fine-scale variance as a proxy
of an increase in the PAV.
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Figure 3.1 Small-scales added value (AV**) as a function of X, for three different
values of Xz
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The term AVY in Eq. (3.5) represents the AV generated by an RCM due to an
improvement in the large-scale part of the climate statistics X. Given that the main
objective of RCMs is to add fine-scale features to the coarser AOGCMs, there is a
general consensus in the RCM community (e.g., Feser 2006; Promuuel et al. 2010) that
the primary added value of RCMs is related with AV®5. Much less agreement exists
about whether or not RCMs can generate AV at large scales. Altliough some authors
(e.g., Mesinger et al. 2002 and Veljovic et al. 2010) sustain the notion of a potential
improvement of large-scale features through the use of RCMs, a large part of the RCM
community (e.g., Castro et al. 2005; Laprise et al. 2008) seems to promote the use
of large-scale nudging thus reducing large-scale differences between the RCM and the

driving data.

The PAV*®® concept as described above was used to study the potential bene-
fits of using high-resolution RCMs to simulate present climate precipitation (Di Luca
et al. 2011a) and temperature (Di Luca et al. 2011b), and the PAV*® dependence on
several factors such as the season, the region and the climate statistics of analysis. In
what follows, the application of the PAV framework to climate change studies will be

considered.
3.2.2 Climate change signal

A variety of approaches can be used to show how a given climate statistics X will change
in the future. A popular approach, generally designated as the “delta method” (e.g., see
Rummukainen 2010), consists on computing the future climate statistics (X/“%7¢) by
adding the climate change as estimated from climate model simulations (CCyimuiated)
to the past observed climate (XZ5% ™). That is, the delta method approximation can

be expressed as:
X[ = XPE b CCsimutoted, (3.10)

where CCyimulatea 1S computed in the usual form as the difference between X in future
and present climate (X Lflﬁﬁt od ~ f;;iﬁ%ed) using either RCM (CCpreay) or GCM
(CCecm) simulations.

Another popular approach used to show changes in climate statistics X is through
the use of the climate change signal (CCgmutateq) itsclf, with no explicit consideration

of present and future climate statistics. That is, in this case, we are not interested in
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the future value of the climate statistics but only on how much X may change between
present and future periods.

Following the development in Sect. 3.2, the CC signal added value (AVcc) gen-
erated by a RCM simulation over a GCM can be defined using the delta method by:

_ Sfuture Sfuture\2 Sfuture future\2
AVee = (X5com — X )" = (X5pcm — X )%

true true
= (CCoom — (XU — XBES™))? — (CCRron — (XT50 — XEBEE™))?,
= (CCoom — CClrue)® — (CCreM — CClrye)?, (3.11)

where the subscript “true” denotes the still unknown climate statistics that will arise in
future climate conditions. That is, the RCM generates some AV if its error in the CC
signal estimation is smaller that the GCM one, i.e., ift AV is positive. 1t is important
to note that, when using the delta method, the AV of RCM simulations in future climate
) but on

Future

statistics does not depend directly on the future climate statistics (X, .~ .

the CC signal (CC

8t nulated) :

Replacing the total CC signal in Eq. (3.11) according to the contribution of large
(CC*) and small (CC*) scales we have,

AVoo ~ AVEL + AVES, (3.12)
with
AV = (CC3,.)° — (SEEc pom)’
= (Ccfﬁuey - (CC?:ZSCA/[ - Ccf:ue)za (3'13)
and
AVY = (SE8c oom)? — (SE¥c pom)* (3.14)

Again, the approximation in Eq. (3.12) results from neglecting two covariance terms.
As with the present climate case, three necessary conditions for the RCM to add value
in the fine-scale CC signal can be identified:

e the true CC signal (CClye) must contain non-negligible fine-scale information
(CCE)? > 0),

e the RCM-derived CC signal (CCgreas) must contain non-negligible fine-scale in-
formation ((CC?{CM)2 > 0), and
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e the RCM-derived CC signal must have some skill,
Le. (CCE,)E > (CCs-y — CCSLe)2

Given that we do not have any knowledge about the true CC signal, the first
condition cannot be explicitly addressed. However, the CC signal PAV can be defined

in terms of the other two conditions in the following way:
PAVEL, = (CChum)?, (3.15)

and
PAVES, = (CClom)? — (A%en)?, (3.16)

where A%, constitutes a measure of the uncertainty in the estimation of CC,, and
is used as a proxy of the error (SE, pe M)Q. Defined in this way, relatively large values
of both PAVEE and PAVAE are related with a large and robust estimation of the

fine-scale component of the CC signal.

Finally, for the large-scale part, the PAV can be simply defined as:
PAVE: = (CCligw — CCEem)* (3.17)

Several arguments can be presented to cxpect a large-scale component of the PAV o
quantity. For example, Gao et al. (2011) argue that because GCMs do not adequately
simulate higher elevations where temperature changes have less effect on snow cover
(where temperatures are still cold enough to retain snow), the large-scale temperature
change can be differently simulated in a RCM compared to a GCM. In this article we
will concentrate in the study of PAVEE with no explicit consideration of its large-scale
counterpart, PAVCZ?'C.

3.3 NARCCAP data

The RCM simulations used in thisstudy werc provided by the North American Regional
Climate Change Assessment Program (NARCCAP;
http://www.narccap.ucar.edu/; Mearns et al. 2009). In NARCCAP, RCMs were run
with a horizontal grid spacing of about 50 km over similar North American domains cov-
ering Canada, United States and most of Mexico. Acronyins, full names and a reference,
and the modelling group of the RCMs used in this study are presented, respectively, in
the first three columns in Table 3.1.
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Table 3.1 Acronynis, full names and modelling group of RCMs involved in the NAR-
CCAP project. Columu 4 indicates the LBCs used to drive each RCM.

RCM Full Name Modelling LBCs
group
CRCM Canadian Regional Climate QOuranos / CGCM3
Model (version 4.2.0) UQAM CCSM
(Caya and Laprise 1999)
RCM3  Regional Climate Model UC CGCM3
(version 3) Santa Cruz GFDL

(Giorgi et al. 1993)
HRM3 Hadley Regional Model Hadley Centre HadCM3
(version 3)
(Jones et al. 2004)

Five RCM-AOGCM pairs are used in this study to analyze the climate change
signal, with two RCMs (CRCM and RCM3) driven by two AOGCMs and one RCMs
(HRM3) driven by only one AOGCM. Four AOGCMs are used to drive the RCMs:
the Canadian Global Climate Model version 3 (CGCMS3, Flato and Boer 2001), the
NCAR Community Climate Model version 3 (CCSM3, Collins et al. 2006), the Geo-
physical Fluid Dynamics Laboratory Climate Model version 2.1 (GFDL, GFDL Global
Atmospheric Model Development Team 2004]) and the United Kingdom Hadley Centre
Coupled Climate Model version 3 (HadCM3, Gordon et al. 2000). The fourth columu in
Table 3.1 provides the LBCs used to drive each RCM. A total of ten RCM simulations
are considered, five of thein simulating a present period (1971 - 1995) and the other five
simulating the future climate (2041 - 2065) using the A2 scenario (Mearns et al. 2009).

For each RCM simulation, several 3-hourly variables are available in their original
map projection; but in this article we will concentrate only on the instantaneous 2-m
temperature and on the 3-hourly average total precipitation. Sea surface temperatures
(SST) and sea ice (SI) surface boundary conditions comes from AOGCM data and are
updated every 6 hours by using a linear interpolation between consecutive monthly-
mean values. Similarly, boundary conditions are interpolated from the low resolution

to the ~50-km grid meshes by using a linear interpolation in the horizontal.

All NARCCAP RCMs include some moxc or less sophisticated representation of
land surface and the upper soil levels. The representation of lakes depends on each RCM
and on the LBCs used to drive the RCM. RCMs do not share the fraction of water in
every grid point (i.e., the land-water mask is model dependent) although most RCMs,
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with the only exception of the RCM3, represents the Great Lakes, Winnipeg Lake and
other relatively large lakes in the west northern part of Canada. In all cases, as with
oceanic regions, surface temperatures in lakes are prescribed using the driving AOGCM
data.

3.4 Methodology

The methodology use to study the importance of fine scales in the determination of the
climate change signal is based in a perfect model approach designated as the potential
added value framework. A main advantage of this framework is that allows to estimate
PAVEZ quantities independently of the relative performance between the RCM and
the driving AOGCM without necessity of having high-resolution observations. A brief
description of the framework is given here but a more detailed discussion can be found
in Di Luca et al. (20112a) and Di Luca et al. (2011b).

3.4.1 Potential added value measures

Let us consider a two-dimensional field representing the projected change of a given
climate statistics X computed using ~50 km grid-spacing RCM simulations that we
denote by CCropy- A domain of analysis, common to all RCMs, is sclected and divided
in non-overlapping boxes of 300 km by 300 km leading to a low-resolution grid mesh
containing a total of 288 grid boxes (see Fig. 3.2). Using this grid mesh, we can define
a lower resolution version of CCgreyy, that we denote by the virtual GCM version of
the climate change signal (CCyaeou), by aggregating the CCprear over each 300-km
side grid boxes. For any RCM-AOGCM simulation, the upscaling is simply performed
by computing the arithmetic average of the statistics X over all the RCM grid points

inside the region of interest.

As discussed in Sect. 3.2.2, a question that arises naturally in the context of the
PAV framework is whether the high-resolution CCprear containg fine-scale information
that is absent in the low-resolution part (CCyvaeoa). Given that some of the most
important factors of anthropogenic climate change are large scale in nature (e.g., green-
house gases concentration changes), it is unclear whether the CC signal would contain
a significant high-resolution component. A simple way to quantify the importance of

fine scales in the ligh-resolution CC signa. can be done by defining:

PAVEE = 0*(CCrew), (3.18)
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where 0?(CCrc) denotes the spatial variance of the high-resolution CC signal field
over a given 300-km side region. Similarly, we can define a relative PAV quantity that
evaluates the proportion of the CC signal that is accounted only by the fine-scale part
by writing

o*(CCrecum)

rPAVEE =
C 2
CCVeem

(3.19)

?

where CC% ¢y is the square of the spatial-mean climate change signal in each region.
Defined in this way, rPAVSE varies between 0 and +o0; rPAVEL ~ 0 would indicate
that the high-resolution estimation does not add extra information over the coarse-
resolution one. For a given region, TPAV#: ~ 1 indicates that the change in the

fine-scale temperature is as large as the large-scale part change.

For the time-averaged temperature, CCyvgoum is always greater than zero in con-
tinental North America and Eq. (3.19) is well defined. When considering time-averaged
precipitation, CCygcp can be near zero and so an alternative 7PAV quantity should
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Figure 3.2 Spatial-mean CRCM model land fraction over the 288 rcgions use in the
analysis. The total domain of analysis is common to all 6 RCM domains and each sub
region has the same dimensions (i.e., 300 km by 300 km). Black (blue) colors denote
those regions entirely covered with land (water).
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be considered to avoid that 7PAV be indefinite. This can be done, for example, by

normalising the PAVEL with the square of the mean precipitation of the region:

2
s 0 (CCrom) )
TPAVEL = (priresentys (3.20)
VGoM

where pri/(oih; represents the spatial-mean precipitation over each 300-km side region

in present climate. Again, with this definition, rPAVEE. varies between 0 and +o0;
rPAVEL ~ 0 indicating that the high-resolution estimation does not add extra infor-
mation over the coarse-resolution one. For a given region, r PAVES ~ 1 indicates that
the change in the fine-scale precipitation is as large as the spatial-mean precipitation
itself.

It should be emphasised that the quantities PAVAEL and rPAVEL defined in Eq.
(3.18), (3.20) and (3.19) only account for the potential added value of the small scales
(PAVZ%), that is, the PAV arising from the simulation of fine-scale featurcs in the
statistics X that are absent in GCM fields. The two quantities are mute about the

potential of RCMSs to add value in the large scale or in the covariance terms.

3.4.2 Interannual variahility of PAV measures

Inherent to the process of computing climate statistics from a finite length tine series
(i.e., 25 years periods in our case) there is an uncertainty related to sampling. The exis-
tence of sampling uncertainty implies that two adjacent grid points can show somewhat
different present and future statistics (e.g., time-averaged values), leading to differences
in the CC signal and its derived spatial variance, even if physical mechanisms that de-
termine the climate in both grid points are essentially the same. Ideally, in any grid
point and for any given RCM-AOGCM simulation, the sampling uncertainty can be
quantified using several RCM simulations performed employing different boundary con-
ditions arising from running the AOGCM with slightly different initial conditions (i.e.,
using several members of the driving AOGCM). In NARCCAP, modelling efforts has
been put on the number of RCM-AOGCM pairs and there is only one realisation of

each pair available for analysis thus preventing the internal variability sampling study.

In order to circuinvent this practical limitation, the sanpling uncertainty will be
quantified by estimating the fine-scale CC signal in each 300-km side region using a
Monte Carlo approach. First, for cach RCM-AOGCM simulation, the high-resolution

climate change signal CCpepy is computed 100 times by sampling randomly with re-
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placement over the 25-year seasonal averages of present (X%537™) and future (X {{‘Ctx;e)
simulations, thus obtaining a distribution for CCrcar that we denote by CC}QC M-

Second, for each sample of CC}QC Ar» we compute the spatial variance obtaining a
100 sample distribution of variances in each region, denoted by 01?(0 Crou), that can be
used to estimate the mean spatial variance and some measure of the spread around the
mean. Defined in this way, the sampling uncertainty gives a measure of the interannual

variability in each region.

A similar method to estimate sampling uncertainty was used by Déqué et al.
(2011). Using a Monte Carlo procedure and a 10 members sampling they found a very
good agreement between the sampling uncertainty computed using various runs only
differing on initial conditions and the Monte Carlo approximation for time-averaged
precipitation. For time-averaged temperature, they found a good agreement in summer
season but they found that the Monte Carlo approximation underestimates by nearly
30% the “true” spread in winter. Although these results are encouraging, a more detailed
study should be undertaken to confirm that the Monte Carlo estimation constitutes a

good approximation.

The existence of sampling uncertainty has implications when attempting to eval-
uate the necessary conditions for AV that were discussed in Sect. 3.2.2 (see Eq. (3.15)
and (3.16)). First, when trying to identify regions containing non-negligible fine-scale
variance (i.e., PAVE, = (CCiiop)? > 0), the sampling uncertainty implies that we
cannot use a zero threshold but some non-zero threshold that measures the level of
noise inside each region. That is, a “variance noise” threshold must be used in or-
der to determine whether the fine-scale variance is induced by physical mechanisms or
only arising from sampling uncertainty. We will refer to the use of such threshold as

“physically significant” condition.

The physically significant condition is defined here in a simple way by arbitrarily
choosing a minimum value, the same for all regions, for PAVZL to be statistically
different from zero. In order to take into account the sampling uncertainty in the
variance computations and the possibility of getting a value below the threshold by
chance, the criterion imposes that 95% of the Monte Carlo-generated variances must be

larger than the threshold:

g5(02(CCren)) > threshold. (3.21)
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For the absolute quantity (PAV#E%), relatively small values are chosen for both tem-
perature ((0.1K)? threshold) and precipitation ((0.04mm/day)? threshold). Assuming
that CCream values are normally distributed inside each region, this implies that 95%
(99%) of the CCprer differences between two grid points are smaller than 0.2 K (0.3 K)
for temperature and smaller than 0.08 mm/day (0.12 mm/day) for precipitation. Sim-
ilarly, for relative PAV quantities (rPAVAE), regions will be considered as physically
significant. when r PAVAZL values are larger than 0.05% and 0.02% for temperature and

precipitation respectively.

The second implication introduced by the existence of sampling uncertainty is
related with the condition (CCS,,)? > SEEc pear (see Eq. (3.16)) that suggests that
a large error in the estimation of (CCp,)? can prevent the RCM from adding value.
The sampling uncertainty can be used as a proxy of the unknown crror SEfs poyy t0

quantify the potential skill of the fine-scale spatial variance estimation.

In order to define a condition quantifying the skill of the several RCM simulations,
let us suppose that the mean value of UE(C'C'RCM) is a good estumation of the spatial
variance of the true climate-change signal (i.c., 02(CCray) ~ 02(CCuye)). In this
case, for any sample GE(CCRC]W), there will be some AV in the fine-scale climate-
change signal if and only if 67 (CCreoy) < 2-02(CCrem) (sce Eq. (3.13)). In order to
guarantee some form of skill in the estimation of a PAVE} we will consider as skillful

those regions that verify:
@5(07 (CCrem)) > 2 02(CCrem)- (3.22)

with ggs the 95th percentile of the cf?(C’C’R_C,\//) distribution.

Several uncertainty sources can influence PAV quantities; sec Foley {2010) for a
detailed discussion. The uncertainty related with the use of different RCM and GCMs
will not be directly addressed here, although PAV quantities derived from individual
pairs of RCM-AOGCM simulations will be shown. Also, NARCCAP future climate
simulations are available only based on the A2 scenario (see IPCC 2007), thus preventing
any scenario uncertainty analysis. While this can be a maiu source of uncertainty when
looking at the end of the 21st century climate, it is probably less important when looking
at the first half of the century.

It should be noted that quantitative results related to the “physically significant”

and the “skill” conditions depend on the arbitrary choice of the threshold and the
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sampling uncertainty measure, respectively. The use of other thresholds and sampling
uncertainty measures would lead to different quantitative results. However the results
are qualitatively similar.

3.5 Results

3.5.1 Temperature

Figures 3.3 and 3.4 show the time-averaged projected temperature change (2041-2065
minus 1971-1995) for individual RCM simulations in winter and summer seasons re-
spectively. In both seasons, results show warmer conditions in the future with generally
a stronger warming in continental compared to oceanic regions. In winter season, the
spatial pattern of C'Cpopa shows a general increase to the north and to the interior of
the continent that reaches almost 7 K in the centre of the Hudson Bay for all RCM
simulations with the only exception of the RCM3-GFDL simulation. This pattern of
warming is related with the positive feedback induced by the reduction of the period
of snow sea-ice cover and the associated increase in absorbed solar radiation (see for
example IPCC 2007).

Warming is smaller in summer than in winter in northern regions and generally
larger in central and southern regions. The spatial pattern of CCprop shows maximum
values in continental-middle latitudes with changes as large as 4 K in central United
States in most RCM simulations. This pattern of warming is mainly explained by
the positive feedback induced by the decreased of latent heat fluxes and the increase in
sensible fluxes due to negative anomalies in surface soil moisture in most central-western
regions (Seneviratne et al. 2010).

Figures 3.5 and 3.6 show the square root of the PAVA% measure (see Eq. (3.18))
for the RCM-AOGCM simulations and for the ensemble-mean results in winter and
summer seasons, respectively. As stressed in Sect. 3.3, oceanic boundary conditions in
NARCCAP simulations are obtained by interpolating SST and SI fields coming from
the driving AOGCM simulations. This means that stationary fine-scale patterns in the
ocean fields, if they exist, are artificial and do not reflect any physical processes. For
this reason, we decided to mask oceanic regions in the PAV analysis. Oceanic regions
are defined as those containing 100% water-fraction and the total number depends on
the RCM considered, varying between 50 in the CRCM to 58 in the HRM3 model.
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Figure 3.3 Climate change signal for the time-averaged temperature in winter season
for individual RCM-AOGCM simulations.
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Figure 3.4 Same as Fig. 3.3 but for summer scason results.
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In winter season (Fig. 3.5), the largest \/PAVZE, values (~1.2 K) appear in
northern-coastal regions mainly along the Hudson Bay and the Canadian Archipelago
coasts with relatively large values also along the Pacific Coast (~0.5 K) and in central
western United States. Different mechanisms appear to produce the relatively large
values in coastline regions depending on whether or not sea ice is present during the
winter. For example, most RCM-AOGCM simulations show large values of PAVSE
over the northern part of the Pacific Coast, associated with larger warming over land
compared to water (see Fig. 3.3), probably explained by the snow-albedo feedback
that is present in land but absent in water surfaces. On the contrary, large values of
PAVZS% in the Hudson Bay and the Canadian Archipelago coasts are generally related
with a more pronounced warming over oceanic regions, maybe due to a stronger albedo
feedback in sea ice compared to land surfaces. A mechanism that can be important in
regions along the Rocky Mountains is related with the snow-albedo feedback resulting

from the differential snow cover change in varying altitude regions.

A large number of regions show that at least 5% of winter \/PAVEE sample
values are smaller than the 0.1 K threshold established for physical significance (white
mask in Fig. 3.5 and 3.6). The number of these regions depends on the simulation and
varies between 74 in the HRM3-HADCM3 and 170 in the RCM3-GFDL simulations,

with all simulations showing “zero” values in the south-eastern part of the continent.

-Figure 3.5f shows the square root of the average of PAVSE across the five indi-
vidual simulations (1/(PAVZE)) in winter season. A total of 154 out of 230 non-oceanic
regions appear to be physically significant and these regions are mostly located along
a coast (Canadian Archipelago, Hudson Bay, Pacific and Atlantic Oceans) and in the

central-western part of the continent.

In summer season (Fig. 3.6), the largest /PAVEE values (~0.6 K) appear also
in coastal regions along the Hudson Bay, but in this case relatively large values extend
to the south, along the Pacific and the Atlantic coasts and over the Great Lakes and
other smaller lakes in Canada, at least in those simulations containing lakes (CRCM
and HRM3). In this season, the relatively large PAVS% values in coastal regions seem
to be forced mainly by a larger warming over land compared to oceanic regions (see
Fig. 3.4) probably diue to the slower response of the ocean because of its larger heat
capacity. The number of regions that verify the “physically significant” criterion (see
Eq. (3.21)) varies between 105 in the HRM3-HADCM3 and 158 in the RCM3-GFDL

simulations, thus showing similar values although less variability than the winter case.
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Figure 3.5 Temperature potential added value (see Eq. (3.18)) in winter season for
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Figure 3.6 Same as Fig. 3.5 but for summer season results.
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Figure 3.7 shows the square root of the ensemble-mean tcmperature relative
PAV measure (computed using Eq. (3.19)) in winter and summer seasons, respec-
tively. \/mvgég) values are always smaller than 0.6, suggesting that fine-scale mean-
temperature changes are generally smaller than the large scale ones. The domain-
0.31 (0.58). That is, averaged over continental North America, the contribution of the
fine scales to the total climate change signal is of the order of 10% although it can attain

60% in specific regions.

In both seasons, as with the absolute PAVS ) measure, the largest ensemble-mean
r PAVEL values appear along coastal regions due to the differential heating obscrved in
land and ocean surfaces. In winter (summer), there is a total of 101 (93) out of 230
non-oceanic regions where at least 5% of \/(rPAVSS) sample values are smaller than
the threshold imposed for physical significance. Other than in coastal regions, rela-
tively large winter <rPAV(”C) values appear over west-central United States (probably

associated with fine-scale topography) and over the Great Lakes. The general spatial

variances of the CC signal tend to follow the mean CC.

Interestingly, according to the skill condition (see Eq. (3.22)), the estimation of
(PAVZE) and (rPAVEE) quantities appear to be very robust in all regions for both -

summer and winter seasons.
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Figure 3.7 Same as Fig. 3.5 but for the rPAVSE quantity.
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Table 3.2 Number of non-oceanic regions that do not satisfy the physical (see Eq.
(3.21)) or the skill (see Eq. (3.22)) conditions for the ensemble-mean PAV and rPAV
measures in winter and summer seasons. Robust regions designate those that satisfy
simultaneously both conditions.

Temperature Precipitation—_
Summer Winter Summer Winter
(1) gs < threshold 90 76 70 123
PAV  (2) g5 >2-0? 0 2 9 11
Robust 140 154 160 107
(1) g5 < threshold 134 126 130 122 )
rPAV  (2) g5 > 2- 02 0 0 41 24
Robust 96 104 91 108

3.5.2  Precipitation

A similar analysis to the one presented above is also performed for the precipitation vari-
able. Figures 3.8 and 3.9 show the time-averaged precipitation change (2041-2065 minus
1971-1995) for individual RCM-AOGCM simulations (CCprear) in winter and summer
seasons, respectively. The high-resolution CC signal is normalised by the present climate
mean precipitation in order to account for the important mean-precipitation gradients

across the North American continent.

In winter, most simulations tend to produce an increase in precipitation over
most of the continent mainly as a result of the increase of atmospheric moisture due to
the temperature dependence of the water vapour saturation pressure together with a
displacement of the westerlies to the north (see IPCC 2007). Increments are generally
smaller than 30-40%, with maximum values generally located over the Hudson Bay.
In absolute terms (not shown), the maximum increase in precipitation amounts appear
along the northern part of the Pacific Coast, with values of the order of 3 mm/day. Most
RCM-AOGCM simulations tend to show a decrease of precipitation in the south-western
part of the domain, a feature that seems to be related with an enhanced subsidence in
this region due to an intensification of the subtropical anticyclone in this season (IPCC
2007).
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Figure 3.8 Climate change signal for the time-averaged precipitation in winter season
for individual RCM-AOGCM simulations.
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Figure 3.9 Same as Fig. 3.8 but for summer season results.

In summer, in agreement with results found in TPCC (2007), the precipitation CC

signal is strongly dependent on the RCM-AOGCM simulation and, in some simulations,
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the increase in precipitation is only limited to the northern part of the domain. Some
simulations suggest a decrease of about 30% in mean-precipitation in the northern part
of the Pacific Coast.

Figures 3.10 and 3.11 show the square root of the precipitation PAVSE measure
for individual RCM-AOGCM simulations and for the ensemble-mean results in winter

and summer seasons, respectively. In winter season (Fig. 3.10), the largest \/PAVSE
values are found along the Pacific coast, mainly in the northern part, with values at-
taining 1.15 mm/day. In some individual simulations, the \/TVCS*C winter season field
shows a secondary maximum in the south-eastern part of the domain, with values of
about 0.4 mm/day. In regions located in central United States and most of Canada, the
5th percentile of the \/TVC”C distribution is generally smaller than the 0.04 mm/day

threshold, suggesting that most of these regions are physically non-significant.

In summer, no clear pattern of PAV#E can be identified and, in most regions,
mean \/WVC“SC values are generally smaller than 0.3 mm/day. In this season, the PAV
precipitation analysis in individual RCM-AOGCM simulations shows that a minimum
of 107 and a maximum of 213 appear as physically non significant according to the
criterion defined in Eq. (3.21).

Figure 3.12 shows the square root of the relative PAV precipitation mcasure (sce
Eq. (3.20)) for the ensemble-mean results in winter and summer seasons, respectively.
In both seasons, it is clear that the fine-scale component of the CC signal is much smaller
than the present time-averaged precipitation. Domain-average \/(rPAVS%) values are
about 0.045 and 0.048 in winter and summer seasons respectively, suggesting that fine
scales induce a precipitation change of about 5% compared to the present time-averaged

precipitation.

In winter season (Fig. 3.12a), the largest changes in mean precipitation (~ 10%)
seem to arise related with the presence of fine-scale topographic features along the
Rocky Mountains and with a small-scale process taking place in the northern part of
the domain.

In summer season (Fig. 3.12b), the largest \/(rPAVSL) values appear in the
south-western part of the continent with values attaining 0.3 in some regions. Interest-
ingly, most of these regions seem to be non-robust to the sampling uncertainty criterion
indicating that in these regions negative added value could be the net result due the

generation of too much or too little fine-scale features.
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Figure 3.10 Precipitation relative potential added value in winter season for individual
RCM-AOGCM simulations and for the ensemble-mean. White regions designate those
regions that do not satisfy the “noun-zero” criteria. Crosses (x) designate those regions
that do not satisfy the “skill” criteria. Oceanic regions are in black.
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Figure 3.11 Same as Fig. 3.10 but for smumner season results.

According to the skill condition, the estimations of PAVAE and rPAVSEL for

precipitation are much more uncertain than for the temperature case. For the PAVSY
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Figure 3.12 Same as Fig. 3.10 but for the rPAVAE quantity.

quantity, a total of 9 (11) regions appear to show that the 95th percentile of Lhe sampling
distribution is larger than two times the mean value in summer (winter) scason. Table
3.2 shows that the number of regions increases to 41 (24) in the same seasons for the
rPAVEE. The lasts two results suggest that, for precipitation, the sanpling uncertainty
induce by interannual variability can be relatively large not only to determine fine-scale

variances 62(CCrem) but also the time-average precipitation CC¥ xca-

3.6  Conclusion

The need of future climate information at local and regional scales together with objec-
tive evidence supporting the improvement of climate simulations arising from the use of
higher resolution models have pushed the climate modelling community to perform in-
creasingly higher resolution simulations and to develop alternative approaclies to obtain

the fine-scale climatic information.

In this article, various nested RCM simulations have been used to try to identity
regions across North America for which the higher resolution afforded by RCMs can
potentially be important to determine the future climate change. It is first noted that
the issue of looking for added value in future climate is equivalent to searching for AV
in the climate change signal instcad of in the climate itself, at least when considering
the “delta method” to approximate future climate statistics. Further, the absence of
knowledge about the “tru¢” climate change means that only necessary (but not suffi-

cient) conditions for AV can be studied leading to the concept of potential added value.
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This concept has already been discussed for present climate applications in Di Luca
et al. (2011a) and Di Luca et al. (2011b).

Two conditions were identified for an RCM to produce added value over lower
resolution GCMs in the fine-scale component of the climate change signal. First, the
RCM-derived climate change signal must contain some non-negligible fine-scale informa-
tion. Second, the uncertainty related with the estimation of this fine-scale information
should be small enough to suggest some skill in future climate projections. That is, since
non-negligible fine-scale information can either add value to or deteriorate the represen-
tation of the climate change signal compared to its large-scale part, large spread in the

potential added value indicates a high chance to deteriorate the large-scale CC signal.

The importance of fine scales in the climate change signal is studied using the
potential added value framework as presented in Di Luca et al. (2011a). For each NAR-
CCAP RCM simulation, large-scale CC values are computed by aggregating the high-
resolution CC signal over a lower resolution 300-km grid spacing mesh (denoted as
virtual GCM grid) that tries to emulate the grid of a real low resolution GCM. Using
a common North American domain for all NARCCAP RCM simulations, a total of 288
non-overlapping virtual GCM grid boxes are defined. An absolute potential added value
measure is then defined by estimating the fine-scale variability of the CC signal inside
each 300 km side region and a relative quantity is similarly derived by calculating the

fraction of the total CC signal accounted for by the small-scale component.

For the temperature variable, the largest potential for added value appears in
coastal regions mainly related with differential warming in land and oceanic surfaces.
In northern regions along the Hudson Bay and the Canadian Archipelago this seems
to be related with a differential snow-sea-ice albedo feedback. Along the Pacific and
Atlantic coasts, the relatively large PAV seems to be more related with the differential
warming due to the dissimilar thermodynamical properties (e.g., heat capacity) of water
and land surfaces. Fine-scale features can account for nearly 60% of the total CC signal
in some coastal regions although for most regions the fine scale contributions to the
total CC signal are of only ~5%.

For the precipitation variable, fine scales contribute to a change of generally less
than 15% of the time-averaged precipitation in present climate with a continental North
American average of ~5% in both summer and winter seasons. In winter, the largest
PAV appears in mountainous regions and in the north part of the continent. In the

first case, fine-scale features may be related with the interaction between large-scale
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precipitation changes in mid-latitudes (see IPCC (2007)) and the fine-scale topography
of the Rocky Mountains.

An important aspect to take into account when estimating the future change of a
given climate statistics is related with its uncertainties. As expected, and in agreement
with Giorgi (2002), we found that the sampling uncertainty due to interannual variability
tends to increase as the spatial scale of the data used to compute climate statistics

decreases (not shown).

The analysis also shows that the uncertainty due to interannual variability asso-
ciated with fine-scale features in the CC signal secms to be niuch larger in precipitation
than in temperature. This has as a consequence that while the RCMs may add fine-scale
features to precipitation fields at all time scales, some of this gain may be lost due to
the relatively short time periods usually analyzed (i.e., 25 years periods in our case).
This result may be of importance for impact and adaptation studies and for this reason

deserves further exploration.

Probably the most important limitation of this study is related with the choice
of time-averaged quantiticsin the PAV analysis without explicit, consideration of higher
order statistics. The larger sensitivity of higher moments to changes in resolution is
expected to lead to a larger potential for added value and an increase in the fine-scale
signal. It is not clear, however, how the uncertainty associated with these high-order

statistics and the derived signal to noise ratio will evolve.

A second important caveat is that the analysis of the “skill” of the RCM-derived
PAV quantities was performed only in terms of the sampling uncertainty, with no con-
sideration of others sources of uncertaintiées such as structural model nncertainties. As a
consequence, the number of skilful regions obtained in this study probably corresponds
to an upper limit compared to a more complete analysis including other uncertainty

sources.
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Appendix 3.A: Added value as a spatial scale issue

This section contains an extension of the analysis presented in the Introduction. Here
we will develop a more detailed expression for the AV as a function of spatial scales (see
Eq. (3.1)).

Let us assume that we can compute a two-dimensional climate statistics X at
very high-resolution based on observations and let us also assume that a perfect spatial
decomposition method is available that allows to separate the field according to several

spatial scales as follows:

Xops = XGps + X8ps + X5%s- (3.23)

Super-index s designates the large scales that can be resolved by the GCM, ss denotes
the small scales that can be resolved by the RCM and are absent in the GCM, and wss
designates the very small scales that cannot be resolved by either the RCM and the
GCM.

Before applying the spatial decomposition method to the RCM- and GCM-simulated
X, both Xgcoar and X fields are projected into some very high-resolution grid mesh
on which an analysis of observations is available. For simplicity, the projection cousists
of assigning the value of the RCM and GCM fields on each grid poiuts of the observed
high-resolution mesh that fall iuside the corresponding RCM and GCM grid box. For
this particular projection we have X3, = X2, = X&&, = 0 and

Xpom = X%'CM + st?'?(j,yj, (3.24)
and
Xeom = Xg(;,w- (3.25)

The added value can be simply defined as the difference between the GCM and the
RCM errors

AV = (Xgom — Xops)? — (Xrem — Xops)?
= MSEqow — MSERcw, (3.26)

with (6)2 = L S™V-152 denoting the average of the square differences hetween observed
N Lii= i 5 =3 |
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and simulated climate statistics X over all grid points ¢. Defined in this way, an RCM
generates some added value if AV is larger than 0, i.e., if the RCM constitutes a better
approximation of the observed field compared to the GCM. Using Eq. (3.23), (3.24)
and (3.25) the RCM and GCM mean square errors can be expressed as:

MSErcy =(Xpem — XoBs)?

vl , Is
=(XFom + Xiom — (XSps + X&ps + X8Es))?

(s $S _ YUSS \2

=(ehom + €5em — Xbhs)

_ ls $s ! 3
=MSEgcy + MSEFcy + (X855)% + 2 €hemchom

—2-€hemXOps — 2 €gomXOBs (3.27)

and

MSEcom =(Xcom — Xops)?
=(X¢cn — (XEps + X8ps + X8%s))?
=(eom — X8ps — X&%s)’
=MSE§cu + (X8ps)2 + (X855)2 — 2+ o X s

-2 fouXbhs + 2 XopsXBs- (3.28)

By replacing Eq. {3.27) and (3.28) in Eq. (3.26) we obtain:

AV = AVS 4 AV 4 gyeov (3.29)
where
AV = (X&ps)* — MSExcy, (3.30)
AV = MSEBq .y — MSESc, (3.31)
and

cov __ S5 \VUSS Is $8 ls $S 7S5 YUSs
AV =2 XFpe XBhs — 2 €homchom + 2 €homXEBs + 27 €5omXbhs  (3-32)

Hence the total AV can be decomposed in a small-scale (AV®), a large-scale (AV%) and
a covariance (AV") part. The term AV*® was already described in the introduction
but its relation with X -, is further discussed here. Fig. 3.1 shows the dependence
of AV® as a function of X§,,, for three different values of X3ps. In the case where

X&ps = 0 everywhere, an increase in fine-scale variance of Xpcpr can only subtract
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value by making AV ® negative. Where X¥ps # 0, the fine-scale feature of Xrop can
add value over the GCM estimation wherever Eq. (3.30) is positive. The maximum
AV* is found when X&ps = X35, and is given by (X35-,,)%. Furthermore, Fig. 3.1

shows that the term AV*®® can potentially increase as XFpg increase.

Terms AVY and AV are out of the scope of our analysis. includes the covari-
ances between observed fine- and micro- scales (2 - X556 X55), between large- and
fine- scale RCM errors (2 - €$5,,€550,) and between GCM and RCM error terms and
observed variables.
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CONCLUSION

Nearly 20 years after the first application of limited-area models as climate downscaling
tools, nested Regional Climate Models (RCM) have been shown to be technically feasible
and to be able to generate small-scale features with the appropriate amplitudes, leading
to more realistic patterns of meteorological variables compared to the coarser resolution
driving data. From the beginning of RCMs development, a large effort has ensued to
assess their capability as climate downscaling tools by evaluating the RCM-simulated
climate compared to high-resolution observed data sets. Moreover, particularly in the
last decade, important efforts were also devoted to assess the ability of RCMs to improve
the simulated climate compared to their driving data in order to identify the value added
(AV) by RCMs.

The effort behind the search of AV has not shown univocal gains, suggesting that
there is still a need to objectively quantify the RCM’s added value. In particular, a
clearer identification of variables and climate statistics for which RCM simulations can
produce more skilful results would be very useful in the context of a changing climate
for which plans for adaptation need information at local and regional scales (Oreskes
et al. 2010). Furthermore, a better understanding of the AV issue can help to increase
owr confidence in downscaling techniques products, thus maybe supporting their use
instead of those derived from lower resolution GCMs as mostly done, for example, in
the “Regional Climate Projections” chapter of the TPCC Fourth Assessment Report
(TPCC 2007).

In the following sections we will give a more detailed description of some of the
original contributions of this thesis together with some of tlie limitations of the method-

ology and possible research lines to explove in the future.

Potential added value

In this thesis we investigated the potential of RCMs to add value over coarser resolu-
tion GCM data. The analysis of PAV can be interpreted as tlic study of prerequisite
conditions that can lead to RCM’s added value. The PAV concept is relatively recent
(Rauscher et al. 2007; Bielli and Laprise 2007; Separovic et al. 2008; B3resson and Laprise
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2009), although it has been implicitly used in a number of articles. For example, Castro
et al. (2005) computed the power spectra of some atmospheric variables derived from
an RCM simulation and from a reanalysis data set. They found that the RCM pro-
vides additional information in small scales, particularly in those regions with strong
surface boundary forcing, by showing larger values of fine-scale spectral power in the
RCM compared to the NCEP reanalysis. This fine-scale added variability, which they
designated as AV, is what we call PAV fromn the fact that adding variability does not
guarantee that there is some effective added value.

Two 1nain coutributions are made in this thesis to the PAV issue: first, we provide
an objective definition of what we mean by PAV, by establishing a distinction between
added value (e.g., added skill) and potential added value (e.g., added variability); and
second, as explained in the Introduction and in Appendix A, we separate the PAV in
various terms according to whether or not processes can be resolved by the coarser

driving data.

We concentrated the analysis in the PAV arising from the direct influence of fine-
spatial scales and we presented a framework that is explicitly designated to its study.
The PAV framework is based on the study of two necessary conditions. The first con-
dition requires that the climate statistics computed using high-resolution observations
must contain non-negligible fine-scale information, i.e. PAVSEg = (X&zg)? > 0. This
condition constitutes an intrinsic feature of the climate system, independent from cli-
mate model simulations, and can be viewed as a general requirement for high-resolution
climate modelling to be meaningful. Further, as already stated in the Introduction,

PAV33g gives a measure of the maximum value that a RCM can add.

The second condition requires that the climate statistics computed using high-
resolution RCM simulations must contain non-negligible fine-scale information
(PAVEL = (Xioa)? > 0). Even if the PAVES,, measure can give an erroneous
estimation of the real PAV, it is still an interesting and useful quantity because allows
to estimate PAV in those cases where high-resolution observations of the variable of
interest are not available.

The PAV framework presented in this thesis allows to study both conditions in
an independent way, allowing to estimate the relative influence of fine-scale features
in a given climate statistics. When evaluating PAV3%,,, the framework is based on
two hypotheses: first, that large-scale climate statistics derived from a coarse-resolution

model are similar to those derived from the aggregation of high-resolution results into
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a coarse-resolution grid mesh. This hypothesis, partially assessed in Di Luca (2009)
and discussed in Sect. 1.2.3, needs to be further explored by comparing the large-scale

representation of a variety of variables using an ensemble of RCM and GCM simulations.

The second hypothesis is to consider that the relative importance of fine and large
scales is well reproduced in RCMs compared to observations. As shown in Section 1.5,
this seems to be a reasonable hypothesis for a complex variable such as precipitation,
although some differences between PAVEZ,, and PAVS% appear particularly in warm
season and mountainous regions. No attempts were made to test this hypothesis for
the temperature variable, but we are confident that RCMs reproduce relatively well the
real PAV or, at least, their regional and seasonal variations. Ultimately, however, this

speculation should also be confirined and quantified.

PAV in present climate

The PAV framework was applied to the precipitation and tempcrature variables de-
rived from an ensemble of RCM simulations and, in the precipitation case, using also
high-resolution reanalysis and gridded observed data sets. Coucluding remarks for pre-
cipitation and temperature were presented in Sections 1.6 and 2.6, respectively, and

here we will only highlight some differences between PAV results in both variables.

A main difference between temperature and precipitation is related with the mag-
nitude of the PAV. The use of different methodologies to assess PAV in both variables
prevents to perform a direct comparison between them. In order to quantitatively com-
parc PAV results for both variables, the variance decomposition method as used in
Chapter 2 for the temperature variable was applied to the tine-varying precipitation
field. Results (not shown) suggest that the relative influence of RCM contributions to
the total variance is much larger in precipitation than in temperature. For example, for
3-howrly time varying fields, the ensemble-mean domain average rI’PAV in cold (warm)

season is ~5% (~16%) for temperature and ~23% (~40%) for precipitation.

Another fundamental difference between temperature and precipitation is rclated
to the different mechanisms that produce PAV. The main source of PAV in near-surface
temperature is associated with the presence of surface forcings, maiuly through the in-
fluence of land-sea contrast but also due to fine-scale topographic features. For example,
the different heat capacity of water and land surfaces can lead to differences in surface

temperature seasonal values (i.e., stationary PAV) and also in sub-diurnal, diurnal and
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synoptic variability (i.e., transient PAV).

In the case of precipitation, the dominant source of PAV is related with high-
temporal resolution fine-scale atmospheric processes (e.g., hydrodynamics instabilities)
that tend to develop almost independently of surface forcings. This is confirmed by the
fact that the largest » PAV precipitation values appear in warm season and low latitudes
(not shown) for high-temporal resolution data (e.g., 3-hourly). Regions of complex
topography induce an extra-component of P AV independently of season or temporal
scale considered. Its relative importance is larger for long-term mean quantities and

cold season due to the relatively minor importance of transient PAV sources.

Results point out that the potential of RCMs to add value can be limited when
considering climate statistics computed using time-averaged values for both variables.
For example, a large number of regions show » PAV values smaller than 10-15% for both
precipitation and temperature when considering 16-day averaged periods time series in
both warm and cold seasons.

A main limitation associated with our methodology is that it does not allow
identifying the processes and phenomena that are actually responsible for the fine-
scale variability. Particularly, simply by looking at the relative importance of fine-
scale variability, one cannot assert about the complexity of the processes leading to
the PAV (e.g., linear vs. non-linear). For example, the distinct response of water and
land surfaces to the diurnal variation of solar radiation can lead to much larger PAV
values than those resulting from land-sea breeze effects, but the representation of the
latter effect is much more challenging than the former. This can have an impact when
comparing the PAV generated by a RCM and other simpler downscaling techniques
(DTs).

Further, some phenomena can induce modest fine-scale variability according to
our PAV measures but could have important societal and/or economical impacts. This
suggests that PAV studies, at least those using similar methodologies as here, should
be complemented with other analyses aimed at understanding the sources of variability

by including an evaluation at the process level.

PAV in the climate-change signal

The PAV concept is particularly interesting when considering the problem of ascertain

whether increasing model resolution improves climate projections. For future climate
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simulations, there is no way to decide about the existence of added value in RCM

simulations and we can only estimate the PAV.

As discussed in Section 2.5, the problem of looking for the potential of RCMs to
add value in future climate simulations is not directly related with the future climate
itself but with the climate-change {CC) signal (i.e., the difference between future and
present climate statistics). The difference of considering PAV of climate statistics or
climate-change statistics may appear subtle but can have important implications. For
example, a large part of the added value in the temperature variable coming from
stationary forcings such as fine-scale topography and coastlines can be mostly filtered
out when computing the difference between future and preseut climate.

In Section 2.5, we briefly studied the PAV in future mean-temperature change
by computing the ratio between the spatial standard deviation of the fine-scale CC
signal and the large-scale climate-change signal. The analysis shows that the fine-scale
variability of the CC signal is generally very sinall compared to its large-scale component,
suggesting that little AV can be expected for the time-averaged temperature. The
largest values of r PAV appear near coastline regions related with the differential future

warming in land and water surfaces.

A more comprehensive study should be undertaken in order to better understand
the CC PAV. The use of higher order climate statistics (e.g., 95th percentiles) but
mainly the use of other variables (e.g., precipitation) is expected to show more CC
PAV. Maybe more important, no attempt was done here to assess the robustness of CC
fine-scale features. As pointed out by Giorgi (2002), the interannual variability of some
atmospheric variables (e.g., precipitation) shows a very strong sensitivity to changes in
spatial scales. In particular, interannual variability tends to incrcase at more refined
spatial scales leading to a deterioration of the signal to noise ratio. That is, the CC
PAV study should include a discussion about the relative importance of fine scales in
the CC signal but also an estimation of the natural variability of the system and the

influence on fine-scale climate predictability.

Extended added value framework

The definition of necessary conditions for AV > 0 can be used to developed a series
of evaluation steps in order to decide on the existence and sources of added value in

RCM simulations. This, in turn, shiould help to decide on the relevauce of using RCMs,
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direct GCMs output or maybe other simpler and computationally cheaper downscaling

techniques (e.g., geo-statistical post-processing), depending on the problem at hand.

Figure 4.1 shows a flow chart describing a possible AV®® testbed resulting from
the inclusion of a PAV framework type. To illustrate the chart, let us consider the
case where high-resolution observations are available (left panel in Fig. 4.1). The
first step when considering AV*®® consists in verifying whether the climate statistics of
interest derived from observations contains non-negligible fine-scale information (i.e., if
PAVS5g > 0). In the case that PAVS,s = 0, neither a RCM nor any other DT can
add value at small scales over the GCM, so we should either check for PAV* or simply
use the GCM output. If PAV3%e > 0 then we should ask if the RCM-derived statistics
contain some fine-scale information (i.e., if PAV§E:,, > 0). Again, if the answer is no,
then we should inquire about the existence of PAV! or use the GCM estimation of the
climate statistics. If there exists some PAVS%,,, the next step is to check whether there
is also some AV®. Finally, in the case that there is some AV we should compare the
RCM’s AV*$ with results obtained using other cheaper DTs such as statistical and/or
empirical downscaling techniques. Only when cheaper DT's cannot account for the AV'S8

we should prioritise the use of costly RCM simulations.

In the case where high-resolution observations are not available, the quantity
PAVS% ¢ cannot be computed and we can only estimate the maximum AV using PAVEE,
(right panel in Fig. 4.1). If PAV%.,, = 0 then the RCM cannot add value to the coarser
GCM. In the case that PAVS%,, > 0 we can ask whether or not this PAV can be gen-
erated using other simple DTs by comparing PAVgs,, with PAVE? as done in Section
2.4.3.

Note that this flow chart can be equally used to evaluate the AV generated by
other techniques used to produce high-resolution results, such as high-resolution AGCM
in time-slice mode ov statistical /empirical DT's. Also, a similar set of steps may be design
to evaluate the AV coming from the large-scale component of the climate statistics of
interest (AV).
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covered in this thesis.
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