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RÉSUMÉ 

À l'aide de la quatrième génération du Modèle Régional Canadien du Climat (MRCC4), 
deux paires de simulations pilotées à leurs frontières par les réanalyses NCEP NRA-2 ont été 
créées pour deux régions distinctes du Canada: 1) l'ouest canadien (WEST CAN), et 2) l'est 
canadien (EAST CAN). Pour ces deux régions, chaque paire de simulations consiste en une 
simulation dont la résolution horizontale est de 15 km (vrai à 60° N) et une simulation dont la 
résolution horizontale est de 45 km (vrai à 60° N). En utilisant ces simulations, cette étude 
tente de déterminer l'impact de l'augmentation de la résolution horizontale sur le champ de 
précipitation du modèle. Les résultats montrent que l'augmentation de la résolution 
horizontale permet d'obtenir une représentation plus réaliste de la topographie dans les 
simulations à 15 km, puisqu'elles illustrent de plus fines caractéristiques du terrain, tels que 
d'étroites et profondes vallées ainsi que de hauts, mais petits, complexes montagneux. De 
plus, notre étude révèle que les simulations à 15 km produisent davantage de convergence 
d'humidité et d'évapotranspiration, menant ainsi à une augmentation de la précipitation. 
L'augmentation de la résolution permet à la simulation à 15 km de produire de la neige 
durant toute l'année au sommet des plus hautes montagnes du domaine WEST CAN. Pour le 
domaine EAST CAN, la précipitation totale et solide plus grande retrouvée dans la 
simulation à 15 km mène à un ruissellement supérieur à celui retrouvé dans la simulation à 45 
km. 

En comparant la précipitation simulée avec la précipitation observée provenant du réseau 
de stations d'Environnement Canada mesurant la précipitation horaire, on trouve que les 
simulations à 15 km produisent une distribution de la fréquence des précipitations horaires et 
une distribution de l'intensité des précipitations plus réaliste. Contrairement aux simulations 
à 15 km, les simulations à 45 km produisent moins d'événements horaires d'intensité 
modérée à très forte (3-10 mm/h) que ce qui est observé. Néanmoins, autant les simulations à 
15 km que celles à 45 km produisent un biais positif en termes de fréquence et d'intensité des 
événements horaires de faibles intensités (0,2-3 mm/h). Conséquemment, une trop grande 
quantité de précipitation est générée annuellement par ce type d'événements, 
comparativement aux observations. La précipitation simulée est alors généralement plus 
grande que celle observée. Notre étude révèle également que pour analyser la fréquence et 
l'intensité de la précipitation, il est plus approprié d'utiliser une période d'accumulation 
d'une heure plutôt qu'une période d'accumulation de 24 heures. En effet, cela nous permet de 
comprendre plus facilement quels types d'événements le modèle est capable de reproduire et 
quelle est la contribution (en termes de quantité de précipitation) de chacun de ces 
événements. 

Mots clés : modélisation régionale du climat, haute résolution, précipitation, MRCC 



INTRODUCTION 

L'eau est une ressource primordiale sur Terre, puisque c'est grâce à sa présence que la 

vie est possible. De plus, la coexistence simultanée des trois phases de l'eau (vapeur, liquide 

et solide) fait la particularité de notre planète (Webster, 1994). Sous une de ces trois phases, 

d'importantes quantités d'eau sont échangées entre les océans, l'atmosphère, le continent 

(l'eau des sols et l'eau de surface), la cryosphère et la biosphère. Ceci forme le cycle 

hydrologique. Ce cycle contrôle le climat à travers plusieurs interactions complexes (Peixoto 

and Oort, 1992). Sous l'action du rayonnement solaire, l'eau provenant des océans et des 

surfaces continentales est introduite dans l'atmosphère par évapotranspiration. Elle est 

transportée par le vent en phase vapeur, pour ensuite être condensée et stockée dans les 

nuages. Elle retombe finalement à la surface sous forme de précipitation liquide ou solide. 

Ceci constitue la branche atmosphérique du cycle hydrologique. Une fois précipitée à la 

surface, l'ea!1 peut s'infiltrer dans le sol ou ruisseler (surface ou souterrain), ce qui alimente 

les cours d'eau et les océans. L'eau demeurée en surface ou absorbée par les plantes est 

ensuite évapotranspirée à nouveau et le cycle se poursuit. Ceci constitue la branche terrestre 

du cycle hydrologique. Parmi toutes les composantes du cycle hydrologique, la précipitation 

est probablement celle qui influence les plus nos activités quotidiennes (loisirs, travail, etc.). 

Il est donc primordial de connaître de quelle façon cette variable météorologique évoluera 

avec les changements climatiques. Afin de simuler le climat futur, les scientifiques ont 

maintenant recours à des modèles climatiques. 

Depuis quelques années, plusieurs études ont été menées dans le but d'évaluer la capacité 

des modèles climatiques à simuler la précipitation (Mearns et al., 1995; Chen et al., 1996; 

Giorgi et Marinucci, 1996; Dai et al., 1999; Gutowski Jr. et al., 2003; Sun et al. 2006). Ces 

études ont montré que la plupart des modèles sont capables de reproduire la distribution 

spatiale de la précipitation, mais qu'ils ont de la difficulté à bien reproduire d'autres 

caractéristiques importantes de cette variable, tel que le cycle diurne, la fréquence et 

l'intensité. En utilisant la précipitation simulée par 18 Modèles de Circulation Généraux 

Couplés (MCGC), Sun et al. (2006) ont déterminé que la plupart des modèles surestiment la 



2 

fréquence de la précipitation faible (1-10 mm/jour) tout en reproduisant adéquatement 

l'intensité de ce type d'événements. Pour les événements de précipitation forte (> 10 

mm/jour) toutefois, la pluparts des MCGCs sont capable de reproduire adéquatement la 

fréquence observée, mais ils en sous-estiment l'intensité. Une autre étude, réalisée par 

Christensen et al. (1998), a permis de démontrer que les Modèles Régionaux du Climat 

(MRCs) possèdent des difficultés semblables. En effet, les auteurs établissent que les MRCs 

surestiment généralement la fréquence des événements de trace de précipitation « 0.1 

mm/jour) et qu'ils sous-estiment la fréquence de la précipitation faible à forte (> 0.1 

mm/jour). De plus, d'autres études antérieures ont permis de découvrir que les modèles 

climatiques produisent typiquement davantage d'événements de faibles intensités par rapport 

à ce qui est observé (Meams et al., 1995; Chen et al., 1996; Giorgi et Marinucci, 1996; Dai et 

al., 1999; Gutowski Jr. et al., 2003). Les modèles climatiques actuels doivent mieux 

reproduire la fréquence et l'intensité de la précipitation pour ainsi pouvoir prévoir 

adéquatement leur changement en climat futur. Par ailleurs, l'augmentation des gaz à effet de 

serre semble entrainer une augmentation de la fréquence des événements de précipitation 

forte, de même qu'un accroissement de la fréquence des sécheresses. Résultant d'une 

augmentation de la température et de l'humidité spécifique, une amplification du cycle 

hydrologique est ainsi prévue (Trenberth, 1999; Trenberth, 2003). Donc, étant donné que ces 

changements auront un impact important sur l'activité humaine, il est primordial que les 

modèles soient très habiles à simuler ces caractéristiques de la précipitation. 

De nos jours, l'utilisation d'un MRC à aire limitée au-dessus d'une région d'intérêt est le 

principal moyen de simuler les caractéristiques régionales de la précipitation. Les MRCs 

permettent une représentation plus fine de l'échelle spatiale que les Modèles de Circulation 

Généraux (MCGs). Présentement, la plupart des modèles à aire limitée opérationnels ont une 

résolution horizontale variant entre 20 et 50 km. Même à ces résolutions, la topographie n'est 

pas parfaitement représentée et certains aspects du terrain sont tout de même manquants, ce 

qui peut avoir un impact significatif sur la simulation des différentes variables 

atmosphériques, principalement la précipitation. Bref, même à de telles résolutions 

horizontales, les processus de fines échelles (dont la résolution spatiale est supérieure à la 

résolution du MRC) ont besoin d'être paramétrés. Toutefois, les schémas de paramétrisation 
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sont une source d'incertitudes dans les simulations climatiques puisqu'ils sont basés sur des 

approximations et simplifications. D'ailleurs, un effort international est mené dans le but 

d'améliorer les schémas existant ou bien encore pour en créer de nouveaux afin que les 

processus de fines échelles soient mieux représentés dans les modèles numériques. Avec une 

augme,ntation de la résolution horizontale, la représentation des caractéristiques de surface 

devrait être meilleure, ce qui fait que les modèles devraient mieux résoudre les phénomènes 

de fines échelles. Certaines études ont été menées dans le passé pour connaître l'impact d'une 

augmentation de la résolution horizontale sur les champs atmosphériques. Dans leur étude, 

Christensen et al. (1998) ont analysé le comportement des composantes du cycle 

hydrologique simulées par un MRC et un MCG. Pour réaliser cette étude, les auteurs ont 

utilisé une technique de double-pilotage dans laquelle un MRC ayant une résolution 

horizontale de 19 km était piloté aux frontières par un autre MRC ayant une résolution 

horizontale de 57 km. Ce dernier MRC était lui piloté aux frontières par un MCGC. L'étude 

montre qu'en terrain montagneux, la simulation à haute résolution montrait d'importantes 

améliorations dans la représentation du ruissellement de surface et du couvert de neige. 

L'étude montre également que la distribution de la précipitation selon différentes classes 

d'intensités est plus réaliste avec la simulation à haute résolution. 

L'objectif de la présente étude est d'évaluer l'impact de l'augmentation de la résolution 

horizontale sur la précipitation, aussi bien que sur d'autres composantes du cycle 

hydrologique, simulés avec la quatrième génération du Modèle Régional Canadien du Climat 

(MRCC4) au-dessus de deux régions climatiques distinctes. Les simulations du MRCC4 sont 

en fait produites au-dessus de deux don:aines de l'Amérique du Nord: 1) centré sur la 

province de la Colombie-Britannique (ouest canadien) et 2) centré sur la province du Québec 

(est canadien). Pour chacune de ces régions, une paire de simulations d'une durée de quatre 

ans, pilotée aux frontières par les réanalyses NCEP NRA-2 est analysée. Cette paire de 

simulations consiste en une simulation ayant une résolution horizontale de 15 km, et une 

simulation ayant une résolution horizontale de 45 km. 

Ce mémoire est écrit sous la forme d'un article. La première partie comprend un court 

résumé des études antérieures portant sur la précipitation simulée par les modèles climatiques 



4 

(MRCs et MCGs), un bref descriptif du MRCC et une description de la méthodologie 

utilisée. La convergence d'humidité, l'évapotranspiration, la précipitation (totale, liquide et 

solide), la température à 2 m, l'équivalent en eau de la neige, le ruissellement de surface et le 

nombre de jours de précipitation par année constituent les champs météorologiques simulés 

qui seront étudiés de plus près. La précipitation simulée par le MRCC est également 

comparée avec la précipitation horaire observée, tout en portant une attention particulière à la 

fréquence et l'intensité de la précipitation. 
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Abstract 

Using the fourth generation of the Canadian Regional Climate Model (CRCM4), two 

pairs of 4-year simulations forced at their boundaries by the NCEP NRA-2 reanalyses are 

performed over two different regions of Canada: 1) western Canada (hereafter WEST CAN) 

and 2) eastern Canada (hereafter EAST CAN). For both regions, each pair of simulations 

consists of one 15-km resolution (true at 600 N) run and one 45-km resolution (true at 60 ON) 

run. Using these simulations, this study investigates the impact of increasing horizontal 

resolution on the precipitation field. Results show that increasing horizontal resolution allows 

a more realistic representation of the topography in the 15-km simulations, by showing 

smaller scale features such as long and narrow valleys as weil as high and narrow mountains. 

This investigation also reveals that the l5-km simulations produce more water vapour 

convergence and more evapotranspiration, which leads to an increase of precipitation in the 

15-km simulations. The higher resolution also allows the 15-km simulation to capture sorne 

of the permanent snow present at the top of the high mountains within the WEST CAN 

domain. Over the EAST CAN domain, the greater l5-km total and solid precipitation leads to 

more runoff than within the 45-km simulation. 

When comparing simulated precipitation with observed precipitation from Environment 

Canada's hourly precipitation network, it is found that the 15-km simulations depict more 

realistic hourly precipitation frequency (hereafter PF) and precipitation intensity (hereafter 

PI) distributions than the 45-kmsimulations. Contrary to the 15-km simulations, the 45-km 

simulations produce less moderate-to-very-heavy (3-10 mm/h) hourly precipitation events 

(hereafter HPE) than those observed. Nevertheless, both simulations produce a positive bias 

in the frequency and intensity of light HPE (0.2-3 mm/h), which leads to an annual 

precipitation amount too large, in comparison with observations, generated by those events. 

Thus, the simulated precipitation tends to be greater than the observed precipitation. Our 

investigation also revealed that using an hourly accumulation interval to analyse the PF and 

PI was more appropriate than using a daily accumulation interval in understanding which 

events the model is able to reproduce and what the contribution (in precipitation amount) of 

each type of event is. 
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1 Introduction 

Over the recent years, many studies have been carried out to see how weil climate models 

simulate precipitation (Chen et al. 1996, Dai et al. 1999, Gutowski Jr. et al. 2003, Sun et al. 

2006). These studies showed that most models can usually reproduce the spatial distribution 

and climatological mean of precipitation, but tend to fail in reproducing someother important 

features of this atmospheric variable, such as the diurnal cycle, the frequency and the 

intensity. Using 18 different Coupled Global Circulation Models (CGCMs), Sun et al. (2006) 

found out that most models overestimate the frequency of light precipitation (1-10 mm/day) 

but reproduce adequately the intensity of those events. For heavy precipitation (> 10 

mm/day), their study revealed that most CGCMs are able to reproduce quite properly the 

observed frequency, but underestimate the intensity of such events. Another study realised by 

Christensen et al. (1998) showed that Regional Climate Models (RCMs) have similar 

difficulties. Indeed, the authors found that RCMs tend to underestimate the frequency of trace 

precipitation events « 0.1 mm/day) while they overestimate the frequency of low-to-heavy 

precipitation events (> 0.1 mm/day). Moreover, other past studies discovered that climate 

models produce typically more light precipitation events than what is observed (Mearns et al. 

1995, Chen et al. 1996, Giorgi et Marinucci 1996, Dai et al. 1999, Gutowski Jr. et al. 2003). 

Thus, the frequency and intensity of precipitation need to be weIl reproduced by climate 

models to adequately project their change in future climate. Besides, the frequency of heavy 

precipitation events is expected to increase, as weil as the frequency of droughts. An 

enhancement of the hydrological cycle is also expected resulting from the increase in air 

temperature and specifie humidity (Trenberth 1999, Trenberth 2003). Since these changes 

will have significant impacts on human activities, there is a real need for models to have very 

good skills in simulating these precipitation features. 

Nowadays, the use of a limited-area (LAM) RCM over an area of interest is the principal 

way to simulate regional characteristics of precipitation. RCMs allow a finer representation 

of the spatial scale than a GCM. Currently, most operational LAMs have a horizontal 

resolution of about 20 to 50 lan. Even at these resolutions, the surface topography is not 
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perfectly represented and sorne aspects of the terrain are still missed, which can have 

significant impacts in simulating properly the different atmospheric variables, especially 

precipitation. Therefore, even at these horizontal resolutions, small-scale processes (whose 

spatial scales are smaller than the RCM resolution) still need to be parameterized. The 

parameterization schemes are sources of uncertainties in simulations since they are based on 

many approximations and assumptions. As a result, an important work is made 

intemationally to improve the existing schemes or to create new ones to better represent the 

small-scale processes within models. With an increase in horizontal resolution, the model 

should better resolve more small-scale features resulting from an improved representation of 

the land surface characteristics. Studies have been carried out in the past to investigate the 

influence of increased horizontal resolution on the simulated atmospheric fields. Christensen 

et al. (1998) analyzed the behavior of the components of the hydrological cycle as simulated 

by an RCM and a GCM. In a double-nesting approach over Scandinavia, the authors used a 

19-km horizontal resolution RCM nested into a 57-km horizontal resolution RCM simulation, 

which in turn was driven by a Coupied GCM (CGCM). They found that in mountainous 

regions, the high-resolution simulation showed improvements in the representation of runoff 

and snow coyer. They also found that the distribution of precipitation on different intensity 

classes was more realistic when simulated by the high-resolution simulation. 

The obj ective of this study is to investigate the impact of increasing horizontal resolution 

on precipitation as weil as on other components of the hydrological cycle within the fourth 

generation of the Canadian Regional Climate Model (CRCM4) over two very distinct climate 

regions. CRCM4 simulations are performed over two different domains of North America: 1) 

centered over the province of British-Colombia (Western Canada), and 2) centered over the 

province of Québec (Eastern Canada). For each region, a pair of 4-year simulations forced at 

their boundary by the reanalysis NCEP NRA-2 is analyzed. This pair of simulations consists 

in one 15-km horizontal resolution run to be compared to a one 45-km horizontal resolution 

run. Precipitation, screen temperature and other components of the hydrological cycle 

(convergence of humidity, evapotranspiration, liquid and solid precipitation, lUnoff, snow 

water equivalent and number of wet days) produced by those simulations are analyzed. The 
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model precipitation outputs are then compared to hourly-precipitation observations. 

Throughout this study, an emphasis is put on the frequency and intensity of precipitation. 

The text is organised as follow: section 2 gives a brief description of the model used. 

Section 3 presents the experiments and methodology, with a description of the model 

simulations and observations employed, as weil as the model-observation comparison 

methodology. Section 4 presents the results obtained through this study. Finally, 

section 5 gives a summary and concludes. 
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2 Model Description 

Originally developed at the Université du Québec à Montréal (UQAM), the CRCM is a 

limited-area model (LAM) driven at its boundaries by the large-scale circulation from either 

reanalyses or global climate models. The mo"del integrates the fully elastic nonhydrostatic 

Euler equations, which are solved by an off-centered semi-implicit and semi-Lagragian 

numerical algorithm (Caya 1996, Laprise et al. 1998, Caya and Laprise 1999). The CRCM 

horizontal grid is uniform in a polar stereographie projection and its vertical resolution is 

variable using the scaled terrain-following Gal-Chen coordinate. In the CRCM, the 

precipitation results from two processes: the large-scale precipitation (resolved) and the 

small-scale precipitation (parameterized). The large-scale precipitation arises from a simple 

supersaturation-based condensation scheme while the small-scale precipitation comes from 

the Bechtold-Kain-Fritsch (BKF) mass flux scheme (Bechtold et al. 2001; Paquin et al. 

2002), adapted to the CRCM resolution. ln this study, we use the fourth generation of the 

CRCM (CRCM4), which is the operational version of the model developed and used by the 

Ouranos Consortium Climate Simulations Team. This version of the model includes the 

version 2.7 of the Canadian LAnd Surface Scheme, CLASS2.7 (Verseghy 1991; Verseghy et 

al. 1993). The CRCM4 also allows spectral nudging, which is a method in which the model's 

large scales are partially or completely replaced by the nested long-waves at every time step 

(see Storch et al. 1999, Riette and Caya 2002, Alexandru et al. 2009). More informations on 

the CRCM4 can be found in Music and Caya (2008). 

l 
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3 Experiments and methodology 

3.1 Description of the model simulations 

In this study, CRCM4 simulations are performed over two different regions of Canada: 

western Canada (hereafter WEST CAN) and eastern Canada (hereafter EAST CAN). These 

two domains (see Fig. 1 for geographical position of the domains) have been chosen for their 

different climate regime and physiography. The WEST CAN domain is a mountainous region 

(with surnrnits reaching more than 4000 m) along the Pacifie coast. The WEST CAN domain 

is almost always under the influence of a humid air flow coming from the Pacifie Ocean 

toward the topographie barrier, which then represents an important factor in the formation of 

precipitation. In comparison to the WEST CAN domain, the EAST CAN domain has a much 

flatter terrain (with the highest mountain slightly above 1000 m) and the topography does not 

play as much an important role in the formation of precipitation as it does in western Canada. 

However, the domain is located in a Storm-Track corridor and many low-pressure systems 

from different origins cross the province of Québec. Those low pressure systems generally 

come from the Rocky Mountains, the Gulf of Mexico or the East Coast of United-States 

(Zishka and Smith, 1980). 

For both regions (WEST CAN and EAST CAN), two 4-year-Iong (December 2001 to 

November 2005) simulations forced at their boundary by the NCEP NRA-2 reanalysis are 

used (Table 3.1). These two simulations consist in one 15-km-resolution (true at 600 N) run 

with a 5-minute time step and one 45-km-resolution (true at 60 ON) run with a 15-minute time 

step. Note that the simulations are originally performed from January 1999 to November 

2005, from which a spin-up of 35 months has been taken off. AIso, the spectral nudging was 

not applied in these runs because of the small size of the domains. 
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3.2 Description of the water cycle components analysis 

The hydrological cycle controls and regulates climate in a fundamental way through 

many complex interactions (Peixoto and Oort, 1992). Therefore, our analysis in this study is 

not limited to the total precipitation, but also includes the main components of the 

hydrological cycle (convergence of humidity, evapotranspiration, liquid and solid 

precipitation and runoft) as simulated by the CRCM. Along with these components, we also 

analyse the surface temperature, snow water equivalent and number of wet days. For bath 

domains, we qualitatively compare the 4-year annual mean of these 15-km CRCM-simulated 

variables to that of the 45-km CRCM-simulated variables. We also contrast the CRCM 15­

km and 45-km domain averages of each variable, as well as their domain-averaged mean 

annual cycle. 

As shown in Music and Caya (2007), the water cycle can be separated into two branches: 

atmospheric and terrestrial. Applying the law of water mass conservation in a given control 

volume leads to the water budget equation. The water budget equation for an atmospheric 

colurnn (per unit area) can be written as 

aw
-=-V eQ-p+E (1)at H 

where W (kg m·2
) is the precipitable water in the atmosphere, which represents the amount 

of water that would precipitate if ail the water vapor in a column of the atmosphere were 

condensed, E (kg m'2 
S·I) is evapotranspiration, and P (kg m'2 

S·I) is precipitation. The 

operator V H is the horizontal divergence and Q is the vertically integrated horizontal water 

vapor flux: 

Q= rU" qy 
dp 

(2) 
Ps g 

where q, Y, and g represent respectively the specifie humidity, the horizontal velocity 

vector, and the gravitational acceleration. The lower limit in the integral (pJ is the surface 

pressure and PIOP is the pressure at the modellid. 
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In Equation l, the term - VrI • Q is the horizontal convergence water vapor flux, C 

(hereafter convergence of humidity). Replacing the convergence of humidity term by Cinto 

Equation 1 leads to 

aw 
-+P=C+E (3)at 

Taking time and spatial averages of the atmospheric water budget equation (3) over a 

multiyear period and over the whole domain leads to 

[P] = [C] + [E] (4) 

where X is the time average of the component X, and [X] is the domain average. The 

term [aW / at] can be neglected because it tends to zero when averaged over a long period of 

time (Music and Caya, 2007). When considering the 4-year annual mean domain average of 

these components, Equation 4 can be used. Precipitation occurs when the available water 

vapor condenses and falls on the ground. Thus, Equation 4 establishes that the water vapor 

available to generate precipitation can come from two different sources: convergence of 

humidity or evapotranspiration. 

As fully explained in Music and Caya (2007), applying the water conservation law to a 

land colurnn and then taking time and spatial averages of the terrestrial water budget equation 

over a multiyear period and over the whole domain leads to 

[R] = [P]-[E] (5) 

where R (kg m'2 S·I) is the total runoff. Equation 5 can also be used when considering the 4­

year annual mean domain average of these components. Equation 5 then establishes that the 

runoff is equal to the amount of water that precipitates minus the amount that goes back into 

the atmosphere through evapotranspiration. 
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3.3 Description of the observations 

The observational data used in this study consist in the Environment Canada's hourly­

precipitation network of weather stations (DAI Catalogue, 2009). Most of these stations are 

automatic and measure the hourly accumulation of precipitation with ~ither a Fisher Porter or 

a tipping-bucket rain gauge. The threshold of these instruments may vary from one station to 

another with ranges between 0.1 mm/h and 0.2 mm/h. For this reason, we have chosen 0.2 

mm/h has the cornmon threshold for ail the stations and then, any amount inferior to this is 

brought back 0 mm/h. For the present study, we only used the stations that are located into 

our two domains of interest, and we rejected the stations that had more than 50% of missing 

values through the 4-year period. This criterion left us with a total of 27 stations for the 

WEST CAN domain and of 45 stations for the EAST CAN domain (Fig. 2). 

3.4 Model-observation comparison methodology 

Over both domains, the simulated precipitation was compared to the observed 

precipitation fol1owing this procedure. First, we find the closest CRCM4 grid point (center of 

the grid-box at 15-km and 45-km) to each station, resulting in the same number of model grid 

points than of stations. The fact of choosing the closest CRCM grid point to a station has 

sorne consequences worth mentioning here: 1) the closest grid point may not necessarily be a 

land point in the model, and 2) sorne grid points may contain more than one station, meaning 

that one grid point may be the closest to two (or more) different stations. For the WEST CAN 

domain, the simulation W 15 has 21 grid points out of 27 being considered as land while this 

number is 26 for the simulation W45. For the EAST CAN domain, the simulation EI5 has 36 

grid points out of 45 being considered as land while the simulation E45 has 32. In the 15-km 

simulations, the number of different grid points always equals the number of stations 

meaning that there is no more than one station falling in a grid point. However, in the 45-km 

simulations, sorne grid points contain two stations. In fact, the number of different grid points 

is 23 for the simulation W45 and 42 for the simulation E45. 
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Once the closest grid point to the station is found (for each domain), we then have three 

different hourly-precipitation time series (observed, CRCM4 15-km and CRCM4 45-km) that 

can be compared. While comparing these three time series, if there is a missing value in the 

observed time series, the corresponding simulated value is discarded. Then, we assign a value 

of 0 mm/h to any simulated precipitation values being below the instrument's threshold (0.2 

mm/h). Next, using the hourly time series, we build the daily time series by accumulating 

precipitation over a 24-hour period. With these 4-year long time series, we calculate the 

following climatological 4-year means for each location: the annual cycle, the precipitation 

frequency per intensity interval, the precipitation intensity per intensity interval, and the 

cumulative annual precipitation amount per intensity interval. These variables have been 

chosen for the following reasons. First, as mentioned in the introduction, the frequency and 

intensity of precipitation is expected to change in future climate (Trenberth 1999, Trenberth 

2003). Second, there is a need to find out if the model can correctly reproduce both the mean 

observed precipitation frequency and the mean observed precipitation intensity. Indeed, a 

model might simulate properly the mean precipitation rate over a region but this could come 

from a wrong combination of frequency and intensity. Plus, dividing precipitation in intensity 

intervals allows a better understanding of what kind of events the model has the best skill to 

reproduce. 
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4 Results and Discussions 

4.1 WEST CAN domain 

4.1.1 Analysis of precipitation 

As mentioned in section 3.1, topography plays a key role in the formation of precipitation 

over western Canada (WEST CAN domain). In winter, a flow of moist air is brought into the 

continent by a climatological surface pressure system known as the Aleutian low (located in 

middle north Pacifie; Ahrens 2003). During summer, the Pacifie high replaces the Aleutian 

low (Ahrens 2003), which reduces the transport of moist air into the region (especially in 

southern British Columbia, Canada) and then reduces precipitation. However, there is on 

average an almost constant southwesterly flow (at the surface) of hum id air coming from the 

Pacifie Ocean. Once brought over the continent, this moist air encounters a first topographie 

barrier along the Coastal Range. When reaching the barrier, this humid air is forced to rise, 

condense, and eventually to precipitate on the upwind side of the mountains, resulting in a 

strong band of precipitation maximum along the Pacifie Coast as it can be seen in Figure 3. 

On the downwind side of this first series of mountains, the air subsides and creates a drier 

region between the Coast and the Rocky Mountains. Then, the atmospheric circulation meets 

a higher topographie barrier (the Rocky Mountains) and again, the air rises, condenses and 

precipitates on the upwind side of the mountains resulting in a second band of precipitation 

maximum along the boundary of British-Columbia and Alberta (Fig. 3). This second band of 

maximum is less intense than the first one since the air has already lost some of its humidity 

through the journey. East of the Rocky Mountains, dry conditions prevail. Both simulations 

W 15 and W45 reproduce the southwesterly flow over the region as can be seen in Figure 4, 

which shows the mean sea level pressure as weil as the horizontal wind speed and direction. 

Moreover, both simulations capture weil the climatological pattern of precipitation (Fig. 5a­

b). Of course, differences exist between the two simulations as the l5-km total precipitation 

rate tends to be overall larger than the 45-km precipitation (3.63 nunlday vs 3.32 nunlday). 

The two bands of precipitation maximum are defined better in the l5-km run than in the 45­
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km run. The annual cycle shows that most of the precipitation falls during the cold months 

(October to March; Fig. Sc) which is in line with the observed climatology. 

When looking at RCM simulations, it is important to keep in mind that the ability of the 

model to reproduce the observed climatological pattern is greatly influenced by its own 

topography. The model topography is sensitive to the horizontal resolution as it can be seen 

on Figure 6 where the 45-km and the 15-km topographies are shown. ln the 15-km 

simulation, the "true" topography is averaged over an area of 225 km2 compared to an area of 

2025 km2 in the 45-km simulation. This means that less topographic details (mountains, hills 

and valleys) are lost through the process of averaging in the l5-km simulation than in the 45­

km simulation (Fig. 6). This leads to a more realistic topography in the 15-km simulation 

than in the 45-km simulation. 

For example, the CRCM 15KM topography (Fig. 6a) shows peaks in northern 

Washington state (USA) ranging between 1000 m and 1400 m, in the Olympic National Park 

(with its highest point being Mount Olympus at 2500 m high in reality). However, the CRCM 

45KM topography (Fig. 6b) shows a much smaller peak at about 300 m high. The presence of 

the Olympie National Park Mountains plays an important role on the climate of the 

surrounding region and the differences between the 15-km and the 45-km topography results 

in significant differences on the precipitation fleld over the region. The persistent 

southwesterly flow of humid air meets the mountains and creates abundant precipitation 

Southwest of the park and drier conditions northeast of it. Located on the leeside of these 

mountains, Victoria Int'l Airport (BC, Canada) receives 783 mm of precipitation per year in 

average and precipitation occurs 1 138 days/yea/ (Table 4.1). Only 150 km northeast of 

Victoria, the city of Vancouver (BC, Canada) experiences a much wetter climate since it is 

located on the upwind side of the Coastal Range. The annual precipitation amount observed 

1 In this study, whenever we are referring to the number of days with precipitation (also called number
 
ofwet days), we are referring to the number of days with at least 0.2 mm of precipitation.
 
2 Based on the Environment Canada's hourly-precipitation network of weather stations used in this
 
study, see section 3.2 for more details.
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at NOlth Vancouver Sonora Dr is 1975 mm and the number of wet days is 163 days/year3 

(Table 4.1). North Vancouver Sonora Dr receives about twice the amount received in 

Victoria and there is 20% more rainy days in Vancouver than in Victoria. 

The amount of simulated precipitation at the closest grid point of Victoria Int'I Airport in 

the CRCM l5KM is 1264 mmlyear and it precipitates 166 days/year (Table 4.1). The 45KM 

simulation generates 1409 mmlyear of precipitation over 198 days/year (Table 4.1). For the 

Vancouver area, both simulations' topography depicts the Coastal Range even though there 

are more details at 15-km that at 45-km. As a result, the two simulations generate 

comparable, but higher than observed, values of annual precipitation at the closest grid point 

of North Vancouver Sonora Dr. The 15-km simulation generates an annual precipitation 

amount of 2865 mm and precipitation occurs J75 days/year (Table 4.1). The 45-km 

simulation produces 2516 mm/year of precipitation and it happens 212 days/year (Table 4. J). 

The precipitation amount ratio VancouverNictoria is 2.5 in the observations while it is 2.3 

for the 15-km simulation and 1.8 for the 45-km simulation. In other words, both simulations 

reproduce a drier climate for Victoria than for Vancouver and both of them agree that 

precipitation falls more often over Vancouver than Victoria like in the observations. 

However, within the 45-km simulation, the difference in precipitation amount between 

Victoria and Vancouver is somehow incorrect. The 45-km annual precipitation amount for 

Vancouver is less than twice the amount for Victoria. However, the 15-km annual 

precipitation amount for Vancouver is about twice the amount for Victoria, which is more in 

agreement with observations (Table 4.1). 

The incorrect precipitation ratio between Victoria and Vancouver highlights an important 

characteristic of the 45-km precipitation resulting from the weaker precipitation gradient in 

the W45 simulation than in the WJ5 simulation (Fig. 7). The 45-km precipitation (Fig. 7b) is 

almost uniform between the Olympie National Park and Victoria, which are about 150 km 

apart. To the northeast of Victoria, the precipitation in the 45-km simulations starts to 

gradually increase in direction of Vancouver. In the l5-km simulation (Fig. 7a) however, the 

3 Based on the Erivironment Canada 's hourly-precipitation network of weather stations used in this 
study, see section 3.2 for more details. 
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Southwest-Northeast precipitation gradient in the area is stronger than in the 45-km 

simulation. In fact, the 15-1<m precipitation captures clearly the rilin-shadow area between the 

Olympie National Park and Vancouver where Victoria is located. 

The latter aspects allow us to understand that the choice of grid point used for 

comparison with the weather stations might affect the subsequent results. In order to compare 

model data with observations, we use in this study the closest grid point to the weather station 

(see section 3.3). However, this does not mean that the closest grid poirt is the most 

representative grid point to the weather station. What we mean by most representative grid 

point is a grid point whose surrounding topography is similar to the real topography around 

the weather station. For example, if a weather station is located at the bottom of a deep 

valley, the most representative grid point to that weather station should also be located at the 

bottom of a valley. Because of horizontal resolution though, the valley in the model may not 

be as deep as in reality or the model valley cou Id be shifted from the real location of the 

valley, which mày make the closest grid point not the most representative one. With the 

example of Victoria and Vancouver mentioned above, it turns out that the closest grid point 

of Victoria Int'l Airport is also the most representative one for both simulations. However, 

the closest grid point of North Vancouver Sonora Dr is not the most representative grid point 

for both simulations. Indeed, for the two simulations the closest grid point is in the slope of 

the mountain (Coastal Range) meaning that the altitude of the closest grid point is too high 

compared to the altitude of the weather station (Table 4.2) and located in a location with 

more precipitation (the upslope region). The most representative grid point of North 

Vancouver Sonora Dr was picked within a one grid point radius of the closest grid point (for 

both simulations) and is located at the bottom of the mountain (Table 4.2). Using the most 

representative grid point instead of the closest grid point doest not change the main 

conclusions mentioned earlier, but it does have an effect. For instance, with the most 

representative grid point, the 15-km ratio between the Vancouver and Victoria annual 

precipitation amount is now of 2.5 which is equal to the observed ratio. On the other hand, 

the 45-km run shows a ratio of 1.3 which is even further away from observations than it was 

with the closest grid point (Table 4.1). This shows that because the model tries to reproduce a 

regional climate on a three-dimension grid with finite resolution (horizontal and vertical), the 
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results are sensitive to the grid point used for comparison. To simplify the comparison 

between model and observations though, we will use the closest grid point to the weather 

station asexplained in section 3.3. 

4.1.2 Analysis of the water cycle components 

The previous results show that the more realistic topography found ,in the 15-km 

simulation seems to lead to a better spatial distribution of precipitation, especially in valleys 

or on the lee side of mountains. On the other hand, the simulation W 15 produces globally 

more precipitation than the simulation W45. Why and how is this humidity generated in the 

simulations? To answer these questions, we analyzed the contribution of the different 

components of the hydrological cycle to the total precipitation. We find that both simulations 

show convergence of humidity on the upwind side of mountains or hills, while on the 

downwind side of mountains divergence occurs (Fig. 8a-b). The Pacifie Coast has the highest 

values of convergence of humidity of the entire domain. Over that area, the 15-km 

convergence of humidity varies from 6 to 12 mm/day (Fig. 8a) while the 45-km convergence 

of humidity ranges between 6 and 10 mm/day (Fig. 8b). A second less intense maximum of 

convergence of humidity can also be identified west of the Continental Divide, where the 15­

km convergence of humidity is also greater than the 45-km one. Over those regions, most of 

the total precipitation cornes from convergence while elsewhere on the domain, convergence 

and evapotranspiration (Fig. 8d-e) respectively provide about half the humidity needed to 

generate precipitation. Also, both runs agree that evaporation is maximal over the ocean. 

Between the two topographie barriers and over the prairies, large evapotranspiration rates can 

also be found. The lowest values of evapotranspiration appear over mountains (Fig. 8d-e). As 

a result, the simulations W 15 and W45 both reproduce the two observed bands of 

precipitation maximum (see Fig. 3) west of the Coastal Range and west of the Rocky 

Mountains (Fig. 8g-h). 

Because the simulation WJ5 produces globally more convergence of humidity and 

evapotranspiration than the simulation W45, the J5-km total precipitation (Fig. 8g) is larger 
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than the 45-km total precipitation (Fig. Sh). This latter fact is especially true along the 

Coastal Range since the 15-km precipitation ranges between 9 to 15 nun/day while the 45-km 

precipitation ranges between 5 to 10 nun/day. It is also found that the two simulations agree 

that the highest convergence of humidity is found from November to March (Fig. Sc), which 

corresponds the wettest period of the year (Fig. Si). In fact, during the winter, most 

precipitation comes from convergence of humidity brought by many of the low pressure 

systems coming from the Pacific Ocean. During summer though, about two thirds of the 

precipitation comes from evapotranspiration (Fig. Sf). However, the minimum of 

precipitation is reached during the warm season. Being the warrnest period of the year (Fig. 

9c), summer time enhances the conversion of evapotranspiration into convective 

precipitation. Globally, the simulation W 15 is cooler of about 0.3°C than the simulation W45 

(Fig. 9a-c). However, it seems that 15-km surface temperature is lower than the 45-km 

surface temperature during the cold months of the year (November to March; Fig. 9c). AIso, 

the 15-km simulation is cooler than the 45-km simulation over the northern section of the 

WEST CAN domain (Yukon and North-West Territories) as weil as over the mountainous 

regions (Coastal Range, Rocky Mountains and Olympic National Park; Fig. 9a-b). The mean 

annuai cycle of surface temperature (Fig. 9c) also reveals that both simulations agree that the 

surface temperature remains above freezing from April to October. As a result, almost ail of 

the total precipitation falls as liquid during those months (Fig. 9f). In fact, over the WEST 

CAN domain most of the total precipitation falls in its liquid forrn. As it can be seen in Figure 

9d-f, liquid precipitation contributes respectively to SO% and 78% of the total precipitation 

within the 15-km and 45-km simulations. Moreover, the 15-km liquid precipitation is greater 

by about 0.3 mm/day than the 45-km liquid precipitation, and especially on the upwind side 

of the Coastal Range (Fig. 9d-e). From December to March, some of the precipitation falls as 

solid form (Fig. 9i) and both simulations agree that most of that solid precipitation falls over 

the Coastal Range and over the Rocky Mountains (Fig. 9g-h). Over those areas, the 15-km 

solid precipitation is greater than the 45-km solid precipitation while over the Alberta prairies 

the opposite is seen. This leads to a 15-km simulation that produces globally about 0.01 

mm/day less solid precipitation than does the 45-km simulation. Since sol id prec.ipitation 

represents only about 20% of the total precipitation, the 15-km total precipitation remains 

higher than the 45-km total precipitation. 
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In addition to solid precipitation, it is also interesting to look at the water equivalent of 

snow on the ground. The two simulations agree that the snow water equivalent is maximal 

over the northern section of the domain and over the mountains, with values above 200 mm 

(Fig. 1Oa-b). This makes sense since we have seen earlier that those regions are the ones 

receiving the more snow (Fig. 9g-i). Over those regions though, the 15-km snow water 

equivalent is greater than the 45-km one (Fig. 10a-b). Over the Alberta prairies, the lower 15­

km solid precipitation leads to a lower snow water equivalent (especially over northem 

Alberta), compared with the 45-km snow water equivalent. As a result, the domain average of 

snow water equivalent is superior within the simulation W 15 than within the simulation W45. 

On a yearly basis, it is noticeable that the amount of snow water equivalent produced by both 

simulations is of about 200 min at the end of the win ter (Fig. 1Oc). The 15-km simulation 

snow water equivalent remains slightly greater than the 45-km one during spring and summer 

(Fig. 1Oc). This can be explained by the following. Because the 15-km simulation is cooler 

than the 45-km simulation, snow takes slightly more time to melt in the higher resolution 

simulation, which explains the difference in snow water equivalent during spring. Moreover, 

because of the finer horizontal resolution, the 15-1<m run is able to simulate sorne of the 

permanent snow present at the top of the highest mountains, which keeps the 15-km snow 

water equivalent slightly above 0 mm during the summer months (Fig. 10c). The latter fact 

explains why the snow water equivalent is globally greater within the 15-km run than within 

the 45-km run even though the 15-km solid precipitation is inferior to the 45-km solid 

precipitation. Since the maximum of runoff is directly linked to the melting of snow and that 

the solid precipitation is liule bit inferior at 15 km than at 45 km, the maximum of runoff (in 

April) is lower in the simulation W 15 (Fig. 10f). Over the entire domain, the 15-1<m runof[ is 

inferior to the 45-1<m runoff, with a respective domain-averaged nmoff of 1.63 mm/day and 

1.79 mm/day (Fig. 10d-e). However, both simulations agree that there is more runoff along 

the Pacific coast associated to the region with the largest precipitation. Moreover, we have 

seen that the evapotranspiration is superior for the 15-km simulation than for the 45-km one 

over most of the domain and especially during the warm months (Fig. 3d-f). Therefore, more 

surface water can be evaporated which also reduce the runof[ in the 15-km simulation with 

respect to that at 45-km. 
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In summary, the 15-km simulation produces more precipitation than the 45-km 

simulation, mostly resulting from the larger convergence of humidity in the 15-km simulation 

than in the 45-km simulation, especially along the Pacifie Coast. The greater 15-km 

convergence of humidity found along the coast is explainable by higher 15-km topography 

over the area (see Fig. 6). Furthermore, figure 9a-b reveals that both simulations reproduce a 

low pressure system over the Pacifie Ocean. Within the simulation W 15, this low-pressure 

system generates more than 350 wet days per year, which is about 25 more days than what 

the simulation W45 generates (Fig. 10g-h). In other words, it rains more often in the l5-km 

run than in the 45-km run over the Pacifie Ocean. Thus, more humidity (coming from this 

low) can be transported towards the coast, which is another reason why the convergence of 

humidity along the coast is greater within the 15-km simulation than within the 45-km 

simulation. Over the continent, both simulations agree that the number of wet days is greatly 

correlated with the topographie features: 1) precipitation oCcurs more often on the upwind 

side of topography, and 2) precipitation is less frequent within the val1eys and on the lee side 

of mountains (Fig. 10g-h). Because of a more realistic topography, this variable is better 

defined within the 15-km simulation. In fact, the number of wet days west of mountains and 

hills is greater in the simulation W 15 than in the simulation W45 (Fig. 10g-h). On the lee side 

of mountains and hills, the number of wet days seems lower within the l5-km run than within 

the 45-km run (Fig. 10g-h). When looking globally, it seems that the number of wet days is 

lower at 15-km than it is at 45-km, which can be seen with the domain average of this 

variable (Fig. 10g-h) as weil as with the annual cycle (Fig. lOi). 
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4.2.3 Comparison between model and observations 

Until now, we have seen that the 15-km simulation produces more precipitation than the 

45-km simulation. It also appears that the simulated precipitation is larger than the observed 

precipitation in both simulations, at least at the two weather stations rilentioned above. The 

wet bias is also true according to the mean annual cycle of precipitation obtained with ail the 

27 weather stations of the Environment Canada's hourly precipitation network for the WEST 

CAN domain (Fig. Il). The difference between simulated monthly precipitation and 

observed monthly precipitation is about 1.7 mm/day (52 mm/month) for the simulation W 15 

and about J.J mm/day (33 mm/month) for the simulation W45. The 15-km precipitation is 

systematically greater by about 0.6 mm/day (18 mm/month) than the 45-km precipitation. 

However, the two simulations correctly capture the fact that the greater precipitation occurs 

between October and March, and that the lower precipitation arises throughout April to 

September. 

As mentioned previously, the CRCM simulated precipitation (in both simulations) is 

greater than the observed precipitation. At this point, it would be important and interesting to 

know why the simulated precipitation is systematically greater than the observation. To 

answer this question, one has to seek beyond what is revealed through the annual cycle. The 

annual cycle is good to reveal differences in precipitation amount, but it does not indicate 

what type of precipitation event (light, moderate, heavy or very heavy) is the main source of 

the total amount. To get that kind of information, we have to analyse the precipitation 

frequency (PF) and precipitation intensity (PI) for different precipitation events (PE). In the 

following, we then concentrate our analysis on those precipitation features. Following the 

recommendations of Trenberth (1999; 2003), hourly precipitation data is used to analyse the 

PF and PI. As pointed out in Gutowski Jr. et al (2003), the most intense PE (heavy and very 

heavy) generally occur within an hour, which then makes hourly precipitation data more 

appropriate for the frequency and intensity analysis. Using the hourly accumulation period, 

we created observed and simulated histograms (Fig. 12). Observed and simulated PF 

distributions display that as the intensity of hourly PE (HPE) increases, the frequency 
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decreases (Fig. 12a). The distributions also reveal that the frequency of 0-0.2 nunlh HPE is 

about 10% inferior within the two simulations than for observations. In section 3.3, we 

mentioned that the common threshold for the simulated and observed precipitation was 0.2 

nunlh, which means that 0-0.2 nunlh HPE (hereafter trace HPE) iepresent events with no 

precipitation. Thus, the previous result can also be interpreted as follows: precipitation occurs 

10% more often in the model than what is observed. Within both simulations, this exceeding 

10% can be attributed to light HPE (0.2-3 nunlh). As a result, both simulations produce more 

light HPE than observed which is typical of climate models (Mearns et al. 1995; Chen et al. 

1996; Giorgi and Marinucci 1996; Gutowski Jr. et al. 2003). In fact, the 15-km PF and 45-km 

PF of light HPE is respectively of 19% and 22% which is about twice the observed PF of 

10%. On the other hand, the two simulations agree with observations that most of the 

precipitation occurs with those HPE (Fig 12c). The remaining precipitation comes from 

moderate (3-6 nunlh), heavy (6-10 mm/h) and very heavy (>10 nunlh) HPE. However, the 

45-km PF starts to fall rapidly below the observed PF for events greater than 3 nunlh 

(moderate HPE) and reach 0% for events greater than 6.4 nunlh (heavy and very heavy HPE). 

For example, the simulation W45 produces five times less 5-nunlh events than observed, 

while the 15-km PF is slightly superior to the observed PF for events between 3 mm/h and 

8.6 nunlh (moderate HPE and most heavy HPE). The simulation 45-km PF is also is inferior 

to the observed PF for events greater than 8.6 nunlh. For instance, the very heavy HPE (> 10 

nunlh) occurs about 0.14% less often within the 15-km simulation than observed. Contrarily 

to the 45-km simulation, the 15-km simulation is thus able to reproduce HPE of ail kind: 

from synoptic system (light and moderate HPE) as weil as from the intense but short 

convective events (moderate to very heavy HPE). As a result, the 15-km PF distribution is 

more realistic than the 45-km PF distribution. 

Since any HPE is characterised by space and time, it is imperative to learn more about 

the spatial frequency of observed and simulated precipitation. The spatial frequency of 

precipitation can be seen in Figure 12b. ln effect, the observed distribution indicates the 

number of weather stations (y-axis), among the 27 used for ana1ysis, where a given HPE 

occurs (x-axis). To its turn, the model distributions indicate the number of grid points (y­

axis), among the 27 used for analysis, where a given HPE occurs (x-axis). For example, 3 
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mmlh HPE occurs at ail the 27 weather stations and ail the 27 15-km grid points, bu t only at 

25 of the 27 45-km grid points. At first sight, the distributions reveal that moderate to very 

heavy HPE are more localised in space than trace and light HPE. Moreover, moderate to very 

heavy HPE are more localised within the model than they are in reality, meaning that the 

model creates less moderate to very heavy HPE than what is observed. This is particularly 

true for the simulation W45. Because of lower horizontal resolution, there are less 45-km grid 

points than there are weather stations with moderate to very heavy HPE. With a higher 

horizontal resolution though, the 15-km simulation is able to reproduce aIl the types of HPE 

at sorne ofits grid points (among the 27 used for analysis). 

As mentioned earlier, the PI is another important feature of precipitation that needs to be 

analysed. The analysis reveals that the intensity of light and moderate HPE is about 0.04 

mmlh greater for both simulations than for observations (Fig. 12c). For heavy HPE, the 15­

km intensity is about the same as observed while for very heavy HPE (> 10 mm/h), the 15-km 

intensity is 1.6 mmlh inferior to the observed intensity. To its turn, the 45-km PI for heavy 

and very heavy HPE is incorrect because the simulation produces no such HPE (see Fig. 12a­

b). So, the 15-km PI distribution is more realistic than the 45-km PI distribution. 

In terms of time frequency (Fig. 12a), spatial frequency (Fig. 12b), and intensity (Fig. 

12c) of simulated precipitation, both simulations produce mO,re precipitation annually than 

observed (Fig. 12d). The total annual precipitation amount (APA) observed is of 1032 mm 

compared to a total APA of 1635 mm and 1411 mm for the simulations W15 and W45, 

respectively. Most of the excess in precipitation (compared to observations) within the model 

cornes from light HPE. Those events produce 1215 mm and 1286 mm annually within the 15­

km and 45-km simulations, which is almost twice the observed amount of 667 mm. For 

moderate HPE, the 15-km APA is 46 mm greater than the observed amount while the 45-km 

APA is 138 mm inferior to the observed amount. Of course, since the 45-km simulation 

produces no heavy and very heavy HPE, the amount produce by those events is zero. On the 

other hand, the 15-km simulation produces about 30 mm more precipitation than observed 

with heavy HPE. The very heavy HPE contribute to only 3 mm aru1Ually within the 15-km 

simulation, which is 20 mm below the observed amount. Because the 45-km simul.a.tion 
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generates much less precipitation than observed with moderate to very heavy HPE, this 

compensates for the excess in precipitation produced by light HPE. Within the 15-km 

simulation though, there is no compensation between Iight HPE and moderate to very heavy 

HPE. So, if one was to look only at the total annuaI precipitation, one might think that the 45­

lan is more in agreement with observations than is the 15-km simulation. However, we have 

seen in Figure 12 that the 15-km hourly distributions are more realistic than the 45-km 

distributions. In other words, the 45-km total annual precipitation may be closer to the 

observed value but this comes from a wrong PF and PI distributions. 

The previous analysis was made on hourly accumulation period. According to Trenberth 

(1999; 2003), c1imate change should lead to an augmentation of heavy precipitation events as 

weil as an increase in the frequency of droughts. In those studies, it is also suggested that 

hourly precipitation data should be used to analyze the precipitation frequency and intensity 

since it better fits the Iifetime of heavy and very heavy precipitation. However, it is frequent 

that daily precipitation data are used to fill this task. As Gutowski Jr. et al. (2003) explains, 

the problem with using a daily accumulation period is that the short bursts of convective 

precipitation are smoothed by the time averaging. Also, a very strong PE is usually not 

sustained for an en tire day. The impact of this is better explained with an example. Let us 

suppose that on a hot and humid surnmer day, diurnal convection forms during afternoon and 

that a heavy HPE occurs and gives 8 rrun/h at a given weather station. After the shower, the 

sky becomes clear again and no more precipitation falls at the station for the rest of the day. 

So, this event will be the only one to contribute to the total daily accumulation (8 rrun/day). 

Let us now suppose another scenario in which an organized low pressure system passes over 

the same weather station. At the passage of the warm front, steady precipitation is falling to 

the rate of 2 rrun/h (light HPE). Once the wann front has passed the weather station, 4 hours 

of precipitation have been recorded with a total of 8 mm. If it does not precipitate more 

during the day, those 8 mm will contribute to a similar total daily accumulation (8 rrun/day). 

So, if the PF or the APA distribution was obtained with a 24-h accumulation period, those 

two events (convective versus synoptic) would not show any differences. For that reason, 

using a 24-h accumulation period to create the PF and the APA distributions introduces 

changes in the results. 
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As we did with an hourly accumulation interval, we created simulated and observed 

histograms for a daily accumulation period (Fig. 13). The daily PF histogram displays that as 

the daily amount increases, the frequency decreases (Fig. 13a). In effect, the three 

distributions show that the frequency of light daily PE (DPE; 0.2-10 mm/day) is around 30% 

while the frequency of very heavy DPE (> 40 mm/day) drops to about 1%. The daily PF 

histogram also reveals that both simulations reproduce quite equally the observed PF 

distribution. However, the 15-lan and 45-km PF are respectively greater of about 1.56% and 

1.49% than the observed PF for ail intensity classes except dry days (0-0.2 mm/day). Dry 

days account respectively for 49% and 48% of the time within the 15-km and 45-km 

simulations, which about 10% inferior to what is observed. This means that precipitation 

occurs more often within the model than in reality (as we also saw with hourly histograms in 

Fig. 12). Within the two simulations, this excess in occurrence of precipitation is then quite 

evenly distributed throughout light DPE (0.2-10 mm/day), moderate DPE (10-20 mm/day), 

heavy DPE (20-40 mm/day), and very heavy DPE (> 40 mm/day). Nevertheless, the major 

difference between the two simulated PF distributions is found at both ends of the 

distribution, that is light DPE and very heavy DPE. For light DPE, the simulation W 15 is 

slightly closer than the simulation W45 to the observed PF. For the very heavy DPE though, 

the 45-km PF is closer to the observed PF with a bias (simulated - observed) of 0.2% 

compared to a bias of 1.2% for the 15-km simulation. Even if the 45-lan hourly PF 

distribution did not fol1ow the observed hourly PF distribution (Fig. 12a), it reproduces (even 

slightly better than the 15-km run) the observed daity PF distribution. This can be explained 

by the fact that the heavy and very heavy HPE (> 6 mm/h) that the 45-km simulation does not 

produce are very rarely observed (about 0.1 % of the time; Fig. 12a), and then do not often 

contribute to increase the daily amount. The events that do contribute to increase the daily 

amount are those generated by synoptic systems, that is light to moderate HPE (0.2-6 mm/h). 

Since the 45-km simulation produces more light HPE than observed and generates less 

moderate HPE than observed, there is compensation between the two types of events. This 

results in a slightly more realistic daily PF distribution. On the other hand, the 15-km 

simulation, which showed a more realistic hourly PF distribution, produces more light HPE 

than observed as weil as slightly more moderate to heavy HPE than observed. The impact is 
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that the two types of PE do not compensate each other and then, the 15-km daily PF 

distribution does not seem better than the 45-km daily PF distribution. 

The spatial frequency histogram (Fig. 13b) shows that the heavy and very heavy DPE are 

more localized than the light DPE. The histogram also demelnstrates that the two simulated 

distributions are similar to the observed one. A similarity is also found between the simulated 

and observed daily Pl distributions shown in Figure l3c. The major difference resides with 

days producing more than 49 mm of precipitation, where the 15-km simulation is closer than 

the 45-km simulation to the observed Pl. 

As a result of the time frequency (Fig. l3a), the spatial frequency (Fig. l3b), and 

intensity of precipitation (Fig. 13c), the total observed and simulated APA is provided quite 

equally by light DPE to very heavy DPE (Fig. 13d). In fact, the observed distribution shows 

that light DPE are responsible fof' only 292 mm of precipitation annually, which is about the 

same as the annual contribution of moderate DPE (267 mm/year) and heavy DPE (278 

mm/year). Very heavy DPE contribute slightly less to the armual total with a 195 mm of 

precipitation. Those results demonstrate that it takes many more light DPE to accumulate the 

same amount that only few moderate DPE can create. The APA histogram also display a 15­

km APA and a 45-km APA greater than the observed APA for ail intensity classes, with the 

15-km APA distribution remaining though slightly closer to the observed distribution for any 

days with less than 49 mm/day. Within the 15-km simulation, days with at least 49 mm 

contribute to about twice the observed amount, which is not the case within the 45-km 

simulation. 
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4.2 EAST CAN domain 

4.2.1 Analysis of the water cycle components 

Contrarily to the WEST CAN domain, the eastern part of Canada (EAST CAN domain) 

has a much flatter terrain. As a result, topography plays a less important role in the formation 

of precipitation. The differences in the topography between the 15-lilll and 45-km simulations 

are not as obvious as they are over the WEST CAN domain. However, the E 15 topography 

(Fig. 14a) shows finer details than the E45 topography (Fig. 14b). For example, both the 15­

lilll and 45-km simulations depict their tallest grid point over the Réserve Faunique des 

Laurentides (Qc, Canada), with a height being between 800 m and 900 m at 15 km and 

between 700 m and 800 m at 45 km. The W 15 height is then closer to the tallest peak of the 

region which exceeds 1000 m in reality. Moreover, the Réserve Faunique des Laurentides 

topography is better defined within the 15-km run than it is within the 45-km run. There are 

sorne other mouiltainous regions that are better resolved at 15 km than at 45 km, such as the 

Monts Chics-Chocs in Gaspésie (Qc, Canada) and the Adirondack National Park (NY, USA). 

The St-Lawrence and Richelieu valleys are also better represented in the 15-lilll simulation. 

The differences in topography between the simulations E 15 and E45 lead to sorne differences 

in the convergence of humidity field (Fig. 15a-b), which to its turn leads to differences in the 

precipitation field (Fig. 15g-h). In effect, the 15-lilll convergence of humidity (Fig. 15a) is 

greater than the 45-lilll convergence of humidity (Fig. 15b) mainly on the upwind side of the 

Adirondacks (NY, USA), but also along the coast of Nova Scotia (Canada) and over the 

South coast of Newfoundland (Canada). As a result, the 15-km convergence of humidity is 

globally greater of about 0.17 nun/day than tbe 45-km convergence of humidity (Fig. 15a-c). 

Both simulations do agree though with the location of the maximum of convergence. In 

effect, the convergence of humidity is highly correlated with the topography, and it is greater 

on the upwind side of mountains or hills as weil as along coastal regions and it is lower over 

valleys (Fig. 15a-b). The two simulations also agree that the evapotranspiration is greater 

over the southern section of the domain (Fig. 15d-e) due to the highest surface temperature 

found there (Fig. 16a-b). Also, the maximum of evaporation is found over the Gulf Stream 

Current. Overall, the 15-km simulation produces about 0.11 mm/day more evapotranspiration 



31 

than does the 45-km simulation, and the 15-km evapotranspiration is especially higher than 

the 45-km evapotranspiration over the Great Lakes and over the Gulf Stream Current (Fig. 

l5d-e). As a result, the simulation E15 generates about 0.27 mm/day more precipitation than 

does the simulation E45 (Fig. 15g-i). The l5-km precipitation is particularly greater than the 

45-km precipitation East of Lake Erie and Lake Ontario, probably meaning that the lake 

effect on snow is more important in the 15-km run than in the 45-km run. The 15-km 

precipitation is also higher than the 45-km precipitation over the Adirondacks and 

Appalachians mountains, as weil as along the coast of Nova Scotia and the South coast of 

Newfoundland (Fig. 15g-h). 

Thus, over the EAST CAN domain precipitation is generated by convergence of 

humidity or by evapotranspiration. The contribution of each source of humidity to the total 

precipitation mainly depends on the time of the year (Fig. 15). In fact, the synoptic activity 

starts to increase in intensity in September as the jet-stream begins to move southward, then 

meaning that the trajectory of depressions also move southward. Then, most precipitation 

during fall is generated trough low pressure systems that enter the domain from the South 

border or the West border. As mentioned earlier, these lows can come from different 

locations with the most weIl known locations being: Alberta (Alberta Clipper), Colorado 

(Colorado low), Gulf of Mexico, and Cap Hateras or East coast of USA (Cap Hateras low or 

Coastal low; Zishka and Smith 1980). As a consequence, lots of humidity is brought into the 

region through advection during the months of September, October and November (which is 

visible with the convergence of humidity displayed in Fig. 15c). In fact, both simulations 

agree that during the fall season, the convergence of humidity reaches a first maximum (Fig. 

I5c). This maximum of convergence, that account for two third of the total precipitation, 

added to the evapotranspiration, that is still quite important during that period of the year 

(Fig. 15f), makes the fall season the wettest of the year (Fig. 15i). In addition to the south 

displacement of the jet stream that starts in autumn, autumn also corresponds to the hurricane 

season over North America, which helps making it the wettest period of the year. Forming 

over the wann tropical water of the South Atlantic, some of these hurricanes (as hurricane or 

as extratropical cyclone) follow a North-East trajectory and generate lots of precipitation over 

the EAST CAN domain. During the winter season, both simulations agree that less humidity 
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is condensed in the region (Fig. 15c) and less evapotranspiration is created as weil (Fig. 15f) 

which makes it the driest season of the year (Fig. 15i). This can seem quite a surprise 

knowing that during the winter season many snow storms hit the provinces of Quebec and 

Ontario; this minimum of precipitation can be explained by the following. During winter, 

temperature generally remains below freezing (Fig. 16c) which then makes most precipitation 

to fall in solid form (Fig. 16i). When a snow storm hits the domain, great amount of snow can 

be produced. However, great amount of snow does not necessarily mean great amount of 

water. Indeed, 10 cm of snow can be equivalent to as much as 10 mm ofwater, but it can also 

be equivalent to only 2 mm of water. The provenance of the low pressure systems dictates the 

snow water contain. In effect, Alberta Clippers and Colorado lows have a small snow water 

contain while the Gulf of Mexico and Cap [Ietaeras lows have a much larger snow water 

contain. During the spring season, the convergence of humidity reaches another maximum 

(Fig. 15c) but the total precipitation during that season remains below the amount received 

during fall (Fig. 15i). This is mainly explainable by the fact that during spring, the 

evapotranspiration is smaller than it is during autumn (Fig. 15f). Indeed, up to the month of 

October, most of the trees still have their leaves on, which then contributes to increase the 

evapotranspiration. On the other hand, the leaves generally do not start growing back on trees 

before May, which helps maintaining the evapotranspiration low during the spring. The 

second maximum in total precipitation is reached during the warm season (Fig. 15i). 

Contrarily to the autumn though, during summer both runs simulate a maximum of 

evapotranspiration (Fig. 15f) due to a surface temperature that is maximal and above freezing 

(Fig. 16c). In fact, more than two third of the total precipitation cornes from 

evapotranspiration during summer (Fig. l5f), and ail of that precipitation is in Iiquid form 

(Fig. 16f). It is not surprising to see that a second maximum of precipitation is reached during 

sllmmer because convective activity is more intense. Due to the warm and humid air present 

in the environment, convective systems (from the individual cells to the cells embedded 

along a cold front) can form and generate intense but short burst of precipitation (Gutowski 

Jr. et al., 2003). Over the entire domain, both simulations agree that Iiquid precipitation 

represent about 75% of the total precipitation. The two simulations also agree that Iiquid 

precipitation is greater in the South-East section of the domain (Fig. 16d-e) which follows the 

South-East to North-West surface temperature gradient (Fig. l6a-b). The solid precipitation 
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field (Fig. l6g-h) shows a South-West to North-East gradient with the larger rate found over 

northern Labrador (NL, Canada) and East of the Ungava Bay (QC, Canada). A local 

maximum of solid precipitation is also found in both simulations over the Réserve Faunique 

des Laurentides (QC, Canada; Fig. 16g-h). However, the 15-km solid precipitation over those 

regions as weil as over other mountainous regions (the West coast of New-Found Land for 

example) is larger than the 45-km solid precipitation, resulting from the higher elevation 

(because of a better defined topography) at 15 km than at 45 km. Another interesting 

difference between the two simulations resides over sorne of the Great Lakes. The l5-km 

simulation produces more solid precipitation than does the 45-km simulation East of Lake 

Superior, Lake Erie, Lake Ontario, and East of the Georgian Bay (ON, Canada). The lake 

snow effect is more intense and better resolved (a local phenomenon) within the 15-km run 

than within the 45-km nin. 

Despite agreeing on the timing and location of solid and liquid precipitation, the two 

simulations show important differences in values. In effect, the simulation E15 produces 

about 0.25 m.mJday more liquid precipitation than does the simulation E45 (Fig. 16f). The 

largest difference in liquid precipitation occurs from June to October, which corresponds the 

wettest period of the year (Fig. 15i). However, the 15-km solid precipitation globally 

resembles the 45-km solid precipitation since the domain averaged of this variable is 

respectively of 0.65 mm/day and 0.64 m.mJday (Fig. l6g-h). When looking at the snow water 

equivalent simulated by both simulations, we realize that the 15-km simulation shows a 

slightly greater snow waterequivalent than does the 45-km simulation (Fig. 17a-b). The two 

simulations do agree on the location of the larger snow water equivalent amount in the 

domain over the eastem and north-eastern portion of Quebec and Labrador (Fig. 17a-b). They 

also agree that the peak of snow water equivalent is reached in March, with a slightly higher 

maximum at l5-km than at 45-km (Fig. l7c). As a result of a greater precipitation and snow 

water equivalent in the 15-km simulation, the surface runoff is superior for the 15-km 

simulation than for the 45-km simulation (Fig. 17d-f). This is especially true from May to 

December (Fig. 17f). In May, most of the snow has melted which explains the maximum in 

runoff reached for this month for both simulations (Fig. 17f). Since the snow water 

equivalent and precipitation is greater at 15 km than at 45 km, the surface runoff remains 
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greater for the 15-km l'un than for the 45-km run during the spring (Fig. 17f). During surnrner 

and faU, the 15-km runoff remains greater than the 45-km runoff on1y because the 15-km 

precipitation is superior to the 45-km precipitation (Fig. 15i). Over the domain, both 

simulations reproduce the maximum of runoff at the same locations: east of the Ungava Bay, 

east of Lake Ontario, south-east of Lake Erie, over the Adirondacks, over the Appalachians, 

and along the South coast of Newfound1and (Fig. 17d-e). In other words, the runoff is greater 

neal' mountains as weU as near large bodies of water (lakes, gulf and ocean). However, at aU 

these locations an then globaUy over the entire domain, the 15-km runoff is 0.09 rnm/day 

superior to the 45-km runoff (Fig. 17d-e). 

In summary, the 15-km simulation produces more precipitation than the 45-km 

simulation, which can be attributed to a greater 15-km convergence of humidity most1y 

during faU and a greater 15-km evapotranspiration mostly during surnrner. Since surnrner and 

autunm are the two wettest season of the year, the difference in humidity between the two 

simulations during those seasons contribute the most to the difference in precipitation. 

Moreover, these two seasons experiment more days with precipitation (Fig. 17i). Indeed, the 

number of wet days pel' month during surnrner is about 22 within both simulations, and this 

number goes to about 24 during fall. We can also notice that on average, the number of wet 

days is superior within the simulation EI5 than within the simulation E45 (Fig. 17g-i). This is 

especially true from August to March (Fig. 17i) and East of Lake Erie and Lake Ontario, over 

the Gulf Stream Current and west of Newfoundland and Cape Breton Island. We can notice 

that the sharper I5-km topography leads to more wet days on the upwind side of mountains. 

Moreover, it is noticeable that the places with a high number of wet days match with the 

places receiving more precipitation (Fig. 15g-i). Overall, it precipitates more often within the 

simulation E 15 than within the simulation E45, which can explain partiaUy why the 15-km 

precipitation is greater than the 45-km precipitation. 
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4.2.2 Comparison between model and observations 

Until now, we have found that the 15-km simulation produces more precipitation than 

does the 45-km simulation for every month of the year. According to the observations 

coming from the 45 weather stations of Environment Canada's hourly precipitation network 

for the EAST CAN domain, this means that the 15-lun precipitation is generally greater of 

about 0.2 nunlday (6 nunlmonth) than the observed precipitation (Fig. 18). The 45-km 

precipitation is generally smaller by about 0.1 mm/day (3 nunlmonth) than the observed 

precipitation (Fig. 18). Both simulations reproduce the shape of the annual cycle, with the 

wettest period extending from July to November (summer and fall). However, the two 

simulations produce more precipitation than observed during spring and fall. During summer, 

it seems that the simulation EI5 generates more precipitationthan observed while the 

simulation E45 does produce less. For December and January, both runs simulate less 

precipitation than observed while for FebI:uary and March, they reproduce quite weil the 

observed precipitation. The analysis of the water cycle components for the EAST CAN 

domain highlighted the following fact. The 15-km simulation produces more precipitation 

than the 45-km simulation, and that can be attributed to a greater 15-km convergence of 

humidity during fall and a greater 15-km evapotranspiration during summer. So, this would 

suggest that the convergence of humidity is responsible for the greater precipitation than 

observed seen for both simulations during spring and fall (see Fig. 15a-c). During summer, 

the difference in evapotranspiration between the two simulations would explain the 

difference seen with observations (see Fig. 15d-f). This could imply that due to a greater 

evapotranspiration, the 15-lun simulation produces more convection during the warm months 

of the year (compared to the 45-lun simulation), which leads to more precipitation than 

observed. 

In order to clarify the reasons explaining the difference between simulated and observed 

precipitation, 'ive computed simulated and observed histograms of PF and PI for an hourly 

accumulation interval (Fig. 19). Observed and simulated PF distributions display that as the 

intensity of Hourly Precipitation Event (HPE) increases, the frequency decreases (Fig. 19a). 
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The distributions also reveal that the two simulations generate about 13% of light HPE (0.2-3 

mmlh), which more than twice the observed PF of 6%. The last result is typical of climate 

models (Meams et al. 1995; Chen et al. 1996; Giorgi and Marinucci 1996; Gutowski Jr. et al. 

2003). On the other hand, the two simulations agree with observations that light HPE are the 

most frequent. Indeed, the remaining precipitation (less than J%) cornes from moderate (3-6 

mmlh), heavy (6-10 mm/h) and very heavy (>10 mm/h) HPE. The 45-km PF begins to fall 

below the observed PF for events greater than 3 mm/h (moderate HPE) while the 15-km PF 

remains doser to the observed PF. As a result, moderate, heavy and very heavy HPE account 

respectively for 0.3%, 0.02% and 0.0005% within the 45-km simulation compared to an 

observed PF of 0.7%, 0.15% and 0.07%, respectively. On the other hand, the 15-km PF for 

moderate, heavy and very heavy HPE is respectively of 0.5%, 0.07% and 0.01%, which is 

doser to the observed PF. So, the simulation EJ 5 produces more moderate to very heavy 

HPE than does the simulation E45, which means that it is more capable of reproducing the 

short convective events. As a consequence, the J5-km PF distribution looks more realistic 

than the 45-km PF distribution. 

The better ability of the 15-km simulation to produce more moderate to very heavy HPE 

IS confirmed with the spatial frequency distributions of Figure J9b. As explained in the 

previous section, the observed distribution indicates the number of weather stations (y-axis), 

among the 45 used for analysis, where a given HPE occurs (x-axis). To its turn, the model 

distributions indicate the number of grid points (y-axis), among the 45 used for analysis, 

where a given HPE occurs (x-axis). For example, 10 mmlh HPE occur at 44 weather stations 

while they occur at 35 15-km grid points and only at 3 45-km grid points. Globally, the 

distributions reveal that moderate to very heavy PE are more localised in space than trace and 

light HPE. However, the mode! creates less moderate to very heavy HPE than what is 

observed and this is particularly true for the 45-km simulation. For example, events greater 

than 8 mmlh occur at less than 5 grid points within the simulation E45, which is about one 

third of the observed and 15-km spatial frequency. 

As mentioned earlier, the PI is another important feature of precipitation that needs to be 

analysed. The analysis reveals that the simulated intensity of light HPE is about 0.03 mmlh 
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greater than the observed intensity of 1.56 mm/h (Fig. 19c). For moderate HPE, the mean PI 

of both simulations is about 0.05 mm/h greater than observed. For heavy HPE, the l5-km PI 

is still superior of about 0.03 mm/h to the observed intensity, contrarily to the 45-km PI that 

is 0.5 mm/h smaller. For very heavy HPE, the difference in mean intensity between 

observations and model keeps growing. In effect, the l5-km and 45-km PI for such events are 

respectively of 11.53 mm/h and 10.75 mm/h, which is much less than the observed intensity 

of 16.46 mm/ho On one hand, precipitation coming from low to moderate events is more 

intense in the model than what is observed but on the other hand, the two simulations have 

trouble reproducing the observed intensity of very heavy HPE, with the l5-km simulation 

being slightly closer to the observations. 

As a result of the time frequency (Fig. 19a), the spatial frequency (Fig. 19b), and 

intensity of simulated precipitation (Fig. 19c), the total l5-km APA is slightly greater than 

the observed APA while the 45-km APA is slightly inferior (Fig. 19d). More specifically, the 

total 15-km and 45-km APA is respectively of 1045 mm and 936 mm compared to an 

observed APA of 973 mm. Both simulations agree with observations that most of the total 

APA cornes from light HPE but the simulated amount is much greater within the model than 

what is observed. In effect, those events produce 825 mm (l5-km) and 813 mm (45-km) 

annually which is almost twice the observed amount of 560 mm. The three distributions agree 

that the remaining precipitation cornes from moderate to very heavy HPE, with the simulated 

amount being inferior than observed. For the moderate HPE, the simulations E 15 and E45 

generate respectively 166 mm/year and 112 mm/year, which is less than the observed amount 

of 223 mm. The scattered and sporadic heavy and very heavy HPE give respectively 94 mm 

and 96 mm of precipitation annually for observations. Within the model, those events 

contribute respectively to of 47 mm and 8 mm annually for the 15-km simulation while for 

the 45-km simulation, those events produce respectively Il mm and nearly 0 mm annually. 

So, both simulations generate quite equally too much precipitation with light PE (compared 

with observations). Because the 45-km simulation does not generate much precipitation with 

moderate to very heavy PE, that compensa tes for the overestimation of precipitation 

accumulated with light HPE which results in a total 45-km APA slightly inferior than 

observed. On the other hand, since the 15-km simulation produces more precipitation than the 
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45-km simulation with moderate to very heavy HPE (which is more in agreement with 

observations), the compensation between light HPE and moderate to very heavy HPE is more 

subtle and this results in a total l5-km APA slightly superior than observed. So, if one was to 

look only at the total APA, one would think that the simulation E45 is slightly better than the 

simulation E 15 in reproducing the observed precipitation. However, we have seen that the 

PF, PI and APA distributions are more realistic with the l5-km simulation than with the 45­

km simulation. This highlights the advantage to work with hourly precipitation data: we can 

see what causes the model to diverge from the observations. The 45-km total APA may be 

closer to the observed value, but this cornes from a less realistic PF and PI distributions (Fig. 

19a-d). 

The previous results were obtained using hourly accumulation period. As explained 

earlier (see section 4.1), it is also interesting to see the impact of using a daily accumulation 

interval on frequency and intensity of precipitation. Using a 24-h accumulation period, we 

created the daily observed and simulated PF, PI and APA histograms (Fig. 20). The daily PF 

histogram display that as the daily amount increases, the frequency decreases (Fig. 20a). The 

PF distributions also reveal that the frequency of dry days (0-0.2 mmlday) is respectively of 

about 55% and 59% within the l5-km and 45-km simulations while the observed frequency 

is about 56%. Thus, dry days occurs more often than observed within the simulation E45 

while within the simulation E 15, they are slightly less frequent than observed. Nevertheless, 

the differences between the two simulations regarding PF are more subtle than when using an 

hourly accumulation period since at first sight, both simulations seem to reproduce quite 

equal1y the observed daily PF distribution. When looking more careful1y, the 45-km PF 

distribution shows that light Daily Precipitation Events (DPE; 0.2-10 mmlday) are about 3% 

below the observed PF of 36%, which mostly explains the lower frequency of dry days for 

that simulation. For moderate DPE Cl 0-20 mmlday) , the 15-km PF is little more than 6% 

which is greater than the observed PF of 5%. To its turn, the 45-km PF for such DPE is 

slightly inferior to 6%. For heavy DPE (20-40 mmlday), the 15-lun PF and the 45-km PF is 

respectively of 2.7% and 2.3%, compared to an observed PF of 2.4%. Lastly, the frequency 

of very heavy DPE (> 40 mmlday) is about 0.5% for the high-resolution simulation, which is 

closer to the observed PF. On the other hand, the 45-km simulation depicts a frequency about 
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0.2% inferior than the observed PF for those DPE. The major differences between the two 

simulations regarding the daily PF distribution are then found at both tips of the distribution 

(light DPE and very heavy DPE). As a result, the 15-km daily PF distribution is slightly more 

realistic than the 45-km daily PF distribution. 

Similar observations can be made with the spatial frequency histogram displayed in 

Figure 20b. In effect, the major difference between the two simulations is found at the tail of 

the distributions. Within the 15-km simulation, the spatial frequency of very heavy DPE 

(mainly DPE with more than 45 mm) is c10ser to observations than within the 45-km 

simulation. In fact, the number of 45-km grid points producing DPE with more than 45 mm 

is much lower than the number of weather stations registering that type of DPE. In other 

words, very heavy DPE are sporadic and localised, but they are even more sporadic and 

localised within the 45-km simulation than what is observed. 

On top of showing their major difference in spatial frequency for very heavy DPE, the 

two simulations also have their greater disagreement conceming the mean PI for such events 

(Fig. 20c). In fact, within both simulations the mean PI of light to heavy DPE is slightly 

greater than what is observed. For very heavy DPE though, the 15-km and 45-km PI is 

respectively of 46.2 nunlday and 45.9 nunlday, which is inferior to the observed intensity of 

47.8 nunlday. 

Since the light DPE are the most frequent, they are the ones contributing the most to the 

annual total for observations as weil as for model simulations (Fig. 20d). Because of a greater 

intensity than observed though, the simulated APA accumulated by light DPE is greater than 

the observed APA of 366 mm. The two simulations also produce more precipitation than 

observed with moderate DPE due to a greater frequency and intensity. For heavy DPE, the 

15-km APA is still about 30 mm superior to the observed APA of 230 mm while the 45-km 

APA is about 6 mm below observed. Within the simulations E15 and E45, the very heavy 

DPE respectively contribute to 90 nunlyear and 47 nunlyear, compared to an observed 

contribution of 114 nunlyear. As a result, the 45-km total APA is of 936 mm while the 15-km 

total APA is of 1045 mm. The 15-km total APA is than greater than the observed APA of 973 
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nun while the 45-km total APA is lower. The 45-km total APA may be c10ser to the observed 

value, but this cornes from a less realistic daily PF and APA distributions (Fig. 20a-d). 

4.2.3 Analysis of the water cycle components over the Quebec-Labrador watersheds 

Up to now, we have only analyzed the precipitation and other variables for either ail the 

domain of interest or for particular grid points (when compared to observations). We though 

it would be interesting to see how the l5-km variables look compared to 45-km ones over a 

smaller area. We analyzed the components of the hydrological cycle (precipitation, liquid and 

solid precipitation, evapotranspiration, convergence of humidity, runoff) as weil as the screen 

temperature and snow water equivalent over 21 watersheds of the province of Quebec and 

Labrador. Table 4.3 gives a list of the 21 watersheds, with their abbreviated names, their 

drainage area, and the number of CRCM4 45-km grid cells. Figure 21 can be consulted for 

the geographical position of these watersheds. 

Both simulations seem to agree about the following aspects. Precipitation (Fig. 22c) is 

greater in the southwestem part of Quebec and is lower in the northlnortheastem part of 

Quebec (north-south precipitation gradient). The liquid precipitation (Fig. 23c) is also 

characterized by the same north-south gradient while solid precipitation (Fig. 23d) shows a 

inversed (south-north) gradient, with higher snowfall rate in the north than in the south. It is 

also noticeable that most of the precipitation over the province of Quebec falls as rain since 

the ratio liquid/solid precipitation is about 75 % in the south (RDO watershed) and drops to 

62 % in the north (ARN watershed). The north-south precipitation gradient is accompanied 

by a north-south evapotranspiration gradient (Fig. 22b), convergence of humidity gradient 

(Fig. 22a) and temperature gradient (Fig. 23a). The snow water equivalent (Fig. 23b) also 

shows a north-south gradient. Therefore, the higher temperatures in the southern part of 

Quebec are accompanied by more evapotranspiration and' convergence of humidity, which 

leads to a greater precipitation rate. 
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The main differences between the two simulations are given in the following. For ail the 

watersheds, the 15-km screen temperature is below the 45-km screen temperature. At 15-km, 

the total precipitation is greater than at 45-km over ail the watersheds. The liquid 

precipitation follows the same pattern while the solid precipitation does not. Over 10 

watersheds out of 21 (mostly located in the north-eastern part of Quebec), the mean solid 

precipitation is higher at 45-km than it is at 15-km, with the highest difference being in the 

order of 10 %. This is also visible through the snow water equivalent. Moreover, for 13 

watersheds out of 21, the 15-km run reproduces a higher runoff (Fig. 22d) than the 45-km 

run. According to the study of Music et al. (2009), the CRCM (operational version with 

horizontal resolution of 45 km) tends to underestimate the observed annual mean runoff. So, 

the greater value of this variable reproduced by the 15-km fun could signify an improvement. 

Since the maximum of runoff is highly linked with the melting of snow, the snow water 

equivalent has an important impact on this variable. Indeed, we notice that the watersheds 

with a higher snow water equivalent at 15 km than at 45 km correspond to the watersheds 

having greater runoff at 15 km than at 45 km (e.g. ROM). To recapitulate, the 15-km 

simulation tends to generate more evapotranspiration and convergence of humidity than does 

the 45-km run, meaning that more humidity is available for precipitation within the l5-km 

simulation than within the 45-km simulation. Because the 15-lun mn is slightly cooler than 

the 45-km run, this humidity condenses more easily and then precipitates more easily as weIl. 

This explains why the 15-km precipitation is greater than the 45-km precipitation for ail the 

21 watersheds. 
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5 Summary and Conclusion 

The inefficacy of most climate models to properly reproduce the intensity and frequency 

of precipitation is an important problem that needs to be further investigated. This issue is 

becoming more important as changes in precipitation patterns have already been observed in 

many regions around the globe (Groisman et al, 2005). In fact, increases in air temperature 

and specifie humidity lead to an enhancement of the hydrological cycle, which should result 

in a higher frequency of heavy precipitation events and droughts (Trenberth 1999, Trenberth 

2003). Using a Regional Climate Model (RCM) to simulate precipitation on a regional scale 

is now the most efficient and common procedure. With the ongoing progress seen in 

Computer Science, it is now feasible to produce a high horizontal-resolution simulation over 

an area of interest at low computer cost. Under the assumption that increasing a RCM's 

horizontal resolution leads to a better representation of small-scale features, which should 

improve the simulated precipitation (especially the frequency and intensity), the present study 

was carried out. 

The main objective of this research was to investigate the sensitivity of precipitation to 

horizontal resolution within the fourth generation of the Canadian Regional Climate Model 

(CRCM). The study, however, was not limited to the analysis of total precipitation, but was 

also performed on the components of the hydrological cycle (convergence of humidity, 

evapotranspiration, liquid and solid precipitation, and runoff) as weil as on the surface 

temperature, snow water equivalent and number of wet days. To accomplish this task, we 

used two pairs of simulations over two different regions of Canada: western Canada (WEST 

CAN domain), and eastern Canada (EAST CAN domain). For both domains, we used two 4­

year-Iong simulations nested at their boundary by the reanalysis NCEP NRA2. The first 

simulation consisted of a run with a horizontal resolution of 15 km while the second 

simulation was characterised by a horizontal resolution of 45 km. Most of the analysis in this 

study consisted of a qualitative comparison between the CRCM 15 km simulations and the 

CRCM 45 km simulations. It also included a comparison between the CRCM-simulated 

precipitation and the observed precipitation, using hourly precipitation data. 
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Our research revealed that results were similar for both domains, with only minor 

differences. For the two domains, the investigation showed that the topography is more 

realistic within the high resolution simulations (15 km) than within the low resolution 

simulations (45 km). Nevertheless, because the EAST CAN domain has a much flatter 

terrain than the WEST CAN domain, increasing horizontal resolution has a weaker effect on 

the model topography over that area. 

Over the WEST CAN domain, topography is the malll factor influencing the 

meteorological variables. In effect, the position of the observed maximum of precipitation, 

that is west of the Coastal Range (Pacifie coast) and west of the Rocky Mountains, were weil 

captured by both simulations (W 15 and W45). The more realistic representation of 

topography found in the 15-km simulation led to an increase in convergence of humidity, 

especially along the Pacifie coast. The analysis also revealed that the 15-km simulation 

produces globally more evapotranspiration than the 45-km simulation. As a consequence, the 

15-km precipitation is overall superior to the 45-km precipitation, especially along the Pacifie 

coast. Moreover, both simulations agreed that the main source of humidity used to generate 

most of the precipitation is convergence. Furthermore, results showed that the maximum of 

convergence occurs in winter for both simulations, which is also the wettest season observed. 

Results also established that evapotranspiration is maximal during summer. The higher­

resolved topography present in the l5-km simulation also led to a greater number of wet days 

for the l5-km run than for the 45-km over the Pacifie Ocean as weil as west of the mountains. 

On the lee side of the mountains and hills, the number of wet days is lower for the 15-km run 

than for the 45-km run. We also found that over the WEST CAN domain, most of the 

precipitation falls in its liquid form and that the 15-km liquid precipitation is greater than that 

of the 45-km. For solid precipitation, our analysis showed that it is larger for the simulation 

W15 than for the simulation W45 over the mountains but not over the prairies. In addition, 

the finer horizontal resolution in the l5-km simulation allows capturing sorne of the 

permanent snow present at the top of the highest mountains, The snow water equivalent is 

then greater at 15 km than at 45 km for ail year around including summer, where the 15-km 

simulation shows a non-zero snow water equivalent when ail the snow has melted in the 45­

km simulation. Resulting from a globally inferior solid precipitation and a greater 



44 

evapotranspiration, the l5-km simulation generates globally less runoff than the 45-km 

simulation. 

For the EAST CAN domain, the analysis revealed the l5-km simulation (EI5) also 

produces more precipitation than the 45-km simulation (E45). The previous result can be 

attributed to a greater l5-km convergence of humidity mostly during fall and a greater l5-km 

evapotranspiration mostly during summer, which are the two wettest season of the year over 

the EAST CAN domain. Our analysis also showed that summer and fall have more days with 

precipitation, with the number of wet days being on average superior for the 15-km 

simulation than for the 45-km simulation. In other words, precipitation occurs more often in 

the high resolution run than in the low resolution run. Results also divulged that most of the 

precipitation falls in its liquid form and that for both liquid and solid precipitation, the l5-km 

simulation produces larger values than the 45-km simulation. Because of having a slightly 

greater solid precipitation, the l5-km simulation also depicted a greater snow water 

equivalent than the 45-km simulation, especially over mountains and the north-eastem 

portion of the domain. Directly linked with the melting of snow and the amount of 

precipitation, the total runoff was found to be superior for the simulation E 15 than for the 

simulation E45, especially from May to December. This result differs from what we found 

for the WEST CAN domain. Over the EAST CAN domain, both the solid precipitation and 

the snow water equivalent are superior for the 15-km simulation than for the 45-km 

simulation. Therefore, the melting of snow makes the 15-km runoff superior to the 15-km 

runoff during spring. During the rest of the year, the runoff remains greater for the 15-km 

simulation than for the 45-km simulation because the IS-km precipitation is superior to the 

45-km precipitation. 

The further analysis of the water cycle components over the Quebec and Labrador 

watersheds revealed that the 15-km run is slightly cooler than the 45-km run over ail the 

watersheds. Moreover, with a greater convergence of humidity and evapotranspiration, the 

15-km simulation produces more precipitation than the 45-km simulation for ail 21 

watersheds. The analysis also showed that for 13 watersheds out of 21 the l5-km run 

produces a higher runoff than the 45-km run. This result could represent an improvement 
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because the 45-km CRCM (operational version with horizontal resolution of 45 km) tends to 

underestimate the observed annual mean runoff (Music et al. 2009). 

The comparison between simulated and observed precipitation revealed that for both 

domains, the 15-IGU and 45-km simulations were able to reproduce the observed annual cycle 

of precipitation. However, results showed that the simulated monthly precipitation is 

systematically superior to the observed monthly precipitation, except for the simulation E45. 

Moreover, the annual cycle revealed that the 15-km monthly precipitation is generally greater 

than the 45-km monthly precipitation, which is consistent with what we found during the 

water cycle components analysis. A frequency and intensity analysis made with an hourly 

accumulation interval divulged that for both domains the model (l5-km and 45-IGU 

simulations) produces a higher frequency of light Hourly Precipitation Events (HPE; 0.2-3 

mm/h) than observed. In fact, the simulated frequency of such events is about twice the 

observed frequency. Therefore, the Annual Precipitation Amount (APA) produced by these 

events is about 600 mm and 300 mm greater than observations for the WEST CAN domain 

simulations and for the EAST CAN domain simulations, respectively. On the other hand, the 

analysis divulged that contrarily to the simulation W45, the simulation W 15 is able to 

reproduce light (0.2-3 mm/h) to very heavy (> 10 mm/h) HPE. In fact, the simulation W45 

produces zero heavy (6-10 mm/h) and very heavy HPE. Similar results were found for the 

EAST CAN domain, where the 45-km PF feU rapidly below the observed PF for events 

greater than 3 mm/h (moderate to very heavy HPE). Thus, the 15-IGU hourly Precipitation 

Frequency (PF) distribution was found to be more realistic than the 45-km one for both 

domains. The hourly Precipitation Intensity (PI) distribution was also more realistic when 

obtained with the 15-km simulations than with the 45-km simulations. Because the 45-km 

simulations (W45 and E45) generate much less moderate to very heavy HPE, it compensates 

for the excess in precipitation produced by Iight HPE thereby resulting in a total APA that is 

slightly closer to observations. For the EAST CAN domain, the 45-km total APA is even 

slightly below the observed total APA. Despite the more realistic hourly PF and PI 

distributions found for the 15-IGU simulations (W 15 and E 15), the model-observed 

precipitation bias is greater for the 15-IGU simulations than for the 45-km simulations because 

there is no such compensation within the high resolution simulations. 
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In order to determine if similar results couId be found with a greater accumulation period, 

we also analysed the PF and PI of simulated and observed precipitation with a daily 

accumulation period. The analysis revealed that the differences between the two simulations 

were more subtle than when using an hourly accumulation interval. Except for the simulation 

E45, the excess in precipitation (compared to observations) found in ail simulations (W15, 

W45 and E15) was evenly distributed through the intensity spectrum (from 0.2 to 48 

mm/day). As a result, for both domains the 15-km and 45-km simulations seemed to equally 

be able to reproduce the observed daily PF and PI distributions. This result highlighted the 

importance of the accumulation period. Using a daily accumulation interval smoothes the 

short bursts of convective precipitation through time averaging. Moreover, a strong PE is 

usually not sustained for an entire day (Gutowski Jr. et al., 2003). Therefore, working with a 

24-h accumulation period is not as efficient as an hourly accumulation period in 

understanding which events the model is able to reproduce and what the contribution (in 

precipitation amount) of each type of events is. 

To conclude, we found that the 15-km precipitation is greater than the 45-km 

precipitation for both domains and that the simulated precipitation tends to be greater than the 

observed precipitation (true for ail simulations but the simulation E45 for the EAST CAN 

domain). It is important to keep in mind that when comparing simulated precipitation with 

observed precipitation, no adjustments were made concerning the precipitation gauge under 

catch. A deeper analysis should be made to see how much the under catch could explain 

sorne of the model-observation precipitation bias seen in this study. Moreover, our research 

was mainly limited to a qualitative comparison between the high and low CRCM-simulated 

variables and did not include a comparison with gridded observations. Therefore, we 

recommend that such a comparison be made. When doing so, the gridded observation set 

should have a horizontal resolution as close as possible to 15 km, in order to verify if the 15­

km simulations can capture more small-scale precipitation patterns than the 45-km 

simulations. 



SOMMAIRE ET CONCLUSION 

L'inefficacité de la plupart des modèles climatiques à reproduire adéquatement l'intensité 

et la fréquence de la précipitation est un problème important qui doit être analysé davantage. 

Ce sujet est d'autant plus impOltant puisque des modifications au comportement de la 

précipitation ont déjà été observées dans plusieurs régions du monde (Groisman et al, 2005). 

En fait, l'augmentation de la température de l'air et de l'humidité spécifique amplifie le cycle 

hydrologique, ce qui devrait faire augmenter la fréquence des événements de précipitation 

forte et les sécheresses (Trenberth 1999, Trenberth 2003). L'utilisation d'un Modèle Régional 

du Climat (MRC) pour simuler la précipitation à l'échelle régional est actuellement la 

méthode la plus efficace et la plus utilisée. Avec les progrès constants en informatique, il est 

maintenant possible de produire une simulation à haute résolution horizontale à un faible coût 

informatique. En supposant que l'augmentation de la résolution horizontale d'un MRC 

entraîne une meilleure représentation des processus de fines échelles, ce qui devrait améliorer 

la précipitation simulée (particulièrement l'intensité et la fréquence), la présente étude a été 

menée. 

L'objectif principal de cette étude était de déterminer quelle est la sensibilité de la 

précipitation â la résolution horizontale dans la quatrième génération du Modèle Régional 

Canadien du Climat (MRCC). Toutefois, notre étude ne s'est pas limitée à l'analyse de la 

précipitation totale, mais a aussi été réalisé pour les composantes du cycle hydrologique 

(convergence d'humidité, évapotranspiration, précipitation liquide et solide, et ruissellement) 

de même que pour la température de surface, l'équivalent en eau de la neige et le nombre de 

jour de précipitation. Pour ce faire, nous avons utilisé deux paires de simulations au-dessus 

de deux régions du Canada: l'ouest du Canada (domaine WEST CAN), et l'est du Canada 

(domaine EAST CAN). Pour chacun de ces domaines, nous avons utilisé deux simulations 

d'une durée de quatre ans et pilotées à leurs frontières par les réanalyses NCEP NRA2. La 

première simulation était caractérisée par une résolution horizontale de 15 km, tandis que la 

seconde simulation avait une résolution horizontale de 45 km. La plupart de l'analyse réalisée 
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au sein de cette étude consistait en une comparaison qualitative entre les simulations à 15 km 

de résolution et celles à 45 km de résolution. Une comparaison entre la précipitation simulée 

et observée a également été effectuée, en utilisant des données de précipitation horaire. 

Notre recherche a révélée que les résultats étaient similaires pour les deux domaines, 

avec seulement quelques différences mineurs. Pour les deux domaines, l'étude a démontré 

que la topographie est plus réaliste au sein des simulations à haute résolution (15 km) que 

dans celles à basse résolution (45 km). Néanmoins, étant donné que le domaine EAST CAN a 

un terrain beaucoup moins accidenté que le domaine WEST CAN, l'augmentation de la 

résolution horizontale a un effet moins remarquable sur la topographie au-dessus de cette 

région. 

Pour le domaine WEST CAN, notre recherche a permis de révéler que la topographie est 

le principal élément influençant les variables météorologiques. En effet, la position du 

maximum de précipitation observé, qui est à l'ouest de la chaîne côtière (le long de la côte) et 

à l'ouest des Rocheuses, est bien reproduit par les deux simulations (W 15 et W45). La 

représentation plus réaliste de la topographie retrouvée dans la simulation à 15 km mène à 

une augmentation de la convergence d'humidité, particulièrement le long de la côte du 

Pacifique. Notre analyse a aussi révélée que la simulation à 15 km produit davantage 

d'évapotranspiration que la simulation à 45 km. Par conséquent, la simulation W 15 génère 

globalement plus de précipitation que la simulation W45, particulièrement le long de la côte 

Pacifique. De plus, les deux simulations étaient en accord avec le fait que la principale source 

d'humidité utilisée pour générer la précipitation estla convergence. Les résultats démontrent 

également que pour les deux simulations, le maximum de convergence d'humidité se produit 

l'hiver, soit la saison enregistrant le plus de précipitation durant l'année. Pour ce qui est de 

l'évapotranspiration, les résultats ont établi qu'elle est maximale pendant l'été. La 

topographie mieux résolue au sein de la simulation à 15 km mène à un nombre de jours de 

précipitation par année supérieur que dans la simulation à 45 km au-dessus de l'océan 

Pacifique et du côté ascendant des montagnes. Toutefois, du côté descendant des montagnes 

et collines, le nombre de jours de précipitation par année est inférieur pour la simulation à 15 

km que pour celle à 45 km. Nous avons aussi trouvé que pour le domaine WEST CAN, la 
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majorité de la précipitation tombe sous forme liquide, avec la précipitation liquide étant 

supérieure dans la simulation à 15 km que dans celle à 45 km. Pour ce qui est de la 

précipitation sous forme solide, la simulation W 15 montre de valeurs plus élevées que la 

simulation W45 au-dessus des montagnes, mais pas au-dessus des prairies. Également, 

l'augmentation de la résolution permet à la simulation à 15 km de produire de la neige 

éternelle au sommet des plus hautes montagnes du domaine. L'équivalent en eau de la neige 

est alors supérieur dans la simulation W 15 pendant toute l'année, incluant l'été, où la 

simulation à 15 km de résolution a un l'équivalent en eau de la neige supérieur à zéro tandis 

que toute la neige est fondue dans la simulation à 45 km de résolution. Résultant d'une 

précipitation solide globalement inférieure et d'une plus grande évapotranspiration, la 

simulation à 15 km produit davantage de ruissellement que la simulation 45 km. 

Pour le domaine EAST CAN, l'analyse a révélé que la simulation à 15 km (EI5) produit 

également davantage de précipitation que la simulation à 45 km (E45). Ceci peut être attribué 

à une convergence d'humidité plus grande à 15 km qu'à 45 km pendant l'automne et à une 

évapotranspiration supérieure à 15 km pendant l'été. Par ailleurs, l'été et l'automne sont les 

deux saisons recevant le plus de précipitation pour le domaine EAST CAN. Notre analyse a 

aussi démontré que ces deux saisons sont celles enregistrant le plus grand nombre de jours de 

précipitation, et ce nombre est supérieur au sein de la simulation à 15 km qu'au sein de la 

simulation à 45 km. Bref, la précipitation est plus fréquente dans la simulation à haute 

résolution que dans celle à basse résolution. Les résultats illustrent aussi que la majorité de la 

précipitation tombe sous forme liquide, et qu'autant pour la précipitation liquide que solide, 

les valeurs sont plus élevées dans la simulation à 15 km que dans celle à 45 km. Puisque la 

précipitation solide est légèrement plus grande dans la simulation E 15 que la simulation E45, 

l'équivalent en eau est également supérieur, particulièrement au-dessus des montagnes et au­

dessus de la partie nord-est du domaine. Directement lié avec la fonte de la neige et la 

quantité de précipitation, le ruissèlement total est supérieur pour la simulation à 15 km que 

pour la simulation à 45 km, particulièrement entre mai et décembre. Ce dernier constat 

diffère de ce que nous avons trouvé pour le domaine WEST CAN. Dans le domaine EAST 

CAN, la précipitation solide et l'équivalent en eau de la neige sont tous les deux supérieurs à 

15 km qu'à 45 km. Par conséquent, le ruissèlement de surface est plus grand dans la 
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simulation à 15 km que dans la simulation à 45 km au printemps. Durant le reste de l'année, 

le ruissèlement demeure supérieur à 15 km qu'à 45 km parce que la précipitation est aussi 

supérieure à 15 km qu'à 45 km. 

. L'analyse des composantes du cycle hydrologique pour les bassins versants de la 

province de Québec et du Labrador a révélée que la simulation E 15 est légèrement plus froide 

que la simulation E45, et ce pour tous les bassins versants. De plus, produisant davantage de 

convergence d'humidité et d'évapotranspiration, la simulation à 15 km de résolution génère 

également davantage de précipitation que la simulation à 45 km pour les 21 bassins versants. 

Notre analyse illustre aussi que pour 13 bassins sur 21, la simulation à 15 km produit un 

ruissèlement supérieur à celui produit par la simulation à 45 km. Ce résultat pourrait 

représenter une amélioration, puisque le MRCC à 45 km (version opérationnelle avec une 

résolution de 45 km) sous-estime généralement le ruissèlement annuel moyen observé (Music 

et al. 2009). 

La comparaison entre la précipitation simulée par le MRCC et la précipitation observée a 

révélé que pour les deux domaines, les simulations à 15 km et 45 km étaient capables de 

reproduire le cycle annuel observé. Toutefois, les résultats démontrent que la précipitation 

mensuelle simulée est systématiquement supérieure à la précipitation mensuelle observée, 

excepté pour la simulation E45. De plus, le cycle annuel a révélé que la précipitation 

mensuelle des simulations à 15 km est généralement supérieure celle des simulations à 45 

km, ce qui est en accord avec les résultats trouvés lors de l'analyse des composantes du cycle 

hydrologique. Une analyse de la fréquence et intensité de la précipitation faite à partir d'une 

période d'accumulation d'une heure a révélé que pour les deux domaines, le modèle (15 km 

et45 km) produit une plus grande fréquence d'événements horaires de faibles intensités (0,2­

3 mm/h) que ce qui est observé. En fait, la fréquence simulée de ce type d'événements est 

environ deux fois plus grande que la fréquence observée. Par conséquent, la quantité de 

précipitation accumulée annuellement par les événements horaires de faible intensité est 

environ 600 mm et 300 mm plus grande que la quantité observée pour les simulations du 

domaine WEST CAN et du domaine EAST CAN, respectivement. D'un autre côté, notre 

analyse a démontré que contrairement à la simulation W45, la simulation W15 est capable de 
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reproduire des événements' horaires d'intensités faibles (0,2-3 nun/h) à très fortes (> 10 

rrun/h). En fait, la simulation W45 ne produit aucun événement horaire d'intensité forte et 

très forte. Des résultats similaires ont été trouvés pour le domaine EAST CAN, où la 

fréquence de la précipitation pour la simulation E45 tombait rapidement sous la fréquence 

observée pour les événements d'intensités supérieures à 3 nun/h (intensité modérée à très 

forte). Donc, la distribution horaire de la fréquence de la précipitation était plus réaliste 

lorsqu'elle était obtenue à partir des simulations à hautes résolutions (W 15 et E 15) qu'avec 

les simulations à basses résolutions (W45 et E45). La distribution horaire de l'intensité de la 

précipitation était également plus réaliste lorsqu'elle était obtenue à partir des simulations à 

15 km. Puisque les simulations à 45 km (W45 et E45) génèrent beaucoup moins 

d'événements d'intensités modérées à fortes, ceci compense pour l'excès en précipitation 

généré par les événements de faibles intensités, ce qui résulte en une précipitation annuelle 

totale qui plus près de celle observée. Pour le domaine EAST CAN, la précipitation annuelle 

totale produit par la simulation à 45 km est même légèrement inférieure à celle observée. 

Malgré que les distributions horaires de fréquence et d'intensité soient plus réalistes pour les 

simulations à 15 km (W 15 et E 15), le biais de précipitation model-observation est plus grand 

pour les simulations à 15 km que pour celles à 45 km puisque ce type de compensation 

n'existe pas au sein des simulations à hautes résolutions. 

Afin de déterminer si de résultats similaires pouvaient être retrouvés en utilisant une 

période d'accumulation plus grande, nous avons également analysé la fréquence et l'intensité 

de la précipitation simulée et observée à partir d'une période d'accumulation de 24 heures. 

Notre analyse a démontré que les différences entre les deux simulations étaient beaucoup plus 

subtiles que lorsque nous utilisions une période d'accwnulation d'une heure. À l'exception de 

la simulation E45, l'excès de précipitation (comparativement aux observations) retrouvé dans 

toutes les simulations (W 15, W45 et E 15) est également distribué à travers le spectre des 

intensités (0,2 à 48 rrun/jour). Par conséquent, pour les deux domaines, les simulations à 15 

km et à 45 km de résolution semblaient être également capables de reproduire les 

distributions journalières observées de la fréquence et de l'intensité. Ce résultat a permis de 

mettre en évidence l'importante de la période d'accumulation. L'utilisation d'une période 

d'accumulation de 24 heures fait que les événements convectifs intenses sont atténués par la 
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moyenne temporelle. De plus, un événement très intense ne durera généralement pas toute la 

Journée (Gutowski Jr. et al., 2003). Donc, déterminer quel(s) type(s) d'événement(s) le 

modèle est capable de reproduire et quel est la contribution (en termes de quantité de 

précipitation) de chacun de ces événements n'est pas aussi efficace lorsqu'une période 

d'accumulation de 24 heures est utilisée à la place qu'une période d'accumulation d'une 

heure. 

En conclusion, pour les deux domaines, la précipitation est supérieure au sein des 

simulations à 15 km de résolution que dans celle à 45 km de résolution. De plus, la 

précipitation simulée par le MRCC4 est généralement supérieure à la précipitation observée 

(vrai pour toutes les simulations, sauf la simulation E45 du domaine EAST CAN). Il est 

important de se rappeler que lorsque nous avons comparé la précipitation simulée avec la 

précipitation observée, aucun ajustement n'a été fait concernant le sous-captage des appareils 

mesurant la précipitation. Une étude plus approfondie devrait être menée afin de déterminer 

comment et si le sous-captage des appareils pourrait expliquer une partie du biais model­

observations (pour la précipitation) retrouvé dans cette étude. De plus, notre recherche était 

principalement limitée à une comparaison qualitative entre les variables simulées par les 

simulations à 15 km versus celles simulées par les simulations à 45 km et n'incluait pas de 

comparaison avec des observations sur grille. Donc, nous recommandons qu'une telle 

comparaIson soit faite. En faisant cette comparaison, la résolution horizontale des 

observations sur grille devrait être aussi près que possible de 15 km, pour ainsi permettre de 

vérifier si le champ de précipitation de la simulation à 15 km reproduit davantage de 

processus de fine échelle que le champ de précipitation de la simulation à 45 km. 



TABLEAUX
 

Table 3.1 Main characteristics of the simulations used in this study 

Simulation Horizontal Grid
Domain	 Time step

name resolution dimension* 

(km) (NI x NJ) (minutes) 

W15 15 120 x 120 5 
WEST CAN 

W45 45 40 x 40 15 

E15 15 165 x 165 5 
EAST CAN 

E45 45 55 x 55 15 

* : The grid dimension does not include the 10-grid point sponge zone 

Table 4.1	 Mean annual precipitation amount (mmlyear) and mean number of wet days 
(days/year) observed at Victoria Int'1 Airport and North Vancouver Sonora Dr, 
and simulated at the closest grid points to those weather stations 

Mean annual precipitation amount (mm/year) 

Observed at the Simu1ated at the closest grid 
Name of weather station 

weather station point to the weather station 

W15 W45 

Victoria Int'J A 783 1264 1409 

North Vancouver Sonora Dr 1975 2865 2516 

PCP*(Vancouver)/PCP(Victoria) 2,5 2,3 1,8 

Mean number of wet days (days/year) 

Observed at the Simu1ated at the closest grid 
Name of weather station 

weather station point to the weather station 

W15 W45 

Victoria Int'l A 138 166 198 

North Vancouver Sonora Dr 163 175 212 

*PCP : Precipitation 
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Table 4.2	 Altitude (m) at the weather stations Victoria Int'l Airport and North Vancouver 
Sonora Dr as weil as the altitude (m) at the closest grid points and at the most 
representative grid points to those stations 

Name of weather weather closest GP* to the most representative GP* 
station station weather station to the weather station 

observed Wl5 W45 Wl5 W45 

Victoria Int'J A 19 23 88 23 88 
North Vancouver 

Sonora Dr 
5 395 526 94 119 

*GP : Grid point 
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Table 4.3 List of the 21 watersheds with their respective abbreviated name, drainage area 
and number of 45-km CRCM grid points 

Watershed Drainage area Number of CRCM 

Name Abbreviation km2 45-km grid points* 

Rivière Arnaud ARN 26900 14 
Rivière à la Baleine BAL 29000 17 

Rivière Bell BEL 22200 15 
Bersimis-Outardes-Manie BOM 87000 47 

Réservoir Caniapiscau CAN 37870 23 
Réservoir Churchill Falls CHU 69300 34 

Rivière aux Feuilles FEU 41700 22 
Rivière Georges GEO 24200 Il 

Grande rivière de la Baleine GRB 36300 18 
La Grande Rivière LGR 177000 91 
Réservoir Manic5 MAN 29240 17 

Rivière aux Mélèzes MEL 42700 22 
Rivière Moisie MOI 19000 12 

Rivière Natashquan NAT 15600 9 
Rivière Caniapiscau (Pyrite) PYR 48500 24 

Rivière des Outaouais RDO 143000 80 
Rivière Romaine ROM 13000 9 
Rivière Rupert RUP 40900 22 
Lac Saint-Jean SAG 73000 43 

Rivière Saint-Maurice STM 47200 28 
Rivière Waswapini WAS 31900 16 

* : The number of CRCM 15-km grid points is simply the number of CRCM 45-km 
grid points multiplied by a factor of 9. 



FIGURES
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Figure 1	 Geographical position of the two CRCM4 simulation domains (WEST CAN and 

EAST CAN) used in this study. 
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Figure 2	 Position of the weather stations of the Environment Canada's hourly­
precipitation network on the l5-km grid (in white) over (a) the WEST CAN 
domain and (b) the EAST CAN domain. Only stations kept for analysis are 
shown. A total number of 27 stations is used over the WEST CAN domain (a) 
and a total of 45 stations is used over the EAST CAN domain (b). 
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Figure 3	 Mean annual precipitation amount observed (1961-1990) over the WEST CAN 
domain with the position and name of the main topographie barriers (after the 
Pacifie Climate Impacts Consortium, PCIC), 
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Figure 4	 4-year annual mean sea level pressure (magenta contours; hPa), horizontal wind 
speed (background filed contours; km/h) and horizontal wind direction (black 
arrows) for the simulations Wl5 (a) and W45 (b). 
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Figure 5	 4-year annuaI mean total precipitation rate (mm/day) for the simulations W15 (a) 
and W45 (b). Panel (c) shows the domain-averaged mean annual cycle of total 
precipitation. On the bottom kft corner of panels (a) and (b) is given the domain 
average of the total precipitation rate (mm/day). 
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Figure 6	 Topography (m) of the simulations W15 (a) and W45 (b). 
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Figure 7	 4-year annual mean total precipitation rate (mm/day or mm/year) for the 
simulations W15 (a) and W45 (b) zoom over a portion of the WEST CAN 
domain surrounding the Vancouver and Victoria area. 



61 

Annual Cycle 

(c) 

-,• 
-10 ~. l; IY-	 .. :~ :4 ., 01 :t I~ 1\ '1 

1-1 .-.

-'" 
-'-W15 -+-W45 

Annual Cycle 

(1) 

" 

2. 

" r: 
\.. L..
12 LA
"01 

1. 

J"~ ~ 
O. 

02 

00 M ~ :: ~ u ~ a 16 " .) 

-10 ·'-1"'>-''''' 

...... W15 -+-W45 

Annual Cycle 

(i) 

~ ~ (Il (~ :" :t. 41	 tt :9 '0 Il '1t._,_ / 

--- W15 -+- W45 

Figure 8	 Top: 4-year annual mean convergence of humidity (mm/day) for the simulations 
W15 (a) and W45 (b). Panel (c) depicts the domain-averaged mean annual cycle 
of convergence of humidity. Middle: 4-year annual mean evapotranspiration 
(mm/day) for the simulations W 15 (d) and W45 (e). Panel (f) presents the 
domain-averaged mean annual cycle of evapotranspiration. Bottom: 4-year 
annual mean total precipitation rate (mm/day) for the simulations W15 (g) and 
W45 (h). Panel (i) shows the domain-averaged mean annuaJ cycle of total 
precipitation. On the bottom left corner of panels (a), (b), (d), (e), (g) and (h) is 
given the domain average ofthe respective variables. 
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Figure 9	 Top: 4-year annual mean sea level pressure (black contours; hPa) and screen 
temperature (oC) for the simulations W15 (a) and W45 (b). Panel (c) shows the 
domain-averaged mean anriual cycle of screen temperature. Middle: 4-year 
annual mean liquid precipitation rate (mm/day) for the simulations WI5 (d) and 
W45 (e). Panel (f) presents the domain-averaged mean annual cycle of liquid 
precipitation. Bortom: 4-year annual mean solid precipitation rate (mm/day) for 
the simulations W15 (g) and W45 (h). Panel (i) depicts the domain-averaged 
mean annual cycle of solid precipitation. On the bortom left corner of panels (a), 
(b), (d), (e), (g) and (h) is given the domain average of the respective variables. 
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Figure 10 Top: 4-year annual mean snow water equivalent (mm) for the simulations W15 
(a) and W45 (b). Panel (c) presents the domain-averaged mean annuai cycle of 
snow water equivalent. Middle: 4-year annual mean runoff (mm/day) for the 
simulations Wl5 (d) and W45 (e). Panel (f) shows the domain-averaged mean 
annual cycle of runoff. Bortom: 4-year mean number of wet days (days/year) for 
the simulations W15 (g) and W45 (h). Panel (i) presents the domain-averaged 
mean annual cycle of the number of wet days. On the bottom left corner of 
panels (a), (b), (d), (e), (g) and (h) is given the domain average of the respective 
variables. 
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Figure 11	 Mean annua! cycle of precipitation (mm/day and mm) for mode! simulations 
(W 15 and W45) and observations. The curves represent the mean annual cycle of 
ail the 27 stations (for observations) or grid points (for mode! simulations) used 
in this study (see section 3.3). 
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Figure 12	 Observed and simulated (W15 and W45) distributions obtained with a I-h 
accumulation interval. (a) 4-year mean precipitation frequency (%), (b) 4-year 
mean number of weather stations (for observations) and grid points (for model), 
(c) 4-year mean precipitation intensity (mm/h), and (d) 4-year mean cumulative 
annual precipitation amount (mm). The x-axis represents the Hourly Precipitation 
Event (HPE) in units of mm/h, with the number on the axis being the threshold of 
a HPE class. The width of each HPE class is 0.2 mm/ho On each panel, the curves 
represent the mean distributions of ail the 27 weather stations (for observations) 
or grid points (for model simulations) used in this study (see section 3.3). 
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Figure 13	 Observed and simulated (W15 and W45) distributions obtained with a 24-h 
accumulation interval. (a) 4-year mean precipitation frequency (%), (b) 4-year 
mean number of weather stations (for observations) and grid points (for model), 
(c) 4-year mean precipitation intensity (mm/h), and (d) 4-year mean cumulative 
annual precipitation amount (mm). The x-axis represents the Daily Precipitation 
Event (DPE) in units of mm/day, with the number on the axis being the threshold 
of a DPE class. The width of each DPE class is 1 mm/day, except for the two 
first classes (0-0.2 mm/day and 0.2-1 mm/day). On each panel, the curves 
represent the mean distributions of ail the 27 weather stations (for observations) 
or grid points (for model simulations) used in this study (see section 3.3). 
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Figure 14 Topography (m) of the simulations El5 (a) and E45 (b). 
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Figure 15	 Top: 4-year annual mean convergence of humidity (mm/day) for the simulations 
E15 (a) and E45 (b). Panel (c) depicts the domain-averaged mean annual cycle of 
convergence of humidity. Middle: 4-year annual mean evapotranspiration 
(mmlday) for the simulations E15 (d) and E45 (e). Panel (f) presents the domain­
averaged mean annual cycle of evapotranspiration. Bottom: 4-year annual mean 
total precipitation rate (mmlday) for the simulations E 15 (g) and E45 (h). Panel 
(i) shows the domain-averaged mean annual cycle of total precipitation. On the 
bottom left corner of panels (a), (b), (d), (e), (g) and (h) is given the domain 
average of the respective variables. 
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Figure 16	 Top: 4-year annual mean sea level pressure (black contours; hPa) and screen 
temperature (oC) for the simulations E15 (a) and E45 (b). Panel (c) shows the 
domain-averaged mean annual cycle of screen temperature. Middle: 4-year 
annual mean liquid precipitation rate (mm/day) for the simulations E 15 (d) and 
E45 (e). Panel (f) presents the domain-averaged mean annual cycle of liquid 
precipitation. Bottom: 4-year annual mean solid precipitation rate (mm/day) for 
the simulations E15 (g) and E45 (h). Panel (i) depicts the domain-averaged mean 
annual cycle of solid precipitation. On the bottom left corner of panels (a), (b), 
(d), (e), (g) and (h) is given the domain average of the respective variables. 
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Figure 17 Top: 4-year annual mean snow water equivalent (mm) for the simulations El5 
(a) and E45 (b). Panel (c) presents the domain-averaged mean annual cycle of 
snow water equivalent. Middle: 4-year annual mean runoff (mm/day) for the 
simulations El5 (d) and E45 (e). Panel (f) shows thedomain-averaged mean 
annualcycle of runoff. Bottom: 4-year mean number of wet days (days/year) for 
the simulations E15 (g) and E45 (h). Panel (i) presents the domain-averaged 
mean annual cycle of the number of wet days. On the bottom left corner of 
panels (a), (b), (d), (e), (g) and (h) is given the domain average of the respective 
variables. 
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Figure 18	 Mean annual cycle of precipitation (mm/day and mm) for model simulations 
(E15 and E45) and observations. The curves represent the mean annual cycle of 
al! the 45 stations (for observations) or grid points (for model simulations) used 
in this study (see section 3.3). 
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Figure 19	 Observed and simulated (E15 and E45) distributions obtained with a I-h 
accumulation interval. (a) 4-year mean precipitation frequency (%), (b) 4-year 
mean number of weather stations (for observations) and grid points (for model), 
(c) 4-year mean precipitation intensity (mm/h), and (d) 4-year mean cumulative 
annual precipitation amount (mm). The x-axis represents the Hourly Precipitation 
Event (HPE) in units of mm/h, with the number on the axis being the threshold of 
a HPE class. The width of each HPE class is 0.2 mm/ho On each panel, the CUi-ves 
represent the mean distributions of aU the 45 weather stations (for observations) 
or grid points (for model simulations) used in this study (see section 3.3). 
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Figure 20	 Observed and simulated (E15 and E45) distributions obtained with a 24-h 
accumulation interval. (a) 4-year mean precipitation frequency (%), (b) 4-year 
mean number of weather stations (for observations) and grid points (for model), 
(c) 4-year mean precipitation intensity (mm/h), and (d) 4-year mean cumulative 
annual precipitation amount (mm). The x-axis represents the Oaily Precipitation 
Event (OPE) in units of mm/day, with the number on the axis being the threshold 
of a OPE class. The width of each OPE class is 1 mm/day, except for the two 
tirst classes (0-0.2 mm/day and 0.2-1 mm/day). On each panel, the cUI"Ves 
represent the mean distributions of all the 45 weather stations (for obsel"Vations) 
or grid points (for model simulations) used in this study (see section 3.3). 
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Figure 21	 Geographical positions and abbreviations of the 21 watersheds of interest on the 
45-km CRCM grid. Thanks to the Ouranos Consortium for the computer 
program used to create this figure. 
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Figure 22	 4~year annual mean (a) convergence of humidity (mm/day), (b) 
evapotranspiration (mm/day), (c) total precipitation (mm/day), (d) runoff 
(mm/day) over each of the 21 watersheds of interest. Values for the simulation 
E15 are in red while values for the simulation E45 are in bleu. Thanks to the 
Ouranos Consortium for the computer program used to create this figure. 
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Figure 23	 4-year annual mean (a) screen temperature (OC), (b) snow water equivalent 
(mm), (c) liquid precipitation (mm/day), (d) solid precipitation (mm/day) over 
each of the 21 watersheds of interest. Values for the simulation E15 are in red 
while values for the simulation E45 are in bleu. Thanks to the Ouranos 
Consortium for the computer program used to create this figure. 
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