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AVANT-PROPOS 

Cette thèse est composée de trois articles qui forment chacun un chapitre et qui ont 

été soumis ou acceptés dans des revues scientifiques avec comité de lectme. Pom chaque 

article, je suis le principal responsable de la récolte des données incluant l'échantillonnage au 

terrain, les analyses de laboratoire, l'interprétation des résultats et la rédaction. Les co-auteurs 

des articles ont contribué à la recherche par des échanges sur les résultats et interprétation de 

la recherche, l'aide à l'utilisation des logiciels ou encore en foumissant des données. 

Le premier article s'intitule «Quantifying spatial and temporal Holocene carbon 

accumulation in ombrotrophic peatlands of the Eastmain region, Quebec, Canada» et a été 

publié dans la revue Global Biogeochemical Cycles en mai 20 Il. Les co-auteurs de cet article 

sont Pierre-Luc Dallaire (ex-candidat à la maîtrise), Michelle Garneau et Yves Bergeron 

(respectivement directrice et codirecteur de recherche). Dans ce chapitre, les données issues 

de l'étude du terrain à l'aide du géoradar ont été fournies par Pierre-Luc Dallaire. 

Le deuxième article est sous presse dans la revue The Holocene et s'intitule 

«Holocene carbon accumulation rates from three ombrotrophic peatlands in boreal Quebec, 

Canada: impact of climate-driven ecohydrological change». Il est co-écrit par Michelle 

Garneau et Robert K. Booth. La contribution de Robert K. Booth (Lehigh University, États

Unis) a consisté à l'application d'une fonction transfert appliquée aux assemblages de 

thécamoebiens et permettant d'obtenir une reconstlllction de la nappe phréatique dans le 

temps. 

Le troisième article, «Did fires drive Holocene carbon sequestration In boreal 

ombrotrophic peatlands of eastem Canada?» a été soumis pour publication à la revue 

Quaternary Research en décembre 2010. Les co-autems sont Michelle Garneau, Yves 

Bergeron et Adam A. Ali (Université Montpellier II). Adam A. Ali a contribué à l'application 

du logiciel utilisé à l'interprétation des séquences de macrocharbons. 
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RÉSUMÉ 

Les tourbières nordiques accumulent du carbone (C) puisque dans ces milieux, la 
production de la matière organique excède sa décomposition, ce qui a résulté en un important 
réservoir de C représentant environ 30% du C présent dans les sols terrestres à l'échelle de la 
planète. Puisque l'accumulation du C durant l'Holocène a influencé le climat global, les 
projections des changements climatiques devraient tenir compte de cette dynamique du C 
dans ces écosystèmes. Des variations de l'accumulation du C sont généralement liées à une 
combinaison de facteurs géomorphologiques (topographic du bassin), climatiques, des 
processus écologiques autogènes et des évènements ponctuels de perturbation. 

À pmt les feux, qui représentent une émission directe de C vers l'atmosphère, des 
facteurs internes et externes influencent la dynamique du C dans les tourbières. Les variations 
hydrologiques constituent un facteur déterminant en ce qui a trait aux assemblages végétaux. 
De plus, la végétation influence l'hydrologie par les processus de transpiration et d'isolation 
de la tourbe. L'objectif principal de la thèse était de quantifier les stocks de C ainsi que les 
taux d'accumulation pour trois tourbières boréales situées dans le nord du Québec. Nous 
avons de plus estimé l'influence des changements de la végétation, de l'hydrologie et de 
l'intensité et de la fréquence des feux de tourbière sur les taux d'accumulation du C, en tenant 
compte du contexte climatique holocène du nord du Québec. 

Afin de quantifier le volume de tourbe de chaque tourbière, les profondeurs ont été 
mesurées par sondage manuel ainsi que par un géoradar (GPR). La stratigraphie de plusieurs 
carottes échantillolU1ées dans chaque tourbière a été analysée. L'interpolation spatiale des 
taux d'accumulation du C a permis une reconstitution de chaque écosystème. Les 
changements de la végétation et de la nappe phréatique durant l'Holocène ont été reconstruits 
à l'aide d'analyses de macrorestes végétaux et de thécamoebiens. Les régimes de feu ont été 
reconstruits à partir du dénombrement de charbons de bois macroscopiques. Les variations 
temporelles des assemblages végétaux, de la nappe phréatique et de l'intensité et de la 
fréquence des feux ont été comparées aux fluctuations de l'accumulation du C. 

Les trois tourbières étudiées ont accumulé du C à un taux moyen de 16,2 g m'2 an'I 
depuis l'âge maximum de 7510 cal BP, ce qui équivaut à une masse moyenne de C de 
91 kg m,2 et un réservoir total de C de 608 x 106 kg. Au début de leur développement, 
l'expansion latérale des tourbières a été rapide, tandis que l'accumulation du C à l'échelle de 
l'écosystème a culminé entre 5250 et 3500 cal BP. Malgré le fait que les taux d'accumulation 
verticale aient été généralement élevés dès le début du développement des tourbières, la 
topographie des bassins dans lesquels se sont développés ces écosystèmes a limité 
l'accumulation générale de la tourbe. 

Les résultats montrent que dans l'ensemble, les assemblages dominants de végétation 
ont varié dans le temps ainsi qu'entre chaque tourbière. Les périodes où les taux 
d'accumulation ont été élevés dans les tourbières de LLC et STE étaient dominées par une 
végétation de Sphagnum section Acutifolia, ainsi que par des nappes phréatiques 
intermédiaires entre 10-15 cm en dessous de la surface. Le ralentissement de l'accumulation 
du C durant l'Holocène récent a été associé aux fluctuations importantes de la nappe 
phréatique ainsi qu'à une diminution des sphaignes de la section Acutifolia. En effet, la 
présence de ces sphaignes limite les taux de décomposition en maintenant des conditions 
froides, acides, humides et faibles en nutriments, favorisant l'accumulation du C dans ces 
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tourbières. En général, les tourbières MOS et STE montrent une moins grande présence de 
sphaignes dans leurs sections centrales, probablement dû au contexte physiographique local 
des bassins dans lesquelles elles se sont développées en maintenant des conditions 
minérotrophes jusqu'à 5450 et 4410 cal BP, respectivement. 

Les analyses de macrocharbons contenus dans la tourbe ont permis d'identifier des 
intervalles moyens de feu de 883 ans durant l'Holocène, même si d'importantes variations 
spatiales et temporelles ont été reconstituées. La fréquence des feux et la production de 
charbons a augmenté après 2000 cal BP. Néanmoins, les analyses de régression montrent que 
les feux n'ont pas été un facteur déterminant dans l'accumulation du C. De plus, les 
changements du régime des feux de l'Holocène récent semblent avoir été indépendants des 
changements dans la végétation locale. 

Le refroidissement néoglaciaire de ~3000 cal BP pourrait bien avoir été le facteur 
principal ayant engendré ces changements environnementaux. Ce refroidissement climatique 
a probablement affecté de façon négative les taux d'accumulation du C. De plus, les périodes 
synchrones de nappe phréatique basse durant l'Holocène récent ont probablement été une des 
principales causes du changement de la végétation, dominée alors par des espèces ligneuses 
aux dépens des sphaignes, une tendance observée notamment à LLC. 

Afin d'obtenir un portrait précis de l'accumulation à long terme du C, les 
reconstructions futures devraient tenir compte des variations de l'expansion latérale des 
tourbières, puisque les masses de C et les taux de l'accumulation issus de carottes centrales 
surestiment les taux à l'échelle de l'écosystème. Les changements climatiques futurs 
pourraient impliquer des augmentations à la fois de la nappe phréatique et des températures, 
ce qui aurait probablement un effet positif sur la croissance des sphaignes, et donc sur 
l'accumulation du C dans les tourbières de la région. 

Mots clés: tourbière, carbone, Holocène, feu, paléoécologie 



ABSTRACT 

Northem peatlands sequester organic carbon CC) due to a long-term inbalance 
between primary production and decomposition of organic matter, which has resulted in a 
global1y important C stock, representing ~30% of global terrestrial soil C. As Holocene 
peatland C sequestration has influenced global climates, climate projections should take 
account of C dynamics in these ecosystems. Variations in net C sequestration are general1y 
driven by a combination of geomorphology Ce.g. basin topography), climate, disturbance Ce.g. 
fire) and autogenic processes. 

Except fire, which represents a direct emission of C to the atmosphere, autogenic and 
al10genic factors primarily influence C sequestration through ecosystem hydrology, while 
hydrology itself is a principal driving factor for local vegetation assemblages. Final1y, 
vegetation feeds back on hydrology by affecting transpiration and temperature of the 
underlying peat. We aimed to quantify total C stocks and C accumulation rates at the 
ecosystem scale in three pristine boreal peatlands in northern Quebec. In addition, we 
estimated the effect of changes in vegetation, hydrology and peatland fire regimes on C 
accumulation rates, taking into account the Holocene climatic context. 

Peatland depth was measured using manual probing and Ground-Penetrating Radar 
analyses. Multiple cores from each peatland were sampled and stratigraphical1y analyzed. 
Spatial interpolation of C accumulation patterns resulted in a reconstruction at the scale of 
each ecosystem. Holocene vegetation and water table heights were reconstructed by plant 
macrofossil and testate amoeba analyses and fire intensity and frequency by macroscopic 
charcoal, and trends were compared to changes in accumulation. 

The three studied peatlands have sequestered C at an average rate of 16.2 g m-2 y(1 
since a maximum age of7510 cal BP, resulting in a area-weighted mean C mass of91 kg m-2 

and a total C stock of 608 x 106 kg. Holocene patterns show important rates of lateral 
expansion in the early development stages of each ecosystem, while ecosystem-scale rates of 
C accumulation culminated between 5250 and 3500 cal BP. Although vertical accumulation 
rates were high shortly after peatland initiation, the limited areal extent of each ecosystem 
initial1y prevented an important C sink functioning. 

Dominant vegetation assemblages varied among cores and during the Holocene. 
Mid-Holocene episodes of important vertical accumulation in LLC and STE bog coindiced 
with dominant Sphagnum section Acutifolia cover and intermediate water table depths of 
around 10-15 cm below the surface, while the late-Holocene slowdown was associated with 
highly f1uctuating water tables and decreases in the presence of Sphagnum section Acutifolia. 
These Sphagna are likely a deterrninant factor in restricting decomposition rates by creating 
of cold, acidic and nutrient-poor conditions, and therefore positively influence C 
sequestration. MOS and STE peatlands generally show a less important Sphagnum cover in 
their central sections, probably due to the local geomorphological context of their basins, 
causing minerotrophic conditions to persist until 5450 and 4410 cal BP, respectively. 

Analyses of macroscopic charcoal resulted in a quantification of Holocene mean 
peatland fire intervals of 883 years, yet important spatial and temporal variability was 
registered. Peatland fire frequency and charcoal production general1y increased after 
2000 cal BP. However, regression analyses indicate that fires have not been a driving factor 
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for C sequestration. Moreover, we showed that the late-Holocene shifts in fire regime were 
apparently independent of changes in vegetation assemblages. 

Neoglacial cooling after ~3000 cal BP may have been a principal factor in the 
reconstructed envirorunental changes. This climatic change likely negatively affected C 
accumulation rates. In addition, replicate centennial- to decadal-scale low peatland water 
table events during the Neoglacial have likely been a principal cause for the variations in 
vegetation assemblages, especially encountered in LLC bog, showing increasing presence of 
ligneous species. 

To obtain a solid history of long-term C sequestration, reconstructions should take 
account of variations in lateral expansion of peatlands, as simple vertical rates from central 
records overestimate both C mass and C sequestration rates at the scale of the ecosystem. 
Future climate change may result in higher water tables and temperatures, which are likely to 
positively influence Sphagnum growth and thus C sequestration in this region's peatlands, 
while lower water tables and high temperatures may result in more important decomposition 
as weil as peatland burning, and thus a reduced C sink function. 

Keywords: peatland, carbon, Holocene, fire, paleoecology 



INTRODUCTION 

ln the light of present and future changes in c1imate (IPCC, 2007), there is a general 

interest to improve the knowledge on links between c1imate and the diverse global 

ecosystems. Whereas past c1imates have been largely responsible for the present-day global 

distribution of vegetation zones, individual ecosystems provide feedback on c1imate through 

biogeochemical cyc1ing (e.g. the emission of greenbouse gases). Peatland development, for 

instance, has resulted in a global cooling effect since the onset of the Holocene around 

Il 500 years before present (calendar years BP) as these ecosystems have actively 

sequestered carbon (C) through the uptake of carbon dioxide (C02) from the atmosphere 

(Frolking and Roulet, 2007). In order to better estimate future c1imate regimes, the 

understanding of the direction and intensity of ecosystem fecdback on c1imate change is 

essential. One way to improve the knowledge on links between c1imate and ecosystems is 

through paleoclimatic and paleoecological studies. Assuming that processes and mechanisms 

are uniform in time, past ecosystem sensitivity and rates of change may bc projected through 

future scenarios. Past variations are generally reconstructed using tracers or 'proxies', 

supposed solid indicators of past conditions. 

In this thesis, variations in peatland development and C sequestration in a northern 

region of eastern Canada during the Holocene were studied. Considering C dynamics, 

peatlands are highly important ecosystems, defined by an accumulation of dead plant material 

ofat least 30-50 cm in thickness (Charman, 2002) but possibly attaining 15 m (Clymo, 1983). 

Thick peat deposits, covering large surfaces in the northern hemisphere, thus contain 

enormous amounts of organic C, one of the constituents of CO2 and methane (C~). Besides 

important sinks of C, peatlands are highly sensitive to variations in envirorunental conditions. 

Shifts in the delicate balance of primary production and decomposition may thus trigger 

important greenhouse gas disequilibrium. As past changes in c1imate are reasonably well 

quantified for the mid- and late-Holocene, studying ecosystem variations during this period 

may be a valuable key to future c1imate and ecosystem behaviour. 

ln nOlthern regions, peatland development generally started after the Last Glacial 

Maximum with global formation culminating around Il 000-9000 years before present (BP), 
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resulting in a total northern peatland cover that presently attains ~4.0 million km2 

(MacDonald et al., 2006 ; Yu et al., 2010). These northern peatlands are generally 

concentrated in cool-humid temperate, and cold-humid/cold-dry boreal and (sub)arctic 

regions, persisting in regions with mean annual precipitation between 100 mm and 3000 mm 

and a mean annual temperature between -18°C and 8°C (Yu, Beilman and Jones, 2009). The 

global northem peatland C stock presently attains -547 Pg (Yu et al., 2010), representing 

about one-third of the global soil C pool. Holocene mean C accumulation rates of northero 

peatlands vary globally between 8.4 g m-2 yr" and 38.0 g m-2 
yr-I (Yu, Beilman and Jones, 

2009). In (north)westem Canada, where extensive boreal peatlands are present, mean C mass 

varies between 118-131 kg m-2 (Beilman et al., 2008 ; Vitt et al., 2000), while Holocene net 

C accumulation rates have been reported of 13.6-34.9 g m-2 yr" (Kuhry and Vitt, 1996; Yu et 

al., 2003). In eastern Canada, peatland C accumulation data is much more rare, with averages 

roughly between 19-25 g m-2 yr" from southem boreal and southem, more temperate peatland 

(Gorham, Janssens and Glaser, 2003; Turunen et al., 2004). 

1. Peat accumulation dynamics 

Peat accumulation generally initiates in topographie depressions with poor drainage. 

As peat accumulates vertically, the peatland ecosystem may expand consequently in a lateral 

way by paludification. A peat deposit is composed of a surface layer of living vegetation 

resting on litter that gradually advances to a higher state of decomposition downward and 

becomes submerged by the water table. Living vegetation assemblages can be spatially 

highly variable as a result of important variation in hydrological conditions. Nutrient 

availability and water table level may be the main factors determining plant composition 

distribution at the ecosystem scale. Sphagnum moss is recognized as a key factor in peat 

accumulation, as it actively acidifies its environment, while providing cold and nutrient-poor 

conditions that highly limit establishment of other plants (van Breemen, 1995). As peat 

accumulates, Iitter from the surface becomes part of the upper, (temporally) aerated layer, or 

acrotelm, which is eventually submerged and integrated into the anoxie catotelm. 
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Decomposition rates are generally high in the acrotelm, attaining a maximum near the 

acrotelm-catotelm boundary and get highly restricted in the catotelm (Belyea, 1996). 

The large northern peatland C stock has been accumulated as primary productivity of 

the living vegetation generally exceeded the decomposition of underlying dead plant material 

over millennial timescales. Low decay rates are maintained by cold, anoxic conditions after 

submergence, a high acidity and a generally decay-resistant vegetation. Peat accumulation 

rates are thus directly linked to the water balance, or, more specifically, to the height of the 

water table relative to the surface, witb shorter residence times in the acrotelm positively 

influencing net peat accumulation (Yu et al., 2003). Although generally decay-resistant, plant 

types differ in decomposibility, with species found on dry surfaces (i.e. hummocks) being 

generally more resistant than wet-Ioving species found in hollows (Belyea, 1996). Primary 

production varies with roughly the same factors that determine decomposition processes, 

although different species react differently to changes in growth conditions (Thormann and 

Bayley, 1997). 

As primai)' production and decomposition rates are highly variable, the resulting net 

rates of C sequestration fluctuate at diverse time- and spatial scales. Seasonal to annual 

variability may be linked to variations in amounts and timing of precipitation and 

evapotranspiration during the growing-season (Waddington and Roulet, 1999), whereas on 

decadal to millennial scales, broader climatic aspects and water-table driven vegetation shifts 

may be more important (Belyea and Malmer, 2004). Factors influencing peatland dynamics 

may be internally-driven (autogenic) or extemally-driven (allogenic). Autogenic influence on 

peat accumulation may be primarily represented by relative changes in surface height and 

(micro)topography. Resulting from long-term changes, surface water chemistry varies, as the 

input of nutrients becomes limited as soon as peatland surface elevation surpasses its 

surroundings. During this process, peatland water tables become isolated from regional 

groundwater and therefore dependent on meteoric water. This shift implies changes from 

minerotrophic to ombrotrophic conditions and is generally referred to as the fen-bog 

transition (e.g. Hughes, 2000). Although this process is essentially autogenous, allogenic 

ch~nge may determine the timing of the transition (Hughes and Dumayne-Peaty, 2002). 

Furthermore, changing surface topography as peat accumulates influences drainage directions 

and flow rates, thereby influencing the ecosystem sensitivity to variations in precipitation. 
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Peatland microtopographical features as hummocks and hollows may develop as an autogenic 

process. Although part of a complex process, patterning is likely generated by variations in 

vegetation and nutrient factors and important feedback mechanisms (Eppinga et al., 2008). 

Allogenic forcing may be subdivided in geological/geomorphological, climatic and 

disturbance factors. Peatland expansion is primarily related to local basin morphology as the 

minerai composition and the slope of the basin determine the potential for lateral 

accumulation of peat (Korhola, 1994 ; Maki la, 1997). In many regions, climate may be a 

principal agent as peat accumulating ecosystems are globally concentrated in regions with 

cool and/or humid conditions. Long-term changes in temperature and/or precipitation alter 

the peatland moisture balance (Barber et al., 1994), yet the sensitivity of the ecosystem to 

climatic change may vary spatially and temporally. In other regions, sea-Ievel change or 

isostatic uplift may influence peatland development, often through erosion or changes in 

base-\evel that define the peatland water table mound (e.g. Bhiry, Garneau and Filion, 2000 ; 

Glaser et al., 2004). Finally, disturbance factors as fire may be highly important in peatland 

dynamics. Peatland fire is an important, natural factor in forested peatlands of the drier 

regions within the boreal biome, which may burn as often as upland forest fires under dry 

surface conditions (Turetsky et al., 2004). However, open peatlands, lacking an important 

tree cover, may act as effective firebreaks (Hellberg, Niklasson and Granstrom, 2004). 

2. Carbon accumulation patterns 

A mass of consolidated ombrotrophic peat is typically composed of 85-95% water 

and 5-15% organic matter, with possibly a slight minerai fraction. Typically, organic C 

constitutes around 50% of organic matter mass (Bei Iman et al., 2009 ; Borren, Bleuten and 

Lapshina, 2004; Gorham, 1991 ; Turunen et al., 2001), composed offossil plant debris, with 

Sphagnum peat generally showing slightly lower C contents than ligneous and herbaceous 

peat (Beilman et al., 2009 ; Borren, Bleuten and Lapshina, 2004). However, extensive C 

content quantification over a large region indicated that C contents are largely independent of 

peat deposit age (BeiIman et al., 2009). Once the amount of sequestered C is deterrnined and 

a chronology is established, rates of apparent net C accumulation can be calculated by 
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dividing the total C mass accumulated by the duration of accumulation (Clymo, Turunen and 

Tolonen, 1998). As these rates do not take account of long-term peat decomposition, deeper 

(and thus older) peat accumulation rates are normally underestimated relative to those of 

shallower deposits, even though decay in the catotelm is usually highly restricted (Clymo, 

1984). Nevertheless, decreasing accumulation rates with decreasing peat age are cornmonly 

found, perhaps more important in continental climatic conditions (e.g. Beaulieu-Audy et al., 

2009; Bonen, Bleuten and Lapshina, 2004 ; Vardy et al., 2000 ; Vitt et al., 2000 ; Yu, 2006 ; 

Yu et al., 2003). Hence, any important allogenic influence may weil overrule the effect of 

autogenic continuous catotelm decay. Globally, peatland C sequestration is linearly related to 

incident photosynthetically active radiation (PAR), showing a slightly weaker relationship 

with growing degree days above zero over millennial timescales (Charman et al., submitted). 

PAR, determined primarily by latitude and cloudiness, directly influences primaI)' 

productivity, and thus long-term peatland C sequestration may be driven to a greater extent 

by climate-driven variations in primal)' production than decomposition. Besides climate, 

peatland fires may cause an instant release ofC by combustion that may attain 2.5-3.2 kg m-z 

per fire event (Pitkanen, Turunen and Tolonen, 1999 ; Turetsky et al., 2002). In addition, a 

postfire net C loss to the atmosphere may last for at least a decade until a local recovery of 

shrubs and bryophytes (Wieder et al., 2009). Nevertheless, wildfire frequency in boreal 

peatlands is highly variable, e.g. from sites with no registered local fire since the mid

Holocene (e.g. Slave Lake; Kuhry, 1994) to a fire every 150 years (Zoltai et al., 1998). 

Differences may be explained by regional climate, upland forest landscape connectivity and 

peatland hydrology and vegetation that each influence fire dynamics on different spatial and 

temporal scales. 

3. Peatlands as archives of environmental change 

Besides important stocks of organic C, peatlands potentially constitute sensitive high

resolution archives of environmental conditions (Aaby, 1976 ; Barber et al., 1994), as 

changes in vegetation are closely linked to changes in the water balance. Onder ombrotrophic 

conditions, the water balance is directly linked to the balance between precipitation and 
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evapotranspiration. More precisely, water tables are driven by variations in the summer water 

deticit which is most strongly correlated with precipitation (Booth, 2010 ; Charman et al., 

2009), although the relative importance of precipitation and temperature may vary with 

peatland type and setting or average moisture conditions (Booth, 2010 ; Charman, 2007). 

Thus, ombrotrophic peatlands incorporate a historical record of climatic variability. Peat 

stratigraphies generally allow for the use of multiple proxies that have a link to past water 

table depth (WTD) (Chambers and Charman, 2004). As vegetation types show typical optima 

in WTD, changes in WTD are reflected by variations in plant type abundance (Dupont, 

1986 ; Bubier, Moore and Juggins, 1995), depending on the tolerance of that plant type. Peat 

botanical composition reconstructions (fragments >100-150 flm) or plant macrofossil 

analysis, provide an image of past local vegetation. This technique allows for qualitative 

reconstructions of WTD, however, quantitative data can be obtained by analyses of testate 

amoeba assemblages (Wamer and Charman, 1994 ; Woodland, Charman and Sims, 1998). 

The tests of these micro-organisms, which exclusively live in oxic conditions near the 

surface, are generally well-preserved and highly abundant in Sphagnum peat. As vegetation 

types, testate amoebae assemblages are primarily determined by the depth to the water table 

yet these react more rapidly to changes in WTD than vegetation. This rapid response provides 

the opportunity to link each taxon to an accurate optimal WTD using modern training sets. As 

a result, subcontinental-scale transfer functions have been established that obtain a WTD for 

any (paleo-)testate amoeba assemblage (e.g. Booth, 2008 ; Charman, Blundell and 

ACCRüTELM members, 2007). 

The analysis of macroscopic charcoal has been used to reconstruct local tire in 

peatlands. Nevertheless, charcoa1 fragment dispersal by wind during tire and redeposition 

after tire may be important, and thus charcoal stratigraphies should be interpreted with 

caution as they may include tires from adjacent upland forest stands (Lynch, Clark and 

Stocks, 2004). Finally, peatlands are excellent environmental archives due to the abundance 

of well-preserved organic matter that facilitates radiocarbon C4C) accelerator mass 

spectrometry dating (van Geel and Mook, 1989). 

Paleoecological research results in reconstructions of environmental change for one 

or more records. At the core level, multiproxy research has the advantage that reconstructions 

from different biological, physical and geochemical proxies can be compared (Chambers and 
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Charman, 2004). Once an envirorunental history determined for a single core, replicate cores 

from the same or other peatlands are essential to identifty driving factors. Corresponding 

reconstructions from non-interacting cores indicate a large-scale, external driving factor, e.g. 

climate change, whereas important variability in reconstructions implies an important role of 

autogenic or random, local forcing. For instance, significant differences in ecosystem 

characteristics (e.g. peat depth, botanical composition) of two peatlands that are exposed to 

similar climatic conditions indicate a highly important role for local factors (e.g. basin 

topography or exposure to fire disturbance). 

4. Peatlands in Quebec 

Peatlands coyer 9-12% of the Quebec territory (Payette and Rochefort, 2001). The 

province of Quebec ranges roughly from 45-62°N latitude, with a mean annual temperature 

varying between 5°C and -8°C and mean annual precipitation of 300 mm to 1300 mm, with 

both important north-south and east-west gradients. Due to this wide climatic range, peatland 

types are highly variable. The southern part of Quebec (45-54°N) is cbaracterized by semi

and unforested raised ombrotrophic peatlands yet minerotrophic peatlands can be found as 

weIl. The northern part of the James Bay region near 54°N constitutes the biogeographical 

limit of ombrotrophic peatlands, as Sphagnum growth becomes limited due to cold 

conditions. The subarctic region, from the soutbern limit of the Hudson Bay northwards, is 

characterized by palsa (plateau) peatlands (Payette and Rochefort, 2001). 

Although millennial- to decadal-scale reconstructions of deforestation and fire 

frequency, with sorne linkages to climate, are numerous in boreal Quebec (e.g. Bergeron and 

Archambault, 1993 ; Carcaillet et al., 2001 ; Filion, 1984 ; Payette, Gauthier and Grenier, 

1986), no research on peatland C sequestration patterns had been performed before the 

DECLIQUE research program started at Université du Québec à Montréal. Holocene 

peatland development has been studied in the forest-tundra (Bhiry, Payette and Robert, 2007) 

and the lichen woodland biomes (Beaulieu-Audy et al., 2009), whereas peatland development 

and C accumulation rates are available from the Eastmain region in western Quebec for the 

late-Holocene (Loisel and Garneau, 2010). 
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The Eastmain region is characterized by frequent and large-surface burning with a 

mean frequency of a tire each 90-100 years (Mansuy et al., 20 10 ; Payette et al., 1989). This 

optimum in eastern Canadian forest tire regimes is probably the result of a combination of 

relatively low-humidity climatic conditions and the dominance of a closed-crown coniferous 

forest that favours tire continuity. Due to an important occurrence offorest tires, this region's 

peatland C sequestration may have been highly influenced by local burning during the 

Holocene. 

Eastern Canada Holocene climate history bas been characterized by a mid-Holocene 

thermal maximum (-4000 cal BP; Kaufman et al., 2004.; Viau et al., 2006). This warm 

period was delayed relative to other regions of boreal North America due to the proximity of 

the residual Laurentide Ice Sheet. A consecutive cooler period, referred to as the Neoglacial, 

possibly lasted for several millennia that caused large-scale forest cover regression and 

induced permafrost occurrence in subarctic peatlands (Bhiry, Payette and Robert, 2007 ; 

Kerwin et al., 2004 ; Payette and Gagnon, 1985). 

5. Aims 

The Eastmain region occupies a particular position in the northern boreal climate 

domain, being located toward the cold-wet extreme that is poorly represented by the currently 

available data on C sequestration (Yu, Beilman and Jones, 2009). ln addition, knowledge on 

peatland tire dynamics is largely based on reconstructions fi'om central and western boreal 

Canada. In eastern Canada, however, differential past climate regimes may have caused 

different historical burning patterns. In order to obtain a better image of the link between 

peatland tire and C dynamics and explore the gradient of peatland types susceptible to 

burIÙng, reconstructions from open peatlands as found in the Eastmain region are essential. 

Hence, this thesis focuses on the relationship between C sequestration and tire regimes. As 

tire and C sequestration are expected to be closely linked to vegetation dynamics and water 

table heights within the regional climatic context, these aspects were included in the project 

as weil. This study encompasses data from multiple cores sampled in three peatlands to cover 
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possible spatial variability in the reconstructions and to be able to identify driving factors and 

their respective spatial scale. 

Specifically, the aims of this thesis include: 

1)	 A quantification of total amounts of C sequestered in ombrotrophic peatlands in the 

Eastmain region of nOlthern Quebec, Canada. As quantifications of peat C stock at 

the ecosystem scale and mean C mass at the scale of the region are globally rare, and 

even absent for eastern Canada, these data will provide more accurate estimations of 

northern Quebec C stocks; 

2)	 A reconstruction of variations in Holocene C accumulation rates in these peatlands, 

inc1uding both temporal and spatial variations in C sequestration for peatlands 

individually. An accurate quantification of variations in vertical accumulation and 

lateral expansion will show the respective importance of autogenic and allogenic 

factors; 

3)	 The establishment of the links between reconstructed C accumulation rates and past 

variations in local vegetation and water table depth. As water table depths may be 

linked to c1imate variations, Holocene hydroc1imatic variations are quantified; 

4)	 The establishment of the link between reconstructed C accumulation rates and past 

peatland fire regimes. Moreover, driving factors and scales for past fire patterns are 

identified. 

At large, the mechanisms derived from the results of this thesis will contribute to 

more accurate scenarios of future environmental change (e.g. c1imate and fire) on C 

sequestration in regions with comparable environmental settings. 

Quantification of total C sequestered in Eastmain region peatlands and 

reconstructions of past accumulation rates will be discussed in Chapter 1. For each of three 

peatlands, areal extent, surface topography, basin morphology and peat thickness were 

measured and linked to mean C density values to obtain an ecosystem C stock. Chronologies 

from multiple cores from each peatland were merged to create an ecosystem-specific age
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depth mode!. These models were used to infer patterns of vertical peat accumulation and 

lateral expansion. 

The influence of core-scale ecohydrological change on C accumulation rates is the 

principal subject of Chapter 2. Reconstructions of C accumulation rates and ecohydrology 

were obtained from cores sampled in the deepest section of each peatland. Holocene rates of 

C accumulation were quantified by age-depth modelling and peat C density analyses. 

Ecohydrological changes were reconstructed by plant macrofossil and testate amoeba 

analyses. A transfer function was applied to the past amoeba assemblages to infer Holocene 

fluctuations in local water table. 

Chapter 3 focuses on possible linkages between bistorical peatland fire and C 

sequestration at the core scale. Both C accumulation rates and fire records were quantified 

from lateral cores. Past fire events were identified from stratigraphie, macroscopic charcoal 

and a threshold was used to separate local from regional fires. Long-term variations in both 

fire intensity or severity and fire frequency were related to past C accumulation rates. 

Finally, results are briefly summarized in the conclusion, and the importance of 

factors considering C accumulation dynamics are discussed with respect ta the spatial and 

temporal scales considered. 
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Résumé 

Les tourbières nordiques constituent des réservoirs importants de carbone (C) 
organique. La dynamique du C dans ces tourbières influence de façon importante la 
concentration atmosphérique des gaz à effet de serre et devrait donc être considérée dans 
l'étude des changements climatiques futms. La quantification des taux d'accumulation du C 
dans les tourbières est souvent basée sur des résultats d'analyse d'une carotte centrale. 
Cependant, les résultats de ces carottes centrales peuvent surestimer les taux d'accumulation 
s'ils sont extrapolés à l'échelle de l'écosystème. Nous proposons ici une reconstruction de 
l'accumulation du C à l'échelle de la tourbière pom trois tourbières ombrotrophes du Québec 
boréal à l'aide de plusieurs carottes prélevées dans chacune d'elles. 

Dans cette étude, les stocks de C ainsi que les variations temporelles en taux 
d'accumulation ont été quantifiés. De multiples datations au 14C sur plusieurs carottes par 
tourbière ont servi à la création de modèles d'accumulation représentatifs de chaque 
écosystème. 

Le début de l'accumulation de tombe date d'environ 7500 cal BP, soit peu de temps 
après la déglaciation de la région. L'accumulation verticale de tourbe a diminué au cours de 
l'Holocène, tandis que l'expansion a été rapide dmant les premiers millénaires pour ensuite 
ralentir vers l'Holocène moyen. L'accumulation du C à l'échelle de chaque écosystème a 
culminé entre 5250 et 3500 cal BP, tandis que le taux moyen holocène est de 16,2 g m-z an,l. 

Les tourbières de la région d'Eastmain semblent constituer des puits de C plus 
modestes que celles de l'Alaska, de l'ouest canadien ou de l'ouest de la Sibérie. Cependant, 
des différences méthodologiques empêchent une juste comparaison de ces accumulations. La 
période caractérisée par la plus grande quantité de C rajoutée à l'écosystème correspond à 
une période de ralentissement à la fois de l'expansion latérale et de l'accumulation verticale. 
Ce ralentissement de l'accumulation du C à l'Holocène récent a été attribué à des facteurs 
autogènes et allogènes. Les diminutions de l'accumulation de C dans les tourbières étudiées 
pourraient avoir été causées par un abaissement autogène des nappes phréatiques ou encore 
par le refroidissement du Néoglaciaire. Les résultats de cette étude montrent que les 
reconstructions de l'expansion de la tombière à l'Holocène sont essentielles afin d'obtenir 
des quantifications précises de l'accumulation à l'échelle des tourbières. 
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Abstract 

Northern peatlands represent important stocks of organic carbon (C). Peatland C 
dynamics have the potential to influence atmospheric greenhouse gas concentrations and are 
therefore of interest conceming future climate change. Quantification of Holocene variations 
in peat C accumulation rates is often based on a single, deep core. However, deep cores may 
overestimate accumulation rates when extrapolated to the ecosystem scale. We propose a 
reconstruction of C sequestration patterns based on multiple cores from three ombrotrophic 
peatlands in boreal Quebec, Canada. 

Both total C accumulation and temporal variations herein were quantified. 
Radiocarbon-dated stratigraphies from different sections resulted in peatland-specific age
depth models. 

Peatland initiation stm1ed rapidly after deglaciation around 7500 cal BP. Vel1ical 
accumulation slowed down in the course of the Holocene, whereas lateral expansion was 
rapid in the early stages but slowed down near mid-Holocene. Total C accumulation showed 
maximum rates between 5250 and 3500 cal BP with a regional mean Holocene apparent rate 
of 16.2 g m-2 y(l. 

The Eastmain peatlands have been modest sinks of organic C compared to those of 
Alaska, western Canada and western Siberia, although differences in calculation methods 
hamper direct comparisons. Considering within-peatland dynamics, maximum total C 
sequestration coincided with a period of slowing down in both lateral expansion and vertical 
accumulation. Late-Holocene diminishing peatland C sink functions have been attributed to 
autogenic as weB as allogenic factors. Height-induced surface drying and/or Neoglacial 
cooling effects may have forced the slowing down of C sequestration in the studied bogs. 
Results further show that, in order to obtain an accurate quantification of past C 
sequestration, reconstructions of peatland expansion are essential. 
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1.1. Introduction 

At a local scale, boreal peatlands generally act as small sinks of carbon dioxide (C02) 

and large sources of methane (CH4), while on a global scale they constitute a net sink of 

organic carbon (C) (Roulet, 2000). Greenhouse gas fluxes between peatlands and the 

atmosphere have the potential to influence climate radiative forcing on millennial timescales 

(Frolking and Roulet, 2007) and thus peatland C dynamics are of interest considering their 

feedback on atmospheric global warming. Peatland influence on atmospheric composition is 

illustrated by the fact that global Holocene trends in peatland initiation and expansion are 

linked with atmospheric CO2 and CI--4 concentration (Korhola et al., 2010; MacDonald et al., 

2006). 

Carbon accumulates as organic detritus under waterlogged conditions when the rate 

of biomass production exceeds its decomposition (Turunen et al., 2002), with both processes 

showing variations on seasonal to millennial timescales (Beilman et al., 2009 ; Borren, 

Bleuten and Lapshina, 2004 ; Bubier et al., 2003 ; Dorrepaal et al., 2009 ; Schimel et al., 

2001). The global northern peatland store has been accumulated notably for 12 000-8000 

years (MacDonald et al., 2006), resulting in a C stock of ~547 Pg covering an area of 3

4 x 106 km2 (Yu et al., 2010). 

Global peat accumulation patterns vary with latitude (Beilman et al., 2009), 

permafrost presence (Turetsky et al., 2007 ; Beilman et al., 2009), precipitation (Gorham, 

Janssens and Glaser, 2003), continentality (Tolonen and Turunen, 1996), peatland age and 

depth (Belyea and Clymo, 2001 ; Clymo, 1984), fire events (Pitkanen, Turunen and Tolonen, 

1999 ; Turetsky et al., 2002), peatland type (Turunen et al., 2002) and surface 

microtopography presence (Eppinga et al., 2009 ; Malmer and Wallén, 1999 ; Swanson, 

2007). Hence, the characterization of regions with important peatland cover is essential to 

accurately quantify the global peat C store and estimate future greenhouse gas budgets. 

Considering accumulation gradients at a local scale, autogenic changes in hydrology 

and differential peat growth can be linked to changes in peatland surface topography (Belyea 

and Baird, 2006), while spatial variations in the C balance on short and long timescales may 

be considerable (Malmer and Wallén, 1999; Waddington and Roulet, 1999). In topographie 

depressions with a uniform shape, peat accumulation is typically initiated in the lowest 
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section which implies that subsequent peat accumulates both vertically and laterally. Hence, 

the age of peat inception generally decreases toward the basin margins and thicker peat 

deposits are located near the center of the basin. In most peatland types, margins differ 

hydrologically and botanically from the central parts. Margins are often characterized by a 

denser tree and shrub cover as water tables are lower and more sensitive to fluctuations 

(Bauer et al., 2009 ; Bubier, 1991). 

Current variable estimations of the northern peatland C stock are the result of 

differing assumptions on global average peat depth (Gorham, 1991) and bulk density 

(Turunen et al., 2002) or inaccurate spatial inventories and volume models (Beilman et al., 

2008 ; Vitt et al., 2000). Apparent rates of C accumulation (expressed in g m-2 y(l) calculated 

from a single, central core within a peatland may result in estimations of total C sequestration 

that inadequately represent the entire system (Turunen et al., 2002). One reason for central 

coring sites might be a preference for long historical records of peat development. However, 

this record might poorly represent the entire ecosystem as spatial variability can not be 

quantified. POOl' temporal correlation between vertical and lateral peat accumulation within a 

single bog has been found repeatedly (e.g. Korhola, 1994 ; Korhola et al., 2010). Hence, 

more accurate C accumulation rates can be obtained using patterns from various downcore 

sections taking account of variations in depth and minimal ages of peat inception, especially 

if local basin topography is complex. 

Spatial peat accumulation reconstructions and quantifications of C sequestration have 

been performed in Scandinavia (Korhola, 1994 ; Korhola et al., 1996 ; Miikilii, 1997 ; Miikilii 

and Moisanen, 2007), Scotland (Chapman et al., 2009), western Canada (Bauer, Gignac and 

Vitt, 2003 ; Beilman et al., 2008) and western Siberia (Borren and Bleuten, 2006 ; Sheng et 

al., 2004 ; Turunen et al., 2001). Despite an important coverage on the Quebec territory (9

12%, Payette and Rochefort, 2001), C sequestration data from boreal peatlands east of 

Hudson Bay and James Bay is limited. Presently, C accumulation rates have been quantified 

by Loisel and Garneau (2010) from four one-meter long cores collected in two of the 

Eastmain peatlands presented here. Peat and C accumulation rates have also been determined 

from cool-continental and maritime bogs in the southern regions of eastern Canada (Turunen 

et al., 2004) as weil as from ombrotrophic peatlands in the mixedwood forest biome 

(Gorham, Janssens and Glaser, 2003 ; Turunen et al., 2004). Beaulieu-Audy et al. (2009) 
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calculated vertical peat accumulation rates in boreal peatlands from the La Grande Rivière 

region, northern Quebec, but did not provide quantitative data on the rate of C accumulation. 

In this paper we present reconstructions of peat accumulation and long-term C 

sequestration patterns from three pristine ombrotrophic peatlands in the Eastmain region of 

northeastern Canada (51°50' -52°20'NI75°00' -76°00'W). The main objective is to quantify 

regional Holocene C accumulation in terms of C mass, density and accumulation rates. A 

secondary objective consists in increasing the knowledge on C sequestration variability 

within and between peatlands from the same region and to compare our results with data 

from western NOIth America and Eurasia. 

Previous research on lateral and vertical peat accumulation has shown rapid lateral 

expansion of peatland ecosystems in the early stages, with a slowdown in the course of their 

development (Makila, 1997 ; Makila and Moisanen, 2007), although smaller-scale variations 

in peatland expansion rates may be primarily controlled by basin topography (Korhola, 

1994). In accordance, we expect slowing down of peatland expansion in the Eastmain region 

toward the late-Holocene. However, global tendencies in vertical peat accumulation may be 

less uniform. Peatlands in oceanic settings typically show concave age-depth models, 

resulting principally from the effects of constant productivity and continuous C loss in the 

catotelm as indicated by Clymo (1984). In contrast, continental bogs often show convex age

depth models (Kuhry and Vitt, 1996 ; Turunen et al., 2001), implying long-term slowdown of 

accumulation during peatland development (Yu et al., 2003). This trend may be driven by 

autogenic or allogenic influence or a combination of both (Belyea and Malmer, 2004). As the 

Eastmain region has neither an oceanic nor a strictly continental setting, we hypothesize that 

the studied peatlands show approximate linear vertical accumulation. 

Holocene C accumulation rates oftwo boreal peatlands located ~400 km south of our 

study region were quantified at approximately 21.9 and 29.4 g m'2 y(l (Gorham, Janssens and 

Glaser, 2003). As global C sequestration rate optima are associated with a mean annual 

temperature (MAT) of around O°C (Beilman et al., 2009) or O°C to 2.soC (Yu, Beilman and 

Jones, 2009), potential rates are likely to decrease northward of ~500N in Quebec. The 

Salym-Yugan peatland complex in western Siberia is subjected to MAT and mean annual 

precipitation (MAP) comparable to the Eastmain region; showing a mean rate of 17.2 g m' 
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2 y(1 (Turunen et al., 2001). Based on these data, we hypothesize that Holocene C 

accumulation rates of the Eastmain region peatlands might average 15-25 g m o2 y(l. 

1.2. Study region 

The three studied peatlands Lac Le Caron (LLC), Mosaik (MOS) and Sterne (STE) 

are located in the Eastmain river watershed in the boreal forest region of the James Bay 

lowlands of Quebec (Fig. 1.1). Regional MAT is -2.1 ± 0.2°C (January: -22.0 ± 0.5°C; July: 

14.6 ± 0.2°C) and MAP is 735 ± 12 mm, of which about one third falls as snow (Hutchinson 

et al., 2009). The region is characterized by Proterozoic bedrock and glacial and postglacial 

landforms as drumlins and eskers. Deglaciation occurred between 8500 and 7900 cal BP 

(Dyke, Moore and Robertson, 2003) and was followed by the Tyrrell Sea invasion that 

caused the deposition of marine and deltaic sediments in the western part of the territory. The 

regional upland vegetation corresponds to the lirnit of the Picea mariana-feathermoss and 

Picea mariana-lichen bioclimatic region (Saucier et al., 1998). Peatlands cover ~7% of the 

Eastmain region varying from treed bogs to wet fens (Grenier et al., 2008). The studied 

peatlands are classified as pristine (eccentric) raised bogs characterized by a well-developed 

hummock-hollow pattemed surface with deep pools (~2 m) in their central sections (Loisel 

and Garneau, 2010). Peat accumulation started by paludification as peat types identified at 

the base of the cores did not reveal past infilling ponds. 

Lac Le Caron bog (LLC) (52°17' 15"NI75°50'21"W; 2.24 !<m2 area) is located in the 

northwestern part of the region (Fig. 1.1). The western part of the basin is bordered by a 

steep, ~40 m-high escarpment while the eastern limit is relatively fiat with a stream flowing 

southward. The center of LLC bog is treeless with wet hollows and large pools. Sedges are 

more abundant than in the surrounding ribbed section. The bog margins are forested and 

dominated by Picea mariana. A fen characterized by a near-surface water depth is present 

next to the pool sections and sparse Larix laricina giow occasionally on lawns. Drainage is 

directed toward the eastern section of the system. The minerai basin sediments are highly 

variable from fine sand to silt. 
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Mosaik bog (MOS) (5I Û 58'55"N/75û 24'ü6"W; 2.67 km2 area) is located 45 km 

southeast of LLC bog (Fig. 1.1), where topography is less pronounced. The center of this 

peatland is characterized by an important presence of wet hollows and numerous large pools 

with outcrops present in the northern section. Bog margins are colonized by Pieea mariana 

while the southwestern part was affected by a local fire in 1997 and is characterized by sparse 

Pinus banksiana Lamb. Multidirectional hummock-hollow patterns may indicate a complex 

pattern of drainage. Mineral sediments range from coarse to fine sand with pebbles or 

(bed)rock. 

Finally, Sterne bog (STE) (52Û ü2'37"NI75 û lü'23"W; 1.72 km2
) is located 17 km 

northeast ofMOS bog (Fig. 1.1). As MOS bog, its central section is very wet with many large 

pools. The eastern part has an indistinct forest-bog transition. In the southwestern part, a 

small stream separates the bog from a large poor fen. The minerai basin of STE bog is 

characterized by poorly sorted coarse and fine sands and a frequent presence of pebbles or 

(bed)rock. 

Each of the studied peatlands shows a forested border of varying width. This ecotonal 

limit shows both abrupt and indistinct transitions. On the open peatlands, trees of Picea 

mariana are sparsely distributed on hummocks. Ericaceous shrubs such as Chamaedaphne 

calyeulata, Kalmia angustifolia, Rhododendron groenlandieum and Andromeda glaucophylla 

are distributed following a moisture gradient. Cyperaceae are abundant in lawns and hollows: 

Eriophorum vaginatum, Trichophorum eespitosum and Carex spp. Dominant bryophytes are 

Sphagnum fuseum and Sphagnum angustifolium on hummocks, Sphagnum russowii and 

Sphagnum magellanicum on lawns, whereas Sphagnum euspidatum, Sphagnum fallax and 

Sphagnum majus are frequent in wet hollows. 

1.3. Material and methods 

1.3.1. General approach 

Quantifying C accumulation in a peatland implies the integration of areal extent, 

variability of deposit thickness and related C density. A chronological approach integrating 
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both age and peat thickness was adopted to reconstruct rates of e sequestration through time. 

The accuracy of the reconstruction depends directly on the spatial uniformity of the age-depth 

relation. Models of peat cover thickness were created from field probing measurements and 

Ground-Penetrating Radar (GPR) analyses. Added to these models were radiocarbon datings 

from multiple cores sampled in different sections of the peatland resulting in age-depth 

relationships. Afterward, peatland development was divided into 250-year time slices that 

were linked to peat depth values. The combination of peat depths and the spatial cover 

thickness mode! resulted in a definite volume of peat accumulated during each time slice. 

This volume was then converted in mass of organic e using bulk density and loss-on-ignition 

(LOI) data, resulting in a quantification of the e flux. The total mass of e was represented by 

the sum of e fluxes for ail time slices, while lateral expansion rates (expressed as m2 y(l) 

were calculated from the increase in surface area divided by the duration of the period 

considered. 

1.3.2. Peat depth models 

The areal extent of the studied peatlands was determined by aerial photo 

interpretation and field validation. Peatland surface altitude was obtained by a Trimble 

5800/5700 Differentiai Global Positioning System (DGPS) along a number of transects pel' 

peatland during the sununer of 2006. Peat thickness was determined by a combination of 

manual probing with an Oakfield soil sampler and GPR analyses. Survey points were located 

along grids (probing) or transects (GPR) localized using DGPS (Fig. 1.1). At each sampling 

point, the composition of underlying minerai material was described. Manual probing was 

realized at 100- and 200-m intervals. GPR measurements were performed with a PulseEKKO 

(Sensors & Software lnc.) at 0.25 m to 1 m resolution using both 100 MHz and 200 MHz 

antennae during a winter campaign in 2007 and the sununer of 2008. Time delay between 

electromagnetic wave emission and reception was converted to peat cover thickness using a 

mean peat velocity, determined by conunon mid-point analysis (Neal, 2004) and target-to

depth technique (Rosa et al., 2009). Data were processed with basic editing (Dewow filter, 

AGe gain, FK migration) (Jol and Bristow, 2003) with Reflexw software (Sandmeier, 2005) 



20 

in order to identify the organic-mineral contact. Data were compiled to create peat thickness 

models using ArcGIS 9.3. Peat thickness models were created using ordinal)' kriging 

interpolation using a spherical model to fit to the variograms. Model selection was based on 

the lowest mean standardized error obtained by cross-validation, as in most cases mean root

mean-square errors were not significantly different (F test, P = 0.05). Cross sections showing 

present-day peatland surface and minerai basin topography were created to obtain an image 

of peatland geometry. As the cross-section was supposed to deliver a global image, surface 

topography data was smoothed by a locally weighted least squared error method with 5% 

smoothing factor using Kaleidagraph 3.6. 

1.3.3. Age-depth relationships and peat volume accumulated per period 

Multiple cores were extracted from each peatland during field campaigns in August 

2006 and July 2007 (Fig. 1.1). Based on manual probing results, a core was sampled where 

peat thickness was found to be maximum. Although referred to as central core, its position 

did not correspond to the geographic center of the peatland because of the complexity of the 

basin topography. In addition, five to six shallower lateral (L) and transitional (i.e. forest-bog 

transition: T) cores, located along the margins, were extracted from each peatland (Fig. 1.1). 

L- and T-cores were sampled in different quadrants of the peatland to coyer spatial 

variability. All profiles were collected using a Box corel' (1 Ox 10 cm width) for the top 1 m 

and Russian peat samplers (4.5-cm or 7.5-cm diameter) for the deeper, compacted peat. Cores 

were extracted from surface lawn microforms as these are likely to be more sensitive to 

environrnental change than hurnrnocks (Nordbakken, 1996 ; Rydin, 1993). Monolith lengths 

ranged from 64 to 483 cm with variability within and among peatlands. Cores were wrapped 

in plastic and covered by PVC tubes before storage at 4°C until analysis. ln the laboratol)', 

cores were cut into l-cm thick slices and subsampled for analysis. Five cores pel' peatland 

were investigated in order to reconstruct peat-fol'ming vegetation assemblages (Troels-Smith, 

1955). To obtain reliable chronologies, a total of91 subsamples were radiocarbon dated at the 

Keck-CCAMS facility (Irvine, USA) and Beta Analytic Inc. (Miami, USA). For each 

peatland, chronologies of the deep core and two lateral cores were based on numerous 



21 

datings, whereas of the remaining lateral cores only basal peat was dated (Table 1.1). If 

present, Sphagnum stems were dated because these yield most reliable 14C dates (Nilsson et 

al., 2001). Other levels were dated using leaf or seed fragments of Ericaceae and Cyperaceae, 

and in some cases charcoal fragments. Datings were calibrated using the IntCa104 calibration 

curve (Reimer et al., 2004) within the Bclu-on software package (Haslett and Parnell, 2008). 

Ali ages are expressed as calendar years before present (BP = before AD 1950). 

For each peatland, Bchron output ages were convelted to an age-depth model using 

JMP 7.0. The surface was assigned either -56 or -57 cal BP (i.e. 56 years after reference year 

AD 1950), as the peat cores were sampled in AD 2006 and 2007. Only the permanently 

waterlogged catotelm peat was modelled, as decay is important in the (temporally) aerated 

acrotelm resulting in differential accumulation dynamics. Both linear and polynomial models 

were tested, as catotelm peat accumulation rarely conforms to a simple linear relation 

between age and depth (Blaauw and Christen, 2005). The original model showed 

heteroscedasticity, hence a transformation was applied by modelling the square root of the 

original dependent variable "depth". Parameters were tested and the distribution of residuals 

was studied for each model. After selection of the appropriate age-depth model, the peat 

sequence history was divided into 250-year time slices. As the acrotelm was excluded, the 

upper limit of the model was defined at 250 cal BP. Conceming the base of the peat coyer, im 

additional assumption had to be made. GPR measurements performed after coring detected 

sections of the peatland containing peat deposits of which the thickness exceeded the length 

of the central cores. As a result, the deepest sections of the peatland are not covered by the 

age-depth mode!. As extrapolation of age was assumed to be unreliable due to nonlinearity of 

age-depth relationships, the adopted chronologies only cover the range con'esponding to that 

of the central core. Levels that exceeded this depth were assigned an age range of "x

8000 cal BP", with x representing the age of the oldest dated sample for each peatland. The 

upper and lower limits of each time slice were linked to a depth determined from the 

corresponding age-depth mode!. These depths were integrated into the peat thickness model 

to estimate the volume of accumulated peat per time slice. Volumes were calculated using the 

3D Analyst toolbox in ArcGIS 9.3. 
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1.3.4. Peat organic C content and density 

The organic C content of peat was calculated using data from LOI analysis and mean 

C content of organic matter (OM). The product of bulk density and LOI analyses determined 

the density of OM (Dean, 1974). Dry bulk density was measured from consecutive 1 cm3 

subsamples after drying in an oven for 16 hours at 105°C. Subsamples were combusted at 

550°C for 3.5 hours to determine LOI (Heiri, Lotter and Lemcke, 2001) and the resulting OM 

density was converted to C mass per unit volume (C density) assuming a constant mean peat 

C content of 50% relative to OMo Subsequently, mean C density values for each peatland 

were applied to the undecomposed, upper peat (younger than 250 cal BP) and decomposed, 

deeper peat. The boundary between upper and deeper peat corresponded closely to the level 

of C density culmination. Considering the deep peat, C density showed high variability both 

within cores and peatlands. As a uniform relationship between peat depth and C density was 

absent within the deep peat, we applied a mean C density for each peatland individually. This 

mean density for deep peat was based on subsamples of central and lateral cores within each 

peatland. 

1.3.5. Peat C stocks and C accumulation rates per period 

The amount of C added per time slice was calculated by multiplying the volume of 

peat by the mean C density. The total C mass of each peatland was obtained by the sum of C 

accumulation values for ail time slices. Holocene C accumulation rates were calculated by 

dividing the mass of C accumulated (g) by the mean period of accumulation (yr) for a 

constant surface area (m2
) (Clymo, Turunen and Tolonen, 1998). This mean period of 

accumulation was based on the peat depth distribution and the peatland-specific age-depth 

mode!. In addition, recent apparent rates of C accumulation (sensu Tolonen and Turunen, 

1996) were calculated for the upper peat layer (i.e. the most recent time slice). 
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1.4. Results 

lA.l. Basin and surface topography 

The stratigraphie mineral-organic transition was generally sharp in each peatland, 

identified through GPR images, LOI results as weil as from probing. Peat thickness values 

from manual probing and GPR at identical locations were highly linearly correlated 

(r2 
= 0.90; n = 30) showing the accuracy of both methods. Applied mean velocity was 

relatively high at 0.040 and 0.046 m ns- I (Hanninen, 1992 ; Leopold and Volkel, 2003 ; Rosa 

et al., 2009) possibly due to winter conditions and low water temperatures. 

The basin topography shows high small-scale variability possibly associated with 

local presence of bedrock or boulders (Fig. 1.2). Especially in LLC bog, local depressions are 

present, indicating that the peatland may have been formed by the fusion of numerous 

mesotopes (sensu Charman, 2002). 

Present-day surface topography shows variation in altitude of 2 to 8 m within the 

peatlands (Fig. 1.2). LLC (sloping southeastward at ~5 m km- l
) and STE (sloping westward 

at ~3 m km- I
) have most pronounced gradients, whereas MaS bog has a flatter surface. 

However, MaS and STE have more typical raised bog shapes with an elevated center, while 

LLC bog does not show the typical dome morphology. 

lA.2. Peat coyer thickness 

Maximum peat thickness is 531 cm in LLC bog as obtained by probing, showing that 

the deepest core (LLC_C), measuring 483 cm, was effectively sampled within the thickest 

peat deposits. However, GPR analyses in MaS and STE bogs show maximum peat deposit 

thickness of385 cm and 412 cm, whereas their central cores measured 297 cm (MaS_C) and 

286 cm (STE_C). Generally, the thickest peat deposits are located off-center within each 

peatland, influenced by local basin topography (Fig. 1.2). Because the dated peat cores did 

not coyer the complete range of peat thickness, the age-depth models of MaS and STE bogs 
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are slightly biased toward the shallower peat deposits and do not represent basal peat 

accumulation as weil as does the LLC bog chronology. 

1.4.3. Radiocarbon dating and age-depth models 

Basal ages of the different lateral and central cores range from 1211 to 7520 cal BP 

(Table 1.1). The basal ages of the three studied peatlands are 7520 cal BP for LLC bog, 

7340 cal BP for MOS bog and 7127 cal BP for STE bog and confirm that peat inception 

started early after deglaciation in the region (Dyke, Moore and Robertson, 2003). For LLC 

bog, a second-degree polynomial model (/ = 0.86) with significant parameters (P < 0.05) 

best fitted the relationship between the square-root of depth and age, based on the distribution 

of the residuals (Fig. 1.3). Although age-depth relationships were modelled with a 

transformed "depth" variable, the models are shown with linear axes. MOS (/ = 0.75) and 

STE (/ = 0.69) bogs were best represented by a significant linear model (both P < 0.0001). 

The convex model representation of each peatland shows vertical peat accumulation 

slowdown in the course of its development. The most important change in accumulation rate 

occurred in LLC bog, declining from 0.103 cm y(' between 7520 and 6520 cal BP to 

0.016 cm y(l between 1250 and 250 cal BP. MOS bog accumulation slowed down from 

0.036 to 0.018 cm y(1 whereas STE bog rates showed a decline from 0.034 to 0.019 cm y(J 

both from the first millennium to the 1250-250 cal BP period. Highest similarities between 

age-depth models are found toward the late-Holocene. 

1.4.4. C density and mass per unit area 

The mean C density from ail peat samples is 44 kg m-J (SE = 0.0003; n = 3606) with 

slight variations among peatlands (Table 1.2). C density was lowest in the living moss layer 

and generally increased downward until a peak around 250 cal BP (Fig. 1.4). C density did 

not show a consistent increasing trend toward deeper peat in the anaerobic section (Fig. 1.4), 

indicating that vegetation type-related humification might be as important as the age of peat 
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fOlmation. Instead, temporal variations III microforms and peat-forming vegetation may 

explain the variations in the deeper peat C density data. Stratigraphie analysis (Troels-Smith, 

1955) showed variations in peat-forming vegetation within each core with alternance of 

Sphagnum, herbaceous and ligneous peat, which may be due to internai microform dynamics 

or external forcing, or both (Fig. 1.5). 

Mean area-weighted C mass pel' unit area is 91 kg m-2 with a highest mean in LLC 

bog (Table 1.2). As LLC does not show the highest mean C density, its higher C mass pel' 

unit areà primarily results from a higher mean peat thickness (Table 1.2). Thus, despite a 

smaller surface area than MOS bog, LLC bog has been the most important sink of organic C 

throughout the Holocene. 

1.4.5. Peatland area and C accumulation reconstructions 

Lateral peatland expansion rates were high in the early stages of development 

(Fig. 1.6). Early rapid peatland development was followed by a graduai decline in lateral 

accumulation rates that started as early as 6000 cal BP in the three peatlands. Although initial 

paludification is suspected to have a maximum age of 8000 cal BP, the combination of age

depth and spatial peat thickness modelling implies that 50% of the present peatland area was 

covered by peat deposits around 5500 cal BP. 

Ecosystem-scale C flux reconstructions show similar trends for each peatland 

(Fig. 1.7), with an increase during the first rnillennia, peaking during the rnid-Holocene, 

followed by a decline toward the late-Holocene. The most recent time-slice (0-250 cal BP), 

which includes the acrotelm, shows high values as decay is incomplete. Despite the 

comparable tendencies between the three peatlands, variations in timing are visible (Fig. 1.7). 

In LLC bog, C fluxes show greater variations in time, culminating between 5250 and 

5000 cal BP, with an equivalent rate of 41 400 kg yr". In MOS and STE bogs, C 

accumulation appears to have been more stable, with highest fluxes of 27 000 kg yr'J and 

18 000 kg y(' between 3750 and 3500 cal BP, respectively. Lateral expansion has been most 

important in the early stages of peat bog development, while vertical accumulation of peat 

slowed down during the entire history of the peatlands (Fig. 1.3 and 1.6). However, the 
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periods with maximum ecosystem C flux (5250-5000 cal BP in LLC bog and 3750

3500 cal BP in MaS and STE bogs) correspond to the optima in the balance of both 

directions of accumulation. Hence, although counterintuitive, maximum ecosystem C fluxes 

coincided with periods of diminishing lateral and vertical accumulation rates in each of the 

ecosystems. 

Although MaS bog presently covers the largest area, LLC bog has accumulated the 

highest amount of C: 242 x 106 kg, compared to 217 x 106 kg C for MaS bog. The smaller 

STE bog presently contains 149 x 106 kg C (Table 1.2). Taking into account peatland surface 

area and mean age of peat initiation, Holocene C accumulation rates were 18.9, 14.4 and 15.2 

g m-2 y(l, for LLC, MaS and STE bogs respectively, corresponding to an area-weighted 

regional mean (±SE) of 16.2 g m-2 
yr-I (±I.4). Mean C accumulation rate of the most recent 

time slice is 56.4 g m-2 y(J (±1.7); values for peatlands individually are shown in Table 1.2. 

Results from peat composition analysis show that ombrotrophication occurred rapidly 

after initial peat accumulation in a number of cores with sorne sections showing delayed or 

very recent shifts to ombrotrophic conditions, e.g. MaS_LI (~160 cal BP) and STE 14 

(~220 cal BP) (Fig. 1.5). Nevertheless, no significant differences in mean age of 

ombrotrophication are discernible between ecosystems (F = 0.91; P = 0.45). 

1.5. Discussion 

1.5.1. Age-depth modelling and C accumulation patterns 

The age-depth models presented are based on chronologies from cores that covered 

the variability in deposit thickness of each peatland. The age-depth model of LLC bog 

represents weil the range of peat cover thicknesses and has a high / of 0.86. However, MaS 

and STE bog chronologies are slightly biased toward younger peat deposits as the obtained 

chronology did not cover the deepest peat. In addition, their respective age-depth models 

show lower / at 0.75 and 0.69 which implies that the relationship between age and depth is 

more variable within these peatlands. For these reasons, the older sections of the MaS and 

STE age-depth model need to be interpreted with caution. It is probable that a central core 
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within the deepest section of these peatlands results in a more convex age-depth model, 

revealing C accumulation patterns that would more closely resemble those ofLLC bog. 

The presented reconstructions of the three peatlands show that lateral expansion has 

been important in their early development. In addition, net vertical accumulation rates have 

diminished continuously, causing a slowdown of C accumulation rates. Although trends are 

comparable, MOS and STE bogs showed less variable rates of vertical accumulation than 

LLC bog, which resulted in a minor decrease in C accumulation rates in the late-Holocene. 

Generally, peatland hydrology and microhabitat patterns are influenced by both internai 

dynamics (autogenic factors) and external forcing (allogenic factors) on varying timescales 

(Belyea and Baird, 2006 ; Payette, 1988), which will be discussed here relative to the 

observed patterns. 

1.5.2. Autogenic factors 

Internai processes may explain to sorne extent different tendencies in peatland 

development. Of all types of autogenic change, ombrotrophication may be the most important 

considering peatland C sequestration (Charman, 2002). Typical net C accumulation rates 

differ between fens and bogs (Turunen et al., 2002 ; Yu, 2006) and thus hydroseral 

succession may weil result in a step-like change in C cycling (Belyea, 2009). However, 

stratigraphic analyses have not shown distinct differences in the timing of ombrotrophication 

between the studied peatlands. ln contrast, Loisel and Garneau (2010) repOlted more recent 

ombrotrophication in MOS bog in comparison with LLC bog. However, only one section of 

each peatland was considered in their study. 

The uniform highly sloping surface (~5 m km") of LLC bog (Fig. 1.2) may have 

resulted in a more effective lateral drainage through subsurface flow than in MOS and STE 

bogs. This could have resulted in a more frequent peat surface drying since slope 

development. An effective drainage in LLC bog is also visible through the minor presence of 

wet hOllows and large ponds relative to MOS and STE bogs (Fig. 1.1). 

Lateral expansion of the peatlands is shown to have been an important factor on C 

accumulation. Although net vertical accumulation rates at the ecosystem scale have 
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diminished during the entire Holocene, maximum C accumulation rates were attained as late 

as the mid-Holocene, as basin geomorphological constraints apparently induced a delay in the 

culmination of ecosystem C sequestration rates in the three peatlands. Lateral expansion of 

peatlands has been reported to be primarily influenced by local factors as topography (Bauer, 

Gignac and Vitt, 2003 ; Km'hola, 1994; Miikilii and Moisanen, 2007). Therefore, site-typical 

patterns of lateral expansion may cause different temporal patterns of total C accumulation 

between peatlands. The local topography near LLC bog is complex (Fig. 1.2), with a steep 

outcrop at its western limit and a neighbouring stream in the eastern part. Hence, lateral 

peatland expansion may have been inhibited during development and this confinement could 

paltially explain the decline in C accumulation. Belyea and Clymo (2001) showed that, in 

peatlands that are constrained in their development by minerai basin topography, the potential 

for water storage in the catotelm and thus peat accumulation decreases over time. 

In addition to the spatial complexity of the studied peatlands, a nonlinear feedback to 

either allogenic or autogenic change may be present. The ecosystem's reaction to 

environmental change depends not only on the strength of the forcing but also on the height 

of the threshold value (Belyea, 2009). In this context, the resilience of peatland hydrology 

and vegetation might be of major importance when evaluating the reaction of the ecosystem 

to environmental change. As LLC bog surface topography is sloping uniformly, while MOS 

and STE bogs have more lens-shaped cross-sections, sUlface runoff patterns are likely to 

differ. Differentiai resilience between the Eastmain region peatlands might be another 

explanation for asynchronous shifts in C accumulation. 

1.5.3. Allogenic factors 

The graduai slowdown of net long-term C accumulation in LLC bog from 5000 to 

250 cal BP and from 3500 to 250 cal BP in MOS and STE bogs (Fig. 1.7) cOITesponds to 

declining C sequestration rates observed in other continental peatlands in North America 

(Beaulieu-Audy et al., 2009 ; Vardy et al., 2000 ; Vitt et al., 2000 ; Yu, 2006 ; Zoltai, 1995). 

This common trend may indicate the presence of an external factor such as climate change 

that could have mediated autogenic development. Holocene temperature reconstructions 
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show the presence of cooling starting between 4000 and 3000 cal BP for both the entire North 

American continent and northern Quebec (Viau et al., 2006). Beaulieu-Audy et al. (2009) 

found slowdown of peat accumulation in two ombrotrophic peatlands north of the Eastmain 

region from 4500 to 1500 cal BP, whereas peatland permafrost aggradation was reported 

starting around 3500 cal BP (Bhiry, Payette and Robert, 2007) in the forest-tundra biome. A 

colder climate has also been responsible for a decline in forest productivity after 4650 cal BP 

about 150 km north of this study region (Arseneault and Sirois, 2004). Lower primai)' 

productivity caused by a prolonged period of peatland swface frost and shorter growing 

seasons may have suppressed C accumulation rates (sensu Mauquoy et al., 2002). Siowdown 

of C sequestration in fens and bogs has also been reported from continental western Canada 

starting between 4000 and 3000 cal BP, in some cases linked to permafrost development 

(Vardy et al., 2000 ; Vitt et al., 2000 ; Yu, 2006; Zoltai, 1995). 

As the Eastmain peatlands are at maximum 53 km apart, a spatially uniform climate 

regime can be assumed. The observed differences in timing and intensity of C accumulation 

trends between LLC bog and MOS and STE bogs seem inconsistent with the premise of a 

high sensitivity of peat C dynamics ta Holocene hydroclimatic variations. Differences in past 

vegetation assemblages might explain different C sequestration pattems, yet analyses to this 

respect did not indicate a distinct difference in ombrotrophication between peatlands 

(Fig. 1.5). Vegetation shifts have been important throughout most of the peat cores, being as 

important as vegetation variability within and among peatlands (Fig. 1.5), which might imply 

a strong local hydrological control on vegetation. 

Besides, isostatic uplift after the retreat of the Wisconsian ice sheet has been 

extremely high at around 220 m in the present-day James Bay region (Andrews and Peltier, 

1989). As the total uplift shows a descending northwest-southeast gradient and the general 

drainage in the Eastmain region is northwestward, this differential uplift might have resulted 

in a decreasing slope of the Eastmain watershed region. Due to differential uplift, LLC bog 

may have risen 10 to 20 m more than MOS and STE bogs since 7000 cal BP. Such a 

difference may have influenced regional drainage through river incision. If incising rivers 

form a base level for peatland hydrology, this may result in a drawdown of the regional 

peatland water table mound. This mechanism has been proposed to explain variations in 

patterns of peatland development on the low-relief, southwestern Hudson Bay lowlands 
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(Glaser et al., 2004). The differential uplift within the region studied by Glaser et al. (2004) is 

on the order of 40 m over the last 7000 years, with highest uplift occurring in the northeastern 

section. If the same dynamics were applicable in the Eastmain region, LLC bog, which could 

have suffered most from increases in regional drainage potential, would have registered most 

important bog surface drying and hence a slowing down of C accumulation. However, we do 

not have evidence of river incision at the eastem limit of LLC bog. 

Stratigraphie analyses showed the presence of macroscopic charcoal fragments, 

indicating possible local buming events. Recurrent tires have a potential to affect long-term 

rates of accumulation in boreal peatlands, with emissions estimated at 2.2 to 2.5 kg C m-z per 

event (Pitkanen, Turunen and Tolonen, 1999 ; Turetsky and Wieder, 2001). Although forest 

tires may not frequently affect wet, open peatland ecosystems (Hellberg, Niklasson and 

Granstrom, 2004), recent observations in the Eastmain region showed that fires may weil 

bum central sections dorninated by wet hollows after extreme drought. As the LLC bog is 

bordered by a steep ridge in the western part and the regional dominant fire direction is 

northwest-southeast (Bergeron et al., 2004), LLC bog might have been less exposed to 

frequent fire events than MaS and STE bogs. However, as macroscopic charcoal fragments 

may easily be transpolied over several hundreds of meters (Peters and Higuera, 2007), we can 

not yet provide estimates of past frequencies of peatland burning in the Eastmain region. 

Peatland fire history linked to long-term C dynamics will be reconstructed for a future 

publication. 

1.5.4. C accumulation rates 

The mean basin C sequestration rate of the three peatlands is 16.2 g m-z y('. One 

should keep in mind that these rates are apparent and thus differ from net ecosystem 

production as millennia of deep decomposition have passed. This value is on the lower side 

of our hypothesized range of 15-25 g m-z yr- I that was based uniquely on present-day c1imate 

conditions (MAT and MAP). Thus, the difference between the hypothesized and the 

reconstructed values may be explained by differences in past c1imate regimes, climate 

variables other than MAT and MAP, disturbance regimes and geological (tectonic) and 
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geomorphological (substrate) factors. In eastern Canada, late-Holocene climate regimes are 

likely to have been colder than present-day, possibly explaining the relatively low C 

sequestration values. In addition, peatland development was delayed by late deglaciation. 

Hence, a relatively large part of the total Eastmain peatland C stock was sequestered during 

the less favourable Neoglacial conditions, resulting in suppressed mean Holocene C 

sequestration rates. These C accumulation rates are lower than the reported global northern 
Oz Oz averages of 24.1 g m y(1 (Lavoie, Paré and Bergeron, 2005) and 18.6 g m y(1 (Yu, 

Beilman and Jones, 2009). However, averages from single cores are likely to overestimate 

rates at the ecosystem scale as presented here; therefore direct comparisons may be 
Ozhazardous. The obtained mean recent C accumulation rate of 56.4 g m y(l, representing the 

recentmost 306 years of accumulation, is comparable to the mean ~ 150-year accumulation 
Ozrate of eastern Canadian bogs of 73 g m y(1 (Turunen et al., 2004) and 74 and 84 g m'z y(1 

for other cores from LLC and MOS bogs(Loisel and Garneau, 2010). The lower values 

obtained in this study may be the result of the longer period considered for recent C 

accumulation rate calculation, as these values generaUy diminish with depth due to a higher 

proportion of decomposed peat (Turunen et a!., 2004). 

At the global scale, highest long-term C accumulation rates may coincide with 

climates with MAT ofO-2.soC and MAP of 400-550 rrun (Yu, Beilman and Jones, 2009). The 

Eastmain region peatlands are close to the wetlcold limit of northern peatlands within the 

nOlihern peatland distribution of Yu, Beilman and Jones (2009). To correctly interpret 

differing C sequestration patterns in relation to climate, the seasonal precipitation distribution 

and temperature patterns should be taken into account. The effect of precipitation on boreal 

peatland hydrology may vary depending on the precipitation type (i.e. rain or snow) 

(Charman, 2007), whereas warm surruners but cold winters are likely to be favourable to C 

sequestration (Jones and Yu, 2010). In addition, it should be noted that the link between 

climate regime and temporal shifts in C sequestration is nonlinear. Gorham et al. (2003) 

stated that high rates of peat C accumulation are found in NOlih American and Siberian dry 

continental regions. However, despite the good cOITelation between relatively dry climate and 

rapidly accumulating peatlands, dry shifts in climate will not in ail cases cause increasing C 

accumulation rates. The reaction of a peatland to environmental change is mediated by 

microtopographic dynamics (e.g. bistability and spatial self-organization) (Eppinga et al., 
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2009) showing an underestimated complexity of these systems. Thus, the direction of the 

ecosystem's pathway may depend on the present phytoecological and hydrological state 

relative to the c1imate shift, the rapidity of the forcing and the height of the threshold. 

1.5.5. C density and mass per unit area 

The mean C density from the studied peatlands of 44 kg m'3 is close to estimates 

from other regions. Vitt et al. (2000) obtained variable C densities depending on peat type: 

49 kg m-3 for open fens and bogs and 55 kg m-3 for wooded and shrubby fens. Beilman et al. 

(2008) reported a mean of 93 kg OM m-3 in the boreal Mackenzie River Basin of 

northwestem Canada, which represents approximately 47 kg C m-3. In Alaskan bogs with C 

sequestration rates similar to those of the Eastmain peatlands, mean C densities of 42

47 kg m-3 were obtained compared to 35-37 kg C m'3 south of the Eastmain region (Gorham, 

Janssens and Glaser, 2003). In western Siberia, a mean ombrotrophic peat C density of 

32 kg m-3 was reported (Bleuten and Lapshina, 2001). Assurning 50% of C in OM, 46 kg m,3 

was obtained by Turunen et al. (2001) for west-Siberian peatlands and a mean C density of 

36 kg m'3 was found in a hummock-hollow pine bog in southeastern Finland (Makila, 1997). 

Important differences between peatlands within a region may indicate that local and short

term factors as vegetation type and hydrology may be determinant considering C density 

values. 

Mean area-weighted C mass per unit area for the Eastmain peatlands is 91 kg m,2. 

This value is lower than 131 kg m'2, 118 kg m'2 and 119 kg m-2 obtained from peatlands in 

(south)western Canada (Vitt et al., 2000), nOlthwestern Canada (Beilman et al., 2008) and the 

western Siberian lowlands (Sheng et al., 2004), respectively. It is also lower than the mean 

124 kg mo2 and 108 kg m-2 for the raised bog and aapa mire region in Finland (Makila and 

Goslar, 2008) and 94 kg m-2 as an average for Scottish peatlands (Chapman et al., 2009). 

Comparisons between regions are hampered by methodological differences, which partially 

explain lower values for Eastmain region peatlands. 
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1.5.6. Future perspective on potential C sequestration 

To estimate future C sequestration patterns in the Eastmain region, a detailed image 

of the factors driving long-term C accumulation rate decline is cmcial. For now, we do not 

have indications that either autogenic or allogenic factors are dominant due to the complexity 

of these ecosystems. In case the decline can be attributed primarily to autogenic factors as a 

height-induced long-term drying of the surface (sensu Yu et al., 2003), the C sink of the 

Eastmain region may continue to dirninish during the centuries to come. However, if long

term Neoglacial cooling has been the principal cause, the projected important warming trend 

with higher precipitation in the Eastmain region (Plummer et al., 2006) might reverse the 

trend and increase the potential for C accumulation as registered from contemporaneous 

measurements between 2006-2008 (Pelletier, Garneau and Moore, in review). Considering C 

sequestration, there is probably a close imbrication of both autogenic and allogenic factors on 

various timescales that requires better understanding. 

1.6. Conclusion 

This paper presents the first Holocene C accumulation rates from nOlthern Quebec 

boreal bogs, with a mean value of 16.2 g m,l y('. Ecosystem C flux reconstmctions for the 

Eastmain region show declining values at the onset of the late-Holocene. This slowdown of C 

accumulation is principally the result of a decrease in net rate of vertical accumulation. The 

application of the age-depth model to the entire ecosystem results in a mode} for lateral 

expansion, showing that the increase in peatland area was probably important during the early 

development and that ecosystem C fluxes became high once extensive area was covered by 

peat between 5000 and 3000 cal BP. 

Variation in timing of the onset of the decline in C accumulation rates and the 

intensity of the slowdown between peatlands shows the influence of site-specific factors and 

local ecosystem complexity, however, a less accurate age-depth model for MOS and STE 

bogs may have caused a bias for the early stages of accumulation. Long-term dirninishing 

rates of C accumulation in North American peatlands may be associated with two 
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phenomena. First, potential for peat accumulation is suspected to decrease with time in 

peatlands that are constrained in lateral expansion (Belyea and Clymo, 2001). Second, late

Holocene cooling may weil have caused changes in C sequestration rates. Changes in 

peatland vegetation, hydrology and fire regimes as weil as the formation of permafrost since 

~4000 cal BP have been reported at the continent scale (e.g. Beaulieu-Audy et al., 2009 ; 

Bhiry, Payette and Robeli, 2007; Vitt et al., 2000; Zoltai, 1995). 

Lateral peatland expansion is shown to be an important factor considering C 

sequestration at the ecosystem scale and comparisons between cores show the complexity of 

peatland ecosystems. Thus, in order to obtain more accurate quantifications of past C 

accumulation and better understand the role of peatlands in the global C cycle, multiple cores 

should be considered, rather than a unique central core. To estimate the direction of C 

accumulation trends in the Eastmain region for the centuries to come, the principal driving 

mechanism needs to be identified, as the principal autogenic and al10genic factors may have a 

contrasting influence on long-term C accumulation. 
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Figure 1.1. Location of the Eastmain region within eastern Canada and studied peatlands. 
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Figure 1.2. Peat cover thickness models and GPR profiles for each peatland. For better 
visibility, the mineral-organic contact is accentuated by a white dashed line in the profiles. 
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Figure 1.3. Age-depth models for each of the peatlands. Models were based on radiocarbon 
datings from 7 (LLC) or 6 (MOS and STE) cores per peatland. Grey lines indicate the limits 
of the 95% confidence intcrva1. 
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Figure 1.5. Peatland vegetation types for each peatland, expressed as volume percentages. 
Colurnns show Sphagnum peat (dark grey), moss (non-Sphagnum) peat (light grey), 
herbaceous peat (white), wood peat (v-symbol) and unidentifiable organic matter (black). 
Timing of the fen-bog transition is indicated by FBT for each core. 



46 

LLC 800 

600 

-400 

200 

• " j ,. i . i i 1

j--...._I.....4_~f .. ~ .......l_.~.! ...~~J. ••• l ...
 

MOS8oo~ 800 

1 
6001 600 

4004oo~ 
~oo2oo~ 

0.1 .,' l' , , . i 0 
,,1 

800f··_..•..~~~· ! 
STE 

800 

600 j -600 

§
 
:!! 400 400

fr 
a' ~_......

"S
 200 
3 

8000 7000 6000 5000 4000 :lOOO 2000 1000 0 

Age (cal BP) 

Figure 1.6. Peatland lateral expansion rates during the Holocene. Black line represents 
smoothing. 



47 

5 5 
--LLC 
••••••••• MOS 
-----STE 

4 

3 3 
............... - .
 .... 

.'
.. ' 

00
00 

2- .. ' 2 ... 
..... --_..------------

.,. .. . ".".-

o 0 
8000 7000 6000 5000 4000 3000 2000 1000 0 

Age (cal BP) 

Figure 1.7. Holocene ecosystem C fluxes for each peatland. 



48 

Site Core	 Sample depth Laboratory llumbcr Material l'C age (BP) 20 range Age 
(cm) (cal OP) (cal BI') 

LLC C SI-52 UCIAMS43480 Sph stems 340±20 317-480 391 
C 77-78 UCIAMS58634 Sph stems 915±15 777-906 846 
C 102-103 UCIAMS50203 Sph stems 1205±15 1072-1225 1140 
C 120-121 UCIAMS57419 Sph stems 1980±15 1872-1991 1924 

C 140-141 UCIAMS57421 Sph stems 2550±15 2531-2748 2716 
C 153-154 UCIAMS50204 Sph stems 2915±15 2984-3155 3057 
C 201-202 UCIAMS43479 Sph stems 3745±20 3996-4171 4107 

C 250-251 UCIAMS58636 Sph stems 4165±20 4596-4819 4701 

C 293-294 UCIAMS50205 Sph stems 4450±15 4980-5265 5110 
C 351-352 UCIAMS43478 Sph stems 4985±20 5653-5844 5701 
C 439-440 UCJAMS50206 Sph stems 6055±15 6821-6968 6912 

C 480-483 8eta223743 Eric leaf frs 6640±40 7431-7627 7520 
LI 45-46 UCIAMS58637 Sph slems 630±15 551-670 601 
LI 58-59 UCIANIS54956 Sph stems 1250±30 1078-1289 1207 
LI 68-69 UCIAMS58639 Sph stems, LarixlPicea 1eaf fi's 1940±20 1810-1975 1889 
LI 99-100 UCIAMS57423 Sph stems 3125±15 3255-3390 3355 
LI 112-113 UCIAMS58638 Sph stems 3395±15 3586-3702 3656 
LI 130-131 UCIAMS54955 Sph stems 3780±25 4056-4269 4162 
LI 170-171 UCIAMS57418 Sph stems 4625±15 5295-5447 5418 
LI 210-211 UCIAMS64581 Sph stems 5035±20 5721-5903 5841 

LI 249-254 UCIAMS40365 Sph stems, Eric leaf frs 6055±20 6673-7218 6908 
L2 100-101 UCIAMS40366 Pieea leaffrs 3690±20 3971-4098 4035 
L3 258-261 UCIAMS40367 PicealEric leaf frs 5500±20 6275-6383 6329 
L4 39-40 UCIAMS57417 Sph stems, Eric/Picea leaf fi-s 190±15 151-294 198 
L4 52-53 UCIAMS58632 Sph stems 1070± 15 933-1075 978 
L4 61-63 UCIAMS58633 Sph stems, Eric leaffrs 1405±20 1216-1427 1301 
L4 78-79 UCIAMS5741 5 Sph slems, LarixlErie leaf fr.; 2170±15 2129-2317 2152 
L4 127-128 UCIAMS57422 Sph siems 3135±15 3342-3435 3351 
L4 147-148 UCIAMS58635 Sph sie ms, EriC/Larix leaf frs 3495±20 3670-3826 3769 

L4 188-189 UCIAMS40368 Sph stems 4120±20 4520-4788 4586 
TI 47-48 UCIAMS64582 Sph stems 105±20 34-262 126 
TI 53-54 UCIAMS54957 Sph stems 300±25 304-691 4)0 

TI 77-80 UClAMS54954 Sph stems 3440±25 3007-4270 3684 
T4 45-46 UCIAMS57416 Sph stems 180±15 14-283 189 
T4 55-56 UCIAMS64583 Sph stems/Picea leaf frs 325±20 319-488 410 
T4 70-71 UCIAMS57420 Sph stems 1250±15 1095-1293 1211 

MOS C 40-41 UCIAMS57424 Sph stems 355±15 325-522 444 

C 70-71 UCIAMS54958 Sph stems 1270±25 1095-1313 1223 
C 95-96 UC1AMS64586 Sph stems 1990±20 1837-1985 1924 

C 108-109 UCIAMS67515 Sph stems 2065±25 1976-2119 2043 
C 120-121 UCIAMS54959 Sph stems 2225±25 2157-2335 2237 

C 136-137 UCIAMS64588 Sph stemS 2490±20 2478-2728 2591 

C 172-173 UCIAMS54960 Sph stems 3275±25 3405-3604 3506 
C 224-225 UCIAMS54961 Sph stemS 4185±25 4609-4863 4739 

C 246-247 UCIAMS57426 Sph stems 4740± 15 5333-5634 5534 

C 296-297 8eta223744 Sph stems 6200±40 6936-7237 7072 
LI 55-56 UCIAMS65378 Chmcoal frs 190±15 149-310 229 
LI 77-78 UCIAMS65385 Chareoal frs 1260±20 1100-1282 1216 

LI 89-90 UCIAMS65389 Charcoal frs 1840±20 1705-1907 1781 

LI 117-119 UCIAMS65386 Charcoal, Cyp seeds 3625±20 3067-3983 3897 
LI 141-144 UCIAMS65375 Charcoal, Cyp seeds; Picea leaf frs 3070±20 3418-4734 Rejeeted 

LI 167-170 UCIAMS43474 Eric lea f frs; Cyp seeds 6420±20 6799-7749 7340 

L2 160-164 UC1AMS43475 Picea leaf frs 5655±20 6401-6484 6443 

L3 211-213 UC1AMS40364 Sph slems 5755±20 6491-6630 6561 
L4 SI-52 UCIAMS57425 Sph Slems 455±15 502-550 545 
L4 73-74 UCIAMS58642 Sph stems 2165±20 2097-2285 2130 
L4 97-99 UCIAMS58641 EriC/Larix leaf frs 2750±20 2790-2911 2852 
L4 136-137 UCIAMS58640 Erie/LarixlPicea leaf frs 3835± 15 4162-4326 4322 
L4 169-170 UCIAMS43476 Sph stems 4670±20 5318-5457 5323 
T4 24-25 UCIAMS64584 Charcoal 165±20 170-476 210 
T4 67-68 UCIAMS64589 Ch"reoal 2670±20 2342-2834 2794 
T4 83-84 UCIAMS65379 Chareoal 4055±20 3997-4603 4407 

STE C 45-46 UCIAMS54962 Sph stems 105±30 75-260 116 
C 67-68 UCIAMS58645 Pice. kaf frs 600±20 548-646 620 

C 79-80 UCIAMS64589 Spb stems 1175±20 1039-1166 1112 

C 98-99 UCIAMS54963 Sph stems 1715±25 1568-1697 1578 
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C 124-125 UClAMS65381 Sph slems 2445±20 2351-2663 2461 
C 160·161 UCIAMS54964 Sph stems 3255±30 3316-3521 3505 
C 179-180 UCIAMS67514 Sph stems 3415±25 3588-3671 3597 
C 194-195 UCIAMS58644 Sph stems 3125±15 3654-3763 Rejected 
C 201-202 UC1AMS65382 Sph stems 3485±20 3757-3912 3805 
C 223-224 UCIAMS54965 Sph slems 3960±30 4283-4431 4362 
C 239-240 UClAMS58643 Sph stems/Pice. leaf fn; 3975±J 5 4422-4685 4424 
C 285-286 UCIAMS40360 Sph stems 6225±20 6731-7219 7007 
LI 161-165 UCIAMS40361 Sph stems; Cyp seeds; Picea leaf frs 6215±20 7016-7238 7127 
L2 44-45 UCIAMS67506 Sph stems 265±25 269-436 316 
L2 68-69 UClAMS67507 Spb sIemS 1195±25 1031-1232 1123 
L2 98-99 UClAMS67508 Sph stems 2380±25 2329-2588 2399 
L2 142-143 UCIAJ'v1S67509 Sph stems 3200±25 3360-3471 3415 
L2 180-181 UCIAMS675 10 Sph stems 3820±25 4108-4363 4207 
L2 212-213 UCIAMS675 11 Sph stems 4465±25 4977-5288 5182 
L2 244·246 UCIAJVlS40362 Sph slems 5760±20 6412-6725 6550 
L3 135-139 UCIAMS43477 PiceaiEric lea f fn; 5215±20 5924-5995 5960 
L4 35·36 UCIAMS65384 Sph stems 135±20 70-287 224 
L4 48-49 UCIAMS67512 Charcoal frs 945±25 778-967 867 
L4 63-64 UCIAMS65380 Charcoal; Picea leaf fr's 2455±20 2343-2708 2524 
L4 84-85 UC1AMS67513 Charcoal frs 3540±25 3703-3948 3826 
L4 125-)26 UCIAMS65376 Charcoal, PiceaiEric Jeaf fr's 5490±20 6189-6339 6288 
L4 174-176 UCIAJVlS40363 Sph stems; Larix leaf frs; Cyp seeds 6185±20 6976-7345 7090 
T4 46-47 UCIAMS65383 Sph stems 165±20 135-328 225 
T4 63-64 UCIAMS65377 Charcoal frs 1660±20 1442-1789 1557 

Table 1.1. Radiocarbon datings for dated samples, listed per peatland and core. Cores were
 
separated according ta their position: C = central core; L = lateral core; T = transitional core.
 
Dated vegetation types were abbreviated: Sph = Sphagnum spp.; Eric = Ericaceae;
 
Cyp = Cyperaceae.
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LLC MOS STE 

Surface area (km') 2.241 2.672 1.722 

Mean peat thickness (m) 2.50 1.82 1.87 

Peat volume (106 ml) 5.614 4.864 3.225 

Mean C density (kg m-') 42.5 (0.363) 44.5 (0.427) 45.8 (0.559) 

250 cal BP - presenl 32.2 (0.600) 33.5 (0.705) 32.8 (0.993) 

mineraI base - 250 cal BP 46.0 (0387) 48.9 (0.438) 51.6 (0.556) 

Mean C mass per area (kg m·l) 106.4 81.0 85.8 

Total C mass (106 kg) 242.4 216.8 148.5 

Mean basal age (cal BP) 5664 5576 5636 

C accumulation rate (g mol y(l) 

mineraI base - present 18.9 14.4 15.2 

250 cal BP - present 53.9 55.8 59.4 

Table 1.2. Peatland characteristicso Standard elTors are in parentheseso 
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Résumé 

La compréhension des processus qui influencent l'accumulation du C dans les 
tourbières est essentielle afin d'anticiper les changements potentiels dans le cycle global du C 
en lien avec les changements climatiques. L'identification des facteurs qui influencent 
l'accumulation du C est relativement simple à l'échelle a1U1Uelle, cependant, à l'échelle 
séculaire ou millénaire une interaction complexe entre le climat, l'hydrologie, les processus 
phytoécologiques internes et les perturbations complique l'identification des facteurs 
détenninants. Afin de mieux comprendre l'impact de ceux-ci, les taux d'accumulation de C 
durant l'Holocène ont été quantifiés dans trois tourbières ombrotrophes au Québec boréal, au 
nord-est du Canada (52°N, 75-76°0). 

Les analyses de densité sèche et de la perte-au-feu de la tourbe, en combinaison avec 
les chronologies au radiocarbone (14C) ont permis la reconstruction des taux d'accumulation 
du C durant l'Holocène. Des reconstructions des variations d'assemblages végétaux et de la 
nappe phréatique ont été obtenues à partir de l'analyse des macrorestes végétaux et des 
thécamoebiens. 

L'accumulation de la tourbe a conunencé vers 7520 cal BP dans la région 
d'Eastmain, avec des taux moyens variant entre 14,9 et 22,6 g m-2 an- l 

. Les taux 
d'accumulation élevés au cours de l'Holocène moyen sont associés à la présence des 
sphaignes de la section Acutifolia, tandis que les périodes de ralentissement de 
l'accumulation de l'Holocène récent sont caractérisées par une végétation ligneuse 
importante et de cypéracées. Les résultats montrent que l'accumulation du C a varié de façon 
importante entre les sites, indiquant que les contextes géomorphologiques, de variations 
hydrologiques, ou encore des évènements ponctuels tel que les feux, ont pu atténuer 
l'influence générale du climat. Les reconstructions de nappe phréatique présentent plusieurs 
épisodes de bas niveau de nappe phréatique depuis 3000 cal BP, suggérant que des conditions 
froides et sèches ont pu influencer une diminution des taux d'accumulation du C. 

Étant donné l'intensité de ces fluctuations de la nappe phréatique, nous proposons 
l'hypothèse que l'occurrence de périodes de gel de l'ordre de quelques années ou décennies 
pourraient avoir contribué à la sécheresse apparente de la surface de la tourbière. Les 
projections climatiques indiquant pour la région des conditions généralement plus chaudes et 
humides, favorisent une plus grande stabilité des sphaignes de la section Acutifolia, et donc 
une augmentation du potentiel de la séquestration du C. 
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Abstract 

Understanding the processes controlling peatland carbon (C) sequestration is critical 
to anticipate potential changes in the global C cycle in response to climate change. Although 
identification of these factors may be relatively straightforward on seasonal timescales, at 
centennial to rnillennial timescales complexities arise due to interactions between climate, 
vegetation, hydrology and long-term ecological processes. To better understand the factors 
controlling long-term C accumulation, Holocene rates of C sequestration were quantified 
from three pristine ombrotrophic peatlands in boreal Quebec, northeastern Canada (52°N, 75
76°W). 

Bulk density and loss-on-ignition analyses, combined with radiocarbon dating and 
age-depth modelling, were used to estimate long-term apparent rates of carbon accumulation. 
Past changes in vegetation and water table depth were obtained from plant macrofossil and 
testate amoeba analysis. 

Earliest regional peat accumulation started ~7520 cal BP, with long-term rates of C 
sequestration varying between 14.9 and 22.6 g m-2 yr"l. High C sequestration rates occurred 
during the mid-Holocene when relatively stable Sphagnum section Acutifolia communities 
were present, while low rates were found during the cooler late-Holocene when Cyperaceae 
and ligneous vegetation were more dominant. However, C sequestration was highly variable 
among cores, implying that local topography, geomorphology and hydr010gy, or disturbance 
factors such as fire, mediate the influence of climate on C accumulation. Reconstructed 
water-table depths reveal several dry shifts since 3000 cal BP, suggesting that episodic cold 
and dry conditions during the late-Holocene may have contributed to lower C sequestration 
rates. 

Given the intensity of the water table shifts at these times, we hypothesize that 
recurrent episodes of frozen subsurface peat might have intensified surface drying. As 
projected by climate scenarios, anticipated warmer and wetter conditions may lead to greater 
stability of hummock Sphagna cover and increased C sequestration potential in boreal 
peatlands. 
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2.1. Introduction 

Peatlands are environments where anaerobic conditions restrict decomposition, 

leading to the accumulation of organic matter through time. Over rnillennia, a small net 

imbalance between net primary production (NPP) and decomposition of northern peatland 

biomass has resulted in a global stock of organic carbon (C) attaining ~547 Pg (Yu et al., 

2010). Peatland C dynarnics have affected c1imate change during the past millennia, by 

providing long-term positive and negative feedbacks on atmospheric greenhouse gas 

concentrations (Frolking and Roulet, 2007). 

Besides important long-tenu C sinks, ombrotrophic peatlands constitute high

resolution archives of climatic change due to their sensitivity to variations in atmospheric 

moisture balance (Charman, 2002). Consequently, stratigraphie SUl'veys of both past C 

sequestration and reconstructions of past hydroc1imate from these systems may provide 

insight into future projections of C dynamics in response to climatic change. In this study, we 

quantified long-term C accumulation rates and investigated past variations in hydroc1imatic 

conditions and plant assemblages at three peatlands in boreal Quebec, northeastern Canada. 

Factors regulating the strength of the peatland C sink vary at different timescales (Yu, 

2006b). Short-term relative rates of NPP and decomposition, quantified by net ecosystem 

productivity (NEP), are primarily linked to shifts in water table depth (WTD) and peat 

surface temperature (e.g. Bubier et al., 2003 ; Pelletier, Garneau and Moore, in review ; 

Silvola et al., 1996). However, on rnillennial timescales, changes in peatland vegetation and 

WTD, and thus C sequestration, are driven by a combination of allogenic and autogenic 

factors. Globally, c1imate regime may be the principal allogenic factor having a concomitant 

effect on both vegetation and hydrology (Barber et al., 1994), although fire, permafrost or 

geological processes (e.g. isostatic uplift) may be as important in celtain regions (Glaser et 

al., 2004 ; Pitkanen, Turunen and Tolonen, 1999; Turetsky et al., 2007). Autogenic factors 

affecting C sequestration may include surface microtopography dynamics (Eppinga et al., 

2009 ; Swanson, 2007) and hydrology-induced limits to vertical peat growth (Belyea and 

Clymo, 2001 ; Yu et al., 2003). 

Holocene variations in C sequestration have been reconstructed in various peatland 

types and c1imatic regimes. Most studies in northem peatlands show a slowdown of net 
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vertical C accumulation towards the late-Holocene (e.g. Turunen and Turunen, 2003 ; 

Turunen et al., 2001 ; Yu, 2006a), although one would expect an apparent net acceleration, as 

the duration of decay processes is higher in older peat (Clymo, 1984). Late-Holocene climatic 

cooling, affecting peatland ecohydrology and probably NPP, may have been responsible for 

declining rates of C sequestration. Nevertheless, long-term surface dlying driven by 

autogenic factors associated with peatland development may have also contributed to late 

Holocene declines in C sequestration. 

In this study, we quantified variations ln Holocene C accumulation from three 

pristine boreal peatlands located in the Eastmain region, northeastern Canada. In addition, by 

directly quantifying past peatland vegetation and water table fluctuations, linkages among C 

accumulation, dominant vegetation and hydrological conditions were investigated. Finally, 

we also used our data to infer patterns of regional climate change based on replicate 

variations within cores. 

2.2. Study region 

Peat cores were recovered from the deepest parts of the pristine ombrotrophic 

peatlands Lac Le Caron (LLC; 52°1T15"N 175°50'21"W), Mosaik (MOS; 

51°58'55"N / 75°24'06"W) and Sterne (STE; 52°02'37"N / 75°10'23"W), located in the 

Eastmain river watershed in the boreal region of the James Bay lowlands, Quebec, Canada 

(Fig. 2.1). Regional mean annual temperature is -2.1 ± 0.2°C (January: -22.0 ± OSC; July: 

14.6 ± 0.2°C), mean precipitation is 735 ± 12 mm, ofwhich about one third falls as snow, and 

the mean value for growing degree days above O°C is 1763 (interpolated means and standard 

errors of 1971-2003 NLWIS data; Hutchinson et al., 2009). Further details on the study 

region and peatlands can be found in van Bellen et al. (20 Il). 
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2.3. Material and methods 

2.3.1 The use of multiple proxies 

Paleoenvironmental reconstructions are preferentially based on multiple proxies, as 

independent records may prevent spurious reconstructions from a single proxy (Blaauw, 

Bennett and Christen, 2010 ; Charman, Hendon and Packman, 1999). Multiple proxies are 

particularly valuable in retrospective studies of peatland C dynamics, because rates of C 

accumulation are a product of multiple interacting factors (e.g., climate, vegetation, 

hydrology). Shifts in peat-forming vegetation are often related to changes in C sequestration, 

and plant macrofossils allow the identification of these past plant communities. ln addition, 

plant macrofossils constitute an archive of moisture balance conditions, as changes in 

vegetation are primarily driven by hydroclimatic shifts if disturbance is absent. Likewise, 

assemblages of testate amoebae are recognized as good indicators of water table depth 

(WTD) in Sphagnum-dominated peatlands, especially when transfer functions are applied 

(e.g. Booth, 2008 ; Charman, Blundell and ACCROTELM members, 2007 ; Mitchell, 

Charman and Warner, 2008). Testate amoebae are highly sensitive to short-term (seasonal) 

and long-term (decadal) variations in WTD (Booth, 2010 ; Warner, Asada and Quinn, 2007). 

2.3.2. Fieldwork 

One core was recovered from the deepest pal1 of each peatland (van Bellen et al., 

20 Il), using a Box corer (1 Ox 10 cm width) to sample the upper 1 m and Russian peat 

samplers (4.5- to 7.5-cm diameter) for deeper peat. Sampled monoliths were wrapped in 

plastic, transferred to polyvinyl chloride tubes and stored at 4°C until analysis. 
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2.3.3. Laboratory work 

Prior to specific treatment, cores were sliced into contiguous 1 cm subsamples. Long

term apparent carbon accumulation rates (LORCA) were calculated from bulk density and 

loss-on-ignition (LOI) analyses. The amount of organic matter (OM) was defined as the 

product ofbulk density and LOI (Dean, 1974). Bulk density was determined from contiguous 

1 cm3 subsamples after drying for 16 hours at 105°C. Subsequently, LOI analysis was 

performed at 550 C for 3.5 hours (Heiri, Lotter and Lemcke, 2001). The amount of organic C 

was calculated assuming a mean of 0.5 g C g-I OM (Turunen et al., 2002). 

Plant macrofossil analysis was performed at 4 cm resolution. Subsamples (4 cm3
) 

were gently heated in distilled water with addition of 5% KOH and carefully rinsed through a 

125-flm sieve. A binocular microscope (x 10-x40) was used to identify peat-forming 

vegetation. Vegetation types were estimated as volume percentages of the 4-cm3 subsample; 

seeds, charcoal fragments and Cenococcum sc1erotia were counted and acarid mitelinsect 

fragments were scaled 1 to 10 (1 =rare, 10=abundant). Sphagnum sections were deterrnined 

using a microscope (x40- x100) based on branch leaf characteristics because stem leaves, 

which are often essential for the identification to species level, were rarely found. A plant 

macrofossil reference collection (Garneau, 1995) was used for identification; vegetation 

terminology is from Marie-Victorin (1995) and Sphagnum taxonomy follows Ayotte and 

Rochefort (2006). 

Testate amoeba assemblages were analyzed at the same resolution as plant 
3macrofossils. Subsamples (1 cm ) were gently boiled in distilled water according to the 

protocol described by Hendon and Charman (1997) and Lycopodium (or to sorne samp1es 

Eucalyptus) was added as an exotic marker to permit the ca1culation of test concentrations. 

The material between 355 and 15 flm was retained after sieving. A total of 150 specimens 

was counted in most sampies, although for a few sampies this count total could not be 

achieved. Samples containing less than 75 tests were considered unreliable, which is broadly 

consistent with the recornrnendation of Payne and Mitchell (2008) that counts of 50 may be 

adequate for sorne sites and counts of 100 are likely to be sufficient for most sites. 

Abundance of species was expressed as a percentage of the total tests counted. The conunon 

rotifer Habrotrocha angusticollis was inc1uded in the percentage ca1culations. Taxonomy 
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follows Charman, Hendon and Woodland (2000) except as modified by Booth (2008). Plant 

macrofossil and testate amoeba diagrams were created using C2 and plotted against depth 

(Juggins, 2007). Zones were identified on a visual basis, according to patterns in dominant 

vegetation, testate amoebae and C accumulation. 

A total of 34 samples were submitted to Keck-CCAMS facility (Irvine, USA) and 

Beta Analytic Inc. (Miami, USA) for dating by 14C accelerator mass spectrometry (AMS). 

Sample material was preferentially Sphagnum stems (Nilsson et al., 2001), although in sorne 

cases Picea or Ericaceae leaf fragments were dated (Table 2.1). 

2.3.4. Data analysis 

Radiocarbon ages were calibrated using the IntCa104 calibration curve (Reimer et al., 

2004) within the Bchron software package in R (Haslett and Parnell, 2008 ; http://www.r

project.org; R Development Core Team, 2009). One radiocarbon date on the STE core was 

identified as an outlier and was therefore omitted when developing the age-depth mode!. 

Bchron was further used for age-depth modelling, considering vertical accumulation as a 

continuous monotonie process applying piecewise linear interpolation. This approach 

includes creation of the 95% 'highest density region' of any level in the sediment record, 

thereby allowing estimations of the age uncertainty of any horizon within the cores. Ail ages 

were expressed as calendar years before present (BP = before AD 1950). Age-depth models 

were based on these calibrated ages and the age of the peatland surface, established at 

56 cal BP (i.e. AD 2006). Age estimates were rounded to the nearest decade. 

A transfer function based on 650 modern assemblages from peatlands in eastern and 

mid-continental USA was used to infer quantitative WTD from fossil testate amoeba 

assemblages (Booth, 2008). The widespread distribution of many testate amoeba taxa, and 

the similarity in the ecology of taxa among regions, suggests that the calibration dataset of 

Booth (2008) should provide reliable water-table depth estimates in boreal Quebec, 

particularly along a relative water-table depth gradient (e.g. Booth, 2008 ; Booth, Sullivan 

and Sousa, 2008 ; Charman and Warner, 1997). A weighted average-partial least squares 

model was used, as it showed optimal? and RMSEP values although application of other 
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models resulted in similar reconstlUctions (Booth 2008). Water-table depth reconstructions 

were expressed as raw values and were also detrended by a LOWESS filter with a 50% 

smoothing factor. Smoothing was performed to remove long-term trends caused by autogenic 

factors (i.e. lateral expansion and consequential drainage; Charman et al., 2006) to highlight 

hydrological changes most likely linked to hydroclimate variability. A11 records were 

standardized by calculating the difference from the mean of a11 observations within each core, 

divided by its standard deviation (i.e. z-scores). Important events of extremely high or low 

water table levels were visua11y linked, taking account of the uncertainty associated with each 

chronology. 

Apparent C accumulation rates were defined as the product of sample C density and 

vertical accumulation rate (Tolonen and TUlUnen, 1996) and plotted as a function of age to 

facilitate inter-site comparisons. However, short-term shifts in C accumulation rates should 

be interpreted with caution, as our age-depth models were not highly resolved and thus 

genera11y failed to detect decadal to centennial shifts in vertical accumulation rates. 

Generally, episodes of slow vertical accumulation coincided with the presence of denser peat. 

As a result, decadal to centennial episodes of slow vertical accumulation not detected by age

depth models may be displayed as unrealistic peaks in C accumulation rate (i.e. post-fire; 

Kuhry, 1994). To account for these flaws in the age-depth models, a LOWESS smoothing 

was applied to the C accumulation data with the span set as the inverse of the number of 

radiocarbon dates per core. 

2.4. Results 

2.4.1. LLC bog ecohydrological reconstlUctions 

Peat accumulation started around 7520 cal BP under minerotrophic conditions 

followed by an early shift to ombrotrophy around 7210 cal BP as indicated by the presence of 

Sphagnum section Acutifolia (Fig. 2.2, Table 2.2). Stratigraphic analyses show an important 

stable presence of Sphagna and high concentrations of testate amoebae throughout the deeper 

parts of the profile (zones LLC2, LLC3 and LLC4; Fig. 2.2). From 4170 cal BP vegetation 
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assemblages altemate between Sphagnum, Cyperaceae and Ericaceae dominance (zone 

LLC5). This trend is accentuated between 2960 and 330 cal BP, when repeated high

magnitude fluctuations in WTD (2-30 cm below surface) are registered through shifting 

testate amoeba assemblages of Difflugia pu/ex, Amphitrema jlavum, Amphitrema 

wrightianum, H. angusticollis, He/eopera sphagni and Hya/osphenia subjlava (zones LLC6 

and LLC7; Fig. 2.2 and Table 2.2). In addition, large charcoal fragments (>2 mm) indicate 

repeated fires on the coring site or in its vicinity, concentrated between 2520 and 390 cal BP. 

Well-preserved Sphagnum section Acutifolia peat accumulated since 330 cal BP, while a shift 

to more humid conditions is apparent in the uppermost section of the stratigraphy (zone 

LLC8). 

2.4.2. LLC bog carbon accumulation and biohydrological proxies 

The LLC age-depth model shows a convex shape, indicating that vertical peat 

accumulation slowed down during the late-Holocene, except for the uppermost part that is 

partially represented by the acrotelm (Fig. 2.3a). The reconstruction of C accumulation in 

LLC shows that rates have varied considerably during the Holocene (Fig. 2.4) with a mean of 

22.6 g mo2 y(l. Despite high decomposition, C accumulation rates were high during the fen 

phase (zone LLC1; Table 2.2). Besides this period, rapid C accumulation occurred at the 

upper part of zone LLC2 (~5700-5040 cal BP), characterized by moderate water tables and 

Sphagnum section Acutifolia. C accumulation slowed down during zones LLC4 and LLC5 

(4420-2960 cal BP), attaining minima of 9-11 g mo2 y(1 in zone LLC6 (2960-1250 cal BP). 

This period of lirnited C sequestration was characterized by high mean water tables 

interspersed with episodic dry surfaces (Fig. 2.4). The corresponding tendencies of dry

indicating macrofossils and the inferred WTD show that extreme fluctuations in surface 

hydrology have occurred during the period of slow accumulation, although low temporal 

sample resolution between 4000 and 1000 cal BP somewhat complicates the interpretation. A 

large increase in C sequestration rates started at the onset of zone LLC7 at 1250 cal BP. The 

acceleration in C accumulation may well be related to the establishment of Sphagnum section 

Acutifolia, mediated by a climatic warming enhancing primary production. During the last 
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millennium, C sequestration rates varied only slightly between 25 and 30 g mo2 y(1 and, 

except for diminishing Sphagnum presence around 400 cal BP, vegetation remained relatively 

stable. 

2.4.3. MOS bog ecohydrological reconstructions 

Plant macrofossil analyses suggest that Sphagna were less important in MOS than 

LLC (Fig. 2.2 and 2.5). Sphagnum section Acutifolia, implying relatively dry local 

conditions, has been present during the Holocene, yet collapsed frequently at the expense of 

other Sphagnum sections, Cyperaceae or Ericaceae (Fig. 2.5, Table 2.3). Following peat 

inception at 7070 cal BP, fen conditions persisted until 5450 cal BP with water tables at the 

surface as indicated by high amounts of A. wrightianum, D. pu/ex and A. jlavum (zone 

MOSl). Neveliheless, WTD reconstructions should be interpreted with caution as less than 

75 specimens were counted in sorne samples. The mid-Holocene (zones MOS2 and MOS3) is 

characterized by Sphagnum-Cyperaceae and Sphagnum-Ericaceae peat with D. pu/ex and A. 

jlavum. Zone MOS4, starting around 1940 cal BP, shows a general increase in Ericaceae, less 

dominant Sphagnum presence and sporadic P/eurozium schreberi around 1890 and 

1000 cal BP. Episodic low water tables are encountered during this period, identified by H. 

subjlava. Testate amoeba assemblages at these times are unusual, with large amounts of 

species associated to both rather wet (A. discoides and A. jlavum) and dry optima (D. pu/ex, 

and H. subjlava). Finally, a steady increase in Sphagnum section Cuspidata stalied 

~240 cal BP continuing until present-day, although a dry shift was marked by H. subjlava 

presence around 150 cal BP (zone MOSS, Table 2.3). 

2.4.4 MOS bog carbon accumulation and biohydrological proxies 

The MOS age-depth relationship is close to linear, lacking the slowdown of veliical 

accumulation that was evident at LLC (Fig. 2.3b). Nevertheless, mean apparent C 

accumulation rate for MOS is substantially lower at 15.4 g m
o2 

y(l. Although MOS shows 
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long-term variations in accumulation rates throughout the Holocene, trends are less clear than 

in LLC (Fig. 6). In accordance, the vegetation record shows no clear long-term tendencies. C 
o2accumulation rates remained relatively stable between 10 and 20 g m y(1 from the start of 

local peat accumulation until the first half of zone MOS3 (-2700 cal BP), followed by 

highest accumulation rates (17-32 g m'2 yr"l) until the start of zone MOS4 at 1940 cal BP. 

This peak is associated with an important presence of Sphagnum section Acutifolia and WTO 

averaging 9-14 cm, while decomposition, indicated by the amounts of unidentifiable organic 

matter (UOM), was low. The lowest C accumulation rates of 12 g m'z yr"1 and considerably 

fluctuating water table levels are reconstructed for the period 1920-1180 cal BP. 

2.4.5. STE bog ecohydrological reconstructions 

The entire sequence of STE has high amounts of Ericaceae/wood peat and, except for 

the upper 60 cm, low presence of Sphagna (Fig. 2.7). As in LLC and MOS, A. jlavum, D. 

pulex and H. subjlava are the most frequent testate amoebae (Fig. 2.7). In accordance with 

the dominance of ligneous vegetation, reconstructed water-table depths were generally lower 

than LLC and MOS and hydrological fluctuations showed high amplitudes. Peat 

accumulation started from 7010 cal BP under minerotrophic conditions. High decomposition 

has resulted in very low countable quantities of testate amoebae for zone STEI (Table 2.4). 

Of the three peatlands, STE shows the latest transition to ombrotrophy around 4410 cal BP. 

Sphagnum section Acutifolia established during ombrotrophication and remained relatively 

important throughout zone STE2 until 3230 cal BP. At the onset of STE3, Sphagnum section 

Acutifolia decreased, while Cyperaceae and H. subjlava became more abundant. Extremely 

dry surface conditions, starting 1090 cal BP, distinguish zone STE4 from adjacent zones, 

while water tables remained between 25 and 37 cm below the surface from 990 to 

450 cal BP. Ouring this period, H. subjlava and D. pulex dominate the assemblages, and the 

vegetation cover was characterized by Ericaceae and Picea. A consecutive hydrological shift 

centered around 220 cal BP allowed an accumulation ofwell-preserved Sphagnum peat (zone 

STES). 
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2.4.6. STE bog carbon accumulation and biohydrological proxies 

Peat accumulation in STE shows highly variable rates, with rapid accumulation 

during the mid-Holocene (Fig. 2.3c). With the exception of high rates during the mid

Holocene, Chas been sequestered continuously at 10-20 g m-z yr"', resulting in a Holocene 

LORCA of 14.9 g m-z y(' (Fig. 2.8). The fen phase is associated with low sequestration rates 

(zone STE1). The subsequent mid-Ho1ocene period of enhanced C accumulation shows 

abundance of Sphagnum section Acutifolia (Fig. 2.8; zone STE2). The two peaks observed 

around 4410 and 3650 cal BP are principally the result of reconstructed phases of rapid 

vertical accumulation of peat formed under dry conditions. Improbable sharp increases in C 

accumulation rates, associated with this high1y decomposed peat, is likely the result of flaws 

in the age-depth mode!. Nevertheless, C sequestration rates were relatively constant during 

the major part of the Holocene. The 1110-620 cal BP period of slow accumulation coincides 

with declining water table levels and a persistent extremely dry peatland surface (WTD 

attaining 37 cm; zone STE4), while Sphagnum presence generally diminished and ligneous 

vegetation increased. 

2.4.7. Regional paleohydrological variabi[ity: climatic influence 

The compiled paleohydrological reconstructions from the ombrotrophic portion of 

the three sites coyer the last 4300 years. Although the uncertainty of our age-depth models 

complicates precise correlations among the sites, numerous hydrological shifts are observed 

since 3000 cal BP at ail sites. Within the uncertainty of our chronologies, at least seven dry 

and four wet events were probably registered regionally (Fig. 2.9). Dry conditions were 

centered around 2790, 2500, 1910, 1290, 770, 400 and 140 cal BP, with the dry events at 770 

and 400 cal BP particularly weil recorded by the three sites. Regional wet shifts appear to 

have occlliTed around 2330, 1390 and 930 cal BP, and all sites indicate wetter conditions 

after ~ 150 cal BP (Fig. 9). In addition, MOS and STE records show increasing Sphagnum 

section Cuspidata during the last century, strengthening the interpretation of the testate 

amoeba record. 
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2.5. Discussion 

2.5.1. Linkages among long-term C sequestration, vegetation and hydrology 

Although we may assume a uniform c1imatic history for the Eastmain region, the 

apparent rates and the timing of shifts in C accumulation are highly variable between 

peatlands. Mean Holocene LORCA has been higher in LLC with 22.6 g moz y(' compared to 

MOS and STE, with 15.4 and 14.9 g m-z y(1 respectively. To be able to estimate causes for 

differential C sequestration patterns, the entire accumulation history and environmental 

context of each core should be taken into account. C accumulation rates have been higher 

during the early bog phases of LLC (zone LLC2, 7210-5040 cal BP), when a combination of 

a persistent Sphagnum section Acutifolia cover and probably favourable mid-Holocene 

c1imatic conditions (Kaufman et al., 2004 ; Viau et al., 2006) allowed a rapid vertical 

accumulation. High rates of accumulation may have resulted of a limited decomposition due 

to the decay-resistant nature of Sphagnum section Acutifolia. Although c1imatic conditions 

would have been equally favourable for MOS and STE, Sphagnum could not yet become 

dominant in the local vegetation during this period as minerotrophic conditions persisted until 

5450 cal BP in MOS and 4410 cal BP in STE. Globally, fens may be less efficient C sinks 

than bogs (Turunen et al., 2002), although C accumulation under minerotrophic conditions 
oz was high in LLC (>30 g m-z y(l) and low in STE (7-14 g m y(I). The lack of Sphagna 

during minerotrophic conditions likely conttibuted to the slow C sequestration in MOS and 

STE. 

Of all the peatlands in this study, the most important temporal variations ln C 

sequestration are observed in LLC (Fig. 2.4), with a mid-Holocene (5790-4170 cal BP) 

period of rapid accumulation and a late-Holocene (4170-1250 cal BP) period of slow 

accumulation. The vegetation record shows a similar subdivision with a relatively stable 

Sphagnum cover that col1apsed repeatedly between 4000-1300 cal BP. The compilation of al! 

stratigraphie data shows that C accumulation rates dec1ined simultaneously with a rise in 

mean water table of ~1O cm at the onset of LLC3 (5040 cal BP), although vegetation 

composition remained stable until 4170 cal BP (Fig. 2.6). This may indicate that diminishing 

C sequestration was driven primarily by a shift in WTD, that was exacerbated when Sphagna 
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finally collapsed after 4170 cal BP. An initial persistence of relatively high water tables may 

have exerted a stress on Sphagnum section Acutifolia, followed by a replacement by other 

Sphagnum sections and Cyperaceae and a continued slowdown of C accumulation. 

FUl1hermore, slowest C sequestration in LLC between 2960 and 1250 cal BP was 

characterized by fluctuating water tables (zone LLC6). Extremely low water tables cause a 

slow passage of organic matter through the acrotelm, resulting in a high decay potential. 

Moreover, hummock Sphagna NPP may decrease due to shading as Ericaceae cover 

increases (Heijmans et al., 2001). On the other hand, extremely high water tables may 

enhance microtopographical gradients by expanding wet hollows and increasing hummock 

height (Swanson, 2007). In addition, wet bog smfaces are associated with bryophytes that are 

sensitive to decomposition. Fluctuating water tables may have caused testate amoeba 

assemblages consisting of H. subjlava and A. discoides as observed in MOS4. A. discoides is 

typically most abundant in wet habitats whereas H. subjlava is characteristic of drier habitats 

(Booth, 2008), but the co-dominance of the two has been observed in several studies and may 

be the result of high seasonal-to-interannual variability in moisture (Booth, Sullivan and 

Sousa, 2008 ; Charman, Blundell and ACCROTELM members, 2007 ; Sullivan and Booth, in 

review). Indeed, maximum C accumulation has been associated with an acrotelm thickness of 

10-15 cm, typical for lawns or low hummocks (Belyea and Clymo, 2001). 

Different vegetation and fluctuating water tables may partially explain the differences 

in C sequestration during the bog stages within LLC as weIl as differences between the sites. 

Previous research showed that LLC bog has a strong surface topography gradient at ~5 m km

1 that may have supported efficient general drainage (van Bellen et al., 20 Il), which may 

have contributed to more stable ombrotrophic conditions and hummock Sphagna cover. 

Neoglacial cold conditions could have further limited accumulation in LLC by 

lowering primary production and limiting the duration of the growing season (Mauquoy et 

al., 2002a). Cooling conditions leading to decreased NPP have been reported from tree stands 

close to the Eastmain region after 4650 cal BP (Arseneault and Sirois, 2004). Although 

decreasing C accumulation rates are perceptible between 1430 and 1180 cal BP in MOS and 

1070 and 660 cal BP in STE, climate-driven depressed primary production may have been 

less important in these peatlands, as C sequestration was already lirnited due to the absence of 

an important Sphagnum cover. 
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The long-term effect of c1imate on NEP may be illustrated by large spatial pattems of 

peatland C storage (Yu, Beilman and Jones, 2009). C accumulation rates have an optimum in 

the 'temperature-precipitation space' at 0-2.5°C mean annual temperature (Yu, Beilman and 

Jones, 2009) and generally diminish following nordic and oceanic gradients in Quebec, i.e. 

from a cool and moist to a cold and dry regime. Thus, it is likely that Neoglacial conditions 

have limited C sequestration in peatlands within the northern Quebec climatic context. 

Studies on boreal and subarctic Quebec peatland C accumulation indeed show a general 

slowdown of accumulation during the Neoglacial cooling. Beaulieu-Audy et al. (2009) 

showed declining rates of peat accumulation starting around 4000 cal BP in northern Quebec. 

Providing late-Holocene records, Loisel and Garneau (2010) obtained minimum C 

accumulation of<10 g m-2 y(1 from two cores in MOS peatland during the 2500-1000 cal BP 

period. 

Corresponding dry and wet shifts registered in Eastmain region peatlands may imply 

a climatic forcing that limited C sequestration. However, inconsistencies between the studied 

sites show that internai factors are likely to have mediated external forcing of C sequestration 

at varying intensities. Reconstructions of Eastmain peatland C accumulation at the ecosystem 

scale have already shown that long-term peatland development is affected by site-specific 

factors such as basin topography (van Bellen et al., 2011). 

2.5.2. Late-Holocene climate change in the Eastmain region 

The replicated shifts in peatland WTD may indicate an enhanced climatic influence 

on ecosystem functioning since 3000 cal BP. Ombrotrophic peatland hydrology is directly 

linked to the balance between precipitation and evapotranspiration, although the respective 

importance of precipitation and temperature to this balance may vary between regions and 

climatic regimes and even in the course of peatland development (Booth, 2010 ; Charman et 

al., 2009). The combined records of water table fluctuations (Fig. 9) show that during the 

late-Holocene (3000 cal BP-present) hydroclimatic variations were important, possibly 

indicating less stable conditions than during the mid-Holocene (7000-4000 cal BP). However, 

comparison of the two periods is complicated for several reasons. First, we do not have a 
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combined record that covers the entire mid-Holocene. ln addition, different stages in long

term peatland development may have differential sensitivities to external factors. Finally, the 

comparison of the frequency, duration and timing of hydrological shifts between mid- and 

late-Holocene is complicated by lower temporal resolution of the late-Holocene record and 

the lal·ger age uncertainty for mid-Holocene shifts. Relatively low-resolution analyses, with 

one sample each 4 cm, may imply that sorne dry shifts may have been missed. ln an eastern 

Newfoundland peatland, Hughes et al. (2006) found high-frequency hydrological variability 

during the mid-Holocene, possibly related to global climatic instability. However, regional 

differences in hydroclimatic context and concomitant differential sensitivity to climatic 

driving factors likely hamper direct comparisons of Newfoundland and James Bay region 

records. 

ln northeastern Canada, cooling climatic conditions are associated with the intrusion 

of dry Arctic air masses (Carcaillet and Richard, 2000 ; Girardin et a!., 2004). Hence, past 

cooling events may have been concomitant with a decrease in both annual precipitation and 

potential evaporation, resulting in contrasting effects on peatland water tables. Eastern 

Canadian climate history can be summarized by a mid-Holocene thermal maximum 

(Kaufman et al., 2004 ; Viau et al., 2006) and a graduaI cooling trend that started between 

5000 and 4000 cal BP (Arseneault and Sirois, 2004 ; Filion, 1984; Kerwin et al., 2004). This 

Neoglacial period affected the distribution of boreal ecozones with more severe fire events 

(Ali et a!., 2008 ; Ali, Carcaillet and Bergeron, 2009 ; Arseneault and Sirois, 2004 ; Asselin 

and Payette, 2005 ; Payette and Gagnon, 1985), whereas permafrost gradually developed in 

subarctic Quebec peatlands (Bhiry, Payette and Robert, 2007 ; Bhiry and Robert, 2006 ; 

Lamarre, 2010). This period may have been characterized by humid climatic conditions as 

shown by regional increases in lake levels (Miousse, Bhiry and Lavoie, 2003 ; Payette and 

Filion, 1993). ln addition to Neoglacial cooling, the Medieval Warm Period (MWP), centered 

around 1000 cal BP (Filion, 1984) and subsequent LIA cooling have been registered in 

northern Quebec ecosystems (Bhiry and Robert, 2006 ; Viau and Gajewski, 2009). Recurrent 

LIA cold/wet shifts have been observed in peatlands in nOlihern Europe (De Vleeschouwer et 

al., 2009 ; Mauquoy et al., 2002b), coinciding with solar activity minima centered around 

AD 1300, 1500, 1700 and 1850. ln Quebec, minimum temperatures and permafrost 

aggradation have been reported around 800 and 400-450 cal BP (Asselin and Payette, 2006 ; 
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Bhiry and Robert, 2006 ; Payette et al., 1985 ; Viau and Gajewski, 2009) yet the rrùnimum 

around AD 1800-1850 and the subsequent trend towards warmer and wetter conditions are 

better documented (Bergeron and Archambault, 1993 ; Bergeron et al., 2001 ; Denneler et al., 

2008 ; Girardin et al., 2004 ; Jacoby and D'Arrigo, 1989). Based on the number of standard 

deviations, our inferred dry shifts were more intense than wet shifts (Fig. 2.9), in spite of the 

apparent underestimation of WTD at the dry end of the gradient that is evident III cross 

validation of the transfer function (Booth, 2008). 

Given the solid indications for long-term regional late-Holocene cooling and 

assuming that summer precipitation is more important to bog surface moisture than winter 

precipitation, the replicated dry surface events may be interpreted as forced by cold-dry 

climatic shifts. Indeed, the reconstructed dry shifts 8, 9 and 10, dated around 770, 400 and 

140 cal BP, correspond to repOlted nOlthem Quebec LIA cooling episodes. Previous research 

in LLC showed similar dlY shifts between 1370-1070, 870-560 and 530-350 cal BP (Loisel 

and Garneau, 2010), while cooling-associated wet shifts were reconstructed in a peatland in 

Newfoundland around 600 and 200 cal BP (Hughes et al., 2006). The 1370-1070 cal BP shift 

from Loisel and Garneau (2010) corresponds to dry shift 6 (Fig. 2.9), whereas the subsequent 

events coincide with shifts 8 and 9. Given the replicability and the extent of drying, we 

hypothesize that dry events have been amplified by a decadal persistence of frozen peat 

horizons. Sorne of the rapid shifts to near-surface water tables that followed these dry 

episodes (e.g. observed around 2400 cal BP in STE, 360 cal BP in LLC, as weil as the 

ongoing rising water table in MOS), rrùght thus be triggered by a collapse offrozen horizons. 

Melting effects may have been amplified by an autogenic effect: an anterior dry bog surface 

caused enhanced decomposition that concorrùtantly decreased hydraulic conductivity of the 

acrotelm peat, resulting in a potential for rapidly rising water tables and an extremely wet 

peatland surface. For instance, this autogenic effect may have amplified the effect of wetter 

climatic conditions causing high water tables (wet shift Il) since the end of the last LIA 

episode (Girardin et al., 2006; Payette et al., 2004). 

Peatland thermokarst features are presently close to the Eastmain region, whereas the 

actual southern lirrùt of sporadic peatland palsas is located ~ 140 km northward (Thibault and 

Payette, 2009). Although these residual palsas are not in equilibrium with present-day 

climate, past climatic variability rrùght have been large enough to have caused episodic 
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frozen peatland surfaces in the Eastmain region.Nevertheless, except for testate amoeba

inferred extremes in WTD, associated dry-indicating vegetation assemblages and horizons of 

highly decomposed peat, we have no evidence for the past occurrence of persisting frozen 

peat in the Eastmain region. It is likely that LIA cooling resulted in declining C sequestration 

rates (Mauquoy et al., 2002a), although high-resolution dating control is essential for 

confirmation. 

2.6. Conclusion 

Holocene peat C accumulation rates in three peatlands of the Eastmain region have 

been spatially and temporally highly variable, with Holocene averages between 14.9 and 22.6 

g m-2 y(l. Rapid sequestration is associated with phases of important Sphagnum section 

Acutifolia presence during the warmer mid-Holocene, whereas low rates occur during the 

late-Holocene, when Cyperaceae and ligneous vegetation were abundant and water table 

levels showed high-amplitude fluctuations. However, high variability in C accumulation 

patterns implies a complex ecosystem response to driving factors and thus understanding of 

the interaction between climate, water table levels and vegetation mediated by local factors is 

essential in explaining differential tendencies. Varying patterns of C sequestration within the 

climatically uniform Eastmain region show that differential timing in ombrotrophication 

between coring sites may have been critica1 for patterns of long-term C sequestration. 

Coinciding extremes in WTD may indicate the presence of seven co1d/dry events in the 

region since 3000 cal BP. Possibly due to a more accurate chronology towards the present, 

three LIA cooling events may be best represented in the stratigraphy as indicated by 

(extremely) dry peatland surfaces. Given the past proximity of peatland palsas, episodes of 

persisting frozen peat might have contributed to the important water level drawdown in the 

studied peatlands. 
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Figure 2.1. Study region. 
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Figure 2.2. Plant macrofossil (upper) and testate amoeba (lower) diagram for LLC. Plant 
macrofossils are expressed as volume percentages or absolute quantities (n); amoeba 
presence is expressed as a percentage. Peat types are subdivided into Sphagnum peat (light 
grey), sedge peat (white), ligneous peat (dark grey) and uoidentified organic matter (black). 
Inferred WTD (±SE) is shown at the right of the testate amoeba assemblages. 



78 

(al 8000 7000 6000- 5000 4000 3000 2000 1000 

~_~e~'_ J 
f 

..l .. .L"LA... l ....l._•.•. .!..~~L...l.......r _
ot'-,·_,-" ·_~~,...L_, u_.d_"._,~.l(cl 

J 
100 -i 

,.1 t 
1.

l 
~-

4 
300 : ' _ . '1' • 1 t • • 1 i "~ 

8000 7000 6000 5000 4000 3000 2000 1000 o
 

Age (cal BP)
 

Figure 2.3. Age-depth models (solid black line). Grey !ines mark the 95% confidence 
interval. a) LLC; b) MOS; c) STE. 



79 

LL LLC LLC LLC LLC LLC
Il 2 3 4 5 6
 

60
 

~~ 
40 1N 

E 
.9 

4" ~ II.! 
~(il 

20~ 
U 

0
 
-10 1
 

E .s 
0
 

~ 30
 

50-L-----------------------' 
100
 ..
 ",-"Il
 

: 
~

:f\#~ ;,Ë 75 
f
f 'lI, '4• t
 

co
 
§, 50 r '1' : ~· ..co 
.c ·· "..· \'~ 25 · . 

Ë 75 
Ul 
Q) 

~ 50 

ro 
~ 25 

0-===;=,'---,;=:::;,=::::;===1,=::;=---.,-;===;:,=;=:::::r,-.---,.----.--i,~
 
7000 6000 5000 4000 3000 2000 1000 a
 

Age (cal BP) 

Figure 2.4. LLC C accumulation rate (CAR), WTD (±SE), Sphagna presence and peat types. 
CAR are shown at high resolution (grey) and as mean values between dated levels (black). 
Sphagna shows Sphagnum sections Acutifolia (dotted line), Sphagnum (dashed line) and 
Cuspidata (solid line). Peat types are subdivided into Sphagnum peat (light grey), sedge peat 
(white), ligneous peat (dark grey) and unidentified organic matter (black). 
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Figure 2.8. STE C accumulation rate (CAR), WTD (±SE), Sphagna presence and peat types. 
CAR are shown at high resolution (grey) and as mean values between dated levels (black). 
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(white), ligneous peat (dark grey) and unidentified organic matter (black). 
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Site Core Sample Laboratory Malerial dated I·C age 20 range Age 
depth number (BP) (cal BP) (cal BP) 
(cm) 

LLC C 51-52 UClAMS43480 Sph stems 340±20 317-480 391 
C 77-78 UCIAMS58634 Sph stems 915±15 777-906 846 
C 102-103 UCIAMS50203 Sph stems J205±15 1072-1225 1140 
C 120-121 UCIAMS57419 Sph stems J980±15 1872-1991 1924 
C 140-141 UCIAMS5742J Sph stems 2550±15 2531-2748 2716 
C 153-154 UCIAMS50204 Sph stems 2915±15 2984-3 J55 3057 
C 201-202 UC[AMS43479 Sph stems 3745±20 3996-4171 4[07 
C 250-251 UCIAMS58636 Sph stems 4165±20 4596-4819 4701 
C 293-294 UClAMS50205 Sph stems 4450±15 4980-5265 5110 
C 351-352 UCIAMS43478 Sph stems 4985±20 5653-5844 5701 
C 439-440 UClAMS50206 Sph stems 6055±15 6821-6968 6912 
C 480-483 Beta223743 Eric leaf frs 6640±40 7431-7627 7520 

MOS C 40-41 UCIAMS57424 Sph stems 355±15 325-522 444 
C 70-71 UCfAMS54958 Sph stems 1270±25 1095-1313 1223 
C 95-96 UCIAMS64586 Sph stems 1990±20 1837-1985 1924 
C 108-109 UCJAMS67515 Sph stems 2065±25 1976-2119 2043 
C 120-121 UClAMS54959 Sph stems 2225±25 2157-2335 2237 
C 136-137 UCIAMS64588 Sph stems 2490±20 2478-2728 2591 
C 172-173 UClAMS54960 Sph stems 3275±25 3405-3604 3506 
C 224-225 UCIAMS54961 Sph stems 4185±25 4609-4863 4739 
C 246-247 UClAMS57426 Sph stems 4740±15 5333-5634 5534 
C 296-297 Beta223744 Sph stems 6200±40 6936-7237 7072 

STE C 45-46 UCIAMS54962 Sph stems 105±30 75-260 116 
C 67-68 UCIAMS58645 Picea leaf frs 600±20 548-646 620 
C 79-80 UCIAMS64589 Sph stems 1175±20 1039-1166 1112 
C 98-99 UCIAMS54963 Sph stems 17 J5±25 1568-1697 1578 
C 124-125 UCIAMS65381 Sph stems 2445±20 2351-2663 2461 
C 160-161 UCIAMS54964 Sph stems 3255±30 3316-3521 3505 
C 179-180 UCIAMS67514 Sph stems 3415±25 3588-3671 3597 
C 201-202 UCIAMS65382 Sph stems 3485±20 3757-3912 3805 
C 223-224 UCIAMS54965 Sph stems 3960±30 4283-4431 4362 
C 239-240 UClAMS58643 Sph stems/Picea leaf frs 3975±15 4422-4685 4424 
C 285-286 UClAMS40360 Sph stems 6225±20 6731-7219 7007 

Table 2.1. Radiocarbon datings sOlted by core. 
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Zone Deplh Age 
(cm) (cal BP) 

LLC8 45-0 330-present 

LLC7 105-45 1250-330 

LLC6 150-105 2960-1250 

LLC5 206-150 4170-2960 

LLC4 228-206 4420-4170 

LLO 290-228 5040-4420 

LLCZ 460-290 7210-5040 

LLCI 482-460 7520-7210 

Main features 

Well- preserved Sphagnulll section AClIIifo/ia peat with Difllugia pu/ex and water 
tables between 9-21 cm below the surface with an important dry shift around 100 
cal BP. 
Sphagnllm peat with both Amphifremajlavum and Difflugia pu/ex. Flllctllating 
water tables with persisting lowest water tables arollnd 410 cal BP, associated with 
episodic highly decomposed peat 
Decomposed Sphagnum peat with Ericaceae and Cyperaceae. Highly fluctuating 
water tables (2-30 cm below surface) with rapid alternalion ofwet- and dry
indicating amoebae. Deep water tables (-22-27 cm below the surface) centeretl 
-1920 and -2830 cal BP 
Decomposed Sphagnum peat with occasional Ericaceae and Cyperaceae. Stable 
waler tables (7-13 cm below surface) with Amphifremajlavum and Habrofrocha 
anguslicol/is 
Well-preserved Sphagnum section Aculifolia peat with Difflugia pu/ex and stable 
water tables (15-20 cm below surface) 
Weil preserved Sphagnum section ACUli(o/ia peat with Amphilrema flavum and 
high water tables (5-15 cm below surface) 
Well-preserved Sphagnulll section Aculifo/ia peat with Difjlugia pu/ex and stable 
water tables (15-20 cm below surface) 
Wet fen conditions: decomposed Cyperaceae and Drepanocladus peat with 
HabrOlrocha anguslico/lis and Amphilrema wrighlianulll 

Table 2.2. Stratigraphie zonation for LLC. 
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Zone Depth Age Main features 
(cm) (cal BP) 

MOS5 25-0 240-present Well-preserved Sphagnum peat with a single dry shift at 17 cm/150 cal BP 
MOS4 97-25 1940-240 Ericaceae-Sphagnum peat with Amphitremajlavum, Arcella diseoides and 

Hya/osphenia subjlava. Fluctuating water tables (6-25 cm below surface) with 
important dry shifts centered around 1890 cal BP (presence of P/ellrozium 
sehreberi) and 1290 cal BP (presence of Hya/osphenia subjlava and Trigonopyxis 
areu/a). 

MOS3 172-97 3480-1940 Sphagnllm-Ericaceae peat with Amphitremajlavllll1. Relalively stable waler tables 
and accelerating accumulation toward the end of the period 

MOS2 245-172 5450-3480 Sphagnum-Cyperaceae peat with Difjlugia pu/ex and Amphilremajlavum. 
Fluctuating water tables (6-25 cm below surface) 

MOSI 297-245 7070-5450 Wet fen conditions. Cyperaceae and Ericaceae peat with Amphitrema wrightianllJn, 
Difflugia pu/ex and Habrolroeha anguslieollis 

Table 2.3. Stratigraphie zonation for MOS. 
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Zone Depth Age Main features 
(cm) (cal BP) 

STE5 50-0 220-present Well-preserved Sphagnum peat with Amphitremaflavum and Hyalosphenia 
papilio, shifting toward Cuspidata section dominance 

STE4 79-50 1090-220 Highly decomposed Ericaceae/wood-Cyperaceae peat with Hyalosphenia subflava 
and extremely low water tables (20-37 cm below surface) 

STE3 151-79 3230-1090 Decomposed Ericaceae/wood-Cyperaceae peat wilh Sphagnum and Hyalosphenia 
subflava. Unstable water tables. 

STE2 237-151 4410-3230 Ericaceae/wood-Sphagnum peat with Amphilremaflavum, Difflugia pulex and 
Trigonopyxis aJ·cula. Highly f1uctuating water tables (5-31 cm below surface) 

STEI 286-237 7010-4410 Fen conditions. Highly decomposed Cyperaceae and Ericaceae peat 

Table 2.4. Stratigraphie zonation for STE. 



CHAPTERIII
 

DID FillES DRIVE HOLOCENE CARBON SEQUESTRAnON IN BOREAL
 

OMBROTROPHIC PEATLANDS OF EASTERN CANADA?
 

Simon van Bellen ', Michelle Garneaut, Yves Bergeron2, Adam A. Ale 

IDÉCLIQllE UQAM-Hydro-Quebec Chair/GEOTOP, Université du Québec à Montréal, 

Succursale Centre-Ville, c.P. 8888, Montréal, Québec, H3C 3P8, Canada 

2NSERC-UQAT-UQAM industrial Chair in sustainable forest management, Université du 

Québec en Abitibi-Témiscamingue, 445 boulevard de l'Université, Rouyn-Noranda, Québec, 

J9X 5E4, Canada 

3Centre for Bio-Archeology and Ecology, Université Montpellier 2, Institut de Botanique, 

163 rue Auguste Broussonet, 34090, Montpellier, France 

Article submitted to Quaternary Research. 



91 

Résumé 

Les feux constituent un facteur important en ce qui concerne l'accumulation du 
carbone dans les écosystèmes boréaux de l'Amérique du Nord. Dans l'ensemble de la région 
boréale, la dynamique des feux de tourbière semble être différente de celle des peuplements 
forestiers, surtout dans les écosystèmes tourbeux ouverts et relativement humides trouvés 
fréquemment au nord-est du Canada. L'objectif de la recherche était de déterminer l'impact 
des feux de tourbière sur l'accumulation du carbone durant l'Holocène, et de vérifier si la 
végétation des tourbières a influencé les évènements de feu. Afin de couvrir la variabilité 
spatiale, deux carottes par tourbière ont été prélevées dans trois tourbières de la région 
d'Eastmain afin de procéder à la quantification de leur contenu en charbon. 

Les résultats montrent que les régimes de feux ont été très variables à l'échelle 
spatiale et temporelle, alors qu'une tendance régionale de ralentissement de l'accumulation 
du carbone a été identifiée autour de 2000 cal BP. L'absence d'une corrélation négative entre 
les régimes des feux de tourbière et l'accumulation du carbone indique que ceux-ci n'ont pas 
exercé d'influence déterminante dans l'accumulation du carbone durant l'Holocène. Puisque 
les assemblages végétaux ne concordaient pas non plus aux évènements de feu, on peut 
conclure que ces derniers ont plutôt été favorisés par des épisodes d'assèchement de la 
surface de la tourbière au cours de quelques années ou décennies, une période trop courte 
pour être détectée par macrorestes végétaux. En plus, les conditions hydrologiques 
hétérogènes des tourbières compliquent l'identification des conditions propices aux feux de 
tourbière. 
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Abstract 

Wildfire is an important factor considering carbon sequestration in the NOlih 
American boreal biomes. Within this biome, peatland tire dynamics may differ from those in 
upland forests, especially in open, wet ombrotrophic ecosystems as found in northeastern 
Canada. We aimed to detennine to which extent peat fire events have influenced carbon 
accumulation during the Holocene, and to verify if local vegetation has influenced the fire 
regimes. To coyer spatial variability, two cores per peatland were extracted from three 
peatlands in the Eastmain region and analyzed for stratigraphic charcoal accumulation. 

Regional peatland fire patterns showed high spatial and temporal variability, while 
carbon accumulation rates generally declined towards the late-Holocene. The absence of a 
negative correlation between peatland fire regimes and carbon accumulation indicates that 
fire regimes have not been a driving factor considering Holocene carbon sequestration. As 
trends in the reconstructed vegetation records did not match with fire events either, we 
conclude that fire occurrence may be rather linked to annual to subdecadal shifts in local 
hydrological conditions, relatively independent of vegetation, that are not detectable by 
stratigraphic plant macrofossil analyses. Moreover, heterogenous hydrological conditions 
complicate the identification of factors determining peatland burning potential. 
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3.1. Introduction 

Wildfire and climate generally determine patterns of plant communities and species 

distribution in the Canadian boreal region (Payette, 1992). Fire frequency and severity (i.e. 

depth of forest floor consumption) are highly variable within the Canadian boreal forest 

resulting from variations in climate, topography, stand density and species effects. 

Nevertheless, high-intensity crown fire is a dominant fire type in the upland forest ecosystem 

(Conny and Slater, 2002). 

Within the boreal and subarctic regions peatlands are frequent in topographie 

depressions, globally covering 3-4 million km2 (MacDonald et al., 2006 ; Yu et al., 2010). 

Due to cold, humid, nutrient-poor and acidic conditions that restrict decomposition, peatlands 

sequester organic carbon (C) and expanded laterally and vertically over millennia (Korhola, 

1994 ; Korhola et al., 2010 ; Tolonen and Turunen, 1996). As a result, the global northern 

peatland C stock, that statted accumulating after the Last Glacial Maximum, presently attains 

~547 (range: 473-621) Pg (Yu et al., 2010), constituting approximately a third of global soil 

C. 

Peatland hydrology and vegetation strongly influence the potential for fire 

propagation, while the amount of peat consumed varies with local and regional humidity 

conditions (Zoltai et al., 1998). The highly variable spatial patterns of moisture conditions 

within and among peatlands are closely linked to surface microtopography (i.e. hummocks 

and hollows) and vegetation composition. Hence, interactions between vegetation and 

hydrology are impOltant factors considering burning potential (Higuera et al., 2009). The 

presence of trees and shrubs in peatlands positively influences fuel continuity and it is 

therefore associated with more frequent fires (Carnill et al., 2009) and forested bogs may be 

more susceptible to bum as water tables are generally low. Although burning in wet, open 

peatlands can not be excluded under drought conditions (Cyr et al., 2005), open peatlands 

may often remain unaffected by [1re, especially when local water tables are high and trees are 

sparse (Hellberg, Niklasson and Granstrom, 2004). As a result, fire frequencies in open 

peatlands are generally lower than those of adjacent forest stands (Camill et al., 2009 ; 

Kuhry, 1994 ; Zoltai et al., 1998). 
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Peatland fires influence local C dynamics by a release of C to the atmosphere through 

combustion, estimated at 2.5-3.2 kg mOz (Pitkanen, Turunen and Tolonen, 1999 ; Turetsky et 

al., 2002). In addition, postfire C loss is generally important due to a delay in vegetation 

reestablishment (Wieder et al., 2009). The negative effect of recurrent, severe fires on long

term peat and C accumulation has been established for different peatland types and regions 

around the globe, l'et research has been more concentrated in boreal western and central 

Canada (Camill et al., 2009 ; Kuhry, 1994 ; Robinson and Moore, 2000 ; Turetsky et al., 

2002). ln these regions, climate-driven increases in tire frequency or severity mal' force 

peatlands to switch from net sinks to sources during the following decades (Turetsky et al. 

2002; Wieder et al. 2009). Whereas thcsc forcstcd pcatlands have developed under a dry 

continental climatic regime, dominance of open bogs with relatively high water tables in 

climatically more humid eastern boreal Canada mal' inhibit differential fire and C 

accumulation dynamics (Payette et al., 1989 ; Payette and RochefOli, 2001). In the Eastmain 

region, peatlands have accumulated considerable amounts of C during the last ~7000 years, 
z Oz

regionally averaging 91 kg m- at a mean rate of 16.2 g m yr"' (van Bellen et al., 2011). 

Here, we present a study on the Holocene patterns of fire and C sequestration based 

on the quantification of stratigraphie charcoal from three ombrotrophic peatlands of the 

Eastmain region in boreal Quebec, northeastern Canada. The main objective is to estimate if 

peat fires have driven long-term variations in C accumulation. Besides, we aimed to 

determine if peatland vegetation composition has affected peat fire regimes during the 

Holocene. Considering the influence of vegetation on fire regimes, we hypothesize that a 

higher presence of trees and shrubs is conducive to fire propagation and combustion, and thus 

shows a positive relationship with fire frequency and charcoal production. During the late

Holocene, peatlands in the Eastmain region were subjected to important hydrological 

fluctuations (van Bellen, Garneau and Booth, in press), which mal' have promoted fire 

potential. We therefore hypothesize that peatland fire frequency and charcoal production have 

been higher during the late-Holocene, possibly concomitant with changes in local vegetation, 

potentially showing a negative influence on C sequestration. 
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3.2. Study region 

Three pristine peatlands Lac Le Caron (LLC), Mosaik (MOS) and Sterne (STE), 

located in the Eastmain river watershed (51°50' -52°20'NI75°00' -76°00'W) were studied 

(Fig. 3.1). Regional mean annual temperature is -2.1 ± 0.2°C (January: -22.0 ± 0.5°C; July: 

14.6 ± 0.2°C) and mean precipitation is 735 ± 12 mm, ofwhich about one third falls as snow 

(interpolated means and standard errors of 1971-2003 NLWIS data; Hutchinson et al., 2009). 

Forest fires are important in this region with actual fire cycles (i.e. the time required to bum 

an area equivalent to the study area) of 90-100 years (Mansuy et al., 2010 ; Payette et al., 

1989). Regionally, ail large fires may be assumed of natural origin as human activity is 

highly restricted. Figure 3.2 shows an example of an Eastmain peatland burning pattern. A 

complete description of peat1and characteristics can be found in van Bellen et al. (20 Il). 

3.3. Methods 

3.3.1. The use of charcoal records to reconstmct peatland fires 

Long-term reconstmctions of fire regimes from accumulating ecosystems as lakes 

and peatlands are predominantly based on macroscopic charcoal quantification from 

sediments, with peaks in the number of charcoal fragments possibly reflecting regional fires 

(Ali et al., 2009). Stratigraphic charcoal presence is generally quantified by charcoal 

accumulation rates (CHAR; expressed as pieces cm'2Yi,.l). 

Here, we assumed that ail fires recorded have burned upland forest and that sorne of 

those fires may have eventually spread into the peatland. As we aimed to verify past potential 

effects of peatland burning on C sequestration, we then needed to convert the obtained record 

of forest fire events to a record of peatland burning. Deterrnining the distance of the charcoal 

source is complicated by the fact that dispersal and deposition mechanisms are spatially and 

temporally variable depending on fire intensity, forest type, wind speed, and local 

topography. In general, small charcoal particles tend to travel farther than large particles 

(Clark, 1988 ; Lynch, Clark and Stocks, 2004 ; Ohlson and Tryterud, 2000); therefore, 
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quantifying large fragment presence could be a means of establishing a local tire history. 

However, estimates of charcoal dispersal potential are highly variable. From experimental 

burning in boreal Scandinavia, Ohlson and Tryterud (2000) state that practically no particles 

>0.5 mm are deposited outside the burning area, although in other settings l-cm charcoal 

fragments have been found to be transported over distances of several kilometers (Tinner et 

al., 2006). Due to the lack of a uniform relation between the size of a charcoal fragment and 

its deposition distance, a distinct size tlu'eshold, separating 'local' from 'regional' origins, can 

not be deterrnined. An additional complication lies in the fact that peatland burning leaves 

patchy patterns (Fig. 3.2), hence burning variability within a peatland is highly important. 

In this study, tire history was reconstructed at two levels. First, we identitied series of 

charcoal peaks representing individual tires that burned at an estimated distance of 500-1000 

m of the coring site (Higuera et al., 2007). As coring was performed in proximity to the 

upland forest, these tires are assumed to generally represent the upland forest tire regime 

(hereafter referred to as F-tires). Second, each series was partitioned by the median charcoal 

peak amplitude for each peatland in order to distinguish the largest peaks. Charcoal peaks 

may be a proxy for tire size, fuel consumption (Higuera et al., 2009) and tire proximity and 

intensity (Hély et al., 2010 ; Higuera, Whitlock and Gage, 2010 ; Whitlock et al., 2006). 

Interpreting peak magnitude as an indication of tire proxirnity, we hypothesized that the 

larger peaks correspond to tires that continued from the upland forest into the peatland (FP

tires). The FP-tire record was compared to temporal trends in C accumulation rates. Given 

the evident negative influence of individual tire events on the C balance (Wieder et al., 

2009), we assumed that a signiticant influence of tire regimes on long-term C sequestration 

would be manifested by a negative relation between tire and C accumulation rates, as shown 

by Kuhry (1994). We detined tire frequency by the number of recorded tires per unit time, 

while the mean tire interval represents the average of ail tire intervals from ail cores (Payette, 

1992). 
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3.3.2. Fieldwork 

From each of the three peatlands two coring sites were selected. Coring locations 

were selected at opposing sides within each peatland (Fig. 3.1). To obtain records with a 

sufficiently high temporal resolution, we aimed to extract cores of at least 1.5 m in length, 

nearby the forest-peatland boundary that was identified by absence/presence of a surface 

Sphagnum cover, and an organic horizon thickness of >40 cm (Commission canadienne de 

pédologie, 1998). As the slope of the peatland basin was highly variable between sites, the 

distance between coring location and peatland-forest limit varied between 12 and 132 m. 

Coring was performed using a Box corer (1 Ox 10 cm width) to sample the upper 1 m and 

Russian peat samplers (4.5- to 7.5-cm diameter) for deeper horizons. Monoliths were 

wrapped in plastic, transfelTed to polyvinyl chloride tubes and stored at 4°C until analysis. 

3.3.3. Laboratory work 

Prior to specific treatment, cores were sliced into contiguous 1 cm subsamples in the 

laboratory. From each slice, 2 cm3 was retained for macrocharcoal analysis, assumed large 

enough to provide replicable data (Carcaillet et al., 2001b). The subsample was soaked for at 

least 14 hours in 5% KOH and carefully rinsed tru'ough a 355-Jlm sieve. Material was 

transferred to a dish for dry analysis. Macrocharcoal fragments were counted using a 

binocular microscope (x25). 

Peat C contents were calculated from bulk density and loss-on-ignition (LOI) 

analyses. The amount of organic matter (OM) was defined as the product of bu1k density and 

LOI (Dean, 1974). Bulk density was determined from contiguous 1 cm3 subsamples after 

drying for 16 hours at 105°C. Subsequently, LOI analysis was performed at 550°C for 3.5 

hours (Heiri, Lotter and Lemcke, 2001). The resulting OM was converted to organic C 

assuming a mean of 0.5 g C gol OM (Turunen et al., 2002). 

Past vegetation assemblages were quantified with a binocular microscope using a 

. semi-quantitative technique on 2-cm3 subsamples. Fragments of either Sphagnum or ligneous 
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origin were quantified by a volume percentage of the entire sample. Picea and Larix spp. 

needle fragments were quantifed at a scale of 1 to 3 (1 =rare, 3=frequent). 

A total of 40 samples were submitted to Keck-CCAMS facility (Irvine, USA) for 14C 

accelerator mass spectrometry (AMS) dating. Dated samples were selected either at levels of 

apparent charcoal peaks or, when peaks were less conspicuous, at the boundaries of zones 

with abundant fragments. Radiocarbon ages were calibrated using the IntCalO4 calibration 

curve (Reimer et al., 2004) within the Bchron software package (Haslett and Parnell, 2008). 

Age-depth models were constructed assuming vertical accumulation as a continuous 

monotonie process applying piecewise linear interpolation. Ali ages were expressed as 

calendar years before present (BP = before AD 1950). Age-depth models were based on these 

calibrated ages and the age of the peatland surface when cores were extracted, established at 

56 cal BP (i.e. AD 2006). C accumulation rates were calculated for different sections of each 

core by dividing the C mass by the period of accumulation and correcting for a uniform 

surface area (Clymo, Turunen and Tolonen, 1998). 

3.3.4. Peat fire identification 

Charcoal peaks representing fire events, were identified using CharAnalysis (Higuera 

et al., 2009). As peat records generally show long-term variations in accumulation rate, 

records were rescaled to a constant sample age resolution to reduce biases in the ability to 

detect significant charcoal peaks. The sample resolution was defined by the median value of 

each record and the resulting record was defined as Cinterpolated. Then, each charcoal record was 

decomposed into a record of low-frequency and a record of high-frequency fluctuations in 

CHAR. Low-frequency variations are assumed to reflect changes in the rate of total charcoal 

production, secondary charcoal transport, and sediment rnixing (Clark, Royall and Chumbley, 

1996 ; Higuera et al., 2009), and is generally referred to as Cbackground. The Cbackground record 

was calculated by a locally-weighted regression (LüWESS; robust to outliers) of which the 

window width varied among records (discussed below). Cbackgrollild was subtracted from 

Cinlerpolated, which resulted in the new record Cpeab representing high-frequency variations in 

CHAR. The Cpeak record was subdivided in sections defined by tbe window width, and for 
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each section Cpeak values were separated in two components: Cnoise, representing variations 

around Cbackground due to sediment mixing and sampling, and Cnre, fluctuations in CHAR that 

exceed the variability in the noise distribution. The threshold separating Cnre from Cnoise was 

set as the 991h percentile of the noise population (cf. Higuera et al., 2009). To verify the 

ability of each record to identify peaks associated to fires, a signal-to-noise index (SNI) was 

determined, which was defined by the ratio of the variance within the Cfire distribution and the 

total variance in Cpeak for the applied window width. SNI fluctuates by definition between 0 

and l, with high values indicating a clear distinction of charcoal peaks. In addition, a measure 

of the threshold goodness-of-fit (GOF) was established that is equal to the p-value from a test 

on the fitted noise distribution and Cnoise samples. Large p-values (>0.1) indicate that the Cnoise 

distribution is significantly represented by a Gaussian distribution (Higuera et al., 2009). The 

best smoothing window width for Cbackground for each record was selected based on the optimal 

sum of the GOF of the noise distribution and SNI. 

The median of the resulting charcoal peak values (i.e. the number of fragments 

associated to a peak, hereafter referred to as peak magnitude and expressed as pieces cm,2 

peak l
) of each peatland was used to separate FP- from F-fires. Holocene FP- and F-fire 

frequency was defined for each core individually as the ratio of the number of fires and the 

total age of peat accumulation and expressed as number of fires per 1000 years. Holocene 

variations in fire frequency were quantified using a 1000-year interval, after which values 

were smoothed with a 1500-year LOWESS filter using KaleidaGraph 3.6. The 1500-year 

[liter represented the finest resolution capable of eliminating sudden shifts on al! curves. 

To distinguish regional tendencies, temporal variations in F- and FP-fire frequency 

were synthesized. Each record was standardized by subtracting the mean of that record from 

each single value and dividing by the record's standard deviation (i.e. z-scores). 

To verify the relationship between FP-fire regimes and C accumulation, we 

calculated a mean frequency and fire associated-CHAR per 1000-year time slice in order to 

obtain a constant sample resolution for regression analyses. 
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3.4. Results 

3.4.1. Chronologies 

Radiocarbon dating showed ages of peat inception varying between 4586 (LLC_L4) 

and 7321 cal BP (MOS_Ll) (Table 3.1). Peat accumulation rates varied during the Holocene, 

with generally lowest values between 2000 and 1000 cal BP, and apparent high rates towards 

the surface (Fig. 3.3), which is due to the undecomposed state of the subsurface litter. As core 

lengths were variable and correlated poorly with the age of peat inception, median sample 

resolutions, which were used to rescale each record, varied between 22 and 48 yrs sample" 

(Table 3.2). 

3.4.2. Holocene fire cbaracteristics 

Identification of charcoal peaks was based on background charcoal smoothing 

window widths between 700 and 1000 years (Fig. 3.4), with a corresponding median SNI 

between 0.72 and 0.95 (Table 3.2). The maximum sum of median SNI and GOF values 

varied between 1.3-1.6 (Fig. 3.4). 

Total number of F-fires detected varied between 10 and 19 individual events since 

local peat inception (Table 3.2), representing a mean (±SE) Holocene F-fire interval of 439 

years (±64), or a mean frequency of 2.5 fires 1000 yrs' I . Peak magnitudes ranged from 0.09 

to 403.67 fragments, with generally substantially higher values in MOS_Ll, MOS_L4 and 

STE_L4 than in LLC_Ll and LLC_L4 (Fig. 3.5; Table 3.2). The total number of FP-fires 

registered within each core varied between 6 and 10. A t-test on ail FP-fires before and after 

2000 cal BP showed that peak magnitudes after 2000 cal BP were significantly higber than 

those before 2000 cal BP (p=0.03 ; Table 3.2), indicating a late-Holocene trend towards more 

intense or severe fires. Mean FP-fire frequency varied between 2.2 (LLC_L4) and 0.8 events 

per 1000 years (STE_L4) (Table 3.2), representing a mean fire interval of 883 years (±105). 

Temporal trends in fire frequency are highly variable. LLC_L4 shows more frequent F-fire 

events between 4000 and 3000 cal BP, whereas only two F-fires have been registered in 
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LLC LI during this period (Fig. 3.5). In STE_L2, FP-fire frequency decreased gradually 

between 4000 and 1300 cal BP, while STE_L4 shows no distinct temporal variation. 

Compared to LLC and STE bogs, MOS bog shows higher mean peak magnitude (Table 3.2). 

Thus, fire regimes have been highly variable within and among ecosystems. The spatially 

varying trends in both F- and FP-fire frequency within each peatland imply high incidence of 

local-stand factors on fire occurrence and propagation. 

At the regional scale, relative F and FP-fire frequency trends diverged after 2200 cal 

BP (Fig. 3.6a). Whereas both F- and FP-fire frequency decreased between 3400 and 2300 cal 

BP, FP-fires became relatively more frequent after 2200 cal BP, although F-fire frequency 

continued to decrease. Moreover, the subset of FP-fire peak magnitudes generally culminated 

around 1000 cal BP and decreased sharply after 700 cal BP (Fig. 3.6b). 

3.4.3. C sequestration patterns 

Holocene apparent rates of C accumulation in the lateral sections of the peatlands 

varied between 10.3 and 19.4 g m'z yr" (Table 3.2). Temporal variations in C accumulation 

rates were reconstructed within ail cores, and showed generally minimum C accumulation 

rates around 2000 cal BP between 7.3 and 12.1 g m'z yr" (Fig. 3.7). Increasing apparent 

accumulation rates during the recentmost centuries are the result of an incomplete 

decomposition in the upper, temporally aerated, section of the peat. 

C accumulation data, FP-CHAR and FP-fire frequency were rescaled to lOOO-year 

time slices for regression (Fig. 3.8a-c), a period that was chosen as it is close to the mean 

regional Holocene FP-fire frequency of 883 years. Results show no relationship between FP

CHAR and C accumulation rate (Fig. 3.8d) and a significant but weak positive relationship 

between FP-fire frequency and C accumulation rate (Fig. 3.8e). 
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3.4.4. Vegetation reconstructions 

As most important changes in both fire regimes and C accumulation have occurred 

towards the late-Holocene, vegetation reconstructions were focused on this period. The 3500

500 cal BP period covers both the interval with generally less frequent and low magnitude 

FP-fires prior ta ~2000 cal BP and the interval with more frequent, high-magnitude FP-fires 

between 2000 and 500 cal BP. Ali sites show a slightly fluctuating presence of ligneous 

vegetation at centermial timescales, but high magnitude fires were not closely associated to 

important presence of ligneous vegetation (Fig. 3.9). In addition, sites with high-magnitude 

FP-fires during the late-Holocene had either complete absence (e.g. MOS_LI) or important 

presence (MOS_L4) of Sphagnum vegetation. Hence, the trend towards higher FP-frequency 

and peak magnitude between 2000 and 500 cal BP appears to have been independent of 

variations in local vegetation. 

3.5. Discussion 

3.5.1. Factors and scales in Holocene tire regimes 

High median SNI values of 0.72-0.95 and high maximum sums of median SNI and 

GOF values of 1.3-1.6 for ail records show that charcoal peaks, associated to the F-fire 

records, were clearly separated from background values (Higuera et al., 2009). Although 

charcoal peaks could not be validated as no independent past regional fire records were 

available, the charcoal deposition pattern of a recent tire aided interpretation. In 1995, the 

adjacent forest along the northwestern section of MOS bog burned, as indicated by fire maps 

(Ministère des Ressources natmelles et de la Faune, 2010), although this fire did not affect 

the coring locations. Considering the apparent rapid accumulation and sorne potential for 

small fragments to move vertically through unconsolidated peat, this fire may have caused 

charcoal deposition in the upper 20 cm of the peat. Sorne concentrated charcoal fragments 

were found in MOS_LI and MOS_L4 around 18 and 14 cm, respectively, yet CharAnalysis 
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identified these charcoal peaks as insignificant. Thus, these fires were correctly omitted in the 

reconstructed fire record. 

The reconstructed mean Holocene F-fire interval of 439 years, equivalent to a mean 

frequency of 2.5 fires 1000 yrs- I
, is high compared to the actual mean regional fire cycle (i.e. 

the period needed to burn an area equivalent to the study area) of 90-100 years (Mansuy et 

al., 2010 ; Payette et al., 1989), implicating that our reconstructions may be rather 

conservativc. The difference between the actual mean regional fire cycle and the mean 

Holocene F-fire interval from stands adjacent to peatlands may be partly due to the fact that 

uplands in proximity of peatlands may bum less frequently than those at higher elevation 

(Mansuy et al., 2010). Neverthcless, somewhat underestimated peatland fire frequencies 

would most likely not affect the correlation with C accumulation rates: regression of F-fire 

frequency and C accumulation rates resulted in a weak, positive correlation (p=O.O 17, 

r2=0.16), similar to the poor relationship between FP-fire frequency and C accumulation rates 

shown in Fig. 3.8e. 

The mean Ho1ocene FP-fire interval of 883 years of the Eastmain region peatlands, 

equivalent to a mean frequency of 1.1 fire 1000 yrs-I, largely corresponds to results from 

other boreal regions, even though spatial and temporal variability in fire activity is relatively 

high. Zoltai et al. (1998) estimated peat fire return intervals around 150 years in continental 

boreal bogs and 800 years in humid boreal bogs. In Manitoba, fire retum intervals were 

quantified between 624 and 2930 years, depending on the criterion for local fire identification 

(Camill et al., 2009). In western Canada, reconstructions in Sphagnum peatlands show 

temporally and spatially highly varying frequencies, from mid-Holocene frequency of 5.3 

fires 1000 yrs- I to no recorded fires over the entire accumulation in other sections (Kuhry, 

1994). ID the Eastmain peatlands, charcoal horizons were visually indistinct throughout the 

sequences, probably because of relatively low charcoal fragment quantities and poor peat 

preservation resulting in a general dark appearance. The absence of chaITed Sphagna in these 

horizons implies that most burning was surficial, only chaITing the standing biomass, i.e. 

trees and (small) shrubs. 

FP-fire regimes in the region have been influenced by multiple factors, acting on 

different temporal and spatial scales. Regionally unifonn increasing late-Holocene fire 

intensity may have been forced by climatic factors (discussed below). Dissimilar FP-fire 



104 

frequencies among peatlands imply control at the landscape level, as variation in landscape 

connectivity (i.e. the configuration of lakes and rivers and the forest mosaic) determines both 

spatial and temporal patterns of the fire regime (Bergeron, 1991). Poor temporal synchroneity 

of FP-fire events within each peatland points towards patchy burning patterns, probably 

forced by spatially variable vegetation and hydrology (Fig. 3.2). These results confirm that, in 

order to obtain complete understanding of the complexity of peatland fire regimes, multiple 

records from multiple peatlands are essential to cover spatial variability. 

Gavin et al. (2003) suggest that an apparent regional increase in peak magnitude 

during the late-Holocene might be explained by higher decomposition of charcoal fragments 

towards older deposits. This is probably of ITÙnor importance in our study as peak fragments 

were generally large (>0.5 mm) and decomposed organic matter did not show a distinct trend 

downward in detailed stratigraphie analyses (van Bellen, Garneau and Booth, in press). 

Eastmain peatlands are characterized by important microtopography of high 

hummocks (~40 cm height) with frequent Picea mariana presence and hollows with standing 

water, resulting in spatially variable vegetation assemblages and hydrology. As centennial

scale shifts in vegetation succession in the stratigraphies did not show any clear link with 

individual fire events, we hypothesize that peat fires have been the result of shifts in water 

tables independent of important changes in vegetation. Multiple climate-forced episodes of 

low water tables have been reconstructed in the region since 3000 cal BP (Fig. 3.9; van 

Bellen, Garneau and Booth, in press). These periods were identified by stratigraphie analyses 

of testate amoeba assemblages at a decadal- to centennial-scale resolution. Sorne of the FP

fires might correlate with the regional episodes of dry conditions (Fig. 3.9), although the 

generallY large 95%-confidence interval of the chronologies obscures a potential link 

(Fig. 3.3). High-resolution dating strategies should be adopted for confirmation of eventual 

peatland fire sensitivity to decadal- to centennial-scale dry shifts. Alternatively, only a couple 

of years of dry climate conditions may be sufficient for a peatland to burn and therefore 

correlation with decadal- to centennial-scale droughts may be poor, even if high-resolution 

dating is applied. Additional complexity is caused by the low median sample resolution (22

48 yrs sample· I
), implying that such short-term changes would be hardly detectable by 

stratigraphie analyses. 
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3.5.2. Fire regimes and C sequestration 

The absence of a negative correlation between both FP-fire frequency and FP-CHAR, 

and C accumulation rates, indicates that Holocene C sequestration has not been primarily 

driven by fire regime. As fire events have by definition a negative effect on C sequestration 

through direct emissions and postfire net emissions (Turetsky et al., 2002 ; Wieder et al., 

2009), fire effects have apparently been masked by other, more important autogenic or 

allogenic factors. General low FP-fire frequencies in the Eastmain region, combined to 

surficial fire types, may be the principal cause for the absence of a significant influence of 

fire regimes on long-term C accumulation rates. 

. C accumulation patterns are deterrnined by the difference between pnmary 

production and decomposition, which generally depend on climate regime (e.g. temperature, 

precipitation and moisture balance effects) and internai peatland dynamics (large-scale 

peatland surface topography, microtopography and basin morphology) (Belyea and Clymo, 

2001 ; Belyea and Malmer, 2004 ; van BeHen et al., 20 Il ; Yu, Beilman and Jones, 2009). 

Eastmain peatland long-term C accumulation has been influenced by late-Holocene climatic 

fluctuations (van Bellen, Garneau and Booth, in press) that were mediated by local 

geomorphology (basin morphology) and surface topography factors (van Bellen et al., 2011). 

Climatic cooling may have been the principal driving factor of C sequestration, as limited 

rates have been identified between 2000 and 1000 cal BP in multiple cores from the Eastmain 

region (van Bellen et al., 20 Il ; van BeHen, Garneau and Booth, in press). As fires generally 

originate from uplands and spread into peatlands, buming should be more frequent near the 

forest-peatland boundary compared to the central parts (e.g. as shown in Fig. 3.2). Although 

lateral coring positions may thus be advantageous for fire reconstructions, these sections are 

possibly also more affected by autogenic change. For instance, the forest-peatland boundary, 

forrning an ecotone of varying width, is probably more frequently exposed to (episodic) 

rninerotrophic input, paludification and concomitant changes in vegetation and it may have a 

lower vegetation resilience (Bauer et al., 2009 ; Bhatti et al., 2006) than central sections of 

the peatland. Thus, fire effects on C accumulation may weil have been minimized by a more 

important local effect of autogenic factors. 
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3.5.3. Late-Holoccne climate and fire regime 

Paleoecological reconstructions from the northeastem Canadian boreal forest and 

forest-tundra show a general cooling trend with more frequent forest fires from 3000 cal BP 

(Asselin and Payette, 2005 ; Payette and Gagnon, 1985), culminating between 2000 and 

1000 cal BP (Arseneault and Sirois, 2004 ; Asselin and Payette, 2005 ; Carcaillet et al., 

2010). In the southem boreal forest, some contrasting trends with either lower or higher fire 

frequency have been found, possibly resulting from regional variations in the sensitivity of 

the fire regime to climatic variations during the late-Holocene (Ali et al., 2008 ; Ali, 

Carcaillet and Bergeron, 2009 ; Carcaillet et 01., 2001a ; Hély et al., 2010). In this study, 

diverging trends in F- and FP-fire frequency after 2200 cal BP might imply a differential 

forcing. Altematively, a climatic influence on regional fire frequency in both uplands and 

peatlands may be explained by differential ecosystem response. In forest stands, climate 

primarily regulates large-scale fire activity by the occurrence of summer drought events with 

variations in temperature, precipitation and wind speed (Bergeron and Archambault, 1993 ; 

Senici et al., in press). However, in open peatlands, drainage and insolation dynamics, and 

thus surnmer water table fluctuations, are linked to climate in a different manner. Summer 

precipitation and to a lesser extcnt temperature are likely to influence summer water tables 

(Booth, 2010 ; Channan et al., 2009), but winter precipitation and temperature may play an 

important role in specific settings (e.g. Lamentowicz et al., 2010). Furthermore, indirect 

climate effects and climate-vegetation interaction may exert an additional influence on 

peatland surface drought. Snow cover, for instance, varies with vegetation type and 

microtopography (Camill and Clark, 2000), and the combination oflow temperatures and thin 

snow covers may allow permafrost aggradation (Vitt, Halsey and Zoltai, 1994), which further 

complicates the climate-hydrology relationship. Multiple replicate episodes of low water 

tables have been reconstl1lcted in the Eastmain peatlands between 3000-100 cal BP, which 

were related to episodic dry and cold climatic conditions, possibly exacerbated by decadally 

persisting frozen peat horizons (van Bellen, Gameau and Booth, in press). 

Thus, even if regional climate has been a principal factor driving long-term variations 

JO water tables and moisture contents, upland forests and peatlands potentially show 

differential trends as they are driven by specifie aspects of climate regimes, that are mediated 
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by specific ecological feedback on climate conditions (van der Molen and Wijmstra, 1994 ; 

Wotton and Beverly, 2007). As a result, differing trends in fire frequency between upland 

forests and open peatlands are probable even if climate is the sole driving factor, 

complicating comparisons between historical fire regimes of these two ecosystems. 

3.5.4. Future perspectives on Eastmain peatland tire potential 

Holocene peatland fire regimes have not been a determinant factor in long-term C 

sequestration in the Eastmain region, and this may weil be valid for most open peatlands in 

boreal eastern Canada. Nevertheless, c1imate-fire-carbon cycling interactions may be variable 

in the light of present and ongoing c1imate change (Bergeron et al., 2010). Peatland fire 

regimes are partly linked to adjacent upland forest fire activity and possibly short-term 

drought and therefore these concepts shou1d be considered in the projection of future peatland 

fire regimes. Boreal Quebec climate projections, as modelled by the Canadian Regional 

Climate Model (A2 scenario), show increases in surnmer temperature of 2.0-2.5°C and ~ 10% 

increases in surnmer precipitation around 2050 relative to 1980 in boreal Quebec (Plummer et 

al., 2006). As a result, fire regime scenarios for the Waswanipi region (~200 km south of the 

Eastmain region) indicate an increase in annual area burned of 7% and an increase in monthly 

fire risk of 30%, attaining 70% in July and 100% in August by 2100 (Le Goff, Flannigan and 

Bergeron, 2009). These increases in upland fire activity suggest a higher potential for 

peatland fire (Flannigan et al., 2009), yet c1imate mayhave a different influence on burning 

potential in large, wet and open peatlands. A trend of higher water tables and reduced drought 

frequency since the end of the last Little Ice Age episode (~AD 1850) in both peatlands and 

forest stands has been observed in northern Quebec (Arien-Pouliot and Bhiry, 2005 ; 

Bergeron and Archambault, 1993 ; Lesieur, Gauthier and Bergeron, 2002 ; Loisel and 

Garneau, 2010; Payette and Delwaide, 2004; Payette et al., 2004 ; van Bellen, Garneau and 

Booth, in press). Following these results, climate projections for peatland fire dynamics 

remain uncertain in northeastem Canada. This contrasts with scenarios for western 

continental Canada, where peatlands presently persist at the chy climatic end of their global 
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distribution. A projected major lllcrease in fire activity may cause western Canadian 

peatlands to switch from net sinks to sources of C (Wieder et al., 2009). 

3.6. Conclusion 

Holocene reconstructions show that fire regimes have not been sufficiently important 

to have driven variations in long-term C sequestration in boreal peatlands of northeastern 

Canada. However, FP-fires were associated with increasing charcoal production and showed 

slightly highcr frcquencies between 2000 and 500 cal BP, a period that was also characterized 

by generally low rates of C accumulation of7.3-12.1 g m-2 y(l. 

Peatland fire regimes reconstructed in this study have generally been a function of 

regional (climatic), extra-local (e.g. landscape connectivity) and local (e.g. peatland 

microtopography) factors. As vegetation reconstructions failed to show a clear link with fire 

regimes, colder climate regimes and concomitant unstable hydrological conditions may have 

been principal factors limiting peatland C sequestration in the Eastmain region during the 

same period (van Bellen, Garneau and Booth, in press). A direct link between fire events and 

climate-driven episodic dry shifts might be established if higher-resolution dating strategies 

were applied to the charcoal record. Diverging trends in ·F-fires and FP-fires after 

2200 cal BP may be explained by a differential sensitivity of local hydrology to climatic 

forcing. For a complete comprehension on driving factors of long-term fire regimes, the use 

of multiple records from multiple peatlands appears essential. 

Although peatland hydrology depends on the delicate balance between temperature, 

precipitation and vegetation effects, 21 sI century warmer and wetter climatic conditions might 

induce rising peatland water tables and peatland fire regimes might thus remain of minor 

importance, although the effect of increasing upland fire frequency should be taken into 

account. A comparable trend is visible since the end of the Little Ice Age (~AD 1850), as 

peatlands have become progressively wetter and possibly less vulnerable to buming. 
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Figure 3.1. Study region, peatlands and coring locations. 
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Figure 3.2. Eastmain region peatland ftre. This peatland was not a study site. Photo by 
Hydro-Québec. 
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Figure 3.6. F- and FP-fire regime reconstructions since 4000 cal BP. (a) F- and FP-fire 
frequency. Dotted lines indicate 95% confidence interval. (b) FP-fire peak magnitudes. Solid 
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Site Core Sa mp le <Iepl h UCIAMS lab. Malerial "c age (BP) 2a range Age 
(cm) number (cal BP) (cal BP) 

LLC LI 45-46 58637 Sph stems 630±15 551-670 601 

LI 58-59 54956 Sph stems 1250±30 1078-1289 1207 

LI 68-69 58639 Sph stems, LarixIPicea leaf frs 1940±20 1810-1975 1889 

LI 99-100 57423 Sph stems 3125±15 3255-3390 3355 

LI 112-113 58638 Sph sie ms 3395±15 3586-3702 3656 

LI 130-131 54955 Sph stems 3780±25 4056-4269 4162 

LI 170-171 57418 Sph slems 4625±15 5295-5447 5418 

LI 210-211 64581 Sph stems 5035±20 5721-5903 5841 

LI 249-254 40365 Sph stems, Eric Icaf frs 6055±20 6673-7218 6908 

L4 39-40 57417 Sph stems, Eric/Picca leaffrs 190±15 151-294 198 

L4 52-53 58632 Sph stems 1070± 15 933-1075 978 

L4 61-63 58633 Sph stems, Eric leaf fTs 1405±20 1216-1427 1301 

L4 78-79 57415 Sph stems, LarixiEric leaffrs 2170±15 2129-2317 2152 

L4 127-128 57422 Spll stems 3135±15 3342-3435 3351 

L4 147-148 58635 Sph slems, EridLarix leaf fTs 3495±20 3670-3826 3769 

L4 188-189 40368 Sph stems 4l20±20 4520-4788 4586 

MûS LI 55-56 65378 Charceal frs 190±15 147-379 243 

LI 77-78 65385 Charcea1 frs 1260±20 1071-1308 1218 

LI 89-90 65389 Charceal fTs 1840±20 1678-2045 1787 

LI 117-119 65386 Charceal, Cyp seeds 3625±20 3626-4312 3933 

LI 167-170 43474 Eric leaf frs; Cyp seeds 6420±20 6694-7657 7321 

L4 SI-52 57425 Sph stems 455±15 502-550 545 

L4 73-74 58642 Sph stems 2J65±20 2097-2285 2130 

L4 97-99 58641 Eric/Larix leaf frs 2750±20 2790-2911 2852 

L4 136-137 58640 Eric/LarixiPicea leaf fTs 3835±15 4162-4326 4322 

L4 169-170 43476 Sph stems 4670±20 5318-5457 5323 

STE L2 44-45 67506 Sph stems 265±25 269-436 316 

L2 68-69 67507 Sph stems 1195±25 1031-1232 1123 

L2 98-99 67508 Sph stems 2380±25 2329-2588 2399 

L2 142-143 67509 Sph stems 3200±25 3360-3471 3415 

L2 180-181 67510 Sph stems 3820±25 4108-4363 4207 

L2 212-213 67511 Sph stems 4465±25 4977-5288 5182 

L2 244-246 40362 Sph stems 5760±20 6412-6725 6550 

L4 35-36 65384 Sph stems 135±20 70-287 224 

L4 48-49 67512 Charcoa 1frs 945±25 778-967 867 

L4 63-64 65380 Charceal; Picea leaffrs 2455±20 2343-2708 2524 

L4 84-85 67513 Charcea 1frs 3540±25 3703-3948 3826 

L4 125-126 65376 Charceal, Picea/Eric leaf frs 5490±20 6189-6339 6288 

L4 174-176 40363 Sph stems; L.1fix leaf frs; Cyp seeds 6185±20 6976-7345 7090 

Table 3.1. Radiocarbûn dates selected by peatland and core. 
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Pealland Core Distance Corc Basal Median Median F FP- Mean FP-fire Carbon Mean peak 
10 foresl lenglh age sample signal fires fires ffequency accumulation magnitude FP-fires 
(m) (cm) (cal BP) resolulion tc-noise (#) (#) (# 1000 yrs") raie (pieces cm" peak") 

(yr sample') index (g m" yr-') 

Before Afler 
2000 2000 
cal BP cal BP 

LLC LI 26 252 6908 26 0.72 16 7 1.0 15.3 3.7 12.0 
L4 12 189 4586 22 0.80 18 10 2.2 19.4 9.1 39.0 

MaS LI 132 169 7321 47 0.91 15 7 0.9 10.3 118.3 293.7 
L4 39 170 5323 30 0.95 14 7 1.3 15.7 150.2 183.5 

STE L2 57 246 6550 24 0.84 19 8 1.2 15.9 31.5 9.8 
L4 34 176 7090 48 0.85 10 6 0.8 13.3 62.5 209.8 

Table 3.2. Peatland core and fire regime characteristics. 



CONCLUSION 

The aims of the thesis may be summarized by 1) the quantification of total C stocks 

and rates of ecosystem C accumulation in three boreal peatlands and 2) the determination of 

the relative influence of varations in ecohydrological conditions and fire regimes within the 

Holocene hydroclimatic context. Data were obtained by field measurements and proxy 

analyses on multiple cores that covered spatial variability within each ecosystem. To 

accomplish the first objective, spatial extrapolation of peat C density and accumulation rates 

was performed. In addition, the use of plant macrofossil and testate amoeba analyses 

provided record of past vegetation assemblages and hydrological changes, which were 

matched to variations in reconstructed C accumulation rates. Finally, peatland fire history 

was obtained from stratigraphic macroscopic charcoal analyses, which was correlated with C 

accumulation rates. 

1. Peatland C stocks 

The mean of the C stock of each studied peatland is 203 ± 28 x 106 kg (± SE), with a 

mean area-weighted C mass of 91.6 kg m-2
. Considerable spatial variability in C sequestration 

patterns has been identified between peatlands. Firstly, the use of several cores collected in 

each peatland showed generally higher amounts of accumulated C in deep sections of the 

peatland than lateral cores. ln accordance, ecosystem-scale C mass and C accumulation rates 

are generally lower than the quantifications from centrai cores (Fig. 1), with C mass 

overestimations attaining 23 to 61 % of the mean ecosystem value. 
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Figure 1. Comparisons of central core and ecosystem-scale reconstructions of C mass and C 

accumulation rate. 

Comparisons between sites show that LLC bog as a whole has sequestered 242 x 106 kg C, 

whereas MaS and STE store 217 and 149 x 106 kg C, respectively, which is primarily the 

result of substantial differences in mean peat depth, probably induced by differences in local 

basin topography characteristics. 

2. Ecohydrological changes 

Reconstructions of vegetation and testa te amoeba assemblages indicate that most 

sections of each peatland have accumulated for several millennia under ombrotrophic 

conditions. Sphagnum peat is a major contributor, especially in the central, deep sections of 

each peatland. Furthermore, Sphagna have been most stable in the core extracted from the 

thickest deposits ofLLC bog. The central MaS bog record shows a more important presence 

of ligneous peat and less Sphagna, whereas peat composition in STE bog record is more 

dominated by ligneous and herbaceous peat. Testate amoeba assemblages are generally 

dominated by Amphitrema jlavum and Difjlugia pulex, with frequent episodic presence of 

Amphitrema wrightianum, Hyalosphenia subjlava and the rotifer Habrotrocha angusticollis. 

The transition from minerotrophic to ombrotrophic conditions occuned much earlier 

in the deep core from LLC (7210 cal BP) than in the deep cores from MaS (5450 cal BP) and 
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STE (4410 cal BP) bogs. Probably forced by persisting minerotrophic conditions, temporal 

variations in vegetation have been important in MOS and STE bog records, showing a 

general alternation of Sphagnum sections and Ericaceae and Cyperaceae assemblages at 

centennial scales. LLC bog record appears to have been more stable during the mid

Holocene, dominated by the presence of Sphagnum section Acutifolia. However, vegetation 

assemblages were highly variable in LLC bog between 3000 and 1000 cal BP, when 

increasing local presence of Ericaceae and Cyperaceae was reconstructed and testate amoeba

inferred water table depths show concomitant important fluctuations. These fluctuations 

match hydrological shifts reconstructed from MOS and STE records. Due to the regionally 

replicable trends, we may conclude that tbe last 3000 years have been characterized by 

hydroclimatic variations that caused fluctuating water table shifts and pressure on ecosystem 

stability, as demonstrated by col1apsing Sphagnum cover in LLC bog and hydrological 

variations in aH records. This interpretation is corroborated by previous late Holocene c1imate 

and envirorunental reconstructions in nortbern Quebec, that identified a general Neoglacial 

cooling (Arseneault and Sirois, 2004 ; Bhiry, Payette and Robert, 2007). Recurrent Little Ice 

Age (LIA) cooler and drier conditions during the last millennium might have resulted in years 

or decades of frozen horizons in the peatlands of the Eastmain region, causing an apparent net 

decrease in water table heigbt. This hypothesis is supported by Thibault and Payette (2009) 

who demonstrated the contemporary persistence of residual permafrost in the La Grande 

Rivière area. 

3. Eastmain peatland tire dynamics 

Eastmain peatland fire regimes have been generally mild, with different peatland 

sections showing mean Holocene frequencies between 0.8 and 2.2 fires 1000 yrs· l . Besides 

spatial variations, important temporal variations in charcoal peak magnitude and to a lesser 

extent fire frequency were found. General1y, important charcoal peaks and slight1y higber fire 

frequencies were associated with the period between 2000 and 500 cal BP. As the past 

burning patterns show important variability at various spatial and temporal scales, our results 

suggest that fire regimes have likely been a fonction of the superposition of regional 
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(c1imatic), extra-local (e.g. landscape conncctivity) and local (e.g. peatland microtopography) 

factors. As long-term (i.e. centennial-scale) shifts in vegetation appeared independent of fire 

events, generally more severe fires since 2000 cal BP may have been related to more 

important subdecadal drought, yet too short to induce a detectable shift in local vegetation. 

Reconstructions from boreal Quebec show intensifying upland fire regimes after 3000 cal BP, 

culminating between 2000 and 1000 cal BP (Arseneault and Sirois, 2004 ; Asselin and 

Payette, 2005 ; Carcaillet et al., 2010), although sorne reconstructions show differential 

trends (e.g. Ali, Carcaillet and Bergeron, 2009). Discordant trends in upland and peatland fire 

regimes may be caused by differential sensitivity to c1imatic conditions. ln peatlands, the 

influence of c1imate on hydro10gy is mediated by specifie ecological feedback on c1imate 

conditions. Given the important variability in historical fire regimes, the use of multiple 

records from multiple peatlands is essential in future studies to accurately quantify regimes 

and identify driving factors. 

4. Allogenicand autogenic influence on carbon accumulation: a question of scale 

Comparing the deepest records from each peatland, Holocene C accumulation rates 

have been highest in the thickest, Sphagnum-dominated deposits of LLC bog at 22.6 g m'2 yr' 

1. Mean Holocene C accumulation rates in MOS and STE are 15.4 and 14.9 g m'2 yr'l, 

respectively. Although records have approximately the same age, the higher peat depth in 

LLC bog explains the larger area-weighted C mass (l06.4 kg m'2), compared to MOS 

(81.0 kg m'2) and STE (85.8 kg m'\ Taking into account spatial variability within the three 

peatlands, the regional area-weighted mean Holocene apparent rate of C accumulation attains 
,2 ,1

16.2 gm YI' . 

Reconstructions of long-term C sequestration show a general slowdown towards the 

late-Holocene, a trend that is observed in individual records (Fig. 2) as weIl as at the 

ecosystem level. As shown by peatland-specific age-depth models, veliical accumulation 

generally slowed down since the earliest stages of peatland development at 7500

7000 cal BP, while lateral expansion rates peaked roughly between 7000 and 6000 cal BP 

(Fig. 3). However, the combination of vertical accumulation and lateral expansion patterns 
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resulted in a rcgional culmination of C accumulation rates at the ecosystem level being 

delayed to 5000-3000 cal BP, thus representing an optimum in the combined effects of 

vertical and lateral accumulation. 

40 ... -40 
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Figure 2. Box plot of Holocene C accumulation rates in 1000-yr bins of aU central and lateral 

cores. 
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Figure 3. Synthesis of regional lateral expansion rates during the Holocene, expressed as 

index values. 
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We studied the influence of fire and vegetation effects on C accumulation rates by 

comparing vegetation and fire records to trends in C sequestration at the core scale. Episodes 

ofrapid accumulation during the mid-Holocene in the deep core from LLC bog are associated 

with a stable cover of Sphagnum section Acutifolia and intermediate water table levels (l0

15 cm below the surface). Siowdown of C accumulation has been associatecl with fluctuating 

water tables and changes in vegetation assemblages with more important Cyperaceae and 

ligneous species presence during the late-Holocene. Extremes in water table level are likely 

to have limiting effect on C accumulation. Deep water tables imply a long passage of litter in 

the acrotelm, and thus a high decay potential, whereas bryophytes associated with standing 

water or water tables close to the surface are sensitive to decomposition. However, high 

variability in C sequestration between cores indicates a complex response to driving factors. 

During the late-Holocene, generally colder conditions may have shortened the growing 

season length and diminished primaI)' production rates (Mauquoy et al., 2002). In addition, 

recurrent replicate events of low water tables, associated to the intrusion of Arctic air masses 

and cool/dry conditions, likely caused temporary increases in decomposition. These episodes 

thus had an additionallimiting effect on regional peatland C sequestration. 

Regression between fire regime traits and C accumulation rates showed that fires 

have not been the principal factor causing C accumulation rates to val)'. Although fires have 

by definition a general limiting effect on C sequestration as C is released through 

combustion, this effect has been obscured on the long term by more dominant factors. 

Despite an apparent link between hydroclimatic shifts and C accumulation rates, the 

identification of driving factors at the ecosystem level is much more complicated. Ecosystem

scale reconstructions of C sequestration patterns are more pertinent as they include the effects 

oflateral expansion, which is crucial to estimate global C dynamics during the Holocene (e.g. 

Korhola et al., 2010). Ecosystem-scale reconstructions necessitate the use of multiple records 

that cover the spatial variability of the peatland basin. Extrapolation of accumulation rates 

obtained from these records to the entire ecosystem is relatively straightforward if rates from 

different peatland sections show uniform patterns, which was the case in LLC bog, and to a 

slightly lesser extent in MOS and STE bogs. Once a detailed image of past ecosystem rates of 

C sequestration has been created, however, the identification offactors controlling these rates 

appears much more complex. This complexity is primarily due to the fact that reconstructions 
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of local vegetation and water table heights identified in a core may not be as easily 

extrapolated to the scale of the ecosystem, as these factors show a much higher spatial 

variability than accumulation rates. Vegetation and hydrology in the Eastmain peatlands vary 

both at spatial scales of 1-10 m (e.g. following hummock-hollow patteming) and 100-1000 m 

(e.g. from open, wet central sections to relatively dry forest-peatland boundaries), whereas 

long-term accumulation rates vary only slightly over 100-1000 m (i.e. between central and 

lateral parts). Changes in lateral expansion have previously been linked to local variability in 

basin morphology, as long as climate is favourable for peat accumulation. The fact that core

scale vegetation history can not simply be extrapolated to the entire ecosystem largely 

ilÙ1ibits the identification of the importance of ecohydrological change on peatland C 

sequestration at the ecosystem scale. Nevertheless, significant differenees in mean C mass 

between peatlands, implies a strong local control (e.g. basin topography) on C sequestration. 

Thus, although temporal variations in C accumulation rates may have been Iinked to 

changes in local ecohydrological conditions at decadal to centennial timescales, the relative 

influence of autogenic and allogenic (e.g. c1imate) factors at the ecosystem-scale remains 

difficult to quantify. However, signiflcant differences in ecosystem characteristics indicate 

that Holocene C sequestration patterns have been influenced to a greater extent by local 

geomorphological conditions than what wouId be expected based on reconstructions from 

single cores. 

5. Recommendations and future perspectives 

The knowledge of past C accumulation patterns allows the identification of driving 

factors and the scale at which these factors operate. Once the importance of relevant factors is 

detennined, accurate projections of future C accumulation may be possible. Single cores may 

actually represent C sequestration at the ecosystem scale only if the basin approximates a 

rectangular bucket and lateral expansion is absent. As lateral expansion is a generally 

important process in peatland dynamics and basins have variable slopes (Korhola, 1994 ; 

MiikiHi and Moisanen, 2007), single cores from peatlands are unable to accurately reflect 

sequestration at the ecosystem scale. Our results show that continuing lateral expansion may 
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cause an increasing trend in peat accumulation rates at the scale of the ecosystem even when 

vertical accumulation decelerates. The importance of expansion potential on peatland 

dynamics has previously been noted with respect to microform stability (Belyea and Clymo, 

2001). Thus, we suggest that expansion patterns should be taken into account considering 

both reconstructions of C sequestration and interpretation of past records of ecohydrological 

change. Using a novel approach to quantify C sequestration at the ecosystem scale, we 

provide a new piece to the global image of terrestrial C stocks by ecosystem-scale 

quantifications and reconstructions of accumulation patterns from a largely unexplored 

reglOn. 

This thesis reinforces previous climatic rcconstructions from northern Quebec using 

testate-amoeba-inferred water table fluctuations, a tool rarely employed in this part of the 

North American continent. In order to increase the comprehension on the influence of short

term shifts in ecohydrological conditions on C accumulation rates, e.g. shifts associated with 

the LIA, dating, testate amoeba and plant macrofossil analyses should be performed at high 

(e.g. subcentermial to decadal) resolution. 

Finally, the reconstruction of unforested peatland fire regimes under specifie climatic 

conditions improves the comprehension on peatland burning potential through a better 

understanding of scales and factors relevant to fire events. The use of multiple records 

appears essential in the reconstruction of open peatland fire regimes, as spatial variability in 

burning patterns is high. We show that open peatland burning events are highly linked to 

short-scale and local factors, yet peatland fire regimes are initially dependent on the 

occurrence of upland fire. Increasing trends in peatland fire regimes were reconstructed after 

2200 cal BP, while upland regimes decreased. More severe late-Holocene peatland fires may 

have been associated to important dry shifts in peatlands, linked to cold and dry climatic 

conditions. Decreasing upland forest fire potential may have been the result of a differential 

sensitivity to climatic conditions. Thus, in order to accurately project future peatland fire 

scenarios, one should take account of this differential sensitivity and thus open peatlands 

should be modelled separately. Open peatlands thus differ markedly from boreal forested 

peatlands in western Canada, where peatlands have been reported to bum as often as uplands, 

importantly influencing long-term C sequestration (Kuilly, 1994 ; Turetsky et al., 2004). 
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Climatic differcnces between the drier western and more humid eastern Canada SUPPOlt these 

variations in peatland dynarnics. 

Twenty-first century C sequestration dynamics in the Eastmain peatlands may be 

relatively independent of autogcnic processes, as the latter general1y act at millelU1ial 

timescales (Charman et al., 2006). Given the intensity of 21 sI century climate projections, 

trends in C sequestration over this period are thus likely to be strongly climate-related. 

Climate projections for 2040-2060 relative to 1970-1990, generated by the Canadian 

Regional Climate Model (A2 scenario) for the Eastmain region, indicate increases in summer 

and winter mean temperatures of 2.0-2.5°C and 3.0-4.0°C and ~ 10% and ~ 15% increases in 

summer and winter precipitation, respectively (Plummer et al., 2006). These changes may 

affect the regional peatland water balance, yet the impact of these changes probably depends 

on the relative effects on precipitation and evapotranspiration. General warming will cause an 

increasing potential for Sphagnum growth, although a concomitant net decrease in water table 

levels may lirnit bryophyte productivity while increasing decay. Projections of increases in 

both winter temperature and precipitation may affect peatland hydrology in a complex way. 

Due to increasing winter temperatures, the duration of the snowfall period is likely to 

dirninish, yet increasing precipitation might palily compensate for this effect and thus snow 

depths may be maintained. Peatland water table fluctuations may be generally driven by 

summer precipitation and to a lesser extent summer temperature (Booth, 2010 ; Charman et 

al., 2009), but winter precipitation and temperature may be additionally important in specifie 

settings (e.g. Lamentowicz et al., 2010). Additional research on driving factors for boreal 

peatlands, including peatlands with important snow coyer and (relict) permafrost dynarnics is 

necessary to better project the effects of future climate on hydrology, and thus C 

sequestration. 

As fire regimes were shown to be relatively independent of local vegetation, we 

hypothesize that decadal-scale decreases in water table may be the best predictors for fire 

occurrence. Although future warming may imply decreasing water table levels, past events of 

dry peatland surfaces were rather linked to dry, cold conditions. The last 150 years have 

shown general increases in temperature and precipitation, with a trend of higher water tables 

and reduced drought frequency in northern Quebec peatlands and uplands (Arien-Pouliot and 

Bhiry, 2005 ; Bergeron and Archambault, 1993 ; Lesieur, Gauthier and Bergeron, 2002 ; 
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Loisel and Garneau, 2010 ; Payette and Delwaide, 2004 ; Payette et al., 2004). Nevertheless, 

these recent increases in peatland water tables may be primarily explained by melting of LIA 

permafrost rather than increases in precipitation. As no relict permafrost is present in the 

Eastmain region, future c1imate may weil cause decreasing water tables and increasing the 

potential for fire occurrence, possibly decreasing C sequestration potential. 
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