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SUMMARY
 

The phenomenon of multidrug resistance leaves cancer patients with a disadvantageous 
prognosis and Iimits their treatment options. Therefore growing interest in the search for new 
antitumor compounds or other strategies to battle multidrug resistance emerged. Scanning 
Electrochemical Microscopy (SECM) is one promising candidate for a new approach to study 
living cells. This method employs nanoscale electrodes that can be used to detect metabolites 
in single cell studies. One major objective in the present work is to demonstrate the influence 
of ferrocenemethanol (fcCH20H) on two different human cervix cancer cell lines. The 
potential of Biological Scanning Electrochemical Microscopy (Bio-SECM) studies is 
demonstrated by showing the differential response to fcCH20H in multidrug-resistant cells 
in part due to the unspecific efflux pump of the Multidrug Resistant Associated Protein 
(MRPI). The newly established triangulation between fcCH20H/[FcCH20H]+, reduced and 
oxidized Glutathione (GSH/GSSG) and multidrug resistance in human cancer cells might 
impact future applications that require adequate assessment of the metabolic response to anti­
cancer drugs in chemotherapy resistant cells. As a second goal of the presented work, to 
improve future Bio-SECM studies on cells, a new cell patteming procedure is established 
using elastomeric through-hole membranes allowing patteming of single cell types as weil as 
co-cultures. As a third objective the technique of Bio-SECM is furthermore improved by 
introducing a constant distance mode allowing coupling of infonnation about topography and 
reactivity depending of the nature of the substrate. The presented work is a major first step 
towards the establishment of a quantifiable indicator for multidrug resistance activity that 
could be used over celliife and across celllines thereby enabling targeted drug screening and 
improving existing cancer analysis for chemotherapy treatment. 

The presented thesis is structured into three chapters, two of which have the fonnat of 
a manuscript of a scientific article. The first chapter focuses on the application of the 
electrochemical technique of Scanning Electrochemical Microscopy (SECM) to biological 
living cells. Using this technique the authors are approaching the phenomenon of multidrug 
resistance in human cancer cells and outline its impact on future medical research. A new cell 
patteming procedure is presented in chapter two of this thesis in order to improve working 
conditions during Bio-SECM studies whereas the closing chapter outlines prospects and long 
term goals to be achieved during the continuation of the described projects. 

Keywords: Scanning Electrochemical Microscopy, Multidrug Resistance, Cell Patteming, 
Electrochemical Imaging, Cancer 



RÉSUMÉ 

Le phénomène de multirésistance aux médicaments laisse les patients atteints de 
cancer avec un pronostic défavorable et leurs options de traitement sont limitées. Par 
conséquent, des intérêts croissants dans la recherche de nouveaux composés antitumoraux ou 
d'autres stratégies pour combattre la multirésistance se sont manifestés. La microscopie 
électrochimique à balayage (SECM) est dans ce domaine une candidate prometteuse pour 
l'étude de cellules vivantes. Cette méthode emploie des électrodes nanométriques qui 
peuvent être utilisées pour détecter des métabolites dans les études portant sur une cellule 
unique. Le présent travail montre l'influence du ferrocèneméthanol (FcCH20H) sur deux 
lignées différentes de cellules humaines cancéreuses du col utérin. Le potentiel de la 
microscopie électrochimique à balayage biologique (Bio-SECM) est démontré par le fait que 
la réponse différentielle au FcCH20H des cellules résistantes aux médicaments provient en 
partie de l'efflux non spécifique d'uneprotéine associée cette résistance, la MRPI. Le 
liennouvellement établi entre FcCH10H / [FcCH20Ht, GSH / GSSG et la multirésistance 
dans les cellules cancéreuses humaines pourrait avoir un impact sur de futures applications 
qui nécessitent une évaluation adéquate de la réponse métabolique à des médicaments 
anticancéreux chez les cellules résistantes à la chimiothérapie. Pour améliorer les futures 
études de Bio-SECM sur les cellules, une nouvelle procédure d'adhésion cellulaire est établie. 
Grâce à des membranes élastomériques comprenant despores à des endroits précis, il est 
possible de créer des motifs contenant un seul type de cellules, ainsi que de co-cultures. En 
outre, la technique de Bio-SECM est améliorée par l'introduction d'un mode particulier de 
balayage de la sonde. Ce mode, appelé distance constante, permetde découpler 
les'infonnations sur la topographie et sur la réactivité. Le travail présenté est une première 
étape importante vers l'établissement d'un indicateur quantifiant les activités reliées à la 
résistance aux médicaments des cellules. Cela pourrait être utilisé tout au long de la vie des 
cellules et sur différentes lignées, ce qui permettrait de faire un dépistage de médicaments 
ciblés. Cela améliorerait l'analyse actuelle du cancer, ce qui conduirait finalement à avoir un 
meilleur traitement chimiothérapeutique. 

La présente thèse est structurée en trois chapitres, dont deux ont le format d'un 
manuscrit d'un article scientifique. Le premier chapitre se concentre sur l'utilisation de la 
microscopie électrochimique à balayage (SECM) pour étudier les cellules vivantes. Grâce à 
cette technique, les auteurs abordent le phénomène de multirésistance chez les cellules 
cancéreuses humaines et son impact sur la recherche médicale future. Une nouvelle 
procédure de structuration de l'adhésion cellulaire sur des motifs définis est présentée dans le 
chapitre deux de cette thèse. Elle vise à améliorer les conditions de travail pendant les études 
de Bio-SECM. Le dernier chapitre décrit les perspectives et les objectifs à long terme à 
atteindre au cours qu'offrent ce travail. 

Mots-clés: Microscopie Électrochimique à Balayage, Multirésistance aux médicaments, 
Formation de motif cellulaire, Imagerie électrochimique, Cancer 



INTRODUCTION
 

1.1 Theme of the Thesis 

As the second most common cause of death in the United States, cancer accounts for 

almost 1 of every 4 deaths. That means, more than 1,500 people per day are estimated to die 

from cancer in 2010, whereas about 1.5 Mio new cancer cases are estimated to be diagnosed. 

(American Cancer Society, 2010) Multidrug resistance is a phenomenon that enables cancer 

cells to defend themselves actively against chemotherapeutic treatment. This leads to a 

devastating prognosis for cancer patients. Multidrug resistance occurs in a variety of cancer 

types, such as lung cancer, kidney or colon cancer, or acute leukemia. (Goldstein, Pastan and 

Gottesman, 1992) In 2007, 70% of ovarian cancer patients exhibited multidrug resistance in 

Canada and the United States, which lowered their survival rate to 10-30%. (Persidis, 1999) 

Multidrug resistance is due to the overexpression ofproteins belonging to the family of 

multidrug resistance related proteins, a subgroup of Adenosine S'-triphosphate (ATP) ­

binding cassette-transporters or ABC transporters. P-glycoprotein (P-gp) as well as the 

multidrug resistance protein 1 (MRP l, Figure LI) are two proteins of this group. P-gp 

overexpression can be triggered by a widely investigated mechanism involving the 

glucosaminoglycan hyaluronan, which will be described in the following. It is known that 

hyaluronan, playing an important role in wound repair as weil as in cancer metastasis, binds 

to the cell surface glycoprotein CD44. This interaction leads to a variety of different reactions 

that are specifie to tumor celIs, among which it triggers the up-regulation of the 

transcriptional cofactor p300 expression and its activity. p300 is responsible for the 

acetylation of histones and other transcriptional factors and thereby plays a role in regulating 

transcriptional activity of the involved gene. Among the acetylated factors are beta-catenin 

and NFkappaB-p65, leading to an NFkappaB-specific transcriptional up-regulation. This 



2 

specifically is the case for the multi-drug resistance gene (MDRl) leading to the production 

of P-gp and with that chemoresistance in cells. (Bourguignon, Xia and Wong, 2009) 

Although the mechanism that causes the expression of P-gp is roughly understood, the 

development of multidrug resistance caused by MRP 1 remains unclear. Therefore, in our 

studies we are focusing on hurnan cancer ceIls that are not overexpressing P-gp, but MRPl. 

The MRP1 structure is similar to P-gp, except for an amino-terminal extension that contains 

five-membrane-spanning domains attached to a Pgp-like core. (Gottesman and Bates, 2002) 

As an active transporter, MRP 1 relies on the availability of ATP as energy source. 

Drugs can be transported by MRP1 directly or they need to be conjugated to glutathione. 

These drugs' transport by MRP1 is therefore also dependent on the continued synthesis of 

GSH. Other substrates are also known to be conjugated to glucuronate, sulfate or are organic 

anions that do not require conjugation. (Borst et al., 2000) Chemoresistant cells expressing 

the MRP1 efflux pump that is primarily located in the plasma membrane (Zaman et al., 

1994), are therefore enabled to expel chemotherapeutic agents, such as anthracyclines and 

cisplatin or other drugs. (Morrow and Cowan, 1990) (Figure 1.2). This allows the unhindered 

growth of tumour tissue despite chemotherapeutic treatrnent. 
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Figure 1.1 Structure of the human multidrug resistance protein 1 
nucleotide binding domain 1 (Research Col!aboratory for Structural 
Bioinfonnatics Protein Database). 
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Figure 1.2 Principle of multidrug resistance due to overexpression of MRPI. (a) 
Chemotherapeutics entering a non-resistant cel! to cause cel! death. (b) Pristine 
chemotherapeutics or in conjugation with GSH transported out of the cel! by MRP 1. 
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To approach the phenomenon of multidrug resistance it would be an enormous 

advantage to have a tool that allows monitoring the development of multidrug resistance in 

single cells and observing its effect on metabolic changes. In treatment this tool could be 

used to quantify the extent of multidrug resistance in a patient's sample in order to adjust the 

treatment to the cancer. To develop such a tool, we made use of different techniques that will 

now be briefly introduced. 

1.2 Fundamentals of Electrochemistry 

The basis of the capability of living organisms to convert and use energy from nutrition 

is redox reactions - reactions with transfer of electrons. (Alberts et al., 2004, p. 908-922) 

After digestion, energy can be stored in the body by creating carbon compounds with low 

carbon oxidation numbers, such as fats or glycogen. Through respiration these compounds 

are oxidized and the delivered energy is used to contract muscles, heat the organism, move 

and think. The processes connected with these energy transformations are very complex and 

many different chemical reactions and equilibria ensure that the organism functions properly. 

Therefore many cellular dysfunctions change the redox behavior of an organism. An 

excellent way to probe these changes is analytical electrochemistry. Ali reactions that can be 

directly observed electrochemically are redox reactions, however, different from biological 

redox reactions, in electroanalytical chemistry oxidation and reduction are locally separated 

and take place on two different electrodes. (Atkins, 200 l, p. 304-305) At the cathode 

reduction occurs, while at the anode oxidation takes place. The fact that oxidation and 

reduction are separated implies also that there has to be an electric and an ionic CUITent 

between the electrodes. By measuring between cathode and anode one can observe and 

follow the reactions in detail. 

While taking up or releasing electrons the energy of a substance changes. This change 

in energy is different from one substance to the other and is characterized in electrochemistry 

by the electrode potential. 

v(Red)Red ~ v(Ox)Ox +n e e' 
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R -T Ila(OxY<oX)
E =EO +--ln -::::=::""-_-~~ 

ne' F Ila(Redy<Red) 
(1) 

Equation (1), the Nernst equation, shows the dependency of the electrode potential E 

on the activities of participating substances a(Ox) and a(Red) as weil as the temperature. 

(Atkins, 2001, p. 311-321) The standard potential f!J is the potential of a redox pair under 

standard conditions (T = 25 oC, P = 1 bar, a(Ox) = a(Red) = 1), F is the Faraday constant and 

R is the universal gas constant. By having an electric and ionic contact between two 

electrodes with two different potentials a potential difference can be measured as voltage. 

The dependency of the electrode potential on redox pair and concentration can be interpreted 

in open circuit measurements. Another possible measure in electrochemistry is the electric 

CUITent as a function of the electrode potential. The CUITent is defined by the charge flow at 

the active surface of the electrodes, which is limited by the charge transfer kinetics, by the 

diffusion of the consumed substance to the electrode surface or by both. (Atkins, 2001, p. 

955-961) For different systems, individual models are available to describe current behavior 

and evaluate experimental results. In many cases, such as SECM, it is beneficial to set up 

experiments so that diffusion is deterrnining the current. Therefore Fick's laws play an 

important role in electroanalytical chemistry: 

J =-D"Vc (2) 

(3) 

with J as the flux of substance, D as the diffusion coefficient, c as the concentration 

and t as the time. 

1.3 Methods 
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1.3,1 Bio-SECM, A self-evident possibility to monitor MRPI activity is to observe 

substances pumped out of the cell by MRP 1. Scanning Electrochemical Microscopy (SECM) 

is one of the few tools that are able to perfonn those measurements on a microscopie scale. 

So far SECM has mainly been used in the field of electrochemical surface science, e.g. in 

corrosion studies. (Bard and Mirkin, 2001) This microscopic technique allows imaging of the 

electrochemical reactivity of surfaces by scanning in close proximity over a surface using 

nano- or micro-scale electrodes. The size of these nano-scale electrodes ranges from 10-100 

nm. First applications of SECM to biological samples emerged in 2001. (Bard, Li and Zhan, 

2006) By combining SECM and inverted microscopes the technique of Biological Scanning 

Electrochemical Microscopy (Bio-SECM) was introduced in 2004. (Mauzeroll and Bard, 

2004; Mauzeroll et al., 2004; Bauennann, Schuhmann and Schulte, 2004) This tool is 

developed further in the laboratory of Prof. Janine Mauzeroll by applying the technique of 

SECM to detect molecules, released or received by a biologicalliving cell. 

In SECM the current is defined by the diffusion of a redox active substance to the 

electrode surface. Given that the electrode is far away from any substrate, the current is solely 

influenced by the active area of the electrode, the diffusion coefficient of the reacting species 

and the concentration of the reacting species. The solution of Fick's second law (3) for this 

case gives the following relation: 

1 = 4neFDcr (4) 

where 1 is the CUITent at steady state, ne is the number of electrons exchanged per 

fonnula unit of reactant, Fis the Faraday constant, D is the diffusion coefficient, c is the bulk 

concentration of the reactant and r is the radius of the surface of active material at the tip of 

the electrode. When approaching an insulating surface with the tip of the electrode, the 

diffusion gets hindered by the presence of the substrate, resulting in a decrease of current. 

This behavior is called negative feedback (Figure 1.3 a). When approaching an 

electrochemically reactive surface, the substance, transfonned at the tip, can be regenerated 

by the surface, thus increasing the flux of redox active substance to the electrode and 

increasing the CUITent. If this regeneration process is not limited by interfacial kinetics this 

behavior is called positive feedback (Figure 1.3 b). For both feedback modes well established 

mathematical models can reproduce experimental results. In many cases mixed behavior can 
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be observed, when the electrochemically reactive substrate is not able to regenerate the redox 

substance fast enough to compensate for the decrease in diffusion due to space limitation. 

The Bio-SECM (Figure lA) consists of an optical microscope with a fluorescence 

module and a camera to allow also the optical imaging of cells. A working electrode (WE) is 

positioned in z axis and the electrochemical cell, which includes counter (CE) and reference 

electrode (RE), is positioned in x and y axis. The positioning is achieved by a stepper­

piezo/motor combination. Closed loop step motors allow highest precision and avoid motor 

hysteresis during long distance imaging. The Bio-SECM is placed inside a Faraday cage in 

addition to a vibration isolation table to avoid noise caused by vibrations and electromagnetic 

interference and is connected to a computer unit and a low current bi-potentiostat. 

The bi-potentiostat allows the control and measurement of potentials and currents in 

the fA-I.l.A scale. In principle, the potentiostat measures the electrochemical potential 

difference between RE and WE and compares it to the chosen potential difference given by 

the computer. It then regulates the voltage source between WE and CE accordingly (Figure 

1.5 a). If a stable Chloride ion (Cr) concentration is given during the experimental work, a 

silverlsilverchloride (AgiAgCI) wire can be used as RE, whereas a platinum wire functions as 

CE to retransfer the collected electrons from the WE (Figure 1.5 b). In the presented work the 

SECM is used in feedback mode, whereby the potential, applied at the WE, is chosen, so that 

after a very short time the concentration of untransformed mediator at the active surface of 

the microelectrode decreases to zero. At that time the measured current is determined by the 

diffusion of the mediator to the electrode's active surface due to its depletion by oxidation or 

reduction. 
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Figure 1.3 Schematic representation of the feedback mode. (a) Negative feedback is 
observed while approaching an isolator whereas (b) positive feedback is recorded while 
approaching a conductor. The normalized CUITent is the CUITent at a certain point divided by 
the CUITent far away from the substrate. 
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Figure [,4 Schematic representation of the instrumental design of a Bio-SECM. 
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Figure 1.5 (a) Simplified representation of the low current bi-potentiostat 
connected to the computer, working (WE), counter (CE) and reference electrode 
(RE). (b) Schematic representation of the electrochemical cell used in Bio­
SECM studies. 



Il 

Two imaging modes are available in SECM. In constant height mode the electrode is 

rastered lateral across an area always keeping the same height above a surface. Therefore, the 

tip to substrate distance changes depending on the topology of the sample analyzed (Figure 

1.6 a). By scanning over a surface of constant reactivity the tip CUITent is a measure for the tip 

to substrate distance and therefore delivers topological information. Only by scanning over 

very smooth but heterogeneous surfaces, the tip CUITent represents the electrochemical 

reactivity of the surface. For complex samples, such as biological cells, in constant height 

mode the CUITent is altered by effects of electrochemical reactivity and topology. To decouple 

these two sources of information strategies for constant distance measurements have to be 

used. In constant distance mode the microelectrode always keeps the same distance from the 

surface when rastered across a sample (Figure 1.6 b). Detailed information about the 

realization of the constant distance mode is given in chapter 3. Both techniques have been 

used for successful analyses of biological samples, such as yeast cells, hepatocytes and breast 

cancer cells. (Mauzeroll and Bard, 2004; Mauzeroll et al., 2004; Bauermann, Schuhmann and 

Schulte, 2004; Liu, Rotenberg and Mirkin, 2000; Kaya et al., 2003; Li and Bard, 2009; Saito 

et al., 2006; Kurulugama et al., 2005) Although successful imaging techniques have been 

developed (Kurulugama et al., 2005) and analytical strategies have been proposed (Kuss et 

al., 20 Il), no routine applications for medical purposes using Bio-SECM are available so far. 

a Constant Height Mode b Constant Distance Mode 

\JIlI . ~-- ...\JIll------~eL-------- ... 

Figure 1.6 Schematic representation of Constant Height and Constant Distance Mode. (a) 
At Constant Height Mode the electrode is rastered across an area keeping the same height 
above the substrate. Hence the distance between electrode and surface changes depending 
on the sample during scanning process. (b) At Constant Distance Mode the electrode 
keeps the same distance from the surface when rastered across a sample. 
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1.3.2 Flow Cytometry. For preliminary evaluation of the effect of FcCH20H on 

intracellular levels of Glutathione we made use of Flow Cytometry, a technique that is weil 

developed and enables the determination of properties of single cells. 

As many other promising and auspicious inventions, the idea of a flowing system to 

COllOt cells was born in Montreal in 1934 by Andrew Moldavan. His idea to guide stained 

yeast cells or red blood cells through a capillary on a microscope stage was further developed 

by Louis Kamentsky in the mid 1960s in order to approach the problem of automated cervical 

cytology screening. During this decade the development of flow cytometry took major steps 

forward: The development of a sorting machine in 1967 and the first fluorescence-detection 

cytometer in 1969 are great examples of the interest in the method of flow cytometry ail 

around the world. Until now flow cytometry has developed into one of the most useful multi­

purpose tools in ana1ytical science and therefore became essential equipment in countless 

laboratories. (Longobardi Givan, 2004) 

This method allows counting, examining and even sorting cells in suspension and it is 

an excellent way to measure several intracellular parameters cell by cell. Size, shape or 

pigments of the cell, proliferation (Haberkorn et al., 1991), cell cycle (Boquest, Day and 

Prather, 1999) and chromosome analysis (Carrano et al., 1979), protein expression (Leith et 

al., 1995), enzyme activity (Watson, 1980) or concentration of reactive oxygen species 

(Marchetti et al., 2002) demonstrate only a fraction the possibilities of what flow cytometry 

can determine. The characteristics of every single cell are established by looking at the cell's 

physical characteristics. The sample is injected into a liquid flow, also known as stealth liquid 

that focuses the cells hydrodynamicaily, wherefore they pass through a tube one by one. 

Passing a laser beam, up to 200,000 cells per second can be analyzed by different detectors 

for fluorescence and forward as well as side scattering. Therefore the laser emits light at a 

particular wavelength and one or more detectors are registering the light's modulation in 

presence of the cells. Light gets scattered by the cell due to refraction and reflection at the 

different cell compartrnents. Forward scattering is the signal of light detected in small angles 

around 1800 to the excitation beam, while side scattering is the signal of light detected around 

900 to the excitation beam. (Longobardi Givan, 2004) In the case of light scattering the 

responsible detectors will capture light with the same wavelength as emitted by the laser. The 

laser can also excite fluorophores inside the cell. Therefore the fluorophore is electronically 
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excited when absorbing light in a wavelength range specific to the fluorophore. The release 

of the absorbed energy takes place in two steps: first, the fluorophore transfers sorne of its 

vibrational energy to its environment, and second, the fluorophore releases the remaining 

energy by relaxing to its electronic ground state and emitting a phonon of the corresponding 

remaining energy (Figure 1.7) Usually, fluorophores are added in fluorescence labeling steps 

(see section lA). (Atkins, 200 l, p. 565) Because of the lower energy, released in 

fluorescence, fluorescence detectors always detect at higher wavelengths then the laser, in 

contrast to the scattering detectors. These wavelengths can be adjusted to the different 

substances that need to be analyzed. Thereby cell parameters like size, shape and surface can 

be measured by light scattering, other cell contents in contrast by fluorescence. This way, for 

every cell forward scattering signal, side scattering signal and fluorescence signal are 

recorded (Figure 1.8). 

To graphically present the collected data, histograms or dot plots can be used. Using 

linear or logarithmic scaling in histograms it is difficult to see two different connected 

parameters at the same time. So most commonly a two-dimensional dot plot shows multiple 

characteristics and connections between several parameters, whereas one dot represents one 

cell passed through the instrument. If needed there is also software available to analyze and 

present data even in a three dimensional way or to analyze only a specific type of the ceIls by 

selecting them on a dot plot this is called gating. 

The option of cell sorting will not be explained at this point, since it is not relevant for 

the performed studies mentioned in this work. 
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Figure 1.7 Energy scheme of fluorescence process. The 
fluorophore first absorbs a phonon and is thereby excited to a 
higher electronic state (blue arrow). Some of the absorbed 
energy is transfened through vibrational relaxation to 
neighboring molecules (red arrow). During fluorescence, the 
fluorophore emits a phonon of the remaining energy while 
relaxing to the electronic ground state (orange arrow). 
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Figure 1.8 Schematic representation of the principle of flow cytometry. 
Inside the flow cytometer cells are hydrodynamically lined up passing a laser 
beam. The laser light is scattered and captured by detectors collecting 
information about cell morphology, granularity and fluorescence. 

1.3.3 Fluorescent Labeling. Fluorescence labeling is a technique of enormous 

importance to modern life science. Its applications include localization of cell organelles or 

specifie molecules in microscopie imaging techniques (Müller, 2006), or monitoring of 

dynamic processes such as DNA damage following exposure to mutagenes. (Cosa, 2002) 

Advantageous to fluorescent labeling are the simplicity of equipment to detect the labels, 

weil devcloped microscopie techniques for localization, non-invasive detection, and very 10w 

detection limits. Fluorescein, Green fluorescent protein and their variants are often used in 

combination with recognition sites as highly specifie fluorescent labels. Lately also nano-size 

semiconductors, so called quantum dots, are developed as fluorophores for life science 

application. (Goldys et al., 2006) The remaining main problems of fluorescent labeling are 

chemical stability, degradation after prolonged excitation (photobleaching) and wide 

emission ranges, making it hard to avoid spectral spillover from one fluorophore to the other. 

(Goldys et al., 2006; Waggoner, 2006) 
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Intracellular levels of glutathione wcre detected by flow cytometry using 5­

chloromethylfluorescein diacetate (CMFDA) as fluorescent label. CMFDA binds to thiol 

groups and allows monitoring of intracellular glutathione homeostasis. (Hedley and Chow, 

1993; Voehringer et al., 1998) 

For fluorescence microscopy, the markers PKH2 and PKH26 were also used for 

fluorescent staining of Adenocarcinoma cervical cancer cells (HeLa) and a variant 

overexpressing MRP 1 (HeLa-R) cells. Those fluorescent dyes with long aliphatic tails are 

incorporated into Iipid regions of the cell membrane (Figure 1.9). (Horan and Slezak, 1989) 

A Hydrophilie Head} .."" T '1 Phosphollpld bllayer B Hydroph0 ble al 
C Glyeolipid 
D Protein Channel (Transport Protein) 
E Glyeoprotein 
F Cholesterol 
G Alpha-Helix (Integral) Protein 
H Globular (Integral) Protein 

Figure 1.9 Structure of a cell membrane. 
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The presented work shows the enormous potential of Bio-SECM in pharmaceutical 

research. The manuscript will be presented in 3 chapters: the first chapter describes the 

chemical relationship between the redox mediator ferrocenemethanol and multidrug 

resistance in form of a submitted article. The second chapter shows the progress the authors 

made on the field of cell patteming to improve Bio-SECM studies. The third chapter provides 

insight into ongoing studies to improve the constant distance mode for Bio-SECM 

measurements. In these chapters, the author hopes to convince the reader of the ability of 

Bio-SECM to serve as a tool for future chemotherapeutic research and development by 

coupling this electrochemical technique with fluorescence analyses in order to assess 

multidrug resistance in a new way. 



CHAPTERI 

SCIENTIFIC ARTICLE: MULTIDRUG RESISTANCE ASSESSMENT USING 
BIOLOGICAL SCANNING ELECTROCHEMICAL MICROSCOPY 

The following chapter presents an application of the electrochemical technique of 

Scanning Electrochemical Microscopy (SECM) to biological living cells. Human 

adenocarcinoma cervical cancer cells HeLa (HeLa) and a multidrug resistant variant (HeLa­

R) overexpressing the multidrug resistance protein 1 (MRP 1) are used as targets. In order to 

develop a tool being able to quantify multidrug resistance in human cancer cells, the 

following objectives are approached: First, the influence of the cell 's environment is 

evaluated during Biological Scanning Electrochemical Microscopy (Bio-SECM) 

measurements in order to enable the precise measurement of cell metabolites. Second, the 

response of HeLa and HeLa-R in the presence of the redox mediator ferrocenemethanol 

(FcCH20H) is observed. Third, the differential response of those celllines during Bio-SECM 

studies is monitored. 

The presented results in the following chapter demonstrate the relation between 

FcCH20HJ[FcCH20H]+, GSHJGSSG and multidrug resistance in human cancer cells and the 

impact of Bio-SECM analysis on future medical research and applications are outlined. 
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Abstract 

Background: Cancer cell multidrug resistance is a molecular signature that highly 

influences the outcome of chemotherapy treatment. There currently is no robust method to 

monitor in vitro multidrug resistance activity. Herein, we describe the transport and 

interaction offerrocenemethanol (FcCH20H) in human adenocarcinoma cervical cancer cells 

HeLa and in a multidrug resistant variant overexpressing the multidrug resistant protein 1 

(MRPl). Result: We demonstrate that the FcCH20Hl[FcCH20Ht couple can be used to 

evaluate the redox state of the cell since both can interact with reduced and oxidized 

glutathione (GSH/GSSG). We demonstrate that the differential response to FcCH20H in 

multidrug-resistant cells is in part due to MRPl's unspecific efflux. Method: This newly 

established relation between FcCH20Hl[FcCH20Ht, GSHIGSSG and multidrug resistance 

in human cancer cells has then been used in a Biological Scanning Electrochemical 

Microscopy (Bio-SECM) configuration, illustrating the possibility of a local quantification of 

GSHIGSSG amount in cells. Conclusion: Bio-SECM could enable efficient and robust 

assessment of the extent of multidrug resistance in human cancer cells prior to phase-I cancer 

clinical trials. 

Keywords. Multidrug Resistance; SCaIming Electrochemical Microscopy; Glutathione; 

Flow Cytometry 
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1.1 Introduction 

Cancer cells actively defend themselves through multidrug resistance. Such cellular 

and molecular signature in many different cancer types, including acute leukemia, colon, 

kidney, pancreas, and carcinoid cancers, seriously undermines the success of 

chemotherapeutical treatments. (Goldstein, Pastan and Gottesman, 1992) For example, it is 

estimated that out of 7,000 new ovarian cancer patients annually in Canada and the US, 70% 

of them will exhibit resistance to treatment such as their survival rates decline to 10-30%. 

(Persidis, 1999) 

The decrease in sensitivity against chemotherapeutic agents in resistant tumor cells is 

closely related to the action of non-selective transmembrane proteins that actively remove the 

agents from inside the cells. (Grant et al., 1994) In the present study, the contribution of the 

multidrug resistance protein MRP1 is specifically evaluated through the action oftwo human 

cervical adenocarcinoma cancer cell lines: a HeLa cell line (HeLa) and a multidrug-resistant 

variant, overexpressing MRP1 (HeLa-R). MRP1 is known to transport, among others, 

glutathione (GSH) and drugs conjugated to GSH out of the cell. (Borst et al., 2000) 

Alterations in the GSH 1evels, in GSH s-transferase (GST) 1evels and its activity, have been 

reported to affect cellular resistance to chemotherapeutic agents such as anthracyclines and 

cisplatin. (Morrow and Cowan, 1990) More recently, there has been a growing interest in the 

search for new antitumor compounds that do not interact with MDR1-Pgp and MRP1 drug 

transporters to circumvent the effect of these proteins conferring multidrug resistance and 

poor prognosis. (Ascione et al., 2009) 

As most of the CUITent anticancer agents are subj ect to multidrug-resistance efflux and 

are currently irreplaceable in several chemotherapy regimens, an attractive solution for 

improving response to therapy can therefore be the development of new classes of agents that 

do not interact with the multidrug ABC transporters. Interestingly, antitumoral properties of 

the nitrobenzofurazane derivative 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol, which is a 

strong inhibitor of the GST fami1y, has recently been reported. (Ricci et al., 2005) GST 

catalyzes the conjugation with GSH of many anticancer drugs that can be efficiently removed 

from the cell by specific export pumps. (Bakos and Homolya, 2007) To date, no efficient and 
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reliable cell-based methods have been designed to effectively monitor the cell's GSHIGSSG 

redox state and potential capacity as a target for a given chemotherapeutic drug. 

Scanning Electrochemical Microscopy (SECM) is a weil known technique that has 

been extensively used to study the topography and reactivity of surfaces in electrochemistry. 

(Bard and Mirkin, 2001) Biological Scanning Electrochemical Microscopy (Bio-SECM) is a 

promising technology to specifically study living cells. This method employs nanoscale 

electrodes that can be used to detect metabolites in single cell studies. In the last decade, 

several cell lines have been successfully analyzed by SECM. (Bard, Li and Zhan, 2006; 

Bauermann, Schuhmann and Schulte, 2004; Kaya et a/. , 2003; Li and Bard, 2009; Liu, 

Rotenberg and Mirkin, 2000; Mauzeroll and Bard, 2004; Mauzeroll et a/., 2004; Saito et al., 

2006) To establish SECM as a general method enabling one to quantify the extent of 

multidrug resistance in cancer cel1s, it is mandatory to first identify a pair of mediators that 

are cell permeable/impermeable and that interact with a specific major cell constituent that is 

affected by multidrug resistance. The purpose of this study is therefore to assess whether the 

FcCH20Hl[FcCH20Hr and [RU(NH3)6]2+/[Ru(NH3)6]3+ redox couples are suitable redox 

probes that wouId allow accurate identification of interaction partners related to intracellular 

thiols present in al1 cells and intimately related to the multidrug resistance phenotype. 

1.2 Experimental Section 

1.2.1 Cell culture. Ali products were purchase from Sigma-Aldrich (ON, Canada) if 

not indicated differently. HeLa (CCL-2, American Type Culture Col1ection, VA, USA) were 

grown in Dulbecco's Modified Eagle's Medium (DMEM, high glucose, HyClone, UT, USA) 

completed with 10 % v/v heat inactivated fetal bovine serum (Gibco/Invitrogen, ON, 

Canada), 2 mM glutamine, penicil1in and streptomycin (50 units/ml) (HYQ HyClone, UT, 

USA), which was used as basic medium (DMEM+). HeLa-R overexpress the Multidrug 

Resistance Protein 1 (MRPl) and are resistant to actinomycin D, etoposide, adriamycin and 

vincristine. (Kast and Gros, 1998) Cel1s were maintained in tissue culture flasks (Sarstedt Inc, 

QC, Canada) at 37 oC and 5 % C02 using an COiMulti-gas incubator (Sanjo Scientific, 
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Japan). The culture mediwn for the HeLa-R contained Etoposide (VP-16, 250 ng/ml), which 

was removed prior to experiments. (Souslova and Averill-Bates, 2004) Both cell lines, 

ranging from 70 % to 90 % confluence, were washed with 37 oC phosphate-buffered saline 

(PBS) (pH 7.4 at 25 oC) and harvested with 37 oC 0.25 % v/v Trypsin­

Ethylenediaminetetraacetic acid (EDTA) solution (10x, 2.0 g EDTA, in 0.9 wt% NaCI). 

Optical micrographs of platted cultured cells were acquired using an inverted microscope 

(Nikon Eclipse TSI00) equipped with a camera (Olympus CAMEDIA C-500 ZOOM, using 

Gimp 2.4). 

1.2.2 Membrane preparation and western blotting. MRPI and Glyceraldehyde-3­

phosphate dehydrogenase (GAPDH, Immuno Chemical, CA, USA) protein expression in 

HeLa and HeLa-R cells was detected by western blot analysis as described elsewhere. (Sina, 

Lord-Dufour and Annabi, 2009) The Bradford method was used for protein quantification of 

the cel! Iysates. (Bradford, 1976) Membranes were further washed and incubated for 1 h at 

room temperature with TBS-Tween 0.3 % v/v containing the MRPI specific monoclonal 

antibody QCRL (1: 100) (Abcam Inc, MA, USA) followed by an 1 h incubation period with 

horseradish peroxidase anti-mouse antibody (1: l ,000) (Arnersham Pharmacia Biotech, 

Rainham, UK) in 1.0 wt% skim milk in TBS-Tween 0.3 % v/v. The same membranes were 

used to detect GAPDH as control protein. The GAPDH specific monoclonal antibody 

(1:10,000) in TBS-Tween 0.1 % v/v + 3 wt% bovine serum albumin (BSA) + 0.02 wt% 

NaN3 was exposed to the membranes for 20 min and protein detection and analysis was 

performed as described before for MRPI-QCRL detection (Also see supporting information). 

1.2.3 Flow cytometry. HeLa and HeLa-R cells were plated into 60-rnrn Petri dishes 24 

hrs before experiment. Cells were washed with PBS and incubated in DMEM+, DMEM- or 

PBS for different periods of time. To detect the intracellular GSH, cells were incubated 15 

min in respective medium before CMFDA (Invitrogen, ON, Canada) was added in 

concentrations ranging from zero to 2.5 JlM. CMFDA was dissolved and diluted in dimethyl 

sulfoxide (DMSO). Cells were incubated in respective medium containing CMFDA for 

another 15 minutes, washed with PBS and harvested with a 37 oC Trypsin solution. Trypsin 
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solution was removed by centrifugation at 1,000 g for 5 minutes. Cells were resuspended in 

0.5 ml DMEM+. Flow cytometric measurements were performed using FACSCalibur (BD 

Bioscience, USA) and data was analyzed with the software WinMDI (Windows Multiple 

Document Interface for Flow Cytometry, version 2.8). FcCH20H and 

hexaammineruthenium(III) chloride ([RU(NH3)6f+), both in 1 mM concentrations, were used 

respectively as cell permeable and impermeable electrochemical probes. Simultaneously, cel! 

death was monitored using 0.02 mg/ml Propidium iodide (PI) solution (EMD Chemicals, NJ, 

USA). 

1.2.4 Preparation of the control strain of HeLa cells before the electrochemical 

analysis. HeLa cells (ATCC, VA, USA) were seeded on 25-mm polymer disks (NUNC 

Brand Thermanox) or 23 mm Zeonor 1060R (Zeon Chemicals, KY, USA) oxygen plasma­

treated (40 W/sccm) disks, 24 hrs prior to measurements. (Beaulieu, Geissler and Mauzeroll, 

2009) The day of the analysis, the cells were washed with PBS and put in the corresponding 

redox solution. 

1.2.5 Bulk electrolysis of FcCH20H into [FcCH20Ht and exposure of HeLa cells 

to (FcCH20Ht. Bulk electrolysis of FcCH20H (l mM dissolved in Minimum Essential 

Medium (MEM-)) into its ferrocenium cation ([FcCH20Ht) was achieved using a platinurn 

sheet working electrode, an galvanized steel control electrode contained in a fritted glass tube 

and an Ag/AgCl reference electrode placed in a three-chamber electrolysis cell. Oxidation of 

FcCH20H was performed by applying 0.4 V constant voltage for 3 hrs and resulted in a 

calculated faradic efficiency of 0.94. 

The effect of [FcCH20Ht on HeLa cells was evaluated by CMFDA fluorescence 

intensity. Cells were washed with PBS and incubated for 15 min in MEM- for the control 

group and MEM- containing [FcCH20Ht for the tested group. Both groups were then 

stained with 2 IlM CMFDA for 15 min, rinsed with PBS and then placed in MEM- prior to 

acquisition. Fluorescence micrographs were acquired using a Nikon Eclipse TE2000-U 

inverted microscope equipped with a FITC/ RSGFP/ Bodipy/ Fluo 3/ DiO filter # 41001 
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(Chroma Teclmology, VT, USA) using a Retiga 2000R Fast 1394 Mono Cooled CCD camera 

(Qimaging, BC, Canada). 

1.2.6 Biological-SECM measurements on HeLa cells. 

1.2.6.1 Electrodes. A three-electrode setup was used for voltammetry and SECM 

experiments with 25 micrometer Platinum (Pt) diameter or laser pulled Pt working electrodes, 

a commercial Ag/AgCI reference and 0.5 mm Pt auxillary. The preparation of conventional 

25 micrometer Pt microelectrodes followed a weil established fabrication protocol (Fan et al., 

2007, p.189-199) while polished, needle-like, disk-shaped nanoelectrodes were fabricated 

using a sinùlar protocol to the procedures described. (Mauzeroll and LeSuer, 2007, p. 199­

211) The fabrication procedure specifically produces disk shaped Pt microelectrode sealed in 

a quartz capillary and laser pulied until a dimensionless radius of glass (RG) inferior to lOis 

obtained. In brief, 25 !lm annealed Pt wires were pulled into quartz glass capillaries (length 

of 150 mm, an outer diameter of 1 mm, and an inner diameter of 0.3 mm) under vacuum with 

the help of a P-2000 laser pipet puller (Sutter Instruments, CA, USA). The pulling program 

results in the formation of a long and sharp microelectrode with a thin glass sheath, which 

facilitates membrane penetration. The effective radius was evaluated from steady-state 

voltammetry. 

1.2.6.2 Electrochemical Measurements. Prior to analysis, the microelectrode is 

electrochemically cleaned using cyclic voltammetry in H2S04 (0.5 M) between -0.3 V and 

1.5 V during 20 cycles, rinsed and dried. For the measurements in ([Ru(NH3)6f+) (1 mM 

dissolved in PBS), a probe approach curve at a speed of 1 !lm/s was acquired above the 

immobilized HeLa ceIls exposed to ([RU(NH3)6]3+). A -0.35 V vs. Ag/AgCI potential was 

applied at the nùcroelectrode in order to obtain an electrochemical image of the 

([RU(NH3)6f+) (III) reduction to ([RU(NH3)6]3+) (II). For the FcCH20H (1 mM dissolved in 

MEM-), a probe approach curve was recorded at a speed of 1 Ilm/s above the cells using a 25 

!lm diameter Pt microelectrode following 70 min of exposure to FcCH20H. A 0.4 V vs. 

Ag/AgCI potential was applied at the electrode to obtain an electrochemical image of the 
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FcCH20H oxidation to [FcCH20Ht. Finally, probe approach curves of a Pt microelectrode 

biased at 0.4 V vs. AgiAgCI were recorded across the cell membrane of single HeLa cells 

that had been exposed to FcCH20H for 1h. 

1.2.7 Statistical analysis. Ali values were measured in triplicates and subsequently 

statisticallyevaluated. Based on a student's t-distribution, errors were calculated applying a 

two-tailed test with n=3, a = 0.025 and therefore a confidence level (CL) of95% is given. 

1.3. Results and Discussion 

HeLa and HeLa-R were used to study the influence of redox mediators on the 

intracellular thiol redox state using a combination of electrochemical and fluorescent 

teclmiques. To adequately compare the results obtained from both techniques, it is first 

important to control the basic cell culture conditions that alter cell metabolism and affect the 

magnitude of the recorded electrochemical response. 

1.3.1 Influence of cell environment. It is well known that the surrounding cell media 

influences the response of cells. As such, a careful control of media conditions during SECM 

measurements is an unavoidable first step towards multidrug resistance quantification, 

because the electrochemical measurements must be performed in a non-disrupting media. 

Moreover, the presence of serum in the media is problematic during electrochemical 

measurements because it leads to electrode fouling. For this reason, the influence of two 

culture media, which do not contain serum, have been studied: the classical electrochemical 

media, Phosphate Buffered Saline (PBS), and Dulbecco's Modified Eagle Medium without 

serum (DMEM-). 

The influence of culture media was studied on two cell lines having distinct 

morphologies and resistance phenotypes. The human cervical adenocarcinoma HeLa celis 

(HeLa) and human cervical adenocarcinoma multidrug-resistant HeLa cells (HeLa-R) exhibit 

intrinsically different morphologies when maintained under the same culture conditions. 
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Adherent HeLa cells present a triangular shape (Fig. Ua) while adherent HeLa-R ce1ls 

present a reduction in cytoplasmic volume, are spherical and grow in colonies (Fig. 1.1 b). 

(Puck, Marcus and Cieciura, 1956) HeLa and HeLa-R cells also differ in their expression 

level of MRP1 (190 kDa) as confumed by western blotting followed by immunodetection 

using a specific MRP 1 monoclonal antibody (Fig. 1.1 c). The housekeeping gene, 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH, 36 kDa), was used as control protein 

and was expressed in both cell lines. The observed expression level of resistant protein and 

housekeeping gene are consistent with literature. (Barber et al., 2005; Kast and Gros, 1998) 

By varying the culture media the cell morphology changes incurred were studied by 

optical microscopy and flow cytometry. As presented in Figure 1.1 (d-f, right panel), 

prolonged exposure to PBS affects the HeLa cell morphology since cells separate and 

become globular. Although clearly stressed, the exposed HeLa ceIls do not detach from the 

culture dish and cell staining with Trypan blue confirmed that no excessive cell death 

occurred after 4 hrs of incubation in PBS. Even though the cells are not dying, the observed 

cytoskeletal perturbations are among early events leading to major metabolic changes. 

(Bronaugh et al., 1989; Kamisato and Nowakowski, 1988) In contrast, HeLa cells incubated 

in DMEM- show no extemal sign of stress (Fig. 1.1 d-f, left panel). 

The influence of culture media on morphology changes was further investigated and 

quantified by flow cytometry (Fig 1.2a-d). The dot plot displaying the forward scattering 

signal and the side scattering signais is showing a focused distribution in DMEM- after an 

incubation of 2 hrs (Fig. 1.2a). A broadening of distribution occurs with increasing 

incubation period (Fig. 1.2c) or incubation in PBS (Fig. 1.2b, d). By taking the focused 

morphology distribution in DMEM- at 2 hrs incubation as reference, the percentage of cells 

with a similar morphology is calculated for ail conditions (see supporting figure SU). In 

DMEM- 77.49 % (67.87 % in PBS) of ail cells belong to the focused distribution after 2 hrs 

incubation period. After 4 hrs 64.05 % (55.15 % in PBS) of cells still hold a similar 

morphology. A similar effect was observed in HeLa-R cells (see supporting figure Sl.2). 

These results demonstrate that incubation in DMEM- media, contrary to PBS, maintain the 

standard HeLa and HeLa-R cell morphology for up to four hours. 



28 

The influence of culture media on the viability and metabolism of both cell lines was 

further studied by flow cytometric measurements that used propidium iodide (PI) and 5­

chloromethylfluorescein diacetate (CMFDA) as fluorescent indicators of viability and 

intracellular thiol redox state (Fig. 1.2e). (Longobardi Givan, 2004) The influence of the 

media on the dose response of CMFDA revealed potential limitations of substituting the 

preferred media, DMEM-, by PBS. When both celllines were incubated in DMEM- or PBS 

for 30 minutes at 37 oC and 5% CO2, the CMFDA dose response of the PBS incubated cells 

saturates as compared to that observed in DMEM- (Fig. 1.2e). This effect is likely due to a 

higher penneability of the cell membrane caused by the alteration of cell osmolarity by PBS. 

(Nakajima and Ikada, 1995) The cell viability remains nevertheless stable under both 

conditions and is in agreement with previous results (Fig. 1.1 d-t). 

The intracellular redox state of both cell lines is however significantly affected by PBS 

incubation. As such, incubation in DMEM- media is preferable to that in PBS because it 

sustains morphologically and metabolically representative HeLa and HeLa-R cells for up to 

four hours. During this period, electrochemical measurements such as those presented in a 

subsequent section are thus expected to be representative of the nonnal behavior of each cell 

line. 

1.3.2. Differentiai response of HeLa-R and HeLa cell to the presence of redox 

mediators. 

The differential behavior of HeLa-R and HeLa can first be studied by flow cytometry 

with CMFDA fluorescent staining. In the present study, CMFDA is employed as a 

fluorescent tag since it binds to thiol groups and allows monitoring of intracellular 

glutathione homeostasis. (Hedley and Chow, 1993; Voehringer et al., 1998) Figure 1.3a 

shows a comparison of the dose response of the CMFDA fluorescence signal in HeLa and 

HeLa-R cell lines. The CMFDA dose response of the HeLa cells displays enhanced 

sensitivity as compared to that obtained with HeLa-R cells. This can be due to two major 

effects. First, it was previously shown that HeLa-R cells contain less intracellular glutathione 

as compared to HeLa cells. (Sous10va and Averill-Bates, 2004) Second, a fraction of 

CMFDA gets pumped out of the cell by MRP 1 before it can react with thiol groups inside the 
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cell. The dose response of both cell lines displays a wide !inear range from zero to 2.5 ~ 

CMFDA. Finally, no substantial cell death was observed in the presence of CMFDA over this 

range based on propidimn iodide fluorescence intensity (Fig l.3a). This result is in 

accordance with !iterature. (Mascotti, McCullough and Burger, 2000) 

The interaction of two redox mediators: ferrocenemethanol (FcCH20H) and 

hexaammineruthenium(l1I) chloride ([RU(NH3)6]3+), was next assessed with HeLa and HeLa­

R cells and their effect on the intracellular thiol redox state monitored by CMFDA 

fluorescence. The former is cell permeable (Sun et al., 2008) but its effect on cell metabolism 

and intracellular redox state remains unclear. The latter is a highly charged redox mediator 

that is cell impermeable (Sun et al., 2008) and serves as a negative control in Bio-SECM 

studies. (Bard, Li and Zhan, 2006; Li and Bard, 2009; Sun et al., 2008; Amemiya et al., 

2006) 

Under standard electrochemical conditions, no considerable cell death occurs in 1 mM 

FcCH20HIDMEM--treated cens (see supporting figure S1.3). HeLa cell incubation III 

FcCH20H results in a statistically significant increase (confidence level (CL) 95%) III 

CMFDA fluorescence intensity (Fig. 1.3b). This indicates that the intracellular concentration 

of GSH is increased upon initial exposure to FcCH20H. In the HeLa-R cells, no statistically 

significant (CL 95%) fluorescence intensity shift is observed (Fig. 1.3c). This suggests that 

FcCH20H, like CMFDA, is pumped out of the cell by MRP1, an indication that this 

mechanism acts unspecifically and actively. Incubation of both ceIls !ines in the cell 

impermeable redox mediator ([RU(NH3)6]3+) did not result in significant (CL 95%) CMFDA 

fluorescence intensity increase (Fig. 1.3d). 

Importantly, the increase in CMFDA fluorescence in the presence of FcCH20H is a 

transient effect that is subject to the equilibrium dynamics of the reduced and oxidized 

glutathione ratio. Upon 30 min incubation in FcCH20H, a statistically significant (CL 95%) 

CMFDA fluorescence intensity increase in HeLa cens is observed. For FcCH20H incubation 

periods exceeding 60 min, it is expected that the backward enzyme assisted reaction, 

responsible for maintaining the cens' redox state homeostasis, prevails (Figure lA). 

(Schraufstatter et al., 1985) 
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1.3.3. Differentiai response of Hela-R and Hela cells during SECM studies. To 

date, no efficient and reliable cell-based methods have been designed to effectively monitor 

the cell's GSH/GSSG redox state and potential capacity as a target for a given 

chemotherapeutic drug. The glutathione metabolism inside all cells of the human body is 

important for the cellular defense against reactive oxygen species (ROS). This major 

antioxidant tripeptide reacts non-enzymatically with radicals and acts as the electron donor 

for the reduction of peroxides. (Dringen, 2000) Moreover glutathione is essential for cell 

proliferation and maintains the thiol redox potential in cells keeping sulfhydryl groups of 

proteins in the reduced fonu. (Cotgreave and Gerdes, 1998) The detailed glutathione 

function, its metabolism and oxygen-reduction-pathways have been described previously. 

(Dringen, 2000; Lantz et al., 2001; Markovic et al., 2007; Meister, 1994a; Meister, 1994b; 

Wang and Ballatori, 1998) Our finding that the mediator couple (FcCH20H/[FcCH20Ht) 

interacts with the oxidized and reduced fonu of glutathione suggests that the couple can be 

used intracellularly and extracellularly to evaluate the cell's redox state by electrochemistry. 

The response of both cell lines in presence of the previously used electrochemical 

species, ([RU(NH3)6]3+) and FcCH20H, has been further studied using SECM. Starting with 

HeLa cells, an electrochemical image of the cell in presence of ([RU(NH3)6]3) was acquired. 

In this configuration, a decrease in the recorded cathodic CUITent was observed, when the 

microelectrode is scanned across the HeLa cells (Fig. 1.5a). Since ([RU(NH3)6]3) is a cell 

impermeable redox mediator, its diffusion to the surface of the microelectrode is hindered in 

close proximity to the cells and a decrease in reduction CUITent is observed. These results are 

consistent with similar SECM studies. (Sun et al., 2008; Mauzeroll et al., 2002) This 

experiment illustrates that although the cells are exposed to PBS and therefore the membrane 

integrity is not fully maintained, as discussed previously (Fig. l.le), during SECM mapping, 

we observe a decrease in CUITent in the presence of ([RU(NH3)6]3+), proving that this redox 

mediator indeed does not interact with cells. In a second step, measurements with FcCH20H 

have been performed. The electrochemical image obtained when FcCH20H is used as the 

mediator is presented in Figure 1.5b. The observed response significantly differs from that 

obtained with RU(NH3)6]3+: an increase in anodic CUITent is observed when the microelectrode 

is positioned above the cells. This CUITent increase occurs because the microelectrode 

generates [FcCH20Ht, which thereafter diffuses within the confined volume of the 
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microelectrode and cell surface, and is regenerated by a cell component back to FcCH20H. 

This aspect has further been investigated by performing an approach curve above a cell, as 

presented in Figure 1.5c. As the microelectrode approaches the cell, the current decreases due 

to the hindered diffusion of FcCH20H to the microelectrode active surface. However this 

decrease in CUITent does not correlate with negative feedback as shown in Figure 1.5c. Both 

curves would have been superimposed if no regeneration of mediator had occurred. We 

verified that a realistic uncertainty of the experimental parameter (microelectrode radius, 

surrounding glass thickness) does not influence the accordance to the data significantly. The 

discrepancy between the negative feedback and the approach curve in the presence of 

FcCH20H confirms the significant regeneration of the mediator during electrochemical 

imaging. This observation is in accordance with what has been observed in SECM literature. 

(Li and Bard, 2009) 

In the past, the FcCH20H regeneration has not been consistently observed in cases 

where the cells die during the experiments. (Liu, Rotenberg and Mirkin, 2000) This indicates 

that the regeneration of FcCH20H is related to an active process. The extent of FcCH20H 

efflux is therefore potentially related to the resistant phenotype of the cells. To confirm this 

idea, electrochemical imaging in presence of FcCH20H above Hela-R cells has been carried 

out (Fig. 1.5d). When the microelectrode is rastered across the HeLa-R cells the observed 

response is very different from that observed using HeLa (Fig. 1.5c). A slight decrease in 

current is recorded above cells. 

The differential response between HeLa and Hela-R cells means that FcCH20H 

glutathione efflux for resistant cells could be measured electrochemically using Bio-SECM 

leading to quantification of the extend of cell's resistance. 

One has to underline that difference from negative feedback observed above HeLa 

cells (Figure 1.5b and 1.5c) cannot be due to [FcCH20Hr released from cells. Indeed, in 

contrast to FcCH20H, which diffuses into cells, [FcCH20Hr is cell impermeable. This 

aspect is demonstrated Figure 1.6, that presents results from fluorescence microscopy 

experiments with CMFDA and a solution of [FcCH20Hr obtained through classical bulk 

electrolysis. Figure 1.6 shows that there is no significant (CL 95%) difference between the 

fluorescence intensity of the HeLa cells exposed and unexposed to [FcCH20Hr. If 
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[FcCH20Hr had entered the ceIl , it would have reacted with GSH, as detennined 

electrochemical1y elsewhere. (Schreyer and Mikkelsen, 1999; Wring, Hart and Birch, 1991) 

This would have reduced the available intracel1ular concentration of GSH that would have 

otherwise reacted with the CMFDA and resulted in a reduction in the fluorescence intensity 

as compared to that observed in the unexposed cel1s. Based on the present results, it appears 

that the charged species [FcCH20Hr is cel1 impenneable, and that the difference from 

negative feedback observed Figure 5b and 5c cannot be explained by direct [FcCH20Hr cell 

release. 

According to those results, it seems that differential response between Hela and Hela-R 

cel1s is likely to be related to the cel1 component, glutathione, responsible for the regeneration 

reaction using corroborating electrochemical and fluorescent experiments. Exact 

quantification of this differential response is however behind the scope of this preliminary 

study. 

1.4. Conclusion 

Establishing the relation between FcCH20Hl[FcCH20Hr, the efflux mediated by 

multidrug resistance proteins, and GSHIGSSG in a human cancer cel1 line is an important 

first step towards the quantification of multidrug resistance. Given the nature of Bio-SECM 

and its hyphenation with fluorescence microscopy, the intracellular flux of FcCH20H and 

extent of regeneration reaction of [FcCH20Hr will be used to relate multidrug resistance to 

ubiquitous glutathione. This could lead to the establishment of a quantifiable indicator for 

multidrug resistance activity that can be used over cel1 life and across cel1 lines thereby 

enabling targeted drug screening and improving existing chemotherapeutical treatments. 
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Figure 1.1 Optical micrographs and western blot comparing both strains of 
HeLa ceUs. (a) HeLa ceUs in complete medium (DMEM~). (b) HeLa-R 
cells in DMEM+. (c) Western blot showing the constitutive expression of 
MRPI protein in the multidrug resistant HeLa ceUs. The housekeeping 
gene GAPDH was used as a control. (d-f) Comparison of HeLa ceUs 
exposed to medium devoid of serum (DMEM-) (Ieft panel) and PBS pH 
7.4 (right panel). Images were acquired after 0 min (d), 30 min (e) and 240 
min (f) incubation. Scale bar for ail micrographs correspond to 100 !lm. 
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Figure 1.2 Statistical validation of morphological changes in 
HeLa cells. (a) The dot plot displaying the forward (FSC-H) and 
side scattering (SSC-H) signais shows a focused distribution 
after 2 hrs in DMEM-. Distribution broadening can be seen when 
cells are exposed to DMEM- for 4 hrs (c) or to PBS pH 7.4 
during 2 hrs (b) and 4 hrs (d). Cell viability and the dose­
response relationship between CMFDA concentration and cell 
fluorescence intensity is shown for cells exposed to DMEM- or 
PBS. (e) HeLa cells were incubated for 30 min in DMEM- (PI., 
CMFDA 0) or and in PBS pH 7.4 (PI., CMFDA 0). 
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Figure 1.3 Cell viability and the dose-response relationship between CMFDA concentration 
and cell fluorescence intensity, obtained by flow cytometry, are shown for both cell strains 
exposed 30 min to DMEM-. (a) HeLa (PI., CMFDA 0) and HeLa-R (PI., CMFDA 0). (h­
e) Dose-response relationship between different doses of CMFDA and its fluorescence 
intensity for the HeLa (b) and HeLa-R (e) HeLa ceIls incubated 30 min in either DMEM-/l 
mM FcCH20H (dark grey, pattemed) or in DMEM- only (white, light grey). The asterisks 
correspond to a significant increase of fluorescence intensity (n = 3; error bars representing 
the confidence interval of95%) between groups exposed to DMEM-/FcCH20H and DMEM-. 
(d) Flow cytometry fluorescence measurements in the presence of2 ~M CMFDA staining of 
both cell strains exposed 30 min to DMEM- containing or not 1 mM [RU(NH3)6]3+. 



38 

160 
a 

;- 120 
~ 

'" .~ 

.e 

.~ 80 
8 
c 
8 
~ 
o
iZ 40 

30 

160 
b 

~ 120 
.!!. 

30 

60 120 

Incuballon (minutes) 

60 120 

Inc.ubation (minutes) 

Figure 1.4 Influence of FcCH20H incubation time on 
CMFDA fluorescence intensity. HeLa (a) and HeLa-R (b) 
HeLa cells were exposed to 1 mM FcCH20H in DMEM­
for 30, 60 and 120 min and compared to those on1y 
incubated in DMEM-. Flow cytometry fluorescence 
measurements of CMFDA (2.5 !lM) added to the medium 
after 15, 45 or 105 min of incubation. The asterisks 
correspond to a significant difference (n = 3; error bars 
representing the confidence interval of CL 95%) between 
indicated groups. 
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Figure 1.5 (a) SECM electrochemical image of [Ru(NH3)6]3+ (III) 1 mM reduction above 
HeLa ceUs. A - 0.35 V vs. AgiAgCI potential was applied at the i )..lm diameter Pt 
microelectrode to reduce the [Ru(NH3)6]3+ (III). Normalized current (cuITent divided by 
current measured far from substrate) is presented for aU images. (b) SECM electrochemical 
image the FcCH20H oxidation to [FcCH20Ht. SECM eiectrochemical image of FcCH20H 
1 mM above HeLa cells is shown. A 0.4 V vs. AgiAgCl potential was applied at the 25 )..lm 
diameter Pt microelectrode to oxidize fcCH 20H. (c) Approach curve in fcCH20H 0.75 
mM from above a HeLa cell (full iine). Negative feedback theoretical curve (expression 
taken from Iiterature (Comut and Lefrou, 2007) shows mismatch with experimental curve 
(see text). Pt microelectrode of about 340 nm diameter; appiied potential more anodic than 
O.4V vs. Ag/AgC\. (d) SECM eiectrochemicai image of fcCH 20H i mM above HeLa-R 
ceUs. An 0.4 V vs. AglAgCl potential was applied at the 25 )..lm diameter Pt microelectrode 
to oxidize fcCH20H. 
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Figure 1.6 Fluorescence images of HeLa cells. The 
fluorescence intensity of the unexposed HeLa cells (in 
DMEM-; a) is compared to cens exposed to 
[FcCH20Ht in MEM- for 30 min (b). There is no 
substantial difference in the fluorescence intensity of the 
CMFDA. Micrographs were acquired using a Nikon 
Eclipse TE2000-U inverted microscope and Nikon NIS­
Element software (version 3.0). Scale bar for aH 
micrographs correspond to 100 !lm. 
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Detailed information about membrane preparation and western blotting. MRP1 and a 
control protein, GAPDH (Immuno Chemical, CA, USA), were detected by western blot 
analysis. HeLa and HeLa-R cells were maintained as described previously and lysed in buffer 
containing 150 mM NaCI, NP-40 1 % v/v, deoxycholic acid 0.5 wt%, sodium dodecyl 
su1phate (SDS) 0.1 wfllo and 50 mM TrislHCl (pH 7.5 at 4 oC). Cell debris was removed by 
centrifugation at 1,000 g for 10 min. The Bradford method was used for protein 
quantification of the supernatant. 
Irnmunodetection of MRP1 and GAPDH, 20 Ilg of proteins completed with 5 ilL loading 
buffer (62.5 mM TrislHCl (pH 6.8), glycerol 10 % v/v, SDS 2 wt%, bromophenol blue 
0.00625 wt%) were separated on a 7.0 % SDS polyacrylamide gel. The electrophoresis buffer 
contained 19.2 mM glycine, 25 mM TrislHCl and 0.1 wt% SDS. Electrophoresis was carried 
out at a constant voltage of 130 V. The proteins were transferred to a polyvinylidene fluoride 
(PVDF) membrane (Millipore, MA, USA) using a semidry blotting system (W.E.P Company, 
USA). The transfer buffer contained 96 mM glycine, 10 mM TrislHCl, methanol 10 % v/v 
(pH 8.4). A constant current of 80 mA/gel was applied for 1.5 hrs. To block non specifie and 
hydrophobie sites, membranes were incubated overnight at 4 oC in 3.0 wt% skim milk in 
Tris-buffered saline (Sigma-Aldrich, ON, Canada) containing 0.3 % v/v Tween 20 (Sigma­
Aldrich, ON, Canada) (TBS-Tween 0.3 % v/v). Membranes were washed three times for 20 
min in TBS-Tween 0.3 % v/v and incubated for 1 h at room temperature with TBS-Tween 
0.3 % v/v containing the MRP1 specific monoclonal antibody QCRL (1: 100) (Abcam Inc 
Cambridge, MA, USA). Following three 20 min washes in TBS-Tween 0.3 % v/v, the 
specifie proteins on the PVDF membranes were detected using horseradish peroxidase anti­
mouse antibody (1: 1,000) (Arnersham Pharrnacia Biotech, Rainham, UK.) in 1.0 wt% skim 
milk in TBS-Tween 0.3 % v/v. Membranes were washed and MRP1 was analyzed using ECL 
chemiluminescence plus kit (HyGlo, Denville Scientific Inc, NJ, USA). Revealed protein 
expression was detected and quantified using a film processor (Mini medical series, AFP 
imaging, USA). Given the intense QCRL response in the HeLa-R cells, the exposure time 
was optimized to 1 s. Present antibody bindings were removed by incubating PVDF 
membranes 1 hr in 0.2 M glycin in nanopure water purified using the Millipore Milli-Q 
Biocel Ultrapure water system (Fisher, ON, Canada). Membranes were washed three times in 
TBS-Tween 0.3 % for 20 min and the same membranes were used to detect GAPDH as 
control protein. Membrane blocking procedures were perforrned as described previously. The 
GAPDH specific monoclonal antibody (1: 10,000) in TBS-Tween 0.1 % + 3 wt% bovine 
serum albumin (BSA) + 0.02 wt% NaN3 was exposed to the membranes for 20 min and 
protein detection and analysis was perforrned as described before for MRP l-QCRL detection. 



CHAPTERII
 

SCIENTIFIC ARTICLE: CREATING VERSATlLE CELL PATTERNS FOR
 
BIOLOGICAL SCANNING ELECTROCHEMICAL MICROSCOPY
 

The prevlOus chapter describes the evaluation of the Redox couple 

FcCH201i/[FcCH20Hr as mediator during Biological Scanning Electrochemical Microscopy 

(Bio-SECM) measurements as weil as the relation between FcCH201i/[FcCH20H]+, 

GSIilGSSG and multidrug resistance in human cancer cel1s. First electrochemical studies on 

cancer cells have been performed showing the strong potential behind the technique of Bio­

SECM for medicaI and bioanalytical applications. In order to use the described relations to 

quantify multidrug resistance, cel1s of different cel1 lines need to be aligned under the 

microscope under controlled conditions. 

The following chapter presents a new cell patteming procedure in order to improve 

working conditions during Bio-SECM studies. Using elastomeric through-hole membranes 

(SEBS) and Zeonor® 1ü6üR substrates, defined patterns of different cel1 types are to be 

achieved. Zeonor® 1ü6üR substrates are biocompatible plastic surfaces that were treated with 

oxygen plasma and provide therefore an efficient basis for cel1 growth. The SEBS copolymer 

membranes, as processed at the Industrial Materials Institute, National Research Council of 

Canada, are to be evaluated as an alternative to the commonly used polydimethylsiloxane 

(PDMS) membranes to overcome previous disadvantages in cel1 patterning. 

The presented results outline the usefulness of versatile cell patterns achieved 

following the presented protocol. The precise positioning of cells improves the 
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reproducibility of Bio-SECM studies, specifically enabling cell analysis in a shorter period of 

time and analysis of multiple cell types at the same time under the same conditions. 
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Abstract 

Biological Scanning Electrochemical Microscopy (Bio-SECM) is a promlsmg 

technique that can quantify the flux of substances transported in and out of cells. To study 

cells using Bio-SECM, the target cell's growth and positioning underneath a micro-scale 

electrode needs to be controlled without interfering with their normal behavior and 

metabolism. Herein we describe a relatively simple and cost-efficient method based on the 

use of elastomeric through-hole membranes for producing cell patterns on plastic supports. 

Specifically, we demonstrate the patterning of cells in the form of islands on oxygen plasma 

treated Zeonor® for both single cell patterns and co-culture of two different cel! lines. 

Resultant patterns have been characterized using Bio-SECM in conjunction with optical and 

fluorescence microscopy. The presented study will impact future bioanalytical research, 

because it allows more precise studies on cells in a variety of scientific fields, such as cell 

and developmental biology and endocrinology. 
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2.1 Introduction 

ln the last decade, a number of new techniques emerged focusing on more efficient and 

effective approaches of cancer treatment. One of those techniques is Biological Scanning 

Electrochemical Microscopy (Bio-SECM). Employing micro- or nano-scale electrodes, Bio­

SECM can be used to quantify the flux of substances consumed by or released from a cell. In 

the past years, multiple ceIl types have been analyzed (Bard, Li and Zhan, 2006; Bauermann, 

Schuhmann and Schulte, 2004; Kaya et al., 2003; Li and Bard, 2009; Liu, Rotenberg and 

Mirkin, 2000; MauzeroIl and Bard, 2004; MauzeroIl et al., 2004; Saito et al., 2006), 

successful imaging techniques have been developed (Kurulugama et al., 2005) and analytical 

strategies have been proposed (Kuss et al., 201 1). So far, the possibilities of those techniques 

are not exclusively, but also limited by controIling the cellular environment to be able to 

study ceIl's characteristics on the micron level. One aspect is the proper arrangement oftarget 

ceIls underneath a micro- or nanoscale electrode and to control their growth and position 

during electrochemical measurements. 

Protocols for ceIl patterning procedures exist since the 1960s (Carter, 1965; Carter, 

1967a; Carter, 1967b) and have been developed and advanced since then. The advent of soft 

lithography is one of the major milestones in this field. (Kane et al., 1999) Unlike 

photolithography (Kleinfeld, Kahler and Hockberger, 1988), soft Iithography involves 

elastomeric polymers, such as polydimethylsiloxane (PDMS), to replicate and transfer 

structural information provided by a mask, mold or stamp in a functional material (Csucs et 

al., 2003; Lahann et al., 2001; Liu and Chen, 2005; Singhvi et al., 1994; Tan et al., 2004; Xia 

and Whitesides, 1998) lnspired by that, stencils emerged aIlowing patterning of ceIl or 

biomolecules through holes in those elastomeric masks. (Folch et al., 2000; Tourovskaia et 

al., 2003) Despite aIl the advantages of PDMS, such as its price compared to silicon, its 

flexibility, its conform nature and optical transparency, there are also disadvantages in using 

PDMS. Problems in adhesion, shrioking, capillary force stress and sagging of structures were 

observed, leading to defects in the created pattern. (Xia and Whitesides, 1998) The purpose 

of this study is therefore to investigate an alternative offering aIl the advantages of the 

PDMS, while overcoming the previously mentioned disadvantages. Furthermore, its 

effectiveness in preparation ofBio-SECM experiments is evaluated. 
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2.2 Experimental Section 

2.2.1 Cell culture. Ali products were purchased from Sigma-Aldrich (ON, Canada) if 

not indicated differently. HeLa (CCL-2, American Type Culture Collection, VA, USA) were 

grown in Dulbecco's Modified Eagle's Medium (DMEM high glucose, HyClone, UT, USA) 

completed with 10 % v/v heat inactivated fetal bovine serum (Gibco/Invitrogen, ON, 

Canada), 2 mM glutamine, 25 mM 4-(2-Hydroxyethyl)piperazine-l-ethanesulfonic acid 

(HEPES), penicillin and streptomycin (50 units/ml) (HYQ HyClone, UT, USA), which was 

used as basic medium (DMEM+). HeLa-R overexpress the Multidrug Resistance Protein 1 

(MRP1) and are resistant to actinomycin D, etoposide, adriamycin and vincristine. (Kast and 

Gros, 1998) Cells were maintained in tissue culture flasks (Sarstedt Inc, QC, Canada) at 37 

oC and 5 % CO2 using a CO2/Multi-gas incubator (Sanjo Scientific, lapan). The culture 

medium for the HeLa-R contained etoposide (VP-16, 250 ng/ml), which was removed prior 

to experiments. (Souslova and Averill-Bates, 2004) Both cell!ines, ranging from 70 % to 90 

% confluence, were washed with 37 oC phosphate-buffered saline (PBS) (pH 7.4 at 25 oC) 

and harvested with 37 oC 0.25 % v/v Trypsin-EDTA solution (10x, 2.0 g EDTA, in 0.9 wt% 

NaCI). 

2.2.2 Fluorescent staining. Both cel1 !ines were labelled either using the PKH2 

(Green) or the PK.H26 (Red) Fluorescent Cell Linker Kit (Sigma-Aldrich, ON, Canada). 

These fluorescent markers lable the cell membrane by incorporation into the lipid region of 

the biphospholipid layers. (Horan and Siezak, 1989) CeIls were harvested with 37 oC 0.25 % 

v/v Trypsin-EDTA solution (lOx, 2.0 g EDTA, in 0.9 wt% NaCI). 2 x 107 cells were 

transferred into a 15 ml falcon tube (Sarstedt Inc, Montreal, QC) and washed once with basic 

medium missing serum (DMEM} Cel1s were centrifuged at 400 x g for 5 minutes and the 

supematant was removed. Cells were resuspended in 1 ml of Diluent C (supplied with the 

Cell Linker Kit). Cell suspension was added to 1 ml PK.H2 or PKH26 dye (4 !lM) and mixed 

irnmediately by pipetting. The suspension was incubated at 25 oC for 4 minutes whereas the 

tube was frequently inverted to assure homogeneous mixing. The staining reaction was 

stopped by adding 2 ml of 1 % Bovine Serum Albumin (BSA). Cel1 suspension was diluted 

adding 4 ml of DMEM+ and centrifuged at 400 x g for 10 minutes at 25 oC to separate cells 
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from staining solution. The supernatant was removed and cells were transferred into a new 15 

ml falcon tube. Three washes were perforrned using 8 ml ofDMEM+ each and centrifugation 

at 400 x g for 10 minutes. Cells were resuspended and suspension was used in appropriate 

dilutions during the cell patterning procedure. 

2.2.3 Preparation of Plastic Substrates. Zeonor slides (25 x 75 mm2 in area, 1 mm in 

thickness) were prepared by injection molding using a Boy 30A injection tool (Dr. Boy 

GmbH, Neustadt-Fernthal, Gerrnany). Zeonor® 1060R (Zeon Chemicals, Louisville, KY) was 

molded at a temperature of 250 to 260 oC, an injection speed of 40 nun/s and a pressure of 

132 bar. The mold (stainless steel, custom-fabricated) was cooled for 15 s before the slide 

was released. Disks (2.3 mm in diameter) were obtained by punching Zeonor slides in 

manual fashion followed by washing with methanol, ethanol and deionized (DI) water (18.2 

Mn cm), respectively, to clean the surface of monomers or residual plasticizing agents. Cell 

culture substrates were exposed to oxygen plasma (Plasmalab80Plus, Oxford Instruments, 

Bristol, UK) at a pressure of 50 mTorr and a power/gas flow ratio of 40 W/sccm for 4 min. 

(Beaulieu, Geissler and Mauzeroll, 2009) 

2.2.4 Fabrication of Membranes. Elastomeric through-hole membranes (SEBS) were 

fabricated from Versaflex® CL30 (GLS Corp., McHenry, ll..,) using a mold that was prepared by 

photolithography using SU-8 (GM1040, Gersteltec, Pully, Switzerland) on a 4" silicon wafer 

(Silicon Quest International, Inc., Santa Clara, CA). The wafer was first baked on a hot plate at 

200 oC for 10 min; SU-8 resist was applied through spin coating, which was followed by a pre­

bake at 65 and 95 oC for 5 and 15 min, respectively, using a temperature ramp of2 oC min- I
. 

Resist was exposed to UV light with a wavelength of365 nm (Hg i-line) at 280 I!J cm-2 through 

a transparency-based photomask (FineLineImaging, Colorado Springs, CO) using a 6200 mask 

aligner (EV Group, Scharding, Austria). Post-exposure bake was done using the same 

conditions as for the pre-bake. Resist features were developed in propylene glycol monomethyl 

ether acetate (Sigma-Aldrich Corp., St. Louis, MO) for 2 min; the wafer was rinsed with 

isopropanol (Anachemia, Montréal, QC) and dried with a stream of nitrogen gas. Resultant resist 

pattern was hard-baked at 130 oC for 2 hrs. Finally, the master was coated with a thin, anti­
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adhesive layer fonned from lH,lH,2H,2H-perfluorooctyl-trichlorosilane (Aldrich) using 

deposition from the vapor phase under reduced pressure. CUO was received in the fonn of 

pellets; the material was extruded at 165 oC to yield a film of 150 ~m in thickness, which was 

then imprinted with the master using an EVG 520 embossing tool (EV Group) operated at 160 

oC, an applied force of 1 x 104 N, and a pressure of 1 x 10-3 mbar. Ali fabrication steps were 

carried out in a c1ean room envirorunent (class 1000). Planar PDMS slabs were prepared from 

Sylgard 184 (Dow Corning, Midland, MI) by curing the mixed prepolymers of PDMS 

(e1astomer base/curing agent = 10/1, w/w) on a flat polystyrene surface (Coming, Petri dish, 

Sigma-Aldrich) in an oyen at 60 oC for 12 hrs. 

2.2.5 CeU Patterning. Cell culture substrates were placed in a 30-mm Petri dish and 

fixed using biocompatible high vacuum grease (Dow Corning, MI, USA). 3 ml of DMEM+ 

was added and bubbles were removed in a desicator by applying vacuum pressure for 15 min. 

Remaining bubbles were finally eliminated by pipetting DMEM+ directiy on the membrane. 

When a first cell suspension (HeLa-R) was added, cells attached to the free oxygen plasma 

spots in the SEBS membrane or on the Zeonor® slide. The sample was incubated at 37 oC, 5 

% CO2 for 18 hrs before PDMS membrane was removed. A second cell suspension (HeLa) 

was added and sample was incubated for 5-24 hrs at 37 oC, 5 % CO2. In case oxygen plasma 

treatment of the Zeonor® slide was applied before the SEBS membrane was placed, the 

SEBS membrane is now removed, revealing defined cell patterns. 

2.2.6 OpticaI and Fluorescent Imaging. Optical micrographs of platted cultured cens 

were acquired using an inverted microscope (Nikon Eclipse TS 100, Nikon, Montreal, QC) 

equipped with a camera (Olympus CAMEDIA C-500 ZOOM, using Gimp 2.6). Fluorescence 

images were acquired using a confocal microscope. 

2.2.7 Electrochemical measurements. 

2.2.7.1 Electrodes. A three-electrode setup was used for voltammetry and Bio-SECM 

experiments with 25 ~m Pt diameter laser pulled Pt working electrodes, a commercial 
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AgiAgCI reference and 0.5 nun Pt auxillary. The preparation of conventional 25 !-lm Pt 

microelectrodes followed a well established fabrication protocol (Fan et al., 2007, p. 189­

199) while po1ished, needle-like microelectrodes were fabricated similar to procedures 

described earlier. (Mauzeroll and LeSuer, 2007, p. 199-211) The fabrication procedure 

specifically produces disk shaped Pt microelectrode sealed in a quartz capillary and laser 

pulled until a dimensionless radius of glass (RG) inferior to 10 is obtained. The RG value is 

defined as the isolator radius to conductor radius ratio at the tip of the microelectrode. In 

brief, 25 !-lm annealed Pt wires were pulled into quartz glass capillaries (length of 150 nun, an 

outer diameter of 1 nun, and an inner diameter of 0.3 nun) under vacuum with the help of a 

P-2000 laser pipette puller (Sutter Instruments, CA, USA). The pulling program results in the 

formation of a long and sharp microelectrode with a thin glass sheath, which facilitates 

membrane penetration. The effective radius was evaluated from steady-state voltanunetry. 

2.2.7.2 Electrochemical Measurements. For the measurements in FcCH20H (1 mM 

dissolved in DMEM), a cyclic voltanunogram was acquired by applying a potential at the 

microelectrode ranging from zero to 0.5 V vs. AglAgCI. A stationary current at 0.45 V vs. 

AgiAgCl was recorded. An approach curve at a speed of 1 !-lmJs above plastic using a 25 !-lm 

diameter Pt microelectrode was acquired biasing the working electrode at 0.45 V vs. 

AgiAgCI. The same potentia1 was app1ied at the electrode to obtain an electrochemical image 

of the FcCH20H oxidation to [FcCH20Ht while scanning across an area containing three 

patterned HeLa cells, when cells were exposed 10 minutes to FcCH20H. Finally the 

microelectrode was rastered across a 200 x 300 ~m area applying a 0.45 V vs. AglAgCI 

potential to record an electrochemical image of pattemed HeLa cells. 

2.3 Results and Discussion 

In order to study multiple cell types using Biological Scanning Electrochemical 

Microscopy (Bio-SECM), a novel protocol was developed enabling cell patteming in a 

variety of shapes. 
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Figure 2.1 describes a newly established cell patterning procedure that allows 

controlling cancer cell growth in vitro and thus making single cell studies much easier and 

more precise. This novel technique employs a new kind of polymer membrane (SEBS 

membrane) as weIl as Zeonor® slides treated in oxygen plasma, whereby the introduction of 

oxygen surface functionalities promote cell attaclunent. (Beaulieu, Geissler and Mauzeroll, 

2009) The SEBS membrane is made from Versaflex CL30, a styrenic ethylenelbutylene 

block-copolymer, which has recently been introduced for microfabrication and patterning. 

(Geissler et al., 2009a; Geissler et al., 2009b) This elastomer provides a convenient and low­

cost alternative to PDMS that is commonly used in cell patterning procedures. (Goubko and 

Cao, 2009) For example, its thermoplastic nature makes it possible to produce thin-film 

membranes that can support small-scale openings while retaining mechanical stability, 

promoting release from the mold without damage as weIl as convenient handling and 

manipulation. Furthermore the SEBS membrane adheres better than PDMS to a plastic 

substrate or to other membranes as used in the co-culturing protocol. The SEBS membrane 

contains circular openings, ranging from 500 to 50 ~m in diameter to produce cell islands in 

different sizes resulting frOID holes in the membrane. The presented protocol has to be 

adjusted to each cell line according to their morphology and growth nature. For example, 

HeLa cells are more efficiently patterned using a SEBS membrane that is not treated with 

oxygen plasma and placed on the treated Zeonor® slide (Fig 2.1 a). A better choice, in case 

of the HeLa-R ceIls, is a SEBS membrane that was treated together with the Zeonor® slide 

(Fig 2.1 b), because of their tendency to grow in colonies. 

Following the described protocol, HeLa cells (Fig 2.2 a) as weIl as HeLa-R cells (2.2 

b) can be successfully pattemed in different dimensions. Membrane holes ranging from 500 

to 200 ~m diameter allow cell growth in defined islands whereas holes of 50 !lm diameter 

result in single cell patterning or groups of 2 to 6 cells. This defined physical separation of 

cells gives rise to new controllable experimental parameters for studies, such as cell 

communication or cell signalling, but also observation of cell death and the ceIl's response to 

drugs or other medical treatrnents. Patterning of cancer cells in such an effective way is 

currently unique and will open new possibilities in developmental and cell biology as weil as 

in cancer research. This procedure is also applicable for other cancer cell lines than HeLa, 

such as the Gliablastoma cancer cells U87 (Fig 2.3). In this case, it is recommended to use a 
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SEBS membrane that was treated together with the Zeonor® slide and removed before 

exposing it to the cell suspension (Fig 2.1, b). As shown in Figure 2.4, the patterns, obtained 

using a treated membrane, are stable at least 48 hrs, due to the sharp boarders of the substrate 

treated or untreated with oxygen plasma. Cells are moving (Fig 2.4 a, white arrow) and 

dividing (Fig 2.4 b, black arrow) within the oxygen plasma treated spots. Outside of the 

pattern area cells have to hold on to each other to be able to survive (Fig. 2.4 c, orange 

arrow). If a cell is too far from an island, it is not able to grow and detaches from the surface 

(Fig. 2.4 c, green arrow). 

The presented results already display how defined the newly established material and 

protocol can be applied. Another important feature of this protocol is the ability to pattern co­

cultures. In the past other patterning techniques had been developed allowing co-culturing 

(Goubko and Cao, 2009); single cell patterning, however, remains inefficient, not weIl 

defined or the unnatural morphology of the patterned cells suggests altered deve10pment or 

metabo1ism of the cells. Additionally no co-pattern of single ceIls has been achieved. (Cheng, 

Li and Komvopoulos, 2009; Hu et al., 2010; Irimia and Karlsson, 2003; Ishizaki, Saito and 

Takai, 2010; Jin et al., 2009; Mercey et al., 2010) In order to pattern HeLa and Hela-R cells 

on the same substrate, a SEBS membrane was used, treated with oxygen plasma together 

with the Zeonor® sIide and without removing the SEBS membrane after the plasma 

treatrnent. PDMS membranes were used to coyer spots partially or completely before adding 

a suspension of HeLa-R cells. Cells attached to the free oxygen plasma spots in the SEBS 

membrane during incubation. When HeLa-R cells reached a sufficient confluence the PDMS 

membrane was removed. A HeLa cell suspension was added and after another incubation 

period co-pattern cou1d be observed. As shown in Figure 2.5 a, HeLa (red) and HeLa-R 

(green) can be co-cultured in separate islands or even in divided islands (Fig 2.5 b). This 

technique will allow the precise comparison of cells of different types using electrochemica1 

techniques, such as Bio-SECM, since different cells can now be studied at the same time and 

under the same conditions. 

Bio-SECM is a promising technique to allow studies of living ceIls by their 

characteristics, such as multidrug resistance. (Kuss et al., 20 Il) A variety of cell lines has 

been analyzed by Bio-SECM (Bard, Li and Zhan, 2006; Bauerrnann, Schuhrnann and 

Schulte, 2004; Kaya et al., 2003; Li and Bard, 2009; Liu, Rotenberg and Mirkin, 2000; 



61 

Mauzeroll and Bard, 2004; Mauzeroll et al., 2004; Saito et al., 2006) and a defined patterning 

of target ceIls, such as single cell patterns, will open the door for analytical studies using Bio­

SECM even wider. To perforrn first measurements on patterned HeLa cells a cyclic 

voltammogram was generated to characterize the working electrode and to obtain the 

stationary CUITent depending on the electrode and involved redox mediator, here 

ferrocenemethanol (FcCH20H) (Fig 2.6 a). Therefore a potential ramp of zero to 0.5 V vs. 

Ag/AgCl was applied at the 25 /lm diameter Pt microelectrode, oxidizing FcCH20H to its 

cation [FcCH20Ht The current as a measure of the oxidation rate is recorded showing a 

stationary CUITent at about 0.45 V vs. AgiAgCI (Fig 2.6 a). To further position the electrode, 

the Zeonor® slide was approached at a speed of 0.5 /lm/sec (Fig 2.6 b). During this approach 

FcCH20H continuously reacts at the tip of the microelectrode, while the reaction rate is 

deterrnined by the flux of FcCH20H to the active surface of the tip. By approaching the 

Zeonor® slide the CUITent decreases, since the diffusion process is hindered by the presence 

of the substrate (Fig 2.6 b, scheme). Once the microelectrode is positioned above a sample an 

electrochemical image can be created, by rastering in constant height mode across an area, 

showing the reactivity depending on the nature of the substrate as shown in Figure 2.7. The 

25 /lm diameter Pt microelectrode was scanned across a patterned area containing three HeLa 

cells with an initial tip to substrate distance of 20 Ilm (Fig 2.7 a). A 0.45 V vs. Ag/AgCI 

potential was applied and the electrode was positioned next to the cells. The response in 

current is shown in Figure 2.7 b when the cells were exposed to FcCH20H for 10 min (blue). 

A decrease in current is observed every time the microelectrode passes over a cell. This 

decrease in current is not considered as pure negative feedback, which is defined as the 

approach of an insu1ator, nor is it considered as real positive feedback, described as the 

approach of a conductor. In this case an interrnediate situation is presented. The current 

decreases, because of the hindered diffusion of the FcCH20H, but it was also shown that cells 

are able to regenerate FcCH20H within the first 30 min of exposure to this redox mediator, 

resulting in an increase in CUITent. (Kuss et al., 2011) In the presented experiment (Fig 2.7 b, 

blue) both events seem to take place concurrently. If it was pure negative feedback, the 

decrease in current was expected to be the same at 10 min of cell's exposure to FcCH20H as 

at 90 min. Figure 2.7 b, red shows a less intense decrease when the electrode was scanned 

above the same sample after 90 min cell's exposure to FcCH20H. This decrease in response 
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is observed although the initial tip to substrate distance was reduced to 12 J..Lm, affirming the 

contribution of the regeneration reaction in the observed signal. 

Demonstrating the imaging capabilities of Bio-SECM, an electrochemical image of 

patterned HeLa cells in presence of FcCH20H was acquired (Fig 2.8). In the above 

mentioned configuration, the microelectrode is rastered across the HeLa cells (Fig. 2.8 a and 

b). As shown in the 2D-Contour-Plot (Fig 2.8 c) and in the 3D-Plot (Fig 2.8 d) of the Bio­

SECM electrochemical image of the FcCH20H oxidation, a decrease in the recorded current 

was observed, when the microelectrode passes a HeLa cell. These images illustrate the 

usefulness of cell patterning for Bio-SECM measurements. The obtained patterning strategies 

lower the risk to interfere with the cell's normal metabolism severely, since the instrumental 

set up and validation process of the experiment requires less time. 

One has to underline that the use of constant height mode in Bio-SECM studies 

constitutes one major disadvantage. The presence of a slope of the substrate, although 

possible to be corrected computationally to sorne extent, cannot be avoided experimentally. 

That means, as shown in Figure 2.7 b, a consistent loss of signal intensity is obtained due to 

the increasing distance between microelectrode tip and substrate. This problem can be 

approached performing measurements using Constant Distance Mode during Bio-SECM 

studies. At Constant Distance Mode the electrode keeps the same distance from the surface 

when rastered across a sample. This technique allows coupling of information about 

topography and reactivity of the sample depending on the nature of the substrate and will 

therefore be most meaningful in future bioanalytical research. This technique is currently 

under development and first studies on living cells emerged. (Kurulugama et al., 2005; 

Etienne et al., 2006; Katemann, Schulte and Schuhmann, 2003; Katemann, Schulte and 

Schuhmann, 2004; Lee, Ding and Bard, 2002) 

2.4 Conclusion 

The establishment of the presented cell patterning protocol is a major step towards 

precise Bio-SECM measurements on cancer cells, since it allows the controlled growth of 

different cell lines for several days. Multiple cell lines have been successfully patterned in 
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different sizes and shapes. The patterning of single cells has a great potential to impact future 

research in developmental and cell biology as weil as in cancer research, since it allows 

studies on a single cell basis that might lead to analyzes of a variety of cancer cell's 

characteristics, such as multidrug resistance. Even more importantly, the resulting co-cultures 

allow the direct comparison of cell lines and use of one cell line as standard during 

experiments. The invasion capacity of one cancer type or the comparison of celllines by their 

response to stress, drugs or other medical treatments are just a few examples how the 

presented study could be used in future bioanalytical research. 
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Figure 2.1 Schematic representation of two cell patterning procedures. A 
Zeonor® slide is treated with oxygen plasma before (b) or after (a) the SEBS 
membrane is placed. Using a PDMS membrane, holes (a) or plasma spots (b) 
are covered. A first cell suspension is added and incubated for at Jeast 12 hrs. 
After removing PDMS a second cell suspension can be added and is 
incubated for 12 to 24 hrs. The SEBS membrane is removed (a) and cell 
patterns are revealed. 
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Figure 2.2 Optical micrographs of cell patterns. (a) HeLa and (b) HeLa-R in 500 /lm islands 
(left panels), in 200 /lm islands (middle panels) and 50 /lm islands (right panels). Scale bar in 
ail micrographs corresponds to 100 /lm. 
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Figure 2.3 Optical micrographs of U8? cell patterns. Scale bar in ail micrographs 
corresponds to 100 !lm. 
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Figure 2.4 Optical micrographs of HeLa cells patterned in an oxygen plasma spot. 
Images were taken from a time Jap video of 48 hrs. Arrows indicate one example of 
each characteristic. (a) Cells are moving and (b) dividing within the pattern. (c) 
Outside of the oxygen plasma treated area cells have to hold on to each other (orange 
arrow), otherwise they detach from the surface (green arrow). 
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Figure 2.5 Optical micrographs of Hela and HeLa-R cell patterns in co­
culture obtained by confocal microscopy. Cell lines were staincd with PKH2 
(green, HeLa-R) and PKH26 (red, HeLa) respectively. (a) 50 ).lm and (b) 500 
).lm oxygen plasma spots containing both celllines. 



69 

a EM 3.50 
O;<[R]O 
0=[0]0

\U 
3.00 

2.50 

1 2.00 
e- ë 

~~ u 1.50
R 0 

1.00 

0.50 
1 

1 

1 Zeonor® 
0.00 

400 Soo 

·0.50 Vol.age (mV) 

EM 3.00b 

\U
2.50 

2.00 

1 
e· + 

.. ~~r.-" ~ 1.50 

R O' 
~ 1). 1). r.­

1.00.\U,
a 

. . 
.:.1 

. . 
j;. 

0.50 

1 Zeonor® 0.00 
-20 20 40 60 80 100 120 

Distance hun) 

Figure 2.6 Preparation of SECM measurements of patterned cells. (a) Cyclic voltammogram 
showing the oxidation of fcCH20H to [fcCH20Hr at a 25 /lm diameter Pt microelectrode 
by applying a potential of zero to 0.5 V vs. Ag/AgCI. (b) Approach curve in fcCH 20H 1 mM 
above plastic. A decrease in CUITent is observed due to the lowered diffusion (dotted arrows) 
of fcCH20H to the electrode when approaching the substrate. 
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Figure 2.7 Bio-SECM !ine scan above three HeLa cells. (a) Schematic representation of 
electrochemical measurement. A potential of 0.45 V vs. Ag/AgCI was applied at the 25 ~m 

diameter Pt rnicroelectrode to oxidize FcCH20H to [FcCH20Ht above the cells. (b) Diagram 
showing response in CUITent 20 ~m above substrate when cells were exposed for 10 min to 
FcCH20H (blue) and 12 ~m above substrate when ceUs were exposed for 90 min to 
FcCH20H (red). 



71 

à.... ,-.~ ... "'-. b 

1 ~"""l'-' "~'. ~--------+----------:,. . ...,-' -'~ 
,J ~.~. ." V-0-----..0---- ---11 CeU 

1 - _ _ 

1, ~'\' .. 
_______________________ J 

1

vf.t.~:'J • :---0---(7--:
1 

~ J\tt" .~ • 1 
1i 1- ... 

c d 
1.90 

1.85 
;{E 200 ~ oS 

~ oS 
Ql 1.80 ~ 
U 

1.8 E 
l: i!! ::J
III :; oûi u 1.75
i5 100 

400 

1.7 

100 200 

Distance [Ilm) 

Figure 2.8 Bio-SECM electrochemical image of a HeLa cell pattern. (a) Optical micrograph 
2 hrs after electrochemical measurements of the analyzed pattemed region. Scale bar 
corresponds to 100 flm. (b) Schematic representation in top view of Bio-SECM measurement. 
(c) 2D Contour-Plot and (d) 3D-Plot of Bio-SECM electrochemical image of FcCH20H 1 
mM oxidation above HeLa cells. A potential of 0.45 V vs. AgiAgCI was applied at the 25 flm 
diameter Pt microelectrode to oxidize FcCH20H to [FcCH20Hr. 
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CHAPTERIII
 

PROSPECT: TOWARDS A CONSTANT DISTANCE MODE USING A TAPPING
 
APPROACH
 

The prevlOus chapter describes the patterning of different cell types in order to 

improve electrochemical studies on biological sampIes, such as cancer cens, using the 

technique of Biological Scanning Electrochemical Microscopy. Successful positioning of 

cel1s in islands, small groups or even single cells have been performed, furthermore al10wing 

co-pattern of multiple cell lines on the same substrate. However, positioning of cens under 

the microscope is not the only challenge, also the electrode positioning during scanning can 

be improved. 

The following chapter presents preliminary studies for another approach to make Bio­

SECM analysis more precise and efficient by controlling the substrate to electrode tip 

distance. Therefore a constant distance mode is adapted using a vibrating microelectrode that 

is scanned over a sample in a tapping manner. The vibration modulation close to the 

substrate, due to the increased viscosity of the medium is therefore monitored. The 

established constant distance mode is tested on different substrates, inc1uding soft samples, 

such as cens. 

The presented results indicate the usefulness of the constant distance mode in Bio­

SECM studies, since it overcomes the disadvantage of the constant height mode by gathering 

topography information, including the inevitable slope of the substrate. The coupling of 

information about topography and reactivity of the substrate will therefore lead to a reliable 

procedure for quantifying reactivity measurements on cens. 
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3.1 Introduction 

3.1.1 Principle of shear force distance control 

Biological Scanning Electrochemical Microscopy (Bio-SECM) has a great potential to 

impact future medical and bioanalytical research. (Amemiya et al., 2006; Bard, Li, Zhan, 

2006; Bauermann, Schuhmann and Schulte, 2004; Kaya et al., 2003; Li and Bard, 2009; Liu, 

Rotenberg and Mirkin, 2000; Kuss et al., 2011) The accuracy and precision of this 

electrochemical technique, however, is limited depending on the abilities of the executing 

machine and software. To overcome disadvantages of the weil known and applied constant 

height mode during Bio-SECM measurements, a shear force based constant distance mode 

was introduced to the field of Scanning Electrochemical Microscopy (SECM) in 2000 

(Hengstenberg, Kranz and Schuhmann, 2000) and shortly after combined with functional 

electrodes in SECM. ( Lee, Ding and Bard, 2002) This constant distance method was adopted 

from near field scanning optical microscopy (NSOM), where it was first introduced in 1992 

to control the probe to sample distance. While the underlying principles ofNSOM and SECM 

are very different, they both are scanning probe microscopy techniques and the use of this 

type of probe to sample distance control can be used in a very similar manner. In the shear 

force technique the increasing shear force acting between the medium and the probe in close 

proximity to the sample surface is used as a feedback signal to control the probe to sample 

distance. (Dunn, 1999) The probe is always stimulated to a vibration but the detection of the 

vibration dampening varies, including the use of a tuning fork or a focused laser beam. 

(Beaulieu et al., 2010) In the presented work the electrode is stimulated to a vibration by a 

dither piezo, while a receiver piezo records the electrodes vibration. Although in the first 

SECM studies a group of algae was successfully imaged using constant-CUITent mode, (Lee, 

Ding and Bard, 2002) the topographie imaging in constant distance mode remains a 

challenge. 

In the following years more and more adaptations of the shear force based constant 

distance emerged. (Etienne et al., 2006; Katemann, Schulte and Schuhmann, 2003; 

Katemann, Schulte and Schuhmann, 2004; Kurulugama et al., 2005) A significant 
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improvement in SECM imaging was achieved by Kurulugama and colleages (Kurulugama et 

al., 2005) by imaging neuron cells by regulating the distance using either constant-CUITent 

mode or constant-impedance mode. In both approaches no shear force is detected but the 

response of the ions in solution. The main disadvantage of the constant-CUITent mode is the 

need for a redox mediator that can be detected independently from the other species in the 

solution and that does not interact or pass into the cell. Constant-impedance mode shows 

promising results, however here, too, topological and reactivity information is collected 

electrochemically. Resulting high-resolution images of neurons display and underline the 

potential of Bio-SECM studies in the future. In order to decouple information about 

topography from non-electrochemical measurements with the electrochemical reactivity of a 

biological substrate the shear force constant distance mode was adapted in the presented 

study. Our goal is the specific analysis of different celllines in the future. 

3.1.2 Tapping approach 

Figure 3.1 shows a schematic representation of the constant distance mode for Bio­

SECM studies using a tapping approach. Therefore a 5 /lm diameter Pt microelectrode is 

positioned 10 /lm above the plastic surface, vibrating in response to stimulation by a dither 

piezo. The rnicroelectrode is rastered horizontally at a speed of 0.5 /lm/sec above a sample, 

tapping down in a chosen resolution, ranging from 0.1 to 5 /lm (Fig. 3.1 dotted line). Thereby 

the tip always stops at the same distance above the surface, due to a change of the electrode 

vibration, recorded by a receiver piezo. Those measurement points are collected by software 

that generates an image as if the microelectrode is scanned over a sample always keeping the 

same distance to the surface (Fig. 3.1 dashed hne). This technique allows decoupling of 

information about topography and reactivity of the sample depending on the nature of the 

substrate. 

3.2 Experimental Section 

3.2.1 Cell culture. AIl products were purchased from Sigma-Aldrich (ON, Canada) if 

not indicated differently. HeLa (CCL-2, American Type Culture Collection, VA, USA) were 

grown in Du1becco's Modified Eagle's Medium (DMEM high glucose, HyClone, UT, USA) 
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completed with 10 % v/v heat inactivated fetal bovine serum (Gibco/lnvitrogen, ON, 

Canada), 2 mM glutamine, 25 mM 4-(2-Hydroxyethyl)piperazine-l-ethanesulfonic acid 

(REPES), penicillin and streptomycin (50 units/ml) (HYQ HyClone, UT, USA), which was 

used as basic medium (DMEM+). cens were maintained in tissue culture flasks (Sarstedt lnc, 

QC, Canada) at 37 oC and 5 % CO2 using a CO2/Multi-gas incubator (Sanjo Scientific, 

Japan). Cells, ranging from 70 % to 90 % confluence, were washed with 37 oC phosphate­

buffered saline (PBS) (pH 7.4 at 25 oC) and harvested with 37 oC 0.25 % v/v Trypsin-EDTA 

solution (lOx, 2.0 g EDTA, in 0.9 wt% NaCI). 500.000 cells were seeded into a 30-mm Petri 

dish containing a plastic substrate, fixed using biocompatible high vacuum grease (Dow 

Coming, MI, USA). For the electrochemical measurements, the plastic substrate was 

removed and placed into the electrochemical cell. 

3.2.2 Preparation of plastic substrates. Zeonor slides (25 x 75 mm2 in area, 1 mm in 

thickness) were prepared by injection molding using a Boy 30A injection tool (Dr. Boy 

GmbH, Neustadt-Femthal, Gerrnany). Zeonor® 1060R (Zeon Chemicals, Louisville, KY) 

was molded at a temperature of 250 to 260 oC, an injection speed of 40 mm/s and a pressure 

of 132 bar. The mold (stainless steel, custom-fabricated) was cooled for 15 s before the slide 

was released. Disks (2.3 mm in diameter) were obtained by punching Zeonor slides in 

manual fashion followed by washing with methanol, ethanol and deionized (DI) water (18.2 

Mn cm), respectively, to clean the surface of monomers or residual plasticizing agents. Cell 

culture substrates were exposed to oxygen plasma (Plasmalab80Plus, Oxford Instruments, 

Bristol, UK) at a pressure of 50 mToIT and a power/gas flow ratio of 40 W/sccm for 4 min. 

(Beaulieu, Geissler and Mauzeroll, 2009) 

3.2.3 Electrochemical measurements. 

3.2.3.1 Electrodes. A three-electrode setup was used for voltammetry and Bio-SECM 

experiments with 25 !!m Pt diameter laser pulled Pt working electrodes, a commercial 

Ag/AgCl reference and 0.5 mm Pt auxillary. The preparation of conventional 25 /lm Pt 

microelectrodes followed a well established fabrication protocol (Fan et al., 2007, p. 189­
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199) while polished, needle-like microelectrodes were fabricated similar to procedures 

described earlier. (Mauzeroll and LeSuer, 2007, p. 199-211) The fabrication procedure 

specifically produces disk shaped Pt microelectrode sealed in a quartz capillary and laser 

pulIed until a RG inferior to lOis obtained. In brief, 25 !lm annealed Pt wires were pulled 

into quartz glass capillaries (Iength of 150 mm, an outer diameter of 1 mm, and an inner 

diameter of 0.3 mm) under vacuum with the help of a P-2000 laser pipette puller (Sutter 

Instruments, CA, USA). The pulling program results in the formation of a long and sharp 

microelectrode with a thin glass sheath, which facilitates membrane penetration. The 

effective radius was evaluated from steady-state voltammetry. 

3.2.3.2 Imaging in constant distance mode. A cyc1ic voltammogram was acquired by 

applying a potential at the microelectrode ranging from zero to 0.4 V vs. Ag!AgCI. A 

stationary CUITent at 0.35 V vs. Ag!AgCI was recorded. A full frequency scan was acquired, 

showing a high resonance of the Pt microelectrode at a frequency of 175 kHz. An approach 

curve at a speed of 0.5 !lm/s above plastic and at a frequency of 175 kHz using a 5 !lm 

diameter Pt microelectrode was acquired recording amplitude or phase with a stop level of 10 

%. Another full frequency scan was recorded in contact with the substrate. Both spectra were 

subtracted revealing a phase change as weIl as an amplitude damping at a frequency of 350 

kHz. This frequency was applied at the electrode to obtain an electrochemical image of the 

topography of the substrate while scanning in constant distance mode across an area 

containing solid structures, HeLa cells, or none of the previous. Finally the microelectrode 

was rastered in constant distance mode across the mentioned areas monitoring the phase with 

a break after a change of the response signal of 6 0. An approach maximum of 10,000 nm 

indicates the maximal distance in Z-direction, whereas the piezo moves down at a step size of 

10 nm first, followed by the Z-motor. The pull up distance indicates the retraction height to 

recover the initial signal. 
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3.3 Topographical imaging of different samples 

ln order to study cells using Biological ScaIUling Electrochemical Microscopy (Bio­

SECM), the constant distance mode is adapted for the purpose of overcoming the 

disadvantages of constant height mode in previous Bio-SECM studies (see chapter 2). 

3.3.1 Experimental preparation 

ln order to find a frequency that gives a sufficient shear force response a full frequency 

spectrum is recorded (Fig. 3.2 a) and a region of interest, here 100 to 600 kHz, is magnified 

for better analysis (Fig. 3.2 b). Seven resonance frequencies could be identified in the 

scanned area by observing the amplitude as a function of the stimulated frequency. A cyclic 

voltammogram was generated to characterize the working e1ectrode (Fig.3.3 a) and an 

approach curve above plastic was recorded at a frequency of 175 kHz to position the 

electrode in a defined distance to the surface. A decrease in amplitude and phase signal is 

observed due to the increased viscosity of the medium (Fig. 3.3 b). By comparing the 

amplitude and phase signal during the approach it becomes clear that the change in phase is 

much more sensitive and therefore the better choice during Bio-SECM measurements. The 

signal of the amplitude in contrast seems unstable and is much more affected by background 

noise. To identify a frequency with the most efficient shear force response a frequency 

spectra from 250 kHz to 600 kHz was recorded on target as weil as 10 ~m above the 

substrate. The subtraction spectrum reveals a phase change as weil as an amplitude damping 

at a frequency of 350 kHz (Fig. 3.4). This frequency was chosen for the imaging of different 

samples. 

3.3.2 Imaging of solid substrates and a biological sampIe 

Figure 3.5 shows preliminary results of the validation experiments for constant 

distance mode in order to study biological samples. It is important to note that these 

experiments are of preliminary nature and no reactivity information has been recorded. The 

potential of this approach is illustrated in Figure 3.5 a when an image was acquired of a solid 

substrate containing scratches. Deepening as small as 1.75 ~m could be displayed precise1y. 

As mentioned in chapter 2, a stope of the substrate cannot be avoided experimentally, 

reducing the accuracy of quantifying measurements. Using the constant distance mode this 
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slope can be observed in the topography infonnation gathered during the experiment (Fig. 3.5 

b) while the reactivity infonnation remain unaffected by the slope. A comparison with an 

experiment on cells shows the challenges remaining using this method (Fig. 3.5 c). Due to the 

softness of the sample acquiring an image of cells requires an adjustment of the electrode as 

weil as software related parameters. Although the presence of another scratch could be 

monitored, cells could be detected, but not displayed in their topography or shape. Once the 

microelectrode approached a cell, the targets detached from the surface, stuck to the electrode 

or were not identified as substrate. Therefore the size and material of the microelectrode need 

to be reconsidered as weil as the approach parameters inserted into the executing software. 

3.4 Conclusion 

The adaption of the presented constant distance mode using a tapping approach is 

another important step towards precise Bio-SECM measurements on cancer cells, since it 

clearly overcomes the disadvantage of the constant height mode by recognizing the slope in 

the topography information gathered during the experiment. Thereby the reactivity 

infonnation remains unaffected by the slope of the substrate. Preliminary studies and analysis 

of different substrates have been perfonned, showing successful imaging of a solid surface. 

Topographical imaging of HeLa cells remains a challenge and optimization of the 

experimental conditions is necessary. The coupling of infonnation about topography and 

reactivity of the substrate in the future will lead to a reliable procedure for quantifying 

reactivity measurements on cells. 
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Constant Distance Mode:
 
Tapping Mode
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Figure 3.1 Schematic Representation of Constant 
Distance Mode using a tapping approach. 
Electrochemical measurement is performed by 
keeping the same tip to substrate distance when 
rastered across a sample. The electrode scans in X 
direction while approaching the surface in a chosen 
resolution (dotted line). This technique allows 
coupling of information about topography and 
reactivity of the sample depending on the nature of 
the substrate and creates an image as if scanning 
performed completely in close proximity to the 
surface (dashed line). 
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Figure 3.2 Electrode resonance measurement for Bio-SECM studies in Constant 
Distance Mode. (a) Full frequency scan using a 5 flm diameter Pt microelectrode. (b) 
Frequency scan of area indicated by box in (a). 
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Figure 3.3 Preparation of Bio-SECM measurements in Constant Distance Mode. (a) 
Cyclic voltammogram showing the oxidation of FcCH20H to [FcCH20Hf at a 5 flm 
diameter Pt microelectrode by applying a potential of zero to 0.4 V vs. Ag!AgCI. (b) 
Approach curve above plastic at a frequency of350 kHz. Amplitude damping as weil as a 
change in phase is observed due to the increased viscosity of the medium. 
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Figure 3.5 Bio-SECM measurements using constant distance mode. (a) 3D-Plot of the 
topography of a solid substrate. (b) 3D-Plot image of the topography of an empty plastic slide 
and (c) a plastic surface containing HeLa cells. 



CONCLUSION
 

The presented work is a thesis in partial fulfillment of the requirements for the degree 

of Master of Science. The presented work is written as thesis by article and presents three 

chapters that each put emphasis on different aspects ofthis Master studies topic. 

The goal of the presented work is to evaluate and advance the applicability of Bio­

SECM to biological systems. SECM is an interesting technique and in principle its 

application to study living cells can provide much new infonnation that is unreachable with 

any other technique. However, little research has been connecting SECM and Biology so far. 

Bio-SECM is a new technique exploring this connection. It is developed mainly in 

electrochemical laboratories. The very promising features of SECM for biological and 

biochemical research are brought into conjunction with routinely used optical microscopy. 

Regarding the progress in the last decade, Bio-SECM is now developed to a point where 

application of the technique has to lead to further development. Much more involvement of 

biochemists and biologists is therefore a very important requirement for successful 

implementation of Bio-SECM in biochemical and biologicallaboratories. 

Bio-SECM can be advanced on two different levels: First, on the chemical theoretical 

level, interactions that can be probed by Bio-SECM have to be identified. These interactions 

need to be understood weil in order to achieve meaningful results. Second, on a practical 

level, the instrument can be improved to allow constant distance measurements. Furthennore 

ClITrent Bio-SECM measurements often only lead to qualitative results, while reproducibility 

is lacking for quantitative conclusions. Evaluation of the experimental procedure and the 

effect of environmental parameters on the results are necessary to find key disturbing factors 

during Bio-SECM measurements. Smart engineering can then improve these experiments and 

allow for more accurate results. 
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To bring Bio-SECM forward towards a reliable standard technique to study living 

matter a number of objectives have to be achieved. The main objectives include the 

determination of an interaction partner for the redox mediator FcCH20H, the reproducibility 

of Bio-SECM measurements and the application of constant distance methods to biological 

samples. These objectives were approached using a combination of electrochemical and 

bioanalytical techniques. GSH as physiological redox active substance was proposed as 

possible interaction partner of FcCH20H. This interaction was evaluated with fluorescence 

microscopy and flow cytometry, before first constant height Bio-SECM imaging was applied 

to investigate glutathione levels and to assess multidrug resistance in human HeLa cells. 

Therefore the applicability of different media during SECM experiments was evaluated in 

order to guarantee accurate and representative results (Chapter 1). To allow easier, faster and 

more reproducible measurements, furthermore a new cell patteming method was developed 

allowing precise positioning of target cells in small groups and even co-cultures (Chapter 2). 

Constant distance measurements were performed modifying a published and developed 

method (Chapter 3). 

Not only has the interaction between Glutathione and FcCH20H been found but also a 

possible application of this interaction for multidrug resistance quantification has been 

proposed. Although this interaction is not fully evaluated yet, it provides a basis for further 

development and catapults Bio-SECM a huge way towards application in bioanalytical 

research and even diagnostics. One step has been taken in the presented work by evaluating 

cell viability under SECM conditions in the first chapter. Bio-SECM studies so far have often 

been conducted under non-physiological conditions leading to the involuntary measurement 

of dead cells. Furthermore cell positioning is improved using the proposed cel\ patteming 

techniques in the second chapter allowing evaluation of cell characteristics across cell lines 

under defined experimental conditions. 

However, routine application remains a long term goal. Research is underway on ail 

levels in the laboratory for Electrochemical Reactive Imaging and Detection for Biological 

Systems at the Université du Québec à Montréal to improve the technique of Bio-SECM. To 
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advance the constant distance perfonnance the electrodes need to be optimized to detect even 

small changes in solvent viscosity near soft surfaces. Therefore different electrode materials 

need to be tested. Strategies to avoid cross contamination during co-culturing are followed 

currently. The effect of FcCH20H on other model systems and the possible reaction cascade 

inside the cell must be elucidated and the timely response of the cell towards FcCH20H has 

to be considered in further studies. Physical modeling of the electrode environment during 

measurements on cells can improve the understanding of the underlying processes. The 

development of ring micro electrodes may allow the measurement of the cells response to 

exposition to a substance, which is introduced through a central opening in the electrode 

during the measurement. Given the potential for high impact experimental research of Bio­

SECM, focus has to be given to more pertinent cell lines in present cancer research, such as 

hurnan lung cancer cells H69 and H69AR, which are also multiclrug resistant. 

To conclude, FcCH20H was identified to interact with living cells and can therefore be 

used as mediator, making biological infonnation accessible to Bio-SECM measurements. The 

improved experimental procedures and increased understanding of experimental necessities 

can serve to improve the accuracy and reproducibility of any Bio-SECM study. The 

presented work brings Bio-SECM a big step forward and should serve as a basis for further 

research. 
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