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RÉSUMÉ 

La forêt boréale, seconde aire biotique terrestre sur Terre, est actuellement considerée 
comme un réservoir important de carbone pour l'atmosphère. Les modèles basés sur le 
processus des écosytèmes terrestres jouent un rôle important dans l'écologie terrestre et 
dans la gestion des ressources naturelles. Cette thèse examine le développement, la 
validation et l'application aux pratiques de gestion des forêts d'un tel modèle. 

Tout d'abord, le module récement développé d'échange du carbone TRIPLEX-Flux 
(avec des intervalles de temps d'une demi heure) est utilisé pour simuler les échanges 
de carbone des écosystèmes d'une forêt au peuplement boréal et mixte de 75 ans dans 
le nord est de l'Ontario, d'une forêt avec un peuplement d'épinette noire de 110 ans 
localisée dans le sud de Saskatchewan, et d'une forêt avec un peuplement d'épinette 
noire de 160 ans située au nord du Manibota au Canada. Les résultats des échanges 
nets de l'écosystème (ENE) simulés par TRIPLEX-Flux sur l'année 2004 sont 
comparés à ceux mesurés par les "tours de mesures de covariance des turbulences" et 
montrent une bonne correspondance générale entre les simulations du modèle et les 
observations de terrain. Le coefficient de détermination moyen (R2

) est 
approximativement de 0.77 pour le peuplement mixte boréal, et de 0.62 et 0.65 pour 
les deux forêts d'épinette noire situées au centre du Canada. Le modèle est capable 
d'intégrer les variations diurnes de l'échange net de l'écosystème (ENE) de la période 
de pousse (de mai à août) de 2004 sur les trois sites. Le peuplement boréal mixte ainsi 
que les peuplements d'épinette noire agissaient tous deux comme des réservoirs de 
carbone pour l'atmosphère durant la période de pousse de 2004. Cependant le 
peuplement boréal mixte montre une plus grande productivité de l'écosystème, un plus 
grand piégeage du carbone ainsi qu'un meilleur taux de carbone utilisé comparé aux 
peuplements d'épinette noire. 

L'analyse de la sensibilité a mis en évidence une différence de sensibilité entre le 
matin et le milieu de journée, ainsi qu'entre une concentration habituelle et une 
concentration doublée de CO2 . De plus, la comparaison de différents algorithmes pour 
calculer la conductance stomatale a montré que la production nette de l'écosystème 
(PNE) modelisée, utilisant une itération d'algorithme est conforme avec les résultats 
utilisant des rapports Ci/Ca constants de 0.74 et de 0.81 respectivement pour les 
concentrations courantes et doublées de CO2. Une variation des paramètres et des 
données variables de plus ou moins 10% a entrainé, respectivement pour les 
concentrations courantes et doublées de CO2, une réponse du modèle inférieure ou 
égale à 27.6% et à 27.4%. La plupart des paramètres sont plus sensibles en milieu de 
journée que le matin excepté pour ceux en lien avec la température de l'air, ce qui 
suggère que la température a des effets considérables sur la sensibilité du modèle pour 
ces paramètres/variables. L'effet de la température de l'air était plus important dans 
une atmosphère dont la concentration de CO2 était doublée. En revanche, la sensibilité 
du modèle au CO2 qui diminuait lorsque la concentration de CO2 était doublée. 

Sachant que, les incertitudes de prédiction des modèles proviennent majoritairement 
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des hétérogeneities spacio-temporelles au coeur des écosystèmes terrestres, à la suite 
du développement du modèle et de l'analyse de sa sensibilité, sept sites forestiers à tour 
de mesures de flux (comportant trois forêts à feuilles caduques, trois forêts tempérées à 
feuillage persistant et une forêt boréale à feuillage persistant) ont été selectionnés pour 
faciliter la compréhension des variations mensuelles des paramètres du modèle. La 
méthode de Monte Carlo par Markov Chain (MCMC) à été appliquée pour estimer les 
paramètres clefs de la sensibilité dans le modèle basé sur le processus de l'écosystème, 
TRlPLEX-Flux. Les quatre paramètres clefs sélectionnés comportent: un taux 
maximum de carboxylation photosynthétique à 25°C (Ymax), un taux du transport d' 
un électron (Jmax) saturé en lumière lors du cycle photosynthétique de réduction du 
carbone , un coefficient de conductance stomatale (m), et un taux de référence de 
respiration à 10°C (RIO)' Les mesures de covariance des flux turbulents du COz 
échangé ont été assimilées afin d'optimiser les paramètres pour tous les mois de 
l'année 2006. Après que l'optimisation et l'ajustement des paramètres ait été réalisée, 
la prédiction de la production nette de l'écosystème s'est ameliorée significativement 
(d'environ 25%) en comparaison avec les mesures de flux de COz réalisés sur les sept 
sites d'écosystèmes forestiers. Les résultats suggèrent, dans le respect des paramètres 
sélectionnés, qu'une variabilité plus importante se produit dans les forêts à feuilles 
larges que dans les forêts d'arbres à aiguilles. De plus, les résultats montrent que 
l'approche par la fusion des données du modèle incorporant la méthode MCMC peut 
être utilisée pour estimer les paramètres basés sur les mesures de flux, et que des 
paramètres saisonniers optimisés peuvent considérablement améliorer la précision d'un 
modèle d'écosystème lors de la simulation de sa productivité nette et cela pour 
différents écosystèmes forestiers situés à travers l'Amerique du Nord. 

Finalement, quelques uns de ces paramètres et algorithmes testés ont été utilisés pour 
mettre à jour l'ancienne version de TRIPLEX comportant des intervalles de temps 
mensuels. En outre, le volume d'un peuplement et la quantité de carbone de la 
biomasse au dessus du sol des forêts d'épinette noire au Québec sont simulés en 
relation avec un peuplement des âges, cela à des fins de gestion forestière. Ce modèle a 
été validé en utilisant à la fois une tour de mesure de flux et des données d'un 
inventaire forestier. Les simulations se sont averrées réussies. Les corrélations entre les 
données observées et les données simulées (Rz) étaient de 0.94 0.93 et 0.71 
respectivement pour le diamètre à l.3m, la moyenne de la hauteur du peuplement et la 
productivité nette de l'écosystème. En se basant sur les résultats à long terme de la 
simulation, il est possible de déterminer l'âge de maturité du carbone du peuplement 
consideré comme prenant place à l'époque où le peulement de la forêt prélève le 
maximum de carbone, avant que la récolte finale ne soit realisée. Après avoir comparé 
l'âge de maturité du volume des peuplements considérés (d'environ 65 ans) et l'âge de 
maturité du carbone des peulpements considérés (d'environ 85ans), les résultats 
suggèrent que la récolte d'un même peuplement à son âge de maturité de volume est 
prématuré. Décaler la récolte d'environ vingt ans et permettre au peuplement considéré 
d'atteindre l'âge auquel sa maturité du carbone prend place, ménera à la formation 
d'un réservoir potentiellement important de carbone. Aussi, un nouveau diagramme de 
la gestion de la densité du carbone du peuplement considéré, basé sur les résultats de la 
simulation, a été développé pour démontrer quantitativement les relations entre les 
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densités de peuplement, le volume de peuplement et la quantité de carbone de la 
biomasse au dessus du sol à des stades de développement variés, dans le but d'établir 
des régimes de gestion de la densité optimaux pour le rendement de volume et le 
stockage du carbone. 

Mots-Clefs: écosystème forestier, flux de CO2, production nette de l'écosystème, eddy 
covariance, TRlPLEX-Flux module, validation d'un modèle, Markov Chain Monte 
Carlo, estimation des paramètres, assimilation des données, maturité du carbone, 
diagramme de gestion de la densité de peuplement 



ABSTRACT 

The boreal forest, Earth's second largest terrestrial biome, is currently thought to be an 
important net carbon sink for the atmosphere. Process-based terrestrial ecosystem 
models play an important role in terrestrial ecology and natural resource management. 
This thesis focuses on TRIPLEX model development, validation and application of the 
model to carbon sequestration and budget as weIl as on forest management practices 
impacts in Canadian boreal forest ecosystems. 

Firstly, this newly developed carbon exchange module of TRIPLEX-Flux (with half­
hourly time step) is used to simulate the ecosystem carbon exchange of a 75-year-old 
boreal mixedwood forest stand in northeast Ontario, a II O-year-old pure black spruce 
stand in southern Saskatchewan, and a 160-year-old pure black spruce stand in 
northern Manitoba, Canada. Results of net ecosystem exchange (NEE) simulated by 
this model for 2004 are compared with those measured by eddy flux towers and 
suggest good overall agreement between model simulation and observations. The mean 
coefficient of determination (R2

) is approximately 0.77 for the boreal mixedwood, 0.62 
and 0.65 for the two old black spruce forests in central Canada. The model is able to 
capture the diurnal variations of NEE for the 2004 growing season in these three sites. 
Both the boreal mixedwood and old black spruce forests were acting as carbon sinks 
for the atmosphere during the 2004 growing season. However, the boreal mixedwood 
stand shows higher ecosystem productivity, carbon sequestration, and carbon use 
efficiency than the old black spruce stands. 

The sensitivity analysis of TRIPLEX-flux module demonstrated different sensitivities 
between morning and noon, and from current to doubled atmospheric CO2 

concentrations. Additionally, the comparison of different algorithms for calculating 
stomatal conductance shows that the modeled NEP using the iteration algorithm is 
consistent with the results using a constant C/Ca of 0.74 and 0.81, respectively for the 
current and doubled CO2 concentration. Varying parameter and input variable values 
by ±IO% resulted in the model response to less than and equal to 27.6% and 27.4% for 
morning and noon, respectively. Most parameters are more sensitive at noon than in 
the morning except those that are correlated with air temperature suggesting that air 
temperature has considerable effects on the model sensitivity to these 
parameters/variables. The air temperature effect was greater under doubled than 
current atmospheric CO2 concentration. In contrast, the model sensitivity to CO2 

decreased under doubled CO2 concentration. 

Since prediction uncertainties of models stems mainly from spatial and temporal 
heterogeneities within terrestrial ecosystems, after the module deve!opment and 
sensitivity analysis, seven forest flux tower sites (incJuding three deciduous forests, 
three evergreen temperate forests, and one evergreen boreal forest) were selected to 
facilitate understanding of the monthly variation in model parameters. The Markov 
Chain Monte Carlo (MCMC) method was app! ied to estimate sensitive key parameters 
in this TRIPLEX-Flux process-based ecosystem module. The four key parameters 
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selected include a maximum photosynthetic carboxylation rate of 25°C (Vmax), an 
electron transport (Jmax) light-saturated rate within the photosynthetic carbon reduction 
cycle of leaves, a coefficient of stomatal conductance (m), and a reference respiration 
rate of IODC (RIO)' Eddy covariance CO2 exchange measurements were assimilated to 
optimize the parameters for each month in 2006. After parameter optimization and 
adjustment took place, the prediction of net ecosystem production significantly 
improved (by approximately 25%) compared to the CO2 flux measurements taken at 
these seven forest ecosystem sites. Results suggest that greater seasonal variability 
occurs in broadleaf forests in respect to the selected parameters than in needleleaf 
forests. Moreover, results show that the model-data fusion approach incorporating the 
MCMC method can be used to estimate parameters based upon flux measurements, 
and that optimized seasonal parameters can greatly improve ecosystem model accuracy 
when simulating net ecosystem productivity for different forest ecosystems Jocated 
across North America. 

Finally, sorne of these well-tested parameters and algorithms were used to update and 
improve the old version of TRlPLEX1.0 that used monthly time steps. Furthermore, 
stand volume and the aboveground biomass carbon quantity of black spruce (Picea 
mariana) forests in Québec are simulated in relation to stand age for forest 
management purpose. The model was validated using both a flux tower and forest 
inventory data. Simulations proved successful. The correlations between observational 
data and simulated data (R2

) are 0.94, 0.93, and 0.71 for diameter at breast height 
(DBH), mean stand height, and net ecosystem productivity (NEP), respectively. Based 
on these long-term simulation results, it is possible to determine the age of forest stand 
carbon maturity that is believed to take place at the time when a stand uptakes the 
maximum amount of carbon before final harvesting occurs. After comparing the stand 
volume maturity age (approximately 65 years old) with the stand carbon maturity age 
(approximately 85 years old), results suggest that harvesting a stand at its volume 
maturity age is premature for carbon. Postponing harvesting by approximately 20 years 
and allowing the stand to reach the age at which carbon maturity takes place may lead 
to the formation of a potentially large carbon sink. AIso, based on the simulation 
results, a novel carbon stand density management diagram (CSDMD) has been 
developed to quantitatively demonstrate relationships between stand densities and 
stand volume and aboveground biomass carbon quantity at various stand 
developmental stages in order to determine optimal density management regimes for 
volume yield and carbon storage. 

Keywords: forest ecosystem, CO2 flux, net ecosystem production, eddy covariance, 
TRIPLEX-Flux, model validation, Markov Chain Monte Carlo, parameter estimation, 
data assimilation, carbon maturity, stand density management diagram 
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CHAPTERI
 

GENERAL INTRODUCTION
 

1.1. BACKGROUND 

Boreal forests form Earth's second largest terrestrial biome and play a significant role 

in the global carbon cycle, because boreal forests are currently thought to be important 

net carbon sinks for the atmosphere (Tans et al., 1990; Ciais et al., 1995; Sellers et al., 

1997; Fan et al., 1998; Gower et al, 2001; Bond-Lamberty et al., 2004; Dunn et al., 

2007). Canadian boreal forests account for about 25% of the global boreal forest and 

nearly 90% of the productive forest area in Canada. 

Since the beginning of the Industrial Revolution, increasing human activities have 

increased CO2 concentration in the atmosphere and the temperature to increase (IPCC, 

2001, 2007). The boreal forest ecosystem has long been recognized as an important 

global carbon sink, however, the pattern and mechanism responsible for this carbon 

sink is uncertain. Although some study areas of forest productivity are still poorly 

represented, a review of the relevant literature (see Fig. 1.1) suggests that there is a 

reasonable carbon budget of the boreal forest ecosystem at the global scale here. 

Actually, because of the high degree of spatial heterogeneity in sinks and sources, as 

weil as the anthropogenic influence on the landscape, it is particularly difficult to 

determine the l'ole of the boreal forest in the global carbon cycle. 

Temperature of the boreal forest varies from -45 oC to 35 oC (Bond-Lamberty et al, 

2005), and annual mean precipitation is 900mm (Fisher and Bonkley, 2000). However, 

unlike temperate forest ecosystems, the boreal forest is more sensitive to spring 

warming and spring time freeze events (Hollinger et al, 1994; Goulden et al, 1996; 

Hogg et al, 2002; Griffis et al, 2003; Tanja et al, 2003; Barr et al, 2004). Actually, 

climate change could have a wider array of impacts on forests in North America, 
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including range shifts, soil properties, tree growth, disturbance regimes, and insect and 

disease dynamics (Evans and Perschel, 2009). 
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Fig. 1.1. Carbon exchange between the global boreal forest ecosystems and 

atmosphere, adapted from IPCC (2007), Prentice (2001) and Luyssaert et al. (2007). 
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production. 
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There is conflicting evidence as to whether Canadian boreal forest ecosystems are 

currently a sink or a source for CO2. For example, the Carbon Budget Model of the 

Canadian Forest Sector estimated that Canadian forests might currently be a small 

source because of enhanced disturbances during the last three decades (Kurz and Apps 

1999; Bond-Lamberty et al., 2007; Kurz et al., 2008). In contrast, BEPS-InTEC model 

estimated that Canadian forests are a small C sink (Chen et al. 2000). Myneni et al. 

(2001) combined remote sensing with provincial inventory data to demonstrate that 

Canadian forests have been an average carbon sink of ~0.07 Gt/yr for the last two 

decades. Unfortunately, previous attempts to quantitatively assess the effect of 

changing environmental conditions on the net boreal forest carbon balance have not 

taken into account competition between different vegetation types, forest management 

practices (harvesting and thinning), land use change, and human activities on a large 

scale. 

1.2. MODEL OVERVIEW 

There are three approaches used to assess the effects of changing environmental on 

forest dynamics and carbon cycles (Botkin, 1993; Landsberg and Gower 1997,): (1) 

our knowledge of the past, (2) present measurements, and (3) our ability to project into 

the future. Our knowledge of the past and present measurements are potentially 

important, but have been of limited use. Long-term monitoring of the forest has proven 

difficult due to costs and the need for long-term commitment of individuals and 

institutions. Because the response of temporal and spatial patterns of forest structure 

and function to changing environment involves complicated biological and ecological 

mechanisms, current experimental techniques are not directly applicable. In contrast, 

models provide a means of formalizing a set of hypotheses. 

To improve our understanding of terrestrial ecosystem responses to climate change, 

models are applied widely to simulate the effects of climate change on production, 

decomposition and carbon balance in boreal forests in recent years. 

1.2.1. Model types: 
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So far, three types of modeJs, empirical, mechanistic, and hybrid models are popular 

for forest ecological and c1imate change studies (Peng et al, 2002; Kimmins, 2004). 

Using forest measurements and observations, site dependent empirical models (e.g., 

forest growth and yield models) are widely applied for forest management purposes 

because of their simplicity and feasibility. However, these models are only suitable for 

predicting in the short-term and at the local scale, and Jack flexibility to account for 

forest damage evaluation of a sudden catastrophe (e.g., ice storm or fire) as weil as 

long-term environment changes (e.g. increasing temperature and CO2 concentration). 

Unlike empirical models, process models are generally developed after a certain 

amount of knowledge has been accumuJated using empirical models, and may describe 

a key ecosystem process or simulate the dependence of growth on a number of 

interacting processes, such as photosynthesis, respiration, decomposition, and nutrient 

cycling. These modeJs offer a framework for testing and generating alternative 

hypotheses and have the potential to help us to accurately describe how these processes 

will interact under given environmental change (Landsberg and Gower, 1997). 

Consequently, their main contributions include the use of eco-physiological principles 

in deriving model development and specification, and long-term forecasting 

applicability within changing environments (Peng, 2000). Currently, the complex 

process-based models, although with long-term forecasting capacity in changing 

environment, are impossible to use to guide forest silviculture and management 

planning, and they still are only used in forest ecological research as a result of the 

need for lumped input parameters. 

BEPS-InTEC (Liu et al, 1997; Chen et al. 1999, 2000), CLASS (Verseghy, 2000), 

ECOSYS (Grant, 2001) and IBIS (Foley, 1996) are the principal process-based models 

with hourly or daily time steps in use in the Fluxnet-Canada network. A critique of 

each model fo][ows. (1) The Boreal Ecosystem Productivity Simulator (BEPS), derived 

from the FOREST-BGC model family, together with the Integrated Terrestrial 

Ecosystem Carbon Cycle Model (TnTEC), is able to simulate net primary productivity 

(NPP), net ecosystem productivity (NEP) and evapotranspiration at the regional scale. 
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This model requires as input leaf area index (LAl) and land-cover type from remote 

sensing data plus sorne other environmental data (e.g., meteorological data and soil 

data). However, this kind of BGC model only considers the impacts of vegetation 

cover change on the climate, but ignores the impacts of climate change on vegetation 

cover change. (2) The Canadian Land Surface Scheme (CLASS) was developed by the 

Meteorological Service of Canada (MSC) to couple with the Canadian General Climate 

Model (CGCM). At the stand level, this biophysical land surface parameterization 

(LSP) scheme is designed to simulate the exchange of energy, water, and momentum 

between the surface and the atmosphere using prescribed vegetation and soil 

characteristics (Bartlett et al, 2003), but it neglects vegetation cover change (Foley, 

1996; Wang et al, 2001; Arora 2003). Recently, like most similar models, new routines 

have been integrated into CLASS to simulate carbon and nitrogen dynamics in forest 

ecosystems (Wang et al, 2002). (3) ECOSYS is developed to simulate carbon, water, 

nutrient, and energy cycles in the multiple canopy layers divided into sunlit and shade 

leaf components and with a multilayered SOlI. Although prepared to elucidate the 

impacts of climate, land use practices and soil management (e.g., fertilization, tillage, 

irrigation, planting, harvesting, thinning) (Hanson 2004) and tested in U .S.A., Europe 

and Canada (Grant 2001), this model is too complicated to apply to forest management 

activities. (4) The Integrated BIosphere Simulator (IBIS) is an hourly Dynamic Global 

Vegetation Model (DGVM) developed at Wisconsin university (Kucharik et al, 2000) 

and has been adapted by CFS at regional and national scales. This model includes land 

surface processes (energy, water, carbon and momentum balance), soil 

biogeochemistry, vegetation dynamics (Iight, water and nutrients competition), and 

vegetation phenology modules. But this model neglects leaf nitrogen content and it is 

not suitable to simulate stand-Ievel processes. 

To evaluate climate change impacts on the forest ecosystem and its feedback, Canadian 

forest resources managers need a hybrid model for forest management planning. 

TRlPLEX (Peng et al, 2002) is a hybrid model to understand quantitatively the 

consequences of forest management for stand characters, especially for sustainable 

yield and carbon, nitrogen and water dynamics. This model has a monthly time step 
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and was developed from three well-established process models: 3-PG (tree growth 

model) (Landsberg and Waring, 1997), TREEDYN3.0 (forest growth and yield model) 

(Bossel, 1996), and CENTURY (soil biogeochemistry model) (Parton et al., 1993). It 

is comprehensive, but it is not complicated, by concentrating on the major mechanistic 

processes in the forest ecosystem in order to reduce some parameters. Also, this model 

has been tested in central and eastern Canada using traditional forest inventories (e.g., 

height, DBH and volume) (Peng et al, 2002; Zhou et al, 2004). 

1.2.2. Mode) application for management practices 

1.2.2.1. Species composition: 

Using chronosequence analyses in central Siberia (Roser et al, 2002) and central Canda 

(Bond-Lamberty et al, 2005), the previous studies showed that the boreal mixedwood 

forest sequestrated less carbon than single species forest. However, using species­

specific allometric models, Martin et al. (2005) indicated the net primary production 

(NPP) in the mixedwood forest was two times greater than in the single species forest, 

which contradicts with the previous two studies. Unfortunately, in these studies, the 

detailed physiological process and the effects on carbon flux of meteorological 

characteristics were not clear for the mixedwood forest, and most current carbon 

models have only focused on pure stands. Therefore, there is an immediate need to 

incorporate the mixedwood forest component into forest carbon dynamics models. 

1.2.2.2. Thinning and harvesting 

Forest management practices (such as thinning and harvesting) have had significant 

influence on carbon conservation of forest ecosystems, through changes in species 

composition, density and age structure (lPCC 1995, 1996). Currently, thinning and 

harvesting are two dominant management practices used in forest ecosystems (Davis et 

al. 2000). Intensive forest management practices based on short rotations and high 

levels of biomass utilization (e.g. whole-tree harvesting (WTH)) may significantly 

reduce forest site productivity, soil organic matter (SOM), and carbon budgets. Forest 

thinning is considered as an effective way to acce!erate tree growth, reduce mortality 

and increase productivity and biomass production (Smith et aL, 1997; Nabuurs et al., 
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2008). On the other hand, there is a need to modify current management practices to 

optimize forest growth and carbon (C) sequestration under a changing environment 

conditions (Nuutinen et al., 2006; Garcia-Gonzalo et al., 2007). To move from 

conceptual to practical application of forest carbon management, there remains an 

urgent need to better understand how managerial activities regulate the cycling and 

sequestration of carbon. In the absence of long-term field trials, a process-based hybrid 

model (such as TRIPLEX) may provide an alternative means of examining the long­

term effects of management on carbon dynamics of future Canadian boreal 

ecosystems. Consequently, this change requires that forest resource managers make 

use offorest simulation models in order to make long-term decisions (Peng, 2000). 

1.3. HYPOTHESIS
 

In this study, 1 will test three critical hypotheses using a modeling approach:
 

(1)	 Given spatial and temporal heterogeneities, some sensitive parameters should be 

variable across different times and regions. 

(2) The mixedwood boreal forest will sequestrate	 more carbon than single species 

forests. 

(3) Thinning and	 lengthening harvest rotations would be beneficial to adjust the 

density and enhance the capacity of boreal forests for carbon sequestration. 

1.4. GENERAL OBJECTIVES 

The overaJi objective of this study is to simulate and analyze carbon dynamics and its 

balance in Canadian boreal ecosystems by developing a new version of TRIPLEX­

Flux model. To reach this goal, 1 have undertaken the following main tasks. 

TASK 1: To develop a new version of the TRIPLEX model. 

So far, the big-Ieaf approach is utilized in the TRIPLEX model, which treats the whole 

canopy as a single leaf to estimate carbon fluxes (e.g., Sellers et al. 1996; Bonan, 

1996). Since this single big-leaf model does not account for differences in the radiation 

absorbed by leaf classes (sunlit and shaded leaf), it will inevitably lead to estimation 

bias of carbon fluxes (Wang and Leuning, 1998), a two-leaf model will be developed 

to calculate gross primary productivity (GPP) in this study (Fig. 1.2). 



8 

In the old version of the TRIPLEX model, net primary productivity (NPP) is estimated 

by a constant parameter to proportionally allocate the GPP (Peng et al. 2002). In this 

study, maintenance respiration (Rm) and growth respiration (Rg) in different plant 

components (leaf, stem and root) will be estimated respectively for model development 

(Kimball et al, 1997; Chen et al, 1999). 

Sunlit leaf 

Shaded leaf 

Fig. 1.2. Photosynthesis simulation of a two-Jeaf mode!. 

TASK 2: To reduce modeling uncertainty ofparameters estimation. 
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Since spatial and temporal heterogeneities within terrestrial ecosystems may lead to 

prediction uncertainties in models, sorne sensitive key parameters will be estimated by 

data assimilation techniques to reduce simulation uncertainties. 

TASK 3: To understand the effects of species composition on carbon exchange. 

ln the context of boreal mixedwood forest management, an important issue for carbon 

sequestration and cycling is whether management practices should encourage retention 

of mixedwood stands or convert stands to hardwoods. To better understand the impacts 

of forest management on boreal mixedwoods and their carbon sequestration, it is 

necessary to use and develop process-based simulation models that can simulate 

carbon exchange between forest ecosystems and the atmosphere for different forest 

stands over time. Carbon fluxes will then be compared between a boreal mixedwood 

stand and a single species stand. 

TASK 4: To understand the effects of forest thinning and harvesting on carbon 

sequestration. 

A stand density management diagram (SDMD) will be developed to 

quantitatively demonstrate relationships between stand densities and stand 

volume and aboveground biomass at various stand developmental stages in 

order to determine optimal density management regimes for volume yield and 

for carbon storage. As weIl, through long-term simulation, an optimal 

harvesting age will be determined to uptake maximum carbon before clear 

cutting. 

1.5. SPECIFIC OBJECTIVES AND THESIS ORGANISATION 

This thesis is a combination of four manuscripts dealing with the TRIPLEX-Flux 

model development, validation and application. Chapter Il will focus on TRIPLEX­

Flux model development. In Chapter III and IV, the TRIPLEX-Flux model will be 

validated against observations from different forest ecosystems in Canada and North 
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America. This model will be applied to forest management practices in Chapter V. The 

relationship between these studies is showed in Fig. 1.3. 

In Chapter II, the major objectives are: (1) to describe the new TRIPLEX-Flux model 

structure and features and to test model simulations against flux tower measurements; 

and (2) to examine and quantify the effects of modeling response to parameters, input 

variables and algorithms of the intercellular CO2 concentrations and stomatal 

conductance calculations on ecosystem carbon flux. Analyses will have significant 

implications for the evaluation of factors that relate to gross primaI)' productivity 

(GPP) as weIl as those that influence the outputs of a carbon flux model coupled with a 

two-Ieaf photosynthetic mode!. 

In Chapter III, the TRIPLEX-Flux model is used to address the following three 

questions: (1) Are the diurnal patterns of half-hourly carbon flux in summer different 

between old mixedwood (OMW) and old black spruce (OBS) forest stands? (2) Does 

OMW sequester more carbon than OBS in the summer? Pursuant to this question, the 

differences of carbon fluxes (including GEP, NPP, and NEE) between these two types 

of forest ecosystems are explored for different months. Finally, (3) what is the 

relationship between NEE and the important meteorological drivers? 
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In Chapter IV, the major objectives were (1) to test TRIPLEX-Flux model simulation 

against flux tower measurements taken at sites containing different tree species within 

Canada and the United States of America; (2) to estimate certain key parameters 

sensitive to environmental factors by way of flux data assimilation; and (3) to 

understand ecosystem productivity spatial heterogeneity by quantifying the parameters 

for different forest ecosystems. 

In Chapter V, TRIPLEX-Flux was specifically used to investigate the following three 

questions: (1) is there a difference between the maturity age of a conventional forest 

managed for volume and the optimum rotation age at which to attain the maximum 

carbon storage capacity? (2) If different, how much more or less time is required to 

reach maximum carbon sequestration? Finally, (3) what is the realtionship between 

stand density and carbon storage with regards to various forest developmental stages? 

If ail three questions can be answered with confidence then maximum carbon storage 

capacity should be able to be attained by thinning and harvesting in a rational and 

sustainable manner. 

Finally, in Chapter VI, the previous Chapters' results and conclusions are integrated 

and synthesized. Some restrictions, limitations and uncertainties of this thesis work are 

summarized and discussed. The ongoing challenges and suggested directions for the 

future research are presented and highlighted. 

Funding for this study was provided by the Canada Research Chair Program, Flllxnet­

Canada, the Natural Science and Engineering Research Council (NSERC), the 

Canadian FOllndation for Climate and Atmospheric Science (CFCAS), and the 

BIOCAP Foundation. We are grateful to ail of the funding groups, and to the data 

collection teams and data management provided by the Fluxnet-Canada and North 

America Carbon Program Research Network. 
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Fig. lA. Study sites (from Davis et al, 2008, AGU). 



13
 

T
ab

le
 1

.1
. 

B
as

ic
 i

n
fo

rm
at

io
n

 f
o

r 
ai

l 
st

u
d

y
 s

it
es

 

S
ta

te
 1

 
L

at
itu

de
(O

 N
) 

1 
F

or
es

t 
A

M
T

 
A

M
P

 
Fu

ll 
N

am
e 

A
ge

P
ro

vi
nc

e 
L

on
gi

tu
de

(O
 W

) 
ty

pe
 

(o
C

) 
(m

m
) 

B
O

R
E

A
S

 -
O

ld
 B

la
ck

 S
pr

uc
e 

M
B

 (
C

A
) 

5
5

.8
8

/9
8

.4
8

 
E

N
B

 
16

0 
-3

.2
 

53
6 

G
ro

un
dh

og
 R

iv
er

 -
M

ix
ed

w
oo

d 
O

N
 (

C
A

) 
4

8
.2

2
/8

2
.1

6
 

M
W

75
 

2 
27

8 

C
hi

bo
ug

am
au

 -
M

at
ur

e 
B

la
ck

 S
pr

uc
e 

Q
C

 (
C

A
) 

4
9

.6
9

/7
4

.3
4

 
E

N
B

 
10

0 
0 

96
1 

C
am

pb
el

l 
R

iv
er

 -
M

at
ur

e 
D

ou
gl

as
-f

ir
 

B
C

 (
C

A
) 

49
.8

71
 1

25
.3

3 
E

N
T

 
60

 
8.

3 
14

61
 

B
E

R
M

S
 -

O
ld

 A
sp

en
 

S
K

 (
C

A
) 

53
.6

3 
1

10
6.

20
 

D
B

 
83

 
0.

4 
46

7 

B
E

R
M

S
 -

O
ld

 B
la

ck
 S

pr
uc

e 
S

K
 (

C
A

) 
5

3
.9

9
/1

0
5

.1
2

 
E

N
B

 
11

1 
0.

4 
46

7 

H
ar

va
rd

 F
or

es
t -

E
M

S
 T

ow
er

 
M

A
 (

U
S

A
) 

4
2

.5
4

/7
2

.1
7

 
D

B
 

81
 

8.
3 

11
20

 

10
9 

H
ow

la
nd

 F
or

es
t -

M
ai

n 
T

ow
er

 
M

E
 (

U
S

A
) 

4
5

.2
0

/6
8

.7
4

 
E

N
T

 
6.

7 
77

8 

M
et

ol
iu

s 
-

In
te

rm
ed

ia
te

-a
ge

d 
P

on
de

ro
sa

 P
in

e 
O

R
 (

U
S

A
) 

4
4

.4
5

/1
2

1
.5

6
 

E
N

T
 

90
 

6.
4 

44
7 

U
ni

ve
rs

it
y 

o
f 

M
ic

hi
ga

n 
B

io
lo

gi
ca

l 
S

ta
ti

on
 

M
I 

(U
S

A
) 

4
5

.5
6

/8
4

.7
1

 
D

B
 

90
 

6.
2 

75
0 

N
 o

te
: 

M
W

 =
 M

ix
ed

w
o

o
d

, 
E

N
B

 =
 E

v
er

g
re

en
 n

ee
d

le
le

af
 b

o
re

al
 f

or
es

t,
 E

N
T

 =
 e

v
er

g
re

en
 n

ee
d

le
le

af
 te

m
p

er
at

e 
fo

re
st

, 

D
B

 =
 b

ro
ad

le
af

 d
ec

id
u

o
u

s 
fo

re
st

. 
A

d
ap

t 
fr

om
 C

C
P

 a
n

d
 N

A
C

P
. 



14 

1.6. STUDY AREA 

This study was carried out at ten forest flux sites that were selected from 36 primary 

sites (Fig. 1.4) possessing complete data sets within the NACP Interim Synthesis: Site­

Level. Information concerning these ten forest sites is presented in Table 1.1. The 

study area consists of three evergreen needleleaf temperate forests (ENT), three 

deciduous broadleaf forests (DB), three evergreen needleleaf boreal forest (ENB) and 

one mixedwood boreal forest spread out across Canada and the United States of 

America from western to eastern coast. The dominant species includes black spruce, 

aspen, Douglas-fir, Ponderosa Pine, Hemlock, red spruce and so on. The !ines of 

latitude are from 42.5 ° N to 55.9° N. These forest ecosystems are located within 

different climatic regions with varied annual mean temperatures (AMT) ranging from ­

3.2°C to 8.3°C and annual mean precipitation (AMP) ranging from 278mm to 

l46lmm. The age span of these forest ecosystems ranges from 60 to 160 years old and 

falls within the category of middle and old aged forests, respectively. 

Eddy covariance flux data, climate variables (temperature, relative humidity, and wind 

speed), and radiation above the canopy were recorded at the flux tower sites. Gap-filled 

and smoothed leaf area index (LAI) data products were accessed from the MODIS 

website (http://accweb.nascom.nasa.gov/) for each site under the Site-Level Synthesis 

of the NACP Project (Schwalm et al., in press), which contains the summary statistics 

for each eight day period. Before NACP Project, LAI data were collected by other 

Fluxnet - Canada groups (at the University of Toronto and Queen's University) (Chen 

et al, 1997; Thomas et al, 2006). 

1.7. REFERENCES 

Arora, V. K. 2003. Simulating energy and carbon fluxes over winter wheat using 
coupled land surface and tenestrial ecosystem models. Agricultural and Forest 
Meteorology, 118: 21-47. 

Barr, A.G., T.J. Griffis, T.A. Black, X. Lee, R.M. Staebler, 1.D. Fuentes, Z. Chen, K. 
Morgenstern. 2004. Comparing the carbon budgets of boreal and temperate 
deciduous forest stands. Cano 1. For. Res. 32: 813-822. 



15 

Bartlett, P.A., J.B. McCaughey, P.M. Lafleur , D.L. Verseghy. 2003. Modelling 
evapotranspiration at three boreal forest stands using the CLASS: tests of 
parameterizations for canopy conductance and soil evaporation. International 
Journal ofClimatology, 23: 427 - 451. 

Bonan, G. B. 1996. A land surface model (LSM version 1.0) for ecological, 
hydrological, and atmospheric studies: Technical description and user's guide. 
NCAR Tech. Note NCARJTN-4171STR, 150 pp. 

Bond-Lamberty, B.P., Wang, c., and Gower, S.T. 2004. Net primary production and 
net ecosystem production of a boreal black spruce wildfire chronosequence. 
Global Change Biol. 10: 473-487. 

Bond-Lamberty, B, Wang, C., Gower, S.T. 2005. Spatiotemporal measurement and 
modeling of stand-level boreal forest soil temperatures. Agricultural and Forest 
Meteorology, 131: 27-40. 

Bond-Lamberty, Ben, Scott D. Peckham, Douglas E. Ahl & Stith T. Gower. 2007. 
Fire as the dominant driver of central Canadian boreal forest carbon balance. 
Nature 450, 89-92. 

Bossel, H. 1996. TREEDYN3 forest simulation mode!. Ecological Modelling, 90: 187­
227. 

Botkin, D.B., 1993, Forest Dynamics: An Ecological Model, Oxford University Press, 
New York. 

Chen, lM., Rich, P.M., Gower, S.T., Norman, J.M., Plummer, S. 1997. Leaf area 
index of boreal forests: Theory, techniques, and measurements, Journal of 
Geophysical Research, 102, D24, 29429-29444. 

Chen, lM., l Liu, J. Cihlar, M.L. Goulden. 1999. Daily canopy photosynthesis model 
through temporal and spatial scaling for remote sensing applications. 
Ecological Modelling. 124:99-119. 

Chen, J. M., W. Chen, J. Liu, J. Cihlar, 2000. Annua) carbon balance of Canada's
 
forests during 1895-1996. Global Biogeochemical Cycle, 14: 839-850.
 

Chen, W.J., J. M. Chen, J. Liu, and J. Cihlar, 2000. Approaches for reducing
 
uncertainties in regional forest carbon balance, Global Biogeochemical Cycle, 
14: 827-838. 

Ciais, P., P. P. Tans, M. Trolier, J. W. C. White, and R. J. Francey. 1995. A large 
northern hemisphere terrestrial CO2 sink indicated by the 13C/

12C ratio of 
atmospheric CO2. Nature, 269: 1098-1102. 

Davis,L.S., K. N., Johnson P., Bettinger. 2000. Forest Management. McGraw-Hill 
Science, USA. pp816. 

Dunn,	 A. L., C. C. Barford, S.c. Wofsy, M. L. Goulden, and B. C. Daube, 2007: A 
long-term record of carbon exchange in a boreal black spruce forest: means, 
responses to interannual variability and decadal trends. Global Change Biol. 
13: 577-590. 

Evans, A.M. and R. Perschel. 2009. A review of forestry mitigation and adaptation 
strategies in the Northeast U.S. Climatic Change, 96: 167-183. 

Fan, S., Gloor, M., Mahlman,	 l, Pacala, S., Sarmiento, J., Takahashi, T., Tans, P., 
1998. A Large Terrestrial Carbon Sink in North America Implied by 
Atmospheric and Oceanic Carbon Dioxide Data and Models. Science, 282, 
442-446. 



16 

Fisher, R.F. and D., Bonkley. 2000. Ecology and management of forest soil. John 
Wiley & Sons Inc, Canada. 

Foley, J. A, 1. C. Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch, A. Haxeltine. 
]996. An integrated biosphere model of land surface processes, terrestrial 
carbon balance, and vegetation dynamics. Global Biogeochem. Cycles. 10: 
603-628. 

Garcia-Gonzalo, l, Peltola, H., Briceno-elizondo, E. and Kellomaki, S., 2007. 
Changed thinning regimes may increase carbon stock under climate change: A 
case study from a Finnish boreal forest. Clim. Change, 81:431 -454. 

Gower, ST, O.N. Krankina, RJ. OIson, MJ. Apps, S. Linder and C. Wang. 2001. Net 
primary production and carbon allocation patterns of boreal forest ecosystems. 
Ecol.Appl. Il:1395-1411. 

Griffis, 1. l, T.A Black, K. Morgenstern, AG.Barr, Z. Nesic, G.B. Drewitt, D. 
Gaumont-Guay, J.H. McCaughey. 2003.Ecophysiological contrais on the 
carbon balances of three southern boreal forests. Agricultural and Forest 
Meteorology 117:53-71. 

Goulden, M. L., J. W. Munger, et al. 1996. Exchange of Carbon Dioxide by a 
Deciduous Forest: Response to Interannual Climate Variability. Science 
271(5255): 1576-1578. 

Grant, R. F. 2001. A review of the Canadian ecosystem model-ecosys. Modeling 
carbon and nitrogen dynamics for soil management. M. J. Shaffer, L.-W. Ma 
and S. Hansen. Boca Raton, Florida, USA, CRC Press: 173-264. 

Hanson, P. l, l S. Amthor, S. D. Wullschleger, K. B. Wilson, R. F. Grant, A. Hartley, 
D. Hui, E. R. Hunt, Jr, D. W. Johnson, J. S. Kimball, A W. King, Y. Luo, S. 
G. McNulty, G. Sun, P. E. Thornton, S. Wang, M. Williams, D. D. Baldocchi, 
R. M. Cushmana 2004. Oak forest carbon and water simulations: Model 
intercomparisons and evaluations against independent data. Ecological 
Monographs, 74(3): 443-489. 

Hogg, E.H., Brandt, J.P., Kochtubajda, B., 2002. Growth and dieback of aspen forests 
in Northwestern Alberta, Canada, in relation to climate and insects. Cano l 
For. Res. 32, 823-832. 

Hollinger, D.Y., Kelliher, F.M., Byers, lN., Hunt, J.E., McSeveny, T.M., Weir, P.L., 
1994. Carbon dioxide exchange between an undisturbed old-growth temperate 
forest and the atmosphere. Ecology 75, 134-150. 

Johnson, D. W. and P.S. Curtis. 2001. Effects of forest management on soil C and N 
storage: meta analysis. Forest Ecology and Management. 140: 227-238. 

Kimmins, J. P. 2004. Forest ecology: a foundation for sustainable forest management 
and environmental ethics in fOl'estry. Prentice Hall, Sadd le River, New Jersey. 
U.S,A. 

Kimball, lS., P.E. Thornton, M.A. White, S.W. Running. 1997. Simulating forest 
productivity and surface-atmosphere carbon exchange in the BOREAS study 
region. Tree Physiology. 17:589-599. 

Kucharik,	 CJ., lA. FoJey et al. 2000. Testing the Performance of a Dynamic Global 
Ecosystem Model: Water Balance, Carbon Balance, and Vegetation Structure. 
Global Biogeochem. Cycles. 14: 795-825. 



17 

Kurz, W.A. and M.J. Apps. 1999. A 70-year retrospective analysis of carbon fluxes in 
the Canadian Forest Sector. Ecol. Appl. 9:526-547. 

Kurz, W. A., C. C. Dymond, G. Stinson, G. J. Rampley, E. T Neilson, A. L. Carroll, 
T Ebata & L. Safranyik, 2008. Mountain pine beetle and forest carbon 
feedback to climate change. Nature, 452, 987-990. 

Landsberg, J.J., and Gower, ST., 1997. Application ofPhysiological Ecology to Forest 
Management, Academic Press, San Diego, CA. 

Landsberg, J.J., and Waring, R.H., 1997. A general ised model of forest productivity 
using simplified concepts of radiation-use efficiency, carbon balance and 
partitioning. Forest Ecology and Management. 95: 209-228. 

Liu, J., J.M. Chen, J. Cihlar, W.M. Park. 1997. Aprocess-based boreal ecosystem 
productivity simulator using remote sensing inputs. Remote Sensing Environ. 
62:158-175. 

Luyssaert, S., Inglima, L, Jung, M., et al. 2007. CO2 balance of boreal, temperate, and 
tropical forests derived from a global database. Global Change Biology, 13: 
2509-2537. 

Martin, lL., Gower, ST., Plaut l, Holmes, B., 2005. Carbon pools in a boreal 
mixedwood logging chronosequence. Global Change Biol. Il; 1-12. 

Myneni R.B., J. Dong, C.J. Tucker, R.K. Kaufmann, P.E. Kauppi, l Liski, L. Zhou, V. 
Alexeyev and M.K. Hughes. 2001. A large carbon sink in the woody biomass 
of Northern forests. Proc. Natl. Acad. Sci. USA 98(26): 14784-14789. 

Nabuurs, G.J., Thürig, E., Heidema, N., ArmoJaitis, K., Biber, P., Cienciala, E., 
Kaufmann, E., Makipaa, R., Nilsen, P., Petritsch, R., Pristova, T., Rock, J., 
Schelhaas, M.J., Sievanen, R., Somogyi, Z. and Vallet, P., 2008. Hotspots of 
the European forests carbon cycle. For. Ecol. Manag. 256: 194-200. 

Nuutinen, T, Matala, l, Hirvela, H., Hark6nen, K., Peltola, H., Vaisanen, H. and 
Kellomaki, S., 2006. Regionally optimized forest management under changing 
climate. Clim. Change. 79: 315-333. 

Parton, W.J, J.M. Scurlock, D.S. Ojima, TG. Gilmanov, RJ. Scholes, D.S. Schimel, T 
Kirchner, l-C. Menaut, T Seastedt, M.E. Garcia, K. Apinan, lI. Kinyamario. 
1993. Observations and modelling of biomass and soil organic matter 
dynamics for the grassland biome worldwide. Global Biogeochemical Cycles 
7(4): 785-809. 

Peng, c., 2000. Understanding the role of forest simulation models in sustainable 
forest management. Environ. Impact. Asses. Rev., 20:481-501. 

Peng C, J. Liu, Q. Dang, M.J. Apps, H. Jiang. 2002. TRIPLEX: A generic hybrid 
model for predicting forest growth and carbon and nitrogen dynamics. 
Ecological Modelling 153: 109-130. 

Prentice, I.c., MT. Sykes, W. Cramer. 1993. A simulation model for the transient 
effects of climate change on forest landscapes. Ecological Modelling. 65: 51­
70. 

Roser,	 c., Montagnani, L., Schulzei, E.-D., Mollicone, D., Kollei, O., Meroni, M., 
Papale, D., Marchesini, L.B., Federici, S., Valentini, R., 2002. Net C02 
exchange rates in three different successional stages of the "Dark Taiga" of 
central Siberia. Tellus 54B, 642-654. 



18 

Schwalm, c., Williams, c., Schaefer, K., et al., A model-data intercomparison of CO2 

exchange during a large scale drought event: Results from the NACP Site 
Synthesis. J. Geophys. Res. (Submitted). 

Schulze, E.-D., C. Wirth, and M. Heimann. 2000. Climate change: managing forests 
after Kyoto. Science 289: 2058-2059. 

Sellers, P.J., D.A. Randell, G.J. Collatz, J.A. Berry, C.B. Field, D.A. Dazlich, C. 
Zhang, G.D. Collelo and L. Bounua. 1996. A revised land surface 
parameterization (SiB2) for atmospheric GCMs. Part 1: Model formulation. J. 
Climate, 9,676-705. 

Sellers, P., Ha1J, F.G., Kelly, R.D., Black, A., Baldocchi, D., Berry, J., Ryan, M., 
Ranson, K.J., Crill, P.M., Letten-maier, D.P., Margolis, H., Cihlar, J., 
Newcomer, J., Fitz-jarrald, D., Jarvis, P.G., Gower, ST, Halliwell, D., 
Williams, D., Goodison, B., Wichland, D.E., Guertin, F.E., 1997. BOREAS in 
1997: Experiment overview, scientific results, overview and future directions. 
J. Geophys. Res. 102,28731-28769. 

Smith, D.M., Larson, B.C., Kelty, M.J. and Ashton, P.M.S., 1997. Management of 
growth and stand yield by thinning. The Practice of Silviculture: Applied 
Forest Ecology. Wiley, NY, USA, pp. 69-98. 

Tans, P.P, Fung, 1.Y., Takahashi, T. 1990. Observational constraints on the global 
atmospheric C02 budget. Science, 247, 1431-1438. 

Thomas, V., Treitz, P., McCaughey, J.H., and Morrison, L, 2006. Mapping stand-Ievel 
forest biophysical variables for a mixedwood boreal forest using LiDAR: an 
examination of scanning density. Cano J. For. Res., 36: 34-47. 

Verseghy, D.L. 2000. The Canadian Land Surface Scheme (CLASS): Its history and 
future. Atmosphere-Ocean, 38: 1-I3. 

Wang, S., R. F. Grant, et al. 2001. Modelling plant carbon and nitrogen dynamics of a 
boreal aspen forest in CLASS -- the Canadian Land Surface Scheme. 
Ecological Modelling, 142(1-2): 135-154. 

Wang, S., R. F. Grant, D.	 L. Verseghy, T. A. Black. 2002. Modelling carbon-coupled 
energy and water dynamics of a boreal aspen forest in a general circulation 
model land surface scheme. International Journal of Climatology, 74(3): 443­
489. 

Wang	 Y. -P. and R. Leuning. 1998. A two-Ieaf model for canopy conductance, 
photosynthesis and partitioning of available energy. I: Model description and 
comparison with a multi-Iayered model. Agricultural and forest meteorology, 
91: 89-111. 

Zhou	 X., C. Peng, Q. Dang. 2004. Assessing the generality and accuracy of the 
TRIPLEX 1.0 model using in situ data of boreal forests in central Canada. 
Environmental Modelling & Software 19:35-46. 



CHAPTERII 

SIMULATING CARBON EXCHANGE OF CANADIAN BOREAL FORESTS 1.
 

MODEL STRUCTURE, VALIDATION, AND SENSITIVITY ANALYSIS
 

Zhou, X., Peng, c., Dang, Q.-L., Sun, J.F., Wu, H. and Hua, D. 

This chapter has been 

published in 2008 in 

EcoJogical Modelling, 219: 276-286. 



20 

2.1. RÉSUMÉ 

Cet article présente un modèle basé sur les processus afin d'estimer la productivité 
nette d'un écosystème (PNE) ainsi qu'une analyse de la sensibilité de réponse du 
modèle lors de la simulation du flux de CO2 sur des sites d'épinettes noires agées de 
BORBAS. L'objectif de la recherche était d'étudier les effets des paramètres ainsi que 
ceux des données entrantes sur la réponse du modèle. La validation du modèle, 
utilisant des données de PNE à des intervalles de 30 minutes sur des tours et des 
chambres de mesures, a montré que la PNE modelisée était en accord avec la PNE 
mesurée (R~0.65). L'analyse de la sensibilité a mis en évidence différentes 
sensibilités entre le matin et le milieu de journée, ainsi qu'entre une concentration 
habituelle et une concentration doublée de CO2. De plus, la comparaison de différents 
algorithmes pour calculer la conductance stomatale a montré que la modélisation de la 
PNE, utilisant un algorithme itératif est conforme avec les résultats utilisant des 
rapports Ci/Ca constants de 0.74 et de 0.81 respectivement pour les concentrations 
courantes et doublées de CO2• Une variation des paramètres et des données entrantes 
de plus ou moins 10% a entraîné une réponse du modèle inférieure ou égale à 27.6% et 
à 27.4% respectivement pour les concentrations courantes et doublées de CO2. La 
plupart des paramètres sont plus sensibles en milieu de journée qu'au matin excepté 
pour ceux en lien avec la température de l'air, ce qui suggère que la température a des 
effets considérables sur la sensibilité du modèle pour ces paramètres/variables. L'effet 
de la température de l'air était plus important pour une atmosphère dont la 
concentration de CO2 était doublée. Par contre, la sensibilité du modèle au CO2 

diminuait lorsque la concentration de CO2 était doublée. 
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2.2. ABSTRACT 

This paper presents a process-based model for estimating net ecosystem productivity 
(NEP) and the sensitivity analysis of model response by simulating CO2 flux in old 
black spruce site in the BOREAS project. The objective of the research was to examine 
the effects of parameters and input variables on model responses. The validation using 
30-minute interval data of NEP derived from tower and chamber measurements 
showed that the modelled NEP had a good agreement with the measured NEP 
(R2>O.65). The sensitivity analysis demonstrated different sensitivities between 
morning and noonday, and from the current to doubled atmospheric CO2 concentration. 
Additionally, the comparison of different algorithms for calculating stomatal 
conductance shows that the modeled NEP using the iteration algorithm is consistent 
with the results using a constant C/Ca of 0.74 and 0.81, respectively for the current and 
doubled CO2 concentration. Varying parameter and input variable values by ±lO% 
resulted in the model response to less and equal than 27.6% and 27.4%, respectively. 
Most parameters are more sensitive at noonday than in the morning except for those 
that are correlated with air temperature suggesting that air temperature has 
considerable effects on the model sensitivity to these parameters/variables. The air 
temperature effect was greater under doubled than current atmospheric CO2 

concentration. In contrast, the model sensitivity to CO2 decreased under doubled CO2 

concentration. 

Keywords: CO2 flux, ecological model, TRIPLEX-FLUX, photosynthetic model, 
BOREAS 
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2.3. INTRODUCTION 
Photosynthesis models play a key role for simulating carbon flux and estimating net 

ecosystem productivity (NEP) in stud ies of the terrestrial biosphere and CO2 exchange 

between vegetated land surface and the atmosphere (Sel1ers et al, 1997; Amthor et al., 

2001; Hanson et al, 2004; Grant et al. 2005). The models represent not only our 

primary method for integrating small-scale, process level phenomena into a 

comprehensive description of forest ecosystem structure and function but also a key 

method for testing our hypotheses about the response of forest ecosystems to changing 

environmental conditions. The CO2 flux of an ecosystem is directly influenced by its 

photosynthetic capacity and respiration, the former is commonly simulated using 

mechanistic models and the latter is calculated using empirical functions to derive NEP. 

Since the late 1970s, a number of mechanistic-based models have been developed and 

used for simulating photosynthesis and respiration, and for provid ing a consistent 

description of carbon exchange between plants and environment (Sellers et al. 1997). 

For most models, the calculation of photosynthesis for individualleaves is theoretically 

based on (1) the biochemical formulations presented by Farquhar et al. (1980), and (2) 

the numerical solutions developed by Col1atz et al. (1991). At the canopy level, the 

approaches of scaling up from leaf to canopy using Farquhar's model can be 

categorized into two types: "big-Ieaf' and "two-Ieaf' models (Sel1ers et al. 1996). The 

"two-Ieaf' treatment separates a canopy into sunlit and shaded portions (Kim and 

Verma, 1991; Norman, 1993; de Pure and Farquhar 1997), and vertical integration 

against radiation gradient (Bonan, 1995). 

Following these pioneers' works, many studies have successfully demonstrated the 

application of process-based carbon exchange models by improving model structure 

and parameterizing models for different ecosystems (Tiktak, 1995; Amthor et al., 

2001; Hanson et al, 2004; Grant et al. 2005). For example, BEPS-InTEC (Liu et al, 

1997; Chen et al. 1999), CLASS (Verseghy, 2000), ECOSYS (Grant, 2001), C­

CLASSa (Wang et al, 2001), C-CLASSm (Arain et al, 2002), EALCO (Wang et al, 

2002), and CTEM (Arora et al, 2003) are the principle process-based models used in 

the Fluxnet-Canada Research Network (FCRN) for modeling NEP at hourly or daily 
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time steps. However, these derivative and improved models usually require a large 

number of parameters and input variables that in practice are difficult to obtain and 

estimate for characterizing various forest stands and soil properties (Grant et al, 2005). 

This complexity of model results is a difficulty for modelers to perceptively understand 

model responses to such a large number of parameters and variables. Although many 

model parameterizations responsible for the simulation biases were diagnosed and 

corrected by the individual site, it is still unclear how to resolve the differences among 

parameterizations for different sites and climate conditions. Additionally, different 

algorithms for intermediate variables in a model usually affect model accuracy. For 

example, there are various considerations and approaches to process the intercellular 

CO2 concentration (Ci) for calculating instantaneous CO2 exchange. This key variable 

Ci is derived in various ways: (1) using empirical constant ratio of Ci to the 

atmospheric CO2 concentration (Ca); (2) as a function of relative humidity, atmospheric 

CO2 concentration, and a species-specific constant (Kirschbaum, 1999) by eliminating 

stomatal conductance; (3) using a nested numerical convergence technique to find an 

optimized C, which meets the canopy energy balance of CO2 and water exchange for a 

time point (Leuning, 1990; Collatz et al., 1991; Sellers et al., 1996; Baldocchi and 

Meyers, 1998). These approaches can significantly affect the accuracy and efficiency 

of a model. The effects of different algorithms on NEP estimation are of great concern 

in model selection that influences both the accuracy and efficiency ofthe model. 

Moreover, fluctuations in photosynthetic rate are highly correlated with the daily cycle 

of radiation and temperature. These cyclic ups and downs of photosynthetic rate can be 

weil captured using process-based carbon flux models (Amthor et al., 2001; Grant et 

al., 2005) and neural network approach by training for several daily cycles (Papale and 

Valentini, 2003). However, the CO2 flux is often underestimated during the day and 

overestimated at night, even though the frequency of alternation and diurnal cycle are 

simulated accurately. Amthor et al. (2001) compared nine process-based models for 

evaluating model accuracy, and found those models covered a wide range of 

complexity and approaches for simuJating ecosystem processes. Modelled annual CO2 

exchange was more variable between models within a year than between years for a 
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glven mode!. This means that differences between the models and their 

parameterizations are more important to the prediction of CO2 exchange than the 

interannual climatic variability. Grant et al. (2005) tested six ecosystem models for 

simulating the effects of air temperature and vapor pressure deficit (VPD) on carbon 

balance. They suggested that the underestimation of net carbon gain was attributed to 

an inadequate sensitivity of stomatal conductance to VPD and of eco-respiration to 

temperature in sorne models. Their results imply the need and challenge to improve the 

ability of CO2 flux simulation models on NEP estimation by recognizing how the 

structure and parameters of a model will influence model output and accuracy. Aber 

(1997) and Hanson et al (2004) suggested that prior to the application of a given model 

for the purpose of simulation and prediction, appropriate documentation of the model 

structure, parameterization process, sensitivity analysis, and testing of model output 

against independent observation must be conducted. 

To improve the parameterization schemes in the development of ecosystem carbon flux 

models, we performed a series of sensitivity analyses using the new canopy 

photosynthetic model of TRIPLEX-FLUX, which is developed for simulating carbon 

exchange in Canada's boreal forest ecosystems. The major objective of this study was 

to examine and quantify the effects of model responses to parameters, input variables, 

and algorithms of the intercellular CO2 concentration and stomatal conductance 

calculations on ecosystem carbon flux. The analyses have significant implications on 

the evaluation of factors that relate to GPP and influence the outputs of a carbon flux 

model coupled with a two-Ieaf photosynthetic mode!. The results of this study suggest 

sensitive indices for model parameters and variables, estimate possible variations in 

model response resulted by changing parameters and variables, and present references 

on model tests for simulating the carbon flux of black spruce in boreal forest 

ecosystems. 

2.4. MATERIALS AND METHÛDS 

2.4.1. Model development and description 

2.4.1.1. Model structure 
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TRlPLEX-FLUX is designed to take advantage of the approach used in the two-Ieaf 

mechanistic model to describe the irradiance and photosynthesis of the canopy, and to 

simulate COz flux of boreal forest ecosystems. The model consists of three parts: (1) 

Jeaf photosynthesis: The instantaneous gross photosynthetic rate is derived based on 

the biochemical model of Farquhar et al. (1980) and the semi-analytical approach of 

Co llatz et al. (1991), which simulates photosynthesis using the concept of co-limitation 

by Rubisco (Vc) and electron transport (Vj ). (2) Canopy photosynthesis: total canopy 

photosynthesis is simulated using de Pury and Farquhar's algorithm in which a canopy 

is divided into sunlit and shaded portions. The model describes the dynamics of abiotic 

variables, such as radiation, irradiation, and diffusion. (3) Ecosystem carbon flux: the 

net ecosystem exchange (NEP) is modeled as the difference between photosynthetic 

carbon uptake and respiratory carbon loss (including autotrophic and heterotrophic 

respiration) that is calculated using QIO and a base temperature. 

Fig. 2.1 illustrates the pnmary processes and output of the model, and control 

mechanisms. Ali parameters and their default values, and variables and functions for 

calculating them are listed in Table 2.1. The Acnnopy is the sum of photosynthesis in the 

shaded and sunlit portion of the crowns, depending on the outcome of Vc and Vj (see 

Table 2.1). The Ac_sunli' and Ac_shade are net COz assimilation rates for sunlit and shaded 

leaves in the canopy. 

The model runs at 30 minutes time steps, and outputs carbon flux at different time 

intervals. 
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Fig. 2.1. The model structure of TRlPLEX-FLUX. Rectangles represent key pools or 

state variables, and ovals represent simulation process. Sol id lines represent carbon 

flows and the fluxes between the forest ecosystem and external environment, and 

dashed lines denote control and effects of environmental variables. The Acanopy 

represents the sum of photosynthesis in the shaded and sunlit portion of the crowns, 

depending on the outcome of Vc and Vj (see Table 1). The Ac_sunlil and Ac_shade are net 

CO2 assimi lation rates for sunlit and shaded Jeaves; the fsunli' denotes the fraction of 

sunlit leaf of the canopy. 



27 

Table 2.1. Variables and parameters used in TRIPLEX-FLUX for simulating old black 

spruce of boreal fore st in Canada. 

Symbol Unit Description 

A mol m -2 s -1 net CO2 

assimilation rate 

for big leaf 

mol m -2 s-\Acanopy	 net CO2 

assimilation rate 

for canopy 

mol m -2 S-I net CO2Ashade 

assimilation rate 

for shaded leaf 

mol m -2 S-1 net CO2Asun 

assimilation rate 

for sunlit leaf 

r Pa CO2 

compensation 

point without 

dark respiration 

Ca Pa CO2 

concentration in 

the atmosphere 

Ci Pa intercellular CO2 

concentration 

f(N) nitrogen 

limitation term 

f(T) temperature 

limitation term 

Equation and Value	 Reference 

A = min(V V)- Farquhar et al.e, J 

Rd (1980), Leuning 

A = gs(Ca-Ci)/l.6 (1990), Sellers et 

al. (1996) 

Acanopy = Asun Norman, (1982) 

LAIsun + Ashade 

LA Ishade 

r = 1.92 * 10-4 O2 Collatz et al. 

1.75 (T-25)/IO (l991) and 

Sellers et al. 

(1992) 

Input variable 

f(N) = N/Nm = 0.8 Bonan (1995) 

f(T) = (1+exp((- Bonan (1995) 

220,000 

+71 OCT+273))/(Rgas 
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(T+273)))yl 

gs m mol m -2 S-I stomatal gs = go + ml00A rh Bali et al. (1988) 

conductance ICa 

go initial stomatal 57.34 Cai and Dang 

conductance (2002) 

m coefficient 7.43 Cai and Dang 

(2002) 

J mol m -2 S-I electron J = Jmax Farquhar and von 

transport rate PPFD/(PPFD + 2.1 Caemmerer 

Jmax) (1982) 

Jmax 1 -2 -1mo m s 1ight-saturated Jmax = 29.1 + 1.64 Wu Ilschleger 

rate of eleS![on Vm (1993) 

transport in the 

photosynthetic 

carbon reduction 

cycle in Jeaf 

cells 

K Pa function of K = Kc (1 + 0 2 1 Collatz et al. 

enzyme kinetics Ko) (1991) and 

Sellers et al. 

(1992) 

Kc Pa Michaelis- Kc =30*2.1(T- Collatz et al. 

Menten 25)/10 (1991) and 

constants Sellers et al. 

for CO2 (1992) 

Ko Pa Michaelis- Ko = 30000 * 1.2 (T COllatz et al. 

Menten - 25)/10 (1991 ) 

constants for O2 

M kg C m­2 dai l biomass density 0.4 for leaf Gower et al. 

of each plant 0.28 for sapwood (1977) 

component 1.4 for root Kimball et al. 
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N	 % 

Nm	 % 

O2	 Pa 

mol m -2 S-IPPFD 

QIO 

Ra	 kg C m-2 day"' 

ra 

1 -2 -,Rd mo m s 

k C ·2 d -1g m	 ay 

k C ·2 d -1Rg g m ay 

rg 

Rgas	 m3 Pa mor' 

K-' 

leaf nitrogen 

content 

maximum 

nitrogen content. 

oxygen 

concentration in 

the atmosphere, 

photosynthetic 

photon flux 

density 

temperature 

sensitivity factor 

autotrophic 

respiration 

carbon 

allocation 

fraction 

leaf dark 

respiration 

ecosystem 

respiration 

growth 

respiration 

growth 

respiration 

coefficient 

molar gas 

constant 

1.2 

1.5 

21,000 

Input variable 

2.0 

Ra = Rm + Rg 

0.4 for root 

0.6 for leaf and 

sapwood 

Rd = 0.015Vm 

Re = Ra + Rh 

Rg=rgraGPP 

0.25 for root, leaf 

and sapwood 

8.3143 

( 1997)
 

Steel et al. (1997)
 

Based on
 

Kimball et al.
 

(1997)
 

Bonan (1995)
 

Chen et al.
 

(1999)
 

Goulden et al.
 

(1997)
 

Running and
 

Coughlan (1988)
 

Collatz et al.
 

(1991 )
 

Ryan (1991)
 

Ryan (1991)
 

Chen et al., 1999
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rh % relative humidity Input variable 

Rh kg C m­2dai 1 heterotrophic Rh = 1.5 QIO(T.IOYIO Lloyd and Taylor 

respiration 1994 

Rm kg C m­2dai J maintenance R = M r Q (Hom m 10 Running and 

respiration )/l0 Coughlan (1988), 

Ryan (1991) 

rm maintenance 0.002 at 20°C for Kimball et al. 

respiration leaf (1997) 

coefficient 0.001 at 20°C for 

stem 

0.001 at 20°C for 

root 

T oC air temperature Input variable 

Vc 
1 -2 -1mo m s Rubisco-limited Vc = Vm(Ci - r)/(Ci Farquhar et al. 

gross - K) (1980) 

photosynthesis 

rates 

Vj mol m -2 S-I Light-limited Vj = J (C i - Farquhar and von 

gross r)/(4.5Ci + 10.5r) Caemmerer 

photosynthesis (1982) 

rates 

Vm 1 -2 -1mo m s maximum Vm = Vm25 0.24 (T - Bonan (1995) 

carboxylation 25) f(T) fCN) 

rate 

Vm25 mol m -2 S-I Vmat 25°C, 45 Depending on 

variable Cai and Dang 

depending on (2002) 

vegetation type 

2.4.1.2. Leaf photosynthesis 
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The instantaneous leaf gross photosynthesis was calculated using Farquhar's model 

(Farquhar et al., 1980 and 1982). The model simulation consists oftwo components: 

Rubisco-limited gross photosynthetic rate (Vc) and light-limited (RuBP or electron 

transportation limited) gross photosynthesis rate (Vj ), which are expressed for C3 plants 

as shown in Table 1. The minimum of the two are considered as the gross 

photosynthetic rate of the leaf without considering the sink limitation to CO2 

assimilation. The net CO2 assimilation rate (A) is calculated by subtracting the leaf 

dark respiration (Rd) from the above photosynthetic rate: 

A = min(Vc, Vj ) - Rd [1] 

This can also be further expressed using stomatal conductance and the difference 

of CO2 concentration (Leuning, 1990): 

A = &(Ca-C i)I1.6 [2] 

Stomatal conductance can be derived in several different ways. We used the semi­

empirical & model developed by Bali et al. (1988): 

gs = go + 100mA rh/Ca [3] 

Ail symbols in Equation [1], [2], and [3] are described in Table I.Because the 

intercellular CO2 concentration Ci (Equations [1] and [2]) has a nonlinear response on 

the assimilation rate A, full analytical solutions cannot be obtained for hourly 

simulations. The iteration approach is used in this study to obtain C; and A using 

Equation [1], [2], and [3] (Leuning, 1990; Collatz et al., 1991; Sellers et al., 1996; 

Baldocchi and Meyers, 1998). To simplify the algorithm, we did not use the 

conservation equation for water transfer through stomata. Stomatal conductance was 

calculated using a simple regression equation (R2=0.7) developed by Cai and Dang 

(2000) based on their experiments on black spruce: 

gs = 57.4 + 743A rh/Ca [4] 

2.4.1.3. Canopy photosynthesis 

In this study, we coupled the one-layer and two-leaf model to scale up the 

photosynthesis model from leaf to canopy, and assumed that sun lit leaves receive 

direct PAR (PARdir) while shaded leaves receive diffusive PAR (PARdif) only. 
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Assuming the mean leaf-sun angle to be 600 for a boreal forest canopy with spherical 

leaf angle distribution, the PAR received by sunlit leaves includes PARiir and PARiif, 

while the PAR for shaded leaves is only PARiif. Norman (1982) proposed an approach 

to ca1culate direct and diffusive radiations, which can be used to run the numerical 

solution procedure (Leuning, 1990; Collatz et al., 1991; Sellers et al., 1996) for 

obtaining the net assimilation rate of sun lit and shaded leaves (Aun and Ashade)' With 

the separation of sun lit and shaded leaf groups, the total canopy photosynthesis 

(Acanopy) is obtained as follows (Norman, 1981, 1993; de Pure and Farquhar, 1997): 

ACallOPY = Aslln LAISlIll + Ashadc LAIshode [5] 

where LAIslln and LAIshade are the leaf area index for sun leaf and shade leaf, 

respectively; the ca1culation for LAIslIn and LAIshade is described by Pure and Farquhar 

(1997) 

2.4.1.4. Ecosystem carbon flux 

Net Ecosystem Production (NEP) is estimated by subtracting ecosystem respiration 

(Re) from GPP (Acanopy): 

NEP = GPP - Re [6] 

where Re = Rg + Rm + Rh, Growth respiration (Rg) is calculated based on respiration 

coefficients and GPP, and maintenance respiration (Rm) is ca1culated using the QIO 

function multiplied by the biomass of each plant component. Both Rg and Rm are 

ca1culated separately for leaf, sapwood, and root carbon allocation fractions: 

Rg = ~ (rg ra GPP) [7] 

[8] 

where rg, ra, rm and M represent adjusting coefficients and the biomass for leaf, root, 

and sapwood, respectively (see Table 1). The heterotrophic respiration (Rh) IS 

calculated using an empirical function oftemperature (Lloyd and Taylor, 1994) 

2.4.2. Experimental data 
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The tower flux data used for model testing and comparison were collected at 

old black spruce (PiGea mariana (Mill.) BSP) site in the Northern Study Area 

(FLX-01 NSA-OBS) of BOREAS (Nickeson et al., 2002). The trees at the 

upland site were average 160 years-old and 10 m tall in 1993 (see Table 2.2). 

The site contained poorly drained silt and clay, and 10% fen within 500 m of 

the tower (Chen et aL, 1999). Further details about the sites and the 

measurements can be found in Sellers et al. (1997). The data used as model 

input include CO2 concentration in the atmosphere, air temperature, relative 

humidity, and photosynthetic photon flux density (PPFD). The 30-minute NEP 

derived from tower and chamber measures was compared with model output 

(NEP). 

Table 2.2. Site characteristics and stand variables. 

BOREAS-NOBS: Northern Study 

Site Area, Old Black Spruce, Flux Tower, 

Manitoba, Canada 

Latitude 55.88° N 

Longitude 98.48° W 

Mean January air temperature (oC) -25.0 

Mean July air temperature COC) +15.7 

Mean annual precipitation (mm) 536 

Dominant species black spruce PiGea mariana (Mill.) 

Average stand age (years) 160 

Average height (m) 10.0 

Leaf area index (LAI) 4.0 

2.5. RESULTS AND DISCUSSION 

2.5.1. Mode] validation 
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Model validation was performed using the NEP data measured in May, July, and 

September of 1994-1997 at the old black spruce site of BOREAS. The simulated data 

were compared with observed NEP measurements at 30-minute intervals for the month 

of July from 1994 to 1997 (Fig. 2.2). The simulated NEP and measured NEP is the 

one-to-one relationship (Fig. 2.3) with a R2>0.65. The relatively good agreement 

between observations and predictions suggests that the parameterization of the model 

was consistent by contributing to realistic predictions. The patterns of NEP simulated 

by the model (sol id line as shown in Fig. 2.2) matches most observations (dots as 

shown in Fig. 2.2). However, the TRIPLEX-FLUX model failed to simulate sorne 

71h 91hpeaks and valleys of NEP. For example, biases occur particularly at 51h
, , , 101h

, 

and 11 111 July 1994 (peaks) and gtl" 13 lh
, 141

", 21 S\ and n od in July 1994 (valleys). The 

difference between model simulation and observations can be attributed not only to the 

uncertainties and errors of flux tower measurement (Grant et al, 2005; also see the 

companion paper of Sun et al in this issue) but also to the model itself. 
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Fig. 2.2. The contrast of hourly simulated NEP by the TRIPLEX-FLUX and observed 

NEP from tower and chamber at old black spruce BOREAS site for July in 1994, 1995, 

1996, and 1997. Solid dots denote measured NEP and solid line represents simulated 

NEP. The discontinuances of dots and lines present the missing measurements of NEP 

and associated climate variables. 
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Fig. 2.3. Comparisons (with 1: 1 line) of hourly simulated NEP vs hourly observed 

NEP for May, July, and September in 1994, 1995, 1996, and 1997. 

Because NEP is determined by both GPP and ecosystem respiration (Re), it is 

necessary to verify the modeled GEP. Since the real GEP could not be measured for 

that site, we compared modeled GEP with the GEE derived from observed NEE and 

Re (Fig. 2.4). The confections of determination (R2
) are higher than 0.67 for July in 

each observation year (from 1994 to 1997). This implied that the model structure and 

parameters are correctJy set up for this site. 



37 

..--. 
0 

Cf) 

":' Jul. Jul.
E 

<5 
xE 

::1. -10 

~ 
Cf) 

Z x 
"-' 

Cf) 
<{ 
w 
0::: 
0 

-20 

RZ=0.76 
n=1488 

RZ=0.73 
n=1061 

CO ..... 
0 -30 
2
.ü) 

(1) 0 
Ü 
:::J ..... 
0.. Jul. Jul. 1997 
Cf) 

.::.è. 
Ü 
CIl 
:ci 

-10 
x 

"0 
<5 

X 

..... 
0..... 
0.. 
w 
<.9 

-20 
RZ=0.74 RZ=0.69 

"0 n=1488 n=1488 
~ 
Q) 
"0 
0 

-30 
~ -30 -20 -10 0 -30 -20 -10 0 

zObserved GEE at old black spruce site of BOREAS (NSA) (Ilmol m- s-

Fig. 2.4. Comparisons of hourly simulated GEP vs hourly observed GEP for July in 

1994, 1995, 1996, and 1997. 

From a modeling point of view, the bias usually results from two possible causes: one 

is that the inconsequential model structure cannot take into account short-term changes 

in the environ ment, and another is that the variation in the environment is out of the 

modelling limitation. To identify the reason for the bias in this study, we compared 

variations of simulated NEP values for ail time steps with similar environmental 

conditions, such as the atmospheric CO2 concentration, air temperature, relative 

humidity, and photosynthetic photon flux density (PPFD). Unfortunately, the 

comparison failed to pinpoint the causes for the biases, since similar environmental 

conditions may drive estimated NEP significantly higher or lower than the average 
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simulated by the mode!. This implies that the CO2 flux model may need more input 

environmental variables than the four key variables used in our simulations. For 

example, soil temperature may cause the respiration change and influence the amount 

of ecosystem respiration and the partition between root and heterotrophic respirations. 

The empirical function (Equation [3]) does not describe the relationship of soil 

respiration with other environmental variables other than air temperature. Additionally, 

soil water potential could also influence simulated stomatal conductance (Tuzet et al., 

2003), which may result in lower assimilation under soil drought despite more 

irradiation available (Xu et al., 2004). These are some of the factors that need to be 

considered in the future versions of the TIPLEX-FLUX model. The further testing and 

application of TRJPLEX-FLUX for other boreal tree species at different locations can 

be found in the companion paper of Sun et al, in this issue). 

2.5.2. Sensitivity analysis 

The sensitivity analysis was conducted under two different climate conditions that are 

based on the current atmospheric CO2 concentration and doubled CO2 concentration. 

Additionally, the model sensitivity was tested and analyzed for morning and noon. The 

four selected variables of model inputs (lower Ca, T, rh, and PPFD) are the averaged 

values at 9:00 and 13:00 h, respectively. The higher Ca was set up at no ppm and the 

air temperature was adjusted based on the CGCM scenario that air temperature will 

increase up to approximately 3 oC at the end of 21st century. Table 2.3 presents the 

various scenarios of model run in the sensitivity analysis, and modeled values for 

providing reference levels. 
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Table 2.3. The model inputs and responses used as the reference level in model 

sensitivity analysis. LAIsun and LAIsh represent leaf area index for sunlit and shaded 

leaf; PPFDstin and PPFDsh denote the photosynthetic photon flux density for sunlit and 

shaded leaf. Morning and noon denote the time at 9:00 and 13:00. 

Ca=360 Ca=nO Unit 

Morning Noon Morning Noon 

Input: 

Ca 360 360 no no ppm 

T 15 25 15 25 oC 

rh 64. 64 64 64 % 

PPFD 680 1300 680 1300 1 -Z-Imo m s 

Modelled: 

NEP 0.14 0.22 0.19 0.34 g C m-z 30min- 1 

Re 0.13 0.17 0.16 0.32 g C m-z 30min-1 

LAIsh/LAIsun 0.56 1.44 0.56 1.44 

PPFDsl/PPFDsun 0.25 0.23 0.25 0.23 
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Table 2.4. Effects of parameters and inputs to model response of NEP. Morning and 

noon denote the time at 9:00 and 13:00. 

Ca=360 

Morning Noon 

Parameters f(N) +10% 8.7% Il.9% 

-10% -14.5% -15.7% 

QIO +10% 3.4% -2.8% 

-10% -3.4% 2.7% 

rIO +10% -7.0% -5.8% 

-10% 0.9% 5.2% 

rg +10% -5.9% -6.4% 

-10% 5.5% 5.7% 

ra +10% <0.1% <0.1% 

-10% <0.1% <0.1% 

a +10% -1.2% -0.3% 

-10% 1.2% 0.3% 

b +10% -1.6% -1.7% 

-10% 1.6% 1.7% 

go +10% 0.3% <0.1% 

-10% <0.1% <0.1% 

m +10% <0.1% <0.1% 

-10% <0.1% <0.1% 

Inputs Ca +10% 7.4% 12.7% 

-10% -9.9% -14.7% 

T +10% 2.6% -8.3% 

-10% -3.3% 1.2% 

rh +10% 2.4% <0.1% 

-10% -2.6% <0.1% 

PPFD +10% 1.0% 0.8% 

-10% -1.2% -1.0% 

Ca=720 

Morning Noon 

4.9% 8.4% 

-8.6% -10.3% 

1.4% -1.7% 

-1.4% 1.7% 

-4.1% -3.6% 

1.4% 3.3% 

-5.6% -5.3% 

4.4% 4.8% 

<0.1% <0.1% 

<0.1% <0.1% 

-0.9% -0.5% 

0.9% 0.5% 

-1.1 % -1.1% 

1.2% 1.1% 

<0.1% <0.1% 

<0.1% <0.1% 

<0.1% <0.1% 

<0.1% <0.1% 

1.9% 3.0% 

-2.4% -4.0% 

2.4% 3.5% 

-2.4% -6.2% 

0.5% 0.6% 

-0.6% -0.7% 

2.4% 2.3% 

-3.0% -2.8% 
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Table 2.5. Sensitivity indices for the dependence of the modelled NEP on the selected 

model parameters and inputs. Morning and noon denote the time at 9:00 and 13:00. 

The sensitivity indices were calculated as ratios of the change (in percentage) ofmodel 

response to the given baseline of 20%. 

Ca=360 Ca=720 Average
 

Morning Noon Morning Noon
 

Parameters
 

fCN) 1.16 1.38 0.68 0.93 1.04
 

rg 0.57 0.60 0.50 0.50 0.54
 

rm 0.39 0.55 0.28 0.35 0.39
 

QJO 0.34 0.27 0.14 0.17 0.23
 

b 0.16 0.17 0.11 0.11 0.14
 

a 0.12 <0.1 <0.1 <0.1 <0.1
 

go <0.1 <0.1 <0.1 <0.1 <0.1
 

m <0.1 <0.1 <0.1 <0.1 <0.1
 

ra <0.1 <0.1 <0.1 <0.1 <0.1
 

Inputs
 

Ca 0.90 1.38 0.22 0.35 0.37
 

T 0.35 0.48 0.24 0.49 0.25
 

PPFD 0.33 <0.1 0.27 0.26 0.19
 

rh 0.33 <0.1 0.14 <0.1 0.13
 

2.5.3. Parameter testing 

Nine parameters were selected from the parameters listed in Table 2.1 for the model 

sensitivity analysis. Because the parameters vary considerably depending upon forest 

conditions, it is difficult to determine them for different tree ages, sites, and locations, 

These selected parameters are believed to be critical for the prediction accuracy of a 

CO2 flux mode l, which is based on a coupled photosynthesis model for simulating 



42 

stomatal conductance, maximum carboxylation rate, and autotrophic and heterotrophic 

respirations. Table 2.4 summarizes the results of the model sensitivity analysis and 

Table 2.5 presents suggested sensitive indices for model parameters and input variables. 

Each parameter in Table 2.4 was altered separately by increasing or and decreasing its 

value by 10 %. The sensitivity of model output (NEP) is expressed as a percentage 

change. 

The modeled NEP varied directly with the proportion of nitrogen limitation (f(N», and 

changed in directly or inversely to QIO depending on the time of the day (i.e., morning 

or noon) because the base temperature (20°C) was between the morning temperature 

05°C) and noon (solar noon, i.e. 13:00 in the summer) temperature (25°C) (Table 3). 

The NEP varied inversely with changes in parameters with the exception of ra, go and 

m, which had little effects on model output (NEP). The response of model output to 

±10% changes in parameter values was less than 27.6% and generally greater under the 

current than under doubled atmospheric COz concentration (Fig. 2.5). The simulation 

showed that increased COz concentration reduces the model sensitivity to parameters. 

Therefore, COz concentration should be considered as a key factor modeling NEP 

because it affects the sensitivity of the model to parameters. Fig. 2.5 shows that the 

model is very sensitive to f(N), indicating greater efforts should be made to improve 

the accuracy of f(N) in order to increase the prediction accuracy of the NEP using the 

TRIPLEX-FLUX mode!. 
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Fig. 2.5. Variations of modelled NEP affected by each parameter as shown in Table 4. 

Morning and noon denote the time at 9:00 and 13:00. 

2.5.4. Model input variable testing 

Generally speaking, the model response to input variables is of great significance in the 

model development phase because in this phase the response can be compared with 

other results to determine the reliability of the mode!. We tested the sensitivify of the 

TRlPLEX-FLUX model to ail input variables. Under the current atmospheric CO2 

concentration, Ca had larger effects than other input variables on the model output. By 

changing ±10% values of input variables, the modeled NEP varied from 17.3% to 

27.6% under temperatures 15°C (morning) and 25°C (noon) (Table 2.4 and Figure 2.6). 

A 10% increase in the atmospheric CO2 concentration at noon only increased the 

model output of NEP by 7%. In contrast to the greater impact of parameters, the effect 

of air temperature on NEP was smaller under the current than under doubled CO2 

concentration. This may be related the suppression of photorespiration by increased 

CO2 concentration. Thus, air temperature may be a highly sensitive input variable at 

high atmospheric CO2 concentrations. However, the current version of our model does 

not consider photosynthetic acclimation to CO2 (down- or up-regulation) whether the 

temperature impact will change when photosynthetic acclimation occurs warrants 

further investigation. 
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Fig. 2.7. is the temperature response curve of modelled NEP, which shows that the 

sensitivity of the model output to temperature changes with the range of temperature. 

The curves peaked at 20°C under the current Ca and at 25°C under doubled Ca. The 

modelied NEP increased by about 57% from current Ca at 20°C to doubled Ca at 25°C. 

The Ca sensitivity is close to the value (increased by about 60%) reported by 

McMurtrie and Wang (1993). 
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Morning and noon denote the time at 9:00 and 13:00. 

The effects of Ca and air temperature on NEP are more than those of PPFD and relative 

humidity (rh). In addition, Ca can also govern effects of rh as different between morning 

and noon. For exampJe, rh affects NEP more in the morning than at noon under current 

CO2 concentration (Ca=360ppm). Figure 5 shows 6.1 % variation of NEP in the 

morning and less than 0.1% at noon, which suggests no strong relationship between 

stomataJ opening and rh at noon. It is because the stomata opens at noon to reach a 

maximal stomatal conductance, which can be estimated as 300mmol m-2 
S-I according 

to Cai and Dang's experiment (2002) of stomatal conductance for boreal forests. In 

contrast, doubJed CO2 (C.=720ppm) results in effects of rh were always above 0% 
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(Figure 5). This implies that the stomata may not completely open at noontime because 

an increasing COz concentration leads to a significant decline of stomatal conductance, 

which reduces approximately 30% of stomatal conductance under doubled COz 

concentration (Morison, 1987 and 2001; Wullschleger et al., 2001; Talbott, et al., 

2003). 

2.5.5. Stomatal CO2 flux algorithm testing 

The sensitivity analysis performed in this study included the examination of different 

algorithms for calculating intercellular COz concentration (Ci)' Because stomataJ 

conductance determines Ci at a given Ca, different algorithms of stomatal conductance 

affect Ci values and thus the mode lied NEP for the ecosystem. To simplify the 

algorithm, Wong et al. (1979) performed a set of experiments that suggest that C3 

plants tend to keep the C/Ca ratio constant. We compared model responses to two 

algorithms of Ci, i.e., the iteration algorithm and the ratio of Ci to Ca. The iteration 

algorithm resulted in a variation in the C/Ca ratio from 0.73 to 0.82 (Figure 8). The 

C/Ca was lower in the morning than at noontime, and higher under doubled than 

current COz concentration. This range of variation agrees with Baldocchi's results 

which showed C/Ca ranging from 0.65 to 0.9 with modeled stomatal conductance 

ranging from 20 to 300 mmol m-z 
S-I (Baldocchi, 1994), but our values are slightly 

greater than Wong's experimental value of 0.7 (Wong et al. 1979). Our results suggest 

that a constant ratio (C/Ca) may not express realistic dynamics of the C/Ca ratio as if 

primarily depends on air temperature and relative humidity. 
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Generally speaking, stomatal conductance is affected by five environmental variables: 

solar radiation, air temperature, humidity, atmospheric CO2 concentration, and soil 

water potential. The stomatal conductance model (iteration algorithm) used in this 

study does not consider the effect of soil water, unfortunately. The Bali-Berry model 

(Bali et al. (1988) requires only A, rh and Ca as input variables, however, some 

investigations have argued that stomatal conductance is dependent on water vapor 

pressure deficit (Aphalo and Jarvis, 1991; Leuning, 1995), and transpiration (Mott and 

Parkhurst, 1991; Monteith, 1995), rather than rh, especially under dry environmental 

conditions (de Pury, 1995). 

By coupl ing the regression function (Equation [3]) of stomatal conductance with leaf 

photosynthesis model, we did not find that go and li described in Equation [3] affect 

NEP significantly. Although the stomatal conductance is critical for governing the 
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exchanges of CO2 and water, the initial stomatal conductance (go) does not affect the 

stomatal conductance (gs) a lot if we use Bali 's model. It implies that stomatal 

conductance (gs) relative mainly with A, rh , and Ca other than go and m. These two 

parameters suggested for black spruce in northwest Ontario (Cai and Dabg, 2002) can 

be applied to the wider BOREAS region. We notice that Ball's model does not address 

sorne variables to simulate the stomatal conductance (gs), for example, soil water. To 

improve the model structure, the algorithm affecting model response needs to be 

considered for further testing the sensitivity of stomatal conductance by describing 

effects of soil water potential for simulating NEP of boreal forest ecosystem. Several 

models have been reported as having the ability to relate stomatal conductance to soil 

moisture. For example, Jarvis's model (Jarvis, 1976) contains a multiplicative function 

of photosynthetic active radiation, temperature, humidity deficits, molecular diffusivity, 

soil moisture, and carbon dioxide; the Miikelii model (Miikelii et al., 1996) has a 

function for photosynthesis and evaporation; and the ABA model (Triboulot et al., 

1996) has a function for leaf water potentiaJ. These models comprehensively consider 

major factors affecting stomatal conductance. Nevertheless, it is worth noting that 

changing the algorithm for stomatal conductance will impact the model structure. 

Because there is no feedback between stomatal conductance and internaI CO2 in the 

algorithm, it is debatable whether Jarvis' mode! is appropriate to be coupled into an 

iterative model. 

2.6. CONCLUSION 

We described the development and general structure of a simple process-based carbon 

exchange model TRIPLEX-FLUX, which is based on well-tested representations of 

ecophysiological processes and a two-leaf mechanistic modeling approach. The model 

validation suggests that the TRIPLEX-FLUX is able to capture the diurnal variations 

and patterns of NEP for old black spruce in central Canada, but failed to simulate the 

peaks in NEP during the 1994-1997 growing seasons. The sensitivity analysis carried 

out in this study is critical for understanding the relative roles of different model 

parameters in determining the dynamics of net ecosystem productivity. The nitrogen 

factor had the highest effect on modeled NEP (causing 27.6% variation at noon), the 
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autotrophic respiration coefficients have intermed iate sensitivity, and others are 

relatively low in terms of the model response. The parameters used in the stomatal 

conductance function were not found to affect model response significantly. This 

raised an issue, which should be clarified in future modeling work. Model inputs are 

also examined for the sensitivity to model output. Modelled NEP is more sensitive to 

the atmospheric CO2 concentration, resulting in 27.4% variation of NEP at noon and 

followed by air temperature (e.g., 9.5% at noon) then the photosynthetic photon flux 

density and relative humidity. The simulations showed different sensitivities in the 

morning and at noon. Most parameters were more sensitive at noon than in the 

morning except those related to air temperature, such as QIO and coefficients for the 

regression function of soil respiration. The results suggest that air temperature had 

considerable effects on the sensitivity of these temperature-dependent parameters. 

Under the assumption of doubled CO2 concentration, the sensitivities of modelled NEP 

decreased for ail parameters and increased for most modelinput variables except 

atmospheric CO2 concentration. It implies that temperature related factors are crucial 

and more sensitive than other factors used in modelling ecosystem NEP when 

atmospheric CO2 concentration increases. Additionally, the model validation suggests 

that more input variables than the current four used in this study are necessary to 

improve model performance and prediction accuracy. 
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3.1. RÉSUMÉ 

La forêt boréale, second biome terrestre en importance, est actuellement considerée 
comme un puits important de carbone pour l'atmosphère. Dans cette étude, un modèle 
nouvellement développé d'échange du carbone, TRIPLEX-Flux (avec des étapes d'une 
demi-heure), est utilisé pour simuler l'échange de carbone des écosystèmes d'un 
peuplement forestier mixte boréal de 75 ans du Nord-Est de l'Ontario et d'un 
peuplement d'épinette noire de 110 ans du Sud de la Saskatchewan au Canada. Les 
résultats de l'échange net de l'écosystème (ENE) simulé par TRIPLEX-Flux sur 
l'année 2004 sont comparés à ceux mesurés par les tours de mesures des flux turbulents 
et montrent une correspondance générale entre les simulations du modèle et les 
observations de terrain. Le coefficient de détermination moyen (R2

) est 
approximativement de 0.77 pour le peuplement mixte boréal et de 0.62 pour le 
peuplement d'épinette noire. Les différences entre les simulations du modèle et les 
observations du terrain peuvent être attribuées à des incertitudes qui ne seraient pas 
uniquement dues aux paramètres du modèle et à leur calibrage, mais également à des 
erreurs systématique et aléatoires des mesures des tours de turbulence. Le modèle est 
capable d'intégrer les variations diurnes de la période de croissance (de mai a août) de 
2004 sur les deux sites. Le peuplement boréal mixte ainsi que le peuplement d'épinette 
noire agissaient tous deux comme puits de carbone pour l'atmosphère durant la période 
de croissance de 2004. Cependant le peuplement boréal mixte montre une plus grande 
productivité de l'écosystème, un plus grand piégeage du carbone ainsi qu'un meilleur 
taux de carbone utilisé comparativement au peuplement d'épinette noire. 
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3.2. ABSTRACT 

The boreal forest, Earth's second largest terrestrial biome, is currently thought to be an 
important net carbon sink for the atmosphere. In this study, a newly developed carbon 
exchange model ofTRlPLEX-Flux (with half-hourly time step) is used to simulate the 
ecosystem carbon exchange of a 75-year-old boreal mixedwood forest stand in 
northeast Ontario and a 110-year-old pure black spruce stand in southern 
Saskatchewan, Canada. Results of net ecosystem exchange (NEE) simulated by 
TRlPLEX-Flux for 2004 are compared with those measured by eddy flux towers and 
suggest overall agreement between model simulation and observations. The mean 
coefficient of determination (R2

) is approximately 0.77 for boreal mixedwood and 0.62 
for old black spruce. Differences between model simulation and observations may be 
attributed to uncertainties not only in model input parameters and calibration, but also 
in eddy-flux measurements caused by systematic and random errors. The model is able 
to capture the diurnal variations of NEE for the growing season (from May to August) 
of 2004 for both sites. Both boreal mixedwood and old black spruce were acting as 
carbon sinks for the atmosphere during the growing season of 2004. However, the 
boreal mixedwood stand shows higher ecosystem productivity, carbon sequestration, 
and carbon use efficiency than the old black spruce stand. 

Keywords: net ecosystem production, TRlPLEX-Flux model, eddy covariance, model 
validation, carbon sequestration 
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3.3. INTRODUCTION 

Boreal forests form Earth's second largest terrestrial biome and play a significant role 

in the global carbon cycle, because boreal forests are currently thought to be important 

net carbon sinks for the atmosphere (D'Arrigo et al., 1987; Tans et al., 1990; Ciais et 

al., 1995; Sellers et al., 1997; Fan et al., 1998; Gower et al, 2001; Bond-Lamberty et 

al., 2004; Dunn et al., 2007). Canadian boreal forests account for about 25% of global 

boreal forest and nearly 90% of productive forest area in Canada. Mixedwood forest, 

defined as mixtures of two or more tree species dominating the forest canopy, is a 

common, productive, and economically important forest type in Canadian boreal 

ecosystems (Chen et al., 2002). In Ontario, mixedwood stands occupy approximately 

46% of the boreal forest area (Towill et al. 2000). In the context of boreal mixedwood 

forest management, an important issue for carbon sequestration and cycling is whether 

management practices should encourage retention of mixedwood stands or conversion 

to conifers. To better understand the impacts of forest management on boreal 

mixedwoods and their carbon sequestration, it is necessmy to use and develop process­

based simulation models that can simulate carbon exchange between forest ecosystems 

and atmosphere for different forest stands over time. However, most current carbon 

models have only focused on pure stands (Carey et al., 2001; Bond-Lamberty et al., 

2005) and very few studies have been carried out to investigate carbon budgets for 

boreal mixedwoods in Canada (Wang et al., 1995; Sellers et al., 1997; Martin et al., 

2005) 

Whether boreal mixedwood forests sequester more carbon than single species stands is 

under debate. On the one hand, chronosequence analyses of boreal forests in central 

Siberia (Roser et al., 2002) and in central Canada (Bond-Lamberty et al., 2005) suggest 

that boreaI mixedwood forests seqllester less carbon than single-species forests. On the 

other hand, using species-specific allometric models and field measurements, Martin et 

al (2005) estimated that net primary productivity (NPP) of a mixedwood forest in 

central Canada was two times greater than that of the single species forest. However, in 

these stlldies, the detailed physioJogical processes and the effects of meteoroJogical 

characteristics on carbon fluxes and stocks were not examined for boreal mixedwood 
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forests. The Fluxnet-Canada Research Network (FCRN) provides a unique opportunity 

to analyze the contributions of different boreal ecosystem components to carbon fluxes 

and budgets. Specifically, this research compares carbon flux simulations and 

observations for two of the sites within the network, a Il O-year-old pure black spruce 

stand in Saskatchewan (OBS) and a 75-year-old boreal mixedwood stand in Ontario 

(OMW). 

In this study, TRIPLEX-Flux (with half-hourly time steps) is used to simulate the 

carbon flux of the OMW and OBS. Simulated carbon budgets of the two stands and the 

responses of gross ecosystem productivity (GEP), ecosystem respiration (ER) and net 

ecosystem exchange O'JEE) to diurnal climatic variability are compared to the results 

of eddy covariance measurements from FCRN. The overall objective ofthis study was 

ta compare ecosystem responses of a pure black spruce stand and a mixedwood stand 

in a boreal forest ecosystem. Specifically, the model is used to address the following 

three questions: (1) Are the diurnal patterns of half-hourly carbon flux in summer 

different between OMW and OBS forest stands? (2) Does the OMW sequester more 

carbon than OBS in the summer? Pursuant to this question, the differences of carbon 

fluxes (inciuding GEP, NPP, and NEE) between these two types of forest ecosystems 

are explored for different months. Finally, (3) what is the relationship between NEE 

and the important meteorological drivers? 

3.4. METHODS 

3.4.1 Sites description 

The OMW and OBS sites provide continuous backbone flux and meteorological data 

to the FCRN web-based data information system (DIS). These data are available ta 

network participants and collaborators for carbon flux modelling and other research 

efforts. Specifie details about the measurements at each site are described in 

McCaughey et al. (this issue) and Barr et al. (this issue) for the OMW and OBS sites, 

respectively. 

3.4.1.1. Ontario Boreal mixedwood (OMW) site 
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The Groundhog River Flux Station (GRFS) of Ontario (Table 1) is a typical boreal 

mixedwood site, located approximately 80 km southwest of Timmins, near Foleyet. 

Vegetation principally includes trembling aspen (Populus tremuloides Michx), black 

spruce (Picea mariana (Mill.) BSP), white spruce (Picea glauca (Moench) Voss), 

white birch (Betula papyrifera Marsh) and balsam fir (Abies balsamea (L.) Mill). 

Sorne short herbaceous species and mosses are also found on the forest floor. The soil 

has a 15-cm-deep organic layer and a deep B horizon. The latter is characterized as a 

silty very fine sand (SivfS) which seems to have an upper layer, about 25 cm deep, 

tentatively identified as a Bf horizon, which overlies a deep second and lighter coJored 

B horizon. Snow melts around mid-April (DOY 100) and leaf emergence occurs at the 

end of May (DOY 150). 

Ten permanent National Forestry Inventory (NFI) sample plots have been established 

across the site. These data suggest an average basal area of 26.4 m2/ha and an average 

biomass in living trees of 165.4 Mg/ha, 134.5 Mg/ha ofwhich is contained in above­

ground parts, and 30.9 Mg/ha below ground. The canopy top height is quite variable 

across the site in both east-west and north-south orientations, ranging from 

approximately 10 m to 30 m. A 41-m research tower has been established in the 

approximate center of a patch of forest, 2 km in diameter. The above-canopy eddy 

covariance flux package is deployed at the top platform of the tower at approximately 

41 m for half-hourly flux measurement. Initially, from July to October 2003, the 

carbon dioxide flux was measured with an open-path IRGA (LI-7500). Since 

November 2003, the fluxes have been measured with a closed-path IRGA (LI-7000). A 

CO2 profile is being measured to estimate the carbon dioxide storage term between the 

ground and the above-canopy flux package. 

Hemispherical photographs were collected to characterize leaf area index (LAI) across 

the range of species associations present at OMW. Photographs were processed to 

extract effective plant area index (PAIe) using the digital hemispherical photography 

(DHP) software package and fUliher processed to LAI using TRACwin, based on the 

procedures outlined and evaluated in Leblanc et al. (2005). Three different techniques 
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for calculating the clumping index were compared, including: the Lang and Xiang 

(1986) logarithmic method; the Chen and Chilar (1995 a,b) gap size distribution 

method; and the combined gap size distribution/logarithmic method. Woody-to-total 

area (WAI) values for the deciduous species were determined using the gap fraction 

calculated from leaf-off hemispherical photographs (e.g., Leblanc, 2004). Values for 

trembling aspen were compared to Gower et al. (1999) to ensure the validity of this 

approach. Average need le-to-shoot ratios for the coniferous species were calculated 

based on results in Gower et al. (1999) and Chen et al. (1997). The species-Ievel LAI 

results were used in conjunction with species-Ievel basal area (Thomas et al., 2006) to 

calculate an LAI value, which is representative ofthe entire site. 

3.4.1.2. Old black spruce (OBS) site 

The mature black spruce stand in Saskatchewan (Table 1.1) is part of the Boreal 

Ecosystem Research and Monitoring Sites (BERMS) project (McCaughey et aL, 2000). 

This research site was established in 1999, following BORBAS (Sellers et al., 1997), 

and has run continuously since that time. The site is located near the southern edge of 

the current boreal forest, which has the same tree species but at a different location 

(old black spruce of Northern Study Area (NSA-OBS), Manitoba, Canada). At the 

centre of the site, a 25-m double-scaffold tower extends 5 m above the forest canopy. 

Soil respiration measurements have been automated since summer 2001. The soil is 

poorly drained peat layer over mineral substrate with sorne low shrubs and feather 

moss ground coyer. Topography is gentle with a relief 550m to 730m. The field data 

used in this study are based on 2004 measurements and flux tower observations. Chen 

(1996) has used both optical instruments and destructive sampling methods to measure 

LAI along a 300-m transect nearby Candie Lake, Saskatchewan. The LAI was 

estimated to be 3.7, 4.0 and 3.9 in June, July and September, respectively. 
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Fig. 3.1. Observations of mean monthly air temperature, PPDF, relative humidity, and 

precipitation during the growing season (May- August) of 2004 for both OMW and 

OBS. 
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3.4.2. Meteorological characteristics 

Figure 3.1 provides the mean monthly values for air temperature, PPFD, relative 

humidity and precipitation from May to August of 2004 for both OMW and OBS sites. 

The sites have similar mean monthly air temperature and PPFD at canopy height in the 

summer of2004. The air temperature was lowest in May, with value of 6°C and 8°C in 

OBS and OMW respectively, and highest in July with 17°C at both sites. Mean 

monthJy PPFD was above 350 mol m -2 s -1 for the summer months and slightly higher 

at OMW than OBS. The relative humidity and precipitation increased over the time in 

both sites during these four months. The relative humidity of OMW was roughly 10% 

higher than OBS for each month. However, the precipitation at OMW was much less 

than OBS except in May (Figure 3.1). 

3.4.3 Model description 

The newly developed process-based TRIPLEX-Flux (Zhou et al., 2006) shares similar 

features with TRIPLEX (Peng et al., 2002). It is comprehensive without being 

complex, minimizing the number of input parameters required while capturing key 

well-understood mechanistic processes and important interactions among the carbon, 

nitrogen and water cycles of a complex forest ecosystem. The TRIPLEX-Flux adopted 

the two-Ieaf mechanistic approach (de Pury and Farquhar, 1997, Chen et al., 1999) to 

quantify the carbon exchange rate of the plant canopy. The model uses well-tested 

representations of ecophysioJogical processes, such as the Farquhar model of leaf-Ievel 

photosynthesis (Farquhar et al., 1980, 1982) and a unique semi-empirical stomatal 

conductance model developed by Bali et al (1987). To scale up leaf-Ievel 

photosynthesis to canopy level, the TRIPLEX-Flux coupled a one-layer and a two-Ieaf 

mode] of de Pury and Farquhar (1997) by calculating the net assimilation rates of sunlit 

and shaded leaves. A simple submodel of ecosystem respiration was integrated into the 

photosynthesis model to estimate NEE. The NEE is calculated as the difference 

between GEP and ER. The model to be operated at a half-hour time step, which allows 

the model to be flexible enough to resolve the interaction between microclimate and 

physiology at a fine temporal scale for comparison with tower flux measurements. 

Zhou et al. (2006) described the detailed structure and sensitivity of a new carbon 
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exchange model, TRIPLEX-Flux, and demonstrate its ability to simulate the carbon 

balance of boreal forest ecosystems. 

3.4.4 Model parameters and simulations 

LAI, air temperature, PPFD and relative humidity are the key driving variables for 

TRIPEX-Flux. Additional major variables and parameters that influence the magnitude 

of ecosystem photosynthesis and respiration, such as Vcmax (maximum carboxylation 

rate), QIO (change in rate of a reaction in response to a 10"C change in temperature), 

leaf nitrogen content and growth respiration coefficient, are listed in Tables 3.1 and 

3.2. The model was performed using observed half-hourly meteorological data, which 

were measured from May to August in 2004 at both study sites. The simulated CO2 

fluxes over the OBS and OMW canopies were compared with flux tower 

measurements for the 2004 growing season. The TRIPLEX-flux requires information 

on vegetation and physiological characteristics that are given in Tables 3.1 and 3.2. 

Linear regression of the observed data against the model simulation results was used to 

examine the model's predictive ability. Finally, the simulated total monthly GEP, NPP, 

NEE, autotrophic respiration (Ra) and heterotrophic respiration (Rh) were examined 

and compared for both OMW and OBS. 
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Table 3.1. Stand characteristics of boreal mixedwood (OWM) and old black spruce 

(OBS) forest. TA, trembling aspen; WS, white spruce; BS, black spruce; WB, white 

birch; BF, balsam fir. 

OBS 
OMW 

Site (South, 

Saskatchewan) 
(Northeast, Ontario) 

Latitude 53.987° N 48.21° N 

Longitude 105.118° W 82.156° W 

Mean annual air temperature (OC) 
0.7 2.0 

at canopy height in 2004 

Mean annual photosynthetic photon 

flux density mol m -2 s -1) 
274 275 

Mean annual relative humidity (%) 71 74 

Dominant species BS A, WS, BS, WB, BF 

Stand age (years) 110 75 

Height (m) 5-15 10-30 

Tree density (tree/ha) 6120 - 8725 1225-1400 
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Table 3.2. Input and parameters used in TRIPLEX-Flux 

Parameters Dnits OMW OBS Reference 

(a) Thomas et al 
3.7­

Leaf area index m2/m2 2_3" (in press); (b) 
4.0b 

Chen, 1996 

QIO 2.3 2.3 Chen et al., 1999 

Maximum leaf nitrogen 
% 2.5 1.5 Bonan, 1995 

content 

Kimball et al., 
Leaf nitrogen content % 2 1.2 

1997 

Maximum carboxylation Cai and Dang, 
mol m -2 s-I 60 50 

rate at 25°C 2002 

Growth respiration 
0.25 0.25 Ryan, 1991 

coefficient 

Maintenance respiration 0.002, 0.002, 
Kimball et al., 

coefficient at 20°C 0.001, 0.001, 
1997 

(Root, stem, leaf) 0.002 0.002 

Oxygen concentration in 
Pa 21000 21000 Chen et al., 1999 

the atmosphere 

Note: (a) measurement from OMW is a species-weighted average for the entire site. 

3.5. RESULTS AND DISCUSSIONS 

3.5.1. Model testing and simulations 

Simulations made by TRIPLEX-Flux were compared to tower flux measurements to 

assess the predictive ability and behaviour of the model, and identify its strengths and 

weaknesses. The results of comparison of NEE simulated by TRIPLEX-Flux with 

those observed by flux towers for both OMW and OBS suggest that model simulations 

are consistent with the range of independent measurements (Figure 2). 
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Fig. 3.2. Comparison between measured and modeled NEE for (a) old black spruce 

(OBS) (R2 = 0.62, n=5904, SD =0.0605, p<O.OOOl) and Ontario boreal mixedwood 

(OMW) (R2 = 0.77, n=5904, SD = 0.0819, p<O.OOOl). 

Based on the mean coefficient of determination (1'\ overall agreement between model 

simulation and observations are reasonable (i.e., 1'2 = 0.62 and 0.77 for OBS and 

OMW, respectively). This suggests that TRIPLEX-Flux is able to capture the diurnal 

variations and patterns of NEE during 2004 growing seasons for both sites, but has 

sorne difficulty simulating peaks of NEE. This result is consistent with model­

measured comparisons reported for other process-based carbon exchange models (e.g., 

Amthor et al., 2001; Hanson et al., 2004; and Grant et aL, 2005). The difference 

between the model and measurements can be attributed to several factors limiting 
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model performance: (1) model input and calibration (e.g. site and physiological 

parameters) are imperfectly known, and input uncertainty can propagate through the 

model to its outputs (Larocque et al. 2006); (2) the model itself may be biased or show 

unsystematic errors that can be sources of error; (3) uncertainty in eddy-flux 

measurements because of systematic and random errors (Wofsy et al., 1993; Goulden 

et al., 1996; Falge et al., 2001) caused by the underestimation of night-time respiratory 

fluxes and lack of energy balance closure, as weil as gap-filling for missing data 

(Anthoni et al (1999) indicated an estimate of systematic errors in daytime CO2 eddy­

flux measurements of about ± 12%); and (4) site heterogeneity (e.g. species 

composition and soil texture) can play an important raIe in controlling NEE and causes 

a spatial mismatch between flux tower measurements and model simulations. 

3.5.2. Diurnal variations of measured and simulated NEE 

The half-hourly carbon exchange resu lts of model simu lation and observations through 

May to August of 2004 are presented in Figures 3 and 4. These two sites have different 

diurnal patterns, but the model captures the NEE variations of both sites. 
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For OBS, during the first two weeks of May, the daily and nightly carbon exchange 

were relatively small, because of low photosynthesic efficiency and respiration. 

Beginning from the middle of May, the daily photosynthesic efficiency started to 

increase. By June, the nightly respiratory losses, which are constrained by low soil 

temperature and air temperature (Grant, 2004), began to increase. From June to 

August, the daytime peak NEE values were consistently around 0.2 g C m-2 30min-'. 

However, the nighttime peak value (around -0.2 g C m-2 30min-') only occurred in the 

middle of July because of the highest temperature during that period. 

OMW showed a greater fluctuation in NEE than OBS. The daytime peak of NEE 

values ranged from 0.2-0.6 g C m-2 30min- l
, while the nighttime peak was less than ­

0.2 g C m-2 30min- ' . In July, the nighttime respiratory losses were slightly higher than 

other months. From the end of May, the leaves of deciduous species began to emerge. 

Daytime NEE gradually increased to a maximum at the middle of June. From the 

second week of July, the CO2 flux declined rapidly as a result of the reduction in 

PPFD. In addition, the variation in cumulative NEE and the ratio of NEE/GEP from 

May to August for both sites are presented in Fig. 3.5. 
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Fig. 3.5. Cumulative net ecosystem exchange ofC02 (NEE in g C m-2
) (a) and ratio of 

NEE/GEP (b) from May to August of2004 for both OMW and OBS. 

The results demonstrate a notable increase in carbon accumulation for both OMW and 

OBS throughout the growing season, to a value of about 250 g C m-2 for the OMW site 

and 100 g C m-2 for the OBS site at the end of August. Figures 3.6 and 3.7 demonstrate 
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greater carbon accumulation during the growlng season at OMW than at OBS. 

However, the ratio ofNEE/GEP started to decline in July. 
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Fig. 3.6.	 Monthly carbon budgets for the growing season (May - August) of 2004 at 

(a) OMW and (b) OBS. GEP: gross ecosystem productivity; NPP: net primary 

productivity; NEE: net ecosystem exchange; Ra: autotrophic respiration; Rh: 

heterotrophic respiration. 
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Fig. 3.7. Comparisons of measured and simulated NEE (in g C m-2
) for the growing 

season (May - August) of2004 in OMW and OBS. 

3.5.3 Monthly carbon budgets 

The total monthly GEP, NPP and NEP for both sites are presented in Figures 3.6 and 

3.7. At OMW, carbon sequestration, including GEP, NPP and NEP, was higher than in 

OBS, especiaIly in Ju\y and August. The carbon use efficiency (CUE, defined as 

NPP/GEP) at OMW was 0.55, higher than OBS with 0.45. Both values faIl within the 

range of CUE reported by Waring et al. (1998). The maximum monthly NEE was 

observed in June, because of the maximum PAR and high temperature in this month. 

On both sites, the July heterotrophic respiration was highest because of the highest air 

temperature, which is the main reason why the NEE of OBS in July was lower than in 
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August. This shows that the NEE was controlled by both photosynthesis and 

respiration, which agrees with the results of Valetini et al (2000). However, due to the 

infestation of the aspen two-Ieaf tier moth (Rowlinson, 2004), the NPP of OMW did 

not reach two times greater than in OBS as reported by Martin et al., (2005). 

The results of this study are consistent with previous studies in Saskatchewan and 

Ontario that reported boreal mixedwood stands have greater productivity and carbon 

sequestration potential than single-species stands (Kabzems and Senyk, 1967; Opper, 

1980; Martin et al., 2005). For example, a recent study of boreal mixedwood forest 

stands in northern Manitoba, Canada reported by Martin et al (2005) indicated that 

aboveground biomass carbon was 47% greater in this study than in a pure black spruce 

stand (Wang et al., 2003) and 44% larger than jack pine stand (Gower et al., 1997). 

There are several possible mechanisms responsible for higher carbon sequestration 

rates for mixedwood stands than single species stands: (1) mixedwood stands have a 

multi-Jayered canopy with deciduous, shade intolerant aspen over shade tolerant 

evergreen species that contain a greater foliage mass for a given tree age (Gower et al., 

1995); (2) mixedwood forests usually have a Jower stocking density (stems per 

hectare) than those of pure black spruce stands; and (3) mixed-species stands are more 

resistant and more resilient to natural disturbances. The large amount of boreal 

mixedwoods and the fact that they represent the most productive segment of boreal 

landscapes makes them central in forest management. Historically, naturally 

established mixedwoods were often converted into single-species plantations (Lieffers 

and Beek, 1994; Lieffers et al., 1996). Mixedwood management is now strongly 

encouraged by various jurisdictions in Canada (BCMF, 1995; OMNR, 2003). 

3.5.4 Relationship between observed NEE and environmental variables 

To investigate the influence of air temperature (T) and PPFD on carbon exchanges in 

both sites, the observations of GEP, ecosystem respiration (ER), and NEE were plotted 

against measured T (Fig 3.8) and PPFD values (Fig. 3.9). The relationship between 

mean daily values of GEP, ER, NEE and mean daily temperature (Td) for growing 

season is shown in Fig. 3.8. GEP gradually increases with the increase oftemperature 
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(Td) and becomes stable between 15 - 20°C. This temperature generally coincides with 

the optimum temperature for maximum NEE occurrence (2 g C m-2 da/). This result 

is in agreement with the conclusion drawn by Huxman et al (2003) for a subalpine 

coniferous forest. However, the larger scatter in this relationship was found in OMW, 

in which the range of GEP was greater than for OBS. Ecosystem respiration was 

positively correlated with Td. at both OMW and OBS, and each showed a similar 

pattern for this relationship (Fig. 3.8). 

There is large scatter in the relationship between NEE and mean daily temperature. It 

seems that NEE is not strongly correlated with Td in the summer, which is similar to 

recent reports by Hollinger et al (2004) and FCRN (2004). To compare light use 

efficiencies and the effects of available radiation on photosynthesis, the relationships 

between GEP and PPFD during the growing season for both OMW and OBS are 

shown in Fig. 9. Both GEP and NEE are positively correlated with PPFD for both 

OMW and OBS. A significant nonlinear relationship (r2=0.99) between GEP and 

PPFD was found for both OMW and OBS, which was similar to other studies reported 

for temperate forest ecosystems (Dolman et al., 2002; Morgenstern et aL, 2004; Arain 

et al., 2005) and boreal forest ecosystems (Law et al., 2002). Also, a very strong 

nonlinear regression between NEE and PPFD (r2=0.98) was consistent with the studies 

of Law et al (2002) and Monson et al (2002). 

3.6. CONCLUSION 

(1) The TRIPLEX-Flux model performed reasonably weil predicting NEE in a mature 

coniferous forest on the southern edge of the boreal forest in Saskatchewan and a 

boreal mixedwood in northeastern Ontario. The model is able to capture the diurnal 

variation in NEE for the growing season (May-August) in both forest stands. 

Environmental factors such as temperature and photosynthetic photon flux density play 

an important role in determining both leaf photosynthesis and ecosystem respiration. 
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Fig. 3.8. Relationship between the observations of (a) GEP (in g C m-2 day -1), (b) 

ecosystem respiration (in g C m-2 day -1), (c) NEE (g C m-2 day -1) and mean daily 

temperature (in oC). The solid and dashed lines refer to the OMW and OBS, 

respectively. 
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(b) NEE in g C m-2 30 minutes -1) and photosynthetic photo flux densities (PPFD) (in 

flmol m·2 
S·I). The symbols represent averaged half-hour values. 

(2) Compared with the OBS ecosystem, the OMW has several distinguishing features. 

First, the diurnal pattern was uneven, especially after completed Jeaf-out of deciduous 

species in June. Secondly, the response to solar radiation is stronger with superior 

photosynthetic efficiency and ecosystem gross productivity. Thirdly, carbon use 

efficiency and the ratio ofNEP/GEP are higher. Thus, OMW could potentially uptake 

more carbon than OBS. Bath OMW and OBS were acting as carbon sinks for the 

atmosphere during the growing season of 2004. 
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(3) Because of climate change impacts (Singh and Wheaton 1991; Herrington et al., 

1997) and ecosystem disturbances, such as fire (Stocks et al., 1998; Flannigan et al., 

2001) and insects (Fleming, 2000), the boreal forest distribution and composition could 

be changed. If the environmental condition becomes warrner and drier, sorne current 

single species coniferous ecoregions might be developed into a mixedwood forest type, 

which would be beneficial to carbon sequestration. Whereas, switching mixedwood 

forests to pure deciduous forests may Jead to reduce carbon storage potential, because 

the deciduous forests sequester even less carbon than pure coniferous forests (Bond­

Lamberty et aL, 2005). From the point of view of forest management, the mixedwood 

forest is suggested as a good option to extend and replace the single species stand, 

which would enhance the carbon sequestration capacity of Canadian boreal forests, 

and, therefore, reduce the atmospheric CO2. 
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4.1. RÉSUMÉ 

Les modèles basés sur le processus des écosytèmes terrestres jouent un rôle important 
dans l'écologie terrestre et dans la gestion des ressources naturelles. Cependant, les 
hétérogénéités spatio-temporelles inhérentes aux écosystèmes peuvent mener à des 
incertitudes de prédiction des modèles. Pour réduire les incertitudes de simulation 
causées par l'imprécision des paramètres des modèles, la méthode de Monte Carlo par 
chaînes de Markov (MCMC) à été appliquée dans cette étude pour estimer les 
parametres clé de la sensibilité dans le modèle basé sur le processus de l'écosystème 
TRIPLEX-Flux. Les quatre paramètres clé sélectionnés comportent: un taux maximum 
de carboxylation photosynthétique à 25°C (Vmax), un taux du transport d'un électron 
(Jmax) saturé en lumière lors du cycle photosynthétique de réduction du carbone, un 
coefficient de conductance stomatale (m), et un taux de référence de respiration à IOoC 
(RIo). Les mesures de covariance des flux turbulents du CO2 échangé ont été assimilées 
afin d'optimiser les paramètres pour tous les mois de l'année 2006. Sept tours de 
mesures de flux placées dans des forêts incluant trois forêts à feuilles caduques, trois 
forêts tempérées à feuillage persistant et une forêt boréale à feuillage persistant, ont été 
utilisées pour faciliter la compréhension des variations mensuelles des paramètres du 
modèle. Après que l'optimisation et l'ajustement des paramètres ait été réalisée, la 
prédiction de la production nette de l'écosystème s'est ameliorée significativement 
(d'environ 25%) en comparaison aux mesures de flux de CO2 réalisées sur les sept 
sites d'écosystème forestier. Les résultats suggèrent, eu égard aux paramètres 
sélectionnés, qu'une variabilité plus importante se produit dans les forêts à feuilles 
larges que dans les forêts d'arbres à aiguilles. De plus, les résultats montrent que 
l'approche par la fusion des données du modèle incorporant la méthode MCMC peut 
être utilisée pour estimer les paramètres basés sur les mesures de flux et que des 
paramètres saisonniers optimisés peuvent considérablement améliorer la précision d'un 
modèle d'écosystème lors de la simulation de sa productivité nette, et cela, pour 
différents écosystèmes forestiers situés à travers l'Amerique du Nord. 

Mots Clefs: Markov Chain Monte Carlo, estimation des paramètres, équilibre du 
carbone, assimiliation des données, écosystème forestier, modèle TRIPLEX-Flux 
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4.2. ABSTRACT
 

Process-based terrestrial ecosystem models play an important raIe in terrestrial ecology 
and natural resource management. However, inherent spatial and temporal 
heterogeneities found within terrestrial ecosystems may lead to prediction uncertainties 
in models. To reduce simulation uncertainties due to inaccurate model parameters, the 
Markov Chain Monte Carlo (MCMC) method was applied in this study to estimate 
sensitive key parameters in a TRIPLEX-Flux pracess-based ecosystem mode!. The 
four key parameters selected include a maximum photosynthetic carboxylation rate of 
25°C (Vmax), an electron transport Omax) light-saturated rate within the photosynthetic 
carbon reduction cycle of leaves, a coefficient of stomatal conductance (m), and a 
reference respiration rate of 10°C (RIO). Eddy covariance CO2 exchange measurements 
were assimilated to optimize the parameters for each month in the year 2006. Seven 
forest flux tower sites that include three deciduous forests, three evergreen temperate 
forests, and one evergreen boreal forest were used to facilitate understanding of the 
monthly variation in model parameters. After parameter optimization and adjustment 
took place, net ecosystem production prediction significantly improved (by 
approximately 25%) compared to the CO2 flux measurements taken at the seven forest 
ecosystem sites. Results suggest that greater seasonal variability occurs in broadleaf 
forests in respect to the selected parameters than in needleleaf forests. Moreover, 
results show that the model-data fusion approach incorporating the MCMC method can 
be used to estimate parameters based upon flux measurements, and that optimized 
seasonal parameters can greatly imprave ecosystem model accuracy when simulating 
net ecosystem productivity for different forest ecosystems located across North 
America. 

Keywords: Markov Chain Monte Carlo, parameter estimation, carbon balance, data 
assimilation, forest ecosystem, TRIPLEX-Flux model 
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4.3. INTRODUCTION 
Process-based terrestrial ecosystem models have been widely applied to investigate the 

effects of resource management, disturbances, and climate change on ecosystem 

functions and structures. It has proven to be a big challenge to accurately estimate 

model parameters and their dynamic range at different spatial-temporal scales due to 

complex processes and spatial-temporal variabilities found within terrestrial 

ecosystems. Often, uncertainty in findings is the end resuJt of studies, especially for 

large-scale estimations. Terrestrial carbon cycle projections derived from multiple 

coupled ecosystem-climate models, for example, varied in their findings. 

Discrepancies range from a 10 Gt C/yr sink to a 6 Gt C/yr source by the year 2100 

(Kicklighter et al., 1999; Cox et al., 2000; Cramer et al., 2001; Friedlingstein et al., 

2001; Friedlingstein et al., 2006). ln addition, by comparing nine process-based models 

applied to a Canadian boreal forest ecosystem, Potter et al., (2001) found that core 

parameter values and their specifie sensitivity to certain key environmental factors 

were inconsistent due to seasonal and locational variance in factors. Model prediction 

uncertainties stem primarily from basic model structure, initial conditions, model 

parameter estimation, data input, natural and anthropogenic disturbance representation, 

scaling exercises, and the lack of knowledge of ecosystem processes (Clark et al., 2001; 

Larocque et al., 2008). For time-dependent nonlinear dynamic replications such as a 

carbon exchange simulation, modelers typically face major challenges when 

developing appropriate data assimilation tools in which to run models. 

Eddy covanance methods that apply micrometeorological towers were adapted to 

record the continuous exchange of carbon dioxide between terrestrial ecosystems and 

the atmosphere for the North America Carbon Program (NACP) flux sites. These data 

sets provide a unique platform in which to understand terrestrial ecosystem carbon 

cycle processes. 

It is increasingly recognized that global carbon cycle research efforts require novel 

methods and strategies to combine process-based models and data in a systematic 

manner. This is leading research in the direction of the model-data fusion (MDF) 
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approach (Raupach et al., 2005; Wang et al., 2009). MDF is a new quantitative 

approach that provides a high level of empirical constraint on model predictions that 

are based upon observational data. It typically features both inverse problems and 

statistical estimations (Tarantola, 2005; Raupach et al, 2005; Evensen, 2007). The key 

objective of MDF is to improve the performance of models by either 

optimizinglrefining values of unknown parameters and initial state variables or by 

correcting model predictions (state variables) according to a given data set. The use of 

MDF for parameter estimation is one of its most common applications (Wang et al, 

2007, Fox et al., 2009). Both gradient-based (e.g., Guiot et al., 2000; Wang et al., 2001; 

Luo et al. 2003; Wu et al., 2009) and non-gradient-based methods (e.g., Mo and Beven, 

2004; Braswell et al. 2005; White et al., 2005) have been applied, and their advantages 

and limitations have been discussed recently in the published literature (Raupach et al., 

2005; Wang et al., 2009; Willams et al., 2009). Furthermore, by way of assimilating 

eddy covariance flux data, several recent studies have been carried out to reduce 

simulation bias, error, and uncertainties for different forest ecosystems (Braswell et al., 

2005; Sacks et al., 2006; Williams et al., 2005; Wang et al., 2007; Mo et al., 2008). 

Most of these studies were focused on the seasonal variation in estimated parameters 

and ecosystem productivity. However, in North America, the spatial heterogeneity of 

key model parameters has been ignored or has not been explicitly considered. 

LAI GPP 

T tRa 

PPFD ==> I_T_Rl_P_L_E_X_-F_l_u_x_1 => 1 Output 1 
NPP 

RH ~----t-~:Ca 
U 11 Comparison 

Selected parameters Iteration i ~ 

~ 

Optimization (MCMC) 

Fig. 4.1. Schematic diagram of the model-data assimilation approach llsed to estimate 

parameters. Ra and Rh denote alltotrophic and heterotrophic respiration. LAI is the leaf 
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area index. Ca is the input climate variable COz concentration (ppm) within the 

atmosphere. T is the air temperature (oC). RH is the relative humidity (%). PPFD is the 

photosynthetic photon flux density Ü1mol m'z S'I). 

A parameter estimation and data assimilation approach was used in this study to 

optimize model parameters. Fig. 4.1 provides a schema of the method applied to 

estimate parameters based upon a process-based ecosystem model and the flux data. 

The TRlPLEX-Flux model (Zhou et al., 2008; Sun et al., 2008) was recently developed 

to simulate terrestrial ecosystem productivity, that is, gross primary productivity 

(GPP), net primary productivity (NPP), net ecosystem productivity (NEP), respiration 

(autotrophic respiration) (Ra) and heterotrophic respiration (Rh), and the water and 

energy balance (sensible heat (H) and latent heat (LE) fluxes) by way of half-hourly 

time steps (Zhou et al, 2008; Sun et al., 2008). The input climate variables include 

atmospheric COz concentration (Ca), temperature (T), relative humidity (rh), and the 

photosynthetic photon flux density (PPFD). Half-hourly NEP measurements from COz 

flux sites were used to estimate TRlPLEX-Flux model parameters. Thus, the major 

objectives of this study were (1) to test the TRlPLEX-Flux model simulation against 

flux tower measurements taken at sites that possess different tree species within North 

America; (2) to estimate certain key parameters sensitive to environmental factors by 

way of flux data assimilation; and (3) to understand ecosystem productivity spatial 

heterogeneity by quantifying parameters for different forest ecosystems. 

4.4. MATERlALS AND METHüDS 

4.4.1. Research sites 

This study was carried out at seven forest flux sites that were selected from 36 primary 

sites possessing complete data sets (for 2006) within the NACP Interim Synthesis: 

Site-Level. Information concerning these seven forest sites is presented in Table 4.1. 

The study area consists of three evergreen needleleaf temperate forests (ENT), three 

deciduous broadleaf forests (DB), and one evergreen needleleaf boreal forest (ENB) 

spread out across Canada and the United States of America. These forest ecosystems 

are located within ditferent climatic regions with varied annual mean temperatures 
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(AMT) ranging from O.4°C to 8.3°C and annual mean precipitation (AMP) ranging 

from 278mm to 1484mm. The age span of these forest ecosystems ranges from 60 to 

111 years and falls within the category of midd1e and old aged forests, respectively. 

Eddy covariance flux data, climate variables (T, rh, and wind speed), and radiation 

above the canopy were recorded at the flux tower sites. Gap-filled and smoothed 

LAI data products were accessed from the MODIS website 

(http://accweb.nascom.nasa.gov/) for each site under the Site-Level Synthesis of the 

NACP Project (Schwalm et al., 2009), which contains the summary statistics for each 

eight day period. 

Table 4.1. Basic information for ail seven study sites 

State Latitude(ON) / Forest AMT AMP
 
Site Code Age
 

(Country) Longitude(OW) type (oC) (mm)
 

CA-Cal BC (CA) 49.87/125.33 ENT 60 8.3 1461 

CA-Oas SK (CA) 53.63/106.20 DB 83 0.4 467 

CA-Obs SK (CA) 53.99/105.12 ENB 111 0.4 467 

US-Hal MA (USA) 42.54 / 72.17 DB 81 8.3 1120 

109 
US-Ho1 ME (USA) 45.20/68.74 ENT 6.7 778 

US-Me2 OR (USA) 44.45/ 121.56 ENT 90 6.4 447 

US-UMB MI (USA) 45.56/84.71 DB 90 6.2 750 
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Note: ENB = Evergreen needleleaf boreal forest, ENT evergreen needleleaf 

temperate forest, DB = broadleaf deciduous forest. 

4.4.2. Model description 

The TRlPLEX-Flux model was designed to describe the irradiance and photosynthetic 

capacity of the canopy as weil as to simulate CO2 flux within forest ecosystems to take 

advantage of the approach used in a two-leaf mechanistic model (Sun et al., 2008; 

Zhou et al., 2008). The model itself is composed of two parts: leaf photosynthesis and 

ecosystem carbon flux. The instantaneous gross photosynthetic rate was derived based 

upon the biochemical model developed by Farquhar et al. (1980) and the semi­

analyticaJ approach developed by Collatz et al. (1991), simuJating the photosynthetic 

effect using the concept of co-limitation developed by Rubisco (Vc) as weil as electron 

transport (Vj ). The total canopy photosynthetic rate was simulated llsing the algorithm 

developed by De Pury and Farquhar (1997) in which a canopy is divided into sunlit 

and shaded zones. The model describes the dynamics of abiotic variables such as 

radiation, irradiation, and diffusion. The net C02 assimilation rate (A) was calclliated 

by sllbtracting leaf dark respiration (Rd) from the above photosynthetic rate: 

A = min(Vc,Yj) - Rd (1) 

This can also be further expressed using stomatal conductance and differences in CO2 

concentrations (Leuning, 1990): 

A = gs(Ca - Ci)/l.6 (2) 

Stomatal conductance can be derived in several different ways. For this stlldy, the 

semi-empirical gs model developed by Bail (1988) is llsed: 

gs = gO + 100mArh/Ca (3) 
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NEP is the difference between photosynthetic carbon uptake and respiratory carbon 

loss, including plant autotrophic respiration (Ra) and heterotrophic respiration (Rh). 

Rh is dependent on temperature and is calculated using QIO as follows: 

R Q (Ts-IO)/I0Rh -- JO 10 (4) 

where RIo is the reference respiration rate at 10°C; QIO is the temperature 

sensitivity paranieter; and Ts is soil temperature (Lloyd and Taylor, 1994). 

4.4.3. Parameters optimization 

Although TRIPLEX-Flux considers many parameters, based on sensitivity analysis, the 

four most sensitive parameters that relate to NEP were selected for this study. In 

sensitivity analysis, a typical approach (namely, one-at-a-time or OAT) is lIsed to 

observe the effect of a single parameter change on an output while ail other factors are 

fixed to their central or baseline values. There are three parameters that relate to 

photosynthesis and the energy balance: Vmax (the maximum carboxylation rate at 

25°C), Jmax (the light-saturation rate of the electron transport within the photosynthetic 

carbon redllction cycle of leaves), and m (the coefficient of stomatal conductance). 

One additional parameter (RIO) is used to describe the heterotrophic respiration of 

ecosystems. Initial values of the three parameters are based upon a previous study. For 

this version, the parameters have been calibrated for three Fluxnet-Canada Research 

Network sites: the Groundhog River Flux Station in Ontario and mature black sprllce 

stands found in Saskatchewan and Manitoba (Zhou et al., Sun et al., 2008). 

Generally speaking, parameter estimation consists of finding the value of an input 

parameter vector for which the model output fits a set of observations as much as 

possible. To optimize model parameters, the simplest and crudest approach IS 

exhaustive sampling. However, it requires a great amollnt of calclliation time to setup 

since ail points on both the temporal or spatial scales must be calibrated. This method, 

therefore, is not typically recommended for large parameter spaces or modeling scales. 

An alternative method is the Bayesian approach (Gelman et al., 1995) in which 
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unidentified parameters may possess the desired probability distribution to describe a 

priori information. Thus, a probability density representing a posteriori information of 

a parameter is inferable from the a priori information as weil as by means of 

observations themselves. 

The a priori information can be defined as B(x) for an input parameter vector x. This 

information is then combined with information provided by means of a comparison of 

the model output along with the observational data P=(Pi, i = 1, 2, ... , m) in order to 

define a probability distribution that represents the a posteriori information fJ(x) of the 

parameter vector x: 

fJ(x) = k . B(x) . L(x) 

where k is an appropriate normalization constant, and L(x) is the likelihood function 

that roughly measures the fit between the observed data (Pi, i = 1, 2, ..., m) and the 

data predicted {p '(x) = [p 'JCx), ... , p 'm(x)]} by the model itself. If model errors are 

assumed to be independent and of Gaussian distribution, L(x) can be written as 

follows: 

-0 5 ( ,)2 (2 2) -JL(x) = rr [(2m:r) . e- u-u <J ] 

where cr is the error (one standard deviation) for each data point, and u and u' denote 

the measured and simulated NEP (in g C m-2 d-I), respectively. Here, cr represents the 

data error relative to the given mode] structure and, th us, represents a combinatiol1 of 

measurement error and process representation error. 

For the application of Bayes' theorem, an efficient algorithm calJed the Metropolis­

Hastings algorithm (Metropolis et al., 1953; Hastings, ]970) was used to force 

convergence to occur more quickly towards the best estimates as weil as to simulate 

the probability distribution of the selected parameters. ln this study, the Markov chain 

Monte Carlo (MCMC) method was used to calculate (x) for the given observational 

vector p. The a prior probability density fUl1ction was first specified by providing a set 

of Iimiting intervals for the parameters (m, Vrnax , Jrnax , and RIO)' The likelihood function 

was then constructed on the basis of the assumption that errors in the observed data 

followed Gaussian distributions. 
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The procedure was designed in four steps based upon the Metropolis-Hastings 

algorithm as follows: First, a random or arbitrary value was supplied that acted as an 

initial parameter within its range. Second, a new parameter based upon a posteriori 

probability distribution was generated. Third, the criterion was tested to judge whether 

the new parameter was acceptable. Fourth, the steps listed above were repeated (Xu et 

aL, 2006). In total, 5000 iterations of probability distribution for each month were 

carried out before a set of parameters were adjusted and optimized after the test runs 

were completed. 

Table 4.2. Ranges of estimated model parameters. 

Symbol Unit Range 

M 

(coefficient of stomatal conductance) 
Dimensionless 4-14 

V rnax 

(maximum carboxylation rate at 25°C) 
5-80 

10-\70 
(light-saturated rate of electron transport) 

RIo 
0.1-10 

(heterotropic respiration rate at 10°C) 

The a prior probability density function of the parameters was specified as a uniform 

distribution with ranges as shown in Table 4.2. Intervals with lower and upper limits 

were decided upon based on the suggestions offered by Mo et al. (2008) for BOREAS 

sites in central Canada. Parameter distribution was assumed to be uniform and 

probability equal for al! parameter values that occurred within the intervaJs. Due to the 

lack of further knowledge regarding parameter distribution, parameter value limits and 

their distributions were considered to be a prior in regard to the approximate feature of 

the parameter space. 
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4.5. RESULTS AND DISCUSSION 

4.5.1. Seasonal and spatial parameter variation 

Previous studies (Harley et al., 1992; Cai and Dang, 2002; Müller et al., 2005) 

demonstrated that the stomatal conductance slope (m), which relates to the degree of 

leaf stomatal opening, was sensitive to atmospheric carbon dioxide levels, leaf nitrogen 

content, soil temperature, and moisture. This may be the reason that, in this study, the 

sensitivity of the stomatal conductance parameter varied seasonally and exhibits 

remarkable differences for different forest systems (Fig. 4.2). Due to leaf development 

and senescence, parameter change was more obvious in deciduous than evergreen 

forests. In deciduous forests, this parameter increased rapidly from lA to lIA at the 

beginning of the year when foliage started to arise in May and then decreased slightly 

afterwards. Between October and December, it decreased rapidly before settling back 

to lA again. In winter, the stoma opening that occurred within the ENT was obviously 

higher than in the two other forest systems under study, Results from the black spruce 

forest sites generally agreed with the corresponding values and ranges that occurred 

during the growing season (Mo et al., 2008). 
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l 

Fig. 4.2. Seasonal variation of parameters for the different forest ecosystems under 

investigation (2006). DB is the broadleaf deciduous forests that include the CA-OAS, 

US-Hal, and US-UMB sites (see Table 1). ENT is the evergreen needleleaftemperate 

forests that include the CA-Cal, US-Hol, and US-Me2 sites. ENB is the evergreen 

needleleaf boreal forests that include only the CA-Obs site. 

As shown in Fig. 4.2, similar seasonal variation patterns were found for both Vmax and 

Jmax in ail three selected ecosystem sites. No significant variation was detected in the 

ENT where only slightly higher values were detected during the summer and only 

slightly lower values were detected during the winter and fall throughout the period 

from January to December, 2006. The ENB, on the other hand, returned significantly 

lower values in the winter, e.g., approximately 20 J.lmol m-l 
S-l for Vmax and 72 fimol m­

s·lfor Jmax ' In the DB, both Vmax and Jmax returned lower values during the winter 

before rapidly increasing at the start of leaf emergence, reaching their peak values by 

late June and starting to decline abruptly by the end of August when leaves began to 

senesce. 

Optimization presented a similar trend for the Vmax and Jmax parameters that represent 

the canopy photosynthetic capacity at the reference temperature (25°C) and which are 

generally assumed to be closely related to leaf Rubisco nitrogen or nitrogen 

concentrations (Dickinson et al., 2002; Arain et al., 2006). The photosynthetic capacity 

changed swiftly within deciduous forests during leaf emergence and senescence. This 

result was consistent with previous studies (Gill et al, 1998; Wang et al, 2007). For 

evergreen forests, however, no agreement has been reached between previous studies 

on this subject. White remaining steady and smooth during the entire year in sorne 

studies (Dang et al, 1998; Wang et al, 2007), both Vmax and Jmax showed strong 

seasonal trends in other studies (Rayment et al, 2002; Wang et al, 2003; Mo et al, 

2008). In this study, no significant seasonal variation was found for Vmax and Jmax in 

both evergreen forest ecosystems (ENT and ENB) for the 2006 reference year. 
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Results (Fig. 4.2) show that RIo was low during the winter then steadily increased 

throughout the spring, reaching a peak value by the end of July before gradually 

declining in the fall and returning to the low values observed in the winter. The three 

selected forest ecosystems used for this study (DB ENB, and ENT) follow identical 

seasonal variation patterns. The RIo value, however, was found to be higher for DB, 

higher during the middle period for ENT, and lower for ENB. Average RIo values 

during the summer (from June to August) were 4045, 2.97, and 2043flmol m-2 
S-I for 

DB, ENT, and ENB, respectively. 

Due to the inherent complexity of belowground respiration processes and ail the other 

factors mentioned that are in themselves intrinsically interrelated and interactional, 

various issues remain uncertain. Abundant research has been carried out dealing with 

this subject by means of applying RIO and QIO Furthermore, both of these factors are 

spatially heterogeneous and temporal in nature (Yuste et al, 2004; Gaumont-Guay et al, 

2006). RIO seasonal variation is assumed to be controlled by soil temperature and 

moisture. In this study, only Rio was considered due to its sensitivity to seasonal and 

spatial variation in temperate and boreal forests (Fig. 4.2). 

4.5.2. NEP seasonal and spatial variations 

Figo4.3 shows that the total estimated NEP for each forest site (DB, ENB, and ENT) by 

the model-data fusion approach was 278.91, 81.55, and 485.39g C m-2
, respectively. 

These numbers are in good agreement with the observational data, although the model 

simulation seems to have underestimated NEP to a degree. The estimated and 

observational data demonstrate that ail three forest ecosystems under investigation 

were acting as carbon sinks during the 2006 reference year. The CA-Ca1 (Campbell 

Douglas-fir) applied in this study is a middle-aged forest that may have greater 

potential to sequester additional C in the future. Figo404 shows a clear seasonal NEP 

cycle occurring in the three selected forest ecosystems under investigation. The 

TRIPLEX-Flux model was able to capture NEP seasonal variation for ail three diverse 

forest ecosystems located across North America. 
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NEP is typically underestimated during winter and overestimated during summer 

before parameter optimization (data assimilation) occurs. Taking the entire simulated 

period into account, MCMC-based model simulations (the right panels in Fig. 4.5) can 

interpret 72%, 74%, and 84% of NEP measurement variance for ENT, ENB, and DB, 

respectively. These results are a significant improvement in simulation accuracy 

compared to the before parameter estimation results (the left panels in Fig. 4.5) that 

only interprets 42%, 40%, and 63%, respectively, for the three forest ecosystems under 

investigation. 
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Fig. 4.3. Comparison between observed and simulated total NEP for the different forest 

types (2006). 
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4.5.3. Inter-annual comparison of observed and modeled NEP 

Fig. 4.6 compares daily NEP flux results simulated by the optimized and constant 

parameters in the selected BERMS-Old Aspen site (Table 4.2). However, only 2006 

NEP observational data were used for the model simulations during the data 

assimilation process. The 2004 and 2005 NEP observational data were applied solely 

for model testing. Optimized flux was very close to the observational data as indicated 

along the 1:1 line (Fig. 4.7b) whereas flux estimated using constant parameters 

possessed systematic errors when compared to the 1: 1 line (Fig. 4.7a). Ail linear 

regression equations involving assimilated and observed NEP indicated no significant 

bias (P value< 0.05). The simulation that applied constant parameters generated larger 

bias. The model-data fusion approach accounted for approximately 79% of variation in 

the NEP observational data whereas the standard model lacking optimization only 

explained 54% of NEP variation. After parameter optimization, NEP prediction 

accuracy improved by approximately 25% compared to the CO2 flux measurements 

applied to this study. 

4.5.4. Impacts of iteration and implications and improvement for the model-data 

fusion approach 

Iteration numbers were analyzed in order to take into account efficiency effects on data 

assimilation. Further model experimental runs showed that convergence of the Monte 

Carlo sampling chains appeared after 5000 successive iteration events. No significant 

difference was observed between 5,000 and 10,000 iteration events (i.e., approximately 

4% variation for the simulated monthly NEP). This may be associated with the 

relatively simple structure of the model and that only four parameters in total were 

used in this study. However, there is no guarantee that convergence toward an optimal 

solution using the MCMC algorithm will occur when complexity is added ta a 

simulation model by way of an increase in parameter numbers (Wu et al., 2009). 



103 

After OptimizationBefore OptimizationDB 9 DB9 
c... 
w- 6 ~_6 
Z-O z-o 
-ON 3 ~NE 3
~E 
<U_ "'­
~u 0 ~ <-> 0 

E-S 

en -3 en -3 
E~ 

-6 -6+------,---,----,---r--, ­
-6 -3 0 3 6 9 -6 -30369 

Observed NEP (9 CI m21dl Observed NEP (9 CI m21d) 

ENB ENB 
3 

c... 3 a.. 
w­w­
Z-O 

-0';;- 0 
z-o 

~Ë 0 2 E 
'" ­'" - ~<->~<->
 
E ~·3
E -S-3 R2 = 0.74 
enen 

-6+----~----,----,-----6 +------.------,----,-- ­
·6 -3 o 3-6 ·3 o 3 

2Observed NEP (9 CI m , d) Observed NEP (9 CI m21d) 

~_6jENT ENT 

c... 6 
w­

z ~ 3 z-o 
-ON 

-0';;- 3
Cl> 2 EE
 
~ - 0
 
~<-> "'­~u 

E-S .§~Oin ·3 enR2 = 0.42 

-6 +---,---.-----,------,--- -3+------,----,---,- ­

·6 -3 o 3 6 -3 o 3 6 

Observed NEP (9 CI m21d) Obse rved NEP (9 Clm21d) 

Fig. 4.5. Comparison between observed and simulated daily NEP in which the before 

parameter optimization is displayed in the left panel and the after parameter 

optimization is displayed in the right panel. ENT, DB, and ENB denote evergreen 

needleleaf tempera te forests, three broadJeaf deciduous forests, and an evergreen 

needleleaf boreal forest, respectively. A total of 365 plots were setup at each site in 

2006. 



---

104 

0 

10 

EC 
-BONEP 
-AONEP 

'tl ..... 
6....a 

..... u 
~ 2 
~ 

~ 

2004 2005 2006 2007 

Year 
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The application of the MCMC approach to estimate key model parameters using NEP 

flux observational data provides insight into both the data and the models themselves. 

In the case of certain parameters in which no direct measurement technique is available, 

values consistent with flux measurements can be estimated. For example, Wang et al. 

(2001) showed that three to five parameters in a process-based ecosystem model cou Id 

be independently estimated by using eddy covariance flux measurements of NEP, 

sensible heat, and water vapor. Braswell et al. (2005) estimated Harvard Forest carbon 

cycle parameters with the Metropolis-Hastings algorithm and found that most 

parameters are highly constrained, and the estimated parameters can simultaneously fit 

both diurnal and seasonal variability patterns. Sacks et al. (2006) also found that soil 

microbial metabolic processes were quite different in summer and winter based upon 

parameter optimization used within the simplified PnET model. The parameter 

estimation studies mentioned above, however, if assuming the application of time­

invariant parameters, are based upon eddy covariance flux batch calibration rather than 

sequential data assimilation. To account for the seasonal variation of parameters, Mo et 

al. (2008) recently used sequential data assimilation with an ensemble Kalman filter to 

optimize key parameters of the Boreal Ecosystem Productivity Simulator (BEPS) 

model, taking into account input errors, parameters, and observational data. Their 

results suggest that parameters vary significantly for seasonal and inter-annual scales, 

which is consistent with findings in the present study. 

ResuJts here also suggest that the photosynthetic capacity (Ymax and Jmax) typically 

increases rapidly at the leaf expansion stage and reaches a peak in the early summer 

before an abrupt decrease occurs when foliage senescence takes place in the fall. The 

results also imply the necessity of model structure improvement. Parameterization for 

certain processes in the TRIPLEX-flux model is still incomplete due to significant 

seasonal and inter-annual variations for the photosynthetic and respiration parameters. 

These parameters (such as m, Ymax , and Jmax) were evaluated as steady (or constant) 

values before parameter adjustment, which may cause notable model prediction 

deviation and uncertainties to occur under unexpected climate conditions such as 

drought (Mo et aL, 2006, Wilson et aL, 2001). The data assimilation approach, 
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however, is not a panacea. It is, rather, a model-based approach that is highly 

dependent upon the quality of the carbon ecosystem model itself. Model improvements 

must be continued such as including impacts of ecosystem disturbances (e.g., fire and 

logging) on certain key processes (photosynthetic and respiration) as weU as including 

carbon-nitrogen interactions and feedbacks that are currently absent from the 

TRIPLEX-flux model used in this study. This should certainly be investigated in future 

studies. 

4.6. CONCLUSION 

To reduce simulation uncertainties from spatial and seasonal heterogeneity, this study 

presented an optimization of model parameters to estimate four key parameters (m, 

Vmax, Jm3x , and R lO) using the process-based TRIPLEX-Flux model. The MCMC 

simulation was carried out based upon the Metropolis-Hastings algorithm. After 

parameter optimization, the prediction of net ecosystem production was improved by 

approximately 25% compared to CO2 flux measurements measured for this study. The 

bigger seasonal variability of these parameters was observed in broadleaf deciduous 

forests rather than needleJeaf forests, implying that the estimated parameters are more 

sensitive to future climate change in deciduous forests than in coniferous forests. This 

study also demonstrates that parameter estimation by carbon flux data assimilation can 

significantly improve NEP prediction results and reduce model simulation errors. 
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5.1. RÉSUMÉ 

Comprendre les relations qui existent entre la densité d'un peuplement forestier et sa 
capacité de stockage du carbone, cela à des étapes variées de son développement, est 
nécessaire pour gérer la composante de la forêt qui fait partie du cycle global du 
carbone. Pour cette étude, le volume d'un peuplement et la quantité de carbone de la 
biomasse aérienne des forêts québecoises d'épinette noire sont simulés en relation avec 
l'âge du peuplement au moyen du modèle TRlPLEX. Ce modèle a été validé en 
utilisant à la fois une tour de mesure de flux et des données d'un inventaire forestier. 
Les simulations se sont avérées réussies. Les corrélations entre les données observées 
et les données simulées (R2

) étaient de 0.94, 0.93 et 0.71 respectivement pour le 
diamètre à hauteur de poitrine (DBH), la moyenne de la hauteur du peuplement et la 
productivité nette de l'écosystème. En se basant sur les résultats de la simulation, il est 
possible de déterminer l'âge de maturité du carbone du peuplement consideré comme 
se produisant à l'époque où le peulement de la forêt prélève le maximum de carbone, 
avant que la récolte finale ne soit realisée. Après avoir comparé l'âge de maturité selon 
le volume des peuplements considérés (d'environ 65 ans) et l'âge de maturité du 
carbone des peuplements considérés (d'environ 85 ans), les résultats suggèrent que la 
récolte d'un même peuplement à son âge de maturité selon le volume est prématuré. 
Décaler la récolte d'environ vingt ans et permettre au peuplement considéré d'atteindre 
l'âge auquel sa maturité selon le carbone survient pourrait mener à la formation d'un 
puits potentiellement important de carbone. Un diagramme de la gestion de la densité 
du carbone du peuplement considéré, a été développé pour démontrer quantitativement 
les relations entre les densités de peuplement, le volume du peuplement et la quantité 
de carbone de la biomasse au-dessus du sol, cela à des stades de développement variés, 
dans le but de déterminer des régimes de gestion de la densité optimale pour le 
rendement en volume et le stockage du carbone. 

Mots clefs: maturité de la forêt, épinette noire, modèle TRlPLEX 
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5.2 ABSTRACT
 

Understanding relationships that exist between forest stand density and its carbon 
storage capacity at various stand developmental stages is necessary to manage the 
forest component that is part of the interconnected global carbon cycle. For this study, 
stand volume and the aboveground biomass carbon quantity of black spruce (Picea 
mariana) forests in Québec are simulated in relation to stand age by means of the 
TRlPLEX mode!. The model was validated using both a flux tower and forest 
inventory data. Simulations proved successfu!. The correlation between observational 
data and simulated data (R2

) is 0.94, 0.93, and 0.71 for diameter at breast height (DBH), 
mean stand height, and net ecosystem productivity (NEP), respectively. Based on 
simulation results, it is possible to determine the age of a forest stand at which carbon 
maturity occurs as it is believed to take place at the time when a stand uptakes the 
maximum amount of carbon before final harvesting occurs. After comparing stand 
volume maturity age (approximately 65 years old) and stand carbon maturity age 
(approximately 85 years old), results suggest that harvesting a stand at its volume 
maturity age is premature. Postponing harvesting by approximately 20 years and 
allowing the stand to reach the age at which carbon maturity takes place may lead to 
the formation of a potentially large carbon sink. A novel carbon stand density 
management diagram (CSDMD) has been developed to qmintitatively demonstrate 
relationships between stand densities and stand volume and aboveground biomass 
carbon quantity at various stand deveJopmental stages in order to determine optimal 
density management regimes for volume yield and carbon storage. 

Key words: forest maturity, SDMD, black spruce, TRlPLEX model 
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5.3 INTRODUCTION 

Forest ecosystems play a key role in the interconnected global carbon cycle due to their 

potential capacity as terrestrial carbon storage reservoirs (in terms of living biomass, 

forest soils, and products). They act as both a sink and a source of atmospheric carbon 

dioxide, removing CO2 from the atmosphere by way of carbon sequestration via 

photosynthesis as weil as releasing CO2 by way of respiration and forest fires. Among 

these ecological and physiological processes, carbon exchange between forest 

ecosystems and the atmosphere are influenced not only by environmental variables 

(e.g., climate and soil) but also by anthropogenic activities (e.g., clear cutting, planting, 

thinning, fire suppression, insect and disease control, fertilization, etc.). ln recent years, 

increasing attention has been given to the capacity of carbon mitigation under 

improved forest management initiatives due to the prevalent issue of c!imate change. 

Reports issued by the Intergovernmental Panel on Climate Change (lPCC) (IPCC 

1995, 1996) recommend that the application of a variety of improved forest managerial 

strategies (such as thinning, extending periods between rotation treatments, etc.) cou1d 

enhance the capacity of carbon conservation and mitigate carbon emissions in forested 

lands, thus helping to restrain the increasing rate of CO2 concentrations within the 

atmosphere. To move from concept to practical application of forest carbon 

management, there remains an urgent need to better understand how management 

activities regulate the cycling and sequestration of carbon. 

Rotation age is the Jength of the overaJl harvest cycle. A forest should have reached 

maturity stage by this age and be ready to be harvested for sllstainable yieJd practices. 

In forest management, the culmination point of the mean annllal increment (MAI) is an 

important criterion to determine rotation age. For example, the National Forest 

Management Act (NFMA) of 1976 (Public Law 94-588) issued by the United States of 

America specifies that the national forest system must generally have reached the 

culmination point of MAI before harvesting can be permitted. However, an earlier 

study has suggested that this conventional stand maturity harvesting age statute may 

reduce the mean carbon storage capacity of trees to one-third of their maximum 
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amount if followed accordingly (Cooper, 1983). Using a case study of a beech forest 

located in Spain as an example, Romero et al. (1998) determined the optimal 

harvesting rotation age, taking into account both timber production and carbon uptake. 

Moreover, in Finland, Liski et al. (2004) also suggested that a longer Scots pine and 

Norway spruce stand rotation length would favor overall carbon sequestration. Lastly, 

Alexandrov (2007) showed that the age dependence of forest biomass is a power-law 

monomial, suggesting that the annual magnitude of a carbon sink induced by delayed 

harvesting could increase the baseline carbon stock by 1% to 2%. 

Crown closure and an increase in competition may cause forest health problems and a 

decline in growth du ring stand development. Stand density, therefore, must be adjusted 

by means of thinning. After thinning, stems are typically removed from stands. This 

has an effect on total tree number, the leaf area index (LAI), and transient biomass 

reduction (Davi et al., 2008). Thinning is regarded as a strategy to improve stand 

structure, habitat quality, and carbon storage capacity (Alam et al., 2008; Homer et al., 

2010). 

A stand density management diagram (SDMD) is a stand-Ievel model used to 

determine thinning intensity based on the relationship between yield and density at 

different stages of stand development (Newton, 1997). SDMD has received 

considerable attention with regards to timber yield (Newton, 2003, Stankova and 

Shibuya, 2007, Castedo-Dorado et al., 2009), but its carbon storage benefits have 

largely been ignored. No relationship between carbon sequestration, tree volume, stand 

density, and maturity age has been documented up to now. To the knowledge of the 

authors, this study is the first attempt to quantify these relationships and develop a 

management-oriented carbon stand density management diagram (CSDMD) at the 

stand level for black spruce forests in Canada. Newton (2006) attempted to determine 

optimal density management in regard to net production within black spruce forests. 

However, since his SDMD model was developed at the individual tree level, it is 

difficult to scale up the model to a stand or landscape level by using diameter 

distribution (Newton et al., 2004; Newton et al., 2005). 
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Within the eastern Canadian boreal forest, black spruce remains a popular species that 

is extremely important natural resource for both local economies and the country at 

large, supplying timber to large industries in the form of construction material and 

paper products. Black spruce matures between 50 and 120 years with an average stand 

rotation age of 70 to 80 years (Bell, 1991). Harvesting impacts on carbon cycling are 

still not clearly understood due to the complex interactions that take place between 

stand properties, site conditions, climate, and management operations. 

In recent years, process-based simulation models that integrate physiological growth 

mechanisms have demonstrated competence in their ability to quantitatively verify the 

effects of various silvicultural techniques on forest carbon sequestration. For example, 

the effects of harvesting regimes and silvicultural practices on carbon dynamics and 

sequestration were estimated for different forest ecosystems using CENTURY 4.0 

(Peng et al., 2002) in combination with STANDCARB (Harmon and Marks, 2002). 

However, due to the lack of carbon allocation processes, these models were not able to 

provide quantitative information concerning the relationship between stand age, 

density, and carbon stocks. A hybrid TRIPLEX model (Peng et al., 2002) was used in 

this study to examine the impacts of stand age and density on carbon stocks by means 

of simulating forest growth and carbon dynamics over forest development. TRIPLEX 

was designed as a hybrid that includes both empirical and mechanistic components to 

capture key processes and important interactions between carbon and nitrogen cycles 

that occur in forest ecosystems. Fig. 5.1 provides a schematic of the primary steps in 

the development of a SDMD based upon simulations produced by TRIPLEX. 

The overall objective of this study was to quantitatively clarify the effects of thinning 

and rotation age on carbon dynamics and storage within a boreal black spruce forest 

ecosystem and to develop a novel management-oriented carbon stand density 

management diagram (CSDMD). TRIPLEX was specifically lIsed to address the 

following three questions: (1) does the optimal rotation age differ between volume 

yield and carbon storage (2) if different, how mllch more or less time is required to 
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reach maximum carbon sequestration? Finally, (3) what is the reJationship between 

stand density and carbon storage in regard to various forest developmental stages? If 

ail three questions can be answered with confidence then maximum carbon storage 

capacity should be able to be attained by thinning and harvesting in a rational and 

sustainable manner. 

Flux tower 

Climate} 
nValidation 
U 

density 

DBH 

{ 
~ soil 

stand 

~ 1 TRIPLEX 1 ~ 1 

0 
Output 1 height 

volume 

~ [ SDMD 1 ~ Thinning
management 

UValidation carbon 

Forest inventory 

Fig. 5.1. Schematic diagram of the development of the stand density management 

diagram (SDMD). Climate, soil, and stand information are the key inputs that run the 

TRIPLEX mode!. Flux tower and forest inventory data were used to validate the 

model. FinalJy, the SDMD was constructed based on model simulation results (e.g., 

density, DBH, height, volume, and carbon). 

5.4. METHûnS 

5.4.1 Study area 

The study area incorporates 279 boreal forest stands (polygons) for a total area of 

6275ha. It is located 50km south of Chibougamau (Québec) (Fig. 5.2). Black spruce is 

the dominant species in 201 of the forest stands within the study area that also include 

lesser numbers of jack pine, balsam fir, Jarch, trembling aspen, and white birch. Since 

2003, an eddy covariance flux tower (lat 49.69°N and long 74.34°W) has been put into 

service by the Canadian Carbon Program-Fluxnet Canada Research Network (CCP­

FCRN) in one of the stands to continuously measure CO2 flux at a half-hour time step. 

This tower also has the ability to collect a large database of ancilJary environmental 
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measurements that can be processed into parameter values used for process-based 

models and model output verification. 

Fig. 5.2. Black spruce (Picea mariana) forest distribution study area located within 

Chibougamau, Québec, Canada. 

Mean annual temperature and precipitation in the region is -0.38°C and 959.83mm, 

respectively. The forest floor is typically covered by moss, sphagnum, and lichen. 

Additional detailed information concerning site conditions and flux measurements can 

be found in Bergeron et al, 2008. 

5.4.2. TRIPLEX model description 

TRIPLEX 1.0 (Peng et al., 2002) can predict forest growth and yield at a stand level 

apPlying a monthly time step. By inputting the monthly mean temperature, 

precipitation, and relative humidity for a given forest ecosystem, the model can 

simulate key processes for both carbon and nitrogen cycles. TRIPLEX 1.5, an 

improved version of TRIPLEX that has recently been developed, contains six major 

modules that carry out specifie fUl1ctions. These modules are explained below: 
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1. Photosynthetically active radiation (PAR) submodel: PAR was calculated as a 

function of the solar constant, radiation fraction, solar height, and atmospheric 

absorption. Forest production and C and N dynamics are primarily driven by solar 

radiation. 

2. Gross primary production (GPP) submodel: GPP was estimated as a function of 

monthly mean air temperature, forest age, soil drought, nitrogen limitation, and the 

percentage of frost days during a one month interlude as weil as the leaf area index 

(LAI). 

3. Net pnmary productivity (NPP) submodel: NPP was initially calculated as a 

constant ratio to GPP (approximately 0.47 for boreal forests) (Peng et al., 2002; Zhou 

et al., 2005) and was then estimated as the difference between GPP and autotrophic 

respiration (Ra) (Zhou et al., 2008; Sun et al., 2008; Peng et al., 2009). 

4. Forest growth and yield submodel: NPP is proportionally allocated to stems, 

branches, foliage, and roots. The key variables used in this submodel (tree diameter 

and height increments) were calculated using a function of the stem wood biomass 

increment developed by Bossel (1996). 

5. Soil carbon and nitrogen submodel: This submodel is based on soil decomposition 

modules found within the CENTURY modeJ (Parton et al., 1993) while soil carbon 

decomposition rates for each carbon pool were calculated as the function of maximum 

decomposition rates, soil moisture, and soil temperature. 

6. Soil water submodel: This submodel is based on the CENTURY model (Parton et al., 

1993). lt calcuJates monthly water loss through transpiration and evaporation, soil 

water content, and snow water content (meltwater). 
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A more detailed description of the improved TRlPLEX 1.5 model can be found In 

Zhou et al., 2005. 

5.4.3. Data sources 

5.4.3.1 Model input data 

Forest stand as weil as climate and soil texture data were required as inputs to use to 

simulate carbon dynamics and forest growth conditions of the ecosystem under study. 

Moreover, stand data related to tree age, stocking level, site class, and tree species was 

further required to simulate each stand separately. Stand data were derived from the 

1998 forest coyer map as weil as aerial photograph interpretation. Photographs 

interpreted data were calibrated using ground sam pie plot data (Bernier et al., 2010). 

Forest growth, productivity, biomass, and soil carbon monthly climatic variables were 

input into the simulations. Half-hourly weather data from 2003 onwards were obtained 

by means of the Chibougamau mature black spruce flux tower QC-OBS, a Canadian 

Carbon Program-FJuxnet Canada Research Network (CCP-FCRN) station located 

within the study area, and used to compile daily meteorological records throughout this 

extended period. Daily records and soil texture data prior to this date were provided by 

Historical Carbon Model Intercomparison Project initiated by CCP-FCRN (Bernier et 

al.,2010). 

5.4.3.2 Model validation data 

(1) Forest stand data 

To validate forest growth, three circular plots 0.025ha in dimension were established in 

June, 2009, to first estimate forest dynamics and then validate the TRIPLEX model 

independently (Table 5.1). 
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Table 5.1. 2009 stand variables of the three black spruce stands under investigation for 

TRJPLEX model validation 

Stand 1 Stand 2 Stand 3 Mean 

Density (stems/ha) 1735 1800 1915 1817 

Mean DBH (cm) 13.98 13.33 Il.98 13.10 

Mean stand Height (m) 15.89 14.23 13.65 14.59 

Mean Volume (m3/ha) 173.42 146.48 120.74 146.88 

Ali three stands were even-aged black spruce/moss boreaJ forest ecosystems that had 

burned approximately 100 years ago. DBH was measured for every stem located 

within each plot. Moreover, the height of three individual black spruce trees was 

measured by means of a c1inometer in each individual plot, and an increment borer was 

also used to extract tree ring data at breast height. DBH growth was then estimated 

using collected radial increment cores. Since it is considered one of the best nonlinear 

functions available to describe H-DBH relationships for black spruce (Pienaar and 

TurnbuJJ, 1973; Peng et aL, 2004), the Chapman-Richards growth function was chosen 

to estimate height increments based on DBH growth. This growth function can be 

expressed as: 

H = 1.3 + a (1 - e -b*D8H) C (1) 

where a, b, and c are the asymptote, scaJe, and shape parameters, respectively. SPSS 

1].0 software for Windows (SPSS, Inc.) was used to estimate model parameters and 

associated regression statistical information. Using height and DBH field 

measurements, parameters of the three models (e.g., a, b, and c) and statistical 

information related to the growth function were estimated as follows: a = 23.93, b = 

0.07, and c = 1.71, respectively; the coefficient of determination (r2
) = 0.81. 
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(2) Flux tower data 

TRPLEX 1.5 calculated average tree height and diameter increments from the 

increments within the stem woody mass. With such a structure, the model produced 

reasonable output data related to growth and yield that reflects the impact of climate 

variability over a period of time. To test model accuracy (with the exception of forest 

growth), simulated net ecosystem productivity (NEP) was compared to the eddy 

covariance (EC) flux tower data. Half-hourly weather flux data gathered from 2003 

onwards were first accumulated and then summed up monthly to compare with the 

model simulation outputs. 

5.4.3.3 Stand density management diagram (SDMD) development 

Forest stand density manipulation can affect forest growth and carbon storage. For a 

given stage in stand development, forest yield and biomass will continue to increase 

with increasing site occupancy until an asymptote occurs (Assmann, 1970). 

Consequently, applying the manipulation occupancy strategy rationally throughout 

harvesting via thinning management can result in maximum forest production and 

carbon sequestration (Drew and Flewelling, 1979; Newton, 2006). It should be 

conceptually identical to develop a carbon SDMD (CSDMD) and a volume SDMD 

(VSDMD) in terms of theories, approaches, and processes. Firstly, the relationship 

between volume and density was derived from the -3/2 power law (Eg. 2) (Yoda et al, 

1963). 

(2) 

where V and N are stand volume (m3/ha) and density (stems/ha), respectively. The 

constant parameter was estimated (k = 6.79) based on the simulated mean volume and 

the density of black spruce within the study area. 

The reciprocal eguation of the competition-density effect (Eq. 3) was then employed to 
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determine the isoline of the mean height (Kira et al, 1953; Hutchings and Budd, 1981). 

l/v = a * H b + c * Hd
/ N (3) 

where H is the mean height (m), and a, b, c, and d are the regression coefficients to be 

estimated. 

Two other equations concerning the isoline of the mean d iameter and self-thinning 

were used to carry out VSDMD. 

Isoline of mean diameter:
 

V = a * Db * Ne (4)
 

Isoline of self-thinning:
 

V = a * ( 1 - N / No) * Nob (5)
 

where D, N, and No represent the mean diameter at breast height (cm), density, and 

initial density (stems/ha), respectively. 

5.5. RESULTS 

5.5.1 Model validation 

Tree height and DBH are essential forest inventory measurements used to estimate 

timber volume and are also important variables for forest growth and yield modeling. 

To test model accuracy, simulated measurements were compared with averaged 

measurements of height and DBH in Chibougamau, Québec. Comparisons between 

height and DBH predicted by TRIPLEX with data collected through fieldwork were in 

agreement. The coefficient of determination (R2
) was approximately 0.94 for height 

and 0.93 for DBH (Fig. 5.3). Although forest inventory stands were estimated to be 

approximately 100 years old, increment cores taken at breast height analysis had less 

than 80 rings. As a result, Fig. 3 only presents 80-year-old forest stand variables within 

the simulation to compare with field measurements of height and DBH. 
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between the TRIPLEX simulations and observations taken from the sample plots in 

Chibougamau, Québec, Canada. 
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Being the net carbon balance between the forest ecosystem and the atmosphere, NEP 

can indicate annual carbon storage within the ecosystem under study. The CCP-FCRN 

program has provided reliable and consecutive NEP measurements since 2003 by using 

an eddy covariance (EC) technique. Fig. 5.4 shows NEP comparisons between the 

TRIPLEX simulation and EC measurements taken from January, 2004, to December, 

2007. Agreement for this period oftime is acceptable overall (R2 = 0.71). 
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Fig. 5.4. Comparison of monthly net ecosystem productivity (NEP) simulated by 

TRIPLEX, including eddy covariance (EC) flux tower measurements from 2004 to 

2007. 

From the stand point of growth patterns, the growth patterns and competition capacity 

of trees (including both interspecific and intraspecific competition) witbin the forest 

stands under study are the result of carbon allocation to the component parts of trees. 

Since the simulation was in agreement with field measurements for forest growth, net 

primary productivity (NPP) and its allocation to stem growth seem acceptable. This 

indicates that significant errors derive from heterotrophic respiration. The current 

algorithms established within the soil carbon and nitrogen submodel and the soil water 

submodel may, therefore, require further improvement. 
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5.5.2. Forest dynamics 
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Fig. 5.5. Dynamics of the tree volume increment throughout stand development. 

Harvest time should be postponed by approximately 20 years to maximize forest 

carbon productivity. V_PAl: the periodic annual increment of volume (m3/halyr); 

V_MAI: the mean annual increment of volume (m3/halyr); C_MAI: the mean annual 

increment of carbon productivity (g/C/m2/yr); NEP: the an nuai net ecosystem 

productivity; and C PAl: the periodic annual increment of carbon productivity 

(m3/halyr). 

Increment is a quantitative description for a change in size or mass in a specified time 

interval as a result of forest growth. The annuaJ forest volume increment and the 

annual change in carbon storage within the ecosystem over a one year period are 

illustrated in Fig.S.S. The periodic annual increment (V_PAl) increased rapidly for 

forest volume and then reached a maximum value (3 .Sm3/ha/year) at approximately 43 
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years old. V_PAl dropped off quickly after this period. In comparison, the mean 

annual increment of volume (V_MAI) was small to begin with and then increased to a 

maximum at approximately 68 years old, at the point of intersection of the two curves. 

Beyond this intersection, V_MAI declined gradually but at a rate slower than V_CAL 

5.5.3. Carbon change 

The forest ecosystem under examination for this study took approximately 40 years to 

switch from a carbon source to a carbon sink. NEP represents the annual carbon 

storage and can therefore be regarded as the periodic annual carbon increment 

(C_PAI). In contrast, the mean annual carbon increment (C_MAI) was derived by 

dividing the total forest carbon storage at any point in time by total age. Results 

indicate that the changing trend between annual carbon storage and volume increment 

was basically identical (Fig. 5.5). Both C_PAl and C_MAI, however, required longer 

periods to attain maximums at 47 and 87 years old, respectively. If the age of 

maximum V_MAI typically refers to the traditional quantitative maturity age (or 

optimum volume rotation age) due to the maximum total woody biomass production 

from a perpetuai series of rotations (Avery and Burkhart, 2002), the point of 

intersection where C_MAI and C_PAl meet can be appointed the carbon maturity age 

(or optimum carbon rotation age) where the maximum amount of carbon can be 

sequestered from the atmosphere. Results here suggest that the established rotation age 

shou Id be delayed by approximately 20 years to allow forests to reach the age of 

carbon maturity where they can store the maximum amount of carbon possible. 
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5.5.4. Stand density management diagram (SDMD) 



(b) 0.2 0.4 0.6 0.8 1.0 
16em 

5000 14em' 
12em 

N~ 10em 
E 

ü 14m 

.9 .' ·12m .. 
Cf) 
Cf) 
co 
E 

1000 
.' '10m 

0 

in 
'0 
c 500 
::J 
0 
'-
Ol 
Q) 

> 
0 
.0 
« .... ­ .. ' 

6m 

100 
200 400 800 1000 2000 4000 6000 

Density (stems / ha) 
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Initial density (3000 stems/ha) is the sampie used for thinning management to yield 

more volume and uptake more carbon. 

Nonlinear regression coefficient results (Eq. 3 to 5) are provided for in Table 5.2. Fig. 

5.6 indicates that tree volume was highly correlated to carbon storage (R2 = 0.99). 

Black spruce VSDMD and CSDMD were developed based on these equations and the 

relationship between volume and aboveground biomass. Crown closure, mean 

diameter, mean height, and self-thinning isolines within a bivariate graph in which 

volume or carbon storage is represented on the ordinate axis and stand density is 

represented on the abscissa were graphically illustrated (Fig. 5.7a and b). Within these 

graphs, relationships between volume and carbon storage and stand density were 

expressed quantitativeJy at various stages of stand development. Results indicate that 

volume and abovegroundbiomass decrease with an increase in stand density and a 

decrease in site quality. 

Table 5.2. Coefficients of nonlinear regression of ail three equations for black spruce 

forest SDMD development. 

R2Eqs. A b c d 

(3) 516742.85 -8.04 116553.56 -3.85 0.92 

(4) 0.0001 2.63 0.98 0.96 

(5) 386952.56 -0.85 0.77 

5.6. DISCUSSION 

A realistic method to test ecologicaI models and verify model simulation results is to 

evaluate model outputs related to forest growth and yield stand variables, which can be 

measured quickly and expediently for larger sample sizes. TRIPLEX was seJected as 

the best-suited simulation tool due to its strong performance in describing growth and 

yield stand variables of boreaJ forest stands. TRIPLEX was designed to be applied at 
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both stand and landscape scales while ignoring understory vegetation that could result 

in under-estimation (Trumbore & Harden, 1997). This is a possible explanation why 

modeled results related to volume and biomass in this study was lower than results 

obtained by Newton (Newton, 2006). Additionally, the present study focused on a 

location in the northern boreal region where forests tend to grow more slowly with 

comparatively shorter growing seasons and low productivity. For example, 

observations by Valentini et al (2000) also showed a significant increase in carbon 

uptake with decreasing latitude, although gross primary production (GPP) appears to 

be independent of latitude. Their results also suggest that ecosystem respiration in itself 

largely determines the net ecosystem carbon balance within European forests. 

The current study proposes that carbon exchange is a more determining factor overall 

than other variables, and it would be advantageous in regard to forest managerial 

practices for stakeholders to understand this fact. Results indicate that current 

harvesting practices that take place when forests reach maturity age may not, in fact, be 

the optimum rotation age for carbon storage. Two separate ages of maturity (volume 

maturity and carbon maturity) have been discovered for black spruce stands in eastern 

Canada (Fig. 5.5). Although a linear relationship exists between tree volume and 

aboveground carbon storage (Fig. 5.6), both variables possess different harvesting 

regimes decided on rotation age. The point in time between the mean annual increment 

of productivity (C_MAI) and the current alllmai increment of productivity (i.e., ANEP) 

takes place approximately 20 years later than that between the current annual 

increment of volume (V_CAl) and the mean annual increment of volume (V_MAI). In 

other words, the optimum age for harvesting to take place (the carbon maturity age) 

where maximum carbon sequestration occurs should be implemented 20 years after the 

rotation age where maximum volume yield occurs. 

Fig. 5.5 illustrates that both the current annual increment of productivity (ANEP) and 

the current annual increment of volume (V_CAl) reaches a peak at the same age class. 

The former, however, decreases at a slower rate than the latter after this peak occurs. 

This is partly due to how changes in litterfall and heterotrophic respiration affect NEP 



132 

dynamics. The simulation carried out for this study did not detect any notable change 

in heterotrophic respiration following the point at which the peak occurred. However, 

litterfall greatly increases up until the age class of 70 years (Sharma and Ambasht, 

1987; Lebret et al, 2001). The analysis of stand density management diagrams 

(SDMD) also supports this reasoning, comparing volume yield and carbon storage only 

for aboveground components (Fig. 5.7). A few differences do exist between the two 

SDMDs in terms of volume yield and aboveground carbon storage. Moreover, the age 

difference of the current annual increment of productivity (ANEP) and the current 

annuai increment of volume (V_CAl) shown in Fig. 5.5 may be due to underground 

processes. 

If scheduled correctly, thinning can increase total stand volume and carbon yield since 

it accelerates the growth of the remaining trees by removing immature stems and 

reducing overall competition (Drew and Flewelling, 1979; Hoover and Stout, 2007). 

Previous research has indicated that the relative density index should be maintained 

between 0.3 and 0.5 in order to maximize forest growth (Long, 1985; Newton, 2006). 

Table 5.3. Change in stand density, diameter at breast height (DBH), volume, and 

aboveground carbon before and after thinning. 

Density 
DBH (cm) Volume (m3/ha) Carbon (g C/m2

) 
(stems/ha) 

Thinning _ 

Before After Before After Before After Before After 

2800 1800 5.0 5.8 20 18 750 650 

II ]800 1300 7.9 8.2 38 33 1500 ]000 

1lI 1300 800 ]2.0 12.4 60 48 3200 2800 
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A 3000 stems/ha initial density stand was simulated as an example of the thinning 

procedure (Fig. 5.6b). Initial thinning was carried out when the average height of the 

stand was close to Sm. Stand volume and aboveground carbon decreased immediately 

after thinning took place. However, the growth rate of the remaining trees increased as 

a result and in comparison to previous stands following the regular self-thinning line 

(see Fig. 5.6). Despite on the relative density line of 0.5, aboveground biomass carbon 

increased from 750g C/m2 and up to 4000g C/m2 after thinning was carried out twice 

more. Although stand density decreased by approximately 75%, mean DBH, height, 

and stand volume increased by an approximate factor of3.4, 1.7, and 5.3, respectively. 

Table 5.3 provides detailed information (before and after thinning took place) of the 

three thinning treatments. 

5.7. CONCLUSION 

Forest carbon sequestration is receiving more attention than ever before due to the 

growing threat of global walming caused by increasing levels of anthropogenic fueled 

atmospheric COz. Rotation age and density management are important approaches for 

the improvement of silvicultural strategies to sequester a greater amount of carbon. 

After comparing conventional maturity age and carbon maturity age in relation to 

black spruce forests in eastern Canada, results suggest that it is premature in terms of 

carbon sequestration to harvest at the stage of biological maturity. Therefore, 

postponing harvesting by approximately 20 years to the time in which the forest 

reaches the age of carbon maturity may result in the formation of a larger carbon sink. 

Due to the novel development of CSDMD, the relationship between stand density and 

carbon storage at various forest developmental stages has been quantified to a 

reasonable extent. With an increase in stand density and site class, volume and 

aboveground biomass increase accordingly. The increasing trend in aboveground 

biomass and volume is basically identical. Forest growth and carbon storage saturate 

when stand density approaches its limÎt. By thinning forest stands at the appropriate 
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stand developmental stage, tree growth can be accelerated and the age of carbon 

maturity can be delayed in order to enhance the carbon sequestration capacity of 

forests. 
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CHAPTERVI 

SYNTHESIS, GENERAL CONCLUSION, AND FUTURE DIECTION 

6.1. MODEL DEVELOPMENT 

Based on the two-Ieaf mechanistic modeling theory (Seller et al, 1996), in the Chapter 

II, a process-based carbon exchange model of TRIPLEX-FLUX has been developed 

with half hourly time step. As weil, in Chapter V, the old version TRIPLEX with 

monthly time step has been updated and improved from big-Ieaf model to two-leaf 

mode!. In these two chapters, the general structures of model development were 

described. The model validation suggests that the TRIPLEX-Flux model is able to 

capture the diurnal variations and patterns of NEP for old black spruce in central 

Canada (Manitoba and Saskatchewan) (Fig. 2.3, Fig. 2A, Fig. 3.2 and Fig.3A) and 

mixedwood in Ontario (Fig.3.2 and Fig.3.3). A comparison with forest inventory and 

tower flux data demonstrates that the new version of TRIPLEX 1.5 is able to simulate 

forest stand variables (mean height and diameter at breast height) and its carbon 

dynamics in boreal forest ecosystems of Quebec (Fig. 5.3 and Fig. 5A). 

Based on the sensitivity analysis reported in Chapter II (Fig. 2.5, Fig. 2.6, Fig. 2.7 and 

Fig.2.8), the relative roJe of different model parameters was recognized not to be the 

same in determining the dynamics of net ecosystem productivity. To reduce simulation 

uncertainties from spatial and seasonal heterogeneity, in Chapter IV, four key model 

parameters (m, Vmax, Jmax, and RIo) were optimized by data assimilation. The Markov 

Chain Monte Carlo (MCMC) simulation was carried out using the Metropolis-Hastings 

algorithm for seven carbon flux stations of North America Carbon Program (NACP). 

After parameter optimization, the prediction of net ecosystem production was 

improved by approximateJy 25% compared to CO2 flux measurements measured 

(FigA.5). 

6.2. MODEL APPLlCATlONS 

6.2.1. Mixedwood 
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Although both mixedwood and black spruce forests were acting as carbon sinks for the 

atmosphere during the growing season, the illuJti-species forest was observed to have a 

bigger potential to uptake more carbon (Fig. 3.5, Fig. 3.6 and Fig. 3.7). Mixedwood 

also presented several distinguishing features. First, the diurnal pattern was uneven, 

especially after completed leaf-out of deciduous species in June. Second Iy, the 

response to soJar radiation is stronger with superior photosynthetic efficiency and gross 

ecosystem productivity. Thirdly, carbon use efficiency and the ratio of NEP/GEP are 

higher. 

Because of climate change impacts and natural disturbances (such as wildfire and 

insect outbreaks), the boreal forest distribution and composition could be changed. 

Some current single species coniferous ecoregions might be transformed into a 

mixedwood forest type, which would be beneficial to carbon sequestration. Whereas, 

switching mixedwood forests to pure deciduous forests may lead to reduced carbon 

storage potential, because the deciduous forests sequester even less carbon than pure 

coniferous forests (Bond-Lamberty et al., 2005). From the point of view of forest 

management, the illixedwood forest is suggested as a good option to extend and 

replace single species stands, which would enhance the carbon sequestration capacity 

of Canadian boreal forests, and, therefore, reduce atmospheric CO2 concentration. 

6.2.2. Management practice challenge 

Rotation age and density management were suggested as important approaches for the 

improvement of silvicultural strategies to sequester a greater amount of carbon (IPCC, 

1995, 1996). However, it is still currently a big challenge to use process-based models 

for forest management practices. To the best of my knowledge, this thesis is the first 

attempt to present the concept of carbon maturity and develop a management-oriented 

carbon stand density management diagram (CSDMD) at the stand level for black 

spruce forests in Canada. Previous studies by Newton et al., (2004, 2005) and Newton 

(2006) were based on the individual tree level and an empirical mode l, which is very 

difficult and complicated to scale up to a stand or landscape level \.Ising diameter 

d istri butions. 
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After comparing conventional maturity age and carbon maturity age In relation to 

black spruce forests in eastern Canada, the results reported in this thesis suggest that it 

is premature to harvest at the stage of biological maturity. Therefore, postponing 

harvesting by approximately 20 years to the time in which the forest reaches the age of 

carbon maturity may result in the formation of a larger carbon sink. 

Owing to the novel development of CSDMD, the relationship between stand density 

and carbon storage at various forest developmental stages has been quantified to a 

reasonable extent. With an increase in stand density and site class, volume and 

aboveground biomass increase accordingly. The increasing trend in aboveground 

biomass and volume is basically identical. Forest growth and carbon storage saturate 

when stand density approaches its limit. By thinning forest stands at the appropriate 

stand developmental stage, tree growth can be accelerated and carbon maturity age can 

be delayed in order to enhance the carbon sequestration capacity of forests. 

6.3. MODEL INTERCOMPARISON 

The pioneer's studies showed the mid- and high-Iatitude forests in the Northern 

Hemisphere play major role to regulate global carbon cyle and have a significant effect 

on c1imate change (Wofsy et al, 1993; Dixon et al, 1994; Fan et al, 1998; Dixon et al, 

1999). However, since the sensitivity to the climate change and the uncertainties to 

spatial and temporal heterogeneity, the results from empirical and process-based 

models are not consistent for Canadian forest carbon budgets (Kurz and Apps, 1999; 

Chen et al, 2000). The Canadian carbon program (CCP) recently initiated a Historical 

Carbon Model Intercomparison Project in which l was responsible for TRIPLEX 

model simulations. These intercomparisons were intended to provide an algorithm to 

incorporate weather effects on annual productivity in forest inventory models. We have 

performed a comparison exercise among 6 process-based models of fore st growth 

(Can-IBIS, INTEC, ECOSYS, 3PG, TRIPLEX, CN-CLASS) and CBM-CFS3 as part 

of an effort to better capture inter-annual climate variability in the carbon accounting 

of Canada's forests. Comparisons were made on multi-decadal simulations for a Boreal 
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Black Spruce forest in Chibougamau (Quebec). Models were initiated using 

reconstructions of forest composition and biomass from 1928, followed by transition to 

current forest composition as derived from recent forest inventories. Forest 

management events and natural disturbances over the simulation period were provided 

as maps and disturbance impacts on a number of carbon pools were simulated using 

the same transfer coefficients parameters as CBM-CFS3. Simulations were conducted 

from 1928 to 1998 and final aboveground tree biomass in 1998 was also extracted 

from the independent forest inventory. Changes in tree biomass at Chibougamau were 

10% less than estimates derived by difference between successive inventories. The 

source of this small simulation bias is attributable to the underlying growth and yield 

model, as weil as to limitations of inventory methods. Overall, process-based models 

tracked changes in ecosystem C modeled by CBM-CFS3, but significant departures 

could be attributed to two possible causes. One was an apparent difficulty in 

reconciling the definition of various belowground carbon pools within the different 

models, leading to large differences in disturbance impacts on ecosystem C. The other 

was in the among-model variability in the magnitude and dynamics of specific 

ecosystem C fluxes such as gross primary productivity and ecosystem respiration. 

Agreement among process models about how temperature affects forest productivity at 

these sites indicates that this effect may be incorporated into inventory models used in 

national carbon accounting systems. In addition, from these preliminary results, we 

found that the TRlPLEX model as a hybrid model was able to take the advantages of 

both empirical and process-based models and provide reasonable simulation results 

(Fig. 6.1). 
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6.4. MüDEL UNCERTAINTY 

6.4.1. Mode) Uncertainty 

The previous studies (Clark et al., 2001; Larocque et al., 2008) have provided evidence 

that it is a big challenge to accurately estimate carbon exchanges within terrestrial 

ecosystems. Model prediction uncertainties stem primarily from the following five key 

factors including: 

(1) Basic model structure: obviously, different models have different model structures, 

especially when comparing empirical models and process-based models. Actually, 

even among the process-based models, the time steps (e.g., hourly, daily, monthly, 

yearly) are different for each particular purpose. 

(2) Initial conditions: for example, before simulation, sorne models (e.g., IBIS) need a 

long terrn running for the soil balance. 

(3) Model parameters: since the model structures are different, different models need 

different parameters. Even with the same model, parameters should be changed for 

different ecosystems (e.g., boreal, temperate and tropical forest). 

(4) Data input: since the model structures are different, different models need different 

information as input, for example weather, site, soil, time information. 

(5) Natural and anthropogenic disturbance representation: due to lack of knowledge of 

ecosystem processes, disturbance effects on forest ecosystem are not weil understood. 

(6) Scaling exercises: sorne errors are derived from scaling (incJude both scaling-up 

and scaling-down) process. 

Actually, during my thesis work, 1 became aware of other important limitations due to 

model uncertainty. For example, model validation suggests that TRIPLEX-Flux is able 

to capture the diurnal variations and patterns of NEP for old black spruce and 

mixedwood, but failed to simulate the peaks of NEP during the growing seasons (Fig. 

2.2, Fig. 3.3 and Fig. 3.4). Previous studies have also provided evidence that it is a big 

challenge to accurately estimate carbon exchanges within terrestrial ecosystems. In the 

APPENDIX 1, dfferent sources of model uncertainty are synthesized. For the 

TRIPLEX, the prediction uncertainties should stem primarily from two aspects: soil 

and forest succession. 
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For long-term simulations, TRIPLEX shows encouraging results for forest growth. R2 

is 0.97 and 0.93 for height and DBH, respectively (Fig. 5.3). However, comparison 

with tower flux data, R2 is 0.71. That means the main error is derived from 

heterotrophic respiration. However, no consensus has emerged on the sensitivity of soil 

respiration to environmenta! conditions due to the lack of data and feedback, which 

still remains largely unclear. In APPENDIX 2 and APPENDIX 3, a meta-analysis was 

introduced and applied as a means to investigate and understand the effects of climate 

change on soil respiration for forest ecosystems. The results showed that if soil 

temperature increased 4.8°C, soil respiration in forest ecosystems increased 

approximately 17% while soil moisture decreased by 16%. In the future, great efforts 

need to be made toward this direction in order to reveal the mystery and complicated 

soil process and their interactions, which is a new challenge and next step for carbon 

modeling. 

Forest vegetation undergoes successional changes after disturbances (such as wildfire) 

(Johnson, 1992). In young stands, shade-tolerant species are poorly dispersed and grow 

more slowly than shade-intolerant species under ample light conditions (Greene et al, 

2002). During stand development, shade-tolerant species reach the main forest canopy 

height and replace the shade-intolerant species. In order to better understand the 

impacts of climate change on forest composition change and its feedback in 

mixedwood forests over the time, a forest succession sub-model needs to be developed 

and used for simulating forest development process. Unfortunaltely, there is no forest 

successfuI submodeI in the current TRIPLEX mode!. It seems that the LP1-Guess 

model, a generalized ecosystem model to simuJate vegetation structural and 

composition al dynamics under variolls disturbance regimes regimes and c1imate 

change (Smith et al, 2001), would be a good cand idate for being incorporated into (or 

being coupled with) a future version of the TRIPLEX model in the near future. 

6.4.2. Towards a Model-Data Fusion Approach and Carbon Forecasting 
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It is increasingly recognized that global carbon cycle research efforts require novel 

methods and strategies to combine process-based models and data in a systematic 

manner. This is leading research in the direction of the model-data fusion approach 

(Raupach et al., 2005; Wang et al., 2009). Model-data fusion is a new quantitative 

approach that provides a high level of empirical constraints on model predictions that 

are based upon observational data. A variety of computationally intensive data 

assimilation techniques have been recently applied to improve models within the 

context of ecological forecasting. Bayesian inversion, for example, has been a widely 

used approach for parameter estimation and uncertainty analysis for atmosphere­

biosphere models. The Kalman filter is another method that combines sequential data 

and dynamic models to sequentially update forecasts. Hierarchical modeling provides a 

framework for synthesis of multiple sources of information from experiments, 

observations, and theory in a coherent fashion. Although these methods present 

powerful means for informing models with massive amounts of data, they are 

relatively new to ecological sciences, and approaches for extending the methods to 

forecasting carbon dynamics are relatively under-developed and/or lInder-utilized. In 

Chapter IV, only an optimization technique was used to estimate model parameters. 

Actually, this technique could be further applied to wider fields for further study, such 

as uncertainties and errors estimation, water and energy modeling, forecasting carbon 

sequestration, and so on. Fig.6.2 shows an overview of optimization techniques and 

model-data fusion application to ecological research. 

In summary, the model-data fusion application by using inverse modeling and data 

assimilation techniques have great potential to enhance the capacity of vegetation and 

ecosystem carbon models to predict response of terrestrial forest and carbon cycling to 

a changing environment. In the lIpcoming data-rich era, the model-data fusion could 

help on improving our understanding of ecoJogical process, estimating model 

parameters, testing ecological theory and hypotheses, quantifying and reducing model 

uncertainties, and forecasting changes in forest management regimes and carbon 

balance of Ca nad ian boreal forest ecosystems. 
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A.t. Introduction 

Process-based models designed to simulate the dynamics of carbon (C) and nitrogen 

(N) cycles in northern forest ecosystems are increasingly being used in concert with 

other tools to predict the effects of environmental factors on forest productivity 

(Mickler et aL, 2002; Peng et aL, 2002; Sands and Landsberg, 2002; Almeida et aL, 

2004; Shaw et aL, 2006) and forest-based C and N pools (Seely et aL, 2002; Kurz and 

Apps, 1999; Karjalainen, 1996). Among the environmental factors, we include 

everything from intensive management practices to climate change, from local to 

global and from hours to centuries, respectively. PoJicy makers, including the general 

public, expect that reliable, well-calibrated and -documented processbased models will 

be at the centre of rational and sustainable forest management policies and planning as 

weil as prioritisation of research efforts, especially those addressing issues of global 

change. In this context, it is important for policy makers to understand the validity of 

the model results and uncertainty associated with them (Chapters 2, 5 and 6). The term 

uncertainty refers simply to being unsure of something. In the case of a C and N model 

users are unsure about the model results. Regardless of a model's pedigree, there will 

always be some uncertainty associated with its output. The true values in this case can 

rarely if ever be determined and users need to assume the aberration between the 

model results and the true values as a result of uncertainties in the input factors as weil 

as the process representation in the modeL If it is also assumed that the model resu lts 

are evaluated against measurements for which the true values are lInknown because of 

measurement uncertainties, it is important to at least know the probability spaces for 

both measurements and model results in order to interpret the results correctly. Ail 

these uncertainties are ultimately related to a lack of knowledge about the system under 

study and measurement errors of their properties. It is necessary to communicate the 

process of uncel1ainty propagation from measurements to final output in order to make 

model results meaningfuJ for decision support. Pizer (1999) explains that including 

unceJ1ainty as opposed to ignoring it leads to significantly different conclusions in 

policymaking and encourages more stringent policy, which may reslilt in welfare gains. 



150 

A.2. Uncertainty 

Different sources of uncertainty are generally recognised in models of C and N cycles 

in forest ecosystems, and in biological and environmental models in general (O'Neill 

and Rust, 1979; Medlyn et al., 2005; Chapters 4-6): 
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Figure A.l Concept of uncertainty: the measurement uncel1ainty of type A and/or B 

are propagated through the model and leads to baseline uncertainty (type C) and 

scenario uncertainty (type D), where the propagation process is determined by the 

conceptual uncertainty (type E). (Adapted from Wattenbach et al., 2006.) 

• data uncel1ainty associated with measurement errors, spatial or temporal scales or 

errors in estimates; 

• model structure, and lack ofunderstanding of the biological processes; 

• the plasticity that is associated with estimating model parameters, due ta the general 

interdependence of model variables and parameters; related to this is the search to 

determine the least set of independent variables required to span the most important 

system states and responses from one extreme ta another, e.g. from frozen to non­

frozen, dry ta wet, hot to cold, calm ta stormy; 

• the range of variation associated with each biological system under study. 
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A.2.I Uncertainty in measurements 

The most comprehensive definition of uncertainty is given by the "Guide to express 

Jlncertainties in Measurements - GUM" (ISO, 1995): "parameter, associated with the 

result of a measurement, that characterises the dispersion of the values that cou Id 

reasonably be attributed to the measurand." The term parameter may be, for example, a 

standard deviation (or a given multiple of it), or the half-width of an interval having a 

stated level of confidence. In this case, uncertainty may be evaluated using a series of 

measurements and their associated variance (type A, Figure A.l) or can be expressed 

as standard deviation based on expert knowledge or by using ail available sources (type 

B, Figure Al). With respect to measurements, the GUM refers to the difference 

between error and uncertainty. Error refers to the imperfection of a measurement due 

to systematic or random effects in the process of measurement. The random component 

is caused by variance and can be reduced by an increased number of measurements. 

Similarly, the systematic component can also be reduced if it occurs from a 

recognisable process. The uncertainty in the result of a measurement on the other hand 

arises from the remaining variance in the random component and the uncertainties 

connected to the correction for system atic effects (ISO, 1995). If we speak about 

uncertainty in models it is very important to recognise this concept. 

A.2.2 Mode1 uncertainty 

The definition of uncertainty ID mode) results can be directly associated with the 

uncertainty of measurements. However, there are modelling-specific components we 

need to consider. First ail models are by definition a simplification of tbe natural 

system. Thus uncertainty arises just from the way the model is conceptual ised, which 

is defined as structural uncertainty. C and N models also use parameters in their 

equations. These internai parameters are associated with model uncertainty and they 

can have different sources, such as long-term experiments (e.g. decomposition 

constants for soi! carbon pools) or laboratory experiments (temperature sensitivity of 

decomposition), defined as parameter uncertainty. Both uncertainties refer to the 

design of the model and can be summarised as conceptual uncertainty (type E, Figure 
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A.l) Models are highly dependent on input variables and parameters. Variables are 

changing over the runtime of a model whereas parameters are typically constant, 

describing the initialisation of the system. As both variables and parameters are mode! 

inputs, they are often called input factors in order to distinguish them from internai 

variables and parameters (Wattenbach et al., 2006). 

If the data for input factors are determined by replicative measurements, they can be 

labelled according to the GUM as type A uncertainty. In many cases the set of type A 

uncertainty can be influenced by expert judgement (type B uncertainty), which results 

in the intersection of both sets (e.g. the gapfilling process of flux data is as such a type 

B uncertainty that influences type A uncertainty in measurements). A subset of type B 

uncertainty are scenarios. Scenarios (see Chapters 4 and Il) are assumptions of future 

developments based on expert judgement and incorporate the high uncertain element of 

future developments that cannot be predicted. If we use scenarios in our models, we 

need to consider them as a separate instance of uncertainty (type D, Figure A.l) 

because they incorporate all elements of uncertainty (Wattenbach et al., 2006). 

Many methodologies have been used to better quantify the uncertainty of model 

parameters. Traditionally, these methodologies include simple trial-and-error 

calibrations, fitting model ca1culations with known field data using linear or non-linear 

regression techniques and assigning pre-determined parameter values, generated 

empirically through various means in the laboratory, the greenhouse or the field. For 

example, Wang et al. (2001) used non-linear inversion techniques to investigate the 

number of model parameters that can be resolved from measurements. Braswell et al. 

(2005) and Knorr and Kattge (2005) used a stochastic inversion technique to derive the 

probability density functions for the parameters of an ecosystem model from eddy 

covariance measurements of atmospheric C. Will iams et al. (2005) used a time series 

analysis to reduce parameter uncertainty for the derivation of a simple C 

transformation model from repeated measurements of C pools and fluxes in a young 

ponderosa pine stand, and Dufrêne et al. (2005) used the Monte Carlo technique to 



153 

estimate uncertainty in net ecosystem exchange by randomly varying key parameters 

following a normal distribution. 

Erroneous parameter assignments can lead to gross over- or under-predictions of 

forest-based C and N pools. For example, Laiho and Prescott (2004) pointed out that 

Zimmerman et al. (1995), using an incorrect CIN ratio (of 30) for coarse woody debris 

in the CENTURY (http://www.nrel.colostate.edu/projects/century/nrel.htm) model, 

greatly overestimated the capability of a forest system to retain N. Prescott et al. (2004) 

also suggested that models that do not parameterise litter chemistry in great detail may 

represent long-term rates of leaf litter decay better than those models which do. The 

success or failure of a model depends to a large extent on determining whether or not 

expected model outputs depend on particular values used for model compartment 

initialisation. Models that are structured to be conservative, by strictly following the 

mIes of mass, energy and electrical charge conservation, and by describing transfer 

processes within the ecosystem by way of simple linear differential or difference 

equations, lead to an eventual steady-state solution within a constant input-output 

environment, regardless of the choice of initial conditions. The particular parameter 

values assigned to such models determine the rate at which the steady state is 

approached. One important way to test the proper functioning of model 

parameterisation and initialisation is to start the model calculations at steady state, and 

then impose a disturbance pulse, or a series of disturbance pulses (harvesting, fire 

events, spaced regularly or randomly). This is to see whether the ensuing model 

calculations will correspond to known system recovery responses, and whether these 

calculations will eventually return to the initial steady state. The empirical process 

formulation is crucia.l, in that each calculation step must feasibly remain within the 

physically defined solution space. For example, in the hydra-thermal context of C and 

nutrient cycling, this means that special attention needs to be given to how variations 

of "independent" variables, such as soil organic matter, texture, coarse fragment 

content, phase change (water to ice), soil density and wettability, combine 

deterministically and stochastically to affect subsequent variations in heat and soil 

moisture flow and retention (Balland and Arp, 2005). 
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A.2.2.1 Structural uncertainty 

Process-based forest models vary from simple to complex, simulating many different 

process and feedback mechanisms by integrating ecosystem-based process information 

on the underlying processes in trees, soil and the atmosphere. Simple models often 

suffer from being too simplistic, but can nevertheless be illustrative and educational in 

terms of ecosystem thinking. They generally aim at quickly estimating the order of 

magnitude of C and N quantities associated with particular ecosystem processes, such 

as C and N uptake and stand-internai C and N allocations. Complex models can, in 

principle, reproduce the complex dynamics of forest ecosystems in detai!. However, 

their complexity makes their use and evaluation difficult. There is a need to quantify 

output uncertainty and identify key parameters and variables. The uncertainties are 

linked: uncertain parameters imply uncertain predictions and uncertainty about the real 

world implies uncertainty about model structure and parameterisation. Because of 

these linkages, model parameterisation, uncertainty analysis, sensitivity analysis, 

prediction, testing and comparison with other models need to be based on a consistent 

quantification of uncertainty. 

Process-based C and N models are generally referred to as being deterministic or 

stochastic. These models may be formulated for the steady state (for which inputs 

equal outputs), or the dynamic situation, where model outcomes depend on time, in 

relation to time-dependent variations of the model input, and in relation to state­

dependent component responses. Models are either based on empirical or theoretical 

derivations, or a combination of both (semi-empirical considerations). Process-based 

modelling is cognisant of the importance of model structure: the number and type of 

model components are carefully chosen to mimic reality and to minimise the 

introduction of modelling uncertainties. 

Many problems are generated by model structure alone. Two issues can be related to 

model structure: (1) mathematical representation of the processes and (2) description of 

state variables. For example, several types of models can be used to represent the effect 

of temperature variation on processes, including the QI 0 model, the Arrhenius function 
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or other exponential relationships. The degree of uncertainty in the predictions of a 

model can increase significantly if the relationship representing the effect of 

temperature on processes is not based on accurate theoretical description (see Kiitterer 

et al., 1998; Thornley and Canne li, 2001; Davidson and Janssens, 2006; Hill et al., 

2006). Most C and N models contain a relatively simple representation of the processes 

governing soil C and N dynamics, including simplistic parameterisation of the 

partitioning of litter decomposition products between soil organic C and the 

atmosphere. For example, the description of the mineralisation (chemical, physical, 

and biological turnover) of C and N in forest ecosystems generally addresses three 

major steps: (1) splitting of the soil organic matter into different fractions, which 

decompose at different rates, (2) evaluating the robustness of the mineralisation 

coefficients of the adopted fractions, and (3) initialising the model in relation to the 

fractions (Wander, 2004). 

Table A.l gives a cross-section of a number of recent models (or subcomponents of 

models) used to determine litter decomposition rates. The entries in this table illustrate 

how the complexity of the C and N modelling approach varies, even in describing a 

basic process such as forest litter decomposition. The number of C and N components 

in each model ranged from 5 to 10. The number of processes considered varied from 5 

to 32 and the number of C and N parameters ranged from 7 to 54. The number of 

additional parameters used for describing the N mineralisation process, once the 

organic matter decomposition process is defined, is particularly interesting; it ranged 

from 1 to 27. 

Most soil C models use three state variables to represent different types of soil organic 

matter (SOM), the active, slow and passive pools. Even though it is assumed that each 

pool contains C compound types with about the same turnover rate, this approach 

remains nevertheless conceptual and merely represents an abstraction of reality, which 

may lead to uncertainty in the predictions (type E, Figure A.I) (Davidson and Janssens, 

2006). AIso, these conceptual pools do not directly correspond to measurable pools. ln 

reality, SOM contains many types of complex compounds with very different turnover 
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Table A.l Examples of models used for estimating rate of forest litter decomposition 

Model Reference Predicted In~ializalion Predictor Compartment Compartment Rows Parameters Comments 
name variables variables variables number type 

SOMM Chenovand C and N Initial C, N, AnnuaJ, 3x C, 3x N: C& Nlirrer, 7e, 58 C, 3N Par.lmclcrs 
Komarov rCl11Jjning ash comcm monthlyor (x represents ferment'ation 7N êommOll across 
(1997) daill' soi! number of and hllJll11S locations, 

moisture and cohons cohorts initialiscd bl' 
rcmpc(;J(urc considered) Oraves, roots, spccies 
rstinures coarse woody (cohon); C/N 

debris, cIe.) r.ltios 
prcscribrd per 
com parnnent 

CEN- Parton cr al.	 C and N Initial C, N, Monthly 5 C,5 N Srrucrmal, 13 C, 20 C, 5 N Paramekrs 
TURY (1987) rCnlaini Ilg C/N ratios. precipitation melabolic, 13 N CotnlnOn JCross 

Iignin and air active, slow 10catiol1S; 
remperamrc and pmive C in.iti:Ùiscd by 
estima tes &N spccics 

compartmcms 

CAI"DY Franko ct al.	 C and N Iniliale,N Momhlyor 3e, 3 N ALlivl', 3C, 5e.1 N, l'ar.lJllClers 
(1995) R'maining	 d,lily soi! meubolic and ., 1" + ~ cbma(l' comlllon :Kru" 

moislure and -t;lblc C & N parJmeters locatioltS; 
tcmper.mlre compar1mt'nls (diŒers decomposition 
esomares from not species 

original) specifie 

DO('~ Cmrkand	 C and N Initial C, N, by Annual acrua] SC.SN Lignill­ Il C, 17C.4N P:Jr;}me(t.~rs; 

MOD Ab"r (1997)	 rema.ining; comp:lflmcm cV'Jpotranspin­ cellulose, 10 N (OIllIlIOn across 

di "Soll'ed­ lion IInprotccred locations: Cil" 
org;Hüc C and esomare'> cellulose, ofhulllll\ 
N E"xTrJcrives, pœ\(rihed 

microbial and 
humus C& N 
comparnncntl 

FLDM Zh,lngc'( H.	 Mm, C alld Initialmall,C, Janll:lry &July 3 mass. 2 N fast C; .\llJI'I 3 C. Ile. 1N Par.l!nl'tcrs 
(2007) N rClllaining	 N; initial ash air tempcratures Jnd very slow 2 N common JCross 

J11d :lcid ,md and annual C&N location;,; 
non-acid pn:cipitation. by compartrnents CIDET 
hydrolysable l'car: or c:t1ibrat,'\l: 
fractivns, or Olonrhlyor C/i" r,mos 
lis~lin fraction clJill' soil proCl'~' 

Oloismrc' and i.h.'t('rnl~ncd 

tempewllte 
e.stil1l<l[ç~ 

DE- W.dlin.\l1 er al. C02, soluhle Mass, (hemical Soli 4 C. 1 soil Cellulose. 9 C. 24 C. 8 Wry detJilcd 
CŒdP (:~006)	 compound,. constituents of tcmpcTJmre, sOlulioll lignill eJsily ~ w:!Ier dnrriptioll of 

c: remaining th,' soil or~,lnic soil moimw, dccolllposabk WJ- lhe chen·listry. 
m,ltter kg., field capacity, and rc,i5t:ult tcr RelllJilll to he 
Iignin, wilring poinr, C. cellulose. [,'sled for 
holocclllliose) polenClal el'apo- soil sollltion diÙ'ercnt sites 

rranspiration. 
precirit.ltion 
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rates and amplitude of reaction to change in temperature (Davidson and Janssens, 

2006). There have been many attempts to find relations between model structure and 

the real world either by measuring different decomposition rates of different soil 

fractions (Zimmermann et al., 2007) or by restructuring the model pools (e.g. Fang et 

al., 2005). 

160000 ,.,---,--------------------------, 
. (a) 

140000 

~~. 120000 
.r: 

~ 100000. 
c 

.n'·····,··.... 
~~., .

ë" 80000 

8 
c 60000 
D ..0 

40000u 

20000 

O", 
0 

140000· 

c;; 120000: 
.r: 

~ 100000 
ê 
"ë 80000~ 

8 
c 60000·· 
0 
D 
iii 
U 40000 

20000· 

0 i li,> 

0 10 20 30 40 50 60 70 80 90 100 
Stand age (years) 

Legend Conlrol ·C ·····T -··-T&C1 -­

Figure A.2 Carbon content in stems, coarse roots and branches (large wood) predicted 

by CENTURY (a) and FOREST-BGC (b) under different scenarios of climate change 

based on C02 increase from 350 to 700 ppm (C) and a graduai increase in temperature 

by 6.1 oC (T). The control includes the simulation results when the actual conditions 

remained unchanged. (Adapted from Luckai and Larocque, 2002, with kind permission 

of Springer Science and Business Media.) 
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Complex models have, in theory, the challenge of being more precise and/or accurate 

than simple models. This being so, data requirements for the initialisation and 

calibration of complex models need to be tightly controlled, and need to stay within the 

range of current field experimentation and exploration. The degree of model 

complexity also needs to be controlled, because this affects the overall model 

transparency and communicability, as well as affordability and practicality. Also, 

making models more complex can increase their structural uncertainty simply by 

increasing the number of parameters that are uncertain or affecting the correctness of 

the description of the processes involved. 
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Figure A.3 Soil carbon content predicted by CENTURY (a) and FOREST-BOC (b) 

under different scenarios of climate change based on a C02 increase from 350 to 700 

ppm (C) and a graduaJ increase in temperature by 6.1 oC (T). The control includes the 

simulation results when the actuaJ conditions remained unchanged. (Adapted from 

Luckai and Larocque, 2002, with kind permission of Springer Science and Business 

Media.) 
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This can be illustrated by a study conducted by Luckai and Larocque (2002), who 

compared two complex process-based models, CENTURY and FORESTBGC, to 

predict the effect of climate change on C pools in a black spruce (Picea mariana 

[MilL] B.S.P.) forest ecosystem in northwestern Ontario (Figures A.2 and 18.3). For 

the prediction of the long-term change in C content in the large wood and soil pools, 

both models pred icted relatively close carbon content under scenarios of actual 

c1imatic conditions and a graduai increase in temperature, even though the pattern of 

change differed slightly. Substantial differences in C content were obtained when two 

scenarios of C02 increase were simulated. For the effect of graduai C02 increase 

(actual temperature conditions remained unchanged), both models predicted increases 

in C content relative to actual temperature conditions. However, the increase in large 

wood C content predicted by FOREST-BGC was far larger than the increase predicted 

by CENTURY. The scenario that consisted of a graduai increase in both C02 and 

temperature resulted in widely different patterns. While CENTURY predicted a 

relatively small decrease in large wood and soil C content, FOREST-BGC predicted an 

increase. The discrepancies in the results can be explained by differences in the 

structure of both models. Both models include a description of the above- and below­

ground C dynamics. However, CENTURY focuses on the dynamics of litter and soil 

carbon mineralisation and nutrient cycling and FOREST-BGC is based on relatively 

detailed descriptions of ecophysiological processes, including photosynthesis and 

respiration. For instance, CENTURY considers several soil carbon pools (active, slow 

and passive) with specific decomposition rates, while FOREST-BGC considers one 

carbon pool. Both models also differ in input data. For instance, while CENTURY 

requires monthly climatic data, FOREST-BGC uses daily climatic data. 

Modellers must carefully consider the tradeoff between the potential uncertainty that 

may result from adding additional variables and parameters and the gain in accuracy or 

precision by doing so. It may be argued as weIl that existing models of the C cycle are 

still in their infancy. It is not evident that modellers involved in the development of 
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process-based models have considered ail the tools, including mathematical 

development, systems analysis andprogramming, to deal with this complexity. 

A.2.2.2 Input data uncertainties and natur-al variation 

Data uncertainties are linked to: 

• The high spatial and temporal variations associated with forest soil organic matter 

and the corresponding dynamics of above- and below-ground C and N pools. For 

example, Johnson et al. (2002) noted that soil C measurements from a controlled multi­

site harvesting study were highly variable within sites following harvest, but that there 

was Iittle lasting effect of this variability after 15-16 years. 

• Determining the parameters needed to define pools and fluxes (e.g. forest and 

vegetation type, climate, soil, productivity, and allocation transfers), and knowing 

whether these parameters are truly time and/or state-independent. Calibration 

parameters are, as a rule, fixed within models. They are usually obtained from other 

models, derived from theoretical considerations or estimated from the product of 

combinatorial exercises. 

• Data definitions, sampling procedures, especially those that are vague and open to 

interpretation, and measurement errors. For example, Gijsman et al. (2002) discLlssed 

an existing metadata confusion about determining soil moisture retention in relation to 

soil bulk density. 

• Inadequate sampling strategies, 10 the context of capturing existing mlcro- and 

macro-scale C and N pool variations within forest stands, and across the landscape, at 

different times of the year. On a regional scale, failure to account for the spatial 

variation across the landscape, and the vertical variation with horizon depth (due to 

microrelief, animal activity, windthrow, litter and coarse woody debris input, human 

activity and the effect of individual plants on soil microclimate and precipitation 

chemistry), may lead to uncertainty. 

• Knowing how errors propagate through the model caJculations. For example, soil C 

and N estimates of individual pedons are generally determined by the combination of 

measurements of C and N concentrations, soil bulk density, soil depth, and rock 
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content (Homann et al., 1995); errors in any one of these add to the overall estimation 

uncertainties. 

By definition, process-based models should be capable of reflecting the range of 

variation that exists in ecosystems of interest. This is an important issue in forest 

management. In boreal forest ecosystems, quantifying the range of variation has 

becorne a practical goal because forest managers must provide evidence that justifies 

their proposed use of silviculture (e.g. harvesting, planting, tending) as a stand 

replacing agent. The range of variation has been defined by Landres et al. (1999) as 

"the ecological conditions, and the spatial and temporal variation in these conditions, 

that are relatively unaffected by people within a period of time and geographical area 

to an expressed goal." Assuming that reasonable boundaries of time period, geography 

and anthropogenic influence can be identified, the manager or scientist must then 

decide which metrics will be used to quantify the range of variation. Common metrics 

include mean, median, standard deviation, skewness, frequency, spatial arrangement 

and size and shape distributions (Landres et al., 1999). The adoption of the range of 

variation as a guiding principal of forest resource management is well-suited to boreal 

systems because (1) large, stand replacement natural disturbances continue to dominate 

in much of the boreal forest and (2) such disturbances may be reasonably emulated by 

forest harvesting (Haeussler and Kneeshaw, 2003). 

The boreal forest is a region where climate change is predicted to significantly affect 

the survival and growth of native species. Consequently, policies and social pressures 

(e.g. Kyoto Protocol, Certification) may intensify efforts to improve forest C 

sequestration by reducing "Iow-value" wood harvesting. However, high prices for 

crude oil and loss of traditional pulp and paper wood markets may do the opposite by 

identifying "Iow-value" forest biomass as a readily available and profitable energy 

source. Quantifying the range of variation therefore becomes practical as companies 

and communities responsible for forest management have the obligation to provide 

evidence to justify proposed choices and use of harvesting/silviculture as stand­

replacing procedures. However, including variables that account for the range of 
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variation increases the number and costs of required model calibrations, even for 

simple C and N models. 

Structurally, process-based models often include a choice for the user - "stochastic or 

mean values." Stochastic runs usually require an estimate of the variation in sorne 

aspect of the system of interest. For example, CENTURY has a series of parameters 

that describe the standard deviation and skewness values for monthly precipitation as 

main drivers of ecosystem process calculations. This allows the model to vary 

precipitation, but not air temperature. Another option in CENTURY allows the user to 

write weather files that provide monthly values for temperature and precipitation. 

However, neither of these options allows for stochasticity in stand replacing events that 

subsequently affect drivers, such as moisture or temperature, and processes, such as 

decomposition or photosynthesis. 

From a philosophical point of view, it makes sense to buiJd the range of variation into 

model function. Boreal systems are highly stochastic, the evidence of which can be 

found in the high level of beta and gamma diversity often reported. From a logistic 

point of view, however, including variables that account for the range of variation 

increases the number of required calibration values and subsequently the cost of 

calibrating even a simple mod~l. Data describing the range of variation is itself hard to 

come by. An operational definition of the range of variation is therefore needed, but 

has not been widely adopted (Ride, 2004). 

A.2.3 Scenario uncertainty and scaling 

ModeJs are used at very different temporal and spatial scales, e.g. from daily to 

monthly to annual, and from stand- to catchment- to landscape-levels (Wu et al., 2005). 

The change in scales in model and input data introduces different levels of uncel1ainty. 

Natural variation is scale-dependent. For example, at the landscape level, it may be 

possible to: (1) estimate the range of stand compositions and ages, and therefore of 

structures; (2) determine a reasonabJe range of climatic conditions (mainly minimum 

and maximum temperatures and precipitation) for timeframes as long as a few 
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rotations (i.e. several hundred years); and (3) identify the successional pathways that 

reflect the interaction of (1) and (2). This information could then be used to provide a 

framework of stand and weather descriptions within which functional characteristics, 

such as SOM turnover, growth, and nutrient cycling, could be mode lied. Assuming that 

we have reasonable mathematical descriptions of key biological, chemical, and 

physical processes - such as photosynthesis and decomposition, weathering and 

complexation, soil moisture, and compaction - we could then "nest" our models one 

inside of another. This approach assumes that the range of variation in the pools and 

fluxes normally included in process-based models is externally driven (i.e. by weather 

or disturbance) rather than by internai dynamics. 

One example of such a model dealing with the range of variation in scaling issues is 

the General Ensemble Biogeochemical Modelling System (GEMS), which is used to 

upscale C and N dynamics from sites to large areas, with associated uncertainty 

measures (Reiners et aL, 2002; Liu et aL, 2004a, 2004b; Tan et aL, 2005; Liu et aL, 

2006). GEMS consists of three major components: one or multiple encapsulated 

ecosystem biogeochemical models, an automated model parameterisation system, and 

an input/output processor. Plot-scale models such as CENTURY (Parton et aL, 1987) 

and EDCM (Liu et aL, 2003) can be encapsulated in GEMS. GEMS uses an ensemble 

stochastic modelling approach to incorporate the uncertainty and variation in the input 

databases. Input values for each model run are sampled from their corresponding range 

of variation spaces, usually described by their statistical information (e.g. moments, 

distribution). This ensemble approach enables GEMS to quantify the propagation and 

transformation of uncertainties from inputs to outputs. The expectation and standard 

error of the model output are given as: 

1 ", 
IE[p(.'Cl] = IV L p(X,). 

j~1 

s,-= /Vfp(Xi)1 = Ih_)_l(P(X;j)-ElP(Xi)]!'~ 
- V w \' w . 

where W is the number of ensemble model runs, and Xi} is the vector of EDCM model 

input values for the j th simulation of the spatial stratum i in the study area, p is a 
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model operator (e.g. CENTURY or EDCM), and E, V, and SE are the expectation, 

variance, and standard error of model ensemble simulations for stratum i, respectively. 

A.3. Model Validation 

Model validation is an additional source of uncertainty as, among other mechanisms, it 

compares model results with measurements, which are again associated with 

uncertainties. Thus the choice of the validation database determines the accuracy of the 

model in further ad hoc applications. However, model validation remains a subject of 

debate and is often used interchangeab1y with verification (Rykiel, 1996). Rykiel 

(1996) differentiated both terms by defining verification as the process of 

demonstrating the consistency of the logical structure of a model and validation as the 

process of examining the degree to which a model is accurate relative to the goals 

desired with respect to its usefulness. Validation therefore does not necessarily consist 

of demonstrating the logical consistency of causal relationships underlying a model 

(Oreskes et al., 1994). Other authors have argued that validation can never be fully 

achieved. This is because models, like scientific hypotheses, can only be falsified, not 

proven, and so the more neutral term "evaluation" has been promoted for the process 

of testing the accuracy of a model's predictions (Smith et al., 1997; Chapter 2). 

Although model validation can take many forms or include many steps (e.g. Rykiel, 

1996; Jakeman et al., 2006), the method that is most commonly used involves 

comparing predictions with statistically independent observations. Using both types of 

data, statistical tests can be performed or indices can be computed. Smith et al. (1997) 

and Van Gadow and Hui (1999) provide a summary of the indices most commonly 

used: 
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Several examples of the comparison of predictions with observations or field 

determinations exist in the literature (Smith et al., 1997; Morales et al., 2005). 

However, these mostly involve traditional empirical growth models in forestry as part 

of the procedures used to determine the annual allowable cut within specific forest 

management units (e.g. Canavan and Ramm, 2000; Smith-Mateja and Ramm, 2002; 

Lacerte et aL, 2004). In contrast, reports on a systematic validation of C and N cycle 

models are rare (e.g. De Vries et al., 1995; Smith et al., 1997) and needed. The 

validation of C and N cycle models based on the comparison of predictions and 

observations has been more problematic than the validation of traditional empirical 

growth and yield models. Long-term growth and yield data are available for the latter 

because forest inventories, including permanent sample plots with repeated 

measurements, have been conducted by government forest agencies or private industry 

for many decades. Therefore, process-based model testing has been largely based on 

growth variables, such as annuaI volume increment (Medlyn et al., 2005). Although 

volumetric data can be converted to biomass and C, direct measurements of C and N 

pools and flows in forest ecosystems have been collected mainly for research purposes 

and historicaJ datasets are relatively rare. Therefore, it is often difficult to conduct a 

validation exercise of C and N models based on the comparison of predictions with 

statistically independent observations. 

So, what options exist for the validation of forest-based C and N cycle models? The 

most logical avenue is the establishment and maintenance of long-term ecologicaJ 

research programs and site installations to generate the data needed for both model 

formulation and validation. However, these remain extremely costly and do not receive 

much political favour in this day and age. One alternative consists in using short-term 

physiological process measurements (e.g. Davi et al., 2005; Medlyn et al., 2005; Yuste 

et al., 2005), although careful scrutiny should be given to the long-term behaviour of 

the models in predicting C stocks in vegetation and soils (e.g. Braswell et al., 2005). 

Recent technological advances III micrometeorological and physiological 

instrumentation have been significant, such that it is now possible to collect and 

analyse hourly, daily, weekly or seasonal data under a variety of forest cover types, 
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experimental scenarios and environmental conditions at relatively low cost. The data 

from flux tower studies are just now becoming extensive enough to capture the broad 

spectrum of climatic and biophysical factors that control the C, water and energy 

cycles of forest ecosystems. The fundamental value of these measurements derives 

from their abüity to provide multi-annual time series at 30-minute intervals of: the net 

exchanges of C02, water, and energy between a given ecosystem and the atmosphere 

at a spatial scale that typically ranges between 0.5 and 1 km2. The two major 

component processes of the net flux (i.e. ecosystem photosynthesis and respiration) are 

being collected. Since different ecosystem components can respond differently to 

climate, multi-annual time series combined with ecosystem component measurements 

are carried out to separate the responses to inter-annual climate variability. These data 

are essential for development and validation of process-based models that cou Id be a 

key part of an integrated C monitoring and prediction system. For example, Medlyn et 

al. (2005) validated a model of C02 exchange using eddy covariance data. Davi et al. 

(2005) also used data from eddy covariance measurements for the validation of their C 

and water model, and closely monitored branch and leaf photosynthesis, soil 

respiration, and sap flow measurement throughout the growing season for additional 

validation purposes. The age factor, the effect of which takes so long to study, can be 

integrated by using a chrono-sequence approach (using stands of different ages on 

similar sites as a surrogate for time), which deals with validating C and N models by 

comparing model output with C and N levels and processes in differently aged forest 

stands of the same general site conditions. There is also the need to develop new 

methodologies that are able to integrate the above approaches to allow for model 

validation at fine and coarse time resolution. 
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Figure A.4 Sensitivity of simulated stem biomass to N content In needles after 

abscission. 

A.4. Sensitivity Analysis 

Sensitivity analysis consists in analysing differences in mode! response to changes in 

input factors or parameter values (see Chapter 5). This exercise is relatively easy when 

the model contains a few parameters, but can become cumbersome for complex, 

process-based models. It is beyond the scope of this paper to review aH the different 

methods that have been used, but one of the best examples of sensitivity analysis for 

process-based models may be found in Komarov et al. (2003), who carried out the 

sensitivity analyses for EFIMüD 2. These authors showed that the tree sub-model is 

highly sensitive to changes in the reallocation of the biomass increment and tree 

mortality functions while the soil sub-model is sensitive to the proportion and 

mineralisation rate of stable humus in the minerai soil. The model is very sensitive to 

ail N compartments, including the N required for tree growth, N withdrawal from 

senescent needles, and soil N and N deposition from the atmosphere. For example, the 

prediction of stem biomass is sensitive to the N concentration in needles after 

abscission (Figure 18.4), reflecting the degree to which the plant (tree) controls growth 

by retention and internaI N reallocation (Nambiar and Fife, 1991). However, although 
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uncertainty surrounds initial stand density (often unknown), modelled sail C and N and 

tree stem C (major source of carbon input to the sail sub-model) are not very sensitive 

to initial stand density (Figure A.S). 
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Figure A.5 Sensitivity of simulated (a) tree biomass carbon, (b) total soil carbon and 

(c) total soil nitrogen by EF1MOD 2 to initial stand density. 

This type of uncertainty associated with sensitivity analysis could be addressed more 

thoroughly in the future by including Monte Carlo simulations and their variants. Very 

few examples of this type of integration for carbon cycle models exist (e.g. Roxburgh 

and Davies, 2006). One of the likely reasons is the computer time required. However, 

the evolution in computer technology is such that this might not be a major issue in a 

few years. 

A.S. Conclusions 

Many approaches have been developed and used to calibrate and validate process­

based models. Models of the C and N cycles are generally based on sound 

mathematical representations of the processes involved. However, as previously 

mentioned, the majority of these models are deterministic. As a consequence, they do 

not represent adequately the error that may arise from different sources of variation. 

This is important, as both the C and N cycles (and models thereof) contain many 

sources of variation. Much can be gained by improving and standardising the use of 

calibration and validation methodologies both for scientists involved in the modelling 

of these cycles and forest managers who utilise the results. 

Upscaling C dynamics from sites to regions is complex and challenging. It requires the 

characterisation of the heterogeneities of critical variables in space and time at scales 

that are appropriate to the ecosystem models, and the incorporation of these 

heterogeneities into field measurements or ecosystem models to estimate the spatial 

and temporal change of C stocks and fluxes. The success of upscaling depends on a 

wide range of factors, including the robustness of the ecosystem models across the 

heterogeneities, necessary supporting spatial databases or relationships that define the 

frequency and joint frequency distributions of critical variables, and the right 

techniques that incorporate these heterogeneities into upscaling processes. Natural and 
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human disturbances of landscape processes (e.g. fires, diseases, droughts and 

deforestation), climate change, as weil as management practices, will play an 

increasing role in defining carbon dynamics at local to global scales. Therefore, 

methods must be developed to characterise how these processes change in time and 

space. 
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B.l. ABSTRACT 

Meta-analysis is a quantitative synthetic research method that statistically integrates 

results from individual studies to find common trends and differences. With increasing 

concern over global change, meta-analysis has been rapidly adopted in global change 

research. Here, we introduce the methodologies, advantages and disadvantages of 

meta-analysis, and review its application in global climate change research, including 

the responses of ecosystems to global warming and rising CO2 and 0 3 concentrations, 

the effects of land use and management on climate change and the effects of 

disturbances on biogeochemistry cycles of ecosystem. Despite limitation and potential 

misapplication, meta-analysis has been demonstrated to be a much better tool than 

traditional narrative review in synthesizing results from multiple studies. Several 

methodological developments for research synthesis have not yet been widely used in 

global climate change researches such as cumulative meta-analysis and sensitivity 

analysis. It is necessary to update the results of meta-analysis on a given topic at 

regular intervals by including newly published studies. Emphasis should be put on 

multi-factor interaction and long-term experiments. There is great potential to apply 

meta-analysis to global cl imate change research in China because research and 

observation networks have been established (e.g. ChinaFlux and CERN), which create 

the need for combining these data and results to provide support for governments' 

decision making on climate change. It is expected that meta-analysis will be widely 

adopted in future climate change research. 

Keywords: meta-analysis, global climate change 
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B.2. INTRODUCTION 

Climate change has been one of the greatest challenges to sustainable development. 

Global average temperature has increased by approximately 0.6°C over the past 100 

years and is projected to continue to rise at a rapid rate; global atmospheric carbon 

dioxide (C02) concentration has risen by nearly 38% since the pre-industrial period 

and will surpass 700 umol/mol by the end of this century [1]. Most of the warming 

over the last 50 years is attributable to human activities, and human influences are 

expected to continue to change atmospheric composition throughout the 21 st century. 

Climate change has the potential to alter ecosystem structure (plant height and species 

composition) and functions (photosynthesis and respiration, carbon assimilation and 

biogeochemistry cycle). The change in ecosystem is expected to alter global climate 

through feedback mechanisms, which will have effects on human activities and these 

feedback mechanisms as weIl. Therefore, c1imate change, human influences and 

ecosystem response have become more and more interconnected. However, these 

direct and indirect effects on ecosystems and climate change are likely to be complex 

and highly vary in time and space [2]. Results From many individual studies showed 

considerable variation in response to climate change and human activities. Given the 

scope and variability ofthese trends, global patterns may be much more important than 

individual studies when assessing the effects of global change [3, 4]. There is a clear 

need to quantitatively synthesize existing results on ecosystems and their responses to 

global change and land use management in order to either reach the general consensus 

or summarize the difference. Meta-analysis refers to a technique to statistically 

synthesize individual studies [5], which has now become a useful research method [6] 

in global change research. 

Since Gene Glass [7] invented the term "meta-analysis", it has been widely applied and 

developed in the fields of psychology, sociology, education, economics and medical 

science. It was adapted in ecology and evolutionmy biology at the beginning of the 

1990s [8]. Earlier introduction and review of the use of meta-analysis in ecology and 

evolutionary biology were given by Gurevitch et al. [9J and Arnqvist et al. [10]. In 
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1999, a special issue on meta-analysis application in ecology was published in 

Ecology, which systematically discussed case studies, development and problems on 

its use in ecology [Il]. In China, meta-analysis has been widely applied in medical 

science since Zhao et al. [12] firstly introduced metaanalysis into this field. It was 

mainly used to synthesize the data on control and treatment experiments to determine 

average effect and magnitude of treatments effects and find the variance among 

individual studies. Peng et al. [13] were the first to introduce meta-analysis into 

ecology in China and provided a review on its application in ecology and medical 

science [14] in recent years. 

Meta-analysis has been increasingly applied in largescale global change ecology in 

recent years and shows high value on studying sorne popular research issues related 

with global change such as the response of terrestrial ecosystem to elevated CO2 and 

global warming. Unfortunately, there are very few reports available on the use of meta­

analysis to examine global climate change in China [15, 16]. This paper reviews the 

general methodology of meta-analysis, assesses its advantages and disadvantages, 

synthesizes its use in global climate change and discusses future direction and potential 

application. 

B.3. Meta-analysis method 

B.3.1 Principles and steps 

Researches very rarely generate identical answers to the same questions. It is necessary 

to synthesize the results from multiple studies to reach a general conclusion and find 

the difference and further direction. Meta-analysis is such a method. The term "meta­

analysis" was coined in 1976 by the psychologist Glass [7] who defined it as the 

statistical analysis of a targe collection of analytical results for the purpose of 

integrating the findings. It is considered as a quantitative statistical method to 

synthesize multiple independent studies with related hypothesis. "Meta" is from the 

Greek for "after". Meta-analysis was translated into different Chinese terms in 

different fields. Traditionally, reviewing has been done by narrative reviews, where 
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results are easily affected by subjective decision and preference. Meta-analysis allows 

one to quantitatively combine the results from individual studies to draw general 

conclusions and find their differences and the corresponding reasons. It is also calied 

"analysis of analysis". 

Subgroup analysis. publication 
bias analysis and sensitivity 

analysis 

Figure B.l Steps for performing meta-analysis. 

The steps of performing meta-analysis follow the framework of scientific research: 

formulating research question, collecting and evaluating data analyzing the data, and 

interpreting the results. Figure B.l presents the systematic review process [5, 6, 17]: (i) 

Research question or hypothesis formulation. For example, how does temperature 

increase affect tree growth? (ii) Collection of data from individual studies related to the 

problem or hypothesis. It is desirable to include ail of relevant researches (journals, 

conference proceedings, thesis and reports, etc.). Criteria for inclusion of studies in the 

review and assessment of studies quality should be explicitly documented. (iii) Data 

organization and classification. Special forms for recording information extracted from 

selected literatures should be designed, which include basic study methods, study 

design, measurement results and publication sources, etc. (iv) Selection of effect size 
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metrics and analysis models. Effect size is essential to meta-analysis. We use the effect 

size to average and standardize results from individual studies. It quantifies the 

magnitude of standardized difference between a treatment and control condition. An 

appropriate effect size measure should be chosen according to the data available from 

the primalY studies and their meanings [5, 8, 17]. Heterogeneity test should be done to 

determine the consistence of the results across studies. 

Statistical models (fixed-effects models, random-effects models and mixed effects 

models) can also be used. (v) Conduct of summalY analyses and interpretation. 

Individual effect sizes are averaged in a weighted way. Therefore, total average effect 

and its confidential interval are produced and showed directly as a forest plot (Figure 

B.2) to determine whether there is evidence for the hypothesis. The source of 

heterogeneity and its impacts on averaged effect size should be discussed. If sorne 

factors had great influences on the effect size, quantitative pooling would be conducted 

separately for each subgroup of the studies. Diagnosis and control of publication bias 

and sensitive analysis should be also performed. 

Overall (537) 

:t<>l Forest to pasture (170) o 

o : 1 Pasture to secondary forest (6) . 
~: Pasture to plantation (83) 

Forest to plantation (30) 

Forest to crop (37) 
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Figure B.2 Effect sizes and their confidential intervals of the effect of land use changes 

on soil carbon [18]. 
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B.3.2 Advantages and disadvantages 

As a new method, exact procedure and methodologies of meta-analysis are being 

developed [9, 19, 20]. While traditional reviewing done by the narrative reviews can 

provide useful summaries of the knowledge in a discipline that can be largeJy 

subjective, it may not give quantitative synthesis information. It is difficult to answer 

sorne complex questions, such as how large is the overall effect? Is it significant? What 

is the reason attributable to the inconsistence of the resu lts from individual studies [8]? 

However, meta-analysis provides a means of quantitatively integrating results to 

produce the average effect; it improves the statistical ability to test hypotheses by 

pooling a number of datasets [17, 21]. It can be used to develop general conclusions, 

delimit the differences among multiple studies and the gap in previous studies, and 

provide the new research directions and insights. Criticisms of meta-analysis are due to 

its shortcomings and misapplications [17, 21], including publication bias, subjectivity 

in literature selection and non-independence among studies. Publication bias is defined 

as bias due to the influence of research findings on submission, review and editorial 

decisions, and may arise from bias at any of the three phases of the publication process 

[22, 23]. For example, studies with significant treatment effects results tend to be 

published more easily than those without treatment effects. Various methods are 

developed to verify the publication bias [24-28]. When bias is detected, further 

anaJysis and interpretation should only be carried out with caution [19J. 

B.3.3 Special software 

Many software packages for performing meta-analysis have been developed 

(http://www.um.es/facpsi/metaanalysis/software.php), sorne of which are Iisted in 

Table 1. Besides special meta-analysis software, general statistical software packages 

such as SAS and STAT also have standard meta-analysis functions. These programs 

differ in the data input format, the measures of effect sizes, statistical models, figures 

drawing and whether sorne functions such as cumulative meta-analysis and sensitive 

analysis should be included. Of ail the mentioned software, CMA, MetaWin, RevMan 

and WeasyMA have user-friendly interfaces and powerful functions covering 
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calculation of effect sizes, fixed-effect and random-effect models, heterogeneity test, 

subgroup analysis, publication bias analysis, cumulative meta-analysis and meta­

regression. MetaWin provides non-parameter tests and statistic conversions. CMA 

gives the function for sensitivity analysis. After conducting online literature search for 

which meta-analysis software packages were most commonly used in published 

journal papers from Elsevier, Springer and Blackwell publishers, we found that the 

most frequently used packages are RevMan (270 papers), MetaWin (80 papers) and 

DSTAT (60 papers). 

Table 1 Software for meta-analysis 

Software Desoriptioll 

Compr<bellSive met•.analysis (CMA) bnp://www.moill-.mlysis.com! cOllll1lercial software/Windows 

MelaWin http://w\\,,.ltletawinsofi.colll ,oll"uerei.1 sofiwarei\Vllldom 

DSTAT btlp:i/\V\I'I'.erlbatUlLeom commercial sofhVar<JDos 

We.syMA hrtp:/lwww.w;:a~)'llla.cOluJ rolllJ1}(reial soIDl'arelWUldowI 

Reliew Manager (Rev~'lall) hnp://,,~\~v.ce-ims.netIRevMau/ fre< softwarei\Vindows 

Met,·DiSe http://vAv\v.fu'C..:sfUlvestigacion!nlet.ldi~c_en.htm ti-ee sOIDnre/Windows 

Mem bltp:l/userpagè.nl.bcrlin.de!.health'met,_e.htm fret sOIDI'are/Dos 

EasyMA hl tp:lI\V\vw.SpC.lUU v.lyoo1.ti-/easyma.do<J ti-ee sofuyardDos 

Met.T~t hltp:/i\V\V\v.medcpi.net/motatMelaTe;l.btn~ free sOIDvmJDos 

Met. "Ieul,tor http://IV\I,,.IYOlLIIllOlris.comilyonYlllelwnlysislllldex.cfin free onJine calcul'Iion 

SAS'S·plllYSTATiSPSS	 http://II''''"'.sas.COUL http://IV\m.illsightl111.eom/,bnp://,,,V\v.st.ta.couL gèllernl statistical sofrware \Vith 
htlp:IIII~",y.spss.com melll-.""Iysis funelion 

BA Case studies of meta-analysis in global c1imate changes 

Since the first research on meta-analysis conducted in global climate change [29], 

meta-analysis has been increasingly utilized in this field. Figure 3 presents the number 

of publications from 1996 to 2005 that used meta-analysis for global c.limate change 

research. Tt shows an increasing trend in general. 

B.4.1 Response of ecosystem to elevated COz 

Tt is recognized that CO2 concentration in the atmosphere and global temperature are 

increasing. CO2 is not only one of the main gases responsible for the greenhouse effect, 
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but an essential component for photosynthesis, plant growth and ecosystem 

productivity as weil. Increasing CO2 concentration results in rising temperature, which 

alters carbon cycle of terrestrial ecosystem. Response of ecosystem to elevated CO2 is 

important to global carbon cycle [30, 31] and is an essential research issue in ecology 

and climate change research. Research using meta-analysis has addressed sorne 

ecological processes and relationships, including plant photosynthesis and respiration, 

growth and competition, productivity, leaf gas exchange and conductance, soil 

respiration, accumulation of soil carbon and nitrogen, the relations between light 

environment and growth, and photosynthesis and leaf nitrogen. 
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Figure BJ The number of publications using meta-analysis for climate change 

research from 1996 to 2005. 

The effect of elevated CO2 on plant growth is generally positive. Curtis et al. [32] used 

meta-analytical methods to summarize and interpret more than 500 reports of effects of 

elevated CO2 on woody plant biomass accumulation. They found total plant biomass 

significantly increased by 28.8% and the responses to elevated CO2 were strongly 

affected by environmental stress factors and to a less degree by duration of CO2 

exposure and functional groups. In another study on the response of C3 and C4 plants 

to elevated CO2, Wand et al. [33] used mixed-effect model for meta-analysis to show 
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that total biomass has increased by 33% and 44% in elevated CO2 for both C3 and C4 

plants, respectively. These authors also found C3 and C4 plants have different 

morphologi cal developments under elevated CO2• C3 plants developed more tillers 

and increased slightly in leaf area. By contrast, C4 plants increased in leaf area with 

slight increase in tiller numbers. A significant decrease in leaf stomatal conductance, as 

weil as increased water use efficiency and carbon assimilation rate were also detected. 

These results have important implications for the water balance of important 

catchments and rangelands, particularly in sub-tropical and temperate regions. Theil' 

study also implied that it might be premature to predict that the C4 type will lose its 

competitive advantage in certain regions as CO2 levels rise, based only on different 

photosynthetic mechanisms. Environmental factors (soil water deficit, low soil 

nitrogen, high temperature and high concentration 03) significantly affected the 

response of plants to elevated CO2. The total biomass has increased by 30.01 % for C3 

plants under unstressed condition [16]. Kerstiens [34] used meta-analysis to test the 

hypothesis that variation of growth responses of different tree species to elevated CO2 

was associated with the species' shade-tolerance. This study showed that in general, 

relatively more shade-toJerant species experienced greater stimulation of relative 

growth rate by elevated CO2. Pooter et al. [35] evaluated the effects of increased 

atmospheric CO2 concentrations on vegetation growth and competitive performance 

using meta-analysis. They detected that the biomass enhancement ratio of individually 

grown plants varied substantially across experiments and that both species and size 

variability in the experimental populations was a vital factor. Responses of fast­

growing herbaceous C3 species were much stronger than those of slow-growing C3 

herbs and C4 plants. CAM species and woody plants showed intermediate responses. 

However, these responses are different when plants are growing under competition. 

Therefore, biomass enhancement ratio values obtained for isolated plants cannot be 

used to estimate those of the same species growing in interspecific competition. 

Meta-analysis was also performed to summarize a suite of photosynthesis model 

parameters obtained from 15 fieJd-based elevated CO2 experiments of European forest 

tree species [36]. Tt indicated a significant increase in pholosynthesis and a down­
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regulation of photosynthesis of the order of 10%-20% to elevated COl. There were 

significant differences in the response of stomata to elevated COl between different 

functional groups (conifer and deciduous), experimental durations, and tree ages. 

Ainsworth et al. [37] made the fust meta-analysis of 25 variables describing 

physiology, growth and yield of single crop species (soybean). The study supported 

that the rates of acclimation of photosynthesis were less in nitrogen-fixing plants and 

stimulation of photosynthesis of nitrogen-fixing plants was significantly higher than 

that of non-nitrogen-fixing plants. Pot size significantJy affected these trends. Biomass 

allocation was not affected by elevated COl when plant size and ontogeny were 

considered. This was consistent with previous studies. Again, pot size significantly 

affected carbon assimilation, which demonstrated the importance of field studies on 

plant response to global change. White experiments on plant response to elevated COl 

provide the basis for improving our knowledge about the response, most of individual 

species in these experiments were from controlJed environments or enclosure. These 

studies had sorne serious potential limitations, for exampJe, enclosures may amplify 

the down-regulation of photosynthesis and production [3 8]. FACE (Free Air COl 

Enrichment) experiments allow people to study the response of plants and ecosystems 

to elevated COl under natural and fully open-air conditions. In the metaanalysis of 

physiology and production data in the 12 large-scale FACE experiments across four 

continents [39], several results from previous chamber experiments were confirmed by 

FACE studies. For example, light-saturated carbon uptake, diurnal carbon assimilation, 

growth and above-ground production increased, while specific leaf area and stomatal 

conductance decreased in elevated COl. Different results showed that trees were more 

responsive than herbaceous species to elevated COl and grain crop yield increased far 

less than anticipated from prior enclosure studies. The results from this analysis may 

provide the most plausible estimates of how plants growing in native environments and 

field will respond to elevated COl. Long et al. [40] also reported that average light­

saturated photosynthesis rate and production increased by 34% and 20% respectively 

in C3 species. There was little change in capacity for ribulose-l,5- bisphosphate 

regeneration and linle or no effect on photosynthetic rate under elevated COl. These 

results differ from enclosure studies. 
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Meta-analysis of the response of carbon and nitrogen In plant and soil to rising 

atmospheric COz revealed that averaged carbon pool sizes in shoot, root, and whole 

plant have increased by 22.4%, 31.6%, and 23.0%, respectively, and nitrogen pool 

sizes in shoot, root, and whole plant increased by 4.6%, 10.0%, and 10.2%, 

respectively [41]. The high variability in COz-induced changes in carbon and nitrogen 

pool sizes among different COz facilities, ecosystem types and nitrogen treatments 

resulted from diverse responses of various carbon and nitrogen processes to elevated 

COz. Therefore, the mechanism between carbon and nitrogen cycles and their 

interaction must be considered when we predict carbon sequestration under future 

global change. 

The response of stomata to environment conditions and controlled photosynthesis and 

respiration is a key determinant of plant growth and water use [42]. It is widely 

recognized that increased COz will cause reduced stomatal conductance, although this 

response is variable. For example, Curtis et al. [32] reported that stomatal conductance 

decreased by Il %, not significantly under elevated COz. ln the meta-analysis on data 

collected from 13 long-term (> 1 year), field-based studies of the effects of elevated 

COz on European tree species [43], a significant decrease of 21 % in stomatal 

conductance was detected, but no evidence of acclimation of stomatal conductance was 

found. The responses of young, decidllOuS and water stressed trees were even stronger 

than in older, coniferous and nlltrient stressed trees. Using the data from Curtis et al. 

[32], Medlyn et al. [43] found that there was no significant difference in terms of the 

COz effect on stomatal conductance between pot-grown and freely rooted plants, but 

there was a difference between shortterm and long-term studies. Short-term 

experiments of Jess than one year showed no reduction in stomatal conductance; 

however, longer-term experiments (> 1 year) showed 23% decrease. Compared with 

previous studies [36], these responses under Jong-tenn experiments were much more 

consistent. Thus, Jong-term experiments are essential to the studies of the response of 

stomatal conductance to elevated COz. Other metaanalysis studies also support the 
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results of the reduction of leaf area and stomatal conductance under elevated CO2 [16, 

39,40]. 

Leaf dark respiration is a very important component of the global carbon budget. The 

response of leaf dark respiration and nitrogen to elevated CO2 was studied by meta­

analysis, which demonstrates a significant decrease [29, 32]. In a meta-analytical test 

of elevated CO2 effects on plant respiration [44], mass-based leaf dark respiration 

(Rdm) was significantly reduced by 18%, while area-based leaf dark respiration (RJa) 

marginally increased approximate1y 8% under elevated CO2. There were also 

significant differences in the CO2 effects on leaf dark respiration between functional 

groups. For example, leaf Rda of herbaceous species increased, but leaf Rda of woody 

species did not change. Their metaanalysis reported increasing carbon loss through leaf 

Rd under a higher CO2 environment and a strong dependency of Rd responses to 

elevated CO2 under experimentaJ conditions. 

It is critical to understand the effects of elevated CO2 on leaf area index (LAI) [45]. 

However, no consistent results have been reported [46,47]. Meta-analysis of soybean 

studies showed that the averaged LAI increased by 18% under elevated CO2 [37], 

however, no significant increase was found in the meta-analysis of FACE experimental 

data [40]. 

The relationship between photosynthetic rate and leaf nitrogen content is an important 

component of photosynthesis models. Meta-analysis combining with regression is able 

to assess whether the relationship was more simiJar to species within a community than 

between community and vegetation types, and how elevated CO} affected the 

relationship [48]. Approximately 50% community and vegetation types had similar 

relationship between photosynthetic rate and leaf nitrogen content under ambient CO2• 

There were also differences of CO2 effects on the relationship between species. 

Reproductive traits are the key to investigate the response of communities and 

ecosystems to global change. Jablonski et al. [49] conducted the first meta-analysis of 
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plant reproductive response to elevated COl- They found that across ail species, COl 

enrichment resulted in the increase of flowers, fruits, seeds, individual seed mass and 

total seed mass by 19%, 18%, 16%, 4% and 25%, respectively, and the decrease of 

seed nitrogen concentration by 14%. There were no differences between crops and 

wild species in terms of total mass response to elevated COl, but crops allocated more 

mass to reproduction and produced more fruits and seeds than wild species did when 

they grew under elevated COl. Seed nitrogen in legumes was not affected by elevated 

COl concentrations, but declined significantly for most nonlegumes. These results 

indicated important differences in reproductive traits between individual taxa and 

functional groups, for example, crops were much more responsive to elevated COl 

than wild species. The effects of variation of COlon reproductive effort and the 

substantial decline in seed nitrogen across species and functional groups had broad 

implications for function of natural and agro-ecosystems in the future. 

Soil carbon is an essential pool of global carbon cycle. Using meta-analysis techniques, 

Jastrow et al. [50] showed a 5.6% increase in soil carbon over 2-9 years, at rising 

atmospheric COl concentrations. Luo et al. [41] also demonstrated that averaged Iitter 

and soil carbon pool sizes at elevated COl were 20.6% and 5.6% higher than those at 

ambient CO2• Soil respiration is a key component of terrestrial ecosystem carbon 

processes. Partitioning soil COl efflux into autotrophic and heterotrophic components 

has received considerable attention, as these components use different carbon sources 

and have d ifferent contributions to overall soil respiration [51, 52]. The resu Its from 

partitioning studies by means of a meta-analysis indicated an overaJ1 decline in the 

ratio of heterotrophic component to soil carbon dioxide efflux for increasing annual 

soil carbon dioxide efflux [53]. 

The ratios of boreal coniferous forests were significantly higher than those of 

temperate, while both temperate and tropical latifoliate forests did not differ in ratios 

from any other forest types. The ratio showed consistent declines with age, but no 

difference was detected in different age groups. Additiooally, the time step by which 

fluxes were partitioned did oot affect the ratios consistently. 1t may indicate tl1at higher 
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carbon assimilation in the canopy did not translate into higher sequestration of carbon 

in ecosystems, but was simply a faster return time through plants to return to the 

atmosphere via the roots. 

Barnard et al. [54] estimated the magnitude of response of soil N 20 emissions, 

nitrifying enzyme activity (NEA), and denitrifying enzyme activity (DEA) to elevated 

CO2. They found no significant overalJ effect of elevated CO2 on N20 fluxes but a 

significant decrease of DEA and NEA under elevated CO2. Gross nitrification was not 

altered by elevated CO2, but net nitrification did increase. Changes in plant tissue 

chemistry may have important and long-term ecosystem consequences. Impacts of 

elevated CO2 on the chemistry of leaf litter and decomposition of plant tissues were 

also summarized using metaanalysis [55]. The results suggested that the nitrogen 

concentration in leaf litter was 7.1 % lower under elevated C02 compared with that at 

ambient CO2. They also concluded that any changes in decomposition rates resulting 

from exposure of plants to elevated CO2 were small when compared with other 

potential impacts of elevated CO2 on carbon and nitrogen cycling. Knorr et al. [56] 

conducted a meta-analysis to examine the effects of nitrogen enrichment on litter 

decomposition and found no significant effects across ail studies. However, fertilizer 

rate, site-specifie nitrogen deposition level and litter mass have influenced the litter 

decay response to nitrogenaddition. 

Meta-analysis was also used for investigating the responses of mycorrhizaJ richness 

[57], ectomycorrhizal and arbuscular mycorrhizal fungi, and ectomycorrhizal and 

arbuscular mycorrhizal plants [58] to elevated CO2. 

B.4.2 Response of ecosystem to global warming 

The potential effects of global warming on environment and human life are numerous 

and variable. lncreasing temperature is expected to have a noticeable impact on 

terrestrial ecosystems. Data collected from 13 different International Tundra 

Experiment (ITEX) sites [59] were used to analyze responses of plant phenology, 

growth and reproduction to experimental warming using meta-analysis. This analysis 
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suggests that the primary forces driving the response of ecosystems to soil warming do 

vary across c1imatic zones, functional groups and through time. For example, 

herbaceous plants had stronger and more consistent vegetative and reproductive 

response than woody plants. Recently, similar work was done by Walker et al. [60] 

who used meta-analysis to test plant community response to standardized warming 

experiments at Il locations across the tundra biome involved in ITEX after two 

growing seasons. They revealed that height and coyer of deciduous shrubs and 

graminoids have increased, but, coyer of mosses and lichens has decreased, and species 

diversity and evenness have decreased under the warming. Graminoids and shrubs 

showed larger changes over 6 years. This was somewhat different from previous study 

[59] in which graminoids and shrubs had the largest initial growth over 4 years. This 

again demonstrates that longer-term experiments are essential for investigating plant 

response to global warming. Parmesan et al. [3] reported a metaanalysis on species 

range-boundary changes and phenological shifts to global warming, which showed 

significant range shifts averaging 6.1 km per decade towards the poles and significant 

mean advancement of spring events by 2.3 days per decade. Similar results were found 

in another study on the effects of global warming on plant and animais [61]. More than 

80 percent of species showed changes associated with temperature. Species at higher 

latitudes responded more strongly to the more intense change in temperature. A 

statistically significant change towards earlier timing of spring events has also been 

detected. The sensitivity of soil carbon to temperature plays an important role in the 

global carbon cycle and is particularly important for giving the potential feedback to 

climate change [62]. However, the sensitivity of soil carbon to warming is a major 

uncertainty in projections of CO2 concentration and climate [56]. Recently, the 

sensitivity of soil respiration and soil organic matter decomposition has received great 

attention [56, 62-68]. Several experiments showed that soil organic carbon 

decomposition increased with higher temperatures [63,68], but additional studies gave 

contrary results [64-66]. Although results from individual stlldies showed great 

variation in response to warming, reslilts from the meta-anaJysis showed that 2-9 

years of experimental warming at 0.3-6.0'C significantly increased soil respiration 

rates by 20% and net nitrogen mineralization rates by 46% [2]. The magnitude of the 
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response of soil respiration and nitrogen mineralization rates to experimental warming 

was not significantly related to geographic, climatic, or environmental variables. There 

was a trend toward decreasing response to soil temperature as the study duration 

increased. This study implies the need to understand the relative importance of speciflc 

factors (such as temperature, moisture, site quality, vegetation type, successional status 

and land-use history) at different spatial and temporal scales. Barnard et al. [54] 

showed that the effects of elevated temperature on DEA, NEA, and net nitrification 

were not significant. Based on the meta-analysis results of plant response to climate 

change experiments in the Arctic [69], elevated temperature significantly increased 

reproductive and physiological measures, possibly giving positive feedbacks to plant 

biomass. The driving force of future change in arctic vegetation was likely to increase 

nutrient availability, arising for example from temperature-induced increases in 

mineralization. Arctic plant species differ widely in their responses to environmental 

manipulations. Shrub and herb showed strongest response to the increase of 

temperature. The study advocated a new approach to classify plant functional types 

according to species responses to environmental manipulations for generalization of 

responses and predictions of effects. Raich et al. [70] applied metaanalyses to evaluate 

the effects of temperature on carbon fluxes and storages in mature moist tropical 

evergreen forest ecosystems. They found that litter production, tree growth and 

belowground carbon allocation ail increased significantly with the increasing site mean 

annual temperature; but temperature had no noticeable effect on the turnover rate of 

aboveground forest biomass. Soil organic matter accumulation decreased with the 

increasing site mean annual temperature, which indicated that decomposition rates of 

soil organic matter increased with mean annual temperature faster than rates of NPP. 

These results imply that in a warmer climate, conservation of forest biomass will be 

critical to the maintenance of carbon stocks in moist tropical forests. Blenckner et al. 

[71] tested the impact of the North Atlantic Oscillation (N'AO) on the timing of life 

history events, biomass of organisms and different trophic levels. They found that the 

response of life history events to the NAO was similar and strongly affected by NAO 

in all environments including freshwater, marine, and terrestrial ecosystems. The early 

timing of life history events was detected owing to warming winter, but less 
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pronounced at high altitudes. The magnitude of response of biomass was significantly 

associated with NAO, with negative and positive correlations for terrestrial and aquatic 

ecosystems, respectively. 

Few case studies using meta-analysis have explored the combined effects of elevated 

CO2 concentrations and temperature on ecosystem. One possible reason may be due to 

the lack of individual studies examining both factors simultaneously. Zvereva et al. 

[72] performed meta-analysis to evaluate the consequences of simultaneous elevation 

of CO2 and temperature for plant-herbivore interactions. Their results showed that 

nitrogen concentration and CIN ratio in plants decreased under simultaneous increase 

of CO2 and temperature, whereas elevated temperature had no significant effect on 

them. Insect herbivore performance was adversely affected by elevated temperature, 

favored by elevated CO2, and not modified by simultaneous increase of CO2 and 

temperature. Their anaJysis distinguished three types of relationships between CO2 and 

elevated temperature: (i) the responses to elevated CO2 are mitigated by elevated 

temperature (nitrogen, CIN, leaf toughness), (ii) the responses to elevated CO2 do not 

depend on temperature (sugars and starch, terpenes in needles of gymnosperms, insect 

performance) and (iii) these effects emerge only under simultaneous increase of CO2 

and temperature (nitrogen in gymnosperms, and phenolics and terpenes in woody 

tissues). The predicted negative effects of elevated CO2 on herbivores are likely to be 

mitigated by temperature increase. Therefore, the conclusion is that elevated CO2 

studies cannot be directly extrapolated to a more realistic climate change scenario. 

B.4.3 Response of ecosystem to 0 3 

Mean surface ozone concentration is predicted to increase by 23% by 2050 [Il The 

increase may result in substantial losses of production and reproductive output. 

Individual studies on the response of vegetation to ozone varied widely because ozone 

effects are influenced by exposure dynamics, nutrient and moi sture conditions, and the 

species and cultivars. In the meta-analysis on the response of soybean to elevated 

ozone [73] from chamber experiments, the average shoot biomass was decreased by 

about 34% and seed yield was about 24% lower than that without ozone at maturity. 
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The photosynthetic rates of the topmost leaves were decreased by 20%. SearJes et al. 

[74] provided the first quantitative estimates of UV-B effects in field-based studies on 

vascular plants using meta-analysis. They detected that several morphological 

parameters such as plant height and leaf mass pel' area showed little or no response to 

enhanced UV-B, and leaf photosynthetic processes and the concentration of 

photosynthetic pigments were also not affected. But shoot biomass and leaf area 

presented modest decreases under UV-B enhancement. 

B.4.4 The effects of land use change and land management on c1imate change 

Land use change and land management are believed to have an impact on the source 

and sink of CO2, C~ and N20. Guo et al.[18] examined the influence of land use 

changes on soil carbon stocks based on 74 publications using the meta-analysis. Theil' 

analysis indicated that soil carbon stocks declined by 10% after land use changed from 

pasture to plantation, e.g. 13% decrease for converting native forest to plantation, 42% 

for converting native forest to crop, and 59% for converting pasture to crop. Soil 

carbon stocks can increase by 8% after land use changed from native forest to pasture, 

19% from crop to pasture, 18% from crop to plantation, and 53% from crop to 

secondary forest, respectively. Ogle et al. [75] quantified the impact of changes of 

agricultural land use on soil organic carbon storage under moist and dry climatic 

conditions in temperate and tropical regions using meta-analysis and found that 

management impacts were sensitive to climate in the foJlowing order from largest to 

smallest in terms of changes in soil organic carbon: tropical moist > tropical dry> 

temperate moist > temperate dry. Theil' results indicated that agricultural management 

impacts on soil organic carbon storage varied depending on climatic conditions 

influencing the plant and soil processes driving soil organic matter dynamics. Zinn et 

al. [76] studied the magnitude and trend of effects of agriculture land use on soil 

organic carbon and showed that intensive agriculture systems caused significant soit 

organic carbon loss of 10.3% at the 0-20 cm depth, whiJe non intensive agriculture 

systems had no significant effect on soil organic carbon stocks at the 0-20 and 0-40 

cm depths, however, in coarse-textured soils, non-intensive agriculture systems caused 

significant soil organic carbon losses of about 20% at 0-20 and 0-40 cm depths. 
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It is impoltant to understand the effects of forest management on soil carbon and 

nitrogen because of their roles in determining soil fertility and a source or sink of 

carbon at a global scale. Johnson et al. [77] reviewed various studies and conducted a 

meta-analysis on forest management effects on soil carbon and nitrogen. They found 

that forest harvesting generally had little or no effect on soil carbon and nitrogen. 

However, there were significant effects of harvest types and species on them. For 

example, sawlog harvesting can increase by about 18% of soi 1 carbon and nitrogen, 

while whole tree harvesting may cause 6% decrease of soil carbon and nitrogen. Both 

fertilization and nitrogenfixing vegetation have caused noticeable overall increases in 

soil carbon and nitrogen. Meta-regression was used to examine the costs and carbon 

accumulation for switching from conventional tillage to no-till, and the costs of 

creating carbon offset by forestry [78, 79]. The results showed that the viability of 

agricultural carbon sinks varied with different regions and crops. The increase of soil 

carbon resulting from no-till system may change with the types of crops, region, 

measured soil depth and the length of time at which no-till was practised. Another 

meta-analysis on the driver of deforestation in tropical forests demonstrated that 

deforestation was a complex and multiform process and better understanding of these 

complex interactions would be a prerequisite to perform realistic projections of land­

coyer changes based on simulation models [80]. 

B.4.S Effects of disturbances on biogeochemistry 

Wan et al.[81] examined the effects of fire on nitrogen pool and dynamics in terrestrial 

ecosystems. They found that fire significantly decreased fuel N amount by 58%, 

increased soil NH4+ by 94% and N03- by 152%, but had no significant influences on 

fuel N concentration, soil N amount and concentration. The results suggested that 

different ecosystems had different mechanisms and abilities to replenish nitrogen after 

fire, and fire management regimes (incJuding frequency, intervaJ, and season) should 

be determined according to the ability of different ecosystems to replenish nitrogen. 

Fire had no significant effects on soil carbon or nitrogen, but duration after fire had a 

significant effect, with an increase in both soil carbon and N after 10 years [77]. 
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However, there were significant differences among treatments, with the 

counterintuitive result of lower soil carbon following prescribed fire and higher soil 

carbon following wildfire. 

B.S Discussion 

Meta-analysis has been widely applied in global climate change research and proved a 

valuable tool in this field. Particularly, the response of tenestrial ecosystem to elevated 

COz, global warming and human activities received considerable interests because of 

its importance in global climate change and numerous existing individual and ongoing 

studies. In generaJ, meta-analysis can statistically draw more general and quantitative 

conclusions on sorne controversial issues compared with single studies, identify the 

difference and its reasons, and provide sorne new insights and research directions. 

B.S.! Sorne issues 

(i) Sorne basic issues on meta-analysis still exist [8,11,14,23,82], including publication 

bias, the choice of effect size measures, the difficulty of data loss when selecting 

literatures, quality assessment on literatures and non-independence among individual 

studies. There are a lot of discussions on publication bias because it can directly affect 

the conclusions of meta-analysis. Recently, a monograph was published, relating the 

types of publication bias, possible rnechanisms, existing empirical proofs, statistical 

methods to describe it and how to avoid it [28]. Methods detecting and correcting 

publication bias included proportion of significant studies, funnel graphs and sorne 

statistical methods (fail-safe number, weighted distribution theory, truncated sampling 

and rank correlation test, etc.)[83]. We found that the natural logarithm of response 

ratio was the most frequently used measure in global change research. The advantage 

is that it can linearize the response ratio, being less sensitive to changes in a smaIJ 

control group, and provide a more normal sampling distribution for small samples [4, 

84]. In addition, the conclusions derived from meta-analysis depend on the quantity 

and quality of single studies. Many studies do not adequately report sample size and 

variance, which made weighted effect analysis difficult. Therefore, publication quality 
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needs to be assessed through making strict Iiterature selection and selecting quality 

evaluation indicators. However, publication bias and data loss are also shared with 

traditional narrative reviews. It is necessary for authors to report their experiments in 

more detail to improve publication quality and for editors to publish ail high-qualified 

studies without considering the results. Ail these could improve the quality of meta­

analysis in the future. 

(ii) There are also risks of misusing meta-analysis, so we must be very cautious to 

analyze the results. Korner [85] expressed doubt in the meta-analysis on CO2 effects on 

plant reproduction [49], in which a surprising conclusion was that the interacting 

environmental stress factors are not important drivers of CO2 effects on plant 

reproduction. Korner [85] thought that the meta-analysis provided rather Iimited 

insight because the data were not stratified by fertility of growing conditions and the 

resource status of test plants was not known. The authors advised that meta-analysis on 

aspects of CO2 impact research must account for the resource status of test plants, and 

that plant age is a key criterion for grouping. They also emphasized the shift in data 

treatment from technology-oriented or taxonomy-oriented criteria to that control sink 

activity of plants, i.e. nutrition, moisture, and developmental stage. In a re-analysis 

[86] of meta-analysis on the stress-gradient hypothesis [87], it is revealed that many 

studies used by Maestre et al. [87] were not conducted along stress gradients and the 

number of studies was not enough to differ the points on gradients among studies. 

Therefore, the re-analysis did not support their original conclusions under more 

rigorous data selection criteria and changing gradient lengths between studies and 

covanance. 

(iii) Sorne advanced methods for meta-analysis have not been applied in global climate 

change research. Gates [88] pointed out that many methods used for reducing bias and 

enhancing the accuracy, reliability and usefulness of reviews in medical science have 

not yet been widely used by ecologists. In global climate change research, cumulative 

meta-analysis, meta-regression and sensitivity analyses, for example, have not been 

applied and repol1ed. Cumulative meta-anaJysis is a series of meta-analyses in which 
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studies are added to the analysis based on a predetermined order to detect the temporal 

trends of effect size changes and test possible publication bias [89]. It is useful to 

update summary results from meta-analysis. The temporal changes of the magnitude of 

effect sizes were found to be a general phenomenon in ecology [90]. Meta-regression 

can quantitatively reflect the effects of data, methods and related continuous variables 

on effect sizes and be used for prediction. Sensitive analysis was proposed to examine 

the robustness of conclusions from meta-analysis because of the subjective factors. It 

tests the changes of the conclusions after changing data treatments or models, for 

example, re-analysis after removing low-quality studies, stratified meta-analysis 

according to sample Slzes and re-analysis after changing selected and removed 

Iiterature criteria [91]. These methods still have potential to be used in global climate 

change research. 

(iv) It is necessary to update the results of metaanalysis for a given topic at regular 

intervals. The accumulation of science evidence is a dynamic process, which cannot be 

satisfactorily described by the mean effect size from meta-analysis alone at a single 

time point. Meta-analyses of studies on the same topic peIformed at different time 

points may lead to different conclusions. Therefore, it is important to update the results 

of meta-analysis for a given topic at regular intervals by inclllding newly published 

studies. 

(v) More emphases should be put on the effects of mlliti-factor interactions and lQng­

term experiments in global climate change research. The impact of climate change is 

related to various fields including population genetics, ecophysiology, bioclimatology, 

plant geography, palaeobiology, modeling, sociology, economics, etc. Meta-analysis 

has not been adopted in sorne fields or topics such as the impact of climate change on 

forest insect and disease occurrence, modeling the response of ecosystem productivity 

to climate change, and the impact of climate change on sorne ecosystem as a whole. In 

addition, few studies were condllcted on multi-factor interaction although the 

interaction exists in climate change in the real world [31]. For example, soil respiration 

is regulated by multiple factors, inclllding temperature, moisture, soil pH, soil depth 
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and plant growth condition. Those factors and their interaction have complicated 

effects on soil respiration. In FACE experiments, although elevated CO2 alone 

increased NPP, the interactive effects of elevated CO2 with temperature, N, and 

precipitation on NPP were less than those of ambient CO2 with those factors [92]. 

These results clearly indicated the need for multi-factor experiments. The impact of 

climate change over time is also an important issue. Particularly, most experiments on 

trees have been conducted for a very short term. The longest FACE experiment for 

forest has been established only for 10 years up to now (http://c­

h20ecology.env.duke.edu/site/face.html). Long-term experiments are still needed. 

B.S.2 Potential application of meta-analysis in c1imate change research in China 

Changes of global pattern are much more important than single case study in global 

climate change research. Therefore, meta-analysis has great potential to be used in this 

field. Although meta-analysis has sorne limitations and risks, it has been proved to be a 

valuable statistical technique synthesizing multiple studies. It provides a tool to view 

the larger trends, thus can answer the question on larger temporal and spatial scales 

that single experiment cannot do. China, with its diverse vegetations and land uses, has 

complicated climate regions across tropical, sub-tropical, warm temperate, temperate 

and cold zones from south to north and plays an important role in global climate 

change. In addition, China has the potential to affect climate change because of its gas 

emission development after Tokyo Protocol came into effect. It faces a great pressure 

and challenge and needs scientifically sound decisions on cl imate change issue. 

Scientists have made progress and conducted many experiments and accumulated large 

amount of original data and results. For example, Chinese Terrestrial Ecosystem Flux 

Observational Research Network (ChinaFLUX) consists of 8 micrometeorological 

300 method-based observation sites and 17 chamber method-based observation sites 

(http://www.chinaflux.org).ItmeasurestheoutputofC02.CH4 and N20 for 10 main 

terrestrial ecosystems in China. Chinese Ecosystem Research Network (CERN) is 

composed of 36 field research stations for various ecosystems, including agriculture, 

forestry, grassland, desel1 and water body (http://www.cern.ac.cn).Itis necessary and 

important to synthesize these large amounts of data and results in order to answer sorne 
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overall scientific questions at larger scale, so that the results from meta-analysis could 

provide scientific information and evidence for governmenta1 decisions on climate 

change. It is believed that the future of meta-analysis is promising with wide 

application in global climate change research. 
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c.I. ABSTRACT 

No consensus has emerged on the sensitivity of sail respiration ta increasing 
temperatures under global warming due partly ta the lack of data and unclear 
feedbacks. Our objective was to investigate the general trends of warming effects on 
sail respiration. This study used meta-analysis as a means ta synthesize data from eight 
sites with a total of 140 measurements taken from published studies. The results 
presented here suggest that average soil respiration in forest ecosystems was increased 
approximately by 22.5% with escalating soil temperatures while soil moisture was 
decreased by 16.5%. The decline in soil moisture seemed to be offset by the positive 
effects of increasing temperatures on soil respiration. Therefore, global warming will 
tend to increase the release of carbon normally stored within forest soils into the 
atmosphere due to increased respiration. 

KEY WORDS: Forest ecosystem, meta-analysis, soil respiration, soil warming 
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C.2.INTRODUCTION 

Soil respiration plays a major l'ole in the global carbon cycle, being influenced by both 

biotic factors, like human activities, and abiotic factors, like substrate supply, 

temperature, and moisture (Ryan and Law, 2005; Trumbore, 2006). Ali of these factors 

are also interrelated and interact with each other. Temperature and moisture are key 

factors that regulate many terrestrial biological processes, including soil respiration 

(Raich and Potter, 1995). It is mainly accepted that anthropogenic activities have 

caused the escalating atmospheric CO2 concentrations and increased temperatures seen 

today (lPCC, 2007). However, recent evidence concerning the impact of global 

warming on soil respiration is inconsistent. For instance, several results based on 

gradient observations and incubation experiments indicate that the decomposition of 

soil organic matter (SOM) did not vary with temperature (Li ski et al., 1999; Giardina 

and Ryan, 2000). On the other hand, study results from Trumbore et al. (1996), Agren 

and Bosatta (2002) and Knorr et al. (2005) suggest that soil carbon turnover rates 

increase with temperature. These inconsistencies may be caused by spatial and 

temporal variations in environ mental conditions. Likewise, soil moisture may decrease 

due to an increase in temperature (Wan et al., 2002). It is important to note, however, 

that influences of moisture reduction on soil respiration are poorly understood (Raich 

and Potter, 1995; Davidson et al., 1998; Fang and Moncrieff, 1999; Xu et al., 2004). 

To better understand global warming effects on carbon exchange between the 

terrestrial biosphere and the atmosphere, broader scale studies (e.g., at continental and 

global scale) are essential. However, results from large individual studies have shown 

considerable variation in response to warming. Despite these research efforts, no 

consensus has emerged concerning the sensitivity of temperature on soil respiration. A 

better understanding can be attained by quantitatively synthesizing existing data on 

ecosystem respiration and its potential response to global warming. Meta-analysis is a 

technique developed specifically for the statistical synthesis of independent 

experiments (Hedges and Olkin, 1985; Gurevitch et al., 2001) and has been used 

recently for global warming impacts studies (Parmesan et al., 2003; Luo et al., 2006; 
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Morgan et al., 2006). Rustad et al. (2001) conducted a meta-analysis to summarize the 

response of soil respiration, net nitrogen mineralization, and aboveground plant growth 

to experimental ecosystem warming across 32 sites around the world utilizing different 

biome types (forest, grassland and tundra). They also concluded that soil respiration 

would generally increase by 20% if experimental warming was within the range of 0.3 

to 6.00 e, and a down-regulation would take place within 1 to 5 years. However, their 

study did not separate forests from other biomes, and only provided an overall effect. It 

is therefore important to continuously integrate new warming research results using 

meta-analysis to further understand the effects oftemperature on soil respiration. 

The objectives of this study are thus to: (1) use meta-analysis to quantitatively examine 

whether increased temperature stimulates soil respiration and decreases soil moisture 

in forest ecosystems; (2) estimate the magnitude of the effects of temperature on soil 

respiration and soil moisture. 

C.3.MATERIAL AND METHODS 

C.3.1 Data collection 

In this study, eight sites with a total of 140 measurements collected from soil warming 

experiments in the field were compiled from published papers (see Table 1). Gnly soil 

warming experiments were selected in order to isolate warming effects from other 

environmental factors. The data selection criterion was as follows: in both the control 

and heated plots, the mean and standard deviation values had to be provided. If data 

were presented graphically, authors were contacted for verification or values were 

estimated from digitized figures manually. Data covers several vegetation types 

including mixed deciduous forest, mixed coniferous forest as weil as Douglas fir and 

Norway spruce forest stands distributed within eight different sites. An approximate 

4.Soe mean increase in soil temperature was established across ail eight study sites, 

with a range from 2.5 to 7.5°e. The study periods lasted from one to ten years. 
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Table 1. Basic site-specifie information of soil warming experiments with a total of 

140 measurements from 8 individual study sites. 

Site Location Latitude Biome Increased Duration Reference 

types T (oC) 

Harvard 

Forest (1) 

MA, 

USA 
42.50° N 

Mixed 

deciduous 
4 

Peterjohn et 

al, 1994 

Howland 

Forest 

ME, 

USA 
45.17°N 

Mixed 

conifer 
5 

Rustad & 

Fernandez, 

1998 

Huntington 

Wildlife 

Forest 

NY, 

USA 
43.98° N 

Mixed 

deciduous 
2.5-7.5 2 

McHale et 

al, 1998 

Harvard 

Forest (2) 

MA, 

USA 
42.54° N 

Mixed 

deciduous 
5 10 

Melillo et 

al,2002 

TERA 
OR, 

USA 
44.33° N 

Douglas 

fir 
4 

Lin et al, 

2001 

Sweden 

Boreal Sweden 64.12° N 
Norway 

spruce 
5 2 

Eliasson et 

al,2005 

Oregon 

Cascade 

Mountains 

OR, 

USA 
43.68° N 

Douglas 

fir 
3.5 2 

Tingey, et 

al,2006 

Northern 

Sweden 
Sweden 64.12° N 

Norway 

spruce 
5 2 

Stromgren 

& Linder, 

2002 
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C.3.2 Meta-analysis 

Meta-analysis was used in this study to synthesize data on soil respiration and soil 

moisture response to soil warming. The strength of meta-analysis is that it can extract 

results from each experiment and express relevant variables on a common scale, called 

the effect size. Means and standard deviation data were selected to calculate the effect 

size. Hedge's d was chosen as the effect size metric for the analysis. Hedges' d is an 

estimate of the standardized mean difference unbiased by small sample sizes (Hedges 

and Olkin, 1985). It is calculated as follows: 

XE -XC ( 3 Jd - 1- ------=---=--­
- S 4(Nc +NE -2)-1 

(1) 

(NE _1)(SE)2 + (Nc _1)(Sc)2
S= 

NE +Nc -2 

where d is the effect size; XE and XC the means of experimental and control groups; S 

the pooled standard deviation; 11 and ~ the sample sizes for the treatments and 

controls; and lastly, sE and s: the deviations of the treatments and controls, 

respectively. The effect size and confidence interval for each site was computed and 

weighed to attain the mean effect size. The weighted effect size was calculated as 

follows: 

n 

Lw,di 

d =--,--i=--,-I__ 
n (2) 

LW; 
i=1 

where d is the weighted effect size, n the number of studies, di the effect size of the ith 

study, and the weight Wi (=11 v,) the reciprocal of its sampling variance Vi 
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The 95% confidence interval (CI) around these effects was calculated as follows: 

CI =d ±1.96Sd (3) 

1 ­
where ( Sd == -n--)' SJ is the variance of d . 

Lw; 
i=l 

We calculated the averaged d across the years and its variance for each site in the same 

way as the averaging effects across studies, that is, as the weighted averaged Hedges' d 

and variance for Hedges' d (see Hedges and Olkin, 1985). Mean differences in the 

rates of soir respiration between the heated plots and control plots were expressed as a 

weighted average, calculated as a back-transformed natural logarithm response ratio 

(see Hedges and Olkin, 2000). Since temperature increases varied throughout the 

warming experiments, intensity of impacts has been also estimated by categorizing the 

data of increased temperatures. Ali meta-analyses were run using MetaWin 2.0, a 

statistical software package for meta-analysis (Rosenberg et al. 1997). 

CA.RESULTS 

C.4.l Soil respiration 

Fig. 1a shows the effects of the warming on soil respiration within the individual study 

sites. ln spite of a large variance due to the differences in environmental conditions and 

warming methods, soil respiration significantly increased across ail sites. The mean 

effect size ranged from 0.6 for the mixed coniferous forest in east-central Maine to 3.0 

for the Douglas fir forest located at the Terrestrial Ecophysiology Research Area in 

Oregon. Across ail sites, the grand (overall) mean effect size was 1.2, indicating a 

significant response to warming. Thus, soil-warming experiments in the field 

significantly boosted rates of soil respiration. ln general, in the first two years of 

analysis throughout the study sites, soil respiration was significantly increased by 

approximately 22.5% by applying experimental soil warming, which is similar to the 
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results from Rustad et al. (2001). Fig. 2a shows that soil respiration was increased by 

29% in the first year and by 16% in the second year. This suggests that under the same 

experimental conditions, the increase in soil respiration cou Id be lower in the second 

year than in the first year. The response of soil respiration to soil warming 

unexpectedly appears to decline with the increase in temperature (Fig. 3), which also 

occurred in earlier studies (McHale et al., 1998; Rustad et al., 2001). 

f--.,--i Crsnt Meffi (dTl-, O'<~rall) Grant Mean (dt·~, D'verall) 1 • 

t--------1r-i TERA 
Oregon Cao/-:ad~ Mountains I----------fr-­

a 1 Harvard Forest (1;1 

I----i}---il Hunbngtlln \Mldlite FCi'ie"8t 

t-------i}----ll Sweden Boreal 

t------a----I H8r~d F()f~t (2) 

I--'I--i Hmul1d Foree... tl8~d fcrest (1) j--------;}---­

o o 
Effect Slze Effect size 

Fig. 1. Responses ofsoil respiration (a) and soil moisture (b) (mean effect size (d, open 

circle) and 95% confidence intervals) to experimental soil wanning in different study 

sites. Grand mean effect size (d++, closed circle) for and 95% confidence intervals for 

each response variable are given at the top of each panel. 
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Fig. 2. Increased soil respiration (a) and declined soil moisture (b) after 1 and 2 years 

of experimental soil warming. 

C.4.2 Soil moisture 

For soil moisture, the mean effect size varied from -2.1 for the even-aged mixed 

deciduous forest in the Harvard Forest to -1.0 for the mixed deciduous forest in the 

Huntington Wildlife Forest. Across ail sites, the grand mean effect size was 

approximately -lA, indicating a significant and negative response to warming. In 

general, soil warming significantly decreased soil moisture content across aIl sites (Fig. 

1b). Fig. 2b shows that soil moisture significantly decreased by 14% in the first year 

and by 19% in the second year under experimental soil warming. Thus, under the same 
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experimental conditions, the decrease in soil respiration was higher in the second year 

than in the first year. Across ail sites, soil moisture was declined approximately by 

16.5% under experimental soil warming, which is consistent with the soil moisture 

reduction in response to thermal manipulations that has been reported by studies by 

Peterjohn et al. (1994), Hantschel et al. (1995), and Harte et al. (1995). 

! Q1,t1 

iJ 

11----10 ?~ "'C 

I---Q---; 5.Cl' ....
 

o
 

Fig. 3. A response ofsoil respiration to the range oftemperature increase in soil 

warming experiments (mean effect sizes (d, open circle) and 95% confidence intervals). 

Grand mean effect size (d++, closed circle) and 95% confidence interval for the 

response variable is given at the top of the panel. 

C.S. DISCUSSION 

Previolls studies have suggested that a decrease in soil moistllre under warmmg 

conditions could possibly redllce root and microbial activity, affecting the sensitivity of 

soil respiration to warming (Stark and Firestone, 1995). In this stlldy, results showed 

that experimental soil warming decreased moistllre content, but did not affect soil 

respiration in forest ecosystems. Also, several modeling stlldies have demonstrated that 

warming stimulates decomposition of organ ic matter in soils reslliting in a decrease in 
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temperature sensitivity of soil respiration (Gu et al. 2004). Meanwhile, accumulation of 

more carbon in forest soils may result in a potential loss of large amounts of carbon in 

the form of CO2 into the atmosphere. 

Severallong-term studies demonstrated that the acclimatization trend due to the effects 

of soil warming on soil CO2 efflux is attributable to drought (Luo et al. 2001; Melillo 

et al., 2002), and the fluctuation of other environmental factors, such as substrate 

depletion (Kirschbaum, 2004). The decline in soil moisture counterbalances the 

positive effect that elevated temperatures have on litter decomposition and soil 

respiration (McHale et al. 1998; Emmett et al. 2004). Soil moisture content may 

become more important over longer time periods. Up to now, short-term studies (1 to 3 

years) have far outweighed long-term studies (5 to 10 years) concerning temporal 

variability in soil respiration. Thus, long-term observations of soil respiration and 

moisture content are necessary, and to better understand the temporal and spatial 

dynamics of soil respiration, further studies are necessary so that more soil warming 

experiments at different spatial scales can be conducted, taking into account more 

environmental factors and their interactions.Meta-analysis could be used to develop 

general conclusions, delimit the differences among multiple studies and the gap in 

previous studies, and provide the new research insights (Rosenthal and DiMatteo, 

2001). However, sorne uncertainties might be brought in this study, since different 

types of forests joined in the analysis with different structure and turnover patterns of 

soil organic matter. 

ACKNOWLEDGEMENTS: This study was financially supported by Fluxnet-Canada 

Research Network (FCRN), Natural Science and Engineering Research Council 

(NSERC) discovery grant, Canada Research Chairs program, Canadian Foundation for 

Climate and Atmospheric Science (CFCAS) and BIOCAP Canada Foundation. We 

wOllld like ta thank Dr. Dolores Planas for her vaillable suggestions. 



216 

REFERENCES 

Agren, G. 1., Bosatta, E. 2002 - Reconciling differences in predictions of temperature 
response of soil organic matter - Soil Biol. Biochem. 34: 129-132. 

Davidson, E. C. A, Belk, E., Boone, R. D. 1998 - Soil water content and temperature 
as independent or confounded factors controlJing soil respiration in a temperate 
mixed hardwood forest - Global Change Biol. 4: 217-227. 

Emmett, B. A., Beier, C., Estiarte, M., Tietema, A., Kristensen, H. L., Williams, D., 
Pefiuelas, J., Schmidt, 1., Sowerby, A. 2004 - he Response of Soil Processes to 
Climate Change: Results from Manipulation Studies of Shrublands Across an 
Environmental Gradient - Ecosystems, 7: 625-637. 

Fang, C., Moncrieff, J. B.1999 - A model for soil C02 production and transport 1: 
Model development - Agric. For. Meteorol. 95: 225-236. 

Giardina, C. P., Ryan, M. G. 2000 - Evidence that decomposition rates of organic 
carbon in mineraI soil do not vary with temperature - Nature, 404: 858-861. 

Gu, L., Post, W. M., King, A. W. 2004 - Fast labile carbon turnover obscures 
sensitivity ofheterotrophic respiration from soil to temperature: A model analysis 
- Global Biogeochem. Cycles, 18: 1-11. 

Gurevitch, 1., Curtis, P. S., Jones, M. H. 2001 - Meta-analysis in ecology - Adv. Eco!. 
Res. 32: 199-247. 

Hantschel, R. E., Kamp, T., Beese, F. 1995 - Increasing the soil temperature to study 
global warming effects on the soil nitrogen cycle in agroecosystems - J. Biogeogr. 
22: 375-380. 

Harte, J., Shaw, R. 1995 - Shifting Dominance Within a Montane Vegetation 
Community: Results of a Climate-Warming Experiment - Science, 267: 876-880. 

Hedges, L. V., Gurevitch, J., Curtis, P. S. 1999 - The meta-analysis of response ratios 
in experimental ecology - Ecology, 80: 1150-1156. 

Hedges, L. V., Olkin, 1. 1985 - StatisticaJ methods for meta-analysis - Academic Press: 
New York. 

IPCC, 2007 - Climate Change 2007: Synthesis Report. Contribution of Working 
Groups l, II and III to the Fourth Assessment Report of the Intergovernmental 
Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A 
Ceds.)]. IPCC, Geneva, Switzerland, 104 pp. 

Kirschbaum, M. U. F. 2004 - Soil respiration under prolonged soil warming: are rate 
reductions caused by acclimation or substrate loss - Global Change Biol. 10: 
1870-1877. 

Knon, W., Prentice, 1. C., House, J. 1., HolJand, E. A2005 - Long-term sensitivity of 
soil carbon turnover to warming - Nature, 433: 298-301. 

Liski, J., llvesnieme, H., Makela, A, Westman, C. J. 1999 - CO2 emissions from soil in 
response to climatic warming are overestimated-The decomposition of old soil 
organic matter is tolerant oftemperature - Ambio, 28: 171-174. 

Luo, Y., Hui, D., Zhang, D. 2006 - Elevated CO2 stimulates net accumulations of
 
carbon and nitrogen in land ecosystems: a meta-analysis - Ecology, 87: 53-63.
 

Luo, Y., Wan, S., Hui, D., Wallace, L. L. 2001 - Acclimatization of soil respiration to
 
warming in a tall grass prairie - Nature, 413: 622-625. 



217 

McHale, P. J., Mitchell, M. J., Bowles, F. P. 1998 - Soil warming in a nOlthern 
hardwood forest: trace gas fluxes and leaf litter decomposition - Cano 1. For. Res. 
28: 1365-1372. 

Melillo, J. M., SteudJer, P. A., Aber, 1. O., Newkirk, K., Lux, H., Bowles, F. P., 
Catricala, C., MagilJ, A., Ahrens, T., Morrisseau, S. 2002 - Soil Warming and 
Carbon-Cycle Feedbacks to the Climate System - Science, 298: 2173-2176. 

Morgan, P. B., Mies, T. A., Bollero, G. A., Nelson, R. 1., Long, S. P. 2006 - Season­
long elevation of ozone concentration to projected 2050 levels under fully open­
air conditions substantially decreases the growth and production of soybean - New 
Phytol. 170: 333-343. 

Parmesan,� C. Yohe, G. 2003 - A globally coherent fingerprint of climate change 
impacts across natural systems - Nature, 421: 37-42. 

Peterjohn, W. T., Melillo, 1. M., Steudler, P. A., Newkirk, K. M., Bowles, F. P., Aber, 
1. 0.1994 - Responses of trace gas fluxes and N availability to experimentally 
elevated soil temperatures - Eco!. App!. 4: 617-625. 

Raich,1. W., Potter, C. S.1995 - Global patterns ofcarbon dioxide emissions from soiJs 
- Global Biogeochem. Cycles, 9: 23-36. 

Rosenberg, M. S., Adams, O. c., Gurevitch, J. 1997 - MetaWin: Statistical Software 
for Meta-analysis with Resampling Tests - Sinauer Associates, Mass. 

Rosenthal R., OiMatteo. M R. 2001 - Meta-analysis: recent developments in 
quantitative methods for literature review - Ann. Rev. Psycho1.52: 59-82. 

Rustad, 1., Campbell, 1., Marion, G., Norby, R., Mitchell, M., HartJey, A., Cornelissen, 
J., Gurevitch, J. 2001 - A meta-analysis of the response of soil respiration, net 
nitrogen mineralization, and aboveground plant growth to experimental ecosystem 
warming - Oecologia, 126: 543-562. 

Ryan, M. G., Law, B. E. 2005 - Interpreting, measuring, and modeling soil respiration ­
Biogeochemistry, 73: 3-27. 

Stark, 1. M., Firestone, M. K.1995 - Mechanisms for Soil Moisture Effects on Activity 
ofNitrifying Bacteria Applied and Environmental - Microbiology, 61,218-221. 

Trumbore, S.2006 - Carbon respired by terrestrial ecosystems-recent progress and 
challenges - Global Change Biol. 12: 141-153. 

Trumbore, S. E., Chadwick, O. A., Amundson, R. 1996 - Rapid Exchange Between 
Soil Carbon and Atmospheric Carbon Oioxide Oriven by Temperature Change ­
Science, 272: 393-396. 

Wan, S., Luo, Y., Wallace, 1. 1. 2002 - Changes in microclimate induced by 
experimental warming and clipping in tallgrass prairie - Global Change Biol. 8: 
754-768. 

Xu,� 1. K., Baldocchi, O. D., Tang, 1. W. 2004 - How soil moi sture, rain pulses, and 
growth alter the response of ecosystem respiration to temperature - Global 
Biogeochem. Cycles, 18: doi: 10.1 029/2004GB00228 1. 


