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ABSTRACT 

The Elements of Metacommunity Structure (EMS) analytical tool is a powerful 
platform for evaluating patterns of species distribution in geographic or 
environmental space; however. it is still underused in ecological studies. The 
objective of this study is to evaluate the structuring mechanisms of boreal lake-fish 
species distributional patterns at multiple scales by applying the EMS technique on 
the Ontario Fish Distributlon Database (OFDD), a large database that contains 
presence-absence records of fish species and the geographic position for more than 
9000 lakes from Ontario. The environmental information for each lake was assessed 
in the Lake Inventory Database (LINY) and spatial indices, such as lake connectivity 
and distance from postglaciaJ refuges, were created from lakes geographic position. 
Moreover, the phylogenetic relatedness of species as weil as their l3-niches were 
calculated in order to assess the l'ole of species in community assembly and how they 
affect metacommunity patterns. 

In chapter one, the EMS indicated that nestedness and Clementsian gradients are the 
most common distribution patterns among watersheds and that the main difference 
between them is species turnover (e.g. change in species composition across space). 
Most nestedness metacommunities are located in low-energy watersheds, containing 
larger lakes at higher latitudes whereas Clementsian gradients metacommunities are 
mostly found in opposite conditions. At the watershed scale, environmental variables 
explained, in average, 9.1 % of the variation in species distribution from both patterns 
whereas spatial variables accounted for less than 3.5%. At the province scale, the 
variation in species distribution was best accounted by spatially structured 
environment (29.26%), followed by pure environmental predictors Cl 0.80%), 
Statistical tests showed a gradient of low to high species turnover from North to 
South, influenced mainly by latitude and correlated environmental variables (e.g., 
temperature). 

In chapter two, results indicated that, at the watershed scale, phylogenetic 
underdispersion is the dominant pattern whereas at the lake scale phylogenetic 
overdispersion has a stronger signal. Community phylogenetic and niche structure are 
mainly influenced by lake size, energy-related variables (growing degree-days, 
temperature, potential evapotranspiration) and latitude. In northern regions, there is 
higher niche overlap and greater phylogenetic distance between constituents present 
in the same communities, whereas in southern watersheds, communities are 
composed of species more closely related but with low niche overlap. 

Keywords: EMS, correspondence analysis, Clementsian 'gradients, specles 
distribution, nestedness, species turnover, phylogenetic structure, niche, 
environmental gradient 





RÉSUMÉ 

Les « Éléments de la Structure des Metacommunautés» (EMS) est un outll 
analytique pu issant pour l'évaluation des patrons de distributions d'espèces dans 
l'espace géographique ou environnementale; par contre, cette technique est encore 
sous-utilisée parmi les études écologiques. L'objectif de cette étude est d'évaluer les 
mécanismes structurants les patrons de distributions d'espèces de poissons de lacs 
boréaux à des multiples échelles en appliquant la technique EMS sur la Ontario Fish 
Distribution Database, une base de données contenant des informations sur la 
présence-absence des espèces de poissons de plus de 9000 lacs de l'Ontario ainsi qùe 
leurs positions géographiques. Pour chaque lac, l'information sur les variables 
environnementales on été obtenue grâce au Lake lnventory Database (LINY) et des 
indices spatiaux, comme la connectivité entre les lacs et leur distance aux refuges 
postglaciaires, ont été calculés à partir d'informations géographiques. Puis, la relation 
phylogénétique des espèces et leurs niches non été estimés pour comprendre le rôle 
des espèces dans l'assemblage des communautés et formation des metacommunautés. 

Dans le premier chapitre, la technique EMS a indiqué que nestedness et Clementsian 
gradients sont les patrons de distributlons les plus courants parmi les bassins 
versants. La pluparts des patrons nestedness se situent dans des bassins de faible 
énergie contenant des grands lacs et localisés dans de hautes latitudes tandis que les 
patrons Clementsian gradients sont rencontrés dans des conditions opposés. À 
l'échelle des bassins, les variables environnementales expliquent en moyenne 9.1 % 
de la variation dans la distribution des espèces pour les deux type de patrons contre 
moins de 3.5% pour les variables spatiales. À l'échelle provinciale, la variation dans 
la distribution des espèces est expliquée principalement par les variables 
environnementales structurées spatialement (29,26%) suivit des variables 
environnementales indépendantes de l'espace (10.80%). Des tests statistiques 
suggèrent que le taux de changement dans la composition des communautés, la 
caractéristique qui mieux distingue les deux patrons, augmente du nord vers le sud, 
influencé principalement par la latitude et les variables associées (e .g., température). 

Dans le second chapitre, les résultats indiquent que, à l'échelle du bassin versant, la 
sous-dispersion phylogénétique prédomine tandis que la sur-dispersion 
phylogénétique est plus observée à j'échelle locale. La structure phylogénétlque et de 
niche des communautés sont principalement influencés par la taille des lacs, les 
variables liées à l'énergie (e.g., température, degré-jour de croissance) et la latitude. 
Dans les régions du Nord, il y a des taux élevés de chevauchement des niches et de 
plus grande distance phylogénétique entre les espèces qui cohabitent alors que dans 
les bassins versants du Sud on rencontre Je patron inverse. 

Mots clefs: EMS, analyse de correspondance, Clementsian gradients, distribution 
d'espèces, nestedness, species turnover, structure phylogénétique, niche, gradient 
environnemental 





INTRODUCTION
 

1.1 - State of knowledge 

The processes that select species to assemble into local communities have 

been a core therne in Ecology as a science. Ecologists weil accept that communities 

are opened entities, in the sense that they are subject to processes of immigration and 

emigration of organisms (i.e., communities are linked with each other by species 

dispersal). ln this context, the metacommunity theory arose as a prominent 

framework to explain species distributions based on both local (i.e., abiotic factors 

and biotic interactions) and regional (i.e., climate and dispersal) factors. One way to 

study metacommunities is to focus on structural patterns, extracted from a species-by­

site matrix. Many species distributional patterns have been described in the ecological 

literature (e.g., nestedness, checkerboards) and, more importantly, each of them have 

unique theoretical underpinnings and structuring mechanisms. However, most 

analytical methods are limited by contrasting only one specifie pattern with 

expectations from a random mode!. Here, we use a metacommunity framework that 

can test for six different patterns of distribution simultaneously on a large temperate 

lake-fish database in order to understand the structuring mechanisms of their 

distribution. l deiined the "metacommunity units" as the tertiary watersheds from 

Ontario and subjected each of them to the analytical framework originally developed 

by Leibold & Mikkelson (2002), termed Elements of Metacommunity Structure 

(EMS), which estimates the pattern that best fit the species distributions in a given 

metacommunity. 

ln the first chapter, the metacommunity patterns unveiled by EMS will be 

analyzed, and the relative importance of spatial and abiotic factors accounting for 

each pattern will be assessed. ln the second chapter, the focus will shift to species 
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properties where phylogenetic and niche relationships will be assessed. Then, this 

information will be related to the patterns identified by the EMS analysis on each 

metacommunity in order to determine the possible mechanisms structuring them, 

such as competitive exclusion versus habitatfiltering. In both chapters, l also explore 

patterns across the entire Province to determine how ecological processes such as 

variation in species composition across space (i.e., species turnover; chapter one), 

community phylogenetic and niche structure (chapter two) relate to environmental 

variation. In the following paragraphs, l will introduce the subject of this work in the 

format of a literature review, outlining the general context in which the questions and 

issues addressed in this study are discussed. Moreover, the characteristics of the 

database and the ecological system, the metacommunity paradigm, the EMS 

technique and the insights acquired from applying phylogenetic approaches to 

community ecology (and EMS patterns) are presented. The final section is a general 

conclusion that presents the links between both chapters and the scientific 

contributions made by this study. 

1.2 - Study System 

In this study, a local community is defined as ail fish species that inhabit a 

lake (which may potentially interact with each other) and a metacommunity as ail 

lakes (which are potentially linked via fish dispersal through streams) within a 

watershed. Lake-fish systems have several features that make them a good ecological 

model to apply the metacommunity paradigm, niche modeling and analysis based on 

the phylogenetic structure of their communities. Lakes within a watershed can be 

viewed as "virtual islands" presenting discrete boundaries (Magnuson et al., 1998) 

and varying in their degree of connectivity (Olden et al., 2001). The connectivity of a 

lake from the stand-point of a fish is a function of several factors, such as distance 

from other lakes, presence of streams connections, flow direction of connecting 

streams, lake elevation and presence of predators in dispersal corridors (Oiden et al., 

2001). The different degrees of connectivity among lakes and the constraints imposed 



3 

by the environment within each lake will infiuence fish dispersal ability and patterns 

as weil as their extinction vulnerability (Jackson et al., 2001). For example, more 

isolated lakes have reduced colonization rates (Jackson et al., 2001), thus fish 

populations going through local extinction (i.e., at the lake level) have lower 

probability to be rescued (Brown & Kodric-Brown, 1977). Other aspects infiuencing 

fish biodiversity, among many, are pH (Helmus et al., 2007b), temperature (Shuter & 

Post, 1990) and lake size, the latter being a surrogate for habitat heterogeneity and 

highly correlated with fish richness (Eadie et al., 1986). 

In order to understand the factors structuring species distribution (Leibold & 

Mikkelson, 2002; Leibold et al., 2004), the Ontario Fish Distribution Database 

(OFDD), a database, maintained by the Ontario Ministry of Natural Resources 

(OMNR) containing the presence-absence of 134 temperate lake-fish species 

distributed among approximately 9900 lakes was used. Species that are introduced, 

rare (present in less than 0.5% of the lakes) and hybrids, and lakes without species or 

geographic coordinates were removed, resulting in 53 extant native species and 8911 

lakes divided in 85 tertiary watersheds (considered as metacommunities; see Figure 

1.1). The average lake richness was 6.46 ± 3.86 fish species. For more information, 

see the methodology section of Chapter 1. The mean of each environmental variable 

for the 85 watersheds are presented in Table 1.1. Abbreviations used in Table 1.1 

stands for the following: SA = surface area; P = shoreline perimeter; ISL = island 

shoreline perimeter; MaxD = max depth; MeanD = mean depth; ELEV = elevation; 

GDD = growing degree days; SD =secchi depth; TDS = total dissolved solids; MEl = 

morphoedaphic index; Crown = crown canopy cover; MADT = mean annual daily 

temperature; MJT = mean July temperature; MAT = mean August temperature; and 

PET = potential evapotranspiration. ISL refers to the size of the combined shoreline 

perimeter of ail islands present in each lake, hence lakes with no islands will have 

13L value of O. MEl is calculated by dividing the total dissolved solids (TDS) present 
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in a lake by its mean depth (MeanD). Growing degree-days (GDD) were estimated as 

follow: 

I[((MeanMonthlyTemperature > S.soC) -S.5°C) x 30] 

Where the "30" represent the 30-year recording period of the dataset (Mandrak, 

1995). Crown is measured as % of the lake shoreline covered by the canopy of trees 

(for additiona1 information see Goodchilde & Gale, 1982; Mandrak & Crossman, 

1992a). 

1.3 -: Community ecology and the metacommunity paradigm 

In the last century, many approaches were proposed in order to explain the 

patterns of species distributions and the processes that regulate them. The classic 

view is that communities assemble according to niche-related processes, such as 

resource use and competition. This perspective became very popular among 

ecologists after Hutchinson's (1957) seminal paper unveiling the multidimensional 

niche (MacArthur & Levins, 1967; Diamond, 1975). Models based on this approach 

analyze how niche characteristics such as niche breadth (variability in resource use) 

and marginality (levels of specialization) are affected by the environment and/or 

biotic interactions (e.g., Mason et al., 2008; Ingram & Shurin, 2009). A few years 

later, MacArthur & Wilson (1967) proposed the eguilibrium theory of island 

biogeography (IBT), which states that species composition in insular habitats is 

dictâted by differences in the area and isolation of sites, which in turn influence the 

probabi1ity of extinction and colonization of species, respectively (Brown & Kodric­

Brown, 1977). Ricklefs (1987) reinforced the importance of this approach, but argued 

that local diversity was not solely dictated by local environment and competition, as it 

was also largely dependent on the regional pool of potential colonizers and their 

evolutionary histories. More recently, Hubbell (2001) developed the Unified Neutral 

Theory of biodiversity which posits that species differences are not relevant (0 
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community assembly and local community composition \s dictated mainly by 

stochastic processes such as dispersal, ecological drift and speciation. Although this 

model has weil fitted some natural systems, space and stochasticity alone cannot 

explain aIl the variation in species distribution. Thus recently, the metacommunity 

theory was developed, including both deterministic (i.e., niche).and spatial processes 

within the same framework (Leibold et al., 2004). 

A metacommunity is a set of local communities that are potentially linked by 

species dispersal at the regional scale (Leibold et al., 2004), whereas a community is 

the collection of individuals of ail species that potentially interact within a single 

patch (Holyoak et al., 2005). In this perspective, the spatial distribution of 

communities and dispersal plays a critical role structuring the species diversity at 

regional and local scales, which may influence community assembly from what 

would be expected if only local biotic and abiotic aspects are analyzed (Leibold et al., 

2004). 

Metacommunities are studied by means of two venues: mechanism (Holyoak 

et al., 2005; Driscoll & Lindenmayer, 2009) and structure (Leibold & Mikkelson, 

2002; Haudsorf& Hennig, 2007). The mechanistic approach seeks to explain species 

distribution through several spatially mediated models (e.g., species sorting, patch­

dynamics, mass-effects and neutral) that have different assumptions about the roles of 

environment, dispersal rates and stochastic vs. deterministic processes (see Leibold et 

al., 2004 for a complete review). The structural approach, which is the focus of this 

work, evaluates species distributions along environmental gradients that result from 

specifie mechanisms and manifest as particular patterns of metacommunity structure 

(Leibold & Mikkelson, 2002; Haudsorf & Hennig, 2007; Presley et al., 2009). In this 

approach, metacommunity structure is determined by fitting different non-random 

patterns to an incidence matrix (i.e., site-by-species matrix). Several non-random 

patterns have been described (see Leibold & Mikkelson, 2002), with sorne being 

quite common in nature, such as nested subsets (Patterson & Atmar, 1986). Studies 
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addressing patterns of species distributions (e.g., nestedness, Clementsian gradients, 

Gleasonian gradients, evenly-spaced gradients, checkerboards and random) can 

provide valuable clues about the factors that regulate ecological communities (Presley 

et al., 2009), because the mechanisms and theory are unique to each pattern (Presley 

& Willig, 2010). 

Recently, several analytical tools have been developed allowing researchers to 

identify and accountfor numerous aspects of metacommunity structure (e.g., 

Hoagland & Collins, 1997; Leibold & Mikkelson, 2002; Haudsorf & Hennig, 2007). 

In this study, 1 will use the framework developed by Leibold & Mikkelson (2002), 

termed Elements of Metacommunity Structure (EMS), which is described below. 

1.4 - Elements of Metacommunity Structure (EMS) 

The EMS technique focuses on determining which pattern best fits to the 

species distributions within a metacommunity. Prior to analysis, the incidence matrix 

(i.e., species by sites matrix) is ordered according to the primary axis extracted via 

correspondence analysis (Presley et al., 2009), which is a common ordination 

procedure (Gauch et al., 1977) to detect variation in species distributions that respond 

to latent processes such as environmental gradients (i.e., variation in unmeasured 

environmental variables). Correspondence analysis (CA) maximizes the proximity of 

sites with similar species compositions as weil as species with similar distributions 

(Leibold & Mikkelson, 2002). Therefore, it makes a compromise between 

minimizing interruptions within species ranges and within community compositions. 

This reorganization of the data matrix creates a gradient that retlect the integration of 

multiple factors (abiotic and biotic) that may be impol1ant in dictating species 

distributions (Presley & Willig, 2010). 
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EMS is based on three fundamental elements (see Figure 1.2) of the binary 

incidence matrix, after reordered through correspondence analysis: coherence, species 

turnover and boundary clumping (Leibold & Mikkelson, 2002). Coherence is 

calculated by counting the number of embedded absences (i.e., absences between 

presences) within species ranges or community compositions. Turnover is evaluated 

by counting the number of times two sites exchange two species. Finally, boundary 

clumping is the assessed by the Morisita index (Morisita, 1971), representing the 

degree of coincident range or community boundaries in the matrix (Leibold & 

Mikkelson, 2002). The significance of each element is assessed by a nul! model 

analysis, which is described in the methodology section of Chapter one. Using the 

interaction between these three basic elements of the incidence matrix, six different 

patterns can be distinguished: checkerboards, Clementsian gradients, Gleasonian 

gradients, evenly-spaced gradients, nested subsets and random distributions (See 

Figure 1.2). 

Checkerboard patterning fol1ows from Diamond (1975) fifth assembly rule 

which states that "some pairs of species never co-occur, either by themselves or in 

larger combinations, mainly due to competition" (Diamond, 1975). In this case the 

incidence matrix has significantly negative coherence (i.e., more embedded- absences 

than expected by chance), which means that the metacommunity is composed by 

pairs of mutually exclusive species that occurs independently of one another (Presley 

et al., 2009). 

Clementsian and Gleasonian gradients come from an historical debate JO 

community ecology that mainly focused on vegetation commuilities (Hoagland & 

Collins, 1997). One side argued that biotic communities are a discrete group of 

species that show similar responses to environmental factors (Clements, 1916) and 
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Figure 1.1 Map of Ontario divided by tertiary watersheds (Cox, 1978), with 
corresponding codes from Table 1.1. Watersheds without codes have no data 
available. Map adapted from Ministry of Environment (2004). 
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replace each other across space (Hoagland & Collins, 1997), whereas the other 

suggested that species have somewhat individual responses to abiotic factors and 

communities form a continuum of gradually changing compositions along the 

environmental gradient (Gleason, 1926). These ideas were recently extended to deal 

with animal communities as weil (Leibold & Mikkelson, 2002, Heino, 2005; Presley 

et al., 2009). Evenly-spaced gradients occur in metacommunities where species are 

competing along an environmental gradient and species distribution is dictated by 

trade-offs in their ability to explore alternative resources (Tilman, 1982; Leibold & 

Mikkelson, 2002). Ali three patterns appear in coherent metacommunities that exhibit 

positive turnover. The difference is in boundary c1umping, where boundaries can be 

either clumped in Clementsian gradients, randomly distributed in the Gleasonian 

gradients or hyperdispersed in evenly-space gradients (Leibold & Mikkelson, 2002). 

Nested subsets arise in sets of sites where poor-species biota are predictable 

subsets of the species composition from richer biota, i.e~, common species- occur at 

most sites and rare species occur only in the most diverse communities (Patterson & 

Atmar, 1986). Biotic nestednesshas been found to be structuring the distribution of a 

large number of taxa (Wright et al., 1998) and appears to be a common pattern in 

fragmented landscapes such as islands, isolated mountain tops and fragmented forest 

patches (Cook & Quinn, 1995; Patterson & Atmar, 1986; Honnay et al., 1999; 

Férnandez-Juridic, 2002). Many studies have found that the main ecological 

processes driving nested patterns are selective colonization and selective extinction 

(e.g., Cook & Quinn, 1995; McDonald & Brown, 1992) which are related to 

differences in patches isolation and area, respectively. However, other causes for 

nested distributions have been also proposed, such as passive sampling, nested 

habitats, selective environmental tolerances and environmental harshness (see Ulrich 

et al., 2009 for a complete review). In this case, the metacommunity is coherent and 

exhibits low turnover rates among communities due to sorne degree of overlap 

between their species composition. Finally, a metacommunity can exhibit non­
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significant coherence, which suggests that species are not responding to the same 

environmental gradient and are c1assified as random (Presley et al., 2009). 

Although these patterns are weil studied in the ecological literature (e.g., 

Hoagland & Collins, 1997; Leibold & Mikkelson, 2002; Haudsorf & Hennig, 2007; 

Presley et al., 2009; Ulrich et al., 2009), there has been no attempt to compare 

different patterns across several metacommunities within the same system (but see 

Presley & Willig, 2010). Part of the problem is that large data sets which encompass 

several metacommunity systems over an entire biogeographic region are rare. This 

issue will be overcome by using the OFDD, because of the large number of lakes 

(n=8911) and the possibility to divide the set among somewhat discrete 

metacommunity units (e.g., watersheds), allowing comparisons among EMS patterns. 

Because each pattern can be considered a different "metacommunity trait", that are 

patterned by different structuril1g mechanisms, comparisons among patterns can 

increase our knowledge about how biological communities are structured over space, 

history and environmental gradients (Leibold & Mikkelson, 2002). 

1.5 - The phylogenetic structure of ecological communities 

Another important issue to consider in metacommunity studies is the 

evolutionary history of species (Loeuille & Leibold, 2008). In the last decade, the 

phylogenetic aspects of community assembly have gained increasing attention from 

ecologists (Webb et al., 2002; Cavender-Bares et al., 2009; Peres-Neto, 2004; Kraft 

et al., 2007). Because species that diverged recently (i.e., species close within a 

phylogenetic tree) tend to be ecoLogically similar (Cavender-Bares et al., 2004; Peres­

Neto, 2006), there may be a link between the phylogenetic relatedness of taxa and the 

factors that determine their distributions (Leibold et al., 2010). Assuming that species 

niches are somewhat conserved through time (i.e., closely related species diverge less 

through time than of what would be expected in an unconstrained evolutionary 
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Figure 1.2 General framework for the Elements of Metacommunity Structure 
(coherence, turnover and boundary clumping). Columns represent sites and rows 
represent species. NS = non significant. See Table 1.2 for EMS results of the 
hypothetical matrices. 
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Table 1.2 Results of EMS analyses on hypothetical matrices from Figure 1.2. 
Analyses were performed using the first ordination axis extracted via reciprocal 
averaging and based on community perspective. Abs = number of embedded 
absences; Re = number of replacements; Mo = Morisita's index; !..l. = mean value of 
each element for the random distribution; (J = standard deviationof each element for 
the random distribution; p = significance probability; SV = standardized value. 
Significant results (p :s 0.05) are in boldo *Coherence standardized values were 
multiplied by -1 ** Mo is statistically tested with a two-tailed test, thus when p 2: 
0.95, the result is significant and indicate an evenly-spaced gradient metacommunity 
pattern. 

Coherence 
Pattern Abs cr p sv* 

Checkerboards 
Random 

Nestedness 
Evenly-Spaced 

Gleasonian 
Clementsian 

73 
30 
o 
o 
o 
o 

17.007 
43.137 
26.171 
36.257 
38.482 
42.724 

11.1711 
7.5232 
4.2718 
5.4515 
5.841 

6.0589 

<0.001 
0.0808 
<0.001 
<0.001 
<0.001 
<0.001 

-5.01230855 
1.74619843 
6.12645723 
6.65083005 
6.58825544 
7.05144498 

Pattern Re 

Turnover 

cr p sv 

Checkerboards 
Random 

Nestedness 
Evenly-Spaced 

Gleasonian 
Clementsian 

o 
575 
649 
880 

200.657 
520.38 

563.356 
614.996 

663235 
93.9057 

91.6 
86.6173 

<0.001 
0.5608 
0.3498 
0.0022 

-3.02542839 
0.58164733 
0.93497817 
3.05948119 

Pattern Mo 
Boundary Clumping 

cr p sv 

Checkerboards 
Random 

Nestedness 
Evenly-Spaced 

Gleasonian 
Clementsian 

0.4706 
1.2426 
2.2917 

0.1179 
0.2183 
0.2334 

0.2882 
0.4489 
0.5533 

0.975*" 
0.185 
0.005 

1.22380291 
2.28179996 
3.72004338 
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process; Wiens & Graham, 2005), phylogeny can assist in disentangling two main 

opposing processes of community assembly: habitat filtering, where communities are 

composed of species that share similar environmental tolerances (Webb, 2000), and 

competitive-exclusion, where species that are ecologically similar cannot co-exist in 

the same local communities due to high overlap in resource use (MacArthur & 

Levins, 1967; Mason et al., 2008). If the first process is dominating, co-occurring 

species are expected to exhibit a pattern of phylogenetïc clustering (Cavender-Bares 

et al., 2006); however, if the second process is the most important, communities will 

be composed of distant-related species (i.e., phylogenetic overdispersion) due to 

competitive exclusion of species that use similar resources. If niche is not conserved 

through time due to, for instance, convergent evolution due to natural selection, 

phylogenetic results have less power to detect non-random community assembly 

processes (Losos, 2008). 

Both processes (e.g., habitat filtering and limiting similarity) can influence 

patterns and dynamics observed at the metacommunity level (PillaI' & Duarte, 2010). 

For example, Clementsian gradient is a pattern that occurs in metacommunities where 

clusters of communities are formed by a discrete group of species that can either 

show a similar response to environmental gradients (Presley et al., 2009) or be a 

result of "clumped competitive exclusion" (Gilpin & Diamond, 1982). Evidence for 

these mechanisms can be obtained by a community phylogenetic analysis: if co­

occurring species are closely related and present phylogenetic niche conservatism 

than it might suggest that environmental filtering is selecting species with similar 

tolerances to the environment (Cavender-Bares et al., 2009) and structuring the 

Clementsian gradient pattern at the metacommunity level. However, if co-occurring 

species are more distantly related in the phylogeny, than two processes can be 

suggested: 1) competitive interactions are precluding long-term co-existence between 

species that present phylogenetic niche conservatism and thus similar ecologicaJ 

characters (Cavender-Bares et al., 2004); 2) Phylogenetic distant related species 
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present similar ecological characteristics due to convergent evolution resulting [rom 

environmental filtering (Losos, 2008). Thus, after finding the pattern that best fit the 

species distributions within a metacommunity, we can use the phylogenetic approach 

to seek for possible structure mechanisms that dictate these patterns. 
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2.1 - Introduction 

2.1.1 - Metacommunities: Structural versus Mechanistic approach 

Unraveling and disentangling multiple mechanisms influencing the 

composition and variation of ecological communities across space is a central 

problem and intellectual challenge in biology (Ricklefs, 1987; Gaston, 2000; Holyoak 

et al., 2005). Research based on spatial patterns of biodiversity seeks to identify the 

set of abiotic and biotic process (and how they interact) that define how subsets of 

species (i.e., local communities) are filtered down from those found in the larger 

regional species pool of potential colonizers (Gotelli and Graves, 1996; Jackson et 

al., 2001; see also Figure 3.2 in chapter two). 

There is a growing consensus among ecologists that both large-scale processes 

and local factors need to be considered in order to understand spatial patterns of 

biodiversity (Ricklefs, 2004; Holyoak et al., 2005). In this context, metacommunity is 

the fastest advancing framework in spatial ecoJogy because it accounts for both local 

(e.g., environment) and regional (e.g., dispersal) processes (Leibold et al., 2004). In 

this framework, a metacommunity is defined as a set of local communities that are 

potentially linked, but not necessarily, by dispersal of individuals of species across 

local communities (Leibold et al., 2004; Holyoak et al., 2005). 

Metacommunities have been mainly studied by two approaches: the 

mechanistic approach (Holyoak et al., 2005; Muneepeeraku et al., 2008; Driscoll & 

Lindenmayer, 2009), in which the focus is on determining the predominance (or their 

relative importance, e.g., Cottenie 2005) of distinct model processes (e.g., species 

sorting, patch dynamics, mass-effects and neutral) regarding different assumptions 

underlying metacommunity dynamics. Sorne of these assumptions involve species 

trade-offs, dispersal rate differences across species and communities, the presence of 

environmental gradients and stochastic versus deterministic processes (Leibold et al., 

2004); and 2) the structural approach (Leibold & Mikkelson, 2002; Heino, 2005; 
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Hausdorf & Henning, 2007; Presley et al., 2009; Presley & Willig, 2010), which 

focuses on understanding non-random patterns in the structure of the distributions of 

species across communities represented by species incidence or abundance matrices. 

Uncovering large-scale distributional patterns is an essential source of inferences 

about the causes driving variation in species composition across communities (Gotelli 

and Graves 1996; Peres-Neto, 2004; Werner et al., 2007). Identifying the forces 

structuring these patterns can provide clues about the underlying processes driving 

species co-occurrence and site occupancy mechanisms. In this work, l will focus on 

the latter approach given that under only certain conditions we can estimate the 

likelihood of the different models under the mechanistic approach (Legendre et al., 

2008; but see Cottenie, 2005). 

The analysis of patterns in incidence matrices in order to determine the degree 

of negative and positive associations across species has a long history of applications 

in ecology (Diamond, 1975; Connor & Simberloff, 1979; see Gotelli & Graves, 1996 

for a review). Although this species-guided approach has provided important insights 

into ecological processes structuring ecological communities, it has been somewhat 

limiting because it does not take into account the organization of sites that may also 

influence species co-occurrences patterns. For instance,. species along environmental 

gradients may be organized into blocks of species overlapping in their distribution. 

Species within blocks may appear positively associated due to common habitat 

affinities, whereas species across blocks may appear negatively associated due to 

differences in habitat across environmental gradients. Indeed, more recently, 

ecologists have been exploring a dual species and community (site) perspective 

(Leibold & Mikkelson, 2002). Perhaps the most weil known of these incidence 

patterns is the nested species subsets in which commul1ities of successively fewer 

species contains subsets of those species found on the next richer community 

(Patterson & Atmar, 1986). 

2.1.2 - Patterns of distribution and the Elements of Metacommunity Structure 
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Leibold & Mikkelson (2002) developed a framework termed Elements of 

Metacommunity Structure (EMS) that analyzes several possible patterns that take into 

account this dual arrangement of communities and species. In their EMS framework, 

the interaction between three different elements (i.e., coherence, turnover and 

boundary c!umping) generates six different possible patterns of species distribution 

across communities, which have been referred as to nestedness, Clementsian 

gradients, G1easonian gradients, evenly-spaced gradients, checkerboards and random 

(Figure 1.2). In this approach, each pattern assumes that species distributions are a 

result of particulaI' species responses to abiotic and biotic factors along a major 

distributional gradient of species across sites (Leibold & Mikkelson, 2002; although 

multiple interacting gradients could provide greater refinement, little analytical 

progress has been made in this direction; but see Presley et al., 2009). The 

interactions of each metacommunity element described above (i.e., coherence, 

turnover and boundary c1umping) make predictions about the six above mentioned 

metacommunity patterns. When species do not respond to the same environmental 

gradient (i.e., different habitat affinities), the metacommunity (i.e., distribution of 

species across communities embedded in local sites) will present a random structure 

(Presley & Willig, 2010). If metacommunities are composed of pairs of mutually 

exclusive species that occur independently of other pairs along the gradient, they are 

classified as checkerboards (Diamond, 1975). Nestedness occurs on 

metacommunities with low turnover rates, where the composition of poor-species 

sites represents proper subsets of progressively richer sites (Ulrich et al., 2009; see 

above). When turnover rates (i.e., changes of species compositions across 

communities) are higher than expected, metacommunities can be c1assified as 

Clementsian, Gleasonian or evenly-spaced gradients. The first one indicates that 

biotic communities are a discrete group of species that shows simiJar responses to the 

gradient and replace each other on space across the rnetacommunity (Clements, 

1916). Gleasonian gradients represent communities composed of species that show 

idiosyncratic responses to the gradient, yielding a metacommunity with a form of a 
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continuum of gradually changing composition (Gleason, 1926). Finally, 

metacommunities defined as evenly-spaced gradients are composed by species 

supposedly competing along a gradient and their distribution will be dictated by 

trade-offs in their abilil)' to explore alternative resources (Tilman, 1982; Leibold & 

Mikkelson, 2002). 

Although a large number of studies have assessed some of these EMS patterns 

separately (e.g., nestedness, Cook & Quinn, 1995; Wright et al., 1998; Fernandez­

Juricic, 2002; Leprieur et al., 2009; checkerboards, Diamond, 1975; Connor & 

Simberloff, 1979; Gilpin & Diamond, 1982), to date only a few studies haveapplied 

this approach to test which pattern best fltS to a given metacommunity data (studies 

were reviewed by Presley et al., 2009), or compared patterns within 

metacommunities across different systems (e.g., Leibold & Mikkelson, 2002). 

2.1.3 - Looking further into EMS framework 

The EMS approach is extremely promising because it allows characterizing 

metacommunity patterns across different taxa, metacommunities and ecosystems, 

providing an exceptional venue to search for general rules in determining .. the 

structure of community assemblages across space. For instance, two bird and two 

plant metacommunities, each taxa combination (i.e., one bird and one plant) being in 

different climatic zones (tropical versus temperate) may show different EMS patterns 

across taxa (i.e., bird versus plant) but similar within regions (e.g., nested plant and 

bird in tropical region and Gleasonian gradients plant and bird in the temperate 

region). In this case, the conclusion would be that the climatic zone is driving the 

pattern. Although promising, this comparative approach either across taxa or region 

has yet to be explored. To my knowledge, only one study has looked at how these 

elements of metacommunities compare across different regions for the same taxa 

(i.e., bat metacommunity structure on Caribbean islands; Presley & Willing, 2010). 

However, their study was also limited by the fact that they only have three regions 
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and therefore little inference can be made about how differences between regions 

could have explained the observed patterns. 

Given that each EMS pattern can be considered as a different 

"metacommunity trait" with unique underlying structuring mechanisms and theory 

(Leibold & Mikkelson, 2002; Hoagland & Collins, 1997), exploring and comparing 

such patterns across large geographical regions has the potential to enhance our 

understanding of how biological communities respond to environmental (Presley et 

al., 2009) and biogeographical variation. Moreover, insights on key ecologica1 

patterns such as ~-diversity (Leprieur et al., 2009) might be acquired throughout such 

comparisons (e.g., nestedriess versus turnover; Hausdorf & Hennig, 2007). 

2.1.4 - Lake-fish systems as metacommunities 

Lakes within a watershed can be considered as "viltual islands" (Magnuson et 

al., 1998) varying in size, environmental features (Eadie et al., 1986) and degree of 

isolation (Olden et al., 2001), which may impose different environmental and spatial 

constraints which in turn will influence fish dispersal and probability of establishing 

viable populations, as weil as their extinction vulnerability (Magnuson et al., 1998; 

Olden et al., 2001). Indeed, some studies have found that local environment was the 

most important predictor of lake-fish species distribution (e.g., Magnuson et al., 

1998) whereas others have found that spatial (i.e., regional) factors were the most 

prevalent (e.g., Beisner et al., 2006). This dichotomy shows that different lake-fish 

metacommunities can be structured by different factors, but little is known whether 

there are general assembly patterns emerging from these processes. The search for 

general rules that may dictate patterns that best reflect the distribution of species 

within a metacommunity should increase our understanding about the underlying 

mechanism structuring metacommunities (Leibold & Mikkelson, 2002; Heino, 2005). 

To date no study has investigated whether and how local and regional features 

generate consistent patterns across different metacommunities. 
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2.1.5 - Chapter objectives 

1 used a unique data set containing environmental and presence-absence data 

on fish distribution on about 9000 boreal lakes from Ontario, Canada, across 85 

metacommunities (watersheds). The approach used here was the following: 1) 

classify each fish metacommunity (i.e., watershed) according to EMS patterns; 2) 

determine the relative influence of spatial and environmental factors within and 

across metacommunity EMS patterns. 

2.2 - Methodology 

2.2.1 - Ontario Fish Distribution Database (OFDD) 

1 used a lake-fish database, the Ontario Fish Distribution Database (OFDD), 

maintained by the Ontario Ministry of Natural Resources, which contains presence­

absence records of 134 fish species (including 7 hybrids) and geographic positions for 

approximately 9900 boreal lakes (inland lakes only) from Ontario. Records span 

from 1900 to 1992,however most lakes were sampled between 1968 and 1985. The 

OFDD is known to have sampling biases, where sport fishes are overrepresented and 

small-bodied species, such as cyprinids, are underrepresented (Minns, 1986). The full 

history of the dataset can be found in Mandrak and Crossman (1992a) and the 

sampling methods in Goodchilde and Gale (1982). Despite the potential sample 

biases and the fact that collection spanned over a long period, this dataset has been 

providing important insights in many different types of ecological research (Mandrak, 

1995; Gonzalez & Gardezi, 2008; Sharma et al., 2009). Finally, given that 1 am 

interested in broad regional-scale patterns, sampling biases should be diluted across 

reglüns. 

2.2.2 - Lake Inventory Database (LINY) 

Information about the local environment in each lake was assessed using the 

Lake Inventory Database (LINY), a dataset that includes the following environmental 
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variables for each lake in the OFDD: surface area (SA), shoreline perimeter (P), 

island shoreline perimeter (ISL), mean depth (MeanD), maximum depth (MaxD), 

secchi depth (SD), growing degree days (GDD), eJevation (El ev), total dissolved 

solids (TDS), morpho-edaphic index (MEl), mean annual daily temperature (MADT), 

canopy cover (Crown), mean July temperatures (MJT) and mean August temperatures 

(MAT). Missing values were replaced by the mean value of that variable within the 

watershed; 0.2% of the lakes on average per variable were replaced. Note that the 

environmental information of lakes treated in this way became uninformative, 

specially compared to the total number of lakes used in the analysis (n ;:::;: 9000). l have 

also considered values of potential evapotranspiration (PET) which serves as a proxy 

of thermal energy that is in turn correlated with lake productivity (Gonzalez & 

Gardezi, 2008). This variable was missing for a large number of lakes, but has low 

variability within watersheds (see Gonzalez & Gardezi 2008 for details on how this 

measure was estimated), and therefore was only used in analyses among watersheds 

In this case, 1 used the mean PET from ail lakes that were available for any given 

watershed. Finally, lakes with missing geographic coordinates or without species 

were removed from the analyses. 

2.2.3 - Species used in the analyses 

Species that were present in less than on an arbitrary value of 0.5 % of ail 

lakes in the data set were removed. Rare and endemic species are somewhat 

uninformative due to its idiosyncratic nature, but they can affect EMS analysis in 

ways that will not be discussed here (but see Presley & Willig, 2010). Introduced 

species were also removed because they do not follow any historical contingency 

experienced by the native species. In total, 53 extant native species across ail lakes 

were used in analyses (Table 3.1; Chapter 2). 

2.2.4 - Watersheds as metacommunities 
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There are three pnmary watersheds in Ontario, 28 secondary watersheds 

nested within the primary, and the 144 tertiary watersheds that are nested within the 

secondary watersheds (Cox, 1978). As in other studies based on this data set (e.g., 

Chu et al., 2005; Gardezi & Gonzalez, 2008), l have considered tertiary watersheds as 

the scale unit of the analysis (i.e., they represent group of fish communities). Tertiary 

watersheds are nested within secondary watersheds thus sharing hièrarchical 

topological rules, though llnlike secondary watersheds, the delineation of tertiary ones 

presents some arbitrary level regarding size convenience for management purposes 

(called ecoregions; see Minns, 1989). As a consequence, some lakes across two 

spatially close tertiary watersheds could potentially share a greater fish dispersal 

history than within their own designated watersheds; though lakes within tertiary 

watersheds should still share in average a greater dispersal history than compared to 

lakes across watersheds.Finally, the results showed very strong EMS patterns within 

tertiary watersheds (see "Results" section), indicating that this scale does represent an 

important ecological unit for their fish assemblages. l defined each metacommunity 

unit as being composed by the fish communities within lakes of any given tertiary 

watershed (Figure 1.1). Finally, l have excluded ail tertiary watersheds with less than 

20 lakes as the EMS analysis would have low statistical power based on these small 

incidence matrices (Leibold & Mikkelson, 2002), resulting in a database of 8911 

boreal lakes distributed across 85 tertiary watersheds. Hereafter, metacommunity and 

watershed will be used interchangeab Iy. 

2.2.5 - Statistical Analyses 

2.2.5.1 - Ordination 

Community composition and species distributions across communities are 

probably regulated by multiple environmental characteristics (e.g., area, temperature, 

habitat heterogeneity) and biotic interactions. Multivariate ordination techniques can 

be used to order species along mathematical gradients (i.e., gradient constructs) that 
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integrate common patterns of variation 10 community composition. Given that 

common or opposite patterns of variation is the product of the integration of multiple 

environmental factors and biotic interactions, they can provide clues about the factors 

that structured these gradients in the first place (Gauch et al., 1977). In this study, 

each metacommunity was analyzed via a separate correspondence analysis (also 

known as reciprocal averaging). Correspondence analysis creates orthogonal axes 

(gradients) in which species and sites are ordinated (Presley & Willig, 2010). This 

method re-orders rows and columns using repeated averaging of species and sites 

scores, maximizing their correspondence. Thus, it maximizes the positioning of sites 

along axes based on the degree in which their communities share species 

compositions and the positioning of species sharing similar distributional ranges (i.e., 

across multiple sites) (Leibold & Mikkelson, 2002). The final solution is a 

compromise between minimizing interruptions within ranges and minimizing 

interruptions within communities (Leibold & Mikkelson. 2002). The eigenvalue of 

any correspondence analysls axis represents the correlation between species and sites 

scores (Gauch et al., 1977). As in previous studies (e.g., Presley & Wil1ig, 2010), 

sites and species within incidence matrices were ranked according to their position 

along the primary ordination axis, which maximizes this correlation (Gauch et al., 

1977). Other axes of ordination were not used as they did not explain much of the 

variation in species distribution. 

2.2.5.2 - Null model 

In order to test the significance of EMS patterns, 1 applied a nul1 model that 

permutes species across lakes (sites) but that kept the total number of species in lakes 

as fixed (i.e., equal to the observed values). Thus, the chosen nul1 model included 

some site property such as species richness, which, in lakes, is highly correlated with 

surface area, (e.g., Eadie et al., 1986; Barbour & Brown, 1974; Gardezi & Gonzalez, 

2008). Note that there are several ways in which to permute incidence matrices and 

the procedure used has correct Type 1 error rates and appropriate levels of power in 
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detecting distributional patterns (Gotelli & Graves, 1996). Conversely, other types of 

algorithms have performances that do not provide a good compromise between Type 

l and II errors. For instance, Leibold and Mikkelson (2002) used an equiprobable­

equiprobable (i.e., no constraints in occurrences throughout the incidence matrix) and 

a tixed-fixed (i.e., ro\\" marginal totals and columns marginal totals fixed to the 

number observed in the empirical matrix) nul! models. l chose not to use these 

approaches due to an elevated chance of type l errors in the former and increased type 

II errors in the latter (Gotel!i & Graves, 1996). This occurs because the liberal null 

model assumes no structure in its randomization (i.e., increased Type l errors) 

whereas the conservative assumes too much structure (i.e., increased Type II errors) 

(Gotelli & Graves, 1996). 

2.2.5.3 - EMS analyses 

- The elements of metacommunity structure are evaluated in an hierarchical 

way (see Figure 1.2). The first element of the metacommunity structure, coherence, 

was evaluated as the n1.lmber of embedded absences (Abs) in species range and 

community composition of each watershed. l generated 1000 random matrices (for 

each watershed) based on the above described nul! model which were also ordinated 

using the primary axis extracted via correspondence analysis (i.e., each random 

matrix was analyzed by a separate correspondence analysis). The probability (P) was 

assessed using a one-tailed tèst with an alpha of 0.05: (number of Absüss equal or 

larger than AbsRND +1) / (number of randomizations +1) or (number of Absüss equal 

or smaller than AbsRND +1) / (number of randomizations +1), where 1 represents the 

observed value and is also included as a possible outcome of the randomization 

process. If coherence was significantly lower than in the nul! distribution (i.e., build 

from the calculated values of the 1000 random matrices), it would indicate that the 

metacommunity is composed by pairs of mutual!y exclusive species that were 

independently occurring of other pairs (Figure 1.2), such as the checkerboard pattern 

(Diamond, 1975; Leibold & Mikkelson, 2002). Non-significant coherence would 
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suggest that the metacommunity is composed of species that are not responding to the 

same environmental gradient, creating a random structure (Figure 1.2). Final/y, a 

significantly positive coherence suggests that species are distributed according to the 

same environmental gradient (Leibold & Mikkelson, 2002). 

The two other elements, turnover and boundary clumping, can be evaluated 

using two perspectives: species range or community (site) composition (Leibold & 

Mikkelson, 2002). In this study, metacommunities were evaluated only by the 

community perspective (i.e., composition) because l wanted to assess the potential 

roles of lake characteristics in structuring metacommunity structure. Moreover, l was 

interested in understanding the role of environmental and spatial processes 

accounting for some of their ecological features, such as richness, composition and 

turnover. Despite some of the reservations regarding thisperspective (Presley et al., 

2009), largue that the common environmental gradients to which species are 

responding have to be represented by lhe communities in which they inhabit and not 

by the species that are present or absent. Turnover is evaluated counting the number 

of times a pair of sites "exchanged" (i.e., replacements) between two species (Figure 

1.2). The empirical number of replacements (Re) was compared to the number of 

replacements calculated froni the null distribution. The probability (P) was assessed 

using a one-tailed test with an alpha of 0.05: (number of ReOBS equal or larger than 

ReRND +1) / (number of randomizations +1) or (number of ReOBS equal or smaller 
1 

than ReRND +1) / (number of randomizations +1), where 1 represents the observed 

value and is also inc1uded as a possible outcome of the randomization process. If 

metacommunities showed significantly low turnover, it was a sign of nested 

distribution (Figure 1.2); and conversely, if it exhibited moderate turnover (i.e., not 

significant) or high turnover, l evaluated boundary c1umping to distinguish it among 

the remaining patterns (Figure 1.2). 

The degree of community boundary clumping for each watershed (i.e., the 

third and last EMS) was assessed with Morisita's index (Morisita, 1971) which has a 
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null expectation of 1. If the value obtained was not significantly different from l, it 

indicated that community boundaries are randomly distributed, suggesting 

Gleasonian gradients (0.05 < P < 0.95). However, if the index value was significantly 

greater (clumped boundaries) or smaller (over-dispersed boundaries) than l, it 

suggested that the metacommunity was distributed according to a Clementsian 

gradient CP < 0.05) or over evenly-spaced gradient (p > 0.95), respectively (Leibold & 

Mikkelson, 2002). 

ln order to compare metacommunities according to EMS patterns, 1 

standardized (i.e., mean= 0 and variance = 1) each of the EMS within watershed units 

using the mean and standard deviation of their respective nul! distribution. Because in 

coherent metacommunities the mean number of embedded absences in the null 

distribution is higher than the observed value, when standardized, coherent 

metacommunities presented negative values. To facilitate interpretation, coherence 

standardized values were multiplied by -1 so that more coherent metacommunities 

presented positive values. 

2.2.6 - Biotic and abiotic lake indices 

2.2.6.1 - Community similarity 

ln order to access the similarity between pairs of lakes within any glven 

watershed, 1 computed the Jaccard Index as follows: 

where Si is the number of species only present at site i, Sj is the number of species 

only present at site j and Sij is the number of species present at both sites. To obtain 
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an overall measure of similarity among lakes within each watershed, 1 averaged the 

values from ail pairs of lakes within each watershed. 

2.2.6.2 - Watershed connectivity 

1 have modified Hanski' s (1994) connectivity measure to assess the levels of 

spatial connectivity across lakes within watersheds as follows: 

n
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where AC measures the average geographic distance (based on latitude/longitude) 

across lake i for the k1h species across ail other n-Ilakes within any given watershed. P 

indicates the presence (1) and absence (0) of the kth species in the llake. Note that in 

cases where species i was found only in one lake, 1 assigned for that species the 

maximum distance between any two sampled lakes within the watersheds as its 

connectivity value (i.e., maximum isolation or smallest connectivity). A non-linear 

response was used to reduce the contribution of lakes far away from the focal lake as 

it should be increasingly hard for lakes beyond a certain distance to contribute to the 

connectivity of any given lake (Kadoya, 2009). For each lake, overall connectivity 

was calculated as the average connectivity values for ail species for any given lake. 

The overall connectivity of any given watershed was the average connectivity across 

alllakes within any given watershed. 

2.2.6.3 - Postglacial dispersal 

The province of Ontario underwent a recent process of glaciation (8000-10000 

years ago; Mandrak & Crossman, 1992b). Ontario lakes and rivers were formed from 

the meltwaters of the receding Wisconsin glacial sheet and actual patterns of fish 

species distributions were contingent upon the process of re-colonization from fishes 

that dwelled in refugees south of the ice sheet (Mandrak & Crossman, 1992b). 1 
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expected that the distance between postglacial routes and lakes may have influenced 

the likelihood of their colonization by fish species (Olden et al., 2001), affecting the 

species found in any particular watershed and ultimately influencing metacommunity 

structure. Mandrak & Crossman (1992b) suggested five postglacial dispersal routes, 

used by fish to re-colonize Ontario (Figure 2.1 in the result section). In order to assess 

the importance of distance from these refugees in structuring metacommunity 

patterns, 1 calculated the following two indices: MeanDP as the mean Euclidian 

distance between any given watershed and ail five postglacial routes, and MinDP as 

the minimal Euclidian distance between any given watershed and its closest 

postglacial route. 

2.2.6.4 - Environmenta\ gradient length 

Regarding environmental characteristics of each watershed, 1 calculated an 

index that measures the variation in environmental conditions across lakes within a 

watershed (hereafter referred to as EnvDis). First, ail environmental variables were 

standardized (mean=O and variance=l) across ail the lakes from the database (i.e., aIl 

lakes across ail watersheds and not only within watersheds). Then, a Euclidean 

distance matrix based on these variables but contrasting lakes within watersheds was 

calculated. FinaUy, distance values within watersheds were averaged across lakes in 

order to produce a global measure of environmental variability within watersheds and 

can be seen as the "length" (or extension) ofth'eir environmental gradients. 

2.2.6.5- Abiotic integration 

Additionally, 1 computed a measure that 1 refer to as abiotic integration 

(AbINT), which assesses the degree of correlation among environmental variables 

within watersheds. For instance, a watershed can have a small or large gradient 

(measured by EnvDis), but variables across lakes in that watershed may have small or 

large correlations across them. Abiotic integration was computed based on a principal 

component analysis of the correlation matrix of environmental variables within a 
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particular watershed. AbrNT was then based on the variance across eigenvalues (this 

is akin to morphological integration, see Peres-Neto & Magnan, 2004). High variance 

levels indicate that the environmental variables were more correlated within a 

watershed when compared to low levels. In order to remove any bias across 

watersheds having different number of lakes, 1 used a null distribution based on 1000 

permutations where values within environmental variables were permuted across 

lakes. Then, 1 subtracted the mean of the null distribution from the observed value to 

obtain corrected values of AbINT. The rationale for using this integration metric is 

based on the fact that species use environmental cues to perform important activities 

such as dispersal and reproduction, which ultimately influence their distribution and 

the metacommunity structure, at broader scales. It follows that if environmentaJ 

variables are highly correlated, they may aid fish to make more coherent decisions 

across different lakes or detect important changes that will have important fitness 

consequences as correlated environmental characteristics may provide a stronger 

signal (eue) to initiate certain activities and/or make life-history and dispersal 

decisions. 

2.2.7 - Environmental versus spatial variation 

In order to determine how much of the variation in lake-fish distribution was 

explained by environmental versus spatial factors (e.g., missing environmental 

variables or dispersal, see Peres-Neto & Legendre 2010, and Jacobson & Peres-Neto 

2010 for a recent discussion on the potential factors driving spatial patterns of species 

distribution) within each watershed, 1 applied a variation partitioning scheme in order 

to estimate unique and combined contributions of environmental and spatial 

predictors (Boreard et al., 1992). Environmental variables from ail lakes within 

watersheds were used as environmental predictors and 1 used the MEM (Moran's 

Eigenvector Maps) method to describe spatial variation (Peres-Neto & Legendre, 

2010). Species data (the response variable) were Hellinger transformed (Legendre & 

Gallagher, 2001), as it has been shown to provide unbiased estimates for variation 
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partitioning based on redutldancy analysis (Peres-Neto et al., 2006). Peres-Neto et al. 

(2006) has also shown that variation partitioning is affected by the number of spatial 

and environmental predictors as weil as by sample size, so results were based on 

adjusted fractions of variation, which is analogous to the adjusted R2 in multiple 

regression models. Statiscical significance was based on 1000 permutations based on 

an alpha of 0.05 to assess significance. When a fraction was not found significant, l 

assigned a zero to its value instead of the observed value, which can be negative, 

especially in the case of adjusted values. Finally, 1 averaged the explained variation 

from spatial and environmental predictors across watersheds per pattern uncovered by 

EMS analysis. 

ln order to assess any relationship between EMS patterns and the 

environment, l first calculated the mean value of each environmental variable within 

watersheds. Ail environmental variables were log-transformed, except elevation, 

mean depth, max depth and secchi depth, which appeared, by visual inspection, to 

have linear correlations with the standardized EMS values. Next, a redundancy 

analysis (RDA) was performed and Pearson correlations were calculated between the 

first two canonical axis and the environmental variables and indices. To test if the 

overall environment was different among EMS distributional patterns, l performed a 

discriminant function (Legendre & Legendre, 1998). 

EMS patterns and their associated nul! models were performed using a Matlab 

code developed by Presley et al. (2009). This code \S available at 

hlip://wvvw.larlelon.eclu/~higgins/EMS.hlm. The Jaccard index was ca1culated using a 

Matlab script developed by Strauss (2008). The connectivity index, EnvOIS and 

variation partitioning were performed with functions written in Matlab 7, Release 14 

(The Mathworks lnc). 

2.3 - Results 

2.3.1 - Environmental and spatial drivers of metacommunity patterns 
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Among the 85 watersheds analyzed with the EMS methodology, four patterns 

were uncovered: 42 watersheds were consistent with nested distributions, 35 with 

Clementsian gradients, 5 with Gleasonian gradients and 3 random (Figure 2.1). Given 

that only a few watersheds were found to be random or representing Gleasonian 

gradients, 1 restrained ail the analyses to the two most common patterns: nestedness 

and Clementsian gradients. RDA based on the three elements (i.e., coherence, 

turnover and boundary clumping) uncovered the two predominant metacommunity 

patterns (Figure 2.2), Clementsian Gradients and nestedness. RDA-1 and RDA-2 

accounted for 55.94 % and 35.64% of the total variation, respectively. The first 

canonical axis (RDA-1) was positively correlated with turnover (r = 0.52) and 

negatively correlated with coherence (r = -0.93) and boundary clumping (r = -0.72) 

(Figure 2.3). The second canonical axis (RDA-2) was positively correlated with 

turnover (r = 0.82) and clumping (r = 0.62) and was uncorrelated (r = -0.002) with 

coherence (Figure 2.3). In general, watersheds that were more c0hsistent with 

nestedness had a trend to have moderate to high negative scores for RDA-1 and 

negative scores for RDA-2, which accounted for high values of coherence, low 

turnover and moderate clumping (Figure 2.2 and Figure 2.3) whereas Clementsian 

watersheds had moderate positive scores of RDA-1 and high positives scores for 

RDA-2, which accounted for moderate values of coherence and high values of 

turnover and clumping (Figure 2.2 and Figure 2.3). The discriminant analysis 

indicated that the overall environment was significantly different (F (14.62) = 2.6023, 

p < 0.0051) between nestedness and Clementsian watersheds. 

Nestedness was predominant in higher latitudes (Figure 2.1), but appeared in 

considerable numbers in the southern region of Ontario as weIl. Abiotic integration 

was higher in nested watersheds, suggesting that environmental variables were more 

correlated between lakes within those watersheds (Figure 2.4). As expected, lakes 

from nested watersheds were also highly positively correlated with their similarity in 

species composition (i.e., Jaccard index; Figure 2.4) given the lower levels of species 

turnover across communities within watersheds. Average connectivity (AC) was 
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positively correlated with turnover (Figure 2.4) indicating that nested watersheds, in 

general, have less connected lakes than Clementsian watersheds. Nested watersheds 

were also composed of lakes with greater surface area, shoreline perimeter and island 

perimeter (Figure 2.3). Most nested watersheds showed low values of total dissolved 

solids (TDS), morpho-edaphic index (MEl) (which are lake productivity proxies) and 

EnvOIS (indicating a tendency for a smaller variation across the environmental 

gradient of these watersheds), which were ail negatively correlated with PC-l (Figure 

2.3). Finally, these watersheds have higher values of MeanOP, meaning that in 

average they are located farther from postglacial routes (Figure 2.4). 

Clementsian gradients appeared in watersheds mostly located at lower 

latitudes and near the Great Lakes (Figure 2.1). They presented lower values for 

AbINT (abiotic integration), suggesting that environmental variables were less 

correlated (Figure 2.4). As expected, turnover was highly negatively correlated with 

similarity in species composition (Jaccard Index; Figure 2.4). Moreover, Clementsian 

metacommunities were in general positively related with MEl, TOS and EnvOIS 

(Figure 2.3 and Figure 2.4). Furthermore, this pattern appeared, on average, in 

watersheds closer to postglacial routes (i.e., lm,ver MeanOP; Figure 2.1 and Figure 

2.4). 

The variation partitioning did not reveal any apparent differences between 

nested and Clementsian watersheds. In both cases, environmental predictors 

explained, on average, 9.1 % of the variation in species composition across lakes 

within watersheds (Table 2.1). Space explained 3.5% and 2.9% of the variation in 

species composition of nested and Clementsian watersheds, respectively (Table 2.1). 

To test ·if nested patterns are being driven by lake connectivity (e.g., more 

connected lakes are richer than less connected lakes) r calculated the correlation 

between lake mean connectivity and their richness (log transformed) for aU 

watersheds (including Clementsian ones). For nested watersheds, Il revealed positive 

significant correlations between these two variables (r = 0.12 to 0.49/ P < 0.05) and 3 
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Figure 2.1 EMS results on Ontario tertiary watersheds. Map modified from Ministry of 
Environment (2004). The letters refers ta postglacial dispersal routes. A = Glacial Lake 
Agassiz; B = Brule-Portage Outlet; C = Grand Valley Outlet; D= Fort Wayne; E = 
Champlain Outlet (Mandrak & Crossman, 1992b). 
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Figure 2.2 Redundancy analysis on Elements of metacommunity structure 
(coherence, turnover and boundary clumping) standardized values. Score 
coordinates of each metacommunity according to axes. N = nestedness, C = 
Clementsian gradients, G = Gleasonian gradients and R = random. 
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Figure 2.3 Redundancy analyses from EMS and correlation with 
environmental variables. Solid lines with arrows represent the EMS. Dashed 
lines with small circles represent the environmental variables. SA = surface 
area, P = shoreline perimeter, lSL = island perimeter, SD = secchi depth, 
MaxD = maximum depth, MeanD = mean depth, CRüWN = crown canopy 
coyer, ELEV = elevation, GDD = growing degree days, TDS = total 
dissolved solids, MEl = morpho-edaphic index, MADT = mean annual daily 
temperature, MJT = mean July temperature, MAT mean August 
temperature and PET = potential evapotranspiration. 
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showed negative significant correlations (r = -0.27 to -0.35 1 p < 0.05). For 

Clementsian watersheds, only one had positive significant correlation (r = 0.12 1p < 

0.05) and 4 negative significant correlations (r = -0.16 to -0.461 p < 0.05). These 

results indicate that in sorne nested watersheds, lake connectivity present a positive 

effect on fish species richness (and in sorne affect it negativeJy). 

2.3.2 - Species turnover at the Provincial scale 

As pre-defined by the EMS analysis, turnover is the element that mainly 

distinguishes nestedness and Clementsian gradients and among the environmental 

factors considered in the analysis, lake surface area and correlated variables (e.g., 

shorefine perimeter, island perimeter) differed significantly (Figure 2.2 and Figure 

2.3) between these two patterns; (on average, nested watersheds presented larger 

lakes than Clementsian ones) but c1imatic-related factors (e.g., temperature, PET and 

GDD) presented little variation across lakes within the same watershed. Thus, to 

further investigate the causes of species turnover, l scaled up sorne analyses to the 

entire province (i.e., across watersheds) and correlated the environmental variables at 

this scale with Jaccard index (i.e., inverse of species turnover) (results in Table 2.2). 

l also performed a variation partitioning using mean environmental variables 

of each watershed as environmental predictors; mean lake geographic coordinates as 

spatial predictors and watershed composition as the response variable (results in 

Table 2.2). 

The variation partitioning performed at the Provincial scaJe (i.e., across 

watersheds) indicated that the variation in species distributions was better explained 

by spatially autocorrelated environmental variables (e.g., [E+S] = 29.26%) followed 

by the purely environmental ([E] = 10.8%) and pure spatial components ([S] = 3.5%; 

see Table 2.2). Energy-related variables such as potentiaJ evapotranspiration (PET), 
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Table 2.1 Results for variation partitioning Values presented are the average values 
of explained variation for aIl watersheds within each pattern. [E] = the fraction of 
variation explained solely by the environment; [S] = the unique fraction of variation 
explained by space; [E+S] = the common fraction of the variation shared by space 
and environment; [R] = residual variation. 

Fractions 

Pattern [E] [S] [E+ S] [R] 

Clementsian 9,1% 2,9% 5,7% 82,0%
 
Nestedness 9,1% 3,5% 3,9% 83,5%
 
Gleasonian 1,8% NS 0,6% 97,6%
 

Random NS NS NS NS
 



44 

Table 2.2 Results for "selective colonization" and "species turnover at the provincial 
scale" sections. (A) Pearson correlations. PET == potential evapotranspiration; MADT 
== mean annualdaily temperature; GDD == growing degree days; SA == surface area; 
MeanDP == mean distance from postglacial routes. Ali correlations in the table are 
significant (p < 0.05); r == correlation coefficient. (B) Results for variation partitioning 
across watersheds. Ali fractions are significant (p < 0.05). [E] =the unique fraction of 
variation explained by the environment; [Sl == the unique fraction of variation 
explained by space; [E+S] == the common fraction of the variation shared by space 
and environment; and [R] == residual variation. 

(A) (8) 

Jaccard Index Mean Latitude Variation Partitioning 

Fractions % Explained Variation 

PET -0.38 -0.78 [E] 10.80% 

MADT -0.51 -0.76 [E+S] 29.26% 

GDD -0.44 -088 [S] . 3.50% 

SA 0.71 [R] 57.12% 

MeDP 0.55 
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mean annual daily temperature (MADT) and growing degree days (GDD) were, as 

expected, strongly negatively correlated with latitude (r = -0.78, -0,76 and -0.88 

respectively; Table 2.2). Moreover, these variables were also strongly negatively 

related to the Jaccard similarity index, indicating that watersheds with more energy 

had higher levels of species turnover (Table 2.2). Surface area (SA) and mean 

distance from postglacial routes (MeanDP) were both positively related with the 

Jaccard index, hence watersheds that contained larger lakes and were more distant 

from postglacial routes had less species turnover across their lakes (Table 2.2). 

2.4 - Discussion 

2.4.1 - Nestedness versus Clementsian gradient 

The results indicate that the studied metacommunities are mainly organized 

according to two main patterns of species distributions, namely nestedness and 

Clementsian gradient. The spatial distribution of these patterns was also quite clear, 

as Clementsian watersheds were mostly encountered in the south-eastern part of 

Ontario and near to the Great Lakes (Figure 2.1) and nested watersheds were the 

dominant pattern in north-western Ontario, but they still occurred in considerable 

numbers in the south-eastern region. 

Lakes within watersheds at higher latitudes undergo more severe winters, with 

ice-cover lasting langer periods of time, with greater periods of oxygen depletion and 

shorter growing seasons relative to lakes occurring at lower latitudes (Magnuson et 

al., 1998; Fang & Stefan, 2000). This process can account for the majority of 

watersheds classified as nested in north-west Ontario, because lakes (i.e., 

communities) with harsher environmental conditions preclude species with young-of­

the-year that cannot attain a minimum size to survive winter starvation in the first 

year (Shuter et al., 1980). Communities under unfavourable environmental conditions 

are more deterministic and, coupled with a hierarchy ln breadth of species-specific 

tolerances, cou Id result in a strongly nested' system (Fernandez-Juricic, 2002; Smith 
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& Brown, 2002; Chase, 2007), where the species that tolerate the broadest range of 

conditions would be more widespread whereas the least tolerant species would 

present a restricted distribution. This possibility is consistent with the "selective 

environmental tolerances" hypothesis (Smith & Brown, 2002). Sites (Iakes) differ in 

their suitability due to differences in resources availability, stability, habitat diversity 

and environmental conditions, which affect the probability of species extinction 

and/or ability to establish (Kodric-Brown & Brown, 1993; Smith & Brown, 2002). In 

the present case, differences in suitability presented by lakes might also be a 

reflection of surface area, where larger lakes are more stable (Shurin et al., 2010), 

might present more winter refuges for species to survive through this period 

(Magnuson etai., 1998) and have higher habitat diversity (Eadie et al., 1986). If there 

is a hierarchical relationship between lakes suitability and species capacities to 

survive and reproduce, nestedness is likely to occur (Azeria & Kolasa, 2008). 

Moreover, regions at higher latitudes have lower primary productivity, where less 

energy is available to be partitioned by multiple species (Mandrak, 1995; Gardezi & 

Gonzalez, 2008; Table 2.2). This expectation was supported, because potential 

evapotranspiration (PET), growing degrees days (GDD) and mean annual daily 

temperature (MADT), which are energy-related variables, were negatively correlated 

with latitude. These variables were also negatively correlated with the Jaccard 

similarity index (Table 2.2), suggesting that communities located in unfavourable 

environments are more similar, given that there is less variation in the environmental 

gradient (Mandrak, 1995) and thus less opportunities for specialist species to live in it 

(Chase, 2007; Gardezi & Gonzalez, 2008). 

Nested watersheds observed higher values of abiotic integration (Figure 2.4), 

indicating that the environmental variables are more correlated, which might increase 

the likelihood of co-occurrence patterns. Another possible cause is the low degree of 

connectivity among lakes in nested metacommunities, which constrain poor 

dispersers to colonize only a few lakes (Cook & Quinn, 1995). If there is a hierarchy 
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in the colonization ability of the species, in which more isolated lakes are colonized 

only by the best dispersers, and their composition represents proper subsets of 

subsequently less isolated lakes that are colonized by good and poor dispersers it 

could lead to a nested system (Cook & Quinn, 1995). This hypothesis was supported 

by the correlation between lake mean connectivity and lakes richness. In general, 

lakes that are more connected can be accessed by a greater number of species than 

more isolated ones (i.e., species are dispersal limited; Olden et al., 2001). This could 

explain why nested watersheds are found at lower latitudes (Figure 2.1), and indeed, 

6 out of the Il nested watersheds with significant correlations were located in 

latitudes below 48°. 

Sorne nested watersheds presented high values of boundary clumping (Figure 

2.1; Figure 2.2). This pattern occurs when species disappear as a group (instead of 

one by one in standard nestedness pattern; Ulrich et al., 2009) from richer lakes to 

poorer ones (see Presley et al., 2010 for more details and schemes), suggesting that 

entire groups of species that share environmental preferences disappear when these 

conditions are not met. Another piece of evidence for this process is that nested 

watersheds have greater values of abiotic integration. For example, if in a group of 

species, each uses a different environmental cue to fulfill its biological needs (e.g., 

reproduction), they would tend to have greater levels of co-occurrence across lakes 

within the watershed where these environmental variables are more correlated (i.e., 

higher abiotic integration) than in watersheds where these variables vary more 

independently (i.e., lower abiotic integration). They may also disappear al! together 

when these environmental conditions are not met, creating a clumped nested pattern 

(Presley et al., 20 10). 

Clementsian watersheds were found generally in the south-east reglOn of 

Ontario, near the Great Lakes (Figure 2.1). These watersheds are 10cated at lower 

latitudes, observing lower winter severity (i.e., less oxygen depletion through winter 
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under ice-cover, larger growing season), with higher productivity and being closer to 

post-glacial dispersal routes. As expected, Clementsian gradient watersheds presented 

low values of across-lakes species composition simiJarities (Figure 2.4). Their 

metacommunities were highly positively correlated with average connectivity (Figure 

2.4), thus suggesting species were not dispersal-limited. Moreover, the correlation 

between lake connectivity and species richness (see section "selective colonization) 

was not significant for almost al1 Clementsian watersheds. If species are not 

dispersal-limited but lakes differ in their compositions and richness, than Jocal 

environment should be acting as a filter and species are distributed according to their 

niches which may suggest species sorting dynamics (sensu Leibold et al., 2004). 

Another possible explanation for Clementsian gradients is that pairs of competing 

species (i.e., "forbidden combinations"; Diamond, 1975) are not occurring 

independently of each other, forming "clusters of forbidden combinations" (Gilpin & 

Diamond, 1982). However, in order to detect the competition signal, further research 

is needed using a phylogenetic or trait-based approach to determine if species that 

inhabit those lakes are more or Jess similar than expected by chance in terms of their 

ecological niches and associated traits (Mason et al., 2008). 

Despite the different mechanisms invoked in the structure of the 

metacommunity pattern it is probable that both environmental and spatial components 

are important and complementary, expJaining the results in variation partitioning. It 

unveiled variation in species composition explained by both environmental (i.e., 

extinction) and spatial factors (i.e., colonization) (Table 2.1); the explained 

proportion was larger for the former. This concurs with the results of Magnuson et al. 

(1998) who found that for fishes in boreal lakes, environmental factors are more 

important than spatial factors in explaining lake-fish composition, because extinctions 

are likely to occur at a faster rate than colonization events in boreal lake-fish 

assemblages (Magnuson et al., 1998). Although the explained variance seems low 

(around 9% and 3.5% for environmental and spatial predictors, respectively), largue 
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that these result are not negligible in absolute numbers, considering the size of the 

dataset (n = 8911 lakes). Moreover, important environmental variables that are 

known to influence fish species composition, such as pH (Magnuson et al., 1998; 

Helmus et al., 2007b), were not available. Space, likewise, had iow explanatory 

power, but it is important to point out that the connectivity metric used in this study 

and the spatial variables used in variation partitioning ignored key spatial predictors 

such as waterway connections (O/den et al., 2001) and geographic barriers (Leprieur 

et al., 2009). Waterway connections were not measured due to issues of feasibility for 

the amount of lakes (n= 8911) in the dataset. Moreover, many waterways are 

perennial, freezing in winter season. Thus, these important spatial structures should 

increase the explained variation of regional factors, probably enhancing the difference 

between spatially explained variation between nestedness and Clèmentsian gradient 

watersheds. 

Finally, watersheds classified as random were highly correlated to the EnvDis 

index (Figure 2.4), indicating that they contain a greater environmental variation. Due 

to the ordination of matrices performed according to the first axis of the analysis of 

correspondence and because in general this axis does not represent ail the existent 

environmental variation (Presley et al., 2009), it is likely that these larger 

environmental gradients might be not entirely represented by this ordination method 

as species may be responding to other gradients, resulting in non-coherent matrices 

(Leibold & Mikkelson, 2002) and thus presenting random distributions (Presley & 

Willig, 2010). 

2.4.2 - Large-scale patterns 

Productivity related variables (e.g., temperature, PET and GDD) showed little 

correlation with the canonical axes (RDAs) that distinguished between nested and 

Clementsian patterns (Figure 2.3). Given that there is not enough variation in climatic 

variables within watersheds and because nested watersheds were distributed 
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throughout the Province (Figure 2.1), it possibly obscured sorne environmental 

differences that might have structured these two metacommunity types. Thus, 

increasing the scale (see Results "Large-Scale patterns" section) shed sorne light on 

the mechanisms that produced species turnover, wbich is the main difference between 

Clementsian and nestedness, as outlined in EMS methodology. Ail productivity 

related variables were negatively correlated with latitude and were negatively 

correlated with similarity in species composition (Table 2.2). This indicates that 

increasing temperatures, growing season duration and consequently the energy 

available on the system increases turnover rates between communities. It is possible 

that a more productive environment increases the numbers of resources that can be 

exploited by species (Chase & Leibold, 2002). Moreover, southern Ontario has a 

relatively more "benign" environment (Mandrak, 1995), allowing species to 

specialize in the exploitation of different resources and increasing the importance of 

stochasticity in community assembly, which may lead to a higher species turnover 

among communities (Chase, 2007). In northern Ontario, only species adapted to the 

harsher environmental conditions can colonize lakes (Shuter et al., 1980), increasing 

the importance of deterministic processes in community assembly (Chase, 2007), 

which explains the higher degree of similarity across lake communities in this region. 

Indeed, the variation partitioning using ail watersheds (Table 2.2) pointed to this 

trend. The largest fraction explaining species distribution (almost 30%) across 

watersheds was [E + S], which is the variation in the environment that is spatially 

structured. However, Peres-Neto and Legendre (2010) stated that, in variation 

partitioning analysis, the fraction of common explained variation between space and 

environment can be the result of either measured spatialized environmental variables 

or unmeasured spatialized environmental variables. The findings of this study suggest 

the former, where productivity-related variables (e.g. GDD, temperature, PET) are 

spatially autocorrelated, increasing within a north-south gradient and affecting 

community assembly at a local scale and species turnover at a regional scale. 



CHAPTER II 

COMMUNITY PHYLOGENETIC STRUCTURE AND SPECIES NICHE:
 

IMPLICATIONS FOR METACOMMUNITY STRUCTURE
 

La structure phylogénétique des communautés et la niche des espèces: Implications 

dans la structure des metacommunautés 
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3.1 - Introduction 

3.1.1 - Why use patterns of species distributions? 

Determining the processes that regulate species assembly within communities 

has been one of the main goals of community ecology (Chesson, 2000; Leibold et al., 

2004; Ricklefs, 2004). The general consensus is that large-scale processes (e.g., 

speciation, dispersal, glaciations events) dictate the number and identity of species in 

the regional pool whereas local processes (e.g., local abiotic and biotic factors) 

determine which species from the regional pool will be assembled to compose local 

c?mmunities (Ricklefs, 1987; Ricklefs, 2004). 

One way in which ecologists have been tackling community assembly is by 

describing patterns of species distributions (e.g., Clementsian gradients, 

checkerboards, nestedness; Diamond, 1975; Hoagland & Collins, 1997; Wright et al., 

1998; Leibold & Mikkelson, 2002). These patterns are revealed at the 

metacommunity level, i.e., set of local communities potentially linked by dispersal of 

species dwelling locally (Leibold et al., 2004), and are characterized by a site-by­

species matrix of presence-absences or abundances (Leibold & Mikkelson, 2002; 

Presley et al., 2009) .. It follows that species distributed in a non-random manner, 

should provide valuable clues about the processes that regulate community assembly 

(Leprieur et al., 20à9; Presley & Willig, 2010). For example, nested subsets (i.e., in a 

set of sites, composition of species-poor sites represent subsets of more specious 

communities; Patterson & Atmar, 1986) is characterized by low species turnover 

between sites (Leibold & Mikkelson, 2002) which is a product of many possible 

factors such as differential dispersal capabilities, differential niche breadths, selective 

extinctions and others (see Ulrich et al., 2009 for a review). Thus, when a pattern is 

unveiled and given sorne knowledge of the studied system, the range of plausible 

hypotheses to test about the processes that regulate species distribution is drastically 

reduced (Leibold & Mikkelson, 2002; Presley et al., 2009). 
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3.1.2 - Influence of niche on distributiona1 patterns 

Factors that influence the distribution of a species (e.g., resource affinities, 

species interactions; climatic tolerance) are integrated into the concept of niche 

(Dolédec et al., 2000; Wiens & Graham, 2005; Soberôn, 2007, Costa & Schlupp, 

2010). Following Hutchinson (1957), the niche of a species can be represented by a 

n-dimensional hypervolume in which populations of a given species can persist. 

Abiotic factors and biotic interactions with other species define the niche 

hypervolume (Dolédec et al., 2000). The niche can be divided into two components: 

the a-niche comprises the resource use of species (Soberôn, 2007) whereas the ~­

niche consists.of the range of environmental conditions that species tolerate and their 

dispersal abilities (Costa & Schlupp, 2010). The information about a-niche is used to 

disentangle two opposing assembly rules: competitive exclusion (MacArthur & 

Levins, 1967; Diamond, 1975) and habitat filtering (Mason et al., 2007). In the 

former, due to competition for resources, species that co-exist in local communities 

present low niche overlap (i.e., species that had high niche overlap with the species 

that are present in the community where excluded through competition in the past). 

According to the second process, local environmental conditions are more important 

than biotic interactions, and species that share the same physiological tolerances 

would be more likely to co-exist, even if they present high overlap in their resource 

use (i.e., high niche overlap; Mason et al., 2008). In contrast, the ~-niche provides 

information to estimate species geographic distributions at broader scales (Soberôn, 

2007; Costa & Schlupp, 2010). 

The o.-niche can be estimated using speCles trophic position (Ingram & 

Shurin, 2009) and/or by a set of functional traits or patterns of phylogenetic 

relationships that are potentially reJated to their niche axes (Webb, 2000; Cavender­

Bares et a{, 2004; Mason et al., 2008; Ingram & Shurin, 2009). The ~-niche is often 

estimated by a set of broad-scale environmental variables that characterize all the 
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environments where the species are present, which in turn serve as an indirect 

surrogate for unmeasured physiological traits related to their environmental 

tolerances (Dolédec et al., 2000; Costa & Schlupp, 2010). Moreover, species 

phylogenetic relatedness can be used as a proxy to infer about ~-niche similarities 

among species as weil (Wiens & Graham, 2005). 

3.1.3 - Phylogenetic relatedness and community assembly 

Given that species niches (Ct and ~) are the result of processes occurring 

during their evolutionary history (Ackerly et al., 2006), their phylogenetic 

relationship can serve as a proxy (but see Losos, 2008) to infer niche similarities 

among them (Webb, 2000; Cavender-Bares et al., 2004; Helmus et al., 2007a). 

Because species that diverged recently tend to be more ecologically simiJar (i.e., 

niche conservatism; Wiens & Graham, 2005), there may be a link between the 

phylogenetic relatedness of a taxa and the factors that determine the distribution of 

the species within that taxa. In this context; if niches are conserved (i.e., they exhibit 

strong phylogenetic signal), community phylogenctics have two basic predictions: (l) 

if closely related species are co-occurring (i.e., phylogenetic underdispersLon), it 

suggests that environmental filtering is allowing only the species that have similar 

environmental tolerances to inhabit a particular community (Cavender-Bares et al., 

2004); (2) if species assembled in a community are more phylogenetic distantly 

related (i.e., phylogenetic overdispersion), it suggests that competitive interactions are 

precluding the species that are ecologically similar to co-occur (Cavender-Bares et 

al., 2006). However, if niche components that are important for community assembly 

are convergent (i.e., low phylogenetic signal), tests for phylogenetic patterns (i.e., 

underdispersion or overdispersion) have a less straightforward interpretation and 

caution is needed when inferring processes that causes these patterns (Webb et al., 

2002; Losos, 2008). 

3.1.4 - Integrating phylogeny and niche into metacommunity patterns 
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Although many theoretical and empirical advances have been made in these 

three venues (e.g., niche modelling, phylogenetic approaches and metacommunity 

paradigm; Webb, 2000; Webb et al., 2002; Leibold & Mikkelson, 2002; Wiens & 

Graham, 2005; Cavender-Bares et al., 2006; Helmus et al., 2007a; Ingram & Shurin, 

2009; Costa & Schlupp, 2010; Presley & Willig, 2010), there has been few attempts 

to combine phylogenetic and niche properties into metacommunity analyses. In this 

study, 1 propose to integrate these three approaches in order to promote an integrated 

view of the processes that regulate community assembJy (i.e., local scale processes) 

and large-scale distributional patterns. As the niche of species is a product of their 

evolutionary history (Ackerly et al., 2006), and the distribution of species are 

dependent on their niches (Soberôn, 2007), there may be a link between the 

phylogenetic relationship of species and their patterns of distribution that arise from 

non-random associations of species across communities. In chapter one, 1 have 

described and assessed che environmental correlates of the metacommunity elements; 

in the present chapter, 1 will link these elemental patterns to phylogeny as a surrogate 

of niche relationships as weil as other aspects of niche such as marginality and 

breadth. 

3.1.5- Studied system 

ln order to combine these elements (i.e., niche, phylogeny and 

metacommunity), 1 used a dataset of lake-fish distribution from Ontario (details are 

given in the introduction of the thesis and in the methodology section of chapter 1). 

The present Ontario fish-fauna is a result of recent processes of colonization (and re­

colonization) at the end of the Pleistocene glacial period where lakes and rivers were 

formed from the meltwaters of the retreating glacial sheet (Mandrak & Crossman, 

1992). Moreover, Ontario, more precisely the southern region, has the greatest fish 

species richness of Canada, which is a result of postglacial dispersal, human activities 

and climate (Chu et al., 2003). Finally, there is a strong gradient of environmental 

variation, with more extreme environmental conditions (i.e., harsher winter) in the 
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north (Mandrak, 1995) which can act as a strong environmental filter for many 

species that do not have the physiological adaptations to survive in these conditions 

(Shuter et al., 1980) and a more favourable c1imatic condition in the southern part of 

the province (Mandrak, 1995). These three conditions and the size of the dataset 

(8911 lakes) make it an ideal system to disentangle the processes of limiting 

similarity and environmental filtering that affect species association, which will 

influence community structure at local scaJe and ultimately yield to the distributional 

patterns at the metacommunity scale. 

3.1.6- Chapter objectives 

Here I assess phylogenetic relatedness (which was used as a proxy for the u­

niche), niche indices (marginality and breadth) regarding the ~-niche and the 

influence of environmental gradients on the patterns of species distributions, at three 

hierarchical spatial scales: lake, watershed and the whole province. The specific goals 

are as follows: 1) Determine how patterns of phylogenetic str-ucture change across 

scales (e.g., local versus regional); 2) Asses the relationship between phylogenetic 

relatedness, niche community structure and environmental gradients across 

watersheds; and 3) Test for differences among metacommunity patterns regarding 

these factors. 

3.2 - Methodology 

The data set used here is the same as in chapter one. I used ail 8911 lakes 

divided into 85 tertiary watersheds (Cox, 1978) and applied the metacommunity 

patterns observed at each watershed as detected by the EMS framework 

(methodology section, chapter 1). In the next sections, I describe the framework used 

to measure niche properties, phylogenetic relatedness and environmental gradients. A 

summarized description of these indices is presented in Table 3.2. 

3.2.1 - Niche indices 
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ln this study, properties related to the ~-niche were estimated using the abiotic 

factors (see Table 1.1 for a list of environmental variables) from ail lakes where each 

species were present. [ used two niche aspects, namely niche breadth (range of 

environments used by the species) and niche marginality (level in which an 

environment used by a species differs from what is available in the entire landscape). 

Because l used the environment of lakes to measure species preferences, species 

would tend to have more similar niches due to their common co-occurrence across 

many lakes within the same watershed. ln order to reduce this potential bias, l 

calculated niche breadth and marginality for each watershed separately; however, 

estimates were based on aU lakes across the entire data set except the ones for the 

specific watershed at hands. First, ail environmental variables were standardized 

(mean = 0 and variance =: 1) across the reduced data set (i.e., without the lakes of the 

. target watershed) and then, a pairwise Euclidian distance matrix across lakes was 

calculated. For each species, niche breadth was calculated as the average Euclidian 

distance across ail their occupied lakes. Niche breadths across species were averaged 

within watersheds; a watershed that presents a large mean niche breadth suggests that 

is composed, in average, by more generalist species whereas if it exhibits a small 

value, it indicates that is composed by more specialist species. 

The second niche measure, marginality, was based on the average Euclidian 

distance across ail occupied lakes for a given species (except the ones for the target 

watershed) and the median of all environmental variables across lakes (i.e., occupied 

or non-occupied). l then calculat~d the Euclidian distance among species 

marginalities and averaged them across species within each watershed. Large mean 

values indicate that the watershed is composed by species with a relatively small 

niche overlap among them, whereas small mean values indicate that the watershed is 

composed by species with relatively large niche overlap. Note that because ail 

environmental variables were used in the calculation of Euclidian distances, breadth 

and marginality represent multivariate measures of niche. 
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3.2.2 -Characterizing environmental gradients 

Akin to a species niche breadth and marginality, 1 calculated environmental 

breadth (variance) and environmental marginality (uniqueness) for each watershed. 

These measures aim at assessing whether gradient variability may be driving 

differences in community assembly patterns across watersheds. The two indices were 

calculated based on the standardized (mean=O and variance =1) environmental matrix 

across the entire dataset and also the standardized environmental matrix within each 

watershed. The former are hereafter referred as to environmental breadth (across 

watersheds) and environmental marginality (across watersheds) and the latter are 

hereafter referred as to environmental breadth (within watersheds) and environmental 

marginality (within watersheds). For each lake, environmental breadth was calculated 

as the mean Euclidean distance across lakes within watersheds. Environmental 

marginality was based on the average Euclidian distance between aIl lakes within a 

watershed and the average. of aIl environmental variables across ail lakes across ail 

watersheds. Because ail variables were standardized prior to analysis, the mean of 

each environmental variable is zero and hence the marginality of each lake is simply 

the square root of the sum-of-squared values across variables. 1 then averaged the 

marginality values for aIl the lakes within any given watershed. Standard deviation of 

marginalities across lakes within a watershed was used as a measure of environmental 

overlap across lakes. 

3.2.3 - Phylogenetic tree 

In order to assess the phylogenetic relationships between the 53 fish species in 

this study, a phylogenetic tree was created following Hubert et al. (2008). The 

genomic information for each species was obtained at the National Center for 

Biotechnology Information (http://\:v,,vw.l1cbi.nlm.nih.gov). Among other 

information, this database contains species names, voucher data, collection record, 

barcode sequence, PCR primers and trace files (Hubert et al., 2008). The GenBank 
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accession number for each species is shown in Table 3.1. For each specles, the 

molecular tag utilized was a 652-bp segment of 5' region from a mitochondriaI 

cytochrome c oxidase 1(COI) gene, which was coded ln format FASTA (Hubert et 

al., 2008). Mitochondrial DNA (mtDNA) was used due to its high mutation rate and 

smalt effective population size, which make it a reliable genome about evolutionary 

processes and patterns (Brown et al., 1979). 

Phylogenetic analysis was performed using Mega4 v4.0 (Takamura et al., 

2007), where the FASTA format sequence codes were imputed. In order to caJculate 

the sequence divergence between species, the Kimura 2-parameter (K2P) model 

(Kimura, 1980) was applied and the graphic representation of the evolutionary tree 

(Figure 3.1) was created using the mid-point rooted Neighbour-joining tree technique 

(Saitou & Nei, 1987) on K2P distances. The evolutionary tree was converted into a 

phylogenetic covariance matrix based on nodal covariance between species (Webb, 

2000; Peres-Neto, 2006). Nodal distance methods are subject to some limitations, 

such as dependence on clade richness, i.e., two species drawn randomly from a 

species-rich clade will appear more related than two species drawn from a species­

poor clade. However, thlS problem is more likely to bias statistical tests between pairs 

of species, and having [ess effect when communities are increasingly richer (Webb, 

2000). Moreover, the clades here have, in general, similar number of species (Figure 

3.1), thus l expect that a high number of nodes shared by two species wi Il weil reflect 

species that have a more recent common ancestor and thus are more ecologically 

similar (Webb, 2000; Helmus et al., 2007b). 

Finally, although the phylogenetic covariance matrix unrealistically assumes 

that distances between species are a function of a single trait under "Brownian 

motion" evolution (Felsenstein, 1985), it gives a way to translate evolutionary history 

of species into a measure of phylogenetic relatedness (Peres-Neto, 2006; Helmus et 

al., 2007a), which in turn can be related to assembly processes at the community level 
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(Cavender-Bares et al., 2004). The phylogenetic covariance matrix was used ta 

calculate the indices described in the next section. 

3.2.4 - Phylogenetic indices . 

For lakes within each watershed, two indices were calculated: mean nearest 

taxon distance (MNTD) and mean pairwise distance (MPD). The first one measures 

the average relatedness between each species and its closest relative whereas the 

other assesses the average relatedness between ail co-occurring species in a 

community (Webb, 2000). See below: 

~DN
MNTD= lj 

n 

where DNiJ is the phylogenetic distance between species i and its nearest relative j 

and n is the number of species. 

MPD=~ 
n 

where DNiJ is the phylogenetic distance between species i and speciesj. 

Thus, if we assume that phylogenetic distance is a proxy of ecological 

similarity (Webb, 2000; Peres-Neto, 2004), MNTD is a proxy of how ecologically 

simiJar two co-occurring species are and MPD is a proxy of how ecologically simiJar 

is an entire community. In this analysis, lakes containing only one species were 

removed. 

3.2.5 - Null models for phylogenetic data 

3.2.5.1 - Regional nul\ model 

In arder ta test whether specles that colonized a particular watershed 

presented or not a phylogenetic pattern (i.e., overd ispersed, randam or 
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underdispersed) l performed (Figure 3.2) the following nul! model (hereafter referred 

to as regional null model). For each watershed, a number of species equal to the 

observed \Vere randomly chosen from ail species present in the entire dataset (i.e., 

regional pool; n = 53) and both indices (i.e., MNTD and MPD) were calculated. The 

regional nul! model allows us to look for global trends of species colonization 

capacities and whether this property is related to phylogenetic structure. This nul! 

model was performed based on 999 random species samples (from the entire regional 

pool) and the values of the indices from each permutation were compared to the 

observed values.. Probability values were calculated based on the number of random 

values equal or smal!er than the observed value divided by 1000 (i.e., 999+ l, which 

includes the observed value as a possible outcome of the randomization test) or on the 

number of random values equal or larger than the observed value. The test \Vas one­

tailed, with an alpha-level of 0.05, where p < 0.05 was used as indicative of 

phylogenetic underdispersion whereas p > 0.95 was indicative of phylogenetic 

overdispersion. If the p-value fel! between 0.05 and 0.95, species present at any given 

watershed were considered to be phylogenetically non-patterned. This nul! model was 

used to assess whether species sharing similar environmental tolerances or dispersal 

abilities (assuming that these ecological properties are conserved through 

evolutionary history; Wiens & Graham, 2005) are colonizing the same watersheds or 

not. 

3.2.5.2 -Local null model 

The second null model (see Figure 3.2) represents a filter at the local 

community scale (i.e., within lakes). Within each watershed, 999 random species 

samples were drawn for each lake, with the observed number of species in each lake 

held constant, but the identity of species drawn randomly. Note, however, that here, 

instead, the species poo 1 was based only on thespecies present in that particular 

watershed. Thus, the assumption here is that species in a watershed are capable of 

colonizing every lake and what determine their successful establishment depends on 
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Table 3.1 Species name, prevalence (number of lakes present) and GenBank 
accession number. 

Species Prevalence GenBank n' Species Prevalence GenBank n' 

Acipenser fulvescens 45 EU524392.1 Semofilus afromaculafus 901 EU525136.1
 
Salvelinus fonfinalis 1788 EU522409.1 Semofilus corporalis 96 EU5251451
 

Salvelinus namaycush 1753 EU5224221 Margariscus margarifa 1009 EU524128.1
 
Coregonus clupeaformis 2018 EU5239571 Ameiururs nebulosus 1154 EU523909.1 

Coregonus artedi 2083· EU5239391 Nofurus gyrinus 50 EU525043.1 
Prosopium cylindraceum 53 EU5242881 Anguilla rosfrafa 40 EU524440.1 

Esox lucius 4284 EU524578.1 Fundulus diaphanus 110 EU5240581 
Umbra limi 163 EU522446.1 Lofa lofa 1378 EU5247531 

Cafosfomus cafosfomus 482 EU5244621 Culaea inconsfans 1117 EU524532.1 
Cafosfomus commersoni 6430 EU524478.1 Pungifius pungifius 451 EU524319.1 

Moxosfoma anisurum 53 EU5248461 Percopsis omiscomaycus 481 EU524261.1 
Moxosfoma macrolepidofum 272 EU5248891 Ambloplifes rupesfris 1337 EU5244071 

Phoxinus eos 1659 EU5250581 Lepomis gibbosus 1930 EUS24714.1 
Phoxinus neogaeus 816 EU525D64.1 Lepomis macrochirus 225 EU524732.1 
Couesius plumbeus 564 EU524523.1 Lepomis megalofis 68 EU524124.1 

Hypbognafhus hankinsoni 71 EU524081.1 Micropferus dolomieu 1647 EU524810.1 
Notemigonus crysoleucas 1180 EU524930.1 Micropferus salmoides 719 EU524132.1 

Nofropis afherinoides 253 EU524950.1 Pomoxis nigromaculafus 101 EU5242851 
Luxilus cornufus 1029 EU5247681 Perca f1avescens 5717 EU524240.1 

Nofropis heferodon 166 EU524981.1 Sander Canadensis 132 EU524373.1 
Nofropis heferolepis 1914 EU5249991 Sander vi/reus 2590 EU524374.1 
Nofropis hudsonius 1720 EU525003.1 Efheosfoma exile 1783 EU5240241 
Nofropis volucellus 737 EU5241831 Efheosfoma nigrum 1253 EU524045.1 
Pimephales nofafus 1079 EU525076.1 Percina caprodes 595 EU524246.1 

Pimephales promelas 1362 EU525085.1 Coftus bairdi 498 EU5224591 
Rhinichfhys afrafulus 99 EU524322.1 Coftus cognafus 235 EU524511.1 

Rhinichfhys cafaracfae 302 EU524323.1 
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Figure 3.1 Phylogenetic tree of the 53 extant species created using the mid-point 
rooted Neighbour-joining tree technique (Saitou & Nei, 1987) applied on K2P 
distances (Kimura, 1980). Prevalence =number of lakes where the species is present. 
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their capabilities to cope with local abiotic and biotic factors. Moreover, in permuted 

sets, l constrained lake species richness to be equal to the observed given that fish 

species richness is highly correlated with lake size (e.g., Barbour & Brown, 1974; 

Eadie et al., 1986). Indices (i.e., MNTD and MPD) were calculated for each random 

drawn. As earlier, the probability of rejection was estimated as the proportion of the 

999 nul! communities with values more extreme than the observed value. 

Significance was assessed based on a one-tailed test: if p < 0.05 it indicated that co­

occurring species were phylogenetically underdispersed, if p > 0.95 it indicated that 

co-occurring species were phylogenetically overdispersed and if p-value fell between 

0.05 and 0.95, it suggested that there was no evident phylogenetically-related process 

structuring patterns of species co-occurrence. 

MPD and MNTD values were standardized (MNTDsTAND and MPDsTAND in 

the equation bellow) to allow for a better contrast across lakes having different 

number of species às fol1ows (Gotelli & Mcabe, 2002):-

MNTn = TI1m_M_N_T_4--,,-B=S_-_m_e_a_n(-,--M_N_....:..:o.:..::D:.:...)
 
~TAND sd(MNTI1mD)
 

MPD = MPDoBS - mean(MPDRND ) 
STAND sd(MPDRND ) 

where MNTDoBsand MPDoBs represent the observed value of MNTD and MPD, 

respectively, MNTDRND and MPDRND represent the random value estimated by the 

null model for each index and sd stands for standard deviation. The indices of each 

lake were standardized using the null distribution of the local null mode!. For the 

metacommunity scale (i.e., for each watershed), l averaged the values of standardized 

indices from ail lakes present at each watershed. Negative values of standardized 

indices indicate an overall tendency to phylogenetic attraction (i.e., underdispersion), 
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whereas positiv"e values suggest trends for phylogenetic repulsion (i.e., 

overdispersion). 

3.2.6 - Statistical Analyses 

3.2.6.1 - Provincial scale patterns - Relation between environment and indices 

ln order to assess the regional patterns in terms of how watershed 

environment structures community assembly, 1 used watersheds (metacommunities) 

as observations (i.e., values for ail statistics were averaged or generated at the 

watershed level). First, environmental variables (see chapter one) were log­

transformed when necessary to assure assumptions of normality (Legendre & 

Legendre, 1998) and averages across lakes were used. Then, 1 reduced the number of 

environmental predictors by condl.lcting a principal components analysis (Legendre & 

Legendre, 1998) on the 15 environmental variables. 1 used the two first principal 

components (PC) which accounted for most of the environmental variability among 

watersheds. Finally, 1 performed multiple regression models using the scores of the 

two first principal components (i.e., PC-l and PC-2) as predictors and each index as 

response yariable (i.e., niche marginality, niche breadth, environmental marginality 

(within and across watersheds), environmental breadth (within and across 

watersheds), MNTD and MPD). 

3.2.6.2 - Provincial scale patterns - Variation in phylogenetic structure, 

community niche structure and environment across watersheds 

ln order to explore the phylogenetic basis of community structure 1 calculated 

Pearson correlations between phylogenetic and niche indices. MOl'eover, to 

understand how properties of the environmental gradients within watersheds, such as 

their uniqueness (i.e., marginal versus common environments) and their range of 

environmental variation, may affect community niche and phylogenetic structure, 

Pearson correlations between environmental indices (i,e., marginality and breadth) 
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and community structure indices (i.e., phylogeny and niche) were performed. 

Correlations were calculated across watersheds and the results for this section are 

summarized in Table 3.6. 

3.2.6.3 - Watershed scale patterns - Differences in species and environmental 

properties between metacommunity patterns 

Differences regarding ail indices at the watershed level (average values of 

lakes present in each watershed) were analyied using one-way ANOVAs. In order to 

remove the effects of geographic positioning on these analyses, 1 also performed an 

ANCOVA on the same indices using latitude as a covariate due to the presence of 

nestedness watersheds both in south-eastern and north-western Ontario (see results 

chapter one). 

3.3 - Results 

3.3.1 - Regional and local null models 

The results of both null models (local and regional) are summarized in Table 

3.3. The regional null model suggests that several metacommunities are phylogenetic 

underdispersed regarding both indices (MNTD n= 18; MPD n= 10), but most 

watersheds were not significantly phylogenetically structured. Conversely, the local 

null mode l, which represented a small scale filter at the lake Ievel indicates that 

several metacommunities display phylogenetic overdispersion (MNTD n=25; MPD 

n=21) in addition to phylogenetic underdispersion (MNTD n=9; MPD n=15), though 

several were found as phylogenetically unstructured (MNTD n=51; MPD n=49). The 

principal components ana1ysis indicates the presence of two major environmental 

gradients (Table 3.4). PC-l and PC-2 accounted for 44.36 % and 26.72% of the total 

variation, respectively. PC-1 represents a gradient composed mainly by surface area 

and energy related variables: watersheds containing larger lakes and colder 
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W~!~rsheds - W~t~rshed Pool 

PrOVince· Regional Paal 

Spècie; • <D o. <D o. [] 0 • .1:. /::" .Â. 

Figure 3.2 Conceptual framework for the regional and local null models, which 
represent the filters that species need to surpass in order to assemble in local 
communities. The regional filter represents broad-scale factors (e.g., climate variables 
and/or dispersal limitation such as geographic barrier). The local filter represents 
local dispersal limitation (e.g., community isolations), local environment (e.g., pH) 
and/or biotic interactions (e.g., competition). Species are represented by symbols. 
"Under" stands for underdispersion (i.e., phylogenetic clustering), "Over" stands for 
phylogenetic overdispersion (i.e., phylogenetic evenness) and "Random" stands for 
random phylogenetic structure. 



69 

temperatures (i.e., lower energy) load positively whereas watersheds containing 

smaller lakes and higher temperatures load negatively (Table 3.4). PC-2 represents a 

gradient for water c1ari~y (high positive loadings from SD), lake morphometry 

variables (i.e., depth measures) and energy related variables (Table 3.4). Watersheds 

containing deep lakes, c1ear water and high energy load positively and watersheds 

containing shallow lakes, turbid water and low energy load negatively with PC-2. 

Both PCs presented also moderate positive loadings for elevation. 

3.3.2 - Environmental gradients, phylogenetic structure and community niche 

structure at the Provincial scale 

Environmental marginality (across watersheds) was negatively associated 

with PC-l (~ = -0.29, P = 0.005), indicating greater environmental overlaps in low­

energy watersheds with larger lakes and lower environmental overlaps (i.e., more 

heterogeneous environments) in high-e~ergy watersheds containing smaller lakes. 

Environmental marginality (across watershed) was positively associated with PC-2, 

emphasizing the positive relation between environmental heterogeneity (i.e., low 

overlap) and energy-related variables. However, neither PCs were significant 

predictors of environmental marginality (calculated within watersheds) index (PC-l, 

P = 0.60; PC-2, p = 0.20). These results suggest greater environmental homogeneity 

within than across watersheds. Environmental marginality is more evident across 

watersheds and significantly related with southern high-energy watersheds, which 

probably have more marginal environments (i.e., warmer) compared to the "average 

environment" of the entire province. Environmental breadth (within watersheds) was 

only positively related with PC-2 (~ = 0.36, P = 0.0005) indicating a positive 

relationship between the size (i.e., variance) of the environmental gradient and 

energy-related variables. Neither PCs were significantly related to environmental 

breadth (across watersheds) (Table 3.5). As for the phylogenetic structure, both PC-l 

and PC-2 exhibited an opposite relationship with MPD, with PC-l being positively 

associated W= 0.48, P < 0.0001) and PC-2 negatively associated (~ = -0.39, P < 
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0.0001) (Table 3.5). In the case of PC-l, the result can be interpreted as communities 

containing, in average, species more distantly related (i.e., higher MPD) within larger 

lakes in low-energy watersheds to communities containing on average more closely­

related species (i.e., lower MPD) within smaller lakes in high-energy watersheds. PC­

2 again emphasized the negative relationship between MPD and energy-related 

variables (i.e., the greater the energy available in the environment the more the 

community is phylogenetically clustered). Both PCs were negatively related to 

MNTD (PC-l, ~ = -0.34, P < 0.0001; PC-2, ~ = -0.21, P = 0.039), indicating that in 

larger lakes the average phylogenetic distance between species and their closest 

species is smaller than in progressively smaller lakes, but the result is less clear when 

analyzing the relationship of this index (MNTD) and energy (e.g., growing degree­

days, mean annual daily temperature and others), because MNTD is negatively 

associated with both PCs and they load in opposite ways for energy-related variables. 

Niche breadth showed a negative relatiol1ship with both PC-I (~ = -0.33, p = 

0.00016) and PC-2 (~ = -0.53, P < 0.0001), indicating that species having smaller 

niche breadths inhabit larger lakes (Table 3.5); again, for energy, the pattern was not 

clear because niche breadth was also negatively related to both PCs, which load in 

opposite ways for energy-related variables. Finally, niche marginality was negatively 

related with PC-1 (~= -0.59, P < 0.0001) and positively re1ated with PC-2 (~= 0.62, 

p < 0.0001) (Table 3.5), suggesting that species with higher overlap (i.e., less distant) 

in their environmental preferences (~-Niche) tend to co-exist in low-energy 

watersheds within larger lakes. 

Results for correlations between environmental indices versus phylogenetic 

and niche indices are summarized in Table 3.6 as weil as correlations between 

phylogenetic versus niche indices. Among ail environmental indices, only 

environmental marginality (across watersheds) was significantly correlated with 

niche marginality (~ = 0.37, P = 0.001), suggesting that watersheds presenting more 

marginal (i.e., extreme) environments, in contrast with the "average environment" of 
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the Province, are inhabited by specles that also present marginal environmental 

preferences (i.e., marginal ~-niches). Niche breath was only significantly correlated 

with environmental breadth (within watersheds; ~ = -0.24, P =0.022). MPD was only 

significantly correJated to environmental marginality (across watersheds) (~ = -0.33, 

P =0.002), indicating that watersheds presenting more marginal environments were 

composed of communities structured by phylogenetic underdispersion. MNTD was 

associated with environmental marginality (across watersheds) (~ = -0.26, P =0.013) 

and with environmental breadth (across watersheds) (~ = -0.44, p < 0.0001; Table 

3.6). The first associati<Jn corroborates previous results, suggesting a decrease in 

community phylogenetic distance (i.e., phylogenetic underdispersion) as 

environments within watersheds become more marginal (in relation to the landscape 

average environment). The second correlation suggests a decrease in community 

phylogenetic distance (i.e., phylogenetic underdispersion) as the "size" (i.e., variance) 

of the environmental gradient increase. 

The contrast between phylogenetic structure and specles niche (i.e., 

marginality and breadth) indicates a positive correlation between MPD and niche 

breadth (~ = 0.23, P =0.027) and a negative one withniche marginality (~ = -0.62, p < 

0.001; Table 3.6). Thus, watersheds composed of communities with species 

presenting greater differentiation in their niches have a lower average community 

phylogenetic distance. This suggests that communities composed by different groups 

of closely related-species occupy different portions of the niche-space available. 

Moreover, watersheds composed of communitles with species presehting broader 

niches have a larger average community phylogenetic distance. This trend was also 

supported by the positive correlation between niche breadth and MNtD (~ = 0.61, p 

<0.0001; Table 3.6), suggesting that, in average, communities that have a tendency 

for phylogenetic overdispersion (i.e., species are more distantly related), are 

composed by species that have broader niches (i.e., general ist). This indicates that 

generalist species (i.e., greater niche breadth) are evenly-distributed across the many 
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Table 3.3 Results for the regional and local null models: Number of watersheds per 
type of phylogenetic structure. "Under" stands for phylogenetic underdispersion, 
"Over" stands for phylogenetic overdispersion. N.S. = non significant (p-values 
between 0.05 and 0.95), whichis interpreted as a random phylogenetic structure. 

Null Madel (Phylogenetic Index) Number of watersheds 

Under (p :; 0.05) N.S. Over (p ~ 0.95) 
Regional null model (MNTD) 18 67 o 
Regional null model (MPD) 10 75 o 
Local null model (MNTD) 9 51 25 
Local null model (MPD) 15 49 21 
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Table 3.4 Principal components analysis on environmental variables. Variables 
loadings represent the correlation coefficient between each variable and the principal 
component (i.e., PC-! and PC-2). See introduction (page 4) for significance of 
abbreviations for environmental variables. 

PC-1 PC-2 

EigenValue 6.65 4 
Variance Explained (%) 44.36 26.72 

Variables Variables Loading 

MaxO 0.542737 0.703877
 
MeanO 0.393744 0.809226
 
ELEV 0.484218 0.331714
 

SD 0.187726 0.702508
 
PET -0.709209 0.620995
 
SA 0.790989 -0.023441
 
P 0.790791 0.06324
 

ISL 0.722936 0.165447
 
GDD -0.824655 0.488282
 
TDS -0.690928 -0.510892
 
MEl -0.714173 -0.609143 

CROWN 0.831263 0.032296 
MADT -0.599261 0.587034 

MJT -0.652116 0.535517 
MAT -0.718375 0.577706 
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Table 3.5 Multiple regression models using indices as response variables and both 
PCs (e.g., PC-l and PC-2) as predictors. ~ represent the regression coefficients. The 
a-level used was 0.05; p-values in bold are significant. 

Indices PC-1 PC-2 

F (2.82) R2 
adjusted ~ p ~ p 

Environmental marginality (within watersheds) 
Environmental marginality (across watersheds) 

Environmenlal breadth (within watersheds) 
Enviromnental breadth (across watersheds) 

MPD 
MNTD 

Niche marginality 
Niche breadth 

0.96 
6.86 
6.53 
2.21 

25.95 
7.82 

121.93 
27.67 

-0.0008 
0.12 
0.11 
0.02 
0.37 
0.13 
0.74 
0.38 

-0.05 
-0.29 
0.05 
0.16 
0.48 
-0.34 
-0.59 
-0.33 

0.6 
0.005 
0.57 
0.12 

<0.0001 
0.001 

<0.0001 
0.00016 

-0.14 0.2 
0.23 0.02 

0.36 0.0005 
6.15 0.16 
-0.39 <0.0001 
-0.21 0.039 

0.62 <0.0001 
-0.53 <0.0001 



75 

Table 3.6 Pearson correlations between indices calculated at the watershed level. The 
top of the table refers to the relationship between watershed environmental properties 
and species properties (both niche and phylogenetic structure). The bottom of the 
table refers to the niche-phylogenetic structure relationship. Ali indices were 
calculated for each community (i.e., lake) and the average value of aillakes was taken 
as a measure for any given watershed. Numbers represent coefficient of correlations 
between indices and significant values (p :5 0.05) are in bold. 

Niche indices Phylogenetic indices 

Environmental indices Niche marginality Niche breadth MPD MNTD 

Environmental marginality (within watersheds) 
Environmental marginality (across watersheds) 

Environmental breadth (within watersheds) 
Environmenlal breadth (across watersheds) 

-0.05 
0.37 
0.21 
0.01 

0.08 
-0.09 
-0.25 
-0.2 

-0.05 
-0.34 
-0.12 
-0.03 

-0.08 
-0.27 
001 
-0.44 

Phylogenetic Indices 

Niche indices MPD MNTD 

Niche marginality -0.62 -0.1 
Niche breadth 0.24 0.62 
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clades of the phylogenetic tree (Figure 3.1). Indeed, prevalence (number of lakes in 

which a species is present; Figure 3.1 and Table 3.1) supports this result because a 

great number of sister species are frequently composed by a cornmon (present in 

many lakes) and a rare species (present in few lakes). Thus, when a lake is composed 

by many generalist species, there is a greater chance that these species are distantly 

related, which will increase the overall community phylogenetic distance. 

3.3.3 - Differences between nestedness and Clementsian gradients regarding 

indices 

ANOVAs revealed little differences between nestedness and Clementsian 

gradients. Environmental marginality and breadth (bath, acro~s and within 

watersheds) were not different between the two patterns (Figure 3.3), indicating that 

the arnount of environmental variation and environrnental overlap within a watershed 

is not related to the pattern uncovered by the EMS analysis. Relative to the 

phylogenetic indices, nested watersheds presented significant higher values of MPD 

(F=4.5, p=O.036; Figure 3.4), suggesting that in general, lakes in nested watersheds 

present greater phylogenetic distances across co-occurring species. MNTD was also 

significant (F=11.991, p<O.001) but the result was the reverse, in which Clementsian 

watersheds exhibited greater values (Figure 3.4). Thus, in Clementsian watersheds 

lakes the average phy logenetic distance between the species and their c10sest relative 

is greater than within lakes of nested watersheds. In relation to the niche indices, the 

only significant difference between Clementsian and nestedness watersheds was 

regarding the niche breadth (F=5.622, p=O.02), where species of Clementsian 

watersheds present an average niche breadth greater than species inhabiting nested 

watersheds (Figure 3.4). Niche marginality was not different between the two patterns 

(F=O.55, p=0.44; Figure 3.4). The results from the ANCOVA, using mean latitude as 

covariate, maintained almost ail findings but for MPD. After accounting for spatial 

location, MPD turned out not to be significant (F=O.6191, p=0.43), indicating that 
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variation for this measure could be explained by latitude and not necessarily by the 

structuring metacommunity process (i.e., nestedness versus Clementsian). 

3.4 - Discussion 

3.4.1 - Regional and local filters 

The main results of this study show a sharp contrast in community 

phylogenetic structure across scales. At the regional scale, watersheds were colonized 

by species that are more cIosely related than expected by chance (i.e., phylogenetic 

c1ustering) suggesting environmental filtering (Cavender-Bares et al., 2004). Note 

that at this scale, no watershed presented a pattern of phylogeneticoverdispersion. 

This result suggests that species from sorne clades were either incapable to tolerate 

the environmental conditions of these watersheds (Mandrak, 1995; Gardezi & 

Gonzalez, 2008) or did not have enough capacity (or time) to disperse into them 

(Ingram & Shurin, 2009). Moreover, this may be the case, as 78% of the watersheds 

that were phylogenetically c1ustered for either MPD or MNTD were localized in 

latitudes above 47° whereas only 22% watersheds presented this pattern at latitudes 

lower than 47°. High-Iatitude watersheds present harsher winters, with shorter 

growing seasons and lower temperatures (Mandrak, 1995), which can prevent species 

without the necessary physiological adaptations to survive in these conditions (Shuter 

et al., 1980). Another possible explanation for this pattern of underdispersion is the 

increased importance of environmental filtering at larger scales because greater 

environmental variation is encompassed at greater spatial scales (i.e., there is more 

environmental variation across a watershed than within a lake), providing 

opportunities for species to sort themselves across these broad environmental 

gradients (Cavender-Bares et af., 2006). Finally, phylogenetic c1ustering at large 

spatial scales can arise from biogeographic processes of local radiation and limited 

dispersal (Pennington et al., 2006), such as in Hawaii islands (e.g., Drosophila; 

Carson & Kaneshiro, 1976). However, this hypothesis is unlikely the case in Ontario 
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since it was only recently colonized by fish species, just after the end of Pleistocene 

glaciations (l0000 years ago) and watersheds at higher latitudes were the last to be 

colonized (Mandrak & Crossman, 1992b). Therefore, speciation events are unlikely 

in such short period of time and indeed there is no endemic species in the region. 

At the local scale, phylogenetic patterns were quite different, in which 

phylogenetic overdispersion was quite predominant (Table 3.3). Indeed, based on 

MNTD, 10 of the 25 watersheds that presented phylogenetic overdispersion locally 

were found as phylogenetically clustered regionally and the same pattern was 

encountered in 4 of the 21 watersheds for MPD. Moreover, with the local filter, 90% 

of the watersheds presenting overdispersion where above the latitude 47° whereas 

only 10% where below for MPD, and 64% were located above and 36% below for 

MNTD. The differences in terms of phylogenetic patterns at the local and regional 

scales indicate different filtering processes at each scale (Cavender-Bares et al., 

2006). Here l propose the following explanation for these contrasting community 

assembly patterns: Winter harshness is greater in northern watersheds (Mandrak, 

1995) and filter out species that do not have the necessary physiologicaJ adaptations 

to survive and reproduce under these conditions (Shuter et al., 1980). At reduced 

spatial scales (i.e., lake scale) local competition becomes more important, precluding 

species with high resource-use overlap to inhabit the same lakes (Helmus et al., 

2007b). Because latitude is negatively correlated with energy (e.g., PET: r = -0.77, P 

<0.0001) and energy is correlated with ecosystem primary productivity (Gardezi & 

Gonzalez, 2008), a proxy for resource availability, l expect that resource availability 

also decreases at high-Iatitude watersheds. This reduction in resource-availabil ity 

may increase local competition, generating a pattern of phylogenetic evenness 

(overdispersion) at the lake scale, even though the watershed species pool is 

phylogenetically clustered (i.e., at the regional scale). Tendency for phylogenetic 

overdispersion in higher latitudes was also found by Shurin & Igram (2009) while 
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studying phylogenetic structure of northeast Pacifie rockfish assemblages from the 

genus Sebastes. 

3.4.2 - Differences between metacommunity distributional patterns 

Indices related to environmental gradients showed no differences between 

Clementsian gradients and nestedness watersheds suggesting that their properties, 

such as marginality or breadth, are not djfferently related to the structuring process of 

each pattern. When standardizing the environment across watersheds, the 

environmental breadth presented sllghtly more variation in nestedness watersheds, 

mostly due to extreme values (Figure 3.3). This is probably due to the fact that 

nestedness watersheds are encountered throughout the province whereas Clementsian 

watersheds are found mostly in the south eastern region (Figure 2.1). 

There was a trend that distinguished the average phylogenetic structure of 

communities between the watersheds belonging to each pattern: Clementsian 

watersheds revealed a higher average MNTD and a lower average MPD than nested 

watersheds (Figure 3.4). The Clementsian gradient is characterized by several groups 

of species in which each shows an idiosyncratic response to a portion of the 

environmental gradient that assemble in different communities (Hoagland & Collins, 

1997). If species maintain their environmental preferences through evolutionary times 

(i.e., niche conservatism; Wiens & Graham, 2005), species closely related might have 

a more similar ~-niche than species that are more distantly related (Cavender-Bares el 

al., 2006). Because watersheds represent a larger scale which encompasses a 

considerable amount of environmental variation and due to the greater environmental 

variability within southern (Mandrak, 1995) watersheds (where the Clementsian 

gradients pattern appeared the most), species might be filtered according to their 

optimal environment across lakes. This process result in groups of closely related 

species that tend to co-occur more than expected by chance across the landscape (i.e., 

lower MPD) and result in a Clementsian gradient pattern at the metacommunity level 
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(Leibold & Mikkelson, 2002). Taking into account that the studied fish families are 

composed by both rare and common species (see prevalence; Figure 3.1 and Table 

3.1), 1 suggest two hypothesis for the fact that nested watersheds are in average 

composed by more distantly related species: 1) A large number of these watersheds 

are located in the northern region and hence distant from postglacial refugees 

(Mandrak & Crossman, 1992b); thus they were probably colonized by the best 

dispersers (which in general are common species) from different clades (Figure 3.1); 

2) Northern watersheds have lower energy and cannot sustain rare species which are 

generally specialists due to lack of resource availability.However, these watersheds 

can be inhabited by common species that are generalist and can maintain viable 

populations in low-energy environments (Gardezi & Gonzalez, 2008). Because these 

species are in average distantly related (i.e., from different clades; Figure 3.1), these 

watersheds show in average greater community phylogenetic distance (i.e., higher 

MPD). 

Fina1Jy, the two metacommunity patterns did not present any real differences 

in the average environmental niche (marginality or breadth) of their species. Niche 

marginality did not differ significantly between patterns and niche breadth \Vas only 

significantly higher in Clementsian watersheds due to an outIier (Figure 3.4). 1 

suggest the following: 1) These niche measures take into account only the 

environment in which species inhabit; 2) They are calculated based on the average of 

aIl species niches that inhabit the metacommunity; and 3) Most common species 

(e.g., Perca flavescens, Catostomus commersoni) are distributed across most 

watersheds, regardless of metacommunity pattern. These three properties may mask 

any possible difference between nested and Clementsian watersheds in relation to 

species ~-njches. 

3.4.3 - Linking environmental gradients to communities phylogenetic structure 

and species niches 
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The analyses of the two main envlronmental gradients showed a trend for 

higher environmental heterogeneity (and extreme environments) in high-energy 

watersheds containing smaller lakes, which are more concentrated in south-eastern 

Ontario (see results chapter1). Studies elsewhere support this correlation between 

energy and environmental heterogeneity (Bonn et al., 2004 and references therein). 

Moreover, Mandrak (1995) studying Ontario lakes showed that south-eastern Ontario 

lakes have a greater local variability in precipitation and seasonally variable 

temperature, suggesting greater environmental variability in contrast to north-western 

lakes, which exhibit a more stable climate. 

The phylogenetic structure of communities varied along environmental 

gradients. MPD was greater in high-energy watersheds with large lakes and, thereby, 

positively correlated with PC-1 and negatively correlated with PC-2 (Table 3.5); 

MNTD was negatively related to both axes (Table 3.5). Such correlations with PC-1 

gradient (to which l will restrain my interpretations) suggests that low-energy 

watersheds,' which contain more homogenous (i.e., less resources or habitat types; 

Guégan et al., 1998) and harsher environments (i.e., cold temperatures; Mandrak, 

1995), might not be colonized by clades which house species intolerant to these 

conditions (e.g., hot water species) or specialist species that require specific resources 

potentially lacking within such low-energy environments. Lakes within these 

watersheds, however, are larger and perhaps they possess greater abundances of the 

few resources they provide allowing pairs of closest related species across different 

clades to co-exist and accounting for the higher MPD but lower MNTD found within 

these watersheds. 

Conversely, the high-energy watersheds found within southern Ontario 

encompass lakes with more heterogeneous and yet benign environments (e.g., higher 

temperatures, longer growing season; Mandrak, 1995). These conditions allow the 

survivorship of a highly diverse fish-fauna (Chu et al., 2003), which incorporates 

species from aIl the clades housed within the regional pool including rare specialist 
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species (Gardezi & Gonzalez, 2008). Indeed, southern Ontario supports cool water 

species and encompasses the lower distributional limit of cold water species and the 

upper distributional limit of warm water species (Chu et al., 2008). Despite such 

inclusive conditions, lakes within these watersheds are smaller and thereby each 

potentially houses only a small portion of the environmental gradients. Moreover, 

these smaller lakes also prov ide to constituent species less abundant resources. Such 

characteristics then account for communities within these watersheds having on 

average, a lower MPD (i.e., lower average phylogenetic diversity) and a higher 

MNTD (i.e., greater effect of competition between closest relative species due to low 

abundance of available resources). For example, species might assemble across lakes 

according to the specifie environmental tolerances (i.e., habitat filtering) which 

characterize their clades (e.g., species from cyprinadae family used on this study are 

mostly cool or hot water species) but c10sest relative species which overiap greatly in 

their resource use (a-niche) do not co-occur in the same lakes (e.g., Rhinichthys 

atratulus and Rhinichthys cataractae are both invertivores; Coker et al., 2001). Niche 

marginality corroborates these results for MPD, showing greater values in low-energy 

environments containing lakes with larger surface area. Assuming that ~-niche is 

conserved (Wiens & Graham, 2005), a larger phylogenetic diversity in low-energy 

watersheds should also lead to greater difference between species niche within lakes. 

Environmental marginality (within watersheds) did not present any significant 

correlation with the species indices (Table 3.6) whereas environmental marginality 

(across watersheds) was correlated significantly with niche marginality, MPD and 

MNTD (Table 3.6). Because lakes within any given watershed are more likely to be 

similar in environment than lakes across watersheds, perhaps there is not enough 

variation in environmental conditions across lakes within the same watershed to 

pattern phylogenetic community structure. This result reinforces the idea that 

processes of habitat filtering are more likely to occur at larger spatial scales 

(Cavender-Bares et al., 2006). Both MPD and MNTD were negatively related with 
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environmental marginality (across watersheds), supporting the idea that increased 

environmental heterogeneity in a given watershed is likely to sort species according 

to their environmental preferences, clustering the overatl community phylogenetic 

structure (Cavender-Bares et al., 2006). Moreover, niche marginality was negatively 

correlated with MPD, indicating that communities composed by species that have 

more marginal niches tend to have a clustered phylogenetic structure. Thus, species 

From the same clades that have marginal niches in relation to the mean environment 

of the tandscape should be more affected by habitat filtering. For example, species 

From the Centrarchidae family present in this study, which are mostly hot water 

species (Coker et al., 2001), tend to co-occur in watersheds with marginal 

environmental conditions (in relation to the average cold temperatures From the entire 

Province), such as the southern watersheds, decreasing their overall average 

phylogenetic distance (MPD). 





CONCLUSION 

Multiple factors dictate the success (or failure) of species from the regional pool to 

assemble into local communities (e.g., Jackson et al., 2001), hence, it is expected that 

different communities across space will be affected by different processes. This issue 

has led ecologists to perce ive community ecology as a plethora of unique systems, 

where each is contingent on specific processes (Lawton, 1999). Thus, advances in 

theory and analytical tools should be aimed at the development of general 

frameworks in which ecologists cab base their studies (e.g., Chesson, 2000; Leibold 

& Mikkelson, 2002; Holyoak et al., 2005; Vellend, 2010). In this context, EMS 

ana,lysis is an effective tool to distinguish among six metacommunity patterns 

(Leibold & Mikkelson, 2002; Presley et al., 2009) and represents substantial progress 

in contrast to analyses that are restricted to one distributional patterns (e.g., traditional 

analyses of nestedness; Patternon & Atmar, 1986; checkerboards; Diamond, 1975; 

Gilpin & Diamond, 1982). Despite the uniqueness of ecological systems (Lawton, 

1999), the species within should ultimately be distributed according to one of the 

metacommunity patterns (or sorne variant of them) (Presley et al., 2010). Even when 

particula.r species distributions do not coincide exactly wilh a particular pattern, there 

is always one that best fits the data, facilitating the exploration of mechanisms 

underlying species distributions. This study was the first to compare multiple 

metacommunities across a large region and among the 85 watersheds analyzed which 

contained more than 8900 lakes, the fish species were distributed according to two 

main patterns: nestedness (Ulrich et al., 2009) and Clementsian gradients (Hoagland 

& Collins, 1997). Thus, contingency should only be a main concern at fine-scale 

studies. 

Moreover, a large number of ecological studies have been addressing patterns 

of diversity and distribution correlating them with the variation in the physical 

environment (e.g., Presley et al., 2009) and, while these approaches have provided a 



88 

good deal of lnsights regarding the factors driving patterns of species co-existence 

within metacommunities, we still lack knowledge regarding abiotic and biotic that 

may determine differences across metacommunities. Such analysis was performed in 

chapter one; however, other perspectIves have to be integrated 10 compiete me 

ecological puzzle. Each species present somewhat unique characteristics; the 

presence (or absence) of a particular species in a community may affect other species 

in several ways (e.g., competition; Diamond, 1975) and may even change the 

environmental conditions of a site, hence influencing the outcome of community 

dynamics. In chapter two, the species perspective was incorporated, in which 

ecological properties of species such as their niches and phylogenetic relatedness 

were utilized to infer processes underlying community assembly (Cavender-Bares et 

al., 2004; Ingram & Shurin, 2009). The consideration of species phylogeny within 

ecological studies is becoming increasingly relevant, especially as molecular 

techniques to estimate phylogenetic relationships among species increase in 

availability. This study was one of the ftrst to integrate ail of these views in order t6 

generate a more complete picture of the processes affecting species co-existence at 

large scales. Future studies within this venue should also work with species 

functional traits (McGill et al., 2006) such as th~se relevant for foraging, 

physiological tolerance and dispersal capacity (e.g., Webb, 1984; Cavender-Bares et 

al., 2006; Mason et al., 2008; Ingram & Shurin, 2009). This information should then 

be related back to species phylogenetic relatedness in order to better distinguish 

processes of evolution such as niche conservatism versus convergence (Wiens & 

Graham, 2005; Losos, 2008). This would allow further advancement of our 

knowledge about the factors structuring mechanisms of communities and ultimately, 

metacommunities. 

Finding the pattern of best fit within distributional data can be of great utility 

when one has to make decisions regarding conversation planning; for instance, target 

site selection should depend on the pattern found. As nestedness is characterized by 
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low species turnover and hierarchical richness, one should focus conservation efforts 

at richer sites, which should protect most of the regional biodiversity. However, if a 

Clementsian gradient is the pattern of best fit, focusing efforts on the richest site 

would not be sufficient for regional biodiversity conservation because of high species 

turnover rates across sites; instead, one should focus on the environmental 

heterogeneity across communities. 

1 have shown that EMS analysis can be a head start to test multiple 

hypotheses. As presence-absence datasets are becoming increasingly available, 

ecologists should explore this analytical tool more often, as it is simple to use and 

provides great insights. An interesting future step· for the evaluation of species 

distribution along environmental gradients is the improvement of this analytical tool 

in order to incorporate abundance data. This would allow one, for instance, to weight 

species influences on structural patterns according to their abundances and would 

certainly increase the explanatory power of EMS technique in relation to the 

structuring mechanisms of the different patterns. Nevertheless, 1 suggest that EMS 

analysis should be applied to a wide variety of taxa in order to find general 

associations between idealized patterns ahd species types. 
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