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ABSTRACT 

Professional human tutors are capable of taking into account past and present 

events, and are driven by social concerns. To be considered a valuable technology 

for improving human learning, a cognitive tutoring agent must be capable of the 

same. Given that dynamic environments evolve, a cognitive agent must evolve to 

accommodate structural modifications and the arrivai of new phenomena. 

Consequently, the ideal cognitive agent should possess learning capabilities whose 

mechanisms are based on the types of learning found in human beings; i.e., 

emotional learning, episodic learning, procedural learning, causal learning, and 

learning of regularities (Purves et al., 2008, Squire and Kandel, 1998). 

Reconstructing and implementing human learning capabilities in an artifici a1 

agent is far from being possible with our actual knowledge and computers capacities. 

To achieve human-like learning and adaptation in machines, or to sim ply better 

understand human adaptability, we have to design human-inspired learning 

mechanisms. The strategies for the implementation of learning mechanisms in 

agents have been to use one type of learning or a collection of learning types in one 

single mechanism (Vernon et al., 2007). However, the various types of learning are 

functionally incompatible (Sherry and Schacter, 1987). This work describes the 

conception of learning and of the emotional version of CTS (CELTS); that is, a 

complex cognitive agent equipped with emotions and a number of learning 

mechanisms such as emotional, episodic and causal learning. CELTS' performance 

is upgraded by the parallel, complementary and distributed functioning of learning 

mechanisms and emotions. 

Keywords: cognitive agent, emotions, episodic learning, causal learning. 



RÉSUMÉ 

Les tuteurs professionnels humains sont capables de prendre en considération 

des événements du passé et du présent et ont une capacité d'adaptation en fonction 

d'événements sociaux. Afin d'être considéré comme une technologie valable pour 

l'amélioration de l'apprentissage humain, un agent cognitif artificiel devrait pouvoir 

faire de même. Puisque les environnements dynamiques sont en constante 

évolution, un agent cognitif doit pareillement évoluer et s'adapter aux modifications 

structurales et aux phénomènes nouveaux. Par conséquent, l'agent cognitif idéal 

devrait posséder des capacités d'apprentissage similaires à celles que l'on retrouve 

chez l'être humain; l'apprentissage émotif, l'apprentissage épisodique, 

l'apprentissage procédural, et l'apprentissage causal. 

Cette thèse contribue à l'amélioration des architectures d'agents cognitifs. Elle 

propose 1) une méthode d'intégration des émotions inspirée du fonctionnement du 

cerveau; et 2) un ensemble de méthodes d'apprentissage (épisodique, causale etc.) 

qui tiennent compte de la dimension émotionnelle. Le modèle proposé que nous 

avons appelé CELTS (Conscious Emotional Learning Tutoring System) est une 

extension d'un agent cognitif conscient dans le rôle d'un tutoriel intelligent. Il 

comporte un module de gestion des émotions qui permet d'attribuer des valences 

émotionnelles positives ou négatives à chaque événement perçu par l'agent. Deux 

voies de traitement sont prévues: 1) une voie courte qui permet au système de 

répondre immédiatement à certains événements sans un traitement approfondis, et 

2) une voie longue qui intervient lors de tout événement qui exige la volition. Dans 

cette perspective, la dimension émotionnelle est considérée dans les processus 

cognitifs de l'agent pour la prise de décision et l'apprentissage. 



xiv 

L'apprentissage épisodique dans CELTS est basé sur la théorie du Multiple 

Trace Memory consolidation qui postule que lorsque l'on perçoit un événement, 

l'hippocampe fait une première interprétation et un premier apprentissage. Ensuite, 

l'information acquise est distribuée aux différents cortex. Selon cette théorie, la 

reconsolidation de la mémoire dépend toujours de l'hippocampe. Pour simuler de tel 

processus, nous avons utilisé des techniques de fouille de données qui permettent la 

recherche de motifs séquentiels fréquents dans les données générées durant 

chaque cycle cognitif 

L'apprentissage causal dans CELTS se produit à l'aide de la mémoire 

épisodique. Il permet de trouver les causes et les effets possibles entre différents 

événements. Il est mise en œuvre grâce à des algorithmes de recherche de règles 

d'associations. Les associations établies sont utilisées pour piloter les interventions 

tutorielles de CELTS et, par le biais des réponses de l'apprenant, pour évaluer les 

règles causales découvertes. 

Mots clefs: agents cognitifs, émotions, apprentissage épisodique, apprentissage 
causal. 



CHAPTERI 

INTRODUCTION 

Although there is no consensus on the definition of the term agent, learning 1 

(Langley, 1996) is definitely one of its important properties (Wooldridge, 1999, 

Franklin and Graesser, 1997). The term agent spawned a wide area of discussion 

between scientists ranging from bacteria-Iike tropistic agents (such as Braitenberg's 

vehicles (1984)), to c1ever but inflexible cam brian-intelligent agents (Brooks, 1999). 

ln the last three decades, scientists have tried to design cognitive agents that can 

interact agilely with humans. The success or failure of the designed and 

implemented agent architectures is, at least, in part owed to the learning 

mechanisms that are implemented by the designers (Russell and Norvig, 2003, 

Franklin and Graesser, 1997, Franklin et al., 2007, Subagdja et al., 2008 ). Humans 

are endowed with various types of learning mechanisms, for instance emotional 

learning, episodic learning, procedural learning, etc (Purves et al., 2008, Squire and 

Kandel, 2000). It has been suggested recently that ail types of learning in humans 

are directly influenced by emotions (Damasio, 1994, Damasio, 2003, Bower, 1992). 

Until recently, the strategies for the implementation of learning mechanisms in 

agents were to use only one type of learning2 for everything or to use a loosely 

1 Learning is "the improvement of performance in some environment through the acquisition 
of knowledge resulting from some experience in that environment" (Langley, 1996). 
2 For instance, the Soar architecture can only learn new production rules (Vernon et al., 
2007). 
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connected collection of learning types in one single mechanism3 (Vernon et al., 

2007). However, various types of learning are functionally incompatible (Sherry and 

Schacter, 1987). 

The goal of this study is to integrate emotions and a number of learning mechanisms 

which work in a parallel, complementary and distributed manner into one single 

cognitive agent. We introduce the Conscious-Emotional Learning Tutoring System 

(CELTS), a new version of CTS (Dubois, 2007). CELTS is a cognitive agent based 

on the Baars' workspace theory of consciousness (Baars, 1997). According to Baars' 

theory, the human mind is made up of a vast number of dumb, domain-specific, 

specialists designed to solve problems quickly, presumably by applying fast and 

frugal heuristics (Gigerenzer, 1991, Gigerenzer and Todd, 2000). When a specialist, 

or a group of specialists, works out its solution to a part of a problem, it broadcasts 

the found solution to ail other specialists, who can in turn apply their expertise to the 

problem. Through this broadcasting, a global workspace emerges, which we 

experience as consciousness. Damasio (2000) postulated that sensation, emotion, 

cognition and thought are important processes that play crucial roles in 

consciousness and are in perpetuai and repetitive interaction among themselves. 

Accordingly, cognitive agents must at least be equipped with perception, memory, 

learning, emotions, motivators, reasoning and actions (Newell, 1990, Alvarez 2006, 

Faghihi et al., 2008a). 

Working with CELTS has allowed us to conceive learning differently than what 

was done before. First, emotional learning can now be conceived as a pre-theoretic 

imprecise term that covers two distinct mechanisms: 1) short route: a quick but dumb 

(i.e., reflex-like) mechanism that prepares us to quickly pull away from or confidently 

approach a situation; 2) long route: the modifications in workspace processing 

brought about by the variation in the valence assigned to ail events as a result to the 

dumb specialist's processing. 

3 Learning in the ACT-R architecture occurs in symbolic and sub-symbolic levels under an 
integrated learning mechanism (Vernon et aL, 2007). 
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Second, one important form of memory is episodic memory. Episodic memory 

is the memory of what, where and when. It allows people to travel back mentally 

through time as weil as imagine the future. Recently, studies have demonstrated the 

role of the hippocampus and its influences on episodic memory consolidation in the 

human brain. 

Third, causal learning is the process through which we come to infer and 

memorize the cause for an event based on previous beliefs and current experiences 

that either confirm or invalidate previous beliefs (Maldonado et al., 2007). Causal 

learning is an important factor in reasoning, for it is considered crucial to many 

characteristics of cognition such as selection, abstraction, planning, etc. 

Finally, emotion influences different types of memory and learning in human 

such as causal learning (Bower, 1992, Squire and Kandel, 2000, Candido et al., 

2006). 

To explain how we integrated emotions and different types of learning into 

CELTS, we organized this document in the following manner: 

Chapter two goes over several cognitive science and neuroscience principles 

regarding various types of memory, emotion4
, emotional learning, episodic learning, 

and causal learning in humans. We then turn to neuroscientific and computational 

neuroscientific models to discuss the role of various neurological structures in the 

formation of emotions and episodic memories. We present a current computational 

neuroscientific model of the interaction between the hippocampus and the cortex in 

the formation of episodic memories, in which the hippocampus functions as a 

temporary store recording, in a one-shot learning fashion, every experience an 

individual has and serves in the cortical consolidation of frequent events. We then 

present a current computational neuroscientific model that postulates the creation of 

4 Emotions are divided into three components (Purves et al., 2008): behavioral action such as 
motor output, conscious experience such as fear, and physiological expression such as one's 
heart rate raise when facing ta a danger. 
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new hypotheses in inductive reasoning, for which activation in the left prefrontal 

cortex (LPFC) is very important. In chapter three, we start by describing a range of 

agent and cognitive architectures. We also describe CTS, from which CELTS was 

created (Dubois, 2007). It is a cognitive architecture based on IDA (Franklin, 2003), 

The architecture of CTS was based on neurobiological and neuropsychological 

theories of human brain function. CTS was designed to provide assistance during 

training in virtual learning environments. It was integrated in an intelligent tutoring 

system calied CanadarmTutor which provides assistance to astronauts learning how 

to manipulate Canadarm2, the robotic telemanipulator attached to the International 

Space Station (ISS). CanadarmTutor (Nkambou et aL, 2006) includes a virtual 

simulator of the ISS and Canadarm2, which allows user to execute multiple 

procedural tasks by manipulating the robotic arm. CTS observes the astronauts' arm 

manipulations and provides assistance as a tutoring decision-maker. In particular, 

the virtual simulator sends ail manipulation data to CTS, which, in turn, sends advice 

to learners so they can improve their performance. Usually, learning tasks consist in 

moving the arm from one configuration to another. This is a complex task, as the arm 

has seven joints and the astronaut has a limited view of the arm; three monitors are 

connected to approximately 15 cameras installed on the ISS. Hence, the astronauts 

must constantly choose the best three cameras (out of 12) to view the environment, 

and adjust their parameters accordingly. 

At the end of section three, we make a brief comparison between the most 

often implemented learning mechanisms in cognitive agents and CTS. 

ln chapter four, we explain how emotions and emotional learning are 

integrated to CELTS. The general logic of our approach is stated. We base our 

approach on various computational neuroscientific and psychological models of 

emotions. These posit two distinct neurological routes from perception to emotions, 

the so-called "short route" and "long route". These two routes present distinct 

learning mechanisms, reaction times and phenomenological profiles- the short route 

being fast and unconscious and the long route being slower and involving 
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consciousness. At the end of this chapter, we present the results from our testing of 

CELT's emotionallearning and reactions. 

ln chapter five, we begin by a brief review of the existing work concerning 

episodic learning in cognitive agents. We then explain our proposition to equip 

CELTS with an episodic memory and learning by combining elements of the 

Emotional Mechanism (EM) and episodic memory. At the end of this chapter, we 

present the results from our testing of CELT's episodic learning and the collaboration 

of its emotional mechanism and episodic learning. In chapter six, we begin by a brief 

review of the existing work concerning Causal Learning in cognitive agents. We then 

propose our new architecture combining elements of the Emotional Mechanism (EM) 

and Causal Learning. At the end of this chapter, we present the results our testing of 

the collaboration of emotion, episodic learning and causallearning in CELTS. 

ln chapter seven, we present the conclusion; the Iimits of the implemented 

mechanisms, our plan for the future and the contribution of this study to the 

computer science and cognitive science are addressed. 



CHAPTER Il 

MEMORIES, REASONING, EMOTIONS 

Memory and emotions are two inseparable and crucial parts of human 

cognition (Huitt, 2003, Atkinson and Shiffrin, 1968 , Dolan, 2002). Emotions influence 

cognitive processes and vice-versa (Damasio, 1999, RolIs, 2000, Dolan, 2002). 

Neuroscientifc evidence has demonstrated the influence of emotions in different 

types of memories, especially when individuals learn new information (Squire and 

Kandel, 2000, Phelps, 2006, Damasio, 1994). Accordingly, we start by explaining the 

neuroscientific and computational neuroscientific models of emotions and emotional 

learning. We then explain the neuroscientific and computational neuroscientific 

models of memories. We focus particularly on those of episodic memory and 

episodic learning. We then briefly explain the various types of reasoning, and finally, 

we discuss the causal approach to reasoning. 

2.1 EMOTION 

Emotion is an unclear concept that is not easily definable (Thompson and 

Madigan, 2007, Alvarado et aL, 2002). Various definitions and very important 

responsibilities were given to emotion. However, there is no consensus for one 

definition. Charles Darwin (1872) defined emotion as a survival and adaptable 

capacity of living organisms. He described emotions as innate, universal and 

communicative entities. From the behavioural point of view, emotions are supposed 
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to organize our behaviour- an independent entity which influences the individual 

decision making, attention and learning. From a sociocultural point of view, we may 

interpret feelings5
, which are part of emotions, as being individuals' response to 

internaI stimuli such as the feeling of pain due to a headache, or the feeling of 

sadness at a loved one's death. Thus, emotions in part from our relationships and 

help us to interact with others. Accordingly, emotions exist in the personal and social 

dimensions of an individual. In fact, emotions allow us to adapt and accept new 

changes in our dynamic environment. 

The six basic emotions described by Paul Ekman are surprise, fear, disgust, 

anger, happiness, and sadness. They are particular and specific to each individual 

(Picard, 2003) and influence humans' cognition directly (Squire and Kandel, 2000, 

Phelps, 2006). 

Recent studies in neurobiology showed that the source of emotions are a mix 

of several biochemical, sociocultural and neurological factors (Westen, 1999). 

Purves (2008) divided emotions into three following processes : 1) a behavioural 

action (such as agitation, escape, and aggression); 2) a conscious experience of an 

event or situation (such as anger); 3) a physiological expression (such as paleness, 

blushing, palpitations, and feeling of unease). It is not c1ear how these three 

processes are related. 

According to Squire and Kandel (2000), emotional reactions occur in both a 

conscious and an unconscious manner. Conscious reactions to different situations 

depend on conscious thinking. However, unconscious reactions of emotions to 

different situations are independent of conscious thinking. For instance, consider a 

woman who had a traumatic experience with a hot stove at a young age and now 

reacts strongly towards stoves. Squire and Kandel explain that: 

5 Differences between emotion and feeling and their functionalities are broad topics that go 
beyond the scope of this thesis. Damasio (2003) described emotions upon their physiological 
effects. Accordingly, feelings are situated in the body and emotions consistently result from 
them. For this study, as we are not going to discuss physiological aspects of emotions; we 
will consider feeling only in its perceptive role of emotional states in an agent. 
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"The feeling is a memory to be sure, because it is based on experience 
but it is unconscious, nondeclarative and independent of the capacity for 
conscious recollection. Because the feeling about stoves and the conscious 
remembering of what happened are parallel and independent, the existence of 
this unconscious memory, a fear of stove is no guarantee that the young 
women can access a declarative memory to explain how the fear came about. 
The original event may be consciously remernbered or it may have been 
forgotten (p.171 )." 

2.1.1 Psychological theories of emotional organization 

Scientists proposed different methods for the organization of emotions and 

their relations to one another. Three are briefly explained in the following. 

1) Categorical theory (Izard, 1977, Plutchik, 1980, Lang and Sumner, 

1990). Emotions are viewed as distinct entities and divided into "basic" and 

"complex" emotions. Basic emotions are considered as innate, evolutionarily ancient 

and are thought to be common in different cultures. In contrast, complex emotions 

are learned, evolutionarily new, influenced by language and shaped within an 

individual's society and culture. However, there is no consensus on what could be 

considered as a basic emotion, and on what complex emotions are; 

2) Dimensional theory (Russell, 1980, Lang et aL, 1993). Two im portant 

elements of this model are arousal and valence. Given a situation, arousal is defined 

as the emotional intensity to respond to the situation and valence is our positive or 

negative feeling towards the situation. To demonstrate arousal and valence 

scientists propose two models (Figure 2.1.A): a) A vector model, where the two 

vectors form a boomerang shape. The upper vector shows positive valences and the 

lower vector shows negative valences. The arousal start from a neutral endpoint that 

initially are considered as low and continue on upper and lower vectors which are 

equivalent to positive and negative vectors until high levels of arousal; b) A 

circumplex model (Figure 2.1.B), where two intersecting orthogonal lines are 

bounded by a circle and the neutral point is situated in the center of the circle. The 

horizontal line shows arousal and changes between low (calm) to high (excited). The 

vertical line shows valences that go from pleasant to unpleasant. The resulting graph 
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categorizes and put similar emotions in the same range. However, the dimensional 

theory ignores the crucial link between the current emotion and the prior intentional 

states of the individual. The theory also ignores the causal relationship between 

individual interpretation (appraisal) and emotion (Marsella et aL, ln press); 

.\) Veclor mode]	 (Il) Circumplex mode] High 

! •Sleepy f\rO\lSt.""ti 

dl 
'1 f\stOJ~ished 

~r • [)ro.'py 

~	 Annoved n -i\ngry 
, (JorC'd Sod' i\!i,C'rabl.;. ,rr",troh,o
ILGrClOrny. ~ Dcrr~s.scd Dl.stres~r..d 

! 

High	 i\rollsal 

Figure 2.1	 Dimensional theories of emotion: the vector (A) and circumplex (8) 
models (from of Purves et al, 2008) 

3) Component theory (Scherer, 1987). Contrary to the Categorical and 

Dimensional theories, which consider emotions as independent entities, this theory is 

based on "appraisal" approaches and describes various flexible characteristic of 

emotions. Appraisal is described as a cognitive interpretation of what we sense or 

perceive. Furthermore, the theory explains our evaluation of specifie external (for 

instance environment) or internai (about ourselves) stimuli that cause emotions 

(Roseman and Smith, 2001). Roseman and Smith (2001) explained that our motives 

and goals play an important role for the evaluation of a specifie situation. Given that 

we can evaluate what we observe and cannot decide how we observe things in our 

environment, the appraisal theory could be used to explain the autonomie reaction of 

emotions in human when faces to a particular situation Different computational 

models are proposed. In the following paragraphs, we briefly describe two important 

computational models based on the appraisal theory: 
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1) The acc Model (Ortony, Clore, & and Collins, OCC): One of the 

most complete and widespread computational model used in artificial 

intelligence is the OCC model (1988). The model considers emotions as 

"valenced reactions to the external or internai stimuli based on the manner 

in which the situation is interpreted."(Ortony et al., 1988). Three specifie 

types of stimuli are defined by this model: event consequences, agents' 

actions, objects situated in the environment. Received stimuli map to a 

positive or negative value, via an "appraisal" or "assessment" process. 

Upon the emergence of emotion, it influences the agent's cognitive process 

in different fashions. The behaviour, in this model, is considered as a 

response to an elicited emotional state, which is in relevant to the received 

internai or external stimulus. OCC model has categorized 22 emotions into 

three main classes: 1) emotions that correspond to objects such as liking 

(love) and disliking (hate) them; 2) emotions that are consequences of 

events such as being pleased or displeased- these include well-being (e.g. 

joy, distress), prospect-based (e.g. hop, relief, fear), fortunes-of-others (e.g. 

happy-for, resentment, gloating, pity); 3) attribution compounds which 

includes pride, admiration, shame, and reproach. The emotion's intensity 

relies on the internai and external stimuli the agent receives from the 

environment. In some cases, the OCC emotional model is also integrated 

with a personality model that include goals, sets of behaviour and way of 

thinking (Atkinson et al., 1983). 

However, the OCC model did not discuss emotion intensity in detail (Adam, 

2007). There is no c1ear description of how the model assigns the agent's 

emotional states to behaviour. Given the OCC model's complexities, it 

must be simplified before integrating it to the cognitive agent's architecture. 

The model initially ignored surprise, but others added it later to the model. 

The model is not equipped with a history function because Iikelihood is 

essential to estimate the desirability for a given situation to the agent 

(Bartneck, 2002). 



11 

2)	 The Lazarus model (Lazarus, 1991): ln this model, the constant cycle 

between components of the model functions in the following manner: 

person-environment interactions incite appraisal variables in the person, 

which leads to the generation of affective answers that occur with some 

intensity and which will set off behavioural and cognitive outcomes 

(Lazarus, 1991, Marsella et aL, ln press). The important parts of the theory 

are: (1) the fact that the appraisal is the assessment given by an individual 

to various situations according to his/her beliefs, desires and intentions. 

Appraisal variables in this theory are particular assessments given by an 

individual to generate specifie emotional answers; (2) the fact that coping 

has to do with how to react to an appraised event. For instance, feeling 

pain in an individual facing a specifie situation (appraisal), may cause the 

generation of guilt (coping) which may lead to an annoyed state in the 

individual (re-appraisal). 

The comparison between the acc and the Lazarus model follows. While the 

acc model covers a wide variety of emotions, Lazarus proposes a more precise 

description of appraisal variables to differentiate different emotions. However, the 

Lazarus model excludes some emotions considered in the acc model, such as 

admiration, reproach, remorse, etc. (Adam, 2007). 

2.1.2 The generation of emotions: neurobiological and cognitive aspects 

ln this section, we explain that both physiological and cognitive activities are 

important for the generation of emotions. Following Ledoux (2000), we take it that 

the amygdala subserves an additional memory system, which we cali emotional 

memory. But the amygdala's involvement in learning and memory goes beyond 

emotional memory, as it also modulates learning in other memory systems, 

especially declarative memory (Schoenbaum et aL, 2000). Squire & Kandel (2000) 

explain that: 

"The amygdala and the hippocampus systems independently support 
non-declarative memory and declarative memory. The two systems can work 
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together. Animais retain a task more strongly, when a variety of hormones 
such as adrenaline are injected into their blood and brain after they learn to 
perform a task. The enhancement of memory by emotion results from the 
amygdala's influence on declarative memory (P. 171-172). Other experiences 
also show that the more active the amygdala is at the time of learning, the 
more it enhances the storage of those declarative memories that had 
emotional content (p.173)." 

Accordingly, we describe two general types of emotional learning: pure 

emotional learning (i.e., learning subserved by the amygdala), which gives rise to 

emotional memory proper, and emotionally modulated learning (Iearning subserved 

by hippocampus and cortex (see below) but that is modulated by the amygdala), 

which brings about other types of memories, and infuses them with emotional 

content. Each of these types of emotional learning corresponds to a specific pathway 

to the amygdala. The first route, the short-route, is based on peripheralistic concepts 

fram James' work (James, 1884). It is short and direct (bold arrows in Figure 2.2); 

information flows from the sensory thalamus directly to the amygdala (Figure 2.2, 

bold arraws) and then projects to particular structures such as the basal ganglia. The 

short route enables implicit (i.e., unconscious) direct behavioural reactions based on 

previous rewards or punishments associated with the same or similar stimulus 

(Squire and Kandel, 2000, RolIs, 2000). Human reactions are then rapid and 

unconscious (Squire and Kandel, 2000), because the reaction is dependent on 

information that is not processed by other brain structures, notably cortical 

structures. For example, if, while walking in a forest, we encounter a long and 

sinuous cylinder-like object close to our leg, we will in general react very quickly and, 

without thinking, move our leg away fram the object. In this case, information fram 

the retina entered the sensory thalamus, which passed the information along to 

appropriate cortical structures for further analysis. But the signal was also sent to the 

amygdala, which recognized the possible danger posed by the perceived object 

posed and sent a signal to the motor system for immediate movement of the leg, 

away from the object. 
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Figure 2.2 The short route from sensory thalamus to the amygdala 

ln the second route, based on centralistic concepts originating from Cannon's 

work (Cannon, 1927), (bold arrows in Figure 2.3), information from the external 

environment is analyzed by various cortical areas (primary sensory cortex, unimodal 

associative cortex, polymodal associative cortex). It is then sent to the hippocampus, 

for memory retrieval and temporary storage. Ail this processing serves to interpret 

the external stimuli, to give it meaning (categorization by the cortex) and Iink it to 

other events in episodic memory (see below), before it goes to the amygdala for 

emotional appraisal and response. In our previous example, this longer route would 

correspond to the recognition, for instance, that the object we moved our leg away 

from is not a snake after ail but a peculiarly twisted piece wood, and the 

remembrance of previous forest walks in which we saw tortuous branches. Although 

it is slower, the response produced by this second route possesses the normal 

phenomenology of thoughtful behaviour and can be consciously controlled. Once it 

has been interpreted by cortical structures the information then flows back to the 

amygdala where can serve to reinforce or correct its initial processing of the 

information. 
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Figure 2.3 The long route from sensory thalamus to the amygdala 

2.1.3 Emotional Learning 

For evolutionary reasons, it is sensible to believe that we are born with 

automatic emotional responses to some stimuli (e.g., snakes and spiders). 

Moreover, work by Joseph Ledoux (LeDoux, 2000, LaBar et aL, 1998, LaBar et aL, 

1995) and others (Pribram et al., 1979, Roils, 2000, Schoenbaum et al., 2000) has 

shown that the amygdala can learn to react to novel stimuli. It is known that if a 

shock is paired with a tone, the tone will come to elicit the fear reactions originally 

elicited by the shock. More generaily, if a neutral stimulus is paired with an 

unconditioned stimulus that elicits a fear reaction, then fear will become the 

conditioned response to the previously neutral stimulus (which has now become a 

conditioned stimulus). Fear conditioning has been shown to be mediated by the 

amygdala (especiaily the Lateral (LA) and Central (CE) nuclei of the amygdala, see 

(LeDoux, 2000). Such learning takes the short route to the amygdala. In cases 

where the stimulus is auditory (such as a tone), information flows from the medial 

geniculate body directly to the lateral nucleus of the amygdala (LA) and then to the 
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amygdala's central nucleus (CE) from where it goes to the brain stem for the 

expression of fear responses. Such responses are quick, and it is reasonable to 

believe that they are automatic and unconscious. 

Through the long route, the amygdala receives inputs from the later stages of 

sensory processing but sends its outputs to early stages of sensory processing 

(Squire and Kandel, 2000, Purves et al., 2008, RolIs, 2000). This means that the 

amygdala can affect sensory processing in the cortex from its early stages. No 

sensory information in the cortex is left untouched by the amygdala's influence. 

Moreover, the amydgala also affects ail cortical processing indirectly through its 

effects on arousal systems that innervate large areas of the cortex (the basal 

forebrain, the cholinergie system, the brainstem cholinergie system, and the locus 

coreuleus noradrenergic system). With these, the amygdala can also influence the 

cortex through feedback from proprioceptive or visceral signais or hormones. The 

amygdala can thus be seen as having a large influence on cortical processing, 

including learning, which we will model here by the emotional valence (positive or 

negative) the amygdala adds to sensory processing. 

ln the next section we will expiain different types of memories and how 

emotions influence them. 

2.2 MEMORIES 

Most researchers agree that memory is the process of acquiring, storing and 

retrieving information and this information may alter our behaviour. Memory is 

considered to lay in physical and biochemical processes in the brain (Thompson and 

Madigan, 2007, Moxon, 2000). 

Thus, one major role of memory is to keep record of what happened in the 

past. 

Neuroscientists have distinguished four major memory processes: 1) encoding, 

which is how experiences cause the creation of memory traces; 2) retrieval, which is 

the way that the brain restores memory traces; 3) consolidation, which is how after 
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the encoding phase, the memory traces may get reinforced; 4) storage of 

information, which concerns the endurance of the information. 

The encoding and retrieval processes are measurable by observing human 

behaviour. For instance, we remember best what we are familiar with. However, the 

consolidation and storage processes are only measurable using special cognitive 

neuroscience methods and instruments that are capable of monitoring neural 

processes. Neuroscientists postulate that ail types of memories rely upon the same 

cellular mechanisms of synaptic modification for storage. However, encoding and 

retrieval of different memories (for example declarative and non-deciarative) rely 

upon different brain regions (Purves et al., 2008). 

The two following theories regarding memory functionalities were put forth by 

cognitive psychologists: 1) record-keeping theory, 2) constructionist theory; 

1) Record-keeping theory. Memory is considered to be an item-filled box. 

Like a computer disk, each experience becomes a new record. Various indexing 

methods are used to sort information. Indexes are used during the recall phase. 

When the amount of stored information is too large, there is memory interference 

and forgetting occurs (Guenther, 2002). The record keeping theory is used by 

scientists who use computers as a metaphor to explain memory functions (Guenther, 

2002). 

2) Constructionist theory. Human memory is considered to be dynamic and 

dependent on the context at any given moment. Its purpose is not only to allow 

recollection of the past, but also to assist in anticipating the future. It has been shown 

that when we witness a crime or accident, we may later recall detalls that never 

were. In 1979, Loftus conducted a study where subjects were shown a car accident 

scene. Later subjects were asked questions about the accident with words such as 

smashing and bumped. Given the influence of the words used, subjects wrongly 

recalled that the car's window was broken during the accident (Donderi, 2005). Thus, 

new information alters human cognitive systems such as emotions, perception, 

interpretation, etc. Memory is influenced by the environment. Remembering in this 

theory is not just searching through registered records from the past experiences; it 
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is, rather, the regeneration of past experiences. It is a dynamic process. Memory is 

influenced both by the cognitive system in interaction with its environment, and one's 

load of past experiences. Forgetting is due to the interference that new and constant 

changes bring to our cognitive system, as weil as the adaptations that our cognitive 

system undergoes (Guenther, 2002). 

2.2.1 Different types of memories 

It is now near consensus that the brain contains multiple memory systems, 

however few agree on how to categorize them (Squire, 1992). What follows are the 

most important according to the majority of the scientists (see Figure 2.4): 

1) Sensory memory: it is what our perception mechanisms briefly record and 

which disappears in less than a second; 

2) Short-term memory: it depends on the attention brought to particular items 

in function of the sensory memory (decays in less than a minute). These units are 

called chunks and vary from individual to individual. Repetition is crucial for 

information storing in short-term memory- phone number memorization, for instance. 

This process is called rehearsal. The information in short-term memory interacts with 

sensory memory input and long-term memory; 

3) Working memory: cognitive processes such as reading or writing are 

applied to items momentarily stored up in this memory. Working memory can store 

from five to nine information units. Scientists believe that short-term memory cannot 

be considered as the only temporary memory that contains long-term memory items. 

It must be noted that, nowadays, scientists do not consider a distinct line between 

memories and thought (Squire and Kandel, 2000) 

The two principal working memory models proposed are Baddeley's model and 

Cowan's model (Baddeley et aL, 2002, Cowan, 2005). Badde!ey's mode! suggests 

that different regions of the brain are involved in the storage of working memory and 

long-term memory. In this model working memory is divided into three delimited 

memory buffers and a central executive controls unit that controls the operations of 
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the three buffers: the phonological loop, the visuospatial sketchpad, and the episodic 

buffer. The phonological loop interacts with the long-term memory's component that 

is related to our language capabilities. The visuospatial sketchpad interacts with the 

long-term memory's components that contain visual semantic information. The 

episodic buffer interacts with the long-term memory's component containing episodic 

memory information. 

Buffers are equipped with storage and rehearsal mechanisms. The task of the 

store mechanism is to save the information temporarily in the buffer. The task of the 

rehearsal mechanism is to reactivate the temporarily saved information in the buffer 

before it disappears. Baddeley's central executive unit operates the memory buffers, 

determining the focus of attention. 

Cowan's model postulates that working memory and long-term memory both 

rely on the same types of representations. In this model, in the first step, different 

regions of the long-term memory activate temporarily - there is no limit for the 

activation of the regions. In the second step, the attentional focus dictates which 

region must remain active, thus causing the dissipation of other activated regions 

that have not received attentional focus; 

4) Long-term memory: it is divided in two broad classes: a) explicit 

(declarative) memory, subserved by the medial temporal lobes (hippocampus is the 

key component of this region), frontal and parietal lobes area, and sensory regions of 

the brain; b) implicit (non-declarative) memory, subserved by the striatal system 

(Squire and Kandel, 2000). What distinguishes short-term memory and long-term 

memory is the duration of information processing. Short-term memory is used by 

brain to maintain the information for a short period of time while long-term memory is 

the acquisition and recovery of the information related to a longer period. 
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Figure 2.4	 Long-term memory structure (Tulving, 1972, Tulving, 1983, Squire and 
Kandel, 2000) 

Explicit (declarative) memory: it refers to the memory of facts and events. 

The content of explicit memory, when needed to be retrieved and manipulated, 

requires consciousness. Explicit memory is divided into a) semantic memory: the 

general knowledge or facts such as "what is the meaning of amendment? " (Tulving, 

1972, Tulving, 1984). We do not remember when we learned the content of semantic 

memory; b) episodic memory: the memory of what, where and when (e.g., what 

you ate yesterday). Episodic memory is the memory of particular events. It also 

allows people travel back through time mentally and imagine the future (Tulving, 

1972, Tulving, 1984). 

Episodic memory is c10sely linked to semantic memory (similar episodes over 

time). Neuroscientific evidence has demonstrated that sometimes, during the 

encoding phase of episodic memory and the remembering phase of semantic 

memory, several of the same brain's regions are activated - the overlapping 

phenomena occurs in the left inferior frontal gyrus region(Purves et al., 2008). 

Autobiographical memory, which refers to our own Iife's events, results from a 

complex collaboration between episodic and semantic memory. For instance, one's 

semantic memory information of the Persian New Year in Shiraz may be influenced 
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by our information that Persepolis is located in Shiraz, and that the very famous 

statue of King Darius is located there, and that the place is very crowded. Ail these 

semantic memories may influence our rebuilding of our episodic memory of the 

Persian New Year during a stay in Shiraz. Taking in one level further, we may also 

remember episodes that we learned during a prior discussion with friends about 

Persepolis (Williams et al., 2008, Conway and Pleydell-Pearce, 2000, Conway, 

2005). 

Implicit (non-declarative) memory: The implicit memory, when needed to be 

retrieved, is unconscious and is expressed through our behaviour. It includes: 1) 

procedural memory: it refers to "how to" knowledge of procedures or skills, for 

instance swimming; 2) conditioning: when humans create an "association between 

different stimuli and between stimuli and responses"; 3) priming: when humans 

react more easily to previously seen stimuli (LeDoux, 2000, Purves et al., 2008, 

Squire and Kandel, 2000). 

Ali three aforementioned non-declarative memories are independent of the 

medial temporal lobe in human. 

2.2.1.1 Episodic Memory Consolidation 

Two models are suggested in neuroscience for the memory consolidation 

phase (Purves et al., 2008). 

1) The standard consolidation theory, which holds that the result of event 

encoding are hippocampus-independent. It posits that the hippocampus performs a 

fast interpretation and learning of a given concept or event. In the transfer phase, 

indirect connections are thought to be created between the hippocampus and 

various neurons in the cortex. The hippocampus then distributes these memory 

traces to the cortex. Importantly, in this model, the cortical neurons representing 

events create direct connections between themselves and gradually become 

independent of the hippocampus. 
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2) The multiple-trace theory, the multiple-trace theory, on the other hand, 

holds that the results of event encoding are hippocampus-dependent. According to 

this theory, every time an event causes memory reactivation, a new trace for the 

activated memory is created in the hippocampus. Memory consolidation occurs 

through the reoccurring loops of episodic memory traces in the hippocampus and the 

construction of semantic memory traces in the cortex. Thus, the cortical neurons 

continue to rely on the hippocampus even after encoding. 

2.2.1.2 Episodic memory retrieval 

Given a particular situation in which 1was asked to think about the dinner 1had 

of last year at Christmas Eve, what came to mind is described below: 

That night, 1was invited to go out for dinner with my friends, but 1had to finish 

writing a scientific paper. Thus, 1had cancelled the rendez-vous with my friends and 

prepared an omelette with a piece of bread on the kitchen table and started to eat. 1 

had also prepared a hot chocolate which 1really like to drink every afternoon. Hmm, 

No... 1did not have the omelette because my friends came in while 1was preparing 

dinner. Then, they asked me to stop working and took me out to a nearby restaurant 

for dinner. For dinner, we had turkey with some potatoes. 1also had a hot chocolate. 

ln this example, a retrieval eue (the question about dinner), first, sets off 

memory search processes to restore specifie memory traces related to the situation's 

particular features such as time and place (Iast year's New Year's eve, the lab, and a 

restaurant). What are restored as memory traces (omelette, bread, hot chocolate) 

will be evaluated by monitoring process. The monitoring process may refine/reject or 

accept restored memory traces from long-term memory (stop eating omelette and go 

out for dinner). During episodic memory retrieval processes, attention remains fixed 

on this particular situation's features. 

Emotions affect different types of memory and enhance learning in humans. 

Indeed, it has been shown to be in part responsible for our emotional reactions in the 
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enhancement of episodic memory (Hamann et al., 1999, Dolan et al., 2000a, Paré, 

2003). Because emotions and episodic memory play two complementary roles in 

learning and in the retrieval phase, we argue that both must be included in cognitive 

architectures. 

2.2.2 Reasoning and Causal Learning 

Reasoning is considered crucial for many characteristics of cognition such as 

selection, abstraction, planning, etc (Gopnik and Schulz, 2007, Sarma, 1993, 

Leighton, 2004, Demetriou, 1998). Reasoning begins with an initial state, a goal and 

a set of possible operators. To achieve the goal set in the initial state, one may be 

faced with several intermediate obstacles. This makes establishing a direct path 

between the initial state and the goal difficult. The term reasoning is used in 

situations in which rules are c1early identified and possible actions are highly 

restricted. The term problem solving is used in situations in which the rules are 

unclear and we face a large number of possible actions. To solve a problem, we can 

use the trial-and-error approach. As opposed to reasoning, the trial-and-error 

approach does not imply deliberation and a rational approach (Woll, 2001, Goswami, 

1998). 

The three types of reasoning we focus on in this work are the following: 

1) Deductive reasoning, where one logically decides the conclusion from a 

general rule. Moreover, in deductive reasoning, the truth of premises assures the 

truth of conclusions and the relation between Premise and Conclusion is certain 

(Kemerling, 2005). For example, in math: 

If x=2 and y=3 Then 4x+y= 11 

Deductive reasoning is nonampliative - i.e., cannot actually extend our 

knowledge. Thus, in deductive reasoning, despite observing and making specifie 



23 

conclusions, one cannot predict unseen situations (Russell and Norvig, 2003, 

Sternberg and Mio, 2009). 

2) Inductive reasoning, where either one tries to generalize rules from a set 

of examples, or, on the other hand, fram a set of probable or inadequate premises, 

one decides the likeliness that a conclusion is true. The truth of a conclusion is likely 

when the premises give some evidence or support towards the conclusion. In 

inductive reasoning, when evidence is deemed to be absolute, significant, and 

generally persuasive, they are cogent. They may bring us to a true conclusion. When 

the evidence is not deemed absolute, significant and persuasive, then the evidence 

is non-cogent. In inductive reasoning, the relation between premise and conclusion 

is uncertain. After generalization, one cannot c1aim that ail potential information 

about a situation has been collected and that there is no additional unseen 

information that could discredit the hypothesis. For instance consider the following 

example. Fram the statement "The football moves when kicked bya player," we can 

infer "Ail footballs move when kicked by a player." The inductive reasoning is 

ampliative - it extends our knowledge. One usually needs to examine prior 

knowledge, relation, set of examples and experiences in order to draw inductive 

conclusions from premises. However, ail this information that one must examine to 

come to a conclusion fram a set of premises makes it difficult for scientists to 

propose a universally accepted theory of inductive reasoning (Russell and Norvig, 

2003, Feeney and Heit, 2007, Sternberg and Mio, 2009). 

3) Abductive reasoning, where one tries to give an apt explanation from a set 

of observations (inference to the best explanation). Abductive reasoning sometimes 

plays a very important raie in decision-making when the information is not sufficient. 

Abductive reasoning is described by incompleteness in evidence and/or explanation. 

For instance, in the case of an airplane crash, when experts examine the accident 

scene, some crucial evidence may be missing. The experts' explanations about the 

accident may be flawed due to this missing information. Likewise, a computer that is 

not capable of correctly reporting a malfunctioning problem in hardware or software 
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will only provide some incomplete predefined messages. Technicians will likely be 

unable to fully explain the nature of the problem (Sebeok, 1981). 

2.2.2.1 Causal Learning 

Among the various aspects of inductive reasoning, researchers investigate the 

existence of causal relations between various events (Kemerling, 2005). We 

assume that there is a particular cause to a particular effect, only, by observing the 

occurrence of regularities in some particular events. Hume suggested that our beliefs 

and feelings6 also play an important role when we develop a causal relation between 

events (Kemeriing, 2006). Scientists use the experimental approach to establish the 

causes between events. Knowing causes, we can change the outcome of situations. 

To do so, we have to find relations between events, and how some events affect 

others. We can learn to make inferences, but the result may depend on prior 

knowledge, experience, and how weil these are mastered. It may also depend on the 

individual's interpretation abilities. For instance, one may infer that coffee is the 

cause of our current abdominal pain after observing that drinking coffee is always 

followed by such pain. However, causal relationships between events do not provide 

us the absolute proof since there may exist some unidentified aspects. For instance, 

we know that some people suffer from schizophrenia, but we do not know the 

causes yet. 

Abü Alï Sïna (Avicenna) proposed three methods for finding causes 

(Goodman, 1992, Goodman, 2003). John Stuart Mill added two additional methods 

(Kemerling, 2002). We explain them through an example. Suppose that in a 

company, some employees spend their break together and each time they drink 

some beverages. After a while, a number of employees report abdominal pains each 

afternoon. Thus, they suppose that the problem comes from what they drank. To find 

6 Feeling: "the perception of a certain state of the body along with the perception of a certain 
mode of thinking and thoughts with certain themes." Damasio (2003) 
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which beverage causes abdominal pains, Avicenna and Mill's five methods would be 

used in the following manner: 

1) The method of agreement. Imagine three of employees have abdominal 

pain and discuss about the cause of the pain. The first had apple juice, 

orange juice, and a coffee; the second had a grapefruit juice, coffee, and 

iced tea; the third drank iced tea, hot chocolate, and coffee. From this 

information one can conclude that coffee is the cause of abdominal pain. In 

ail three cases, only one circumstance led to having pain- coffee. 

2) The method of difference. Now supposing that the first employee drank 

an apple juice, orange juice, and a coffee, while the other drank applejuice, 

orange juice, and hot chocolate. In this case, the one who drank coffee has 

abdominal pain. Again we can conclude that the coffee is the cause of 

abdominal pain. Thus, in this method one tries to detect which possible 

causes were present when the abdominal pain occurred, and were not 

present when the effect (abdominal pain) did not occur. 

3) Agreement and difference. Given the two previous situations, suppose 

that two employees drank different sets of beverages, and that only the one 

that drank coffee had abdominal pain. Suppose also that two other 

employees drank different sets of beverages and that only the one who had 

coffee had abdominal pain. Since ail those who drank coffee had abdominal 

pain and none of those who drank something else were sick, we conclude 

that 1) only coffee and 2) nothing else causes abdominal pain. 

4) Method of Concomitant Variation. Now, supposing that out of the four 

employees, the first one didn't have coffee and felt no abdominal pain; the 

second had one cup of coffee and felt ill; the third had two cups of coffee 

and felt abdominal pain; and the fourth had five cups of coffee and had to 

go the doctor. We can again conclude that the coffee caused the abdominal 

pain. With this method, we are not just faced with the occurrence and non­

occurrence of causes and effects; we observe that intensifying the cause is 

related to increasing the extent of the effect. 
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5)	 The method of residues. Finally, supposing that another doctor came to 

the conclusion that hot chocolate is likely to be the cause for dental 

problems and chamomile the cause for sleepiness. Today, an employee 

arrives and complains about dental problems, abdominal pain, and 

sleepiness. He also Iists hot chocolate, coffee, chamomile and orange juice 

as what he drank during the day. Knowing the cause of dental problems 

and sleepiness, the doctor can conclude that the hot chocolate must be the 

cause of toothache. The example demonstrates the creation and 

combination of probable causes. 

These methods have some flaws when it comes to apply them in scientific 

research applications, as, for a given situation, we are not always capable of 

considering every possible condition leading to a particular effect. Thus, the five 

aforementioned methods are not useful when it comes to unidentified causes' of an 

event (Kemerling, 2002). 

Scientists propose causal Bayes nets (acyclic graphs) as an alternative 

approach to establishing causal relation between events. The key concept for the 

construction of a causal Bayes net is finding conditional probability between events. 

Mathematic is used to describe conditional and unconditional probabilities between a 

graph's variables. The structure of a causal graph restricts the conditional and 

unconditional probabilities between the graph's variables. We can find the restriction 

between variables using the Causal Markov Assumption (CMA). The CMA suggests 

that every node in an acyclic graph is conditionally independent of its ascendants, 

given the node's parents (direct causes). For instance, suppose one observes that 

each time one forgets to adjust his car's side and front mirrors (M), he tends to have 

poor control over the wheel (W) and cause collisions (C) with other cars. We can Iink 

these variables in the following way: (1) M ~ W ~ C; and (2) W (- M ~ C. The first 

graph (1) shows that the probability of forgetting mirror adjustment is independent of 

the probability of making collision with other cars, conditional on the occurrence of 

poor wheel control. The second graph (2) demonstrates that the probability of poor 

wheel control is independent of the probability of making a collision with other cars 
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and is conditional on forgetting mirror adjustment. The CMA establishes such 

separation between nodes to ail acyclic graphs' nodes. Thus, knowing a graphs's 

structure and the value of some variables' values, we are capable of predicting the 

conditional probability of other variables. Causal Bayes nets are also capable of 

predicting the consequences of direct external interventions on their nodes. When, 

for instance, an external intervention occurs on anode (N), it must solely change its 

value and not affect other node values in the graph except through the node l\J's 

influences. In conclusion, one can generate a causal structure from sets of effects 

and conversely predict sets of effects from a causal structure (Gopnik and Schulz, 

2007). 

Recent studies in neuroscience have demonstrated the role of the prefrontal 

cortex in inductive and deductive reasoning (Goel and Dolan, 2004). These suggest 

that in an individual, the creation of new hypotheses in inductive reasoning 

essentially activate the left prefrontal cortex (LPFC). Given the fact that left prefrontal 

cortex activation is crucial in inductive reasoning, we assume that the same region in 

our brain is also crucial for causal learning. 

2.3 CONCLUSION 

The nature of emotion, its emergence and how it influences cognitive process 

remain controversial. This, because emotions are simultaneously required in 

different processes such as cognitive, biological and physiological, etc. This has lead 

to various definitions addressing specific aspects of emotions, with none addressing 

emotions as whole. 

One important part of cognition is memory. In humans, ail memories are 

influenced directly or indirectly by the amygdala, which play a major role in emotional 

processes. In fact, human decision-making, reactions and learning are under the 

influences of emotions and feelings (Bower, 1992, Dolan et al., 2000b, Purves et al., 

2008, Squire and Kandel, 2000). For instance, Candido (Candido et al., 2006, 
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Maldonado et al., 2007) demonstrated how emotions of different affective valences 

can bias causal learning. 

My goal in this study is to propose and implement an emotional mechanism in 

a cognitive agent based on neuroscientific evidences. In our model, the emotional 

mechanism is capable of learning and influences different types of learning and 

decision making. 1also propose a generic method for the implementation of episodic 

and causallearning in cognitive agents and how they are influenced by the proposed 

emotional mechanism. 



CHAPTER III 

EMOTIONS AND LEARNING IN COGNITIVE ARCHITECTURES 

Most researchers in computer science agree that the concept of autonomy is 

essential to the definition of an agent (Franklin, 2006, Wooldridge, 1999, Franklin 

and Graesser, 1997). Franklin (1997) defined an agent as "a system situated within 

and a part of an environment that senses that environment and acts on it, over time, 

in pursuit of its own agenda and sa as to effect what it senses in the future." 

Russell calls such an agent intelligenf (Newell and Simon, 1976) (Russell and 

Norvig, 2003). The key concepts in the definition given by Franklin is that an agent 

must be a dynamic part of the environment, sense it, act on it in an autonomous 

fashion; it must have temporal continuity. This occurs when an agent has sensors to 

sense the environment, effectors to act on the environment, and primitive motivators 

to motivate its acts (Franklin, 2006). For instance, an antivirus is installed on a 

computer and must react each time a program is executed and is pre-programmed 

to check the computer ta find viruses at mid-night. In addition, an agent must learn 

from its environment and adapt to changes. Thus, being adaptive and able to learn is 

one of the very important properties of an agent. Learning, in an agent, must be 

incremental and continuai (Franklin and Graesser, 1997). Wooldridge (Wooldridge 

7 Newell and Simon's Physical Symbol Systems theory suggests that a physical symbol 
based system is a necessary and sufficient condition to produce a general intelligent action. 
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3.1 

and Jennings, 1995, Wooldridge, 1999) has categorized agents into the following 

types: 

1) Reactive: A purely reactive agent is one whose action depends only on what 

it perceives at the present moment. Such an agent does not store any internai 

information. Neither does it consider the history of its previous actions when making 

decision. 

2) Deliberative: These agents are capable of monitoring their environment and 

acquire an internai representation of it. They are capable of generating plans to meet 

their goals. 

3) Hybrid: These agents have a composite behaviour of reactive and 

deliberative agents in that they are capable of generating new plans and respond 

immediately to external stimuli. 

A cognitive architecture is a prototype for the design of intelligent agents 

(Langley et al., 2008). In the following section, we very briefly explain cognitive 

architectures. 

COGNITIVE AGENTS 

The nature of cognition, the role of cognitive systems and the way they 

function are topics too broad and out of the scope to be covered in this study. It is 

agreed that if a system were endowed with cognition, it would have the following 

capabilities: learning, adaptation, anticipation, autonomous behaviour, natural 

language, creativity and self-reflection (Brachman, 2002, Hollnagel and Woods, 

1999, Freeman and Nunez, 1999, Anderson and Lebiere, 2003). In this study, we 

also propose self-satisfaction as an important capability of cognitive systems 

(Faghihi et al., 2009b). This will be explained in the episodic learning (see section 4) 

part of this text. 



31 

Cognitive systems (agents) are divided into three type (Vernon et al., 2007): 1) 

cognitivist; 2) emergent; 3) hybrid. 

3.1.1 Cognitivist approach to agents 

Cognitivist scientists use symbol8 manipulation to study cognition (Newell, 

1990, Newell and Simon, 1976). This theory defines explicit symbolic representation 

mechanisms to allow systems to reason about the external world. Information about 

the external world is abstracted by perception and represented using a symbolic 

framework. Then, symbols are interpreted and reasoned in order to plan an act in the 

external world. Cognitivist scientists postulate that symbol manipulation processes 

equip cognitive agents with the necessary tools to easily and efficiently adapt and 

interact with the external world, predict the future and use reasoning capabilities. 

Different methods such as machine learning, probability approaches and logical rule­

based approaches are used to implement cognitivist systems. In these systems, 

symbol representation is the product of human work, which means that there is a 

direct access to semantic knowledge. However, such a system is Iimited to the 

predefined descriptions and conditions (Winograd and Flores, 1986). 

Given Newell's hypothesis that human beings use symbols to represent 

abstract concepts (Newell, 1990), a cognitive architecture must be able to combine 

symbols ("chunking") in order to facilitate their subsequent uses. As in the human 

brain, cognitive architectures should work with, among others, emotional learning, 

episodic learning and procedural learning. Ron Sun later proposed a definition for 

the two coexistent processes of explicit/implicit knowledge (Sun, 2004). Explicit 

processes refer to factual, declarative or non-procedural knowledge to which 

8 Newell and Simon: "Symbol systems are collections of patterns and processes, the latter 
being capable of producing, destroying, and modifying the former. The most important 
properties of patterns is that they can designate objects, processes, or other patterns, and 
that when they designate processes, they can be interpreted. Interpretation means carrying 
out the designated process. The two most significant classes of symbol systems with which 
we are acquainted are human beings and computers." 
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consciousness has access, such as the abstract idea that the moon turns around the 

earth. Implicit processes refer to the procedural knowledge to which consciousness 

has no access to, such as knowing how to swim. 

3.1.2 Emergent approaches to agents 

ln the emergent approach, scientists state that cognition is the construction of 

skills through a self-organization process (behavioural / configurational emergence) 

in which systems interact in real time with their environment. This reminds us of the 

importance of embodiment for the construction of knowledge. Embodiment is a 

practical and social phenomenon necessary for the construction of meaning 

(Anderson, 2003). For an agent in the real world, perception and representation are 

mostly constructed via the agent's physical movements (Ziemke et al., 2007) (de 

Vega et al., 2008). According to Anderson (2003), embodiment plays an important 

role in shaping cognition in four areas, namely: physiology, evolutionary history, 

practical activity, and socio-cultural situatedness. Thus, the emergent approach is 

opposite to: 1) the dualism theory that asserts separation between body and mind; 2) 

functionalism that views mind as only existing based on its fulfilling its role, its 

functioning. Thus, any entity that produces the same output as the mind in a given 

situation, should, according to functionalists, be considered to be a mind, regardless 

of the entity's nature. 

ln what follows we explain emergent systems. Emergent systems encompass 

connectionists, dynamical, and enactive systems (Varela, 1992, Clark, 2001). 

3.1.2.1 Connectionist systems 

Connectionist systems depend on the parallel processing of non-symbolic 

distributed activation patterns. In these systems, contrary of the logical rule-base 

approach, statistical methods are applied to process information (Medler, 1998). For 
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instance. artificial neural networks (ANN), which are dynamical systems capable of 

capturing statistical regularities of the training data, are often used (Smolensky. 

1996). Learning in ANNs occurs in supervised and unsupervised manner among 

others. Supervised learning is that in which inputs and outputs are available to the 

network for example multilayer perceptran (Rumel hart et al., 1986). The task of the 

network is to predict or adjust inputs to the desired outputs. Unsupervised learning is 

that in which only inputs are available to the network. The task of the network is to 

find the correlations among the inputs on its own in order to praduce outputs for 

example Hebbian Learning (Hebb, 1949). Due to the fact that Connectionism is a 

vast field, it would be beyond the scope of this text to cover it; readers are thus 

referred to Anderson for further details (Anderson and Rosenfeld, 1988, Medler, 

1998). 

Varela (Varela et al., 1991) explained that in connectionism symbols play no 

role and ilthe system's connectivity becomes inseparable from its history of 

transformations, and is moreover related to the kind of task defined for the system". 

meaning that it "relates to the global state of the system". 

3.1.2.2 Dynamical systems 

The cognitive system's mental activities are emergent, situated, historical and 

embodied. Thus, cognition is not symbolic and representational (Thelen and Smith, 

1994). The agent uses self-organization processes to adapt itself to its dynamic 

environment. The capacity of self-organization comes fram the agent's prior 

experiences. As McClelland (McClelland and Vallabha, 2009) has stated : 

il ...dynamical systems researchers tend to take more note of the mechanical 

constraints imposed by the organism's body, white connectionists tend to focus on 

the constraints among the physical elements within the nervous system (neurons 

and connections, or at least abstractions of their properties). Likewise, explicitly 

dynamical models address the constraint satisfaction using dynamical metaphors 
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such as coupling and stability, while connectionist models address it using neuronal 

metaphors such as propagation of unit activity and weight change." 

McCleliand has also stated that some connectionist systems are dynamical 

systems with temporal properties and structure such as attractors, instabilities and 

transitions. However, whether or not high-Ievel cognitive processes such as 

reasoning are possible in dynamic systems remains to be determined. So far, 

dynamical systems are only used as an analysis tool in cognitive systems 

(Christensen and Hooker, 2000, Vernon et al., 2007). 

3.1.2.3 Enactive systems 

Cognition is a history of structural coupling where an entity becomes part of a 

world or produces a new one. There is no pre-defined information needed and the 

sensory motor information is processed simultaneously. Thus, to decide the 

relevance of tasks based on the actual context, an agent needs a real-time 

interaction with its environment (Varela et al., 1991). 

3.1.3 Hybrid systems 9 

Researchers try to combine key aspects of the emergent and cognitivist 

systems. The representations in hybrid systems are created by the system itself 

through its interaction with the environment, rather than being pre-programmed 

(Dreyfus, 1982). Thus, the representation of an object is created through a 

perception-action process and direct interaction with the object. During the learning 

phase, there is no direct access to the internai semantic representations of the object 

in these systems and the system must be embodied (Granlund, 1999). 

9 Hybrid systems are here considered in this sense and not exactly as the Wooldridge hybrid 
system. 
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3.1.4 Conclusion 

These aforementioned architectures have their own strengths and weaknesses 

and have received critics from researchers. For example Christensen and Hooker 

(Christensen and Hooker, 2000) asserted that enactive and dynamical systems 

provide us more of a general modeling framework than a model of cognition. They 

also mentioned that, at present, our knowledge to build artificial cognitive systems 

based on what emergent researchers have proposed is very limited. Christensen 

and Hooker have also pointed to three major flaws of the cognitivist systems: the 

symbol grounding problem (Harnad, 1990), the frame problem (McCarthy and 

Hayes, 1969), and the combinatorial problem. They have also criticized other 

problems encountered, such as the limited capacity of cognitivist systems to 

effectuate generalizations, creativity, and learning. Nonetheless, comparing to the 

emergent systems, to date, the abilities of cognitivist systems are much superior 

(Vernon et al., 2007). 

As mentioned above, a good alternative to both cognitivist and emergent 

systems are hybrid systems. However, there is no consensus regarding the manner 

in which one could combine both cognitivist and emergent systems to create a hybrid 

system. As Crutchfield (Crutchfield, 1998) argued, dynamics are related to and 

influence cognition but are ".. .not a substitute for information processing and 

computation in cognitive processes". In any case, Crutchfield has recommended that 

one seek to build design dynamical state structures in such a way that they may 

support computation (Vernon et al., 2007). 
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3.2 COGNITIVE ARCHITECTURES 

Newell was the first to offer a scheme about cognitive architectures (Anderson, 

1983, Newell, 1990, Anderson and Lebiere, 2003). The goal of cognitive 

architectures is to suggest a unified theory of cognition which encompasses 

attention, memory, emotion, problem solving, decision making, learning, etc. 

Furthermore, here, the focus is mostly on the task-independent and homogeneous 

processes of cognition. Cognitive architectures also specify how cognitive agents are 

to manage their resources (Langley et aL, 2008). Thereby, and in accordance with 

Vernon's classification, three cognitive architectures such as cognitivist, emergent 

and hybrid cognitive architectures stand out. According to the cognitive approach, 

architectures must specify the following components and functionalities: 1) 

memories, which record knowledge; 2) specifie methods and algorithms which are 

involved in knowledge representation; 3) specifie methods and algorithms which 

manipulate knowledge; 4) learning mechanisms; 5) emotions: because emotions 

influence our behaviour and thoughts (Purves et aL, 2008, Squire and Kandel, 2000, 

Damasio, 1999), they must be integrated into cognitive architectures. Therefore, like 

in human, emotions can intervene in different levels and parts of cognitive 

architectures, for instance in different steps of agents' cognitive cycles (Faghihi et aL, 

2008a). 

The most widely, known cognitive architectures include Newell's Soar 

architecture (Rosenbloom et aL, 1993, Laird et aL, 1987, Lehman et aL, 1998), 

Anderson's ACT-R architecture (Anderson, 1993, Anderson, 1983, Anderson et al., 

2004), Sun's CLARION architecture (Sun, 2006), and Franklin's L1DA architecture 

(Franklin and Patterson, 2006). 

As was mentioned at the onset of this study proposai, the learning 

mechanisms usually implemented in cognitive agents are loosely connected or are 

implemented as a collection of learning types in one single mechanism. Furthermore, 

up to now, no studies have been capable of demonstrating a successful 

implementation of emotions and emotional learning influencing learning mechanisms 
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in cognitive agents. Thus, we propose and aim to implement an emotional 

mechanism which collaborates with learning mechanisms in a cognitive agent. 

ln what follows, in addition to briefly explaining these agents' architectures, we 

mostly focus on the cognitive architectures' learning problems. We explain very 

briefly the learning capability of some weil known cognitive architectures including 

Autonomous Agent Robotic (AAR), the Adaptive Control of Though (ACT-R), 

Connectionist Learning with Adaptive Rule Induction ON-line (CLARION) and 

Learning Intelligent Distribution Agent (L1DA). Because ACT-R and Soar have much 

in common, we explain the Soar architecture in the ACT-R section. 

3.2.1 Autonomous Agent Robotics 

Autonomous agent robotic (AAR), an emergent system, is proposed by Brooks 

(1986) as an alternative to cognitivist architectures. The fundamental idea behind 

this architecture is that the robot has no internai representation of the environment 

and engages completely in interactions with the environment. The whole architecture 

starts with simple situation ~ action logic and incrementally, layers of more complex 

tasks are added (subsumption architecture). Each layer executes one of the agent's 

specifie goals. The upper layers are more abstract. Decision-making in the upper 

layers depends on the lower layers. No complex reasoning must be undertaken- it is 

sufficient to check the rules preconditions to fire them. However, it is the case that 

this architecture lacks self-management mechanisms and requires a great deal of 

information about their environment to make decisions, especially when tasks 

become more complex (Christensen and Hooker, 2000, Wooldridge, 1999). To solve 

these problems. Brooks identified and integrated the following components to AAR: 

1) motivation: action selection is depends on the context; 2) self-adaption: provides a 

constant adjustment of the system to its sub-systems; 3) development: provides an 

incremental learning possibility in the system. 

The most widely known learning types in emergent systems are associative 

learning ( creating a map between the input-output representations to the system) 
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and competitive learning (Winner takes ail) (Wang et al., 2008). However, some 

researchers such as Hedger (2009) have doubts on whether Brooks' theory is 

scalable to the level of human beings. 

3.2.2 ACT-R's Architecture 

The Adaptive Control of Though (ACT-R), developed by Anderson (1983), may 

be c1assified as a cognitivist architecture that implements a human cognition model. 

ACT-R, among others, is one of the validated simulations of human cognition 

(Anderson and Lebiere, 1998). It uses a modular architecture which consists of a 

central part with a set of buffers that permit indirect communication between different 

modules within the system. 

ACT-R' architecture consists of different modules (Figure 3.1) among which: 

perceptual Cvisual') module for recognizing objects; a goal module whose task is to 

indicate the system's current goal; a declarative memory module for recovering 

information from the memory; and a procedural module for controlling agents' 

movements (or actions, in general). In this architecture, modules cannot 

communicate directly: any communication must pass through the "central production 

system", Each buffer contains one declarative piece of knowledge, called a "chunk'. 

Such a "chunk' consists of a name and has labelled links towards other "chunks". 

Together, these form a "semantic network". The inference module modifies the 

content of buffers following a set of rules called "productions". Each production rule 

is composed of conditions (which indicate to which configuration, or content of the 

buffers it is applicable) and actions (indicates how it modifies the buffers). ACT-R 

uses the production rules to solve procedural problems (for example a mathematical 

subtraction). These rules are specific to the application, but ACT-R provides meta­

rules to choose and execute a particular rule, because in each cycle the system is 

capable of executing one rule. Cognitive cycles in ACT-R start by finding a pattern 

for external or internai images of the world which correspond to the buffers; then, a 
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production rule is triggered, and buffers are updated for the following cognitive cycle. 

This complete cycle takes about 50ms. 

External World
 

Figure 3.1 ACT-R 5.0's Architecture 

Learning in ACT-R occurs at the symbolic and sub-symbolic level within an 

integrated learning mechanism; this, for both chunks and production rules. Explicit 

learning in ACT-R is the result of learning the content of declarative memory when 

fetched and examined. It also occurs at the procedurallevel through the combination 

of two rules. 

Implicit learning occurs for both declarative and procedural knowledge. In 

declarative knowledge, there is an increase or decrease of the activation of chunks. 

When a chunk is learned, its base-/evel energy is stored into declarative memory. 

Later, each time the chunk is recalled, its base-Ievel activation increases and the 

strength of association between the current sources and the chunk also increases. 

This will increase its probability of being recalled. To determine if a chunk will be 

recalled following a procedure execution, the activation will be calculated by 
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considering various information such as the base level activation, time elapsed since 

the last recalls, the context, noise, etc; ln procedural knowledge, each time a 

procedure is used while executing a task, it is updated with success or failure 

information (each experience can both increase/decrease the rule strength and its 

probability of being fired in the future). 

However, in ACT-R, the rules for ail situations must be specified in advance. 

ACT-R episodic memory does not address a role for emotions in the episodic 

learning, and causal learning (Faghihi et al., 2009a, Faghihi et al., 2010). ACT-R is 

unable to explain the bottom-up learning of the explicit knowledge and the interaction 

between explicit and implicit knowledge (Hélie, 2007). Like ACT-R, Soar architecture 

is a production system (Rosenbloom et al., 1993, Laird et al., 1987, Lehman et al., 

1998). Soar has a Working Memory (WM), Long-Term Memory (LTM), ançl a goal 

stack. The WM in Soar detects external stimuli to the system and tries to find and 

fetch relevant production rules from system' LTM. Once ru les fetched into the 

system's WM, their utility are verified upon to the current goal stored in the system's 

goal stack and then the best rule is chosen and fired. Like ACT-R, Soar uses chunk 

to automatize utilization of the rules. The Soar architecture can only learn new 

production ru les (Nason and Laird, 2005). 

3.2.3 CLARION's Architecture 

ln order to obtain various cognitive processes within a single cognitive 

architecture, Sun created the Connectionist Learning with Adaptive Rule Induction 

ON-line (CLARION) architecture (Sun, 2001, Sun, 2006). CLARION is a hybrid 

system and a cognitive modules-based agent. In this cognitive architecture explicit 

(declarative) /implicit (non-declarative) knowledge's interact in a synergetic way to 

solve a problem and to learn a specific task. The explicit knowledge is accessible by 

the agent consciousness system whereas the implicit knowledge is not accessible 

(or difficult to access) by consciousness when system performs a task. The 

interactions between implicit and explicit knowledge levels are realized by the 
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integration of connectionist, reinforcement, and symbo/ic methods to obtain several 

learning abilities, such as bottom-up learning, trial-and-errar learning, and top-down 

learning. 

CLARION is equipped with a procedural memory, a declarative memory and 

an episodic memory. The most important challenge in CLARION' architecture is the 

interactions between implicit and explicit knowledge that the agent acquires fram its 

enviranment. To separate implicit knowledge fram explicit knowledge, Sun 

suggested a distributed system with sub-systems. Each sub-system has two levels­

the top level encodes explicit knowledge and the bottom level encodes implicit 

knowledge. 

ln Figure 3.2, ACS (the "action-centered sub-system") contrais internai and 

external actions decision making. NACS ("non-action-centered subsystem") raie is to 

store up the explicit, implicit and episodic knowledge and performs as the reasoners 

of the system. MS is the motivational subsystem for feedback purposes. MCS 

("meta-cognitive subsystem") observes ACS and ail other sub-systems of the agent, 

their activities and operations in order to change them when needed (for example, 

when new feedback is received)(Sun, 2006, Hélie and Sun, 2008). The agent 

explores its enviranment and tries to acquire information or modify it (for example, 

hypothesis testing without the help of bottom level). The action selection mechanism 

in CLARION is formed by different top/bottom levels. There exist input and output for 

both levels. Astate entered fram the enviranment into the system will be analyzed at 

first, and then an appropriate action will be allocated, according to the system goal. 

The feedback will be learned and saved for future uses. In fact, the feedback could 

be translated into "ru/es" and "chunj(' in the explicit knowledge level. Furthermore, 

some existing nodes in the bottom level may be relevant to the condition of a sole 

node at the top level. Thus, each action took by the bottom level will praduce anode 

with some related rules in the top level after extraction of explicit rule and then it will 

be refined by future interactions with external world. Learning in CLARION is 

accomplished by the integration of reinforcement learning and rule induction, so that 

the resulting process is integrated automatically in the structure. Implicit learning 
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occurs in the bottom level with supervised learning ("back-propagation network') by 

input/output parameters adjustment. 

Explicit learning occurs by extracting acquired knowledge fram implicit 

knowledge into symbolic representations. In fact, explicit knowledge is an extraction 

and refinement of information that was captured from interaction with environment 

(implicit knowledge). Conversely, explicit knowledge will be integrated into the 

bottom level after it becomes stable (Hélie and Sun, 2008, Sun, 2006, Sun, 2001). 

However, in CLARION current version, during bottom-up learning, the 

propositions (premises and actions) are already present in top level (explicit) 

modules before the learning pracess starts, and only the links between these nodes 

emerges fram the implicit level (rules). Thus, there is no unsupervised causal 

learning for the new rules created in CLARION (Hélie, 2007). The second prablem in 

CLARION is that although emotions were originally designed in the system, it is not 

c1ear how they influence different cognitive pracess such as Episodic Learning. 
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Figure 3.2 CLARIOI'J's Architecture 
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3.2.4 L1DA's Architecture 

Learning Intelligent Distribution Agent (L1DA) (Figure 3.3) is a hybrid cognitive 

architecture, developed by Stan Franklin and his colleagues at the University of 

Memphis (Franklin and Patterson, 2006). L1DA is IDA's successor; IDA was originally 

conceived to assign new billets to sailors. In the American Navy, at the end of each 

sailor's tour of duty, he/she is assigned a new billet (task) by a detailer. IDA performs 

the detailer's role. It communicates with sailors via e-mail and must understand 

sailors' requirements and preferences, as weil as respect ail constraints of the Navy. 

To reply to the sailors, it has to communicate with different databases (Franklin et al., 

2005, Franklin and Patterson, 2006). 

L1DA's architecture is partly symbolic and partly connectionist and is equipped 

with six artificial intelligence software technologies: a copycat architecture, a sparse 

distributed memory, a global workspace, a schema mechanism, a behaviour net, and 

a sub-sumption architecture. 

Franklin called L1DA a "conscious agent" for its fundamental elements and 

processes rely on functional consciousness as described by Baars (Baars, 1997). 

L1DA is constructed with simple agents called "codelets" (which reproduce Baars' 

"simple processors"). The central point of the system is the "access consciousness", 

which allows ail resources to access centrally selected information that is "broadcast" 

to unconscious processes (which guides the agent to be stimulated only with the 

most relevant information). 

L1DA's main components are the following: 

1) Perceptual Associative Memory: This corresponds to the different sensorial 

cortices in human (visual, auditory and somatosensory). In L1DA, perceptual nodes 

are situated in a slipnet. This allows the agent to distinguish, classify and identify 

external and internai information. There are activations and connections between 

slipnets' nodes. Segments of the slipnet are copied into the agent's working 

workspace (D'Mello et al., 2006); 
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2) Workspace: This corresponds to the human preconscious buffers of working 

memory. This is the "place" that hoIds active codelets and the strength between 

them, which come from perception. It also includes previous percepts not yet 

decayed away, recalls from long-term memories. Information written in the 

workspace may reappear in different cognitive cycles. 

3) Episodic memories: These are the memories for events (what, where and 

when) and is divided into transient episodic memory, and a long-term 

autobiographical episodic memory; 

4) Functional Consciousness: This is the functional implementation of the 

Global Workspace (GW) theory suggested by Baars (Baars, 1997). Its main 

elements are code lets which run autonomously and are meant to perform one 

specific task. Functional consciousness' main components are the coalition 

manager, the spotlight control1er, the broadcast manager, and the attention codelets 

that identify important events or urgent situations; 

5) Procedural Memory: L1DA's procedural memory deals with deciding what to 

do next. It is similar to Drescher's schema mechanism but with fewer parameters 

(Drescher, 1991, Drescher, 1988). The scheme net is a directed graph in which each 

of the nodes has a context, an action, results and links towards others nodes. To 

instantiate and fire a scheme, L1DA uses Maes' Action Selection mechanism (Maes, 

1989), in its Behaviour Network with some modifications (Negatu and Franklin, 

2002). 

Thus, in LI DA's architecture, while procedural memory is responsible for 

deciding what will be done next, sensory motor memory is responsible for deciding 

how tasks will be performed. Thus, each memory requires a distinct mechanism. 

L1DA performs through its cognitive cycles (Figure 3.3) which occurs five to ten 

times a second. A cognitive cycle starts by a perception and usually ends with an 

action. It is conceived as an iterative, cyclical, active process that allows interactions 

between the different components of the architecture. 
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ln what follows, we briefly explain L1DA's cognitive steps, which are taken from 

Franklin and his colleagues' papers(D'Mello et al., 2006). 

1) Perception: The process of ascribing the meaning of incoming sensory data. 

2) Percept to preconscious buffer: Ail interpreted data and meaning is stored in 

L1DA's Working Memory's preconscious buffers, adding to pre-existing information 

which has not yet decayed away. 

3) Local associations: Information associated with the cues are retrieved 

automatically from different memories such as transient episodic memory and 

declarative memory, and stored back in Long-term Working Memory. 

4) Competition for consciousness: Here, attention codelets (AC) observe Long­

term working memory content and try to distinguish important events or urgent 

situations in order to form coalitions describing them and bringing them to 

consciousness. 

5) Conscious broadcast: This refers to a coalition of codelets that is chosen by 

Attention and brought to consciousness. It is broadcast to ail modules. 

6) Recruitment of resources: The most relevant schemes respond to the 

broadcasted information. 

7) Setting goal context hierarchy: in this step, a scheme is selected in response to 

the broadcast to instantiate a new goal in the behaviour net. 

8) Action chosen: L1DA's Behaviour Network manager selects a behaviour from 

current or previously instantiated behaviour streams according to the presence of 

preconditions and based on the most activated scheme. 

9) Action taken: The selected behaviour is executed. Each action codelet spawns at 

least one expectation code let to monitor and bring back the results of the act to 

consciousness for future decision-making. 

ln L1DA, learning occurs through consciousness (D'Mello et al., 2006). Different 

types of learning have been implemented in L1DA: 1) perceptual learning (e.g., 

learning of new objects): it is implemented as a semantic net (slipnet). It occurs by 

the creation of new nodes or strengthening or weakening of the base-Ievel activation 

of the existing nodes in the slipnet after the consciousness mechanism broadcasts 

information; 2) episodic learning: it occurs each time the agent finds an episode in 
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the content of consciousness; it, then, connects the source of activation in the 

current episode in the Slipnet to the basic features sensing elements. This 

information about the event will be encoded in LlDA's transient episodic memory. 

The recall of the saved event occurs by finding the corresponding perceptual 

symbols through slipnet nodes; 3) Procedural Learning: this refers to the learning 

of new actions and action sequences, and is implemented through L1DA's Scheme 

Net as a combination of instructionalist and selectionist concepts. Nodes (actions) 

are either created, strengthened, or weakened at the base-Ievel activation of the 

existing nodes in the Scheme Net after consciousness broadcast the information in 

the system (D'Mello et al., 2006). 

Figure 3.3 L1DA's cognitive cycle (Franklin,S., 2006) 
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However, although causal learning was initially designed for L1DA's 

architecture, it has never been implemented. In L1DA's procedural learning, D'Mello 

(D'l\I1ello et al., 2006), has proposed that the result of each action must be brought 

back to consciousness, whereas experiments relating to implicit learning 

demonstrate that satisfied expectations usually do not provide feedback to the 

subject (Cleeremans, 1997, Cleeremans and Jiménez, 1996, Cleeremans and 

Jiménez, 2002, Curran and Keele, 1993). Finally, for episodic learning, in the recall 

phase of an event, LI DA finds corresponding nodes in its slipnet. However, no similar 

method has been proposed for procedural learning, though we, as human being, 

have reflexes. For instance, we have reflexes for certain types of perceptual stimuli 

(Squire and Kandel, 2000). 

3.2.5 Conscious Tutoring System' (CTS) Architecture 

ln this part, we briefly explain CELTS' original architecture (Figure 3.4), without 

its newly added emotions and learning capacities. These will be covered in the next 

chapters. Based on IDA's (and L1DA's, its evolution) (Franklin and Patterson, 2006), 

CTS' conceptual architecture is partly symbolic, partly connectionist. CTS was 

conceived based on both cognitive and engineering concepts. CTS respected 

cognitive concepts by implementing Baars(1997) global theories, detailing how the 

human mind works (see Dubois,2007 for more detalls). CTS also abides engineering 

concepts in its solution to the design and implementation of software information 

agents and cognitive robots, promising better learning mechanisms and more 

human-like intelligence. 

CTS is a distributed and modular architecture which relies on the functional 

"consciousness" mechanism for much of its operation. Its modules communicate 

with one another (though rarely) and contribute information to Working Memory 

(WM) through information codelets. These travel back and forth through cycles of 

"conscious publications" that broadcast only the most important, urgent, or relevant 

information. 
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Although CTS' general design is very similar to IDA's, there are some 

differences in CTS' memory structures and functionalities (see Figure 3.4). For more 

details, the reader is referred to Dubois' thesis (Dubois, 2007). 

CTS' main constituents are codelets (of many types and roles), 

"consciousness"10 mechanism, perceptual, semantic memories, and Sehaviour 

Network (SN). Its cognitive cycle incorporates the traditional Perception-Reasoning­

Action phases, but in a more detailed manner (quite close to IDA's). 

Figure 3.4 CTS' Architecture without Emotion and Learning (Dubois, 2007) 

Cognitive cycles begin when external stimuli are interpreted by CTS' 

perceptual mechanism and written into WM, where they may then be chosen by the 

attention mechanism to be presented to consciousness. That broadcast information 

may either assert preconditions for the initiation of behaviour in SN, or it may cause 

reactions fram another part of the system, which then creates the necessary 

10 Consciousness: Conscious cognition is implemented computationally by way ot a 
broadcast ot contents trom a "global workspace", which receives input trom the senses and 
trom memory (Franklin & Patterson.2006). 
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preconditions for firing a behaviour. When one type of behaviour is chosen in the BN, 

it activates the code lets that implemented it. 

CTS' BN (Figure 3.5) implemented based on Maes' Behaviour Net (Maes, 

1989). It is a high-Ievel procedural memory. It is a network of partial plans that 

analyse the context to decide what to do and which type of behaviour to set off. This 

structure is linked to the latent knowledge of how to do things in the form of inactive 

codelets. Each behaviour node (Figure 3.5.A and B) may contain messages, 

questions, propositions, etc. (Figure 3.5.C) and CTS uses them to communicate with 

users (Figure 3.5.0). Just like codelets, they, have a base-Ievel activation, which can 

increase or decrease (Figure 3.5.A). Until it is selected for execution, a behaviour 

node accumulates energy from the various sources in the BN (feelings, state nodes, 

other nodes), but they are at the same time submitted to a constant loss of 

activation. Links between the nodes require energy (Figure 3.5.B); learning is linearly 

related to energy, and nodes weaken when not used (when the nodes they link are 

not selected for execution). This mimics human beings: if we do not repeat a task for 

a while, we will lose some of our ability, forgetting with the passage of time (Faghihi 

et al., 2007). 

CTS' original cognitive cycle proceeds in eight steps: 

Step 1: CTS perceives its environment (object recognition). 

The first stage of the cognitive cycle is to perceive the environment; that is, to 

recognize and interpret the stimulus. 

Step 2: The percept enters WM: 

The percept, which is constituted by the active semantic nodes of the Perceptual 

Network (PI\I), enters Working Memory (WM) as a single network of codelets. 
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Figure 3.5 CTS' Behaviour Network 

Step 3: Memories are probed and other unconscious resources contribute11: 

Ail these resources react to the last few consciousness broadcasts (internai 

processing may take more than one single cognitive cycle). 

Step 4: Coalitions assemble: 

11 Step 3 to 5 could be viewed as a representation of blackboard (for whom is familiar with 
this architecture) with more details. 
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ln the reasoning phase, coalitions12 of information codelets are formed or enriched.
 

Attention codelets join specifie coalitions and help them compete with other
 

coalitions toward entering "consciousness".
 

Step 5: The selected coalition is broadcast:
 

The Attention mechanism (AM) spots the most energetic coalition in WM and
 

submits it to "access consciousness" which broadcasts it to the whole system. With
 

this broadcast, any subsystem (appropriate module or team of codelets) that
 

recognizes the information may react to it.
 

Steps 6 and 7: Unconscious behavioural resources (action selection) are recruited:
 

Step 6, among the modules that react to broadcasts is the Sehaviour Network (SN)
 

(Maes, 1989, Tyrrell, 1994)( Figure 3.5.A,S,C). SN plans actions and, by an
 

emergent selection process, decides upon the most appropriate act to adopt. (Step
 

7) The selected behaviour then sends the behaviour codelets Iinked to it.
 

Step 8: Action execution:
 

Motor codelets stimulate the appropriate nodes (effectors or internai processes).
 

CTS is a generic architecture applicable for different purposes. However, in our case
 

it is used to assist astronauts in learning how to manipulate Canadarm2 (Figure 3.6).
 

The international space station (ISS) has been designed and implemented to
 

accommodate scientific experiments and life in the space. Thus, it needs to be
 

supplied constantly with foods, fuel, inspections, etc. Canadarm2, a mobile and
 

robotic arm installed on the ISS permits astronauts to move the arm from one
 

configuration to another. For instance, astronauts may use Canadarm2 to charge or
 

discharge the received food from the space shuttles. Thus, manipulating the robotic
 

arm is a difficult task, which requires astronauts to undergo a serious amount of
 

training. The seven degrees of freedom of the arm is the first difficulty to overcome,
 

as it considerably increases the number of possible operations. The second difficulty
 

is sight limitation. It is impossible to have an overall view of the station; therefore, the
 

12 For example, a coalition could describe Canadarm2 nearing collision with the virtual world 
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astronaut can only see the arm through a "steady climb" camera installed on the 

station and on the Canadarm2. Furthermore, the astronaut must choose among 

these cameras because there are only three screens. 

Sy~ 

SR 
~ 

Figure 3.6 Robotic arm installed on the International Space Station 

Figure 3.7.A, shows an astronaut manipulating Canadarm2 and the three screens of 

Canadarm's workstation aboard the ISS. 

Thus, during Canadarm2 manipulation, astronauts must avoid moving it in a way that 

might block it or produce a collision with ISS. Beyond the main task of manipulation 

comes selecting the right cameras. In addition to choosing the best views, the 

astronaut must continuously readjust the cameras while moving Canadarm2 from 

one configuration to another. Our laboratory, in co-operation with the Canadian 

space agency, developed an Intelligent Training Robotic Simulator which uses an 

Innovative Path-Planner (Nkambou et al., 2006). It is called CanadarmTutor (Figure 

3.7.B). 

13 Source : http://www.nasa.gov/mission_pages/station/structure/elements/mss.html 
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Figure 3.7	 A) Chiao handling the Canadian Arm (Courtesy of NASA); B) The 
CanadarmTutor user interface (Nkambou et al., 2006) 

It assists astronauts in self-Iearning without human supervision. 

CanadarmTutor is capable of indicating the distance between Canadarm2 and ISS, 

dangerous zones, obstacles, etc., to astronauts. It also makes it possible for the user 

to test Canadarm2 in a virtual world and to complete exercises assigned by the tutor. 

It is also capable of finding a path from a given situation permitting to move 

Canadarm2 to the assigned destination. Astronauts are therefore provided with 

various contexts in which they can manipulate Canadarm2 (Figure 3.7.B). crs was 

integrated to CanadarmTutor to allow it to more efficiently analyze astronauts' 

behaviour. For instance, it is now capable of finding the cause of astronauts' 

problems, adapting to them, proposing better dialogue for communications, etc 

(Dubois, 2007). Thus, the learners' manipulations of the virtual world simulator, 

simulating Canadarm2, constitute the interactions between them and crs. In 

particular, the virtual world simulator sends ail manipulation data to crs, which, in 

turn, sends learners advice to improve their performance. ro do this, crs uses the 

three panes of a consciousness viewer (Figure 4.5) Figure 3.8 : 1) Last Message: 

Perceptual information received from the simulator; 2) Current Scene: Working 

Memory (or scene,as in Baars' metaphor) in which ail interpreted data from the 
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simulator and from other sources are temporarily written; 3) Broadcasted: Ali 

relevant information (codelets) brought into Consciousness and broadcasted to ail 

entities in the system; 

Perceptual Information comes from the Working Memory 
virtual Or Scene (Baars' theory) 
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CTS' original architecture was not equipped with emotions and learning 

mechanisms. Some learning mechanisms such as learning of environmental 

regularities (both implicit and explicit) and implicit procedural learning have been 

implemented by Faghihi (2007) in CTS. In this study, we propose CELTS, the new 

version of CTS, by explaining how emotions and three types of learning mechanisms 

(emotional learning, episodic learning and causallearning) can be integrated into it. 
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3.2.6 Comparison between different Architectures' learning capabilities 

At this point, we compare CTS' learning capabilities (its version of 2007) with 

three popular architectures explained briefly in this chapter. The comparison ignores 

the Emotion, Episodic and Causal learning mechanisms proposed and implemented 

in this study. CTS' architecture is unlike to ACT-R's architecture as it is not a unified 

theory of cognition as postulated by Newell (Newell, 1990). Its modules are 

implemented in a distributed manner by means of different mechanisms such as 

pandemonium theory, behaviour network. While CTS' integrates a symbolic and 

connectionist approaches, ACT-R integrates production rules. 

ln CTS, unconscious codelets perform similar to the bottom-Ievel of CLARION; 

and global workspace could be considered as its top-Ievel module which 

"synthesizes" bottom-Ievel modules. CLARION is not as useful as Baars as far as 

internai uniformity is concerned, but its architecture has partial functionality in the 

emersion of consciousness. 

CTS' architecture permits learning in both an explicit and implicit fashion. Both 

explicit and implicit procedural learning are implemented in the architecture. As 

opposed to LI DA, no episodic and perceptual learning were implemented in CTS' 

2007 version. However, while implicit procedural learning is implemented in CTS, it 

is not implemented in L1DA's architecture (Faghihi et al., 2007). 

CTS' explicit learning is similar to ACT-R's in which codelets are learned when 

they are fetched for the first time from declarative memory. However, there is no 

codelets combination in CTS' BN, as for explicit learning, for the rules in ACT-R. 

CTS' implicit learning of declarative memory content is similar to ACT-R in which 

codelets' base-Ievel energies increase or decreases when they cali to WM and 

spend time together. Implicit learning of procedural learning in CTS is also similar to 

ACT-R's in which for a given problem, after each execution, the behaviour receives 

success or failure and positive or negative energies, thus making their probability of 

being fired in the future increase or decrease. Implicit learning in CTS' BN occurs for 



56 

the behaviour's base-Ievel energies and the links among them (Figure 3.5) (Faghihi 

et al., 2007). 

CLARION's explicit learning mechanism is similar to CTS's in which it learns 

symbolic representation- code lets in CTS and meaningful symbols in CLARION. 

CLARION' reinforcement learning is similar to CTS's implicit learning in which BN's 

behaviour, after each execution, receives success or failure and positive or negative 

energies. However, CTS is not equipped with the supervised learning implemented 

in the CLARION' bottom-Ievel in which it uses back-propagation algorithms to 

capture implicit knowledge (Sun and zhang, 2004). 

It is worth noting that while ACT-R is not capable of bottom-up learning for explicit 

knowledge, this learning is implemented in a supervised fashion in CLARION (Sun 

and zhang, 2004, Hélie, 2007). Bottom-up learning is implemented for ail three types 

of learning such as episodic, perceptual and procedural in LI DA' architecture (Duch 

et al., 2008). CTS' procedural learning and the learning of regularities are also 

implemented as bottom-up learning (Faghihi et al., 2007). 

L1DA ACT-R CLARION CTS 
(Franklin, 2006) (Anderson, 1983) (Sun, 2006) (Dubois, 2006) 

Explicit Perceptual Learning X - X -

Episodic Learning X X - -

Explicit Procedural Learning X X X X 

Implicit Procedural Learning - X X X 

Emotional Learning - - - -

Bottom-up Supervised 
Learning X - X -

Supervised Causal Learning - X -

Table 3.1 Companson between LI DA, ACT-R, CLARION and CTS (- =the architecture is 
not equipped with this specifie learning; X = the learning mechanism is implemented) 

COGNITIVE ARCHITECTURES AND EMOTIONAL MODELS 

Due to the important role emotions play in cognition, cognitive modellers have 

sought to include emotional mechanisms in their agents' cognitive architecture. 

3.3 
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However, while psychological theories propose an abstract approach to the study of 

emotions, the computational models propose a pragmatic framework to it. Thus, the 

implementation of emotions in a computational fashion impacts psychological 

theories by revealing their limits and hidden hypotheses (Steunebrink et al., 2009, 

Marsella et al., ln press). 

Various models have been proposed up to now. While some computer 

scientists are interested in using emotion to make their agents more believable, 

others work on the functional aspects of emotions and their influences on the agents' 

behaviour, learning and social aspects (Adam, 2007). The first group is not covered 

in this study. For more details, readers are addressed to Adam' thesis (Adam, 2007). 

The second group implement an Emotional mechanism in their agent using a 

'Centra/ists' approach such as Gratch and Marsella (2004), Velasquez (Velasquez, 

1996, Velasquez, 1997) and Franklin (2006). They are very briefly explained in what 

follows. 

1)	 Gratch and Marsella's model: Gratch and Marsella (2004) proposed 

Emotion and Adaptation (EMA), a plan-based computational model of 

emotion based on the appraisal theory of Lazarus (Lazarus, 1991). Plans 

are built according to their probability or utilities. Causal interpretation is the 

key concept in EMA' architecture to find the causal relationship between 

agent emotional states and corresponding events to judge their relevance 

given the agent's goal. Three important elements in causal Interpretation 

are the past causal history, the actual situation of the environment and 

agent, and the future. The appraisal process task is to map causal 

interpretations to appraisal variables which cause one or more emotions to 

be set off by the system. From fired emotions, the most intense will permit 

coping processes to find a remedy to the current problem. EMA is 

equipped with different coping strategies such as denial, shift blame, 

acceptance, etc. To be capable of predicting the outcome of executed 

actions and making appropriate causal relationships, the authors put stress 

on the explicit representation of the agents' intention and belief. Thus, a 
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coping strategy may influence causal interpretation by altering EMA's 

current intention, utility or probability values (Mao and Gratch, 2006, 

Marsella et al., ln press, Adam, 2007). 

Although researchers in psychology postulate the direct link between 

appraisal and coping, it is ignored in this model (Adam, 2007). The model does not 

integrate cognitive neuroscience evidence for the short and long routes of emotion, 

as explained by LeDoux and Cannon (LeDoux, 2000, Cannon, 1927). In fact, ail 

human behaviour is not the production of causal interpretation processes (reflexes 

are good exceptions). The second problem is that the model uses probability 

approaches to find relationship between different components of the model. 

Probability approaches are accompanied by the risk of combinatory explosion in the 

case of huge amounts of data. The model also turns out to be too expensive to apply 

to large populations of real-time agents such as combatant agent (Parunak et al., 

2006). 

2)	 Velâsquez's emotional model (Velasquez, 1996, Velasquez, 1997): the 

Cathexis architecture describes and integrates psychological and biological 

aspects of human's emotions in detail. Proto-specialists (subagents) 

control the six basic emotions such as anger, fear, distress/sadness, 

enjoyment/happiness, disgust and surprise. Each emotion has an 

activation threshold, saturation (maximal value for emotion) and a decay 

function (duration of emotion). Proto-specialists perform in parallel and 

continuously update their parameters. According to the current situation 

and/or previous emotional states, proto-specialists may set off a particular 

emotion or may send inhibitory or excitatory energy toward others. The 

temperament of the agent is decided upon the emotion's activation and 

saturation values. Moods are distinguished by being more resilient and 

having lower activation comparing to emotions. In this architecture, internai 

and external sensors and proto-specialists can alter agent's emotional 

states. Changes in the agent's emotional states occurs in both cognitive 
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and non-cognitive fashion such as cognitive (e.g. appraisal), motivations 

(e.g. hunger), sensory motor stimuli (e.g. body posture), and neural 

activities (e.g. neurotransmitters). The expression of behaviour occurs by 

action selection. This occurs by choosing the most energetic behaviour 

through a network of behaviours that are in competition. Generally, the 

model attempts to simulate the real process of emotions as defined in 

humans. Finally, the model proposes only a simple model of behaviour. 

However, there is no standard measurement proposed by authors to decide 

how precise the proposed model is comparing to human's emotional activities. 

ln addition, the model ignores explanations of how the emotional memory 

influences learning and behaviour in the architecture. For instance, for a given 

situation, how do emotions influence the consolidation and remembering 

phase of episodic memory? 

L1DA (Franklin and Ramamurthy, 2006): Franklin, in his cognitive agent, also 

attempted to design emotions. The influence of emotions in L1DA's architecture can 

be seen in different part of the system and through its cognitive cycles, but the 

consciousness mechanism is the necessary intermediate in ail of these 

interventions. Emotions intervene endlessly through the loop of perception­

deliberation-action selection. However, the paper does not detail how emotions help 

different types of learning in the agent. Furthermore, L1DA's architecture ignores the 

implicit emotional reactions in its cognitive cycles, which are documented in both 

neurobiology and psychology studies of the human brain (Squire and Kandel, 2000, 

Purves et aL, 2008). 

3.3.1 Conclusion 

Until now the means of implement of emotions in cognitive agents have made 

peripheral-central learning impossible (James, 1884, Cannon, 1927). To best 

resemble humans, cognitive agents' emotions should be capable of influencing the 
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different types of learning and decision-making. However, as it was mentioned 

previously, various types of learning are functionally incompatible (Sherry and 

Schacter, 1987). Thus, in order to implement emotions and learning mechanisms in 

cognitive agents, one important task is to define how they collaborate with each 

other. The collaboration between these mechanisms must be defined as a set of 

cornplementary rules. Furthermore, we suggest that emotions and learning 

mechanisms should be implemented in a modular and distributed fashion. Although 

ACT-R, CLARION and L1DA used the concept of emotions in their architectures, 

none proved capable of improving learning mechanisms. However, in some of them, 

emotions do influence decision-making. Our proposed model, conversely, allows for 

both the peripheral-central and the Centralists model to produce emotional reactions 

and learning. In the following chapter, we propose the implementation of an 

emotional mechanism for cognitive architectures. In our model, emotions not only 

influence different types of learning, decision-making and behaviour in CELTS, but 

also permit that agents be brought to a self-satisfaction state. 



CHAPTER IV 

IMPLEMENTATION OF EMOTIONS AND EMOTIONAL 
LEARNING MECHANISMS IN CELTS 

ln this chapter, we explain how to best insert an Emotional Mechanism (EM), 

and Emotional learning in an artificial agent's cognitive architecture, based on 

evidence fram cognitive neuroscience and with respect to the several theories of 

emotions presented in Chapter II. We also detail how EM influences different 

modules in CELT5, implicitly or explicitly. The influence of EM in Episodic and 

Causal learning will be detailed in the next chapters. It is worth noting that, so far, no 

specifie feature has been found that cou Id allow cognitive architectures to have 

something similar to human feelings. Thus, our discussion of the implementation of 

emotions in cognitive architectures covers only emotions in their functional context. It 

must also be noted that the emotions of cognitive agents need not ail be similar to 

those of humans. Our work on emotion is based on the OCC model and the work of 

Ledoux (LeDoux, 2000) on fear conditioning and the amygdala, which extends 

current models by defining emotional learning as a parameter that helps different 

types learning (e.g. Episodic Learning) and helps differentiating a variety of 

emotions. Emotionallearning is here taken to be CELT5' memorization of valenced 14 

reactions to given emotionai situations (stimuli) as described in the OCC model 

(Ortony et al., 1988). 

14 Emotional valences are between -1 and +1 
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4.1 CELT5' Emotional Architecture 

ln this section, we propose our generic computational model of emotion which 

explains in details how the "peripheral-central" (LeDoux, 2000, Cannon, 1927) model 

is implemented in CELT8. As explained by Phelps (2006), emotions influence 

attention, and vice-versa. Accordingly, in CELT8' cognitive cycles, when the percept 

enters WM as a single network of codelets, the emotional codelets inspect each 

coalition's informational content, and infuse it with a level of activation proportional to 

its emotional valence. This increases the likeliness that some coalition draws 

attention (AM) to itself. This emotional intervention on the coalitions in WM is how 

CELT8' Emotional Mechanism (EM) (which we cali "pseudo-amygdala") gets 

involved in CELT8' long route (ELR rectangles in Figure 4.1). Attention influences 

the EM by providing information about the environment regarding the discrepancy 

between what was expected and what effectively occurred. This may alter the future 

valence assigned by EM to situations in the environment, as weil as the importance 

EM gives to a situation. In our model, after each interaction with the environment, 

CELT8' EM updates its information (especially in dangerous situations) about its 

surrounding environment for future situations. Thus, the importance of any given 

situation may increase or decrease in CELT8' next encounters with it. 

Before explaining our model in detail, we first explain the typical situation 

experienced by astronauts, in a virtual world. For instance, when an astronaut 

manipulates Canadarm2 in the virtual world, information coming from the simulator 

may describe an imminent collision. A collision is very dangerous on the 188 and the 

tutor must immobllize the arm. Once it has done so, CELT8 interprets more 

attentively the information received from the virtual world. It must recognize which 

movements will not cause collisions. CELT8 then gives feedback to the user such as 

a hint. The first reaction taken by CELT8 will then be adjusted for future interactions 

with any astronaut. 
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CELTS can make two reactions when faced with a dangerous situation. We 

now explain how the information, coming from CELTS' perceptual Mechanism, flows 

along the short and long route (ESR and ELR in Figure 4.1). 

The first step here is the Short route. The short route (see ESR rectangles in 

Figure 4.1) starts with perception just like the long route (see ELR rectangles in 

Figure 4.1). The perception code lets connect in parallel both to CELTS' Behaviour 

Networ,k (BN) and to its emotional codelets. The activation sent directly by 

perception codelets to emotional code lets is the first stage of the short route. The 

Emotional IVlechanism (EM) establishes the positive or negative emotional valance of 

the event for the system. The valence assigned to the event may result from 

evolution (an innate valence accorded to evolutionanly important situations) or from 

learning. 

Thus in CELTS, some emotional code lets might correspond to innate 

(designed) sensitivities (e.g., to excessive speed for Canadarm2, or to an imminent 

collision); other emotional codelets may have learnt the valence of situations from 

experience. Either way, emotional codelets possess direct connections to behaviour 

nodes in the BN, to which they send positive or negative activations. Some of these 

emotional codelets react more strongly than others and so send out stronger valence 

activations to the behaviour nodes. If the valence activations exceed a behaviour 

node's firing threshold, then the corresponding action will fire automatically. This 

emotional intervention reflects a direct route between the amygdala and bodily 

responses, influencing action selection. This corresponds to James' theory (James, 

1884) that explains why a bodily reaction generates an emotional feeling, if an 

important stimulus directly causes the bodily reaction. 

Whichever route was responsible, short or long, the firing of a behaviour node 

generates one or more Expectation codelets, which are a type of Attention codelets 

in CELTS. These codelets are processes that watch for the arrivai in WM of a given 

piece of information, expecting to see, within a given time frame, some specific 

result(s) for the action taken by CELTS. The expectation code lets have a double 
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dutY in CELTS. First, they serve as "environmental reinforcers" to the Action 

Selection Mechanism in the BN. 
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Figure 4.1 CELT8' Architecture with Emotion and Learning Mechanisms 

If they see information coming in WM that confirms the Behaviour's expected 

result, they directly send reinforcement activation to the behaviour nodes that 

created them (that is, they do not do so through conscious broadcasting). This 

behaviour will thus see its base-Ievel activation heightened, making it a more likely 

choice in a similar context. In the case of a failure to meet expected results, 

however, relevant resources need to be recruited, to allow them to analyze the 

cause of the failure, to correct the previous emotional interpretation of the situation, 
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and to allow deliberation to take place concerning supplementary and/or alternative 

actions. The expectation codelets then work to have discrepancies brought to the 

attention of the whole system (in an eventual conscious broadcast of the noted 

discrepancy) by sending the information to the CELT8' WM. After sending the 

information to WM, CELT8 continues through its cognitive cycles (see next section, 

step two to eight of the cognitive cycle) to allow for improved decisions. 

The expectation codelets' second dutY concerns our "pseudo-amygdala" (the 

Emotional Mechanism), in cases where it forced an automatic reaction through the 

short route (e.g., the imminent collision in the virtual world). Indeed, when low-Ievel 

basic information coming from the perception code lets recognize aspects of the 

situation as highly dangerous, there is no time to think and, through the mechanism 

described above, the emotional code lets will force an action to fire in the Behaviour 

Network. This makes CELT8 jump before thinking (James, 1884) (E8R's path, red­

dotted rectangles and blue arrows which demonstrate primitive appraisal in Figure 

4.1). That is, it makes CELT8 act before it had time to become "conscious" of the 

situation and consciously plan a course of action. This corresponds to the first 

reaction taken by CELT8 in our aforementioned example about imminent collisions 

in the virtual world. 

However, the instantaneous, mindless reflex must be evaluated following the 

more thorough analysis of the situation that comes later, through the long route. 

CELT8 can do this because both the short and long routes process the information 

in parallel. In fact, instinctive reactions execute faster. Eventually, however, a 

conscious broadcast of information (step 5 of CELT8' cognitive cycle), which gives 

CELT8 a better idea of the situation, allows normal action selection to take place. 

When the action thereby proposed comes into WM (step 2 of the cognitive cycle), 

the expectation codelets compare it to the reflex action that has been prompted. If 

roughly in correspondence, they put into WM a confirmation to the effect that the 

initial reaction was right, which will serve, when broadcast, as a reinforcer to the 

emotional codelet(s) that were instrumental in setting off the reflex. In effect, this will 

make our pseudo-amygdala reinforce the relevant rules and nodes. However, when 
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the initial reaction diverges from the behaviour proposed by the more detailed 

analysis, the pseudo-amygdala has ta alter its first reaction. This corresponds ta step 

two in our example about imminent collisions. From a neurological point of view, 

control over actions is the role of cortical areas. In CELTS, the expectation codelet 

that determined that the action taken by the short route was inappropriate subtracts 

some activation (this process is explained in the section 4.1) from the code lets in the 

Emotional lV1echanism responsible for the direct implicit reaction. Activation will also 

be subtracted ta the corresponding nodes in the BN that executed the action. 

This way of implementing the control, as we will see below, seems in 

accordance with the fact that the amygdala never unlearns a "rule," especially for 

very dangerous stimuli, and always reacts ta a given stimulus (Squire and Kandel, 

2000, Rails, 2000). This description highlights the fact that CELTS' Emotional 

Mechanism, which responds implicitly ta events, reacts faster than the conscious 

process, but may react in ways that are different from what conscious planning 

would decide. Emotional codelets receive reinforcements from the environment (via 

expectation code lets) and can learn or, as we will explain in the next section, create 

new nodes for the actions they took. In the next section, we explain how the 

Emotional Mechanism influences CELTS cognitive cycle. 

4.1.1 Impact of Emotions in CELTS' Cognitive Cycle 

The emotional long route involves the consciousness mechanism. Emotions 

influence this mechanism at every step in the cognitive cycle. We briefly recall each 

step in the cycle and then, in italics, explain how the valence attributed ta situations 

by CELTS' Emotional Mechanism influences il. For a visual representation of the 

described process, please refer ta Figure 4.1. 

Step 1: The first stage of the cognitive cycle is to perceive the 

environment; that is, to recognize and interpret the stimulus (see (Dubois et 

al., 2007) for more information). 
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Ali incoming information is evaluated by the Emotional Mechanism when low-Ievel 

features recognized by the perceptual mechanism are relayed to the emotional 

codelets, which in turn feed activation to nodes in the Behaviour Network. Strong 

reactions from the "pseudo-amygdala" may cause an immediate reflex reaction in 

CEL TS (Squire and Kandel, 2000, Purves et al., 2008). 

Step 2: The percept enters Working Memory (WM): The percept is 

brought into WM as a network of information codelets that covers the many 

aspects of the situation (see (Dubois et al., 2007) for more information). 

ln this step, if the received information is considered important or dangerous by the 

Emotional Mechanism (EM), there will be a direct reaction from EM which primes an 

automatic behaviour from BN (RolIs, 2000, Squire and Kandel, 2000, Purves et al., 

2008). 

Step 3: Memories are probed and other unconscious resources 

contribute: Ali these resources react to the last few consciousness broadcasts 

(internai processing may take more than one single cognitive cycle). 

What is brought back from episodic memory is evaluated by the emotional codelets 

(ELR Figure 4.1) and receives its emotionalload anew. 

Step 4: Coalitions assemble: ln the reasoning phase, coalitions of 

information are formed or enriched. Attention codelets join specifie coalitions 

and help them compete with other coalitions toward entering 

"consciousness". 

Emotional codelets observe WM's content, trying to detect and instil energy to 

codelets that, they "believe," require it, and attach a corresponding emotional 

valence. As a result, emotions influence which information comes to consciousness, 

and modulate what will be explicit/y memorized. 

Step 5: The selected coalition is broadcast: The Attention mechanism 

spots the most energetic coalition in WM and submits it to the "access 

consciousness," which broadcasts it to the whole system. With this broadcast, 

any subsystem (appropriate module or team of codelets) that recognizes the 

information may react to it. 
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Steps 6 and 7: Here unconscious behavioural resources (action 

selection) are recruited. Among the modules that react to broadcasts is the 

Behaviour Network (BN). BN plans actions and, by an emergent selection 

process, decides upon the most appropriate act to adopt. The selected 

Behaviour then sends away the behaviour codelets linked to it. 

ln this step, the emotion codelets stimulate nodes in the BN, preparing it to react, 

priming certain behaviour streams, and thereby increasing the likeliness of their 

firing. This mostly mimics priming effects. The emotional valence (positive or 

negative) attached to the published coalition will influence how resources react. 

When the BN starts a deliberation for action, for instance to build a plan, the plan is 

emotionally evaluated as it is built, the emotional codelets playing a role in the 

selection of the steps in the plan. If the looping (through the cognitive cycle) 

concerns the evaluation of a hypothesis, the emotional codelets give it an emotional 

evaluation, perhaps from learned lessons from past experiences. 

Step 8: Action execution: Motor codelets stimulate the appropriate 

muscles or internai processes. 

Emotions influence the execution, for instance in the speed and the amplitude of the 

movements. 

4.1.2 How CELTS' Emotional Mechanism Learn 

After having proposed an Emotional Architecture for CELTS in the previous 

section, we explain here how emotional implicit and explicit learning are 

implemented in CELTS' architecture. In CELTS' cognitive cycles, stimuli from the 

virtual world simultaneously go to WM and EM. The latter detects events of 

emotional importance. Our implementation of implicit emotional learning is inspired 

by the views of Drew Westen (Westen, 1999) and those of Larry Squire and Eric 

Kandel (2000), while that of explicit emotional learning is inspired by Cannon's 

theory (Cannon, 1927). 
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Implicit emotionallearning occurs when EM's nodes reaction intensity (EIS, Eq. 

1) or the strength of its connections to nodes in WM or BN is modified. In the implicit 

emotional learning phase, the influence of emotional codelets (either those 

temporary resident in WM or those situated in EM and listening to the received 

information) thraugh their base level activation indirectly affects the creation of 

coalitions and their selection (step 5) by the Attention Mechanism (steps 3 and 4 of 

cognitive cycle). Thus, the Emotional Learning Mechanism (ELlV1) , in its implicit 

learning phase, learns (see below) which coalition in WM received emotional energy 

fram EM. This occurs when emotional codelets resident in WM try to detect which 

coalition, according to the agent's goal, is emotionally more important than others 

and then by attaching themselves to those coalitions, which thereby instils a portion 

of its energy to il. This may increase the likeliness of those emotionally selected 

coalition to draw Attention (i.e., AM) upon itself in the upcoming cognitive cycles. 

Moreover, ELM learns (see below) that it must send energy to these emotional 

code lets in WM to prolong the coalition's lifetime in WM and to help them be selected 

by AM. This is due to the fact that codelets with no energy will exit WM. Thus, in this 

way, the emotional codelets detected as emotionally important by EM will remain 

active in WM to attach themselves to coalitions. This emotionally learned information 

will never be forgotten by the system (Westen, 1999, Squire and Kandel, 2000) 

Explicit emotional learning occurs following the braadcasting of information 

(step 5 of cognitive cycle) in the system. In the explicit emotional learning phase, if 

for a given situation, the information coming to WM that was considered as very 

important by perceptual nodes (Step4 of cognitive cycle), EM detects no emotionally 

important information, it will create a new, empty node with a context which 

describes ongoing events. To fill out the action part of the new node, EM will wait for 

the consciously-mediated selection of a behaviour and the ensuing broadcasting of 

the event with external confirmation after the execution of the action by CELTS. If the 

selected action fram BN received a strang (positive or negative) reinforcement fram 

the enviranment, EM learns the broadcasted information instantaneously, that is, in 

less than a second (note that CELTS pracesses information thraugh cognitive 

cycles, which happen five times per second (Franklin and Patterson, 2006)). At this 
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point, EM has associated the context of the new node with the action selected and 

executed by CELTS. Information brought to consciousness right after the action took 

place becomes the result part of the created node. 

Each new node in EM includes a context, an action, a result, a cause, a base­

level activation and a reaction intensity. Learning in each node happens very fast 

(especially in the case of fears) by strengthening the node's activation according to a 

sigmoid function. To simulate EM's codelets behaviour, we input three parameters 

into a sigmoid function (Eq.1): (1) OJ ,the codelet's base-Ievel activation; (2) f3 , 

the learning rate; (3) A ,controls the emotion activation, which means that if intensity 

goes beyond this threshold, the corresponding codelet in EM will release its output 

(positive or negative energy) into the system. The sigmoid function is used in order 

to map the three parameters unto a 0 to 1 range and allow each codelet to react, 

giving CELTS the ability to implicitly and explicitly act on the situation. 

The emotional codelet's reaction intensity corresponding to the stimuli at the time t is 

calculated by: 

1 
EIS = 1 (-EIS'_I*P*).*W)*Ô/*C (Eq. 1)+e 

E1SI-! is the value of intensity for emotion at the previous step 

..t threshold for emotional activation release 

W base-Ievel activation 
jJ a constant in [0,1] for learning purposes 

C the number of cognitive cycles 
Lit actual time minus the last time the program was executed 

Implicit emotional learning in EM occurs through this update of the node's 

reaction intensity (EIS). Recall again that this fast emotional learning can bring a 

direct reaction (before information is broadcasted) as when fear or a very high 

emotiona! level makes an agent react instantaneously. This type of learning helps 

CELTS learn to react faster to the next similar or identical situation. However, if 

CELTS was disposed to react very strongly, but it turns out that the agent should not 

have reacted that strongly, it can modify its reaction intensity for the next occurrence, 
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once again according to the sigmoid function. To do this, the Emotional Mechanism 

creates one emotional codelet (named ai, as in the pseudo-amygdala) for each very 

important stimulus Si calling for an emotional response, with a connection weight Wi 

between them. The output of each emotional codelet is primanly obtained by the 

following equation: 

(Eq. 2) 

Usually, CELTS recognizes a situation instantaneously and will react in an 

appropriate time frame. However, sometimes, CELTS may need more time to deal 

with the situation. Maybe it has no behaviour ready to offer a reaction; maybe it 

entered a deliberation to establish a probable cause, or to decide what to do. But as 

the number of cognitive cycles (C) increases without resolution, the emotional 

salience of the stimulus increases (as when we get more nervous waiting for a 

solution with each passing moment). Emotional codelets thus increase their output 

until they receive a signal from expectation codelets telling them whether they 

reacted appropriately, or until they set-off a reflex action. However, an emotional 

codelet may connect or react to some different perceptual nodes each sending its 

activation (aipC) to the emotional codelet. We may then calculate the emotional 

codelet's energy as the sum of ail perceptual inputs to it according to Eq.3. An 

emotional codelet's energy is thus: 

(Eq.3) 

If, however, EM learned some particular events as being ofhighest emotional 

importance, it will cause a direct (and intense) reaction for the next similar event. It 

may turn out, however, that following the execution of the action, CELTS determines, 

through its cognitive cycles, that such events are not emotionally important (or not 

that important). This occurs for instance when CELTS observes a collision-risk 

situation brought about by the astronaut in the virtual-world and reacts directly and 

too intensively. After some time, it understands that the reaction was wrong or too 
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strong. If that situation repeats many times, then the emotional salience of that 

situation for reaction will be diminished. In this case, EM might re-adjust Wi to 

diminish the importance of the stimulus toward a response. If it happens many times, 

EM will end up c1assifying the stimulus as neutral information, giving it a neutral 

valence. The opposite situation may happen when information enters WM and is 

considered normal (neutral) by EM, but it turns out that after a conscious 

broadcasting followed by an action, CELT8 receives strong reinforcement feedback 

(positive or negative). At this point, the system again may readjust Wj for the 

corresponding nodes. Learning in this second sense (Wj adjustment) can happen by 

calculating the difference between the reinforcer (R) and the activation (ai) of the 

emotional codelet: 

(Eq.4) 

The R represents the astronaut's good or bad manipulation of Canadarm2 or 

the correct or false answers to the questions given by CELT8. The f3 parameter is 

used as a standard learning rate parameter, settable between 0 (no learning) and 1. 

However, the emotion present in CELT8 will decay by losing a fixed portion of 

energy if the actual emotion receives little attention in the following cognitive cycles. 

This "peripheral-central" model of emotional learning implemented in CELT8 is what 

ail other models failed to propose. 

4.1.3 How CELTS' Emotional Mechanism helps other types of Learning 

CELT8 has both implicit and explicit learning. CELT8' learning mechanisms 

are implemented in a distributed and modular manner with emotions influencing ail of 

them. They are Emotional learning, learning of regularities (Faghihi et al., 2007), 

Procedural learning (Faghihi et al., 2007), Episodic learning and Causal learning. 

The implicit learning is unconscious and independent of the Attentional Mechanism 

(AM). It occurs in the the Emotional Mechanism (EM), the Working Memory (WM) 

and the Behaviour Network (BN), whereas explicit learning occurs in different 
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learning modules after information is braadcasted by the access consciousness 

(step 5 of cognitive cycle). In this part of our document, we briefly detail how 

emotions influence implicit and explicit learning in CELTS. More precisely, we focus 

on the influence of emotions in the learning of regularities and in procedural learning. 

This will be discussed in the context of Episodic and Casual learning in the following 

chapters. 

4.1.4	 Implicit influence of emotions in the learning of regularities in WM 
and BN 

When the emotional valence attributed to an encountered situation is weak15, 

its influence in the learning of regularities will be implicit. It will not be sufficient to 

trigger code let firing in the BN or to take WM coalitions to consciousness. 

When virtuai world information is sent to CELTS, it eventually reaches WM 

(step 2 of cognitive cycle). Both implicit and explicit learning processes start at this 

point in parallel. Implicit learning of regularities in WM essentially comes fram the 

reinforcement of the links between codelets based on the time they spend together 

in a coalition. Following Baars (Baars, 1997), this occurs when associations between 

codelets and their base level activation indirectly affect the creation of coalitions and 

may, in the following cognitive cycles, cause the Attention Mechanism (AM) to select 

them (steps 3, 4 and 5 of cognitive cycle) (e.g., the retrieval and selection of the 

information). EM, among others, influences WM's content by detecting and instilling 

a portion of energy (positive or negative, which is described as EAi in Equation 5) to a 

particular coalition. This may increase the likeliness that the emotionally selected 

coalitions draw Attention (i.e., AM) upon themselves in subsequent cognitive cycles. 

The emotional influence in WM's content is simulated with Equation 5. The weights 

of the links between codelets in a coalition are adjusted in accordance with the 

learning parameters and the energy received from EM. It must be noted that 

Equation 5 is used to simulate the influence of EM in CELTS' WM content (see 

15 Thresholds are approximately < 0.5 for positive cases and >-0.5 for negative cases. 
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(Faghihi et aL, 2007) for more information) whereas Equation 1 in the previous 

subsection is used to simulate EM's behaviour nodes situated in EM. 

More precisely, CELTS' implicit learning of regularities in WM establishes 

which codelets already have connections with others, which are selected by the 

Emotional Mechanism (EM) and which have received supplementary energies. It 

then creates new links or reinforces the existing ones between the codelets within a 

coalition in WM. This can increase the likelihood that certain coalitions are chosen by 

AM in future cognitive cycles. 

1 
Strength = (_ *EA" d) C (Eq. 5)1+e SX 1+ .t. 

Where: 

-x: association strength between two codelets 

-s: rate of increase of base-Ievel activation (for the links 

between codelets) 

-d: threshold value for conversion into a coalition 

-C: the number of cognitive cycles since the creation of the 

link. 

-t: mean time for two code lets passed together in WM. 

CELTS' implicit procedural learning takes place in the SN - for both links 

between nodes and the base-Ievel energy of each node (Faghihi et aL, 2007). When 

energy passes through the link between two behaviour components in the SN, it will 

strengthen. Transferring more energy between the links in the SN also increases the 

accumulation of the node's base-Ievel energies, which alter the nodes' reaction 

intensities in subsequent cognitive cycles. The re-execution of the behaviour items 

having had received emotional energy increases the strength of their links and 

speeds up their execution time in the future. Thus, this type of learning accelerates 

planning and behaviour sequence execution (Faghihi et aL, 2007). CELTS' implicit 
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procedural learning detects behaviour codelets that were selected by the Emotional 

Mechanism (EM) and have received supplementary energy in the BN Figure 4.1, red 

plain arrows). It must be noted that in our model, emotion does not suddenly appear 

and disappear. The energy from EM is instilled in a constant manner for the 

subsequent cognitive cycles if the same stimulus comes to the WM. Depending on 

the received information and emotional primary evolution of the situation (such as 

collision=high-threat or, collision-risk=medium-threat, camera-adjustment=low 

threat), EI\/I produces a valence reaction. 

The instilling of Emotional energies also remains constant during the learning 

phase. Thus, depending on the received energies from the emotional mechanism, 

CELT8 can learn faster or may learn normally (Faghihi et aL, 2007).These emotional 

interventions, which allow concepts to be selected faster by the Attention Mechanism 

for broadcasting by the Access consciousness (8tep5 of cognitive cycle), also allow 

the various aforementioned CELT8' Learning mechanisms to learn at a faster pace. 

4.1.5	 Explicit influence of emotions in the learning of regularities in WM 
and BN 

The explicit influence of emotions in the learning of regularities in WM and BN 

is related to the energy that is instilled from EM to the nodes. This energy alters their 

base-Ievel energies and is enough to directly fire them in the BN or bring coalitions 

from the WM to consciousness. 

Explicit learning in WM occurs when AM makes a collection of codelets into a 

coalition that is broadcasted. This occurs in various forms and locations in CELT8, 

for instance in the learning of regularities, Episodic learning and Causallearning (see 

the following chapters). The explicit learning of regularities implemented in CELT8 

rests on a bottom-up theory for data categorisation inspired by Hebbian learning and 

Jackson's Pandemonium theory (Jackson, 1987). If the reappearance of a coalition 

occurs frequently in WM, the coalition is likely to be relevant for CELT8 (this, we 

refer to as a "regularity phenomenon", see (Faghihi et aL, 2007). Thus, it is likely that 

these coalitions eventually reach a permanent coalition status to represent this 
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regularity (for example, Canadarm2 rotation that indicates repetitive reversais of 

motion show a user's difficulty with a manoeuvre). The influence of emotional 

learning in this stage lies in its direct intervention in WM. In effect, it directly instils 

positive or negative valences to specifie coalitions thus causing AM to immediately 

select them and consciousness to subsequently broadcast them. 

EM also influences SN by its direct intervention. In some dangerous cases, as 

aforementioned, EM intervenes directly by instantiating corresponding behaviours to 

solve a problem. 

4.2 EVALUATION AND RESULTS 

We compare the performance of CTS' original architecture with that of its new 

version, CELTS equipped with EM. How EM's explicit and implicit reactions alter SN 

energy levels will be detailed in the next chapter. 

Equipped with the Emotional Learning mechanism, CELTS is capable of better 

decision making and more accurate interventions than CTS. To validate CELTS' EM 

capacity when faced with dangerous situations, we integrated it into CanadarmTutor 

(Nkambou et al., 2006), our simulator designed to train astronauts to manipulate 

Canadaram2. CELTS' interpretation of a given situation is in part dependent on 

CanadarmTutors interpretation of the users' actions in the virtual world. 

CELTS' performance was tested in various situations such as collision risk, 

collision, good and bad manipulations of Canadarm2. We ran CELTS executions 

randomly and noted reaction times and the decisions made. We predicted that 

CELTS should be more adaptive th an CTS in any given situation. 

It should be noted that at this stage, we only discuss very dangerous and 

dangerous situations in which EM must intervene explicitly in WM and SN. 

Furthermore, we wish to examine the adaptiveness of CELTS' EM when faced with 

very dangerous situations. For other types of emotional interventions, such as while 

CELTS interacts with users to help them learn to manipulate Canadarm2 in the 
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virtual world, and also for how emotions can bring CELTS to a self-satisfaction state, 

readers are referred to the next chapter. 

Situation one: Collision risk 

To addressee this situation we executed CELTS with and without EM. Suppose that 

a user is asked to move Canadarm2 from configuration A to configuration B on ISS. 

CELTS must recognize which movements will not cause collisions. CELTS then 

gives the user feedback in the form of questions or hints. 

Execution without EM: 

ln this situation, suppose that the user has brought Canadarm2 too close to 

ISS. The simulator immediately informs CELTS (Figure 4.3) that there is an imminent 

risk of collision. The information is then selected by CELTS' attention mechanism 

and broadcast to the system. After deliberation from CELTS' BN, an act will be 

chosen and shown to the user (Figure 4.2). To react to this situation, CELTS uses 

the long route. No significant changes are made to the energy in the BN (see next 

chapter for more details). 
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Figure 4.2 Message whitout Emtoinal intervention 
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Execution with EM: 

Part one (situation 1.1): in this situation, suppose that the user has brought 

Canadarm2 too close to ISS. The simulator immediately informs CELTS (Figure 4.3) 

that there is a risk of an imminent collision, and that these collision risks are coded 

as very dangerous. As a result, EM's codelets react to the situation by instilling 

enough negative energy (equal to -0.9, a very negative valence) to the 

corresponding behaviour in the BN to make it fire. The BN reacts to the situation by 

prompting the message to the user: "Stop moving the arm. This is a very dangerous 

situation. Answer the following questions before moving on." (Figure 4.4). Because 

this situation is attributed a high emotional valence (high-threat situation), CELTS' 

short-route is activated. 
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Figure 4.3 CanadarmTutor demonstrating Collision 

ln parallel, CELTS' long-route also activates. As a result of the high emotional 

valence, the collision risk information received from the virtual world is more 
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attentively examined. CELTS then asks the user the following question: "Do you 

know what the distance is between Canadarm2 and ISS?" (Figure 4.2). If the user 

answers correctly, the emotional codelets' intensity decreases. The second question 

is "If you get c10ser to ISS, what will happen?" Again, if the user selects the correct 

answer, the emotional codelets' intensity converges to a positive value. This means 

that the user is an expert. Accordingly, the intensity of the emotional code lets that 

reacted to the collision risk must very rapidly, as demonstrated in Figure 4.5, reach a 

positive value. It must be noted that the cognitive cycles in Figure 4.5 represent the 

cognitive cycles in which the user responded to CELTS' prompts only. In Figure 4.5, 

the x and y axes indicate the cognitive cycles and the emotional code lets' intensity 

respectively. Remember that Emotional valences are between -1 and +1. 

l = 1 [§) l, ..S"2. ~I 
~ Help 

~ STOP r··,10VING THE ARM. THIS IS.A. \iERY DN.JGER 
OUS SITU.A.TIOf\J. ANSVVER THE FOLLO'NING QUE 
STIONS BEFORE MOVING ON 

Figure 4.4 Short route reaction to the user1 

On the contrary, if the user fails to answer, CELTS considers the user to be a 

beginner. The intensity of the emotional codelet that reacted to this event reaches -1, 

the highest negative value possible. At this stage, the user will be prompted not to 

perform any further movement and review the lesson. The emotional intensity will 

remain at -1 if the user does not stop manipulating the Canadarm2. If the user stops 

manipulating Canadarm2, the negative emotional intensity will reach zero after a 

number of additional cognitive cycles. 
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Emotionallntervention for Very Dangerous Situation 
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Figure 4.5 Emotionallntervention for very dangerous situation1 

Part two (situation 1.2): in this situation, suppose that the user is manipulating 

Canadarm2 weil. The emotional valence attributed to this user's Canadarm2 

manipulation will be zero (Figure 4.6, cycle zero). EM's states vary depending on the 

user's performance in the virtual world. It also depends on the user's correct/false 

answers to the CELT8' questions asked while manipulating Canadarm2. It must be 

noted that at this stage, the short route is not engaged for reaction yet, because the 

user has not yet faced any dangerous situation in the virtual world. Thus, at this 

stage, the long route is responsible for ail decisions made by CELT8. At some point, 

suppose the user does bring Canadarm2 too close to 188, thus now facing the risk of 

collision. This risk of collision information will be transmitted to WM. EM's codelets 

will become more active. Importantly, their base-Ievel activation may increase or 

decrease depending on the user's answers to CELT8 questions regarding the cause 

of the mistake. The greater the number of wrong answers, the further EM's codelets 

activate and the more negative the valences assigned to WM's content will be. After 

a certain number of wrong answers, the short route activates. As in situation 1.1, 

EM's codelets directly instantiate corresponding nodes in the BN to prevent any 

collision in the virtual world. As indicated in Figure 4.6, the short route activation and 

the EM code lets' reaction to this situation occur in about four cognitive cycles. The 
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EM codelets' direct influence in WM and BM starts when their base-Ievel energy 

reaches > -0.5 (Figure 4.6). Once the, emotional code lets react to the situation, the 

long route more attentively interprets the situation and proposes further solutions. 

For the rest of the situation, CELT8 will behave as explained in situation 1.1 

Emotionallntervention for Very Dangerous Situation 

1,5 

1 

Q) 
u 
c 0,5 
~ 
cu 
> a 
cu 
c 
0 -0,5 1 

'';:; 
0 
E -1 

LU 

-1,5 
Cycle 

Figure 4.6 Emotional Intervention for very dangerous situation2 

Situation two: camera adjustment 

Another important task to be considered by users while manipulating Canadarm2, is 

choosing the best three cameras (from a set of about twelve cameras on 188) for 

viewing the environment (since no camera offers a global view of the environment). 

Of course, forgetting camera adjustment is not as dangerous as collision risk. 

However, forgetting camera adjustment may lead users to manipulate Canadarm2 

very close to 188 which in turn increases the risk of a collision with 188. 

Execution with EM:ln this situation, let the initial emotional valence in this situation 

be zero (Figure 4.9). After a while, WM receives information indicating that the user 

has forgotten to adjust the cameras. Given that the information does not suggest a 

very dangerous situation but it is nonetheless important (see Figure 4.9), EM 

attributes a -0.5 emotional valence to it. In effect, it is important enough for CELT8' 

AM to select it and bring it to consciousness (long route). After deliberation, a hint 

reminds the user to perform Camera adjustment (Figure 4.7). 
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Figure 4.7 Forget to do something 

At this stage, EM's codelets react indirectly to the situation. EM's codelets 

reaction depends of the outcome of the user-CELT8 interaction. If CELT8' questions 

are correctly answered, (Figure 4.8), the intensity of EM's code lets for direct reaction 

will decrease. However, if the user does not answer CELT8' questions correctly, the 

codelets' intensity increases (see Figure 4.9). This negative valence increase will 

occur during every user-CELT8 interaction or during any bad Canadarm2 

manipulation. When the user finally understands the problem and adjusts the 

cameras, the EM's codelets negative energies will decrease. 

'f 

li?J Help 

» 
puestion 
',"'ihat else éid Vou forget? 

() Camera adjustment () Choosing jointAP 

o Displacing arm fart 0 the 1SS 

OK Annuler 

..~===============------------------=========---! 
Figure 4.8 CELTS question to the user 

If the user does not stop moving Canadarm2, EM's short route is activated, 

thus reacting directly to the situation, as explained in situation one. CELT8 will react 

to the collision risks in the same manner as detailed in situation1.1. 
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Emotionallntervention for Very Dangerous Situation 
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Figure 4.9 Emotionallntervention for very dangerous situation3 

Execution without EM: ln this situation, CELT8 performs through its long route and 

interacts with users using Figure 4.7 and Figure 4.8 There will be no short route 

engagement even if the situation worsens. 

Lastly, we will compare the reaction time of CELT8' BN and EM' code lets when 

faced with dangerous situations (Figure 4.10). 

Figure 4.10 presents both the BN and EM reaction time when CELT8 faces a 

collision risk. The first graph represents EM's reaction time when the short route is 

activated. In this case, the reaction time varies between zero and 17 millisecond. 

The second graph represents BN's mean reaction time when the long route is 

activated. In this case, the reaction time varies between 200 and 1400 millisecond. 

These experiments demonstrate that EM decreases CELT8' reaction time in 

dangerous situations. 
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Figure 4.10 Comparison between normal and emotio nal-intervention reactions in CELTS. 

4.3 CONCLUSION 

ln this chapter, we described how to implement a fundamental Emotional 

Mechanism (EM) in CELTS. We also detailed how EM interacts with CELTS' various 

components. The interactions occur, during consciousness broadcasting, and more 

specifically during the learning phase and during CELTS' reactions to outside stimuli. 

CELTS' emotional reactions occur both implicitly and explicitly. The resulting 

architecture is more neurologically plausible, for it integrates a recent view of the 

amygdala's double role in emotion. That is, this architecture is able to make CELTS 
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learn and then react swiftly in emotionally-Iadened situations as weil as supply an 

emotional assessment to ail sorts of stimuli in working memory, an assessment 

which may used for learning aims. This allows faster learning of emotionally 

assessed information that enters working memory and is later broadcasted through 

CELTS' cognitive cycles. As our experiments illustrate, CELTS, because of its 

emotional learning mechanism, may, when need be, react more swiftly than its 

previous versions (i.e., reacting sooner in the cognitive cycle). It is worth noting that 

through these experiments, CELTS' EM demonstrated the capability to easily adjust 

its emotional valences fram negative to positive and vice versa, in any situation. 

ln the next chapter, we explain the implementation of episodic learning in CELTS 

and how it is influenced by emotions. 



CHAPTERV
 

IMPLEMENTATION OF EPISODIC MEMORY AND EPISODIC
 
LEARNING IN CELTS
 

ln this chapter, we propose the implementation of an Episodic memory and an 

Episodic Learning Mechanism in CELTS, based on the current neuroscientific 

multiple-trace theory (Purves et aL, 2008) detailed in chapter II. In our model, 

emotions play a role in the encoding and remembering of events. Emotions improve 

ail types of learning as weil as the agent's behaviour. 

First, we briefly review CELTS' Episodic Learning Mechanism (EPL)16. EPL 

consists of (1) the pseudo-hippocampus, which encodes any given information 

coupled with its assigned emotional valence, and the agent's actions. EPL also has a 

process called (2) "memory consolidation" (Alvarez and Squire, 1994, Paré, 2003). 

This process intervenes in the memorization and the retrieval phases of events in 

CELTS' memory architecture. The memorization phase of CELTS' architecture 

inciudes emotional valences (Ortony et aL, 1988) ascribed to ongoing events by 

CELTS' EmotionallV1echanism (Faghihi et al., 2008a). 

16 By episodic learning, we mean that CELT8 is able to remember past episodes, which 
allows the agent to induce a potentially better adapted behaviour. By behaviour, we not only 
want to talk about visible stages but also mental events probably leading to the execution of a 
suitable action. If the action appears indeed (not) suitable, the agents associates a 
negative/positive valence to the episode which will improve, if similar one is presented, the 
speed and the relevance of the information ta be chosen and executed by the system. 
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The memory consolidation phase consists of a process that constantly extracts 

temporal regularities fram ail past episodes to form an episodic memory. This 

pracess is very important because, as a cognitive agent, CELTS receives a huge 

amount of data, which is temporally related to its enviranment but that may or may 

not be relevant in the future. Moreover, much communication takes place between 

the different parts of the system. This again produces a large amount of internai data 

during each cognitive cycle. In order to be used in decision-making, ail of this data 

must be consolidated into a sm aller form. We found that CELTS requires the 

consolidation of huge amounts of sequential data, as is the case for mining frequent 

patterns in data mining. This suggests the use of sequential pattern mining (Agrawal 

and Srikant, 1995) as the basis for implementing the consolidation process. 

Sequential pattern mining is an efficient knowledge discovery technique that is 

widely used in computer science to find frequent temporal patterns among 

sequences of symbols when dealing with a huge amount of data, a common 

situation for CELTS. This, we believe, provides a functionally plausible memory 

consolidation mode!. The sequential patterns are useful in the retrieval 

(remembering) phase, to adapt CELTS' behaviour to past experiences. In the 

retrieval phase, a cue is introduced to ail sequential patterns previously created by 

the system, making them active, each according to its similarity to the cue. The 

information sequence activated in parallel then reinforces the cue's content. 

ln the next sections, we first briefly review the existing Iiterature on episodic 

learning in cognitive agents. We then provide a thorough expianation of CELTS' 

Episodic memory and the irnplementation of the three phases of the Episodic 

Learning Mechanism in CELTS' architecture. 

COGNITIVE AGENTS WITH EPISODIC MEMORY 

ln this section, we first briefly review of the existing literature on episodic 

learning in cognitive agents. We then focus on the work of McClelland, McNaughton 

and O'Reilly (McClelland et al., 1995) to show how the hippocampus and the cortex 

play an important role in episodic learning and memory. As we'lI see, the role of 

5.1 
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these two structures may be viewed as functionally equivalent to the recording and 

consolidation processes in our architecture. 

Many researchers have attempted to incorporate episodic memory and 

learning mechanisms in cognitive agents and cognitive architectures (l\Jajjar et al., 

2005, D'Mello et al., 2006, Sun, 2003). Yet, they have either not included a role for 

emotions in the episodic learning and retrieval processes as of now (as is the case 

with CLARION and ACT-R) or no concrete implementations have been realized in 

the models proposed (the well-known ACT-R model for instance, has no explicit 

episodic memory). Instead, events are encoded as chunks in declarative memory, 

just like declarative information. During recall, beside the activation provided by the 

context, a base level activation function is used for each chunk to compute the 

probability of an information being retrieved and the speed of its retrieval. Basically, 

the activation is calculated based on the time elapsed since the last occurrence of 

the chunk in Working Memory (WM) and the number of times that the chunk was 

recalled. Because chunk activation decreases rapidly over time, after a short while, 

the frequency of chunk use becomes the most decisive feature for determining 

recall. Thus, ACT-R cannot recall information in a temporal context, and this induces 

abnormal behaviour (Najjar et al., 2005). In addition, since ACT-R has no emotions, 

these cannot be taken into account during episodic memorization and retrieval. 

L1DA, as explained in chapter III, has an Episodic learning mechanism, which 

is influenced by its Emotional Mechanism. However, authors have not detailed what 

interactions between Episodic and Emotional Mechanisms occur in the 

implementation phase and there have been no concrete experimentations to 

demonstrate the strengths and weaknesses of the model in this respect (D'Mello et 

al., 2006). 

The remainder of this section will address McClelland et al.'s (1995) connectionist 

model of episodic and declarative memory systems (we shall only be concerned with 

episodic memory). 

Since CELTS is not implemented in neural networks but in a classical symbolic 

system, we finally assess what kind of processing is achieved by these neurological 
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structures (as understood through the connectionist model) in order to see if that 

kind of processing can be implemented in CELTS. Because our episodic memory 

mechanism must be included in a fully functional agent, the advantage of this 

resulting architecture over McClelland et al.'s is that the complete process is 

modeled, including episodic memory recall. Moreover, our episodic memory includes 

the well-known influence of emotions, something that is absent in McClelland et al's. 

McClelland et al. (1995) devised their neural network model of the interaction 

between the hippocampus and the neocortex to explore the standard consolidation 

model of episodic memory, and the peculiar pattern of memory loss that results from 

removal of the hippocampus. In order to understand the model, it must be noted first 

that, although it is located under the cortex, the hippocampus functionally is where 

cortical sensory processing ends up. Information from the senses enters dedicated 

modal areas (e.g. the occipital cortex), then goes to the association areas of the 

temporal and parietal lobes, and then finally go to the hippocampus (among other 

structures). Thus, information entering the hippocampus is fully processed by the 

cortex. McClelland and his colleagues hypothesize that the cortex is organized as a 

multilayer perceptron, a type of network that has been shown to categorize 

information in hierarchical prototype structures (Rogers and McClelland, 2006) when 

the information is represented by distributed and superposed representations 

(Rumelhart et al., 1986, Hinton et al., 1986) and when the network is trained by a 

gradient descent procedure (such as the backpropagation algorithm). If they are 

right, this means that information leaving the cortex to enter the hippocampus is fully 

categorized. However, multilayer perceptrons trained by gradient descent exhibit 

what has been called catastrophic interierence (McCloskey and Cohen, 1989): new 

information can only be included in the hierarchical category structure developed as 

a result of initiallearning if ail (or a representative sam pie) of the initial training set is 

presented along with the new information. If it is not, that is, if the new information is 

presented alone, the category structure learned by the network is completely 

obliterated in favour of the category structure extracted from the new information. To 

prevent this, McClelland et al. (1995) give their cortical module a very low learning 

rate. Information processed by the cortex barely leaves a trace. This explains why, 
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as H.M.'s case showed (Milner et al., 1998, Milner, 1966), the cortex cannot form 

declarative memories on its own and needs a complementary structure such as the 

hippocampus to do so. 

The low learning rate of cortex leaves the initial storage of information to the 

hippocampus. This structure, they propose, implements a pattern associator and an 

autoassociator and learns following hebbian principles. However, as is weil known, 

hebbian learning works best when information is borne by orthogonal 

representations. There is physiological evidence that the hippocampus's dendate 

gyrus is built to orthogonalize information through sparcification and competitive 

learning (Roiis et al., 1997) (O'Reilly et al., 2000). Accordingly, their model 

hippocampus contains a submodule that sparcifies and separates representations 

through competitive learning. Once it has been thus orthogonalized, information from 

various sensory regions of the cortex can be associated instantly (one shot learning) 

by Hebbian learning with a high learning rate. Patterns of categorized but reduced 

information from the various senses are thus associated (storage) and can be 

reactivated by having a sufficient portion of the original pattern reactivated (part of 

the recall process). The physiology and architectonic structure of the hippocampus 

suggests that CA3 (Cornu ammoni 3, a specifie part of the hippocampus) may be 

implicated in these processes. Once a pattern has been reactivated, McClelland et 

al. posit that it can be reconstituted into a distributed pattern by a process similar, but 

inverse, to the one that orthogonalized it initially (CA1 and the enthorinal would be 

implicated here), after which it can reactivate the association areas of cortex ail the 

way, occasionally, to its modal areas. 

Reactivation of the cortex by de-orthogonalized signais coming from the 

hippocampus serves two functions. First, and what concerns us here, it serves as a 

memory of the event that was originally stored in the hippocampus. Such, according 

to McClelland et al.'s model, is the neurological basis of episodic memory. Second, it 

serves in the slow process of consolidation by helping mould the cortex' slow 

learning synaptic connections through a process they cali interleaved learning. Much 

of McClelland et al.'s is dedicated to explaining how this process works, how it builds 
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hierarchical categorical structures and how it solves the problem of catastrophic 

interference. We shall not describe this part of their model since our objective has 

been reached: we have described a neurocomputational model of episodic memory. 

However, it should be noted before we turn to our next task that the graduai building 

of the hierarchical categorical structure means that, over time, similar patterns 

coming trom the senses Will be categorized differently, that is, in a richer manner, 

category wise, and that it is this more richly categorized information that will be 

stored in the hippocampus henceforth. Our task now is to assess what kind of 

information is thus processed by the described-above structures in order to 

implement similar processing in CELTS. We first saw that information is recorded in 

some brute form (in the hippocampus) and that consolidation in long-term memory 

involves extracting relevant information from this brute recording. 

5.2 EPISODIC MEMORY AND LEARNING IN CELTS 

Episodic Learning (EPL) in CELTS starts when the information codelets that 

have entered in WM are chosen by the Attention mechanism and broadcasted by the 

consciousness mechanism. CELTS' pseudo-hippocampus (PH) learns ail 

broadcasted information during each cognitive cycle. This corresponds to the brute 

recoding phase of McClelland model (McClelland et al., 1995). This learning 

happens through the creation of new sequences of events. Each sequence may 

contain one or more nodes that have links to other nodes situated in the sequence. 

Learning occurs through the strengthening/weakening the energy of the nodes and 

of the links between them. If the PH does not have a response set for the information 

broadcasted by the consciousness mechanism, it creates a new sequence with a 

unique ID and then creates an empty node with a context corresponding to the 

ongoing situation (current event). As it observes ail information broadcasted by the 

consciousness mechanism, PH gives a unique ID to each coalition broadcast in the 

system and saves these IDs instantaneously. To fill out each node, PH waits for the 

consciously-selected behaviour and the ensuing broadcasting of the confirmation by 

the user of the correctness of the chosen behaviour. At this point, each node in the 
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sequence is assigned the time of the broadcasted coalition, its total emotional 

valence, and a key-information-codelet (trigger-codelet) associated to the broadcast 

coalition that fires the stream of behaviours (if the trigger codelet has exceeded its 

threshold value). The PH then associates the context of the new node with the ID of 

the broadcasted coalition consciously-selected by the Attention Mechanism and 

executed by CELT8' Behaviour Network (BN). The sum of the emotional valences of 

thenodes belonging to the broadcast coalition is also saved. At this point the 

information is ready to be integrated into the different memories of the system. The 

sequence(s) related to this episode are saved in a database which is considered as 

CELT8' Episodic memory. This distributed information, as weil as the distributed 

information learned by EPL (i.e. learning of regularities (Faghihi et al., 2007), by 

procedural learning (Faghihi et al., 2007) and by emotional learning (Faghihi et al., 

2008b) during arm manipulation is then integrated in the same database separately. 

With this method, CELT8 can relate an episode to its corresponding procedures in 

the BN. 

We now describe how episodic learning takes place through CELT8' cognitive cycle. 

5.2.1 Impact of Emotions and Episodic Learning in CELTS' Cognitive Cycle 

As explained in section IV, two routes are possible in CELT8' cognitive cycle ­

a short route (the blue arrows) and a long route (black arrows). In both cases, the 

cycle begins with the perceptual mechanism. Hereafter, we briefly summarize each 

step in the cycle and in italics, describe the influence of the CELT8' pseudo­

amygda/a or EM and/or that of pseudo-hippocampus (PH). For a visu al 

representation of the described process, please refer to Figure 4.1. 

Step 1: The first stage of the cognitive cycle is to perceive the 

environment; that is, to recognize and interpret the stimulus (see (Dubois et 

al., 2007) for more information). 

EM: Ali incoming information is eva/uated by the Emotiona/ Mechanism when /ow­

/eve/ features recognized by the perceptua/ mechanism are re/ayed to the emotiona/ 
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codelets, which in turn feed activation to emotional nodes in the Behaviour Network 

(BN). Strong reàctions from the "pseudo-amygdala" may cause an immediate reflex 

reaction in CEL TS. 

Step 2: The percept enters Working Memory (WM): The percept is 

brought into WM as a network of information codelets that covers the many 

aspects of the situation (see (Dubois et aL, 2007) for more information). 

EM: in this step, if the received information is considered important or dangerous by 

EM, there will be a direct reaction from EM which primes an automatic behaviour 

from BN. 

PH: PH also inspects the information received by CELTS' WM. It then fetches 

relevant information in both WM and LTM and sends it back to WM once enriched. 

Relevant traces from the different memories are thus automatically retrieved. These 

will be sequences of events in the form of a Iist relevant to the new information. The 

sequences of events include the current event and the residual information from 

previous cognitive cycles in WM. These retrieved traces are made of codelets links 

to other codelets. Each time new information codelets enter WM, the memory traces 

are updated depending on the new links created between these traces and the new 

information codelets. This first involvement of the PH implements the context-giving 

role of episodic memory. 

Step 3: Memories are probed and other unconscious resources 

contribute: Ali these resources react to the last few consciousness broadcasts 

(internaI processing may take more than one single cognitive cycle). 

EM: What is brought back from episodic memory is evaluated by the emotional 

codelets (as part of emotional intervention ELR: 2 in Figure 4.1) and receives its 

emotionalload anew. 

Step 4: Coalitions assemble: ln the reasoning phase, coalitions of 

information are formed or enriched. Attention codelets join specific coalitions 

and help them compete with other coalitions toward entering 

"consciousness". 
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EM: Emotional codelets observe the WM's content, trying to detect and instil energy 

to codelets believed to require it and attach a corresponding emotional tag. As a 

result, emotions influence which information comes to consciousness, and modulate 

what will be explicit/y memorized. 

Step 5: The selected coalition is broadcast: The Attention mechanism 

spots the most energetic coalition in WM and submits it to the "access 

consciousness," which broadcasts it to the whole system. With this broadcast, 

any subsystem (appropriate module or team of codelets) that recognizes the 

information may react to il. 

PH: PH retrieves the frequently reappearing past information that best matches the 

current information resident in WM, which may now contain behaviour sequences. It 

then extracts frequent (partial or complete) sequences of events (episodic patterns) 

from the sequences of events previously consolidated (see below for an explanation 

of the consolidation process). This may invoke a stream of behaviours related to the 

current event, with activation passing through the links between them. This invoked 

stream of behaviours could be considered as a partial or complete action procedure. 

Steps 6 and 7: Here unconscious behavioural resources (action 

selection) are recruited: Among the modules that react to broadcasts is the 

Behaviour Network (BN). BN plans actions and, by an emergent selection 

process, decides upon the most appropriate act to adopt. The selected 

Behaviour then sends away the behaviour codelets linked to il. 

EM: ln this step when the BN starts a deliberation, for instance to build a plan, the 

plan is emotionally evaluated as it is built, the emotions playing a role in the selection 

of the steps. If the looping concerns the evaluation of a hypothesis, it gives it an 

emotional evaluation, perhaps from learned lessons from past experiences. 

PH: Before the addition of EPL to CEL TS, only the Behaviour Network (BN) inspired 

from Maes' BN (1989) could plan and execute actions as weil as monitor frequent 

partial or complete sequences of events. As we have seen here, in our revised 

CEL TS model, the PH can now also do this, and does it better. 
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Step 8: Action execution: Motor codelets stimulate the appropriate 

muscles or internai processes. 

EM: Emotions influence the execution, for instance in the speed and the amplitude of 

the movements. 

As explained in chapter Il, two models are suggested in neuroscience for the 

consolidation phase (Purves et al., 2008), (1) the standard consolidation theory and 

(2) the multiple-trace theory. 

We base our work on the multiple-trace theory which holds a hippocampus­

dependent view of event encoding. According to this theory, every time an event 

causes memory reactivation, a new trace for the activated memory is created in the 

hippocampus. Memory consolidation occurs through the reoccurrence of loops of 

episodic memory traces in the hippocampus, which causes the construction of 

semantic memory traces in the cortex. Thus, the cortical neurons continue to rely on 

the hippocampus throughout encoding. Three information processes seem essential 

to episodic memory: the initial categorization of information coming from the senses, 

the association and direct storage of categorized information, and the use of this 

stored categorized information to build a better categorical structure for future 

processing of signais from the senses. 
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5.2.2 The Memory Consolidation Process 

CELTS' memory consolidation process, which corresponds to McClelland 

(McClelland et al., 1995) memory consolidation in cortex, occurs in Step 2 of CELTS' 

cognitive cycle. It takes place during each of CELTS' cognitive cycles. Like the 

human cortex, CELTS' Episodic Learning Mechanism (EPL) extracts frequently 

occurring sequences from its past experience, as they were recorded in its 
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hippocampus (PH). In our context, CELTS learns during training sessions for arm 

manipulation by astronauts in the CanadarmTutor virtual world (Nkambou et aL, 

2005) (Figure 4.3). 

Given that an episodic trace or sequence of events is recorded during 

consciousness broadcast in CELTS, we chose the sequential pattern mining 

algorithm of (Fournier-Viger et aL, 2008) to mine frequent event sequences. The 

algorithm provides several more features than the original GSP sequential pattern 

algorithm (Agrawal and Srikant, 1995), such as accepting symbols with numeric 

values, eliminating redundancy and handling time constraints. The algorithm takes 

the database 0 of ail saved sequences of events as input. Here, a sequence of 

events is recorded for each execution of CELTS. An event X= (it, i2, ... in) contains a 

set of items i t , i2, ... in, and represents one cognitive cycle. For each event, (1) an 

item represents the coalition of information code lets that was broadcasted during the 

cognitive cycle, (2) an optional item with a numeric value indicates one of the four 

emotional valences in CELTS (high threat, medium fear, low threat) that are 

associated with the broadcasted coalition, and (3) a final optional item that 

represents the executed behaviour, if one was executed during that cycle. Formally, 

an event sequence is denoted s = < (tt,Xt), (t2,X2),... , (tn,Xn», where each event Xk 

is annotated with a timestamp tk indicating the cognitive cycle number. The algorithm 

extracts partial or complete sequences of events that occur in the database more 

than a minimal number of times defined by the user (minsup). 

ID Events sequences 

«0, c1 e1{-0.8}), (1, c2 e2{-0.3} b1), (2, c4 b5»S1 

S2 «0, c1 e1{-0.8}), (1, c3), (2, c4 b4), (3, c5 b3» 

S3 «0, c2 e2{-0.3}), (1, c3), (2, c4), (3, c5 b3» 

S4 «0, c3), (1, c1 e1{-0.6} b4),(2, c3» 

S5 «0, c4 b4), (1, c5), (2, c6» 

S6 «1, c1 e1{-0.6} b4), (2, c4 b4), (3, c5» 

Table 5.1 A Data Set of 6 Sequences 
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Table 5.1 shows an example of a database produced by user manipulation of 

Canadarm2 in the virtual world. We chose two short sequences in this example. The 

first event of sequence 51 shows that during cognitive cycle a, due to arm 

manipulation by the astronaut, coalition c1 was broadcasted and that an emotional 

valence of -0.8 for emotion e1 (high threat) was associated with the broadcast. The 

second event of 51 indicates that at cognitive cycle 1, coalition c2 was broadcasted 

with emotional valence -0.3 for emotion e2 (medium fear) and that behaviour b1 was 

executed. Table 5.2 shows some sequences obtained from the application of the 

algorithm on the database of Table 5.1 with a minsup of 32 % (2 sequences) and no 

time constraints. The first frequent pattern is < (0, c1 e1 {-O.?}), (2, c4», which was 

found in sequences 51, 52, 54 and 56. Because the events containing e1 in these 

sequences have numeric values -0.8, -0.8, -0.6 and -0.6, the algorithm calculated the 

average when extracting that pattern, which resulted in the first event having e1 with 

value {-O.?}. Because this pattern has a support of 66 % (4 out of 6 sequences), 

which is higher than minsup, it is deemed frequent. 

Mined sequences Support 

«0, c1 e1{-0.7}), (2, c4» 66 % 

«0, c3), (2, c5 b3» 33 % 

«0, c4 b4), (1, c5» 50 % 

«1, c3), (2, c4), (3, c5 b3» 33 % 

... ... 

Table 5.2 Example of Events Sequences Extracted 

5.2.3 Learning Extracted Patterns 

The second phase of Episodic learning, which happens in Step 5 of CELT8' 

cognitive cycle, consists of mining frequent patterns from the sequences of events 

recorded for ail executions of CELT8 by applying our sequential pattern mining 

algorithm. This process is executed at the end of each CELT8 execution. 
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5.2.4 Using Mined Patterns to Improve CELTS' Behaviour 

The third part of Episodic learning, which happens in Step 7 of CELTS' 

cognitive cycle, consists of improving CELTS' behaviour by making it reuse relevant 

patterns that carry a positive emotional valence. This is done by intervening in the 

coalition selection phase of CELTS. The idea is here to find, during each cognitive 

cycle, the patterns that are similar to CELTS' current execution in order to select the 

next coalition to be broadcasted. This coalition is the one that is estimated to be the 

most probable of generating positive emotions for CELTS according to these 

patterns. Influencing the coalitions that are broadcasted will then directly influence 

the actions to be taken by CELTS' Behaviour Network (BN). This allows this 

augmented version of CELTS to adapt itself to its environment better than the 

previous version. This modification of CELTS can be implemented in different ways. 

We used the SelectCoalition algorithm (Figure 5.1), which takes as parameters: (1) 

the sequence of previous CELTS broadcasts (Broadcasts) , (2) the set of frequent 

patterns (Patterns) and (3) the set of coalitions that are candidates to be 

broadcasted during a given cognitive cycle (CandidateCoalitions). 

This algorithm first resets a variable min and a variable max for each coalition 

in CandidateCoalitions. Then, the algorithm repeats the following four steps for each 

pattern p of Patterns. First, it computes the strength of p by multiplying the sum of 

the emotional valences associated with the broadcasts in p with the support of p (the 

percentage of sequences in which the pattern appeared). Then, it finds ail the 

coalitions C E CandidateCoalitions that appear in p after the last k broadcast 

sequence of Broadcasts for any k ~ 2. For each such coalition C , if the strength of p 

is higher than c. max, c. max is set to that new value. If that strength is lower than 

c. min, c. min is set to that new value. Finally, when the algorithm finishes iterating 

the set of patterns, the algorithm returns to CELTS' Working memory the coalition C 

in CandidateCoalitions that as the highest positive value for the sum c. min + c. max 

where c. max> O. This coalition will be the one to be broadcast next by the Attention 

Mechanism (AM). In the case where no coalition meets these criteria, the algorithm 
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will return the coalition from CandidateCoalitions that is the most active to CELTS' 

Working memory. 

Algorithm 1 (SelectCoalition Algorithm) 
SelectCoalition (Patterns, Broadcasts, CandidatcCoalitions) 

FOn each Coalition C E CandidateCoalitions 
c.min := O. c.max := O. 

fOR each pattern P of Pa.tterns.
 
Strength := CalculateSumOfEmotionalVaJences(P) * Support(P).
 
FOR k := 2 ta IPI.
 

Sa := last k Broadcasts of Broadcasts. 
IF (Sa ç P) 

FOR each coalition c E CandidateCoalilions appearing 
aftel' Sa in P 

c.max := rnaxOf(Strength, c.max). 
c.min := minOf(Strength, c.min). 

RETUR.N c E CandidatcCoalitions with the largest positive
 
(c.max + c.min) and such that C.max > O.
 

Figure 5.1 CELT8' Episodic Learning coalition selection algonthm 

The c. max> 0 criterion is included to ensure that the selected coalition 

appears in at least one pattern having a positive sum of emotional valences. 

Moreover, we have added the c. min + c. max criterion to decrease the probability 

that coalitions appearing in patterns with a negative sum of emotional valences be 

selected. In our experiments, this criterion proved to be very important for it can 

make CELTS quickly stop selecting a coalition occurring in a positive pattern, if the 

coalition comes to appear in negative patterns. The reader should note that we 

presented here an algorithm that uses patterns which fit our needs with CELTS. 

However, algorithms relying on other criteria could also be used. 

5.3 EVALUATION AND RESULTS 

We predict that if CELTS is equipped with both EPL and EM, it will better user­

adapted solutions. For instance, given a camera adjustment problem in the virtual 
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world, an expert may define many scenarios in CELTS' BN to help a user solve the 

problem (Figure 5.3). Each scenario involves the activation of certain Nodes. Nodes, 

as explained in chapter III (see CTS' BN), contain a hint, in the form of a statement 

or a question. Users see these at each CELTS-user interaction. EM assigns a 

positive or negative valence to each interaction, according to the user's answer to 

the questions. Thus, given a problem in the virtual world, and after several user­

CELTS interactions, EPL finds the scenario in which it has gained the highest 

emotional positive valence. The collaboration between EPL and EM also bring 

CELTS to a self-satisfaction 17 state. 

Figure 5.2 represents this integrated CELTS with the Canadarm2 simulator. 

We also added the EPL Viewer to CELTS in order to observe CELTS' EPL 

behaviour, (Figure 5.2.B). Figure 5.2.C represents CELTS' interaction with the user. 

Figure 5.2 (A) Simulator interface (8) Episodic Learning Viewer (C) CELTS Intervention 

17Self-satisfaction:"a usually smug satisfaction with oneself or one's position or 
achievements." (Merriam-Webster, 2010) 
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5.3.1 Users' Learning Situations 

A user learns by practicing arm manipulations and receiving hints created 

initially by an expert and communicated to the user by CELTS. The learner's 

success (defined as the extent of self-satisfaction in CELTS) will be variable, 

depending on CELTS' appropriate application of these hints. 

We performed 250 CTS executions of Canadarm2 in CanadarmTutor for a 

camera adjustment problem in which experts defined different scenarios in CELTS' 

BI\I (Figure 5.3). During each execution, CELTS chooses a scenario based on the 

situation. CELT8' EPL creates a trace for each execution. These traces contain ail 

the information transferred from CELTS to the users and back. After each CELT8 

execution, EPL extracts frequent patterns and the emotional valences attributed to 

the given scenario, and use these for future interactions. Our experiments showed 

that the users manipulating Canadarm2 tend to better react to a problem wheh 

having received hints from CELTS prior to receiving the actual solution. 

When the user's actions lead to a problematic situation, CELT8 provide 

assistance in one of two ways. It can either give a direct solution to the user, or 

decide to give hints to the user prior to giving him the actual solution. To illustrate 

these two possibilities for a given situation, we here take the example of a camera 

adjustment situation in which CELTS must react. 

It is a fact that users must perform camera adjustments before moving the Arm 

in the virtual world. During our experiments, we noted that users frequently forgot 

this step, and moreover, users frequently did not realize that they had neglected this 

step. This increases the risk of collisions (as depicted in Figure 5.2.A) in the virtual 

world. We thus decided to implement this situation as a medium-threat situation in 

CELTS' BN (see Figure 5.3). 

When a user forgot to perform camera adjustments, CELTS had to make a 

decision; it could either (1) give a direct solution such as "You must stop the arm 

immediately" (scenario 1, Figure 5.3) or (2) give a brief hint such as "1 think this 

movement may cause some problems. Am 1 wrong or right?" (scenari02, Figure 5.3) 
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or (3) give a proposition such as "Stop moving the arm and revise your lessons". 

Through interactions with different users, EPL recorded sequences of events, each 

of them carrying emotional valences. The average length of the stored sequences 

was of 26 CELTS-events. 

(B) 

a>;;;Evaluation 1­
~ .' 

~"1Nr( 

,.. 

Figure 5.3 Part of the CELTS Behavior Network 

During CELTS' coalition selection phase (Step 4 and 5 of CELTS' cognitive 

cycle), the learning mechanism evaluates ail mined patterns to detect ail patterns 

similar to its current execution that have resulted in self-satisfaction or 

dissatisfaction. In arder ta give a brief description of both scenarios, in our present 

case concerning Camera adjustment, we mined ail the patterns concerning scenario 

1(direct solution), scenario 2 (hint given first) and scenario 3 (proposition). 
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Scenario 1 

CELTS' EPL detected that CELTS' EM attributed negative valences to this 

scenario. The following sequence is an example of the sequences extracted by the 

data mining algorithm: «t=0, c1), (t=1, c2),(t=2, c3),(t=3, c4),(t=4, c5), e{-0.9}>. It must be 

noted that we here show the mean emotional valence for this sequence; the 

emotional valences given by EM to each event (in each step) in the sequence are 

not shown. The sequence contains the following information: at time 0, the broadcast 

coalition c1 indicates that a collision risk was imminent in the virtual world; at time 1, 

the broadcasted coalition c2 indicates that CELTS gave the answer to the user; at 

time 2, the broadcasted coalition c3 indicates that the user did not know why there 

was· an imminent collision risk; at time 3, the broadcasted coalition c4 indicates that 

CELTS gave a hint to the user; at time 4, the broadcasted coalition c5 indicates that 

scenario1 received an emotional valence equal to -0.9 from CELTS' EM due to the 

user's answers. 

Importantly, in this scenario, users received direct solutions from CELTS, but 

nonetheless failed to react properly. This failure thus led CELTS' EM to associate the 

negative valence -0.9 to the emotion e1 (medium fear). The conclusion is that this 

scenario is not a good candidate for the collision risk problem. 

Scenario 2 

CELTS' EPL detected that CELTS' EM attributed positive valences to this 

scenario. The following sequence is an example of those extracted by the data 

mining algorithm: «t=14,c2),(t=15,c21),(t=16,c22),(t=1?,c23), e2 {O.?}>. Again, It must be 

noted that we here show the mean emotional valence for this sequence; the 

emotional valences given by EM to each event (in each step) in the sequence are 

not shown. The scenario 2 contains the following information: at time 14, the 

broadcasted coalition c2 indicates that a collision risk was imminent in the virtual 

world; at time 15, the broadcasted coalition c21 indicates give a hint; at time 16, 

broadcasted coalition c22 indicates give the answer; and at time 17, broadcasted 
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coalition c23 indicates that the user's reaction was correct. As a result, CELTS' EM 

attributed a positive emotional valence of 0.7 to the sequence as a whole. Given 

these positive emotional valences, we conclude that the best solution for Camera 

adjustment problems is CELTS giving a hint (Figure 5.3 scenario 2). 

Scenario 3 

CELTS' Episodic Learning Mechanism detected that CELTS' EM attributed 

zero emotional valence to this scenario. The following sequence is an example of 

those extracted by the mined algorithms: < (t=44, c2), (t=45, c51), (t=46, c52), (t=47, 

c53), e {O} >. Again, it must be noted that we here show the mean emotional valence 

for this sequence; the emotional valences given by EM to each event (in each step) 

in the sequence are not shown. Scenario 3 contains the following information: at time 

44, the broadcasted coalition c2 indicates that a collision risk was imminent in the 

virtual; at time 45, the broadcasted coalition c51 indicates following message please 

revise your course; at time 46, the broadcasted coalition c52 indicates user is 

inactive; and at time 47, the broadcasted coalition c53 indicates that the user 

decided to stop software. As a result, CELTS' EM has attributed a zero emotional 

valence to the sequence as a whole. Given the zero emotional valence, we conclude 

that this scenario is not appreciated by most users. The conclusion is that this 

scenario is not a good candidate for the collision risk problem. 

Episodic learning in CELTS continuously seeks the sequences with the most 

positive emotional valences and highest frequencies. In our example, the event 

(t=14, c2), (t=15, c21) met these requirements. In future cases, if the emotional 

valence is not as positive as was the case in our example, CELTS may choose 

another scenario rather than scenario2. It should be noted that because the set of 

patterns is regenerated after each CELTS execution, some new patterns can 

emerge, while others can disappear, depending on the new sequences of events 

stored by CELTS. This ensures that CELTS' behaviour can change over time in the 



105 

case that some scenarios become less or more negative and also, more generally, 

that CELTS can adapt its behaviour to a dynamic environment. 

To regulate learning rate and scenario selection, CELTS' EPL performs the 

following: 1) for any new situation, CELTS randomly selects one among ail of the 

possible BI\! scenarios conceived by the expert (Figure 5.3) in order to solve the 

problem. It must be noted that regardless of the ongoing process at any given time 

(Iearning or unlearning), the random function choice of scenarios always remains 

active; 2) As explained in this chapter, scenarios are attributed positive or negative 

emotional valences at the end of each execution; 3) Lastly, EPL learns new 

scenarios at the learning rate assigned by an expert. The learning rate is adjustable 

according to the minsup as detailed in the previous section. In our case it is set at six 

executions (Iearning rate is 5%) (Figure 5.4.B). It is sometimes the case that a 

previously successfully accomplished scenario for a given situation is not weil 

understood by another user. The valence for this scenario then goes from positive to 

negative. In these cases, EPL will switch to other scenarios in an attempt to return to 

a successful behaviour in the given situation. Once the user again successfully 

accomplishes one of these new scenarios, EPL will attribute a positive valence to 

this new scenario, and learning will have again occurred. 

This process is illustrated in Figure 5.4. From execution zero to three, while 

EPL learns scenario1, CELTS continued to choose scenarios randomly. At 

executions 4 and 6, EPL intervened and chose scenario1. 

From execution 7 to 10, CELTS again randomly chose scenarios. There was 

no EPL intervention in scenario selections. Once learning for scenario1 was 

completed, the user had still not answered the scenario1 's questions (Figure 5.4.A) 

correctly. The learning rate thus went down to five percent for the subsequent 

executions of that scenario- the scenario was unlearned. 

However, during the unlearning phase of scenario1 (Figure 5.4.A), from 

execution 10 to 16, both scenario1 and scenario2 were chosen. This is due to 

CELTS' random function and EPL's choices- execution of scenario1 and scenario2. 

At execution 15, the user answered scenario2's questions correctly. Thus EPL 
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started to intervene in the scenario selection process by choosing scenari02. As 

demonstrated in Figure 5.4.A, during EPL's scenari02 learning phase, scenari03 was 

also chosen, again originating from CELT8' random scenario selection function. It 

must be noted that during executions, scenari03's question were always answered 

incorrectly by user- this is why EPL learned that scenari03 is irrelevant to the 

situation. Finally, when the learning for scenari01 was complete (Figure 5.4.A cycle 

twenty one), and the user had still not answered questions incorrectly, the learning 

rate stopped changing. From this point forward, CELT8 most often chose scenario2 

for interactions with the user. However, there remained a random selection for other 

scenarios for the other executions. This would continue until the user answers the 

scenari02 questions incorrectly, and correctly answers another scenario's questions. 
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Using this information, the learning mechanisms has shown to be beneficial for 

it allows CELT8 to adapt its actions to learners by choosing between different 

scenarios based on its previous experience. This feature is very useful in the context 

of a cognitive agent, as it allows the designers to include much alternative behaviour 

but to let CELT8 learn by itself which ones are the most successful. 

5.3.2 How Episodic and Emotional Mechanisms Collaborate 

We now explain how emotional interventions influence CELT8' Episodic 

Learning Mechanism and decision making when it is faced with various situations. 

We performed a number of experiments with and without Emotional interventions in 

various situations. At the end of each experience, data mining algorithms extracted 

the useful patterns contained in these scenarios, which CELT8 will then use to 

imprave its reactions in future user interactions. The Emotional interventions thus 

influence CELT8' braadcast mechanism. They also influence the mean energy of 

CELT8' SN when a specific (desired or undesired) situation is observed in the 

virtual-world while CELT8 interacts with users. 

Figure 5.5 presents the energy reaction of both the SN (the first and third 

graphs) and the Emotional Mechanism (second graph) of CELT8 when it faces a 

collision risk. The first graph shows the mean energy of CELT8' BN while interacting 

with a user. As we can see, energy levels range from 8 to 9.50, which is not 

considered to be a significant variation. This tells us that the mean energy of CELT8' 

SN does not vary significantly when there are no emotions triggered by the inputs 

fram the virtual world. As mentioned above, the information is registered as a 

sequence following each scenario's execution. For each action executed by SN, a 

node (e.g. (0, c8})) is added to the corresponding sequence. Thus, each interaction 

with a user (node in a sequence) receives an emotional valence from the EM. 

For our first experiment, we sought to test the effect of the deactivating CELT8' 

Emotional Mechanism on its reaction to threats. For example, the sequence 

< (1=0, c8), (1=1, c9), (1=2, c10), (1=3, c11) > contains the following information: at time 
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zero coalition c8 indicates a collision risk in the virtual world and this is broadcasted 

back to the system. The second node (an event) in the sequence (t=1, c9) indicates 

that at time 1, the coalition c9 was broadcasted to the system. The message give a 

hint is transferred to the user. By giving this hint, CELTS tells the user that this is a 

dangerous situation and that the user must react immediately. The third event (t=2, 

c10) indicates that at time 2, coalition c10 is broadcasted to the system sending the 

message that the user's reaction is incorrect. 

We can thus note that despite the sequence's danger warning, CELTS did not 

show significant variation of energy; it did not react intensely to the situation, as it 

should have. 

ln our second experiment, using the same situation as before, we now 

activated CELTS' EM. For each action executed by the BI\I, we added the emotional 

valence e {-1}. Thus, the sequence used in the first example became 

«t=O,c8}) , (t=1,c9) , (t=2,c10), (t=3,c11) , e{-1} >. This modified sequence contains the 

following information: at time 0, coalition c8 indicates that a collision risk in the virtual 

world was broadcasted in the system. The emotional valence given by EM equals ­

0.9, as indicated by e {-0.9}. CELTS' EM interpreted the information received from 

the environment as a very dangerous (high-threat) situation. At time 1, (t=1, cg), e {-1} 

indicates that the coalition c9 was broadcasted and that a message containing a hint 

was sent to the user. This event received the emotional valence (-1) because the 

situation was deemed very dangerous. At time 2, (t=2, c10 e {-1}) indicates that the 

coalition c10 was broadcasted in the system; the user's answer was incorrect. At this 

point the user had to receive an appropriate answer to fix the catastrophic situation 

made in the virtual world as soon as possible. At time 3, ((t=3, c11), e {-1}) indicates 

that the coalition c11 sent a message containing the answer to the user. Regardless 

of the user's performance, it can be noted that in this experiment with the Emotional 

Mechanism activated, CELTS was able to react appropriately to the high-threat 

situation. Indeed, the second graph shows the Emotional Mechanism reactions in 

this second setting. We see that now, four very negative reactions received 

approximately a -1 valence. This negative energy is sent back directly to CELTS' 
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broadcast mechanism. The Emotional intervention excites other modules such as 

the Attention Mechanism and ail other CELTS' modules in order to increase the 

intensity of the reaction and avoid the threat with rapidity. During the execution 

depicted in the third graph, we can see that after the consciousness mechanism has 

broadcasted the information through the system, and the deliberation phase is 

completed, a decision is made (steps 6, 7 of cognitive cycle). If the broadcasted 

information is assigned an emotional valence immediately, a behaviour is set-off by 

CELTS' BN. Thus, the emotional negative energy boosts the intensity of the BN 

while executing behaviour.Comparing the first and third graph in Figure 5.5, our 

experiments are consistent with human decision making processes. This result of the 

deactivated CELTS' EM can be related to Phelps' observations of individuals with 

lesions to the amygdala. Such patients, although consciously aware of a threat, do 

not react to it with the emotional intensity of healthy individuals (e.g. increase heart 

beat, sweating, etc.) (Phelps, 2006). 
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5.4 CONCLUSION 

ln this chapter, using a sequential pattern mining approach, we described how 

to implement an Episodic Memory and Episodic Learning Mechanism in CELT8. The 

interaction between an agent and its dynamic environment generates large amounts 

of data. The sequential pattern mining approach is proven very useful to extract 

significant information from the huge amount data that they have to handle. The 

episodic learning algorithm used in this work is inspired from a memory consolidation 

theory which is biologically plausible. The collaboration between the Emotional 

Mechanism and this Episodic Learning helps to choose the behaviours that are most 

likely to bring the agent to a self-satisfactory emotional state. In the next chapter we 

will explain how to use the sequential pattern mining algorithms with association 

rules to implement causallearning in CELT8. 



CHAPTERVI 

IMPLEMENTAllON OF CAUSAL LEARNING IN CELTS 

ln the previous chapter, we showed that our model of declarative episodic 

memory improves in some respects on McClelland et al.'s 1995 model (for instance 

by improving on the recall part of their model); in this chapter, we improve the model 

of cortical declarative memory by adding causal memory and learning to the model. 

One of CTS' most significant limitations is its incapacity to find out why an 

astronaut has made a mistake, i.e., to find the causes of the mistakes. To address 

this issue, we propose to integrate a Causal Learning l\t1echanism within CELTS and 

to combine it with its existing Emotional Learning l\t1echanism. The goal is to propose 

a causal model that can find associative or causal relations between events 

occurring in CELTS' cognitive proeess. 

ln humans, the process of inductive reasoning stems in part from aetivity in 

the left prefrontal cortex and the amygdala; it is a multimodular process (Goel and 

Dolan, 2004). We base our proposed improvements to CELTS' architecture on this 

same logie. 

Researehers in causality are interested in finding the relation between cause 

and effect. Causal learning is the process through which we come to infer and 

memorize an event's reasons or causes based on previous beliefs and eurrent 

experienee that either confirm or invalidate previous beliefs (Maldonado et aL, 2007). 

Human beings systematically construet their causal knowledge based on episodie 
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6.1 

memory. Given that episodic memory contains the memory of the outcomes of 

events , we make inductive abstractions to construct relations between events. Thus, 

in humans, causal memory is influenced by the information retained by episodic 

memory. Inversely, new experiences are influenced by causal memory (Martin and 

Deutscher, 1966, Shoemaker, 1970, Perner, 2000, Bernecker, 2008). In the context 

of CELTS, we refer to Causal Learning as the use of inductive reasoning to 

generéllize rules from sets of experiences. CELTS observes users' behaviour without 

complete information regarding the reasons for their behaviour. Our prediction is 

that, through inductive reasoning, it will be capable of inferring the best set of causal 

relations from its observations of users' behaviour. 

The goal of CELTS' Causal Learning Mechanism (CLM) is two-fold: 1) to find 

causal relations between events during training sessions in order to better assist 

users; 2) to implement partial procedural learning in CELTS' Behaviour Network. 

To implement CELTS' CLM, we draw from Maldonado's work (Maldonado et 

al., 2007), which defines three hierarchical levels of causal learning: 1) the lower 

level, responsible for the memorization of task execution; 2) the middle level, 

responsible for the computation of retrieved information; 3) the higher level, 

responsible for the integration of this evidence with previous causal knowledge. 

CAUSAL LEARNING MODELS AND THEIR IMPLEMENTATION 
IN COGNITIVE AGENTS 

To our knowledge, two research groups have attempted to incorporate 

Causal Learning mechanisms in their cognitive architecture. The first is Schoppek 

with the ACT-R architecture (Anderson, 1993), who hasn't included a role for 

emotions in this causal learning and retrieval processes. ACT-R constructs the 

majority of its information according to the 1/0 knowledge base method. It also uses 

a sub-symbolic form of knowledge to produce associations between events. As 

explained by Schoppek (2002), in ACT-R, sub-symbolic knowledge applies its 

influence through activation processes that are inaccessible to production rules. 
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However, the causal model created by Schoppek in ACT-R "overestimates 

discrimination between old and new states". The second is Sun (2006) who 

proposed the CLARION architecture. In CLARION's current version, during bottom­

up learning, the propositions (premises and actions) are already present in top level 

(explicit) modules before the learning process starts, and only the links between 

these nodes emerges from the implicit level (rules). Thus, there is no unsupervised 

causal learning for the new rules created in CLARION (Hélie, 2007). Various causal 

learning models have been proposed, such as Gopnik's model (2004). Ail proposed 

model use a Bayesian approach for the construction of knowledge. Bayesian 

networks work with hidden and non-hidden data and learn with little data. However, 

Bayesian learning need experts to assign predefined values to variables (Braun et 

al., 2003). Another problem for Bayesian learning, crucial in the present context, is 

the risk for combinatory explosion in the case of large amount of data. In our case, 

constant interaction with learners creates the large amount of data stored in CELTS' 

modules, For this last reason, we believe that a combination of sequential pattern 

mining algorithms with association ru les is more appropriate to implement a causal 

learning mechanism in CELTS. The other advantage of causal learning using 

theusing the combination of AR and SPM is that the systemCELTS can then learns 

in a real-time incremental manner - i.e.that is, the system can update its information 

by interacting with various users. A final reason for choosing association rules is that 

the aforementioned problem explained by Schoppek, which occurs with ACT-R, 

cannot occur when using association rules for causal learning. However, it must be 

noted that although data mining algorithms learn faster than Bayesian networks 

when ail data is available, they have problem with hidden data. Furthermore, Iike 

Bayesian learning, there is a need for experts, since the rules found by data mining 

algorithms must be verified by a domain expert (Braun et al., 2003). In the next 

section, we describe in detail our approach to causal learning and put forward its 

advantages and Iimits. 
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6.2	 CAUSAL MEMORY AND CAUSAL LEARNING IN CELTS' 
ARCHITECTURE 

CELTS' Causal Learning takes place during its cognitive cycles. CELTS' WM 

is monitored by expectation code lets and other types of codelets (see CELTS' 

Emotional Mechanism for more details (Faghihi et al., 200gb)). If expectation 

codelets observe information coming in WM confirming that the behaviour's 

expected result failed, then the failure brings CELTS' Emotional and Attention 

mechanisms back tothat information. To deal with the failure, emotional codelets 

that monitor WM first send a portion of emotional valences sufficient to get CELTS' 

attention to select information about the failed result and bring it back to 

consciousness. The influence of emotional codelets at this point remains for the next 

cognitive cycles, until CELTS finds a solution or has no remedy for the failure. Since, 

relevant resources need to be recruited, to allow CELTS' modules to analyze the 

cause of the failure and to allow deliberation to take place concerning supplementary 

and/or alternative actions, the consciousness mechanism braadcasts this information 

to ail modules. Among different modules inspecting the broadcasted information by 

the consciousness mechanism, the Episodic and Causal Learning mechanisms are 

also collaborating to find previous sequences of events fram Long Term lVlemory 

(LTM) content that occurred before the failure of the action. These sequences of 

events are the interactions that took place between CELTS and users during 

Canadarm2 manipulation by users in the virtual world. They are saved to different 

CELTS' Memories respecting the temporal ordering of the events that occurred 

between users and CELTS. The retrieved sequences of events contain the nodes 

(Figure 6.3.D). Each node contains at least an event and an occurrence time (see 

CELTS' Episodic Learning (Faghihi et al., 200gb) for more information). For instance, 

in Figure 6.3.D, different interactions may occur between users and CELTS 

depending on whether the nodes' preconditions in the Behavior Network (BN) 

become true. To find the causes of the problem praduced by the users in the virtual 

world, the CLM constantly extracts association rules (e.g. X-7Y) between sets of 
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18events with their confidence and support (Agrawal et al., 1993) from ail past 

events. From these associations, CLM then eliminates the rules that do not meet a 

minimum confidence and support according to the temporal ordering of events, 

within a given time interval. This eliminates the non-causal rules from the LTM' 

retrieved sequences of events. After finding the candidate rule as the cause of the 

failure, CELTS' CLM re-executes it and waits for the user feedback. However, if after 

the execution of the candidate rule it turns out that it did not help the user to solve 

the problem, then CELTS' CLM writes in a failure in the WM. The failure leads 

CELTS' Causal Learning to examine other related nodes to the current failure with 

the highest support and confidence. Each time a new node is proposed by Causal 

Learning and executed by BN, an expectation node brings back to the 

consciousness mechanism the confirmation from users to make sure that the found 

rule is the cause of the failure. Finally, if a new cause is found, it will be integrated in 

CELTS' Causal Memory. In the end, if no solution can be found, the Causal Learning 

Mechanism puts the following message in WM: "1 have no solution for this problem". 

After having proposed our causal model for CELTS, we now explain in detail 

the intervention of the causal process in CELTS' cognitive cycles. It is important to 

remember that two routes are possible during CELTS' cognitive cycle- a short route19 

(no causal learning occurs in this route) and a long route (various types of learning 

occur in this route such as episodic, causal and procedural). In both cases, the cycle 

begins with the perceptual mechanism. Hereafter, we briefly summarize each step in 

18 Given a transaction database 0 is defined as a set of transactions T={t1,t2 ... tn} and a set 
of items /={i1, i2, ... in}, where t1,t2, ...,fn ç/. The support of an itemset X ç 1for a database is 
denoted as sup(X) and is calculated as the number of transactions that contains X. The 
support of a rule x~ y is defined as sup(X u Y) / 1Tl- The confidence of a rule is defined as 
conf (X~ Y) =sup(X u Y) / sup(X). 
19 The short route is a percept-reaction direct process, which takes place when the 
information received by the perceptual mechanism is strongly evaluated by the pseudo­
amygdala. The short route is described elsewhere. The long route is CELT8' full cognitive 
cycle. (Faghihi et al., 2008). 
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the cycle and in italics, describe the influence of emotions (here called pseudo­

amygdala20 or EM and/or of CLM). 

Step 1: The first stage of the cognitive cycle is to perceive the 

environment; that is, to recognize and interpret the stimulus (see (Dubois et 

al., 2007) for more information). 

EM: Ali incoming information is evaluated by the Emotional Mechanism when low­

level features recognized by the perceptual mechanism are relayed to the emotional 

codelets, which in turn feed activation to emotional nodes in the Behaviour Network 

(BN). Strong reactions from the "pseudo-amygdala" may cause an immediate reflex 

reaction in CEL TS. 

Step 2: The percept enters Working Memory (WM): The percept is 

brought into WM as a network of information codelets that covers the many 

aspects of the situation (see (Dubois et al., 2007) for more information). 

EM : ln this step, if the received information is considered important or dangerous by 

EM, there will be a direct reaction from EM which primes an automatic behaviour 

from BN (Faghihi et al., 2008b). 

CLM: CLM also inspects and fetches WM information. Relevant traces from different 

memories are automatically retrieved, which contain codelet links with other 

codelets. These will be sequences of events in the form of a list relevant to the new 

information. The list includes the current event, its relevant rules and the residual 

information from previous cognitive cycles in WM. Each time new information 

codelets enter WM, the memory traces are updated depending on the new links 

created between these traces and the new information codelets. Once information is 

thus enriched, CLM sends it back to the WM. 

20 Let us note that in CELT8, a "pseudo-amygdala" is responsible for emotionai reactions 
(Faghihi et al., 2009). 
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Step 3: Memories are probed and other unconscious resources 

contribute: Ali these resources react to the last few consciousness broadcasts 

(internai processing may take more than one single cognitive cycle). 

Step 4: Coalitions assemble: ln the reasoning phase, coalitions of 

information are formed or enriched. Attention codelets join specifie coalitions 

and help them compete with other coalitions toward entering 

"consciousness". 

EM: Emotional codelets observe the WM's content, trying to detect and instil energy 

to codelets believed to require it and attach a corresponding emotional tag. As a 

result, emotions influence which information comes to consciousness, and modulate 

what will be explicitly memorized. 

Step 5: The selected coalition is broadcasted: The Attention mechanism 

spots the most energetic coalition in WM and submits it to the "access 

consciousness," which broadcasts it to the whole system. With this broadcast, 

any subsystem (appropriate module or team of codelets) that recognizes the 

information may react to il. 

CLM: CLM starts by retrieving the past frequently reappearing information that best 

matches the current information resident in WM, ignoring their temporal part. This 

occurs by constantly extracting associated rules from the broadcasted information 

and the list of events previously consolidated. Then, CLM eliminates the rules that do 

not meet the temporal ordering of events. 

Steps 6 and 7: Here unconscious behavioural resources (action 

selection) are recruited. Among the modules that react to broadcasts is the 

Behaviour Network (BN): BN plans actions and, by an emergent selection 

process, decides upon the most appropriate act to adopl. The selected 

Behaviour then sends away the behaviour codelets linked to il. 

EM: When CEL TS' BN starts a deliberation, for instance to build a plan, the plan is 

emotionally evaluated as it is bui/t, the emotions playing a role in the selection of the 

steps. If the looping concerns the evaluation of a hypothesis, it gives it an emotional 

evaluation, perhaps from learned lessons from past experiences. 



119 

CLM: The extraction of the rules in step 5, may invoke a stream of behaviours 

related to the current event, with activation passing through the links between them 

Figure 6.3.0). At this point CLM wait for the CEL TS' Behaviour Network and CEL TS' 

Episodic Learning Mechanism solution for the ongoing situation) (Faghihi et al., 

200gb). Th en, CLM puts its proposition as a solution in CEL TS' WM, if the 

propositions from the decision making and the episodic learning mechanisms are not 

energetic enough to be chosen by CEL TS' Attention Mechanism. 

Step 8: Action execution: Motor codelets stimulate the appropriate 

muscles or internaI processes. 

EM: Emotions influence the execution, for instance in the speed and the amplitude of 

the movements. 

CLM: The stream of behaviours activated in the CEL TS' BN (step 7) may receive 

inhibitory energies, from CLM, for some of their particular behaviours. This means 

that, according to CEL TS' experiences, CLM may use a shortcut (i.e., eliminate 

some intermediate nodes) between two nodes in behaviour Network (BN) to achieve 

a goal (e.g., in Figure 6.3.0 two points v and z). In some cases, again according to 

CEL TS' experiences, CLM may prevent the execution of unnecessary behaviours in 

CEL TS' BN during the execution of a stream of behaviours. 

6.3 THE CAUSAL LEARNING PROCESS 

The following subsections explain the three phases of the Causal Learning 

Mechanism as it is implemented in CELTS' architecture. 

6.3.1 The Memory Consolidation Process 

The causal memory consolidation process takes place during each CELTS's 

cognitive cycle (in Step 2 of CELTS' cognitive cycle), and is very similar to the 

Memory Consolidation Process in CELTS' Episodic Learning Mechanism (see 
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previous chapter). Like the human left prefrontal cortex, CELTS' Causal Learning 

Mechanism (CUv1) extracts frequently occurring events from its past experiences, as 

they were recorded in its different memories (Goel and Dolan, 2004). Accordingly, a 

trace of what occurred in the system is recorded in CELTS' various memories during 

consciousness broadcasts (Faghihi et aL, 200gb). For instance, each event X= (t;,A;) 

in CELTS represents what happened during a cognitive cycle. While the timestamp ti 

of an event indicates the cognitive cycle number. The set of items Ai of an event 

contains an item that represents the coalition of information codelets (see step 4 of 

CELTS' cognitive cycle) that was broadcasted during the cognitive cycle. For 

example, ignoring the emotional valence attributed to the event, one partial 

sequence recorded during our experimentations was < (t=1, c2), (t=2, c4». This 

sequence shows that during cognitive cycle 1 the coalition c2, (indicating that the 

user forgot to adjust the camera in the simulator Figure 6.3.A) was broadcasted, 

followed by the broadcast of c4 (indicating that the user caused a collision in the 

simulator, Figure 6.3.A during the cognitive cycle 2). 

6.3.2 Learning by Extracting Rules from What Is Broadcasted in CELTS 

The second phase of Causal learning, which occurs in Step 5 of CELTS' 

cognitive cycle, deals with mining rules from the sequences of events recorded for ail 

of CELTS' executions. To do so, the algorithm presented in Figure 6.1 takes as input 

the sequence database LTM Patterns (sequences of coalitions that were 

broadcasted for each execution of CELTS), minsup, minconf and UserTrace which 

are the traces of what occurs between users and the application. CELTS' uses the 

first three parameters to discover the set of ail causal rules (R1, R2, ... , Rn) 

contained in the database (Step 1). It then tries to inspect ru les that match with the 

interactions between the current user and CELTS (User_trace) in order to discover 

probable causes that could explain the user's behavior (Step 2). When it does, one 

cause is returned .. The algorithm (Figure 6.1) performs as follows. 1) ln STEP1, it 

saves in a sequence database the sequences of nodes (the coalitions) that are 

broadcasted by CELTS' BN during interactions with users to solve a problem. Then, 
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in STEP2, the algorithm uses the Apriori algorithm (Agrawal et al., 1993) for mining 

association rules between nodes. This uncovers association rules of the form Ri : 

NODE; -7 NODE!, where NODE! and NODE; are potential causes and effects of the 

failure The meaning of an association rule Ri is that if NODE! appears, we are likely 

to also find I\JODEi in the same sequence. But it can be before or after. For this 

reason, the algorithm reads the original sequence database one more time to 

eliminate rules that do not respect the temporal ordering. To do this, we use 

minimum causal support and causal confidence thresholds that a rule should meet in 

order to be kept. Let s be the number of sequences in the sequence database. The 

causal support and confidence of a rule are defined respectively as sup (NODE; • 

NODE!) / sand sup (NODE; • NODE!) / sup (NODE;), where sup(X 1 y ) denotes 

the number of sequences such that NODEj appears before (1) NODE! and sup 

(NODE;) represents the number of sequences containing NODE; (see (Fournier­

Viger et al., 2010) for more details). After eliminating the association rules that do not 

meet the minimum support and confidence thresholds, the set of rules that is kept is 

the set of ail causal rules. A causal rule NODE; -7 NODEr is interpreted thus: if 

NODE; occurs, then NODE! is likely to occur thereafter. In that case we will cali 

NODEj the cause of the failure and NODEr the effect; 2) ln STEP2, CLM tries to 

select the more likely cause for a failure. To do so, this algorithm sets variables 

MaxCE to zero. It then computes the causal estimation (CEK) for each rule by 

multiplying its support and confidence. 

Causal estimation (CE) of Ri =(support of Ri * confidence of Ri ) 

Then, it calculates which node is the most likely to be the cause (the left part of the 

rule having the highest CEK). CEK is the causal estimation of a rule according to ail 

the information broadcast in the system. For each such rule r, if the CEK is higher 

than c. max, c. max is set to that new value (CEK). If the CEK is lower than MaxCE, 

MaxCE remains intact. Finally, when the algorithm finishes iterating over the set of 

rules, the algorithm returns to CELTS' working memory the node (coalition) 
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CandidateCoalitions contained in the left part of the rule that has the highest 

probability value for the c. min + c. max and where c. max >1220. Using this method 

for each node of the retrieved sequence, CELT8' CLM finds the most probable 

causes of the problem produced by the user manipulating Canadarm2 in the virtuai 

world. This node (coalition) will be broadcasted next by CELT8' attention mechanism 

to the user for further confirmation (see the next subsection for detail). 
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SelectCausalNodes (LTMPatterns, MinSupp, MinConf, UserTrace) 

STEP 1: 

Find the sets of association rules AR with the Apriori algorithm for a minimum 
support and confidence thresholds. 

FOR each association rule found 

Calculate its causal support and causal confidence by looking at the 
sequence database again. 

Eliminate the rule if the causal support and causal confidence are 
lower than minimum thresholds for causal confidence and causal 
support. 

END FOR 

STEP 2: 

MaxCE =0.0. 

FOR each rule Ri found in STEP1 

IF RLeft ç UserTrace 

CEK := RcausalSupport * RcausalConfidence 

IF(CEK> MaxCE) 

MaxCE:= CEK 

CandidateCoalition.add : = RRight 

END IF 

END IF 

END FOR 

RETURN CandidateCoalition, MaxCE 

Figure 6.1 Causal Learning algorithm 
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6.3.3 Construction of CELTS' Causal Memory 

The creation of CELT8' Causal Memory (CM) occurs in steps 7 and 8 of the 

cognitive cycle. The main elements of Causal Memory are the rules such as X ~ Y. 

Like CELT8' Behaviour Network (BN), the rules' left and right parts are nodes which 

are the coalitions broadcasted during CELT8' interactions with users. Each rule has 

a support and a confidence (see CE in previous subsection). Each new node (such 

as NODEp) includes a context, an action, a result, and one or more causes. The 

context in this newly created node describes an ongoing event. The left part of the 

rule is filled by the node that caused the failure. The right part of the rule is 

considered as the effect. In what follows, we explain in detail how causal memory is 

formed. The algorithm is presented in Figure 6.2. It takes as parameters the 

sequence database LTM Patterns, which are the sequences retrieved from the Long­

term Memory, the maximum causal estimated node (MaxCE) calculated in the 

previous section, and the NODEr which is brought about by the user's error. Given 

the node NODEr that caused the error after execution by CELT8' BN, CLM creates 

(see Figure 6.2.8TEP1) an empty rule (R) in CELT8' CM and copies the information 

in NODEr into the right part of the rule During a user's manipulation of Canadarm2, 

CLM finds, from the current sequence of executed nodes, the node NODEp executed 

prior to NODErwhich caused the user's error. It then attaches an expectation codelet 

to node NODEp , puts it into the WM to be executed by BN and waits for the user's 

confirmation to find the cause of the problem. If the cause of the failure is NODEp, 

CLM copies the action of node NODEp into the cause of the node NODEr. CLM then 

copies the information of NODEp into the left part of the created rule R in CELT8' 

Causal Memory and makes a direct Iink between NODEr and NODEp. 

If, however, it turns out that the node NODEp in the previous step is not the 

cause of the error, CLM then (Figure 6.2. 8TEP2) searches for the node NODEn with 

the next highest CE value (MaxCE, explained in the previous subsection). It then, 

attaches an expectation codelet to it, puts it into the WM to be executed by BN and 

waits for the user confirmation. If the cause of the error is NODEn, CLM copies its 

action to the NODEr's cause and ail information into the left part of the created rule R 



125 

in CELTS' CM. Finally to save the traces of what was done to find the cause, 1) CLM 

creates a sequence of empty nodes similar to what is retrieved as the sequences of 

executed nodes from CELTS' LTM, 2) assigns NODEnto its first node and NODE, to 

the last node and 3) copies to the sequence created in CM ail intermediate nodes 

between NODEn and NODE" and then creates links between them. The nodes 

NODEn and NODE, in this sequence are tagged as the cause and effect of the 

problem that caused the error. 

However, if, in the execution of the node NODEn in the previous step, the 

resulting information brought back by the expectation codelet to WM does not meet 

the expected results, CLM then (Figure 6.2. STEP3) repeatedly searches for ail the 

nodes of the sequence from NODEn_1 to I\JODE1 with the highest CE value but less 

than the NODEn's value and pursues the same previous processes as explained in 

steps one and two to find the cause of the error. This process will continue for the 

remaining nodes retrieved from CELTS' LTM if each attempt fails. If CELTS cannot 

find any cause, the message "1 am not capable of finding the cause of the problem" 

is shown. 

CausalMemoryConstructor( LTM Patterns, MaxCE, NODE,) 

STEP1: CREATE A NEW RULE R IN CAUSAL MEMORY 

R.RIGHT= NODE, 

FIND the node NODEp in LM Patterns that was executed prior to 
NODE, which has caused the error by looking in the BN. 

Attach an expectation codelet to Nodep Then send Nodep to WM. 

IF ( GetUserConfirmationForCauseOfProblemO = True) 

R.LEFT := NODEp 

NODE,.Cause := NODEpAction 

END IF 

STEP2 ELSE 
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Search for the node NODEn in LM Patterns such that CE =MaxCE 

Attach an expectation codelet to Noden Then send Noden to WM. 

IF ( GetUserConfirmationForCauseOfProblemO =True) 

R.LEFT:= Noden 

NODErCause := Noden . Action 

saveTheTracesOfWhatHappenedO 

END IF 

STEP3 ELSE 

Initialize variables NodeTemp := null and MaxCE:= O. 

FOR EACH node NODEkfrom NODEn_1 to NODE1 of LMpatterns 

IF(NODEk.CE> MaxCE and NODEk.CE < Noden.CE) 

MaxCE:= CEn 

NodeTemp = NodeK 

END IF 

END FOR 

Attach an expectation codelet to l\lodeTemp Then send 
NodeTemp to WM 

IF (GetUserConfirmationForCauseOfProblemO =True) and 
MaxCE > 0) 

NODEr.Cause:= NodeTemp .Action 

R.LEFT:= NodeTemp 
END IF 

ELSE 
Show message "1 have no solution" to user. 

END 

Figure 6.2 CELT8' Causal Memory construction algorithm 
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6.3.4 Using Mined Patterns to Improve CELTS' Behavior 

The third part of CELTS' Causal Learning occurs in Step 7 and Step 8 of 

CELTS' cognitive cycle. It consists in improving CELTS' behaviour by making it 

reuse found rules to predict why users are making mistakes, determine how to best 

help them, and in some specifie cases, to reconstruct the Causal Memory (CM). 

Finding causes will directly influence the actions that will be taken by CELTS' 

Behaviour Network (BN). CELTS' behaviour will improve due to the fact that the 

more it interacts with users and they confirm the correctness of the found causes for 

their mistakes or not, the more the estimated CE values for the nodes in the rules get 

reinforced or weakened. After some interactions between CELTS and the users 

(Figure 6.3 of CELTS' SN), Causal learning may find for instance a chain of 

interrelated nodes. The node V is usually in relation with node Y and node Y is in 

relation with node Z, according to users confirmations and minimum support and 

confidence defined by domain expert. For instance, CLM learned after several 

interactions with users that 60 % of the time "user chose the wrong joints -7 user 

makes the arm pass too close to the ISS". This means that after a while CELTS' 

CLM is capable of jumping from a start point in the BN to a goal and eliminates 

unnecessary nodes between them. However, jumping fram one point to a goal point 

in the BN is not always a good decision as CELTS is a tutor and some intermediate 

nodes are very important hints to users. To solve this problem, in the first step, we 

tagged the important nodes in the BN as not to be eliminated. Thus, after some 

experiments to go from one point to the other (for instance in Figure 6.3.B nodes V 

-7 Z), CELTS' CLM makes an obligatory passage through intermediate nodes such 

as node Y and eliminates only unnecessary nodes between them. In the second 

step, to automatically eliminate unnecessary nodes that have not been pre-tagged 

by a human expert, we used the aforementioned algorithms (previous subsection 

Figure 6.3.STEP2 and STEP3) for finding causes when the users make an error 

while interacting with CELTS. This means that to achieve a goal from a start point in 

the BN, according to CELTS' experiences with users, CLM must decide to preserve 

important nodes and only eliminate those that are unnecessary (e.g., Figure 6.3.B 
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two points v and z) in the BN. Reconstruction of CELTS' Causal Memory occurs 

when, following several interactions with users, CLM needs to alter it in order to 

establish the cause for a particular event. For instance, given a failure and its found 

cause in a rule R, for each interaction and according to the user's confirmation, CLM 

may augment or decrease the CE's values. Thus, if CLM finds that after several 

interactions with a user, a rule CE's value is higher than the regular rule CE's values, 

then CM might be altered for this event and reconstructed as explained in the 

STEP3' of the previous subsection. 

Finally, it is worth noting that CELTS' BN is an acyclic graph. The Causal 

Markov Assumption (CMA) postulates that for any variable X, X is conditionally 

independent of ail other variables in an acyclic causal graph (except for its own direct 

and indirect effects) based on its own direct causes. Accordingly, the refined BN 

produced by our Causal Learning algorithm could be considered a primitive 

proposition for the construction of a causal Bayesian network. 

For instance, like the cars' side and front mirrors example given in the causal 

learning section of chapter Il, after several interactions with users rules are extracted 

by the algorithms: 1) Forgetting camera adjustment (F) -7 Choosing Bad joint (B) -7 

collision risk (C); 2) Choosing bad joint (B) <- Forgetting camera adjustment (F) -7 

collision risk (C). If we assume that CMA holds, both structures in our example entail 

exactly the same conditional and unconditional independent relationships: ln both, F, 

Band C are dependent and F and C are independent condition al on B (Gopnik et al., 

2004). 

6.4 EVALUATION AND RESULTS 

To validate CELTS' Causal Learning Mechanism (CLlVI), we integrated it 

(Figure 6.4.C) into CELTS' consciousness viewer (Figure 3.8) and performed more 

than 250 CELTS executions of Canadarm2 in a simuiator which inciuded camera 

adjustments, collision risks and Canadarm2 bad manipulations as explained in 

chapters four and five. During each execution, CELTS randomly chose and executed 
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one of the SN scenarios. After each CELTS execution, CLM extracted causal rules 

and used them for future interactions. The CLM learning process depends on three 

parameters: 1) the minimum causal support (explained in the previous section), 2) 

the minimum causal confidence (explained in the previous section) and 3) the 

learning rate, adjustable by the domain expert. 

It must be noted that during the 250 CELTS executions, users answered 

differently for different situations and their response to CELTS' inquiries could either 

be always correct, always wrong, or random. 

We predict that if CELTS is equipped with a Causal (CLM), Episodic (EPL) 

and Emotional Learning (EM) Mechanism, it should not only choose the best 

scenario having received the highest emotional valence, but also perform better and 

faster, finding the cause of the users' mistakes and eliminating unnecessary steps in 

the SN. The collaboration between these three mechanisms also helps CELTS to 

sometimes propose a better solution than what is initially offered by the domain 

expert. 

Experiment1: Approximate problem 

It must be noted that when manipulating Canadarm2, it is important for the 

users to know the exact distance between the arm and ISS at ail times. This 

prevents future collisions or collision risks with ISS. To help the user, an expert 

creates scenarios in CELTS' Sehaviour Network (SN) (Figure 6.3.0). These 

scenarios are to help the user avoid collisions between the arm and ISS during 

manipulation of the arm. The four situations that CELTS can detect are the following 

in this type of experiment: 1) the user chose to move the wrong joint; 2) the user was 

tired; 3) the user did not remember his course or 4) the user has never passed 

through this zone on the ISS. 

The scenario starts when CELTS detects that a user has chosen the wrong 

joint and is moving the arm too close to the ISS. CELTS first prompts the following 

message: "Have you ever passed through this zone?" If the answer given by the 



130 

user is yes, CELT8 asks the user ta verify the name of the joint that he has selected. 

If the user fails ta answer correctly, CELT8 proposes a hint in the form of a 

demonstration or it stops arm manipulation. In this case, the user needs ta revise the 

course before starting the arm manipulation again. If the user's answer is no, CELT8 

asks him ta estimate the distance between the arm and 188. If the user fails ta 

answer correctly, CELT8 will then ask the user if she/he is tired, has forgotten the 

lesson about this type of situation or if she/he needs same help. If the user answers 

correctly, it means that the user is an expert user and that the situation is not 

dangerous. 

After several of these interactions with various users, CELT8 found the 

following ru les: 1) 60 % of the time, "the user chose the wrong joints ~ the user 

allows the arm ta get tao close ta the 188", (see for instance, Figure 6.3.D (V~W)); 

2) 35% of the time, "the user has never passed through this zone ~ the user 

manipulates near 188"; 3) 5% of the time, "the user is an expert ~ the user allows 

the arm ta get tao close ta the 188",. 

It must be noted that the percentage value attributed ta the extracted rules 

varies depending on the users' answers ta CELT8' questions. 
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Experiment2: Camera Adjustment Problem 

As explained in chapters four and five, forgetting to adjust the camera prior to 

moving the arm increases collision risk (as depicted in Figure 6.3.A). From the 

interactions that occurred between CELT8 and users to solve camera adjustment in 

chapter four, CLM drew the following conclusions: 1) 60 % of the time, "the user is 

tired -7 the user performs a camera adjustment error"; 2) 30 % of the time, "the user 

has forgotten this lesson-7 the user performs a camera adjustment error" and 3) 10 

% of the time, "the user lacks motivation -7 the user is inactive". 
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After some trials, CELT8' CLM is capable of inducing (by jumping from one 

point to another point in the BN, Figure 6.3.0) the source of the users' mistakes and 

praposing a solution for them in the virtual world. However, given that CELT8 is a 

tutor and must interact with the user, jumping fram the start point to the end of the 

scenario (Figure 6.3.D, V-.7Z) causes the elimination of some important steps in the 

BN. To prevent this, as mentioned before, we tagged the important nodes in the BN 

as nat ta be eliminated. Thus, after some experiments, to go from V-.7 Z, CLM 

obligatorily passed thraugh intermediate nodes such as node Y (Figure 6.3.0). We 

cali this pracess CELT8' partial pracedural learning (Step 8 of CELT8' cognitive 

cycle). 

Experiment3: Complex situation 

To evaluate the extent of CELTS' capabilities when equipped with CLM, EPL 

and EM, we decided to examine a very complex path in the virtual world. We 

considered an exercise between two ISS modules, JEMEF01 (Iabelled and is 

referred as A) and MPLM02 (Iabelled by red cube and is referred to as END) in the 

virtual world (as shown in Figure 6.4) in which users' mistakes while moving 

Canadarm2 from configuration A to END are very likely. (Figure 6.4.A). 

As shown in Figure 6.4.A, Canadarm2 is very close to configuration A. Thus, 

the exercise starts near to the module A and finishes at module END. In the first step 

of this experiment, the user has handled the collision risk prablem with the 

configuration A. In the second step, the user faces at least four paths, fram 

configuration A to END (Figure 6.4.A). Importantly, the expert system has conceived 

only three scenarios in the BN regarding only three paths with their corresponding 

obstacles to be avoided: P1 (AECDH), P2 (AEBCDH), and P3 (AEFGHD) (Figure 

6.4.B). 

Whichever paths are chosen by the users, obstacles A, E, B, C, D, H, G, and 

F have to be avoided in the virtuai world to prevent any collision. Therefore, the 
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nodes in the BN corresponding to those obstacles in the virtua\ world are marked as 

"Not to be eliminated", by the domain expert. 

The domain expert marks Configurations A, C and 0 as very important for the 

paths P1 and P2. Thus, in configuration C, in order to go through them without 

causing any collision risk, the user must first rotate camera8 60 degrees horizontally 

(Figure 6.4.A) and then choose the specifie joint EP and then joint SP (Figure 3.6). In 

configuration D, the user must first adjust camera6 in order to have a good view of 

obstacles Gand H before performing any movements. In path P3, the user must 

respect the following steps to prevent collision risk while manipulating Canarm2 from 

the configuration A to the END. First, in configuration E, camera2 must be turned 30 

degrees, and the manipulation must then be continued using joint SR. Then, in 

configuration F, the joint SY must be selected and rotated 90 degrees to prevent any 

collision with ISS. In configuration G, the obstacle H must be avoided by rotating 

Canadarm2 60 degrees. 

It must be noted that when we refer to the Episodic Scenario (see below in 

Part One) in this experiment, we mean that corresponding nodes in CELTS' BN 

(Figure 6.4.B) are marked as "nat ta be eliminated," since our purpose here is to 

examine CELTS' capacity to find the best scenario among different solutions given 

by the expert. And when we refer to the Causal Scenario (see below Part two of this 

experiment), we mean that corresponding nodes in CELTS' BN (Figure 6.4.B) can be 

eliminated. Unlike EPL, CLM must find the cause of users' mistakes and eliminate 

unnecessary nodes between points Land T in the BN (Figure 6.4.B). 

Thus, after a number of interactions with different users, we expect CELTS to 

propose the most emotionally positive paths from configuration K to Land eliminate 

unnecessary nodes between points L to 1. The experiment is divided into two parts: 

Part One (Episodic Scenario): 

When the user (Figure 6.4.A) begins a manipulation and makes a mistake, 

the precondition of BN nodes activates and waits for the relevant information to fire 

corresponding nodes and demonstrate a message to the user. For instance, the BN 

node K activates when Canadarm2 approaches configuration A in the virtual world. 
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To help users handle the collision risk problem with configuration A, the domain 

expert conceived two paths in CELTS' BN (from points K to L in Figure 6.4.B) that 

correspond to this situation in the virtual world. After interacting with users, at point L, 

at the end of scenario1 and scenario2, CELTS asks an evaluation question to be 

sure that the hints or questions given to the users were useful and that users are 

aware of the collision risk in the virtual world. 

It must be noted that due to the imminent collision risk, users' incorrect 

answers to CELTS' inquiries will activate the short route and trigger direct emotional 

interventions as explained in chapter four. 

As during the collision risk experiment explained in chapters four and five, 

CELTS has here two choices to help users handle the situation. It can give a direct 

solution to the users (scenario2, Figure 6.4.B) or start by providing hints to help them 

handle the situation by themselves (scenario1, Figure 6.4.B). 

After many executions, EPL extracted corresponding frequent event 

sequences for the first part of this experiment (Figure 6.4. BK-L) , with a minimum 

support (minsup) higher than 0.45. Using the information extracted from this 

experiment, CELTS proposed scenario1 to help users prevent collision risk in the 

virtual world (Figure 6.4.B), because it contains a positive emotional valence as 

opposed to scenario 2. 
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Part two (Causal Scenario): 

ln the second part of the experiment, after CELT8 learned to choose the best 

scenario to help users prevent collision risk with configuration A (Figure 6.4.A) , 

users were asked to continue their manipulation and move Canadarm2 to the 

configuration END. CLM learned how to help users when they choose paths P1, P2, 

P3 to move Canadarm2 from configuration A to END based on the domain experts' 

hints and questions in the BN during the250 random executions mentioned at the 

onset of this section. 

Here are the details. The extracted information from the second part of our 

experiment is 1) 50 % of the time, "the user is tired -7 the user forgot to adjust 

camera8"; 2) 40 % of the time, "the user is tired -7 the user performs a bad 

manipulation of Canadarm2"; 3) the remaineder10 % rules found by CLM are that 

"the user is tired -7 user must revise the course", "the user is tired -7 user did not 

make a collision risk", and "the user is tired -7 user wants to continue Canadarm2 

manipulation". Note, however, that the third rule found by CLM is not always true. 

Other extracted information demonstrated that 1) 50 % of the time, "the user 

forgot to adjust cameras -7 the user had a bad view of 188' configurations and 

Canadarm2; 2) 20% of the time, the "the user had a bad view of 188' configurations 

and Canadarm2 -7 the user caused a collision risk near obstacles C, D, E, and F"; 2) 

20% of the time "the user forgot to adjust the cameras -7the user manipulates very 

near to obstacles Gand H"; 3) the remainder 10 % rules found by CLM are that "the 

user forgot to adjust cameras -7 the user must review the lesson", "the user forgot to 

adjust cameras -7 the user adjusted camera8", and "the user was not tired -7the 

user forgot to answer questions". 

Like the car' side and front mirrors example explained in the previous section 

using mined patterns to improve CEL TS' behaviour, the extracted rules in this 

experiment demonstrate that if a user forgets to adjust the cameras in the virtual 

world, he/she will have a bad view of the virtual world and this. will increase collision 

risk. 
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The extracted rules could be interpreted such that the probability of the user 

forgetting to adjust the cameras is independent of the probability of a collision with 

ISS' configurations, provided that the user has poor visibility in the virtual world. The 

extracted rules could also be interpreted such that the probability of having a poor 

view of ISS' configurations is independent of the probability of causing collisions in 

the virtual world provided that the user has forgotten to adjust the camera. 

The percentage values CELTS attributed to the various possible causes are 

true most of the time, although they must be verified by a domain expert before use. 

These experiments demonstrated that CELTS is capable of choosing the best 

scenario for a given situation, selecting that which has received the highest positive 

emotional valence during its interactions with the users. It is furthermore capable of 

eliminating unnecessary nodes in the BN. 

The text has referred up to now to paths 1 through 3 in the explanation of how 

to go from configuration A to EI\ID procedures. However, there exists a path P4 

which could be considered as a shortcut. 

The relevant obstacles to be avoided for this path are: A, E, and D. Ideally, 

CELTS would eventually ask users if they have some information about the 

obstacles they will encounter. However, CELTS cannot ask these questions when 

users choose path P4 prior to starting Canadarm2 manipulation, since the domain 

expert has not conceived relevant scenarios for this path (P4) in CELTS' BN. In this 

case, CELTS' CLM automatically connects to the CanadarmTutor database 

(Nkambou et al., 2006). The database contains different paths that users such as 

experts and novices have previously performed to move Canadarm2 on the ISS. 

Searching ail the information about paths, CELTS' CLM, has the capacity of giving 

primitive hints to users when they encounter obstacles E, D and H in path P4. 

One of our future goals would be to equip CELTS with the capacity of asking 

users about obstacles they might encounter in this path, before the manipulation 

starts. 
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6.4.1 CELT5' Performance after the Implementation of Causal Learning 

We added a statistical tool to CELTS (Figure 6.5) that observes how 

association rule algorithm behaves when the number of recorded sequences 

increases. The experiment in the previous section was done on a 3.6 GHz Pentium 4 

computer running Windows XP. Each CELTS interaction with user contains from four 

to 20 hints or questions depending on what the user answers and the choices 

CELTS makes. Each recorded sequence contained approximately 30 broadcasts. 

Figure 6.5 presents the results of the experiment. For ail graphs, the X axis 

represents the executions from 1 to 250. The Y axis denotes execution times in 

graph A, and rule counts in graph 8-0. The first graph (A) shows the time for mining 

rulès which was generally short (Iess than 10 s) and after some executions remained 

low and stabilized at around 4 rules during the last executions. In our context, this 

performance was very satisfying. However, the performance of the rule mining 

algorithm could still be improved as we have not yet fully optimized ail of its 

processes and data structures. In particular, in future works we will consider 

modifying the algorithm to perform incremental mining of rules. The second graph 

(8) shows the number of causal rules found after each CELTS execution. This would 

improve performance, as it would not be necessary to recalcu/ate from scratch the 

set of patterns for each new added sequence. The third graph (C) shows the 

average number of behaviours executed (nodes in the BN) for each CELTS 

execution without CLM. It ranges from 4 to 8 behaviour broadcasts. The fourth graph 

(0) depicts, after the implementation of causal learning, the number of rules used by 

CELTS at each execution. Each executed rule means that CELTS skipped some 

unnecessary intermediate steps in the BN. The average number of executed rules 

for each interaction ranged from 0 to 4 rules. This means that CELTS generally used 

fewer nodes to perform the same task after the implementation of causallearning. 
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Figure 6.5 Causal Learning performance 

6.5 CONCLUSION 

ln this chapter we proposed and implemented a Causal Learning Mechanism 

(CLM) for CELT5, in order to provide optimal tutoring assistance to users by inferring 

the likely causes of their mistakes in various situations. As in the case of humans, 
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the episodic and causal memories in CELT8 mutually influence each other during 

interactions with users. For instance, when the causes found by CELT8 turn out to 

be false, this influences the support of the causal rules which in turn influences 

episodic memory- leading to a increase or decrease of the event supports. 

To our knowledge, researchers in artificial intelligence have up to now limited 

themselves to designing causal reasoning and causal learning models for cognitive 

agents with Bayesian methods. However, the Bayesian approach is not suitable 

when agents such as CELT8 face large amounts of data. This study, for the first 

time, creates a causal learning model for cognitive agents based on the sequential 

and temporal nature of the data stored in the system, combining sequential pattern 

mining algorithms and association rules. When equipped with CLM, CELT8 is often 

capable of finding the causes of users' mistakes and proposing appropriate hints to 

help them. 

CELT8 is also capable of refining the BN by eliminating unnecessary nodes 

after several interactions with users. The refinement process could be considered as 

an alternative to the construction of a primitive version of a Bayesian Network 

structure. The suggested primitive network can then be verified and validated by a 

domain expert. 



CHAPTER VII 

CONCLUSION AND DISCUSSION 

Human beings are endowed with emotions and different types of learning such 

as emotional learning, episodic learning, procedural learning, etc. (RolIs, 2000, 

Purves et aL, 2008, Squire and Kandel, 1998). Emotions influence learning and 

decision-making (Damasio, 2000).The collaboration between emotions and different 

types of learning mechanisms helps guide the human decision-makingprocess and 

the human capacity to better adapt to their dynamic environment. Thus, in order for a 

cognitive agent to resemble human agent, it must, at the very least, be equipped with 

different types of learning mechanisms and an emotional mechanism, and have 

those properly related to decision and adaptation. 

Although many attempts have been made by researchers in artificial 

intelligence to implement emotions and different types of learning in cognitive 

agents, none have yet been completely successful. The setback is in part due to the 

fact that different types of learning are incompatible; the learning of explicit and 

implicit knowledge, for example. 

However, after the implementation of emotions and various types of learning 

mechanisms in cognitive agents, one of the crucial tasks, is to find a way for these 

mechanisms to collaborate and help improve the decision-making process in the 

agent. In this study, we used energy levels, as explained by Maes (1989), for 
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decision-making in CELTS' behaviour network, with however some modifications to 

allow the intervention of various types of learning. When faced with a problem, 

CELTS chooses and executes the most energetic solution, among the different 

solutions proposed by various modules. For instance, CELTS' Attention Mechanism 

may choose the most energetic coalition in the Working Memory, or CELTS' 

Emotional Mechanism may send enough energy to special nodes in the SN to fire 

them directly. In our model, emotional interventions influence ail modules directly or 

indirectly. 

ln this study, we gave a preliminary solution to the implementation of different 

types of learning and emotions in CELTS. CELTS is equipped with both implicit and 

explicit learning. CELTS' learning mechanisms are implemented in a distributed and 

modular manner with emotions influencing ail of them. They are Emotional learning, 

learning of Regularities, Procedural learning, Episodic learning and Causal learning. 

Implicit learning is unconscious and independent of the Attentional Mechanism (AM). 

It occurs in the Emotional Mechanism (EM), the Working Memory (WM) and the 

Sehaviour Network (SN), whereas explicit learning occurs in different learning 

modules after information is broadcasted by the access consciousness (step 5 of 

cognitive cycle). Aillearning in CELTS occurs in a bottom-up fashion. 

Through this study, we discussed in detail the integration of the following 

mechanisms: 

a) An emotional mechanism and emotionallearning 

b) An episodic learning mechanism 

c) A causal learning mechanism and partial procedurallearning. 

ln the following, we summarize our contribution to these mechanisms and put 

forward their limitations as weil as some interesting future work. 

EMOTIONS 

ln chapter two, we pointed out that there is no consensus on the definition of 

emotions and how they emerge in humans. While psychological theories propose an 

abstract approach to the study of emotions, computational models propose a 

7.1 
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pragmatic framework for it. Thus, the implementation of emotions in a computational 

fashion impacts psychological theories by revealing their Iimits and hidden 

hypotheses (Marsella et al., ln press). The implementation of emotions in computer 

science has taken two principal approaches. Some computer scientists are 

interested in using emotions to make their agents more believable, others work on 

the functional aspects of emotions and their influences on the agents' behaviour, 

learning and social aspects (Adam, 2007). In this study, we have adopted the latter 

approach. 

Summary of our contributions 

To implement an Emotional mechanism in their agent, most researchers in 

computer science have used a "Centralists" approach. In this study, we proposed a 

"peripheral-central" approach. The peripheral-central approach takes into account 

both the short and long route information processing and reactions, as in humans. 

Both the short and long routes perform in a parallel and complementary fashion in 

CELTS' architecture. The emotional mechanism and emotional learning mechanism 

described and implemented in this study intervene in both routes and interact with 

different parts of CELTS during consciousness broadcasting, during learning and 

during CELTS' reactions to the outside stimuli. This brings our artificial tutor closer to 

human-Iike behaviour. The emotional learning mechanism is kept aware of the 

ongoing situations and can, in real-time, learn and at the same time contribute 

emotional valences to the description of the situation. When it becomes "conscious", 

it may then contribute in a richer way to the decisions made and the learning 

achieved by the system. The new emotional learning mechanism thus offers greater 

flexibility in learning and behaviour adaptation. CELTS' emotional learning 

mechanism helps to drive its learning mechanisms to the most important elements in 

a situation to learn better. 

Comparing to acc model, our model propose: 1) a simplified implementation 

of emotions; 2) a detail discussion about the emergence of emotions in a cognitive 

agent. How emotional valences and intensities emerge and could be managed in a 

cognitive agent; 3) how the agent's assigns emotional states to behaviour. 
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As our experiment illustrates, when CELT8 is equipped with this new 

emotional learning mechanism, it may, when needed, react more swiftly (i.e., react 

sooner in the cognitive cycle). The implementation of emotions in CELT8 opens a 

door to cognitive scientists interested in the experimental aspects of emotions. 

Limitations and Future works 

One of the Iimits of the emotional mechanism proposed here is that the 

emotional valence assignment does not fit with the dimensional theory as explained 

by Russell and Lang (1980, 1993). The second issue to be explored in the future is 

the matter of how to make CELT8 use its own emotions to make it more believable 

as an agent to the humans with which it has to interact. 

7.2 EPISODIC MEMORY 

Episodic memory is the memory of what, where and when. It allows people to 

mentally travel back through time as weil as to imagine the future. Recently, studies 

have demonstrated the role of the hippocampus and its influences on episodic 

memory consolidation in the human brain. Two major memory consolidation theories 

are proposed by researchers: 1) the multiple-trace theory which postulates a 

hippocampus-dependent approach; and 2) the standard consolidation theory which 

postulates a hippocampus-independent approach. 

The multiple-trace theory postulates that every time an event causes memory 

reactivation, a new trace for the activated memory is created in the hippocampus. 

Memory consolidation occurs through the reoccurring loops of episodic memory 

traces in the hippocampus and the construction of semantic memory traces in the 

cortex. Thus, the cortical neurons continue to rely on the hippocampus even after 

encoding. In this study, based on the current neuroscientific multiple-trace theory, we 

proposed the implementation of an Episodic memory and an Episodic Learning 

Mechanism in CELT8. 
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5ummary of our contributions 

To implement our proposed computational model of episodic learning, we 

used a data mining approach. As far as we know, no cognitive agent presently uses 

emotional valences and data mining algorithms to improve its behaviour. However, 

interaction between our agent and its dynamic environment generates large amounts 

of data. The data mining approach has proven very useful in extracting significant 

information from the large amount of data that it has to handle. During real time 

interactions with users, CELT8 learns how to associate an event and its 

corresponding emotional valences with a partial/complete sequence of behaviours 

chosen by the Behaviour Network for execution. The emotional valence association 

to an event occurs according to the users' correct or incorrect answers to CELT8' 

questions. CELT8' EPL occurs in an unsupervised and bottom-up fashion. 

ln CELT8, the collaboration between the emotional mechanism and this 

episodic learning helps to choose the behaviour that is most Iikely to bring the agent 

to a self-satisfactory emotional state. The episodic learning is also useful when an 

expert system must propose different solutions to a problem. EPL can, after 

interactions with users, automatically decide which solution would best help users 

solve a given problem. 

Limitations and Future works 

However, the episodic learning algorithm used in this study is not 

incremental. For each CELT8 executions, the algorithms must read the whole 

database. It would also be better that a computational model be built for the standard 

consolidation theory explained in chapter two and that it be compared with the 

multiple-trace theory. 

We predict that the implementation of the computational model of the 

multiple-trace and the standard consolidation theories should impact psychological 

and neuropsychological theories by revealing their Iimits and hidden hypotheses. 
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7.3 CASUAL LEARNING 

Causal learning is the process through which we come to infer and memorize 

an event's reasons or causes based on previous beliefs and current experience that 

either confirm or invalidate previous beliefs (Maldonado et al., 2007). 

Summary of our contributions 

The Causal Learning Mechanism (CLM) proposed in this study provides an 

optimal tutoring assistance to users by inferring the causes of the users' mistakes in 

various situations. To our knowledge, researchers in artificial intelligence have up to 

now limited themselves to Bayesian methods in order to design causal reasoning 

and causallearning models for cognitive agents. However, the Bayesian approach is 

not suitable when agents such as CELT5 face large amounts of data. This study, for 

the first time, combines sequential pattern mining algorithms and association rules to 

devise a causal learning model for a cognitive agent based on the sequential and 

temporal nature of the data stored in the system. Causal knowledge is generated in 

CELT5 after 1) the information is broadcasted in the system, 2) a decision is made 

about the ongoing problem, which 3) is reinforced by future experiences while 

CELT5 interacts with its environment. The Emotional Learning mechanism operates 

through the activation it sends to the information in CELT5' WM. This causes 

specific pieces of information to be chosen by CELT5' Attention Mechanism. This 

information, if mined by the causal learning algorithm, will more likely be activated in 

the future when CELT5 encounters similar problematic situations. CLM also helps 

partial procedural learning in CELT5' Behaviour l'Jetwork (BN). After a certain 

nurnber of similar experiences, CLM eliminates unnecessary nodes in CELT5' BN. 

Because of this, our mechanism could be considered as an alternative to a Bayesian 

algorithm. The important elements in CLM are the temporal occurrences of the 

events-the user's confirmations of causes found by CLM. A CLM-equipped CELT5 

has is capable of finding causes and propose appropriate hints to help users. 
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It is worth mentioning that episodic and causal memory in CELTS mutually 

influence each other during interactions with users. For instance, when the causes 

found by CELTS turn out to be false, this influences the support of the causal rules, 

which in turn influences episodic memory- leading to an increase or decrease of the 

event supports. Mutually, the reoccurrence of an event increases its support which in 

turn influences the cause of that event. 

Limitations and Future works 

However, the causal learning algorithms used in this study are not 

incremental. Therefore, for each CELTS executions, the algorithms must read the 

whole database. Another limit in our work is that given the observed data and the 

confidence and support calculated by CELTS' CLM, the question remains as to how 

one could produce the probability distribution as it exists in Bayesian I\letworks. 

7.4 COMPARISON BETWEEN DIFFERENT ARCHITECTURES' LEARNING 
CAPABILITIES 

Now we compare CELTS' learning capabilities with three popular 

architectures: LI DA, ACT-R and CLARION (Table 7.2). 

First, we make a comparison between CTS and its emotional/learning version 

(CELTS) discussed in this study (Table 7.1). From chapter four to chapter six, we 

added new mechanisms to CTS. We first added the Emotional Mechanism and 

Emotional Learning. We then implemented the Episodic Learning Mechanism and 

observed its involvement with emotions. Finally, we added the Causal Learning 

Mechanism to obtain CELTS. In chapter six, we performed some experiments to 

verify CELTS' total capacity, given that it is equipped with EM, EPL, and CLM. 
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CTS+ EM + EPL
CTS CTS+EM CTS+ EM + EPL 

+ CLM = CELTS 

Procedural Learning 
X X	 X X

(Explicitllmplicit) 

Emotional Learning -	 X X X 

Episodic Learning - -	 X X 

Emotional Learning
 
help other types of - - X X
 

learning
 

Causal Learning - - -	 X 

Table 7.1	 Comparison between CTS and CELTS (- =the architecture is not equipped with 
this specifie learning; X = the learning mechanism is implemented) 

The implementation of Episodic Memory (EM) and Learning (EPL) in L10A and 

CELTS is very similar. In both, EPL consists of a declarative memory (OM) for the 

long-term storage of autobiographical and semantic knowledge and a short-term 

transient episodic memory (TEM). The Episodic Learning in both architectures 

occurs in bottom-up fashion. However, while L10A uses variants of sparse distributed 

memory (SOM) to implement Episodic Memory, CELTS uses a sequential pattern 

mining approach. To implement our episodic learning, we chose the data mining 

approach because of its reliability when facing large amounts of data. Furthermore, 

using data mining algorithms in our agent made the simulation of the multiple-trace 

theory of memory possible. However, SOM has many setbacks when used for the 

implementation of episodic memory. First, given that SOM offers a very limited 

capacity of storage, adding new information makes previous information blurry in the 

memory information retrieval process. This is because new and previous information 

corrupt each other. According to Fan (1997), SOM performance for pattern 

recognition is good in theory, but not in practice. 
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CELTS' Episodic Learning occurs in an unsupervised fashion and a kind of 

reinforcement learning, for it depends on the user's answers to the questions or 

hints. 

While the designers of L10A, ACT-R and CLARION have only discussed the 

use and importance of Emotions and Emotional Learning in the different types of 

learning and decision-making in theoretical terms, in our study, we proposed an 

actual concrete architecture in which these elements have been implemented.. 

While L10A is not equipped with Causal Learning, CLARION is equipped with 

supervised learning. However, at this point, there is no computational model for 

causal learning proposed in CLARION. CELTS' Causal Learning Mechanism occurs 

in an unsupervised fashion and through a type of reinforcement learning, for it 

partially depends on the temporal occurrence of the events and the users' 

confirmation. 

As is the case with L10A's architecture, CELTS' bottom-up learning is 

implemented for ail types of learning such as learning of Regularities, Emotional, 

Episodic, Procedural and Causal learning. CELTS is not equipped with Attention 

Learning. One of our interests is to find a way to integrate it into the architecture. 
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L1DA ACT-R CLARION CELTS 
(Franklin, 2006) (Anderson,2004) (Sun, 2006) (2010) 

Explicit Perceptual 
X - X -

Learning 

Episodic Learning X X - X 

Explicit Procedural 
X X X XLearning
 

Implicit Procedural
 
- X X X

Learning 

Emotional Learning
 
help other types of - - - X
 

learning
 

Bottom-up Supervised 
X - X X

Learning
 

Supervised Causal
 
- - X XLearning
 

Unsupervised Causal
 
- X - XLearning 

Table 7.2 Comparison between L1DA, ACT-R, CLARION and CELT8 (- =the architecture is 
not equipped with this specifie learning; X = the learning mechanism is 
implemented) 

To conclude this thesis, we present the cognitive and computer science 

contributions it makes to work on cognitive architecture. 

7.5 CONTRIBUTION TO THE COGNITIVE DIMENSION 

To propose our generic emotional architecture, emotional learning, episodic 

learning, and causal learning mechanisms, we drew from current neuroscientific 

models. The resulting architecture is more neurologically plausible, for it integrates a 

recent view of the amygdala's double role with respect to emotions. That is, 

emotions allow CELT8 to learn, and then react swiftly in emotionally-burdened 

situations, as weil as supply an emotional assessment to ail sorts of stimuli in 

working memory which may be used for learning purposes. This might also 



151 

accelerate learning speed for the emotionally-influenced information that enters 

working memory and is later braadcasted thraugh CELTS' cognitive cycles. CELTS' 

pracessing is now also closer ta human cognitive processing. In fact, fram a 

cognitive-functional point of view, the agent is now better equipped ta interact in a 

world where stimuli are not created equal, some being more pleasurable or more 

dangerous (physically or socially) th an others. We believe that these generic learning 

mechanisms are also useful ta generate testable hypotheses about aspects of 

human learning and open new lines of research in this domain. The algorithms are 

also adaptive and useful ta other cognitive architectures such as LI DA, ACT-R and 

CLARION. 

7.6 CONTRIBUTION TO THE COMPUTER SCIENCE DIMENSION 

Ta implement emotions and various types of learning mechanisms in CELTS, 

we used several types of algorithms and methods, such as: a) in CELTS' Emotional 

mechanism the nodes' behaviour are simulated using a sigmoid function; b) ta 

implement episodic learning we used sequential data mining algorithms; c) ta 

implement causal learning we used a mix of sequential data mining and association 

rules algorithms. The algorithms used in this study were first developed and 

improved in GDAC before being integrated into CELTS. These algorithms contribute 

fundamentally ta the improvement of cognitive agents' learning capabilities. 

Ta our knowledge, no cognitive agent presently uses emotional valences or 

data mining algorithms ta improve their behaviour. Now, CELTS can learn 

continually, adapt agilely to dynamic environments, and behave flexibly and 

intelligently when faced with new situations. Although CLM, EPL, and EM are 

implemented separately and in a modular fashion, they collaborate in parallel to help 

CELTS' decision-making mechanism. The integration of emotions in the machine 

and their collaboration with the other aforementioned learning algorithms is an 

important enhancement in cognitive agents learning capabilities. These algorithms 

could also be used in other cognitive or emergent agents to improve their 

perform ances. 
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According to Plato, human behaviour flows from three main sources: desire, 

emotion, and knowledge. Artificial agents have dealt weil with desire and knowledge 

for some time now. Our proposai, we believe, takes us closer to the last great source 

of human behaviour: emotion. 
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