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ABSTRACT

Professional human tutors are capable of taking into account past and present
events, and are driven by social concerns. To be considered a valuable technology
for improving human learning, a cognitive tutoring agent must be capable of the
same. Given that dynamic environments evolve, a cognitive agent must evolve to
accommodate structural modifications and the arrival of new phenomena.
Consequently, the ideal cognitive agent should possess learning capabilities whose
mechanisms are based on the types of learning found in human beings; i.e.,
emotional learning, episodic learning, procedural learning, causal learning, and
learning of regularities (Purves et al., 2008, Squire and Kandel, 1998).

Reconstructing and implementing human learning capabilities in an artificial
agent is far from being possible with our actual knowledge and computers capacities.
To achieve human-like learning and adaptation in machines, or to simply better
understand human adaptability, we have to design human-inspired learning
mechanisms. The strategies for the implementation of learning mechanisms in
agents have been to use one type of learning or a collection of learning types in one
single mechanism (Vernon et al., 2007). However, the various types of learning are
functionally incompatible (Sherry and Schacter, 1987). This work describes the
conception of learning and of the emotional version of CTS (CELTS); that is, a
complex cognitive agent equipped with emotions and a number of leaming
mechanisms such as emotional, episodic and causal learning. CELTS’ performance
is upgraded by the parallel, complementary and distributed functioning of learning
mechanisms and emotions.

Keywords: cognitive agent, emotions, episodic learning, causal learning.



RESUME

Les tuteurs professionnels humains sont capables de prendre en considération
des événements du passe et du présent et ont une capacité d’'adaptation en fonction
d’évenements sociaux. Afin d’étre considéré comme une technologie valable pour
Famelioration de l'apprentissage humain, un agent cognitif artificiel devrait pouvoir
faire de méme. Puisque les environnements dynamiques sont en constante
évolution, un agent cognitif doit pareillement évoluer et s'adapter aux modifications
structurales et aux phénoménes nouveaux. Par conséquent, 'agent cognitif idéal
devrait posséder des capacités d'apprentissage similaires a celles que I'on retrouve
chez [I'étre humain; l'apprentissage émotif, l'apprentissage épisodique,
I'apprentissage procédural, et 'apprentissage causal.

Cette thése contribue a 'amélioration des architectures d’agents cognitifs. Elle
propose 1) une méthode d'intégration des émotions inspirée du fonctionnement du
cerveau; et 2) un ensemble de méthodes d'apprentissage (épisodique, causale etc.)
qui tiennent compte de la dimension émotionnelle. Le modele proposé que nous
avons appelé CELTS (Conscious Emotional Learning Tutoring System) est une
extension d'un agent cognitif conscient dans le réle d'un tutoriel intelligent. Il
comporte un module de gestion des émotions qui permet d'attribuer des valences
émotionnelles positives ou négatives a chaque événement pergu par I'agent. Deux
voies de traitement sont prévues: 1) une voie courte qui permet au systéme de
répondre immédiatement a certains événements sans un traitement approfondis, et
2) une voie longue qui intervient lors de tout événement qui exige la volition. Dans
cette perspective, la dimension émotionnelle est considérée dans les processus

cognitifs de I'agent pour la prise de décision et I'apprentissage.



Xiv

L’apprentissage épisodique dans CELTS est basé sur la théorie du Multiple
Trace Memory consolidation qui postule que lorsque l'on percoit un événement,
I'nippocampe fait une premiére interprétation et un premier apprentissage. Ensuite,
l'information acquise est distribuée aux différents cortex. Selon cette théorie, la
reconsolidation de la mémoire dépend toujours de I'hippocampe. Pour simuler de tel
processus, nous avons utilisé des techniques de fouille de données qui permettent la
recherche de motifs séquentiels fréquents dans les données générées durant
chaque cycle cognitif,

L'apprentissage causal dans CELTS se produit a laide de la mémoire
épisodique. |l permet de trouver les causes et les effets possibles entre différents
événements. Il est mise en ceuvre grace a des algorithmes de recherche de régles
d’'associations. Les associations établies sont utilisées pour piloter les interventions
tutorielles de CELTS et, par le biais des réponses de I'apprenant, pour évaluer les

regles causales découvertes.

Mots clefs: agents cognitifs, émotions, apprentissage épisodique, apprentissage
causal.



CHAPTER |

INTRODUCTION

Although there is no consensus on the definition of the term agent, learning’
(Langley, 1996) is definitely one of its important properties (Wooldridge, 1999,
Franklin and Graesser, 1997). The term agent spawned a wide area of discussion
between scientists ranging from bacteria-like tropistic agents (such as Braitenberg's
vehicles (1984)), to clever but inflexible cambrian-intelligent agents (Brooks, 1999).
In the last three decades, scientists have tried to design cognitive agents that can
interact agilely with humans. The success or failure of the designed and
implemented agent architectures is, at least, in part owed to the learning
mechanisms that are implemented by the designers (Russell and Norvig, 2003,
Franklin and Graesser, 1997, Franklin et al., 2007, Subagdja et al., 2008 ). Humans
are endowed with various types of learning mechanisms, for instance emotional
learning, episodic learning, procedural learning, etc (Purves et al., 2008, Squire and
Kandel, 2000). It has been suggested recently that all types of learning in humans
are directly influenced by emotions (Damasio, 1994, Damasio, 2003, Bower, 1992).
Until recently, the strategies for the implementation of learning mechanisms in

agents were to use only one type of learning” for everything or to use a loosely

' Learning is “the improvement of performance in some environment through the acquisition
of knowledge resulting from some experience in that environment” (Langley, 1996).

% For instance, the Soar architecture can only learn new production rules (Vernon et al,,
2007).



connected collection of learning types in one single mechanism® (Vernon et al.,
2007). However, various types of learning are functionally incompatible (Sherry and
Schacter, 1987).

The goal of this study is to integrate emotions and a number of learning mechanisms
which work in a parallel, complementary and distributed manner into one single
cognitive agent. We introduce the Conscious-Emotional Learning Tutoring System
(CELTS), a new version of CTS (Dubois, 2007). CELTS is a cognitive agent based
on the Baars’ workspace theory of consciousness (Baars, 1997). According to Baars'
theory, the human mind is made up of a vast nhumber of dumb, domain-specific,
specialists designed to solve problems quickly, presumably by applying fast and
frugal heuristics (Gigerenzer, 1991, Gigerenzer and Todd, 2000). When a specialist,
or a group of specialists, works out its solution to a part of a problem, it broadcasts
the found solution to all other specialists, who can in turn apply their expertise to the
problem. Through this broadcasting, a global workspace emerges, which we
experience as consciousness. Damasio (2000) postulated that sensation, emotion,
cognition and thought are important processes that play crucial roles in
consciousness and are in perpetual and repetitive interaction among themselves.
Accordingly, cognitive agents must at least be equipped with perception, memory,
learning, emotions, motivators, reasoning and actions (Newell, 1990, Alvarez 2006,
Faghihi et al., 2008a).

Working with CELTS has allowed us to conceive learning differently than what
was done before. First, emotional learning can now be conceived as a pre-theoretic
imprecise term that covers two distinct mechanisms: 1) short route: a quick but dumb
(i.e., reflex-like) mechanism that prepares us to quickly pull away from or confidently
approach a situation; 2) long route: the modifications in workspace processing
brought about by the variation in the valence assigned to all events as a result to the

dumb specialist’'s processing.

3 Learning in the ACT-R architecture occurs in symbolic and sub-symbolic levels under an
integrated learning mechanism (Vernon et al., 2007).



Second, one important form of memory is episodic memory. Episodic memory
is the memory of what, where and when. It allows people to travel back mentally
through time as well as imagine the future. Recently, studies have demonstrated the
role of the hippocampus and its influences on episodic memory consolidation in the

human brain.

Third, causal learning is the process through which we come to infer and
memorize the cause for an event based on previous beliefs and current experiences
that either confirm or invalidate previous beliefs (Maldonado et al., 2007). Causal
learning is an important factor in reasoning, for it is considered crucial to many

characteristics of cognition such as selection, abstraction, planning, etc.

Finally, emotion influences different types of memory and learning in human
such as causal learning (Bower, 1992, Squire and Kandel, 2000, Candido et al.,
2006).

To explain how we integrated emotions and different types of learning into

CELTS, we organized this document in the following manner:

Chapter two goes over several cognitive science and neuroscience principles
regarding various types of memory, emotion®, emotional learning, episodic learning,
and causal learning in humans. We then turn to neuroscientific and computational
neuroscientific models to discuss the role of various neurological structures in the
formation of emotions and episodic memories. We present a current computational
neuroscientific model of the interaction between the hippocampus and the cortex in
the formation of episodic memories, in which the hippocampus functions as a
temporary store recording, in a one-shot learning fashion, every experience an
individual has and serves in the cortical consolidation of frequent events. We then

present a current computational neuroscientific model that postulates the creation of

* Emotions are divided into three components (Purves et al., 2008): behavioral action such as
motor output, conscious experience such as fear, and physiological expression such as one’s
heart rate raise when facing to a danger.



new hypotheses in inductive reasoning, for which activation in the left prefrontal
cortex (LPFC) is very important. In chapter three, we start by describing a range of
agent and cognitive architectures. We also describe CTS, from which CELTS was
created (Dubois, 2007). It is a cognitive architecture based on IDA (Franklin, 2003),
The architecture of CTS was based on neurobiological and neuropsychological
theories of human brain function. CTS was designed to provide assistance during
training in virtual learning environments. It was integrated in an intelligent tutoring
system called CanadarmTutor which provides assistance to astronauts learning how
to manipulate Canadarm2, the robotic telemanipulator attached to the International
Space Station (ISS). CanadarmTutor (Nkambou et al., 2006) includes a virtual
simulator of the ISS and Canadarm2, which allows user to execute multiple
procedural tasks by manipulating the robotic arm. CTS observes the astronauts’ arm
manipulations and provides assistance as a tutoring decision-maker. In particular,
the virtual simulator sends all manipulation data to CTS, which, in turn, sends advice
to learners so they can improve their performance. Usually, learning tasks consist in
moving the arm from one configuration to another. This is a complex task, as the arm
has seven joints and the astronaut has a limited view of the arm; three monitors are
connected to approximately 15 cameras installed on the ISS. Hence, the astronauts
must constantly choose the best three cameras (out of 12) to view the environment,

and adjust their parameters accordingly.

At the end of section three, we make a brief comparison between the most

often implemented learning mechanisms in cognitive agents and CTS.

In chapter four, we explain how emotions and emotional learning are
integrated to CELTS. The general logic of our approach is stated. We base our
approach on various computational neuroscientific and psychological models of
emotions. These posit two distinct neurological routes from perception to emotions,
the so-called “short route” and “long route”. These two routes present distinct
learning mechanisms, reaction times and phenomenological profiles- the short route

being fast and unconscious and the long route being slower and involving



consciousness. At the end of this chapter, we present the results from our testing of

CELT’s emotional learning and reactions.

In chapter five, we begin by a brief review of the existing work concerning
episodic learning in cognitive agents. We then explain our proposition to equip
CELTS with an episodic memory and learning by combining elements of the
Emotional Mechanism (EM) and episodic memory. At the end of this chapter, we
present the results from our testing of CELT’s episodic learning and the collaboration
of its emotional mechanism and episodic learning. In chapter six, we begin by a brief
review of the existing work concerning Causal Learning in cognitive agents. We then
propose our new architecture combining elements of the Emotional Mechanism (EM)
and Causal Learning. At the end of this chapter, we present the results our testing of

the collaboration of emotion, episodic learning and causal learning in CELTS.

In chapter seven, we present the conclusion; the limits of the implemented
mechanisms, our plan for the future and the contribution of this study to the

computer science and cognitive science are addressed.



CHAPTER I

MEMORIES, REASONING, EMOTIONS

Memory and emotions are two inseparable and crucial parts of human
cognition (Huitt, 2003, Atkinson and Shiffrin, 1968 , Dolan, 2002). Emotions influence
cognitive processes and vice-versa (Damasio, 1999, Rolls, 2000, Dolan, 2002).
Neuroscientifc evidence has demonstrated the influence of emotions in different
types of memories, especially when individuals learn new information (Squire and
Kandel, 2000, Phelps, 2006, Damasio, 1994). Accordingly, we start by explaining the
neuroscientific and computational neuroscientific models of emotions and emotional
learning. We then explain the neuroscientific and computational neuroscientific
models of memories. We focus particularly on those of episodic memory and
episodic learning. We then briefly explain the various types of reasoning, and finally,

we discuss the causal approach to reasoning.

2.1 EMOTION

Emotion is an unclear concept that is not easily definable (Thompson and
Madigan, 2007, Alvarado et al.,, 2002). Various definitions and very important
responsibilities were given to emotion. However, there is no consensus for one
definition. Charles Darwin (1872) defined emotion as a survival and adaptable
capacity of living organisms. He described emotions as innate, universal and

communicative entities. From the behavioural point of view, emotions are supposed



to organize our behaviour- an independent entity which influences the individual
decision making, attention and learning. From a sociocultural point of view, we may
interpret feelings®, which are part of emotions, as being individuals’ response to
internal stimuli such as the feeling of pain due to a headache, or the feeling of
sadness at a loved one's death. Thus, emotions in part from our relationships and
help us to interact with others. Accordingly, emotions exist in the personal and social
dimensions of an individual. In fact, emotions allow us to adapt and accept new

changes in our dynamic environment.

The six basic emotions described by Paul Ekman are surprise, fear, disgust,
anger, happiness, and sadness. They are particular and specific to each individual
(Picard, 2003) and influence humans’ cognition directly (Squire and Kandel, 2000,
Phelps, 20086).

Recent studies in neurobiology showed that the source of emotions are a mix
of several biochemical, sociocultural and neurological factors (Westen, 1999).
Purves (2008) divided emotions into three following processes : 1) a behavioural
action (such as agitation, escape, and aggression); 2) a conscious experience of an
event or situation (such as anger); 3) a physiological expression (such as paleness,
blushing, palpitations, and feeling of unease). It is not clear how these three

processes are related.

According to Squire and Kandel (2000), emotional reactions occur in both a
conscious and an unconscious manner. Conscious reactions to different situations
depend on conscious thinking. However, unconscious reactions of emotions to
different situations are independent of conscious thinking. For instance, consider a
woman who had a traumatic experience with a hot stove at a young age and now

reacts strongly towards stoves. Squire and Kandel explain that:

® Differences between emotion and feeling and their functionalities are broad topics that go
beyond the scope of this thesis. Damasio (2003) described emotions upon their physiological
effects. Accordingly, feelings are situated in the body and emotions consistently result from
them. For this study, as we are not going to discuss physiological aspects of emotions; we
will consider feeling only in its perceptive role of emotional states in an agent.



“The feeling is a memory to be sure, because it is based on experience
but it is unconscious, nondeclarative and independent of the capacity for
conscious recollection. Because the feeling about stoves and the conscious
remembering of what happened are parallel and independent, the existence of
this unconscious memory, a fear of stove is no guarantee that the young
women can access a declarative memory to explain how the fear came about.
The original event may be consciously remembered or it may have been
forgotten (p.171).”

211 Psychological theories of emotional organization

Scientists proposed different methods for the organization of emotions and

their relations to one another. Three are briefly explained in the following.

1) Categorical theory (lzard, 1977, Plutchik, 1980, Lang and Sumner,
1990). Emotions are viewed as distinct entities and divided into “basic” and
“complex” emotions. Basic emotions are considered as innate, evolutionarily ancient
and are thought to be common in different cultures. In contrast, complex emotions
are learned, evolutionarily new, influenced by language and shaped within an
individual’'s society and culture. However, there is no consensus on what could be

considered as a basic emotion, and on what complex emotions are;

2) Dimensional theory (Russell, 1980, Lang et al., 1993). Two important
elements of this model are arousal and valence. Given a situation, arousal is defined
as the emotional intensity to respond to the situation and valence is our positive or
negative feeling towards the situation. To demonstrate arousal and valence
scientists propose two models (Figure 2.1.A). a) A vector model, where the two
vectors form a boomerang shape. The upper vector shows positive valences and the
lower vector shows negative valences. The arousal start from a neutral endpoint that
initially are considered as low and continue on upper and lower vectors which are
equivalent to positive and negative vectors until high levels of arousal; b) A
circumplex model (Figure 2.1.B), where two intersecting orthogonal lines are
bounded by a circle and the neutral point is situated in the center of the circle. The
horizontal line shows arousal and changes between low (calm) to high (excited). The

vertical line shows valences that go from pleasant to unpleasant. The resuiting graph



categorizes and put similar emotions in the same range. However, the dimensional
theory ignores the crucial link between the current emotion and the prior intentional
states of the individual. The theory also ignores the causal relationship between

individual interpretation (appraisal) and emotion (Marsella et al., In press),
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Figure 2.1 Dimensional theories of emotion: the vector (A) and circumplex (B)
models (from of Purves et al, 2008)

3) Component theory (Scherer, 1987). Contrary to the Categorical and
Dimensional theories, which consider emotions as independent entities, this theory is
based on “appraisal’ approaches and describes various flexible characteristic of
emotions. Appraisal is described as a cognitive interpretation of what we sense or
perceive. Furthermore, the theory explains our evaluation of specific external (for
instance environment) or internal (about ourselves) stimuli that cause emotions
(Roseman and Smith, 2001). Roseman and Smith (2001) explained that our motives
and goals play an important role for the evaluation of a specific situation. Given that
we can evaluate what we observe and cannot decide how we observe things in our
environment, the appraisal theory could be used to explain the autonomic reaction of
emotions in human when faces to a particular situation Different computational
models are proposed. In the following paragraphs, we briefly describe two important

computational models based on the appraisal theory:
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1) The OCC Model (Ortony, Clore, & and Colling, OCC): One of the
most complete and widespread computational model used in artificial
intelligence is the OCC model (1988). The model considers emotions as
“‘valenced reactions to the external or internal stimuli based on the manner
in which the situation is interpreted.”(Ortony et al., 1988). Three specific
types of stimuli are defined by this model: event consequences, agents’
actions, objects situated in the environment. Received stimuli map to a
positive or negative value, via an “appraisal” or “assessment” process.
Upon the emergence of emotion, it influences the agent’s cognitive process
in different fashions. The behaviour, in this model, is considered as a
response to an elicited emotional state, which is in relevant to the received
internal or external stimulus. OCC model has categorized 22 emotions into
three main classes: 1) emotions that correspond to objects such as liking
(love) and disliking (hate) them; 2) emotions that are consequences of
events such as being pleased or displeased- these include well-being (e.g.
joy, distress), prospect-based (e.g. hop, relief, fear), fortunes-of-others (e.g.
happy-for, resentment, gloating, pity); 3) attribution compounds which
includes pride, admiration, shame, and reproach. The emotion’s intensity
relies on the internal and external stimuli the agent receives from the
environment. In some cases, the OCC emotional model is also integrated
with a personality model that include goals, sets of behaviour and way of
thinking (Atkinson et al., 1983).

However, the OCC model did not discuss emotion intensity in detail (Adam,
2007). There is no clear description of how the model assigns the agent’s
emotional states to behaviour. Given the OCC model's complexities, it
must be simplified before integrating it to the cognitive agent’s architecture.
The model initially ignored surprise, but others added it later to the model.
The model is not equipped with a history function because likelihood is
essential to estimate the desirability for a given situation to the agent
(Bartneck, 2002).
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2) The Lazarus model (Lazarus, 1991): In this model, the constant cycle
between components of the model functions in the following manner:
person-environment interactions incite appraisal variables in the person,
which leads to the generation of affective answers that occur with some
intensity and which will set off behavioural and cognitive outcomes
(Lazarus, 1991, Marsella et al., In press). The important parts of the theory
are: (1) the fact that the appraisal is the assessment given by an individual
to various situations according to his/her beliefs, desires and intentions.
Appraisal variables in this theory are particular assessments given by an
individual to generate specific emotional answers; (2) the fact that coping
has to do with how to react to an appraised event. For instance, feeling
pain in an individual facing a specific situation (appraisal), may cause the
generation of guilt (coping) which may lead to an annoyed state in the

individual (re-appraisal).

The comparison between the OCC and the Lazarus model follows. While the
OCC model covers a wide variety of emotions, Lazarus proposes a more precise
description of appraisal variables to differentiate different emotions. However, the
Lazarus model excludes some emotions considered in the OCC model, such as

admiration, reproach, remorse, etc. (Adam, 2007).

21.2 The generation of emotions: neurobiological and cognitive aspects

In this section, we explain that both physiological and cognitive activities are
important for the generation of emotions. Foliowing Ledoux (2000), we take it that
the amygdala subserves an additional memory system, which we call emotional
memory. But the amygdala’s involvement in learning and memory goes beyond
emotional memory, as it also modulates learning in other memory systems,
especially declarative memory (Schoenbaum et al., 2000). Squire & Kandel (2000)
explain that:

“The amygdala and the hippocampus systems independently support
non-declarative memory and declarative memory. The two systems can work
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together. Animals retain a task more strongly, when a variety of hormones
such as adrenaline are injected into their blood and brain after they learn to
perform a task. The enhancement of memory by emotion results from the
amygdala’s influence on declarative memory (P. 171-172). Other experiences
also show that the more active the amygdala is at the time of learning, the
more it enhances the storage of those declarative memories that had
emotional content (p.173)."

Accordingly, we describe two general types of emotional learning: pure
emotional learning (i.e., learning subserved by the amygdala), which gives rise to
emotional memory proper, and emotionally modulated learning (learning subserved
by hippocampus and cortex (see below) but that is modulated by the amygdala),
which brings about other types of memories, and infuses them with emotional
content. Each of these types of emotional learning corresponds to a specific pathway
to the amygdala. The first route, the short-route, is based on peripheralistic concepts
from James’ work (James, 1884). It is short and direct (bold arrows in Figure 2.2);
information flows from the sensory thalamus directly to the amygdala (Figure 2.2,
bold arrows) and then projects to particular structures such as the basal ganglia. The
short route enables implicit (i.e., unconscious) direct behavioural reactions based on
previous rewards or punishments associated with the same or similar stimulus
(Squire and Kandel, 2000, Rolls, 2000). Human reactions are then rapid and
unconscious (Squire and Kandel, 2000), because the reaction is dependent on
information that is not processed by other brain structures, notably cortical
structures. For example, if, while walking in a forest, we encounter a long and
sinuous cylinder-like object close to our leg, we will in general react very quickly and,
without thinking, move our leg away from the object. In this case, information from
the retina entered the sensory thalamus, which passed the information along to
appropriate cortical structures for further analysis. But the signal was also sent to the
amygdala, which recognized the possible danger posed by the perceived object
posed and sent a signal to the motor system for immediate movement of the leg,

away from the object.
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Figure 2.2 The short route from sensory thalamus to the amygdala

In the second route, based on centralistic concepts originating from Cannon’s
work (Cannon, 1927), (bold arrows in Figure 2.3), information from the external
environment is analyzed by various cortical areas (primary sensory cortex, unimodal
associative cortex, polymodal associative cortex). It is then sent to the hippocampus,
for memory retrieval and temporary storage. All this processing serves to interpret
the external stimuli, to give it meaning (categorization by the cortex) and link it to
other events in episodic memory (see below), before it goes to the amygdala for
emotional appraisal and response. In our previous example, this longer route would
correspond to the recognition, for instance, that the object we moved our leg away
from is not a snake after all but a peculiarly twisted piece wood, and the
remembrance of previous forest walks in which we saw tortuous branches. Although
it is slower, the response produced by this second route possesses the normal
phenomenology of thoughtful behaviour and can be consciously controlled. Once it
has been interpreted by cortical structures the information then flows back to the
amygdala where can serve to reinforce or correct its initial processing of the

information.
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Figure 2.3 The long route from sensory thalamus to the amygdala

213 Emotional Learning

For evolutionary reasons, it is sensible to believe that we are born with
automatic emotional responses to some stimuli (e.g., snakes and spiders).
Moreover, work by Joseph Ledoux (LeDoux, 2000, LaBar et al., 1998, LaBar et al.,
1995) and others (Pribram et al., 1979, Rolls, 2000, Schoenbaum et al., 2000) has
shown that the amygdala can learn to react to novel stimuli. It is known that if a
shock is paired with a tone, the tone will come to elicit the fear reactions originally
elicited by the shock. More generally, if a neutral stimulus is paired with an
unconditioned stimulus that elicits a fear reaction, then fear will become the
conditioned response to the previously neutral stimulus (which has now become a
conditioned stimulus). Fear conditioning has been shown to be mediated by the
amygdala (especially the Lateral (LA) and Central (CE) nuclei of the amygdala, see
(LeDoux, 2000). Such learning takes the short route to the amygdala. In cases
where the stimulus is auditory (such as a tone), information flows from the medial

geniculate body directly to the lateral nucleus of the amygdala (LA) and then to the
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amygdala’s central nucleus (CE) from where it goes to the brain stem for the
expression of fear responses. Such responses are quick, and it is reasonable to

believe that they are automatic and unconscious.

Through the long route, the amygdala receives inputs from the later stages of
sensory processing but sends its outputs to early stages of sensory processing
(Squire and Kandel, 2000, Purves et al., 2008, Rolls, 2000). This means that the
amygdala can affect sensory processing in the cortex from its early stages. No
sensory information in the cortex is left untouched by the amygdala’s influence.
Moreover, the amydgala also affects all cortical processing indirectly through its
effects on arousal systems that innervate large areas of the cortex (the basal
forebrain, the cholinergic system, the brainstem cholinergic system, and the locus
coreuleus noradrenergic system). With these, the amygdala can also influence the
cortex through feedback from proprioceptive or visceral signals or hormones. The
amygdala can thus be seen as having a large influence on cortical processing,
including learning, which we will model here by the emotional valence (positive or

negative) the amygdala adds to sensory processing.

In the next section we will explain different types of memories and how

emotions influence them.

2.2 MEMORIES

Most researchers agree that memory is the process of acquiring, storing and
retrieving information and this information may alter our behaviour. Memory is
considered to lay in physical and biochemical processes in the brain (Thompson and
Madigan, 2007, Moxon, 2000).

Thus, one major role of memory is to keep record of what happened in the

past.

Neuroscientists have distinguished four major memory processes: 1) encoding,
which is how experiences cause the creation of memory traces; 2) retrieval, which is

the way that the brain restores memory traces; 3) consolidation, which is how after
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the encoding phase, the memory traces may get reinforced;, 4) storage of

information, which concerns the endurance of the information.

The encoding and retrieval processes are measurable by observing human
behaviour. For instance, we remember best what we are familiar with. However, the
consolidation and storage processes are only measurable using special cognitive
neuroscience methods and instruments that are capable of monitoring neural
processes. Neuroscientists postulate that all types of memories rely upon the same
cellular mechanisms of synaptic modification for storage. However, encoding and
retrieval of different memories (for example declarative and non-declarative) rely

upon different brain regions (Purves et al., 2008).

The two following theories regarding memory functionalities were put forth by

cognitive psychologists: 1) record-keeping theory, 2) constructionist theory;

1) Record-keeping theory. Memory is considered to be an item-filled box.
Like a computer disk, each experience becomes a new record. Various indexing
methods are used to sort information. Indexes are used during the recall phase.
When the amount of stored information is too large, there is memory interference
and forgetting occurs (Guenther, 2002). The record keeping theory is used by
scientists who use computers as a metaphor to explain memory functions (Guenther,
2002).

2) Constructionist theory. Human memory is considered to be dynamic and
dependent on the context at any given moment. lts purpose is not only to allow
recollection of the past, but also to assist in anticipating the future. It has been shown
that when we witness a crime or accident, we may later recall details that never
were. In 1979, Loftus conducted a study where subjects were shown a car accident
scene. Later subjects were asked questions about the accident with words such as
smashing and bumped. Given the influence of the words used, subjects wrongly
recalled that the car's window was broken during the accident (Donderi, 2005). Thus,
new information alters human cognitive systems such as emotions, perception,
interpretation, etc. Memory is influenced by the environment. Remembering in this

theory is not just searching through registered records from the past experiences; it



17

is, rather, the regeneration of past experiences. It is a dynamic process. Memory is
influenced both by the cognitive system in interaction with its environment, and one’s
load of past experiences. Forgetting is due to the interference that new and constant
changes bring to our cognitive system, as well as the adaptations that our cognitive

system undergoes (Guenther, 2002).

2.2.1 Different types of memories

It is now near consensus that the brain contains multiple memory systems,
however few agree on how to categorize them (Squire, 1992). What follows are the

most important according to the majority of the scientists (see Figure 2.4):

1) Sensory memory: it is what our perception mechanisms briefly record and

which disappears in less than a second,;

2) Short-term memory: it depends on the attention brought to particular items
in function of the sensory memory (decays in less than a minute). These units are
called chunks and vary from individual to individual. Repetition is crucial for
information storing in short-term memory- phone number memorization, for instance.
This process is called rehearsal. The information in short-term memory interacts with

sensory memory input and long-term memory;

3) Working memory: cognitive processes such as reading or writing are
applied to items momentarily stored up in this memory. Working memory can store
from five to nine information units. Scientists believe that short-term memory cannot
be considered as the only temporary memory that contains long-term memory items.
It must be noted that, nowadays, scientists do not consider a distinct line between

memories and thought (Squire and Kandel, 2000)

The two principal working memory models proposed are Baddeley’s model and
Cowan’s model (Baddeley et al., 2002, Cowan, 2005). Baddeley’s model suggests
that different regions of the brain are involved in the storage of working memory and
long-term memory. In this model working memory is divided into three delimited

memory buffers and a central executive controls unit that controls the operations of
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the three buffers: the phonological loop, the visuospatial sketchpad, and the episodic
buffer. The phonological loop interacts with the long-term memory’s component that
is related to our language capabilities. The visuospatial sketchpad interacts with the
long-term memory’s components that contain visual semantic information. The
episodic buffer interacts with the long-term memory’s component containing episodic

memory information.

Buffers are equipped with storage and rehearsal mechanisms. The task of the
store mechanism is to save the information temporarily in the buffer. The task of the
rehearsal mechanism is {o reactivate the temporarily saved information in the buffer
before it disappears. Baddeley’s central executive unit operates the memory buffers,

determining the focus of attention.

Cowan’s model postulates that working memory and long-term memory both
rely on the same types of representations. In this model, in the first step, different
regions of the long-term memory activate temporarily — there is no limit for the
activation of the regions. In the second step, the attentional focus dictates which
region must remain active, thus causing the dissipation of other activated regions

that have not received attentional focus;

4) Long-term memory: it is divided in two broad classes: a) explicit
(declarative) memory, subserved by the medial temporal lobes (hippocampus is the
key component of this region), frontal and parietal lobes area, and sensory regions of
the brain; b) implicit (non-declarative) memory, subserved by the striatal system
(Squire and Kandel, 2000). What distinguishes short-term memory and long-term
memory is the duration of information processing. Short-term memory is used by
brain to maintain the information for a short period of time while long-term memory is

the acquisition and recovery of the information related to a longer period.
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Figure 2.4 Long-term memory structure (Tulving, 1972, Tulving, 1983, Squire and
Kandel, 2000)

Explicit (declarative) memory: it refers to the memory of facts and events.
The content of explicit memory, when needed to be retrieved and manipulated,
requires consciousness. Explicit memory is divided into a) semantic memory: the
general knowledge or facts such as "what is the meaning of amendment? " (Tulving,
1972, Tulving, 1984). We do not remember when we learned the content of semantic
memory; b) episodic memory: the memory of what, where and when (e.g., what
you ate yesterday). Episodic memory is the memory of particular events. It also
allows people travel back through time mentally and imagine the future (Tulving,
1972, Tulving, 1984).

Episodic memory is closely linked to semantic memory (similar episodes over
time). Neuroscientific evidence has demonstrated that sometimes, during the
encoding phase of episodic memory and the remembering phase of semantic
memory, several of the same brain's regions are activated - the overlapping

phenomena occurs in the left inferior frontal gyrus region(Purves et al., 2008).

Autobiographical memory, which refers to our own life’s events, results from a
complex collaboration between episodic and semantic memory. For instance, one's

semantic memory information of the Persian New Year in Shiraz may be influenced
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by our information that Persepolis is located in Shiraz, and that the very famous
statue of King Darius is located there, and that the place is very crowded. All these
semantic memories may influence our rebuilding of our episodic memory of the
Persian New Year during a stay in Shiraz. Taking in one level further, we may also
remember episodes that we learned during a prior discussion with friends about
Persepolis (Wiliams et al., 2008, Conway and Pleydell-Pearce, 2000, Conway,
2005).

Implicit (non-declarative) memory: The implicit memory, when needed to be
retrieved, is unconscious and is expressed through our behaviour. It includes: 1)
procedural memory: it refers to “how to” knowledge of procedures or skills, for
instance swimming; 2) conditioning: when humans create an “association between
different stimuli and between stimuli and responses”; 3) priming: when humans
react more easily to previously seen stimuli (LeDoux, 2000, Purves et al., 2008,
Squire and Kandel, 2000).

All three aforementioned non-declarative memories are independent of the

medial temporal lobe in human.

2.211 Episodic Memory Consolidation

Two models are suggested in neuroscience for the memory consolidation
phase (Purves et al., 2008).

1) The standard consolidation theory, which holds that the result of event
encoding are hippocampus-independent. It posits that the hippocampus performs a
fast interpretation and learning of a given concept or event. In the transfer phase,
indirect connections are thought to be created between the hippocampus and
various neurons in the cortex. The hippocampus then distributes these memory
traces to the cortex. Importantly, in this model, the cortical neurons representing
events create direct connections between themselves and gradually become

independent of the hippocampus.
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2) The multiple-trace theory, the multiple-trace theory, on the other hand,
holds that the results of event encoding are hippocampus-dependent. According to
this theory, every time an event causes memory reactivation, a new trace for the
activated memory is created in the hippocampus. Memory consolidation occurs
through the reoccurring loops of episodic memory traces in the hippocampus and the
construction of semantic memory traces in the cortex. Thus, the cortical neurons

continue to rely on the hippocampus even after encoding.

2.21.2 Episodic memory retrieval

Given a particular situation in which | was asked to think about the dinner | had

of last year at Christmas Eve, what came to mind is described below:

That night, | was invited to go out for dinner with my friends, but | had to finish
writing a scientific paper. Thus, | had cancelled the rendez-vous with my friends and
prepared an omelette with a piece of bread on the kitchen table and started to eat. |
had also prepared a hot chocolate which | really like to drink every afternoon. Hmm,
No... | did not have the omelette because my friends came in while | was preparing
dinner. Then, they asked me to stop working and took me out to a nearby restaurant

for dinner. For dinner, we had turkey with some potatoes. | also had a hot chocolate.

In this example, a retrieval cue (the question about dinner), first, sets off
memory search processes to restore specific memory traces related to the situation’s
particular features such as time and place (last year's New Year's eve, the lab, and a
restaurant). What are restored as memory traces (omelette, bread, hot chocolate)
will be evaluated by monitoring process. The monitoring process may refine/reject or
accept restored memory traces from long-term memory (stop eating omelette and go
out for dinner). During episodic memory retrieval processes, attention remains fixed

on this particular situation’s features.

Emotions affect different types of memory and enhance learning in humans.

Indeed, it has been shown to be in part responsible for our emotional reactions in the
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enhancement of episodic memory (Hamann et al., 1999, Dolan et al., 2000a, Paré¢,
2003). Because emotions and episodic memory play two complementary roles in
learning and in the retrieval phase, we argue that both must be included in cognitive

architectures.

22.2 Reasoning and Causal Learning

Reasoning is considered crucial for many characteristics of cognition such as
selection, abstraction, planning, etc (Gopnik and Schulz, 2007, Sarma, 1993,
Leighton, 2004, Demetriou, 1998). Reasoning begins with an initial state, a goal and
a set of possible operators. To achieve the goal set in the initial state, one may be
faced with several intermediate obstacles. This makes establishing a direct path
between the initial state and the goal difficult. The term reasoning is used in
situations in which rules are clearly identified and possible actions are highly
restricted. The term problem solving is used in situations in which the rules are
unclear and we face a large number of possible actions. To solve a problem, we can
use the trial-and-error approach. As opposed to reasoning, the trial-and-error
approach does not imply deliberation and a rational approach (Woll, 2001, Goswami,
1998).

The three types of reasoning we focus on in this work are the following:

1) Deductive reasoning, where one logically decides the conclusion from a
general rule. Moreover, in deductive reasoning, the truth of premises assures the
truth of conclusions and the relation between Premise and Conclusion is certain

(Kemerling, 2005). For example, in math:

Ifx=2 and y=3 Then 4x+y= 11

Deductive reasoning is nonampliative — i.e., cannot actually extend our

knowledge. Thus, in deductive reasoning, despite observing and making specific
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conclusions, one cannot predict unseen situations (Russell and Norvig, 2003,
Sternberg and Mio, 2009).

2) Inductive reasoning, where either one tries to generalize rules from a set
of examples, or, on the other hand, from a set of probable or inadequate premises,
one decides the likeliness that a conclusion is true. The truth of a conclusion is likely
when the premises give some evidence or support towards the conclusion. In
inductive reasoning, when evidence is deemed to be absolute, significant, and
generally persuasive, they are cogent. They may bring us to a true conclusion. When
the evidence is not deemed absolute, significant and persuasive, then the evidence
is non-cogent. In inductive reasoning, the relation between premise and conclusion
is uncertain. After generalization, one cannot claim that all potential information
about a situation has been collected and that there is no additional unseen
information that could discredit the hypothesis. For instance consider the following
example. From the statement “The football moves when kicked by a player,” we can
infer “All footballs move when kicked by a player.” The inductive reasoning is
ampliative — it extends our knowledge. One usually needs to examine prior
knowledge, relation, set of examples and experiences in order to draw inductive
conclusions from premises. However, all this information that one must examine to
come to a conclusion from a set of premises makes it difficult for scientists to
propose a universally accepted theory of inductive reasoning (Russell and Norvig,
2003, Feeney and Heit, 2007, Sternberg and Mio, 2009).

3) Abductive reasoning, where one tries to give an apt explanation from a set
of observations (inference to the best explanation). Abductive reasoning sometimes
plays a very important role in decision-making when the information is not sufficient.
Abductive reasoning is described by incompleteness in evidence and/or explanation.
For instance, in the case of an airplane crash, when experts examine the accident
scene, some crucial evidence may be missing. The experts’ explanations about the
accident may be flawed due to this missing information. Likewise, a computer that is

not capable of correctly reporting a malfunctioning problem in hardware or software
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will only provide some incomplete predefined messages. Technicians will likely be

unable to fully explain the nature of the problem (Sebeok, 1981).

2.2.2.1 Causal Learning

Among the various aspects of inductive reasoning, researchers investigate the
existence of causal relations between various events (Kemerling, 2005). We
assume that there is a particular cause to a particular effect, only, by observing the
occurrence of regularities in some particular events. Hume suggested that our beliefs
and feelings® also play an important role when we develop a causal relation between
events (Kemerling, 2006). Scientists use the experimental approach to establish the
causes between events. Knowing causes, we can change the outcome of situations.
To do so, we have to find relations between events, and how some events affect
others. We can learn to make inferences, but the result may depend on prior
knowledge, experience, and how well these are mastered. It may also depend on the
individual's interpretation abilities. For instance, one may infer that coffee is the
cause of our current abdominal pain after observing that drinking coffee is always
followed by such pain. However, causal relationships between events do not provide
us the absolute proof since there may exist some unidentified aspects. For instance,
we know that some people suffer from schizophrenia, but we do not know the

causes yet.

Abl Al Sina (Avicenna) proposed three methods for finding causes
(Goodman, 1992, Goodman, 2003). John Stuart Mill added two additional methods
(Kemerling, 2002). We explain them through an example. Suppose that in a
company, some employees spend their break together and each time they drink
some beverages. After a while, a number of employees report abdominal pains each

afternoon. Thus, they suppose that the problem comes from what they drank. To find

® Feeling: “the perception of a certain state of the body along with the perception of a certain
mode of thinking and thoughts with certain themes.” Damasio (2003)
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which beverage causes abdominal pains, Avicenna and Mill's five methods would be

used in the following manner:

1)

2)

3)

4)

The method of agreement. Imagine three of employees have abdominal
pain and discuss about the cause of the pain. The first had apple juice,
orange juice, and a coffee; the second had a grapefruit juice, coffee, and
iced tea; the third drank iced tea, hot chocolate, and coffee. From this
information one can conclude that coffee is the cause of abdominal pain. In
all three cases, only one circumstance led to having pain- coffee.

The method of difference. Now supposing that the first employee drank
an apple juice, orange juice, and a coffee, while the other drank apple-juice,
orange juice, and hot chocolate. In this case, the one who drank coffee has
abdominal pain. Again we can conclude that the coffee is the cause of
abdominal pain. Thus, in this method one tries to detect which possible
causes were present when the abdominal pain occurred, and were not
present when the effect (abdominal pain) did not occur.

Agreement and difference. Given the two previous situations, suppose
that two employees drank different sets of beverages, and that only the one
that drank coffee had abdominal pain. Suppose also that two other
employees drank different sets of beverages and that only the one who had
coffee had abdominal pain. Since all those who drank coffee had abdominal
pain and none of those who drank something else were sick, we conclude
that 1) only coffee and 2) nothing else causes abdominal pain.

Method of Concomitant Variation. Now, supposing that out of the four
employees, the first one didn’t have coffee and felt no abdominal pain; the
second had one cup of coffee and felt ill; the third had two cups of coffee
and felt abdominal pain; and the fourth had five cups of coffee and had to
go the doctor. We can again conclude that the coffee caused the abdominal
pain. With this method, we are not just faced with the occurrence and non-
occurrence of causes and effects; we observe that intensifying the cause is

related to increasing the extent of the effect.
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5) The method of residues. Finally, supposing that another doctor came to
the conclusion that hot chocolate is likely to be the cause for dental
problems and chamomile the cause for sleepiness. Today, an employee
arrives and complains about dental problems, abdominal pain, and
sleepiness. He also lists hot chocolate, coffee, chamomile and orange juice
as what he drank during the day. Knowing the cause of dental problems
and sleepiness, the doctor can conclude that the hot chocolate must be the
cause of toothache. The example demonstrates the creation and

combination of probable causes.

These methods have some flaws when it comes to apply them in scientific
research applications, as, for a given situation, we are not always capable of
considering every possible condition leading to a particular effect. Thus, the five
aforementioned methods are not useful when it comes to unidentified causes’ of an

event (Kemerling, 2002).

Scientists propose causal Bayes nets (acyclic graphs) as an alternative
approach to establishing causal relation between events. The key concept for the
construction of a causal Bayes net is finding conditional probability between events.
Mathematic is used to describe conditional and unconditional probabilities between a
graph’s variables. The structure of a causal graph restricts the conditional and
unconditional probabilities between the graph’s variables. We can find the restriction
between variables using the Causal Markov Assumption (CMA). The CMA suggests
that every node in an acyclic graph is conditionally independent of its ascendants,
given the node’s parents (direct causes). For instance, suppose one observes that
each time one forgets to adjust his car’s side and front mirrors (M), he tends to have
poor control over the wheel (W) and cause collisions (C) with other cars. We can link
these variables in the following way: (1) M - W — C; and (2) W «— M — C. The first
graph (1) shows that the probability of forgetting mirror adjustment is independent of
the probability of making collision with other cars, conditional on the occurrence of
poor wheel control. The second graph (2) demonstrates that the probability of poor

wheel control is independent of the probability of making a collision with other cars
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and is conditional on forgetting mirror adjustment. The CMA establishes such
separation between nodes to all acyclic graphs’ nodes. Thus, knowing a graphs’s
structure and the value of some variables’ values, we are capable of predicting the
conditional probability of other variables. Causal Bayes nets are also capable of
predicting the consequences of direct external interventions on their nodes. When,
for instance, an external intervention occurs on a node (N), it must solely change its
value and not affect other node values in the graph except through the node N’s
influences. In conclusion, one can generate a causal structure from sets of effects
and conversely predict sets of effects from a causal structure (Gopnik and Schuiz,
2007).

Recent studies in neuroscience have demonstrated the role of the prefrontal
cortex in inductive and deductive reasoning (Goel and Dolan, 2004). These suggest
that in an individual, the creation of new hypotheses in inductive reasoning
essentially activate the left prefrontal cortex (LPFC). Given the fact that left prefrontal
cortex activation is crucial in inductive reasoning, we assume that the same region in

our brain is also crucial for causal learning.

2.3 CONCLUSION

The nature of emotion, its emergence and how it influences cognitive process
remain controversial. This, because emotions are simultaneously required in
different processes such as cognitive, biological and physiological, etc. This has lead
to various definitions addressing specific aspects of emotions, with none addressing

emotions as whole.

One important part of cognition is memory. In humans, all memories are
influenced directly or indirectly by the amygdala, which play a major role in emotional
processes. In fact, human decision-making, reactions and learning are under the
influences of emotions and feelings (Bower, 1992, Dolan et al., 2000b, Purves et al.,
2008, Squire and Kandel, 2000). For instance, Candido (Candido et al., 2006,
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Maldonado et al., 2007) demonstrated how emotions of different affective valences

can bias causal learning.

My goal in this study is to propose and implement an emotional mechanism in
a cognitive agent based on neuroscientific evidences. In our model, the emotional
mechanism is capable of learning and influences different types of learning and
decision making. | also propose a generic method for the implementation of episodic
and causal learning in cognitive agents and how they are influenced by the proposed

emotional mechanism.



CHAPTER I

EMOTIONS AND LEARNING IN COGNITIVE ARCHITECTURES

Most researchers in computer science agree that the concept of autonomy is
essential to the definition of an agent (Franklin, 2006, Wooldridge, 1999, Franklin
and Graesser, 1997). Franklin (1997) defined an agent as “a system situated within
and a part of an environment that senses that environment and acts on it, over time,

in pursuit of its own agenda and so as to effect what it senses in the future.”

Russell calls such an agent intelligent’ (Newell and Simon, 1976) (Russell and
Norvig, 2003). The key concepts in the definition given by Franklin is that an agent
must be a dynamic part of the environment, sense it, act on it in an autonomous
fashion; it must have temporal continuity. This occurs when an agent has sensors to
sense the environment, effectors to act on the environment, and primitive motivators
to motivate its acts (Franklin, 2006). For instance, an antivirus is installed on a
computer and must react each time a program is executed and is pre-programmed
to check the computer to find viruses at mid-night. In addition, an agent must learn
from its environment and adapt to changes. Thus, being adaptive and able to learn is
one of the very important properties of an agent. Learning, in an agent, must be

incremental and continual (Franklin and Graesser, 1997). Wooldridge (Wooldridge

" Newell and Simon’s Physical Symbol Systems theory suggests that a physical symbol
based system is a necessary and sufficient condition to produce a general intelligent action.
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and Jennings, 1995, Wooldridge, 1999) has categorized agents into the following
types:

1) Reactive: A purely reactive agent is one whose action depends only on what
it perceives at the present moment. Such an agent does not store any internal
information. Neither does it consider the history of its previous actions when making

decision.

2) Deliberative: These agents are capable of monitoring their environment and
acquire an internal representation of it. They are capable of generating plans to meet

their goals.

3) Hybrid: These agents have a composite behaviour of reactive and
deliberative agents in that they are capable of generating new plans and respond

immediately to external stimuli.

A cognitive architecture is a prototype for the design of intelligent agents
(Langley et al., 2008). In the following section, we very briefly explain cognitive

architectures.

3.1 COGNITIVE AGENTS

The nature of cognition, the role of cognitive systems and the way they
function are topics too broad and out of the scope to be covered in this study. It is
agreed that if a system were endowed with cognition, it would have the following
capabilities: learning, adaptation, anticipation, autonomous behaviour, natural
language, creativity and self-reflection (Brachman, 2002, Hollnagel and Woods,
1999, Freeman and Nunez, 1999, Anderson and Lebiere, 2003). In this study, we
also propose self-satisfaction as an important capability of cognitive systems
(Faghihi et al., 2009b). This will be explained in the episodic learning (see section 4)
part of this text.
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Cognitive systems (agents) are divided into three type (Vernon et al., 2007): 1)
cognitivist; 2) emergent; 3) hybrid.

311 Cognitivist approach to agents

Cognitivist scientists use symbol® manipulation to study cognition (Newell,
1990, Newell and Simon, 1976). This theory defines explicit symbolic representation
mechanisms to allow systems to reason about the external world. Information about
the external world is abstracted by perception and represented using a symbolic
framework. Then, symbols are interpreted and reasoned in order to plan an act in the
external world. Cognitivist scientists postulate that symbol manipulation processes
equip cognitive agents with the necessary tools to easily and efficiently adapt and
interact with the external world, predict the future and use reasoning capabilities.
Different methods such as machine learning, probability approaches and logical rule-
based approaches are used to implement cognitivist systems. In these systems,
symbol representation is the product of human work, which means that there is a
direct access to semantic knowledge. However, such a system is limited to the

predefined descriptions and conditions (Winograd and Flores, 1986).

Given Newell's hypothesis that human beings use symbols to represent
abstract concepts (Newell, 1990), a cognitive architecture must be able to combine
symbols (“chunking”) in order to facilitate their subsequent uses. As in the human
brain, cognitive architectures should work with, among others, emotional learning,
episodic learning and procedural learning. Ron Sun later proposed a definition for
the two coexistent processes of explicit/implicit knowledge (Sun, 2004). Explicit

processes refer to factual, declarative or non-procedural knowledge to which

® Newell and Simon: “Symbol systems are collections of patterns and processes, the latter
being capable of producing, destroying, and modifying the former. The most important
properties of patterns is that they can designate objects, processes, or other patterns, and
that when they designate processes, they can be interpreted. Interpretation means carrying
out the designated process. The two most significant classes of symbol systems with which
we are acquainted are human beings and computers.”
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consciousness has access, such as the abstract idea that the moon turns around the
earth. Implicit processes refer to the procedural knowledge to which consciousness

has no access to, such as knowing how to swim.

3.1.2 Emergent approaches to agents

In the emergent approach, scientists state that cognition is the construction of
skills through a self-organization process (behavioural / configurational emergence)
in which systems interact in real time with their environment. This reminds us of the
importance of embodiment for the construction of knowledge. Embodiment is a
practical and social phenomenon necessary for the construction of meaning
(Anderson, 2003). For an agent in the real world, perception and representation are
mostly constructed via the agent’s physical movements (Ziemke et al., 2007) (de
Vega et al., 2008). According to Anderson (2003), embodiment plays an important
role in shaping cognition in four areas, namely: physiology, evolutionary history,
practical activity, and socio-cultural situatedness. Thus, the emergent approach is
opposite to: 1) the dualism theory that asserts separation between body and mind; 2)
functionalism that views mind as only existing based on its fulfilling its role, its
functioning. Thus, any entity that produces the same output as the mind in a given
situation, should, according to functionalists, be considered to be a mind, regardless

of the entity’s nature.

In what follows we explain emergent systems. Emergent systems encompass

connectionists, dynamical, and enactive systems (Varela, 1992, Clark, 2001).

3.1.21 Connectionist systems

Connectionist systems depend on the parallel processing of non-symbolic

distributed activation patterns. In these systems, contrary of the logical rule-base

approach, statistical methods are applied to process information (Medler, 1998). For
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instance, artificial neural networks (ANN), which are dynamical systems capable of
capturing statistical regularities of the training data, are often used (Smolensky,
1996). Learning in ANNs occurs in supervised and unsupervised manner among
others. Supervised learning is that in which inputs and outputs are available to the
network for example multilayer perceptron (Rumelhart et al., 1986). The task of the
network is to predict or adjust inputs to the desired outputs. Unsupervised learning is
that in which only inputs are available to the network. The task of the network is to
find the correlations among the inputs on its own in order to produce outputs for
example Hebbian Learning (Hebb, 1949). Due to the fact that Connectionism is a
vast field, it would be beyond the scope of this text to cover it; readers are thus
referred to Anderson for further details (Anderson and Rosenfeld, 1988, Medler,
1998).

Varela (Varela et al., 1991) explained that in connectionism symbols play no
role and ‘“the system’s connectivity becomes inseparable from its history of
fransformations, and is moreover related to the kind of task defined for the system”,

meaning that it “relates to the global state of the system’.

3.1.2.2 Dynamical systems

The cognitive system’s mental activities are emergent, situated, historical and
embodied. Thus, cognition is not symbolic and representational (Thelen and Smith,
1994). The agent uses self-organization processes to adapt itself to its dynamic
environment. The capacity of self-organization comes from the agent's prior
experiences. As McClelland (McClelland and Vallabha, 2009) has stated :

“...dynamical systems researchers tend to take more note of the mechanical
constraints imposed by the organism’s body, while connectionists tend to focus on
the constraints among the physical elements within the nervous system (neurons
and connections, or at least abstractions of their properties). Likewise, explicitly

dynamical models address the constraint satisfaction using dynamical metaphors
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such as coupling and stability, while connectionist models address it using neuronal

metaphors such as propagation of unit activity and weight change.”

McClelland has also stated that some connectionist systems are dynamical
systems with temporal properties and structure such as attractors, instabilities and
transitions. However, whether or not high-level cognitive processes such as
reasoning are possible in dynamic systems remains to be determined. So far,
dynamical systems are only used as an analysis tool in cognitive systems
(Christensen and Hooker, 2000, Vernon et al., 2007).

3.1.2.3 Enactive systems

Cognition is a history of structural coupling where an entity becomes part of a
world or produces a new one. There is no pre-defined information needed and the
sensory motor information is processed simultaneously. Thus, to decide the
relevance of tasks based on the actual context, an agent needs a real-time

interaction with its environment (Varela et al., 1991).

3.1.3  Hybrid systems’

Researchers try to combine key aspects of the emergent and cognitivist
systems. The representations in hybrid systems are created by the system itself
through its interaction with the environment, rather than being pre-programmed
(Dreyfus, 1982). Thus, the representation of an object is created through a
perception-action process and direct interaction with the object. During the learning
phase, there is no direct access to the internal semantic representations of the object

in these systems and the system must be embodied (Granlund, 1999).

o Hybrid systems are here considered in this sense and not exactly as the Wooldridge hybrid
system.
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31.4 Conclusion

These aforementioned architectures have their own strengths and weaknesses
and have received critics from researchers. For example Christensen and Hooker
(Christensen and Hooker, 2000) asserted that enactive and dynamical systems
provide us more of a general modeling framework than a model of cognition. They
also mentioned that, at present, our knowledge to build artificial cognitive systems
based on what emergent researchers have proposed is very limited. Christensen
and Hooker have also pointed to three major flaws of the cognitivist systems: the
symbol grounding problem (Harnad, 1990), the frame problem (McCarthy and
Hayes, 1969), and the combinatorial problem. They have also criticized other
problems encountered, such as the limited capacity of cognitivist systems to
effectuate generalizations, creativity, and learning. Nonetheless, comparing to the
emergent systems, to date, the abilities of cognitivist systems are much superior
(Vernon et al., 2007).

As mentioned above, a good alternative to both cognitivist and emergent
systems are hybrid systems. However, there is no consensus regarding the manner
in which one could combine both cognitivist and emergent systems to create a hybrid
system. As Crutchfield (Crutchfield, 1998) argued, dynamics are related to and

"

influence cognition but are “...not a substitute for information processing and
computation in cognitive processes”. In any case, Crutchfield has recommended that
one seek to build design dynamical state structures in such a way that they may

support computation (Vernon et al., 2007).
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3.2 COGNITIVE ARCHITECTURES

Newell was the first to offer a scheme about cognitive architectures (Anderson,
1983, Newell, 1990, Anderson and Lebiere, 2003). The goal of cognitive
architectures is to suggest a unified theory of cognition which encompasses
attention, memory, emotion, problem solving, decision making, learning, etc.
Furthermore, here, the focus is mostly on the task-independent and homogeneous
processes of cognition. Cognitive architectures also specify how cognitive agents are
to manage their resources (Langley et al., 2008). Thereby, and in accordance with
Vernon's classification, three cognitive architectures such as cognitivist, emergent
and hybrid cognitive architectures stand out. According to the cognitive approach,
architectures must specify the following components and functionalities: 1)
memories, which record knowledge; 2) specific methods and algorithms which are
involved in knowledge representation; 3) specific methods and algorithms which
manipulate knowledge; 4) learning mechanisms; 5) emotions: because emotions
influence our behaviour and thoughts (Purves et al., 2008, Squire and Kandel, 2000,
Damasio, 1999), they must be integrated into cognitive architectures. Therefore, like
in human, emotions can intervene in different levels and parts of cognitive
architectures, for instance in different steps of agents’ cognitive cycles (Faghihi et al.,
2008a).

The most widely known cognitive architectures include Newell's Soar
architecture (Rosenbloom et al., 1993, Laird et al.,, 1987, Lehman et al., 1998),
Anderson’s ACT-R architecture (Anderson, 1993, Anderson, 1983, Anderson et al.,
2004), Sun's CLARION architecture (Sun, 2006), and Franklin's LLIDA architecture
(Franklin and Patterson, 2006).

As was mentioned at the onset of this study proposal, the learning
mechanisms usually implemented in cognitive agents are loosely connected or are
implemented as a collection of learning types in one single mechanism. Furthermore,
up to now, no studies have been capable of demonstrating a successful

implementation of emotions and emotional learning influencing learning mechanisms
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in cognitive agents. Thus, we propose and aim to implement an emotional

mechanism which collaborates with learning mechanisms in a cognitive agent.

In what follows, in addition to briefly explaining these agents’ architectures, we
mostly focus on the cognitive architectures’ learning problems. We explain very
briefly the learning capability of some well known cognitive architectures including
Autonomous Agent Robotic (AAR), the Adaptive Control of Though (ACT-R),
Connectionist Learning with Adaptive Rule Induction ON-line (CLARION) and
Learning Intelligent Distribution Agent (LIDA). Because ACT-R and Soar have much

in common, we explain the Soar architecture in the ACT-R section.

3.21 Autonomous Agent Robotics

Autonomous agent robotic (AAR), an emergent system, is proposed by Brooks
(1986) as an alternative to cognitivist architectures. The fundamental idea behind
this architecture is that the robot has no internal representation of the environment
and engages completely in interactions with the environment. The whole architecture
starts with simple situation — action logic and incrementally, layers of more complex
tasks are added (subsumption architecture). Each layer executes one of the agent’s
specific goals. The upper layers are more abstract. Decision-making in the upper
layers depends on the lower layers. No complex reasoning must be undertaken- it is
sufficient to check the rules preconditions to fire them. However, it is the case that
this architecture lacks self-management mechanisms and requires a great deal of
information about their environment to make decisions, especially when tasks
become more complex (Christensen and Hooker, 2000, Wooldridge, 1999). To solve
these problems, Brooks identified and integrated the following components to AAR:
1) motivation: action selection is depends on the context; 2) self-adaption: provides a
constant adjustment of the system to its sub-systems; 3) development: provides an

incremental learning possibility in the system.

The most widely known learning types in emergent systems are associative

learning ( creating a map between the input-output representations to the system)
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and competitive learning (Winner takes all) (Wang et al., 2008). However, some
researchers such as Hedger (2009) have doubts on whether Brooks’' theory is

scalable to the level of human beings.

3.2.2 ACT-R’s Architecture

The Adaptive Control of Though (ACT-R), developed by Anderson (1983), may
be classified as a cognitivist architecture that implements a human cognition model.
ACT-R, among others, is one of the validated simulations of human cognition
(Anderson and Lebiere, 1998). It uses a modular architecture which consists of a
central part with a set of buffers that permit indirect communication between different

modules within the system.

ACT-R’ architecture consists of different modules (Figure 3.1) among which:
perceptual (“visual”y module for recognizing objects; a goal module whose task is to
indicate the system’s current goal, a declarative memory module for recovering
information from the memory; and a procedural module for controlling agents’
movements (or actions, in general). In this architecture, modules cannot
communicate directly: any communication must pass through the “central production
system”. Each buffer contains one declarative piece of knowledge, called a “chunk’.
Such a “chunk’ consists of a name and has labelled links towards other "chunks”.
Together, these form a “semantic hetwor ”. The inference module modifies the
content of buffers following a set of rules called “productions”. Each production rule
is composed of conditions (which indicate to which configuration, or content of the
buffers it is applicable) and actions (indicates how it modifies the buffers). ACT-R
uses the production rules to solve procedural problems (for example a mathematical
subtraction). These rules are specific to the application, but ACT-R provides meta-
rules to choose and execute a particular rule, because in each cycle the system is
capable of executing one rule. Cognitive cycles in ACT-R start by finding a pattern

for external or internal images of the world which correspond to the buffers; then, a
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production rule is triggered, and buffers are updated for the following cognitive cycle.

This complete cycle takes about 50ms.
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Figure 3.1 ACT-R 5.0's Architecture

Learning in ACT-R occurs at the symbolic and sub-symbolic level within an
integrated learning mechanism; this, for both chunks and production rules. Explicit
learning in ACT-R is the result of learning the content of declarative memory when
fetched and examined. It also occurs at the procedural level through the combination

of two rules.

Implicit learning occurs for both declarative and procedural knowledge. In
declarative knowledge, there is an increase or decrease of the activation of chunks.
When a chunk is learned, its base-level energy is stored into declarative memory.
Later, each time the chunk is recalled, its base-level activation increases and the
strength of association between the current sources and the chunk also increases.
This will increase its probability of being recalled. To determine if a chunk will be

recalled following a procedure execution, the activation will be calculated by
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considering various information such as the base level activation, time elapsed since
the last recalls, the context, noise, etc; In procedural knowledge, each time a
procedure is used while executing a task, it is updated with success or failure
information (each experience can both increase/decrease the rule strength and its

probability of being fired in the future).

However, in ACT-R, the rules for all situations must be specified in advance.
ACT-R episodic memory does not address a role for emotions in the episodic
learning, and causal learning (Faghihi et al., 2009a, Faghihi et al., 2010). ACT-R is
unable to explain the bottom-up learning of the explicit knowledge and the interaction
between explicit and implicit knowledge (Hélie, 2007). Like ACT-R, Soar architecture
is a production system (Rosenbloom et al., 1993, Laird et al., 1987, Lehman et al.,
1998). Soar has a Working Memory (WM), Long-Term Memory (LTM), and a goal
stack. The WM in Soar detects external stimuli to the system and tries to find and
fetch relevant production rules from system’ LTM. Once rules fetched into the
system’s WM, their utility are verified upon to the current goal stored in the system’s
goal stack and then the best rule is chosen and fired. Like ACT-R, Soar uses chunk
to automatize utilization of the rules. The Soar architecture can only learn new

production rules (Nason and Laird, 2005).

3.2.3 CLARION’s Architecture

In order to obtain various cognitive processes within a single cognitive
architecture, Sun created the Connectionist Leaming with Adaptive Rule Induction
ON-line (CLARION) architecture (Sun, 2001, Sun, 2006). CLARION is a hybrid
system and a cognitive modules-based agent. In this cognitive architecture explicit
(declarative) /implicit (non-declarative) knowledge’s interact in a synergetic way to
solve a problem and to learn a specific task. The explicit knowledge is accessible by
the agent consciousness system whereas the implicit knowledge is not accessible
(or difficult to access) by consciousness when system performs a task. The

interactions between implicit and explicit knowledge levels are realized by the
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integration of connectionist, reinforcement, and symbolic methods to obtain several
learning abilities, such as bottom-up learning, trial-and-error learning, and top-down

learning.

CLARION is equipped with a procedural memory, a declarative memory and
an episodic memory. The most important challenge in CLARION' architecture is the
interactions between implicit and explicit knowledge that the agent acquires from its
environment. To separate implicit knowledge from explicit knowledge, Sun
suggested a distributed system with sub-systems. Each sub-system has two levels-
the top level encodes explicit knowledge and the bottom level encodes implicit

knowledge.

In Figure 3.2, ACS (the “action-centered sub-system”) controls internal and
external actions decision making. NACS (“non-action-centered subsystem”) role is to
store up the explicit, implicit and episodic knowledge and performs as the reasoners
of the system. MS is the motivational subsystem for feedback purposes. MCS
(“meta-cognitive subsystem”) observes ACS and all other sub-systems of the agent,
their activities and operations in order to change them when needed (for example,
when new feedback is received)(Sun, 2006, Hélie and Sun, 2008). The agent
explores its environment and tries to acquire information or modify it (for example,
hypothesis testing without the help of bottom level). The action selection mechanism
in CLARION is formed by different top/bottom levels. There exist input and output for
both levels. A state entered from the environment into the system will be analyzed at
first, and then an appropriate action will be allocated, according to the system goal.
The feedback will be learned and saved for future uses. In fact, the feedback could
be translated into “rules” and “chunk’ in the explicit knowledge level. Furthermore,
some existing nodes in the bottom level may be relevant to the condition of a sole
node at the top level. Thus, each action took by the bottom level will produce a node
with some related rules in the top level after extraction of explicit rule and then it will
be refined by future interactions with external world. Learning in CLARION is
accomplished by the integration of reinforcement learning and rule induction, so that

the resulting process is integrated automatically in the structure. Implicit learning



42

occurs in the bottom level with supervised learning (“back-propagation network™) by

input/output parameters adjustment.

Explicit learning occurs by extracting acquired knowledge from implicit
knowledge into symbolic representations. In fact, explicit knowledge is an extraction
and refinement of information that was captured from interaction with environment
(implicit knowledge). Conversely, explicit knowledge will be integrated into the
bottom level after it becomes stable (Hélie and Sun, 2008, Sun, 2006, Sun, 2001).

However, in CLARION current version, during bottom-up learning, the
propositions (premises and actions) are already present in top level (explicit)
modules before the learning process starts, and only the links between these nodes
emerges from the implicit level (rules). Thus, there is no unsupervised causal
learning for the new rules created in CLARION (Hélie, 2007). The second problem in
CLARION is that although emotions were originally designed in the system, it is not

clear how they influence different cognitive process such as Episodic Learning.
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3.24 LIDA’s Architecture

Learning Intelligent Distribution Agent (LIDA) (Figure 3.3) is a hybrid cognitive
architecture, developed by Stan Franklin and his colleagues at the University of
Memphis (Franklin and Patterson, 2006). LIDA is IDA’s successor; IDA was originally
conceived to assign new billets to sailors. In the American Navy, at the end of each
sailor’s tour of duty, he/she is assigned a new billet (task) by a detailer. IDA performs
the detailer's role. It communicates with sailors via e-mail and must understand
sailors’ requirements and preferences, as well as respect all constraints of the Navy.
To reply to the sailors, it has to communicate with different databases (Franklin et al.,
2005, Franklin and Patterson, 2006).

LIDA’s architecture is partly symbolic and partly connectionist and is equipped
with six artificial intelligence software technologies: a copycat architecture, a sparse
distributed memory, a global workspace, a schema mechanism, a behaviour net, and

a sub-sumption architecture.

Franklin called LIDA a “conscious agent” for its fundamental elements and
processes rely on functional consciousness as described by Baars (Baars, 1997).
LIDA is constructed with simple agents called "codelets" (which reproduce Baars'
"simple processors"). The central point of the system is the “access consciousness”,
which allows all resources to access centrally selected information that is “broadcast”
to unconscious processes (which guides the agent to be stimulated only with the

most relevant information).
LIDA’s main components are the following:

1) Perceptual Associative Memory: This corresponds to the different sensorial
cortices in human (visual, auditory and somatosensory). In LIDA, perceptual nodes
are situated in a slipnet. This allows the agent to distinguish, classify and identify
external and internal information. There are activations and connections between
slipnets’ nodes. Segments of the slipnet are copied into the agent's working
workspace (D’Mello et al., 2006);
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2) Workspace: This corresponds to the human preconscious buffers of working
memory. This is the "place" that holds active codelets and the strength between
them, which come from perception. It also includes previous percepts not yet
decayed away, recalls from long-term memories. Information written in the

workspace may reappear in different cognitive cycles.

3) Episodic memories: These are the memories for events (what, where and
when) and is divided into transient episodic memory, and a long-term

autobiographical episodic memory;

4) Functional Consciousness: This is the functional implementation of the
Global Workspace (GW) theory suggested by Baars (Baars, 1997). Its main
elements are codelets which run autonomously and are meant to perform one
specific task. Functional consciousness’ main components are the coalition
manager, the spotlight controller, the broadcast manager, and the attention codelets

that identify important events or urgent situations;

5) Procedural Memory: LIDA's procedural memory deals with deciding what to
do next. It is similar to Drescher’'s schema mechanism but with fewer parameters
(Drescher, 1991, Drescher, 1988). The scheme net is a directed graph in which each
of the nodes has a context, an action, results and links towards others nodes. To
instantiate and fire a scheme, LIDA uses Maes’ Action Selection mechanism (Maes,
1989), in its Behaviour Network with some modifications (Negatu and Franklin,
2002).

Thus, in LIDA’s architecture, while procedural memory is responsible for
deciding what will be done next, sensory motor memory is responsible for deciding

how tasks will be performed. Thus, each memory requires a distinct mechanism.

LIDA performs through its cognitive cycles (Figure 3.3) which occurs five to ten
times a second. A cognitive cycle starts by a perception and usually ends with an
action. It is conceived as an iterative, cyclical, active process that allows interactions

between the different components of the architecture.
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In what follows, we briefly explain LIDA’s cognitive steps, which are taken from

Franklin and his colleagues’ papers(D’Mello et al., 2006).

1) Perception: The process of ascribing the meaning of incoming sensory data.

2) Percept to preconscious buffer: All interpreted data and meaning is stored in
LIDA’s Working Memory’s preconscious buffers, adding to pre-existing information
which has not yet decayed away.

3) Local associations: Information associated with the cues are retrieved
automatically from different memories such as transient episodic memory and
declarative memory, and stored back in Long-term Working Memory.

4) Competition for consciousness: Here, attention codelets (AC) observe Long-
term working memory content and try to distinguish important events or urgent
situations in order to form coalitions describing them and bringing them to
consciousness.

5) Conscious broadcast: This refers to a coalition of codelets that is chosen by
Attention and brought to consciousness. It is broadcast to all modules.

6) Recruitment of resources: The most relevant schemes respond to the
broadcasted information.

7) Setting goal context hierarchy: in this step, a scheme is selected in response to
the broadcast to instantiate a new goal in the behaviour net.

8) Action chosen: LIDA’'s Behaviour Network manager selects a behaviour from
current or previously instantiated behaviour streams according to the presence of
preconditions and based on the most activated scheme.

9) Action taken: The selected behaviour is executed. Each action codelet spawns at
least one expectation codelet to monitor and bring back the results of the act to
consciousness for future decision-making.

In LIDA, learning occurs through consciousness (D’'Mello et al., 2006). Different
types of learning have been implemented in LIDA: 1) perceptual learning (e.g.,
learning of new objects): it is implemented as a semantic net (slipnet). It occurs by
the creation of new nodes or strengthening or weakening of the base-level activation
of the existing nodes in the slipnet after the consciousness mechanism broadcasts

information; 2) episodic learning: it occurs each time the agent finds an episode in
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the content of consciousness; it, then, connects the source of activation in the
current episode in the Slipnet to the basic features sensing elements. This
information about the event will be encoded in LIDA’s transient episodic memory.
The recall of the saved event occurs by finding the corresponding perceptual
symbols through slipnet nodes; 3) Procedural Learning: this refers to the learning
of new actions and action sequences, and is implemented through LIDA’s Scheme
Net as a combination of instructionalist and selectionist concepts. Nodes (actions)
are either created, strengthened, or weakened at the base-level activation of the
existing nodes in the Scheme Net after consciousness broadcast the information in
the system (D'Mello et al., 2006).

Stimulus
from Intemal Intenal Senses

Environment

T ]
Pemeption Cocelels Local Assoiatons

tion Selected
and Taken
(behavior codelets)

ATTD Seleth Perrephual Leaming
and Taken Episodic Leaming

(behavior codelets)
Altentional [earmng

Expectation and
Intention Cadelets

Figure 3.3 LIDA's cognitive cycle (Franklin,S., 2006)
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However, although causal learning was initially designed for LIDA’s
architecture, it has never been implemented. In LIDA’s procedural learning, D'Mello
(D’'Mello et al., 2006), has proposed that the result of each action must be brought
back to consciousness, whereas experiments relating to implicit learning
demonstrate that satisfied expectations usually do not provide feedback to the
subject (Cleeremans, 1997, Cleeremans and Jiménez, 1996, Cleeremans and
Jiménez, 2002, Curran and Keele, 1993). Finally, for episodic learning, in the recall
phase of an event, LIDA finds corresponding nodes in its slipnet. However, no similar
method has been proposed for procedural learning, though we, as human being,
have reflexes. For instance, we have reflexes for certain types of perceptual stimuli
(Squire and Kandel, 2000).

3.25 Conscious Tutoring System’ (CTS) Architecture

In this part, we briefly explain CELTS’ original architecture (Figure 3.4), without
its newly added emotions and learning capacities. These will be covered in the next
chapters. Based on IDA's (and LIDA's, its evolution) (Franklin and Patterson, 2006),
CTS' conceptual architecture is partly symbolic, partly connectionist. CTS was
conceived based on both cognitive and engineering concepts. CTS respected
cognitive concepts by implementing Baars(1997) global theories, detailing how the
human mind works (see Dubois,2007 for more details). CTS also abides engineering
concepts in its solution to the design and implementation of software information
agents and cognitive robots, promising better learning mechanisms and more

human-like intelligence.

CTS is a distributed and modular architecture which relies on the functional
"consciousness" mechanism for much of its operation. Its modules communicate
with one another (though rarely) and contribute information to Working Memory
(WM) through information codelets. These travel back and forth through cycles of
“conscious publications” that broadcast only the most important, urgent, or relevant

information.



48

Although CTS’ general design is very similar to IDA's, there are some
differences in CTS’ memory structures and functionalities (see Figure 3.4). For more

details, the reader is referred to Dubois’ thesis (Dubois, 2007).

CTS’ main constituents are codelets (of many types and roles),
“consciousness”’® mechanism, perceptual, semantic memories, and Behaviour
Network (BN). Its cognitive cycle incorporates the traditional Perception-Reasoning-

Action phases, but in a more detailed manner (quite close to IDA's).
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Figure 3.4 CTS' Architecture without Emotion and Learning (Dubois, 2007)

Cognitive cycles begin when external stimuli are interpreted by CTS'
perceptual mechanism and written into WM, where they may then be chosen by the
attention mechanism to be presented to consciousness. That broadcast information
may either assert preconditions for the initiation of behaviour in BN, or it may cause

reactions from another part of the system, which then creates the necessary

"% Consciousness: Conscious cognition is implemented computationally by way of a
broadcast of contents from a “global workspace”, which receives input from the senses and
from memory (Franklin & Patterson.2006).
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preconditions for firing a behaviour. When one type of behaviour is chosen in the BN,

it activates the codelets that implemented it.

CTS’ BN (Figure 3.5) implemented based on Maes’ Behaviour Net (Maes,
1989). It is a high-level procedural memory. It is a network of partial plans that
analyse the context to decide what to do and which type of behaviour to set off. This
structure is linked to the latent knowledge of how to do things in the form of inactive
codelets. Each behaviour node (Figure 3.5.A and B) may contain messages,
questions, propositions, etc. (Figure 3.5.C) and CTS uses them to communicate with
users (Figure 3.5.D). Just like codelets, they, have a base-level activation, which can
increase or decrease (Figure 3.5.A). Until it is selected for execution, a behaviour
node accumulates energy from the various sources in the BN (feelings, state nodes,
other nodes), but they are at the same time submitted to a constant loss of
activation. Links between the nodes require energy (Figure 3.5.B); learning is linearly
related to energy, and nodes weaken when not used (when the nodes they link are
not selected for execution). This mimics human beings: if we do not repeat a task for
a while, we will lose some of our ability, forgetting with the passage of time (Faghihi
et al., 2007).

CTS’ original cognitive cycle proceeds in eight steps:

Step 1: CTS perceives its environment (object recognition).

The first stage of the cognitive cycle is to perceive the environment; that is, to
recognize and interpret the stimulus.

Step 2: The percept enters WM:

The percept, which is constituted by the active semantic nodes of the Perceptual

Network (PN), enters Working Memory (WM) as a single network of codelets.
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Figure 3.5 CTS’ Behaviour Network

Step 3: Memories are probed and other unconscious resources contribute’:
All these resources react to the last few consciousness broadcasts (internal
processing may take more than one single cognitive cycle).

Step 4: Coalitions assemble:

" Step 3 to 5 could be viewed as a representation of blackboard (for whom is familiar with
this architecture) with more details.
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In the reasoning phase, coalitions' of information codelets are formed or enriched.
Attention codelets join specific coalitions and help them compete with other
coalitions toward entering "consciousness".

Step 5: The selected coalition is broadcast:

The Attention mechanism (AM) spots the most energetic coalition in WM and
submits it to "access consciousness” which broadcasts it to the whole system. With
this broadcast, any subsystem (appropriate module or team of codelets) that
recognizes the information may react to it.

Steps 6 and 7: Unconscious behavioural resources (action selection) are recruited:
Step 6, among the modules that react to broadcasts is the Behaviour Network (BN)
(Maes, 1989, Tyrrell, 1994)( Figure 3.5.A,B,C). BN plans actions and, by an
emergent selection process, decides upon the most appropriate act to adopt. (Step
7) The selected behaviour then sends the behaviour codelets linked to it.

Step 8: Action execution:

Motor codelets stimulate the appropriate nodes (effectors or internal processes).

CTS is a generic architecture applicable for different purposes. However, in our case
it is used to assist astronauts in learning how to manipulate Canadarm2 (Figure 3.6).
The international space station (ISS) has been designed and implemented to
accommodate scientific experiments and life in the space. Thus, it needs to be
supplied constantly with foods, fuel, inspections, etc. Canadarm2, a mobile and
robotic arm installed on the ISS permits astronauts to move the arm from one
configuration to another. For instance, astronauts may use Canadarm?2 to charge or
discharge the received food from the space shuttles. Thus, manipulating the robotic
arm is a difficult task, which requires astronauts to undergo a serious amount of
training. The seven degrees of freedom of the arm is the first difficulty to overcome,
as it considerably increases the number of possible operations. The second difficulty

is sight limitation. It is impossible to have an overall view of the station; therefore, the

2 For example, a coalition could describe Canadarm2 nearing collision with the virtual world
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astronaut can only see the arm through a “steady climb” camera installed on the
station and on the Canadarm2. Furthermore, the astronaut must choose among

these cameras because there are only three screens.

Figure 3.6  Robotic arm installed on the International Space Station™

Figure 3.7.A, shows an astronaut manipulating Canadarm2 and the three screens of

Canadarm's workstation aboard the ISS.

Thus, during Canadarm2 manipulation, astronauts must avoid moving it in a way that
might block it or produce a collision with ISS. Beyond the main task of manipulation
comes selecting the right cameras. In addition to choosing the best views, the
astronaut must continuously readjust the cameras while moving Canadarm2 from
one configuration to another. Our laboratory, in co-operation with the Canadian
space agency, developed an Intelligent Training Robotic Simulator which uses an
Innovative Path-Planner (Nkambou et al., 2008). It is called CanadarmTutor (Figure
3.7.B).

"* Source : http://www.nasa.gov/mission_pages/station/structure/elements/mss.html
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Figure 3.7 A) Chiao handling the Canadian Arm (Courtesy of NASA); B) The
CanadarmTutor user interface (Nkambou et al., 2006)

It assists astronauts in self-learning without human supervision.
CanadarmTutor is capable of indicating the distance between Canadarm2 and 1SS,
dangerous zones, obstacles, etc., to astronauts. It also makes it possible for the user
to test Canadarm2 in a virtual world and to complete exercises assigned by the tutor.
It is also capable of finding a path from a given situation permitting to move
Canadarm2 to the assigned destination. Astronauts are therefore provided with
various contexts in which they can manipulate Canadarm?2 (Figure 3.7.B). CTS was
integrated to CanadarmTutor to allow it to more efficiently analyze astronauts’
behaviour. For instance, it is now capable of finding the cause of astronauts’
problems, adapting to them, proposing better dialogue for communications, etc
(Dubois, 2007). Thus, the learners’ manipulations of the virtual world simulator,
simulating Canadarm2, constitute the interactions between them and CTS. In
particular, the virtual world simulator sends all manipulation data to CTS, which, in
turn, sends learners advice to improve their performance. To do this, CTS uses the
three panes of a consciousness viewer (Figure 4.5) Figure 3.8 . 1) Last Message:
Perceptual information received from the simulator; 2) Current Scene: Working

Memory (or scene,as in Baars’ metaphor) in which all interpreted data from the
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simulator and from other sources are temporarily written; 3) Broadcasted: All
relevant information (codelets) brought into Consciousness and broadcasted to all

entities in the system;

Perceptual Information comes from the Working Memory
virtual Or Scene (Baars’ theory)

= ;

1 fanme TT— ot e —————— == — e IO |
Lasi Message Current Scene
Event Status-2 occuring at 2007:4:16:21:32:36.15 | = | Codeletnfo oF "Warning: 1.079892
Canadarm :
the Mobile Base Station with translation 0.711932
Comgponent SR

Joint SY with rotation 0.557298
| Joint SP with rotation 0.500223
Joint SE with rotation 0.671537 .
Juinl WE with rotaton 0.836862 |
Juint WP with rolation 0.638575 |
Joint WY with rotation 0.930589 |
JoInt WR with rotation 0 494085 |
the charge PLIs at 390.708,209.479,106.556 [%
lef screen shows camera Perspective with 1Xzoom, | |
center screen shows camera CP2 with 1Xzoom, yaw 0
nght_screen shows camera GP8 with 1Xzoom, yaw -1{~
il g 110 1 [T

Broadcasts
Apr 16 21:31:54 EDT 2007) -
{AEF=AEF,limestamp=Mon Apr 16 21:31:54 EDT 2007}
{(identity=B timestamp=Mon Apr 16 21:31:54 EDT 2007}
[ 0,Evert. Apr 16 21:32:02 EDT 2007 tmestamp=Mon Apr 16 21:32:03 EDT 2007)
{Joimt=SP,C Canadar 500223, g ,Jolnt=SY,C. C Base-Station,C Charge,Joint=SE Jolnt=WR, Joint=
{Screen=Center,Pan=0.0,Camera=CP2,Tilt=-101.0,Zoom=1.0,timestamp=Mon Apr 16 21:32:D4 EDT 2007}
[Screen=Left,Pan=-7.0,Camera=Perspective,Zoom= 1.0, Tilt=-124.0,limestamp=Mon Apr 16 24:32:04 EDT 2007}
{Screen=Right,Pan=.180.0,Tilt=64.0,Z00m=1.0,Camera=CP8,timestarnp=Mon Apr 16 24:32:05 EDT 2007}
{c Charge,C: ‘m=Canatarm,Position=(386.469,209.489,111.0),Joint=SP, y JOi=SY,C: C Base-Station,Jolnt=SE,
ment=' Rotation-Amount=-0.0019999743,C: ‘m=Canadar i 836862, Joint=SP,, Joint=SY,C. C Base-Station,C:

Pr Missing Step=Adjusting Views, i Apr 16 21:32:35 EDT 2007)

i L Illr-lim Mo C. o N Canea Lfavco I‘_md:

v

All information %roadcasted by Consciousness mechanism

Figure 3.8 CTS conscidusness viewer

CTS’ original architecture was not equipped with emotions and learning
mechanisms. Some learning mechanisms such as learning of environmental
regularities (both implicit and explicit) and implicit procedural learning have been
implemented by Faghihi (2007) in CTS. In this study, we propose CELTS, the new
version of CTS, by explaining how emotions and three types of learning mechanisms

(emotional learning, episodic learning and causal learning) can be integrated into it.
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3.26 Comparison between different Architectures’ learning capabilities

At this point, we compare CTS’ learning capabilities (its version of 2007) with
three popular architectures explained briefly in this chapter. The comparison ignores
the Emotion, Episodic and Causal learning mechanisms proposed and implemented
in this study. CTS’ architecture is unlike to ACT-R’s architecture as it is not a unified
theory of cognition as postulated by Newell (Newell, 1990). its modules are
implemented in a distributed manner by means of different mechanisms such as
pandemonium theory, behaviour network. While CTS’ integrates a symbolic and

connectionist approaches, ACT-R integrates production rules.

In CTS, unconscious codelets perform similar to the bottom-level of CLARION;
and global workspace could be considered as its top-level module which
“synthesizes” bottom-level modules. CLARION is not as useful as Baars as far as
internal uniformity is concerned, but its architecture has partial functionality in the

emersion of consciousness.

CTS’ architecture permits learning in both an explicit and implicit fashion. Both
explicit and implicit procedural learning are implemented in the architecture. As
opposed to LIDA, no episodic and perceptual learning were implemented in CTS’
2007 version. However, while implicit procedural learning is implemented in CTS, it

is not implemented in LIDA’s architecture (Faghihi et al., 2007).

CTS’ explicit learning is similar to ACT-R’s in which codelets are learned when
they are fetched for the first time from declarative memory. However, there is no
codelets combination in CTS' BN, as for explicit learning, for the rules in ACT-R.
CTS’ implicit learning of declarative memory content is similar to ACT-R in which
codelets’ base-level energies increase or decreases when they call to WM and
spend time together. Implicit learning of procedural learning in CTS is also similar to
ACT-R’s in which for a given problem, after each execution, the behaviour receives
success or failure and positive or negative energies, thus making their probability of

being fired in the future increase or decrease. Implicit learning in CTS’ BN occurs for
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the behaviour's base-level energies and the links among them (Figure 3.5) (Faghihi
et al., 2007).

CLARION's explicit learning mechanism is similar to CTS’s in which it learns
symbolic representation- codelets in CTS and meaningful symbols in CLARION.
CLARION’ reinforcement learning is similar to CTS’s implicit learning in which BN’s
behaviour, after each execution, receives success or failure and positive or negative
energies. However, CTS is not equipped with the supervised learning implemented
in the CLARION’ bottom-level in which it uses back-propagation algorithms to
capture implicit knowledge (Sun and zhang, 2004).

It is worth noting that while ACT-R is not capable of bottom-up learning for explicit
knowledge, this learning is implemented in a supervised fashion in CLARION (Sun
and zhang, 2004, Hélie, 2007). Bottom-up learning is implemented for all three types
of learning such as episodic, perceptual and procedural in LIDA’ architecture (Duch
et al.,, 2008). CTS procedural learning and the learning of regularities are also
implemented as bottom-up learning (Faghihi et al., 2007).

LIDA ACT-R CLARION CTS
{Franklin, 2006) (Anderson, 1983) {Sun, 2006) {Dubois, 2006)
Explicit Perceptual Learning X — X _
Episodic Learning X X — _
Explicit Procedural Learning X X
Implicit Procedural Learning — X X

Emotional Learning — — — —

Bottom-up Supervised

Learning X _“ X -

Supervised Causal Learning — X _

Table 3.1 Comparison between LIDA, ACT-R, CLARION and CTS (— =the architecture is
not equipped with this specific learning; X = the learning mechanism is implemented)

3.3 COGNITIVE ARCHITECTURES AND EMOTIONAL MODELS

Due to the important role emotions play in cognition, cognitive modellers have

sought to include emotional mechanisms in their agents’ cognitive architecture.
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However, while psychological theories propose an abstract approach to the study of
emotions, the computational models propose a pragmatic framework to it. Thus, the
implementation of emotions in a computational fashion impacts psychological
theories by revealing their limits and hidden hypotheses (Steunebrink et al., 2009,

Marsella et al., In press).

Various models have been proposed up to now. While some computer
scientists are interested in using emotion to make their agents more believable,
others work on the functional aspects of emotions and their influences on the agents’
behaviour, learning and social aspects (Adam, 2007). The first group is not covered
in this study. For more details, readers are addressed to Adam’ thesis (Adam, 2007).
The second group implement an Emotional mechanism in their agent using a
‘Centralists’ approach such as Gratch and Marsella (2004), Velasquez (Velasquez,
1996, Velasquez, 1997) and Franklin (2006). They are very briefly explained in what

follows.

1) Gratch and Marsella’s model: Gratch and Marsella (2004) proposed
Emotion and Adaptation (EMA), a plan-based computational model of
emotion based on the appraisal theory of Lazarus (Lazarus, 1991). Plans
are built according to their probability or utilities. Causal interpretation is the
key concept in EMA’ architecture to find the causal relationship between
agent emotional states and corresponding events to judge their relevance
given the agent’s goal. Three important elements in causal interpretation
are the past causal history, the actual situation of the environment and
agent, and the future. The appraisal process task is to map causal
interpretations to appraisal variables which cause one or more emotions to
be set off by the system. From fired emotions, the most intense will permit
coping processes to find a remedy to the current problem. EMA is
equipped with different coping strategies such as denial, shift blame,
acceptance, etc. To be capable of predicting the outcome of executed
actions and making appropriate causal relationships, the authors put stress

on the explicit representation of the agents’ intention and belief. Thus, a
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coping strategy may influence causal interpretation by altering EMA’s
current intention, utility or probability values (Mao and Gratch, 20086,

Marsella et al., In press, Adam, 2007).

Although researchers in psychology postulate the direct link between
appraisal and coping, it is ignored in this model (Adam, 2007). The model does not
integrate cognitive neuroscience evidence for the short and long routes of emotion,
as explained by LeDoux and Cannon (LeDoux, 2000, Cannon, 1927). In fact, all
human behaviour is not the production of causal interpretation processes (reflexes
are good exceptions). The second problem is that the model uses probability
approaches to find relationship between different components of the model.
Probability approaches are accompanied by the risk of combinatory explosion in the
case of huge amounts of data. The model also turns out to be too expensive to apply
to large populations of real-time agents such as combatant agent (Parunak et al.,
2006).

2) Velasquez’s emotional model (Velasquez, 1996, Velasquez, 1997): the
Cathexis architecture describes and integrates psychological and biological
aspects of human’s emotions in detail. Proto-specialists (subagents)
control the six basic emotions such as anger, fear, distress/sadness,
enjoyment/happiness, disgust and surprise. Each emotion has an
activation threshold, saturation (maximal value for emotion) and a decay
function (duration of emotion). Proto-specialists perform in parallel and
continuously update their parameters. According to the current situation
and/or previous emotional states, proto-specialists may set off a particular
emotion or may send inhibitory or excitatory energy toward others. The
temperament of the agent is decided upon the emotion’s activation and
saturation values. Moods are distinguished by being more resilient and
having lower activation comparing to emotions. In this architecture, internal
and external sensors and proto-specialists can alter agent's emotional

states. Changes in the agent's emotional states occurs in both cognitive
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and non-cognitive fashion such as cognitive (e.g. appraisal), motivations
(e.g. hunger), sensory motor stimuli (e.g. body posture), and neural
activities (e.g. neurotransmitters). The expression of behaviour occurs by
action selection. This occurs by choosing the most energetic behaviour
through a network of behaviours that are in competition. Generally, the
model attempts to simulate the real process of emotions as defined in

humans. Finally, the model proposes only a simple model of behaviour.

However, there is no standard measurement proposed by authors to decide
how precise the proposed model is comparing to human’s emotional activities.
In addition, the model ignores explanations of how the emotional memory
influences learning and behaviour in the architecture. For instance, for a given
situation, how do emotions influence the consolidation and remembering

phase of episodic memory?

LIDA (Franklin and Ramamurthy, 2006): Franklin, in his cognitive agent, also
attempted to design emotions. The influence of emotions in LIDA’s architecture can
be seen in different part of the system and through its cognitive cycles, but the
consciousness mechanism is the necessary intermediate in all of these
interventions. Emotions intervene endlessly through the loop of perception-
deliberation-action selection. However, the paper does not detail how emotions help
different types of learning in the agent. Furthermore, LIDA’s architecture ignores the
implicit emotional reactions in its cognitive cycles, which are documented in both
neurobiology and psychology studies of the human brain (Squire and Kandel, 2000,
Purves et al., 2008).

3.3.1 Conclusion

Until now the means of implement of emotions in cognitive agents have made

peripheral-central learning impossible (James, 1884, Cannon, 1927). To best

resemble humans, cognitive agents’ emotions should be capable of influencing the
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different types of learning and decision-making. However, as it was mentioned
previously, various types of learning are functionally incompatible (Sherry and
Schacter, 1987). Thus, in order to implement emotions and learning mechanisms in
cognitive agents, one important task is to define how they collaborate with each
other. The collaboration between these mechanisms must be defined as a set of
complementary ruies. Furthermore, we suggest that emotions and learning
mechanisms should be implemented in a modular and distributed fashion. Although
ACT-R, CLARION and LIDA used the concept of emotions in their architectures,
none proved capable of improving learning mechanisms. However, in some of them,
emotions do influence decision-making. Our proposed model, conversely, allows for
both the peripheral—-central and the Centralists model to produce emotional reactions
and learning. In the following chapter, we propose the implementation of an
emotional mechanism for cognitive architectures. In our model, emotions not only
influence different types of learning, decision-making and behaviour in CELTS, but

also permit that agents be brought to a self-satisfaction state.



CHAPTER IV

IMPLEMENTATION OF EMOTIONS AND EMOTIONAL
LEARNING MECHANISMS IN CELTS

In this chapter, we explain how to best insert an Emotional Mechanism (EM),
and Emotional learning in an artificial agent's cognitive architecture, based on
evidence from cognitive neuroscience and with respect to the several theories of
emotions presented in Chapter Il. We also detail how EM influences different
modules in CELTS, implicitly or explicitly. The influence of EM in Episodic and
Causal learning will be detailed in the next chapters. It is worth noting that, so far, no
specific feature has been found that could allow cognitive architectures to have
something similar to human feelings. Thus, our discussion of the implementation of
emotions in cognitive architectures covers only emotions in their functional context. It
must also be noted that the emotions of cognitive agents need not all be similar to
those of humans. Our work on emotion is based on the OCC model and the work of
Ledoux (LeDoux, 2000) on fear conditioning and the amygdala, which extends
current models by defining emotional learning as a parameter that helps different
types learning (e.g. Episodic Learning) and helps differentiating a variety of
emotions. Emotional learning is here taken to be CELTS’ memorization of valenced™
reactions to given emotional situations (stimuli) as described in the OCC model
(Ortony et al., 1988).

* Emotional valences are between -1 and +1
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4.1 CELTS’ Emotional Architecture

In this section, we propose our generic computational model of emotion which
explains in details how the “peripheral-central” (LeDoux, 2000, Cannon, 1927) model
is implemented in CELTS. As explained by Phelps (2006), emotions influence
attention, and vice-versa. Accordingly, in CELTS’ cognitive cycles, when the percept
enters WM as a single network of codelets, the emotional codelets inspect each
coalition’s informational content, and infuse it with a level of activation proportional to
its emotional valence. This increases the likeliness that some coalition draws
attention (AM) to itself. This emotional intervention on the coalitions in WM is how
CELTS' Emotional Mechanism (EM) (which we call “pseudo-amygdala’) gets
involved in CELTS' long route (ELR rectangles in Figure 4.1). Attention influences
the EM by providing information about the environment regarding the discrepancy
between what was expected and what effectively occurred. This may alter the future
valence assigned by EM to situations in the environment, as well as the importance
EM gives to a situation. In our model, after each interaction with the environment,
CELTS' EM updates its information (especially in dangerous situations) about its
surrounding environment for future situations. Thus, the importance of any given

situation may increase or decrease in CELTS’ next encounters with it.

Before explaining our model in detail, we first explain the typical situation
experienced by astronauts, in a virtual world. For instance, when an astronaut
manipulates Canadarm2 in the virtual world, information coming from the simulator
may describe an imminent collision. A collision is very dangerous on the ISS and the
tutor must immobilize the arm. Once it has done so, CELTS interprets more
attentively the information received from the virtual world. It must recognize which
movements will not cause collisions. CELTS then gives feedback to the user such as
a hint. The first reaction taken by CELTS will then be adjusted for future interactions

with any astronaut.
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CELTS can make two reactions when faced with a dangerous situation. We
now explain how the information, coming from CELTS’ perceptual Mechanism, flows
along the short and long route (ESR and ELR in Figure 4.1).

The first step here is the Short route. The short route (see ESR rectangles in
Figure 4.1) starts with perception just like the long route (see ELR rectangles in
Figure 4.1). The perception codelets connect in parallel both to CELTS’ Behaviour
Network (BN) and to its emotional codelets. The activation sent directly by
perception codelets to emotional codelets is the first stage of the short route. The
Emotional Mechanism (EM) establishes the positive or negative emotional valance of
the event for the system. The valence assigned to the event may result from
evolution (an innate valence accorded to evolutionarily important situations) or from

learning.

Thus in CELTS, some emotional codelets might correspond to innate
(designed) sensitivities (e.g., to excessive speed for Canadarm2, or to an imminent
collision); other emotional codelets may have learnt the valence of situations from
experience. Either way, emotional codelets possess direct connections to behaviour
nodes in the BN, to which they send positive or negative activations. Some of these
emotional codelets react more strongly than others and so send out stronger valence
activations to the behaviour nodes. If the valence activations exceed a behaviour
node’s firing threshold, then the corresponding action will fire automatically. This
emotional intervention reflects a direct route between the amygdala and bodily
responses, influencing action selection. This corresponds to James’ theory (James,
1884) that explains why a bodily reaction generates an emotional feeling, if an

important stimulus directly causes the bodily reaction.

Whichever route was responsible, short or long, the firing of a behaviour node
generates one or more Expectation codelets, which are a type of Attention codelets
in CELTS. These codelets are processes that watch for the arrival in WM of a given
piece of information, expecting to see, within a given time frame, some specific

result(s) for the action taken by CELTS. The expectation codelets have a double
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duty in CELTS. First, they serve as "environmental reinforcers” to the Action

Selection Mechanism in the BN.
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Figure 4.1 CELTS' Architecture with Emotion and Learning Mechanisms

If they see information coming in WM that confirms the Behaviour's expected
result, they directly send reinforcement activation to the behaviour nodes that
created them (that is, they do not do so through conscious broadcasting). This
behaviour will thus see its base-level activation heightened, making it a more likely
choice in a similar context. In the case of a failure to meet expected results,
however, relevant resources need to be recruited, to allow them to analyze the

cause of the failure, to correct the previous emotional interpretation of the situation,
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and to allow deliberation to take place concerning supplementary and/or alternative
actions. The expectation codelets then work to have discrepancies brought to the
attention of the whole system (in an eventual conscious broadcast of the noted
discrepancy) by sending the information to the CELTS WM. After sending the
information to WM, CELTS continues through its cognitive cycles (see next section,

step two to eight of the cognitive cycle) to allow for improved decisions.

The expectation codelets’ second duty concerns our "pseudo-amygdala” (the
Emotional Mechanism), in cases where it forced an automatic reaction through the
short route (e.g., the imminent collision in the virtual world). Indeed, when low-level
basic information coming from the perception codelets recognize aspects of the
situation as highly dangerous, there is no time to think and, through the mechanism
described above, the emotional codelets will force an action to fire in the Behaviour
Network. This makes CELTS jump before thinking (James, 1884) (ESR’s path, red-
dotted rectangles and blue arrows which demonstrate primitive appraisal in Figure
4.1). That is, it makes CELTS act before it had time to become "conscious” of the
situation and consciously plan a course of action. This corresponds to the first
reaction taken by CELTS in our aforementioned example about imminent collisions

in the virtual world.

However, the instantaneous, mindless reflex must be evaluated following the
more thorough analysis of the situation that comes later, through the long route.
CELTS can do this because both the short and long routes process the information
in parallel. In fact, instinctive reactions execute faster. Eventually, however, a
conscious broadcast of information (step 5 of CELTS’ cognitive cycle), which gives
CELTS a better idea of the situation, allows normal action selection to take place.
When the action thereby proposed comes into WM (step 2 of the cognitive cycle),
the expectation codelets compare it to the reflex action that has been prompted. If
roughly in correspondence, they put into WM a confirmation to the effect that the
initial reaction was right, which will serve, when broadcast, as a reinforcer to the
emotional codelet(s) that were instrumental in setting off the reflex. In effect, this will

make our pseudo-amygdala reinforce the relevant rules and nodes. However, when



66

the initial reaction diverges from the behaviour proposed by the more detailed
analysis, the pseudo-amygdala has to alter its first reaction. This corresponds to step
two in our example about imminent collisions. From a neurological point of view,
control over actions is the role of cortical areas. In CELTS, the expectation codelet
that determined that the action taken by the short route was inappropriate subtracts
some activation (this process is explained in the section 4.1) from the codelets in the
Emotional Mechanism responsible for the direct implicit reaction. Activation will also

be subtracted to the corresponding nodes in the BN that executed the action.

This way of implementing the control, as we will see below, seems in
accordance with the fact that the amygdala never unlearns a "rule,” especially for
very dangerous stimuli, and always reacts to a given stimulus (Squire and Kandel,
2000, Rolls, 2000). This description highlights the fact that CELTS' Emotional
Mechanism, which responds implicitly to events, reacts faster than the conscious
process, but may react in ways that are different from what conscious planning
would decide. Emotional codelets receive reinforcements from the environment (via
expectation codelets) and can learn or, as we will explain in the next section, create
new nodes for the actions they took. In the next section, we explain how the

Emotional Mechanism influences CELTS cognitive cycle.

411 Impact of Emotions in CELTS' Cognitive Cycle

The emotional long route involves the consciousness mechanism. Emotions
influence this mechanism at every step in the cognitive cycle. We briefly recall each
step in the cycle and then, in italics, explain how the valence attributed to situations
by CELTS Emotional Mechanism influences it. For a visual representation of the

described process, please refer to Figure 4.1.

Step 1: The first stage of the cognitive cycle is to perceive the
environment; that is, to recognize and interpret the stimulus (see (Dubois et

al., 2007) for more information).



67

All incoming information is evaluated by the Emotional Mechanism when low-level
features recognized by the perceptual mechanism are relayed to the emotional
codelets, which in turn feed activation to nodes in the Behaviour Network. Strong
reactions from the "pseudo-amygdala” may cause an immediate reflex reaction in
CELTS (Squire and Kandel, 2000, Purves et al., 2008).

Step 2: The percept enters Working Memory (WM): The percept is

brought into WM as a network of information codelets that covers the many
aspects of the situation (see (Dubois et al., 2007) for more information).
In this step, if the received information is considered important or dangerous by the
Emotional Mechanism (EM), there will be a direct reaction from EM which primes an
automatic behaviour from BN (Rolls, 2000, Squire and Kandel, 2000, Purves et al.,
2008).

Step 3: Memories are probed and other unconscious resources
contribute: All these resources react to the last few consciousness broadcasts
(internal processing may take more than one single cognitive cycle).

What is brought back from episodic memory is evaluated by the emotional codelets

(ELR Figure 4.1) and receives its emotional load anew.

Step 4: Coalitions assemble: In the reasoning phase, coalitions of
information are formed or enriched. Attention codelets join specific coalitions
and help themcompete with other coalitions toward entering
"consciousness".

Emotional codelets observe WM's content, trying to detect and instil energy to
codelets that, they ‘believe,” require it, and attach a corresponding emotional
valence. As a result, emotions influence which information comes to consciousness,

and modulate what will be explicitly memorized.

Step 5: The selected coalition is broadcast: The Attention mechanism
spots the most energetic coalition in WM and submits it to the "access
consciousness,” which broadcasts it to the whole system. With this broadcast,
any subsystem (appropriate module or team of codelets) that recognizes the

information may react to it.
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Steps 6 and 7: Here unconscious behavioural resources (action
selection) are recruited. Among the modules that react to broadcasts is the
Behaviour Network (BN). BN plans actions and, by an emergent selection
process, decides upon the most appropriate act to adopt. The selected
Behaviour then sends away the behaviour codelets linked to it.

In this step, the emotion codelets stimulate nodes in the BN, preparing it to react,
priming certain behaviour streams, and thereby increasing the likeliness of their
fiing. This mostly mimics priming effects. The emotional valence (positive or
negative) attached to the published coalition will influence how resources react.
When the BN starts a deliberation for action, for instance to build a plan, the plan is
emotionally evaluated as it is built, the emotional codelets playing a role in the
selection of the steps in the plan. If the looping (through the cognitive cycle)
concerns the evaluation of a hypothesis, the emotional codelets give it an emotional

evaluation, perhaps from learned lessons from past experiences.

Step 8: Action execution: Motor codelets stimulate the appropriate
muscles or internal processes.
Emotions influence the execution, for instance in the speed and the amplitude of the

movements.

4.1.2 How CELTS’ Emotional Mechanism Learn

After having proposed an Emotional Architecture for CELTS in the previous
section, we explain here how emotional implicit and explicit learning are
implemented in CELTS’ architecture. In CELTS’ cognitive cycles, stimuli from the
virtual world simultaneously go to WM and EM. The latter detects events of
emotional importance. Our implementation of implicit emotional learning is inspired
by the views of Drew Westen (Westen, 1999) and those of Larry Squire and Eric
Kandel (2000), while that of explicit emotional learning is inspired by Cannon’'s
theory (Cannon, 1927).
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Implicit emotional learning occurs when EM’s nodes reaction intensity (EIS, Eg.
1) or the strength of its connections to nodes in WM or BN is modified. In the implicit
emotional learning phase, the influence of emotional codelets (either those
temporary resident in WM or those situated in EM and listening to the received
information) through their base level activation indirectly affects the creation of
coalitions and their selection (step 5) by the Attention Mechanism (steps 3 and 4 of
cognitive cycle). Thus, the Emotional Learning Mechanism (ELM), in its implicit
learning phase, learns (see below) which coalition in WM received emotional energy
from EM. This occurs when emotional codelets resident in WM try to detect which
coalition, according to the agent’'s goal, is emotionally more important than others
and then by attaching themselves to those coalitions, which thereby instils a portion
of its energy to it. This may increase the likeliness of those emotionally selected
coalition to draw Attention (i.e., AM) upon itself in the upcoming cognitive cycles.
Moreover, ELM learns (see below) that it must send energy to these emotional
codelets in WM to prolong the coalition’s lifetime in WM and to help them be selected
by AM. This is due to the fact that codelets with no energy will exit WM. Thus, in this
way, the emotional codelets detected as emotionally important by EM will remain
active in WM to attach themselves to coalitions. This emotionally learned information

will never be forgotten by the system (Westen, 1999, Squire and Kandel, 2000)

Explicit emotional learning occurs following the broadcasting of information
(step 5 of cognitive cycle) in the system. In the explicit emotional learning phase, if
for a given situation, the information coming to WM that was considered as very
important by perceptual nodes (Step4 of cognitive cycle), EM detects no emotionally
important information, it will create a new, empty node with a context which
describes ongoing events. To fill out the action part of the new node, EM will wait for
the consciously-mediated selection of a behaviour and the ensuing broadcasting of
the event with external confirmation after the execution of the action by CELTS. If the
selected action from BN received a strong (positive or negative) reinforcement from
the environment, EM learns the broadcasted information instantaneously, that is, in
less than a second (note that CELTS processes information through cognitive

cycles, which happen five times per second (Franklin and Patterson, 2006)). At this
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point, EM has associated the context of the new node with the action selected and
executed by CELTS. Information brought to consciousness right after the action took

place becomes the result part of the created node.

Each new node in EM includes a context, an action, a result, a cause, a base-
level activation and a reaction intensity. Learning in each node happens very fast
(especially in the case of fears) by strengthening the node's activation according to a

sigmoid function. To simulate EM’s codelets behaviour, we input three parameters

into a sigmoid function (Eq.1): (1) @ ,the codelet’'s base-level activation; (2) B

the learning rate; (3) A ,controls the emotion activation, which means that if intensity
goes beyond this threshold, the corresponding codelet in EM will release its output
(positive or negative energy) into the system. The sigmoid function is used in order
to map the three parameters unto a 0 to 1 range and allow each codelet to react,

giving CELTS the ability to implicitly and explicitly act on the situation.

The emotional codelet’s reaction intensity corresponding to the stimuli at the time tis

calculated by:

1

E[S = IR IR VRA K
1+ e(—EIS,_l PrXAro )y arC (Eq 1)

. E1S,_, is the value of intensity for emotion at the previous step

. 4 threshold for emotional activation release
* o base-level activation
g aconstantin [0,1] for learming purposes
+  C the number of cognitive cycles
At actual time minus the last time the program was executed

Implicit emotional learning in EM occurs through this update of the node’s
reaction intensity (E/S). Recall again that this fast emotional learning can bring a
direct reaction (before information is broadcasted) as when fear or a very high
emotional level makes an agent react instantaneously. This type of learning helps
CELTS learn to react faster to the next similar or identical situation. However, if
CELTS was disposed to react very strongly, but it turns out that the agent should not

have reacted that strongly, it can modify its reaction intensity for the next occurrence,
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once again according to the sigmoid function. To do this, the Emotional Mechanism
creates one emotional codelet (named g;, as in the pseudo-amygdala) for each very
important stimulus s; calling for an emotional response, with a connection weight w;
between them. The output of each emotional codelet is primarily obtained by the

following equation:

Usually, CELTS recognizes a situation instantaneously and will react in an
appropriate time frame. However, sometimes, CELTS may need more time to deal
with the situation. Maybe it has no behaviour ready to offer a reaction; maybe it
entered a deliberation to establish a probable cause, or to decide what to do. But as
the number of cognitive cycles (C) increases without resolution, the emotional
salience of the stimulus increases (as when we get more nervous waiting for a
solution with each passing moment). Emotional codelets thus increase their output
until they receive a signal from expectation codelets telling them whether they
reacted appropriately, or until they set-off a reflex action. However, an emotional
codelet may connect or react to some different perceptual nodes each sending its
activation (ajpc) to the emotional codelet. We may then calculate the emotional
codelet’'s energy as the sum of all perceptual inputs to it according to Eq.3. An

emotional codelet’s energy is thus:

EA = Za/‘pc * C (Eq 3)

If, however, EM learned some particular events as being of ‘highest emotional
importance, it will cause a direct (and intense) reaction for the next similar event. It
may turn out, however, that following the execution of the action, CELTS determines,
through its cognitive cycles, that such events are not emotionally important (or not
that important). This occurs for instance when CELTS observes a collision-risk
situation brought about by the astronaut in the virtual-world and reacts directly and

too intensively. After some time, it understands that the reaction was wrong or too



72

strong. If that situation repeats many times, then the emotional salience of that
situation for reaction will be diminished. In this case, EM might re-adjust w; to
diminish the importance of the stimulus toward a response. If it happens many times,
EM will end up classifying the stimulus as neutral information, giving it a neutral
valence. The opposite situation may happen when information enters WM and is
considered normal (neutral) by EM, but it turns out that after a conscious
broadcasting followed by an action, CELTS receives strong reinforcement feedback
(positive or negative). At this point, the system again may readjust w; for the
corresponding nodes. Learning in this second sense (w; adjustment) can happen by
calculating the difference between the reinforcer (R) and the activation (a;) of the

emotional codelet:

Aw;=B* Si* [R-Yaj (Eq. 4)

The R represents the astronaut’s good or bad manipulation of Canadarm2 or
the correct or false answers to the questions given by CELTS. The B parameter is
used as a standard learning rate parameter, settable between 0 (no learning) and 1.
However, the emotion present in CELTS will decay by losing a fixed portion of
energy if the actual emotion receives little attention in the following cognitive cycles.
This “peripheral-central” model of emotional learning implemented in CELTS is what

all other models failed to propose.

41.3 How CELTS’ Emotional Mechanism helps other types of Learning

CELTS has both implicit and explicit learning. CELTS' learning mechanisms
are implemented in a distributed and modular manner with emotions influencing all of
them. They are Emotional learning, learning of regularities (Faghihi et al., 2007),
Procedural learning (Faghihi et al., 2007), Episodic learning and Causal learning.
The implicit learning is unconscious and independent of the Attentional Mechanism
(AM). It occurs in the the Emotional Mechanism (EM), the Working Memory (WM)

and the Behaviour Network (BN), whereas explicit learning occurs in different
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learning modules after information is broadcasted by the access consciousness
(step 5 of cognitive cycle). In this part of our document, we briefly detail how
emotions influence implicit and explicit learning in CELTS. More precisely, we focus
on the influence of emotions in the learning of regularities and in procedural learning.
This will be discussed in the context of Episodic and Casual learning in the following

chapters.

41.4 Implicit influence of emotions in the learning of regularities in WM
and BN

When the emotional valence attributed to an encountered situation is weak'®,
its influence in the learning of regularities will be implicit. It will not be sufficient to

trigger codelet firing in the BN or to take WM coalitions to consciousness.

When virtual world information is sent to CELTS, it eventually reaches WM
(step 2 of cognitive cycle). Both implicit and explicit learning processes start at this
point in parallel. Implicit learning of regularities in WM essentially comes from the
reinforcement of the links between codelets based on the time they spend together
in a coalition. Following Baars (Baars, 1997), this occurs when associations between
codelets and their base level activation indirectly affect the creation of coalitions and
may, in the following cognitive cycles, cause the Attention Mechanism (AM) to select
them (steps 3, 4 and 5 of cognitive cycle) (e.g., the retrieval and selection of the
information). EM, among others, influences WM'’s content by detecting and instilling
a portion of energy (positive or negative, which is described as E,; in Equation 5) to a
particular coalition. This may increase the likeliness that the emotionally selected
coalitions draw Attention (i.e., AM) upon themselves in subsequent cognitive cycles.
The emotional influence in WM’s content is simulated with Equation 5. The weights
of the links between codelets in a coalition are adjusted in accordance with the
learning parameters and the energy received from EM. It must be noted that

Equation 5 is used to simulate the influence of EM in CELTS WM content (see

"> Thresholds are approximately < 0.5 for positive cases and >-0.5 for negative cases.
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(Faghihi et al., 2007) for more information) whereas Equation 1 in the previous

subsection is used to simulate EM’s behaviour nodes situated in EM.

More precisely, CELTS' implicit learning of regularities in WM establishes
which codelets already have connections with others, which are selected by the
Emotional Mechanism (EM) and which have received supplementary energies. It
then creates new links or reinforces the existing ones between the codelets within a
coalition in WM. This can increase the likelihood that certain coalitions are chosen by

AM in future cognitive cycles.

Strength =

(—sx*EAi+d).1.C (Eq. 5)

1+e

Where:

-x: association strength between two codelets

-s: rate of increase of base-level activation (for the links
between codelets)

-d: threshold value for conversion into a coalition

-C: the number of cognitive cycles since the creation of the
link.

-t. mean time for two codelets passed together in WM.

CELTS’ implicit procedural learning takes place in the BN — for both links
between nodes and the base-level energy of each node (Faghihi et al., 2007). When
energy passes through the link between two behaviour components in the BN, it will
strengthen. Transferring more energy between the links in the BN also increases the
accumulation of the node’s base-level energies, which alter the nodes’ reaction
intensities in subsequent cognitive cycles. The re-execution of the behaviour items
having had received emotional energy increases the strength of their links and
speeds up their execution time in the future. Thus, this type of learning accelerates

planning and behaviour sequence execution (Faghihi et al., 2007). CELTS’ impilicit
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procedural learning detects behaviour codelets that were selected by the Emotional
Mechanism (EM) and have received supplementary energy in the BN Figure 4.1, red
plain arrows). It must be noted that in our model, emotion does not suddenly appear
and disappear. The energy from EM is instilled in a constant manner for the
subsequent cognitive cycles if the same stimulus comes to the WM. Depending on
the received information and emotional primary evolution of the situation (such as
collision=high-threat or, collision-risk=medium-threat, camera-adjustment=low

threat), EM produces a valence reaction.

The instilling of Emotional energies also remains constant during the learning
phase. Thus, depending on the received energies from the emotional mechanism,
CELTS can learn faster or may learn normally (Faghihi et al., 2007).These emotional
interventions, which allow concepts to be selected faster by the Attention Mechanism
for broadcasting by the Access consciousness (Step5 of cognitive cycle), also allow

the various aforementioned CELTS’ Learning mechanisms to learn at a faster pace.

41.5 Explicit influence of emotions in the learning of regularities in WM
and BN

The explicit influence of emotions in the learning of regularities in WM and BN
is related to the energy that is instilled from EM to the nodes. This energy alters their
base-level energies and is enough to directly fire them in the BN or bring coalitions

from the WM to consciousness.

Explicit learning in WM occurs when AM makes a collection of codelets into a
coalition that is broadcasted. This occurs in various forms and locations in CELTS,
for instance in the learning of regularities, Episodic learning and Causal learning (see
the following chapters). The explicit.learning of regularities implemented in CELTS
rests on a bottom-up theory for data categorisation inspired by Hebbian learning and
Jackson's Pandemonium theory (Jackson, 1987). If the reappearance of a coalition
occurs frequently in WM, the coalition is likely to be relevant for CELTS (this, we
refer to as a “regularity phenomenon®, see (Faghihi et al., 2007). Thus, it is likely that

these coalitions eventually reach a permanent coalition status to represent this
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regularity (for example, Canadarm?2 rotation that indicates repetitive reversals of
motion show a user's difficulty with a manoeuvre). The influence of emotional
learning in this stage lies in its direct intervention in WM. In effect, it directly instils
positive or negative valences to specific coalitions thus causing AM to immediately

select them and consciousness to subsequently broadcast them.

EM also influences BN by its direct intervention. In some dangerous cases, as
aforementioned, EM intervenes directly by instantiating corresponding behaviours to

solve a problem.

4.2 EVALUATION AND RESULTS

We compare the performance of CTS’ original architecture with that of its new
version, CELTS equipped with EM. How EM’s explicit and implicit reactions alter BN

energy levels will be detailed in the next chapter.

Equipped with the Emotional Learning mechanism, CELTS is capable of better
decision making and more accurate interventions than CTS. To validate CELTS' EM
capacity when faced with dangerous situations, we integrated it into CanadarmTutor
(Nkambou et al., 2006), our simulator designed to train astronauts to manipulate
Canadaram2. CELTS’ interpretation of a given situation is in part dependent on

CanadarmTutor's interpretation of the users’ actions in the virtual world.

CELTS’ performance was tested in various situations such as collision risk,
collision, good and bad manipulations of Canadarm2. We ran CELTS executions
randomly and noted reaction times and the decisions made. We predicted that

CELTS should be more adaptive than CTS in any given situation.

It should be noted that at this stage, we only discuss very dangerous and
dangerous situations in which EM must intervene explicitly in WM and BN.
Furthermore, we wish to examine the adaptiveness of CELTS' EM when faced with
very dangerous situations. For other types of emotional interventions, such as while

CELTS interacts with users to help them learn to manipulate Canadarm2 in the
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virtual world, and also for how emotions can bring CELTS to a self-satisfaction state,

readers are referred to the next chapter.

Situation one: Collision risk

To addressee this situation we executed CELTS with and without EM. Suppose that
a user is asked to move Canadarm2 from configuration A to configuration B on ISS.
CELTS must recognize which movements will not cause collisions. CELTS then

gives the user feedback in the form of questions or hints.

Execution without EM:

In this situation, suppose that the user has brought Canadarm2 too close to
ISS. The simulator immediately informs CELTS (Figure 4.3) that there is an imminent
risk of collision. The information is then selected by CELTS' attention mechanism
and broadcast to the system. After deliberation from CELTS BN, an act will be
chosen and shown to the user (Figure 4.2). To react to this situation, CELTS uses
the long route. No significant changes are made to the energy in the BN (see next
chapter for more details).
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Execution with EM:

Part one (situation 1.1): in this situation, suppose that the user has brought
Canadarm2 too close to ISS. The simulator immediately informs CELTS (Figure 4.3)
that there is a risk of an imminent collision, and that these collision risks are coded
as very dangerous. As a result, EM’s codelets react to the situation by instilling
enough negative energy (equal to -0.9, a very negative valence) to the
corresponding behaviour in the BN to make it fire. The BN reacts to the situation by
prompting the message to the user: “Stop moving the arm. This is a very dangerous
situation. Answer the following questions before moving on.” (Figure 4.4). Because
this situation is attributed a high emotional valence (high-threat situation), CELTS’

short-route is activated.
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Figure 4.3 CanadarmTutor demonstrating Collision

In parallel, CELTS’ long-route also activates. As a result of the high emotional

valence, the collision risk information received from the virtual world is more
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attentively examined. CELTS then asks the user the following question: “Do you
know what the distance is between Canadarm2 and I1SS?” (Figure 4.2). If the user
answers correctly, the emotional codelets’ intensity decreases. The second question
is “If you get closer to ISS, .what will happen?” Again, if the user selects the correct
answer, the emotional codelets’ intensity converges to a positive value. This means
that the user is an expert. Accordingly, the intensity of the emotional codelets that
reacted to the collision risk must very rapidly, as demonstrated in Figure 4.5, reach a
positive value. It must be noted that the cognitive cycles in Figure 4.5 represent the
cognitive cycles in which the user responded to CELTS’ prompts only. In Figure 4.5,
the x and y axes indicate the cognitive cycles and the emotional codelets’ intensity

respectively. Remember that Emotional valences are between -1 and +1.
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Figure 4.4  Short route reaction to the user1

On the contrary, if the user fails to answer, CELTS considers the user to be a
beginner. The intensity of the emotional codelet that reacted to this event reaches -1,
the highest negative value possible. At this stage, the user will be prompted not to
perform any further movement and review the lesson. The emotional intensity will
remain at -1 if the user does not stop manipulating the Canadarm2. If the user stops
manipulating Canadarm2, the negative emotional intensity will reach zero after a

number of additional cognitive cycles.
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Emotional Intervention for Very Dangerous Situation
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Figure 4.5 Emotional Intervention for very dangerous situation

Part two (situation 1.2): in this situation, suppose that the user is manipulating
Canadarm2 well. The emotional valence attributed to this user's Canadarm?2
manipulation will be zero (Figure 4.6, cycle zero). EM’s states vary depending on the
user's performance in the virtual world. It also depends on the user’s correct/false
answers to the CELTS’ questions asked while manipulating Canadarm2. it must be
noted that at this stage, the short route is not engaged for reaction yet, because the
user has not yet faced any dangerous situation in the virtual world. Thus, at this
stage, the long route is responsible for all decisions made by CELTS. At some point,
suppose the user does bring Canadarm2 too close to ISS, thus now facing the risk of
collision. This risk of collision information will be transmitted to WM. EM’s codelets
will become more active. Importantly, their base-level activation may increase or
decrease depending on the user’s answers to CELTS questions regarding the cause
of the mistake. The greater the number of wrong answers, the further EM'’s codelets
activate and the more negative the valences assigned to WM’s content will be. After
a certain number of wrong answers, the short route activates. As in situation 1.1,
EM’s codelets directly instantiate corresponding nodes in the BN to prevent any
collision in the virtual world. As indicated in Figure 4.6, the short route activation and

the EM codelets’ reaction to this situation occur in about four cognitive cycles. The



81

EM codelets’ direct influence in WM and BM starts when their base-level energy
reaches > -0.5 (Figure 4.6). Once the, emotional codelets react to the situation, the
long route more attentively interprets the situation and proposes further solutions.

For the rest of the situation, CELTS will behave as explained in situation 1.1

Emotional Intervention for Very Dangerous Situation

Emotional Valence

Cycle

Figure 4.6 Emotional Intervention for very dangerous situation2

Situation two: camera adjustment

Another important task to be considered by users while manipulating Canadarm2, is
choosing the best three cameras (from a set of about twelve cameras on ISS) for
viewing the environment (since no camera offers a global view of the environment).
Of course, forgetting camera adjustment is not as dangerous as collision risk.
However, forgetting camera adjustment may lead users to manipulate Canadarm2
very close to ISS which in turn increases the risk of a collision with ISS.

Execution with EM:In this situation, let the initial emotional valence in this situation

be zero (Figure 4.9). After a while, WM receives information indicating that the user
has forgotten to adjust the cameras. Given that the information does not suggest a
very dangerous situation but it is nonetheless important (see Figure 4.9), EM
attributes a -0.5 emotional valence to it. In effect, it is important enough for CELTS’
AM to select it and bring it to consciousness (long route). After deliberation, a hint

reminds the user to perform Camera adjustment (Figure 4.7).
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Did you forget to do something?

Figure 4.7 Forget to do something

At this stage, EM’s codelets react indirectly to the situation. EM’s codelets
reaction depends of the outcome of the user-CELTS interaction. If CELTS’ questions
are correctly answered, (Figure 4.8), the intensity of EM’s codelets for direct reaction
will decrease. However, if the user does not answer CELTS’ questions correctly, the
codelets’ intensity increases (see Figure 4.9). This negative valence increase will
occur during every user-CELTS interaction or during any bad Canadarm2
manipulation. When‘the user finally understands the problem and adjusts the

cameras, the EM'’s codelets negative energies will decrease.

7
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Figure 4.8 CELTS question to the user

If the user does not stop moving Canadarm2, EM'’s short route is activated,
thus reacting directly to the situation, as explained in situation one. CELTS will react

to the collision risks in the same manner as detailed in situation1.1.
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Emotional Intervention for Very Dangerous Situation
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Figure 4.9 Emotional Intervention for very dangerous situation3

Execution without EM: In this situation, CELTS performs through its long route and

interacts with users using Figure 4.7 and Figure 4.8 There will be no short route
engagement even if the situation worsens.

Lastly, we will compare the reaction time of CELTS’ BN and EM’ codelets when
faced with dangerous situations (Figure 4.10).

Figure 4.10 presents both the BN and EM reaction time when CELTS faces a
collision risk. The first graph represents EM'’s reaction time when the short route is
activated. In this case, the reaction time varies between zero and 17 millisecond.
The second graph represents BN's mean reaction time when the long route is
activated. In this case, the reaction time varies between 200 and 1400 millisecond.
These experiments demonstrate that EM decreases CELTS’ reaction time in

dangerous situations.
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Figure 4.10 Comparison between normal and emotional-intervention reactions in CELTS.

4.3 CONCLUSION

In this chapter, we described how to implement a fundamental Emotional
Mechanism (EM) in CELTS. We also detailed how EM interacts with CELTS’ various
components. The interactions occur, during consciousness broadcasting, and more
specifically during the learning phase and during CELTS’ reactions to outside stimuli.
CELTS' emotional reactions occur both implicitly and explicitly. The resulting
architecture is more neurologically plausible, for it integrates a recent view of the

amygdala's double role in emotion. That is, this architecture is able to make CELTS
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learn and then react swiftly in emotionally-ladened situations as well as supply an
emotional assessment to all sorts of stimuli in working memory, an assessment
which may used for learning aims. This allows faster learning of emotionally
assessed information that enters working memory and is later broadcasted through
CELTS’ cognitive cycles. As our experiments illustrate, CELTS, because of its
emotional learning mechanism, may, when need be, react more swiftly than its
previous versions (i.e., reacting sooner in the cognitive cycle). It is worth noting that
through these experiments, CELTS’ EM demonstrated the capability to easily adjust

its emotional valences from negative to positive and vice versa, in any situation.

In the next chapter, we explain the implementation of episodic learning in CELTS

and how it is influenced by emotions.



CHAPTER V

IMPLEMENTATION OF EPISODIC MEMORY AND EPISODIC
LEARNING IN CELTS

In this chapter, we propose the implementation of an Episodic memory and an
Episodic Learning Mechanism in CELTS, based on the current neuroscientific
multiple-trace theory (Purves et al., 2008) detailed in chapter Il. In our model,
emotions play a role in the encoding and remembering of events. Emotions improve

all types of learning as well as the agent’s behaviour.

First, we briefly review CELTS’ Episodic Learning Mechanism (EPL)'". EPL
consists of (1) the pseudo-hippocampus, which encodes any given information
coupled with its assigned emotional valence, and the agent’s actions. EPL also has a
process called (2) “memory consolidation” (Alvarez and Squire, 1994, Paré, 2003).
This process intervenes in the memorization and the retrieval phases of events in
CELTS’ memory architecture. The memorization phase of CELTS’ architecture
includes emotional valences (Ortony et al., 1988) ascribed to ongoing events by
CELTS' Emotional Mechanism (Faghihi et al., 2008a).

16 By episodic learning, we mean that CELTS is able to remember past episodes, which
allows the agent to induce a potentially better adapted behaviour. By behaviour, we not only
want to talk about visible stages but also mental events probably leading to the execution of a
suitable action. If the action appears indeed (not) suitable, the agents associates a
negative/positive valence to the episode which will improve, if similar one is presented, the
speed and the relevance of the information to be chosen and executed by the system.
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The memory consolidation phase consists of a process that constantly extracts
temporal regularities from all past episodes to form an episodic memory. This
process is very important because, as a cognitive agent, CELTS receives a huge
amount of data, which is temporally related to its environment but that may or may
not be relevant in the future. Moreover, much communication takes place between
the different parts of the system. This again produces a large amount of internal data
during each cognitive cycle. In order to be used in decision-making, all of this data
must be consolidated into a smaller form. We found that CELTS requires the
consolidation of huge amounts of sequential data, as is the case for mining frequent
patterns in data mining. This suggests the use of sequential pattern mining (Agrawal
and Srikant, 1995) as the basis for implementing the consolidation process.
Sequential pattern mining is an efficient knowledge discovery technique that is
widely used in computer science to find frequent temporal patterns among
sequences of symbols when dealing with a huge amount of data, a common
situation for CELTS. This, we believe, provides a functionally plausible memory
consolidation model. The sequential patterns are useful in the retrieval
(remembering) phase, to adapt CELTS’ behaviour to past experiences. In the
retrieval phase, a cue is introduced to all sequential patterns previously created by
the system, making them active, each according to its similarity to the cue. The

information sequence activated in parallel then reinforces the cue'’s content.

In the next sections, we first briefly review the existing literature on episodic
learning in cognitive agents. We then provide a thorough explanation of CELTS’
Episodic memory and the implementation of the three phases of the Episodic
Learning Mechanism in CELTS’ architecture.

51 COGNITIVE AGENTS WITH EPISODIC MEMORY

In this section, we first briefly review of the existing literature on episodic
learning in cognitive agents. We then focus on the work of McClelland, McNaughton
and O'Reilly (McClelland et al., 1995) to show how the hippocampus and the cortex

play an important role in episodic learning and memory. As we'll see, the role of
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these two structures may be viewed as functionally equivalent to the recording and

consolidation processes in our architecture.

Many researchers have attempted to incorporate episodic memory and
learning mechanisms in cognitive agents and cognitive architectures (Najjar et al.,
2005, D'Mello et al., 2006, Sun, 2003). Yet, they have either not included a role for
emotions in the episodic learning and retrieval processes as of now (as is the case
with CLARION and ACT-R) or no concrete implementations have been realized in
the models proposed (the well-known ACT-R model for instance, has no explicit
episodic memory). Instead, events are encoded as chunks in declarative memory,
just like declarative information. During recall, beside the activation provided by the
context, a base level activation function is used for each chunk to compute the
probability of an infofmation being retrieved and the speed of its retrieval. Basically,
the activation is calculated based on the time elapsed since the last occurrence of
the chunk in Working Memory (WM) and the number of times that the chunk was
recalled. Because chunk activation decreases rapidly over time, after a short while,
the frequency of chunk use becomes the most decisive feature for determining
recall. Thus, ACT-R cannot recall information in a temporal context, and this induces
abnormal behaviour (Najjar et al., 2005). In addition, since ACT-R has no emotions,

these cannot be taken into account during episodic memorization and retrieval.

LIDA, as explained in chapter Ill, has an Episodic learning mechanism, which
is influenced by its Emotional Mechanism. However, authors have not detailed what
interactions between Episodic and Emotional Mechanisms occur in the
implementation phase and there have been no concrete experimentations to
demonstrate the strengths and weaknesses of the model in this respect (D’'Mello et
al., 2006).

The remainder of this section will address McClelland et al.'s (1995) connectionist
model of episodic and declarative memory systems (we shall only be concerned with
episodic memory).

Since CELTS is not implemented in neural networks but in a classical symbolic

system, we finally assess what kind of processing is achieved by these neurological
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structures (as understood through the connectionist model) in order to see if that
kind of processing can be implemented in CELTS. Because our episodic memory
mechanism must be included in a fully functional agent, the advantage of this
resulting architecture over McClelland et al’s is that the complete process is
modeled, including episodic memory recall. Moreover, our episodic memory includes
the well-known influence of emotions, something that is absent in McClelland et al’s.
McClelland et al. (1995) devised their neural network model of the interaction
between the hippocampus and the neocortex to explore the standard consolidation
model of episodic memory, and the peculiar pattern of memory loss that results from
removal of the hippocampus. In order to understand the model, it must be noted first
that, although it is located under the cortex, the hippocampus functionally is where
cortical sensory processing ends up. Information from the senses enters dedicated
modal areas (e.g. the occipital cortex), then goes to the association areas of the
temporal and parietal lobes, and then finally go to the hippocampus (among other
structures). Thus, information entering the hippocampus is fully processed by the
cortex. McClelland and his colleagues hypothesize that the cortex is organized as a
multilayer perceptron, a type of network that has been shown to categorize
information in hierarchical prototype structures (Rogers and McClelland, 2006) when
the information is represented by distributed and superposed representations
(Rumelhart et al., 1986, Hinton et al., 1986) and when the network is trained by a
gradient descent procedure (such as the backpropagation algorithm). If they are
right, this means that information leaving the cortex to enter the hippocampus is fully
categorized. However, multilayer perceptrons trained by gradient descent exhibit
what has been called catastrophic interference (McCloskey and Cohen, 1989): new
information can only be included in the hierarchical category structure developed as
a result of initial learning if all (or a representative sample) of the initial training set is
presented along with the new information. If it is not, that is, if the new information is
presented alone, the category structure learned by the network is completely
obliterated in favour of the category structure extracted from the new information. To
prevent this, McClelland et al. (1995) give their cortical module a very low learning

rate. Information processed by the cortex barely leaves a trace. This explains why,
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as H.M.'s case showed (Milner et al., 1998, Milner, 1966), the cortex cannot form
declarative memories on its own and needs a complementary structure such as the

hippocampus to do so.

The low learning rate of cortex leaves the initial storage of information to the
hippocampus. This structure, they propose, implements a pattern associator and an
autoassociator and learns following hebbian principles. However, as is well known,
hebbian learning works best when information is borne by orthogonal
representations. There is physiological evidence that the hippocampus's dendate
gyrus is built to orthogonalize information through sparcification and competitive
learning (Rolls et al., 1997) (O'Reilly et al., 2000). Accordingly, their model
hippocampus contains a submodule that sparcifies and separates representations
through competitive learning. Once it has been thus orthogonalized, information from
various sensory regions of the cortex can be associated instantly (one shot learning)
by Hebbian learning with a high learning rate. Patterns of categorized but reduced
information from the various senses are thus associated (storage) and can be
reactivated by having a sufficient portion of the original pattern reactivated (part of
the recall process). The physiology and architectonic structure of the hippocampus
suggests that CA3 (Cornu ammoni 3, a specific part of the hippocampus) may be
implicated in these processes. Once a pattern has been reactivated, McClelland et
al. posit that it can be reconstituted into a distributed pattern by a process similar, but
inverse, to the one that orthogonalized it initially (CA1 and the enthorinal would be
implicated here), after which it can reactivate the association areas of cortex all the

way, occasionally, to its modal areas.

Reactivation of the cortex by de-orthogonalized signals coming from the
hippocampus serves two functions. First, and what concerns us here, it serves as a
memory of the event that was originally stored in the hippocampus. Such, according
to McClelland et al.'s model, is the neurological basis of episodic memory. Second, it
serves in the slow process of consolidation by helping mould the cortex’ slow
learning synaptic connections through a process they call interleaved learning. Much

of McClelland et al.’s is dedicated to explaining how this process works, how it builds
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hierarchical categorical structures and how it solves the problem of catastrophic
interference. We shall not describe this part of their model since our objective has
been reached: we have described a neurocomputational model of episodic memory.
However, it should be noted before we turn to our next task that the gradual building
of the hierarchical categorical structure means that, over time, similar patterns
coming from the senses will be categorized differently, that is, in a richer manner,
category wise, and that it is this more richly categorized information that will be
stored in the hippocampus henceforth. Our task now is to assess what kind of
information is thus processed by the described-above structures in order to
implement similar processing in CELTS. We first saw that information is recorded in
some brute form (in the hippocampus) and that consolidation in long-term memory

involves extracting relevant information from this brute recording.

5.2 EPISODIC MEMORY AND LEARNING IN CELTS

Episodic Learning (EPL) in CELTS starts when the information codelets that
have entered in WM are chosen by the Attention mechanism and broadcasted by the
consciousness mechanism. CELTS’ pseudo-hippocampus (PH) learns all
broadcasted information during each cognitive cycle. This corresponds to the brute
recoding phase of McClelland model (McClelland et al.,, 1995). This learning
happens through the creation of new sequences of events. Each sequence may
contain one or more nodes that have links to other nodes situated in the sequence.
Learning occurs through the strengthening/weakening the energy of the nodes and
of the links between them. If the PH does not have a response set for the information
broadcasted by the consciousness mechanism, it creates a new sequence with a
unique ID and then creates an empty node with a context corresponding to the
ongoing situation (current event). As it observes all information broadcasted by the
consciousness mechanism, PH gives a unique ID to each coalition broadcast in the
system and saves these IDs instantaneously. To fill out each node, PH waits for the
consciously-selected behaviour and the ensuing broadcasting of the confirmation by

the user of the correctness of the chosen behaviour. At this point, each node in the
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sequence is assigned the time of the broadcasted coalition, its total emotional
valence, and a key-information-codelet (trigger-codelet) associated to the broadcast
coalition that fires the stream of behaviours (if the trigger codelet has exceeded its
threshold value). The PH then associates the context of the new node with the ID of
the broadcasted coalition consciously-selected by the Attention Mechanism and
executed by CELTS’ Behaviour Network (BN). The sum of the emotional valences of
the nodes belonging to the broadcast coalition is also saved. At this point the
information is ready to be integrated into the different memories of the system. The
sequence(s) related to this episode are saved in a database which is considered as
CELTS’ Episodic memory. This distributed information, as well as the distributed
information learned by EPL (i.e. learning of regularities (Faghihi et al., 2007), by
procedural learning (Faghihi et al., 2007) and by emotional learning (Faghihi et al.,
2008b) during arm manipulation is then integrated in the same database separately.
With this method, CELTS can relate an episode to its corresponding procedures in
the BN.

We now describe how episodic learning takes place through CELTS’ cognitive cycle.

5.21 Impact of Emotions and Episodic Learning in CELTS' Coghnitive Cycle

As explained in section IV, two routes are possible in CELTS’ cognitive cycle -
a short route (the blue arrows) and a long route (black arrows). In both cases, the
cycle begins with the perceptual mechanism. Hereafter, we briefly summarize each
step in the cycle and in ftalics, describe the influence of the CELTS’ pseudo-
amygdala or EM and/or that of pseudo-hippocampus (PH). For a visual

representation of the described process, please refer to Figure 4.1.

Step 1: The first stage of the cognitive cycle is to perceive the
environment; that is, to recognize and interpret the stimulus (see (Dubois et
al., 2007) for more information).

EM: All incoming information is evaluated by the Emotional Mechanism when low-

level features recognized by the perceptual mechanism are relayed to the emotional



93

codelets, which in turn feed activation to emotional nodes in the Behaviour Network
(BN). Strong reactions from the "pSeudo-amygdala” may cause an immediate reflex
reaction in CELTS.

Step 2: The percept enters Working Memory (WM): The percept is
brought into WM as a network of information codelets that covers the many
aspects of the situation (see (Dubois et al., 2007) for more information).

EM: in this step, if the received information is considered important or dangerous by
EM, there will be a direct reaction from EM which primes an automatic behaviour
from BN.

PH: PH also inspects the information received by CELTS WM. It then fetches
relevant information in both WM and LTM and sends it back to WM once enriched.
Relevant traces from the different memories are thus automatically retrieved. These
will be sequences of events in the form of a list relevant to the new information. The
sequences of events include the current event and the residual information from
previous cognitive cycles in WM. These retrieved traces are made of codelets links
to other codelets. Each time new information codelets enter WM, the memory traces
are updated depending on the new links created between these traces and the new
information codelets. This first involvement of the PH implements the context-giving

role of episodic memory.

Step 3: Memories are probed and other unconscious resources
contribute: All these resources react to the last few consciousness broadcasts
(internal processing may take more than one single cognitive cycle).

EM: What is brought back from episodic memory is evaluated by the emotional
codelets (as part of emotional intervention ELR: 2 in Figure 4.1) and receives its

emotional load anew.

Step 4: Coalitions assemble: In the reasoning phase, coalitions of
information are formed or enriched. Attention codelets join specific coalitions
and help themcompete with other coalitions toward entering

"conscioushess".
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EM: Emotional codelets observe the WM's content, trying to detect and instil energy
to codelets believed to require it and attach a corresponding emotional tag. As a
result, emotions influence which information comes fo consciousness, and modulate

what will be explicitly memorized.

Step 5: The selected coalition is broadcast: The Attention mechanism
spots the most energetic coalition in WM and submits it to the "access
consciousness,” which broadcasts it to the whole system. With this broadcast,
any subsystem (appropriate module or team of codelets) that recognizes the
information may react to it.

PH: PH retrieves the frequently reappearing past information that best matches the
current information resident in WM, which may now contain behaviour sequences. It
then extracts frequent (partial or complete) sequences of events (episodic patterns)
from the sequences of events previously consolidated (see below for an explanation
of the consolidation process). This may invoke a stream of behaviours related to the
current event, with activation passing through the links between them. This invoked

stream of behaviours could be considered as a partial or complete action procedure.

Steps 6 and 7: Here unconscious behavioural resources (action
selection) are recruited: Among the modules that react to broadcasts is the
Behaviour Network (BN). BN plans actions and, by an emergent selection
process, decides upon the most appropriate act to adopt. The selected
Behaviour then sends away the behaviour codelets linked to it.

EM: In this step when the BN starts a deliberation, for instance to build a plan, the
plan is emotionally evaluated as it is built, the emotions playing a role in the selection
of the steps. If the looping concerns the evaluation of a hypothesis, it gives it an
emotional evaluation, perhaps from learned lessons from past experiences.

PH: Before the addition of EPL to CELTS, only the Behaviour Network (BN) inspired
from Maes’ BN (1989) could plan and execute actions as well as monitor frequent
partial or complete sequences of events. As we have seen here, in our revised
CELTS model, the PH can now also do this, and does it better.
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Step 8: Action execution: Motor codelets stimulate the appropriate
muscles or internal processes.
EM: Emotions influence the execution, for instance in the speed and the amplitude of

the movements.

As explained in chapter Il, two models are suggested in neuroscience for the
consolidation phase (Purves et al., 2008), (1) the standard consolidation theory and

(2) the multiple-trace theory.

We base our work on the multiple-trace theory which holds a hippocampus-
dependent view of event encoding. According to this theory, every time an event
causes memory reactivation, a new trace for the activated memory is created in the
hippocampus. Memory consolidation occurs through the reoccurrence of loops of
episodic memory traces in the hippocampus, which causes the construction of
semantic memory traces in the cortex. Thus, the cortical neurons continue to rely on
the hippocampus throughout encoding. Three information processes seem essential
to episodic memory: the initial categorization of information coming from the senses,
the association and direct storage of categorized information, and the use of this
stored categorized information to build a better categorical structure for future

processing of signals from the senses.

In the next two sections we explain in detail how the episodic memory
consolidation and episodic learning processes are implemented in CELTS’

architecture.

5.2.2 The Memory Consolidation Process

CELTS’ memory consolidation process, which corresponds to McClelland
{(McClelland et al., 1995) memory consolidation in cortex, occurs in Step 2 of CELTS’
cognitive cycle. It takes place during each of CELTS’ cognitive cycles. Like the
human cortex, CELTS' Episodic Learning Mechanism (EPL) extracts frequently

occurring sequences from its past experience, as they were recorded in its
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hippocampus (PH). In our context, CELTS learns during training sessions for arm
manipulation by astronauts in the CanadarmTutor virtual world (Nkambou et al.,
2005) (Figure 4.3).

Given that an episodic trace or sequence of events is recorded during
consciousness broadcast in CELTS, we chose the sequential pattern mining
algorithm of (Fournier-Viger et al., 2008) to mine frequent event sequences. The
algorithm provides several more features than the original GSP sequential pattern
algorithm (Agrawal and Srikant, 1995), such as accepting symbols with numeric
values, eliminating redundancy and handling time constraints. The algorithm takes
the database D of all saved sequences of events as input. Here, a sequence of
events is recorded for each execution of CELTS. An event X= (i, i, ... i) contains a
set of items iy, iy, ... i, and represents one cognitive cycle. For each event, (1) an
item represents the coalition of information codelets that was broadcasted during the
cognitive cycle, (2) an optional item with a numeric value indicates one of the four
emotional valences in CELTS (high threat, medium fear, low threat) that are
associated with the broadcasted coalition, and (3) a final optional item that
represents the executed behaviour, if one was executed during that cycle. Formally,
an event sequence is denoted s = < (t,X;), (t,X5),..., (£, X,)>, where each event X,
is annotated with a timestamp { indicating the cognitive cycle number. The algorithm
extracts partial or complete sequences of events that occur in the database more

than a minimal number of times defined by the user (minsup).

ID Events sequences

st <(0, c1 e1{-0.8}), (1, c2 €2{-0.3} b1), (2, c4 b5)>

S2 <(0, c1 e1{-0.8}), (1, ¢3), (2, c4 b4), (3, c5 b3)>

S3 <(0, c2 e2{-0.3}), (1, ¢3), (2, c4), (3, c5 b3)>

S4 | <(0,¢3), (1, c1e1{-0.6} b4),(2, c3)> R
S5 | <(0,c4b4), (1,c5), (2, c6)>

S6 | <(1,c1el{-0.6}b4), (2, c4 b4), (3, c5)>

Table 5.1 A Data Set of 6 Sequences
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Table 5.1 shows an example of a database produced by user manipulation of
Canadarm2 in the virtual world. We chose two short sequences in this example. The
first event of sequence S71 shows that during cognitive cycle 0, due to arm
manipulation by the astronaut, coalition ¢7 was broadcasted and that an emotional
valence of -0.8 for emotion e (high threat) was associated with the broadcast. The
second event of S7 indicates that at cognitive cycle 1, coalition ¢c2 was broadcasted
with emotional valence -0.3 for emotion e2 (medium fear) and that behaviour b1 was
executed. Table 5.2 shows some sequences obtained from the application of the
algorithm on the database of Table 5.1 with a minsup of 32 % (2 sequences) and no
time constraints. The first frequent pattern is < (0, ¢1 e? {-0.7}), (2, c4)>, which was
found in sequences S7, S2, S4 and S6. Because the events containing e7 in these
sequences have numeric values -0.8, -0.8, -0.6 and -0.6, the algorithm calculated the
average when extracting that pattern, which resulted in the first event having e1 with
value {-0.7}. Because this pattern has a support of 66 % (4 out of 6 sequences),

which is higher than minsup, it is deem<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>