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Abstract 5. accurate within reason: the schemes should be compet-

Rating-based collaborative filtering is the process of predict- itive with the most accurate schemes, but a minor gain
ing how a user would rate a given item from other user inaccuracy is notalways worth a major sacrifice in sim-
ratings. We propose three related slope one schemes with Plicity or scalability.

predictors of the fornt (x) = x +b, which precompute the gy goal in this paper is not to compare the accuracy
average difference between the ratings of one item and g yide range of CF algorithms but rather to demonstrate
other for users who rated both. Slope one algorithms g the Slope One schemes simultaneously fulfill all five
easy to implement, efficient to query, reasonably accurggas  |n spite of the fact that our schemes are simple,
and they support both online queries and dynamic updatgSyateable, computationally efficient, and scalable, they are

which makes them good candidates for real-world systeragmparaple in accuracy to schemes that forego some of the
The basicsLOPE ONEscheme is suggested as a new refiner advantages.

erence scheme for collaborative filtering. By factoring in 5, Slope One algorithms work on the intuitive prin-

items that a user liked separately from items that a user qi3;ie of 4 “popularity differential” between items for users.
liked, we achieve results competitive with slower memorys 5 pairwise fashion, we determine how much better one
based schemes over the standard benchmark EachMovieigh is |iked than another. One way to measure this differen-

Movielens data sets while better fulfilling the desiderata gf s simply to subtract the average rating of the two items.

CF applications. S In turn, this difference can be used to predict another user's
Keywords: Collaborative Filtering, Recommender, €ziing of one of those items, given their rating of the other.
Commerce, Data Mining, Knowledge Discovery Consider two user andB, two items!| andJ and Fig[1.
, UserA gave iteml a rating of 1, whereas us& gave it a
1 Introduction rating of 2, while useA gave itemJ a rating of 15. We ob-

An online rating-based Collaborative Filtering CF querserve that itemd is rated more than iterhby 1.5—1=0.5
consists of an array of (item, rating) pairs from a single usebints, thus we could predict that usemwill give item J a
The response to that query is an array of predicted (iterating of 2+0.5= 2.5. We call useB the predictee user and
rating) pairs for those items the user has not yet rated. Wém J the predictee item. Many such differentials exist in a
aim to provide robust CF schemes that are: training set for each unknown rating and we take an average
of these differentials. The family of slope one schemes pre-
1. easy to implement and maintain: all aggregated dafshted here arise from the three ways we select the relevant
should be easily interpreted by the average engineer gfiffkrentials to arrive at a single prediction.
algorithms should be easy to implement and test; The main contribution of this paper is to present slope
one CF predictors and demonstrate that they are competitive
"With memory-based schemes having almost identical accu-
racy, while being more amenable to the CF task.

3. efficient at query time: queries should be fast, possibly
at the expense of storage; 2 Related Work
) _ . ) . 2.1 Memory-Based and Model-Based Schemes
4. expect I|ttIe_from f_|rst visitors: a user with few rat'”gﬁ/lemory-based collaborative filtering uses a similarity
should receive valid recommendations; measure between pairs of users to build a prediction,
_ . ) typically through a weighted averade [2,12] 13] 18]. The
T%ﬂ:‘;ﬁfge du Québec chosen similarity measure determines the accuracy of the
In SIAM Data Mining (SDM'05), Newport Beach, California, April Prediction and numerous alternatives have been studied [8].
21-23, 2005. Some potential drawbacks of memory-based CF include

2. updateable on the fly: the addition of a new rati
should change all predictions instantaneously;




15-1=05 dictors of the formf (x) = x+b. We also use naive weight-

[ 1 15 User A } ing. It was observed iri_[14] that even their regression-based
f(x) = ax+ b algorithm didn't lead to large improvements

over memory-based algorithms. It is therefore a significant

result to demonstrate that a predictor of the fdrfr) = x+b

[ ) ’ User B } can be competitive with memory-based schemes.

Item | Item J 3 CF Algorithms

?7=2+(15-1)=25
We propose three new CF schemes, and contrast our pro-
posed schemes with four reference schemesr BSER
Figure 1: Basis of S0PE ONE schemes: User A's ratingsAvERAGE, BIAS FROM MEAN, ADJUSTEDCOSINE | TEM-
of two items and User B’s rating of a common item is useBlasep, which is a model-based scheme, and tEa®RsoON
to predict User B’s unknown rating. scheme, which is representative of memory-based schemes.

3.1 Notation We use the following notation in describing

scalability and sensitivity to data sparseness. In genef@neémes. The ratings from a given user, callee\aiuation
schemes that rely on similarities across users cannotipEePresented as anincomplete auiawhereu is the rating
precomputed for fast online queries. Another critical iss@ this user gives to item The subset of the set of items
is that memory-based schemes must compute a similafgpsisting of all those items which are ratediiis Su). The
measure between users and often this requires that s&@ieCf all evaluations in the training set)s The number
minimum number of users (say, at least 100 users) h&feelements in a se8is card(S). The average of ratings in
entered some minimum number of ratings (say, at le&ét €valuatioruis denotedu. The setS(x) is the set of all
20 ratings) including the current user. We will contra§valuationsu € x such that they contain item(i € S(u)).
our scheme with a well-known memory-based scheme, {filven two evaluationss,v, we define the scalar product
Pearson scheme. (U,V) asyicgu)ngw) UiVi- Predictions, which we writ@(u),
There are many model-based approaches to CF. SdRfresent a vector where each component is the prediction
are based on linear algebra (SVD, PCA, or Eigenvectors) g,rrequnding to one item: predictions depend implicitly on
6, 7,10, 15[ 16]; or on techniques borrowed more direct§je training sex.
from Atrtificial Intelligence such as Bayes methods, Latent
Classes, and Neural Networks [12, 9]; or on clustering [&:2 Baseline Scheme©ne of the most basic prediction
5]. In comparison to memory-based schemes, model-badigprithms is the PR USER AVERAGE scheme given by
CF algorithms are typically faster at query time though th&je equationP(u) = u. That is, we predict that a user
might have expensive learning or updating phases. Mod¥ill rate everything according to that user's average rating.
based schemes can be preferable to memory-based schétigtier simple scheme is known asAB FROM MEAN (or

when query speed is crucial. sometimes [N PERSONALIZED [8]). Itis given by
We can compare our predictors with certain types of pre- 1

dictors described in the literature in the following algebraic P(u)i =u+ W z Vi — V.

terms. Our predictors are of the forfi{x) = x+ b, hence X)) veStx)

the name “slope one”, wheteis a constant and is a vari- . o ,
! . . . That is, the prediction is based on the user’s average plus the
able representing rating values. For any pair of items, we

attempt to find the best functioh that predicts one item’s average deviation from the user mean for the item in question

ratings from the other item’s ratings. This function could Ha-r0SS all users in the training set. We also compare to the
i ifem-based approach that is reported to work bhest [14], which

different for each pair of items. A CF scheme will weigh . . ) L .
L , yres the following adjusted cosine similarity measure, given
the many predictions generated by the predictors.| Iih [1 . . .
X . ; - tWo itemsi and j:

the authors considered the correlation across pairs of items
and then derived weighted averages of the user’s ratings as S ues () (Ui — 0) (U — )

. . . . . . L ue§ j(x)\ i J
predictors. In the simple version of their algorithm, their pre- simj = (U — 02 (U —0?
dictors were of the fornf(x) = x. In the regression-based 2ues j(x) (Ui 2ues (x)(Uj
version of their algorithm, their predictors were of the forrp,o prediction is obtained as a weighted sum of these
f(x) = ax+b. In [17], the authors also employ predictors ot o 5sures thus:
the form f (x) = ax+b. A natural extension of the work in
these two papers would be to consider predictors of the form

f(x) = a +bx+c. Instead, in this paper, we use naive pre-

_ Yjesu) ISimf (o juj +Bij)
ZjeS(u) |Sim-j‘

P(U)i



where the regression coefficients;, B; ; are chosensoasto  Given a training sex, and any two itemg andi with
minimize 3 s ; u) (@i, UjBi,j —uj)? with i and j fixed. ratings u; and u; respectively in some user evaluation

(annotated ascS;(x)), we consider the average deviation
3.3 The PEARSON Reference Schemesince we of itemi with respect to itenj as:

wish to demonstrate that our schemes are comparable in uj — U
predictive power to memory-based schemes, we choose to devji = z card(S ()
implement one such scheme as representative of the class, 1 (X

acknowledging that there are many documented schemegigfe that any user evaluatiannot containing both; and
this type. Among the most popular and accurate memogy-s not included in the summation. The symmetric matrix
based schemes is the&RRSON schemel[13]. It takes thedefined by dey; can be computed once and updated quickly

form of a weighted sum over all usersyn when new data is entered.
L Suwesp VUV~ ) Given that dey! +uiis a prediction foru; given u;,
P(ui=u a reasonable predictor might be the average of all such
Zves(x V(U V)| predictions
wherey is a similarity measure computed from Pearson’s W 1 (d )
correlation: PU)j = =5~ evj,i + Ui
- card(R;) i;j
(U—t,w—w)

Corr(u,w) =

— — whereR; = {i|i € S(u),i # j,card(Sj;(x)) > 0} is the set
\/ Yiesunsw) (U —0)? Yiesunsw) Wi —W)? e oy reJIeva{nt‘ iter‘rs1(s.) There is émjyafp;)))roxim}ation that can
simplify the calculation of this prediction. For a dense
enough data set where almost all pairs of items have ratings,
y(u,w) = Corr(u,w) |Corr(u,w)|°~* that is, wherecard(S;;(x)) > 0 for almost alli, j, most

of the timeR; = Su) for j u) and R; = S(u) — {j
with p = 2.5, wherep is the Case Amplification power. Cas‘%vhenj c S(u)J. Siﬁ(ce)u_: ¢ S i~ S ui{J}

i v ~ YicRr:
Amplification reduces noise in the data: if the correlationjs ~ . o .o simplifzyletﬁ;) S?Sfjsi(gt)i)cm %'ﬁ;{h Icgr?gj)the
high, sayCorr = 0.9, then it remains high (6%>° = 0.8) after SLOPE O,J\I’E scheme to
Case Amplification whereas if it is low, s&orr = 0.1, then
it becomes negligible (@%° =2 0.003). Pearson’s correlation p51(u)j — Ut 1 z devi ;.
together with Case Amplification is shown to be a reasonably card(R;) ;4 i '

accurate memory-based scheme for CH.in [2] though more, . . . .
accurate schemes exist. It is interesting to note that our implementation of

SLorE ONE doesn't depend on how the user rated individual

3.4 TheSLOPE ONE SchemeThe slope one schemeétems* but only on the user’s average rating and crucially on
take into account both information from other users wHyich items the user has rated.

rated the same item (like theDAUSTED COSINE ITEM- W S 0 Sch
BAseD) and from the other items rated by the same ussP The WEIGHTED SLOPE ONE SC emeone
(like the FER USER AVERAGE). However, the schemes als@' the drawbacks of SoPE ONE s that the number of

rely on data points that fall neither in the user array nor jAtings _observe'd is not taken into _consideration. Intuitively,
the item array (e.g. use¥s rating of item! in Fig.[), but to predict useA’s rating of itemL given userA’s rating of

are nevertheless important information for rating predictiof€MSJ andK, if 2000 users rated the pair of iterdsand
hereas only 20 users rated the pair of itekhand L,

Much of the strength of the approach comes from data thalV

is not factored in. Specifically, only those ratings by usef3€n USErA's rating of itemJ is likely to be a far better
edictor for itemL than use@'s rating of itemK is. Thus,

who have rated some common item with the predictee ub& _ o
and only those ratings of items that the predictee user §% define the EIGHTED SLOPE ONE prediction as the
also rated enter into the prediction of ratings under slope JREOWINg weighted average
schemes. ' _a(devii +U)Cii

Formally, given two evaluation arraysandw; with i = PWSL(U)i = 2iesy ,{J}( _“: )6
1,...,n, we search for the best predictor of the fofifx) = Ziestw)—{(i} G
X+ b to predictw from v by minimizing 3;(vi +b—w)2. wherec;; = card(Sj,(X)).
Deriving with respect td and setting the derivative to zero,
we geth = 2" |n other words, the constabtmust be 3.6 The BI-POLAR SLOPE ONE Schemewhile
chosen to be the average difference between the two arrayeighting served to favor frequently occurring rating pat-
This result motivates the following scheme. terns over infrequent rating patterns, we will now consider

Following [2,[8], we set




favoring another kind of especially relevant rating patteran whetheri belongs toSe(u) or Ssk¢(y) respectively.
We accomplish this by splitting the prediction into two part3he Bi-POLAR SLOPE ONE scheme is given by

Using the WEIGHTED SLOPE ONE algorithm, we derive one o likeglike

prediction from items users liked and another prediction us- Z.eglke@f{,} Pji I ke dislike

ing items that users disliked. POPSL (), — T 2iestsikew) () Pii Gl
Given a rating scale, say from 0 to 10, it might seem Siegieu)_{j} C15 + Yicglstker)_(j) € r <

reasonable to use the middle of the scale, 5, as the threshold ) like gike dislike
and to say that items rated above 5 are liked and those rdtfi§"® 't|‘r:<e We'ghtst,i = card(S{j )_ and ¢jP*® =
below 5 are not. This would work well if a user's ratings areard(S'S®) are similar to the ones in the WGHTED
distributed evenly. However, more than 70% of all rating8-OPE ONE scheme.
in the EachMovie data are above the middle of the scale. _
Because we want to support all types of users includifg Experimental Results
balanced, optimistic, pessimistic, and bimodal users, Whe effectiveness of a given CF algorithm can be measured
apply the user's average as a threshold between the upessisely. To do so, we have used the All But One Mean
liked and disliked items. For example, optimistic users, witgerage Error (MAE)[[2]. In computing MAE, we succes-
like every item they rate, are assumed to dislike the itemisely hide ratings one at a time from all evaluations in the
rated below their average rating. This threshold ensures tlegtt set while predicting the hidden rating, computing the av-
our algorithm has a reasonable number of liked and dislikethge error we make in the prediction. Given a prediBtor
items for each user. and an evaluation from a user, the error rate &fover a set
Referring again to Fig]1, as usual we base our predictiohevaluations(’, is given by
for item J by userB on deviation from item of users (like 1 1 _
userA) who rated both itemsandJ. The B-POLAR SLOPE MAE= " 7" > — S P(u®) —u
ONE scheme restricts further than this the set of ratings card(x’) uex car (S(W) ies(u)
that are predictive. First in terms of items, only deviations, 0 . : , .
) . e .. Whereu" is user evaluatiom with that user’s rating of the
between two liked items or deviations between two disliked . .
. ; . ith item,u;, hidden.
items are taken into account. Second in terms of users, only .
S ) . We test our schemes over the EachMovie data set made
deviations from pairs of users who rated both iterindJ . .
. o : . available by Compaq Research and over the Movielens data
and who share a like or dislike of itemare used to predict ) :
set from the Grouplens Research Group at the University of
Minnesota. The data is collected from movie rating web sites

ratings for itemJ.
The splitting of each user into user likes and user dlvsv'here ratings range from@to 10 in increments of @ for

likes effectively doubles the number of users. Observe, how- . o .
. i ) ; achMovie and from 1 to 5 in increments of 1 for Movielens.
ever, that the bi-polar restrictions just outlined necessar,

reduce the overall number of ratings in the calculation OTSIIowmg [8,11], we used enough evaluations to have a total

I : . 0f 50,000 ratings as a training sgh @nd an additional set of
the predictions. Although any improvement in accuracy In : . .
. . P evaluations with a total of at least 100,000 ratings as the test
light of such reduction may seem counter-intuitive where

, L )
data sparseness is a problem, failing to filter out ratings tﬁ%% X). When predlcnons fall outside the range of alloyved )
[gtings for the given data set, they are corrected accordingly:

are rrelevant may prove even more prot_)lematlc._ CrUCIaIal’prediction of 1.2 on a scale from 0 to 1 for EachMovie is
the BI-POLAR SLOPE ONE scheme predicts nothing from

the fact that useA likes itemK and useB dislikes this same mterpretgd as a prediction of 1. Smpe Movielens has a rating
item K scale 4 times larger than EachMovie, MAEs from Movielens
i . S were divided by 4 to make the results directly comparable.
Formally, we split each evaluation ininto two sets of . .
. ? Sike : islike The results for the various schemes using the same
rated items: S*¢(u) = {i € S(u)|u; > U} and Sislke(y) = ,
i : LT ; error measure and over the same data set are summarized
{i € S(u)|u; < u}. And for each pair of items, j, split the in Table[]. Various subresults are highlighted i :
; ) ke S dike . ghlighted in the Figures
set of all evaluationg into §%¢ = {u € x|i, j € $*¢(u)} and that follow
ke o Slik i A
Stpte = {uexli, ] < st ®(u)}. Using these two sets, we  consider the results of testing various baseline schemes.
compute the following deviation matrix for liked items ag expected, we found thatiBs FRoM MEAN performed
; ; ; islike !
well as the derivation matrie*" the best of the three reference baseline schemes described in
_ U — U section[3.P. Interestingly, however, the basico8E ONE
de\}j'ﬁe = — scheme described in sectipon]3.4 had a higher accuracy than
) ike ’
wefo card(S/%*(x)) BIAS FROM MEAN.
The augmentations to the basic@E ONE described
The prediction for rating of iten based on rating of itefnis  in sectiong 36 anfl 3.6 do improve accuracy over Each-

eitherpk® = dev/%®+u; or pfis'e = devis'*e.+ y; depending Movie. There is a small difference betweenc®e ONE and



Scheme | EachMovie | Movielens | [3] J. Canny. Collaborative filtering with privacy via factor

BI-POLAR SLOPE ONE 0.194 0.188 analysis. INSIGIR 20022002.
WEIGHTED SLOPE ONE 0.198 0.188 [4] S. H. S. Chee. Rectree: A linear collaborative filtering algo-
SLOPE ONE 0.200 0.188 rithm. Master’s thesis, Simon Fraser University, November
BiAs FROM MEAN 0.203 0.191 2000.
ADJUSTEDCOSINE ITEM-BASED 0.209 0.198 [5] S. H. S.g Chee, J. H., and K. Wang. Rectree: An efficient
PER USERAVERAGE 0.231 0.208 collaborative filtering method.Lecture Notes in Computer
[ PEARSON [ 0194 [ 0190 | Science2114, 2001.

[6] Petros Drineas, lordanis Kerenidis, and Prabhakar Raghavan.

Competitive recommendation systems.Proc. of the thiry-
Table 1: All Schemes Compared: All But One Mean Aver-  toyrth annual ACM symposium on Theory of compyting

age Error Rates for the EachMovie and Movielens data sets, pages 82-90. ACM Press, 2002.
lower is better. [7] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigen-
taste: A constant time collaborative filtering algorithrim-
o o formation Retrieval4(2):133-151, 2001.

WEIGHTED SLOPE ONE (about 1%). Splitting dislike and [g] 3. Herlocker, J. Konstan, A. Borchers, and J. Ried!. An algo-
like ratings improves the results 1.5-2%. rithmic framework for performing collaborative filtering. In

Finally, compare the memory-basedARSON scheme Proc. of Research and Development in Information Retrieval
on the one hand and the three slope one schemes on the other.1999.
The slope one schemes achieve an accuracy comparabld9o T. Hofmann and J. Puzicha. Latent class models for collabo-
that of the BARSON scheme. This result is sufficient to rative filtering. Ininternational Joint Conference in Artificial
support our claim that slope one schemes are reasonsﬂk;lﬂ/ Intelligence 1999.

accurate despite their simplicity and their other desira K. Honda, N. Sugiura, H. Ichihashi, and S. Araki. Col-
characteristics. laborative filtering using principal component analysis and

fuzzy clustering. InWeb Intelligencenumber 2198 in Lec-
) ture Notes in Artificial Intelligence, pages 394—-402. Springer,

5 Conclusion 2001.
This paper shows that an easy to implement CF model bagkd Daniel Lemire. Scale and translation invariant collaborative
on average rating differential can compete against more filtering systems.Information Retrieval8(1):129-150, Jan-
expensive memory-based schemes. In contrast to currently uary 2005. _ S
used schemes, we are able to meet 5 adversarial goals Wigh D- M. Pennock and E. Horvitz.  Collaborative filtering by
our approach. Slope One schemes are easy to implement, personality diagnosis: A hybrid memory- and model-based
dynamically updateable, efficient at query time, and exp approach. INJCAI-99, 1999.
- h - . - ] P. Resnick, N. lacovou, M. Suchak, P. Bergstrom, and
little from first visitors while havmg a comparable accurac J. Riedl. Grouplens: An open architecture for collaborative
(e.g. 1.90 vs. 1.88 MAE _for_MoweLens) to o_ther Common')/ filtering of netnews. IProc. ACM Computer Supported Co-
reported schemes. This is remarkable given the relative gperative Workpages 175-186, 1994.
complexity of the memory-based scheme under comparispry B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl. Item-
A further innovation of our approach are that splitting ratings  based collaborative filtering recommender algorithms. In
into dislike and like subsets can be an effective technique WWW102001.
for improving accuracy. It is hoped that the generic slofjéb] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. T. Riedl. Ap-
one predictors presented here will prove useful to the CF plication of dimensionality reduction in recommender system
community as a reference scheme. - a case study. IWEBK_DD '0Q pages 82-90, 2000.
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