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Abstract

The normalization of a data cube is the ordering of the attribute values. For large multi-
dimensional arrays where dense and sparse chunks are stored differently, proper normal-
ization can lead to improved storage efficiency. We show that it is NP-hard to compute an
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chunks. When dimensions are nearly statistically independent, we show that dimension-
wise attribute frequency sorting is an optimal normalization and takes time O(dn log(n))
for data cubes of size nd . When dimensions are not independent, we propose and evaluate
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more efficient than ROLAP, but normalization can improve it further by 9%–13% for a total
gain of 29%–44% over ROLAP.
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1 Introduction

On-line Analytical Processing (OLAP) is a database acceleration technique used
for deductive analysis [2]. The main objective of OLAP is to have constant-time or
near constant-time answers for many typical queries. For example, in a database
containing salesmen’s performance data, one may want to compute on-line the
amount of sales done in Ontario for the last 10 days, including only salesmen who
have 2 or more years of experience. Using a relational database containing sales
information, such a computation may be expensive. Using OLAP, however, the
computation is typically done on-line. To achieve such acceleration one can create
a cube of data, a map from all attribute values to a given measure. In the exam-
ple above, one could map tuples containing days, experience of the salesmen, and
locations to the corresponding amount of sales.

We distinguish two types of OLAP engines: Relational OLAP (ROLAP) and Mul-
tidimensional OLAP (MOLAP). In ROLAP, the data is itself stored in a relational
database whereas with MOLAP, a large multidimensional array is built with the
data. In MOLAP, an important step in building a data cube is choosing a normal-
ization, which is a mapping from attribute values to the integers used to index the
array. One difficulty with MOLAP is that the array is often sparse. For example,
not all tuples (day, experience, location) would match sales. Because of this sparse-
ness, ROLAP uses far less storage. Additionally, there are compression algorithms
to further decrease ROLAP storage requirements [3,4,5]. On the other hand, MO-
LAP can be much faster, especially if subsets of the data cube are dense [6]. Many
vendors such as Speedware, Hyperion, IBM, and Microsoft are thus using Hybrid
OLAP (HOLAP), storing dense regions of the cube using MOLAP and storing the
rest using a ROLAP approach.

While various efficient heuristics exist to find dense sub-cubes in data cubes [7,8,9],
the dense sub-cubes are normalization-dependent. A related problem with MOLAP
or HOLAP is that the attribute values may not have a canonical ordering, so that
the exact representation chosen for the cube is arbitrary. In the salesmen example,
imagine that “location” can have the values “Ottawa,” “Toronto,” “Montreal,” “Hal-
ifax,” and “Vancouver.” How do we order these cities: by population, by latitude, by
longitude, or alphabetically? Consider the example given in Table 1: it is obvious
that HOLAP performance will depend on the normalization of the data cube. A
storage-efficient normalization may lead to better query performance.

One may object that normalization only applies when attribute values are not regu-
larly sampled numbers. One argument against normalization of numerical attribute
values is that storing an index map from these values to the actual index in the cube
amounts to extra storage. This extra storage is not important. Indeed, consider a data
cube with n attribute values per dimension and d dimensions: we say such a cube is
regular or n-regular. The most naive way to store such a map is for each possible
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Table 1
Two tables representing the volume of sales for a given day by the experience level of the
salesmen. Given that three cities only have experienced salesmen, some orderings (left)
will lend themselves better to efficient storage (HOLAP) than others (right).

<1 yrs 1–2 yrs >2 yrs

Ottawa $732

Toronto $643

Montreal $450

Halifax $43 $54

Vancouver $76 $12

<1 yrs 1–2 yrs >2 yrs

Halifax $43 $54

Montreal $450

Ottawa $732

Vancouver $76 $12

Toronto $643

attribute value to store a new index as an integer from 1 to n. Assuming that indices
are stored using logn bits, this means that n logn bits are required. However, array-
based storage of a regular data cube uses Θ(nd) bits. In other words, unless d = 1,
normalization is not a noticeable burden and all dimensions can be normalized.

Normalization may degrade performance if attribute values often used together are
stored in physically different areas thus requiring extra IO operations. When at-
tribute values have hierarchies, it might even be desirable to restrict the possible
reorderings. However, in itself, changing the normalization does not degrade the
performance of a data cube, unlike many compression algorithms. While automati-
cally finding the optimal normalization may be difficult when first building the data
cube, the system can run an optimization routine after the data cube has been built,
possibly as a background task.

1.1 Contributions and Organization

The contributions of this paper include a detailed look at the mathematical founda-
tions of normalization, including notation for the remainder of the paper and future
work on normalization of block-coded data cubes (Sections 2 and 3). In particu-
lar, Section 3 includes a theorem showing that determining whether two data cubes
are equivalent for the normalization problem is GRAPH ISOMORPHISM-complete.
Section 4 considers the computational complexity of normalization. If data cubes
are stored in tiny (size-2) blocks, an exact algorithm can compute the best normal-
ization, whereas for larger blocks, it is conjectured that the problem is NP-hard.
As evidence, we show that the case of size-3 blocks is NP-hard. Establishing that
even trivial cases are NP-hard helps justify use of heuristics. Moreover, the optimal
algorithm used for tiny blocks leads us to the Iterated Matching (IM) heuristic pre-
sented later. An important class of “slice-sorting” normalizations is investigated in
Section 5. Using a notion of statistical independence, a major contribution (The-
orem 18) is an easily computed approximation bound for a heuristic called “Fre-
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quency Sort,” which we show to be the best choice among our heuristics when the
cube dimensions are nearly statistically independent. Section 6 discusses additional
heuristics that could be used when the dimensions of the cube are not sufficiently
independent. In Section 7, experimental results compare the performance of heuris-
tics on a variety of synthetic and “real-world” data sets. The paper concludes with
Section 8. A glossary is provided at the end of the paper.

2 Block-Coded Data Cubes

In what follows, d is the number of dimensions (or attributes) of the data cube C
and ni, for 1≤ i≤ d, is the number of attribute values for dimension i. Thus, C has
size n1× . . .× nd . To be precise, we distinguish between the cells and the indices
of a data cube. “Cell” is a logical concept and each cell corresponds uniquely to a
combination of values (v1,v2, . . . ,vd), with one value vi for each attribute i. In Ta-
ble 1, one of the 15 cells corresponds to (Montreal, 1–2 yrs). Allocated cells, such as
(Vancouver, 1–2 yrs), store measure values, in contrast to unallocated cells such as
(Montreal, 1–2 yrs). From now on, we shall assume that some initial normalization
has been applied to the cube and that attribute i’s values are {1,2, . . .ni}. “Index”
is a physical concept and each d-tuple of indices specifies a storage location within
a cube. At this location there is a cell, allocated or otherwise. (Re-) normalization
changes neither the cells nor the indices of the cube; (Re-)normalization changes
the assignment of cells to indices.

We use #C to denote the number of allocated cells in cube C. Furthermore, we say
that C has density ρ = #C

n1×...×nd
. While we can optimize storage requirements and

speed up queries by providing approximate answers [10,11,12], we focus on exact
methods in this paper, and so we seek an efficient storage mechanism to store all
#C allocated cells.

There are many ways to store data cubes using different coding for dense regions
than for sparse ones. For example, in one paper [9] a single dense sub-cube (chunk)
with d dimensions is found and the remainder is considered sparse.

We follow earlier work [2,13] and store the data cube in blocks 1 , which are disjoint
d-dimensional sub-cubes covering the entire data cube. We consider blocks of con-
stant size m1× . . .×md; thus, there are d n1

m1
e× . . .×d nd

md
e blocks. For simplicity,

we usually assume that mk divides nk for all k ∈ {1, . . . ,d}. Each block can then
be stored in an optimized way depending, for example, on its density. We consider
only two widely used coding schemes for data cubes, corresponding respectively
to simple ROLAP and simple MOLAP. That is, either we represent the block as a
list of tuples, one for each allocated cell in the block, or else we code the block as

1 Many authors use the term “chunks” with different meanings.
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an array. For both extreme cases, a very dense or a very sparse block, MOLAP and
ROLAP are respectively efficient. More aggressive compression is possible [14],
but as long as we use block-based storage, normalization is a factor.

Assuming that a data cube is stored using block encoding, we need to estimate the
storage cost. A simplistic model is given as follows. The cost of storing a single cell
sparsely, as a tuple containing the position of the value in the block as d attribute
values (cost proportional to d) and the measure value itself (cost of 1), is assumed
to be 1 + αd, where parameter α can be adjusted to account for size differences
between measure values and attribute values. Setting α small would favor sparse
encoding (ROLAP) whereas setting α large would favor dense encoding (MOLAP).
For example, while we might store 32-bit measure values, the number of values
per attribute in a given block is likely less than 216. This motivates setting α =
1/2 in later experiments and the remainder of the section. Thus, densely storing a
block with D allocated cells costs M = m1× . . .×md , but storing it sparsely costs
(d/2+1)D.

It is more economical to store a block densely if (d/2 + 1)D > M, that is, if
D

m1×...×md
> 1

d/2+1 . This block coding is least efficient when a data cube has uni-
form density ρ over all blocks. In such cases, it has a sparse storage cost of d/2+1
per allocated cell if ρ ≤ 1

d/2+1 or a dense storage cost of 1/ρ per allocated cell

if ρ > 1
d/2+1 . Given a data cube C, H(C) denotes its storage cost. We have #C ≤

H(C) ≤ n1× . . .× nd . Thus, we measure the cost per allocated cell E(C) as H(C)
#C

with the convention that if #C = 0, then E(C) = 1. The cost per allocated cell
is bounded by 1 and d/2 + 1: 1 ≤ E(C) ≤ d/2 + 1. A weakness of the model is
that it ignores obvious storage overheads proportional to the number of blocks,
n1
m1
× . . .× nd

md
. However, as long as the number of blocks remains constant, it is rea-

sonable to assume that the overhead is constant. Such is the case when we consider
the same data cube under different normalizations using fixed block dimensions.

3 Mathematical Preliminaries

Now that we have defined a simple HOLAP model, we review two of the most im-
portant concepts in this paper: slices and normalizations. Whereas a slice amounts
to fixing one of the attributes, a normalization can be viewed as a tuple of permu-
tations.

5



1

2

dimension 1
di

m
en

si
on

 2
1 2 3 1

2

31

5

6

2

3 3 1 4

2 7

1

9

dim
en

sio
n 3

Fig. 1. A 3×3×3 cube C with the slice C1
3 shaded.

3.1 Slices

Consider an n-regular d-dimensional cube C and let Ci1,...,id denote the cell stored
at indices (i1, . . . , id)∈ {1, . . . ,n}d . Thus, C has size nd . The slice C j

v of C, for index
v of dimension j (1≤ j≤ d and 1≤ v≤ n) is a d−1 - dimensional cube formed as
C j

v i1,...,i j−1,i j+1,...,id = Ci1,...,i j−1,v,i j+1,...,id (See Figure 1).

For the normalization task, we simply need know which indices contain allocated
cells. Hence we often view a slice as a d − 1 - dimensional Boolean array Ĉ j

v .
For example, in Figure 1, we might write (linearly) C1

3 = [0,1,0,5,9,2,4,0,0] and
Ĉ1

3 = [0,1,0,1,1,1,1,0,0], if we represent non-allocated cells by zeros. Let #Ĉ j
v

denote the number of allocated cells in slice C j
v .

3.2 Normalizations and Permutations

Given a list of n items, there are n! distinct possible permutations noted Γn (the
Symmetry Group). If γ ∈ Γn permutes i to j, we write γ(i) = j. The identity per-
mutation is denoted ι. In contrast to previous work on database compression (e.g.,
[4]), with our HOLAP model there is no performance advantage from permuting
the order of the dimensions themselves. (Blocking treats all dimensions symmet-
rically.) Instead, we focus on normalizations, which affect the order of each at-
tribute’s values. A normalization π of a data cube C is a d-tuple (γ1, . . . ,γd) of
permutations where γi ∈ Γn for i = 1, . . . ,d, and the normalized data cube π(C)
is π(C)i1,...,id = Cγ1(i1),...,γd(id) for all (i1, . . . , id) ∈ {1, . . . ,n}d . Recall that permuta-
tions, and thus normalizations, are not commutative. However, normalizations are
always invertible, and there are (n!)d normalizations for an n-regular data cube.
The identity normalization is denoted I = (ι, . . . , ι); whether I denotes the identity
normalization or the identity matrix will be clear from the context. Similarly 0 may
denote the zero matrix.
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Given a data cube C, we define its corresponding allocation cube A as a cube of
same dimension containing 0’s and 1’s depending on whether or not the cell is
allocated. Two data cubes C and C′, and their corresponding allocation cubes A and
A′, are equivalent (C ∼C′) if there is a normalization π such that π(A) = A′.

The cardinality of an equivalence class is the number of distinct data cubes C in this
class. The maximum cardinality is (n!)d and there are such equivalence classes:
consider the equivalence class generated by a “triangular” data cube Ci1,...,id = 1 if
i1≤ i2≤ . . .≤ id and 0 otherwise. Indeed, suppose that Cγ1(i1),...,γd(id) =Cγ′1(i1),...,γ

′
d(id)

for all i1, . . . , id , then γ1(i1)≤ γ2(i2)≤ . . .≤ γd(id) if and only if γ′1(i1)≤ γ′2(i2)≤
. . . ≤ γ′d(id) which implies that γi = γ′i for i ∈ {1, . . . ,d}. To see this, consider the
2-d case where γ1(i1) ≤ γ2(i2) if and only if γ′1(i1) ≤ γ′2(i2). In this case the result
follows from the following technical proposition. For more than two dimensions,
the proposition can be applied to any pair of dimensions.

Proposition 1 Consider any γ1,γ2,γ
′
1,γ
′
2 ∈ Γn satisfying γ1(i) ≤ γ2( j)⇔ γ′1(i) ≤

γ′2( j) for all 1≤ i, j ≤ n. Then γ1 = γ′1 and γ2 = γ′2.

PROOF. Fix i, then let k be the number of j values such that γ2( j)≥ γ1(i). We have
that γ1(i) = n− k + 1 because it is the only element of {1, . . . ,n} having exactly k
values larger or equal to it. Because γ1(i)≤ γ2( j)⇔ γ′1(i)≤ γ′2( j), γ′1(i) = n−k+1
and hence γ′1 = γ1. Similarly, fix j and count the number of i values to prove that
γ′2 = γ2. 2

However, there are singleton equivalence classes, since some cubes are invariant
under normalization: consider a null data cube Ci1,...,id = 0 for all (i1, . . . , id) ∈
{1, . . . ,n}d .

To count the cardinality of a class of data cubes, it suffices to know how many
slices C j

v of data cube C are identical, so that we can take into account the invari-
ance under permutations. Considering all n slices in dimension r, we can count the
number of distinct slices dr and number of copies nr,1, . . . ,nr,dr of each. Then, the
number of distinct permutations in dimension r is n!

nr,1!×...,×nr,dr ! and the cardinality

of a given equivalence class is ∏
d
r=1

(
n!

nr,1!×...,×nr,dr !

)
. For example, the equivalence

class generated by C =

0 1

0 1

 has a cardinality of 2, despite having 4 possible

normalizations.

To study the computational complexity of determining cube similarity, we define
two decision problems. The problem CUBE SIMILARITY has C and C′ as input
and asks whether C ∼ C′. Problem CUBE SIMILARITY (2-D) restricts C and C′

to two-dimensional cubes. Intuitively, CUBE SIMILARITY asks whether two data
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cubes offer the same problem from a normalization-efficiency viewpoint. The next
theorem concerns the computational complexity of CUBE SIMILARITY (2-D), but
we need the following lemma first. Recall that (γ1,γ2) is the normalization with the
permutation γ1 along dimension 1 and γ2 along dimension 2 whereas (γ1,γ2)(I) is
the renormalized cube.

Lemma 2 Consider the n×n matrix I′ = (γ1,γ2)(I). Then I′ = I ⇐⇒ γ1 = γ2.

We can now state Theorem 3, which shows that determining cube similarity is
GRAPH ISOMORPHISM-complete [15]. A problem Π belongs to this complexity
class when both

• Π has a polynomial-time reduction to GRAPH ISOMORPHISM, and
• GRAPH ISOMORPHISM has a polynomial-time reduction to Π.

GRAPH ISOMORPHISM-complete problems are unlikely to be NP-complete [16],
yet there is no known polynomial-time algorithm for any problem in the class. This
complexity class has been extensively studied.

Theorem 3 CUBE SIMILARITY (2-D) is GRAPH ISOMORPHISM-complete.

PROOF. It is enough to consider two-dimensional allocation cubes as 0-1 matri-
ces. The connection to graphs comes via adjacency matrices.

To show that CUBE SIMILARITY (2-D) is GRAPH ISOMORPHISM-complete, we
show two polynomial-time many-to-one reductions: the first transforms an instance
of GRAPH ISOMORPHISM to an instance of CUBE SIMILARITY (2-D).

The second reduction transforms an instance of CUBE SIMILARITY (2-D) to an
instance of GRAPH ISOMORPHISM.

The graph-isomorphism problem is equivalent to a re-normalization problem of
the adjacency matrices. Indeed, consider two graphs G1 and G2 and their adjacency
matrices M1 and M2. The two graphs are isomorphic if and only if there is a permu-
tation γ so that (γ,γ)(M1) = M2. We can assume without loss of generality that all
rows and columns of the adjacency matrices have at least one non-zero value, since
we can count and remove disconnected vertices in time proportional to the size of
the graph.

We have to show that the problem of deciding whether γ satisfies (γ,γ)(M1) = M2
can be rewritten as a data cube equivalence problem. It turns out to be possible by
extending the matrices M1 and M2. Let I be the identity matrix, and consider two
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allocation cubes (matrices) A1 and A2 and their extensions Â1 =


A1 I I

I I 0

I 0 0

 and

Â2 =


A2 I I

I I 0

I 0 0

 .

Consider a normalization π satisfying π(Â1) = Â2 for matrices A1,A2 having at least
one non-zero value for each column and each row. We claim that such a π must be
of the form π = (γ1,γ2) where γ1 = γ2. By the number of non-zero values in each
row and column, we see that rows cannot be permuted across the three blocks of
rows because the first one has at least 3 allocated values, the second one exactly 2
and the last one exactly 1. The same reasoning applies to columns. In other words,
if x ∈ [ j, jn], then γi(x) ∈ [ j, jn] for j = 1,2,3 and i = 1,2.

Let γi| j denote the permutation γ restricted to block j where j = 1,2,3. Define
γ

j
i = γi| j− jn for j = 1,2,3 and i = 1,2. By Lemma 2, each subblock consisting of

an identity leads to an equality between two permutations. From the two identity
matrices in the top subblocks, for example, we have that γ1

1 = γ2
2 and γ1

1 = γ3
2. From

the middle subblocks, we have γ2
1 = γ1

2 and γ2
1 = γ2

2, and from the bottom subblocks,
we have γ3

1 = γ1
2. From this, we can deduce that γ1

1 = γ2
2 = γ2

1 = γ1
2 so that γ1

1 = γ1
2

and similarly, γ2
1 = γ2

2 and γ3
1 = γ3

2 so that γ1 = γ2.

So, if we set A1 = M1 and A2 = M2, we have that G1 and G2 are isomorphic if and
only if Â1 is similar to Â2. This completes the proof that if the extended adjacency
matrices are seen to be equivalent as allocation cubes, then the graphs are isomor-
phic. Therefore, we have shown a polynomial-time transformation from GRAPH

ISOMORPHISM to CUBE SIMILARITY (2-D).

Next, we show a polynomial-time transformation from CUBE SIMILARITY (2-D)
to GRAPH ISOMORPHISM. We reduce CUBE SIMILARITY (2-D) to DIRECTED

GRAPH ISOMORPHISM, which is in turn reducible to GRAPH ISOMORPHISM [17,18].

Given two 0-1 matrices M1 and M2, we want to decide whether we can find (γ1,γ2)
such that (γ1,γ2)(M1) = M2. We can assume that M1 and M2 are square matrices
and if not, pad with as many rows or columns filled with zeroes as needed. We
want a reduction from this problem to DIRECTED GRAPH ISOMORPHISM. Con-

sider the following matrices: M̂1 =

0 M1

0 0

 and M̂2 =

0 M2

0 0

. Both M̂1 and M̂2

can be considered as the adjacency matrices of directed graphs G1 and G2. Suppose
that the graphs are found to be isomorphic, then there is a permutation γ such that
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(γ,γ)(M̂1) = M̂2. We can assume without loss of generality that γ does not permute
rows or columns having only zeroes across halves of the adjacency matrices. On
the other hand, rows containing non-zero components cannot be permuted across
halves. Thus, we can decompose γ into two disjoint permutations γ1 and γ2 and
hence (γ1,γ2)(M1) = M2, which implies M1 ∼M2. On the other hand, if M1 ∼M2,
then there is (γ1,γ2) such that (γ1,γ2)(M1) = M2 and we can choose γ as the direct
sum of γ1 and γ2. Therefore, we have found a reduction from CUBE SIMILARITY

(2-D) to DIRECTED GRAPH ISOMORPHISM and, by transitivity, to GRAPH ISO-
MORPHISM.

Thus, GRAPH ISOMORPHISM and CUBE SIMILARITY (2-D) are mutually reducible
and hence CUBE SIMILARITY (2-D) is GRAPH ISOMORPHISM-complete. 2

Remark 4 If similarity between two n× n cubes can be decided in time cnk for
some positive integers c and k ≥ 2, then graph isomorphism can be decided in
O(nk) time.

Since GRAPH ISOMORPHISM has been reduced to a special case of CUBE SIMI-
LARITY, then the general problem is at least as difficult as GRAPH ISOMORPHISM.
Yet we have seen no reason to believe the general problem is harder (for instance,
NP-complete). We suspect that a stronger result may be possible; establishing (or
disproving) the following conjecture is left as an open problem.

Conjecture 5 The general CUBE SIMILARITY problem is also GRAPH ISOMOR-
PHISM-complete.

4 Computational Complexity of Optimal Normalization

It appears that it is computationally intractable to find a “best” normalization π (i.e.,
π minimizes cost per allocated cell E(π(C))) given a cube C and given the blocks’
dimensions. Yet, when suitable restrictions are imposed, a best normalization can
be computed (or approximated) in polynomial time. This section focuses on the
effect of block size on intractability.

4.1 Tractable Special Cases

Our problem can be solved in polynomial time, if severe restrictions are placed
on the number of dimensions or on block size. For instance, it is trivial to find a
best normalization in 1-d. Another trivial case arises when blocks are of size 1,
since then normalization does not affect storage cost. Thus, any normalization is
a “best normalization.” The situation is more interesting for blocks of size 2; i.e.,
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which have mi = 2 for some 1≤ i≤ d and m j = 1 for 1≤ j ≤ d with i 6= j. A best
normalization can be found in polynomial time, based on weighted-matching [19]
techniques described next.

4.1.1 Using Weighted Matching

Given a weighted undirected graph, the weighted matching problem asks for an
edge subset of maximum or minimum total weight, such that no two edges share
an endpoint. If the graph is complete, has an even number of vertices, and has only
positive edge weights, then the maximum matching effectively pairs up vertices.

For our problem, normalization’s effect on dimension k, for some 1≤ k≤ d, corre-
sponds to rearranging the order of the nk slices Ck

v , where 1 ≤ v ≤ nk. In our case,
we are using a block size of 2 for dimension k. Therefore, once we have chosen two
slices Ck

v and Ck
v′ to be the first pair of slices, we will have formed the first layer of

blocks and have stored all allocated cells belonging to these two slices. The total
storage cost of the cube is thus a sum, over all pairs of slices, of the pairing-cost
of the two slices composing the pair. The order in which pairs are chosen is ir-
relevant: only the actual matching of slices into pairs matters. Consider Boolean
vectors b = Ĉk

v and b′ = Ĉk
v′ . If both bi and b′i are true, then the ith block in the pair

is completely full and costs 2 to store. Similarly, if exactly one of bi and b′i is true,
then the block is half-full. Under our model, a half-full block also costs 2, but an
empty block costs 0. Thus, given any two slices, we can compute the cost of pairing
them by summing the storage costs of all these blocks. If we identify each slice with
a vertex of a complete weighted graph, it is easy to form an instance of weighted
matching. (See Figure 2 for an example.) Fortunately, cubic-time algorithms ex-
ist for weighted matching [20],and nk is often small enough that cubic running
time is not excessive. Unfortunately, calculating the nk(nk− 1)/2 edge weights is
expensive; each involves two large Boolean vectors with 1

nk
∏

d
i=1 ni elements, for

total edge-calculation time of Θ
(
nk ∏

d
i=1 ni

)
. Fortunately, this can be improved for

sparse cubes.

In the 2-d case, given any two rows, for example r1 =
[
0 0 1 1

]
and r2 =

[
0 1 0 1

]
,

then we can compute the total allocation cost of grouping the two together as
2(#r1 +#r2−benefit) where benefit is the number of positions (in this case 1) where
both r1 and r2 have allocated cells. (This benefit records that one of the two allo-
cated values could be stored “for free,” were slices r1 and r2 paired.)

According to this formula, the cost of putting r1 and r2 together is thus 2(2 + 2−
1) = 6. Using this formula, we can improve edge-calculation time when the cube
is sparse. To do so, for each of the nk slices Ck

v , represent each allocated value by
a d-tuple (i1, i2, . . . , ik−1, ik+1, . . . , id, ik) giving its coordinates within the slice and
labeling it with the number of the slice to which it belongs. Then sort these #C
tuples lexicographically, in O(#C log#C) time. For example, consider the following
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cube, where the rows have been labelled from r0 to r5 ( ri corresponds to C1
i ):

r0 0 0 0 0

r1 1 1 0 1

r2 1 0 0 0

r3 0 1 1 0

r4 0 1 0 0

r5 1 0 0 1


.

We represent the allocated cells as {(0,r1), (1,r1), (3,r1), (0,r2), (1,r3), (2,r3),
(1,r4), (0,r5), and (3,r5)}. We can then sort these to get (0,r1), (0,r2), (0,r5),
(1,r1), (1,r3), (1,r4), (2,r3), (3,r1), (3,r5). This groups together allocated cells
with corresponding locations but in different slices. For example, two groups are
((0,r1), (0,r2), (0,r5)) and ((1,r1), (1,r3), (1,r4)). Initialize the benefit value asso-
ciated to each edge to zero, and next process each group. Let g denote the number
of tuples in the current group, and in O(g2) time examine all

(g
2

)
pairs of slices

(s1,s2) in the group, and increment (by 1) the benefit of the graph edge (s1,s2). In
our example, we would process the group ((0,r1), (0,r2), (0,r5)) and increment
the benefits of edges (r1,r2), (r2,r5), and (r1,r5). For group ((1,r1), (1,r3), (1,r4)),
we would increase the benefits of edges (r1,r3), (r1,r4), and (r3,r4). Once all #C
sorted tuples have been processed, the eventual weight assigned to edge (v,w) is
2(#Ĉk

v +#Ĉk
w−benefit(v,w)). In our example, we have that edge (r1,r2) has a ben-

efit of 1, and so a weight of 2(#r1 +#r2−benefit) = 2(3+1−1) = 6.

A crude estimate of the running time to process the groups would be that each
group is O(nk) in size, and there are O(#C) groups, for a time of O(#Cn2

k). It can
be shown that time is maximized when the #C values are distributed into #C/nk
groups of size nk, leading to a time bound of Θ(#Cnk) for group processing, and an
overall edge-calculation time of #C(nk + log#C).

Theorem 6 The best normalization for blocks of size
i︷ ︸︸ ︷

1× . . .×1×2×
k−1−i︷ ︸︸ ︷

1 . . .×1 can
be computed in O(nk× (n1×n2× . . .×nd)+n3

k) time.

The improved edge-weight calculation (for sparse cubes) leads to the following.

Corollary 7 The best normalization for blocks of size
i︷ ︸︸ ︷

1× . . .×1×2×
k−1−i︷ ︸︸ ︷

1 . . .×1 can
be computed in O(#C(nk + log#C)+n3

k) time.

For more general block shapes, this algorithm is no longer optimal but nevertheless
provides a basis for sensible heuristics.
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Fig. 2. Mapping a normalization problem to a weighted matching problem on graphs. Rows
are labeled and we try to reorder them, given block dimensions 2×1 (where 2 is the vertical
dimension). In this example, optimal solutions include r0,r1,r2,r3 and r2,r3,r1,r0.

4.2 An NP-hard Case

In contrast with 1× 2-block situation, we next show that it is NP-hard to find the
best normalization for 1×3 blocks. The associated decision problem asks whether
any normalization can store a given cube within a given storage bound, assum-
ing 1× 3 blocks. We return to the general cost model from Section 2 but choose
α = 1/4, as this results in an especially simple situation where a block with three
allocated cells (D = 3) stores each of them at a cost of 1, whereas a block with
fewer than three allocated cells stores each allocated cell at a cost of 3/2.

The proof involves a reduction from the NP-complete problem Exact 3-Cover (X3C),
a problem which gives a set S and a set T of three-element subsets of S. The ques-
tion, for X3C, is whether there is a T ′ ⊆ T such that each s ∈ S occurs in exactly
one member of T ′ [17].

We sketch the reduction next. Given an instance of X3C, form an instance of our
problem by making a |T |×|S| cube. For s∈ S and T ∈ T , the cube has an allocated
cell corresponding to (T,s) iff s ∈ T . Thus, the cube has 3|T | cells that need to be
stored. The storage cost cannot be lower than 9|T |−|S|

2 and this bound can be met iff
the answer to the instance of X3C is “yes.” Indeed, a normalization for 1×3 blocks
can be viewed as simply grouping the values of an attribute into triples. Suppose
the storage bound is achieved, then at least |S| cells would have to be stored in
full blocks. Consider some full block and note there are only 3 allocated cells in
each row, so all 3 of them must be chosen (because blocks are 1×3). But the three
allocated cells in a row can be mapped to a T ∈ T . Choose it for T ′. None of these
3 cells’ columns intersect any other full blocks, because that would imply some
other row had exactly the same allocation pattern and hence represents the same T ,
which it cannot. So we see that each s ∈ S (column) must intersect exactly one full
block, showing that T ′ is the cover we seek.

Conversely, suppose T ′ is a cover for X3C. Order the elements in T ′ arbitrarily
as T0,T1, . . . ,T|S|/3 and use any normalization that puts first (in arbitrary order) the
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three s ∈ T0, then next puts the three s ∈ T1, and so forth. The three allocated cells
for each Ti will be together in a (full) block, giving us at least the required “space
savings” of 3

2 |T
′|= |S|.

Theorem 8 It is NP-hard to find the best normalization when 1×3 blocks are used.

We conjecture that it is NP-hard to find the best normalization whenever the block
size is fixed at any size larger than 2. A related 2-d problem that is NP-hard was
discussed by Kaser [21]. Rather than specify the block dimensions, this problem
allows the solution to specify how to divide each dimension into two ranges, thus
making four blocks in total (of possibly different shape) .

5 Slice-Sorting Normalization for Quasi-Independent Attributes

In practice, whether or not a given cell is allocated may depend on the correspond-
ing attribute values independently of each other. For example, if a store is closed
on Saturdays almost all year, a slice corresponding to “weekday=Saturday” will be
sparse irrespective of the other attributes. In such cases, it is sufficient to normalize
the data cube using only an attribute-wise approach. Moreover, as we shall see, one
can easily compute the degree of independence of the attributes and thus decide
whether or not potentially more expensive algorithms need to be used.

We begin by examining one of the simplest classes of normalization algorithms,
and we will assume n-regular data cubes for n ≥ 3. We say that a sequence of
values x1, . . . ,xn is sorted in increasing (respectively, decreasing) order if xi ≤ xi+1
(respectively, xi ≥ xi+1) for i ∈ {1, . . . ,n−1}.

Recall that Ĉ j
v is the Boolean array indicating whether a cell is allocated or not in

slice C j
v .

Algorithm 1 (Slice-Sorting Normalization) Given an n-regular data cube C, then
slices have nd−1 cells. Given a fixed function g : {true, false}nd−1→R, then for each
attribute j, we compute the sequence f j

v = g(Ĉ j
v) for all attribute values v = 1, . . . ,n.

Let γ j be a permutation such that γ j( f j) is sorted either in increasing or decreasing
order, then a slice-sorting normalization is (γ1, . . . ,γd).

Algorithm 1 has time complexity O(dnd +dn logn). We can precompute the aggre-
gated values f j

v and speed up normalization to O(dn log(n)). It does not produce a
unique solution given a function g because there could be many different valid ways
to sort. A normalization ϖ = (γ1, . . . ,γd) is a solution to the slice-sorting problem if
it provides a valid sort for the slice-sorting problem stated by Algorithm 1 . Given
a data cube C, denote the set of all solutions to the slice-sorting problem by SC,g.
Two functions g1 and g2 are equivalent with respect to the slice-sorting problem if

14



SC,g1 = SC,g2 for all cubes C and we write g1 ' g2 . We can characterize such equiv-
alence classes using monotone functions. Recall that a function h : R→R is strictly
monotone nondecreasing (respectively, nonincreasing) if x < y implies h(x) < h(y)
(respectively, h(x) > h(y)).

An alternative definition is that h is monotone if, whenever x1, . . . ,xn is a sorted list,
then so is h(x1), . . . ,h(xn). This second definition can be used to prove the existence
of a monotone function as the next proposition shows.

Proposition 9 For a fixed integer n≥ 3 and two functions ω1,ω2 : D→ R where D
is a set with an order relation, if for all sequences x1, . . . ,xn ∈D , ω1(x1), . . . ,ω1(xn)
is sorted if and only if ω2(x1), . . . ,ω2(xn) is sorted, then there is a monotone func-
tion h : R→ R such that ω1 = h◦ω2.

PROOF. The proof is constructive. Define h over the image of ω2 by the formula

h(ω2(x)) = ω1(x).

To prove that h is well defined, we have to show that whenever ω2(x1) = ω2(x2)
then ω1(x1) = ω1(x2). Suppose that this is not the case, and without loss of general-
ity, let ω1(x1) < ω1(x2). Then there is x3 ∈D such that ω1(x1)≤ ω1(x3)≤ ω1(x2)
or ω1(x3) ≤ ω1(x1) or ω1(x2) ≤ ω1(x3). In all three cases, because of the equal-
ity between ω2(x1) and ω2(x2), any ordering of ω2(x1),ω2(x2),ω2(x3) is sorted
whereas there is always one non-sorted sequence using ω1. There is a contradic-
tion, proving that h is well defined.

For any sequence x1,x2,x3 such that ω2(x1) < ω2(x2) < ω2(x3), then we must either
have ω1(x1)≤ ω1(x2)≤ ω1(x3) or ω1(x1)≥ ω1(x2)≥ ω1(x3) by the conditions of
the proposition. In other words, for x < y < z, we either have h(x)≤ h(y)≤ h(z) or
h(x)≥ h(y)≥ h(z) thus showing that h must be monotone. 2

Proposition 10 Given two functions g1,g2 : {true, false}S→ R, we have that

SC,g1 = SC,g2

for all data cubes C if and only if there exist a monotone function h : R → R such
that g1 = h◦g2.

PROOF. Assume there is h such that g1 = h◦g2, and consider ϖ = (γ1, . . . ,γd) ∈
SC,g1 for any data cube C, then γ j(g1(Ĉ

j
v)) is sorted over index v ∈ {1, . . . ,n} for

all attributes j = 1, . . . ,n by definition of SC,g1 . Then γ j(h(g1(Ĉ
j
v))) must also be

sorted over v for all j, since monotone functions preserve sorting. Thus ϖ ∈ SC,g2 .

One the other hand, if SC,g1 = SC,g2 for all data cubes C, then h exists by Proposi-
tion 9. 2
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A slice-sorting algorithm is stable if the normalization of a normalized cube can be
chosen to be the identity, that is if ϖ ∈ SC,g then I ∈ Sϖ(C),g for all C. The algorithm
is strongly stable if for any normalization ϖ, Sϖ(C),g ◦ϖ = SC,g for all C. Strong
stability means that the resulting normalization does not depend on the initial nor-
malization. This is a desirable property because data cubes are often normalized
arbitrarily at construction time. Notice that strong stability implies stability: choose
ϖ ∈ SC,g. Then there must exist ζ ∈ Sϖ(C),g such that ζ◦ϖ = ϖ which implies that
ζ is the identity.

Proposition 11 Stability implies strong stability for slice-sorting algorithms and
so, strong stability⇔ stability.

PROOF. Consider a slice-sorting algorithm, based on g, that is stable. Then by
definition

ϖ ∈ SC,g⇒ I ∈ Sϖ(C),g (1)

for all C. Observe that the converse is true as well, that is,

I ∈ Sϖ(C),g⇒ ϖ ∈ SC,g. (2)

Hence we have that ϖ1 ◦ϖ ∈ SC,g implies that I ∈ Sϖ1(ϖ(C)),g by Equation 1 and
so, by Equation 2, ϖ1 ∈ Sϖ(C),g. Note that given any ϖ, all elements of SC,g can be
written as ϖ1 ◦ϖ because permutations are invertible. Hence, given ϖ1 ◦ϖ ∈ SC,g
we have ϖ1 ∈ Sϖ(C),g and so SC,g ⊂ Sϖ(C),g ◦ϖ.

On the other hand, given ϖ1 ◦ϖ ∈ Sϖ(C),g ◦ϖ, we have that ϖ1 ∈ Sϖ(C),g by cancel-
lation, hence I ∈ Sϖ1(ϖ(C)),g by Equation 1, and then ϖ1 ◦ϖ ∈ SC,g by Equation 2.
Therefore, Sϖ(C),g ◦ϖ⊂ SC,g. 2

Define τ : {true, false}S→R as the number of true values in the argument. In effect,
τ counts the number of allocated cells: τ(Ĉ j

v) = #Ĉ j
v for any slice Ĉ j

v . If the slice Ĉ j
v

is normalized, τ remains constant: τ(Ĉ j
v) = τ

(
ϖ

(
Ĉ j

v

))
for all normalizations ϖ.

Therefore τ leads to a strongly stable slice-sorting algorithm. The converse is also
true if d = 2 , that is, if the slice is one-dimensional, then if

h(Ĉ j
v) = h

(
ϖ

(
Ĉ j

v

))
for all normalizations ϖ then h can only depend on the number of allocated (true)
values in the slice since it fully characterizes the slice up to normalization. For the
general case (d > 2), the converse is not true since the number of allocated values
is not enough to characterize the slices up to normalization. For example, one could
count how many sub-slices along a chosen second attribute have no allocated value.
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A function g is symmetric if g ◦ϖ ' g for all normalizations ϖ. The following
proposition shows that up to a monotone function, strongly stable slice-sorting al-
gorithms are characterized by symmetric functions.

Proposition 12 A slice-sorting algorithm based on a function g is strongly stable
if and only if for any normalization ϖ, there is a monotone function h : R→ R such
that

g
(

ϖ

(
Ĉ j

v

))
= h

(
g(Ĉ j

v)
)

(3)

for all attribute values v = 1, . . . ,n of all attributes j = 1, . . . ,d. In other words, it
is strongly stable if and only if g is symmetric.

PROOF. By Proposition 10, Equation 3 is sufficient for strong stability. On the
other hand, suppose that the slice-sorting algorithm is strongly stable and that
there does not exist a strictly monotone function h satisfying Equation 3, then
by Proposition 9, there must be a sorted sequence g(Ĉ j

v1),g(Ĉ j
v2),g(Ĉ j

v3) such that
g
(

ϖ

(
Ĉ j

v1

))
,g

(
ϖ

(
Ĉ j

v2

))
,g

(
ϖ

(
Ĉ j

v3

))
is not sorted. Because this last statement

contradicts strong stability, we have that Equation 3 is necessary. 2

Lemma 13 A slice-sorting algorithm based on a function g is strongly stable if
g = h◦ τ for some function h. For 2-d cubes, the condition is necessary.

In the above lemma, whenever h is strictly monotone, then g ' τ and we call this
class of slice-sorting algorithms Frequency Sort [9]. We will show that we can
estimate a priori the efficiency of this class (see Theorem 18).

It is useful to consider a data cube as a probability distribution in the following
sense: given a data cube C, let the joint probability distribution Ψ over the same nd

set of indices be

Ψi1,...,in =

 1/#C if Ci1,...,in 6= 0

0 otherwise
.

The underlying probabilistic model is that allocated cells are uniformly likely to be
picked whereas unallocated cells are never picked. Given an attribute j∈{1, . . . ,d},
consider the number of allocated slices in slice C j

v , #Ĉ j
v , for v ∈ {1, . . . ,n}: we can

define a probability distribution ϕ j along attribute j as ϕ
j
v = #Ĉ j

v
#C . From these ϕ j for

all j ∈ {1, . . . ,d}, we can define the joint independent probability distribution Φ as
Φi1,...,id = ∏

d
j=1 ϕ

j
i j
, or in other words Φ = ϕ0⊗ . . .⊗ϕd−1. Examples are given in

Table 2.

Given a joint probability distribution Ψ and the number of allocated cells #C, we
can build an allocation cube A by computing Ψ×#C. Unlike a data cube, an allo-
cation cube stores values between 0 and 1 indicating how likely it is that the cell

17



Table 2
Examples of 2-d data cubes and their probability distributions.

Data Cube Joint Prob. Dist. Joint Independent Prob. Dist.

1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

1
8 0 1

8 0

0 1
8 0 1

8

1
8 0 1

8 0

0 1
8 0 1

8

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1 0 0 0

0 1 0 0

0 1 1 0

0 0 0 0

1
4 0 0 0

0 1
4 0 0

0 1
4

1
4 0

0 0 0 0

1
16

1
8

1
16 0

1
16

1
8

1
16 0

1
8

1
4

1
8 0

0 0 0 0

be allocated. If we start from a data cube C and compute its joint probability dis-
tribution and from it, its allocation cube, we get a cube containing only 0’s and 1’s
depending on whether or not the given cell is allocated (1 if allocated, 0 otherwise)
and we say we have the strict allocation cube of the data cube C. For an alloca-
tion cube A, we define #A as the sum of all cells. We define the normalization of
an allocation cube in the obvious way. The more interesting case arises when we
consider the joint independent probability distribution: its allocation cube contains
0’s and 1’s but also intermediate values. Given an arbitrary allocation cube A and
another allocation cube B, A is compatible with B if any non-zero cell in B has
a value greater than the corresponding cell in A and if all non-zero cells in B are
non-zero in A. We say that A is strongly compatible with B if, in addition to being
compatible with B, all non-zero cells in A are non-zero in B . Given an allocation
cube A compatible with B, we can define the strongly compatible allocation cube
AB as

ABi1,...,id =

 Ai1,...,id if Bi1,...,id 6= 0

0 otherwise

and we denote the remainder by ABc = A−AB. The following result is immediate
from the definitions.

Lemma 14 Given a data cube C and its joint independent probability distribution
Φ, let A be the allocation cube of Φ, then we have A is compatible with C. Unless
A is also the strict allocation cube of C, A is not strongly compatible with C.

We can compute H(A), the HOLAP cost of an allocation cube A, by looking at each
block. The cost of storing a block densely is still M = m1× . . .×md whereas the cost
of storing it sparsely is (d/2 + 1)D̂ where D̂ is the sum of the 0-to-1 values stored
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in the corresponding block. As before, a block is stored densely when D̂≥ M
(d/2+1) .

When B is the strict allocation cube of a cube C, then H(C) = H(B) immediately. If
#A = #B and A is compatible with B, then H(A)≥H(B) since the number of dense
blocks can only be less. Similarly, since A is strongly compatible with B, A has the
set of allocated cells as B but with lesser values. Hence H(A)≤ H(B).

Lemma 15 Given a data cube C and its strict allocation cube B, for all allocation
cubes A compatible with B such that #A = #B, we have H(A) ≥ H(B). On the
other hand, if A is strongly compatible with B but not necessarily #A = #B, then
H(A)≤ H(B).

A corollary of Lemma 15 is that the joint independent probability distribution gives
a bound on the HOLAP cost of a data cube.

Corollary 16 The allocation cube A of the joint independent probability distribu-
tion Φ of a data cube C satisfies H(A)≥ H(C).

Given a data cube C, consider a normalization ϖ such that H(ϖ(C)) is minimal and
fs ∈ SC,τ. Since H(fs(C)) ≤ H(fs(A)) by Corollary 16 and H(ϖ(C)) ≥ #C by our
cost model, then

H(fs(C))−H(ϖ(C))≤ H(fs(A))−#C.

In turn, H(fs(A)) may be estimated using only the attribute-wise frequency distribu-
tions and thus we may have a fast estimate of H(fs(C))−H(ϖ(C)). Also, because
joint independent probability distributions are separable, Frequency Sort is optimal
over them.

Proposition 17 Consider a data cube C and the allocation cube A of its joint in-
dependent probability distribution. A Frequency Sort normalization fs ∈ SC,τ is op-
timal over joint independent probability distributions ( H(fs(A)) is minimal ).

PROOF. In what follows, we consider only allocation cubes from independent
probability distributions and proceed by induction. Let D̂ be the sum of cells in
a block and let FA(x) = #(D̂ > x) and fA(x) = #(D̂ = x) denote, respectively, the
number of blocks where the count is greater than (or equal to) x for allocation cube
A.

Frequency Sort is clearly optimal over any one-dimensional cube A in the sense that
in minimizes the HOLAP cost. In fact, Frequency Sort maximizes FA(x), which is
a stronger condition (Ff s(A)(x)≥ FA(x)).

Consider two allocation cubes A1 and A2 and their product A1⊗A2. Suppose that
Frequency Sort is an optimal normalization for both A1 and A2. Then the following
argument shows that it must be so for A1⊗A2. Block-wise, the sum of the cells in
A1⊗A2, is given by D̂ = D̂1× D̂2 where D̂1 and D̂2 are respectively the sum of
cells in A1 and A2 for the corresponding blocks.
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We have that

FA1⊗A2(x) = ∑
y

fA1(y)FA2(x/y) = ∑
y

FA1(x/y) fA2(y)

and fs(A1⊗A2) = fs(A1)⊗ fs(A2). By the induction hypothesis, Ffs(A1)(x)≥ FA1(x)
and so ∑y FA1(x/y) fA2(y)≤ ∑y Ffs(A1)(x/y) fA2(y). But we can also repeat the argu-
ment by symmetry

∑
y

F(fs(A1))(x/y) fA2(y) = ∑
y

ffs(A1)(y)FA2(x/y)≤∑
y

ffs(A1)(y)Ffs(A2)(x/y)

and so FA1⊗A2(x)≤ Ffs(A1⊗A2)(x). The result then follows by induction. 2

There is an even simpler way to estimate H(fs(C))−H(ϖ(C)) and thus decide
whether Frequency Sorting is sufficient as Theorem 18 shows (see Table 3 for ex-
amples). It should be noted that we give an estimate valid independently of the
dimensions of the blocks; thus, it is necessarily suboptimal.

Theorem 18 Given a data cube C, let ϖ be an optimal normalization and fs be a
Frequency Sort normalization, then

H( f s(C))−H(ϖ(C))≤
(

d
2

+1
)

(1−Φ ·B)#C

where B is the strict allocation cube of C and Φ is the joint independent probability
distribution. The symbol · denotes the scalar product defined in the usual way.

PROOF. Let A be the allocation cube of the joint independent probability distri-
bution. We use the fact that

H(fs(C))−H(ϖ(C))≤ H(fs(A))−H(ϖ(C)).

We have that fs is an optimal normalization over joint independent probability dis-
tribution by Proposition 17 so that H(fs(A))≤H(ϖ(A)). Also H(ϖ(C)) = H(ϖ(B))
by definition so that

H(fs(C))−H(ϖ(C))≤H(ϖ(A))−H(ϖ(B))
≤H(ϖ(AB))+H(ϖ(ABc))−H(ϖ(B))
≤H(ϖ(ABc))

since H(ϖ(AB))−H(ϖ(B))≤ 0 by Lemma 15.

Finally, we have that

H(ϖ(ABc))≤
(

d
2

+1
)

#ABc
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Table 3
Given data cubes, we give lowest possible HOLAP cost H(ϖ(C)) using 2×2 blocks, and

an example of a Frequency Sort HOLAP cost H(fs(C)) plus the independence product Φ ·B
and the bound from theorem 18 for the lack of optimality of Frequency Sort.

data cube C H(ϖ(C)) H(fs(C)) Φ ·B
(d

2 +1
)
(1−Φ ·B)#C

1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

8 16 1
2 8

1 0 0 0

0 1 0 0

0 1 1 0

0 0 0 0

6 6 9
16

7
2

1 0 1 0

0 1 1 1

1 1 1 0

0 1 0 1

12 16 17
25

32
5

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

8 8 1
4 6

and #ABc = (1−Φ ·B)#C. 2

This theorem says that Φ ·B gives a rough measure of how well we can expect
Frequency Sort to perform over all block dimensions: when Φ · B is very close
to 1, we need not use anything but Frequency Sort whereas when it gets close to
0, we can expect Frequency Sort to be less efficient. We call this coefficient the
Independence Sum.

Hence, if the ROLAP storage cost is denoted by rolap, the optimally normalized
block-coded cost by optimal, and the Independence Sum by IS, we have the rela-
tionship

rolap≥ optimal+(1− IS)rolap≥ fs≥ optimal

where fs is the block-coded cost using Frequency Sort as a normalization algorithm.
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input a cube C
for all dimensions i do

for all attribute values v do
Count the number of allocated cells in corresponding slice (value of #Ĉi

v)
end for
sort the attribute values v according to #Ĉi

v
end for

Fig. 3. Frequency Sort (FS) Normalization Algorithm

6 Heuristics

Since many practical cases appear intractable, we must resort to heuristics when the
Independence Sum is small. We have experimented with several different heuris-
tics, and we can categorize possible heuristics as block-oblivious versus block-
aware, dimension-at-a-time or holistic, orthogonal or not.

Block-aware heuristics use information about the shape and positioning of blocks.
In contrast, Frequency Sort (FS) is an example of a block-oblivious heuristic: it
makes no use of block information (see Fig. 3). Overall, block-aware heuristics
should be able to obtain better performance when the block size is known, but
may obtain poor performance when the block size used does not match the block
size assumed during normalization. The block-oblivious heuristics should be more
robust.

All our heuristics reorder one dimension at a time, as opposed to a “holistic” ap-
proach when several dimensions are simultaneously reordered. In some heuristics,
the permutation chosen for one dimension does not affect which permutation is
chosen for another dimension. Such heuristics are orthogonal, and all the strongly
stable slice-sorting algorithms in Section 5 are examples. Orthogonal heuristics
can safely process dimensions one at a time, and in any order. With non-orthogonal
heuristics that process one dimension at a time, we typically process all dimensions
once, and repeat until some stopping condition is met.

6.1 Iterated Matching heuristic

We have already shown that the weighted-matching algorithm can produce an op-
timal normalization for blocks of size 2 (see Section 4.1.1). The Iterated Matching
(IM) heuristic processes each dimension independently, behaving each time as if
the blocks consisted of two cells aligned with the current dimension (see Fig. 4).
Since it tries to match slices two-by-two so as to align many allocated cells in
blocks of size 2, it should perform well over 2-regular blocks. It processes each
dimension exactly once because it is orthogonal.
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input a cube C
for all dimensions i do

for all attribute values v1 do
for all attribute values v2 do

wv1,v2 ← storage cost of slices Ĉi
v1

and Ĉi
v2

using

blocks of shape 1× . . .×1︸ ︷︷ ︸
i−1

×2×1× . . .×1︸ ︷︷ ︸
d−i

end for
end for
form graph G with attribute values v as nodes and edge weights w
solve the weighted-matching problem over G
order the attribute values so that matched values are listed consecutively

end for

Fig. 4. Iterated Matching (IM) Normalization Algorithm

This algorithm is better explained using an example. Applying this algorithm along
the rows of the cube in Fig. 2 (see page 12) amounts to building the graph in the
same figure and solving the weighted-matching problem over this graph. The cube
would then be normalized to 

1 1 −

− 1 −

− − 1

1 − 1

 .

We would then repeat on the columns (over all dimensions). A small example,1 − 1 1

1 − − −

 , demonstrates this approach is suboptimal, since the normalization

shown is optimal for 2×1 and 1×2 blocks but not optimal for 2×2 blocks.

6.2 One-Dense-Chunk Heuristic: iterated Greedy Sort (GS)

Earlier work [9] discusses data-cube normalization under a different HOLAP model,
where only one block may be stored densely, but the block’s size is chosen adap-
tively. Despite model differences, normalizations that cluster data into a single large
chunk intuitively should be useful with our current model. We adapted the most
successful heuristic identified in the earlier work and called the result GS for iter-
ated Greedy Sort (see Fig. 5). It can be viewed as a variant of Frequency Sort that
ignores portions of the cube that appear too sparse.

This algorithm’s details are shown in Fig. 5 and sketched briefly next. Parameter
ρbreak-even can be set to the break-even density for HOLAP storage (ρbreak-even =
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input a cube C, break-even density ρbreak-even = 1
d/2+1

for all dimensions i do
{∆i records attribute values classified as dense (initially, all)}
initialize ∆i to contain each attribute value v

end for
for 20 repetitions do

for all dimensions i do
for all attribute values v do

{current ∆ values mark off a subset of the slice as "dense"}
ρv← density of Ĉi

v within ∆1×∆2× . . .×∆i−1×∆i+1× . . .
if ρv < ρbreak-even and v ∈ ∆i then

remove v from ∆i
else if ρv ≥ ρbreak-even and v 6∈ ∆i then

add v to ∆i
end if

end for
if ∆i is empty then

add v to ∆i, for an attribute v maximizing ρv
end if

end for
end for
Re-normalize C so that each dimension is sorted by its final ρ values

Fig. 5. Greedy Sort (GS) Normalization Algorithm

1
αd+1 = 1

d/2+1 ) (see section 2). The algorithm partitions every dimension’s values
into “dense” and “sparse” values, based on the current partitioning of all other
dimensions’ values. It proceeds in several phases, where each phase cycles once
through the dimensions, improving the partitioning choices for that dimension. The
choices are made greedily within a given phase, although they may be revised in a
later phase. The algorithm often converges well before 20 phases.

Figure 6 shows GS working over a two-dimensional example with ρbreak-even =
1

d/2+1 = 1
2 . The goal of GS is to mark a certain number of rows and columns as

dense: we would then group these cells together in the hope of increasing the num-
ber of dense blocks. Set ∆i contains all “dense” attribute values for dimension i.
Initially, ∆i contains all attribute values for all dimensions i. The initial figure is not
shown but would be similar to the upper left figure, except that all allocated cells
would be marked as dense (dark square). In the upper-left figure, we present the
result after the rows (dimension i = 1) have been processed for the first time. Rows
other than 1, 7 and 8 were insufficiently dense and hence removed from ∆1: all al-
located cells outside these rows have been marked “sparse” (light square). Then the
columns (dimension i = 2) are processed for the first time, considering only cells
on rows 1, 7 and 8, and the result is shown in the upper right. Columns 0, 1, 3, 5 and
6 are insufficiently dense and removed from ∆2, so a few more allocated cells were
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Fig. 6. GS Example. Top left: after rows processed once. Top right: after columns processed
once. Bottom left: after rows processed again. Bottom right: after columns processed again.

marked as sparse (light square). For instance, the density for column 0 is 1
3 because

we are considering only rows 1, 7 and 8. GS then re-examines the rows (using the
new ∆2 = {2,4,7,8,9}) and reclassifies rows 4 and 5 as dense, thereby updating
∆1 = {1,4,5,7,8}. Then, when the columns are re-examined, we find that the den-
sity of column 0 has become 3

5 and reclassify it as dense (∆2 = {0,2,4,7,8,9}).
A few more iterations would be required before this example converges. Then we
would sort rows and columns by decreasing density in the hope that allocated cells
would be clustered near cell (0,0). (If rows 4, 5 and 8 continue to be 100% dense,
the normalization would put them first.)
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6.3 Summary of heuristics

Recall that all our heuristics are of the type “1-dimension-at-a-time”, in that they
normalize one dimension at a time. Greedy Sort (GS) is not orthogonal whereas
Iterated Matching (IM) and Frequency Sort (FS) are: indeed GS revisits the dimen-
sions several times for different results. FS and GS are block-oblivious whereas IM
assumes 2-regular blocks. The following table is a summary:

Heuristic block-oblivious/block-aware orthogonal

FS block-oblivious true

GS block-oblivious false

IM block-aware true

7 Experimental Results

In describing the experiments, we discuss the data sets used, the heuristics tested,
and the results observed.

7.1 Data Sets

Recalling that E(C) measures the cost per allocated cell, we define the kernel
κm1,...,md as the set of all data cubes C of given dimensions such that E(C) is min-
imal (E(C) = 1) for some fixed block dimensions m1, . . . ,md . In other words, it is
the set of all data cubes C where all blocks have density 1 or 0.

Heuristics were tested on a variety of data cubes. Several synthetic 12×12×12×
12 data sets were used, and 100 random data cubes of each variety were taken.

• κbase
2,2,2,2 refers to choosing a cube C uniformly from κ2,2,2,2 and choosing π uni-

formly from the set of all normalizations. Cube π(C) provides the test data; a
best-possible normalization will compress π(C) by a ratio of max(ρ, 1

3), where ρ

is the density of π(C). (The expected value of ρ is 50%.)
• κ

sp
2,2,2,2 is similar, except that the random selection from κ2,2,2,2 is biased towards

sparse cubes. (Each of the 256 blocks is independently chosen to be full with
probability 10% and empty with probability 90%.) The expected density of such
cubes is 10%, and thus the entire cube will likely be stored sparsely. The best
compression for such a cube is to 1

3 of its original cost.
• κ

sp
2,2,2,2+N adds noise. For every index, there is a 3% chance that its status (al-

located or not) will be inverted. Due to the noise, the cube usually cannot be
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Table 4
Performance of heuristics. Compression ratios are in percent and are averages. Each num-
ber represents 100 test runs for the synthetic data sets and 50 test runs for the others. Each
experiment’s outcome was the ratio of the heuristic storage cost to the default normaliza-
tion’s storage cost. Smaller is better.

Heuristic Synthetic Kernel-Based Data Sets “Real-World” Data Sets

κbase
2,2,2,2 κ

sp
2,2,2,2 κ

sp
2,2,2,2+N κ

sp
4,4,4,4+N CENSUS FOREST WEATHER

FS 61.2 56.1 85.9 70.2 78.8 94.5 88.6

GS 61.2 87.4 86.8 72.1 79.3 94.2 89.5

IM 51.5 33.7 49.4 97.5 78.2 86.2 85.4

Best result (estimated) 40 33 36 36 – – –

normalized to a kernel cube, and hence the best possible compression is proba-
bly closer to 1

3 +3%.
• κ

sp
4,4,4,4+N is similar, except we choose from κ4,4,4,4, not κ2,2,2,2.

Besides synthetic data sets, we have experimented with several data sets used pre-
viously [21]: CENSUS (50 6-d projections of an 18-d data set) and FOREST (50
3-d projections of an 11-d data set) from the KDD repository [22], and WEATHER

(50 5-d projections of an 18-d data set) [23] 2 . These data sets were obtained in
relational form, as a sequence 〈t〉 of tuples and their initial normalizations can be
summarized as “first seen, first when normalized,” which is arguably the normal-
ization that minimizes data-cube implementation effort. More precisely, let π be
the normal relational projection operator; e.g.,

π2(〈(a,b),(c,d),(e, f )〉) = 〈b,d, f 〉.

Also let the rank r(v,〈t〉) of a value v in a sequence 〈t〉 be the number of distinct
values that precede the first occurrence of v in 〈t〉. The initial normalization for a
data set 〈t〉 permutes dimension i by γi, where γ

−1
i (v) = r(πi(〈t〉)). If the tuples were

originally presented in a random order, commonly occurring values can be expected
to be mapped to small indices: in that sense, the initial normalization resembles an
imperfect Frequency Sort. This initial normalization has been called “Order I ” in
earlier work [9].

7.2 Results

The heuristics selected for testing were Frequency Sort (FS), Iterated Greedy Sort
(GS), and Iterated Matching (IM). Except for the “κ

sp
4,4,4,4+N” data sets, where 4-

regular blocks were used, blocks were 2-regular. IM implicitly assumes 2-regular
blocks. Results are shown in Table 4.

2 Projections were selected at random but, to keep test runs from taking too long, cubes
were required to be smaller than about 100MB.
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Looking at the results in Table 4 for synthetic data sets, we see that GS was never
better than FS; this is perhaps not surprising, because the main difference between
FS and GS is that the latter does additional work to ensure allocated cells are within
a single hyperrectangle and that cells outside this hyperrectangle are discounted.

Comparing the κ
sp
2,2,2,2 and κ

sp
2,2,2,2+N columns, it is apparent that noise hurt all

heuristics, particularly the slice-sorting ones (FS and GS). However, FS and GS
performed better on larger blocks (κsp

4,4,4,4+N) than on smaller ones (κsp
2,2,2,2+N)

whereas IM did worse on larger blocks. We explain this improved performance for
slice-sorting normalizations (FS and GS) as follows: #Ci

v is a multiple of 43 under
κ4,4,4,4 but a multiple of 23 under κ2,2,2,2. Thus, κ2,2,2,2 is more susceptible to noise
than κ4,4,4,4 under FS because the values #Ci

v are less separated. IM did worse on
larger blocks because it was designed for 2-regular blocks.

Whereas it was nearly optimal for 2-regular blocks, the slice-clustering heuristic
IM was affected by noise: results were no longer nearly optimal (49% versus an
estimated optimal result of 36% ). Thus, while IM was the most effective heuristic
for 2-regular blocks, there is room for improvement.

Table 4 also contains results for “real-world” data, and the relative performance
of the various heuristics depended heavily on the nature of the data set used. For
instance, FOREST contains many measurements of physical characteristics of geo-
graphic areas, and significant correlation between characteristics penalized FS.

7.2.1 Utility of the Independence Sum

Despite the differences between data sets, the Independence Sum (from Section 5)
seems to be useful. In Figure 7 we plot the ratio size using FS

size using IM against the Indepen-
dence Sum. When the Independence Sum exceeded 0.72, the ratio was always near
1 (within 5%); thus, there is no need to use the more computationally expensive
IM heuristic. WEATHER had few cubes with Independence Sum over 0.6, but these
had ratios near 1.0. For CENSUS, having an Independence Sum over 0.6 seemed
to guarantee good relative performance for FS. On FOREST, however, FS showed
poorer performance until the Independence Sum became larger (≈ 0.72).

7.2.2 Density and Compressibility

The results of Table 4 are averages over cubes of different densities. Intuitively, for
very sparse cubes (density near 0) or for very dense cubes (density near 100%), we
would expect attribute-value reordering to have a small effect on compressibility:
if all blocks are either all dense or all sparse, then attribute reordering does not
affect storage efficiency. We take the source data from Table 4 regarding Iterated
Matching (IM) and we plot the compression ratios versus the density of the cubes
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Fig. 7. Solution-size ratios of FS and IM as a function of Independence Sum. When the
ratio is above 1.0, FS is suboptimal; when it is less than 1.0, IM is suboptimal. We see that
as the Independence Sum approached 1.0, FS matched IM’s performance.

(see Fig. 8). Two of three data sets showed some compression-ratio improvements
when the density is increased, but the results are not conclusive. An extensive study
of a related problem is described elsewhere [9].

7.2.3 Comparison with Pure ROLAP Coding

To place the efficiency gains from normalization into context, we calculated (for
each of the 50 CENSUS cubes) cdefault, the HOLAP storage cost using 2-regular
blocks and the default normalization. We also calculated cROLAP, the ROLAP cost,
for each cube. The average of the 50 ratios cdefault

cROLAP
was 0.69 with a standard devi-

ation of 0.14. In other words, block-coding was 31% more efficient than ROLAP.
On the other hand, we have shown that normalization brought gains of about 19%
over the default normalization and the storage ratio itself was brought from 0.69 to
0.56 in going from simple block coding to block coding together with optimized
normalization. FOREST and WEATHER were similar, and their respective average
ratios cdefault

cROLAP
were 0.69 and 0.81. Their respective normalization gains were about

14% and 12%, resulting in overall storage ratios of about 0.60 and 0.71, respec-
tively.
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Fig. 8. Compression ratios achieved with IM versus density for 50 test runs on three data
sets. The bottom plot shows linear regression on a logarithmic scale: both CENSUS and
WEATHER showed a tendency to better compression with higher density.

8 Conclusion

In this paper, we have given several theoretical results relating to cube normaliza-
tion. Because even simple special cases of the problem are NP-hard, heuristics are
needed. However, an optimal normalization can be computed when 1×2 blocks are
used, and this forms the basis of the IM heuristic, which seemed most efficient in
experiments. Nevertheless, a Frequency Sort algorithm is much faster, and another
of the paper’s theoretical conclusions was that this algorithm becomes increasingly
optimal as the Independence Sum of the cube increases: if dimensions are nearly
statistically independent, it is sufficient to sort the attribute values for each dimen-
sion separately. Unfortunately, our theorem did not provide a very tight bound on
suboptimality. Nevertheless, we determined experimentally that an Independence
Sum greater than 0.72 always meant that Frequency Sort produced good results.

As future work, we will seek tighter theoretical bounds and more effective heuris-
tics for the cases when the Independence Sum is small. We are implementing the
proposed architecture by combining an embedded relational database with a C++
layer. We will verify our claim that a more efficient normalization leads to faster
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queries.
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