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RESUME 

Introduction: L'apoptose est un mécanisme étroitement contrôlé qui répond à des 
besoins particuliers de l'organisme et permet une élimination physiologique des cellules 
excessives ou endommagées. Elle est donc nécessaire au développement et au maintien 
du bon fonctionnement de tout organisme vivant puisqu'elle joue un rôle important dans 
l'embryogenèse, dans les changements morphologiques, dans l'homéostasie cellulaire, 
dans l'atrophie et la réparation des tissus et dans la régression des tumeurs. Cette forme 
de mort cellulaire fait intervenir une famille de sérines protéases connues sous le nom de 
caspases. Leur activation survient après stimulation des cellules par différents facteurs 
comme des signaux physico-chimiques (UV, rayons gamma), la privation en facteurs de 
croissance ou une grande variété des molécules chimiques comme les polluants 
environnementaux et les médicaments anti-cancéreux. Parmi ces derniers on cite 
l'Adriamycine qui est un médicament anti-tumoral efficace, cependant son utilisation 
entraîne malheureusement de sévères altérations du fonctionnement cardiaque. Ceci 
limite par conséquent les doses pouvant être données sans danger aux patients 
cancéreux. D'autre part l'utilisation clinique de ce médicament semble être également 
limitée par la résistance que développent certaines formes de tumeurs à la 
chimiothérapie. Pour surmonter ces deux limites les chercheurs ont essayé de 
développer certaines stratégies thérapeutiques comme l'hyperthermie, visant à 
sensibiliser la tumeur aux faibles concentrations des médicaments. 

Objectifs: La présente étude permettra d'étudier le mécanisme de mort cellulaire induite 
par l'Adriamycine et l'hyperthermie. Les deux principaux piliers de ce projet sont: (1) 
Déterminer si l'Adriamycine ou l'hyperthermie utilisées séparément peuvent déclencher 
l'apoptose chez des cellules tumorales du col utérin humain (HeLa) et chez la même 
lignée exprimant la protéine de résistance aux médicaments MDR (HeLa MRP). (2) 
Déterminer si l'hyperthermie pourrait sensibiliser les cellules à l'action de 
l'Adriamycine. 

Résultats : L'Adriamycine ou l'hyperthermie utilisés séparément ou combiné avait 
comme effet une activation de la caspase initiatrice (9) et de la caspase effectrice (3) 
ainsi qu'un clivage de l'inhibiteur du facteur de fragmentation d'ADN activé par les 
caspases (ICAD). D'un autre coté l'hyperthermie a causé l'accumulation intracellulaire 
de l'Adriamycine, la diminution du potentiel membranaire mitochondriale due à une 
translocation du Bax vers la mitochondrie suivi d'un relarguage du cytochrome c vers 
le cytosol. 

Conclusion: L'hyperthermie seule pourrait induire l'apoptose et pourrait servir comme 
une stratégie utile pour augmenter l'effet pro-apoptotique de l'Adriamycine chez des 
cellules HeLa parentales ou résistantes aux médicaments (HeLa IvIRP). 

Mots clefs: Hyperthermie, Résistance pléiotropique, MRPl, Apoptose, Adriamycine 



ABSTRACT
 

Abstract 

Introduction: Apoptosis is a mechanism of cell death, which provides a physiological 
elimination of excess or damaged cells. It follows a characteristic program of events, 
including activation of the caspase cascade. A wide variety of toxic compounds 
(environmental poilutants, drugs) can induce cell death by apoptosis. Adriamycin is a 
widely used anticancer drug, however, its mechanisms of antitumour activity have been 
a long term matter of debate. In addition, the mechanisms of severe cardiac toxicity, 
which limit the usefulness of the drug, are not weil understood. Multidrug resistance is a 
major obstacle in the successful use of cancer chemotherapy at clinical level. However, 
at present hyperthermia is used as a useful technique to overcome the problem of 
multidrug resistance. Purpose of using hyperthermia, is to increase the anticancer effect 
of Adriarncyin by sensitizing ceil towards drug, at the same time decreasing the toxic 
effect of high dose of Adriamycin. 

Objectives: The present study investigates the mechanism of ceil death induced by 
Adriamycin and hypertherrnia. The two main objectives of this project are: (1) to 
determine whether Adriamycin and hyperthermia alone can trigger apoptosis in human 
cervical adinocarcinoma ceils over expressing MRPI (HeLaMRP) relative to parental 
HeLa cells and (2) to deterrnine whether hyperthermia can enhance the induction of 
apoptosis by Adriamycin. 

Results: Treatment of cells with Adriamycin or hyperthermia alone or combined 
together resulted in activation of caspase-9 and caspase-3 as weil as cleavage of 
inhibitor of caspase-activated DNase (JeAD), which leads to induction of apoptosis. 
Hypertherrnia enhanced intracellular accumulation of Adriamycin, associated to a 
decrease in the mitochondrial membrane potential and translocation of pro-apoptotic 
proteins, Bax and cytochrome c between the cytoplasm and mitochondria of the cell. 

Conclusion: Adriamycin is able to induce apoptosis by the mitochondrial pathway of 
apoptosis in both drug-sensitive and MRP l-overexpressing HeLa cells and hypertherrnia 
alone is enable to induce apoptosis and could be a useful strategy to enhance the 
induction of apoptosis by Adriamycin in both drug-sensitive and MRPI-overexpressing 
HeLa cells. 

Kevwords: Hyperthermia, Multidrug resistance, MRPI, Apoptosis, Adriamycin 



CHAPTER 1 

INTRODUCTION 

1.1 Cancer 

1.1.1 Introduction and history of cancer 

Cancer is a disease, which originates within a single cell. Body cells grow, 

divide and die in an orderly manner until the person becomes an adult. After that, 

cells in most parts of the body divide only to replace depleted or dying cells and to 

repair injury. Cancer develops when there is uncontrolled growth of cells in a part of 

the body. It is a mutation in the cells, which causes them to replicate continuously. 

Ali types of cancer start due to uncontrolled growth of abnormal cells. The discovery 

of "oncogenes", "tumor suppressor genes" and "DNA repair genes" during the 1980s 

and 1990s provided a clearer picture explaining the reason for uncontrollable growth 

of cancer cells. 

The origin of the word "cancer" is credited to the Greek physician 

Hippocrates (460-370 B.C.). He found swollen blood vessels around the area of a 

malignant tumor which reminded him of crab claws leading to the coining of terms 

like karkinos and karkinoma (the Greek name for crab) to depict it. Later on, these 

terms evolved into carcinos or carcinoma. An Egyptian papyrus shows the oldest 

description of human cancer which was wlitten between 3000-1500 BC. Galen, an 

ancient Roman, noted the crab like appearance of cancerous tumors and thought it to 

be caused by an excess of black bile. While the word cancer is frequently used to 

describe this disease, it is important to understand that there are over 200 different 

types of cancer and each has a specifie name, treatment and probability of recovery. 

1.1.2 Development of cancer 

Damage to the DNA is a primary step of development of a tumor cell. 

Generally, the cell is able to repair the damaged DNA. In cancer cells, the damaged 

DNA is not repaired and leads to the formation of a tumor. Tumors can be either 

benign (non-cancerous) or malignant (cancerous). Benign tumors reside in one place 
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in the body and are usually not critical, while for malignant tumors, cells are able to 

invade the tissues around them and spread to other parts of the body. However, there 

are sorne cancers that do not form solid tumors (e.g. leukaemia). 

1.1.3 Canadian cancer statistics 

Each year since 1987, the National Cancer Institute of Canada (NCIC) 

publishes and interprets CUITent statistics about cancer in Canada. These statistics are 

compiled through a collaboration of NCIC, Health Canada Statistics, Canada 

provincial/territorial cancer registries and university-based research. 

According to these statistics, in the year 2004 an estimated 68,300 deaths 

were due to cancer and the number of new cases of cancer was an approximate 

145,500. Breast cancer continued as the most common cancer in women and prostate 

cancer for men, whereas lung cancer remained the other leading cornmon area of 

concem for both men and women. On the basis of CUITent incidence rates, during 

their lifetimes 38 percent of Canadian women and 43 percent of men will develop 

cancer and on the basis of CUITent death rates, 23 percent of women and 28 percent 

of men will die of cancer. According to the age and sex distribution of cancer, people 

who are at least 60 years old are most likely to suffer from cancer. For example, 

among women, 63 percent of new cases and 78 percent of cancer deaths occur 

among those who are at least 60 years old. In addition, it was also predicted that 

cancer would be the leading cause of premature death in Canada in the year of 2004 

(www.cancer.ca). 

1.1.4 Risk factors of cancer 

Understanding the causative factors of cancer could contribute to 

prevention of this disease. There are several risk factors leading to development of 

cancer in humans and most of them are preventable. Tobacco smoke is the single 
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factor known to have caused the highest proportion of cancer and is known to 

cause 30% of ail cancers. Research shows that tobacco consumption is related to 

cancer of the lung, mouth, larynx, esophagus, bladder, kidney and pancreas (Levitz 

et al., 2004; Dol! et al., 1994). Several studies that measured the individual dietary 

fat intake of large groups of women showed that unhealthy diet is one of the main 

causes of breast cancer (Hardy, 2005; van Gils et al., 2005). Environment in the 

work place is also a risk factor for certain fonns of cancer. For instance, workers 

that have direct contact with carcinogenic agents (e.g. arsenic, aluminium, 

asbestos, chromium, cadmium, etc) in the workplace are at risk for developing 

certain fonns of cancer (Wogan et al., 2004; Heath, 1996). Viral infection (e.g. H­

Pylori, HTLV-I, EBV, HBV, HeV and HPV) is also one of the recognized risk 

factors of cancer (Poland and Jacobson, 2004; Evans et al., 1998). Furthennore, 

lack of exercise, excessive alcohol, environmental pol!utants, UV rays and genetic 

susceptibility are also weil known risk factors for cancer. 

1.2 Treatment of cancer 

Cancer treatment varies depending upon the nature of cancer and the phase of 

cancer. Moreover, treatment may vary depending on whether or not the objective of 

treatment is to cure the cancer, to prevent the cancer from dispersion, or to ease the 

symptoms caused by cancer. The three most common ways to treat cancer are 

surgery, radiation therapy and chemotherapy. More recent methods in cancer 

treatment include immunotherapy, gene therapy, enzymotherapy, molecular therapy, 

galvanotherapy (electrochemotherapy), photodynamic therapy, herbaI therapy, 

nutritional therapy, and adjunctive therapies such as hyperthennia, oxygen therapies 

(including ozone), dimethyl sulfoxide (DMSO) therapy, live cell therapy, etc. 
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1.2.1 Surgery 

Surgery is the branch of medical sCIence that treats disease or injury by 

operative procedures. Surgery is useful to diagnose, to determine the stage and to 

treat cancer. There are several types of surgeries, depending on the stage of cancer 

(Fleming, 2001; Pollock and Morton, 2003) and they are often perfonned to 

accomplish more than one of the above mentioned objectives. Preventive 

(prophylactic) surgery is used to remove body tissue that is not malignant but that is 

likely to become malignant such as polyps in colon. Diagnostic surgery helps to 

analyse whether the sample is cancerous or not e.g. biopsy, staging surgery helps 

detennine the extent of disease. Curative surgery is the removal of a tumor when it 

appears to be confined to one area. There are several other classes of surgery that are 

commonly used for cancer treatment such as debulking (cytoreductive) surgery, 

palli ati ve surgery, supportive surgery and restorati ve (reconstructi ve) surgery. 

1.2.2 Radiation therapy 

Radiation therapy is the use of high-energy radiation from X-rays, gamma 

rays, neutrons and other sources to kill cancer cells and shrink tumors. Radiation 

therapy is a highly targeted and effective way to destroy cancer cells and is often used 

after surgery (Perez and Brady, 1998). This reduces the risk of recurrence. Radiation 

therapy is relatively easy to endure and the side effects are restricted to the area being 

treated (Hof and Debus, 2005) and it is also efficient to reduce pain due to the tumor 

(Yorozu et al., 2003). 

1.2.3 Chemotherapy 

Chemotherapy is the use of chemical agents (anti-cancer or cytotoxic drugs) 

which interact with cancer cells to eliminate or control the growth of cancer (Undevia 
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et al., 2005; Trotice, 1997). It is a mainstay in the treatment of malignancies. Cancer 

chemotherapy may consist of single drugs or combinations of drugs and can be 

administered intravenously, injected into a body cavity, or delivered orally (Burke et 

al., 1996). A major advantage of chemotherapy over radiation and surgery is its 

ability to treat widespread or metastatic cancer, rather than physically removing a 

tumor or a part of il. Renee chemotherapy is considered a systemic treatmenl. More 

than half of ail people diagnosed with cancer receive chemotherapy. 

Listed below are several major categories of chemotherapeutic agents based 

on their chemical structures. Alkylating agents such as nitrogen mustards and 

ethylamines are the most commonly used in chemotherapy. Secondly, plant (vinca) 

alkaloids are antitumor agents derived from plants. The best known of this category 

are vincristine and vinblastine (Sui and Fan, 2005). Thirdly, taxanes are groups of 

drugs that include paclitaxel and docetaxel (Earhart, 1999), which are widely used to 

treat advanced ovarian and breast cancers (Khayat et al., 2000; Lamb and Wiseman, 

1998). Finally, antimetabolites, nitrosoureas and anti-tumor antibiotics are among the 

weIl known categories of chemotherapeutic agents. 

Anti-tumor antibiotics are a group of structurally unrelated antimicrobial 

compounds produced by streptomyces species in culture. They are cell cycle non­

specifie. They are distinct from the antibiotics used to treat bacterial infections. 

Rather, these drugs affect the structure and function of nucleic acids by intercalation 

between base pairs and by causing DNA strand fragmentation or DNA cross-linking. 

However, they lack the specificity of the antimicrobial antibiotics and thus produce 

significant toxicity. A number of anti-tumor antibiotics such as Adriamycin, 

dactinomycin, bleomycin and mithramycin are used to treat a variety of cancers. 
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1.3 Adriamycin 

1.3.1 An overview 

Anthracycline antibiotics (Review: Gianni et al., 2003) such as Adriamycin 

are arnong the most important anti-tumor drugs available (Weiss, 1992). They have 

been in clinical practice since the 1960s. Adriamycin is a water soluble anticancer 

agent that was first isolated from Streptomyces peucetius variety casius (Arcamone et 

al., 1969). Doxorubicin is the cornmon trade name of Adriamycin. This drug has been 

used to treat a broad range of malignancies including tumors arising in breast, bile 

ducts, endometrial tissue, liver, soft tissue sarcomas, as weil as various disserninated 

neoplasms, namely leukemia, bone marrow sarcoma, carcinomas of the thyroid and 

bladder and others (Gewirtz, 1999). 

1.3.2 Structure of Adriamycin 

Adriamycin possesses an anthracycline chromophore containing four fused 

rings and a positively charged arnino sugar (Figure 1). Adriamycin shares structural 

similarity with another anthracycline molecule named daunorubicin (DNR). It differs 

only by the presence of a hydroxyl group (-OH) at the 14-position (Taatjes et al., 

1997). Adriamycin consists of a hydroxylated tetracycline quinone attached ta a 

sugar residue via a glycoside bond (Wallace, 2003). As shown in the figure, the 

planar ring system has electronic resonance in the first and third rings with a 

conjugated qui none structure in the second ring. The secondary hydroxyl group on 

the 3rd ring and tertiary group on the 4th ring seem to be key participants in hydrogen 

bonding interactions that stabilize the drug-DNA complex (Gao and Wang, 1991; 

Pohle et al., 1990). 
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6 
.HCL 

o~
 
NH2 R= OH =Doxorubicin 

C27H29Noll *HCL R= H =Daunorubicin 
M.W-579.99 

Figure 1.1: Schematic representation of Adriamycin and Daunorubucin. 

(Figure adapted from Frederick et al., 1990) 

The qumone portion of the anthracycline ring is lipophilic, however the 

saturated end of the ring system contains abundant hydroxyl groups adjacent to the 

amino sugar, producing a hydrophilic center. Thus the actual molecule is amphoteric 

displaying both acidic and basic properties. The weil conjugated structure of 

Adriamycin is responsible for the red-orange color and fluorescent nature which is a 

useful tool for its chemical, biological and pharmacological studies. 

1.3.3 Mechanisms of action of Adriamycin 

Elucidation of the mechanisms by which anticancer agents induce apoptosis is 

necessary in order to understand the basis of drug resistance as weil as for 

optimization of therapy. The exact mechanism of action of Adriamycin is unknown. 

Several studies suggest that Adriamycin has the propensity to display multiple 

cellular effects, which contribute to its antineoplastic prbperties (Sharples et al., 

2000; Mayers et al., 1998). Adriamycin intercalates into the DNA double helix by 

inserting itself into the strands of genetic material (DNA) inside the cell and binding 
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them together. This prevents the cell fram replicating its genetic material (Halliwell 

and Gutteridge, 1999; Mayers et al., 1998). It also appears to interfere with an 

enzyme called topoisomerase II that is involved in DNA replication (Hurley, 2002; 

Jung and Reszka, 2001; Gewirtz, 1999). Finally, it can also form free radicals which 

are molecules capable of damaging cells (Chandra et al., 2000; Gewirtz, 1999; 

Bachur et al., 1977). Thus, these different actions of Adriamycin impede many 

cellular functions (Sharples et aL, 2000). 

1.3.3.1 Interactions with DNA 

Recent interest in the use of the DNA-Adriamycin complex as an approach to 

improve the therapeutic effectiveness and to reduce toxicity of Adriamycin for cancer 

chemotherapy requires an in-depth understanding of the physicochemical and 

biochemical properties of such complexes. Although the interaction of Adriamycin 

with other cellular targets may play a raie in the selective cytotoxicity of this drug, 

binding to DNA is generally believed to be essential for its activity. The primary 

mode of action of Adriamycin is believed to be its reversible binding to nuclear DNA 

which causes inhibition of both replication and transcription processes (Neidle et aL, 

1997; Zunino et al., 1977, 1975) and subsequently leads to cell death. Numeraus 

biochemical studies including evidence from NMR spectroscopie and X-ray 

crystallographic studies have shown that Adriamycin intercalates into the ~-form of 

the DNA double stranded helix with guanine-cytosine d(CpG) site-specifie 

interactions (Chaires et aL, 1990). These findings were similar to the work of Manfait 

and co-workers (Manfait et al., 1982). They analyzed the Raman and resonance 

Raman spectra of the DNA-Adriamycin complex in aqueous solution. They reported 

that the chromophore of Adriamycin is intercalated in the GC sequences and the 

substituents on the rings give hydrogen-bonding interactions with the DNA base pairs 

above and below the intercalation site. It was also observed that the phenolic groups 
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of the chromophore were involved in the drug-DNA intercalation, in addition to pi-pi, 

hydroxyl and arnino group interactions (Manfait et al., 1982). 

The following events are prerequisite for intercalative interactions between 

Adriamycin and DNA to take place. First, the DNA must undergo a conformational 

transition to form the intercalation site. For this event the DNA base pairs separate 

3.4 Â leading to the formation of a cavity for the incoming Adriamycin-chromophore 

to insert. This is accomplished by localized unwinding of the contiguous base pairs at 

the intercalation site and increasing of the distance between the phosphate groups on 

the sugar phosphate backbone on both strands. This results in reduction of the 

localized charge density and facilitates the release of condensed counter ions such as 

Na+. The next event that occurs involves the transfer of the drug from aqueous 

solution to the intercalation site and finally, it's insertion into the DNA duplex 

(Manning, 1978; Record et al., 1978). The non-covalent interactions between the 

ligand and the base pairs associated with the DNA binding site are driven by several 

forces including hydrophobic effects, reduction of columbic repulsion as a result of 

the polyelectrolyte effect, van der Waals interactions, pi-stacking interactions and 

hydrogen bonding (Record and Spolar, 1990). 

1.3.3.2 Generation of reactive oxygen species 

Adriamycin is also known to be involved in oxidation/reduction reactions. A 

number of NADPH-dependent cellular reductases such as mitochondrial NADPH 

dehydrogenase (Muraoka and Miura, 2003), xanthine dehydrogenase (Yee and 

Pritsos, 1997) and endothelial nitric oxide synthase (Vasquez-Vivar et al., 1997) are 

able to reduce Adriamycin to a semiquinone free radical. Under aerobic conditions, 

the semiquinone is oxidized by molecular oxygen back to the parent compound 

(Adriamycin) and the reaction produces superoxide radical anion (02'-) (Figure 2). 

The formation of O2'- is the beginning of a cascade that generates highly reactive 

oxygen species (ROS) such as hydrogen peroxide (H20 2) and the hydroxyl radical 
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(OH). For instance, superoxide can react with itself leading to the formation of 

hydrogen peroxide (Figure 2) (Minotti et al., 1999; Bounias et al., 1997; Michalska et 

al., 1996). Hydrogen peroxide can react with either the Adriamycin semiquinone free 

radical or it will undergo reductive c1eavage to hydroxyl radicals (OH) (Bates and 

Winterboum, 1982). Ali of these highly reactive free radical species are widely 

invoked as the primary mechanism underlying many of the toxicities observed with 

Adriamycin and related anthraquinones (Tsang et al., 2003; Nakagawa et al., 2002). 

For example, the generation of this semiquinone free radical of Adriamycin has been 

shown to result in the c1eavage of DNA (Lown et al., 1977). Adriamycin is also 

responsible for oxidative modification of nucleic acids, lipids and proteins (Monti et 

al., 1995; Keizer et al., 1990; Piccinini et al., 1990). 

Figure 1.2: The steps from drug reduction to DNA-drug adduct 
formation. This process involves a cascade of reactions starting with drug reduction 
and catalytic production of reactive oxygen species followed by oxidative formation 
of formaldehyde and ending with drug-DNA alkylation mediated by formaldehyde 
(Adapted from Taatjes et al., 1997). 

1.3.3.3 Inhibition of topoisomerase II 

The interaction of Adriamycin with topoisomerase II to form DNA-c1eavable 

complexes also appears to be an eminent mechanism of Adriamycin cytocidal 

activity. Over a decade ago, topoisomerase II was identified to be a primary cellular 

target for many of these DNA binding agents. Topoisomerase II is a nuclear enzyme 

which, in the presence of Adriamycin, causes extensive fragmentation of DNA by 

catalyzing the interconversion of topological isomers of DNA, thereby playing a key 

role in DNA metabolism (Toonen and Hande, 2001; Hengstler et al., 1999). 
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Adriamycin has been shown to exert antineoplastic activity through the formation of 

a temary complex between the ligand, DNA and enzyme. 

1.3.3.4 Metal-ion chelation 

Metal-ion chelation is also one of the cytotoxic characteristics of Adriamycin. 

As previously mentioned, the anthracycline chromophore contains a hydroxyl 

qui none, which is a well-described iron chelating structure. Adriamycin is involved in 

the chelation of metal ions such as Cu+2
, Fe+2 and Fe+3 (Kalyanaraman et al., 2002). 

For instance, in the case of iron, Adriamycin tends to form the Adriamycin-Fe-DNA 

complex which catalyses the transfer of electrons from glutathione to oxygen 

resulting in the formation of active oxygen species, which leads to cleavage of DNA. 

1.3.3.5 Membrane effects 

Further action for Adriamycin can be demonstrated at the cell membrane 

level. This drug can bind to cell membrane lipids and affect a variety of functions 

(Solem et al., 1994; Solem and Wallace, 1993). Many studies have highlighted the 

fact that Adriamycin disrupts mitochondrial function by inducing the rnitochondrial 

permeability transition (Ling et al., 1993). This mechanism consists of 

metamorphosis in properties of the inner mitochondrial membrane transforming it 

from a restrictive barrier into passive permeation (Wallace, 2003). In conclusion, 

cytotoxicity and/or antiproliferative activity of Adriamycin may result as a 

consequence of any of the above mentioned mechanisms and/or those not yet 

identified. 

1.3.4 Side effects of Adriamycin 

Regardless of ail the advantages, this drug has various side effects namely: 

diarrhea, facial f1ushing, red coloration of urine, anemia, leucopenia, stomatitis, 
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immunosuppression, mucositis, oesophagitis, nausea and vomiting. However, the 

main limiting factor in its usage as an antitumoral agent is chronic or acute 

cardiotoxicity (Pagnini et al., 2000; Minow et al., 1977). 

Many applications have explained the selective cardiotoxicity of Adriamycin 

(Oison and Mushlin, 1990). However, the pathogenesis of the Adriamycin-induced 

cardiomyopathy is not weil understood. Cardiac toxicity occurs after prolonged 

administration of Adriamycin, eventually leading to congestive heart failure. It has 

been suggested that Adriamycin undergoes redox cycling on mitochondrial complex l 

and liberates highly reactive oxygen free radicals (Doroshow, 1983). These highly 

reactive oxygen species have been widely implicated as a primary cause for 

Adriamycin-induced cardiac toxicity (Xu et al., 2001; Lee et al., 1991). 

1.4 Multidrug resistance 

1.4.1 An overview 

Resistance to multiple chemotherapeutic agents is considered a major cause of 

chemotherapy failure (Linn and Giaccone, 1995). Drug resistance can be classified 

into two categories: 1) intrinsic drug resistance (e.g. renal and prostate cancers) where 

cells already have a relatively resistant phenotype to anticancer agents without drug­

selection; 2) acquired drug resistance (Yoshiyama et al., 2004; Selby, 1984), 

characterised by the attainment of a resistant phenotype after being exposed to 

cytotoxic agents. Acquired drug resistance in persistent tumors is the most critical 

and perilous occurrence for patients treated by chemotherapy. Furtherrnore, once drug 

resistance is developed, cancer cells often acquire cross-resistance to a variety of 

chemically and functionally unrelated compounds. This phenomenon is known as 

multidrug resistance (MDR) (Seiji Naito et al., 1999). 

MDR was first described in 1970 during cell culture by Biedler and Riehm. 

They found cellular resistance to actinomycin D in Chinese hamster cells in vitro 

(Bied1er and Riehm, 1970). Later on, they discovered that this cell !ine also shows 
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resistance to vinca alkaloids, epipodophyllotoxines, anthracyclines, dactinomycin and 

taxol. These drugs had different cellular targets and mechanisms of action. It was 

later discovered that increased active drug efflux out of the lvIDR cells resulted in 

reduced accumulation of drugs (Dano, 1973). In 1986, the multidrug resistance gene 

mdr1 was cloned and P-glycoprotein (P-gp) recognized as the first molecule to 

explain the lvIDR phenomenon (Roninson et al., 1986; Chen et al., 1986, Gros et al., 

1986) 

The mechanisms mainly studied for investigation of lvIDR with known 

clinical significance are namely: 1) activation of transmembrane proteins, effluxing 

different chemical substances from the cells; 2) activation of enzymes of the 

glutathione detoxification system; 3) alterations of genes and proteins involved in the 

control of apoptosis (Review: Stavrovskaya, 2000). 

1.4.2 Multidrug resistance proteins 

A variety of ATP binding cassette (ABC) transporters, localized in the cell 

membrane, cause the MDR phenomenon by extruding a variety of chemotherapeutic 

agents from tumor cells. These transporters play a key role in drug availability, 

metabolism and toxicity. The four foremost groups of ABC transporters which are 

involved in lvIDR are namely: the c1assical P-glycoprotein (P-gp) (lvIDRl), the 

multidrug resistance associated proteins (MRP1, MRP2 and probably MRP3, MRP4 

and MRPS) (ABCB 1), the ABCG2 protein and ABC half-transporters. Ali these 

proteins have been known to act as catalysts for ATP-dependent active transportation 

of anticancer agents (Bodo et al., 2003). The following text briefly summarises the 

most important lvIDR related proteins. 



14 

1.4.2.1 P-glycoprotein 

1.4.2.1.1 An overview 

P-gp (Sakaeda et al., 2004) IS a 170 kDa membrane-bound protein and a 

product of the mdrl gene. It was first characterised in MDR Chinese hamster ovary 

cells by Ling and co-workers (Kartner et a!., 1983; Ling and Thompson, 1974). It has 

been implicated as a primary cause of MDR in tumors (Georges et al., 1990). It is 

generally found in the gut, gonads, kidneys, biliary system, brain and other organs. P­

gp is found not only in cancer cells but also in normal tissue cells, such as 

hepatocytes, renal proximal tubular cells, and epi thelial cells. It serves as an ATP­

dependent efflux pump by actively transporting chemicals and anti-tumor agents out 

of cells thereby reducing their cytosolic concentration. This leads to decreased 

toxicity in cells (Gottesman and Pastan, 1993; Doige et al., 1992). Apart from its drug 

e(f]ux function, P-gp has many proposed physiological functions. Expression of P-gp 

in CD34+ stem cells and specifie peripheral blood subsets raises the possibility that 

P-gp could play a role in haemopoietic development and immune cell functions 

(Lucia et al., 1995; Drach et al., 1992). Specifically, P-gp has been shown to be 

involved in the release of certain cytokines from T lymphocytes (Frank et al., 2001; 

Drach et al., 1998; Raghu et al., 1996). 

1.4.2.1.2 Structure and mechanisms 

P-gp is composed of 1280 amine acids. It has two homologous halves, each 

containing six hydrophobie transmembrane segments and a nucleotide sequence with 

both NH2 and COOH terminaIs of the protein located in the cytoplasm (Gottesman 

and Pastan, 1993). This molecule has two ATP-binding domains indicating that the 

function of P-gp is energy-dependent (Chen et al., 1986). In cancer cells, P-gp is 

associated with the MDR phenotype, mediating resistance to anthracyclines, vinca 

aikaloids, colchicines, epipodophyllotoxins and paclitaxel (Avendano and Menendez, 

2002). Despite numerous studies, it is still difficult to decipher the mechanism by 

which P-gp confers cellular resistance to cytotoxic attack by structurally unrelated 
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drugs. One of the most popular hypotheses proposes that the drug binds to a specifie 

site of P-gp within the lipid bilayer of the cell plasma membrane. Then, by means of 

the energy of ATP hydrolysis, the drug molecule is transported out of the cell. 

Chemotherapeutic drugs were shown to be bound better to the membranes of drug 

resistant cells than to those of drug sensitive cells. 

1.4.2.1.3 Modulators of P-glycoprotein 

P-gp activity is controlled by a variety of endogenous and environmental 

stimuli which induce stress responses including heat shock, irradiation, genotoxic 

stress, inflammation, growth factors and cytotoxic agents (Sukhai, 2000). P-gp 

mediated MDR can be reversed by various chemo sensitizers or reversing agents such 

as Ca2
+ channel blockers (e.g. verapamil), immuno-suppressants (e.g. cyclosporine 

A), antiarrhythmic drugs (e.g. quinidine) and many other lipophiJic compounds 

(Gottesman and Pastan, 1993). Ali of these diverse compounds are hydrophobie and 

may bind to the P-gp molecule directly and impede its function in a competitive 

manner (Safa et al., 1989; Naito and Tsuruo, 1989; Nogae et al., 1989). P-gp 

mediated MDR to Adriamycin can be altered by a combination of hyperthennia with 

cyclosporine A and verapamil (Averill and Larrivée, 1998; Averill and Su, 1999). 

This combination is also useful in overcoming melphalan resistance by increasing 

intracellular drug accumulation in multidrug-resistant cells CHRCS cells (CH(R)CS) 

(Larrivée and Averill, 1999). 

1.4.2.2 Multidrug resistance associated protein (MRP1) 

1.4.2.2.1 An overview 

Multidrug resistance protein 1 (MRP1) is a member of the C branch of the 

super family of the ATP-binding cassette (ABCC1) transporter proteins. MRPI was 

originally cloned from an Adriamycin selected MDR human lung cancer cell line 

H69 (Grant et. al., 1994; Cole et al., 1992). MRPI is a human 190 kDa protein, 
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encoded by the mrpl gene, which is located on chromosome 16 (Loe et al., 1996; 

Zaman et al., 1993). The over expression of MRPI is sufficient to confer MDR ta 

structurally diverse natural products and cytotoxic drugs, and to mediate their efflux 

in an ATP dependent manner (Payen and Gao, 2003; Zaman, et al., 1994; Cole et al., 

1992). MRPI is present in almost ail cells of the human body. MRPI is not only 

expressed at the cell membrane, but is also located in the cytoplasm, endoplasmic 

reticulum, or golgi apparatus in sorne cells (e.g. HL/ADR, etc) (Almquist, 1995; 

Marquardt, 1992). It has been detected in tumors with many different cellular origins 

(Leonard, 2003). MRPI is also able to protect normal tissues from the effects of toxic 

substances. The ubiquitous presence of MRPI in many cells, together with the fact 

that this ABC protein can export unconjugated bilirubin (UCB) from the cell, 

suggests that this transporter functions throughout the organism to protect cells 

against accumulation of toxic levels of UCB. 

The clinical cancers exhibiting MRPI expression include hematological 

(Burger et al., 1994a, b; Versantvoort et al., 1994), lung (Savaraj et al., 1994), acute 

lymphoblastic leukemia relapses and chronic myeloid leukemia (Hirose et al., 2003; 

Beck et al., 1994). Moreover, MRPI is found to be over expressed in many non-P-gp 

expressing MDR celilines (Slovak et al., 1993; Cole et al., 1992). 

1.4.2.2.2 Structure of MRPI 

The core structure of MRPI shows similarity to other ABC transporters 

(Figure 3). It has two membrane-spanning domains (MSDs), each followed by a 

nucleotide-binding domain (NBD) (Leslie et al., 2001). 
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MRP1
 

Figure 1.3: Structure of Multidrug Resistance Protein 1 (MRPl): MRPI is thought to 
encode for 17 putative transmembrane domains (TMs). The rectangular bars represent the 
TM domains of MRPl. The nucleotide binding domains are indicated as NBDI and NBD2. 
The extracellular (OUT) and intracellular (IN) sides of the membrane are also indicated. 
(Figure: adapted from Borst et al., 2000) 

A major part of this protein is composed of five transmembrane helices 

(TMDO) and a small cytoplasmic loop of about 80 amino acids (LO) (Bakos et al., 

1998, 1996; Gao et al., 1998, 1996). This intracellular loop (LO) plays a vital role in 

transport activity of the MRPI and :MR.P2 proteins (Femandez et al., 2002). 

However, unlike P-gp, MRPI contains an additional third NH2 proximal membrane­

spanning domain with approximately 280 amino acids (Hipfner et al., 1999). 

1.4.2.2.3 Mechanisms of MRP1 

The MDR phenotype conferred by MRPI is similar, but not identical, to that 

conferred by P-gp. The exact mechanism of MRP 1 mediated transport of cytotoxic 

compounds is not very clear. However, several studies indicate that MRPI can 
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mediate efflux of several conjugated compounds by co-transport with GSH, or in a 

GSH-stimulated fashion by acting as a glutathione-S-conjugate export pump (GS-X 

pump) (Figure 4) (Renes et al., 1999; Loe et al., 1998). MRPI mediated transport is 

ATP dependent, as for P-gp (Muller et al., 1994). Several unconjugated hydrophobie 

drugs such as vinca alkaloids (e.g. vincristine) are transported by MRPI in a 

glutathione dependent manner (Bagrij et al., 2001; Renes et al., 1999; Loe et al., 

1996). The exact mechanism of involvement of GSH in MRPI-mediated transport is 

not clear. One presumption is that glutathione S-transferases (GSTs) catalyze the 

conjugation of GSH to a number of electrophilic xenobiotics and form transportable 

complexes with cationic agents. As a result, the rate of drug detoxification increases 

(Black and Wolf, 1991). 

Glutamyl + Cysteine 

BSO ------i 1y-Glutamyl Cysteine synthetase 

Y-Glu-Cys + Gly

!GSH synthetase 

GSH 

+ + 
GST 

_1+",=/,'::-, , - y X - GS-X 

y x 

Figure 1.4: Interrelation between multidrug resistance-associated protein 
(MRP) and glutathione (GSH). Sorne drugs (X) can be conjugated to OSH by glutathione 
S-transferase (OST) and are then transported out of the cel1 by MRP. Other drugs (Y) are co­
transparted with OSH. In both cases, transportation of the drug depends on the continued 
synthesis of OSH, which can be blocked by buthionine sulfoximine (BSO) (Figure: adapted 
from Barst et al., 2000). 

Finally, MRPI confers resistance to certain antimonial and arsenical 

oxyanions, a function which is not associated with P-gp (Stride et al., 1997; Cole et 

al., 1994). MRPI also appears to be responsible for the preferential drug resistance to 

topoisomerase II inhibitors (Hendrikse et al., 1999). 
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1.4.2.2.4 Substrates of MRPI 

Unlike P-gp, MRPI is a primary active transporter of many conjugated 

organic anions such as sulfate-, glucoronide- and OSH-conjugates. MRPI is also 

the major high-affinity transporter of leukotriene C4, which is an important 

signaling molecule for the migration of dendritic cells from the epidermis to 

lymphatic vessels (Karwatsky et al., 2005; Hipfner et al., 1999; Keppler et al., 

1998). The structural elements that contribute to the affinity of a molecule for 

MRPI are not clearly defined. Several findings suggest that the presence of 

positi vely charged arginine and lysine residues in the MSDs of MRPI (Ito et al., 

2001; Seelig et al., 2000) may facilitate transmembrane transport of charged 

substrates. OSH conjugates have at least two carboxylate residues, which 

contribute to recognition by MRPI. Several other substrates for MRP have been 

identified, such as oxidized OSH disulfide (OSSO) and steroid glucuronides (e.g. 

17b-estradiol 17-(b-D glucuronide) (Homolya et al., 2003; Loe et al., 1996). 

1.4.2.2.5 Modulators of MRPI 

Reversai of MDR offers the hope of increasing the efficacy of conventional 

chemotherapy. Most MDR modulators act by either binding to membrane transport 

proteins (especially P-gp and MRP), thus inhibiting their drug-effluxing activity or by 

indirect mechanisms related to phosphorylation of the transport proteins or expression 

of the mdrl and rnrpl genes. Expression of several MDR-associated genes can be 

affected by cytokines and immunological agents. 

Derivatives of OSH are expected to be good inhibitors of MRPI. Addition of 

OSH to certain unconjugated xenobiotics, results in inhibition of MRPI transport of 

organic anions out of membrane vesicles (Bagrij et al., 2001; Loe et al., 1996). For 

example, transport of LTC4 is inadequately repressed by vincristine or verapamil 

alone, this effect is enhanced more than 20 fold in the presence of OSH. The 
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mechanism by which OSH enhances the inhibitory potency of certain compounds in 

MRPI-mediated conjugated organic anion transport appears to result from increasing 

their affinity for the protein. Sorne dietary flavonoids can also modulate the organic 

anion and OSH transport properties, ATPase activity, and drug resistance-confening 

properties of MRPl. For example, in intact MRPI-overexpressing cells, quercetin 

reduced vincristine resistance from 8.9 to 2.2 fold. It was proposed that camptothecin 

(CPT) could be used for the reversai of the MRPI phenotype at clinically achievable 

concentrations (Chauvier et al., 2002). This study also estab!ished that mifepristone 

was a potent inhibitor of MRPI in vincristine resistant cells (SOC7901/VCR) of 

MDR (Li et al., 2004). A clinical study has shown that the taxane, tRA 98006 is a 

good MDR reversing agent (Brooks et al., 2003). Inhibitors of activity OST of are 

also considered as potent modifiers of MRPI-mediated drug resistance. For example, 

BSO is one of the known inhibitors of y-glutamyl-cysteine synthetase (Figure 4). 

BSO decreases intracellular level of glutathione and thereby overcomes resistance to 

many alkylating agents and reverses resistance to vincristine, rhodamine, doxorubicin 

and daunorubicin in MRPI over expressing cell !ines (Hui-Yun and Kang, 1998; 

Zaman et al., 1994), whereas no effect was observed in MRP-negative parental cell 

!ines. 

1.4.2.3 The canalicular Multispecific Organic anion Transporter: 

cMOAT) (lVIRP2) 

The canalicular membrane of the hepatocyte contains an ATP-dependent 

primary active drug transport system for organic anions, known as the canalicular 

Multispecific Organic Anion Transporter (cMOAT) (Smitherman et al., 2004; Muller 

et al., 1996; Ishikawa, 1992). cMOAT is encoded by a MRPI homologue (Paulusma 

et al., 1996; Ito et al., 1996). It is one of the most extensively studied members of the 

MRP family and is mainly expressed in the liver. It shows 47.6% DNA sequence 

similarity with MRPl. It tends to be rate limiting for the hepatobiliary elimination of 
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drugs. cMOAT has similar substrates to MRPl, including drugs conjugated with 

glutathione, glucuronide and sulphate, and natura] product anticancer drugs (e.g. 

anthracyclines, vinca alkaloids, methotrexate, etc). Most of the substrates for the 

cMOAT are bulky organic molecules with two separated negative charges (e.g. 

methotrexate (MTX) derivatives). It has been found that cMOAT related transport is 

associated with bilirubin glucuronide transport, with defects resulting in the Dubin­

Johnson syndrome (Kobayashi et al., 2004). Although its clinical significance in drug 

resistance remains to be determined, expression of cMOAT has been reported in 

human cancers such as breast, leukemia and ovary (Sparreboom et al., 2003). 

At the present time, there are many strategies such as use of pegylated 

chemotherapy (e.g. Pegylated liposomal doxorubicin), organ specific administration, 

intrathecal therapy, hyperoxygen, hyperthermia, etc, which are in use to reverse 

MDR, consequently increasing drug delivery in both cells and tissues (Wartenberg et 

al., 2005; Hau et al., 2004; Dong et al., 1994). Among ail of these approaches, 

hyperthermia is extensively used in the treatment of cancer (Terashima et al., 2004; 

Van der Zee, 2002) and has potential as a MDR reversing technique, which could 

result in chemo sensitization of the tumor cells, denaturation of cell repair enzymes 

and induction of apoptosis (Souslova and Averill-Bates, 2004; Bates and Mackillop, 

1986). 

1.5 Hyperthermia 

1.5.1 An overview 

When cells are heated beyond their nonnal temperature (37°C), they can 

become more sensiti ve to therapeutic agents such as radiation and chemotherapy 

(Schlemmer et al., 2004). The application of heat in a therapeutic setting is referred to 

as hyperthennia. Controlled use of hyperthennia can be used to combat disseminated 

cancers. The extensive amount of biological in vitro and in vivo experimental 

research on hyperthermia during the last decade has established it to be a valuable 

tool in cancer therapy (van der Zee, 2002; Law, 1982; Field and Bleehen, 1979). For 
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over two decades, different forms of hyperthermia have been used in the clinical 

treatment of cancer, thereby proving its effectiveness in combination with both radio­

and chemotherapy (Hehr et al., 2003; Tsuda et al., 2003; Robins et al., 1992). 

1.5.2 History 

The use of heat to treat di sease is a primi ti ve concept. Many ancient cultures, 

including the Egyptians, Greeks, Romans, Chinese, Indians and Japanese have used 

this concept for the treatment of various diseases (Coley, 1891). The field of modern 

hyperthermia was established in the late 19lh century when a number of physicians 

found the curative effects of hot minerai waters (Review: Herman et al., 1982). Upon 

receiving heat treatment, they noted a regression of cancerous tumors for patients 

who had contracted fever inducing disease. In 1887, Dr. Julius Wagner-Jauregg 

began his study of the neurological effects of syphilis. On the basis of data collected 

from numerous reports, he observed a spontaneous remission and apparent cure, after 

a febrile (fever inducing) illness. In 1927, he was honoured by the Nobel Prize for 

this study (Wagner-Jauregg, 1887). Later that decade, Westermark reported the use of 

localized, non-fever produced heat treatments that resulted in the long-term remission 

of inoperable cancer of the cervix (Coley, 1891). Subsequently, sorne studies have 

been carried out highlighting the direct killing effect of heat upon various bacterial 

cultures (Thompson et al., 1936). These results led to clinical trials using heat as a 

treatment for various diseases. 

1.5.3 Types of induced hyperthermia 

1.5.3.1 Extracorporeal whole body hyperthermia (EWBH) 

EWBH offers a means of evenly elevating the temperature by extracorporeal 

circulation throughout the body in a controlled manner for a specified duration of 

time. It was developed to induce controlled, rapid and uniform heating of the body. In 

1976, Leon Parks, a cardiothoracic surgeon, began a series of hyperthermic 
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treatments on patients who had failed ta respond to any conventional treatments 

(Parks et al., 1979). EWBH is also a useful treatment in patients with conventionally 

incurable malignant tumors. Several studies show that induction and maintenance of 

whole body hyperthermia is clinically possible (Lange et al., 1983). 

1.5.3.2 Whole body hyperthermia (WBH) 

Extelllally induced whole body hyperthermia can be used to treat metastatic 

cancers that have proliferated throughout the body (Robins et al., 1992). WBH heats 

the body from the outside in, using sources outside the body. As a result, body tissue is 

subjected to unevenly elevated temperatures. Whole body heating methods include 

saunas, hot air, microwaves and hydrotherapy (immersion in hot water) (Herman et 

al., 1982). Pre-clinical and clinical studies have attributed a number of favorable 

effects to WBH including potentiation of the tumoricidal effects of specific cytotoxic 

agents as weil as stimulation of different features of the immune system (Hildebrandt 

et al., 2004a,b; Hegewisch-Becker et al., 2003). In addition, the combined use of 

WBH and interleukin-2 resulted in enhancement of the anti-tumor response to sarcoma 

45 in rats (Potapnev, 2004). Hence, it can be deduced that WBH could be able to 

contribute to overcoming drug resistance, as weil as to increasing the response to re­

treatment with cisplatin or carboplatin, even after multiple prior chemotherapies 

(Ohno et al., 1991). Several studies have shown excellent response rates with the 

utilization of WBH and chemotherapy for ovarian cancer (Westermann et al., 2001), 

as weil as for other types of cancer, such as sarcoma (Wiedemann et al., 1996; Cronau 

et al., 1992). Irrespective of these benefits, there are a few drawbacks. For instance, 

several clinical observations indicate that diarrhea, nausea and vomiting are commonly 

observed after WBH (Kapp et al., 2000). It was also observed that WBH could cause 

more serious side effects, including cardiac and vascular disorders, although these 

effects are uncommon (van der Zee et al., 2002; Wust et al., 2002; Kapp et al., 2000). 
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1.5.3.3 Regional hyperthermia (RHT) 

RHT is a method used for the treatment of isolated areas of the body, such as 

the liver, pelvis, stomach or limbs (Schlemmer et al., 2004; Petrovich et al., 1989). 

The principle of RHT is to heat intrinsic large tumors. Intraperitoneal hypertherrnia is 

a form of regional hypertherrnia that introduces heated solutions to the abdominal 

cavity via catheters. Magnets and devices that produce high energy such as arrays of 

antennas are placed over the region to be heated. In another approach named 

perlusion, blood is removed, heated and then pumped into the region that is to be 

heated internally. RHT has allowed the use of hyperthermia in conjunction with other 

modalities of antineoplastic therapy (Sticca, 2003). Ir is one of the promising methods 

for the treatment of prostate carcinoma (Tilly et al., 2005; Petrovich et al., 1991). 

Despite advances in this technology of heating, the non-homogeneous character of 

the treatment region can often affect the uniforrnity of the heat dispersion in the 

treated area. This means that is difficult to obtain a uniform regional rise in the 

temperature that is reproducible. 

1.5.3.4 Local hyperthermia (LH) 

LH entails elevating the temperature of superficial or subcutaneous tumors 

while sparing surrounding normal tissue, using either external or interstitial heating 

modalities. The area can be heated externally with high-frequency waves aimed at a 

tumor from a device outside the body. To achieve internai heating, one of several 

types of sterile probes may be used, including thin heated wires, hollow tubes filled 

with warrn water, implanted microwave antennae, radio-frequency electrodes and 

ultrasound. LH has been successfully employed in the treatment of a wide range of 

tumors, particularly solid tumors (Karner et al., 2004). The literature highlights that 

after giving systemic chemotherapy for prostate cancer to patients, LH couId be 

carried out safely and effectively (Sherar et al., 2003). Apart from of aIl these 
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benefits, treatments of blood diseases such as leukemia and certain tumor locations 

within the body, such as lung cancer, were difficult using LB. 

1.5.4 Hyperthermia and combination therapy 

Hyperthermia allied with radiotherapy or chemotherapy IS a promlsmg 

method for cancer treatment (Wust et al., 2002; Robins et al., 1992). There is 

considerable medical evidence demonstrating remarkable improvement in response 

rates when hyperthermia is used in combination with radiation therapy or 

chemotherapy (van der Zee et al., 2002). 

1.5.4.1 Hyperthermia and radiation therapy 

The synergistic interactions between heat and radiation have been widely 

studied. The extent of synergism between heat and radiation depends on the 

temperature applied, the time interval between heat and radiation, and the treatment 

sequence (Dahl, 1988). An important mechanism for this interactive therapy is that 

hyperthermia interferes with the repair of radiation-induced DNA damage, probably 

due to an effect on cellular proteins (Kampinga et al., 2001). In both experimental 

animal tumors and clinical treatment of human cancers, hyperthermia has been 

proven to increase the response of malignant tumors to radiation therapy. In vivo 

studies demonstrated that the effect of radiotherapy can be enhanced by a factor of 

1.2 to 5 when combined with hyperthermia (Marino et al., 1992). It has been shown 

that this combination therapy has the following benefits namely: a decrease in the 

radiation dose by 15% to 25%, a decrease in the side effects of X-Ray treatment and 

an increase in the effectiveness of the treatment of superficial and deep-seated tumors 

(Haim and Bicher, 2002). 

The literature confirms that the combination of hyperthermia and radiation, 

with or without chemotherapy, might be a good treatment option for locally advanced 
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inoperable breast cancer (Li et al., 2004). It is also an effective treatment for 

palliation of local symptoms, showing a tendency to achieve local control of large, 

ulcerative advanced breast lesions especially when such treatment is followed by 

salvage surgery (Iemwananonthachai et al., 2003). Moreover, hyperthermia causes an 

increase in tumor blood flow, which results in an improvement in tissue oxygenation, 

thereby provisionally increasing their radio-sensitivity (Rau et al., 2000; Song et al., 

1997). Overall, an important point is that hyperthermia is the most potent radio­

sensitizer known to date. 

1.5.4.2 Hyperthermia and chemotherapy 

Analogous to thermal radio-sensitization, hyperthermia also enhances the 

cytotoxicity of various antineoplastic agents. Several types of interactions of heat 

with chemotherapeutic drugs have been investigated (Urano et al., 1999; Hahn, 1982) 

such as supra additive (alkylating agents, platinum compounds) (Kubota et al., 1993), 

threshold behavior (doxorubicin) and independent effects (fluorouracil, taxanes, vinca 

alkaloids). Hyperthermia increases the cytotoxicity of a wide variety of 

chemotherapeutic agents, including Adriamycin, melphalan, BCNU, bleomycin and 

cisplatin, both in vitro and in vivo (Honess, 1998; Raaphorst et al., 1996; Orlandi et 

al., 1995; Bates and Mackillop, 1990, 1986; Dahl, 1994; Herman et al., 1988; Bates 

et al., 1985). 

Scientific evidence indicates that hyperthermia combined with 

chemotherapeutic drugs is a useful strategy to combat the l'vIDR phenotype mediated 

by P-gp (Larrivée and Averill, 2000, 1999; Averill and Su, 1999; AveriU and 

Larrivée, 1998; Bates and Mackillop, 1990). Melphalan resistance can be modulated 

by hyperthermia combined with ethacrynic acid in a P-gp overexpressing cell line 

(Turcotte and Averill-Bates, 2001). Hyperthermia is also useful in reversai of 

resistance to methotrexate in CHO cells (Herman et al., 1981). Forty two degrees 
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hyperthermia could also be useful as a sensitizer in cisplatin resistant tumor cells 

(Raaphorst et al., 1996). 

The mechanisms by which heat enhances drug toxicity are likely to vary for 

different drugs. Available data suggests that optimal thermal chemo-sensitization 

occurs with synchronous application for most drugs, although there are sorne 

exceptions (e.g. oxacephasporines, cyclophosphamide and ifosfamide) (Urano et al., 

1999; Issels et al., 1990). Recent data suggests that hyperthermia administrated with 

appropriate scheduling caused a modest increase in etoposide-induced apoptosis in 

both drug sensitive parental cell line (e.g. HeLa) and MDR cells with overexpression 

of NIRPI (Souslova and Averill-Bates, 2004). Scheduling was also required for the 

modification of etoposide (VP-16)-induced cell killing by hyperthermia in a 

radioresistant human melanoma (Sk-Mel-3) and a human normal (AG1522) cell line 

(Ng et al., 1996). 

Several phase II studies on hyperthermia in combination with pre- and/or 

postoperative chemotherapy in high-risk sarcomas have demonstrated quite 

impressive 5-year overall survival rates (lssels et al., 2001; Wendtner et al., 2001). 

Simultaneous combination of cisplatin and hyperthermia in cervical cancer, recurring 

following irradiation, resulted in a 50% response rate, which was expected to be 15% 

without hyperthermia (De Wit et al., 1999; Rietbroek et al, 1997). 

1.5.5 Molecular effects of hyperthermia 

Different cell types vary widely in their intrinsic sensitivities to heat. There is 

no consistent discrepancy in heat sensitivity between tumor and normal cells, as weil 

as between MDR cells and their drug sensitive counterparts. For example, 

hyperthennia is equally toxic to both drug sensitive CHü cells (AuxB 1) and their 

multidrug resistant cell line (CHRCs) overexpressing P-gp (Bates and Mackillop, 

1986). Similar results were obtained for human cervical adenocarcinoma cells (HeLa) 

and their MDR counterpart overexpressing MRPI (Souslova and Averill-Bates, 



28 

2004). However, there appears to be a distinction in sensitivity among rodent and 

human cells. At temperatures between 41°C and 42°C, human tumor cells are less 

heat sensitive than rodent cells, and a potential therapeutic advantage can be achieved 

with prolonged heating at these non-lethal temperatures, though the reason for this 

difference is not known (Annour et al., 1993). The sensitivity of cells to heat also 

varies with phase of the cell cycle, where cells in S phase and mitosis are the most 

heat sensitive (Yuguchi et al., 2002) 

The nature of the critical lesions that lead to cell death following heat 

treatment remains unknown. Several explanations could be that elevated temperature 

results in activation of cell metabolism which causes increased oxidative stress (Lord­

Fontaine and Averill-Bates,1999, 2002) and acidosis of the tumor tissue (Vujaskovie 

et al., 2000; Bicher et al., 1980). Hypertherrnia causes disturbances in the 

microcirculation of cancer tissue (Bogovic et al., 2001) resulting in an inhibition of 

the DNA repair mechanisms (Li et al., 1998; Osman, 1993) and induces apoptosis 

(Sakaguchi et al., 1995). Furtherrnore, it was shown that hyperthennia ean cause a 

disruption of integrin-mediated actin cytoskeleton assembly and, possibly, of other 

integrin-mediated signaling pathways. These effects were shown to be influenced by 

The specifie amplitude and exposure duration, as weil as cell type. For example, 

exposure of mouse epithelial cells to elevated temperatures changed the organization 

of keratin filaments and actin filaments but had no effect on microtubules (Shyy et 

al., 1989). Similar results were observed in 9L cells where heat shock caused collapse 

of microfilaments and intermediate filaments but had only slight effects on 

microtubules (Wang et al., 1998). In contrast, mierotubules were disrupted by heat 

shock in Chinese hamster ovary cells (Lin et al., 1982) and mouse 3T3 cells (Parrish 

et al., 1996). 

Hypertherrnia treatment modulates the activity of cytokines (Katschinski et 

al., 1999; Neville and Sauder, 1988) and increases the antigenicity of tumor cells by 

the production of heat shock proteins (HSP) and activation of natural killer cells 

(Roigas et al., 1998; Multhoff, 1997). Hyperthennia inactivates cellular antioxidant 
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defences against hydrogen peroxide (HzOz) (Lord-Fontaine and Averill-Bates, 2002; 

AveIiIl-Bates and Przybytkowski, 1994). Hyperthennia can act by alteIing the 

transport functions of the plasma membrane. For example, in CHO cells, viscosity of 

the membrane decreased due to increased temperature. This resulted in the elevation 

of the activity of the sodium-potassium pump (Bates et al., 1985). During 

hyperthermia, membrane penneability is changed to several compounds, including 

Adriamycin (Bates and Mackillop, 1987a), polyamines (Gemer et al., 1980) and 

certain ions such as K+ (Bates and Mackillop, 1987b). 

Expression of HSPs is often correlated with the development and loss of 

thennotolerance (Hayashi et al., 2001; Li and Werb, 1982; Landry et al., 1982a, b). 

Expression of other genes modulated by heat requires further investigation such as 

the multiple drug resistance genes (Stein et al., 1999). 

Furthennore, cells exposed to acidic pH during heating have been found to be 

more sensitive to heat treatment (Song et al., 1993). Exposure of cells to heat in a 

nutrient-depIived environment can also sensitize them to heat treatment. This effect 

appears to conelate with changes in the cellular ATP levels (Gerweck, 1988). These 

more specifie temperature-dependent pathways in cells suggest new applications of 

hyperthermia such as heat controlled gene therapy or heat enhanced immunotherapy 

by vaccination. 

1.6 Apoptosis 

1.6.1 Introduction 

Apoptosis is considered to be a distinct fonn of eukaryotic cell death, 

morphologically as weil as biochemically, that occurs under a variety of 

physiological and pathological conditions (Arends and Whyllie, 1991). It is a 

continuous physiologie process of regulated non-inflammatory cell death 

(Hengartner, 2000). Apoptosis was first discovered by Carl Vogt in 1842 (Vogt et al., 

1842). The word "Apoptosis" cornes from the ancient Greek origin, meaning 'falling 
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off of petais from a flower' or 'leaves from a tree in autumn'. The name "Apoptosis" 

was first introduced by John Kerr in 1972. Apoptosis is one of the most acti ve fields 

of biomedical research. The importance of this research was recognized when Dr. 

Horvitz was honored with a Nobel Prize on October i h 2002 for discovering and 

characterizing the genes controlling apoptosis in the nematode Caenorhabditis 

elegans. 

Classically, cell death is believed to occur by one of two mechanisms, 

apoptosis or necrosis (Kerr and Harmon, 1974). These two pathways of cell death 

differ by several criteria. In necrosis, cel! death occurs due to injurious agents leading 

to membrane swelling followed by the leakage of the cell contents resulting in 

inflammation of adjoining tissues as well as wide spread damage (Trump et al., 

1981). Apoptosis is a result of cells committing suicide and has three distinct phases; 

1) shrinkage and fragmentation of cells and their nuclei; 2) condensation of 

chromatin; and 3) extensive degradation of chromosomal DNA (Wyllie and Kerr, 

1980; Wyllie, 1980). 

Apoptosis plays an important role in many biological events including the 

immune system, embryonic development (Barres et al., 1992a,b), metamorphosis 

(Steller et al., 1994; Ishizuya-oka and Shimozawa, 1992), hormone-induced tissue 

atrophy, chemical-induced cell death as well as tissue homeostasis (Arends and 

Whyllie, 1991). An imbalance between cell death and survival may result in 

premature cell death and uncontrolled proliferation (Evan and Vousden, 2001). In 

addition, apoptosis also plays a vital role in the pathogenesis of human disease 

(Fadeel et al., 1999; Thatte and Dahanukar, 1997). For instance, uncontrolled 

apoptosis is implicated in various human diseases such as Alzheimer's, Parkinson's, 

carcinogenesis, intimai hyperplasia, leukernia, lymphoma, etc (Brunner et al., 2003; 

Pritchard and Watson, 1996; Thompson, 1995). 
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1.6.2 Apoptotic pathways 

The three principal mechanisms by which a cell can execute apoptosis are; 1) 

the Intrinsic pathway or mitochondrial pathway where apoptosis occurs by internaI 

signaIs, arising within the cell (Adrain and Martin, 2001); 2) the Extrinsic or death 

receptor pathway, where apoptosis is triggered by external signaIs (Locksley et al., 

2001) and 3) the Endoplasmic reticulum pathway (Rao et al, 2004; Li et al., 2001). 

1.6.2.1 Extrinsic or death receptor pathway . 

Receptor mediated pathway is a major pathway for the induction of apoptosis 

(figure 1.5). The extrinsic pathway begins outside the cell, when conditions in the 

extra-cellular environment determine that a cell should undergo apoptosis. Up to date, 

there are six known members of the death receptors (DR) family including 

Fas/CD95/APO-1 and Tumor Necrosis Factor-ex receptor (TNFex). These two 

members of the death receptor family play a key role in a variety of immunological, 

inflammatory and pathological conditions including initiation of apoptosis (Rudin et 

al., 1997). Both of them belong to the TNF-R family and contain a cytosolic death 

domain (DD). They are located in the plasma membrane of the cell that is ta undergo 

apoptosis and are acti vated by extra cellular ligands. Cytotoxic T lymphocytes 

express Fas ligands that activate cells bearing Fas receptors, thereby inducing 

apoptosis. The Fas receptor is generally found in epithelial tissues, tumors and 

hematopoietic tissues. It is acti vated by binding of Fas ligand (Fas-L) to cell 

membranes, undergoes trimerisation and recruits intracellular molecules known as 

Fas associated death domain (FADD) (Strasser et al., 2000; Ashkenazi et al., 1999). 

The extremity of FADD contains two death effector domains (DEDs) that recruit 

procaspase-8 (Salvesen and Dixit, 1999). The assembled complex of the cytoplasmic 

region of Fas, the adapter protein FADD and procaspase 8 is known as the Death­

Inducing Signaling Complex (DISC). Once caspase-8 is activated, it can activate and 
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cleave downstream effector caspases such as caspase-3 and-7 (Budihardjo et al., 

1999). This results in cleavage of their specific substrates leading to apoptosis. 

Fas-mediated apoptosis a1so inv01ves Bid. In type-II cells the amount of 

DISC produced is low. This results in the activation of small amounts of caspase-8, 

which cleaves the cytosolic substrate Bid. This proteolytically modified Bid leads to 

induction of conformational changes in pro-apoptotic protein BAX that leads to 

permeabilization of the mitochondrial membrane and release of cytochrome c (Eskes 

et al., 2000; Desagher et al., 1999). 

Ot"th r~c"ptor polhVl.lY Milochondri.>l pnlhw.>y 
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Figure 1.5: Extrinsic and intrinsic pathways of apoptosis. The death receptor 
pathway starts with ligation of death receptors such as fas/CD95. This leads to the formation 
of the Death-lnducing Signaling Complex (DISe) and activation of caspase 8. Once 
activated, caspase-8 causes the cleavage of caspase 3 that eventually results in DNA 
fragmentation and apoptosis. ln type II cells, the pro-apoptotic protein Bid can act to couple 
the death receptor pathway with the mitochondrial amplification loop. The intrinsic pathway 
can be stimulated by a variety of agents such as irradiation, chemotherapy drugs, reactive 
oxygen species, etc. Mitochondrial damage results in altered membrane permeability leading 
to the release of cytochrome c, that in tum binds to Apaf-1 and procaspase-9 to form a 
complex calIed the apoptosome. Activated caspase-9 then cleaves caspase-3 resulting in 
downstream events involved in cell death (Adapted from Kaufmann and Hengartner, 2001). 

Cancer cells are also susceptible to the tumor necrosis factor receptor (TNF­

R) mediated pathway. The TNF-R can induce apoptosis via different biochemical 
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pathways (Rudin et al., 1997; Maclellan et al., 1997). The most conunonly described 

pathway of TNF-induced apoptosis is regulated by TNF-R associated death-domain 

(TRADD). It commences with the binding of TNF-related apoptosis-inducing ligand 

(TRAIL) to the transmembrane TNF-R and bind to TRADD through its death 

domain. The activated complex of TNF either recruits FADD, leading into signaling 

for apoptosis, or TRAF, leading to anti-apoptotic signaling (Ashkenazi, 2002; 

MacEwan, 2002). TRAF can suppress apoptosis by activating a protein known as 

nuclear factor kB (NF-kB), which acts as an inhibitor of apoptosis protein (JAP) that 

prevents the execution phase of apoptosis (Haimovitz et al., 1994). 

1.6.2.2 Mitochondrial or intrinsic pathway 

A major pathway of apoptosis has been shown to be controlled at the 

mitochondrial level (Figure 1.5) (Susin et al., 1999a; Zamzami et al., 1996). This 

pathway can be activated by a variety of extra and intracellular stresses, including 

oxidative stress, y and UV-radiation, removal of cytokines and treatment with 

different cytotoxic drugs such as Adriamycin, vincristine, vinblastine, etc (Kerr et al., 

1994). These cellular stresses result in the release of cytochrome c from the 

mitochondrial intermembrane to the cytosol, followed by binding of this cytosolic 

cytochrome c to the cofactor apoptotic protease activating factor-l (Apaf-l). This 

binding leads to the formation of the apoptosome (Waterhouse et al., 2002). The 

apoptosome is a -1 tvIDa oligomeric complex, which in the presence of dATPIATP 

self -oligomerizes to form an Apaf-l multimer (Zou et al., 1999) composed of 

cytochrome c, Apaf-l and procaspase-9. This induces the auto activation of initiator 

caspase-9, which subsequently activates other effector caspases (e.g. caspase-3) and 

perpetrates the cell towards death. However, the precise mechanism of cytochrome c 

release is still unclear. Early data suggested that mitochondria played a very 

important role in this process. It was believed that release of cytochrome c was 

dependent on early loss of mitochondrial membrane potential and the opening of the 
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mitochondria penneability pores (Finkel et al., 2001; Desagher et al., 2000). 

Neveltheless, recent data suggest that both events are not essential for apoptotic 

cytochrome c release in ail circumstances (Ly et al., 2003; Waterhouse et al., 2002). 

It has been demonstrated that, upon activation of the intrinsic pathway, a 

range of pro-apoptotic molecules other then cytochrome c are released from 

mitochondria (Figure 5) (Van Loo et al., 2002), such as SmaclDiablo, apoptosis 

inducing factor (AIF), Hsp601l0, endonuclease G (Endo G), etc (Li et al., 2001; Du 

et al., 2000; De laurenzi and Melino 2000; Susin et al., 1999b; Xanthoudakis et al., 

1999; Samali et al., 1999). SmaclDiablo promotes caspase activation by neutralizing 

the inhibitors of apoptosis proteins (IAP's), whereas AIF and Endo G (lia et al., 

2003; Van 100 et al., 2002) lead to a new death pathway that could execute apoptosis­

like cell death in the absence of caspases (Cregan et al., 2002). Endonuclease G is a 

protein found in the inner mitochondrial membrane and like AIF it can also 

translocate from mitochondria to the nucleus during apoptosis and is capable of 

inducing DNA fragmentation independent of caspases (Li et al., 2001). 

1.6.2.2.1 Bcl-2 family of proteins 

The mitochondrial pathway plays a critical role in the regulation of apoptosis 

as major mitochondrial dysfunction is likely to cause cell death. One of the principal 

regulators of the mitochondria-mediated pathway of apoptosis is the family of Bcl-2 

proteins (Cory et al., 2003; Gross et al., 1999; Green and Reed, 1998). Bcl-2 was first 

identified in B cell lymphomas as an oncoprotein coded by a gene affected by 

translocations of chromosome 14 and 18. These proteins can be classified into two 

categories depending on their biological activity namely: Proapoptotic proteins that 

include Bax, Bak, Bik, Bad and Bid and anti-apoptotic proteins such as Bcl-2 and 

Bcl- XdAdams and Cory, 1998; review: Reed, 1997). Presently, at least 15 members 

of the Bcl-2 family are known which can have either a negative or a positive effect on 

the initiation of apoptosis (Shibue and Taniguchi, 2006; review). Despite their widely 
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opposing functions, ail members of the Bcl-2 family have at least one copy of a BH 

motif (BHI-BH4). It was also observed that a subset of the pro-apoptotic members, 

including Bad, Bid and Bim contain only the BH3 domain (Coultas, 2003; Cory et 

al., 2003). These BH domains play an important role in the ability of various family 

members of the Bcl-2 family to interact with each other (Keleker et al., 1997; Cheng 

et al., 1996). They can interact with each other via the BH domains and form either 

death- promoting or death inhibiting hetero-oligomeric complexes. However, the 

significance of these interactions has not been clearly defined (Cheng et al., 1996). 

The relative levels of pro- and anti-apoptotic proteins determine a cell's susceptibility 

to apoptosis (Korsmeyer, 1995). The anti-apoptotic proteins inhibit apoptosis, 

however their site of action is not entirely understood. Proteins such as Bcl-2 can 

control apoptosis induced by various cytotoxic mechanisms and they appear to exert 

their effects by blocking the release of cytochrome c from mitochondria (Kluck et al., 

1997). 

Pro-apoptotic proteins interact with anti-apoptotic proteins and hait their 

inhibition of apoptosis. It was also observed that pro-apoptotic members of the Bcl-2 

family, including Bax, Bak, and Bid, might act directly by destabilizing the outer 

mitochondrial membrane and trigger mitochondrial release of apoptogenic 

cytochrome c and apoptosis-inducing factor into the cytoplasm (Basanez et al., 1999). 

1.6.2.3 Endoplasmic reticulum (ER) pathway 

Recently, the regulation of cell death by endoplasmic reticulum (ER) stress 

has gained much interest (Momoi, 2004; Ferri and Kroemer, 2001). Three major 

apoptotic pathways are involved in ER stress-mediated cell death: 1) Caspase 12­

dependent pathway (Nakagawa et al., 2000); 2) ASK/JNK pathway, which leads to 

induction of cytochrome c release form mitochondria and caspase-9 activation 

(Tournier et al., 2000) and 3) Bap31 and caspase-8 pathway, wherein caspase-8 will 



36 

be activated by its interaction with Bap31, resulting in cleavage of Bid and 

consequently cytochrome c-mediated cell death (Breckenridge et al., 2002). 

1.6.2.4 Caspases 

The name caspase stands for aspartate-specific cysteinyl proteases. Caspases 

play an essential role in the process of apoptosis. They are involved in both initiation 

and execution of apoptosis (Philchenkov, 2004; Los, 1999; Eamshaw, 1999; 

Thombery, 1998). They can be found in humans ail the way down to insects, 

nematodes and hydra (Los, 2001; Budihardjo et al., 1999; Cikala et al., 1999; 

Eamshaw et al., 1999). To date, at least 14 human caspases with different substrate 

specificity have been identified, although only two-thirds of these have been 

suggested to function in apoptosis (Siegel, 2006; review). Based on their function in 

apoptosis, caspases are categorized into two classes namely: initiator (caspase -8 and 

-9) and effector caspases (caspase -3, -6 and -7). 

Initiator caspases are stimulated by a scaffold-mediated activation mechanism. 

This process involves assembly of a molecular platform in response to death stimuli 

and recruitment of procaspases. This results in the conformational change in the 

initiator procaspases leading to activation of the caspase. Afterwards, mature initiator 

caspases catalyse the processing of effector procaspases to their active enzymes, 

which in tum degrade specific substrates and activate further procaspases 

(Hengartner, 2000). Thus, the initiator caspases act as upstream activators of the 

effector caspases and effector caspases act as executioners by cleaving the proteins 

that actually induce apoptosis in the cell. Initiator caspases such as caspase-8 and -10 

are directly linked to death inducing signaling complexes (DISCs), while caspase-9 is 

recruited to the apoptosome via its caspase activation and recruitment domain 

(CARD). 

The caspases differ significantly in their cleavage specificity and thus have 

different proteins as substrates. A large number of caspase substrates have been 
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identified including the Bcl-2 family, cytoskeletal proteins: gelsoline, fodrin, actin, 

plectrin, cytokeratin; nuc1ear proteins: lamin, survival factor-focal adhesion kinase 

(FAK), p21-activated kinase (PAK), poly ADP-ribose polymerase (PARP), and 

inhibitor of caspase-activated DNase (ICAD) (Virag and Szabo, 2002; Enari et al., 

1998). 
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Figure1.6: A model for CAD-dependent DNA fragmentation during apoptosis. 
When CAO is synthesized on the ribosome, ICAO-L binds to its nascent chain and enhances 
its correct folding. After CAO synthesis is completed, ICAD-L remains complexed with 
CAD as DFF (DNA fragmentation factor) / (CAD/ICAD complex). When apoptotic stimuli 
activate caspase 3, this c1eaves ICAD-L to release active CAD, which degrades chromosomal 
DNA. (Adapted from: Nagata, 2000) 

ICAD is one of the important substrates of caspases (Hengartner, 2000). 

Caspases are responsible for the DNA fragmentation by c1eaving the CAD-ICAD 

complex (Figure 6). CAD is a protein of 343 amino acids, which carries a nuc1ear­

localization signal and produced as a complex with ICAD and exists as an inactive 

form. Treatment with caspase-3 can c1eave this complex leading t~ the release of 

CAD allowing it to enter the nuc1eus and degrade chromosomal DNA (Enari et al., 
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1998). ICAD seems to function as a chaperone for CAD during its synthesis, 

remaining complexed with CAD to inhibit its DNase activity; caspases activated by 

apoptotic stimuli then cleave ICAD, allowing CAD to enter the nucleus and degrade 

chromosomal DNA (Enari et al., 1998). 

1.7 Presentation of Project 

1.7.1 Introduction 

Hyperthermia is used today as a novel technique at the clinical level in cancer 

therapy. The potential of hyperthermia developed due to its ability to increase 

anticancer activity of radiation and of various anti-neoplastic agents and to decrease 

toxic side effects to normal tissue during cancer treatment. This allows targeting of 

chemotherapy with the use of regional heating. Resistance to multiple 

chemotherapeutic agents is considered a major cause of chemotherapy failure. 

Hyperthermia in combined use with chemotherapeutic agents could become a useful 

strategy to combat the multidrug resistance phenotype. Hyperthermia has been used 

increasingly, aimed to overcome drug resistance to chemotherapeutic agents in 

laboratory studies. However interactions between heat and individual drugs are not 

weil understood. The mechanisms by which heat enhances drug toxicity are likely to 

vary for different drugs. Laboratory studies are essential to advance our perception at 

the cellular and molecular levels to ensure that hyperthermia can be combined 

successfully and optimally with chemotherapy in the cancer clinic. 

1.7.2 Objectives of the project 

The two main objecti ves of this project are first, to determine whether, 

hyperthermia can increase the cytotoxicity of the anticancer drug Adriamycin by 

triggering apoptosis in HeLa cells isolated from human cervical adenocarcinoma. The 

second objective is to determine whether hyperthennia can reverse resistance to 
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Adriamycin in HeLa cells with the overexpresslOn of the multidrug resistance 

phenotype MRPl. 

1.7.3 Choice of model 

Two human cell lines from cervical adenocarcinoma were chosen as models 

for this project. The effect of hypertherrnia on Adriamycin cytotoxicity was evaluated 

using cultured human adenocarcinoma cells (HeLa), which are drug sensitive and 

their drug resistant counterpart which, overexpresses multidrug resistance associated 

protein-MRP1 (HeLaMRP cells). HeLaMRP cells were a kind gift from Dr. Philippe 

Gros from McGiIi University, Montreal, QC (Kast and Gros, 1998). The HeLa cel! is 

a weil established in vitro cellular model which is widely used in laboratory research. 

1.7.4 Experimental approach 

The ability of hyperthermia (41°C to 45°C), alone or in combination with 

Adriamycin, to induce apoptosis was evaluated in HeLaMRP versus HeLa cells. 

Cellular uptake of Adriamycin was observed using Adriamycin fluorescence under 

UV illumination using a Zeiss microscope equipped with a mercury lamp. The UV 

illumination induced an orange fluorescence at sites of Adriamycin accumulation 

(Larrivée and Averill, 2000). Induction of apoptosis through the mitochondrial 

pathway was analyzed by subcelluler fractionation of Bax and cytochrome c, by 

measuring the translocation of Bax from the cytosol to rnitochondria followed by the 

release of cytochrome c from mitochondria into the cytosol. The enzymatic activities 

of caspases 3, 8 and 9 were measured by a fluorimetric kinetic assay (Souslova and 

Averill-Bates, 2004). Chromatin condensation in the nucleus of both cell lines was 

evaluated using the fluorochrome Hoechst 33258 (apoptosis) by fluorescence 

microscopy and propidium iodide was used to observe the induction of the necrosis 

(Souslova and Averill-Bates, 2004). Cleavage of ICAD by caspase 3 was also 

observed using Western blotting (Tanel and Averill-Bates, 2005). 
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EXPERIMENTAL RESULTS 

2.t·Preface 

This chapter includes a manuscript describing the experimental results of this project 

which I have carried out during the M.Sc program in the laboratory of Dr. Diana 

Averil!. This manuscript will be submitted in the near future to the International 

Journal of Radiation Oncology, Biology and Physics and is entitled "Induction of 

apoptosis by heat shock and Adriamycin in a multidrug resistant human cell line". 

This manuscript was composed by myself, Kamini Barot and was revised by Dr 

Diana Averil!. In this study, I have been engaged in the investigation of cell death 

mechanisms induced by the combined treatment of hyperthermia with Adriamycin 

and its effect on the human cervical adenocarcinoma ceJls with overexpression of 

multidrug resistance associated protein-MRPI. 
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Abstract 

Introduction: Apoptosis is a mechanism of cell death, which provides a 
physiological elimination of excess or damaged cells. It follows a characteristic 
program of events, including activation of the caspase cascade. A wide variety of 
toxic compounds (environmental pollutants, drugs) can induce cell death by 
apoptosis. Adriamycin is a widely used anticancer drug, however, its mechanisms of 
antitumour activity have been a long term matter of debate. In addition, the 
mechanisms of severe cardiac toxicity, which limit the usefulness of the drug, are not 
weil understood. Multidrug resistance is a major obstacle in the successful use of 
cancer chemotherapy at clinical level. However, at present hyperthermia is used as a 
useful technique to overcome the problem of multidrug resistance. Purpose of using 
hyperthermia, is to increase the anticancer effect of Adriamcyin by sensitizing cell 
towards drug, at the same time decreasing the toxic effect of high dose of 
Adriamycin. 

Objectives: The present study investigates the mechanism of cel! death induced by 
Adriamycin and hyperthennia. The two main objectives of this project are: (1) to 
detennine whether Adriamycin and hyperthennia alone can trigger apoptosis in 
human cervical adinocarcinoma cells over expressing MRPI (HeLaMRP) relative to 
parental HeLa cells and (2) to detennine whether hyperthermia can enhance the 
induction of apoptosis by Adriamycin. 

Results: Treatment of cells with Adriamycin or hyperthennia alone or combined 
together resulted in activation of caspase-9 and caspase-3 as weil as cJeavage of 
inhibitor of caspase-activated DNase (ICAD), which leads to induction of apoptosis. 
Hyperthermia enhanced intracellular accumulation of Adriamycin, associated to a 
decrease in the mitochondrial membrane potential and translocation of pro-apoptotic 
proteins, Bax and cytochrome c between the cytoplasm and mitochondria of the cell. 

Conclusion: Adriamycin is able to induce apoptosis by the mitochondrial pathway of 
apoptosis in both drug-sensitive and MRPI-overexpressing HeLa cells and 
hyperthennia alone is enable to induce apoptosis and could be a useful strategy to 
enhance the induction of apoptosis by Adriamycin in both drug-sensitive and MRPl­
overexpressing HeLa cells. 

Keywords: Hyperthermia, Multidrug resistance, MRPl, Apoptosis, Adriamycin 
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Introduction 

Resistance to chemotherapy treatment is one of the major obstacles to the 

successful treatment of different types of cancer (Linn and Giaccone, 1995). Drug 

resistance can be classified in two categories: 1) intrinsic drug resistance whereby 

tumors already have a resistant phenotype to anticancer agents and 2) acquired drug 

resistance, wherein the resistant phenotype occurs after repeated exposure to 

cytotoxic agents. Furthermore, cancer cells often acquire cross-resistance to a variety 

of chemically and functionally unrelated compounds, a phenomenon known as 

multidrug resistance (MDR). 

A variety of ATP binding cassette (ABC) transmembrane transporters are 

involved in MDR. The most important groups of proteins are the classical P­

glycoprotein (P-gp) and the multidrug resistance associated protein (MRP) (Leonard 

et aL, 2003). These transporters act as ATP-dependent efflux pumps, which actively 

transport a variety of chemicals and antitumour agents out of cells, thereby reducing 

their intraceiJular concentration (Leonard et aL, 2003) 

Multidrug resistance associated protein-l (MRP1) is a human 190 kDa protein, 

encoded by the ABCCI gene, which is located on chromosome 16 (Loe et aL, 1996). 

The c1inical cancers exhibiting high MRPI expression include chronic and acute 

leukemias (Burger et al., 1994) and non-sma\l cell lung carcinomas (Doubre et aL, 

2005). MRPI is a primary active transporter of OSH-, sulphate- and glucuronide­

conjugated organic anions (Jedlitschky et aL, 1996). Several other substrates for MRP 

have been identified, such as glutathione disulfide (OSSO), steroid glucuronides (e.g. 

17b-estradioI17-(b-D glucuronide) (Leo et aL, 1996) and cysteine leukotriene (LTC4) 

(Hipfner et aL, 1999). The exact mechanism of MRPI-mediated transport of 

cytotoxic compounds is not clear. However, several studies indicate that MRPI can 

mediate efflux of several conjugated compounds by co-transport with glutathione 
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(GSH) or in a GSH-stimulated fashion by acting as a glutathione-S-conjugate export 

pump (GS-X pump) (Renes et al., 1999). 

Overexpression of MRPI is responsible for cellular resistance to several 

anticancer drugs, including Adriamycin, vinca alkaloids and epipodophyllotoxins 

(Hipfner et al., 1999). Adriamycin is a widely used anticancer agent, belonging to the 

family of anthracycline antibiotics (Gerwitz, 1999). The mechanism of action of 

Adriamycin is not entirely clear. However, it is known to intercalate into DNA, 

causes the generation of free radicals, induces lipid peroxidation, initiates DNA 

damage as a result of topoisomerase II inhibition, causes direct membrane effects and 

induces apoptosis. 

Apoptosis is a mechanism that organisms have evolved to eliminate excess 

cells, or cells that are damaged, neoplastic, or infected with viruses (Hengartner, 

2000). The principal mechanisms by which a cell can execute apoptosis are the 

mitochondrial, the death receptor and the endoplasmic reticulum pathways (Rao et 

al., 2004). Deregulation of apoptosis can lead to development of a variety of cancers 

(Pri tchard and Watson, 1996). 

ReversaI of MDR offers the hope of increasing the efficacy of conventional 

chemotherapy. At the present time, several strategies are in use to reverse MDR, such 

as inhibitors of drug efflux pumps such as verapamil and cyclosporine A (Baird and 

Kaye, 2003), pegylated chemotherapy (Hau et aL, 2004) and organ specific drug 

administration (Dong et aL, 1994). These approaches generally increase drug delivery 

in cells and tissues. It is important to deveJop new approaches to reverse MDR. 

Hyperthermia is widely used in the clinical treatment of cancer (Van der Zee, 

2002), particularly in combination with chemotherapy and radiotherapy (Hehr et al., 

2003). A wide range of in vitro and in vivo studies demonstrated that hyperthennia 

increases the cytotoxici ty of a wide variety of chemotherapeutic agents, including 

Adriamycin, melphalan, BCNU, bleomycin and cisplatin (Raaphorst et al., 1996; 
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Bates and Mackillop, 1990, 1986; Honess, 1988; Bates et al., 1987). Hyperthermia 

could also be a useful strategy to overcome drug resistance. MDR cells 

overexpressing P-gp (Bates and Mackillop, 1986) or MRP-l (Souslova and Averill­

Bates, 2004) were sensitive to heat killing. To further support the usefulness of 

hyperthermia, drug-induced cell death by teniposide and topotecan (Hermisson and 

Weller, 2000), cispl atin (Raaphorst et al., 1996) and methotrexate (Herman et al., 

1981) was increased by hyperthermia in cells exhibiting primary drug resistance. In 

NIDR cells, hyperthermia enhanced drug sensitivity of melphalan (Bates and 

Mackillop, 1990) and liposomal Adriamycin (Gaber, 2002). Furthermore, 

hyperthermia combined with P-glycoprotein modulators, such as verapamil, 

cyclosporin A or PSC833, increased the effectiveness of drugs such as Adriamycin, 

melphalan and vinblastine, in the elimination of MDR cells (Averill and Su, 1999; 

Averill and Larrivée, 1998; Dumontet et al., 1998, Liu et al., 2001). 

The present study explores the possibility of reversing resistance to Adriamycin 

using hyperthermia in human cervical adenocarcinoma (HeLa) cells overexpressing 

MRPI (HeLaMRP). The objective of the study is to determine whether heat can 

increase the induction of apoptosis by Adriamycin in HeLa cells and in their MDR 

mutant overexpressing MRPI. Apoptotic events are evaluated at the level of 

mitochondria, caspase activation and cleavage of caspase substrates. 
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Materials and Methods
 

Tissue culture
 

HeLa (ATCC no. CCL-2) cells were grown in monolayer in Dulbecco's 

modified Eagle medium (DMEM) (Gibco Canada, Burlington, ON) which contains 

high glucose with L-glutamine (2mM) and pyridoxine hydrochloride. This medium 

was supplemented with 10% fetal bovine serum (FBS) (Gibco Canada) containing 

penicillin (50 units/ml) and streptomycin (50Jlglml) (Flow Laboratories, Mississauga, 

ON), sodium pyruvate (l.OmM), sodium bicarbonate (1.5g1L) and nonessential amino 

acids (O.lmM) (Souslova and Averill-Bates, 2004). The multidrug resistant HeLa­

MRP cell line was a kind gift from Dr. Philippe Gros, McGill University, Montreal, 

QC (Kast and Gros, 1998). These cells are resistant ta Adriamycin, etoposide, 

actinomycin D and vincristine. The culture medium for HeLa-MRP ceUs contained 

etoposide (VP-16) (250nglml), which was removed for the final passage prior to 

experiments. Cell Iines were maintained in tissue culture flasks (Sarstedt, Saint­

Laurent, QC) in a humidified atmosphere of 5% CO2 at 37°C using a water jacketed 

incubator. Cells were grown to confluence and the culture medium was changed 24h 

prior to experiments. Cells were harvested using trypsin (0.5mglml)-EDTA 

(0.2mglml) (Gibco Canada) and washed again by centrifugation (lOOOg, 3min). 

Adriamycin uptake 

Freshly harvested HeLa and HeLaMRP cell suspensions were plated onto sterile 

coverslips in culture dishes at a concentration of 0.5xlü6 cells per dish and incubated 

ovemight at 37°C in an atmosphere containing 5% CO2. Cells were incubated for Ih 

with Adriamycin (l0 and 20JlI), either alone at 37°C or combined with 42°C heat 

shock. Then, coverslips containing cells were washed twice with ice-cold PBS, 

inverted onto slides and viewed for fluorescence under UV illumination using a Zeiss 

microscope equipped with a mercury lamp (model Il\1, Carl Zeiss Canada Ltd., St. 

Laurent, QC). The UV illumination induced an orange-red fluorescence at sites of 
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Adriamycin accumulation (Larrivée and Averi Il , 2000). Quantification of 

fluorescence intensity in cells was carried out using Northem Eclipse Software 

(Empix Imaging, Mississauga, ON). At least 100 cells were counted per sample. 

Heat and drug treatment 

For the effect of heat al one, cells were incubated for 1 or 2h at temperatures 

ranging from 37 to 45°C, in temperature-controlled water baths (0±.0.02°C) (Haake 

D8, Fisher Scientific, Montreal, QC). For the effect of drug alone, cells were 

incubated for either 15h (caspase 9, Bax and cytochrome c) or for 18h (caspase 3, 

rCAD and Hoechst) at 37°C in an incubator containing 5% COz. For the combined 

effect of heat and drug, cells were incubated at 42°C (iO.1°C) during the 1st hour of 

the 15h or 18h drug treatments. 

Subcellular fractionation and Western blot analysis of Bax, cytochrome c 

and ICAD 

Following treatment with Adriamycin alone or combined with 42°C heat shock, 

cells were harvested, homogenized using a dounce homogenizer (50 strokes/sample) 

and then lysed in 500fLI of lysis buffer (Samali et aL, 1999) containing 100mM 

sucrose, 1mM EGTA, 20mM 3-N-morpholino-propanesulfonic acid (MOPS), 0.1 mM 

dithiothreitol (DTT) , 5% freshly added percoll, 0.01% digitonin, 1mM phenyl­

methyl-sulfonyl fluoride (PMSF) and 100fLl/lOml of cocktail of protease inhibitors 

(AEBSF, Aprotinin, Bestatin, E-64, Leupeptin and Pepstatin A) (Sigma-Aldrich, 

rnc., Saint-Louis, MO), pH 7.4. Debris, unbroken cells and nuclei were removed by 

centrifugation (lO,OOOg, lOmin), to provide whole cell lysates. For subcellular 

fractionation, supematants were then centrifuged (15,000g, 15min) to separate 

mitochondria. Supematants were then centrifuged (lOO,OOOg, Ih) to separate 

cytosolic and nucleosomal fractions (Jurkiewicz et aL, 2004). Mitochondrial fractions 
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were resuspended in lysis buffer (300mM sucrose, ImM EGTA, 20mM MOPS, 

O.1mM DIT, 100ul/l0ml of cocktail of protease inhibitors, pH 7.4). For the 

immunodetection of ICAD, whole celllysates were used. 

Protein concentrations were determined according to Bradford (1976). Proteins 

(30,ug) from mitochondrial and cytosolic fractions, or whole cell lysates, were 

solubilised in sample buffer (Laemmli, 1970), heated for 5 min at 100°C and 

separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) (15% gel for 

Bax, cytochrome c; 10% gel for ICAD) using a constant voltage of 125V. Cellular 

proteins were transferred to polyvinyl difluoride (PVDF) membranes using a 

Milliblot Graphite Electroblotter l apparatus (Millipore, Bedford, MA). The transfer 

buffer contained 96mM glycine, 10mM Tris and 10% methanol. The transfer was 

carried out for 1.5 h at constant amperage of 80mA/gel. Hydrophobie or non-specifie 

sites were blocked using skim milk in Tris-buffered saline (50mM Tris and 150mM 

Nacl) containing 0.1% Tween 20 (TBS-T) for Ih at room temp or ovemight at 4°C. 

Membranes were washed and probed with mouse anti-cytochrome c monoclonal 

antibody (1: 1000) (BD Biosciences, Mississauga, ON), rabbit polyclonal anti-Bax 

antibody (1:2000) (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) or polyclonal 

rabbit anti-ICAD antibody (1:1000) (Santa Cruz Biotechnology Inc.) for Ih at room 

temperature or ovemight at 4°C. Membranes were washed and then incubated for Ih 

with horseradish peroxidase (HRP)-conjugated rat Mab-anti-rabbit IgG (1: 1000) 

(Biosource, Camarillo, CA). Membranes were incubated In ECL-Plus 

chemiluminescence reagent (Amersham Bioscience Corp., Piscataway, NJ) for 1 min 

and films (Fuji medical X-ray film, Düsserldorf, Germany) were scanned with a 

Laser Scanning Densitometer (Alpha Innotech Corp., San Leandro, CA). Expression 

of Bax, cytochrome c and ICAD was quantified using IPGEL software. Purity of 

cytoplasmic and mitochondrial fractions was verified using antibodies to GSTnl 

(Calbiochem, La Jolla, CA) and cytochrome c oxidase (Molecular Probes, Eugene, 

OR), respectively (data not shown). 
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Enzymatic assays of caspase-9 and ·3 activities 

Following incubation with Adriamycin and or heat, cells (lxlOG
) were 

harvested, resuspended in PBS-BSA 1% containing lOmM glucose and then 

centrifuged in a microfuge (3min, 4000rpm). Cells were resuspended in 50fLi of 

reaction buffer (20 mM piperazine-N,N'-bis (2-ethanesulfonic acid) (PIPES), 100mM 

NaCI, lOmM DIT, 1mM EDTA and 0.1% 3-[(3-cholamido-propyl)­

dimethylammonio]-2-hydroxy-l-propanesulfonic acid (CHAPS), 10% sucrose, pH 

7.2) (Stennicke and Salvesen, 1997). A 25fLi aliquot of this solution was seeded into 

96-well plates and the cells were then lysed by freezing at -20°C for 15min. Fifty fLI 

of reaction buffer were added to each sample and then specific caspase substrates 

(25fLl) (200fLM) (Calbiochem, San Diego, CA) were added; Ac-Leu-Glu-His-Asp-7­

amino-4-trifluoromethylcoumarin for caspase-9 and Ac-Asp-Glu-Val-Asp-amino-4­

methylcoumarin for caspase-3. The kinetic reaction for caspase activity was followed 

for 30 min, at respective excitation and emission wavelengths of 400nm and 505nm 

for caspase-9 and 380nm and 460nm for caspase-3, using a spectrofluorimeter 

(Spectra Max Gemini, Molecular Devices, Sunnyvale, CA). 

Morphological analysis of cell death 

Following treatment with Adriamycin and/or 42°C hypel1hennia, 50fLg/ml of 

Hoechst 33258 (Sigma Chemical Co.) was added for 15min at 37°C, in order to stain 

apoptotic ceUs (blue-green fluorescence). Hoechst 33258 binds to condensed 

chromatin in the nucleus of apoptotic ceUs. Propidium iodide (Sigma Chemical Co.) 

(50fLglm1) was subsequently added to visualise necrotic ceUs (red fluorescence). 

Apoptotic and necrotic ceUs were observed by fluorescence microscopy (model lM, 

Carl Zeiss Canada Ltd, St. Laurent, QC) and photographs were taken using a Sony 
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digital 3CCD Color Video Camera and analysed using Northem Eclipse software 

(Empix Irnaging, Mississauga, Ontario). At least 300 cells were counted per sample. 

Statistics 

Data are presented as means ± standard error of the mean (SEM) from at least 3 

independent experiments performed with multiple estimations per point. For 

statistical analysis of data for cytochrome c, Bax, JC-I, drug accumulation and 

caspases, average values were compared to a control value. The control value was 

subtracted from each observation and a bilateral t-test was performed to see if the 

average value is null. A Bonferroni-Holm (sequentially rejective method) adjustment 

was performed to control for the family wise error (FWE) rate at 5%. A one way 

analysis of variance (ANOVA) and closed testing procedures adjustment using the 

macro Simlntervals (Westfall et al., 1999) were used for multiple comparisons 

between averages, except for ICAD and Hoechst tests, where the Dunnett bilateral 

test was performed for adjustment of P-values. Software used was JMP Statistical 

Discovery 4.0 (SAS Institute Inc., Cary, NC). Differences were considered 

statistically significant at P < 0.05. 
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Results 

Adriamycin accumulation in parental and MDR HeLa cells: Effect of 

hyperthermia. The MDR phenotype is often associated with decreased drug 

accumulation. We determined whether this was the case for resistance to Adriamycin 

in HeLaMRP cells. Intense fluorescence was clearly distinguishable in the parental 

HeLa cells, following a 60 min exposure to Adriamycin (10 and 20 /lM) at 37°C (Fig. 

lA, lC). In contrast, MDR cells displayed only faint Adriamycin fluorescence (Fig. 

lE, lH). Adriamycin accumulation was significantly lower in HeLaMRP cells 

compared to HeLa cells at 3rC (Fig. II). Hyperthermia (42°C) caused an increase in 

the intensity of Adriamycin fluorescence in HeLa parental cells (Fig. lB, ID, II), but 

demonstrated little effect in HeLaMRP cells (Fig. IF, lH, II). 

Adriamycin and hyperthermia, alone or combined, induce the 

translocation of Bax and cytochrome c. An important molecular event in apoptosis 

is translocation of pro-apoptotic proteins such as Bax from the cytoplasm to 

mitochondria, thus interfering with anti-apoptotic functions of proteins like Bcl-2. As 

a consequence, release of pro-apoptotic proteins such as cytochrome c from 

mitochondria will be promoted. Adriamycin induced the translocation of Bax from 

the cytoplasm to mitochondria in HeLa (Fig. 2A, 2C, 2E, 20) and HeLaMRP (Fig. 

2B, 2D, 2F, 2H) cells, at 37°C. Bax expression decreased in the cytosolic fraction 

(Fig. 2A- 2D) with a corresponding increase in the mitochondrial fraction (Fig. 2E­

2H). These changes were dependent on Adriamycin concentration and occurred at 

higher concentrations (2-10 IlM) in MDR cells (Fig. 2D, 2H), compared to parental 

cells (0.5-2 IlM) (Fig. 2C, 20). Two IlM Adriamycin induced more pronounced 

changes in Bax expression in HeLa cells compared to MDR cells. Hyperthermia 

(42°C) alone induced translocation of Bax from the cytosol to mitochondria to a 

similar extent in both cell lines. Hyperthermia increased the effect of Adriamycin on 

Bax expression in cytosolic and mitochondrial fractions in both cell lines. Levels of 
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cytochrome c in the cytoplasmic fraction increased in both cell lines with increasing 

Adriamycin concentration (O.5-2jlM for HeLa, 2-lOjlM for HeLaMRP cells) at 37°C 

(Fig. 3A-3D). There was a corresponding decrease in cytochrome c expression in 

mitochondrial fractions (Fig. 3E-3H). Hyperthermia alone caused release of 

cytochrome c from mitochondria into the cytosol to a similar extent in both cell!ines. 

Adriamycin-induced liberation of cytochrome c from mitochondria was increased by 

42°C hyperthermia in both HeLa (Fig. 3C, 30) and MDR (Fig. 3D, 3H) cells. 

Caspase activation by hyperthermia and/or Adriamycin. A major 

downstream event from cytochrome c release in mitochondria-mediated cell death is 

activation of the initiator caspase 9. Hyperthermia induced activation of caspase 9 

relative to unheated control cel1s at 37°C (Fig. 4A). Activation of caspase 9 occurred 

at 41-42°C in HeLa cel1s and at 41°C in HeLaMRP cells (Fig 4A). Caspase 9 activity 

decreased below control levels at 45°C for both cell lines (Fig.4A). Adriamycin 

caused an increase in the activity of caspase 9 in HeLa (Fig. 4B) and HeLaMRP (Fig. 

4C) cells at 37°C. Caspase 9 activation occurred at higher drug concentrations (2­

lOjlM) in MDR cells, compared to parental cel1s (O.5-2jlM). Hyperthermia caused an 

increase in activation of caspase 9 by Adriamycin in both ceillines (Fig. 4B, 4C). 

Caspase 3 is a downstream target of cleavage by caspase 9. Hyperthermia 

induced the activation of caspase 3 (Fig. 5A) relative to unheated control cells at 

37°C. Activation of caspase 3 was observed at 41-42°C in HeLa and HeLaMRP cells 

(Fig. 5A). The activity of caspase 3 decreased below control levels at 45°C. 

Adriamycin (O-2jlM for HeLa, O-lOjlM for HeLaMRP cells) caused a concentration 

dependent increase in the activity of caspase 3 in HeLa and HeLaMRP cells at 37°C 

(Fig. 5B, 5C). Hyperthermia (42°C) caused an increase in activation of caspase 3 by 

Adriamycin in both cell !ines (Fig. 5B, 5C). 
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Cleavage of caspase 3 substrate ICAD by Adriamycin and/or 

hyperthermia. 1CAD is a weil established cleavage target of caspase 3. Adriamycin 

caused a concentration dependent decrease in the expression of 1CAD, which 

indicates cleavage of 1CAD, in HeLa (Fig. 6A, 6C) and HeLaMRP cells (Fig. 6B, 

6D). Hypertherrnia (42°C) alone caused cleavage of 1CAD and increased that caused 

by Adriamycin. 

Morphological analysis of apoptosis induced by Adriamycin alone or 

combined with hyperthermia. One of the later events in the apoptotic cascade is 

chromatin condensation in the nucleus. This event can be triggered by activation of 

CAD, resulting from 1CAD cleavage by caspases (Nicholson, 1999). Figure 7 

illustrates induction of apoptosis (chromatin condensation) and necrosis by 

Adriamycin, whether alone or combined with 42°C hypertherrnia. The number of 

apoptotic cel1s with condensation of chromatin increased steadily with Adriamycin 

concentration after 18h at 37°C for HeLa (Fig. 7A-7D, 71) and HeLaMRP cells (Fig. 

8E-8H, 8J). The HeLaMRP cel1s (Fig. 7J) were more resistant to induction of 

apoptosis by Adriamycin than HeLa cells (Fig. 71) (note that higher Adriamycin 

concentrations were used for HeLaMRP cells). Hypertherrnia (42°C) alone caused 

chromatin condensation in HeLa cells. Hyperthermia caused a significant increase in 

Adriamycin-induced apoptosis in HeLa ce1ls (Fig. 71), but a low effect was observed 

in MDR cells (Fig. 7J). Adriamycin caused a significant increase in the number of 

necrotic cells in HeLa cells at 37°C and 42°C at higher doses (2,uM) (Fig. 71). 

However, in HeLaMRP cells, there was a steady increase in the number of necrotic 

cells with Adriamycin concentration at 37°C and 42°C (Fig. 7J). 

Comparison of expression of apoptotic proteins between HeLa and 

HeLaMRP cells. Sorne studies have reported differences in the expression of 

apoptotic proteins between sensitive and drug-resistant cells. We deterrnined whether 

there were differences in endogenous levels of expression of apoptotic factors 
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between the parental and MDR HeLa cell lines. The previous figures show that 

endogenous levels of expression of Bax (Fig.2), cytochrome c (Fig. 3) and ICAD 

(Fig. 6) are very similar in HeLa and HeLa MRP cells, along with the basal activity 

of caspases 9 and 3 (Figs. 4, 5). 
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DISCUSSION 

Clinical drug resistance remains one of the primary causes of suboptimal 

outcomes in cancer therapy (Linn and Giaccone, 1995) and understanding the cause 

for this phenomenon could answer many of the questions and complexities of cancer 

treatment. It was first documented experimentally in mouse leukemic cells that 

acquired resistance to 4-amino-NlO-methyl-pteroylglutamic acid in a laboratory 

model in 1950 (Burchenal et al., 1950). The mechanisms of MDR with known 

clinical significance are the activation of transmembrane ABC transporter proteins 

such as P-gp and MRP1, which efflux a variety of chemical substances from cells, 

activation of enzymes of the glutathione detoxification system (Schroder et al, 1996) 

and alterations of genes and proteins involved in the control of apoptosis (Glisson et 

al., 1989). 

This report demonstrates the induction of apoptosis by hypertherrnia alone or 

combined with Adriamycin, in HeLa cells and in transfected HeLa cells 

overexpressing multidrug resistance associated protein. Hypertherrnia (42oC) alone 

and Adriamycin alone induced apoptosis by the mitochondrial pathway. This was the 

case in both HeLa and HeLaMRP ceUs. Induction of mitochondrial apoptosis was 

manifested by a cascade of events including the translocation of Bax to mitochondria, 

which resulted in the liberation of cytochrome cinto the cytoplasm and acti vation of 

initiator caspase 9. Caspase 9 in tum activated the effector caspase 3, which cleaved 

its substrate ICAD. Induction of apoptosis by either 420C hypertherrnia or 

Adriamycin was confirmed morphologically by the condensation of nuclear 

chromatin, which is a later event in the apoptotic cascade. 

Higher concentrations of Adriamycin were required to induce apoptosis in 

HeLaMRP ceUs, gi ven that these ceUs are drug resistant compared to the parental 

HeLa ceUs. A concentration of 2 ,uM Adriamycin induced lower levels of apoptosis in 

HeLaMRP cells than HeLa ceUs. MRPI-overexpressing HeLa cells were resistant to 
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Adriamycin-induced apoptosis at the level of ail molecular events in the 

mitochondrial pathway including translocation of Bax and cytochrome c, activation 

of caspases, cleavage of ICAD and nuclear chromatin condensation. These findings 

are in agreement with previous work which showed that HeLaMRP cells exhibit 

resistance to cytotoxicity induced by Adriamycin, actinomycin D, etoposide and 

vincristine (Kast and Gros, 1998). We found that Adriamycin accumulation was 

lower in HeLa-MRP cells, which is likely explained by increased drug efflux by 

MRP1 in HeLaMRP cells. MDR cell lines often show decreased net accumulation of 

Adriamycin associated with energy-dependent outward efflux of cytotoxic agents 

(Inaba et al., 1979). Certain studies have reported that MRP1-overexpressing cells 

show increased drug efflux compared to the drug sensitive counterparts (Bakker et 

al., 1997). 

In general, hyperthermia caused a similar extent of apoptosis in both drug 

sensitive and MDR HeLa cells. This was the case for ail of the molecular events in 

the apoptotic cascade, from Bax translocation, caspase activation and cleavage of 

caspase substrates. This finding has important significance for the clinical application 

of hyperthermia in tumors containing drug resistant cells. Tumors often respond to 

initial treatments with chemotherapy, but subsequently do not respond to the drugs 

once resistance develops. These drug resistant tumor cells are sensitive to heat and 

could therefore be eliminated using hyperthermia (Bates and Mackillop, 1986; 

Souslova & Averill-Bates, 2004). 

In general, hyperthermia (42oC) increased the level of apoptosis caused by 

Adriamycin, compared to 37oC, in both drug sensitive and MDR cells. It was 

previously reported that Adriamycin showed strong interactions with heat and 

enhancement of drug cytotoxicity was seen at non-lethal temperatures (38 -42°C) in 

other cell types (Bates and Mackillop, 1986, 1987). This study shows that 

hyperthermia increased intracellular Adriamycin accumulation in HeLa cells, but not 

in HeLaMRP cells. Heat appears to influence drug permeability to Adriamycin in 
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HeLa cells, but not in HeLaMRP cells. However, the exact mechanisms of cell death 

caused by hyperthermia and drugs are still a matter of debate. Heat would likely 

increase the generation of radicals produced by natural metabolic processes and also 

by free radical-generating drugs such as Adriamycin (Roti Roti and Laszlo, 1988). 

Adriamycin is known to generate oxidative stress with the subsequent fonnation of 

lipid peroxidation products (Gille and Nohl, 1997). Hyperthennia alone is able to 

cause oxidative stress by generation of reactive oxygen species (ROS) in cells (Lord­

Fontaine and Averill, 1999) and an imbalance in the cellular redox equilibrium by 

depletion of cellular thiols (Mitchell and Russo, 1983). Hyperthermia can also cause 

GSH depletion by increasing the level of lipid peroxides (Anderstam et aL, 1992), 

which could result in an enhancement of Adriamycin cytotoxicity due to less 

detoxification of drug. Furthermore, the rates of chemical and biochemical reactions 

increase with temperature. Thus the rates of reactions between Adriamycin and both 

intracellular and extracellular molecules, including cellular membrane components 

and the critical cellular targets, would also increase with temperature. 

HeLaMRP cells have a severe redox imbalance due to lower activity of the 

enzyme glutathione peroxidase (GPx) and lower levels of glutathione (GSH), 

compared to HeLa cells (Souslova and Averill-Bates, 2004). GPx and GSH are 

important antioxidants which protect cellular targets such as DNA, proteins and 

membrane lipids against the damaging effects of oxidative processes (Halliwell and 

Gutteridge, 1999). GSH plays an important role in detoxification of ROS, 

electrophiles and oxyanions either by reduction of conjugation (Wang, 1998). Due to 

the redox imbalance, HeLaMRP cells wouId be more vulnerable to the oxidative 

stress caused by both heat and Adriamycin, relative to HeLa cells. This could account 

for the good sensitivity of HeLaMRP cells to heat and Adriamycin, despite the lack 

of heat-induced drug accumulation. This idea can be supported by several studies on 

the influence of the GSH redox pathway on cellular sensitivity to Adriamycin. It was 

shown that human ovarian cancer lines (Hamilton et aL, 1985), MCF-7 breast tumour 
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cells (Dusre et al., 1989) and HL-60 leukemic cells (Raghu et al., 1993) were 

sensitized to Adriamycin through depletion of GSH. 

The mechanisms of induction of apoptosis by toxic compounds such as 

Adriamycin are often dependent on different cell types. In support of our findings, 

several studies confirmed the ability of Adriamycin to trigger apoptosis by the 

mitochondria mediated pathway. Adriamycin was shown to induce apoptosis by 

favouring cytochrome c release and consequent formation of the apoptosome 

complex in cardiac cells. This occurred through up-regulation of Bax, which induces 

cytochrome c release by facilitating mitochondrial pore opening (Wang et al., 

1998a,b), or by down-regulation of Bel-XL, which is a member of the Bcl-2 protein 

family that blocks cytochrome c release (Kim et al., 2003). One study revealed that 

Adriamycin induced apoptosis in ATC cells by altering the acetylation state of 

histone. Adriamycin reduced histone deacetylase activity and induced 

hyperacetylation of histone 3, which leads to cell death (Rho et al., 2005). Another 

study suggests that subtoxic concentrations of Adriamycin can enhance TRAIL­

induced apoptosis via depletion of antiapoptotic protein in the human prostate cancer 

cell line LNCaP (Kang et al., 2005). Recently, Eom and coworkers showed that 

different doses of Adriamycin activated different regulatory mechanisms to induce 

either apoptosis or cell death through mitotic catastrophe. For instance, high dose 

Adriamycin-induced apoptosis, but not low dose adriamycin-induced mitotic 

catastrophe, led to transient activation of NF-kappaB and strong, sustained activations 

of p38, c-Jun N-terminal kinase and caspases (Eom et al., 2005). 

The development of strategies to overcome MDR has received considerable 

interest. Increased drug accumulation and drug resistance reversaI with P-gp 

inhibitors have been weil documented in vitro, but only suggested in elinical trials. 

Clinical trials on the design of early resistance reversaI have shown statistically 

significant benefits with the use of P-gp inhibitors in combination with 

chemotherapy. Recent advances in medicine and science have provided multiple 
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agents for use in the struggle against MDR. Presently there are many improved 

chemotherapy drug and targeted therapies that act at a number of sites and by a 

variety of mechanisms to Iimit cancer cell proliferation. Conventional methods that 

are used to overcome MDR often involve the coadministration of chemosensitizers 

and anticancer drugs. Preclinical studies have described the raie of hyperthermia as a 

technique to increase the activity of chemotherapeutic agents (Gerco et al., 1987). 

Combined with chemotherapeutic drugs, hyperthermia appears to be a useful strategy 

to combat the MDR phenotype mediated by both P-gp and MRPI (Souslova and 

Averill-Bates, 2004; Larrivee and Averill, 1999; Bates and Mackillop, 1990). 

Van der Zee and coworkers investigated the combined effect of hyperthermia 

on radiotherapy in advanced tumors of the bladder, cervix and rectum. They obtained 

a complete-response rate of 55%, which was expected to be only 39% without 

hyperthermia. The addition of hyperthermia seemed to be most important for cervical 

cancer, for which the complete-response rate was 83%, compared with 57% after 

radiotherapy alone. Furthermore, 3-year overall survival was 27% with radiotherapy 

alone, which increased up to 51 % when it was combined with hyperthermia (Van der 

Zee et al., 2000). Literature reviews regarding response rates of addition of 

hyperthermia to radiotherapy in tumors of breast cancer, malignant melanoma and 

neck nodes suggest a clinical thermal enhancement ration of 1.5 to 1.7 (Review: Van 

der Zee, 2002). 

Hyperthermia combined with chemotherapy also reveals promising results. 

For instance, simultaneous combination of cisplatin and hyperthermia in recurring 

cervical cancer, following irradiation, resulted in a 50% response rate, which was 

expected to be 15% without hyperthermia (De Wit et al., 1999). Several phase 1 and 

phase II clinical studies using combinations of hyperthermia and drug treatment have 

reported good response rates for treatment of limb melanoma (Engelhardt, 1987), 

pel vic tumors (Rietbrock et al., 1997), intra-peritoneal metastases (Alexander and 

Fraker, 1996) and other refractory tumors (Wiedemann et al., 1997). Severa! phase II 
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studies on hyperthermia in combination with pre- and/or postoperative chemotherapy 

in high-risk sarcomas have demonstrated quite impressive 5-year overall survival 

rates (lssels et al., 2001). 

In conclusion, this study demonstrates that hyperthennia could be useful as a 

modifier of multidrug resistance involving MRPI. An important finding is that MDR 

cells overexpressing MRPI do not exhibit cross resistance to heat. Adriamycin can 

cause cell death by the mitochondrial pathway of apoptosis involving cytochrome c 

release from mitochondria and the activation of caspases. Regional hyperthermia 

combined with Adriamycin could be a useful strategy for the elimination of tumours 

containing drug resistant cells via a targeted approach at the clinicallevel. 
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Figure 2.1: Adriamycin accumulation in HeLa and HeLaMRP cells: effect of 42°C 

hyperthermia. HeLa (A-D) and HeLaMRP cells (E-H) were incubated with lOflM (A, 

B, E and F) and 20flM (C, D, Gand H) Adriamycin for 60 min in DMEM containing 

10% FBS, at 3rC (A, C, E and G) or 42°C (B, D, F and H). Magnification x400. 

Quantification of images (1) was obtained for both cell lines, representing the relative 

fluorescence (average grey values). Values for fluorescence are expressed relative to Hela 

cells treated at 3rC with lOflM of Adriamycin, which was designated as 1. Means ± 

SEM are shown from at least three different experiments. Significant difference between 

HeLa and HeLa MRP cells: a. lOflM drug; b. 20flM drug, p<O.OS (*). 
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Figure 2.2: Induction of translocation of Bax from the cytoplasm to mitochondria by 

Adriamycin alone or combined with 42°C hyperthermia. HeLa (2A, 2E) and 

HeLaMRP cells (2B, 2F) were treated with different concentrations of Adriamycin (0­

2jlM for HeLa and O-lOjlM for HeLaMRP) at 3re for l5h or for lh at 42°e and 

subsequently l4h at 3re. Bax (2lkDa) levels in cytoplasmic (2A, 2B) and mitochondrial 

fractions (2E, 2F) were analysed by immunoblotting. Protein levels were quantified by 

densitometry in HeLa (2e, 20) and HeLaMRP (2D, 2H) cells. Bax levels were expressed 

relative to untreated HeLa cells at 37°C, designated as 1. Means ± SEM are shown from 

at least four independent experiments. a, significantly different from corresponding 

control (no drug) at 3rc. b, significantly different from corresponding treatment (no 

drug) at 42°C. c, significantly different at 42°e from corresponding conditions at 3re, 

p<0.05(*) and p<O.OOl (**). 
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Figure 2.3: Induction cytochrome c release from mitochondria into the cytoplasm by 

Adriamycin alone or combined with 42°C hyperthermia. HeLa (3A, 3E) and 

HeLaMRP ceUs (3B, 3F) were treated with different concentration of Adriamycin (0­

2p,M for HeLa, O-lOp,M for HeLaMRP) at 37°C for l5h or lh at 42°C and l4h at 37°C. 

Following immunoblotting, prateins levels were quantified by densitometry in HeLa (3C, 

40) and HeLaMRP (3D, 3H) cells. Cytochrame c (l6kDa) levels were expressed relative 

to untreated HeLa ceUs at 37°C, designated as 1. Means ± SEM are shown from at least 

four independent experiments. a, significantly different fram cOITesponding contrai (no 

drug) at 37°C. b, significantly different from cOlTesponding treatment (no drug) at 42°C. 

c, significantly different at 42°C fram cOITesponding conditions at 37°C, p<O.05(*). 



79 

2,5 0 HeLa 

• HeLaMRP (A) 
2 

1,5 

1 

0,5 

o 
41 42 43 45 

Temperature (OC)
 
3
 o 37°C HeLa (B) 

2,5 ~ 42°C 

2
 
*c
 

1,5
 

1 

~ 0,5 
.....­......~ 0 -+-------L~ ..i..-:--'--,..----L.~ ___l.._~l..:..~.·.LJL~Î-~ 
...... 0 20.5 1.....­
u Adriamycin (jtM) 
~ 

3 • 37°C a-... HeLaMRP (C)
1 o 42°C 
~ 2,5
 
\l'.J.
 
~ 2C. 
\l'.J. 
~ 1,5 
U 

1 

0,5 

o
o 2 5 10 

Adriamycin (jtM)Figure 2.4(A-C) 



80 

Figure 2.4: Activation of caspase 9 by hyperthermia and/or Adriamycin. (A) For heat 

alone, HeLa (0) and HeLaMRP cells (.) were heated (37 to 45°C) for 1h. For drug alone 

or drug combined with heat treatment, cells were incubated in monolayer with different 

concentrations of Adriamycin (O-lOILM) for l5h at 37°C or lh at 42°C + l4h at 37°C, (B) 

for HeLa and (C) HeLaMRP. Activities of caspase-9 were expressed relative to untreated 

HeLa cells at 37°C, designated as 1.0. Means ± SEM are shown from at least five 

independent experiments. a, significantly different from corresponding control (no drug) 

at 37°C. b, significantly different from corresponding treatment (no drug) at 42°C, 

p<0.05(*) and p<O.OOl (**). 
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Figure 2.5: Activation of caspase 3 by hyperthermia and/or Adriamycin. (A) For the 

effect of heat alone, HeLa (D) and HeLaMRP cells (.) were heated (37 to 45°C) for 2h 

using temperature controlled water baths (±0.02°C). For drug alone or drug combined 

with heat treatment, cells were incubated in monolayer with different concentrations of 

Adriamycin (0 to lOp,M) for l8h at 3rC or for lh at 42°C + l7h at 3rC, (B) for HeLa 

and (C) HeLaMRP cells. Activities of caspase-3 were expressed relative to untreated 

HeLa cells at 3rC, designated as 1.0. Means ± SEM are shown from at least five 

independent experiments. a, significantly different from corresponding control (no drug) 

at 37°C. b, significantly different from corresponding treatment (no drug) at 42°C, 

p<0.05(*) and p<O.OOl (**). 
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Figure 2.6: Induction of ICAD cleavage by Adriamycin and/or hyperthermia. HeLa 

(A) and HeLaMRP (B) cells were treated with Adriamycin for 18h at 37°C or for 1h at 

42°C and 17 h at 37°C. Protein levels were detected by immunoblotting and quantified by 

densitometry in HeLa (C) and HeLaMRP cells (D) and expressed relative to untreated 

HeLa cells at 37°C, designated as 1. Means ± SEM are shown from at least four 

independent experiments. a, significantly different from corresponding control (no drug) 

at 37°C. c, significantly different at 42°C from corresponding conditions at 37°C, 

p<O.05(*). 
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Figure 2.7(A-H)
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Figure 2.7: Induction of apoptosis by Adriamycin alone or combined with 

hyperthermia in HeLaMRP and HeLa cells. Cells were incubated with Adriamycin (0 

to 2p,M for HeLa, 0 to lOp,M for HeLaMRP), either alone at 37°C for l8h or combined 

with lh of 42°C hyperthermia for the first hour of drug treatment. (A) HeLa ceUs were 

incubated for l8h at 37°C or (B) for lh at 42°C and then for 17h at 37°C, without drug 

treatment. HeLa ceUs were incubated with (C) 2p,M Adriamycin at 37°C for l8h, or (D) 

with 2p,M Adriamycin for lh at 42°C and then for 17h at 37°C. (E) HeLaMRP cells were 

incubated for l8h at 37°C or (F) for 1h at 42°C and then for 17h at 37°C, without drug 

treatment. (0) HeLaMRP ceUs were incubated with a lOp,M Adriamycin at 37°C for l8h, 

or (H) with lOp,M Adriamycin for lh at 42°C and then 17h at 37°C. Magnification: 320X. 

Quantification of images for (1) HeLa and (1) HeLaMRP ceUs, represents the percentage of 

apoptotic or necrotic ceUs, relative to total ceUs. Means ± SEM shown are from at least 

four different experiments. a, induction of apoptosis by Adriamycin relative to untreated 

control at 37°C. b, induction of necrosis by Adriamycin relative to corresponding control at 

37°C, p<O.OS(*) and p<O.OOl (**). Comparison of curves: For necrosis at 37 versus 42°C 

in HeLa cells; p<O.OOl. For apoptosis in HeLa versus HeLa~!IRP ceUs at 37°C, p<O.OS. 
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Conclusion 

Chemotherapy is among the classical treatments of cancer. However, 

development of MDR by tumour ceUs is a major obstacle in the successful use of 

chemotherapy (Linn and Giaccone, 1995). For instance, fifty percent of human 

cancers are either totally resistant to chemotherapy or respond only transiently, after 

which they are no longer affected by commonly used anticancer drugs. Improved 

understanding of MDR could answer many of the questions and complexities of 

cancer treatment. Presently there are many strategies in use at the clinical level to 

combat MDR, although with limited success. 

Coadministration of chemosensitizers and anticancer drugs is currently used 

as a method to overcome MDR. Verapamil, quinine and cyclosporine A are among 

the first generation of chemosensitizers that can reverse the MDR phenotype by 

reducing drug efflux from P-gp expressing ceUs (Georges et al, 1990). Several 

randomized clinical trials have shown benefits with these chemosensitizers. However, 

their clinical use is often limited due to their toxicity. Second generation agents such 

as valspodar and biricodar show better impact but were confounded by unpredictable 

pharrnacokinetic interactions and interactions with other transporter proteins. Third 

generation P-gp inhibitors such as XR9576, LY335979, RlO1933 and üNT-093 have 

shown high effectiveness and specificity for P-gp in clinical trials. The continued 

development of these agents may establish the true therapeutic potential of P-gp­

mediated MDR reversai (Thomas and Coley, 2003). To date, reversai of MRPI 

mediated drug resistance has received little attention at the clinicallevel. 
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Hyperthennia is a recent type of cancer treatment in which body tissue is 

exposed to temperatures which are several degrees above body temperature (up to 

45°C). The extensive amount of biological in vitro and in vivo experimental research 

on hyperthennia during the last two decades has established it to be a valuable new 

tool in cancer therapy (Liu and Wilson, 1998). Hyperthermia, usually with nominal 

injury to normal tissues, can damage and kill cancer cells by damaging proteins 

within the cells leading to the shrinkage of tumours (van der Zee, 2002; Hildebrandt 

et al., 2002). This fact has been supported by the work of Fajardo, who proved that 

most nonnal tissues are undamaged by treatment for 1h at temperatures of up to 44°C 

(Fajardo, 1984). Several studies using hyperthennia at the clinical level have 

demonstrated complete overall response rates of 13% (Hetzel et al., 1987). 

For hyperthennia in combination therapy, a large amount of medical evidence 

demonstrates remarkable improvement in response rates when it is used combined 

with radiation therapy and chemotherapy (Wust et al., 2002). Several phase 1 and II 

clinical studies have used combinations of hyperthennia and drug treatment. These 

studies have reported good responses for treatment of limb melanoma (Fraker, 2004), 

pelvic tumors (Hildebrandt et al., 2004; Rietbrock et al., 1997), intra-peritoneal 

metastases (Alexander and Fraker, 1996) and other refractory tumors (Wiedeman et 

al., 1997). Several phase II studies on hyperthermia in combination with pre- and/or 

postoperative chemotherapy in high-risk sarcomas have demonstrated quite 

impressive 5-year overall survival rates (Issels et al., 2001; Wendtner et al., 2001). 

Hyperthermia combined with cisplatin chemotherapy also reveals promising results, 

particularly in recurring cervical cancer, following irradiation (De Wit et al., 1999; 

Rietbroek et al, 1997). Van der Zee and coworkers found promising results for the 

added effect of hyperthermia on radiotherapy in advanced tumors of the bladder, 

cervix and rectum (Van der Zee et al., 2000). Literature reviews regarding respond 

rates of addition of hyperthennia to radiotherapy in tumor of breast cancer, malignant 
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melanoma and neck nodes suggest a clinical thermal enhancement ration of 1.5 to 1.7 

(Review: Van der Zee, 2002). 

Our previous studies at the cellular level demonstrated that hyperthermia 

combined with chemotherapy and chemosensitizers could be a useful strategy to 

combat the multidrug resistance phenotype mediated by P-gp (Turcotte and Averill­

Bates, 2001; Larrivée and Averill, 2000, 1999; Averill and Su, 1999; Averill and 

Larrivée, 1998; Bates and Mackillop, 1990). Our findings demonstrated that over 

expression of P-gp can be modulated by hyperthermia combined with melphalan and 

ethacryinc acid, verapamil and cyclosporine A (Turcotte and Averill-Bates, 2001; 

Averill and Larrivée, 1998; Larrivée and Averill, 2000). When hyperthermia was 

used in combination with cyclosporine A in multidrug resistant CHRC5 Chinese 

hamster ovary cells, this caused an increase in melphalan uptake and a decrease in 

melphalan efflux out of MDR cells, leading to an overall increase in intracellular drug 

accumulation. The combined effect of hyperthermia and verapamil increases 

intracellular accumulation of drugs such as Adriamycin in certain muJtidrug-resistant 

cell lines. This combination alters membrane perrneability to Adriamycin and 

consequently enhances the cytotoxicity of the drug. 

Recent data showed that hypertherrnia administered with appropriate 

scheduling with drug caused a modest increase in etoposide-induced apoptosis in 

both the drug sensitive parental cell line (e.g. HeLa) and multidrug resistant (e.g. 

Hela-MRP) cells (Souslova and Averill-Bates, 2004). Cytotoxicity measurements 

showed that folated liposomes combined with hypertherrnia were found to be over 3­

fold more effective than the free drug (Adriamycin) for growth inhibition of human 

cervical carcinoma derived KB31 cells (Gaber, 2002). In an effort to overcome 

chemoresistance of human malignant glioma cells, Hermisson and Weiler (2000) 

analyzed the modulation of drug-induced ceH death by hypertherrnia in 4 human 

malignant glioma cells lines, LN-18, LN-229, T98G and U87MG. The results of this 

study showed that hyperthermia might be a useful approach to overcome 
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chemoresistance of these cell lines. Although hyperthennia does not reverse 

resistance in MRP1-HeLa ceUs, we were able to induce apoptosis independently of 

the susceptibility of the cell line or treatment, and therefore hyperthermia renders 

resistant cells a bit more susceptible to the drug. However, the magnitude of cell 

death in MRP1-HeLa cells is still much lower than for drug sensitive cells (and 

higher drug concentrations are still required). 

The findings of the present study show that Adriamycin activated the 

mitochondrial pathway in HeLa cells and that 42°C hyperthennia caused an increase 

in Adriamycin induced apoptosis. This study also evaluated the effect of 

hyperthermia combined with Adriamycin on the induction of apoptosis in MDR ceUs 

with overexpression of MRPl. In this study, we used higher concentrations of 

Adriamycin for induction of apoptosis in HeLa-MRP ceUs, which can be explained 

by the fact that these ceUs are resistant to cytotoxicity induced by Adriamycin, 

compared to the parental ceUs. This is in agreement with findings that HeLaMRP 

ceUs exhibit resistance to actinomycin D, etoposide, vincristine and Adriamycin 

induced cytotoxicity (Kast and Gros, 1998). Adriamycin-induced apoptotic ceU death 

was accompanied by caspase-9 and caspase-3 activation, as weil as the cleavage of 

the caspase-3 substrate ICAD, which was preceded by mitochondrial cytochrome c 

release. These results suggest that the release of mitochondrial cytochrome c and the 

sequential activations of caspase-9 and caspase-3 are important events in the signal 

transduction pathway of Adriamycin-induced apoptotic cell death in both HeLa and 

HeLaMRP cells. 

We found that hyperthermia alone was equally effective in inducing apoptosis 

in HeLa and HeLaMRP ceUs. This finding is extremely important since the MDR 

ceUs are sensitive to heat kiUing. Therefore, hypelthermia could be and effective 

strategy for eliminating MDR cells (Bates and Mackillop, 1986). The effect of 

hyperthermia was investigated by Zang and coworkers, in MDR mediated by P-gp in 

K562/ADM and Tca8113 cell lines. The result of this study was that 41°C 



93 

hyperthennia reduced MDR1 and MRP expression and enhanced intracellular drug 

concentration (Zang et al., 2003). There are several possible explanations for that, 

such as Adriamycin is known to generate oxidative stress with subsequent fonnation 

of lipid peroxidation products (Gille and Nohl, 1997; Ollinger and Brunmark, 1994). 

Hyperthermia alone is able to cause oxidative stress by generation of ROS in cells 

(Lord-Fontaine and Averili, 1999; Flanagan, 1998; Lin, 1991) and an imbalance in 

the cellular redox equilibrium by depletion of cellular thiols (Mitchell and Russo, 

1983). GPx and GSH are enzymes which pratects the membrane lipids against 

oxidation (Halliwell and Gutteridge, 1999). To exacerbate the redox imbalance, 

activity of the antioxidant enzyme GPx was also lower and additionally level of 

glutathione (GSH) was depleted in HeLaJVIRP cells (Souslova and Averill-Bates, 

2004). GSH is a critical factor in MRP1-mediated drug resistance (Versantvoort et 

al., 1995; Zaman et al., 1995). It plays an important raie in detoxification of ROS, 

electrophiles and oxyanions either by reduction or conjugation (Wang, 1998; Meister, 

1994; Meister and Anderson, 1983). Hyperthennia possibly caused more depletion of 

GSH in HeLaMRP cells, therefore it would be more vulnerable to the oxidative stress 

caused by Adriamycin. This finding can be supported by several studies on the 

influence of GSH redox pathway on cel! sensitivity to Adriamycin have shown that 

human ovarian cancer lines (Hamilton et al., 1985), MCF-7 breast tumour cells 

(Dusre et al., 1989) and HL-60 leukemic cel!s (Raghu et al., 1993) were sensitized ta 

Adriamycin through depletion of GSH. 

In conclusion, this study demonstrates clearly that hyperthennia could be 

useful as a modifier of multidrug resistance mediated by MRPl. Adriamycin can 

cause cell death by the mitochondrial pathway of apoptosis involving cytochrame c 

release from the mitochondria and the activation of caspases in human cervical 

adenocarcinoma cells (HeLa and HeLaMRP). Based on cellular studies, hyperthermia 

combined with Adriamycin could be a useful strategy for elimination of tumour cells 
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at the clinical level. However further investigation of mechanisms of toxicity induced 

by heat and drugs are required. 

Future perspectives 

We have found that Adriamycin can cause cell death by the mitochondrial 

pathway of apoptosis involving cytochrome c release from the mitochondria and the 

activation of caspases. However, the possible involvement of the death receptor 

pathway of apoptosis should also be taken into account. Future perspectives of our 

study will be the investigation of the role of death receptors in Adriamycin-induced 

apoptosis. Apoptosis could also occur via death receptor pathways without the 

involvement of cytochrome c. With respect to the death receptor-mediated pathway, 

Adriamycin was shown to increase apoptosis by recombinant Fas ligand (rFsaL) in 

neonatal rat cardiomyocytes (Yomaoka et al., 2000). 

To determine the involvement of death receptor mediated cell death by 

Adriamycin alone and combined with hypelthermia in HeLa and HeLaMRP cells, the 

activity of initiator caspase-S was measured. Hyperthermia induced the activation of 

caspase-S (Fig. lA) relative to unheated control cells at 37°C. Activation of caspase S 

was observed at temperatures of 41-45°C in HeLa and HeLaMRP cells (Fig lA). 

HeLaMRP cells were slightly less sensitive to heat (Fig. lA). Adriamycin (0-2fA.M for 

HeLa, O-IOfA.M for HeLaMRP cells) increased caspase-S activity in HeLa cells but 

caspase-S activity was decreased by Adriamycin in HeLaMRP cells (Fig. lB, C). 

Hyperthermia was unable to increase caspase-S activation by Adriamycin in 

HeLaMRP cells. Future studies will determine the reasons for differing responses of 

caspase-S in Adriamycin treated HeLa and HeLa MRP cells. 
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The MRP-transfected HeLa cells display an increase in resistance to 

Adriamycin that is proportional to the levels of integral membrane MRP expression. 

Overexpression of the human MRP protein causes a forro of multidrug resistance 

similar to that conferred by P-glycoprotein, although the two proteins are only 

distantly related. In contrast to P-glycoprotein, human MRP has also been shown to 

be a primary active transporter of a structurally diverse range of organic anionic 

conjugates, sorne of which may be physiological substrates. Consequently, the use of 

higher concentrations of Adriamycin may lead to the induction of apoptosis. 
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Figure3.!: Activation of caspase 8 by hyperthermia and/or Adriamycin. (A) HeLa 

([J) and HeLaMRP cel1s (.) were heated (37 to 45°C) for 2h. HeLa (B) and HeLaMRP 

(C) ceUs were incubated in monolayer with different concentrations of Adriamycin for 

l8h at 37°C or for lh at 42°C and l4h at 37°C. Activities of caspase-8 were expressed 

relative to untreated HeLa ceUs at 37°C, designated as 1.0. Means ± SEM are shown from 

at least three independent experiments. 



REFERENCES 

Adams JM and Cary S. The bcl-2 protein family: arbiters of cell survival. Science. 
1998,281; 1322-1326. 

Adrain C and Martin SJ. The mitochondrial apoptosome: a killer unleashed by 
cytochrome c. Trends Biochem Sei. 2001,26; 390-397. 

Alexander HR and Fraker DL. Treatment of peritoneal carcinomatosis by continuous 
hyperthermie peritoneal perfusion with cisplatin. Cancer Treat Res. 1996, 81; 41-50. 

Almquist KC, Loe DW, Hipfner DR, Mackie JE, Cole SP and Deeley SP. 
Characterization of the mer) 190,000 multidrug resistance protein (rnrp) in drug­
selected and transfected human tumor cell. Cancer Res. 1995,55,102-110. 

Arcamone F, Cassinelli G, Fantini G, Grein A, Orezzi P, Pol C and Spalla e. 
Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from s. peucetius 
var. caesius. Biotechnol Bioeng. 1969,6; 1101-1110. 

Arends MJ and Wyllie AH. Apoptosis: mechanisms and role in pathology. lnt Rev 
Exp Pathol. 1991,32; 223-254. 

Armour EP, McEachem D, Wang Z, COITY PM and Martinez A. Sensitivity of human 
ceUs to mild hyperthermia. Cancer Res. 1993,53; 2740-2744. 

Ashkenazi A and Dixit VM. Apoptosis control by death and decoy receptors. CUIT 
opin Cell Biol. 1999, 11; 255-260. 

Ashkenazi A. Targeting death and decoy receptors of the tumour necrosis factor 
superfamily. Nat Rev Cancer. 2002,2; 420-430. 

Avendano C and Menendez Je. lnhibitors of multidrug resistance to antitumor agents 
(mdr). CUIT Med Chem. 2002,9; 159-193. 

Averill DA and Larri vee B. Hyperthermia, cyclosporine A and melphalan 
cytotoxicity and transport in multidrug resistant cells. lnt J Hyperthermia. 1998, 14; 
3-8. 

Averill DA and Su e. Sensitization to the cytotoxicity of adriamycin by verapamil 
and heat in multidrug-resistant Chinese hamster ovary cells. Radiat Res. 1999, 151; 
694-702. 



99 

Averill-Bates DA and Przybytkowski E. The role of glucose in cellular defences 
against cytotoxicity of hydrogen peroxide in Chinese hamster ovary cells. Arch 
Biochem Biophys. 1994,312; 52-58. 

Bachur NR, Gordon SL and Gee MV. Anthracycline antibiotic augmentation of 
microsomal electron transport and free radical formation. Mol Pharmaco!. 1977, 13; 
901-910. 

Bagrij T, Klokouzas A, Hladky SB and Barrand MA. Influences of glutathione on 
anionic substrate efflux in tumour cells expressing the multidrug resistance-associated 
protein, mrp1. Biochem Pharmaco!. 2001, 62; 199-206. 

Bakos E, Evers R, Szakacs G, Tusnady GE, Welker E, Szabo K, de Haas M, van 
Deemter L, Borst P, Varadi A and Sarkadi B. Functional multidrug resistance protein 
(mrpl) lacking the n-terminal transmembrane domain. J Biol Chem. 1998, 273; 
32167-32175. 

Bakos E, Hegedu T, Hollo Z , Welker E, Tusna GE, Zaman JR, Marcel JF and 
Sarkadi B. Membrane topology and glycosylation of the human multidrug resistance­
associated Protein. J Biol Chem. 1996,271; 12322-12326. 

Barres BA, Hart IK, Coles HS, Burne JF, Voyvodic JT, Richardson WD and Raff 
MC. Cell death in the oligodendrocyte lineage. J Neurobiol. 1992,23; 1221-1230. 

Barres BA, Hart IK, Coles HS, Burne JF, Voyvodic JT, Richardson WD and Raff 
MC. Cell death and control of cell survival in the oligodendrocyte lineage. 
Cel!. 1992, 70; 31-46. 

Basanez G. Bax, but not beI-xL, decreases the Iifetime of planar phospholipid bilayer 
membranes at subnanomolar concentrations. Proc Natl Acad Sei USA. 1999, 96; 
5492-5497. 

Bates DA and Winterbourn CC. Deoxyribose breakdown by the adriamycin 
semiquinone and H20 2: evidence for hydroxyl radical participation. FEBS Lett. 1982, 
145; 137-142. 

Bates DA, Le Grimellec C, Bates JH, Loutfi A and Mackillop WJ. Effects of thermal 
adaptation at 40 degrees C on membrane viscosity and the sodium-potassium pump in 
Chinese hamster ovary cells. Cancer Res. 1985,45; 4895-4899. 

Bates DA and Mackillop WJ. Hyperthermia, adriamycin transport, and cytotoxicity in 
drug-sensitive and -resistant chinese hamster ovary ceUs. Cancer Res. 1986, 46; 
5477-5481. 



100 

Bates DA and Mackillop WJ. The effect of hyperthennia in combination with 
melphalan on drug-sensitive and drug-resistant CHO cells in vitro. Br J Cancer. 1990, 
62; 183-188. 

Bates DA and Mackillop WJ. The relationship between membrane permeability to 
adriamycin and adriamycin cytotoxicity in Chinese hamster ovary cells at elevated 
temperatures. Cancer LeU. 1987a, 38; 129-135. 

Bates DA and MacKillop WJ. The effect of hyperthennia on intracellular K+ in 
chinese hamster ovary cells. Cancer Lett. 1987b, 37; 181-187. 

Beck J and Gekeler ND. High mdrl- and mrp-, but low topoisomerase II alpha-gene 
expression in B-cell chronic Iymphocytic leukaemias. Cancer Leu. 1994, 86; 135­
142. 

Bicher HI, Hetzel FW and Sandhu TS. Effects of hyperthennia on nonnal and tumour 
rnicroenvironment. Radiology. 1980, 137; 523-530. 

Biedler JL and Riehm H . Cellular resistance to actinomycin D in Chinese hamster 
cells in vitro: cross-resistance, radioautographic, and cytogenetic studies. Cancer Res. 
1970,30; 1174-1184. 

Black SM and Wolf CR. The role of glutathione-dependent enzymes !TI drug 
resistance. Phannacol Ther. 1991,5; 139-154. 

Bodo A, Bakos E, Szeri F, Varadi A and Sarkadi B. Differentiai modulation of the 
human liver conjugate transporters rnrp2 and rnrp3 by bile acids and organic anions. J 
Biol Chem. 2003,278; 23529-23537. 

Bogovic J, Douwes F and Muravjov G. Post treatment histology and microcirculation 
status of osteogenic sarcoma after a neoadjuvant chemo- and radiotherapy in 
combination with local electromagnetic hyperthermia. Onkologie. 2001, 24; 55-58. 

Borst P, Evers R, Kooi M and Wijnholds J. A family of drug transporters: the 
rnultidrug resistance-associated proteins. J Natl Cancer Inst. 2000, 92; 1295-1302. 

Bounias M, Kladny J, Kruk l, Michalska T and Lichszteld K. Effects of catechols on 
free radical fonnation by chemotherapeutic agents (adriamycin, fannorubicin, and 
rnitomycin). Cancer Detect Prev.1997, 21; 553-562. 

Breckenridge DG, Nguyen M, Kuppig S, Reth M and Shore Gc. The procaspase-8 
isofOlm, procaspase-8L, recruited to the bap31 complex at the endoplasmic reticulum. 
Froc Natl Acad Sci USA. 2002, 99; 4331-4336. 



101 

Brooks T, Minderman H, Kieran L. OLoughlin, Pera P, Ojima l, Baer MR and Ralph 
JB. Taxane-based reversaI agents modulate drug resistance mediated by p­
glycoprotein, multidrug resistance protein, and breast cancer resistance protein. Mol 
Cancer Ther. 2003,2; 1195-1205. 

Brunner T and Mueller C. Apoptosis in disease: about shortage and excess essays 
Biochem. 2003,39; 119-130. 

Budihardjo l, Oliver H., Lutter M., Luo X and Wang X. Biochemical pathways of 
caspase activation during apoptosis. Annu. Rev Cell Dev Biol. 1999, 15; 269-290. 

Burger H, Nooter K, Sonneveld P, Van Wingerden KE, Zaman Gand Stoter G. High 
expression of the multidrug resistance-associated protein (rnrp) in chronic and 
prolymphocytic leukaemia. Br J Haematol. 1994a, 88; 348-356. 

Burger H, Nooter K, Zaman GJ, Sonneveld P, van Wingerden KE, Oostrum RG and 
Stoter G. Expression of the multidrug resistance-associated protein (mrp) in acute and 
chronic leukemias. Leukemia. 1994b, 8; 990-997. 

Burke MB, Wilkes GM, Ingwersen K, Bean CK, Berg D. Cancer chemotherapy: a 
nursing process approach. (2nd ed.) 1996. 

Center MS. Evidence that adriamycin resistance in chinese hamster lung cells is 
regulated by phosphorylation of a plasma membrane glycolprotein. Biochem. 
Biophys Res Commumn. 1983, 115; 159-166. 

Chaires JB, Herrera JE and Waring M. Preferential binding of daunomycin to 
5'ATCG and 5'ATGC sequences revealed by footprinting titration experiments. 
Biochemistry. 1990,29; 6145-6153. 

Chandra J, Samali A and Orrenius S. Triggering and modulation of apoptosis by 
oxidative stress. Free Radie Biol Med. 2000, 29; 323-333. 

Chauvier D, Kegelaer G, Morjani H and Manfait M. ReversaI of multidrug resistance­
associated protein-mediated daunorubicin resistance by camptothecin. J Pharm Sei. 
2002,91; 1765-1775. 

Chen CJ, Chin JE, Ueda K, Clark DP, Pastan l, Gottesman MM and Roninison lB. 
The internaI duplication and homology to bacterial transport proteins in the mdr-1 (p­
glycoprotein) gene from multidrug-resistant human cells. Cell. 1986,47; 381-389. 

Cheng EH, Levine B. Boise LH and Thompson CB. Bax-independent inhibition of 
apoptosis by bel-xl. Nature. 1996,379; 554-556. 



102 

Chu GL and Dewey Wc. The raie of low intracellular or extracellular pH In 

sensitization to hyperthermia. Radiat Res. 1988, 114; 154-167. 

Cikala M, Wilm B, Hobmayer E, Bottger A and David CN. Identification of caspases 
and apoptosis in the simple metazoan Hydra. CUIT Biol. 1999,9; 959-962. 

Cole SP, Bhardwaj G, Gerlach JH, MadGe JE, Grant CE, Almquist KC, Stewart AJ, 
Kurz EU, Duncan AM and Deeley RG. Overexpression of a transporter gene in a 
multidrug-resistant human 1ung cancer cell1ine. Science. 1992,258; 1650-1654. 

Cole SP, Sparks KE, Fraser K, Loe DW, Grant CE, Wilson GM and Deeley RG. 
Pharrnacological characterization of multidrug resistant mrp-transfected human tumor 
cells. Cancer Res. 1994.54; 5902-5910. 

Coley WB. Contribution to the knowledge of sarcoma. Ann Surg. 1891, 14; 199-220. 

Coley WB. Treatment of inoperable malignant tumors with toxins of erysipelas and 
the bacillus pradigiosus. Trans Am Surg Assn. 1894, 12; 183-212. 

Cory S, Huang DC and Adams JM. The Bcl-2 family: raies in cell survival and 
oncogenesis. Oncogene. 2003,22; 8590-8607. 

Coultas L, Pellegrini M, Visvader JE, Lindeman GJ, Chen L, Adams JM, Huang DC 
and Strasser A. Bfk: a novel weakIy proapoptotic member of the Bcl-2 protein family 
with a BH3 and a BH2 region. Cell Death Differ. 2003, 2; 185-192. 

Cregan S, Fortin A, Maclaurin JG, Callaghan SM and Slack RS. Apoptosis-inducing 
factor is involved in the regulation of caspase-independent neuronal ceU death. J Cell 
Biol. 2002,158; 507-517. 

Cranau LH and Newman BM. Chemotherapy resistant sarcoma treated with whole 
body hyperthermia combined with 1-3-bis (2-chIoraethyl)-I-nitrosourea (BCNU). Int 
J Hyperthermia. 1992,8; 297-304. 

Dahl O. Interaction of hyperthermia and chemotherapy. Rec Res Cancer Res 1988, 
107; 157-169. 

DahI O. Mechanisms of thermal enhancement of chemotherapeutic cytotoxicity. In: 
Urano M, Douple E (eds), Hyperthermia and oncology. 1994,4; 9-28. 

Dano K. Active outward transport of daunomycin in resistant ehrlich ascites tumor 
cells. Biochim Biophys Acta. 1973,323; 466-483. 



103 

De Laurenzi V and Melino G. Apoptosis: The litt1e devil of death. Nature. 2000, 406; 
135-136. 

De Wit R, Van der Zee J and Van der Burg MEL. A phase lIII study of combined 
weekly systemic cisplatin and locoregional hyperthermia in patients with previously 
irradiated recurrent carcinoma of the uterine cervix. Br J Cancer. 1999, 80; 1387­
1391. 

Desagher Sand Martinou Je. Mitochondria as the central control point of apoptosis. 
Trends Cell Bio!. 2000, 10; 369-377. 

Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, Maundrell 
K, Antonsson Band Martinou JC. Bid-induced conformational change of Bax is 
responsible for mitochondrial cytochrome c release during apoptosis. J Cell Bio!. 
1999, 144; 891-901. 

Doige CA and Sharom Fl Transport properties of p-glycoprotein in plasma 
membrane vesicles from multidrug-resistant chinese hamster ovary cells. Biochim 
Biophys Acta. 1992, 1109; 161-171. 

Doll R, Peto R, Wheat1ey K, Gray R and Sutherland 1. Mortality 10 relation to 
smoking: 40 years' observation on male British doctors. Br Med l 1994, 309; 901­
911. 

Dong Z, Radinsky R, Fan D, Tsan R, Bucana CD, Wilmanns C and Fidler Il Organ­
specifie modulation of steady-state mdr gene expression and drug resistance in 
murine colon cancer cells. J Natl Cancer Inst. 1994,86; 913-920. 

Doroshow JH. Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, 
and hydroxyl radical production by NADH dehydrogenase. Cancer Res. 1983, 43; 
4543-4551. 

Drach D, Zhao Sand Drach l Subpopulations of normal peripheral blood and bone 
marrow cells express a functional multidrug resistance. Blood. 1992, 80; 2729-2734. 

Drach J, Gsur A and Hamilton G. Involvement of P-glycoprotein in the 
transmembrane transport of interleukin-2 (IL-2), IL-4, and interferon-y in normal 
human T lymphocytes. Blood. 1998,88; 1747-1754. 

Du C, Fang M, Li L and Wang X. Smac, a mitochondrial protein that promotes 
cytochrome c-dependent caspase activation by elimination IAP inhibiton. Cel!. 2000, 
102; 33-42. 



104 

Dusre L, Mimnaugh EG, Myers CE and Sinha BK. Potentiation of doxorubicin 
cytotoxicity by buthionine sulfoximine in multidrug-resistant human breast tumor 
ceUs. Cancer Res. 1989,49; 511-515. 

Earhart RH. Docetaxel (taxotere): preclinical and general clinical information. Sernin 
Onco1.1999, 26; 8-13. 

Eamshaw WC, Martins LM and Kaufmann SH. Mammalian caspases: structure, 
activation, substrates, and functions during apoptosis. Annu Rev Biochem. 1999,68; 
383-424. 

Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A and Nagata S. A caspase­
activated DNase that degrades DNA during apoptosis, and its inhibitor rCAD. Nature. 
1998,391; 43-50. 

Eskes R, Desagher S, Antonsson Band Martinou JC. Bid induces the oligomerization 
and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol. 2000,20; 
929-935. 

Evan GI and Vousden KR. Proliferation, cell cycle and apoptosis In cancer. 
Nature. 2001,411; 342-348. 

Evans AA, O'Connell AP and Pugh JC. Geographie variation in viral load among 
hepatitis B carriers with differing risks of hepatoceUular carcinoma. Cancer 
Epidemiol Biomarkers Prey. 1998,7; 559-565. 

Fadeel B, Orrenius Sand Zhivotovsky B. Apoptosis in human disease: a new skin for 
the old ceremony? Biochem. Biophys. Res. Commun. 1999,266; 699-717. 

Fajardo LF. Pathological effects of hyperthermia in normal tissues. Cancer Res. 1984, 
44; 4826-4835. 

Femandez SB, Hollo Z, Kem A, Bakos E, Fischer PA, Borst P and Evers R. Role of 
the n-terminal transmembrane region of the multidrug resistance protein mrp2 in 
routing to the apical membrane in MDCKII ceUs. Biol Chem. 2002, 277; 31048­
31055. 

Ferri KF and Kroemer G. Organelle-specifie initiation of cell death pathways. Nat 
Ce]] Biol. 2001,3; 255-263. 

Field SB and Bleehen NM. Hyperthermia in the treatment of cancer. Cancer Treat 
Rev. 1979, 6; 63-94. 

Finkel E. The mitochondria: is the central to apoptosis? Science. 2001,292; 624-626. 



105 

Flanagan SW, Moseley PL and Buettner GR. Increased flux of free radicals in cells 
subjected to hyperthermia: Detection by electron paramagnetic resonance spin 
trapping. FEBS Lett. 1998,431; 285-286. 

Fleming ID. Surgical therapy. In: Lenhard RE, Osteen RT and Gansler T (eds), 
Clinical Oncology. 2001, 160-165. 

Fraker DL. Management of in-transit melanoma of the extremity with isolated limb 
perfusion. CUIT Treat Options Oncol. 2004, 3; 173-84. 

Frank MB, Denton MD, Alexander SI, Khoury SJ, Sayegh MB and Briscoe DM. 
Specific NIDRI P-glycoprotein blockade inhibits human alloimmune T cell activation 
in vitro. J Immunol. 2001, 166: 2451-2459. 

Frederick CA, Williams LD, Ughetto G, van der Marel GA, van Boom JB, Rich A 
and Wang AH. Structural comparison of anticancer drug-DNA complexes: 
adriamycin and daunomycin. Biochemistry. 1990,29; 2538-2549. 

Gaber MH. Modulation of doxorubicin resistance in multidrug-resistance cells by 
targeted liposomes combined with hyperthermia. J Biochem Mol Biol Biophys. 2002, 
5; 309-14. 

Gao YG and Wang AH. Influence of aglycone modifications on the binding of 
anthracycline drugs to DNA: the molecular structure of idarubicin and 4-0-demethyl­
ll-deoxydoxorubicin complexed to d(CGATCG). Anticancer Drug Des. 1991,3; 137­
49. 

Gao M, Loe DW, Grant CE, Cole SP and Deeley RG. Reconstitution of ATP­
dependent leukotriene C4 transport by co-expression of both half-molecules of 
human multidrug resistance protein in insect cells. J Biol Chem. 1996, 271; 27782­
27787. 

Gao M, Yamazaki M, Loe DW, Westlake CJ, Grant CE, Cole SP, and Deeley RG. 
Multidrug resistance protein. Identification of regions required for active transport of 
leukotriene C4. J Biol Chem. 1998,273; 10733-10740. 

Garfinkel L. Cancer clusters. CA Cancer J Clin. 1987,37; 20-25. 

Georges E, Sharom FJ and Ling V. Multidrug resistance and chemosensitization: 
therapeutic implications for cancer chemotherapy. Adv Pharmacol. 1990, 21; 185­
220. 

Gemer EW, Bolmes DK, Stickney DG, Noterman JA and Fuller Dl Enhancement of 
hyperthermia-induced cytotoxicity by polyamines. Cancer Res. 1980, 2; 432-438. 



106 

Gerweck LE. Modifiers of thermal effects: environmental factors. In Urano M, 
Douple E (eds). Hyperthermia and oncology. 1988, 1; 83-98. 

Gewirtz DA. A cri tical evaluation of the mechanisms of action proposed for the 
antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. 
Biochemical Pharmacology. 1999,57; 727-741. 

Gianni L, Grasselli G, Cresta S, Locatelli A, Vigano Land Minotti G. 
Anthracyclines. Cancer Chemother Biol Response Modif. 2003, 21; 29-40. 

Gille Land Nohl H. Analyses of the molecular mechanism of adriamycin-induced 
cardiotoxicity. Free Radic Biol Med. 1997,23; 775-782. 

Gottesman MM and Pastan 1. Biochemistry of multidrug resistance mediated by the 
multidrug transporter. Annu Rev Biochem. 1993,62; 385-427. 

Grant CE, Valdimarsson G, Hipfner DR, Almquist KC and Cole SP. Overexpression 
of multidrug resistance-associated protein (rnrp) increases resistance to natural 
product drugs. Cancer Res. 1994,54; 357-361. 

Green DR and Reed JC. Mitochondria and apoptosis. Science. 1998,281; 1309-1312. 

Gros P, Ben Neriah YB, Croop JM and Housman DE. Isolation and expression of a 
complementary DNA that confers multidrug resistance. Nature. 1986,6090; 728-731. 

Gross A, McDonnell JM and Korsmeyer SJ. Bcl-2 family members and the 
mitochondria in apoptosis. Genes Dev. 1999,13; 1899-1911. 

Haim 1 and Bicher MD. Protracted Thermo radiotherapy treating to effect with 
objective endpoint. Destin, Florida, USA. 2002. 

Haimovitz A, Kan C and Enleiter D. Ionizing radiation acts on cellular membrane to 
generate ceramide and initiate apoptosis. Journal of experimental medicine. 1994, 
180; 525-535. 

Halliwell Band Gutteridge JMC. Free radicals in biology and medicine 3rd ed. New 
York: Oxford University Press. 1999,879; 710-712. 

Hamilton TC, Winker MA, Louie KG, Batist G, Behrens BC, Tsuruo T, Grotzinger 
KR, McKoy WM, Young RC and Ozols RF. Augmentation of adriamycin, 
melphalan, and cisplatin cytotoxicity in drug-resistant and -sensitive human ovarian 
carcinoma cell !ines by buthionine sulfoximine mediated glutathione depletion. 
Biochem Pharmacol 1985,34; 2583-2586. 



107 

Hardy S, St-Onge GG, Joly E, Langelier Y and Prentki M. Oleate promotes the 
proliferation of breast cancer cells via the G protein-coupled receptor GPR40. J Biol 
Chem. 2005,280; 13285-13291. 

Hau P, Fabel K, Baumgart D, Rummele P, Grauer 0, Bock A, Dietmaier C, 
Dietmaier W, Dietrich J, Dudel C, Hubner F, Jauch T, Drechsel E, Kleiter I, Wismeth 
C, Zellner A, Brawanski A, Steinbrecher A, Marienhagen J and Bogdahn U. 
Pegylated liposomal doxorubicin-efficacy in patients with reCUITent high-grade 
glioma. Cancer. 2004,100; 1199-1207. 

Hayashi S, Kano E, Tsuji K, Furukawa-Furuya M, Yoshikawa S, Hatashita M, 
Matsumoto H, Jin ZH, Ohtsubo T and Kitai R. Modification of thermosensitivity and 
chemosensitivity induced by combined treatments with hyperthermia and adriamycin. 
Int J Mol Med. 2001, 8; 417-422. 

Heath CW Jr. Investigating causation in cancer clusters. Radiat Environ Biophys 
1996,35; 133-136. 

Hegewisch-Becker S, Braun K, OUe M, Corovic A, Atanackovic D, Nierhaus A, 
Hossfeld DK and Pantel K. Effects of whole body hyperthermia (41.8 degrees C) on 
the frequency of tumor cells in the peripheral blood of patients with advanced 
malignancies. Clin Cancer Res. 2003,6; 2079-2084. 

Hehr T, Wust P, Bamberg M and Budach W. CUITent and potential role of 
thermoradiotherapy for solid tumours. Onkologie. 2003,26; 295-302. 

Hendrikse NH, Franssen EJ, van der Graaf WT, Vaalburg W and de Vries EG. 
Visualization of multidrug resistance in vivo. Eur J Nucl Med. 1999, 3; 283-93. 

Hengartner MOThe biochemistry of apoptosis. Nature. 2000, 407; 770-777. 

Hengstler JG, Lange J, Kett A, Domhofer N, Meinert R, Arand M, Knapstein PG, 
Becker R, Oesch F and Tanner B. Contribution of c-erbB-2 and topoisomerase 
IIalpha to chemoresistance in ovarian cancer. Cancer Res. 1999, 13; 3206-3214. 

Herman TS, Cress AE, Sweets C and Gemer EW. Reversai of resistance to 
methotrexate by hyperthermia in Chinese hamster ovary cells. Cancer Res. 1981, 10; 
3840-3843. 

Herman TS, Zukoski CS and Anderson RM. Review of the CUITent status of whole­
body hypertheITnia administered by water circulation techniques. Natl Cancer Inst 
Monogr. 1982,61; 365-369. 



108 

Hermisson M and Weiler M. Hyperthermia enhanced chemosensitivity of human 
malignant glioma cells. Anticancer Res. 2000,20; 1819-23. 

Hildebrandt B, Drager J, Kerner T, Deja M, Loffel J, Stroszczynski C, Ahlers 0, 
Felix R, Riess H and Wust P. Whole-body hyperthermia in the scope of von 
Ardenne's systemic cancer multistep therapy (sCMT) combined with chemotherapy 
in patients with metastatic colorectal cancer: a phase VII study. Int J Hyperthermia. 
2004a, 20; 317-333 

Hildebrandt B, Wust P, Gellermann J, Nicolaou A, Trappe RU, Felix R, Riess H and 
Rau B. Treatment of locally recurrent rectal cancer with special focus on regional 
pelvic hyperthermia. Onkologie. 2004b, 5; 506-511. 

Hill IE, Murray C, Richard J, Rasquinha land MacManus JP. Despite the 
internucleosomal cleavage of DNA, reactive oxygen species do not produce other 
markers of apoptosis in cultured neurons. Exp Neurol. 2000, 162; 73-88. 

Hipfner DR, Deeley RG and Cole SP. Structural, mechanistic and chnical aspects of 
MRP1. Biochim Biophys Acta. 1999,1461; 359-376. 

Hirose M, Hosoi E, Hamano Sand Jalili A. Multidrug resistance in hematological 
malignancy. J Med Invest. 2003, 50; 126-135. 

Hof H and Debus J .Treatment of metastases-the place of radiotherapy. MMW 
Fortschr Med. 2005,147; 31-33. 

Homolya L, Varadi A and Sarkadi B. Multidrug resistance-associated proteins: 
Export pumps for conjugates with glutathione, glucuronate or sulfate. Biofactors. 
2003, 17; 103-114. 
Honess DJ and Bleehen NM. Thermal enhancement of drug cytotoxicity in vivo and 
in vitro. Recent Results Cancer Res. 1988, 109; 161-169. 

Hui-Yun Wu and Kang Y. Inhibition of buthionine sulfoximine-enhanced 
doxorubicin toxicity in metallothionein overexpressing transgenic mouse heart. J 
Pharmacol Exp Ther. 1998,287; 515-520. 

Hurley LH. DNA and its associated processes as targets for cancer therapy. Nat Rev 
Cancer. 2002, 2; 188-200. 

Iemwananonthachai N, Pattaranutaporn P, Chansilpa y and Sukkasem M 
Hyperthermia in combination with radiation therapy for treatment of advanced 
inoperable breast cancer. J Med Assoc Thai. 2003, 86; 715-721. 



109 

Ishikawa I. The ATP-dependent glutathione s-conjugate export pump. TIBS. 1992, 
17; 763-468. 

Ishizuya-Oka A and Shimozawa A. Programmed cell death and heterolysis of larval 
epithelial cells by macrophage-like cells in the anuran small intestine in vivo and in 
vitro. J Morpho!. 1992,213; 185-195. 

Issels R, Prenninger SW and Nagele A. Ifosfamide plus etoposide combined with 
regional hyperthermia in patients with locally advanced sarcomas. J Clin Onco!. 
1990,11; 1818-1829. 

Issels RD, Avdel-Rahman Sand Wendtner CM. Neoadjuvant chemotherapy 
combined with regional hyperthermia (RHT) for locally advanced primary or 
recurrent high-risk adult soft-tissue sarcomas (STS) of adults: long-term results of 
phase II study. Eur J Cancer. 2001, 37; 1599-1608. 

Ito K, Olsen SL, Qiu W, Deeley RO and Cole SP. Mutation of a single conserved 
tryptophan in multidrug resistance protein 1 (mrpl/abcc1) results in Joss of drug 
resistance and selective loss of organic anion transport. Biol Chem. 2001, 276; 
15616-156124. 

Jia L, Patwari Y, Kelsey SM, Srinivasula SM, Agrawal SO, Alnemri ES, Newland 
AC. Role of Smac in human leukaemic cell apoptosis and proliferation. Oncogene. 
2003,22; 1589-1599. 

Jung K and Reszka R. Mitochondria as subcellular targets for clinically useful 
anthracyclines. Adv Drug Del Rev. 2001,49; 87-105. 

Kalyanaraman B, Joseph J, Kalivendi S, Wang S, Konorev E and Kotamraju S. 
Doxorubicin-induced apoptosis: implications in cardiotoxicity. Mol Cell Biochem. 
2002, 234; 119-24. 

Kampinga HH and Dikomey E. Hyperthermie radiosesnitization: mode of action and 
clinical relevance. Int J Radiot boi!. 2001,77; 399-408. 

Kapp DS, Hahn OM and Carlson RW. Principles of Hyperthermia. In: Bast RC Jr, 
Kufe DW, Pollock RE. (eds). Cancer Med. 5th ed. Hamilton, Ontario: B.C. Decker 
Inc., 2000. 

Kamer KB, Lesnicar H, Cemazar M and Sersa O. Antitumour effectiveness of 
hyperthermia is potentiated by local application of electric pulses to LPB tumours in 
mice. Anticancer Res. 2004, 24; 2343-2348. 



110 

Kartner N, Riordan JR and ling V. Cell suriace P-glycoprotein associated with 
rnultidrug resistance in mammalian celilines. Science. 1983,221; 1285-1288. 

Karwatsky J, Leimanis M, Cai J, Gros P and Georges E. The leucotriene C4 binding 
sites in multidrug resistance protein 1 (abccl) include the first membrane multiple 
spanning domain. Biochemistry. 2005, 44; 340-351. 

Kast G and Gros P. Epitope insertion favors a six transmembrane domain model for 
the carboxy-terminal portion of the multidrug resistance-associated protein. 
Biochemistry. 1998,37; 2305-2313. 

Katschinski DM, Wiedemann GJ and Longo W. Whole body hyperthermia cytokine 
induction: a review, and unifying hypothesis for myeloprotection in the setting of 
cytotoxic therapy. Cytokine Growth Factor Rev. 1999, 10; 93-97. 

Kaufmann SH and Eamshaw Wc. Induction of apoptosis by cancer chemotherapy. 
Exp Cell Res. 2000, 256; 42-49. 

Keizer HG, Pinedo HM, Schuurhuis GJ and Joenje H. Doxorubicin (adriamycin): a 
critical review of free radical-dependent mechanisms of cytotoxicity. Phannacol 
Ther. 1990,47; 219-231. 

Keleker A, Chang BS, Harlan JE, Fesik SW and Thomposn CB. Bad is a BH3 
domain containing protein that fonns an inactivating dimmer with Bel-Xl. Mol Cell 
Biol. 1997, 17; 7040-7046. 

Keppler D, Leier I, Jedlitschky Gand Konig J. ATP-dependent transport of 
glutathione S-conjugates by the multidrug resistance protein MRP1 and its apical 
isofonn mrp2. Chem Biol Interact. 1998, Ill; 153-161. 

Kerr J, Witeriord C and Hannon B. Apoptosis: its significance in cancer and cancer 
therapy. Cancer. 1994, 73; 2013-26 

Kerr JFR, Hannon B and Searle J. An electron-microscope study of cell deletion in 
the anuran tadpole tail during spontaneous metamorphosis with special reference to 
apoptosis of striated muscle fibers. J Cell Sei. 1974, 14; 571-585. 

Kerr JFR, Whyllie AH, Currie AR. Apoptosis: a basis biological phenomenon with 
wide-ranging implications in tissue kinetics. Br J Cancer. 1972, 26; 239-571. 

Khayat D, Antoine EC, Coeffic D. Taxol in the management of cancers of the breast 
and the ovary. Cancer Invest. 2000, 18; 242-260. 



111 

Kluck RM. The release of cytochrome c from mitochondria: a primary site for Bcl-2 
regulation of apoptosis. Science. 1997,275; 1132-1136. 

Kobayashi Y, Ishihara T, Wada M, Kajihara S, Araki J, Mifuji R, Itani T, Kuroda M, 
Urawa F, Kaito M and Adachi Y. Dubin-Johnson-like black liver with normal 
bilirubin level. J Gastroenterol. 2004, 39; 892-895. 

Korsmeyer SJ. Regulators of cell death. Trends Genet. 1995, Il; 101-105. 

Kubota N, Kakehi M and Inada T: Hyperthermic enhancement of cell killing by five 
platinum complexes in human malignant melanoma cells grown as monolayer 
cultures and multicellular spheroids. Int J Radial Oncol Boil Phys. 1993,25; 491-497. 

Lamb HM and Wiseman LR. Docetaxel. A pharmacoeconomic review of its use in 
the treatment of metastatic breast cancer. Phannacoeconomics. 1998, 14; 447-459. 

Landry J, Chretien P, Bernier D, Nicole LM, Marceau N and Tanguay RM. 
Thermotolerance and heat shock proteins induced by hyperthennia in rat liver cells. 
Int J Radiat Oncol Biol Phys. 1982a, 8; 59-62. 

Landry J, Bernier D, Chretien P, Nicole LM, Tanguay RM and Marceau N. Synthesis 
and degradation of heat shock proteins during development and decay of 
thermotolerance. Cancer Res. 1982b, 42; 2457-2461. 

Lange J, Zanker KS, Siewert JR, Eisler K, Landauer B, Kolb E, Blumel G and Remy 
W. Extracorporeally induced whole-body hyperthermia in conventionally incurable 
rnalignant tumor patients Dtsch Med Wochenschr. 1983, 108; 504-509. 

Lanivée Band Averill DA. Melphalan resistance and photoaffinity labelling of P­
glycoprotein in multidrug-resistant Chinese hamster ovary cells: reversai of resistance 
by cyclosporin A and hyperthermia. Biochem Pharmacol. 1999, 58; 291-302. 

Lanivée Band Averill DA. Modulation of adriamycin cytotoxicity and transport in 
drug-sensitive and multidrug-resistant Chinese hamster ovary cells by hyperthennia 
and cyclosporin A. Cancer Chemother Pharmacol. 2000,45; 219-230. 

Law MP. Prospects for hyperthelmia in cancer therapy. Radiography. 1982, 48; 209­
219. 

Lee V, Randhawa AK and Singal PK. Adriamycin-induced myocardial dysfunction in 
vitro is mediated by free radicals. Am J Physiol. 1991,261; 989-995. 

Leonard GD, Fojo T and Bates SE. The role of ABC transporters in clinical practice. 
Oncologist. 2003, 8; 411-424. 



112 

Leslie EM, Mao Q, Oleschuk CJ, Deeley RG, and Cole SP. Modulation of multidrug 
resistance protein 1 (mrpl/abccl) transport and ATPase activities by interaction with 
dietary flavonoids. Mol Phannaco!. 2001, 59; 1171-1180. 

Levitz JS, Bradley TP and Golden AL. Overview of smoking and ail cancers. Med 
Clin North Am. 2004, 88; 1655-75. 

Li Da-Qiang, Wang Zhi-Biao, Bai Jin, Zhao Jie, Wang Yuan, Hu Kai and Du Yong­
Hong. ReversaI of multidrug resistance in drug-resistant human gastric cancer cell 
line SGC790l/VCR by antiprogestin drug mifepristone. World J Gastroentero!. 2004, 
10; 1722-1725. 

Li G, Mitsumori M, Ogura M, Horii N, Kawamura S, Masunaga S, Nagata Y and 
Hiraoka M. Local hyperthermia combined with extemal irradiation for regional 
recurrent breast carcinoma. Int J Clin Onco!. 2004, 9; 179-83. 

Li GC and Werb Z. Correlation between synthesis of heat shock proteins and 
development of thennotolerance in Chinese hamster fibroblasts. Proc Natl Acad Sci 
USA. 1982,79; 3218-3222. 

Li L, Luo X and Wang X. Endonuclease G is an apoptotic DNase when released from 
mitochondria. Nature (Lond.). 2001,412; 95-99. 

Li Q, Bostick-Bruton F and Reed E. Effect of interleukin-1 alpha and tumour necrosis 
factor-alpha on cisplatin-induced ERCC-1 rnRNA expression in a human ovarian 
carcinoma cellline. Anticancer Res. 1998, 18; 2283-2287. 

Lin PS, Quamo S and Ho Ke. Hyperthennia enhances the cytotoxic effects of 
reactive oxygen species to Chinese hamster cells and bovine endothelial cells in vitro. 
Radiat Res 1991, 126; 43-51. 

Ling Y, Priebe W and Perez-Soler R. Apoptosis induced by anthracycline antibiotics 
in P388 parent and multidrug-resistant cells. Cancer Res. 1993, 53; 1845-1852. 

Ling, V and Thompson, LB. Reduced penneability in CHO cells as a renal cell 
carcinoma. Am J Clin Oncol (CCT). 1974, 17; 10-13. 

Linn SC and Giaccone G. MDR11P-glycoprotein expression in colorectal cancer. Eur 
cancer. 1995, 31; 1291-1294. 

Liu FF and Wilson Be. Hyperthermia and photodynamic therapy. In: Tannock IF , 
Hill RP , editors. The basic science of oncology. Toronto: McGraw-Hill. 1998, 443­
465. 



113 

Locksley RM, Killeen N and Lenardo Ml The TNF and TNF receptor super families: 
integrating mammalian biology. Cell. 2001, 104; 487-501. 

Loe DW, Almquist KC, Deeley RG and Cole SPC. Multidrug resistance protein 
(rnrp)-mediated transport of leukotriene C4 and chemotherapeutic agents in 
membrane vesicles: demonstration of glutathione-dependent vincristine transport. J 
Biol Chem. 1996,271; 9675-9682. 

Loe DW, Deeley RG and Cole SP. Biology of the multidrug resistance-associated 
protein-rnrp. Eur J Cancer. 1996, 32; 945-957. 

Loe DW, Deeley RG and Cole SP. Characterization of vincristine transport by the 
M(r) 190,000 multidrug resistance protein (rnrp): evidence for cotransport with 
reduced glutathione. Cancer Res. 1998,58; 5130-5136. 

Lord-Fontaine S, AveriU DA. Enhancement of cytotoxicity of hydrogen peroxide by 
hyperthermia in chinese hamster ovary cells: role of antioxidant defenses. Arch 
Biochem Biophys. 1999,2; 283-295. 

Lord-Fontaine S, Agostinelli E, Przybytkowski E and Averill-Bates DA. Amine 
oxidase, spermine, and hyperthermia induce cytotoxicity in P-glycoprotein 
overexpressing multidrug resistant Chinese hamster ovary cells. Biochem CeU Biol. 
2001,79; 165-175. 

Lord-Fontaine Sand Averill-Bates DA. Heat shock inactivates cellular antioxidant 
defenses against hydrogen peroxide: protection by glucose. Free Radic Biol Med. 
2002,32; 752-765. 

Los M, Stroh C, Janicke RU, Engels œ and Schulze Osthoff K. Caspases: more than 
just killers? Trends Immuno!. 2001, 22; 31-34. 

Los M, Wesselborg Sand Schulze-Osthoff K. The role of caspases in development, 
immunity and apoptotic signal transduction: lessons from knockout mice. Immunity. 
1999, 10; 629-639. 

Lown JW, Sim SK, Majumdar KC and Chang RY. Strand scission of DNA by bound 
adriamycin and daunorubicin in the presence of reducing agents. Biochem Biophys 
Res Commun. 1977,76; 705-710. 

Lucia MB, Cauda R, Landay AL, Malomi W, Donelli Gand Ortona L. 
Transmembrane P-glycoprotein (P-gp/P-170) in HlV infection: Analysis of 
lymphocyte surface expression and drug-unrelated function. AIDS Res Hum 
Retroviruses. 1995, Il; 893-901. 



114 

Ly JD, Grubb DR and Lawen A. The mitochondrial membrane potential (.~\jfm) in 
apoptosis; an update. Apoptosis. 2003,8; 115-128. 

MacEwan Dl TNF receptor subtype signalling: differences and cellular 
consequences. Cell Signal. 2002, 14; 477-492. 

Maclellan WR and Schneider MD. Death by design programmed cell death !TI 

cardiovascular biology and disease. Circ Res. 1997, 48; 267-81. 

Manfait M, Alix AJ, Jeannesson P, Jardillier JC and Theophanides T. Interaction of 
adriamycin with DNA as studied by resonance Raman spectroscopy. Nucleic Acids 
Res. 1982, 10; 3803-3816. 

Manning GS. The molecular theory of polyelectrolyte solutions with applications to 
the electrostatic properties of polynucleotides. Q Rev Biophys. 1978, 11; 179-246. 

Marino C, Cividalli A: Combined radiation and hyperthermia : effects of the number 
of heat fractions and their interval on normal and tumour tissues. Int J Hyperthermia. 
1992,8; 771-781. 

Marquardt D and Center MS. Drug transport mechanisms in HL60 cells isolated for 
resistance to adriamycin: evidence for nuclear drug accumulation and redistribution 
in resistant cells. Cancer Res. 1992,52; 3157-3163. 

Mayers CE, Mimnaugh EG, Yeh GG and Sinha BK. Biochemical mechanisms of 
tumour cell kill by the anthracyclines in anthracycline and anthracendione based 
anticancer agents. In: Lown JW (ed), Elsevier: Amsterdam. 1998,527-538. 

Meister A and Anderson ME. Glutathione. Annu Rev Biochem 1983,52; 711-760. 

Meister A. Glutathione, ascorbate, and cellular protection. Cancer Res 1994,54; 1969 
-1975. 

Michalska W, Chylak J and Pietkiewicz K. The study of drug resistance in aerobic 
and anaerobic bacterial flora to selected antibacterial drugs. Med Dosw Mikrobiol. 
1996,48; 61-70. 

Minotti G, Cairo Gand Monti E. Role of iron in anthracycline cardiotoxicity: new 
tunes for an old song? FASEB J. 1999, 13; 199-212. 

Minow RA, Benjamin RS, Lee ET and Gottlieb JA. Adriamycin cardiomyopathy-risk 
factors. Cancer. 1977,39; 1397-1402. 



115 

Mitchell lB and Russo AV. Thiols, thiol depletion and thennosensitivity. Radiat Res. 
1983,95; 471-485. 

Momoi T. Caspases involved in ER stress-mediated cel1 death. 1 Chem Neuroanat. 
2004, 1-2; 101-105. 

Monti E, Prosperi E, Supino Rand Bottiroli G. Pree radical-dependent DNA lesions 
are involved in the delayed cardiotoxicity induced by adriamycin in the rat. 
Anticancer Res. 1995, 15; 193-198. 

Muller M. Roelofsen H and 1ansen PLM. Secretion of organic anions by hepatocytes: 
involvement of homologues of the multidrug resistance protein. Sernin Liver Dis. 
1996,16; 211-220. 

Multhoff G. Heat shock protein 72 (HSP72), a hyperthermia-inducible immunogenic 
deterrninant on leukemic K562 and Ewing's sarcoma cells. lnt 1 Hyperthermia. 1997, 
13; 39-48. 

Muraoka Sand Miura T. Pree radicals mediate cardiac toxicity induced by 
adriamycin. Yakugaku Zasshi. 2003, 123; 855-866. 

Nagata S. Apoptotic DNA fragmentation. Exp Cell Res. 2000, 256; 12-8. 

Naito M and Tsuruo T. Competitive inhibition by verapamil of an ATP_dependent 
high affinity vincristine binding to the plsama membrane of multidrug resistant K562 
cells without calcium ion movement. Cancer Res. 1989,49; 1452-1455. 

Nakagawa T, Zhu H, Morishima N, Li E, Xu l, Yankner BA and Yuan 1. Caspase-12 
mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. 
Nature. 2000,403; 98-103. 

Nakagawa Y, Akao Y, Morikawa H, Hirata 1, Katsu K, Naoe T, Ohishi N and Yagi 
K. Arsenic trioxide-induced apoptosis through oxidative stress in cells of colon 
cancer celllines. Life Sci. 2002, 70; 2253-2269. 

Neidle S. Recent developments in triple-helix regulation of gene expression. 
Anticancer Drug Des. 1997, 12; 433-442. 

Neville Al and Sauder DN. Whole body hyperthermia (41-42°C) induces interleukin­
1 in vivo. Lymphokine Res 1988,7; 201-206. 

Ng CE, Bussey AM, Raaphorst GP. Reduction of etoposide induced cell killing by 
hyperthermia can occur without changes in etoposide transport or DNA 
topoisomerase II activity. lnt 1 Hyperthermia. 1996,4; 551-567. 



116 

Nogae l, Kohno K, Kikuchi J, Kuwano M, Akiyama SI, Kiue A, Suzuki K-I, Yoshida 
Y, Comwell MM, Pastan 1 and Gottesman MM. Analysis of structural features of 
dihydropyridine analogs needed to reverse mdr and to inhibit photoaffinity labelling 
ofP-glycoprotein. Biochem Pharmacol. 1989,38; 519-527. 

Ohno S, Siddik ZH, Baba H, Stephens LC, Strebel FR, Wondergem J, Khokhar AR, 
and Bull JM. Effect of carboplatin combined with whole body hyperthermia on 
normal tissue and tumor in rats. Cancer Res. 1991, 51; 2994-3000. 

Ollinger K and Brunmark A. Effect of different oxygen pressures and n,n'-diphenyl­
p-phenylenediamine on adriamycin toxicity to cultured neonatal rat heart myocytes. 
Biochem Pharmacol. 1994,48; 1707-1715. 

Oison RD and Mushlin PS. Doxorubicin cardiotoxicity: analysis of prevailing 
hypotheses. FASEB J. 1990,4; 3076-3086. 

Orlandi L, Zaffaroni N, Bearzatto A and Costa A, Supino R, Vaglini M, Silvestlini R. 
Effect of melphalan and hyperthermia on cell cycle progression and cyclin B 
expression in human melanoma cells. Cell Prolif. 1995,28; 617-630. 

Osman A el-M, Ahmed MM and Khayyal MT. Hyperthermie potentiation of cisplatin 
cytotoxicity on solid Ehrlich carcinoma. Tumori. 1993, 31; 268-272. 

Pagnini D, Pacilio C, Florio S, Crispi no A, Claudio PP, Giordano A and Pagnini G. 
Medroxyprogesterone acetate increases anthracyclines uptake in chronic Iymphatic 
leukemia cells: raie of nitric oxide and lipid peroxidation. Anticancer Res. 2000, 20; 
33-42. 

Parks LC, Minaberry D, Smith DP and Neely WA. Treatment of far-advanced 
bronchogenic carcinoma by extracorporeally induced systemic hyperthermia. J 
Thorac Cardiovasc Surg. 1979, 78; 883-892. 

Paulusma CC, Bosma PJ, Zaman GJR, Bakker CTM, Otter M, Scheffer GL, Scheper 
RJ, Borst P and Gude Elferink RPl Congential jaundice in rags with a mutation in 
multidrug resistance associated protein gene. Science. 1996,271; 1126-1128. 

Payen LF, Gao M, Westlake CJ, Cole SP and Deeley RG. Role of carboxylate 
residues adjacent to the conserved core Walker B motifs in the catalytic cycle of 
multidrug resistance protein 1 (ABCCl). J Biol Chem. 2003, 278; 38537-385347. 

Perez CA, Bradley J, Chao CK, Grigsby PW, Mutic Sand Malyapa R. Functional 
imaging in treatment planning in radiation therapy: a review. Rays. 2002, 27; 157­
173. 



117 

Perez CA and Brady LW. Principles and Practice of Radiation Oncology, 3rd ed. 
Philadelphia, PA: Lippincott-Raven, 1998. 

Petrovich Z, Emami B, Kapp D, Sapozink l'vID, Langholz B, üleson J, Lieskovsky G 
and Astrahan M. Regional hypertherrrtia in patients with recurrent genitourinary 
cancer. Am J Clin Oncol. 1991, 14; 472-477. 

Petrovich Z, Langholz B, Kapp DS, Emami B, Oleson JR, Luxton Gand Astrahan M. 
Deep regional hyperthermia of the liver. A clinical study of 49 patients. Am J Clin 
Gncol. 1989, 12; 378-383. 

Philchenkov A. Caspases: potential targets for regulating cell death. Cell Mol Med. 
2004, 8; 432-444. 

Piccinini F, Monti E, Paracchini Land Perletti G. Are oxygen radicals responsible for 
the acute cardiotoxicity of doxorubicin? Adv Exp Med Biol. 1990; 264:349-352. 

Pohle W, Bohl M, Flemming J and Bohlig H. Subsidiary hydrogen bonding of 
intercalated anthraquinonic anticancer drugs ta DNA phosphate. Biophys Chem. 
1990,35; 213-226. 

Poland GA and Jacobson RM. Clinical practice: prevention of hepatitis B with the 
hepatitis B vaccine. N Engl J Med. 2004, 351; 2832- 2838. 

Pollock RE, Morton DL. Principles of surgical oncology. In: Kufe DW, Pollock RE, 
Weichselbaum RR, Bast RC, Gansler TS, Holland JF and Frei E. Cancer Med. 2003, 
6; 569-583. 

Potapnev MP, Istomin YP, Ismail-zade RS and Zhavrid EA. Enhancement of 
antitumor response to sarcoma 45 in rats by combination of whole-body hypertherrnia 
and interleukin-2. Onkol. 2004,26; 67-70. 

Pritchard DM and Watson AJM. Apoptosis and gastrointestinal pharmacology. 
Pharmacological Therapeutics. 1996,72; 149-169. 

Raaphorst GP, Doja S, Davis L, Stewart D and Ng CE. A comparison of 
hyperthermia on cisplatin sensitization in human glioma and ovarian carcinoma cell 
lines sensitive and resistant to cisplatin treatment. Int J Hyperthermia. 1996, 12; 211­
222. 

Raghu G, Park SW, Roninson TB and Mechentner EB. Monoclonal antibodies against 
P-glycoprotein an l'vIDRI gene product, inhibit interleukin-2 release from PHA­
activated lymphocytes. Exp Hematol. 1996,24; 1258-1264. 



118 

Raghu G, Pierre-Jerome M, Dordal MS, Simonian P, Bauer KD and Winter JN. P­
glycoprotein and alterations in the glutathione/glutathione-peroxidase cycle underlie 
doxorubicin resistance in HL-60-R, a subclone of the HL-60 human leukemia cell 
line. Int J Cancer 1993,53; 804-811. 

Rao RV, Poksay KS, Castro-Obregon S, Schilling B, Row RH, dei Rio G, Gibson 
BW, Ellerby HM and Bredesen DE. Molecular components of a cell death pathway 
activated by endoplasmic reticulum stress. J Biol Chem. 2004, 279; 177-187. 

Rau B, Wust P and Tilly W. Preoperative radiochemotherpay in locally advanced or 
recurrent tectal cancer: regional radiofrequency hyperthermia correlates with clinical 
parameters. Int J Radiat Oncol Biol Phys. 2000,48; 381-91. 

Record MT Jr, Anderson CF and Lohman TM. Thermodynamic analysis of ion 
effects on the binding and conformational equilibria of proteins and nucleic acids: the 
roles of ion association or release, screening, and ion effects on water activity. QRev 
Biophys. 1978, 11; 103-178. 

Record MT Jr and Spolar RS, ed. Nonspecific Protein-DNA Interactions. CRC Press, 
Boca Roca, FL, 1990,33-69. 

Reed Je. Double identity of proteins of the Bcl-2 family. Nature. 1997,387; 773-776. 

Renes J, de Vries EG, Nienhuis EF, Jansen PL and Muller M. ATP- and glutathione­
dependent transport of chemotherapeutic drugs by the multidrug resistance protein 
MRP1. Br J Pharmaco1. 1999, 126; 681-688. 

Rietbroek RC, Schilthuis MS, Bakker PJ, Van Dijk JD, Postma AJ, Gonzalez 
Gonzalez D, Bakker AJ, Van der Velden J, Helmer horst TJ and Veenhof CH. Phase 
II trial of weekly locoregional hyperthermia and cisplatin in patients with a 
previously irradiated recurrent carcinoma of the uterine cervix. Cancer. 1997, 79; 
935-943. 

Robins HI, Cohen JD and Neville Al Extracorporeally induced whole-body 
hyperthermia in conventionally incurable malignant tumor patients. Clin Thermology. 
1992,4708-4712. 

Roigas J, Wallen ES and Loening SA. Heat shock protein (HSP72) surface 
expression enhances the Iysis of a human renal cell carcinoma by IL-2 stimulated NK 
cells. Adv Exp Med Biol. 1998,451; 225-229. 

Roninson lB, Chin JE, Choi KG, Gros P, Housman DE and Fojo A. Isolation of 
human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. 
Proc Natl Acad Sci USA. 1986,83; 4538-4542. 



119 

Rudin CM and Thompson CB. Apoptosis and disease: regulation and clinical 
relevance of programmed cell death. Annu Rev Med. 1997,48; 267-281. 

Safa AR, Choe MM and Manely SA. Cyclosporin A reverses vincristine resistance 
and competes with vinblastine labelling of p-glycoprotein. Proceeding of the 6th 

EORTC meeting, amsterdam, Abstract NO. 376,1989. 

Sakaeda T, Nakamura T, Okumura K. Pharrnacogenetics of drug transporters and its 
impact on the pharrnacotherapy. Curr Top Med Chem. 2004,4; 1385-1398. 

Sakaguchi Y, Stephens LC and Makino M. Apoptosis in tumours and normal tissues 
induced by whole body hyperthennia in rats. Cancer Res. 1995,55; 5459-5464. 

Salvesen GS and Dixit VM. Caspase activation: the induced-proximity mode!. Proc. 
Natl Acad Sci USA. 1999,96; 10964-10967. 

Samali A, Cai J, Zhivotovsky B, Jones D and Orrenius S. Presence of a pre-apoptotic 
complex of pro-caspase-3, Hsp60 and HsplO in the mitochondrial fraction of jurkat 
cells. EMBü 1. 1999, 18; 2040-2048. 

Savaraj N, Lampidis TJ, Zhao JY, Wu CJ, Teeter LD, Kuo MT. Two multidrug­
resistant friend leukemic ceIl lines selected with different drugs exhibit 
overproduction of different p-glycoproteins. Cancer Invest. 1994, 12; 138-144. 

Schlemmer M, Lindner LH, Abdel-Rahman Sand Issels RD. Principles, technology 
and indication of hypertherrnia and part body hyperthermia. Radiologe. 2004, 44; 
301-309. 

Seelig A, Blatter XL and Wohnsland F. Substrate recognition by P-glycoprotein and 
the multidrug resistance-associated protein MRP1: a comparison. Int J Clin 
Pharrnacol Ther. 2000, 38; 111-121. 

Seiji Naito, Akira Yokomizo and Miro Fumikoga. Mechanism of drug resistance in 
chemotherapy for urogenital carcinoma .International journal of urology. 1999, 6; 
427-439. 

Selby P. Acquired resistance to cancer chemotherapy. Br Med J. 1984, 288; 1252­
1253. 

Sharples RA, Cullinane C and Phillips DR. Adriamycin-induced inhibition of 
mitochondrial-encoded polypeptides as a model system for the identification of 
hotspots for DNA-damaging agents. Anticancer Drug Des. 2000,15; 183-190. 



120 

Sherar MD, Trachtenberg J, Davidson SR, McCann C, Yue CK, Haider MA and 
Gertner MR. Interstitial microwave thermal therapy for prostate cancer. J Endourol. 
2003,8; 617-625. 

Shibue T, Taniguchi T. BH3-only proteins: Integrated control point of apoptosis. Int J 
Cancer. 2006, 29 [Epub ahead of print]. 

Siegel. Caspases at the crossroads of immune-cell life and death. Nat Rev Immunol. 
2006, 6; 308-324. 

Siovak ML, Ho JP, Bhardwaj G, Kurz EU, Deeley RG and Cole SP. Localization of a 
novel multidrug resistance-associated gene in the HT1080IDR4 and H69AR human 
tumor celllines. Cancer Res. 1993,53; 3221-3225. 

Smitherman PK, Townsend AJ, Kute TE and MOITOW CS. Role of multidrug 
resistance protein 2 (mrp2, abcc2) in alkylating agent detoxification: mrp2 potentiates 
glutathione s-transferase Al-l-mediated resistance to chlorambucil cytotoxicity. 
Pharmacol Exp Ther. 2004, 308; 260-267. 

Solem LE, Henry TR and Wallace KB. Disruption of mitochondrial calcium 
homeostasis following chronic doxorubicin administration. Toxicol Appl Pharmacol. 
1994, 129; 214-222. 

Solem LE and Wallace KB. Selective activation of the sodium-independent, 
cyclosporin A-sensitive calcium pore of cardiac mitochondria by doxorubicin. 
Toxicol Appl Pharmacol. 1993, 121; 50-57. 

Song CW, Lyons JC, Griffin RJ and Makepeace CM. Thermosensitization by 
lowering intracellular pH with 5-(N-ethyl-N-isopropyl) amiloride. Radiother Oncol. 
1993,27; 252-258. 

Song CW, Shakti A and Griffin RJ. Improvement of tumour oxygenation status by 
mild temperature hyperthermia alone or in combination with carbogen . Sernin Oncol 
1997,24; 626-632. 

Souslova T and Averill-Bates DA. Multidrug-resistant hela cells overexpressing 
MRP1 exhibit sensitivity to cell killing by hyperthermia: interactions with etoposide. 
Int J Radiat Oncol Biol Phys. 2004, 60; 1538-1551. 

Sparreboom A, Danesi Rand Ando Y. Pharmacogenontics of ABC transporters and 
its role in cancer chemotherapy. Drug Resist Updat. 2003, 2 ; 71-84. 

Stavrovskaya AA. Cellular mechanisms of multidrug resistance of tumor cells. 
Biochemistry (Mosc). 2000, 65; 95-106. 



121 

Stein D, Rau B, Wust P, Walther W and Schlag PM. Hyperthermia for treatment of 
rectal cancer: evaluation for induction of multidrug resistance gene (mdrl) 
expression. lnt J Cancer. 1999,80; 5-12. 

Steller H, Abrams JM, Grether ME and White K. Programmed cell death ln 

Drosophila. Philos Trans R Soc Lond B Biol Sei. 1994,345: 247-250. 

Sticca RP and Dach BW. Rationale for hyperthermia with intraoperative 
intraperitoneal chemotherapy agents. Surg Oncol Clin NAm. 2003,12; 689-701. 

Strasser A. Apoptosis signaling. Annu Rev Biochem. 2000, 69; 217-245. 

Stride BD, Grant CE, Loe DW, Hipfner DR, Cole SP and Deeley RG. 
Pharmacological characterization of the murine and human orthologs of multidrug­
resistance protein in transfected human embryonic kidney cells. Mol Pharmacol. 
1997,52; 344-353. 

Sui M, Fan W. Combination of gamma-radiation antagonizes the cytotoxic effects of 
vincristine and vinblastine on both mitotic arrest and apoptosis. lnt J Radiat Oncol 
Biol Phys. 2005, 61; 1151-1158. 

Sukhai M, Piquette-Miller M. Regulation of the multidrug resistance genes by stress 
signais. J Pharm Pharm Sei. 2000, 3; 268-280 

Susin S, Lorenzo H, Zamzami N, Marzo l, Snow B, Brothers G, Mangion J, Jacotot 
E, Costantini P, Loeffler M, Larochette N, Goodlet D, Aebersold R, Siderovsk D, 
Penninger J and Kroemer G. Molecular characterization of mitochondrial apoptosis­
inducing factor. Nature (Lond.). 1999a, 397; 441-446. 

Susin SA, Lorenzo HK and Zamzami N. Mitochondrial release of caspase -2 and -9 
during the apoptotic process. J Exp Med. 1999b, 89; 381-394. 

Taatjes DJ, Gaudiano G, Resing K and Koch TH. Redox pathway leading to the 
alkylation of DNA by the anthracycline, antitumor dmgs adriamycin and 
daunomycin. J Med Chem. 1997,40; 1276-1286. 

Tanél A and Averill-Bates DA. The aldehyde acrolein induces apoptosis vIa 
activation of the mitochondrial pathway. Biochim Biophys Acta. 2005, 1743; 255­
267. 

Terashima H. Hyperthermia of malignant tumors. Fukuoka 19aku Zasshi. 2004, 95; 
89-97. 



122 

Thatte U and Dahanukar S. Apoptosis-clinical relevance and pharmacological 
mani pulation. Drugs. 1997, 54; 511-532. 

Thomas H and Coley HM. Overcoming multidrug resistance in cancer: an update on 
the clinical strategy of inhibiting p-glycoprotein. Cancer Control. 2003, 10; 159-164. 

Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science. 
1995,267; 1456-1462. 

Thornberry NA and Lazebnik Y. Caspases: enemies within. Science. 1998,281; 1312 
-1316. 

Tilly W, Gellerrnann J, Graf R, Hildebrandt B, Weissbach L, Budach V, Felix Rand 
Wust P. Regional hypertherrnia in conjunction with definitive radiotherapy against 
recurrent or locally advanced prostate cancer T3 pNO MO. Strahlenther Onkol. 2005, 
181; 35-41. 

Toonen TR and Hande KR. Topoisomerase II inhibitors. Cancer Chemother Biol 
Response Modif. 2001, 19; 129-147. 

Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, 
Flavell RA and Davis RJ. Requirement of JNK for stress-induced activation of the 
cytochrome c-mediated death pathway. Science. 2000, 288; 870-874. 

Trotice PV. Chemotherapy: Principles of therapy. In Groenwald SL, Frogge MH, 
Goodman H, Yarbro CH, eds. Cancer Nursing: Principles and Practice (4th ed.). 
Boston, Ma: Jones and Bartlett, 1997,283-316. 

Trump BF, Berezesky IK, Chang SH and Phelps Pc. The pathways of cell death: 
oncosis, apoptosis, and necrosis. Toxicol Pathol. 1997,25; 82-88. 

Tsang WP, Chau SP, Kong SK, Fung KP and Kwok TT. Reactive oxygen species 
mediate doxorubicin induced p53-independent apoptosis. Life Sci. 2003, 73; 2047­
2058. 

Tsuda H, Tanaka M, Manabe T, Ikeda H, Negoro S, Ishiko 0 and Yamamoto K. 
Phase l study of combined radiation, hypertherrnia and intra-arterial carboplatin for 
local recurrence of cervical cancer. Ann Oncologie. 2003, 14; 298-303. 

Turcotte Sand Averill-Bates DA. Sensitization to the cytotoxicity of melphalan by 
ethacrynic acid and hypertherrnia in drug-sensitive and multidrug-resistant Chinese 
hamster ovary cells. Radiat Res. 2001, 156; 272-282. 



123 

Undevia sn, Gomez-Abuin G, Ratain MJ. Phannacokinetic variability of anticancer 
agents. Nat Rev Cancer. 2005, 6; 447-458. 

Urano M, Kuroda M and Nishimura Y. For the clinical application of 
themochemotherapy given at mild temperatures. lm J Hyperthennia. 1999, 15; 79­
107. 

Van der Zee J. Heating the patient: a promising approach? Ann Oncol. 2002, 13; 
1173-1184. 

van Gils CH, Peeters PH, Bueno-de-Mesquita RB, Boshuizen HC, Lahmann PH, 
Clavel-Chapelon F, Thiebaut A, Kesse E, Sieri Sand Palli n. Consumption of 
vegetables and fruits and risk of breast cancer. JAMA. 2005, 293:183-193. 

Van Loo G, Saelens X, Van grup M, MacFarlane M, Martin SJ and Vandenabeele P. 
The role of mitochondria factors in apoptosis: a Russian roulette with more than one 
bullet. Cell Death Differ. 2002, 9; 1031-1042. 

Vasquez-Vivar J, Martasek P, Hogg N, Masters BS, Pritchard KA Jr and 
Kalyanaraman B. Endothelial nitric oxide synthase-dependent superoxide generation 
from adriamycin. Biochemistry. 1997,36; 11293-11297. 

Versantvoort CH, Broxtennan HJ, Lankelma J, Feller N and Pinedo HM. 
Competitive inhibition by genistein and ATP dependence of daunorubicin transport in 
intact MRP overexpressing human smal! cel! lung cancer ceUs. Biochem Pharmacol. 
1994,48; 1129-1136. 

Versantvoort CHM, Broxterman Hl and Bagrij T. Regulation by glutathione of drug 
transport in multidrug-resistant human lung tumour ceU lines overexpressing 
rnultidrug resistance-associated protein. Br J Cancer. 1995, 72; 82-89. 

Virag Land Szabo C. The therapeutic potential of poly (ADP-ribose) polymerase 
inhibitors. Pharmacol rev. 2002, 54; 375-429. 

Vogt C. Untersuchungen uber die Entwicklungsgeschichte der Geburtshelferkroete 
(Alytes obstetricians). Solothurn, Switzerland: Jent & Gassman, 1842. 

Vujaskovic Z, Poulson JM and Gaskin AA. Temperaturedependent changes in 
physiologie parameters of spontaneous canine soft tissue sarcomas after combined 
radiotherapy and hyperthermia treatment. Int J Radiat Oncol Biol Phys. 2000, 46; 
179-185. 

Wagner-Jauregg J. Ueber die Einwirkung fieberhafter Erkrankungen auf Psychosen. 
Jb Psychiat Neurol. 1887,7; 94-131. 



124 

Wallace KB. The planar anthracycline ring of adriamycin has the ability of 
intercalating into the DNA double helix to interfere with the reading fidelity of both 
DNA and RNA polymerases. Pharmacology and Toxicology. 2003, 93; 105-115. 

Wang W and Ballatori N. Endogenous glutathione conjugates: occurrence and 
biological functions. Pharmacol Rev. 1998,50; 335-356. 

Wartenberg M, Gronczynska1 S, Bekhite M, Saric T, Niedermeier W, Hescheler J, 
and Sauer H. Regulation of the Multidrug Resistance Transporter P-Glycoprotein in 
Multicellular Prostate Tumor Spheroids by Hyperthermia and Reactive Oxygen 
Species. lnt J Cancer. 2005, 113; 229-240. 

Waterhouse NJ, Ricci JE and Green DR. And all of a sudden ifs over: mitochondlial 
outer-membrane permeabilization in apoptosis. Biochimie. 2002, 84; 113-121. 

Weiss RB. The anthracyclines: will we ever find a better doxorubicin? Sernin. Onco!. 
1992, 19; 670-686. 

Wendtner CM, Avdel-Rahman Sand Baumer 1. Treatment of primary, recurrent or 
inadequately resected high-risk soft-tissue sarcomas (STS) of adults: results of phase 
rI pilot study (RHT-95) of neoadjuvant chemotherapy combined with regional 
hyperthermia. Eur J Cancer. 2001, 37; 1609-1616. 

Westermann AM, Grosen EA and Katschinski DM. A pilot study of whole body 
hyperthermia and carboplatin in platinum-resistant ovarian cancer. Eur J Cancer. 
2001,37; 1111-1117. 

Wiedemann GJ, Robins HI and Gutsche S. Ifosfamide, carboplatin and etoposide 
(ICE) combined with 41.8 degrees C whole body hyperthermia in patients with 
refractory sarcoma. Eur J Cancer. 1996, 32A; 888-892. 

Wiedemann GJ, Robins HI, Katschinski DM, Mentzel M, D'Oleire F, Kutz M and 
Wagner T. Systemic hyperthermia and ICE chemotherapy for sarcoma patients: 
rationale and clinical status. Anticancer Res. 1997, 17; 2899-2902. 

Wijnholds J, Scheffer GL, van der Valk M, van der Valk P, Beijnen JH, Scheper RJ 
and Borst P. Multidrug resistance protein 1 protects the oropharyngeal mucosal layer 
and the testicular tubules against drug-induced damage. J Exp Med. 1998, 188; 797­
808. 

Wogan GN, Hecht SS, Felton JS, Conney AH and Loeb LA. Environmental and 
chemical carcinogenesis. Sernin Cancer Bio!. 2004, 14; 473-486. 



125 

Wust P, Hildebrandt Band Sreenivasa G. Hyperthermia in combined treatment of 
cancer. The Lancet Oncology. 2002, 3; 487-497. 

Wyl!ie AH, Kerr JFR, and Curri AR. Cel! death: The significance of apoptosis. Int 
Rev Cyto!. 1980,68; 251-306. 

Wyl!ie AH. Glucocorticoid-induced thymocyte apoptosis is associated with 
endogenous endonuclease activation. Nature. 1980, 284; 555-556. 

Xanthoudakis S, Roy S, Rasper H, Hennessey T, Aubin Y, Cassady R, Tawa P, Ruel 
R. Rosen A and Nicholson D. Hsp 60 accelerate the maturation of pro-caspase-3 by 
upstream activatior proteases during apoptosis. EMBO J. 1999, 18; 2049-2056. 

Xu MF, Tang PL, Qian ZM and Ashraf M. Effects by doxorubicin on the 
myocardium are mediated by oxygen free radicals. Life Sci. 2001,68; 889-901. 

Yamaoka M, Yamaguchi S, Suzuki T, Okuyama M, Nitobe J, Nakamura N, Mitsui Y 
and Tomoike H. Apoptosis in rat cardiac myocytes induced by Fas ligand: priming 
for Fas-mediated apoptosis with doxorubicin. J Mol Cel! Cardiol. 2000,6; 881-889. 

Yee SB and Pritsos CA. Reductive activation of doxorubicin by xanthine 
dehydrogenase from EMT6 mouse mammary carcinoma tumors. Chem Biol Interact. 
1997,104; 87-101. 

Yorozu A, Toya K, Sugawara A, Fukada J, Itoh Rand Okada M. Radiotherapy for 
metastatic bone tumor. Gan To Kagaku Ryoho. 2003, 30; 354-357. 

Yoshiyama T, Yanai H, Rhiengtong D, Palittapongampim P, Nampaisan 0, 
Supawitkul S, Uthaivorawit W and Mori T. Development of acquired drug resistance 
in recurrent tuberculosis patients with various previous treatment outcomes. Int J 
Tuberc Lung Dis. 2004, 8; 31-38. 

Yuguchi T, Saito M, Yokoyama Y, Saito T, Nagata T, Sakamoto T and Tsukada K. 
Combined use of hyperthermia and irradiation cause antiproliferative activity and cel! 
death to human esophageal cel! carcinoma cel!s-mainly cel! cycle examination. Hum 
Cel!. 2002, 15; 33-42. 

Zaman GJ, Flens MJ, van Leusden MR, de Haas M, Mulder HS, Lankelma J, Pinedo 
HM, Scheper RJ, Baas F and Broxtennan HJ. The human multidrug resistance­
associated protein MRP is a plasma membrane drug-efflux pump. Proc Natl Acad Sci 
USA. 1994,91; 8822-8826. 



126 

Zaman GJR, Lankelma J and van Tellingen O. Role of glutathione in the export of 
compounds from cells by the multidrug-associated protein. Proc Natl Acad Sci USA 
1995,92; 7690-7694. 

Zaman GJR, Versantvoort CH, Smit JJM, Eijdems EW, De Haas M, Smith AJ, 
Broxterman ID, Mulder NH, de Vries EGE, Baas F and Borst P. Analysis of the 
expression of rnrp, the gene for a new putative transmembrane drug transporter, in 
human multidrug resistant lung cancer celllines. Cancer Res. 1993,53; 1747-1750. 

Zamzami N, Susin SA and Marchetti P. Mitochondrial control of nuclear apoptosis. J 
Exp Med. 1996, 183; 1533-1544. 

Zhang P, Wang D and Zheng G. ReversaI effect of hyperthemia on multidrug 
resistant phenomena. Hua Xi Kou Qiang Yi Xue Za Zhi. 2003, 2; 127-129. 

Zou H, Li Y, Liu X and Wang X. An Apaf-l-cytochrome c multimeric complex is a 
functional apoptosome that activates procaspase-9. 1. Biol. Chem. 1999,274; 11549­
11556. 

Zunino F, Gambetta R, Di Marco A, Velcich A, Zaccara A and Quadrifoglio F, 
Crescenzi V. The interaction of adriamycin and its beta anomer with DNA. Biochim 
Biophys Acta. 1977, 476; 38-46. 

Zunino F, Gambetta R, Di Marco A, Zaccara A and Luoni G. A comparison of the 
effects of daunomycin and adriamycin on various DNApolymerases. Cancer Res. 
1975,35; 754-760. 


