
UNIVERSITÉ DU QUÉBEC À MONTRÉAL

EFFICIENT GENERATION OF THE IDEALS OF A POSET

IN GRAY CODE ORDER

THÈSE

PRÉSENTÉE

COMME EXIGENCE PARTIELLE

DU DOCTORAT EN MATHÉMATIQUES

PAR

MOHAMED ABDO

MARS 2010

UNIVERSITÉ DU QUÉBEC À MONTRÉAL

EFFICIENT GENERATION OF THE IDEALS OF A POSET

IN GRAY CODE ORDER

THESIS

PRESENTED

IN PARTIAL SATISFACTION OF THE REQUIREMENTS

OF THE DEGREE OF DOCTOR OF PHILOSOPHY IN MATHEMATICS

BY

MOHAMED ABDO

MARCH 2010

UNIVERSITÉ DU QUÉBEC À MOI\JTRÉAL

Service des bibliothèques

Avertissement

La diffusion de cette thèse se fait dans le respect des droits de son auteur, qui a signé le
formulaire Autorisation de reproduire et de diffuser un travail de recherche de cycles
supérieurs (SDU-522 - Rév.01-2006). Cette autorisation stipule que «conformément à
l'article 11 du Règlement no 8 des études de cycles supérieurs, [l'auteur] concède à
l'Université du Québec à Montréal une licence non exclusive d'utilisation et de
publication de la totalité ou d'une partie importante de [son] travail de recherche pour
des fins pédagogiques et non commerciales. Plus précisément, [l'auteur] autorise
l'Université du Québec à Montréal à reproduire, diffuser, prêter, distribuer ou vendre des
copies de [son] travail de recherche à des fins non commerciales sur quelque support
que ce soit, y compris l'Internet. Cette licence et cette autorisation n'entraînent pas une
renonciation de [la] part [de l'auteur] à [ses] droits moraux ni à [ses] droits de propriété
intellectuelle. Sauf entente contraire, [l'auteur] conserve la liberté de diffuser et de
commercialiser ou non ce travail dont [il] possède un exemplaire.»

ACKNOWLEDGMENTS

1 would like to thank Timothy Walsh, director of my research, for what he taught

me, for his encouragement, for the time he spent answering my questions, for his valu­

able advice given to me when 1 was a teaching assistant for his course, and for his

financial support. Without his supervision, this work would not have been completed.

ln addition, 1 thank him for the concerts to which he invited me when he was celebrating

his birthday and elsewhere.

1 would also like to thank Srecko Brlek for what he taught me and for his interest

in students and especially for his valuable advice, encouragement and collaboration.

1 thank my father Abdulhamid and my mother Naima who supported and con­

stantly encouraged me to achieve my dreams in my studies.

1 will never forget my brother Ahmad who passed away in November 2009. He

was my real friend and support, we were as twins.

l'm glad that my wife was beside me while 1 was writing my thesis. 1 owe her a

lot because she gives me the love and enthusiasm that 1 need.

Thanks to Manon Gauthier, who provides ail the administrative advice and who

shows much interest in students. Thanks to Gisèle Legault, who, with her knowledge of

computers, allowed me to save much time. Thanks to Lise Tourigny, Jérôme Tremblay

and ail the staff in the Departments of Mathematics and Computer Science.

Finally, 1 am grateful to LaCIM, ISM, FARE, FQRNT and the Faculty of Sciences

for their financial support during my studies for my M.Sc. and Ph.D. These scholarships

were complementary to the financial support of my supervisor.

CONTENTS

LIST OF FIGURES IX

RÉSUMÉ .. Xlii

CHAPTER l

LIST OF TABLES XI

ABSTRACT XV

INTRODUCTION 1

GRAY CODE 5

1.1 Introduction. 5

1.2 Construction of a Hamiltonian cycle 8

1.3 Hamiltonian cycle when the median is a minimal element 9

1.4 Hamiltonian cycle when there is exactly one element less than the median 13

1.5 Generalization of Squire's recurrence 16

1.6 Hamiltonian cycle using our generalization of Squire's recurrence 17

1.7 Hamiltonian cycle when there are at least two elements less than the median 23

CHAPTER II

ALGORITHMS 35

2.1 Representation and useful functions 35

2.2 Printing ideals . 36

2.2.1 Order of printing the ideals when applying Theorem 1 36

2.2.2 Order of printing the ideals when applying Theorem 2 37

2.2.3 Order of printing the ideals when applying Theorem 3 38

2.3 Use of Lemma 1 and Lemma 2 38

2.4 Algorithms . 38

2.5 How to choose the median element 46

2.5.1 Relaxed condition 46

2.5.2 Choosing the median for Theorem 1 48

viii

2.5.3 Choosing the median for Theorem 2 49

2.5.4 Choosing the median for Theorem 3 49

CHAPTER III

COMPARISON OF ALGORITHMS 53

3.1 Boolean lattice family 56

3.2 Grid poset family . . 57

3.3 Gamma poset family 58

3.4 Linear posets 58

3.5 Empty posets 59

CONCLUSION 65

APPENDIX A

PROGRAMS 67

Al Our Program 67

A.2 Ruskey's program 101

A.3 Our implementation of Squire's algorithm 107

A.4 Data entering program . 112

BIBLIOGRAPHY . 113

LIST OF FIGURES

1.1 Poset of Example 1 is on the left side.	 8

1.2 Left side is the poset having x as a minimal element.	 10

1.3 Cycle of Case 1 of Theorem 1..	 10

1.4 Cycle of Case 2 of Theorem 1..	 11

1.5 Exampie illustrating the use of Theorem l, Case 2.	 12

1.6 Example illustrating the use of Theorem 1, Case 1.	 12

1.7 First case of Theorem 2. . .	 14

1.8 Second case of Theorem 2..	 15

1.9 Example illustrating the use of Theorem 2.	 16

1.10. Illustration of Lemma 1. .	 18

1.11. Example illustrating the use of Lemma 1.	 19

1.12.	 IIIustration of Lemma 2. Lines 2-3 cover Case 1, !ines 4-5 cover Case

2 and lines 6-7 cover Case 3. .. 20

1.13. Example illustrating the use of Lemma 2.	 23

1.14. First case of the basic step in Lemma 3. .	 24

1.15. Second case of the basic step in Lemma 3.	 25

1.16. The induction step of Lemma 3.	 28

x

1.17. First subcase of first case in Theorem 3..	 30

1.18. Second subcase of first case in Theorem 3.	 30

1.19. Second case of Theorem 3 .	 31

1.20. Example illustrating the use of Theorems 1 and 3 as well as Lemma 1. 33

2.1 Algorithm coding Theorem 1.	 40

2.2 Algorithm coding Theorem 2.	 41

2.3 Algorithm coding Theorem 3.	 42

2.4 Our algorithm for generating the ideals of a poset.	 42

2.5 Algorithm coding Lemma 1.	 43

2.6 Algorithm coding Lemma 2.	 44

2.7	 Pruesse and Ruskey's algorithm for generating a Gray code for the

ideals of a poset. .. 45

2.8 Squire's algorithm for generating the ideais of a poset.	 46

2.9 Choosing X m for the median element in a linear extension of P. 47

2.10. Left side is the poset having x as a minimal element. 48

2.11. Example illustrating the use of Theorem 1 with the relaxed condition. QO

2.12.	 Example illustrating the use of Theorem 3 and Theorem 1 with the

relaxed condition. .. 52

3.1 Boolean lattice of 8 elements.	 56

3.2 Grid poset of 8 elements.	 57

3.3 Gamma poset of 8 elements..	 58

LIST OF TABLES

3.1 Running times of the programs for poset1.	 54

3.2 Running times of the programs for poset2.	 55

3.3 Running times of the programs for poset3.	 55

3.4 Running times of the programs for poset4.	 55

3.5 Running timc of execution on a family of boolean lattices. 61

3.6	 For boolean lattices, our progTam is 4.7% on the average slower than

Squire's and Ruskey's is 9.6% slower than Squire's. 61

3.7 Running time of execution on a family of grid posets..	 61

3.8	 For grid posets, our program is 1.9% on the average slower than Squire's

and Ruskey's is 25.4% slower than Squire's. 62

3.9	 . Running time of execution on a family of gamma posets. 62

.3.10.	 For gamma posets, our program is 1.7% on the average slower than

Squire's and Ruskey's is 1.8% slower than Squire's. 62

3.11. Running time of execution on a family of linear posets..	 63

3.12.	 For linear posets, our program is 2.1% on the average slower than

Squire's and Ruskey's is 37.7% slower than Squire's. 63

3.13. Running time of execution on a family of empty posets.	 63

3.14.	 For empty posets, our program is 2.3% on the average slower than

Squire's and Ruskey's is 1.9% slower than Squire's. 64

RÉSUMÉ

Pruesse et Ruskey ont présenté un algorithme pour la génération de leur code Gray
pour les idéaux d'un poset (ensemble partiellement ordonné) où deux idéaux adjacents
diffèrent par un ou deux éléments. Leur algorithme fonctionne en temps amorti de
O(n) par idéal. Squire a présenté une récurrence pour les idéaux d'un poset qui lui a
permis de trouver un algorithme pour générer ces idéaux en temps amorti de O(logn)
par idéal, mais pas en code Gray. Nous utilisons la récurrence de Squire pour trouver
un code Gray pour les idéaux d'un poset, Ol! deux idéaux adjacents diffèrent par un ou
deux éléments. Dans le pire des cas, notre algorithme a la même complexité que celle
de l'algorithme de Pruesse et Ruskey et dans les autres cas, sa complexité est meilleure
que celle de leur algorithme et se rapproche de celle de l'algorithme de Squire. Squire
a donné une condition pour obtenir cette complexité. Nous avons trouvé une condition
moins restrictive que la sienne. Cette condition nous a permis d'améliorer la complexité
de notre algorithme.

Mots clés: poset, extension linéaire, cycle hamiltonien, code Gray, algorithme,
complexité.

ABSTRACT

Pruesse and Ruskey presented an algorithm for generating their Gray code for
the ideals of a poset, where two adjacent ideals differ by one or two elements. Theil'
algorithm takes O(n) amortized time pel' ideal, where n is the number of elements in
the poset. Squire presented a recurrence for the ideals of a poset that enabled him
to find an algorithm for generating these ideals in O(log n) amortized time pel' ideal,
but not in Gray code order, where n is the number of elements in the poset. We use
Squire's recurrence to find a Gray code for the ideals of a poset, where two adjacent
ideals differ by one or two elements. In the worst case our algorithm has the same
complexity as that of Pruesse and Ruskey and in the other cases its complexity is
better and approaches that of Squire's algorithm. Squire gave a condition to obtain
this complexity. We found a less restrictive condition than his. This condition enabled
us to improve the complexity of our algorithm.

Key words: poset, linear extension, Hamiltonian cycle, Gray code, algorithm,
complexity.

INTRODUCTION

"Humanity has long enjoyed making lists. Ali children delight in their new-found ability

to count 1,2,3, etc., and it is a profound revelation that this process can be carried out

indefinitely. The fascination of finding the next unknown prime or of listing the digits of

7r appeals to the general population, not just mathematicians. The desire to produce

lists almost seems to be an innate part of our nature. Furthermore, the solution to

many problerns begins by listing the possibilities that can arise" (Ruskey,2003).

It was not until 1960 that generation of such combinatoriallists would be feasible with

the advent of the computer (Lehmer, 64). However, for such a listing to be possible,

generation methods must be efficient. A common approach has been to try to generate

such lists so that successive objects differ by sorne predefined small amount. A famous

example is the binary refiected Gray code (Gilbert, 58; Gray, 53) which consists of listing

aIl the binary numbers of the same size so that successive numbers differ in exactly one

bit.

The origins of listing combinatorial objects so that successive objects differ only by small

amount can be found in the early work of (Gray, 53; Wells, 61; Trotter, 62; Johnson,

63; Lehmer, 65; Chase, 70; Ehrlich, 73; Nijenhuis and Wilf, 78). However, the term

combinatoriaJ Gray code first appeared in (Joichi, White and Williamson, 80).

There are many combinatorial Gray codes such as:

1.	 listing ail the permutations of 1,2, ... , n so that successive permutations differ

only by the swap of one pair of adjacent elements (Johnson, 63; Trotter, 62);

2.	 listing ail the k-element subsets of an n-element set in such a way that successive

sets differ by exactly one element (Bitner, Ehrlich and Reingold, 76; Buck and

2

Wiedemann, 84; Eades, Hickey, and Read, 84; Eades and McKay, 84; Nijenhuis

and Wilf, 78; Ruskey, 88; Liu and Tang, 73);

3.	 listing aU the partitions of an integer n so that in successive partitions, one part

has increased by one and one part has decreased by one (Savage, 89);

4.	 listing the linear extensions of certain posets so that successive elements differ only

by a transposition (Ruskey, 92; Pruesse and Ruskey, 91; Stachowiak, 92; West, 93);

5.	 listing aU the binary trees of a given size so that consecutive trees differ only by a

rotation at a single node (Lucas, 87; Lucas, Roelants and Ruskey, 93; Proskurowski

and Ruskey, 90);

6.	 listing the well-formed parenthesis strings of a given length in such a way that suc­

cessive strings differ by a transposition of two letters (PrQskurowski and Ruskey,

90). Walsh is the first who gave a loop-free generation algorithm for this problem

(Walsh, 98);

7.	 listing aU the length-n involutions so that each involution is transformed into its

successor via one or two transpositions or a rotation of three elements (Walsh,

2001).

8.	 listing all the ideals of a poset so that successive ideals differ in one or two elements

(Abdo, 2009; Pruesse and Ruskey, 93; Koda and Ruskey, 93).

This thesis presents another Gray code for the ideals of a poset and an algorithm for

generating these ideals that runs as least as fast as that of (Pruesse and Ruskey, 93)

on aU the posets on which we tested it and considerably faster on some of them. The

definition of a poset and of an ideal, an outline of the thesis and a summary of the

major results appear in the first two pages of Chapter 1.

One can find applications of the Gray code to circuit design (Robinson and Cohn, 81),

signal processing (Ludman, 81), ordering of documents on shelves (Losee, 92), data

3

compression (Richard, 86), statistical computing (Diaconis and Bolmes, 94), combina­

torial map theory (Cori, 75), graphies and image processing (Amalraj, Sundararajan

and Dhar, 90), processor allocation in the hypercube (Chen and Shin, 90), hashing

(Faloutsos, 88), computing the permanent (Nijenhuis and Wilf, 78), information stor­

age and retrieval (Chang, Chen and Chen, 92), and puzzles, such as the Chinese Rings

and Towers of Banoi (Gardner, 72).

"Although many Gray code schemes seem to require strategies tailored to the problem

at hand, a few general techniques and unifying structures have emerged. The paper

(Joichi, White and Williamson, 80) considers families of combinatorial objects, whose

size is defined by a recurrence of a particular form, and some general results are obtained

about constructing Gray codes for these families. Ruskey shows in (Ruskey, 92) that

certain Gray code listing problems can be viewed as special cases of the problem of

listing the linear extensions of an associated poset so that successive extensions differ

by a transposition. In the other direction, the discovery of a Gray code frequently gives

new insight into the structure of the combinatorial class involved" (Savage, 97).

Walsh generalized Chase's method (Chase, 89) so that ail the words in a suffix-partitioned

list form an interval of consecutive words ('Walsh, 95). Moreover, he gave sufficient con­

ditions on a Gray code in order that Ehrlich's method (Ehrlich, 73) possesses a loop-free

implementation and he generalized this method so that it works under less restrictive

conditions (Walsh, 2000).

"So, the area of combinatorial Gray codes includes many questions of interest in combi­

natorics, graph theory, group theory, and computing, including some well-known open

problems" (Savage, 97).

CHAPTER l

GRAY CODE

1.1 Introduction

A paset (partiaUy ordered set) P is a set E of elements together with a reflexive,

transitive, anti-symmetric relation R(P) on E. An up-set of a poset P is a subset U of

E such that if xE U and y 2 x, then YEU. A dawn-set of a poset P is a subset D of

E such that if x E D and y ::::; x, then y E D. The set of ideals of a poset is either the

set of aH its up-sets or the set of aU its down-sets. Generating the ideals of a poset has

severaI applications in optimization problems, including scheduling, reliability and line

balancing problems (Steiner, 86). Schrage and Baker (Schrage and Baker, 78), Lawler

(Lawler, 79), and BaH and Provan (BaH and Provan, 83) aIl presented algorithms that

generate the set U(P) of up-sets of Pin O(n2 ·u(P)) time, where u(P) is the cardinality of

U(P). Steiner (Steiner, 86) was the first to present an O(n·u(P)) generation algorithm.

Squire (Squire) presented a recurrence for the ideals of a poset and used it to generate

these ideals in O(logn . u(P)) time. But none of these algorithms, including that of

Squire, generates them in Gray cade arder - that is, so that two adjacent ideals in the

list differ by a bounded number of elements. The advantage of Gray code order is that

certain properties of the members of a list can be updated quickly if adjacent members

of a list differ only slightly.

If the Hasse diagram of the poset P is a forest, the algorithms of Beyer and Ruskey (con­

stant average time generation of subtrees of bounded size, 1989, unpublished manuscript),

6

and Koda and Ruskey (Koda and Ruskey, 93) can generate its up-sets in Gray code

order in O(u(P)) time. Another class of posets for which an efficiently implementable

Gray code exists is presented in (Knuth and Ruskey, 2003). However, for arbitrary

posets, the best known algorithms, including that of Pruesse and Ruskey (Pruesse and

Ruskey, 93), may still take 0(.6. . u(P)) time, where .6. is the maximum number of ele­

ments that cover any element of P. Their algorithm generates a list of the ideals of a

poset so that two ideals that are adjacent in the list differ by one or two elements.

We say that an element v covers an element t if t < v and there is no element u such

that t < u < v. When v covers t, we say that t is covered by v.

In this thesis an ideal will mean a down-set. We generalize Squire's recurrence and use

our generalized recurrence to list the elements of D(P), the down-sets of P, so that two

ideals that are adjacent in the list differ by one or two elements, as does the algorithm of

Pruesse and Ruskey (Pruesse and Ruskey, 93). A preliminary version of our algorithm,

described in Section 1.3 and published in (Abdo, 2009), is similar to the one in (Pruesse

and Ruskey, 93) except that it lists each ideal once instead of twice. The presentation

here is simpler than the one in (Pruesse and Ruskey, 93) because it deals only with

posets, whereas the one in (Pruesse and Ruskey, 93) is generalized to antimatroids.

We were recently informed that the proof in (Pruesse and Ruskey, 93) was recast in

terms of posets in Theorem 4.4 (Chow and Ruskey, 09), published in the same year

as (Abdo, 2009). Both algorithms have the same time-complexity. However, we were

able to improve the time-complexity of our algorithm so that it never ran more than a

few percent slower than Squire's on any of the posets on which we tested it, whereas

the Pruesse-Ruskey algorithm ran considerably slower on sorne of them.

The theory behind our algorithm is presented in Chapter 1, the algorithm itself in Chap­

ter 2, the experimental comparison of our algorithm with the Pruesse-Ruskey algorithm

and the Squire algorithm in Chapter 3 and the source code of al! three algorithms in

the Appendix A.

In our present algorithm we almost always choose the median element of a linear ex­

7

tension of P. If the number of elements of P is n then the position of the median is

lnt l J.

We introduce the following notation that will be used in equation (1.1) below. Let P

be a poset on a set E, D a down-set of P and Y a subset of E such that D n Y =
oand D U Y is a down-set of P. Also, denote by D(P, D, Y) the set {I E D(P) :

D ç land l ç Du Y} of down-sets of P that contain the down-set D and whose other

elements are chosen from Y. Finally, let x be some element of Y and D[x] and U[x] be,

respectively, the elements of P that are:::; x and 2: x. Note that D(P) = D(P, 0, E).

Squire's recurrence for the down-sets is given by equation (1.1):

D(P, D, Y) = D(P, D, Y \ U[x]) U D(P, Du D[x], Y \ D[x]). (1.1)

This recurrence is solvable because #(Y \ U[x]) and #(Y \ D[x]) are both strictly less

than #(Y), where #(S) means the cardinality of the set S, and D(P, D, 0) = D.

This recurrence is called initially with D = 0 and Y = E to generate D(P). In what

follows we cali D(P, D, Y \ U[x]) the first part and D(P, Du D[x], Y \ D[x]) the second

part. These two parts are disjoint. Usually we consider D(P, D, Y\D[x]) as the second

part and then we add D[x] to each ideal of this part. Squire's method of generating the

ideals of Pin O(logn· u(P)) time depends upon choosing for x the "median" element

of Y in the following sense. An extension of a poset P on a set E is a poset Q on

E such that R(P) ç R(Q). An extension of P that is a total order is called a linear

extension of P. Before calling the recurrence (1.1), Squire constructs a linear extension

of P. The elements of Y are then listed in the order that is compatible with that of the

linear extension, and the median element Xm in this list is chosen for x. We illustrate

the use of (1.1) in the following example.

Example 1. Let P be the poset whose Hasse diagram is on the left side (of the arrow)

in Figure 1.1. In equation (l.l), let D be the empty down-set (/) and Y be the set

{1, 2, ... , 7}. The linear extension chosen for P is 1 < 2 < 3 < 4 < 5 < 6 < 7 so

that the median element Xm is 4. The diagram immediately to the right of the arrow

8

5
7

1

1
3 7

6 1 1

A
4

V
5 X m = 4.

2

l + (1234)

6

~

3

1

2

1
1

Figure 1.1. Poset of Example 1 is on the left side.

is the poset restricted to Y \ U[4] and the rightmost diagram is the poset restricted

to Y \ D[4] with D[4] (with the commas removed and the braces replaced by brackets)

written to its left. The set of ail the dawn-sets of P is the union of two disjoint sets

(parts). The first part is the set of dawn-sets whose elements are restricted to the set

y \ U[4] = {l, 2, 3, 5} and the second part is the set of down-sets that contain all of

the elements of D[4] = {1, 2, 3, 4} and whose other elements are restricted to the set

y \ D[4] = {5, 6, 7}. Each of these parts can then he partitioned into two parts and sa

on until all the parts contain at most two down-sets (corresponding ta Y which contains

at most one element).

1.2 Construction of a Hamiltonian cycle

A Hamiltonian cycle in a graph is a cycle that passes through each vertex exactly once.

Given a poset P, we call G(P) the graph whose vertices are the down-sets of P, where

two vertices are adjacent (joined by an edge) if the corresponding down-sets differ by

one element and G2 (P) the graph with the same vertex set as G(P) but which has an

edge between every pair of vertices that are connected by a path of length at most 2 in

G(P). We use Squire's recurrence to construct a Hamiltonian cycle in G2(P), so that

two adjacent down-sets, as well as the first and last ones, differ by one or two elements.

In what follows, when we refer to a Hamiltonian cycle in P, we mean a Hamiltonian

9

cycle in G2 (P).

In our construction, the basic step is to caU a single vertex and a single edge (traversed in

both directions) a Hamiltonian cycle, so that a single down-set or a pair of down-sets that

differ by at most two elements constitutes a Hamiltonian cycle. For the induction step

we assume that a Hamiltonian cycle has been found for the first part V(P, D, y \ U[x])

of (1.1) and also for the second part V(P, Du D[x], Y \ D[x]) of (1.1) and we merge

these two Hamiltonian cycles into a single one for V(P, D, Y).

1.3 Hamiltonian cycle when the median is a minimal element

Theorem 1 below (Abdo, 2009) shows that a Hamiltonian cycle can be constructed for

any poset. We cali x a maximal (minimal) element of a poset P if no element of P is

strictly greater (less) than x. When a poset has only one maximal (minimal) element,

this element is called maximum (minimum). We note that any finite poset must contain

at least one maximal element and one minimal element.

Theorem 1. Let P be a poset on a set E and let x be a minimal element of P. Then

there is a Hamiltanian cycle of dawn-sets in P in which twa adjacent dawn-sets differ

by one or two elements and this cycle contains the edge {0, {x}} consisting of the empty

down-set and the singleton {x}.

Proof. (By induction on n = #(E), the cardinality of E).

Basic step. If n = 1, then the poset consists of a single element x, which is necessarily a

minimal element, and has two ideals 0 and {x}, which differ by a single element. Then

the edge {0, {x}} is the required Hamiltonian cycle.

Induction step. Suppose that n > 1. We apply (1.1) with the initial values D = 0 and

Y = E and with x a minimal element of Y. Since x is a minimal element of Y, every

element of Y is either in U[x] or else is incomparable with x. Then P, restricted to Y,

is the poset on the left side of Figure 1.2. Since D[x] = {x}, the poset of the first part

10

xm = x

P P\U[x] + (x) P \ {x}

Figure 1.2. Left side is the poset having x as a minimal element.

0-- x

via via
first second
part part
"'---- m'tn - x m~n

Figure 1.3. Cycle of Case 1 of Theorem 1.

of (1.1) (restricted to Y \ U[x]) consists of P \ U[x] and the poset of the second part

(restricted to Y \ D[x] = Y \ {x}) is of the form shown to the right of the + sign in

Figure 1.2. There are two cases to consider, depending upon whether or not Y \ U[x]

is empty.

Case 1: Suppose that Y \ U[x] =f 0. Let min be a minimal element of Y \ U[x]. Since

x tf- y \ U[x], #(Y \ U[x]) < #(E), so that by the induction hypothesis there is a

Hamiltonian cycle of down-sets of the first part in which two adjacent down-sets differ

by one or two elements and this cycle contains the edge {0, {min} }. The second part

is restricted to the set Y \ {x}, which is not empty because n > 1 and whose cardinality

< #(E) because it does not contain x. In addition, Y \ {x} has min as minimal

element. It follows from the induction hypothesis that this part too has a Hamiltonian

cycle of down-sets in which two adjacent down-sets differ by one or two elements and

that this cycle too contains the edge {0, {min} }. When x is added to each ideal of this

second cycle, this cycle will contain the edge {{x}, {x, min} }. By removing the edges

{0, {min}} and {{x}, {x, min}} and adding the edges {0, {x}} and {{min}, {x, min}}

we obtain the required Hamiltonian cycle containing the edge {0, {x}} (see Figure 1.3).

11

o x

via
second~ part

xmin

Figure 1.4. Cycle of Case 2 of Theorem 1.

Case 2: Suppose that Y \ U[x] = 0. Let min be a minimal element of Y \ D[x]. Such

an element exists because Y \ {x} f. 0 since n > 1. The first part of (1.1) consists of the

single down-set 0. By an argument similar to that in Case 1, the second part of (1.1)

has a Hamiltonian cycle containing the edge {0, {min}}, which becomes {{x}, {x, min}}

when x is added to each down-set. By removing the edge {{x}, {x, min}} and adding

the edges {0, {x} } and {0, {x, min}} we obtain the required Hamiltonian cycle contain­

ing the edge {0, {x}} (see Figure 1.4). 0

To simplify the notation, the set {Xl, X2,' .. ,xn } will be denoted by XIX2 ... xn ·

Remark 1. We remove an edge from a cycle only when this cycle is not an edge or if

it is an edge and each of its vertices will be joined by an edge with two other vertices.

Example 2. Consider the poset on the left side of the first line of Figure 1.5. Ey

c(wosing 1 for the minimal element X m and applying Theorem 1, Case '2, we obtain the

first line of Figure 1.5. The first part is the empty poset which has the Hamiltonian

cycle 0. The second part is the poset 2 which has the Hamiltonian cycle {0,2}. Ey

adding the element 1 to each ideal of this last cycle we obtain the Hamiltonian cycle

{1,12}. Sinee we applied Theorem l, Case 2, we add the edges {0, 1} and {0,12} but

according to Remark 1, we do not remove the edge {1, 12}. Thus, we obtain the required

Hamiltonian cycle {0, 1, 12} which is on the second line of Figure 1.5. We note that

this cycle contains the edge {ŒI, 1}.

Example 3. Consider the poset on the left side of the first line of Figure 1.6. Ey

choosing 3 for the minimal element X m and applying Theorem 1, Case 1, we obtain the

12

2

X m = 1 , 0 + (1) 2
1. 1

1

2.

Figure 1.5. Example illustrating the use of Theorem 1, Case 2.

2 2 2
X m = 3 , + (3)1. 1 1 1

1 3 1 1

12-- 0 3--123
2.

~! 1
1

3/

3. 12-- 0 3--123

~l 1~/
Figure 1.6. Example illustrating the use of Theorem 1, Case 1.

first line of Figure 1.6. Each of the first and the second parts is the poset {1, 2} where

1 < 2 which, according to Example 2, has the Hamiltonian cycle {0, 1, 12}. By adding

the element 3 to each ideal of the cycle of the second part we obtain the Hamiltonian

cycle {3, 13, 123}. The cycle of each part is on the second line of Figure 1.6. Since we

applied Theorem 1, Case 1, we add the edges {0,3} and {1, 13} and remove the edges

{0,1} and {3, 13}. Thus, we obtain the required Hamiltonian cycle on the third line of

Figure 1.6. We note that this cycle contains the edge {0, 3}.

By limiting ourselves to this theorem, we find an algorithm for generating the ideals of

a poset in Gray code order whose complexity is identical to the algorithm of Pruesse

and Ruskey (Pruesse and Ruskey, 93), but which generates each ideal only once instead

of twice.

13

We note that the cycle generated by our algorithm is not identical to the one gener­

ated by that of (Pruesse and Ruskey, 93). For example, when executed on the poset

{1, 2, 3, 4} with 1 < 2 and 2 < 3, the Pruesse-Ruskey algorithm generates the cycle

0,1,123,12,1234,124,14,4, whereas our algorithm generates the cycle 0,1,123,12,124,

1234,14,4.

lA	 Hamiltonian cycle when there is exactly one element less than the

median

We recall that Squire's method of generating the down-sets of P in o(log n .u(P)) time

depends upon choosing for x the "median" element of a linear extension of Y. In our

construction it is not always possible to choose the median element for x; however, we

choose the element of Y that is as close as possible to the median element. In this way

we improve the computational complexity of the generation algorithm.

To this end we have generalized (1.1) and used this generalization to design several

other constructions analogous to that of Theorem 1, where x is chosen to be the median

element, or close to it, rather than a minimal element. For certain posets, it turns out

that the median is a minimal element; this case is treated by Theorem 1.

The other two cases - where there is exactly one, or more than one, element less than

the median - are treated by Theorem 2 and Theorem 3 respectively, which are presented

in the rest of Chapter 1. These three theorems, taken together, enabled us to improve

the performance of the generation algorithm.

Theorem 2. Let E be the underlying set of a poset P of which the median x covers

only one element Xl, which is minimal. Then there is a Hamiltonian cycle of down­

sets in P in which two adjacent down-sets differ by one or two elements and this cycle

contains the edge {0,X1X}.

Proof. Let n be the cardinality of E (n = #(E)). We consider, as we did in Theo­

14

X m	 = x
1.

2.

3.

Figure 1. 7. First case of Theorem 2.

rem 1, Squire's recurrence (1.1) for ideals, which we restate here:

D(P, D, Y) = D(P, D, Y \ U[x]) U D(P, Du D[x], Y \ D[x]),

where x is the median. We distinguish two cases.

1.	 If n = 2, then the poset is on the left side of the first line of Figure 1.7. We apply

equation (1.1) with the initial values D = 0 and Y = E and with x as median

element of Y. We obtain the first tine in Figure 1.7. The Hamiltonian cycles for

the first and second parts are on the second line of the same figure. By adding

the edges {Xl X, 0} and {Xl X, Xl} we obtain the required Hamiltonian cycle that

is on the third line of the same figure and which contains the edge {0, Xl x}.

2.	 If n > 2, then by applying equation (1.1) with the initial values D = 0 and Y = E

and with X as median element of Y, we obtain the first tine of Figure 1.8. Since

Xl is a minimal element in P and X covers only Xl, Xl is alsa a minimal element in

P\ U[x]. Applying Theorem 1 ta P \ U[x] with Xl as median element of Y \ U[x],

we obtain a Hamiltonian cycle containing the edge {0, xI}. On the other hand,

the poset in the second part of line 1 in Figure 1.8 is not empty since n > 2 and

D[x]=2. It follows that this poset has a minimal element min and by applying

Theorem 1 with min as median element of Y \ {xl, x} we obtain a Hamiltonian

cycle containing the edge {Xl X, Xl X min}. Finally by removing the edges {0, xI}

15

Xm = x
1. p

via via
2. first second

part • pMt
Xl -- Xl X min --_.-/

Figure 1.8. Second case of Theorem 2.

and {Xl X, Xl X min} and adding the edges {0, Xl X} and {Xl, Xl X min} we obtain

the required Hamiltonian cycle that is on the second line of Figure 1.8 and which

contains the edge {0,XIX}. 0

Example 4. Consider the poset on the lejt side of the first line of Figure 1.9. By

choosing 2 as median element X m and applying Theorem 2, we obtain the first line of

Figure 1.9. The poset of the first part has the Hamiltonian cycle {0, 1, 12, 2} (byapply­

ing Theorem 1 to this poset). The second part is the poset 3 which has the Hamiltonian

cycle {0, 3}. Ey adding the set 12 to each ideal of this last cycle we obtain the Hamilto­

nian cycle {12, 123}. The cycle of each part is on the second line of Figure 1.9. Since

we applied Theorem 2, we add the edges {0, 12} and {1, 123} and remove the edge {0, 1}

but according to Remark l, we do not remove the edge {12, 123}. Thus, we obtain the

required Hamiltonian cycle on the third line of Figure 1.9.

Remark 2. Any minimal element in a poset may be chosen as median and conse­

quently it may be a neighbor of 0 (adjacent to 0) when we apply Theorem 1. Sometimes

we want to keep this choice for subsequent step; to this end we overline this minimal

element (we draw a line above it).

The purpose of overlining an element instead of applying Theorem 1 directly is to

allow the choice of the median ta be made as often as possible. These overlines are

16

1.
2

1

X m = 2
1 3 + (12) 3

1 3

3--(1) 12
2.

1 1 1

13-- 1 123

3. 3-- 0 12

1 1

13-- 1 123

Figure 1.9. Example illustrating the use of Theorem 2.

transferable only to the first part in the next step of applying equation (1.1) since only

for the first part do we have (1). In Squire's equation (1.1), we choose x as median

X m of the linear extension of a poset P. When this median is a minimal element, or

when it covers only one element, which is minimal, we apply Theorem 1 or Theorem 2,

respectivelYi otherwise we apply Theorem 3, which we present below. The number of

overlined elements must not exceed 2 since (1) cannot be a neighbor of more than two

elements in a cycle. Therefore, when we have two overlined elements, we can no longer

choose a median elementj the method for dealing with this situation is explained below

in Lemma 1 and Lemma 2. Before presenting these lemmas, we generalize Squire's

recurrence for two non-comparable elements instead of one element.

1.5 GeneFalization of Squire's recurrence

Proposition 1. We have

D(P, D, Y) = D(P, D, Y \ U[x, y]) U D(P, DU D[x], Y \ (D[x] U Ury])) U

D(P, Du D[y], Y \ (D[y] U U[x])) U D(P, D U D[x, y], Y \ D[x, y]), (1.2)

where x and y are non-comparable elements of Y and U[x, y] = U[x] U Ury], D[x, y] =

D[x] U D[y]. The meaning of the other symbols is the same as in the beginning of the

thesis.

17

Proof. According to Squire, we have, for some x in P, Equation (1.1):

V(P, D, Y) = V(P, D, Y \ U[x]) U V(P, D U D[x], Y \ D[x]).

Since x and y are non-comparable, y E Y \ U[x] and y E Y \ D[x]. Consequently,

y E Y \ U[x], so that

V(P, D, Y \ U[x]) = V(P, D, y \ U[x, yI) U V(P, D U D[y], Y \ (D[y] U U[x]))

and y E Y \ D[x], so that

IJ(P, DUD[x], Y\D[x]) = IJ(P, DUD[x], Y\(D[x]uU[y])) U V(P, DUD[x, y], Y\D[x, y])

By substituting these last two equalities into Equation (1.1) we find the recurrence

announced above. 0

1.6 Hamiltonian cycle using our generalization of Squire's recurrence

Lemma 1. If a poset P has only two minimal elements, then there is a Hamiltonian

cycle of down-sets in P in which two down-sets differ by one or two elements and such

that 0 is adjacent to each of these two minimal elements.

Proof. Let P be a poset that has only two minimal elements x and y. By applying

the generalized recurrence of Proposition 1, Equation (1.2), we obtain the first line of

Figure 1.10. On the right side of the arrow we have 4 parts, the first of whicb is 0.

The first part is empty since the poset has only two minimal elements. Let minl be a

minimal element of the second part. In this case, it is also a minimal element of the

fourth part since Y \ (U [y] U {x}) ç Y \ {x, y}. Let min2 be a minimal element of the

third part. According to Theorem l, there is a Hamiltonian cycle of the down-sets of

the second part containing the edge {lb, mind. Since x is included in every down-set

of this cycle, this cycle contains the edge {x, x mind. By an argument similar to the

previous one, there are two cycles of down-sets for the third and fourth parts containing,

respectively, the edges {y, y min2} and {xy, x y mind. These cycles are on the second

18

x,Y
1. p ---. 0 + (x) p \ (U[y] u {x}) + (y) p \ (U[x] u {y}) + (xy) p \ {x,y}

x - xmznl y - y min2

2. U U

X >---, xminl y>---,y min2

3. U U

Figure 1.10. Illustration of Lemma 1.

line of Figure 1.10. On the third line we removed sorne edges and added others to

obtain the required Hamiltonian cycle. The dashed lines are the removed edges. We

can easily verify that when one or more among the second, third and/or fourth parts

are empty the corresponding cycles are reduced to one element and we always have a

Hamiltonian cycle of down-sets in which two adjacent down-sets differ by one or two

elements, with 0 being adjacent to each of these two minimal elements. 0

Example 5. Consider the poset on the left side of the first line of Figure 1.11. By

choosing 1 and 3 for the minimal elements (the elements x and y) and applying Lemma

1, we obtain the first line of Figure 1.11. The first part is the empty poset whose un­

derlying set is 0; consequently it has the Hamiltonian cycle 0. The second part is the

empty poset whose underlying set is 2; therefore it has the Hamiltonian cycle {0, 2}.

By adding the element 1 to each ideal of this last cycle we obtain the Hamiltonian cycle

{1,12}. The third part is the empty poset whose underlying set is 4; therefore it has the

Hamiltonian cycle {0,4}. By adding the element 3 to each ideal of this last cycle we

obtain the Hamiltonian cycle {3,34}. The fourth part is the empty poset whose under­

19

1.

2

1

4

1

1,3
0 + (1) 2 + (3) 4 + (13) 2 4

1 3

0 1-12 3-34 13 134

2.
1 1

123 1234

--------------­3. 0-1-12 3-34 13 134

1

123 1234

Figure 1.11. Example illustrating the use of Lemma 1.

lying set is {2, 4},. therefore it has the Hamiltonian cycle {0, 2, 24, 4}. By adding the set

13 to each ideal of this last cycle we obtain the Hamiltonian cycle {13, 123, 1234, 134}.

The Hamiltonian cycle of each part is on the second line of Figure 1.11.

Since we applied Lemma 1, we add the edges {0, 1}, {0,3}, {12,123} and {13, 34}, and

remove the edge {13,123}, but according to Remark l, we do not remove the edges

{1,12} and {3,34}. Thus, we obtain the required Hamiltonian cycle on the third line

of Figure 1.11, where 0 is adjacent ta each of the ideals 1 and 3.

Lemma 2. If a poset P has at least two minimal elements, then there is a Hamiltonian

cycle of down-sets in P in which two dawn-sets differ by one or two elements and

such that 0 is adjacent ta each of these minimal elements. In addition, if two of these

minimal elements are overlined, then each of the new posets obtained has only one

overlined minimal element (it may have other minimal elements that are not overlined).

Proof. (By induction on n, the number of minimal elements in P).

Let x and y be two minimal elements in P. By applying the generalized recurrence

20

x,y
l.P---'-· P\U[x,y] + (x) P\(U[Y]U{x}) + (y) P\(U[x]U{y}) + (xy) P\{x,y}

y-- yzo
U2.

1

z

3. o - x .-----. xz y .-----. yz xy

l~---===---U U__ J)
4. z- 0-tz y-- yz

~ U

5. z·----· 0 .--. tz x .-----. xz y .-----. yz

U~~
.. ~ " .

~-------_.__...__ ._...._....

6. t-0-z x-- xz y-- yz

~ U U

7. t·----· 0 .--. z x .-----. xz y .-----. yz

U~~
-------_._._ __ .

Figure 1.12. Illustration of Lemma 2. Lines 2-3 cover Case 1, lines 4-5 cover Case 2

and lines 6-7 cover Case 3.

21

(Equation 1.2), with initial values D = 0 and Y = E and the minimal elements x and

y, we obtain the first line in Figure 1.12. We note that the first part is included in each

of the second, third and fourth parts.

Consequently, if the first part has a minimal element, it will be also a minimal element

of each of the other three parts.

Basic step. If n = 2, then the result follows from the proof of Lemma 1. Moreover, as

we require minI to be adjacent to 0 for the second and fourth parts and that min2 be

adjacent to 0 for the third part (see Figure 1.10), each of these three parts will have an

overlined minimal element according to Remark 2.

Induction step. If n > 2, then we have 3 cases.

1.	 The first part restricted to Y\U[x, y] contains a unique element z. Then there is a

Hamiltonian cycle for this part that contains the edge {0, z}. Since z is a minimal

element in each of the second, third and fourth parts, according to Theorem 1 these

parts have the cycles indicated in line 2 of Figure 1.12. We note that one or more

of the last three cycles may be reduced to one edge if the number of elements of

the corresponding poset is restricted to one element. Consequently, the required

Hamiltonian cycle of P is shown in the third line of Figure 1.12.

2.	 The first part restricted to Y \ U[x, y] contains more than one element but exactly

one minimal element z. This minimal element certainly has a cover t. Applying

Theorem l, Case 2, we obtain the first Hamiltonian cycle on the fourth line in

Figure 1.12. The other Hamiltonian cycles on the same line are also obtained by

applying Theorem 1 with z as median element. Consequently, the cycle of P is

shown on the fifth line of the same figure.

3.	 The first part restricted to Y \ U[x, y] has at least two minimal elements, say t and

z. By the induction hypothesis there is a Hamiltonian cycle with 0 adjacent to t

and z as shown on the sixth line. The other Hamiltonian cycles on the same line

are obtained as in Case 2 except that the median for the fourth part is t instead

22

of z. Finally, the cycle of P is shown on the seventh line of the same figure.

Analogously to the basic step, we can show that each of the second, third, fourth

and possibly the first will have an overlined minimal. 0

Figure 1.12 does not include overlines because it shows a general poset, and the overlines

are a function of the Hasse diagram of a particular poset.

A situation is called blocked ""hen we require °to be adjacent ta two elements, i.e.

when we have 2 minimal elements, each of which is overlined. In such a situation, we

use Lemma 2 to unblock this situation. Then we obtain new posets, each of which

has one overlined minimal element. It follows that each time we use Lemma 2 (our

generalization of Squire's recurrence) we return to the choice of median 3 or 4 times

(depending upon the first part) where we apply Theorem l, 2 or 3 as needed to the new

posets.

Example 6. Consider the poset on the left side of the first line of Figure 1.13. By

choosing 2 and 4 for the minimal elements x and y and applying Lemma 2, we obtain

the first line of Figure 1.13. The first part is the empty poset whose underlying set is

{1}; consequently it has the Hamiltonian cycle {0,1}. The second part is the empty

poset whose underlying set is {l, 3}; therefore it has the Hamiltonian cycle {0, l, 13, 3}.

By adding the element 2 to each ideal of this last cycle we obtain the Hamiltonian

cycle {2, 12, 123, 23}. The third part is the empty poset whose underlying set is {l, 5};

therefore it has the Hamiltonian cycle {0, l, 15, 5}. By adding the element 4 to each ideal

ofthis last cycle we obtain the Hamiltonian cycle {4, 14, 145,45}. Thefourth part is the

empty poset whose underlying set is {l, 3, 4}; therefore by applying Theorem 1 and by

taking 1 for the minimal element we can show that this poset possesses a Hamiltonian

cycle having the edge {0, 1}. By adding the set 24 to each ideal of this last cycle we

obtain a Hamiltonian cycle having the edge {24, 124}. The Hamiltonian cycle of each

part is on the second line of Figure 1.13.

Sinee we applied Lemma 2, we add the edges {0, 2}, {0,4}, {l, 12}, {l, 124} and {14, 24},

23

3 5
2,4 () --'--..... 1+ 213 + (4) l 5 + (24) l 3 51.

1 1

1 "2 "4

o 2-12 4 - 14

124)
2.

1 1 1 1 1

1 13-123 45-145

3. 0JdJI·----·Y ï----· Y- YJ
: 13-123 45-145 :
1:::= __ 124

Figure 1.13. Example illustrating the use of Lemma 2.

and remove the edges {2,12}, {4,14} and {24, 124}. We finally remove, according to

Remark 1) the edge {0, 1}. Thus we obtain the required Hamiltonian cycle on the third

line of Figure 1.13) where 0 is adjacent to each of the ideals 2 and 4.

1.7 Hamiltonian cycle when there are at least two elements less than

the median

The following Lemma 3 is a necessary step for the proof of Theorem 3.

Lemma 3. Let P be the pos et P = Q + R (disjoint union of two posets). Let {x 1, X2,­

... ,Xn } be the underlying set of Q) where n ~ 2, and X n be maximal. Then there is a

Hamiltonian cycle of down-sets in P in which two adjacent down-sets differ by one or

two elements and this cycle contains the edge {X1X2 ... Xn-l, X1X2 ... x n }.

Proof. (By induction on n) .

Basic step. If n = 2, then we have 2 cases.

1. If X2 is isolated, then bath Xl and X2 are minimal elements. By applying equation

24

Xm	 = Xl
1.	 P P\ {xd + (Xl) P\ {xd

0 Xl

2. via	 via
first	 second
part	 part

X2 Xl X2

via	 via3.
first second
part part

X2 -- Xl X2 ---.--'

Figure 1.14. First case of the basic step in Lemma 3.

(1.1) with Xl as median we obtain the first line of Figure 1.14. In this case, P\{xd

has a minimal element X2. According to Theorem 1, the cycles of the first and

second parts contain the edges {0, xû and {Xl, XIX2}, respectively, that are on

the second line of Figure 1.14. Also according to Theorem 1, Case 1, applied to

P with Xl as median, we add the edges {Xl, 0} and {XIX2, X2} and remove the

edges {0, xd and {Xl, XIX2}. Then we obtain the required Hamiltonian cycle

on the third line of the same figure. We note that this cycle contains the edge

{Xl,	 XIX2}.

2.	 If Xl < X2, then by applying equation (1.1) with Xl as median we obtain the first

line of Figure 1.15. We distinguish 2 cases.

(a)	 IfP\U[XI] = 0, then P\ {xd = {X2}' In this case the cycle of the first part

is 0 and the cycle of the second part contains the edge {Xl, xIxd. According

to Theorem 1, Case 2, applied to P with Xl as median, we add the edges

{0, xd and {0, XIX2} and, according to Remark 1, we do not remove the edge

{Xl, XIX2}. Then we obtain the required Hamiltonian cycle on the second

line of Figure 1.15. We note that this cycle contains the edge {Xl, XIX2}.

(b)	 If P \ U[XI] i- 0, then it has at least one minimal element: we choose one of

25

X m	 = Xl
1. P	 P \ {xI}

2.

Xl X2

o XI- Xl X2 ----..

3.	 via via

first second

part part
------ min -- Xl min -------"

Figure 1.15. Second case of the basic step in Lemma 3.

them and caU it min. According to Theorem 1 with min as median, there is

a Hamiltonian cycle containing the edge {0, min}. On the other hand, the

second part has at least two minimal elements: min and X2. By applying

Theorem 1, Case 1, with X2 as median, we obtain a. Hamiltonian cycle in

which 0 is adjacent to min and to X2. By adding Xl to each down-set of

this cycle we obtain a Hamiltonian cycle in which Xl is adjacent to xlmin

and XIX2. Since we applied Theorem 1, Case 1, to P with Xl as median, we

add the edges {0, Xl} and {min, Xl min} and remove the edges {0, min} and

{Xl, Xl min}. FinaUy, the required Hamiltonian cycle of P is on the third

!ine of Figure 1.15. We note that this cycle contains the edge {Xl> Xl X2}'

Induction step. If n > 2, then without loss of generalicy, X n will not be chosen as

median. In addition, we suppose that the median X m is chosen among the elements

XIX2 ... Xn-l. We distinguish three cases.

1.	 #(D[xm]) = 2, i.e. X m covers a unique element, say Xm-l' Then this last element

is minimal. By applying Theorem 2 with X m as median we obtain the first line

of Figure 1.16. The first part P \ U[xm] has a minimal element Xm-l' Then, ac­

26

cording to Theorem 1, there is a Hamiltonian cycle containing the edge {0, xm-d.

For the second part there are three cases.

(a)	 If n = 3 and E contains only 3 elements, then the cycle of the first part is

the edge {0, xd and the second part is the singleton {X3}' Consequently X3

is a minimal element in the second part. By applying Theorem 1 with X3

as median we obtain the Hamiltonian cycle {XIX2, XIX2X3} since D[xm] =

XIX2. Since we applied Theorem 2 to P, we add the edges {0, XIX2} and

{Xl, Xl X2X3} according to Remark 1, we do not remove the edge {0, xd nor

the edge {XIX2, XIX2X3}. Finally we obtain the required Hamiltonian cycle

containing the edge {XIX2, XIX2X3} on the second line of Figure 1.16.

(b)	 If n = .3 and E contains more than three elements, then the cycle of the

first part contains the edge {0, xd and the second part has at least two

minimal elements: X3 and another one, say min. By applying Lemma 2

we obtain a Hamiltonian cycle containing the edges {XIX2, XIX2X3} and

{XIX2, xlx2min}. Since we applied Theorem 2 to P, we add the edges

{0, XIX2} and {Xl, xlx2min} and remove the edges {0, xd and {XIX2'­

xlx2min}. Finally we obtain the required Hamiltonian cycle containing the

edge {XIX2, XIX2X3} on the third line of Figure 1.16.

(c)	 If n > 3, then the second part contains at least two elements from the set

{Xl, X2,"', x n } and by the induction hypothesis there is a Hamiltonian cycle

of down-sets containing the edge {XIX2'" Xm-2Xm+1 ... Xn-l, XIX2'"

Xm-2Xm+1 ... x n }. When we add to each down-set of the last cycle the set

D[xm] = Xm-IXm , this cycle will contain the edge { XIX2'" Xn-l, XIX2 ... x n }.

In addition, when we apply Theorem 1 to the second part with the median,

which we call min, this last cycle will contain the edge {Xm-IXm , xm-Ixmmin}.

Since we applied Theorem 2 to P, we add the edges {0, Xm-IXm } and

{Xm-l' xm-Ixmmin} and remove theedges {0, xm-d and {Xm-IXm , Xm-IXm ­

min}. Finally we obtain the required Hamiltonian cycle containing the edge

{XIX2'" Xn-l, XIX2'" x n } on the fourth line of Figure 1.16.

27

2.	 If #(D[xml) = 1, then when we apply Theorem 1 with Xm as median, the first part

will either have a Hamiltonian cycle of down-sets containing the edge {0, min},

where min is a minimal element of the poset of the first part, or will have the

cycle 0, depending upon whether the first part is non-empty or empty. As for

the second part, its underlYlng set contains at least two elements from the set

{Xl, X2, "', x n }· By the induction hypothesis, and by an argument similar to

the one applied to the second part in Case 1 (c), there is a Hamil tonian cycle of

down-sets containing the edge {Xl X2 ... Xn-l, Xl X2 ... x n }. Moreover, when we

apply Theorem 1 to this second part with min as median, this last cycle will

contain the edge {xm,xmmin}. Finally, by applying Theorem 1 to P, Case lor

2, with X m as median, depending upon whether the first part is non-empty or

empty, and adding and removing the appropriate edges we obtain the required

Hamiltonian cycle containing the edge { XIX2'" Xn-l, XIX2'" x n }.

3.	 In this case #(D[xml) > 2. By applying equation (1.1) to P with Xm as me­

dian, we obtain the first line of Figure 1.16. We suppose that X m does not have

any brothers (if Xm has a bl'Other we choose as median another elements that

has no brothers) and that D[xm] \ {xm} = {Xi, "', xm-d, which must have

a maximal element in P, say Xr . Since #(D[xml) > 2, the first part contains

the set {Xi, .. " xm-d, whlch contains at least two elements. By the induc­

tion hypothesis there is a Hamiltonian cycle of down-sets containing the edge

{Xi'" Xr-l Xr+l'" Xm-l, Xi' ,. xm-d· By an argument similar to that of Case 1

above with all its subcases, there is a Hamiltonian cycle of down-sets for the second

part containing both edges {XIX2'" Xn-l, XIX2'" x n } and {Xi'" Xm , Xi'" xm min}.

Finally by adding the edges {Xi' .. Xr-l Xr+l ... Xm-l,

Xi ... x m } and {Xi' .. Xm-l) Xi' .. Xm min} and removing the edges {Xi' .. Xr-l Xr + l

... Xm-l, Xi'" xm-d and {Xi'" Xm, Xi'" x m min} we obtain the required Hamil­

tonian cycle containing the edge { XIX2' .. Xn-l, XIX2 ... x n } on the fifth line of

Figure 1.16. We note that if Xn-l is greater than each element of {Xl,' ", Xn-2}

and if we take Xn-l as median, then the vertex Xl ... Xn-l will be reserved for an­

--

28

Xm P \ U[Xm] +
 (D[xm]) P \ D[xm]1. P

2. via
first
part

(/) Xl x2

1

Xl-- Xl X2 X3

via
second

part

3. vIa
first
part

(/) Xl X2 - Xl X2 X3

via
second

Xl -- Xl x2 min
part

(/) Xm-IXm --XI"'Xn-1
;,
,,,,,

via via
second

part

4.
first
part

xm-Ixmmin ... -- XI"'XnXm-l

Xi ... Xm-l \ Xr -- Xi' .. Xm -- Xl" 'Xn-l
5. via via,,

,,
first
part

second
part .

Xi'" Xm-l Xi'" xmmin --- XI"'Xn

Figure 1.16. The induction step of Lemma 3.

other cycle containing the edge {Xl'" Xn-2, Xl ... xn-d, Consequently, we avoid

this choice in that case. 0

Remark 3. In Lemma 3, we proved that there is a Hamiltonian cycle of down-sets of

the poset satisfying Lemma 3 's hypothesis, where two adjacent down-sets differ by one or

two elements and this cycle contains the edge {XIX2'" Xn-l, XIX2'" xn}. When apply­

ing Squire 's recurrence (Equation (l.I)) to this poset with the median Xm chosen among

{Xl, X2, ... Xn} we noticed that the set D[xm] is added to each element of the cycle of the

second part (see the first line of Figure 1.16), and induction on this second part enabled

us to prove the existence of the edge {XIX2'" Xn-l, XIX2'" xn}. On the other hand, if

29

we chose the median Xm outside the set {Xl, X2, ... xn}, the set D[xm] would be added

to each element of the cycle of the second part, but we do not want D[xm] to be added

to the elements of our cycle which will contain the edge {X1X2"'Xn-l, X1X2···Xn}.

Consequently, in this case this last edge is part of the cycle of the first part.

Remark 4. The choice of Xn as median is the last among the elements of the set

{Xl, X2, "', Xn}. This last choice ensures the existence of the edge {0, Xn} to which we

must add the set X1X2 ... Xn-l built at this stage and this ensures the existence of the

edge {X1X2 ... Xn-l, X1X2" . Xn} by creating it. In practice, we underline each element

of the set X1X2 ... Xn (we draw a line under it) and these underlines will be transferred

to the first part when Xm is chosen outside the set {Xl, X2, ... , xn} and to the second

part when it is chosen among the elements of this set so that Xn will be chosen after the

elements {Xl, X2, "', xn-d·

Remark 5. Given the existence of the edge {XIX2' .. Xn-l, XIX2 ... xn} in Lemma 3,

the edge {0, Xn} must exist in a sub-cycle. Therefore, Xn, which is underlined, is also

considered overlined. Consequently, this Xn cannot be chosen as median unless it is the

unique element in the poset, since at this stage it loses its connection with 0 and regains

it when we add the edge {0, Xn}.

Two elements are said to be brothers if there is a third one which is covered by each of

them.

Theorem 3. Let E be the underlying set of elements of the poset P of which X is an

element having at least 2 elements less than it and does not have any brothers. There

is a Hamiltonian cycle of down-sets of this poset where two adjacent down-sets differ by

one or two elements and this cycle does not contain the edge {XIX2' .. Xk-l, XIX2" . xd,

where XIX2 ... XkX = D[x] and Xk is maximal in P \ U[x].

Proof. Let n be the cardinality of E (n = #(E)). We have 2 cases.

30
x

1

1. X2 X m = X

1
Xl

2.

3.

Figure 1.17. First subcase of first case in Theorem 3.

X m = X
1. -----.. Xl

(/)-- Xl

2. 1 1

X2 -- XIX2

3.

Figure 1.18. Second subcase of first case in Theorem 3.

1.	 In this case n = 3 and there are two elements less than x. We have 2 sub-cases,

where the poset is the left side of the first line of either Figure 1.17 or Figure

1.18. By applying Equation (1.1) with X as median we obtain the first line of

either Figure 1.17 or Figure 1.18. The Hamiltonian cycles of down-sets of first

and second parts are on the second line of the same figure. By adding the edges

{x Xl X2, xd and {x XIX2, Xl X2} and removing the edge {Xl, Xl X2} we obtain

the required Hamiltonian cycle on the third line which does not contain the edge

{Xl, XIXÛ'

2. In this case n. > 3. We suppose that D[x] Xl ... Xk X. By applying Equa­

31

X m = x
1. P

Xl ... Xk --- Xl ... Xk Xmin ----..

via via2.
first , second
part : : part

"----- Xl" 'Xk-l --- Xl ... Xk X ----'

Figure 1.19. Second case of Theorem 3.

tion (1.1) we obtain the first line of Figure 1.19. The first part contains the

elements {Xl, X2, "',xd, where k :2: 2, and by renaming them we may sup­

pose that Xk is the greatest element covered by X in a linear extension of P \

U[x]. Therefore, according to Lemma 3, there is a Hamiltonian cycle of down­

sets of the first part, where two adjacent down-sets differ by one or two ele­

ments and this cycle contains the edge {XIX2'" Xk-l, XIX2'" xd, Let min be

a minimal element of the poset of the second part (this min does exist since

X is a median and n > 3). By applying Theorem 1 to the second part with

min as median we obtain a Hamiltonian cycle of down-sets of this poset, where

two adjacent down-sets differ by one or two elements and this cycle contains

the edge {0, min}. Since Xl' "XkX is added to each down-set of this cycle,

{Xl' . , Xk X, Xl ' , , Xk Xmin} i5 an edge of the cycle of the second part, By adding

the edges {Xl" 'XkX, Xl" ,xk-d and {Xl" 'Xkxmin, Xl" ·xd, which are sim­

ilar to the edges added in Case 3 of the induction hypothesis of Lemma 3, and

removing the edges {Xl' .. Xk-l> Xl ... xd and {Xl' .. Xk X, Xl . , . Xk Xmin} we ob­

tain the required Hamiltonian cycle on the second line of Figure 1.19 which does

not contain the edge {XIX2'" Xk-l, XIX2'" xd. 0

Remark 6. In Theorem 3 we supposed that X had no brothers. If it happens that X

has at least two elements less than it and that X has a brother, then we take as median

one of the elements covered by X which does not have any brothers or for which the

number of elements less than it is less than two, This is due to the difficulty of fin ding

32

a Hamiltonian cycle containing the edge {XIX2"'Xn-l, XIX2"'Xn} in this last case.

Example 7. Consider the poset on the left side of the first line of Figure 1.20. The

median is 4, which can not be chosen according to Remark 6; therefore we choose 3,

which is a an element covered by 4 and which has no brothers. Since #(D[3]) > 2,

we apply Theorem 3 and we obtain the first line of Figure 1.20. We note that 1 and

2 on this line are each underlined and 2 is overlined, according to Theorem 3. The

edges that must be added in this case are {123, 1} and {1234, 12}. The second part has

an overlined minimal element, 4, which ensures the existence of the edge {123, 1234}

according to Theorem 1. Consider the first part. Its median is 1, which is a minimal

element. Then by applying Theorem 1 we obtain the second line of Figure 1.20. The

cycle corresponding to each part as well as the cycle linking them, which is the cycle of

the first part of the first line, is shown on the third line. We now consider the second

part of the first line. Its median is 5, which is a minimal element, and it has another

minimal element, 4, which is overlined. Therefore, the second part has two minimal

elements, each of which is overlined. By applying Lemma 1 we obtain the fourth line.

The cycle of each part, as well as the cycle linking them, which is the cycle of the second

part of the first line, is shown on the fifth line. We note that the first cycle on the third

line contains the edge {l, 12} and the second cycle on the fifth line contains the edge

{0,4}. Sinee the set 123 is added to each down-set of the last cycle, this cycle contains

the edge {123, 1234}. By adding the edges of Theorem 3 announced above, {123, 1}

and {1234, 12}, and removing the edges {l, 12} and {123, 1234} we obtain the required

Hamiltonian cycle of our poset on the sixth line.

7 7 33

1 1

1.

6

A
4

V
5

X m = 3
•

"2

1

l
+ (123)

6

~
4 5

3

1

2

1
1

2
X m = 1 , + (1) 22. 0

1

l
0--1

3. ~112

7 7
1 5,4 1

4. 6 . 0 + (5) + (4) + (45) "6
A

4 5

~ o- 5 4-- 45 "" 5.
~ ~4567

456

o- 1 --123 - 1235 -' 123456
6. ~ 1;;

1;2-- 12;34 -12345-1234567

Figure 1.20. Example illustrating the use of Theorems 1 and 3 as well as Lemma 1.

CHAPTER II

ALGORITHMS

2.1 Representation and useful functions

A subset S of the set {xQ, x}, .. , , xn-I} is represented by the binary number

where bi = 1 if i belongs to Sand 0 otherwise. For example, 0111010 represents the set

{1,3,4,5}. The language C++ possesses two operators, left shift "«" and right shift

">>", which make it easier to add or to remove an element from a set. The functions

unsigned getbit (unsigned int ward, int n) and unsigned setbit (unsigned int ward, int

n, unsigned v) make use of these two operators; the first makes it possible to check

whether n is a member of the set represented by ward and the second adds n to or

removes n from the set represented by ward. In the algorithms below, we use "u" and

"\" instead of se,tbit.

When we enter data (the number of elements of the underlying set and the relations

between its elements), the relations are stored in tables, one for each element, in the

following sense. Table[i] = ward if i is less than or equal to each integer represented

by ward. For example, table[1]=ü1üllü means 1=1, 1 < 2 and 1 < 4. The function

void ProcessO gives the transitive dosure of this relation so that the tables will be filled

in by the appropriate element(s). We copy table[i] to up[i] and use this later in all

instructions of our programs. Dawn[i] will contains the elements which are less than

or equal to i. We also set nup[i] = #(up[i]) and ndawn = #(down[i]).

36

The function int Updateup (int poset int min, int num) updates ail the tables down

and the numbers ndown of the elements remaining in the poset, and finally the num­

ber of minimal elements num, after removing down[min] from poset. The function int

Recoverup (int poset, int min, int num) has the reverse effect of Updateupi i.e. it re­

turns back the values of the tables down, and the numbers ndown and the number of

minimal elements num, as they were before removing down[min] from poset and calling

Updateup.

The functions int Updatedown (int poset, int min, int num) and int Recoverdown (int

poset, int min, int num) have the same l'ole as the two previous functions but instead

of removing down[min] they remove up[min] and they deal with the tables up and the

numbers nup instead of dealing with the tables down and the numbers nup.

2.2 Printing ideals

We opt to print the ideals of a poset when it is not empty. Since we have one empty

ideal, we print it at the beginning. This is possible because Theorem 1 states that

the cycle contains an edge {0,x}, where x is a minimal element chosen as median, and

Theorem 2 states that the cycle contains an edge {0, XIX}, where X is the chosen median

and Xl < x. So, in these two cases, 0 starts or ends the cycle and printing it at the

beginning in ail cases does not affect the cycle of ideals. As for Theorem 3, it inserts the

cycle of the second part into the cycle of the first part and continues to do so until we

can apply Theorem 1 or Theorem 2 to the first part. Consequently, printing 0 always

at the beginning is a good idea. When it must be printed at the end, we can shift back

the cycle by one ideal so that 0 is now at the end.

2.2.1 Order of printing the ideals when applying Theorem 1

When X is a minimal element chosen as median, we apply Theorem 1 to the poset P

and we obtain Figure 1.2. We have 2 cases.

37

1.	 The poset has more than one minimal element. If the direction is forward, we

must start by printing x. Since x will be added to each ideal of the cycle of the

second part (see Figure 1.3), we print the cycle of the second part in the backward

direction by applying Theorem 1 to this part with a minimal element min chosen

as median and then we print the cycle of the first part in the forward direction by

applying Theorem 1 with min as chosen median. If the direction is backward, we

reverse the previous order, i.e. we print the cycle of the first part in the backward

direction by applying Theorem 1 with a minimal element min chosen as median

and then we print the cycle of the second part in the forward direction by applying

Theorem 1 to this part with min as chosen median, and finally we print x.

2.	 We use the same process as in Case 1, but here the first part is the empty poset

(see Figure 1.4).

2.2.2 Order of printing the ideals when applying Theorem 2

When x has one element less than it and this x is chosen as median, we apply Theorem

2 to the poset P and we obtain the first line of Figure 1.8. If the direction is forward,

we must start by printing X1X. Since X1X will be added to each ideal of the cycle of the

second part (see the second line of Figure 1.8), we print the cycle of the second part in

the backward direction by applying Theorem 1 to this part with a minimal element min

chosen as median and then we print the cycle of the first part in the forward direction

by applying Theorem 1 with x}, which is a minimal element, chosen as median. If the

direction is backward, we reverse the previous order; i.e. we print the cycle of the first

part in the backward direction by applying Theorem 1 with Xl a minimal element chosen

as median and then we print the cycle of the second part in the forward direction by

applying Theorem 1 to this part with a minimal element min chosen as median, and

finally we print X1X. We note that the second part may be an empty poset (see Figure

1.7); in this case the recursive calI to this poset gives nothing.

38

2.2.3 Order of printing the ideals when applying Theorem 3

When x has more than one element less than it and is chosen as median, we apply

Theorem 3 to the poset P and we obtain the first tine of Figure 1.19. When we apply

Theorem 1 or Theorem 2, we start the cycle or end it by the minimal element x or by

XIX, where X is the median and Xl is less than X, and these vertices are incident to the

edges that we remove to make the connection with others cycles. So, when we apply

Theorem 1 or Theorem 2, we can start or end the cycle with the vertices incident to

the edges which must be removed, whereas when we apply Theorem 3, the first cycle is

obtained by applying Theorem 1 or Theorem 2, but the vertices that are incident to the

edge that must be removed are not necessarily those by which we start or end the first

cycle (see the second line of Figure 1.19). So, while enumerating the first cycle, when

we find the first vertex incident to the edge that must be removed, we enqueue the rest

of the cycle in a queue, then enumerate the second cycle, and at the end we dequeue

the ideals from the queue. This case becomes more complicated when we have many

nested levels.

2.3 Use of Lemma 1 and Lemma 2

When we apply Theorem 1 to a poset which has an overlined minimal element and this

element is not chosen as median, we must apply Lemma 1 or Lemma 2 depending on

whether the number of minimal elements is two or more.

The above discussion should help the reader to program the algorithm given below.

There are some special cases whose implementation depends on the analysis of the

programmer.

2.4 Algorithms

In the next figures, we present rough outlines of our algorithm as weU as that of the

Pruesse-Ruskey algorithm and the Squire algorithm. The procedure "Ideal" caUs each

39

of the other procedures Ideal1, Ideal2 and Ideal3 which respectively code Theorem 1,

Theorem 2 and Theorem 3. It also calls the procedures lemmal and lemma2, which

respectively code Lemma 1 and Lemma 2, in the particular cases described above.

The initial call is Ideal(P, dir, 0, 0), where dir may be chosen to be either FORWARD

or BACKWARD.

The reader may find ail these details and many others in the complete program III

Appendix A.1.

40

Procedure Ideal1(poset P, direction dir, int min, ideal D) {The meaning of P, min and}

begin {D is the same as in the text}

if (P -1- 0) then
if (num= l) then {num is the number of}

begin {minimal elements of the poset P}
P :=P\{min};
D:=D U {min};
if (dir=FORWARD) then begin print(D); dirl:=BACKWARD; end;
else dirl:=FORWARD;

Updateup(P); {Updates P after removing D(minj}

min:=findMinimal(P); {findMinimal finds a minimal}

Ideal(P, dirl, min, D); {element of P}
if (dir=BACKWARD) then print(D);

Recoverup(P); {Restores P to its status before the call to Updateup}

end else {num> l}
begin

P:= P\{min};

minl:=findMinimal(P);

D1:=D U {min};

if (dir=FORWARD)

begin

print(DI);

Updateup(P);

Ideal(P, BACKWARD, minI, Dl);

Recoverup(P);

Updatedown(P); {Updates P after removing U/minJ}

Ideal(P\U[min], dir, minI, D);

Recoverdown(P); {Restores P to its status before the call to Updatedown}

end else {dir=BACKWARD}

begin
Updatedown(P); {Updates P after removing U/minj}

Ideal(P\U[min], FORWARD, minI, D);
Recoverdown(P); {Restores P to its status before}

Updateup(P);
Ideal(P, dir, minI, Dl);

Recoverup(P);
print(DI);

end;

end;
end;

Figure 2.1. Algorithm coding Theorem 1.

41

Procedure Idea12(poset P, direction dir, int min, ideal D)
begin

if (P =1= 0) then
begin

D1:=D[min] U D;

if (dir=FORWARD) then

begin

Updatedown(P);

minI :=findMinimal(D[minJ);

Ideal(P\U[min], BACKWARD, minI, D);

Recoverdown (P) ;

Updateup(P) ;

minI:=findMinimal(P\D[min]);

Ideal(P\D[min], FORWARD, minI, Dl);

print(DI);

Recoverup(P);

end else {dir=BACKWARD}

begin
print(Dl);
Updateup(P);

minI:=findMinimal(P\D[min]);
Ideal(P\D[min], BACKWARD, minI, Dl);
Recoverup(P) ;
Updatedown(P);
minI :=findMinimal(D [min]);

Ideal(P\U[min], FORWARD, minI, D);
Recoverdown (P) ;

end;

end;
end;

Figure 2.2. Algorithm coding Theorem 2.

42

Procedure Idea13(poset P, direction dir, int min, int x, ideal D)

begin
if (P i- 0) then
begin

Updatedown(P);
Ideal(P\U[min], dir, x, D); {When we find the first vertex incident to the}

{edge that must be removed, we enqueue the}

{rest of the cycle.}

Recoverdown(P);
Updateup(P);

minl:=findMinimal(P\D[min]);
dir1:=direction of the last caU to Idea13

if (dir1= BACKWARD) then print(D[min] U D);

Ideal(P\D[min], dirl, minI, D[min] U D);

if (dir1= FORWARD) then print(D[min] U D); {Now we dequeue the ideals.}

Recoverup(P);

end;

end;

Figure 2.3. Algorithm coding Theorem 3.

Procedure Ideal(poset P, direction dir, int x, ideal D) {x represents an overlined minimal}

begin {element i. e. an element which must be adjacent to 0.}
if (P i- 0) then {If such element does not exist, x will be zero.}

begin
min:=findMedian(P); {This function finds the median elements of P.}

if #(D[min])=1 then
Ideal1(P, dir, min, D);

else if #(D[min])=2 then
Idea12(P, dir, min, D);

else
Idea13(P, dir, min, x, D) ;

end;
end.

Figure 2.4. Our algorithm for generating the ideals of a poset.

43

Procedure lemmal(poset P, int x, int y, ideal D)

int min1:=O, min2j

poset Pl; idea Dl;

begin

if (P 1= 0) then
begin

Pl := P\(U[y] U {x}); {First cycle}
DI:=D U {x};
Update(P);
print(DI);
Ideal(PI, BACKWARD, minI, Dl);
Recover(P);
Pl := P \ {x, y}; {Second cycle}
DI:=D U {x,y};
Update(P);
minI :=findMinimal(PI);
Ideal(PI, FüRWARD, minI, Dl);
print(DI);
Recover(P) ;
PI:= P\(U[x] U {y}); {Third cycle}
DI:=D U {y};
Update(P);
min2:=findMinimal(PI) ;
Ideal(PI, FüRWARD, min2, Dl);
print(DI);
Recover(P) ;

end;

end;

Figure 2.5. Algorithm coding Lemma 1.

44

Procedure lemma2(poset P, int x, int y, ideal D)

int z, tl=O, num1:=num; {num is the number of minimal elements of P}

poset Pl; ideal Dl;

begin

if (P #- 0) then
begin

Pl := P\U[y];
z:=findMinimal(PI \ U[x]);
if (num > 3) then tl := findMinimal(PI \(U[z] u U[x]))
PI:= PI\{x}; {First cycle}
DI:=D U {x};
Update(P);
print(DI);
Ideal(PI, BACKWARD, z, Dl);
Recover(P);
Pl := PI\ (U[x] U Ury]); {Second cycle}
Update(P);
if (numl=3) then
begin

Pl := PI\{z};
Update(P);
t:=findMinimal(PI);
D1:=D U {z};
Ideal(PI, FORWARD, t, Dl);
print(DI);
Recover(P);
t:=O;

end else if (numl=4) then lemmal(PI, z, tl, D);
else lemma2(PI, dir, z, tl, D);
Recover(P) ;
Pl := P\{x,y}; {Third cycle}
D1:=D U {x,y};
Update(P);
if (tl) then Ideal(PI, FORWARD, tl, Dl);
else Ideal(PI, FORWARD, z, Dl);
print(DI);
Recover(P) ;
PI:= P\ (U[x] U {y}); {Fourth cycle}
DI:=D U {y};
Update(P);
Ideal(PI, FORWARD, z, Dl);
print(DI);
Recover(P) ;
end;

end;
end;

Figure 2.6. Algorithm coding Lemma 2.

45

Procedure ldeal(poset P, direction dir, ideal D)
begin

if (P -=1 0) then
begin

min:=findMinimal(P) ;

if (num = 1) then {num is the number of minimal elements ofposet}

begin

P := P\{min};

Update(P);

D:=D U {x};

print(D);

Ideal(P, dir, D);

print(D);

Recover(P) ;

end else
begin

Pl := P\ {min};

Dl:=D U {min};

if (dir = FORWARD) then

begin

print(Dl); {In print, there is a parameter which makes the}

print(Dl); {procedure print Dl one time every two caUs.}

Update(Pl);

Ideal(Pl, BACKWARD, Dl);

Recover(Pl);

P := P\U[min];

Ideal(P, FORWARD, D);

end else

begin

P := P\U[min];
Ideal(P, BACKWARD, D);
Update(Pl);
Ideal(Pl, FORWARD, Dl);

Recover(Pl);
print(Dl); {In print, there is a parameter which makes the}

print(Dl); {procedure print Dl one time every two caUs.}

end;
end;

end;
end;

Figure 2.7. Pruesse and Ruskey's algorithm for generating a Gray code for the ideals
of a poset.

46

Procedure Ideal(poset P, ideal D)
begin

if (P = 0) then

print(D);
else begin

min:=findMedian(P): {This function finds the median element of P.}
Dl:=D U U[min];

Ideal(P\U[min], D);

Ideal(P\D[min], Dl);
end;

end;

Figure 2.8. Squire's algorithm for generating the ideals of a poset.

2.5 How to choose the median element

2.5.1 Relaxed condition

Squire (see (Squire)) gave a recurrence relation for the ideals (Equation 1.1) which we

recall here:

V(P, D, Y) = V(P, D, Y \ U[x]) U V(P, D U D[x], Y \ D[x]),

where P is a poset on a set E, D is a dawn-set of P, Y is a subset of E such that

D nY = 0 and DU Y is a clown-set, V(P, D, Y) is the set of dawn-sets of P that contain

the dawn-set D and whose other elements are chosen from Y, x is sorne element of Y,

and D[x] and U[x] are, respectively, the elements of P that are :S x and 2: x. In what

follows we cali V(P,D,Y\U[x]) thefirstpart and V(P,DUD[x],Y\D[x]) the second

part. Usually we consider V(P, D, Y \ D[x]) as the second part and then we add D[x]

ta each ideal of this part.

He also gave an algorithm (see Figure 2.8), based on this recurrence, for enumerating the

ideals of a poset in an amortized time of o(log n) per ideal. Ta achieve this complexity,

he chose x for the median element X m in the above recurrence. We explain this choice

by Figure 2.9. In what follows we cali P \ U[x] the poset of the first part and P \ D[x]

47

X m = x
P P \ U[X] + (D[x]) P \ D[x]

Figure 2.9. Choosing X m for the median element in a linear extension of P.

the poset of the second part.

Squire (see (Squire)) shows that by choosing the median element X m , the number of

elements of the poset of the first part and that of the second part are each less than or

equal to n - 1 and greater than or equal to ~, where n is the number of elements of E.

He proved that these inequalities ensure the enumeration of the ideals of a poset in an

amortized· time of 0 (log n) per ideal.

In the case of down-sets, a minimal element that has at most ~ elements greater than

it satisfies the above inequalities. We define the relaxed condition as follows.

Definition 1. A minimal element x satisfies the relaxed condition if

Consequently, every element satisfying the above definition satisfies Squire's inequalities.

Thus, when we have to choose a minimal element to make a link between each cycle

of the two parts, as in Theorem 1, if this element satisfies the relaxed condition it will

be taken as median and every minimal element which satisfies this condition will be

considered as median.

We prove in the next sections that in ail cases of the algorithm either we choose a

median or we overline a minimal element to choose it later when it becomes a median.

There is still a problem we have to resolve: in Lemma 3 and consequently in Theorem

3, we excluded the case where a median has at least two elements less than it and has

a brother.

48

xm	 = x
P	 P\U[x] + (x) P\{x}

Figure 2.10. Left side is the poset having x as a minimal element.

2.5.2 Choosing the median for Theorem 1

If the median is a minimal element, say x, we apply Theorem 1 to the poset P and we

obtain Figure 2.10. We have two cases.

1. The number of minimal elements of the poset of the first part is greater than 1.

(a)	 If one of these minimal elements, say min, satisfies the relaxed condition, we

choose it as median for the poset of the first part. Since the poset of the

first part is included in the poset of the second part, P \ U[x] cP \ {x}, and

the set U[min] is the same in each of the two parts, this min also satisfies

the relaxed condition for the poset of the second part and will be taken as

median for this poset.

(b)	 If none of these minimal elements satisfies .the relaxed condition, the median

of the poset of the first part, say med, is not a minimal element. However

there is a minimal element, say min, less than this median, i.e. belonging

to D[med], and we overline this element. In the case of several minimal

elements, say minI, min2, ... , mink, we choose one of them, say min, so

that #(U[min]) ::; #(U[miniJ, where 1 ~ i ::; k, and that is not the maximum

of D[med] \ {med} in a linear extension of P (see Remark 5). This choice

ensures that this minimal element will satisfy, in a later step, the relaxed

condition before the other minimal elements. By an argument similar to

that of the previous case, the median med of the poset of the first part will

also be the median of the poset of the second part. Thus we overline this

minimal element min for this last poset. Consequently, for each of the two

posets, we overline a minimal element belonging to D[med], where med is

49

the median of the poset of the first part. We note that overlining an element

postpones the choice of this element as a median until it satisfies the relaxed

condition.

2. The number of minimal elements of the poset of the firstpart is 1. We follow the

same procedure as that of the above part b.

Example 8. Consider the poset on the left side of the first line of Figure 2.11. Every

minimal element satisfies the re'laxed condition, since the number of elements which are

greater than each of these minimal elements is less than or equal ta 2, which is half the

number of elements of the poset. We take 1 as median. By applying Theorem 1 ta this

poset with 1 as median we obtain the first line of Figure 2.11. The minimal element 4

of the poset of the first part of the first line satisfies the relaxed condition. By applying

Theorem 1 ta this poset with 4 as mediari.. we obtain the first cycle on the second line,

which is similar ta the cycle obtained on the third line of Figure 1.6. The cycle of the

poset of the second part of the first line is obtained by adding 3 ta each dawn-set of the

precedent cycle and is the second one on the second line. Since we applied Theorem 1

with 1 as median, we add the edges {l, 0} and {14, 4} ta the last two cycles and remove

the edges {0,4} and {l, 14} from them. Consequently, we obtain the cycle on the third

line of the poset on the left member of the first line.

2.5.3 Choosing the median for Theorem 2

We apply Theorem 2 when there is exactly one element less than the median; so tak­

ing this minimal element as median will nat affect the choice of the median since the

difference will consist of one element to each part in contrast with the previous choice.

Although not including this theorem does not greatly affect the performance of the

algorithm, including it is necessary because it makes possible the processing of several

special cases.

2.5.4 Choosing the median for Theorem 3

If there are at least two elements less than the median x, we apply Theorem 3. Then we

obtain Figure 2.9, where #(D[x]) 2: 3 sinee it includes x. If the poset P has a minimal

element whether or not it is overlined (if it has an overlined element, it had been chosen

50

3 3 3

X m = 1 + (1)l. 1 1
1

1 2 4 2 li 2 li

3 ~
/y 11

2 0 1 12

2.

1 1 1 1

24 4 14 124

~I /1

234 1234

/23 Ir ~
1

2 0 1 12

3.
1 1

24 4 14 124

~I /1

234 1234

Figure 2.11. Example illustrating the use of Theorem 1 with the relaxed condition.

51

to be less than the median x in an earlier step; so it belongs to D[x]), the poset of the

second part will not have any overlined minimal element, so we apply to this part the

same procedure as that of Section 2.5.2. As for the poset of the first part, it keeps the

same number of minimal elements as that of P, and if P has one overlined minimal

element, P \ U[x] will have this overlined minimal element. However the number of

elements of this last poset decreases as long as we apply Theorem 3 or Theorem 2 until

this minimal element satisfies the relaxed condition, where we can apply Theorem 1.

Example 9. Consider the poset on the left side of the first line of Figure 2.12. Every

minimal element satisfies the relaxed condition since the number of elements which are

greater than each of these minimal elements is less than or equal to 4 which is half the

number of elements of the poset. We take 8 as median. By applying Theorem 1 to this

poset with 8 as median we obtain the first line of Figure 2.12. No minimal element of the

first part satisfies the relaxed condition. The median of this poset is 4, and this median

has at least two elements less than it; thus we overline a minimal element belongingto

D[4] and which is not the maximum of D[4] \ {4} in the linear extension of the poset.

We can choose 2, and we also overline this element for the poset of the second part. By

applying Theorem 3 to the poset of the first part of the first line with 4 as chosen median

we obtain the second line of Figure 2.12. As stated in Theorem 3, we underline each

element of D[4] \ {4} = {1,2,3} and we overline the maximum, 3, of the last set in its

linear extension. We note that 2 keeps its overline. Each minimal element of the poset

of the first part of line 2 satisfies the relaxed condition, particularly 2, which we take

as median. By applying Theorem 1 to this last poset with 2 as median, we obtain the

third line of the same figure. By applying Theorem 1 to each of the posets of the first

and second parts twice we easily obtain the two cycles on the fourth line. By removing

the edges {0, 1} and {2, 12} and adding the edges {0, 2} and {1, 12}, we obtain the cycle

on the fifth line which corresponds to the poset of the first part of the second line. As

for the poset of the second part of this last line, 5 satisfies the relaxed condition. By

applying Theorem 1 to this poset with 5 as median, we obtain a cycle which côntains

the edge {0, 5}. Since the set 1234 is added to each down-set of the last cycle, this cycle

contains the edge {1234, 12345}. We find on the sixth line the cycle of the poset of the

first part and that of the second part of the second line. Sinee we applied Theorem 3, the

added edges are {1234, 12} and {12345, 123} while the removed edges are {1234, 12345}

and {12, 123}. The cycle obtained is on the seventh line. The cycle of the poset of the

second part of the first line is the same as that of the first part after adding 8 to each

of its down-sets. By adding the edges {8,0} and {28, 2} and removing the edges {0,2}
and {2,28} we obtain the cycle corresponding to the poset on the left side of the eighth

line.

52

7	 7 7

1	 1 1
5 6	 5 6 5 6

V	 V v
X m = 8

1. /Î~	 /Î~ + (8) /Î~
1 2 3 8	 1 2 3 1 2 3

7

1

V
5 6

7

2.	 1X m = 4/Î~ l 2 3: + (1234) "5 6
1 2 3

X = 2 ,.3.	 ml ~ 3: •	 1 3 + (2) l 3:

3-0 2-23
4.

1	 1 1 1

13-1 12 -123

3-@-- ?-23
5.

1	 1

13 - î -- 1'2 -123

3-13--1-12 1234	 ~
6.

1	 1o-2--23-123 12Ls

3-13--1-12-1234 ~
1	 '.7.
o-	 2-- 23 -1:23 -12~45

8.	 1'---'2 -.-23- 123-12345J r---'28-238-1238-123458J

3 -13-- 1 - 12 - 1234 38 -138--18 -128 -12348

Figure 2.12. Example illustrating the use of Theorem 3 and Theorem 1 with the
relaxed condition.

CHAPTERIII

COMPARISON OF ALGORITHMS

We implemented our algorithm in the style used in Ruskey's program which was com­

municated to my supervisor T. Walsh by mail. Our program contains about 1600 lines

whereas Ruskey's program contains about 300 lines. Ruskey used one theorem in his

program, which is equivalent to Theorem 1 in this thesis, whereas we used in our program

the three theorems and the three lemma stated and proved in this thesis. Consequently,

there is a substantial difference in number of lines between these two programs. We

used sorne functions that Ruskey had used, such as "Update", "Recover", etc. However,

we extended and upgraded these functions to fit aU the cases of our algorithm. For ex­

ample, "Update" in Ruskey's program updates sorne information on the poset, such as

the number of minimal elements and the number of elements that are less than or equal

to each element of the poset, after removing one of its minimal elements. We extended

this function and divided it into two types: "Updateup" and" Updatedown", which differ

from "Update" by considering the median element (which is not necessarily a minimal

element) instead of a minimal element. We also implemented Squire's algorithm; our

implementation contains 220 lines. In this last program we did not need any treatment

such as "Update", "Recover", etc.

We tested these three programs on several examples to measure their performance.

We concluded that they have the same running time when the median is a minimal or

satisfies the relaxed condition. In other cases, our program has almost the same running

time as our implementation of Squire's algorithm and these two programs perform much

54

posetl on the set {1, 2,' .. ,13} Running time in milliseconds and ratio

Squire Our Ruskey

1 2 ... 13 8734 8984 8890

Our/Squire Ruskey/Squire
1.029 1.018

Table 3.1. Running times of the programs for poset1.

better than Ruskey's program.

For example, posetl in Table 3.1 is an antichain (where no two elements are related);

each element of this poset satisfies the relaxed condition. Thus, Ruskey's program,

which first chooses the least minimal element then the second minimal element and so

on, performs as weil as the two other programs. For poset2 in Table 3.2 which con­

sists of four chains (a chain is a poset wi th a relation between every pair of elements),

Ruskey's program also performs as weil as the two other programs. Ruskey's program

first exhausts the first two chains of which each element satisfies the relaxed condition

then continues with the two left chains, and a minimal element taken with Ruskey's

algorithm always satisfies the relaxed condition. On the other hand, with respect to

poset3 in Table 3.3, Ruskey's program first exhausts the first 9 elements, each of which

satisfies the relaxed condition, then continues with the rest of the poset which is a chain

of which no minimum satisfies the relaxed condition. This explains why our program

our is 1.8% slower than Squire's and Ruskey's is 45.8% slower than Squire's. The com­

plexity of Squire's algorithm for a chain is O(logn) per ideal whereas the complexity of

Pruesse and Ruskey's algorithm is O(n) per ideal; this explains the superiority of our

algorithm and Squire's algorithm over Pruesse and Ruskey's algorithm. Everything we

said for poset3 applies to poset4 of Table 3.4, but instead of having a chain we have a

tree of which no minimal element taken with Pruesse and Ruskey's algorithm satisfies

the relaxed condition.

Remark 7. We note that left and right shifts, which are used in the three implementa­

tions, are allowed only for integers. Consequently, a poset, which is represented by an

55

poset2 on the set {l, 2, ... ,31} Running time in milliseconds and ratio

8 16 24 31
1 1 1 1

1 1 1 1 Squire Our Ruskey
2 10 18 26

15265 15218 15515
1 1 1 1

1 9 17 25 Our/Squire Ruskey/Squire

0.997 1.016

Table 3.2. Running times of the programs for poset2.

poset3 on the set {l, 2,"', 31} Running time in milliseconds and ratio

31
1

1 Squire Our Ruskey
11

27312 27812 39813
1

...1 2 9 10 Our/Squire Ruskey/Squire

1.018 1.458

Table 3.3. Running times of the programs for poset3.

poset4 on the set {l, 2,' . " 25} Running time in milliseconds and ratio

25
1

1

19
/I~

16 17 18
~I/

15
1

14
1 Squire Our Ruskey

13
13015 13421 21718

/A~
...1 2 8 9 10 11 12 Our/Squire Ruskey/Squire

1.031 1.667

Table 3.4. Running times of the programs for poset4.

56

integer, may be a set of at most 32 elements. Most often we include in a poset some

isolated elements which makes it possible to repeat the process on the poset or a part of it

depending on whether the median is chosen from those isolated elements. For example,

when we take a poset consisting of 9 isolated elements, from 1 to 9, and of a linear

poset of 23 elements {la < 11,11 < 12,"',31 < 32}, each of the elements l, 2, "',
9 doubles the running time of the linear poseti thus the running time of this poset is

29 times the running time of the poset {1O < 11,11 < 12,' ",31 < 32}. Thus, adding

isolated elements to a poset simulates taking a poset having more than 32 elements. We

used this idea on five families: boolean lattices, posets whose Hasse diagram is a 2 x n

grid tilted by 45°, posets where the total number of covers of aU the n elements is r(n),

linear posets and empty posets.

3.1 Boolean lattice family

Definition 2. In a boolean lattice, we say that an element i}i2' .. in, where i = a or

i = l, covers an element jd2 ... jn, where j = a or j = l, if there is a unique k for

whichik = 1 andjk = a andV l"# k il =jk'

110

100

Figure 3.1. Boolean lattice of 8 elements.

Using the above definition when n = 4 and starting from 1 instead of 0, we obtain the

following poset: lattice16 = {1 < 2,1 < 3,1 < 5,1 < 9,2 < 4,2 < 6,2 < 10,3 < 4,3 < 7,

3 < 11,5 < 6,5 < 7,5 < 13,9 < 10,9 < 11,9 < 13,4 < 8,4 < 12,6 < 8,6 < 14,7 < 8,

7 < 15, la < 12,10 < 14,11 < 12,11 < 15,13 < 14,13 < 15,8 < 16,12 < 16,14 < 16,

15 < 16}. When n = 5, we obtain lattice32 which consists of 32 elements. The other

posets: latticeI-16, where 1 ::; 1 ::; 6, are obtained by adding 1 isolated elements, from 1

to l, to the poset "lattice16" after increasing by 1 each element of this latter poset. For

57

lattice16, we note that, except for the maximum and the minimum,each element has a

brother; so Theorem 3 can never be used and this is affirmed by Table 3.6. This also

applies to aU other examples but lattice32 on this family. We note that our program

performs better as the number of applications of Theorem 2 increases (see Table 3.5

and Table 3.6).

3.2 Grid poset family

Definition 3. In a grid poset of 2n elements, if k is even it covers k - 1 and k - 2

except that 2 covers only 1, and if k is odd it covers k - 2 except that 1 covers nothing.

8

7Yz4
5V2

1

Figure 3.2. Grid poset of 8 elements.

Using the above definition when the number of elements is 16, we obtain the foUowing

poset: grid16 = {1 < 2,1 < 3,3 < 4,3 < 5,5 < 6,5 < 7,7 < 8,7 < 9,9 < 10,9 < 11,

11 < 12,11 < 13, 13 < 14,14 < 15, 15 < 16,2 < 4,4 < 6,6 < 8,8 < la, la < 12,

12 < 14,14 < 16}. The poset "grid8-16" is obtained by adding 8 isolated elements,

from 1 to 8, to the poset "grid16" after increasing by 8 each element of this latter poset.

The other posets are obtained in the same manner.

For grid16, we note that, except for the maximum and the minimum, no element has a

brother; so Theorem 3 can never be used unless we choose the second element "2" as

a median. In this case, aU the even-numbered elements belong to up[this element] and

this element covers only 1. Thus, the first part, after applying Theorem 2, consists of

the linear poset {1 < 3,3 < 5,5 < 7,7< 9,9 < 11,11 < 13,13 < 15} and for the next

58

steps, Theorem 3 will be used. This also applies to all other examples in this family

when we have isolated elements. We note that our program performs better as the

number of applications of Theorem 2 increases (see Table 3.7 and Table 3.8).

3.3 Gamma poset family

Definition 4. In a gamma poset of 2n elements, j covers i if 1 ::; i ::; n and

n + 1 ::; j ::; 2n.

5 678

~

123 4

Figure 3.3. Gamma poset of 8 elements.

Using the above definition when the number of elements is 16, we obtain the following

poset: gamma5 = {1 < 6,1 < 7,1 < 8,1 < 9,1 < 10,2< 6,2 < 7,2 < 8,2 < 9,2 < 10,

3 < 6,3 < 7,3 < 8,3 < 9,3 < 10,4 < 6,4 < 7,4 < 8,4 < 9,4 < 10,5 < 6,5 < 7,5 < 8,

5 < 9,5 < 1O}. The other posets are obtained in the same manner.

For all the posets taken from this family, we note that Theorem 3 can never be used.

However, the performance of our program is still as good as when Theorem 3 and/or

Theorem 2 can be used most often. We also note that our program performs a little

better than Ruskey's (see Table 3.9 and Table 3.10).

3.4 Linear posets

Definition 5. A linear poset of n elements is a poset in which i covers i - 1 't:j i =

2·· ·n.

Using the above definition, when the number of elements is 23 we obtain the following

poset: linear23 = {1 < 2,2 < 3,"',22 < 23}. The poset linear8-23 is obtained by

59

adding 8 isolated elements, from 1 to 8, to the poset "linear23" after increasing by 8

each element of this latter poset. The other posets are obtained in the same manner..

For aB posets taken from this family, we note the use of Theorem 3 and/or Theorem 2.

We also note that our programperforms as weB as it does for the preceding families and

its performance improves as the number of applications of Theorem 3 and/or Theorem

2 increases. On the other hand, Ruskey's program doesn't perform as weB as ours for

this family (see Table 3.11 and Table 3.12).

3.5 Empty posets

Definition 6. An empty poset of n elements is a poset where no two elements are

related.

For aB posets taken from this family, we note that Theorem 3 can never be used and

neither can Theorem 2. However, the performance of our program is still as good as

when Theorem 3 and/or Theorem 2 can be used most often. We also note that Ruskey's

program performs a little better than ours; this is due to the useless treatment time

when we cannot use Theorem 3 or Theorem 2 (see Table 3.13 and Table 3.14).

The test for those families show that our program is on the average slower from 1.7%

to 4.7% than Squire's while Ruskey's is from 1.8% to 37.7% slower than Squire's.

Consequently, for aIl posets, our algorithm is as fast as Squire's to a constant factor (see

Tables 3.6, 3.8, 3.10, 3.12 and 3.14). For most of these posets, those for which we use

neither Theorem 2 nor Theorem 3 in our algorithm, i.e. those for which the median is

minimal (see Tables 3.10 and 3.14) the Pruesse-Ruskey algorithm is as fast as the two

others to a constant factor. But for some posets, those for which we use either Theorem

2 or Theorem 3 in our algorithm, i.e. those for which the median element may not be

minimal (see Tables 3.6, 3.8 and 3.12) it is slower than the other two algorithms.

FinaIly, we conclude that the more we use Theorem 2 or Theorem 3 in our algorithm,

the closer the Pruesse-Ruskey algorithm comes to its worst case and our algorithm to

60

its best case (see Table 3.12).

For each of the three algorîthms, we assumed that the poset was represented by a n x n

matrix, where n is the number of elements in the poset. For Squire's algorithm and

ours we use the linear extension 1 < 2 < ... < n, which is compatible with aIl our

posets, since i < j for each poset if and only if i < j as integers.

61

Example Running time in milliseconds of Number of ideals
Squire Our Ruskey

lattice16 281 281 281 168

lattice32 17432 18141 18218 7581

latticel-16 515 546 531 336

lattice2-16 968 1046 1078 672

lattice3-16 1969 2110 2250 1344

lattice4-16 4000 4234 4578 2688

lattice5-16 8376 8671 9609 5376

lattice6-16 17406 17875 19890 10752

Table 3.5. Running time of execution on a family of boolean lattices.

Example Ratio of running times Number of applications of

Our/Squire Ruskey/Squire Lemma1 Lemma2 Theorem2 Theorem 3
lattice16 1.000 1.000 14 13 13 0
lattice32 1.040 1.045 89 634 239 15

latticel-16 1.060 1.031 30 25 16 0
lattice2-16 1.080 1.114 51 56 39 0
lattice3-16 1.072 1.143 106 106 56 0
lat tice4-16 1.058 1.145 159 253 94 0
lattice5-16 1.035 1.147 341 482 108 0
lattice6-16 1.027 1.143 626 1025 171 0
Average 1.047 1.096

Table 3.6. For boolean lattices, our program is 4.7% on the average slower than
Squire's and Ruskey's is 9.6% slower than Squire's.

Example Running time in milliseconds of Number of ideals
Squire Our Ruskey

grid28 296 296 296 120

grid8-10 7609 7796 9296 5376
grid8-12 11766 12078 14716 7168

grid8-14 15578 15953 20344 9216
grid8-16 21046 21312 28140 11520

grid10-20 153313 155141 199875 67584
gridll-16 189813 195296 247250 92160
gridl1-18 247235 252390 323359 112640

Table 3.7. Running time of execution on a family of grid posets.

62

Example Ratio of running times Number of applications of

Our/Squire Ruskey/Squire Lemma1 Lemma2 Theorem2 Theorem 3
grid28 1.000 1.000 5 0 27 6

grid8-10 1.025 1.222 640 354 40 0
grid8-12 1.026 1.250 368 706 153 0
grid8-14 1.024 1.306 592 847 194 0

grid8-16 1.013 1.337 880 1128 215 0
gridlO-20 1.012 1.304 5936 6278 1261 0

gridl1-16 1.029 1.301 9216 6847 1346 0

gridl1-18 1.021 1.308 11552 9384 1383 0
Average 1.019 1.254

Table 3.8. For grid posets, our program is 1.9% on the average slower than Squire's
and Ruskey's is 25.4% slower than Squire's.

Example Running time in milliseconds of Number of ideals
Squire Our Ruskey

gamma10 2921 3015 3000 2047

gamma11 6328 6453 6468 4095

gamma12 13734 13953 13968 8191

gamma13 29737 30047 30125 16383

gamma14 64563 65031 65437 32767

gamma15 137047 139234 138860 65535

Table 3.9. Running time of execution on a family of gamma posets.

Example Ratio of running times Number of applications of

Our/Squire Ruskey/Squire Lemma1 Lemma2 Theorem2 Theorem 3

gamma10 1.032 1.027 32 262 10 0

gammall 1.020 1.022 128 225 11 0

gamma12 1.016 1.017 130 503 12 0

gamma13 1.010 1.013 514 912 13 0

gamma14 1.007 1.014 520 2027 14 0

gamma15 1.016 1.013 3074 7678 0 0

Average 1.017 1.018

Table 3.10. For gamma posets, our program is 1.7% on the average slower than
Squire's and Ruskey's is 1.8% slower than Squire's.

63

Example Running time in milliseconds of Number of ideals

Squire Our Ruskey

linear32 141 141 141 33

linear8-23 14140 14640 20984 6144

linear9-21 25297 25593 36562 11264

linear9-22 27312 27812 39813 11776

linear10-20 49797 50266 71141 21504

linear11-19 93610 96891 133360 40960

linear12-18 171406 178250 240062 77824

Table 3.11. Running time of execution on a family of linear posets.

Example Ratio of mnning times Number of applications of

Our/Squire Ruskey/Squire Lemma1 Lemma2 Theorem2 Theorem 3

linear32 1.000 1.000 0 0 8 7

linear8-23 1.035 1.484 518 575 65 12

linear9-21 1.012 1.445 1057 1056 33 36

linear9-22 1.018 1.458 1056 1057 49 34

linear10-20 1.009 1.429 1792 1940 160 2

linear11-19 1.035 1.425 3264 4020 3 0

linear12-18 1.040 1.401 4224 8383 2 0
Average 1.021 1.377

Table 3.12. For linear posets, our program is 2.1 % on the average slower than Squire's
and Ruskey's is 37.7% slower than Squire's.

Example Running time in milliseconds of Number of ideals

Squire Our Ruskey

empty10 890 906 890 1024

empty11 1906 1937 1906 2048
empty12 4093 4171 4109 4096
empty13 8734 8984 8890 8192

empty14 18063 18562 18688 16384

empty15 39000 39656 40515 32768

empty16 81453 83968 84437 65536

Table 3.13. Running time of execution on a family of empty posets.

64

Example Ratio of running times Number of applications of

Our/Squire Ruskey/Squire Lemmal Lemma2 Theorem2 Theorem 3

emptyl0 1.018 1.000 0 138 0 0

emptyll 1.016 1.000 192 202 0 0

empty12 1.019 1.004 a 554 a a
empty13 1.029 1.018 768 810 a 0

empty14 1.028 1.035 0 2218 a a
empty15 1.017 1.039 3072 3242 a a
empty16 1.031 1.037 a 8874 a a
Average 1.023 1.019

Table 3.14. For empty posets, our program is 2.3% on the average slower than Squire's
and Ruskey's is 1.9% slower than Squire's.

CONCLUSION

In order to find an efficient algorithm for the generation of a Gray code of the ideals of

a poset such that two successive ideals differ in one or two elements, we used Squire's

recurrence (see (Squire)). We could choose the median element at each step of the al­

gorithm or postpone the choice of a minimum until it becomes a median in a later step.

Thus, we kept the same idea as Squire's algorithm, that is: always choose the median

element. Our algorithm generates the ideals in Gray code order whereas Squire's al­

gorithm does not. We programmed our algorithm and tested in on several examples

which together il1ustrate most possible cases (see Table 3.1 through Table 3.14). We

found that the running time of our program is almost the same as that of our program

of Squire's algorithm for a.1l those posets. For most of those posets, the running time

of Ruskey's program is close to each of the other two programs whereas for sorne posets

it is much greater than that of each of the other two programs.

APPENDIX A

PROGRAMS

A.l Our Program

! !__..__- ._ __ _--_ _ _-­ lf
i/ This progl'!\lf is writt(~n in Dc\'(;++. ver:il0Il 4.!J.9.2 !I
i ! _ _ .._ __ _. _ ..- __ _ __.. __ _ __..._--//

#include <stdio. h>
#include <stdlib .h>
#inclucle <string .h>
#incl ude <time. h>
#clefine MAJU>OINTS 50
#ciofinc MAXSTAŒ 10000
Il dcfine MaxQueue 11000

typodef enulll{FDRWARD, BACKWARD}Direction;
unsigned inl. table [100];

//tahl f!! i] contnins lli,' ,'lcw(~nt;; which are .>=i
unsigned in\. parents[100];
Il p <l r e n L8 jj] con t: il i ilsr hep il H':n l' s 0 f i (~> = i), Xl () l t Il (' iU 1(; (~ ~ l 0 r;; .
unsignecl int up[100], down[100]; !!lJiJldj cOlitaillS th(~ di]T!H'lllS

/ JI\ hich arC' >- d, ill1d down 1 cl) t.llt)::,C which ;))'('<=<'1,
unsigned int children[100]; //dlildren [\lK 1 cont.ains I.!J(' elr'lllOD1.,

1/ whicb arc <:):1ax, .s,~() TJp<.1atedown.
lI11signed int med[100];//If Jl1cd[fj:o[, th('n 5 had hc()n c!losrn for tll,~

/ /median hilvil p; mun; th an '2 clüUH'11 t~ less than il.

·/i med is initialised 'tu l in (J'pdateduwn ilnd npdatt'd

/ 10 %cro iu H,r'(;()v('l·c!nwn.

lllisigned inl next;

int. nup[100], ndown[100];

I/nup (lJdOl"u) =cc lIl1ml)('l' of d"Ul('llUi lli up (JJdown).

int Max; 1/ Tt: i~ IILili,\li"-nd ill Upd,Jlcdown <llld (")f'r(~s]1o[ld~

1/ lo milX i Il Tllcol'\ll 3 Dr LCllUllH :3.

iut Min; lIt npp"ar:-; in lTp(:,t.c·\lP IInd f:()Il!:til!:> ClJrrcDt min. This

':l.l.luI\·"; US, \\'Il,'l'c apPl'opri<ll:.i). tu ltéiC t Ile))l'(;\'iolls lllin

68

I! (item. min) in orc!pï (0 1U'" j the ldefl1C'll Ls which have 2 luarks
! / uuder (hem

i/.\Iin=O if min h"vc 2 marks undcl' il'. 011C(' 1I,,)(>('1 in RecoverllIJ, ie is
I/~,cl to zero. No nccd co havc il, or Max global.

int nbefore[100]; Il nbcfore[posj = nb of e](:m('nl:s tlli.lt must be
Il clto~('Tl for "min" bc!'or(: po,; + .l.

int ancetre[100]; /1 aoc(;1r(;[('J] =.~JiC{ if cJ is in C'hildr('ll'~lax!.

iut flag =-1; 1/ flag jnil:iil1i,;ce! OllCC TIH)I)J:I)lU;\ llsee! it
!/iucrei.!ses ronn[to 1, and i.ll() data will be storec! in it·()W

!/~)[em.rnin, iu·m.poset, itclU.mask, item.max). \Vhcn flag eXi'('(;lis L
/f we p11sh old item and we store the ne\\' <1<Jl:a ill tbe tH'W
i/ jtem. Thus, flag "the nllrnbcr (Jf elernent.s in stack"+·co

i 11 t N; /1 (bel! wc pop <lnd 0,nl[l11;'I1C.

int, counter = 0; //XUlll[,Cl' of id('hls

typedef short Boolean;
typeclef strucL {

int min;//T1H' minirulllll of thi) currenf posH, wbcrt llsing Tbcol'crn 3.
unsigncd int poset; / /.EDch ('l'.)\fJ('llt in tht) [l0~r~1 is

/!rcprescnted by its rnu:, jn the) billnlY rr'fHf'Sentat-ioll of thc poset
iut mask;//Corresponds lü îD 11 DllllilJ/) .in SquiH"s recurreuc('.
int max; !/COI'l'(~sponds Lo rrwx in IculIHa 3.
} Item_type;

cl il ss Stack {
/1 i'C iJrt [lll::,li'ng itclli wlwu flag >l. Sl~l' fJag '" C'HJ1lIll)lI.i:S.

private: !/\Vl' pu,;!) <)lIÎ-O the "blCk fr')l(J index () tu i'vfAXSTACK-l.

int top; //If tüp'-~\fAXST C'K (i) then thE' la::<t C'lemeu1
Item_type rgItem[MAXSTACK]; Iii;, at the index ::--I!\x.STAcr\:) (j······1).

public:
Stack(){ top = 0; };
Boolean EmptyStack() { rdu1'n(top <= 0); };/! <: !lut I!()(;CSsàry

Boolean FullStack () {return (top >= MAXSTACK) ;}; j /> not lIecessarY
int Push(Item_type item);
int Pop(Item_type &item);

};
Stack stack;

Item_type item;

j / ._. __.M •••• ~... • ••••••••••••_.__••_~••~_•••_ ••••• • __.

/l pu;,b anil.('1ll on tll(' :-.l-nl'k. l'<'(IlI'IJ %t:ro for :;11(:(,(',-;;, · ..·1 ()Il er1'or.
1---..·_ _·_..·_..- --_._._ _._._- -_.-_..- _-,--_ ..- ­
nt Stack::Push(Item_type item)

if (top >= MAXSTACK)

retulIl (-1) ;

ebc {

rgltem [top++] item;

return (0) ;

69

}

1--"'-'-'--' _-_._ -._.-_..-._-._.- --_ _ - - -­ - _ - _._.--­
/ / pop "Ul iCern off I.Iw st;)('k. retllrn zero for Sllcce~;s, --1 011 Cl'for.

/ /----------- ­
int Stack::Pop(Item_type &item)
{

jf (top <= 0)
rcturn(-l);

e!f;C {

item = rgltem[--top 1;
retllrn (0);

}
}

11------------------------------­
cl ass SStack

I!This sctlckisiTt1I;uded to l'onu cllildl'!~IlI:\r;),xJ, the (~lellH'llls <.- \[il:\

private:
int ttop; /* t()p Di" stack *1
lI11signed in!; rg [MAXSTACK] ;

public:
SStack(){ ttop = 0; };
Boolean EmptySStack () { rcellrn (ttop <= 0); };
Boolean FullSStack() { l'et11rn (ttop >= MAXSTACK); };
int PPush(umigned int iitem);
int PPop(uIlsigncd inl &iitem);

};
SStack sstack, direc;
unsigned int iitem;

/f._..-__....._-_........_.....__........__..._..__.....__.___...._..
1,'

/ / pu:<b an [tf-lm on tll(~ stiH:k, l'f)IUrn :U)t() for SIICCr:SS: ·1 on ()t'!'Ul'

illt SStack:: PPush(lI11signed int iitem)
{

if (ttop >= MAXSTACK)
return (-1);

cl fi e {
rg[ttop++] iitem;
return(O);

}
}
1/- ... -_...-.-...-._-_...._.....-_........_._........._.-.-.._..._.-.-.-...... .._.......--.-.-._...._ ..­
1/ pop !'Ln item off 1.hc stack. reLllrTl lej'() fnl' :iUt;(;cs,~·-l on ,"'rol'.

! /_._--_..__ __- _ _ _._ _ .._-- _._-_._ _-­
int. SStack::PPOp(uIlsigrwd int. &iitem)
{

if (ttop <= 0)
l'et l1I'n (-1) ;

el s e {

70

11tem = rg[--ttop];

return (0) ;

}

1;'---------------------------------- ­
. i	 QUt.)ue -------------- ­i!
! /----------------------------------- ­
class	 queue{

in t first, last;
unsigned int storage [MaxQueue];

Il Ill) 1i c :
queue () { first=last=-l; }
Il We ('Ilqnelle from ind"x 0 t,() :\·laxQtl(~tte-l

void enqueue(const unsigned int);
/1 Ji.' 1;).st=.\laxQuelH'-l lhcll I:lw last c}(:rucnt is
!/itl the index !\[ilXq1\\'lH:--!

unsignecl int dequeue () ;
int. isfullO const {ret,urn first==O && last =MaxQueue-1

Il first=last+1; }

int isempty() COllst {l'dm)) first==-l;}

};

void	 queue::enqueue(collst Ill1signed int el){
if (! isfull 0)

if (last=MaxQueue-1 Il last==-l){

storage [0] = el;

last =0;

if (f i r s t ==-1) fi r s t = 0;

}

cise storage[++last]=el;

eise {printf(":F'uJl qU0Ij(,,\n");exit(1);}

}

Illlsigned in t queue:: dequeue () {
ullsigncd in t. tmp;
if (! isempty 0) {

tmp=storage[first];

if (first=last) last=first=-l;

else i [' (first = MaxQueue-1) first=O;

eJsc first++;
returll trop;
}

clse {printf("Ernply \[ueur;.\n");exit(l);}
}

void lemma3(un"igncd int maskl, unsigned iut poset, int &listack);
void lemmal(unsignecl long poset, int x, int y, int roask, int num,

int n, queue &p, queue &q, int &listack);

71

void lemma2(unsigned long poset, int x, int y, int. mask, int num,
int. n, queue &p, queue &q, int &listack);

vôid Ideal (llnsiglled long poset, Direction dir, in t x, in t mask,
int num, int n, queue &p, queue &q, inL &listack);

void lemmalinv(unsigned long poset, inL x, int y, illt mask, ini.
num, int n, queue &p, queue &q, illt &listack);

! /-------------------------------- ­

llrlsigncd getbi t (ul1sigutHl in t word, int n)
{

return (word » n) & 01 ;
}

unsigned illt setbit(unsigned int word, illt n, unsigllcd v)
{

if (v != 0)
return word (01« n);

el se
return word & -(01 « n) ;

}
/ l---­
void Process ()

int i, j, k, count, bit;
II !:ro.nsitive ('losllre
for (k=l; k <= N; k++){

for (i=l; i <= N; i++){
for (j=l; j <= N; j++){

bit = getbit(table[i], j) 1 (getbit(table[i], k) &
getbit(table[k], j));

table[i] = setbit(table[i], j, bit);
}

}
}

for (i=l; i <= N; i++){ nup[i]=O; ndown[i]=O; }

[or (i=l; i <= N; i++){

up [i] = 0, down [i] = 0;

count = 0;

for (j = 1; j <= N; j ++){

if(getbit(table[i], j)){
up [i 1 = setbi t (up [i l, j, 1);
nup [i]++;

}
if(getbit(table[j], i)){

down[i]=setbit(down[i],j ,1);
ndown [i]++;

}
}

}
}

72

/ ! __ _ _ ..__ _ _ _-_ ..

,.:; - .. ­ ­ pli 11 t, fi the ide il l i [j the fu r III rtt {i, '" }_.
li
void prints (1Illsigncd in!. number)

int i,	 flag = 0;
printf("{") ;
for(i=l ; i<= N ; i++)

if(getbit(number, i)){
if (flag)

printf (" %d::, i);
(' 1s c

printf ("<;rd", i);
if (! flag)

flag = 1;
}
printf (" }\Jl"); caunter++;

}

, 1
1 ;	 prints the id'~al ill i.be format {i; j,

vuid print(ullsigned int number, queue &p, queue &q, int &listack)
{

ilH i, flag1 = 0;
switch(listack){

case 0: p. enqueue (number) ;
break;

case 1: q.enqueue(number);
}

}

! j_...	 .. _.......... .. _ _ _ _ __ _.- _ _.

illt search(ullsigncd int. mask, int value, int start, int end){
i Il L pas;
if (start > end) {

printf("indcx cr]'o]'\n");
exit(l) ;

}
if (start = end)

retllrn st art ;
if(end = start + 1){

if(getbit(mask, end) = value)
return end;

else if (getbit(mask, start) = value)
rctllrn start;

cl s e {
pr in t f C' \. n hi 1 a l (' r r () r ! 1 ! \ \l") ;

printf("mask h %l,sI.Hrt. is ~Ic;d,('nd JOi %d", mask,start,end);

73

exit(l) ;}

}

e ls e {

pos = (start + end) / 2;
if(getbit(mask, pos) == value)

return (search (mask, value, pos, end));
else

return (search(mask, value, start, pos));
}

}

/ j-_.._._ _ _ _ __._ _ _ ...
fi Tl d the TIll mlwr () f el e Ul ('ll t s () f p(Jser

il

1/-----._._ _ _ _ _ _ _-­
int NumElement(int poset)
{

long unsigned mask, res;

int pos, num =0;

mask = poset;

pos = 0;

while(mask !=O){

res = (mask -1) - mask;

pos = search(res, 1, pos, N);

num++;

mask = setbit(mask, pos, 0);

}
r ct Il l' n num ;

}
!(----------- ­

fi I.I. d. 11111 [J () f po fi el (llnrnbcr of miu.ima ()f po~('I)i
1 ...__ _ __ _._-_ _._ _ _ _-_ ...""_._'-' ­j-'-'---"'-"'-'--''''

nt Num(int poset)

long llIl:-;iglled mask l res;

int pos, num =0;

mask = poset;

pos = 0;

\vhile (mask !=O) {

.res = (mask -1) - mask;

pos = search(res, 1, pos, N);

if(ndown[pos] == 1)

num++;
mask = setbit(mask, pos, 0);

}

IPtllrn num;

}

,
i

.1 (Tp<!at'.mp the 1i,,1 for fin din)!, mcdiau <:!n[lrllt
/------------------------ ­

74

in t. UPda te up (i Il t po set, in t min, in t n um)
{ //Upd,'Les uPlwinj ;d'ter rernoving clown[miuj fronl posc(

long uilsigned mask, res, other, fils, fils1=0;
lnt pos, x, n=O;
mask = (-down[min]) & poset & up[min];//lnin i" rcnloved t'roIn poset
pas = 0;

fils=children[ancetre[minll & down[minl & poset;

if (fil s) { / / Wc, III 0 \' C !l1J1 Il l' l' (' S () t Il ,l t i t le (' cp s
fils=setbit(fils, min, O);;'/il.s l;ilk '\Vith it~ arlC(~:'t()r ,\lax
nbefore [ancetre [min]] --;
}

clse if (flag && nbefare[ancetre[item.max]]>O)

{ Min=min;

fils1=children[item.max] & down[item.min] & poset;

}

while (mask !=O) {

res = (mask -1) , mask;

pos = search(res, l, pas, N);

ndawn [pos] =ndown [pos]-ndown [min] ;

if(ndawn[pos] = 1) num++;

mask = setbit(mask, pas, 0);

}

/ / "> r~.(:lllC.JVC t 11 (' C'1"lllcnl;; wiLh LU.;·1 r k;; fr"lll (']1 il (r (' n

pos=O; ;' /-'';. wh i <: lt Hrc iu downÎllliu
whlle(fils){

res = (fils -1) , fils;

pas = search(res, l, pos, N) ;

ancetre [pos]=O;

nbef are [anc etre [min]] - -;

fils=setbit(fils, pos, 0);

}

--------'" TÎ.(;lï!o\,(' Ul!' c!clLr(;nls \\'ith IlliJl'k~ frl) III chi] cl! l' ni!

pas=O; //-> \\'hic!J Hl'(~ l'wt lU dCl'wn [mi Il j
while(fils1){

res = (fils1 -1) , fils1;

pas = search(res, l, pas, N) ;

ancetre [pas] =0;

nbefore [item ,max]--;

fils1=setbit(fils1, pos, 0) ;

}

/i > !/ lc, Lr<;üt ('11'lllcnt;; 1!l,l.I dou'é bclong lo IIp[nlinj
mask = (poset & up[min]) '((-down[min))&poset); //C(111Îvil1el1l ln;
mask=setbit(mask, min, 0); //p,)sd ido\','n:llliu] i np[luin]
pas = 0;

75

while (mask !=O) {

res = (mask -1) , mask;

pos = search(res, l, pos, N);

other = down[pos]& down[min] & poset;

if (other) {

ndown[pos]=ndown[pos]- NumElement(other);

if(ndown[pos]==l) num++;

}

mask = setbit(mask, pos, 0);
}

:' !; i-····

if (ndown[min]==l Il ndown[min]==2) x=l;

else x=Num(down[min]& poset);

r (' t Il r Il n um - x;

}

;1----------------------------------­
! ! n(; (' () v cr 11 P t 11 C 1i s t f Cl r fi n d i II g III (' di an cl C III c' [Il

/ /--- ------------------------------ ­
int Recoverup(int poset, int min, int num, iut mini){ (! \. Il l' re' v (' r "f~

long unsigned mask, res, other, fils, filsl=O; ! / (.~ Un L ()f

int pos, x; /11Jpdatl'llp
mask = (-down[min]) & poset & up[min];
pos = 0;

fils=children[ancetre[min]] & down[min] & poset;
if(fils) { /! W(; l'l'mu\'(; min jH'r<' ';0 chal il kCi'll"

fils=setbit(fils, min, O);/!it.~ linkwilh ilS ;)I;("3sL()l'\Lx

nbefore [ancetre [min]]++;
}

else if(min mini)

{filsl=children[item.max] & down[item.min] & poset;

}

whilc (mask != 0) {

res (mask -1) , mask;

pos = search(res, l, pos, N);

if(ndown[pos] = 1) num--;

ndown [pos]=ndown [pos]+ ndown [min];

mask = setbit(mask, pos, 0);

}

.. 1 _._._...._ .._~ ..>
//-_ . R(:Jl)UV(: the (··[(.,rn('ul." with uwrl\s frurn ehildrt'l1
pos=O; _..-.> \\'11ieh are in clown/win:
while(fils){

res = (fils -1) , fils;
pos = search(res, l, pos, N);
ancetre [pos]=ancetre [min];

76

nbefore [ancetre [min]]++;

fils=setbit (fils, pos, 0);

}

I! > HJ:'HlOv\: 1 !l{~ !!ternelll,s wit:h rn"rKs t'Jorn cu i drt:1l
pos=O; /1-> w!.J.jeh HI!.' IlUt in dOIVIllmili
whi\c(filsl){

res = (filsl -1) filsl;A

pos = search(res, l, pos, N);

ancetre[pos]=item.max;

nbef ore [item. max] ++;

filsl=setbi t (filsl, pos, 0) j

}

fi> 1/ tn trüat eleI1H:nt[' t!lnt don't belUllg to up[minJ
mask = (poset & up[min]) '((Adown[min])&poset) ;/!equiva elle to:
mask=setbi t (mask, min, 0); ! / PO;;{~t' clown i rniu IIp[nJÎlI]
pos = 0 j
while (mask 1=0) {

res = (mask -1) , mask;

pos = search(res, l, pos, N);

other = down[pos]& down[min] & poset;

if (other) {

if (ndown [pos]==l) num--;
ndown[pos]=ndown[pos]+ NumElement(other);
}

mask setbit(mask, pos, 0);

if (ndown [min]==l Il ndown [min]==2) x=l;

cIse x=Num(down[min] & poset);

retuIIl num + x;

}

/ j-'.,-_._,,- _._ _- _..... .. ",-,,--,,_..- " _ _".,_.. ,

Il -- l'pc!dc'duWll the !ist. for lindiJlg lll"dtall ,,[PJlIlo'nt

/i-----­
int Updatedown(iu\: poset, int min, illt num)
{ ;1 Updn.Lc,;; dO\VII[rnin] (Ift.c:'r l'('lllOvlng up[miLlJ !'rom pose\:

Jong, unsigned mask, res, other, fils;

int pos, n=Oj

mask = (Aup[min])& poset & down[min]; //lllin j:-; rellwved t'rom pose!
pos = 0;

fils=children[ancetre[min]] & poset;
if (fil s) { ! i \\ Co rc.mlU v(' 1llj Il Il el' e i,;U r il il t. j i Lü: e li <>

fils=setbit(fils, min, O);//i\:s lill};: \l'ilil ils 'lnce'.;cor ;'v[;Jx.
nbefore [ancetre [min]] --;
}

77

while (mask !=O) {

res = (mask -1) - mask;

pos = search(res, l, pos, N);

nup [pos]=nup [pos]-nup [min];

if(ndown[min]>2){

med [min] =1;

Max=pos;

sstack. PPush (pos); n++;

}

// _ _._ " " _- >- Herno\.'c thc Cl(~lllenlc; 'l'db lllitrks l'roll! childl'c'u

if (fils){ /i-'> \\·itich (Ire in dowIJ!mînl
fils=setbit(fils, pos, 0);
ancetre [pos]=O;
nbefore [ancetre [min]] - -;
}

mask = setbit(mask, pos, 0);
}

! 1 clements witel marh ['WIII childlClI
pos=O; / l ..-> wb ich ,) re~ no tin dOWll rmin!
while(fils){

res = (fils -1) , fils;

pos = search(res, l, pos, N);

ancetre [pos]=O;

nbefore [ancetre [min]] --;

fils=setbit(fils, pos, 0);

}

i r (n)	 {
n b e for e [Max] = n ; / /> g i V(' S v il 1Il e i. 0 dli! d r c Il -<
children[Max]= poset & setbit(down[minl ,min,O);

f ü r (j Il t i = 1; i <n + 1; i ++) {
sstack.PPop(iitem); ancetre[iitem]=Max
}

}

Il > "',) tl'cilt· (·dl'Dl(,Ht':'i tlta1'. don'I: i-)('[.)ng t.) down[lltlll]
mask = (poset & down[min]) '((-up[min])& poset); if (''ln va!(:Dl 10:

mask=setbit (mask, min, 0); /1 I!0c;et : dO'l.\'lll tWH 1 n]) 'Inini
pos = 0;
while (mask !=O) {

res = (mask -1) - mask;

pos = search(res, l, pos, N);

other = up[pos]& up[min] & poset;

if(other) nup[pos]=nup[pos]- NumElement(other);

mask = setbit(mask, pos, 0);

}

78

if(ndown[min]!=l) num++; / \Ye ,;uppose dun 110 cllild of min
rdurn num -1; 1 (clelnent <: min) ha,; iI.nol her parC'llL.

} //This ii' tlle IJJ.'()[!Jej' C'ondilion of TheoreJil :3

/1-----­
;
i,

;' T{c'(;O"Cl'dO\\"1l the 1i s t· f () 1.' fi Tl cl i n [~ nH:di lin cleme nt
/ /----------------------------------- ­
iut Recoverdown(int poset, iut min, illt num) { Il Lltc rcvefsl:

long nnsigncd mask, res, other, fils=O, filsprec=O; /1 effcct of
illt pos; / jUpd:ltedo\\'ll
mask = (-up[min])& poset & down[min];
pos = 0;
1/ llIedlmin) allo\lrs Ils tu hnd E.f'cuverdown ',1'1[('1\ IV\: W:iC

/1 T11eorell1 ~-l in Upd.:),tec!own: i.e. when ndowniminl>2
if (med [minJ==l)

{ fils=children[item.max] & poset; // lils conlainfO the e1f:ments
filsprec=children[ancetre[min]] & poset; /1 wiUI 2 m:·LJ·k::;

} //fils)1r(;1: llXislé' wlwu min hi\~:2 rUilrké'
else fils=children[ancetre[min]] & poset;

if(fils) {
fils=setbit(fils, min, 0); //anl;()tlf:[lllin]0:
if(!med[min]) nbefore[ancetre[min]]++; //i.C', wc; used
} /!Thcul'cm :; in t.l!e previous step

while(mask != O){

res = (mask -1) A mask;

pos = search(res, l, pos, N);

nup[pos]=nup[pos]+ nup[min];

.Il .>. Ftori.l(),t(: I.he (~lCnl().[I.t~ \vii-b. nlil)"i\:S f'r()Jn r:.b.ildl'en
1/....·.... > v:'lÎclt are in down min]

if(fils){

f ils=setbi t (f ils, pos, 0);

if (med [min])

{ancetre [pos]=O;

nbefore [i tem. max] --;

}

elsc
{ancetre [pos]=ancetre [min] ;
nbefore [ancetre [min]]++;
}

}

mask = setbit(mask, pos, 0);
}

/! _ _- -_._-> [{("HlO\-\: !]1\' ('IUlU('llh \Ylr.h Ill,nk:; hum dlildrt~!l

pos=O; //-> l','[)ie!l flT<' Ilul in down[llllll]

while(fils){
res (fils -1) fils;A

pos = search (res, l, pos, N) ;

79

ancetre [pos]=ancetre [min];
nbefore [ancetre [min]]++;
fils=setbit(fils, pos, 0);
}

pos=O;
while(filsprec){

res = (filsprec -1) , f ilsprec ;
pos = search(res, l, pos, N);
ancetre [pos]=ancetre [min];
nbefore [ancetre [min]]++;
filsprec=setbit(filsprec, pos, 0);
}

//------ .> to trent ,.]t~rnent:~ i.llid don 1 t: b(']rH1fI, 1.0 do\Vn~lllini

mask = (poset & down[min]) '((-up[min])& poset); Il e((11 v,tlent: 10:

mask = setbit(mask, min, 0); !/posd 1 dO\Vll[rnill i IIp;lllill]
pos = 0;
while(mask !=O){

res = (mask -1) , mask;

pos = search(res, l, pos, N);

other = up [pos]& up [min] & poset;

if(other) nup[pos]=nup[pos]+ NumElement(other);

mask = setbit(mask, pos, 0);

}

if(med[min]) med[min]=O;
if (ndown [min]!= 1) num--;
return num +1;

}

! ,.1 f---'-'- _ _ _ __.._..- _ _-_..~ _._-- -.__ _ _ _ _ __ . _ _ _ --­

ii
i i-·_· ·_ ···_··__······ _ _ _-_ _ __._.- _ __._-­

illt findMinimal(unsignec\ long poset)
{

ullsigned long res;
ille pos = 0;

while(poset !=O){
res = poset ' (poset -1);
pos = search(res, l, pos, N);
if(ndown[pos] = 1 && nbefore[pos]<l) Ilif pOl:'> is il minimum and

lil if pus do cs nut !lav\"; 2 wnrks or ii'

break; I! i s ttl(' IW' que l'lCllltH! wi th 2 lllark~)

poset = setbit (poset, pos, 0);
}
ret11l'n pos;

}

! 1! i-----------------------------------·

80

/1 parenr, i8 <1 unique parent of ebild
---_ _......•......../1

Boolean uniqueParent(unsigned long poset, int ehild, int, parent)
{

rC1Clll'n (ehild && parent && setbit(up[ehild]& poset,child,O)
== (up[parent] & poset));

}

il
! /

/jCltOO:>l) (HJ.'~ of c'<)choc11, ('()('hed2 or cOi;hecH tltal: hu" [1 11uil] Il'.) child

/ ." .11.__ -_... .. - ..-.._..- --_-_.._.--_.-..- - __ _ __.

in t. ehooseCoehed (ünsigned 10ug poset, in t eoehed1, in t eoehed2,
int eoehed3)

{ int pos=O; //c()cl1cd2 < eochcdl in th(; extension
if (eoehed1 && (! eoehed2 Il ndown [eoehed1] <3)) pos=eoehed1;
//if cochcdl (j,llc1 il i8 the' UJliqul' elClllcllt \Vith a rrtiuk, or iL
!/hai" a lllliqlle child wit.h Oll(~ I(Hl!'k wc C[LOO:,!) cc)(:ltedl

else if(eoehed2 && (!eoehed3 Il ndown[eoched2]<3)) pos=coehed2;
el se if(uniqueParent(poset,eoehed3,coehed2)) pos=eoehed2;

/ / In t hi fi ('a"t~, \VC :tpply Tbcorem ;l and
//ilJl; n(~\V 1'11<1:\ i8 011 l,he elelllents with il mark of the PJ'()ViOllS stl'[J.

l'Ise pos=findMinimal(poset);
return pos;

/1-----­
! ,./ c il (l ,l '" (' 0n e () r p () S, fi H: (; 1. Il rel: 2 ()l' J.H 1) C:'\ UI (1. t i;; il Ul'l.i que [lil l' e Il 1.

/ /------------- ­
int ehooseParent(unsiglled long poset, int pos, int pree1, int pree2

, int pree3)
{
if (ndown [pos 1>2)

{if(uniqueParent(poset, pree1, pos)); //])Oti i" uniqu() parout:
cIse if(ndown[pree1]>2) I/of prcc!

{if(uniqueParent(poset, pree2, pree1))
pos=pree1; / / prc)cl i~; Ilniquc pan'lIt of [HCC'!

che i1(uniqueParent(poset, pree2, pos)); I/pos i:c urüque
clsc if(ndown[pree2]>2) //piH('llt of !)J'C'c2

{if(uniqueParent(poset, pree3, pree2))
pos=pree2;! / prC'c2 lS IIUiquc 1J:ll'('ut of [)fcc~l

else if(uniqueParent(poset, pree3, pree1))
pos=pree1;

e]r,;() if (uniqueParent(poset, pree3, pos)) ; po:; is
rlsr if(ndown[pree3]>2) /!uniqlli' paren1) prcc:l

pos=findMinimal(poset);
clse pos=pree3; / / pree:) <=2
}

ebe pos=pree2; j /,prcc2<, .)

}
else pos=pree1; // .rEce] <=2

}

i

81

1Indown, po:; i < :j

return pos;

}

/1----------------­

filld mediill1 c!Plnent
j-----­
nL findMedian(unsigned long poset, int n)//fiud tbe lll('dian delHI'nt

{
unsigned long res, poset1;

int pos=O, compt=O, coched1=O, coched2=O, coched3=O,coched4=O;

int prec1=O, prec2=O, prec3=O;

poset1=poset;

whilc(compt!=n){ //cochcd:2·C;: cocl!ecll in Liu' cyt(:n~iun

if(ancetre[pos])
{coched4=coched3; coched3=coched2;

coched2=coched1; coched1=pos;}
prec3=prec2; prec2=prec1; prec1=pos;
res=poset l' (poset 1-1);
pos=search (res ,1 , pos ,N) ;
poset 1=setbi t (poset 1 ,pos ,0) ;
compt++;
}

Il;\t the ('nel of trlÎs [oop: if pos <ioes net h;wc :2 m:nks,

/1 cochcd1-ivlax UJ (J,

if(nbefore[pos]==1 Il n==1)

el se

if(nbefore[pos]>1) Il j)')S = \:fax ;lUe! c!lildn'll [pos] ('ontnin

Ilat: lC').st OH(' <.'1(:111"111 di['fercnt' [roIll [lOS,

pos=chooseCoched(poset, coched1, coched2, coched3);
else if(ancetre[pos]&& ndown[pos]>=2 &&.nbefore[ancetre[posll

-ndown [pos] +1)
pos=chooseCoched(poset, pos, coched1, coched2);
I! lhlS=('[,;flIent b<.'forc J\I:I>::, so W(' take i III' \)1\1-' bero]'e

clse if(!ancetre[pos] && ndown[pos]>2 && nbefore[item.max]){
if(nbefore[coched1])

pos=chooseCoched(poset, coched2, coched3, coched4);
Il ('och"dl =l\!ax

else pos=chooseCoched(poset,coched1,coched2,coched3);
}/ 1 l f j Il th (' 1il, S L r (: [l c' Lit i (l II P (; s lt;l snI) L (l 1w)l'k

dse if(ndown[pos]>2) Il ndd 1 :lnC('tfl~ [po,;) ~,;&:

pos= chooseParent(poset, pos, prect, prec2, prec3);
return pos;

}

""""".,..•-""",."._......._._.. ,,""""---- ­

/ TlworClll 1
/i------­
void Ideal1 (unslgned long poset, Direction dir, int x, in L mask,

int num, int. n, queue &p, queue &q, int &listack)

82

int min, z, mini;

l.I11:1igncc! in t poset1, res;

Direction dir1;

if(poset != O){

if (x) !l l' x tLICll the lllJl1JTlIUm is x wllieh i;< a

min x', / jJosponed milliwlllll l'rom ,-1 pn'('l~dent sl ep

else

min findMinimal(poset);

if (num = 1) {

poset1 = setbit(poset, min, 0);

mask = setbit(mask, min, 1);

if (dir=FDRWARD) {
if(flag>=O) lemma3(mask,item.poset, listack);
print(mask, p, q, listack);
dir1=BACKWARD; }

else dir1=FDRWARD;

num = Updateup(poset, min, num);

mini=Min; Min=O;

x=findMinimal(poset1) ;

if(x) Ideal(poset1, dir1, x, mask, num, n-1, p, q,listack);

if (dir=BACKWARD) {
if (flag>=O) lemma3 (mask , item. poset, listack);
print(mask, p, q, listack);}

num Recoverup(poset, min, num, mini);

}

el s e { / i nUlll > :[

poset1 = poset;

poset1 = setbit(poset1, min, 0);

x = findMinimal(poset1);

res = setbi t (mask, min, 1);

if(dir = FDRWARD){
if (flag>=O) lemma3(res,item_poset, listack);
print(res, p, q, listack);
num = Updateup(poset, min, num);
mini=Min; Min=O;
Ideal(poset1, BACKWARD, x, res, num, n-1, p, q, listack);
num = Recoverup(poset, min, num, mini);
num = Updatedown(poset, min, num);
Ideal((-up[min])& poset, FDRWARD, x, mask, num,n-nup[min]

, P, q, listack);
num = Recoverdown(poset, min, num);
}

e 1s e { / / R\O WAr{f)

num = Updatedown(poset, min, num);

83

Ideal((-up[min])& poset, BACKWARD, x, mask, num,
n-nup[min] , p, q, listack);

num = Recoverdown(poset, min, num);
num = Updateup(poset, min, num);
mini=Min; Min=O;
Ideal(poset1, FDRWARD, x, res, num, n-l, p, q, listack);
num = Recoverup(poset, min, num, mini);
if (flag>=O) lemma3(res , item. poset, listack);
print (res, p, q, listack);

}

}

}

}

ln

nt In(unsignecl long poset, int n){
return(getbit(poset, n)==l);

}

/ /_.__.__._._.._.._._._ - __.__ _-_ -._.__ ­

// TII\:UH'Ul '2

void Idea12(unsigncd long poset, Direction dir, int x, in!. y, inL
mask, int- num, in1', ll, queue &p, queue &q, int &listack)

{
int min, mini;
unsignec1 .long d, res l res1 , res2, posetl, poset2; //x i~ a }ll().r·~\:(~d

min=y; / / (' lcrnn.ll

if(poset != O){
res=(down[min] & poset)lmask;
poset1=-up[min] & poset;
poset2=-down[min] & poset;
if(x){

d=down[min] & poset;

d=setbit(d,min,O) ;d=setbit(d,x,O);

}

/ /----'"> di r c (' t.i. 0 n -i;-; "ftJB\VATU)

if(dir - FDRWARD)

if (num==l)

if(nup[min]==n-l){ // wc' CreaL hue ()Îther x or lx
if (lx) x=findMinimal(poset);
res1=setbit(mask, x, 1);
if(flag>=O) lemma3(res1,item.poset, listack);
print (res1, p, q, listack);
num=Updateup (poset, min, num); mini=Min; Min=O;
y=findMinimal (poset2) ;
Ideal(poset2, FDRWARD, y, res, num, n-2, p, q, listack);
if(flag>=O) lemma3(res,item.poset, listack);

84

print(res, p, q, listack);

num=Recoverup(poset, min, num, mini);

}

else{ /1 we tr(',lt: here eith,'r x or !x
if(!x) x=findMinimal(poset);
num=Updatedown(poset, min, num);
num=Updateup (posetl, x, num); mini=Min; Min=O;
y=findMinimal(setbit(poset2,x,O));
num=Recoverup(posetl, x, num, mini);
Idea12(posetl, FORWARD, x, y, mask, num, n-nup[minJ, p, q,

listack) ;
num=Recoverdown(poset, min, num);
num=Updateup (poset, min, num); mini=Min; Min=O;
Ideal (poset2, FORWARD, y, res, num, n-2, p, q, l istack) ;
il (flag>=O) lemma3 (res , item. poset, l istack) ;
print(res, p, q, listack);
num=Recoverup(poset, min, num, mini);
}

('Ise if (num==2 &lx, x)
if(!ancetre[item.max] Il !In(poset, item.max) Il

ndown [item. max] ! = 1) {
if (d==O){

y=findMinimal(setbit(poset,x,O));
num=Updatedown(poset, min, num);
lemmal(posetl, x, y, mask, num, n-nup[min] , p, q,listack);
num=Recoverdown(poset, min, num);
num=Updateup(poset, min, num); mini=Min; Min=O;
Ideal(poset2, FORWARD, y, res, num, n-2, p, q,listack);
}

el se {
y=findMinimal(down[min] & poset);
num=Updatedown(poset, min, num);
lemmal(posetl, x, y, mask, num, n-nup[min], p, q, listack) ;
num=Recoverdown(poset, min, num);
num=Updateup(poset, min, num); mini=Min; Min=O;
Ideal(poset2, FORWARD, x, res, num, n-2, p, q, listack);
}

if(flag>=O) lemma3(res,item.poset, listack);

print(res, p, q, listack);

num=Recoverup(poset, min, num, mini);

}

e ls e /![n(po:.;et, itOIJ .!lllL:>:) ,)nd ndc)\\'u[itclll.(W\x:!=1
if(nbefore[item.max]==l Il nbefore[item.max]==2)

lemmal(poset, x, item.max, mask, num, n, p, q,listack);
clse if (nup [min]==n-2){

resl=setbit (mask, x, 1);

if(flag>=O) lemma3(resl,item.poset, listack);

print(resl, p, q, listack);

res2=setbit(mask, item.max, 1);

85

if(flag>=O) lemma3(res2,item.poset, listack);

print(res2, p, q, listack);

res2=setbi t (res2, x, 1);

if(flag>=O) lemma3(res2,item.poset, listack);

print(res2, p, q, listack);

num=Updateup (poset, min, num); mini=Min; Min=O;

if (num==l){

resl=setbit(res, item.max, 1);
if(flag>=O) lemma3(resl,item.poset, listack);
print(resl, p, q, listack);
}

ebe if(num==2)
{y=findMinimal(poset2);
lemmalinv(poset2, y, item.max, res, num, n-2, p,

q, listack);}
else /1 IllJllt:'··",,:]

('11:)0

i [(nbef ore [item. max
{printf C' CflSI' Ilot

]==2)
t]'f~ated S(~C ('()I:) ~r:); exit (1);}

if (flag>=O) lemma3 (res , item. poset, listack);

print(res, p, q, listack);

num=Recoverup(poset, min, num, mini);

}

else{ //nllpimin]!=n--2
num=Updatedown(poset, min, num);
num=Updateup(posetl, x, num); mini=Min; Min=O;
y=findMinimal(setbit(poset2,x,O)) ;
num=Recoverup(posetl, x, num, mini);
Idea12(posetl, FORWARD, x, y, mask, num, n-nup[min] , p,

q, listack);
num=Recoverdown(poset, min, num);
num=Updateup(poset, min, num); mini=Min; Min=O;
Ideal(poset2, FORWARD, y, res, num, n-2, p, q, listack);
if(flag>=O) lemma3(res,item.poset, listack);
print(res, p, q; listack);
num=Recoverup(poset, min, num, mini);
}

el se 1'/ ntlm>-:~ Of X=()

if(x==O){ /1 l1Ulu=2 or llUJll>2

x=findMinimal(down[min] & poset);//iu the (';):>(~ whcrc~ :,!::(),

//x is the mirtlrillllH of down[minj sincc m.lc)\nt[it.clll.rrw·;=l. <lnd nUl\l:::o2

num=Updatedown(poset, min, num);
Ideal(posetl, BACKWARD, x, mask, num, n-nup[min], p, q

,listack) ;
num=Recoverdown(poset, min, num);
num=Updateup(poset, min, num); mini=Min; Min=O;
y=findMinimal(poset2) ;
Ideal(poset2, FORWARD, y, res, num, n-2, p, q, listack);
if(flag>=O) lemma3(res,item.poset, listack);

86

print(res, p, q, listack);

num=Recoverup(poset, min, num, mini);

}

clse {/ i x'=() aJJd llUlIl,>2

i r (d==O) {
y=findMinimal(setbit(poset,x,O));
num=Updatedown(poset, min, num);
lemma2(posetl, x, y, mask, num, n-nup[min], p, q,listack);
num=Recoverdown(poset, min, num);
num=Updateup(poset, min, num); mini=Min; Min=O;
Ideal(poset2, FDRWARD, y, res, num, n-2, p, q, listack);
}

el s e {
y=findMinimal(down[min] & poset);
num=Updatedown(poset, min, num);
lemma2(posetl, x, y, mask, num, n-nup[min], p, q,listack);
num=Recoverdown(poset, min, num);
num=Updateup(poset, min, num); mini=Min; Min=O;
Ideal (poset2, FORWARD, x, res, num, n-2, p, q, listack);
}

if(flag>=O) lemma3(res,item.poset, listack);

print(res, p, q, listack);

num=Recoverup(poset, min, num, mini);

}

cl s e / /------------<1 i r BACKWAHlt-------·----­
if (num==l)

if(nup[min]==n-1){ // wc Lreal hl.'re citller x Of lx

if(flag>=O) lemma3(res,item,poset, listack);
print(res, p, q, listack);
num=Updateup(poset, min, num); mini=Min; Min=O;
y=findMinimal(poset2) ;
Ideal(poset2, BACKWARD, y, res, num, n-2, p, q, listack) ;
num=Recoverup(poset, min, num, mini) ;
if(!x) x=findMinimal(poset);
resl=setbit(mask, x, 1);
if(flag>=O) lemma3(resl ,item,poset, listack);
print(resl, p, q, listack);
}

el s e { /! ,.'C' 1 r cHI h r~ rcri l' h c l' x or 'x
if(flag>=O) lemma3(res,item.poset, listack);
print(res, p, q, listack);
if(!x) x=findMinimal(poset);
num=Updateup(poset, min, num); mini=Min; Min=O;
y=findMinimal(-up[min] & poset2);
Ideal(poset2, BACKWARD, y, res, num, n-2, p, q, listack);
num=Recoverup(poset, min, num, mini);

num=Updatedown(poset, min, num);
Idea12(posetl, BACKWARD, x, y, mask, num, n-nup[min], p, q

, 1istack);

87

num=Recoverdown(poset, min, num) ;
}

else if (num==2 && x)
if(!ancetre[item.max] Il !In(poset, item.max) Il

ndown [i tem. max]! = 1)
if (flag >=0) lemma3 (res , item. poset , listack) ;
print(res, p, q, listack);
if (d==O){

y=findMinimal(setbit(poset,x,O)) ;

num=Updateup(poset, min, num); mini=Min; Min=O;

Ideal (poset2, BACKWARD, y, res, num, n-2, p, q, listack);

num=Recoverup(poset, min, num, mini);

num=Updatedown(poset, min, num);

lemma1(poset1, y, x, mask, num, n-nup[min] , p, q,listack);

num=Recoverdown(poset, min, num);

}

else{/!II('T'c rmrn=2 flud x n.lld lld,)t\·ll[ilf!Tn.lllilXj! J ilnd <!=()

y=findMinimal(down[min] & poset);
num=Updateup(poset, min, num); mini=Min; Min=O;
Ideal(poset2, BACKWARD, x, res, num, n-2, p, q, listack);
num=Recoverup(poset, min, num, mini);

num=Updatedown(poset, min, num);

lemma1(poset1, y, x, mask, num, n-nup[min], p, q,listack);

num=Recoverdown(poset, min, num);

}

}

else

if(nbefore[item.max]==l Il nbefore[item.max]==2)
lemma1(poset, item.max, x, mask, num, n, P, q,listack);

else if(nup[min]==n-2){

if (flag>=O) lemma3(res,item.poset, listack);

print(res, p, q, listack);

num=Updateup (poset, min, num); mini=Min; Min=O;

if (num==l) {

res1=setbit(res, item.max, 1);

if (flag>=O) lemma3 (res1, item. poset, listack);

print(res1, p, q, listack);

}

clsc if(num==2)
{y=findMinimal(poset2);

lemma1inv(poset1, x, item.max, res, num, n-2, p
, q, listack);}

e 1S (' / / 1I1111l'> :::<l
if (nbef ore [item. max]==2)

cise {printf("Cil;';C not tr(~ill('d, 8('(' case 1)"); exit(l)<----'
; }

num=Recoverup(poset, min, num, mini);

88

res2=setbit(res2, x, 1);res2=s'etbit(mask, item.max, 1);

if (flag>=O) lemma3 (res2 , item. poset, listack);

print(res2, p, q, listack);

res2=setbit(res2, x, 0);

if (flag>=O) lemma3(res2,item.poset, listack);

print(res2, p, q, listack);

resl=setbit (mask, x, 1);

if(flag>=O) lemma3(resl ,item.poset, listack);

print(resl, p, q, listack);

}

elBe{ !!llup!rninl!=o-'2
if (flag>=O) lemma3(res,item.poset, listack);
print(res, p, q, listack);
if(!x) x=findMinimal(poset);
num=Updateup (poset, min, num); mini=Min; Min=O;
y=findMinimal(-up[min] & poset2);
Ideal (poset2, BACKWARD, y, res, num, n-2, p, q, listack);
num=Recoverup(poset, min, num, mini);

num=Updatedown(poset, min, num);

Idea12(posetl, BACKWARD, x, y, mask, num, n-nup[min], p,

q, listack);
num=Recoverdown(poset, min, num);
}

el::> e	 ./ nurn>=;) or x=()
f (x==O){ 1/ l'mUl ~ <n nUlll>2
if(flag>=O) lemma3(res,item.poset, listack);
print(res, p, q, listack);
num=Updateup(poset, min, num); mini=Min; Min=O;
y=findMinimal(poset2) ;
Ideal(poset2, BACKWARD, y, res, num, n-2, p, q, listack);
num=Recoverup(poset, min, num, mini);

x=findMinimal(down[min] & poset);

num=Updatedown(poset, min, num);

Ideal (poset 1, FORWARD, x, mask, num, n-nup [min l, p, q,

listack);
num=Recoverdown(poset, min, num);
}

<d::>e{ Il x! 0 <lud llU11l>2

if(flag>=O) lemma3(res,item.poset, listack);
print(res, p, q, listack);
if (d==O){

y=findMinimal(setbit(poset,x,O));

/ / \Ve llW.! Il il \:capr0 1> le llJ jf :v i s j 11 sIL) <:' for.. .'-lilX,

num=Updateup(poset, min, num); mini=Min; Min=O;

Ideal(poset2, BACKWARD, y, res, num, n-2, p, q, listack);

89

num=Recoverup(poset, min, num mini);

num=Updatedown(poset, min, num);

lemma2(poset1, y, x, mask, num, n-nup[min] , p, q,listack);

num=Recoverdown(poset, min, num);

}

el s e {i! II('IC U1l1D=2 aud x and llJO\Vll i it CD! . llH.tX] 1oo..c 1 illid d=()
y=findMinimal(down[min] & poset); ..
num=Updateup (poset, min, num); mini=Min; Min=O;
Ideal(poset2, BACKWARD, x, res, num, n-2, p, q, listack);
num=Recoverup(poset, min, num, mini);

num=Updatedown(poset, min, num);

lemma2(poset1, y, x, mask, num, n-nup[min] , p, q,listack);

num=Recoverdown(poset, min, num);

}

}

} ,. l '1' / 1 l'f! ene. .1. \P()~ct .. =(J

}I/ C'üd Idcal2

,/Il/ _ _._.. _-_.- _._._--_.__._.._.- _ _.---- ___._--_..

1/ Lerurrw
/ __ _ __ _ _.- .._............... . .. _ __.__.._..

void lemma1(unsignr:d long poset, in\. x, iut y, inl mask, int num,
int n, queue &p, queue &q, int &listack)

{
int min1=0, min2, mini1, mini;
unsigned int poset1, res;

if(poset != OH
if(!x Il !y) {printf("In lermna 1 x or y is Tlull\n"); exit(l); }
poset 1=Cup [y]) & poset;
poset1 = setbit(poset1, x, 0);
res = setbit(mask, x, 1);
if (poset1==0) {

if(flag>=O) lemma3(res,item.poset, listack);

print(res, p, q, listack);

}

e 18 e {

num Updatedown(poset, y, num);

num Updateup((-up[y]) & poset, x, num);

mini=Min; Min=O;

./ /'_._..___....__._-_..-/!

Il [',rst cycle if
;f /' _ _ _ _. /!

min1 = findMinimal(poset1);
if (flag>=O)

lemma3(res,item.poset, listack);print(res, p, q,listack);
Ideal(poset1, BACKWARD, min1, res, num, n-nup[y]-l, p, q,

90

listack) ;
num Recoverup((-up[y]) & poset, x, num, mini);
num Recoverdown(poset, y, num);
}

poset1=poset;

poset1=setbit(poset1, x, 0); poset1=setbit(poset1, y, 0);

res = setbit(mask, x, 1);

res = setbit(res, y, 1);

i f (po set 1==0) {

if (flag>=O) lemma3(res,item.poset, listack);
print(res, p, q, listack);
}

el se {

num = Updateup(poset, x, num);

mini=Min; Min=O;

num = Updateup(setbit(poset, x, 0), y, num);

mini 1=Min; Min=O;

/! _-- _ _-//
! / Second cycle ./ /

: :// ... --_ _.._ .._-/ j

if(!min1)

min1 = findMinimal(poset1);

Ideal(poset1, FORWARD, min1, res, num, n-2, p, q, listack);

if(flag>=O) lemma3(res,item.poset, listack);
print(res, p, q, listack);
num = Recoverup(setbit(poset, x, 0), y, num, mini1);
num = Recoverup(poset, x, num, mini);

}

poset1 = (~up[x]) & poset;
poset 1 = setbit (poset 1, y, 0);
res = setbit(mask, y, 1);
if (poset1 ==0) {

if(flag>=O) lemma3(res,item.poset, listack);
print(res, p, q, listack);}

cIse {
num = Updatedown(poset, x, num);
num = Updateup((-up[x]) & poset, y, num);
mini=Min; Min~O;

min2 = findMinimal(poset1); ! ! /
,/ /---------_/!

Ideal(poset1, FORWARD, min2,res,num,n-nup[x]-1,p, q,listack);

if (flag>=O) lemma3(res,item.poset, listack);

91

print(res, p, q, listack);

num Recoverup((-up[x]) & poset, y, num, mini);
num Recoverdown(poset, x, num);

}
!/Idcal(O: FOR\VATUO>, O. mêlsK, llUllI-L, ll-tl.liplx]-nllp[y] , [J, q,Ji~Li\ck):

}
}

f f
/1---- --_ _._._ _._ _ __ -.- _ ..__ _-­
, .

Lt:mmnlinvIl
Ji::__."......~......

void lemma1inv(unsigned long poset, int x, int y, int mask, int. num
, inL n, queue &p, queue &q, int &listack)

{
Int min1=0, min2, mini1, mini;
unsignec1 int poset1, res;

if(poset != OH

if(!x Il !y) {printi("Jn lcmmaliuv x 01 y i~ nul]\,n"); eXit(l); }

poset1=poset;

poset1=setbit(poset1, x, 0); poset1=setbit(poset1, y, 0);

res = setbit(mask, x, 1);

res = setbit(res, y, 1);

if (poset1==0) {

if (flag>=O) lemma3 (res , item. poset, listack);
print(res, p, q, listack);}

el se {
if (flag>=O) lemma3 (res , item. poset, listack);
print(res, p, q,listack);
num = Updateup(poset, x, num);
mini=Min; Min=O;
num = Updateup(setbit(poset, x, 0), y, num);
mini 1=Min; Min=O;

1j Sccond cyclc !I
./,/---------/,/

min1 = findMinimal(poset1);

Ideal(poset1, BACKWARD, min1, res, num, n-2, p, q, listack);

num Recoverup(setbit(poset, x, 0), y, num, mini1);
num Recoverup(poset, x, num, mini);

}

poset1=(-up[y]) & poset;
poset1 = setbit(poset1, x, 0);
res = setbit (mask, x, 1);

92

if (poseti==O) {
if(flag>=O) lemma3(res,item.poset, listack);
print(res, p, q, listack);}

cise {
num = Updatedown(poset, y, num);
num = Updateup((-up[y]) & poset, x, num);
mini=Min; Min=O;

Il Il
1/ Fil'si. cydr Il
; /-_ __ __ _........//

Ideal(poseti, FORWARD, mini, res,num,n-nup[y]-l,p,q,listack);

if(flag>=O) lemma3(res,item.poset, listack);

print(res, p, q, listack);

num = Recoverup((-up[y]) & poset, x, num, mini);

num = Recoverdown(poset, y, num);

}
poseti = (-up[x]) & poset;
poseti = setbit(poseti, y, 0);
res = setbit(mask, y, 1);
if (poseti ==0) {

if(flag>=O) lemma3(res,item.poset, listack);
print(res, p, q, listack);}

else {printf ('" 'l'hrre i S il problt;lll in leJllrna.linv"); exit (1) ;}
! .1 -_._.__..­ _-­ _ _j i

1/ Third cycle ! /
!!
i !

:1
! 1

//lde;I!(O, FonWAnJ:, 0, 1I1:\,;k. L111LrJ-.. 2,n-1IIlPlx)-tlllp!.\: .p,q.listack);
}

}

; ;'.._._._.._-- _--._._ _ _ .._ __._ __ ­
/1

I! Ll'Ulfna 2
;/_.-._­
i!

void lemma2(ull;;;igned long poset, int. x, int y, int mask, int num,
int. n, queue &p, queue &q, int &listack)

int z, t, ti=O, numi=num, minii, mini

unsigned int poseti, res;

! / W<' UIUY !JiJVC n bd'HC [7,1,=1 nr >:J whr.n lllllll-oil. SI)(' d3 in Ideal.

if (poset != OH

if(!x Il !y) {printfC'In lemrml 2 x or y is uul1\n"); exit(l); }

poseti=(-up[y]) & poset;

z=findMinimal((-up[x]) & poseti);

if(num>3) ti=findMinimal((-up[x]) & (-up[z]) & poseti);

poseti = setbit(poseti, x, 0);

res setbit(mask, x, 1);

num = Updatedown(poset, y, num);

num Updateup((-up[y]) & poset, x, num);

93

mini=Min; Min=O;

if(flag>=O) lemma3(res,item.poset, listack);

print(res, p, q, listack); 1/ Print x

//////////////1/1/
/1 Fin;1 (:yclc ,

II/!I!/II!!!!!!!!!!!
Ideal(posetl, BACKWARD, z, res,num, n-nup[y]-l,p,q,listack);

num Recoverup((-up[y]) & poset, x num, mini);
num Recoverdown(poset, y, num);

Il! II/I///I!!!/!! /
l;f'() IH] (; Ycl (' !

/ I! !1/1111!!I//!!
posetl = (-up[x]) & poset;

posetl = (-up[y]) & posetl;

num Updatedown(poset, x, num);

num = Updatedown((-up[x])& poset, y, num);

if (numl==3){
posetl= setbit(posetl, z, 0);

num=Updateup((-up[x])&Cup[y])& poset, z, num);

mini=Min; Min=O;

t=findMinimal(posetl); /!This t wight Le ,ZC')'()

res=setbi t (mask, z, 1);

H(t && nbefore[ancetre[z]]==l && ancetre[z]!=t)
j/H illlf;elI'c[z]=l'Ilèl;\,) fil>: \vill he c()ll:-iid,~r('d 1

Ideal (poset 1, FORWARD, ancetre [z], res, num,
n-nup[x]-nup[y]-l, p, q, listack);

cl s c
Ideal(posetl, FORWARD, t, res, num, n-nup[x]-nup[y]-l,

p, q, listack);

if(flag>=O) lemma3(res,item.poset, listack);
print(res, p, q, listack);
num=Recoverup((-up[x])&(-up[y])& poset, z, num, mini);
t=O;
}

el se {
if(numl==4)

lemmal(posetl, z,tl,mask,num, n-nup[x]-nup[y] ,p,q,listack);
cIse

lemma2(posetl, z,tl,mask,num, n-nup[x]-nup[y],p,q,listack);
}

num = Recoverdown((-up[x])& poset, y, num);

num = Recoverdown(poset, x, num);

posetl=poset;

posetl=setbit(posetl, x, 0); posetl=setbit(posetl, y, 0);

res = setbit(mask, x, 1);

94

res = setbit (res, y, 1);

num = Updateup(poset, x, num);

mini=Min; Min=O;

num = Updateup(setbit(poset, x, 0), y, num);

mini 1=Min; Min=O;

1/--------j j
Il T'lltrd cvr;[(' /1
! j----------jj

if(t1)
Ideal (poset1, FORWARD, t1, res, num, n-2, p, q, listack);

else
Ideal(poset1, FORWARD, z, res, num, n-2, p, q, listack);

if (flag>=O) lemma3(res, item.poset, listack);
print(res, p, q, listack);
num Recoverup(setbit(poset, x, 0), y, num, mini1);

num = Recoverup(poset, x, num, mini);

poset1 = (-up[x]) & poset;
poset1 = setbit (poset1, y, 0);
res setbit(mask, y, 1);
num Updatedown(poset, x, num);

num = Updateup((-up[x]) & poset, y, num);
mini=Min; Min=O;

//---- /.:

Il F01Jl'tlt ('ycl(~ Il
I! :1f j- ...-_.._.-..._ .._--~/;'

Ideal(poset1, FORWARD, z, res, num, n-nup[x]-l, p, q, listack);

lf(flag>=O) lemma3(res,item.poset, listack);
print(res, p, q, listack);

num Recoverup((-up[x]) & poset, y, num, mini);
num Recoverdown(poset, x, num);

}
}

! f··· ··· .. ·· ..·.. ·· ..·..·····_·..·..· ···­

! / _----_._
To

_-­
li Il k t li<) fil''; t p () ~c t to the second i II L(~lllm:l :3 _.--.- ­

--_ _ _..

void lemma3 (unsigncd lllt mask1, unslglled int poset, int &listack) {
ul1:sigüed int res;
illl min;

if(next)

{if(next mask1)

95

listack=l ; /1 cnquc\ljllg
cise {printf("---:;;·Exi! b('(:I1!1iO(: nex! 1 Hwsk"); exit(l);}
next =0;
if (! flag) flag --;

}
else

{min=item.min; Il llcm,fnin lS dH~ millltUllfll of Thr:orcm :.\
!I Lua,~kJ is an icl(~itl in che firsl piut rl)sultillg [n>l1l tll/:

res=mask1; res=setbit(res,min,l);/Iappli("()lioll of Thcorcl1l:;
if (res-.:-i tem. mask) {!! j tC'Ill . llI<l"k '" dO':\'J! mil!! i 11 Tlt"urelll :\. "

case J,
flag--;
direc . PPush (1) ;
next=setbit(mask1,item.max,O);/lhcrc Uf:'Xt. is given il v,duc
}

cise if(setbit(res,item.max,l)= item.mask) { Il ('a:)(; 2
flag--;
direc.PPush(O) ;
next=setbit(mask1,item.max,l);//ltt:r<; [J(~xt i.s gin'u a V;lllll:

}

}

j;

/ / v 0 i cl Id (' il LI (uu sig n (' d 1Cl n g p () seC . Il n s i I~ Il e d l () n g 111 a s1< , i Jl f li. lu t. Uli t1l)

1/--------------------------------­
void Idea13(unsigned long poset, Direction dir, iIlt x, int. mask,

int num, int min, int n, queue &p, queue &q, int &listack)

queue r;

i n taux, min i ;

Direction dir1;

stack.Push(item);

if (flag==-l) flag=l; elsc flag++;

num=Updatedown(poset, min, num);

item.max=Max; item.min = min; item.poset=poset;

item.mask=(down[min]& poset) Imask;

Ideal((-up[min])& poset, dir, x, mask, num, n-nup[min]
, p, q, listack);

num=Recoverdown(poset, min, num);
if(nbefore[item.max]<O)

{printf("nbt:fore('X;d 1 is negi1tjf",item.max);exit(1);}
.: f·_·---_._ __ _--­

listack=O;
whilc (! q. isempty ()) {

aux=q.dequeue(); r.enqueue(aux)
}

96

num=Updateup(poset, min, num);

mini=Min; Min=O;

unsigned long res=i tem. mask;

x=findMinimal((-down[min])& poset);

stack.Pop(item) ;

unsigned int d;

direc.PPop(d);

if(d) dirl=FDRWARD; cIse dirl=BACKWARD;

if (dir1==BACKWARD) {

if(flag>=O) lemma3(res, poset, listack);

print(res, p, q, listack);

}

Ideal((-down[min])& poset, dir1, x, res, num,
n-ndown[min], p, q, listack);

num=Recoverup(poset, min, num, mini);

if(dir1==FDRWARD){
iF(flag>=O) lemma3(res, poset, listack);
print(res, p, q, listack);
}

if (q. isempty ())

whilc (!r. isempty()){

aux= r.dequeue() p.enqueue(aux);
}

el se
'l'hile (! r. isempty ()){

aux= r.dequeue() q.enqueue(aux);
}

}

; / ~~_ _ _ _ _._._k _ _ w _.__••__ .~_._._._._••._._._._

i! voi:! Idenl (lI11siglied long j.! (1 set , Ilnsiglled loug l1liJ:-ik. i 11 t, 11, int ll\lln)

: i T heu r(;!ll :~
l'

! / ------------------------------_...._- ­
void Ideal(unsigned long poset, Direction dir, int x, int mask, int

num, iut n, queue &p, queue &q, int &listack)
{

int nO, min, z, mlnl, i, maxO, minO;
l.I11signcd long posetO, maskO;
Direction dir1;
j f (n>O){

nO=(n+l) /2;
if(nbefore[item.max]==l)

min=findMinimal(poset & children[item.max]);
cIse min = findMedian(poset, nO);

http:��__.~_._._._._��

97

/ HlMk and IldoWIl 1 min] >::!­
f(x && ndown[min]>2 && setbit(parents[x] ,min,O)!=parents[x]
&& setbit(O,x,I»setbit(setbit(down[min]&poset,min,O) ,x,O))

min= x;
! / x CD.n !lot b,'\bx

if (min=) //Tb('(JI'C'l'll L cas(' 1, LWI) llliuinl<1.: one 1" will. and
! / Lh(' otller \(:.s lllèlXb:d: il JIlil} be 11lill=X.

Ideall(poset, dir, x, mask, num, n, p, q, listack);

e!f:;(~ if(x&&ndown[min]==I) //Theol'ew l, cas(' C, s'min
if (num==2)

if (dir=FDRWARD)
lemmal(poset, X, min, mask, num, n, p,q,listack);

cl sc
lemmal(poset, min, x, mask, num, n, p,q,listack);

else if (num==3) { //Tlt('(liTlil l, C:ib(' d.
z=tindMinimal((-up[x])&Cup[min])& poset);

if(nbetore[z]) Ij&& IldoWlil/'~l

/ / z 1. oS ;-). rIlirünll.lLU t li us udu\vlt! ~.1 1.

{if(ancetre[x] && ancetre[min] &&nbefore[z]==3)
if (dir=FDRWARD) Il dl
lemma2(poset,x,min,mask,num,n,p,q,listack);

cIse
lemma2(poset,min,x,mask,num,n,p,q,listack);

el se if(nbetore[z]==2) //<1'2
if (dir=FDRWARD)
lemma2(poset,x,min,mask,num,n,p,q,listack);

el s e
lemma2(poset ,min,x,mask,num,n,p,q,listack);

cIse //d3
Ideall(poset,dir,x,mask,num,n,p,q,listack);

}
el.sc //(H

if (dir=FDRWARD)
lemma2(poset,x,min,mask,num,n,p,q,listack);

cIse
lemma2(poset ,min,x,mask,num,n,p,q,listack);

}

(di:ic { / /num>:~ Theorelll 1: ('<l~e dG,
if (dir=FDRWARD)

lemma2(poset, x, min, mask,num,n,p,q,listack);
el s e

lemma2(poset, min, x, mask,num,n,p,q,listack);
}

elsc if (ndown [min]==I) ! l'fllonIem 1.: CD,s(~ 1;.

Ideall (poset , dir, min, mask, num, n,p,q,listack);

98

cise if(ndown[min]==2) 1/11\(;rJT(:Hl 2, Cil,.,e g,
Idea12(poset, dir, x, min, mask, num,n,p,q,listack);
,////////////,//

cl s e { / / 'l'hcou.'lll ;) / 1
////////////////

if (1 istack==O)
Idea13(poset, dir, x, mask, num,min,n,p,q,listack);

el s e { i 11 taux;
queue pl, ql;
listack=Oj
Idea13(poset,dir,x,mask,num,min,n,pl,ql,listack);
w hile (! pl. isempty ()) {

aux=pl.dequeue() ;
q.enqueue(aux);
}

while (! ql. isempty ()) {
aux=ql.dequeue() ;
q.enqueue(aux);
} .

listack=l;

}

} ! / e rI cl el" c' l d ,~ Il 1:l

}

}

//------------------- ­
/i !II / /1 ill/li//!II!!!!!!;!!!!!!!I!/!/!!!!!!/!!!!!!

in ma n in argc, chan argv [])

{

FILE *input;

int i, left, right, num_zeros;

ullsigned long poset;

chal' *fname;

dli.'I' *mode;

queue p, q;

inl, listack=O;

if (argc != 2){

f Pr int f (stder r," US;lg (~: g e II dTd 'è il 1 i tJ _fil (' _li a 10 (~ \. 11") ;

ex i t (1) ;

}

printf("Icl('a];; in Gray Cork Ordc;r\n");

fname = argv[l]; /lprilltfi"fllcl1JlC\IJ").

if((input = fopen(fname, "l')) = NULL){

fprintf (stderr, "Errol': cou] d !Joi rend ,'. ~ ,)

f j[(' (}{.,; \ JI " f n am e) .

~

exit(l) ;

}

99

! / l' e a cl Il 1.1 ln1)(' l' 0 f de rn e n t s j Il th f' fi f' t

fscanf(input, "o/rd" ,&N);

('/ l' , .. N)printf("\n The Humber of r'1emenl'i in the po:oet î'i Îrf. ··.li \. Il'', ;

for (i=l; i<=N ; i++){
table[i] 0; parents[i]=O;
table[i] = setbit(table[i], i, 1); ,'fpru(,lltsli] Lable' 1i]:

}

Il store partial ordering:--;

in t comma = 0;

printf(" -The]l(dct is \Jl { ");

do{

fscanf (input, "%1 rXd" , &left, &right);

t ab l e [l e ft] = setbit (t ab l e [l eft], ri ght, 1);

parents[left]=setbit(parents[left], right, 1);

if(left)

if(comma) printf(" ,<:1d<<X.cl", left, right);

else printf ("'7trl<>'{d", left, right);

comma = 1;

}while(left != 0);

printf C' }\n");

fclose(input) ;

printf("\n\llldcab in Grav Code Order\JI");

1/ initializc id!:';).1 and poset

poset = 0;

for(i=l; i <= N; i++)

poset = setbit(poset, i, 1);

Process 0 ;

num_zeros = 0;

for(i=l; i <= N; i++){

if (ndown [i] = 1)

num_zeros ++;

}

long ratio;
clock t timei, time2;
ratio 1000jCLK_TCK;
timei = clock 0 ;

print (0, p, q, listack);
/ j---_ _.......... .. _ _._ _ _ - _._._­

Ideal(poset, FORWARD, 0, 0, num_zeros, N, p, q, listack);
whilc (! p. isempty 0)

prints(p.dequeue());

printf("o/r-d Ide,tl., lu. total·\.u··, counter);
time2 = clockO;
printf(" %ld\ll",ratio*(long) time2 - ratio*(long) timei);

100

rcturn 0;
}

101

A.2 Ruskey's program

/ /--------------------_. ----lI
// 1~his pl'ogranl is writtGll in Dev--C.+, v(,J'siun cl.<J.!J.2 Il
/ (-------_ . li

:!findude <stdio .h>
llinclude <stdlib .h>
/lillclllcle <string. h>
#include <time. h>

#clefine MAJUlOINTS 50
#d e fi ne STANDARD 0
#clefine GRAY 1

typedef cuul1l{FDRWARD, BACKWARD}Direction;

llllsigned int table[100];

unsigned in t up [1 00] ;

llllsigned int steiner[100];

int flip

iIlL N;

int counter O',

int Y;

unsigllcd getbit(unsigned int word, int n)
{

ret.urn (word » n) & 01 ;
}

llllsigned int setbi t (unsigneu in t. word, int n, ullsigIled v)

{

if (v != 0)

return ward (01 « n);

el s e

J'etllrn word & -(01 « n);

}

void Process ()
{

int i, j, k, count, bit;

Il ir;lll"itive ('lo~;llrl'

for (k=l; k <= N; k++){

for (i = 1; i <= N; i ++){

for (j = 1; j <= N; j ++){
bit = getbit(table[i], j) 1 (getbit(table[i], k) &

getbit(table[k], j));
table[i] = setbit(table[i], j, bit);

102

}
}

}
for (i=l; i <= N; i++){

up [i] = 0;
count = 0;
ror (j =1; j <= N; j++){

if(getbit(table[i], j)){
up[i] = setbit(up[i], j, 1);

}
if(getbit(table[j], i)){

count++;
}

}
steiner[i] = count - 1;

}
}

t prjnt~ the ide,)! in Î.l,{~ format li :.i: .. }
:< i. ,

v 0 i cl pr i nt (i n t number)
{

int i, flag = 0;
if(!flip)

flip l',
cise {

flip 0;
printf(::f");
for(i=l; i<=N; i++)

if(getbit(number, i)){
if(flag)

printf (" %1", i);
dse

printf ("'/cd", i);
if (! flag)

flag = 1;
}
printf("}\n");
counter++;

}
}

int search(unsigned int mask, int value, int st art , int end){
i 11 t pos;
if(start> end){

printf (:: index el' l'or \n") ;
exit(l) ;

}
if (start = end)

103

ret.urn start;

if(end == start + 1){

if(getbit(mask, end) == value)

return end;

clse if (getbit(mask, start) == value)

rcturn start;

el se {
printf("\nf:-da\ 8!'fOI'!I!\n");
printf("mask if; %1, start is %1, (~nd is 'Yc,d" ,mask,start,end);
exit(l) ;}

}
cise {

pas = (start + end) / 2;

if(getbit(mask, pas) == value)

return (search(mask, value, pas, end));
clse

return (search(mask, value, start, pas));
}

}

j j fi n d the lui llirn:d elelllnHt i 11 tb (' p Cl :)(, (

int. findMinimal(unsigllcd long paset)
{

ulll,igned long res;

int. pas = 0;

while (paset !=O) {

res = paset ' (paset -1);

pas = search(res, l, pas, N);

if(steiner[pas] == 0)

break;
paset = setbi t (paset, pas, 0);

}

return pas;

}

// update the Jist for finding nünil!wl dl.'lllClJl.

iut Update(int. paset, int min, int num)
{

long unsigned mask, res;

int pas;

mask = paset & up[min];

pas = 0;

while (mask !=O) {

res = (mask -1) . mask;

pas = search(res, l, pas, N);

steiner [pas]--;

if(steiner[pas] == 0)

num++;

mask = setbit(mask, pas, 0);

104

}
r c tu r Il num -1;

}

Int. Recover(int poset, int min, iIlt num){
lOllg unsigned mask, res;
int pos;
mask = poset & up[min];
pos = 0;
while (mask != 0) {

res = (mask -1) A mask;
pos = search (res, l, pos, N);
if(steiner[pos] == 0)

num--;
steiner [pos]++;
mask = setbit(mask, pos, 0);

}
return num;

}

! / g (')) (' l iL te' id cals r (' c; \\ r s ive l y

void Ideal(unsiglled long poset, Direction dir, int two_flag,
Int mask, Int num)

int min;
unsigncd in\. poset1, res;

if (poset != O){
if(two_flag && num > 1)

min y;
el fie

min = findMinimal(poset);
if (num == 1)

{
poset = setbit(poset, min, 0);
num = Update(poset, min, num);
mask = setbi t (mask, min, 1);
print (mask);
Ideal (poset, dir, 0, mask, num);
print (mask);
num = Recover(poset, min, num);

}
e Is c

{
poset1 = poset;
poset1 = setbit(poset1, min, 0);
y = findMinimal(poset1);
res = setbit(mask, min, 1);

if (dir == FORWARD){

105

print(res) ;

print (res) ;

num = Update(posetl, min, num);

Ideal (poset 1, BACKWARD, l, res 1 num);

num = Recover(posetl, min, num);

poset = (-up[min]) & poset;

y = findMinimal(poset);

Ideal (poset, FORWARD, l, mask, num);

}
el sc {

poset = (-up[min]) & poset;
Ideal (poset, BACKWARD, l, mask, num -1);
Y = findMinimal(posetl);
num = Update(posetl, min, num);
Ideal(posetl, FORWARD, l, res, num);
num = Recover(posetl, min, num);
print(res) ;
print(res) ;

}
}

}

}

int. main(int. argc, chan argv [])
{

long ratio;
clock t timel, time2;
ratio = 1000/CLK_TCK;

FILE *input;

int. i, left, right, num_zeros;

unsigued long poset;

chal' *fname;

char *mode;

if (argc != 2){

fprintf (stderr, "Usag<;: gcudldca] iILfilc_IJ illIJ C\lJ") ;

exit (1) ;

}

printf("Idcals in Gray Cl)d(~ Oldcr\n");

fname = argv[l]; /!prilJtf'("flliUllc\n");
if((input = fopen(fname, "r")) = NULL){

fprintf(stderr, "Errol': cOl.lld uot J.'("Hl filt' o/:s\n", fname);
exit (1) ;

}

/! 1'(;11.d llllrnlwr of ell)UH~nr.::; in 1- be sel

106

f scanf (input, "%1" ,&N);
(;1 1\ '")printf (" \n Th(-: nurnh(~r of eJements in tlH: po:,;(-:t is IIi. .., n \ JI .. ,N ;

[0 r (i = 1; i <=N ; i ++){

table[i] 0;

table[i] = setbit(table[i], i, 1);

}

!! store pH rt.Înl Ordf'l'ÎllbS

i Il t comma = 0;

printf (" Th() jlOS(:t is \11 { ");

du{

fscanf (input, "%1 '){d" , &left, &right);

table[left] = setbi t (table [left], right, 1);

iI(left)

if(comma) printf (" . (Y,~1<%j", left, right);

else printf ('''Ycd<.Ï<·d'', left, right);

comma = 1;

}while(left != 0);

printf(" l\n");

f close (input) ;

printf("\n\nTdeals iII Gray Codf) Order\n");

/! l 1'1 i t i il 1i 4 ~) ide a J an cl lJ () :-; d·

poset = 0;

for (i = 1; i <= N; i ++)

poset = se.tbi t (poset, i, 1);

Process () ;

num_zeros = 0;

for(i=l; i <= N; i++){

if(steiner[i] = 0)

num_zero s ++;

}

flip = 1;

timel = clock();

print (0) ;

Ideal(poset, FORWARD, 0, 0, num_zeros);

printf("%d Id(),)ls in total\,n", counter);

time2 = clock () ;

printf(" 'Xhl'\n" ,ratio*(lollg) time2 - ratio*(Jong) timel);

retul'n 0;

}

107

A.3 Our implementation of Squire's algorithm

j j-------------------------- -/1'1

, ,
!/ Thit' programis written in Dev··C'+-,-, Y(~l'siolJ ,L9,D.2 ! i
! j---_ .._-------- _.- --_ _ _ __ _._ _-_ _//

#include <stdio. h>
/loi n c lu d e < s t d lib . h>
i/i n cl u d (.) < s tri n g . h>
#inelude <time. h>
#dufillC MAx..POINT8 50

unsigned int table [100];

unsignecl int up[100], dawn[100];

int nup [100], ndown [100];

int N;

int caunter = 0;

in t Y;

unsigned getbit(Ullsigned int ward, in\, n)

{

retllrn (ward » n) & al ;
}

unsignecl int setbit(unsigned int ward, int n, unsigned v)
{

if (v != 0)

return ward 1 (al « n) ;

el s e

return ward & -(al « n);

}
j /-------------------------------- ­
void Pracess ()
{

int i, j, k, caunt, bit;

/1 transitive ('1usure

for (k=l; k <= N; k++){

for (i=l; i <= N; i++){
for (j = 1; j <= N; j ++){

bit = getbit(table[i], j) 1 (getbit(table[i], k)
& getbit(table[k], j));

table[i] = setbit(table[i], j, bit);
}

}

}

for (i=l; i <= N; i++){ nup[i]=O; ndawn[i]=O; }

for (i=l; i <= N; i++){

up[i] = 0, dawn[i]=O;

lOS

count = 0;

for (j=l; j <= N; j++){

if(getbit(table[i], j)){

up[i] = setbit(up[i], j, 1);

nup [i]++;

}
if(getbit(table[j], i)){

down [i]=setbit (down [il ,j, 1) ;

count++;

ndown [i]++;

;._------- ­

! , p r i n t s Ill,} i cl C il 1 in t:!1l' fo r nt a t {i, .i, }
//------------------------------- ­
void print(unsigned int number)
{

in t. i, fl ag = 0;

printf("[");

for (i=l ; i <= N ; i++)

if(getbit(number, i)){

if (flag)

printf C' 'Xd", i);

e ls C

printf ("%d", i);

if (! flag)

flag = 1;

}

printf (" }\11") ;
counter++;

}
.'·1,I ..--...__.......__..~.._- ---_ _._ .._ .._ __ .._-­_
int, search(unsigned illt mask, int value, int start, int end){

int pos;
if(start> end){

printf (" index (~rr()r 'Ill");
exit(l) ;

}

if (start = end)

l'cturn start;

if(end = start + 1){

if(getbit(mask, end) = value)

ret.urn end;

cise il' (getbit(mask, start) = value)

retlHn start;

el se {

pr int f (;; \ n Ll ta 1 P Tl' nri! ! \ n") ;

109

printfC'mt",k if; %1. sLnl if) ,/iü, (;lld is 0/;<]" ,mask,start,end);
exit(l) ;}

}
el sc {

pos = (start + end) 1 2;

if(getbit(mask, pos) == value)

retuI" (search(mask, value, pos, end));

else

return (search(mask, value, start, pos));

}

}
/ j--_......... . _.._........ . _ _..... ..._.. _ _ __ .

/ / ._ .._... find the nUllllwl' of demeut.s ~)f [HH31:'t__._._ .

i i--···_·· _.__ - _ .._ _ _._ _ __ _ --- -_._­

int NumElement(int poset)
{

long unsigned mask, res;
in t pos, num =0;
mask = poset;
pos = 0;
while(mask !=O){

res = (mask -1) A mask;

pos = search(res, 1, pos, N);

num++;

mask = setbi t (mask, pos, 0);

}
r e t 11 r Il num ;

}
1/----------------­

filld rnudian (~l('.rnclltIl
/ ,/_"'__"_"'_"'_"'_ ····•.._··__···M _

illt findMedian(11nsiglled long poset, int. n)/!find /.uc lllcdiall elcl\l('lJi

unsigncd long res, poset1;

int. pos=O, compt=O;

poset1=poset;

while(compt!=n){

res=poset1 A(posetl-1);
pos=search(res,l ,pos,N);
posetl=setbit(posetl ,pos,O);
compt++;//prinLr("cornpt:=:'X:d\n" J'()ll\pt):

}
rcturn pos;

}

j_...•.............__.._-_ _ __._.•............................._._ _ __ _..__ _ _-_ _-_ _.­

/ gC])('l"!\.(' idf'aJs recul·sivel.\" _ __.-_._-- Squire

j-----_._------------------------­
void Ideal (unsigned long poset, int mask, int n)
{

int min, nO;

110

unsigned long res;

if(poset = 0) print(mask);

dse {

nO=(n+1) 12;

min = findMedian(poset, nO);

res=mask I(down[min]& poset);

Ideal((-up[min])& poset, mask, n-NumElement(up[min]&poset));

Ideal((-down[min])& poset,res, n-NumElement(down[min]&poset));

}
}
1! ..1-_•..~ ••. •..___•._._...•._.",~~._ ~_, ,
int main(int argc, char* argv[])
{

FILE dnput;

int i, left, right, num_zeros;

LlIlsigncd long poset;

char *fname;

ch n.r *mode;

if(argc 1= 2){
fprintf (stderr, .. USi\ge: gendIdeal i lLfîle_IHl me \u") ;
exit(l) ;

}

printf (" Id('ilis in Gray Code Ordl:'r\n");

fname = argv[l]; //printf("fnamc\lI"),
if ((input = fopen(fname, "l''')) = NULL){

fprintf (stderr, "Lrr:or: could tlot l'cad
exit(l) ;

}

f i.l e· 'Yr.s\tl", fname);

! /),côo numbe]' 01' clements in the
fscanf(input, "';,{d" ,&N);
printf("\n The nurnher of elements

sH

in th,,; pos,,;!, j,; , c,1id \. n \. n, ", \ " N)',)

for (i=l; i<=N ; i++){
table[i] 0;
table[i] = setbit(table[i], i, 1); /iparetlts[j] j il b le! i] :

}

'1 si'ore p:Htial ()rdf']'ings

i 11 t comma = 0;

printf (" Thc poset is \n { ");

do {

fscanf(input, "'J'id '/cd" , &left, &right);
table[left] setbit(table[left], right, 1);
if(left)

it'(comma) printf(" , 'Xd<'lrd" , left, right);
cise printf("'Ycd<%I", left, right);

http:��.�......_.....__�._._...�

111

comma = 1;

} while (left != 0);

printf (" }\n");

fclose(input) ;

printf("\n\nldeals in Gnl)' Code Ord(,r\u");

Il initiû,liz(: ideal (J,ne! {10:,f;1

poset = 0;

for(i=l; i <= N; i++)

poset = setbit(poset, i, 1);

Process () ;

long ratio;

clock_t timel, time2;

ratio 1000jCLK_TCK;

timel = clock () ;

/1------ -----------------------------
Ideal (poset, 0, N);

, t f (>l('f. l Tl' 1 ' pr~n 1<.«(Cd ,::; in total\n", counter);

time2 = clock();

printf(" %Id\n" ,ratio*(long) time2 - ratio*(long) timel);

return 0;

}

112

A.4 Data entering program

/.f... ~,_ --- __._-"..

il This progl';\\t1 iii \\']'itLcn in Dcv'(;", v"l'sic)!l 4 D,9.~· Il
"j-_.,," _ _-"-,,,,_ -- _ _-"" _ " _ - _."" "." _""-_._---- ---.fI

:1

/lind ude <std io . h>
#inc1udc <stdli b . h>

inL main()
{

FILE *fp;

int i , a, b;

if((fp=fopen("t{'st .1:xt'·, "w"))=NULL)

{

pri nt f (" l ru po S s i b]c t () () Tl en the fil e t (' >j t fi le\, n") ;

exit(l) ;

printf("Ellicr the nUlnll('.!' N of ini.('.~('rs in the pt)c;('~L \0");

seanf ("%1" ,&i);

fprintf(fp,"%d ",i);

do{

printf (" Enter a < b or (0 0) to stop \"n") ;

seanf("%J %l",&a, &b);

f Pri n t f (f P , "(X;d '1<.d ", a, b);

}while(a!=O) ;

felose (fp) ;

/1 open the fi J e lo l'cad

if ((fp=fopenC' test. lxl", "l'''))=NULL)

{

printf("L'l!i0,;"ibJc b) Cil)(,l1 tll(~ fil(: 1:t'stfi]e\n");

exit(l);

}

wbilc (!feof(fp))

{

fseanf (fp, "'Iid' ,&i) ;

}

felose(fp) ;

l'et ltrI! 0
}

BIBLIOGRAPHY

Abdo,	 M. 2009. "Efficient Generation of the Ideals of a Poset in Gray Code Order",
Information Processing Letters, 109(13)687-689.

Amalraj, D.J., Sundararajan, N. and Dhar, G. 1990. "A data structure based on Gray
code encoding for graphies and image processing", Proceedings of the SPIE: In­
ternational Society for Optical Engineering, 65-76.

Bali, M.O. and Provan, J.S. 1983. "Calculating bounds on reachability and connected­
ness in stochastic networks", Networks, 13:253-278.

Bitner, J.R., Ehrlich, G. and Reingold, E.M. 1976. "Efficient generation of the bi­
nary reflected Gray code and its applications", Communications of the A CM,
19(9):517-521.

Buck,	 M. and Wiedemann, D. 1984. "Gray codes with restricted density", Discrete
Mathematics, 48:163-171.

Chang, C.C., Chen, H.Y. and Chen, c.y. 1992. "Symbolic Gray codes as a data allo­
cation scheme for two disc systems", Computer Journal, 35(3):299-305.

Chase, P.J. 1970. "Algorithm 382: Combinations of M out of N objects", Communica­
tions of the A CM, 13(6):368.

-- P.J. 1989. "Combination generation and graylex ordering", Proceedings of the
18th Manitoba Conference on Numerical Mathematics and Computing, Winnipeg,
Congressus Numerantium 69:215-242.

Chen,	 M. and Shin, K.G. 1990. "Subcube allocation and task migration in hypercube
machines", IEEE Transactions on Computers, 39(9):1146-1155.

Chow, S. and Ruskey, F. 2009. "Gray Codes for Polyominoes and a New Class of
Distributive lattices", Discrete Mathematics, 309:5284-5297.

Cori, R. 75. "Un code pour les cartes planaires et ses applications", Astérisque, Paris,
1975.

Diaconis, P. and Holmes, S. 1994. "Gray codes for randomization procedures" , Statistics
and Computing, 4:287-302.

Eades, P., Hickey, B. and Read, R.c., 1984. "Some Hamilton paths and a minimal
change algorithm", Journal of the ACM, 31(1):19-29.

114

Eades, P. and McKay, B. 1984. "An algorithm for generating subsets of fixed size with
a strong minimal change property" , Information Processing Letters, 19:131-133.

Ehrlich, G. 1973. "Loopless algorithms for generating permutations, combinations, and
other combinatorial configurations", Journal of the ACM, 20(1):500-513.

Faloutsos, C. 1988. "Gray codes for partial match and range queries", IEEE Transactons
on Software Engineering, 14(10):1381-1393.

Gardner, Martin 1972. "Curious properties of the Gray code and how it can be used to
solve puzzles", Scientific American, 227(2):106-109.

Gilbert, E.N. 1958. "Gray codes and paths on the n-cube", Bell Systems Technical
Journal, 37:815-826.

Gray, F. March 1953. "Pulse code communications", U.S. Patent, 2632058.

Heath, F.G. 1972. "Origins of the binary code", Scientific American, 227(2):76-83.

Johnson, S.M. 1963. "Generation of permutations by adjacent transpositions", Math.
Comp. , 17:282-285.

Joichi, J .T., White Dennis, E. and Williamson, S.G. 1980. "Combinatorial Gray codes",
SIAM Journal on Computing, 9(1):130-141.

Knuth, D.E. and Ruskey, F. 2003. "Efficient Coroutine Generation of Constrained Gray
Sequences". From Object-Orientation to Formai Methods: Dedicated to The
Memory of Ole-Johan Dah, Lecture Notes in Computer Science, Springer- Verlag,
2635:183-208.

Koda, Y. and Ruskey, F. 1993. "A Gray Code for the ideals of a forest poset", 1.
Algorithms, 15:324-340.

Lawler, E.L. 1979. "Efficient impJementation of dynamic programming algorithms
for sequencing problems", Stichting Mathematisch Centrum, Technical Report
BW106/79.

Lehmer, D.H. 1964. "The machine tools of combinatorics, in Applied Combinatorial
Mathematics", E. Beckenbach, ed., John Wiley fj Sons, New York, 5-31.

Lehmer, D.H. 1965. "Permutation by adjacent interchanges", American Mathematical
Monthly, 72:36-36.

Liu, C.N. and Tang, D.T. 1973. "Algorithm 452, Enumerating M out of N objects",
Comm. ACM, 16:485.

Losee, R.M. 1992. "A Gray code based ordering for documents on shelves: Classification
for browsing and retrieval" , Journal of the American Society for Information
Science, 43(4):312-322.

115

Lucas, J. 1987. "The rotation graph of binary trees is hamiltonian", Journal of Algo­
rithms, 8:503-585.

Lucas, J.M., Roelants van Baronaigien, D. and Ruskey, F.1993. "On rotations and the
generation of binary trees", Journal of Algorithms, 15(3):343-366.

Ludman, J.E. 1981. "Gray code generation for MPSK signaIs", IEEE Transactions on
Communications, COM-29: 1519-1522.

Nijenhuis, A. and Wilf, H.S. 1978. Combinatorial Algorithms for Computers and Cal­
culators. Academie Press.

Proskurowski, A. and Ruskey, F. 1990. "Generating binary trees by transpositions",
1. Algorithms, 11:68-84.

Pruesse, G. and Ruskey, F. 1991. "Generating the linear extensions of certain posets by
adjacent transpositions", SIAM Journal of Discrete Mathematics, 4:413-422.

-- 1993. "Gray Codes from Antimatroids", Order, 10:239-252.

Richard, D. 1986. "Data compression and Gray-code sorting", Information Processing
Letters, 22:210-215.

Robinson, J. and Cohn, M. 1981. "Counting sequences", IEEE Transactions on Com­
puters, C-30:17-23.

Ruskey, F. 1988. "Adjacent interchange generation of combinations", Journal of Algo­
rithms, 9:162-180.

-- 1992. "Generating linear extensions of posets by transpositions", Journal of Com­
binatorial Theory Series B, 54:77-101.

--2003. "Combinatorial Generation", http://www.lstworks.com/ref/RuskeyCombGen.pdf.
111.

Savage, C.D. 1989. "Gray code sequences of partitions", Journal of Algorithms,
10(4):577-595.

-- 1997. "A survey of combinatorial Gray codes", SIAM, 39(4):605-629.

Schrage, L. and Baker, K.R. 1987. "Dynamic programming solution of sequencing prob­
lems with precedence constraints", Operations Research, 26(3):444-449.

Squire, Matthew. "Enumerating the Ideals of a Poset", available electronically at:
http://citeseer. ist.psu. edu/465417.html.

Stachowiak, G. 1992. "Hamilton paths in graphs of linear extensions for unions of
posets", SIAM]oùrnal on Discrete Mathematics, 5:199-206.

Steiner, G. 1986. "An algorithm to generate the ideals of a partial order", Operations

116

Research Letters, 5(6):317-320.

Trotter, H.F. 1962. "PERM (Algorithm 115)", Communications of the ACM, 5(8):434­
435.

Walsh, T.R. 1995. "A simple sequencing and ranking method that works on almost aU
Gray codes", Department of Mathematics and Computer Science, Université du
Québec à Montréal, Research report 243, 53 pages.

-- 1998. "Generation of Well-Formed Parenthesis Strings in Constant Worst-Case
Time", Journal of Algorithms, 29:165-173.

-- 2000. "Loop-free sequencing of bounded integer compositions", The Journal of
Combinatorial Mathematics and Combinatorial Computing, 33:323-345.

-- 2001. "Gray Codes for involutions", The Journal of Combinatorial Mathematics
and Combinatorial Computing, 36:95-118.

Wells, M.B. 1961. "Generation of permutations by transposition", Mathematics of Com­
putation, 15:192-195.

West, D.B. 1993. "Generating linear extensions by adjacent transpositions", Journal of
Combinatorial Theory Series B, 57: 58-64.

