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RESUME

Dans ce mémoire, on étudie la distribution empirique des estimateurs de vraisem-
blance maximale pour des processus affines, basés sur des observations a temps discret. On
examine d’'abord le cas ol1 le processus est directement observable. Ensuite, on regarde ce
qu’il advient lorsque seule une transformation affine du processus est observable, une situa-
tion typique dansles applications financiéres. Deux approches sont alors considérées: maxi-
misation de la vraisemblance exacte ou maximisation d’'une quasi-vraisemblance obtenue
du filtre de Kalman.

Mots-clés: estimation de vraisemblance maximale, processus affines, obligation a I'escompte,
quasi-vraisemblance, filtre de Kalman.



ABSTRACT

In this dissertation, we study the empirical distribution of the maximum likelihood es-
timator for affine processes, based on discrete sample data. We first study the case where the
process is directly observable. Then we look at what happens if only an affine transforma-
tion of the data is observable, a typical situation in financial applications. Two approaches
are considered: maximisation of the exact likelihood or maximisation of a quasi-likelihood
computed via Kalman filtering.

Keywords: maximum likelihood estimation, affine processes, zero-coupon bond, quasi-like-
lihood, Kalman’s filter.



INTRODUCTION

This dissertation is concerned with the parameter estimation of affine processes used
to describe the term structure of interest rates. Many methods have been proposed for this
purpose, most of them being essentially variations of maximum likelihood estimation. Qur
presentation is divided into two parts. The first part provides an overview of concepts re-
quired to understand the term structure literature used in finance, which uses stochastic
differential equations (SDEs) to show the dynamics of a zero-coupon bond. This develop-
ment begins with a single-factor model and then generalizes to higher dimensions. Further,
we study the relation between state variables and bond prices. Since the term structure of
interest rates is never observed in continuous time, we consider an estimation method based
on discrete-time data. The second part discusses and compares different approaches to find
an accurate method that can be'used to estimate the unknown parameter set at each of these

term-structure models. We conduct an empirical study for each of these methods.

The first chapter includes an introduction to the theory and implementation of the
class of affine term structure models. A variety of models exist, including those suggested
by Duffie and Kan (1996), Vasicek (1977), Cox, Ingersoll and Ross (1985a), Longstaff and
Schwartz (1992a) and Chen (1995). This dissertation focuses on the theoretical formulation

of the Vasicek and CIR single and multi-factor affine models.

In the second chapter we present maximum likelihood estimation for stochastic dif-
ferential equations based on a direct observation of the process itself. For the SDEs consid-
ered here, this is rather straightforward. For nonlinear SDEs the problem is more difficult
and will not be addressed here. However, for a more detailed discussion of these issues, one
can look at Pederson (1995), Cox, Ingersoll and Ross (1985b), Lo (1988) and Gourieroux and
Jasiak (2001).



In the third chapter we consider maximum likelihood estimation for the term struc-
ture models introduced in Chapter I, and we study the empirical performance of the sug-
gested estimator on two examples. The study begins with the single factor models and then
generalizes these concepts into a multi-dimensional setting. Empirical papers that explore
this issue in detail include Cox, Ingersoll and Ross (1985b), Geyer and Pichler (1999) and
Bolder (2061).

The final chapter summarizes the material on the state-space models and introduces
another technique to estimate unknown parameters, a technique called Kalman filtering.
We then apply Kalman filtering to the simulated data of the previous chapter and compare

the results.



CHAPTERI1

STOCHASTIC DIFFERENTIAL EQUATIONS

1.1 ODE as a modeling tool

Differential equations consist of an unknown function of one or several variables which re-
lates to the values of the function itself and of its derivatives of various order. Many laws
in Physics, Chemistry, Engineering and Economics can be expressed in the simplest way by
differential equations. For example, let X(¢) represent one coordinate of the position of a
particle in space; then X'(#) and X" (¢) represent the velocity and the acceleration of the par-
ticle at time ¢. Let m denote the mass of the particle and let F(¢) denote the force acting on

the particle at time ¢. By Newton’s law,
F(t)=mX"(1). (1.1.1)

Usually, F(£) consist of three types of forces:

a) africtional force — f X' (1),
b) arestoring force —kX (1),

c) an external force ¢(¢), which is independent of the motion.

Therefore, we may write F(t) with respect to these types of forces as

F(r)==fX'"(0)=kX(D)+&(). (1.1.2)



By combining (1.1.1) and (1.1.2) we obtain the differential equation
mX" () + fX () +kX(£) = E(D).

If the differential equation contains functions of only one independent variable, and one or
more of its derivatives with respect to that variable, we call it an ordinary differential equa-

tion (ODE); thus, the above example is an ODE.

ODEs frequently appear in the naturdl and physical models but in reality some pa-
rameters may not be deterministic and we should consider them as random variables. For
example, if we suppose that the external force is due to some random effect, then in the

above case we can think of £(¢) as a collection of random variables which change by time .

1.2 Brownian motion and Wiener integrals

So far, we found that for modeling a natural event we can use an ordinary differential
equation which has a random process component. Now the question is, how can we model

this random process?

To answer this question let us introduce Brownian motion. Particles suspended in a
fluid exhibit a random motion, called Brownian motion. Many mathematical models for this
physical process have been proposed. The model usually used for such motion is called the
Wiener process. A Wiener process, with parametér a?, is a collection {W (1), t = 0} of random
variables which satisfies the following properties:

i) W) =0,
if) W(£) - W(s) has a normal distribution with mean 0 and variance o®(¢ - s) for s < ,
iii) for t; < t, <.+ < t,, the variables

W) -W(t), W) -W(), ... W(t,)-WI(t,-1)

are independent,



iv) the function t+— W(t) is continuous.

From the properties of the Wiener process, we can immediately conclude that the mean of
the random variable W (¢) is 0 and its variance is g*¢. Also a Wiener process has the prop-
erty that any finite linear combination of random variables W (), t € [0,00), is normally dis-

tributed. A stochastic process having this property is called a Gaussian process.

In the equation (1.1), if the external force is due to molecular bombardment, then
physical reasoning leads to the conclusion that this external force should be the derivativeof

the Brownian motion, so thét £(t) = W/ (1); then we can rewrite thé equation as,
mX" () + fX'"(O)+kX(@)=W'(1). (1.2.3)

In (1.2.3) we are interested to find the solution X(¢). But in order to do so, or even merely
prove existence results, we have to calculate [ W'(¢) d¢, or at least give a meaning to it. Al-
though the function ¢ — W (f) is continuous, it is almost surely not differentiable (in a prob-

abilistic sense), so in general the integral

b
f fOw'de

does not exist in the usual sense, where a and b are finite numbers and f is a continuously
differentiable function on the closed interval [a, b]. But we are able to give meaning to this

integral. One way of doing so is to define it as

dt,

b -
im [ £o (w]
e—0/g £

provided the indicated limit exists. To see that this limit actually exists and to evaluate it

explicitly, we observe that
b W(t+e)-W(1) b d (1 [
D|l—— dt=/ t—-(* WSds]dt,
J s [ e [ ) wo
Integrating by parts the right hand side of this equation, we conclude that

b _ b
f f(t)(W(t+£) W(t)] at
a €

[+€

f(t)1 Wi(s)ds
€J:

a

b 1 ptte
f f’(t)(gf W(s)ds] dr. (1.2.4)
a r :



Since a Wiener process has continuous sample paths, it follows that the right hand
side of (1.2.4) converges to

b b
fowm] —f fliow(dz.
a

Thus, we are led to define
b
f fnawi)
a
as the limit of right side of (1.2.4) as € — 0, that is, by the formula

b b
f f(t)dW(t)=f(b)W(b)—f(a)W(a)—f fliownde. (1.2.5)
a a

The “formal” derivative of a Wiener process is called white noise. Since a Wiener process is a

Gaussian process, it follows from (1.2.5) that
b
[ swawe
a
is normally distributed with mean zero and variance

Var

b b
f f(t)dW(t)] :sz fewde. (1.2.6)
a a

We will see later that white noise is widely used in sciences and finance.

1.3 Linear stochastic differential equation

A stochastic process is a collection of random variables indexed by some parameters,
usually time. A stochastic differential equation, or SDE for short, is a differential equation
in which one or more of the terms is a stochastic process. For instance, an n‘% order linear

stochastic differential equation taking the form
apXP () +a X"V + - ap X (D)= W(D), (1.3.7)

where ay, ..., ay are real constants with ag # 0, and W’ (t) is white noise with parameter o2,
However, we will only consider first order equations and focus on them. We first define pre-
cisely what is meant by a solution to such a differential equation. Consider the differential
equation (1.3.7) where n =1,

aoX' (D +a X(1) = W' (1). (1.3.8)



In order to solve (1.3.8) we proceed through a series of reversible steps. We first divide both

side of (1.3.8) by ap and integrate from £ to ¢:

r
X(r)+—a—‘f X(s)ds = X(1p) - V) WO
ap Jiy ap ag

—-at

Multiplying both sides by e™%, where a = —a,/ap, we have

’ t Wit —-at
e X —ae | X(s)ds=|X(ty) - ( 0)] eyl w1,
I ay ap
which we rewrite as
d t W (¢, Tt
—[e“” X(s)ds =[X(to)— ( 0))e_‘”+—e———W(t)-
dt 1) aO aO

Integrating both sides of this equation from 7, to ¢, we conclude that

I3 Wit alt—tg) -1 t ,—as
X(s)ds= [X(to)— (to)) (e ) +e“‘f e—W(s)ds.
fo aO a fo aO
By differentiating we see that,
W(t Wi(t t
X = (X(to)————(—(ﬁ)e““_’“)+L+gf e IW(s)ds.
ag ap ap Ji

l ¢
X(ro)e“““°)+—f S qw (s),
aO 1)

which we can rewrite as

X 1 [
x(5) = 20 pati-io) —f X dw (s) dt.
a aO 1)

This process is a Gaussian process and we can easily compute its mean and variance:

ux(t) = xpe*,
2

Var(X(1) = (1- %%y,
2agm

We illustrated above the techniques for handling equation (1.3.8). Further, we will
consider a stochastic differential equation which is used for interest rate modeling in finance.
It is written as

X'(O+xX()=xT+oW' (1) (1.3.9)



or equivalently (in differential notation)
AX(t)=xTF-X()+ocdW ().

It represents the behavior of a short term interest rate X(¢) moving randomly around a long
term target 7. Equation (1.3.9) is also easy to solve; First we multiply by the integrating factor
e** which gives

e TAX () + e X (1) = eX'kT + eXlad W (8)

or, equivalently,

dEe' X () =7de ) +aetdw().

Integrating from 0 to £, we get

t

X -e'X(0) = | d{eXw)

t

r
7d () +0f e*¥dW (u)
0

t
= F[e"”](t)+orf X" AW (u)
0
t.
= 7(6”—1)+0[ e ¥ dW (u)
0
or

t

X(O=T+ e"“(xo—ﬂmf e X9 awi(s). (1.3.10)

0

In the next chapter, we will study the problem of estimating the parameters of equa-
tion (1.3.9) using the trajectory of past values of the process. For this purpose, we shall need

to know the conditional distribution of X(¢), given X(s) = x, for s < £. We have
N
X()=T7+ e"“(xo—T)+ae_”/ e dWw). ©(1.3.1D)
0
From the integral properties we have
t s ¢
f e dw (u) :/ et dW (w) +f et dW (u), (1.3.12)
0 0 s

We substitute it in (1.3.10) to obtain

$

. r
X =F+e  g-T)+e 9 [Ue_”f e"”dW(u)we"“f e"”dW(u)]. (1.3.13)
0 s



We can rewrite equation (1.3.11) as follow:
Ue‘”fose"”dW(u):X(s)—F—e_’“(xo—F), (1.3.14)
and by substituting equation (1.3.14) in (1.3.13) we get
X = .7+ e (xg=T) + e XKUY (X(s) ~T—e S (xg-7) + ae"“f[ e dW(u)]
s
= F+e "X (@) -N+ Ue_”ft et AW (w).
s
So given X (s) = x, we have

t
X =T+e ¥ x-7)+ af e XU g ().

N

Therefore, conditionally on X(s) = x, the variable X (¢#) is normally distributed with mean

pxm =T +e X9 (x-7)

and since white noise is normally distributed,

2

Var(X(t)) = Z_K (1 - e—ZK(l—s)) '

1.4 Nonlinear stochastic differential equations

In the previous section we studied how to solve a stochastic differential equation,
when the random process component is linear. But in many cases this component may not

be linear. Consider the following nonlinear stochastic differential equation
dX(ty=a(t, X(£))dt+ b(t, X ()dW (1), (1.4.15)
with X = xg a specified initial value, and a(t, x), b(¢, x) possibly nonlinear in x.

In that case we can not, in general, find an explicit formula for the solution, like the
one in the previous section. So we typically need to use numerical methods to determine
solutions approximately. Even then, we should first know that the equation actually does
have a solution, a unique one preferably, for a given initial value. We can show the existence

of this solution by an existence and uniqueness theorem.
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Theorem 1 Suppose that:

1. The functions a(t, x) and b(t, x) are measurable with respectto t € [0, T) and x € R,
2. There exists aconstant K >0 such that forallt € [0, Tl and all x, y € R,

a) la(t,x)—al(t, Y +1b(t,x) - b(t, y)| < Klx-yl,

b) la(t, x)|?+|b(t, x)1* < K%(1+|x}3).

3. Xo is independent of W(t), t >0, and E [ X] < co.

Gard (1988), Kloeden and Platen (1995) have described and developed this theorem with more
details. Then there is a solution X(t) of (1.4.15) defined on [0, T which is continuous with
probability 1, and such that

sup E[X%(1)] <o
€10, T]

Furthermore, a solution with these properties is path-wise unique, that is, if X and Y are two
such solutions, then

Pr{ sup |X(r)—yu)|=o} =1.
t€(0,T}

Thus, if the drift a(z, x) and the diffusion coefficient b(f, x) of an equation satisfy the
Lipschitz condition 2-a) and the growth condition 2-b), then we can conclude that the SDE

has a unique solution.

1.5 Systems of SDEs

In many applications, we need to simultaneously solve several SDEs, with possibly
linked drift and diffusion coefficients. It is what we call a system of SDEs. To give a precise
definition, consider an m-dimensional Wiener process W = {W;, ¢t = 0} with components
w}, W2, ..., W/, which are independent scalar Wiener processes with respect to a common
filtration. Then we take a d-dimensional vector function a: [0, T] x R and a d x- m-matrix
function b : [0, T] x R% — R¥*™ to form a d-dimensional vector stochastic differential equa-
tion:

dX() = alt, X(D)dt+ b(t, X()dW(1).
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By this definition, the gerieral form of a d-dimensional linear stochastic differential equation
is

dX(1)=(ANX(D)+a(®)de+ ) (BHOX()+D (£)dW' (),

i=1
where A(1), BL(¢), B(1),..., B™(t) are d xd- matrices functions and a(£), b* (), b*(t),..., b™(f)

are d-dimensional vector functions.

The existence and uniqueness of the X(¢), the solution of the vector stochastic differ-
ential equation can be obtained as in the previous section by using the existence and unique-

ness theorems. see lIkeda and Watanabe (1981) for more details.

1.6 Affine models and zero-coupon formulas

A zero-coupon bond is a bond that pays one unit of account to the holder at matu-
. rity date, T and, before this date, no payment is made to the holder. The relation between
the zero-coupon interest rate and their time to maturity is called term structure., Interest
rate term structure modeling is one of the most important problems in financial literature.
Duffie and Kan (1996) introduced the class of affine term structure models, extending Va-
sicek (1977) and Cox, Ingersoll and Ross (1985a) models. These models are formulated by
assuming that the future dynamics of the term structure of interest rates depend on some
observed and unobserved factors, called state variables. Affine term-structure models are
constructed by assuming that the bond yields are linear functions of the underlying state-
variables. Although interest rates change randomly over time, most popular models are
based on the concept that it is possible to divide the changes into two parts using a stochastic
differential equation. The first part in this modeling is a non-random deterministic compo-

nent, termed drift; the second part is the random or noise part, termed diffusion.

Affine models are a class of SDEs for which the drift coefficient and the square of the
diffusion coefficient are affine functions of x. They are very popular in financial engineering
because they lead to closed-form formulas for default-risk free bonds. As a result, affine
modeling has become the dominant framework to study the term structure of interest rates

since 1980s.
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In the chapters to come, we will study how to estimate the coefficients of an affine
model for the short rate, using discrete-time observations either of the rate itself, or of fi-
nancial asset prices derived from the model. Specifically, we will consider default-risk free
bonds that make a single payment at a pre-specified future date, and which are called zero-
coupon bonds. Zero coupon bonds are particularly important because they represent the
basic discount rates in all financial claims that make payments through time. Two special

case of affine models, Vasicek and CIR will be considered in detail.

1.6.1 Single-factor models

The Vasicek (1977) model is a one factor partial equilibrium model which assumes

that the short rate evolves as an ornstein-uhlenbeck process:
dri=xO@-r))dt+ocdW,

where x,6 > 0, while o > 0 is the unconditional instantaneous volatility of the process, the
noise in the diffusion part is a Wiener process. The conditional and unconditional distribu-

tions of interest rate changes are Gaussian in this model.

In the single-factor CIR term structure model, the short rate evolves as
dr[ =K(9—r[)dt+0’\/r—[dW[

where x,0 > 0 and ¢ > 0 have the same interpretation in the Vasicek case, but the short rate
is no longer Gaussian. The parameter restriction 2x6 = ¢ is imposed in order to ensure that
the short rate process does not get trapped at zero. The rate r; has a conditional non-central

chi-square distribution.
Independent of any specific model for the short rate, it is always possible to express
the price of a zero coupon bond with time to maturity T, at time £ as follow,
ORI AR
where 1 = T -t and E, denotes the expected value at time t under the so-called “risk-neutral

measure”. The latter is obtained from the underlying model measure by adding a risk pre-

mium to the drift coefficient of the short rate. The main feature of an affine model for r,
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is the fact that an explicit expression for the price P,(7) is available. For the Vasicek (1977)

model, one has

P(1) = A =B,

where

and

=0 - —=)——.
r=x K) 2

A similar formula holds for the CIR model with

2(e’T = 1)

Bn) = (y+x+ A —1)+27

2 (y+x+A)T
ye 2
Alr) =1 ,
= T e -+ 2y

28
02

and

Y=V (k+A)?2+202
The use of a single-state variable or factor, might not be enough to explain the random future
movement of the term structure of interest rates. This inadequacy comes from the fact that
the dynamics of the term structure of interest rates are too complicated to be summarized

by a single source of uncertainty. Because of that, in the next section we present multi-factor

term structure models.

1.6.2 Multi-factor models

Now we generalize the single-factor models to higher dimensions, The basic format is
similar to the one-factor case, though we need to consider the covariance structure between
the diffusion terms. In these models, we typically assume that short rate is a linear combina-
tion of n correlated state variables, or factors, which we will denote yy, ys,... ¥y, since there

is a relation between the short rate and the factors:

n
r= ZJ’(
i=1



14

Then the st(;chastic differential equations by using Vasicek model is
ay (t) =x1(0) - y1(0)dt+o,dW (1)

dy:(t) =x202 — yo (D)) At +02dWa(2)

Ayn(t) =xp0n —yn())dt+0,dW,(2)

where W;(¢) is a standard scalar Wiener process. For the CIR model there are some restric-
tions, because the analytic solution exists only when the underlying Brownian motions driv-
ing each state variable are independent. Hence, although the model ensures that the interest
rates can not be negative, the desire for tractability implies that we give up the correlation

between state variables. The multi-factor CIR model is

ay () =x1 (01 — y1()dt+ o1/ 1 () dW (8)

dyn(t)= Kn(@n— Yn(t))dt+0nv yn (£} dWy(t)

where W), ..., W, are independent standard scalar Wiener processes. For both models, the
price P,(1) is given by
n
P,(1) = exp{ A+ ) Bimyi) }

i=]

where A4, By,..., B, are the solutions of( (numerically or analytically solvable) ODEs.



CHAPTERIIL

MAXIMUM LIKELIHOOD ESTIMATION

2.1 General principles

In this section we consider one of the methods, commonly used, to estimate unknown pa-
rameters in stochastic differential equations. Maximum Likelihood Estimation (MLE) is a
classical popular method to find the value of one or more parameters for a probability dis-

tribution from a given data set.
Suppose we have sample data
X1, X5,..., Xy

and some of probabilistic model for the data, and we want to estimate the parameters of
a model. Consider a family of probability distributions, Dy, parameterized by an unknown
parameter 6 (which could be a vector), associated with either a known probability density
function (continuous distribution) or a known probability mass function (discrete distribu-
tion), denoted fy. We draw a sample x;, x3,...,x, of n values from this distribution, and
then, by using fs we compute the probability density fg(xy, x2,...,x,) associated with our

observed data,
As a function of 8 with x1, xo,..., X, fixed, the likelihood function is
L6) = folxy, x2,..., Xn)

The method of maximum likelihood estimates 6 by finding the value of 8 that maximizes
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L(0). The maximum likelihood estimator of 8 should be

A

6 = argmaxy L(6)

In many situations one may assume that the given data are independent identically dis-
tributed (i.i.d.), which simplifies the problem because the likelihood can then be written as

a product of n univariate probability densities:

L©®) =[] folxp), (2.1.1)
i=1

and since maximization is unaffected by monotone transformations, one can take the loga-
rithm of this expression to turn it into a sum:

n

¢0) =logL(6) =Y _log fo(x;). (2.1.2)

i=1
In this work we are interested in estimating the parameters of a SDE based on the
observation of the solution at a finite set of times. Hence the sample X, ..., X, is in fact of.
the form X(tg),..., X (ty) with fo < t; < -+ < t,, where X is this solution of the SDE. In that

case L(6) is not given by a product like (2.1.1). However, using conditioning, one can write

L(e) = f@(x01~--1xn)

fo(xo,. ., xn-1) fo(xn 1 X0,..., Xp—1)

1l

fotxo) ] folxi | xo,...,xi-1).
i=1

Moreover, for almost all SDEs used in practice (and the ones considered in this work), the

solution X is Markovian which means that

folxilxo,..., xi—1) = folxi | xi-1).

As we consider only SDEs with fixed initial conditions, we may assume that #, = 0 and xg is
given. Hence, only the product of the conditional densities is used for estimation and we end
up with a log-likelihood ¢(0) quite similar to (2.1.2):

¢6) =) log folxilxi1), (2.1.3)

i=1




17

where the marginal densities are replaced with transition (or conditional) densities.

Unfortunately, for typical nonlinear SDEs, the exact formula of the transition density
is unknown. As a result, several approaches towards approximating the transition density
have been proposed by using various numerical procedures to estimate the likelihood func-
tion. For example, Pederson (1995) suggests a simulation-based approach when one splits
the time interval into short pieces, and integrates unobserved variables out of a joint Euler
density. At the end of the procedure the maximum likelihood estimate can be found nu-
merically by using various optimization algorithms. In this work we shall consider only two
special cases of the so-called affine processes, and for these, the analytical expression of the

transition density is available,

2.2 MLE for the Vasicek process

Consider the following differential equation

dX(1) kX()dt+odW (1),
(2.2.4)
x(0) = xp,

which is actually the Vasicek equation, described in the previous Chapter, with 7 = 0. We use
the maximum likelihood principle to estimate the unknown parameters (x and 0?). Based
on the method given in Chapter I, we can see that, if X(s) = x is given then X(f) is normally
distributed with

E(X()]=e ¥t 9

and

0-2
Var[X(f)] = — (1~ e—ZK([—S))‘
2x

Hence the transition density in the Vasicek model is Gaussian:

(y—E[X(t)])z}

1
feory10) = Ivarx P { ©2var[X(n)]

If xg, x1, X2, ..., Xn Is @ sample of X () at equally spaced times 0= fy < f; < fo <--- < t, thenits

likelihood is given by

n K ~K(x; —e ¥Px;_1)?
Ly,02 (x0,%11020) = H g2k exp o2(1— g 2xA)
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where A = tj,)—t;, j=0,...,n— 1. Taking the logarithm from both sides of the above equa-

tion, we have

i K — e * 0 1)

= 0-2(1 _ e—ZKA)

n X

0(x, 0% %0, X1,..., Xp) = Elog[

K
7I02(l — e—ZKA)

In order to maximize this log likelihood with respect to x and o we differentiate it with

respect to x and o2
00 (x,0%; x0,%1,..., Xn)

= 0,
ox (2.2.5)
04 (x, 0% X0, X1,..., Xp) .
002 B
and by solving the above system of equations we get the MLEs:
1 Yo xix-
A i=1%-1

and
—xA 2
o 2kXl (xi—e T %x))

n(l - e-2x4)

Further, let us consider the full Vasicek model. The dynamics of the process is de-

scribed by the stochastic differential equation

dr()=x@-r())dt+ ocdW (1), (2.2.6)
—_— N——
drift diffusion
where W (?) is the standard Brownian motion and 7 = 8; t € [0, T]. To solve this equation we

can start from a simple equation without noise, that is, we take out only the drift term and
denote it by

y(6) =x(@-r(1) (2.2.7)
The above equation is equation (2.2.6) with o = 0. This equation is an ordinary differential

equation and is linear in y(f); therefore, its general solution is
y(t)=Ce ¥ 10

where C is an arbitrary constant. In order to solve the main equation (2.2.6), let us first
introduce Ité’s formula, which we are going to use in our next step. The formula states that if

x(t) is an It6 diffusion process satisfying

dx(t) = a(x(t), )dt+b(x(t), t)dz(t)
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where z(f) is a Wiener process, then, for any twice continuously differentiable function G,

the process y(t) = G(x(t), t) is again an Itd process and it solves the SDE:

G 0G 10°G ) 0G "
- dG(x(), 1) = 5?+—a—;a(x(t),t)+iwb(x(t),_t) dt+ab(x(t),t)dz(t),

In the Vasicek case, we can solve the SDE explicitly by using a change of variable, that is, we

change y(f) to f(r(t), t) where
fr@,n=e"y)=e"x@-r)).

This gives a function that depends on the stochastic process r(f). To apply [td’s formula, we

need to compute the partial derivatives, with respect to ¢, r and r?,

afa(’; [) — ,KeK[(,K(G_ r))’ (2,28)
af(r: t) — _,KeK[’ (229)
ar
02 f(r,t)
L (2.2.10)

It is obvious that because of the factor ! we still have y(¢) in derivatives. Now by It6’s for-

mula we have

2
ofr(,n  of(r(e), 1) Y0+ 10 f(r(t)’t)az]dt+aaf(r([)’t)dw([)

df(r(t),t):[ ot or 2 or? or

or, equivalently,

Fr (), 0) = f(r(0),0)

11

LOf(r(s),s) Laf(r(s),s) Laf(r(s),s)
f(; TdS‘i‘f(; Ty(S)dS-i-fO ar odW(s)

t t I3
f Ke“y(s)ds—f Ke“y(s)ds—f ke o dW(s)
0 0 0

t
—f xeFadW(s).
0

Replacing f(r(#), ) by its value gives
3

et y() - eX0y(0) = —f xe* o dW (s) (2.2.11)
0

or

I3
e @-r)-x0-r() = —f xeagdW(s).
0
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Hence,

t
—xeXr(n = —K@e"‘+x9—xr(0)—f xe*o dW(s)
0

and the solution for r(#) is
i t
r)=e ' r+6(1-e*) + afo e S qw(s).
We have a recursive expression for r () in terms of its previous value. Now if we subdivide the
interval [0, T] into n subintervals andlet ¢; = i% fori=0,...,n, we candenote each time-step
asAt=t;—t;-1;i=1,...,n Therefore, forr(z),...,r(ty), where0=fp< jy<tpr <<ty =T

we can write

£
r) = e *r(t_) +6 (1 __e—xAt) +af e_K(”_S)dW(S).

Li-)

We can define

Li
e(ty) = Uf e X gw ()
Loy

so the recursive expression for r(¢;) can be written as follows,
r(t)=e (o) + 001~ e M v e(1y) (2.2.12)

where €(t;) is in fact a Gaussian random variable. According to the properties of the Wiener

process given in Chapter I, we can conclude that
Ele(t) 1 e(r;i-]=0
and the variance is calculated as follows,

Var (e(t:) | €(;21)) E[e*(t) | e(t;-))]

L
- E azf e—ZK([i—u)du
Li-y
2
_ U_(l_e—zxm)
2K '

In general, we can write
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{n other words, we have the first two moments of the Gaussian transition density of r(t;)

given r(t;_1), specifically:

Elr(t) | r(ti-)) O(1—e )+ e 0y,

Var(r(t) 1 r(ti-1)) = —

|
—_—
—
1
(1
|
o
=
>
-
N

thus,

2
g
r) I r(to) ~ N[O -e ¥4 + e_KA’r[,,_],Z— (1-e2¥20)),
K .

Ifp (r(t,-) | r(tl-_l);</>] denotes the density function of the previous normal distribution, and

¢=(x,0, 0?) is the set of unknown parameters, then the (conditional) likelihood function is

n
L(gir(tg),..,r(ta)) = [[ p(rz) I r(i1)ip) .
i=1
By taking logarithms of both sides of the above equation,
n
{p;r(te),....r(ty)) = > log p(rt) | r(tio1); ) (2.2.13)
i=1 .
and the maximum likelihood of estimator ¢ is

¢ =arg max, ¢ (¢;r (%), 7 () -

Instead of trying to write down the explicit formula of ¢, maximization can be performed
numerically. We use the fminsearch function in MATLAB. We implement this method in

section 2.4.

2,3 MLE for the square root process

The SDE described earlier in section 1.6.1 of Chapter I was introduced by Cox, Ingersoll and

Ross (1985a) to represent the dynamics of the short-rate interest rate :
dr(t)=x@—-r@)dt+o/r(t)dW(r) (2.3.14)

with r(0) = ro. The drift is an affine function of r(¢) as for the Vasicek process. However,
the diffusion coefficient is the square root of r(z) and for this reason the CIR model is often

called the square root process. Unlike (2.2.6), the equation (2.3.14) can not be solved explicitly
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using It&’s formula. We have to find another way to get the transition density. The Laplace

transform f (A;r(t;-1),¢) of the transition density is useful for that purpose:
Fhsrtion, @)= B[ rtr), 9|

This is because, for the CIR process, the logarithm off is an affine function of r (z;_;) (hence

the name of the class of processes to which it belongs). Let
2

o
L=-"—(1-e %
4K( )

where At = t; — £;_1; then the conditional Laplace transform of x(¢;) = r (£;)/ L is given by

{_ A 4r(t;_x }
2A+1 02(g¥At—])

1
Ele ™9 rio| = —————€xp
Q@A+ 1)xe?

(see Lamberton and Lapeyre (1991), page 121, for a proof). It follows that the conditional

distribution of x(t;) = r(¢;)/L, given r(t;_;), is a non-central ¥ distribution with parameters

e 4x6
0%’
_Axr(ti-g)

where v denotes the degrees of freedom and 6 the non-centrality parameter. The non-central

xz(v, ) distribution has the following density function:

1 _wo (x\(5-3)
f(x):ie 2 [5) I%_l(\/(s-x-),

where [, is a modified Bessel function of the first kind given by

) .

wo-(2)'§ )

2) ZjT@+j+1°

This result is valid when v and § are positive or, equivalently, if x,0 > 0. The SDE (2.3.14) has
a unique positive solution when 2x8 = o2 but the rather complicated form of the transition
density makes it impossible to find explicit formulas for the MLEs of the parameters x, 8,
and 2. One can still compute the log-likelihood function numerically. The (conditional)

log-likelihood for the interest rate with n + 1 observations is

2(;r(tg), r(ty),....r{ty logp(r(t), r(ti=1);¢)

X2 r ()L v, 6)
L

N=)
i=1
2
i=1

log(
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and the MLE ¢ is
¢ = arg max,, £(; r (10), 1 (11),..., 7 (£n)).

The first two moments of the non-central y? distribution are

g =0(1-e )+ r ()

2 2
_ QL (1 _e—xAt)2+ g

. (e_KA[—e_z’(A[)r(ti_l).
.2k X

12
Ball and Torous (1996) showed that, over small time intervals, the transition density can be

reasonably approximated by a normal density. Therefore, we can use the first two moments

of the non-central 7(2 distribution and assume, alternatively, that
r)=e M rno)+0(1-e M) +ery), (2.3.15)

with
2

fo _ 2 0%, _ _
e(t)~N O,EK—(l—e An +7(e KA e AN (g 0) ]

We shall use this approximation in Chapter IV.

2.4 Numerical examples

In this section we apply our estimation techniques for the Vasicek and CIR processes. To this
end we generate different sets of data using (i) Vasicek and (ii) CIR model with different pa-
rameters and examine these data to see how effective is the maximum likelihood technique

in estimating the parameters.

First, we consider the Vasicek model, starting from an arbitrary set of parameters for
each sample path where x;, 8 > 0 and ¢ is the unconditional instantaneous volatility of the
process. Thatis ¢; = (x;,0;,0;), then we will have, r;(#;),...,r;(¢,) (in our case i = 1,2), where
n denotes the n{meer of observations. In our case we use weekly observations (A = 1/52)
and the simulatioﬁ isrepeated N = 1000 times for each set of parameters. Since we use Gaus-
sian density to produce the white noises of the model, sometimes r;(¢;) may become nega-

tive. In such cases the program simulates new data.! However, this occurs rarely so we can

1 This was done so that, in the chaptexs to come, we could use the same simulated data.
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keep the i.i.d. assumption of our data. The percentage occurrence in Vasicek models were,
13.09 (for ¢b;) and 0.34 (for ¢,). For the generated data used in CIR models, these percentages
were 0 in both cases. Figure 2.1 shows, for each set of parameters, the first simulated sample

path of the Vasicek model, with n = 1000 observations.

A similar procedure is performed to generate two sets of trajectories for the CIR pro-
cesses. Moreover, in the CIR case we should also apply the condition 2x@ = ¢%. Figure 2.2
shows, for each set of parameters, the first simulated sample path of the CIR model, with

n =1000 observations.

The tables and figures in the next pages summarize the results of the simulation exer-
cise for the Vasicek and CIR model using the maximum likelihood method. The plots for all
the results are outlined in Appendix A. The convergence of the estimated parameters to the

true values as n increases shows that the results are asymptotically unbiased.

Tables 2.1, 2.2, and 2.3 summarize the results of the simulation implementation with
different numbers of observations. These tables include the true values, mean estimates over
N = 1000 simulations and the associated standard deviations of the estimates. The mean
provides the information about any bias in the estimation technique, while the standard
deviation is useful in assessing the accuracy of the technique. Also we should mention. that
we observed outliers in results, especially when the number of observations was small. We
used a box-and-whisker method to identify these outliers and ignore them afterwards in the

computations.

Overall, based on the results, we might conclude that maximum likelihood method is
not a very successful method for determining the parameters. In the two next chapters we

will study two different techniques.
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Sample path, when ¢ = (0.06, 0.05, 0.02) - Vasicek model
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Figure 2.1 Generated sample paths for the Vasicek process
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Sample path, when ¢ = (0.08, 0.05, 0.02) ~ CIR model
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Sample path, when ¢ = (0.3, 0.04, 0.01) - CIR model
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Figure 2.2 Generated sample paths for Cox-Ingersoll-Ross process
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Estimated x when the actual value is 0.06

27

10 — T T T T T

i

T

0 E g ‘r i . . i
0 1 2 3 4 5 6 7 10
data of length n =100
10 T T T T T T !
11 I I I ! !
0 1 2 3 4 5 6 7 10
data of length n =500.
T T T T T T
1 1 | | | |
2 3 4 5 6 7 10

data of length n =1000

Figure 2.3 Empirical distribution of % for the Vasicek model with parameters ¢,
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Estimated k when the actual value is 0.25

30 - T T — T T T T T T
20 B
10F ) I A
0
0 1 2 3 4 5 6 7 8 9 10
data of length n =100
10 T f T T T T T T T

1T T L ! 1 ! | !
0 1 2 3 4 5 6 7 8 9 10
data of length n =500

l T T T T T T T

| |I 1 | | 1 1 | 1
2 3 4 5 6 7 8 9 10
data of length n =1000

' Figure 2.4 Empirical distribution of k for the CIR model with parameters ¢,



Estimated 6 when the actual value is 0.03
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Figure 2.5 Empirical distribution of 8 for the CIR model with parameters ¢,



Estimated o when the actual value is 0.075
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Table 2.1 A simulation analysis of the MLEs with n = 100 observations

Vasicek CIR

Parameters || Actual'| Mean Standard || Actual Mean Standard
values | estimates | deviations | values | estimates | deviations

K 0.060 3.182 2.337 0.250 3.126 | 2.360

K2 0.300 |  3.409 2.492 0.450 3.299 2.414

6, 0.050 0.052 0.020 0.050 0.047 0.019

0, 0.040 0.044 0.009 0.030 0.036 0.016

o 0.020 0.020 0.000 0.050 0.050 0.004

o 0.010 0.010 0.000 0.075 0.075 0.005
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Table 2.2 A simulation analysis of the MLEs with n = 500 observations

Vasicek CIR

Parameters || Actual Mean Standafd Actual Mean Standard
values | estimates | deviations || values | estimates | deviations

K1 0.060 0.746 0.537 0.250 0.803 0.544

K2 0.300 0.860 0.540 0.450 0.933 0.508

01 0.050 0.077 0.029 0.050 0.049 0.023

6, 0.040 0.040 0.008 0.030 0.029 0.009

o) 0.020 0.019 0.000 0.050 0.050 0.001

o) 0.010 0.010 0.000 0.075 0.075 0.002
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Table 2.3 A simulation analysis of the MLEs with n = 1000 observations

Vasicek CIR

Parameters || Actual Mean Standard || Actual Mean Standard
values | estimates | deviations | values | estimates | deviations

K1 0.060 4.271 0.271 0.250 0.516 0.287

K2 0.300 0.055 0.282 0.450 0.676 0.296

o1 0.050 0.082 0.027 0.050 0.048 0.016

8, 0.040 0.041 0.006 0.030 0.028 0.906

01 0.020 0.020 0.000 0.050 0.050 0.001

02 0.010 0.010 0.000 0.075 0.075 0.002
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CHAPTER III

ZERO-COUPON DATA

3.1 Zero-coupon prices

Very often in finance we need to estimate the unknown parameter sets of state variables,
when the random variates specified in the model are not directly observable. For example in
the financial markets we can only see the prices of interest rate instruments, while we would

need to know the interest rates (short rates in discrete time) for performing the estimation.

A different approach for the estimation of the SDE-type models has been introduced
in the financial literature, by finding a function which defines the relation between the ob-
servable data and the non-observable values, and then fitting this function to observable

values (bond prices for example) at a specific period of time.

In the literature, as discussed in Chapter 1], the term structure of the interest rates, is
assumed to follow a diffusion process; Vasicek and CIR processes are examples of this kind.
However, these rates are not observable, but we can use the affine term structure to relate the
observable prices to unobserved state variables. In other words, we are interested in a model
that is numerically and empirically tractable, but sometimes the random variables of the
model are not directly observable. For example, in our case the generated r(z) of the previous
chapter doesn’t exist in reality and can not be considered an instantaneous interest rate.
However, the available data (such as bond prices) are often the result of some transformation

of these unobservable rates.
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In this Chapter, we develop a maximum likelihood method for dealing with parameter
estimation of zero-coupon interest rates which is an example of a problem of this type. The
first step is to establish some relation between interest rates and the observable prices of
the bonds. We denote the value (or price) of a risk-free-zero-coupon bond as the function
‘P(t, T) where t refers to the current time, while the T represents the coupon’s maturity date;
therefore it is obvious that ¢; < T for i = 1,..., n where n is the number of periods left to the
maturity date. The zero-coupon bond pays one unit of account to the holder at maturity

date T (t; = T,i = n), in other word P(T,T) = 1.

Cox, Ingersoll and Ross (1985b) suggest the following relation between the price of the

zero coupon and the continuous associated data, spot rate of interest, which is denoted by

z(t, ).
P(t,T)=exp(—(T - 1)z(T, 1))
that is,
2 T) = _logP(z, T).
T—t

Thus, z(t, T) can be regarded as a risk-free rate of interest in a fixed period of time T — . The

short rate is the spot interest rate with instantaneous maturity, i.e.
r(t)=limz(t, T),
T—1

and from the above equation we have

. ) log P(t,T)
r()=limz(¢,T) = lim {-———
T=t T—t T-t
__[dlogP(:,T)
- oT 1.,
~ [ 1 OP(I,T)]
- P 0T pa
_ 0P
- oT

The affine term structure model is a key procedure for calculating the zero-coupon rate

from a given time to maturity, p(¢f, T), by having only the value of the instantaneous rate
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on interest, (). We consider a class of models, called exponential affine, where the prices

{P(t,T),te[0,T]} are of the following general form:
P(t, T) = MOT=BETIN®) G.LD .

with deterministic functions A(t, T) and B(t, T). Since P(T, T) = 1, we should have the fol-
lowing boundary conditions:

A(T, T)=0, B(T;T)=0.

In the next sections we will describe the single-factor development of the above affine term

structure model, and then generalize it to higher dimensions (multi-factor models).

3.2 Single-factor models

Vasicek (1977) assumes that r(¢) follows the SDE (2.2.6), and uses this process and the as-
sumption of a constant market price risk, A, to derive a bond pricing model like (3.1.1) for
T - T — ¢, where,

B(r,T)=B(1) = %(1 —-e "),

_yBW@W-1) 0B
- x2 4x

AL, T) = A(r) , (3.2.2)

with
o2

2 oA
=x“@-—)——.
Y ( X ) 2
Let us denote ¢ = (x,8, o) the vector of unknown parameters, 7 = T — ¢, the time to maturity

(r = T —t is usually considered as a weekly, monthly or yearly point of observation).

Many authors use the Vasicek model in their pricing models, although there are many
others who prefer to work with the model suggested by Cox, Ingersoll and Ross (1985b). The

exponential affine formula (3.1.1) is still valid with A and B given by

2(e""-1)
B(r)= ,
(y+x+A) (e -1)+2y
2 (y+x+A)1 %KZQ
e” 2
A(t)=In L , (3.2.3)

(y+x+A) (e —1) +2y
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and

y=V(x+A)?2+202.

The complete calculation for finding A and B in the single factor model for both Vasicek and

CIR processes is done in Bolder (2001).

3.3 Multi-factor models

In these models one assumes that the short rate is in fact a linear combination of N corre-
lated state variable (factors) which we denote by y,, y2,..., yn. Therefore, we have the follow-
ing equation,

N
r(n)=) yi,
i=1

and the associated price function is,

P(t, T)

P, Ty 0 ¥

N
. exp{A(t, T)- Y Bi(t,T)y(1) } .

i=1

H

According to Bolder (2001), we have the following solution for the Vasicek model with:

1
Bi(t)= —(1—e™™"),
Kj

N (1) — 2B2(1)
A(r):_z”B‘f:j 2 _014;_7 +

i=] i

O"..
Y —L(-Bi@)-B;n)+ (1 e~ itx)my)
0.j i) KK KitKj
(3.3.4)
and

Yi=x%(0; —'—7; )-—

By comparing the above equation with the single-factor case (3.2.2), we realize that, in addi-
tion to replacing the right-hand side in (3.2.2) with a sum of N terms, we also have an extra

covariance term.

However, in the CIR multi-factor model, things get more difficult and the analytical so-

lution exists only when the Ricatti equation arising from the partial differential equation (the
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so-called term structure equation) can be reduced to independent one-dimensional equa-
tions, which implies that the underlying Brownian motions, Wj,..., Wy are independent. In

a similar way, the solution to the N-factor CIR partial differential equation has the form

P,

P(tv T;yl:---nyn)

N
exp{ Y Ai(r, T) - By(, T)y,-(t)} (3.3.5)

i=1

where

Ay (t) =x101 —y1())dt+o1v/ yi()dW, (1)

ayn(t)=xnOny—ynO)dt+on YN AWN (D),

and the Brownian motions are independent. Again, the function A;(¢, T) and B;(t, T) are of
the same form as in the one-dimensional case, since we assume that the state variables are

not correlated (in Chapter I, we also assumed that Wy, ..., W, were independent); this gives

2(e"" - 1)
Bi(1) = i ’
(yi+K;+A)(ErT —1) +2y;
2x;0;
R K
P ; 3.3.6
i (1) n[(%_+Ki+/1i)(eYiT—l)+2)’i) ( |

where

Yi= \/(Ki+/1()2+20'?.

In both cases the boundary conditions for i = 1,..., N, are defined as
A0 =---=An(0)=By(0)=---=Byn(0) =0.

_According to Bolder (2001), the previous derivation of continuous-time affine term structure

models exists also for the discrete-time classes.

The theoretical develol;ment required to represent the bond prices as an affine func-
tion of the underlying state variables of the two specific Vasicek and CIR models is completed
and we can introduce techniques to estimate the unknown parameters of the affine term-
structure models. In this Chapter we will only describe the maximum likelihood approach,

and leave the Kalman filter methodology for the next Chapter.
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3.4 Maximum likelihood estimation

We view equation (3.1.1), as a transform function which relates short rates to zero-coupon
prices:

r(t)— P(t,T) = A D-BETIr@)

For 0=ty < t) <...<tpand afixed set of parameters, we can then derive an inverse relation:

F(t) = B T) . (3.4.7)

To obtain the log-likelihood function for the transformed data, we employ the following clas-

sic theorem.

Theorem 2 If the transformation from X to Y is on an element-by-element basis, i.e., y; =

Ti(x;;¢) for all i, then

CYose Yi ) = (2 (), i =0,...,m;4)— ) nlog

i=1

OT; (X (d); ) (
ax,-

where

() = T i ).

The proof of this theorem can be found in Duan (1994). In our specific case, T(X, ) rep-
resents the pricing function (3.1.1) and T~! will be the equation (3,4.7). Therefore, we can

calculate the log-likelihood function for the prices bond,

é(P(tl,T),..,P(tn,T),(P) é(f(tl):

Xi(); </5)‘

Ox;

£(r(n),..., 7 ogIB ti, T (3.4.8)

where ¢(F(t1),..., F(ty);¢) is in fact the calculated log-likelihood function for the Vasicek (or
CIR model) in the previous chapter. The minimization of minus the log-likelihood function

(3.4.8) can be achieved by the fminsearch function in MATLAB.
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3.5 Numerical analysis

In this section, to illustrate our method, we apply the preceding theoretical discussion to the
previous Chapter generated data, and apply equation 3.1.1 to collect the observable prices

related to these instantaneous unobservable short rates (in reality).

In particular, we compute these values by using weekly observations (A = 1/52) over
a 20-year time horizon. The generated prices illustration for a 10-year zero-coupon bond
(r = 0.5) using Vasicek and CIR models with the assumption of a constant risk premium

A =1are shown in figures 3.1 and 3.2 respectively.

Then we assume that the only data we have is the set of observed prices and use the
inverse equation (3.4.7) to achieve estimation of short rates. By computing 7,..., #; from
Pq,..., Py, starting with an initial value ¢y and applying the maximum likelihood method to
the log-likelihood function of prices (3.4.8), we can estimate the parameters of our model,
the vector ¢ = (x,0,0). The tables and figures in the following pages summarize the results
of the simulation exercise for the Vasicek and CIR models using the maximum likelihood

method with zero-coupon prices. The plots of all the results are outlined in Appendix B.

The convergence of the estimators to the true values n increases shows that the results
are asymptotically unbiased. Tables 3.1, 3.2, and 3.3, summarize the results of the simula-
tion implementation with different numbers of observations. The estimators in the indirect
method tend to the real values but the convergence is slow. Since in this method we are not
directly getting the maximum likelihood estimates of the short rates, we were expecting to

get these results.
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Generated prices, when ¢ = (0.06, 0.05, 0.02) - Ornstein-Uhlenbeck model
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Figure 3.1 Generated prices for the Vasicek model
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Generated prices, when ¢ = (0.06, 0.05, 0.02) - CIR model
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Figure 3.2 Generated prices for the Cox-Ingersoll-Ross model
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Estimated x when the actual value is 0.3
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Figure 3.3 Empirical distribution of & with zero-coupon data for the Vasicek model with pa-

rameters ¢,



Estimated o when the actual value is 0.01
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Estimated x when the actual value is 0.45
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Figure 3.5 Empirical distribution of & with zero-coupon data for the CIR model with param-
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Estimated © when the actual value is 0.05
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eters ¢
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Table 3.1 A simulation analysis of the MLEs for zero-coupon data with n = 100 observations

Vasicek .CIR
Parameters || Actual Mean Actual Mean
values | estimates || values | estimates
K 0.060 3.177 0.250 5.946
Ko 0.300 3.405 0.450 5.060
0y 0.050 0.053 0.050 0.040
0, 0.040 0.044 0.030 0.032
o] 0.020 0.041 0.050 0.152
o 0.010 0.020 0.075 0.187
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Table 3.2 A simulation analysis of the MLEs for zero-coupon data with n = 500 observations

Vasicek CIR

Parameters || Actual Mean Actual Mean
values | estimates || values | estimates

o 0060 | 0746 | 0250 | 2.136
K2 0.300 | 0.856 0.450 1.881

6, 0.050 0.076 0.050 0.043

0, 0.040 0.041 0.030 0.027

o) 0.020 0.026 0.050 0.079

o2 0.010 0.011 0.075 0.104
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Table 3.3 A simulation analysis of the MLEs for zero-coupon data with n = 1000 observations

Vasicek CIR
Parameters || Actual Mean Actual Mean
values | estimates | values | estimates
K) 0.060. 0.427 0.250 1.447
L) 0.300 0.554 0.450 1.434
0, 0.050 0.082 0.050 0.044
6, 0.040 0.041 0.030 0.025
o) 0.020- 0.022 0.050 0.067
02 0.010 0.010 0.075 0.094




CHAPTERIV

KALMAN FILTERING

4.1 Introduction to Kalman filtering

In 1960 R. R. Kalman published his famous paper describing a recursive solution to the dis-
crete datalinear filtering problem. In our context, the Kalman filter technique has been used
by Duan and Simonato (1999), Geyer and Pichler (1999) and Babbs and Nowman (1999). The
nature of the application of the Kalman filter depends on whether the term structure model

is Gaussian such as in the Vasicek model or non-Gaussian, such as in the CIR model.

A Gaussian distribution is fully characterized by its first two moments and the exact
likelihood function is obtained as a by-product of the Kalman filter algorithm. An example
of the Gaussian case is provided in Babbs and Nowman (1999), who estimated a two-factor
generalized Vasicek model. Babbs and lNowman (1999) observed eight interest rates with

maturities between one and ten years.

When using non-Gaussian models the exact likelihood function is not available in
closed form, however a quasi-maximum likelihood estimator can be constructed from the
first and second conditional moments of the state variables. Examples of the non-Gaussian
CIR model, may be found in Duan and Simonato (1999) and Geyer and Pichler (1999). De-
Jong (2000) provides an empirical analysis of the affine class of term structure models pro-

posed by Duffie and Kan (1996) using a quasi-maximum likelihood estimator.

The Kalman filter is a set of mathematical equations that provides an efficient compu-
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tational (recursive) means to estimate the state of a process, such as to minimize the mean
squared error. In this section we provide a short practical introduction to the discrete Kalman

filter.

The Kalman filter is in fact a recursive algorithm for calculating estimates of unob- -
served state variables based on observations that depend on these state variables. The prin-
ciple of the Kalman filter is to use a time series of observable data to infer the values of state
variables. This technique is useful when there is a linear dependency of the observable data

upon the state variables. In our case the affine model term structure satisfies this condition.

In the present case, the Kalman filter uses a state space formulation to recursively
make inferences about the unobserved values of the state variables (transition system) by
conditioning on the observed market zero-coupon prices (measurement system). In fact, it
forms an optimal predictor of the unobserved state variable given its previously estimated
value. This prediction is obtained by using the transition distribution of the state variables
and updating it with the information provided by the observed variables. The Kalman filter

recursion updates the transition system once a new observation is available.

We begin with a simple state space model and then we develop it to cover our case.

For this reason, first consider a system that is described through the following linear model,
z;=Hix; + v,

which represents the measurement equation while the transition system is given by
X1 =Fx +€;

where v, and €, are the measurement noise and of the the process, respectively. They are

assumed to be independent with normal distributions,
Up ~ N(O: R) ]

E[NN(OJQ):

The Kalman filter recursion is a set of equations that allows an estimator to be updated once

a new observation becomes available. This estimator should be linear, recursive and unbi-
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ased. The Kalman filter’s equations falls into two groups, time update equations (a priori)
and measurement update equations (a posteriori). According to Welch and Bishot (2005) we
define X; = (x;|Z;_,) to be the a prioriestimate at step ¢, given the knowledge of the process
pricrto step ¢, (Z;-1 = (z;-1,2;-2,..., 21)) and £; = (x| Z;) to be the a posterioristate estimate
at step ¢ given information about z, at time t. Now we can define the a prioriand a posteriori

estimate errors respectively as

,et— = iz_xt)

e, = X-—x;.
The a priori estimate error covariance is then,
P; =E[e;(e])]
and the a posterioriestimate error covariance is,
P.=E[ee;].

The goal of Kalman filtering is to derive an equation that computes the a posteriori state
estimate, as a combination of the a priori estimate and a weighted difference between an

actual measurement z, and a measurement prediction z, = HX; . Let's say we can write,
xt:Mtjt—I-*_KtZ[- (411)

The unbiased criteria means that £, has the same expected value as x;,

by taking expectations in (4.1.1),
E[M[f[_l + K[Z[ - x[] :.O.

Adding and subtracting two terms, and replacing z,; by the measurement equation formula,

and x, by the transition system formula leads to,

E(X—x] = E[M/(X-1—x-1)+ K (H (Fxp—y+&-1)+v0) = (Fxpoy +€-1) + My X1 ]

I

MiE[ %1 — X1 ) H (K H F— A+ M E (X, ]
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The estimation will be unbiased when

KiH/F- A+ M,

I
o

M;=F-K,H,F (I-KHy)F.
By substitutin;g M;in (4.1.1),

2 =(U-KH)F%_ 1+ Kz,
defining the a prioriestimate as £, = F%,_),

.2[ = (I_K[H[).%[_ +K[Z[ = )AC[_ + K[(Z[ - H[it_)

The difference (z; — HX;) is called the measurement innovation, the prediction error, or the
residual. A residual of zero means that the predicted value at time ¢ —1 is equal to the ob-
served measurement at next time step, t. The matrix K, called the gain matrix, minimizes

the posterior covariance of the estimation error. To find K consider the posterior error as,

e = xt—xtz.i;'FK[(Z[—H[.i[—)—xt
= £;+K[(H[X[+ V[—HLX;)_X[

= (I—K[H[)(X;—x[)+K;U[=(I—K[H[)e[_+K[U[.
Then, the posterior covariance would be,

P, = Eleell =E((I-K Hye; +K,v)((I-KH)e; +K,v,)]
= E[U-KH)e; e (I-K.H) +(I-KH)e; VK, +K,v,e; (I- K, Hy) + K,v,v,K)]
= (I-KH)P;(I-KH) +KRK,
= (P, - K;H,P; Py H\K\ +K,H,P; HK') + K,RK..

Our purpose is to minimize this covariance. We will use the Jacobian to minimize error; then

the trace of P, is,

tr(P;) = tr(P;) — 2tr (K, H, P}) + tr(K, H,P; H'K}) + t£(K,RK),
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and to find the minimum error referring to the element of the gain matrix, we calculate the

derivative of tr(P,) with respect to K, and set it equal to zero:

otr(P
—gr;(—‘) = -2P; +H,+2K;H,P; H,+2K,R=0,
|1

P;H, = K,(H,P;H,+R),

K, P, H}(H,P; H,+R)".

Hence, the measurement update equations are

K, = P;H,(H/P;H,+R™, (4.1.2)
.%[ = "X\:t_ +K[(ZI—H[-2[_)! (413)
P[ - (I*K[H[)Pt_ (414)

Since we assumed %; = FX,-; the a priorierror estimate covariance will be,

Py

Ele;(e)']

= E[(& -x)(®&] - x) |

= E[(FX1—Fx;oy—wi ) (F&_ ~ Fxeoy — wi—y)'|

= E|Fe,_1€,_|F +Fe, yw, |+ w;|Fe,_1+ w;_ w,_, |

= FP,_,F+Q.
In the Kalman filter algorithm, at each step, we update the measurement using the above
equations, and repeat the process with the previous posterior used to project the state ahead
and obtain a new prior estimate. Using the filter, we can compute a likelihood function
and find the optimal parameter set by numerical optimization. We begin a more detailed

presentation of the Kalman filter in the subsequent section with the specifics of the state-

space formulation.
4.2 The state-space formulation

4.2.1 Vasicek model

The idea of Kalman filtering is to express a dynamic system in a particular form called the

state-space representation. Constructing the state-space form involves the specification of
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the transition system and the measurement system. The unobserved system of equations
is called the transition system. This system describes the dynamics of the state variables as
they were formulated in the model. The second observed system of equations, termed the
measurement system, represents the affine relation between the market zero-coupon rates
z(t,T), and the state variables. We begin our development with the m-factor Vasicek model
as the transition system, when the state variables are assumed to be generated by Vasicek
processes,

dy1(t) =x1(01 —y1(D)dt+ o, dW (1),

dy (1) =x2(02 — y2(D))dt+ o2d W (1),

dym(_f) =KmOm— Ym ()AL + 0 dWp (1)

and the instantaneous short-term interest rates are in fact a linear combination of the above

correlated state variables,
m
rey =Y. yi(o.
i=1

Using the recursive expression that was used in Chapter I for the Vasicek model, namely
Y = e Ryt + 0 (1—e ) +e(ty)

' ,2‘K

we can specify the transition system as follows:

Ly ] e o o 0 ] nein || eia—e ity ety |
¥ (1) 0 g kbl 0 y2(ti-1) 0, (1 — e~¥2B0) £2(1;)
. = . + . +
L ym) | | O 0 eyt | | Bn-e ) || em(t) |
y(2i) ) F T e c ’ £(t))
where

e(t;) ~ N(O,Q).
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Since in Chapter I we assumed that our state variables are i.i.d. for both the Vasicek and
the CIR multi-factor models, the covariances between the state variables are zero and the

process noise covariance matrix, Q is diagonal,

[ 4 (1- ety 0 0
2
0 o2 (1—em2208) 0
Q: . 27(2[ ‘ ) ' ‘ [425) '
0 0 %(1—6‘2’("’“) |

In general we can write

y() = C+ Fy(t;2)+e(1). ' (4.2.6)

Further we assume that we have a sequence of N zero-coupon rates z;,..., zy with terms to
maturity 11,..., Ty respeqtively. In general we require one market zero-coupon rate for each
factor used in the estimation. For example, if we were considering a two factor model, we
would require only two observed zero-coupon bond yields, By adding market rates, however,
we provide cross-sectional information about the term structure of interest rates at each
observed point in time. This information is particularly helpful in specifying the market
price of risk parameters (A4;, i = 1,..., m). In fact, each state variable has a risk parameter, A;,
which is treated as a fixed parameter. To construct our measurement system, we need these
N zero-coupon rates and the following relation between the zero-coupon yield and the price

of a zero-coupon bond, which we described in the previous chapter,

. A, )+ Bi(t, Ty;(t
Z([,T):_logfit;T): (t,T) Zji__lt )yi(1)

where A(t, T)and B;(t,T) fori=1,..., m, are,

~(1-eTD),

B;(t,T) =
Ki
™ y(By(t,T) - (T —1)) OB(t,T)
A(t’T) — ZY( l( )2 ( ))_ 1771
i=1 Ki 4K
O‘..
Y LTt Bi(t,T) - B(t, T) + (1 e~ tirx(T=0)
i,j;i#jZKij Kit+X;
and ,
2 Til; (o
Yi=K; ei*K—i - 21
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We assume that the measurement errors in the interest rates are additive and normally dis-

tributed. The measurement system is then,

z(1;) = A+ Hy(5;) +v(1y) 4.2.7)
or, in more detail,
; . . . / R .
Al Ty By, T, By (1,7 B, (1, T)
2(5;, T) e fel) - Blel) o BallT) g () vi(£)
A1, Tp) Bi(1:,T2) Ba (1, T3) B (ti,T2)
z(t;, T7) P P Lo o TheT ya (1) ~va(t)
= + +
. -l AL, Ty By(t;,T By(t;, T B (i, T
2Ty || || Ppen AR B [ ymd || vwt) |

N /'

T VT ~

2(1) A H y(5) v(t)
This model is affine in the state vector y(z;), but the A and B’s are non-linear functions of the
underlying parameters. So we have to assume that our measurement system has errors, v(¢;),
in the measurement system. We assume that the measurement errors in the bond yields are

additive and normally distributed, giving,
v(t;) ~N(0,R).

Moreover the number of observed bonds and their associated maturities do not change over
time. Therefore, R has namely constant dimension N x N and is assumed to be a diagonal

matrix, such as,

ré o 0

0 r? 0
R= 2

0 0 r3,

4.,2.2 The CIR model

This section presents the reformulation of the CIR model. The filter for the CIR model is not
linear and may be biased. The exact transition density for the CIR model is a non-central
¥2(v,6), with v degrees of freedom and & the non-centrality parameter.

4x 0. 4xy(t;—))
V==—0) = ——,
0-2 O-Z(eKAt_l)
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However, to satisfy the assumption of normality in the Kalman filter model’s maximum likeli-
hood estimation, substituting the exact transition density by a Gaussian or normal density is
often done. Therefore, in the CIR model we will assume that variables of y are approximately
of the following Gaussian distribution,

2 2
y(t) ~ N e_KAt)/(fi—l) +9(1—e_KAt), 92_‘1_.(1_ e—xAt)2+ % (e—-‘KAt_e—ZKAt)y(ti_l) _

With this assumption, the transition system for the CIR model has the following characteris-
tics,

Yty =C+Fy(ti-1) + (1) (4.2.8)
where, the form of C and F for the CIR model is almost the same as that described by the

Vasicek model, but the £(f;) are be different, since the variance of the system is dependent

on the state of the process,

tz)N OQt,
(&0 .0
0 & ... 0
Qt,':
| 0 0 ... &p

where, foreachi=1,...,nand j=1,...,N,

2 2
610.

{-: J (]__e_KfAt)z—i—'ol(e_KjA[_e_ZKjAt)y(ti—l)-
J 2‘Kj Kj

For the measurement system we have,

z(t, T)=—

lnPtT) i— i)+ B (1, T)yi(h) 4.2.9)

T - T-1t

where according to Chapter III we have,

) 2(e’t =1
Bi(1) = ~ )
(yi+x;+ A" =1)+2y;
2x,;0;
2 .e(y,~+x£+/\[)7 g%
A;(1) =log L )

(yi +x; +A(e?® — 1) +2y;
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and

Y= \/(K,'+/1i)2+2(7%.

Then the measurement system for the CIR model is as follows,
2(t) = A+ Hy(t;) +v(L). (4.2.10)

The form of the measurement system is almost the same as the one for the Vasicek model,

the only difference is in the A matrix, which in this case is:

n At 1)
i=1 T-1t
n At 1)
i=1 To—¢f

o
Il

n A4, Ty)
i=1 Tn—4

4.3 The Kalman filter implementation

The Kalman Filter recursion is a set of equations which allows an estimator to be updated
when a new observation becomes available. These equations provide the minimum vari-
ance estimator over all unbiased estimators. The resulting estimator is thus linear, recursive
and unbiased. In the previous subsection the model have been reconstructed in state space
form, now the Kalman filter can be used to obtain information about space variables from

observed zero-coupon yields.

In Kalman filtering we begin with the initial values for the state variables and then we
proceed to use these initial values to predict the value of the measurement equation when
we actually are able to observe in the next period of time. Using these observed value we
can update the inferences about the current value of the state variables in the next period
of time. These updated values are then used to forecast the next state variables for the next

period of time. This procedure is repeated for all periods of time.

We define Z; for i = 0,...,n, to determine the period of time we are working on. In

fact Z; = z(1;), z(t;-1),..., 2(tp) denotes the information we have observed before the time ¢;.
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Consider the unconditional mean and variance of the state variables at ty = 0, for the Vasicek

model with a Gaussian transition density, given by

D
6>
E[y(o)| Zo] = p
.Gm
N 02
ﬁ 0 0
2
1 o 22 0
Var(y(to) | Zo) = oo
0 0o - 2‘5,,, |

The second step in predicting the next state variable y(¢;) given y(t;_), is to forecast the
measurement equation of the next level with respect to the estimated state variables, which

according to (4.2.7) will be,

Elz(t) | Zi-] E[A+Hy(t)+v(t)] Zioy ]
= E[A]+EHE[y(t)| Zio | + Ev(5)]
= A+ HE[y(1)]

Var (z(t) | Zie1)

Var (A+ Hy(t;) + v(£:) | Zi-1 )
= HVar(y(t;)| Zi-1)H' +R.
Now that we have a conditional prediction of the:measurement system, we can observe the

next period oftime’s values for the measurement system and compare these two values; that

is, we can compute the difference
{(t;) = z(t;) — Elz(t)| Z;i-1],

where the {(#;) is the residual of our prediction, also called the prediction error. Now that
we have the observed values we can use the recursive equation to change the state variables

related to the predicted measurement. We can update the transition system using (4.1.3), as

Elyu) 1 Zi | =E [yt | Zimy | + KD (5)
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where K (1;) is called a gain matrix, or blending factor, where (4.1.2) suggests that,
K(t;) = Var(y(t)| Zi-1) H'Var (2(8) | Zi-1) 7"

The updated conditional variance (4.1.4) is,
Var (y(t)1 Zi) = (I - K(t) ) Var (y(t) | Zi-1) .

By having the updated mean and variance of state variables and using (4.2.6), we can forecast

the unobserved state variables for the next time period,

E|y(tic) | Zi] E[C+Fy(ty) +e(t; +1) | 2]

1l

= C+FE[y(t)|z]

Var(y(tis1) | Z;)

Var(y(t;) | Zi—y ) - F(Var(y(t)1 Zi)) F'+ Q.

This algorithm must be repeated for each discrete time step in the data sample. The same
procedure is applied to the CIR state-space formulation. The difference is only in the state-
space formulation and the initial value for the variance of state variables which indeed, in

the CIR case the variance is,

0'261
#217(_1 0 0
oo
0 %2 0
Var(y(t) | Z) = _ _ _
2
00 L g

The algorithm would be the same for the CIR model.

4.4 Maximum likelihood estimation

The (conditional) likelihood of a set of observations z(ty), z(ty), z(t2), ..., z(t,) is
n
L(z(t1), z(t2), ..., z(tn); 2(t), ) = 1—[ p(z(t) | Z(t-1)
i=1

where p(z(t;) | Z(t;-))) is the distribution of z(¢;) conditional on the information set at time

ti—1, thatis Z(t;—1) = {z(t;-1), z(t;=5), ..., z(£1)}. If the disturbances and initial state vector of
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the model have a proper normal distributions, then the distribution p(z(#;) z(£;-1))), is itself
multivariate normal, and the mean and covariance matrix of this conditional distribution
are given directly by the Kalman filter, namelu

1
(2)2 [Var (2(£;) | Z(t;_1))|2

1
p(z(t) | Z(t;i-1)) = exp{ _EC(ti)lvar(Z(ti) | Z(t-)) ™ ) } -

The likelihood function is

L(z(11),2(12),...,2(1p); 2(t0), ) = | | p(2(£:) | Z(ti-1))

i=1

n
H )2 Var (z(2;) | Z(5;_ 1)) |~ e 250 Varzml 20y ¢ )

while the log-likelihood function can be written as

< -4 —1 ey Varze|Zs-0) 7
)" log (27 ¥ [Var (2(t) | Z(t;-y) |72 ™3¢ VRG24

i=1
anog (2m)

()

Y~ (log|Var (2(t;) | Z(t;-)) |+ (1) Var (2(6) | Z(£i-1)) ™" ().

1
2 i=1
The last step is to find the optimal parameter set ¢. We use fminsearch as a nonlinear nu-

merical optimization technique to find the maximum likelihood in MATLAB,

4.5 Numerical analysis

In this section, we apply Kalman filtering to the same problem as the one considered in the
previous Chapter. That is, we put the Vasicek and CIR single-factor models, in the state-
space form, In this simulation we use four sequences of zero coupon rates with terms to
maturity [T}, T, T3, T4l. In the estimation we use weekly observation A = 51—2 for the different
Zero-coupons zj,..., 24 with terms to maturity v = [7,..., T3] = [0.070.250.51] which indi-
cate we have 2-year and half, 5-year, 10-year and 20-year bonds over a 20-year time horizon.

However the state variables are simulated weekly over a 20-year time horizon.

We use computed price values from the previous chapter as observed variables, and
by using equation (4.2.9), we obtain the real values of the zero-coupon yields for each term
to maturity. According to Kalman filtering, for the first step we start from the first estimated

values for interest rates using the conditional mean and variance of the transition system.
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Later, we compute zero-coupon yields by using the measurement systems concerning the

estimated interest rate.

In our case, we assumed that A is constant and equal to 1, but in reality we should also
consider A as an unknown parameter. R is the error of measurement system that we add
to the system, moreover we assume that there is no serial correlation in these measurement
errors for zero coupon rates. Therefore, R has a small constant value and is assumed to be a

diagonal matrix.

Now by comparing the the observed zero-coupon rates and the estimated ones, we
try to improve the estimated interest rates. Finally, by using these improved values in the
transition system we calculate the interest rates for the next period of time. This process
continues for all time steps, giving a Gaussian distribution for all the price values. At the end

we compute the log-likelihood function and try to optimize it.

This estimation procedure is repeated 1000 times. Although the procedure is lengthy,
the results are quite accurate. The tables and figures illustrated in this section summarize
the results of this simulation exercise for the Vasicek and CIR models. The rest of plots are

outlined in Appendix C.



Estimated o when the actual value is 0.02
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Figure 4.1 Empirical distribution of & for zero-coupon data and Kalman filtering (Vasicek

model with parameter ¢,).
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Estimated o when the actual value is 0.01
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Figure 4.2 Empirical distribution of ¢ for zero-coupon data and Kalman filtering (Vasicek

model with parameter ¢,).
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Estimated 6 when the actual value is 0.05
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Figure 4.3 Empirical distribution of § for zero-coupon data and Kalman filtering (CIR model

with parameter ¢;).
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Estimated x when the actual value is 0.45
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Figure 4.4 Empirical distribution of ¥ for zero-coupon data and Kalman filtering (CIR model

with parameter ¢,).



Table 4.1 A simulation analysis using Kalman filter for n = 100 observations

Vasicek CIR

Parameters || Actual Mean Standard Aétual Mean Standard
values | estimates | deviations || values | estimates | deviations

K] 0.060 0.059 0.0002 0.250 0.245 0.0109

Ko ‘0.300 0.299 0.0000 0.450 0.446 0.0108

0, 0.050 0.050 0.0000 0.050 0.049 0.0047

6, 0.040 0.039 0.0000 0.030 0.029 0.0033

o1 0.020 0.020 0.0000 0.050 0.048 0.005

o2 0.010 ; 0.010 0.0000 0.075 0.073 0.006
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Table 4.2 A simulation analysis using Kalman filter for n = 500 observations

Vasicek CIR

Parameters || Actual Mean .Standard Actual Mean Standard
values | estimates | deviations | values | estimates | deviations

K] 0.060 0.059 0.0002 0.250 0.246 0.0106

K2 0.300 0.299 0.0000 0.450 0.446 0.0115

6, 0.050 0.050 0.0000 0.050 0.049 0.0049

6, 0.040 0.039 0.0000 0.030 0.029 0.0032

0 0.020 0.020 0.0000 0.050 0.049 0.004

02 0.010 0.010 0.0000 0.075 0.073 0.005
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Table 4.3 A simulation analysis using Kalman filter for n = 1000 observations

Vasicek CIR

Parameéters | Actual Mean | Standard | Actual Mean Standard
values | estimates | deviations || values | estimates | deviations

K] 0.060 0.059 0.0002 0.250 0.245 0.0103

K2 0.300 0.299 0.0000 0.450 0.445 0.0112

0, 0.050 0.050 0.0000 0.050 0.049 0.0045

6, 0.040 0.039 0.0000 0.030 0.029 0.0033

o 0.020 0.020 0.0000 0.050 0.043 0.004

(o2 0.010 0.010 0.0000 0.075 0.073 0.006
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CONCLUSION

An affine term structure model is a time series model used to describe the stochastic
behavior of interest rates. We examined a variety of techniques to estimate the parameters
of the SbEs of the underlying factors of the model. By comparing the estimated values of
the parameter set of the problem using direct state variables (Chapter I) to the estimated
values using state variables constructed by applying the affine term structure model to the
prices, we conclude that these models can not accurately explain the dynamics of the term

structure. However, in higher dimensions the results are better.

In contrast, by using Kalman filtering in these affine models we get reasonable results.
Therefore it isimportant to choose an appropriate technique to estimate the parameters. Of
course, this dissertation'represents only a first step in estimating a parameter set of zero-

coupons using different techniques.

A natural next step would be to consider the estimation of the market price of risk,
a rather hard problem according to the finance literature. Another problem which arose
during our empirical studies that deserves attention is the following: the numerical compu-
tation of the MLEs depends heavily on the proposed starting values for the parameters. That
is especially true for zero coupon data. Is it possible to compute “good” starting values (for

example with the EM algorithm)?
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APPENDIX A

SIMULATION RESULTS FOR MAXIMUM LIKELIHOOD METHOD

Estimated x when the actual value is 0.06
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Figure A.1 Empirical distribution of MLE ¥ for Vasicek’s model.



10

Estimated x when the actual value is 0.3
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Figure A.2 Empirical distribution of MLE ¥ for Vasicek’s model.
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Estimated 6 when the actual value is 0.05
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Figure A.3 Empirical distribution of MLE 6 for Vasicek’s model.
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Estimated @ when the actual value is 0.04
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Figure A.4 Empirical distribution of MLE 6 for Vasicek’s model.
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Estimated ¢ when the actual value is 0.02
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Figure A.5 Empirical distribution of MLE & for Vasicek’s model.
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Estimated o when the actual value is 0.01
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Figure A.6 Empirical distribution of MLE & for Vasicek’s model.
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Estimated x when the actual value is 0.25
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Figure A.7 Empirical distribution of MLE % for the CIR model.



Estimated « when the actual value is 0.45
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Figure A.8 Empirical distribution of MLE & for the CIR model.



Estimated 6 when the actual value is 0.05
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Figure A.9 Empirical distribution of MLE g for the CIR model.



Estimated & when the actual value is 0.03
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Figure A.10 Empirical distribution of MLE g for the CIR model.



Estimated ¢ when the actual value is 0.05
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Figure A.11 Empirical distribution of MLE & for the CIR model.
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Estimated ¢ when the actual value is 0.075
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Figure A.12 Empirical distribution of MLE & for the CIR model.
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APPENDIX B

SIMULATION RESULTS FOR INDIRECT MAXIMUM LIKELIHOOD METHOD

- Estimated k when the actual value is 0.06
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Figure B.1 Empirical distribution of MLE & for Vasicek’s model (zero-coupon data).



Estimated x when the actual value is 0.3
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Figure B,2 Empirical distribution of MLE & for Vasicek's model (zero-coupon data).
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Estimated & when the actual value is 0.05
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Figure B.3 Empirical distribution of MLE g for Vasicek’s model (zero-coupon data).



Estimated 0 when the actual value is 0.04
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Figure B.4 Empirical distribution of MLE 8 for Vasicek’s model (zero-coupon data).
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Estimated ¢ when the actual value is 0.02
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Figure B.5 Empirical distribution of MLE & for Vasicek’s model (zero-coupon data).



Estimated ¢ when the actual value is 0.01
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Figure B.6 Empirical distribution of MLE & for Vasicek's model (zero-coupon data).
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Estimated x when the actual value is 0.25
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Figure B.7 Empirical distribution of MLE ¥ for the CIR model (zero-coupon data).
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Estimated k when the actual value is 0.45
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Figure B.8 Empirical distribution of MLE % for the CIR model (zero-coupon data).



Estimated 6 when the actual value is 0.05
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Figure B.9 Empirical distribution of MLE 6 for the CIR model (zero-coupon data).



Estimated 6 when the actual value is 0.03
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Figure B.10 Empirical distribution of MLE § for the CIR model (zero-coupon data).



Estimated o when the actual value is 0.05
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Figure B.11 Empirical distribution of MLE & for the CIR model (zero-coupon data).
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Estimated ¢ when the actual value is 0.075
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Figure B,12 Empirical distribution of MLE & for the CIR model (zero-coupon data).
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APPENDIX C

SIMULATION RESULTS USING KALMAN FILTERING

Estimated x when the actual value is 0.06
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Figure C.1 Empirical distribution of Quasi-MLE &k for Vasicek’s model.
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Estimated x when the actual value is 0.3
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Figure C.2 Empirical distribution of Quasi-MLE ¥ for Vasicek’s model.
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Estimated 8 when the actual value is 0.05
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Estimated 6 when the actual value is 0.04
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Figure C.4 Empirical distribution of Quasi-MLE 8 for Vasicek’s model.
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Estimated ¢ when the actual value is 0.02
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Figure C.5 Empirical distribution of Quasi-MLE & for Vasicek’s model.
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Eslimated o when the actual value is 0,01
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Estimated x when the actual value is 0.25
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Figure C.7 Empirical distribution of Quasi-MLE ¥ for the CIR model.
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Estimated x when the actual value is 0.45
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Figure C.8 Empirical distribution of Quasi-MLE K for the CIR model.
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Estimated 6 when the actual value is 0.05
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Figure C.9 Empirical distribution of Quasi-MLE § for the CIR model.
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Estimated 6 when the actual value is 0.03
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Figure C.10 Empirical distribution of Quasi-MLE g for the CIR model.
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Estimated o when the actual vaiue is 0.05
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Figure C.11 Empirical distribution of Quasi-MLE & for the CIR model.
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_ Estimated o when the actual value is 0.075
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Figure C.12 Empirical distribution of Quasi-MLE & for the CIR model.



APPENDIX D

MATLAB CODE FOR SIMULATION AND ESTIMATION

D.1 Code for Chapter II

D.1.1 Vasicek Model

% This function generates short rates by using Vasicek model
% Equation 2.2.12 - Page 20

function r = GenOU(n,rl,kappa,theta,sigma,Delta)

r = zeros(n,1);

r(1) = rl; % Initial value

eps = randn(n,1);

% The variance of the white noise

v = sqrt((sigma~2/(2xkappa))*(1-exp(- 2*kappa*Delta)))

for i=2:n
mu = theta+exp(-kappa*(Delta))*(r(i-1)-theta);
r(i)= mu+v*eps(i-1);

end

end

% Generate N=1000 Paths each with n=1000 observations
% Single Factor Vasicek Model

% Model parameters
kappa = 0.06; theta = 0.05; sigma = 0.02; % set 1
% kappa = 0.30; theta = 0.04; sigma = 1, % set 2

% Path parameters

Delta = 1/52; % for weekly samples
% (for yearly, monthly and daily samples
% Delta is 1, 1/12,1/250 respectively)



rl = 0.045; % Initial value for state space variable
N= 1000; % Number of iterations
n = 1000; % Number of points we observe the data in time

% Generate -the path of interest rate

% To reset the randn function to its default setting in Matlat 2007a
% In Matlab 2008 we can use "reset(RandStream.getDefaultStream);"
randn(’state’,0);

n = 1000; % Number of points we observe the data in time
sg = 1;
while ¢ <= N

% Call the function GenOU to generate set of data

% with Vasicek model

r = GenOU(n,rl,kappa,theta,signa,Delta);

% To avoid generating negative paths

if (min(x) > 0)

Generated(c,:) = r;

c= c+l;
end
sg = sg+l;
if sg > Nx5
write ’Number of negative paths exceeds,
the interest.rates are no longer independent’
break ’
end
end

% the percentage of undesired paths (negative)
NegativePath =. (sg-c)/100;

save ’set10U.mat’

% Log-likelihood function for state variable using Vasicek model
% Equation 2.2.13 - Page 20

function y = D11hQU(x,r,Delta)

% Starting points of optimization

% Using exp(ln(initial values)) to avoid
% negative estimated values

kappa = exp(x(1));

theta = exp(x(2));

sigma = exp(x(3));

n = max(size(r));

I

% Constructing Log-Likelihood Function
v = sqrt ((sigma~2/(2*kappa))*(1-exp(-2+kappa*Delta)));
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end
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mu = thetat+exp(-kappa*(Delta))*(r(1:n-1)-theta);
y = sum(log(normpdf (r(2:n),mu,v)));

% To find Maximum log-likelihood we minimize the
% negative of log-likelihood since Optimization
% package use minimizing procedure.

y = -y

% MLE estimation for state variables generated by Vasicek model

load ’set10U.mat’

for

end

c=1:N % N is number of itteration

r = Generated(c,1:n); % n is the number of observations
% Using natural logarith of starting points

% to avoid negative estimated values

x0 = log([ kappa theta sigma ]); % starting points

% Call the optimization routine

options = optimset(’TolFun’,le-15,’TolX’,le-15,
’MaxIter’, 1000, ’MaxFunEvals’, 1000);

% The minimization of negative log-likelihood function

% can be achieved by using fminsearch

[ x, fval, exitflag, outpﬁt ]

= fminsearch(@(x) D11h0U(x,r,Delta),x0,options);

Result(c,:) = exp(x);

Exitflag(c,:) = exitflag;

FvaL(c,:) = fval;

clear out fval ans x r

save ’resl10U-1000.mat’

% Removing outliers in results by using box-and-whisker diagram

function [x r]= remoutliers(x,r)

h=boxplot(x); % Box Plot

ou=get (h(7,2),’ydata’);

for i=1l:max(size(ou))
[row columm] = find(x==ou(i));
x(row,:)=[];
r(row, :)=[1;

end .
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end

D.1.2 CIR Model

% This function generates short rates by using CIR model
%» Equation 2.3.12 - Page 22

‘function r = GenCIR(n,rl,kappa,theta,sigma,Delta)

r = zeros(n,1);
r(1) = r1; % Initial value
L= sigma*sigma/(4xkappa)*(1-exp(-kappa*Delta));
% Degrees of freedom
= 4xkappa*theta/(sigma*sigma) ;
for i=2:n
% Non-centrality parameter
nc = 4xkappa*r(i- 1)/((31gma*s1gma)*(exp(kappa*Delta) 1));
r(i) = ncx2rnd(v,nc,1,1)*L;
end

end

% Generate N=1000 Paths each with n=1000 observations
% Single Factor Vasicek Model

% Model parameters

kappa = 0.25; theta = 0.
% kappa = 0.45; theta =

% set 1

5; sigma = 0.
= 75, % set 2

0 05

0.03; sigma = 0.

% Path parameters

Delta = 1/52; % for weekly samples
% (for yearly, monthly and daily samples Delta
% is 1, 1/12,1/250 respectively)

= 0.045; % Initial value for state space variable
N= 1000; % Number of iterations
n = 1000; % Number of points we observe the data in time

% Generate the path of interest rate
% To reset the randn function to its default setting in Matlab 2007a
% In Matlab 2008 we can use "reset(RandStream.getDefaultStream);"

c=1;.
sg =
while c <= N
% Call the function GenOU to generate set of data with CIR model
= GenCIR(n,rl,kappa,theta,sigma,Delta);
% To avoid generating negative paths



end
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if (min(x) > 0)
Generated(c,:) = r;

c= c+1;
end
sg = sg+l;
if sg > N#*5
write ’Number of negative paths exceeds,
the interest rates are no longer independent’
break
end

% the percentage of undesired paths (negative)
NegativePath = (sg-c)/100;

save ’set2CIR.mat’

% Log-likelihood function for state variable using CIR model
% Equation 2.3.15 - Page 22

function y = D11hCIR(x,r,Delta)

end

% Starting points of optimization

% Using exp(1ln(initial values)) to avoid
% negative estimated values

kappa = exp(x(1));

theta = exp(x(2));

sigma = exp(x(3));

n = max(size(r));

% Constructing Log-Likelihood Function

% Using non-central chi-square distribution

L = 2+kappa/(sigma*sigmax(l-exp(-kappa*Delta)));

% Degrees of freedom

v = 4xkappaxtheta /(sigma*sigma);

% Non-centrality parameter

nc = 4xkappa*r(l:n-1)/((sigma*sigma)* (exp(kappa*Delta)-1));
y = sum(log(ncx2pdf(r(2:n)/L, v, nc)/L));

% To find Maximum log-likelihood we minimize
% the negative of log-likelihood

y=-Y;

% MLE estimation for state variables generated by CIR model

load ’setl1CIR.mat’



for c¢=1:N % N is number of iteration
r = Generated(c,1:n); % n is the number of observations
% Using natural logarithm of starting points
% to avoid negative estimated values
x0 = log([ kappa theta sigma ]);

% Call the optimization routine

options = optimset(’TolFun’,le-15,’TolX’,1e-15,
’MaxIter’, 1000, ’MaxFunEvals’,1000);

% The minimization of negative log-likelihood function

% can be achieved by using fminsearch

[ x, fval, exitflag, output ]
= fminsearch(@(x) D11hCIR(x,r,Delta),x0,options);

Result(c,:) = exp(x);

Exitflag(c,:) = exitflag;

FvalL(c,:) = fval;

clear out fval ans x r

end

save ’res1CIR-100.mat’

D.2 Code for Chapter I1I

D.2.1 Vasicek Model

h
% Compute the prices from simulated state variables
% By using affine model introduced for Vasicek model

h
function P = PriceOU(r,kappa,theta,sigma,lambda,tau)

% Equations 3.2.2 - page 33

gam = kappaxkappa*(theta-(sigma*lambda/kappa)) - (sigma*sigma)/2;
B = (l-exp(-kappa*tau))/kappa;

A = (gamx*(B-tau)/(kappa*kappa)) - (sigma*sigma*B*B/(4%kappa)) ;

% Equation 3.1.1 - page 32

P = exp(A-B*r);

end
% Assuming that one can’t observe state variables in reality,
% We use affine model to predict unobserved state variables

% When start points are kappa, theta, sigma.

function rhat = FindROU(P,kappa,theta,sigma,lambda,tau)
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end

% Recalculate affine model elements with start point

gam = kappaxkappa*(theta-(sigma*lambda/kappa))-(sigma*sigma)/2;
B = (1-exp(-kappa*tau))/kappa;

A = (gam* (B-tau)/(kappa*kappa))-(sigma*sigma*B*B/ (4*kappa));

% Equation 3.4.8 to find state variables from prices

rhat = (A-1log(P))/B;

% Log-likelihood function for prices using Vasicek model
% Equation 3.4.9 - Page 36

function y = ZCllhOU(x,P,1ambda,tau,De1ta)

end

% Starting points of optimization

% Using exp(ln(initial values)) to
% avoid negative estimated values

kappa = exp(x(1));

theta = exp(x(2));

sigma = exp(x(3));

n = max(size(P));

% Estimate unobserved state variable by using observed prices
rh = FindROU(P,kappa,theta,sigma,lambda,tau);

% Constructing. Log-Likelihood Function using normal distribution
v = sqrt((sigma~2/(2*kappa))*(1-exp(-2*kappa*Delta))); % variance
mu = thetatexp(-kappa*(Delta))*(rh(l:n-1)-theta); % .mean

% log-likelihood function of estimated state variables

y = sum(log(normpdf (rh(2:n),mu,v)));

% log-likelihood function of prices
(1-exp(-kappa*tau) ) /kappa;
y-((n-1)*log(abs(B)));

~< W
nn

% To find Maximum log-likelihood we minimize
% the negative of log-likelihood

y=-5

% MLE estimation via zero-coupon prices

load price20U

for

j=1:N
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P = Price(j,1:n);

% Using natural logarithm of starting points

% to avoid negative estimated values

x0 = log([ kappa theta sigma ]); % starting points

% Call the optimization routine

options = optimset(’TolFun’,le-15,’TolX’,1le-15,
'MaxIter’, 1000, *MaxFunEvals?’,1000) ;

% The minimization of negative log-likelihood function

% can be achieved by using fminsearch

[ x, fval, exitflag, output ]

= fminsearch(@(x) ZCllhOU(x,P,lambda,tau,Delta),x0,options);

Result (j,:) = exp(x);
Exitflag(j,:) = exitflag;
FvaL(j,:) = fval;

end -

save res20U1000p

D.2.2 CIR Model

% Compute the prices from simulated state variables
% By using affine model introduced for CIR model

function P = PriceCIR(r,kappa,theta,sigma,lambda,tau)

% Equations 3.3.6 - page 35
gam = sqrt ((kappatlambda)* (kappatlambda)+2*sigmaxsigma);

B = (2x(exp(gam*tau)-1)) ...
/ ((gam+kappatlambda) * (exp(gam*tau)-1)+2%gam) ;
A = log(((2*gam*exp ((gamtkappatlambda)*tau/2))/. ..

((gamtkappatlambda) *x (exp(gamxtau)-1)
+2%gam) )~ (2*¥kappaxtheta/ (sigma*sigma)));
% Equation 3.3.5 - page 34
P = exp(A-Bx*r);

end

% Assuming that one can’t observe state variables in reality,
% We use affine model to predict unobserved state variables
% When start points are kappa, theta, sigma.

function rhat = FindRCIR(P,kappa,theta,sigma,lambda,tau)

% Recalculate affine model elements with start point
gam = sqrt((kappatlambda)* (kappatlambda)+2*sigmaxsigma);
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B = (2*(exp(gam*tau)-1))
/ ((gam+kappa+lambda) * (exp (gam*tau) -1) +2%gam) ;
A = log(((2*gamrexp ((gam+kappa+lambda)*tau/2))/. ..

((gamt+kappa+lambda) *. . .
(exp(gam*tau)-1)+2xgam) ) ~ (2*¥kappa*theta/(sigma*sigma)));
%» Equation 3.4.8 to find state variables from prices
rhat = (A-log(P))/B;

end

% Log-likelihood function for prices using CIR model
% Equation 3.4.9 - Page 36

function y = ZC1lhCIR(x,P,lambda,tau,Delta)

% Starting points of optimization

% Using -exp(In(initial values))

% to avoid negative estimated values
kappa = exp(x(1));

theta = exp(x(2));

sigma = exp(x(3));

n = max(size(P));

i

% Estimating non-observable state

hvariables by using observable prices

rh = FindRCIR(P,kappa,theta,sigma,lambda,tau);

% Constructing Log-Likelihood Function

%» Using non-central chi-square distribution

L= sigmax*sigma/(4 * kappa)*(1-exp(-kappa*Delta));

% Degrees of freedom

v = 4xkappaxtheta /(sigma*sigma);

% Non-centrality parameter

nc = 4xkappa*rh(1l:n-1)/((sigma*sigma)* (exp(kappa*Delta)-1));
% log-likelihood function of estimated state variables
y = sum(log(ncx2pdf (xh(2:n)/L,v,nc)/L));

% log-likelihood function of prices

B = (1-exp(-kappaxtau))/kappa;

y = y-((n-1)*log(abs(B)));

% To find Maximum log-likelihood we minimize

% the negative of log-likelihood

y =Y

end

% MLE estimation via zero-coupon prices

load price2CIR
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for j=1:N
P = Price(j,1:n);
% Using natural logarithm of starting points
% to avoid negative estimated values
x0 = log([ kappa theta sigma ]); % starting points

% Call the optimization routine

options = optimset(’TolFun’,le-15,’TolX’,1e-15, _
'MaxIter~’, 1000, ’MaxFunEvals’,1000) ;

% The minimization of negative log-likelihood function

% can be achieved by using fminsearch

[ x, fval, exitflag, output ]

= fminsearch(@(x)ZCl1hCIR(x,P,lambda,tau,Delta),x0,options);

Result(j,:) = exp(x);

Exitflag(j,:) = exitflag;

Fval(j,:) = fval; '

clear out fval ans x P exitflag

end

save res2CIR-1000p

D.3 Code for Chapter IV

D.3.1 Vasicek Model

% Calculating zero-coupon yield from observed price
% of zero-coupon bond, in time t.

function z = GenZOU(Price,t,m)
% m is number of time to maturities
% Calculating the vector of zero-coupon yields
% in time t for m term to maturities

z = - log(repmat(Price, m , 1))./t;
end
% Kalman Filter Implementation
% log-likelihood function of Vasicek Model
function 11lh = KF11hOU(x, z, t, lambda, Delta)

% State space representation to be
% forecasted by Kalman filter



hz(t) = A+ H*y() + v(t) --> Observed Variables

% v = normrnd(O,R)

hy(t) =C+ F * y(t-1) + epsilon --> Unobserved Variables
% epsilon ~ normrnd(0,Q)

% Starting points of optimization

% Using exp(in(initial values))

% to avoid negative estimated values
kappa = exp(x(1));

theta = exp(x(2));

sigma = exp(x(3));

I

% Input Parameters - state space

n = max(size(z)); % number of time points

N = min(size(t)); % number of zero coupons

%y measurement system error

R = (normrnd(0,0.001"2,N,N))."2.*eye(N);

% Constructing Measurement System

affinegam = kappaxkappa*(theta-(sigma*lambda/kappa)). ..

- -(sigmaxsigma)/2;

affineB = (1.-exp(-kappa.*t))./kappa;

affineA = (affinegam.*(affineB-t)/(kappaxkappa))...
- (sigma*sigma*xaffineB.*affineB/(4*kappa));

A = -affineA./t ; % coefficient in Eguation 4.2.7

H=affineB./t; % coefficient in Equation 4.2.7

% Constructing Transition System

C=thetax* (1-exp(-kappa*Delta)); %coefficient in Equation 4.2.6

F=exp(-kappa*Delta); %coefficient in Equation 4.2.6
%variance of state space process
Q=sigma*sigmax*(1-exp(-2*kappa*Delta))/(2xkappa) ;

%step 1: Intialize state 'space variable

% by using unconditional mean and variance of transition system

Ey(:,1) = theta;
Vary(:,:,1) = 1/2xsigma*sigma/kappa;
1lh = 0;

for i=2:n
% step 2: Forecasting the measurement equation
Ez = A(:,1)+H(:,1)*Ey(:,i-1);
Varz = H(:,i)*Vary(:,:,1-1)*H(;,1i)’+R;
% step 3: Updating the inference about the state vector
% Observing the zero-coupon yield at time t_i
eta = z(:,1)-Ez; % measurement system prediction error
K = Vary(i-1)*H(:,1)’*inv(Varz); % Kalman gain
% Updating state space variable at time t_{i-1}
% considering the observed z
Ey(:,i) = Ey(:,i-1)+K*eta;
Vary(:,:,1) = (1-K#H(:,i))*Vary(:,:,i-1);
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% step 4: Forecasting the state vector

Ey(:,i) = C+F*Ey(:,1);

Vary(:,:,1) = Vary(:,:,i-1)-FxVary(:,:,1)*F’+Q;

% Calculating the concept used in :

% constructing log-likelihood function

11h = 1lh+log(det(Varz))+eta’*inv(Varz) xeta;
end -

hstep 5: Constructing the likelihood function
11h = -n*N*log(2*pi)/2 - 1lh;

% We minimize the negative of log-likelihood
11h = -11h;

end

% MLE estimation using Kalman Filtering

clear all
load price20U.mat

n = 100; % number of time points

tau = [0.07 0.25 0.5 1]; % term to maturities - 4 zero coupon rates
m = max(size(tau));

lambda = 1; % Risk Parameter

% Calculating T-t
t(:,1) = tau’;
for i=2:n
t(:,1i) = t(:,i-1) + Delta;
end

% MLE for N=1000 iteration
for i=1:N

% Observing the zero-coupon yields
z = GenZ0U(Price(i,1:n), t, m);

% Using natural logarithm of starting points
% to avoid negative estimated values
x0 = log([ kappa theta sigma ]);

% Call the optimization routine
options = optimset(’TolFun’,le-15,°TolX’,le-15,
"MaxIter’,1000, ’MaxFunEvals’,1000);

% The minimization of negative log-likelihood function
% can be achieved by using fminsearch



[ x, fval, exitflag, output ] :
= fminsearch(@(x)KF11h0U(x,z,t,lambda,Delta),x0,options);

Result(i,:) = exp(x);
Exitflag(i) = exitflag;

end

save Result20U-1000

D.3.2 CIR Model

% Calculating zero-coupon yield from observed price
% of zero-coupon bond, in time t.

function z = GenZCIR(Price,t,m)

% m is number of time to maturities

% Calculating the vector of zero-coupon yields
% in time t for m term to maturities

z = - log(repmat(Price, m , 1))./t;

end

% Kalman Filter Implementation
% log-likelihood function of CIR model

function 11h = KF11h/CIR(x, z, t, lambda, Delta)

% State space representation to be forecasted by kalman filter
%hoz(t) = A+ Hx* y) + vi(t) --> (Observed Variables

% v = normrnd{0,R)

% y(t) = C+F # y(t-1) + epsilon --> Unobserved Variables

% epsilon ~ normrnd(0,Q)

% Starting points of optimization
% Using exp(ln(initial values))
% to avoid negative estimated values

kappa = exp(x(1));
‘theta = exp(x(2));
sigma = exp(x(3));

% Input Parameters - state space

n = max(size(z)); % number of time points
N = min(size(t)); % number of zero coupons
% measurement system error

R = (normrnd(0,0.001°2,N,N))."2.xeye(N);
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% Constructing Measurement System
affinegam = sqrt((kappat+lambda)*(kappa+lambda)+2*sigma*sigma) ;
affineB = (2*(exp(affinegam.*t)-1))...
./ ((affinegam+kappa+lambda)
.*(exp(affinegam.*t)-1)+2*xaffinegam) ;
affineA = log(((2*affinegam*. ..
exp((affinegam+kappa+lambda) .*t./2))./...
((affinegam+kappa+lambda) . *(exp(affinegam.*t)-1)+ ...
2xaffinegam)) .~ (2*kappa*theta/(sigmaxsigma)));
A = -affineA./t ; % coefficient in Equation 4.2.7
H=affineB./t; % coefficient Equation 4.2.7
% Constructing Transition System
C=theta*(l-exp(-kappa*Delta)); %coefficient in Equation 4.2.6
F=exp(-kappa*Delta); %coefficient in Equation 4.2.6

%step 1: Initialize state space variable
% by using unconditional mean and variance of transition system
Ey(:,1) = theta;
Vary(:,:,1) = 1/2xsigma*sigma*theta/kappa;
1lh = O;
y = zeros(l,n);
epsilon = zeros(1,n);
Q = zéros(1l,n);
Q1) = Vary(:,:,1); )
epsilon(1) = normrnd(0,Q(1),1,1);
y(1) = theta + epsilon(1);
for i=2:n
%variance of state space process
Q(i)=theta*sigmaxsigma* (1-exp(-kappa*Delta))...
*(1-exp(-kappa*Delta))/(2xkappa)
+ sigma*sigma/kappa* (exp(-kappa*Delta). ..
-exp(-2*kappa*Delta) ) *y(i-1);
epsilon(i) = normrnd(0,Q(i),1,1);
y(i) = C + Fxy(i-1) + epsilon(i);
end

for i=2:n
% step 2: Forecasting the measurement equation
Ez = A(:,1)+H(: ,i)*Ey(:,i-1); -
Varz = H(:,1)*Vary(:,:,i-1)*H(:,1) >+R;
% step 3: Updating the inference about the state vector
% Observing the zero-coupon yield at time t_i
eta = z(:,i)-Ez;
K = Vary(i-1*H(:,1) ’*inv(Varz); % Kalman gain
% Updating state space variable at time t_{i-1}
% considering the observed z
Ey(:,1i) = Ey(:,i-1)+K*eta;
Vary(:,:,1) = (1-KxB(C:,i))*Vary(:,:,i-1);
% step 4: Forecasting the state vector




Ey(:,i) = C+FxEy(:,1i);
Vary(:,:,1) = Vary(:,:,i-1)-FxVary(:,:,1)*F’+Q(i);
% Calculating the concept used in
% constructing log-likelihood function
11h = 1lh+log(det(Varz))+eta’*inv(Varz)*eta;
end

%step 5: Constructing the likelihood function
11h = -n*N*log(2%pi)/2 - 1llh;

% To find Maximum log-likelihood we minimize
% the negative of log-likelihood

11h = -11h;

end

% MLE estimation using Kalman Filtering

clear all
load price2CIR.mat

n = 100; % number of time points

tau = [0.07 0.25 0.5 1]; % term to maturities - 4 zero coupon rates
m = max(size(tau));

lambda = 1; % Risk Parameter

% Calculating T-t
t(:,1) = tau’;
for i=2:n
t(:,i) = t(:,i-1) + Delta;
end

% MLE for N=1000 iterations
for i=1:4

% Observing the zero-coupon yields
z = GenZCIR(Price(i,1:n), t,m);

% Using natural logarith of starting points
% to avoid negative estimated values
x0 = log([ kappa theta sigma ]);

% Call the optimization routine
options = optimset(’TolFun’,1e—15,’TolX’,1e—15,
’MaxIter?’,1000, ’MaxFunEvals’,1000);

% The minimization of negative log-likelihood function
% can be achieved by using fminsearch
[ x, fval, exitflag, output ]
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= fminsearch(@(X)KFlthIR(X,z,t,lambdélDelta),xO,options);

Result(i,:) = exp(x);
Exitflag(i) = exitflag;

end

save Result2CIR-1000
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