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RÉSUMÉ
 

L'étude de la formation intra-annuelle de bois, du développement des pousses annuelles 
et des feuilles pourrait fournir des informations quant à la dynamique de la croissance des 
arbres au cours de la saison de croissance. La formation intra-annuelle de bois et le 
développement des pousses annuelles et des feuiJ1es sont des processus complexes contrôlés à 
la fois par des facteurs physiologiques et environnementaux. 

Les objectifs de cette étude étaient (i) d'étudier le patron annuel et la dynamique de 
formation du bois de même que le développement des pousses annuelles et des feuilles chez 
trois espèces majeures de la forêt boréale (i.e., Pinus ban/m'ana Lamb., Papu/us tremu/aides 
Michx., et Betu/a papyrifera Marsh.) au cours de la saison de croissance 2007 dans le Nord­
Ouest du Québec, Canada et (ii) d'identifier les relations entre d'une part la formation intra­
annuelle de bois, le développement des pousses annuelles et des feuilles et d'autre part les 
facteurs climatiques; on s'intéressera en même temps aux facteurs météorologiques limitant 
leur croissance durant la saison de croissance. 

Des micro-carottes de bois ont été prélevées une fois par semaine au niveau des tiges de 
ces trois espèces pendant la saison de croissance 2007. Des coupes transversales ont ensuite 
été effectuées au niveau des micro-carottes puis colorées avec du violet de crésyl et de la 
safranine afin d'identifier les stades de formations des cellules du bois et le nombre de 
cellules produit. La phénologie (débourrement du bourgeon), l'élongation des pousses 
annuelles et l'accroissement des feuilles/aiguilles ont aussi été mesurés trois fois par semaine. 
La production hebdomadaire de cellules, l'élongation des pousses annuelles et 
l'accroissement des feuilles ont été ajustés grâce à la fonction de Gompel1z et les indices de 
croissance hebdomadaires ont été calculés afin d'éliminer des changements de croissance 
d'origine endogène. Une analyse de corrélation simple a été utilisée pour déterminer les 
facteurs météorologiques majeurs qui influencent la production des cellules du xylème, de 
l'élongation des pousses annuelles et de l'accroissement des feuilles durant la saison de 
croIssance. 

Il ressort des résultats obtenus que les dates de début d'élongation des pousses annuelles 
et d'accroissement des feuilles sont plus précoces que la date reprise de croissance de la tige 
chez B. papyrifera. Contrairement à ce qui a été observé chez B. papyrifera, les dates de 
début d'élongation des pousses annuelles et de croissance des feuilles ont été plus tardivcs 
que la date de reprise de croissance de la tige chez P. banksiana et P. tremu/aides. L'arrêt de 
la formation de nouveau xylème intervient aux alentours de la mi-août pour les trois espèces. 
La fin de la maturation des cellules a été noté le 15 septembre chez P. banksiana et P. 
tremu/aides et le 6 septembre chez B. papyrifera. Concernant les trois espèces, la durée de 
formation du bois au niveau de la tige a été plus longue chez P banksiana et plus courte chez 
B. papyrifera. Durant la période de production des cellules, la corrélation entre d'une part les 
températures du sol et de l'air et d'autre part la production des cellules du xylème a été 
positive chez P. banksiana et négative chez P. tremu/aides et B. papyrifera. La corrélation 
entre les précipitations et la production des cellules du xylème a été positive chez P. 
tremu/aides et B. papyrifera, toutefois aucune corrélation n'a été notée chez P. banksiana. De 
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plus, il a été noté chez les trois espèces une corrélation positive entre la température de l'air et 
l'élongation des pousses annuelles. Toutefois chez les trois espèces, aucune corrélation n'a 
été notée entre la croissance des feuilles et les variables météorologiques. 

Cette étude a montré que la formation intra-annuelle du bois, le développement des 
pousses annuelles et des feuilles de même que la phénologie est non seulement déterminés 
par l'espèce, mais de plus les facteurs limitants clés sont différents. Ces résultats relatifs aux 
patrons de croissance temporels des différents organes des arbres (tige, pousse annuelle et 
feuille) pourraient être utiles dans la compréhension des relations entre la croissance des 
arbres et les changements climatiques. 

Mots-clés: la formation inh'a-annuelle du bois, la phénologie des arbres, la élongation de la 
tige, la dynamique de la croissance. 



ABSTRACT 

Studies on the intra-annual stem wood formation, shoot and foliage development could 
provide precise information on tree growth dynamics during a growing season. Intra-annual 
wood formation and development of shoot and foliage are complex processes, which are 
control!ed by both physiological and environmental factors. 

The goals of this study were (i) to explore the annual pattern and dynamics of stem 
wood formation and the development of shoot and foliage in three major boreal species (i.e., 
Pinus banksiana Lamb., Populus trernuloides Michx. and Betula papyrifera Marsh.) during 
the 2007 growing season in northwestern Quebec, Canada., and (ii) to identify the 
relationships between intra-annual wood formation, shoot and foliage development and 
weather factors, as weil as to determine the major mctcorological factors limiting their 
growth during the growing season. 

Wood micro-cores were taken weekly from the stems of these three species during the 
2007 growing season. Cross-sections of micro-cores were sectioned and stained with cresyl 
fast violet and safranin to identify the stages of wood cel! formation and to count the total 
number of cel!s produced. Tree phenology (buds burst), shoot elongation, and leaves/needles 
enlargement were also recorded three times pel' week. Weekly cumulative cell production, 
shoot elongation, and foliage enlargement were fitted with the Gompertz function, and 
weekly growth index were caiculated to detrend the endogenous origin which effects tree 
growth. Simple correlation analysis was used to explore the major meteorological factors 
inf1uencing xylem cell production, shoot elongation, and foliage enlargement during the 
growmg season. 

The results showed that the onset date of shoot and foliage development for B. 
papyrifera was earlier than the onset date of stem growth. Unlike B. papyrifera, the onset 
date of shoot and foliage development of P. banksiana and P. trernuloides was later than their 
onset date of stem development. The cessation date of new xylem cel! division of the three 
species was in mid August. The completion of cell maturation was observed on September 
13th for P. banksiana and P. trernuloides, and on September 6th for B. papyrifera. Among 
the three species, the duration of stem wood formation of P. banksiana was the longest, 
whereas that of B. papyrifera was the shortest. During the cell production period, air and soil 
temperatures were positively correlated with the xylem cell production of P. banksiana, and 
negatively correlated with that of P. trernuloides and B. papyrifera. Precipitation was 
positively correlated with the xylem cell production of P. trernuloides and B. papyrifera, 
whereas no correlation was found for P. banksiana. Air temperature was positively correlated 
with shoot elongation of these three species. No significant correlation was found between 
leaf enlargement of the three species and the meteorological variables. 

This study showed that intra-annual wood formation, shoot and foliage development, 
and tree phenology are species-specific, and thus, their major limiting factors are different. 
These findings on the temporal growth patterns of tree different organs (stem, shoot, and 
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foliage) may be use fuI for understanding the reJationships between tree growth and climate 
changes. 

Key words: intra-annuaJ wood formation, tree phenoJogy, extension growth, growth 
dynamics. 



GENERAL INTRODUCTION 

The global average surface temperature increased about 0.6 oc during the 20th century 

and is projected to rise 1.8--4.0 oC during the 21st century (lPCC, 2007). ln Canada, annual 

mean temperatures are increasing nationally; a linear trend of 1.3 oC is evident from 1948 to 

2008 (Environment Canada, 2008). Over this period, the trend has been to warmer autumns, 

winters and springs (Environment Canada, 2008). 

Climate warming has resulted in an earlier spring and later autunm, thus extending the 

growing season length and changing tree phenology since tree phenology is very sensitive to 

environmental factors such as growing degree days and temperature (Fritts, 1976; 

Schweingruber, 1996). For example, Menzel and Fabian (1999) reported that spring events, 

such as leaf unfolding, had advanced by 6 days and autunm events, such as leaf colouring, 

were delayed by 4.8 days, as weil as an increase of 10.8 days detected in the mean annual 

growing season in Europe since the early 1960s. Earlier budburst, leafing, and flowering in 

several species were also observed from long phenological time series (Chmielewski and 

Rbtzer, 2001). Climate change results in changes in tree and forest growth, and willlikely to 

drive the migration of tree species, leading to shifts in the geographic distribution of forest 

types and new combinatibns of species within forests. In the long run, warmer temperature 

and increased or decreased precipitation are expected to change forest location, composition, 

and productivity. ln North America, many tree species may shift northward or to higher 

elevations (IPCC, 2007). Therefore it is important to understand tree growth and the effect of 

climate change on tree growth. 

A traditional way to study tree growth and its reactions to environmental factors is the 

tree-ring method (Fritts, 1976; Schweingruber, 1996). That is based on radial wood 

production at the yearly time scale, i.e., inter-annual ring growth, to study the influence of 

environmental factors on growth. lnter-annual ring growth has been extensively studied since 

the 1900s (Douglass, 1914; 1917; 1920). These studies showed that variations in inter-annual 

radial growth of trees in temperate and boreal forests could weil reflect variations in climatic 
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factors (temperature, precipitation, and drought or moisture index) at monthly, seasonal, 

annual or decadal scales (e.g., Douglass, 1920; Fritts, 1976; Cook et al, 1991; Archambault 

and Bergeron, 1992; Schweingruber, 1996; Tardif and Bergeron, 1993; Briffa et al., 1998; 

Berninger et al., 2004). However, tree growth information at a finer time scale such as daily, 

pentad, weekly, or monthly is limited. AIso, it is not clear how these short term growth rates 

connect actually to annual growths. A recently developed intra-annual tree growth study can 

provide such detailed information on cambium dynamics and intra-annual xylem formation at 

those finer time scales. 

Processes of intra-annual wood formation 

Intra-annual wood formation in trees is initiated by cell division in the vascular cambium, 

and followed by differentiation of cambial derivations (Kozlowski and Winget, 1964; 

Schweingruber, 1996; Samuels et al., 2005; Marion et al., 2007). Differentiation of cambial 

derivations (xylem formation) was further defined to involve four major steps: (1) cell 

division and expansion, (2) production of secondary cell walls, (3) cell wall lignifications, 

and (4) prograrnrned cell death (Plomion et al., 2001; Samuels et al., 2005). 

Factors influencing the intra-annual wood formation 

The dynamics of seasonal tree growth is influenced by both internai and external 

factors. Internai factors include genetics, age and the hormonal regulation of the tree. 

External factors include physical-geographical, soil, and weather factors (Fritts, 1976; 

Schweingruber, 1996). The internai factors determine the physiological condition of the tree, 

and regulate the biological growth curve (Fritts 1976; Schweingruber, 1996; Yaganov et al., 

2006). The external factors provide physical conditions for the growth and development of 

trees, and essentially influence the size of ceUs, thickness of the cell wall, and finally the 

density of tree rings (Yaganov et al., 2006). The seasonal periodicity or rhythm of biological 

processes in a tree is determined by regular environmental fluctuations associated with the 
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annual cycle. The onset of xylem formation is regulated by photoperiod, temperature, water 

availability (as external factors) (Hanninen, 1995; Leinonen et al., 1997), and internaI factors 

such as auxin production (Wang et al., 1997). 

Internai factors 

The genetic constitution of tree is one of the major internai factors influencing the 

dynamics of seasonal growth in trees. The phenology, the timing of bud opening, and the 

initiation of meristem activities in shoots, stems and roots between different species is 

species-specific (Ladefoged, 1952). Differences between species are found not only in the 

timing of the initiation and terrnination of cell division in meristems, but also in the seasonal 

dynamics of growth. Ladefoged (1952) divided tree species into three groups on the basis of 

qualitative analysis of growth-rate curves: (1) with a growth rate maximum in the first third 

of the season, (2) with a more symmetrical growth curve, (3) with a uniform growth rate 

during the growing season. The distribution through the season of the rate of growth is related 

to the characteristics of the species. 

The cambial age is also a major internai factor connected with the genotype and 

influencing the seasonal dynamics of growth processes in trees. The wood cells made by 

young cambium have smaller radial sizes, a smaller cell wall thickness, and a lower wood 

density, as weil as more earlywood and less latewood (Telewski and Lynch, 1991). Young 

cambium is characterized by high activity, resulting in the production of more new wood 

cells and wider annual rings than those produced by older cambium. 

External factors 

Physical-geographical factors: among these factors, the most essential factors are regional 

climatology and topography. Local topography has a strong influence on the thermal regime 

(Fritts, 1976), so that eastern and southern slopes receive markedly more solar energy than 

western and northern slopes. This may result in very different seasonal courses of growth in 

shoots and stems of nearby trees of the same species. 
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Soil factors: the major soil factors influencing tree growth include temperature, water 

regime of the soil, composition (mechanical, chemical properties, and texture), and its content 

of minerai elements. ln the boreal forest, the availability of soil water is a prerequisite for the 

recovery of photosynthetic capacity in spring and early summer (Bergh and Linder, 1999). 

Soil temperature is a major factor stimulating the onset of tree growth in the spring (Bergh 

and Linder, 1999). Soil minerai elements provide the necessary nutrients for tree to combine 

with sugars to produce proteins and other complex compounds which enable trees to grow 

and to function (Kramer and Kozlowski, 1979). 

Weather factors: the temperature and precipitation. These factors are most important 

features for determining the dates of onset and end of cell division in meristems, the growth 

rate, and the overall seasonal course of the growth curve (Fritts, 1976; Fritts et al., 1991). 

Temperature may be considered as the most important single factor in the initiation of 

meristem growth activity (Larson, 1994). At the same time, low soil humidity can cause an 

earlier end of growth in a season (Fritts, 1956; 1976), or at least an earlier onset of latewood 

formation. A combination of temperature and humidity changes during a period of a growing 

season may cause acceleration or deceleration of growth processes (Vaganov et al., 1985; 

Schweingruber, 1996) and largely determines the overall result: the size and internaI structure 

of the annual ring formed in that year. Boreal forests are generally believed to be mostly 

temperature and nutrient limited while drought limitations are considered to be minor. 

Coordination between tree different organs 

According to Kramer and Kozlowski (1979), a better understanding of what constitutes 

optimum allocation or partitioning of growth among the various organs of tree is one of the 

most important tasks of tree physiology. Information concerning the partition of growth 

among the leaves, branches, stems, and roots is necessary to an understanding of how various 

environmental and cultural practices affect growth. 



5 

Bud phenology of boreal trees is characterized by two major events. In the auturnn, 

growth ceases and buds enter dormancy, astate that prevents growth even under 

environmental conditions favorable to growth (Vegis, 1964; Wareing, 1969). In the spring, 

bud break occurs once dom1ancy has been overcome, and favorable growth conditions allow 

ontogenetic development to proceed. Several studies have shown that, after release from 

dormancy, the rate of ontogenetic development in boreal trees depends largely on air 

temperature (e.g., Sarvas, 1972). The amount of chilling required to break bud dormancy 

varies with the species, genotype, location of the buds on the tree, and possibly the weather of 

the preceding summer (Kramer and Kozlowski, 1979). 

Cambial reactivation is assumed to be promoted by auxin, produced in the younger shoots 

and exported basipetally along the stem to induce the production of xylem (Larson, 1969) and 

regulate xylem development (Uggla et al., 1998). Following the basipetal movement of the 

auxin, periclinal divisions in the cambium should begin close to buds, spread downwards 

toward branches and stem (Larson, 1969; Lachaud, 1989). Cambial activity and subsequent 

initiation of xylem cell production and development at the beginning of the growing season is 

sensitive to various environmental factors, primarily temperature, water availability, and/or 

photoperiod (Miikinen et al., 2003). Generally, cell division initiation occurred while soil and 

air temperatures were increasing from mid May into June. Antonova and Stasova (1997) 

found a positive correlation between initial xylem cell production and air temperature. Spring 

reactivation of cambium activity and subsequence initiation of xylem cell production is 

typically preceded by the new growth of the buds and their release of auxin throughout the 

stem (Vaganov et al., 2006). 

The leaves of a tree play a paramount role in photosynthesis, the process by which 

practically ail energy enters our biosphere. The timing of leaf unfolding and leaf fall of 

deciduous tree species are most important phenological events, and directly affect the period 

in which light can be intercepted for growth. Cel1 division predominates during the early 

stages of development of leaf primordial. Subsequently, a leaf achieves its final shape and 

size by both œil division and expansion, with the latter predominating. Ultimate leaf size 

depends on the number of cel1s in the primordial, the rate and duration of cell division, and 
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sizes of mature ceUs, but ceU number appears to be most important (KIamer and Kozlowski, 

1979). Leaf emergence has been classified into three types: the flush type, the intermediate 

type and the succeeding type (Kikuzawa, 1983). The flush type shows aU leaves emerging 

simultaneously after budbreak with a short duration of shoot elongation. The succeeding type 

shows the leaves emerge one by one successively after budbreak with a long duration of 

shoot elongation. In the intermediate type, sorne leaves emerge simultaneously after 

budbreak. Afterwards, the remaining leaves emerge one by one successively with shoot 

elongation. 

Stems of trees support the crown, conduct water and minerais upward from the roots, and 

conduct foods and hormones from points where they are manufactured to those where they 

are used in growth or stored for future use. 

The size and structure of the xylem cells, as weil as the rate of celi division, may also be 

controlled by these growth regulators, which are produced by the actively growing stem apex 

or by the leaves. The width and structure of the annual ring in trees are intimately related to 

the amount and duration of shoot growth (Kozlowski, 1971). The seasonal growth of shoot 

and foliage, through the hormonal control of cambial activity, is of central importance to the 

character and distribution of the seasonal growth rate of stem wood (Zimmermann, 1964; 

Savidge, 1996). 

The coordination of the seasonal dynamics of growth of the various parts of woody plants 

results in aliometric relations between them during the growth and development of the woody 

plant and the stand (Vaganov et al., 2006). The phenology of the boreal forest is mainly 

driven by temperature, which affects the timing of the start of the growing season and thereby 

its duration, and the level of frost hardiness and thereby the reduction of foliage area and 

photosynthetic capacity by severe frost events. To assess the possible impact of climate 

change on growth of boreal trees, it is important to understand the climate factors driving the 

growth of the different tree parts. 
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Study questions and objectives 

Studies conducted on intra-annual wood formation have been reported in both conifer and 

broadleaf species in sorne regions in the past and were shown to be able to provide detailed 

information on tree radial growth at finer time scales (e.g., Deslauriers et al., 2003a; Schmitt 

et al., 2004; Deslauriers and Morin, 2005; Dufour and Morin, 2007; Ko Heinrichs et al., 

2007; Rossi et al., 2007; Gruber et aL, 2008). But previous intra-annual studies pay more 

attention to intra-annual stem growth, and less to intra-annual growth of other organs such as 

shoot and foliage development. To improve our ability to simulate tree growth and to achieve 

the goal of sustainable forest management, it is impOitant to precisely characterize the intra­

annual growth of different tree organs. 

In the boreal forest of Canada, jack pine (Pinus banksiana Lamb.), trembling aspen 

(Papulus lremulaides Michx.) and white birch (Belula papyrifera Marsh.) are widely 

distributed boreal tree species. Jack pine is an ever-green, shade-intolerant coniferous species 

and usually grows on the sandy sail. Trembling aspen is a shade-intolerant and top-canopy 

deciduous species in the boreal forest. Compared with trembling aspen, white birch is a more 

shade-tolerant deciduous species. Ali three species are typicaJ post-fire species in the boreal 

ecosystem. They are considered to be the most important species with respect to their 

abundance and forest yield and management (Bergeron and Harvey, 1997; Harvey et al., 

2002). Hence understanding of how meteorological factors influence the intra-annual growth 

of their different palts and of their coordination is particularly important for the prediction of 

future forest productivity. In addition, to be able to observe the development of tree 

phenology during the growing season, therefore a young stand involving these three major 

boreal species at Lac Dances of northwestern Quebec was selected as our study site for this 

Master's project. 

Our study objectives are 1) to explore the annual pattern and dynamics of stem wood 

formation and the development of shoot and foliage of three boreal tree species: Jack pine, 

trembling aspen and white birch, which will allow us to describe the developmental processes 

of xylem formation, shoot extension growth, and foliage enlargement, and to investigate the 
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coordination between tree different organs in northwestern Quebec, Canada; 2) to identify the 

relationships between intra-annual wood fonnation, shoot extension growth, and foliage 

enlargement of these tree species and weather factors, as well as to determine the major 

meteorological factors influencing their growth during the 2007 growing season. 

The following Chapter 1 will be presented as a paper for a scientific journal. 



CHAPITRE 1 

VARIATIONS IN INTRA-ANNUAL WOOD FORMATION, AND 

DEVELOPMENT OF FOLIAGE AND SHOOT OF THREE MAJOR 

BOREAL TREE SPECIES 

Lihong Zhai l, Frank Berninger l
, Yves, Bergeron 1,2 

'Centre d'étude de la forêt (CEF), Département des sciences biologiques, Université du Québec 
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1.1 RÉSUMÉ 

La formation intra-annuelle du bois et le développement des pousses annuelles et des 
feuilles chez trois espèces majeures de la forêt boréale (i.e. Pinus banksiana, Populus 
tremuloides et Betula papyrifera), et leurs relations avec le climat ont été étudiées au cours de 
la saison de croissance 2007 dans le Nord-Ouest du Québec. Des micro-carottes de bois ont 
été prélevées une fois par semaine au niveau des tiges de ces trois espèces de mai à septembre 
2007. Des coupes transversales ont ensuite été effectuées au niveau des micro-carottes puis 
colorées avec du violet de crésyl et de la safranine afin d'identifier les stades de formations 
des cellules du bois et le nombre de cellules produit. La phénologie (débourrement du 
bourgeon), l'élongation des pousses annuelles et l'accroissement des feuilles/aiguilles ont 
aussi été mesurées trois fois par semaine. Il ressort des résultats obtenus que les dates de 
début d'élongation des pousses annuelles et d'accroissement des feuilles sont plus précoces 
que la date reprise de croissance de la tige chez B. papyrifera. Contrairement à ce qui a été 
observé chez B. papyrifera, les dates de début d'élongation des pousses annuelles et de 
croissance des feuilles ont été plus tardives que la date de reprise de croissance de la tige chez 
P. banksiana et P. tremuloides. L'arrêt de la formation de nouveau xylème intervient aux 
alentours de la mi-août pour les trois espèces. La fin de la maturation des cellules a été noté le 
15 septembre chez P. banksiana et P. tremuloides et le 6 septembre chez B. papyrifera. 
Concernant les trois espèces, la durée de formation du bois au niveau de la tige a été plus 
longue chez P. banksiana et plus courte chez B. papyrifera. Durant la période de production 
des cellules, la corrélation entre d'une part les températures du sol et de l'air et d'auh'e part la 
production des cellules du xylème a été positive chez P. banksiana et négative chez P. 
tremuloides et B. papyrifera. La corrélation entre les précipitations et la production des 
cellules du xylème a été positive chez P. tremuloides et B. papyrifera, toutefois aucune 
corrélation n'a été notée chez P. banksiana. De plus, il a été noté chez les trois espèces une 
corrélation positive entre la température de l'air et l'élongation des pousses annuelles. 
Toutefois chez les trois espèces, aucune corrélation n'a été notée entre la croissance des 
feuilles et les variables météorologiques. 

Mots-clés: la formation intra-annuelle du bois, la phénologie des arbres, la élongation de la 
tige, la dynamique de la croissance. 
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1.2 ABSTRACT
 

The intra-annua1 xylem formation and development of foliage and shoot of three 
dominant boreal species jack pine (Pinus banksiana Lamb.), trembling aspen (Populus 
tremuloides Michx.), and white birch (Betula papyrifera Marsh.), and their relationships to 
climate in northwestern Quebec were investigated during the 2007 growing season. Wood 
micro-cores were taken weekly from the stems of these three species from May to September. 
Cross-sections of micro-cores were sectioned and stained with cresyl fast violet and safranin 
to identify the stages of wood cell formation and count total number of cells produced. Tree 
phenology (buds burst) and the growth of shoots and foliage were also recorded three times 
pel' week. The results showed that the onset date of shoot and foliage development for B. 
papyrifera was earlier than the onset date of the stem growth. Unlike B. papyrifera, the onset 
date of shoot and foliage development of P. banksiana and P. tremuloides was later than the 
onset date of the stem development. The ending date of new xylem cell division of the three 
species was in mid August. The completion of cells maturation was observed on September 
l3th for P. banksiana and P. tremuloides, and on September 6th for B. papyrifera. Among 
three species, the duration of stem wood formation of P. banksiana was the longest, whereas 
that of B. papyrifera was the shortest. During the cell production period, air and soil 
temperatures were positively correlated with cell production of P. banksiana, and negatively 
correlated with that of P. tremuloides and B. papyrifera. Precipitation was positively 
correlated with cell production of P. tremuloides and B. papyrifera, whereas no correlation 
was found for P. banksiana. Air temperature was positively correlated with shoot elongation 
of these three species. No significant correlation was found between leaf enlargement of the 
three species and the meteorological variables. 

Key words: intra-annual wood formation, tree phenology, extension growth, growth 
dynamics. 
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1.3 INTRODUCTION
 

Climate controls the timing of tree growth by regulating the initiation and cessation, as 

weil as growth processes of tree different organs (i.e., foliage, shoot, stem, and root) during a 

growing season. Since the timing of spring growth phases such as bud-break, leafing, 

shooting, and flowering, is primarily determined by the accumulated temperatures above a 

threshold value (Beaubien and FreeJand, 2000), tree phenology may be advanced by warmer 

winter and spring temperatures during recent decades. Earlier bud burst, flowering, and leaf 

unfolding in several species have been observed from long phenological time series. For 

example, 8 days earlier leafing was observed in several European tree species (Betula 

pubescens Ehrh., Prunus avium L., Sorbus aucuparia L., and Ribes alpinum L.) from 1969 to 

1998 (Chmielewski and Rotzer, 2001). In Canada, Beaubien and Freeland (2000) collected 

data on the first flowering date of trembling aspen and found a 26-day shi ft to earlier 

bloorning from 1900 to 1997. They also found an 8-day advancement in first flowering date 

over the period 1936-1996 through analysis of the spring flowering index (mean of the first 

flowering dates of Populus tremuloides Michx., Amelanchier alnefolia Nutt., and Prunus 

virginiana L.). In addition, later leaf senescence and fal! was also observed (Menzel and 

Fabian, 1999). Khanduri et al. (2008) summarized deJayed autumn events reported in 

previous studies and found an average delay of lA days per decade in auturnn events. Earlier 

timing of spring phenology and later auturnn events demonstrates a longer duration of wood 

formation during a growing season. This longer duration might affect the intra-annual growth 

pattern in shoot, leaf, stem and roots, leading to a change in wood properties and tree 

productivity. Therefore it is very important to better understand intra-annual growth patterns 

in tree different organs and to explore how meteorological factors influence their 

development during a growing season. 

During recent years, there has been an increasing number of studies focusing on intra­

annual xylem formation (e.g., Tardif et al., 2001b; Deslauriers et al., 2003a; 2003b; Rossi et 

al., 2006b; 2008; Ko Heinrichs et al., 2007; Thibeault-Martel et al., 2008). Of the previous 

studies, sorne studies have analyzed cambial activity and xylem formation, and described the 

dynamics of xylem development and cel! differentiation over time (Deslauriers et al., 2003a). 
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Sorne studies investigated the endogenous (Nobuchi et al., 1995; Rossi et al., 2008) or 

exogenous factors controlling intra-annual xylem formation (Savidge, 1996; Deslauriers et 

al., 2003b; 2008; Rossi et al., 2006b; 2007). A few studies investigated cambial activity and 

intra-annual xylem formation in roots (Hitz et al., 2008; Thibeault-Martel et al., 2008). In 

addition, shoot elongation was also documented (Junttila and Heide, 1981; Kanninen, 1985; 

Ozawa et al., 2000; Chuine et al., 2001). However, ail of the above studies essentially 

focused on the stem or shoot, or root radial growth, but few studies attempt to investigate the 

intra-annual growth in stems in combination with the intra-annual growth in other parts of the 

tree, such as in leaves and shoots. 

In this study, an investigation of intra-annual xylem formation and foliage and shoot 

development of one conifer species jack pine and two broadleaf species trembling as pen and 

white birch was conducted in northwestern Quebec during the 2007 growing season. The 

purposes of this study were i) to explore the annual pattern and dynamics of stem wood 

formation and the development of shoot and foliage in these three major boreal tree species 

during 2007 growing season; ii) to identify the relationships between intra-annual wood 

formations, shoot and foliage development and weather factors, as weil as to determine the 

major meteorological factors limiting their growth during the growing season. 

1.4 MATERIALS AND METHûDS 

1.4.1 Study site and tree selection 

The study area is a part of the Lake Duparquet Teaching and Research Forest of 

northwestern Quebec, Canada (Harvey, 1999). This region is dominated by continental cold, 

dry air from the arctic in winter and by warm, moist air from the south in the summer 

(Sheridan, 2002). Climate observations from the LaSarre meteorological station (about 42 km 

northward) showed that the mean annual temperature from 1971-2008 was around 0.7 oC, 

and the average annual total precipitation was around 889.8 mm, with 27.7% in the form of 

snow (Environment Canada, 2008). In this climate transition zone, there exists a vegetation 
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transition zone from broadleaf and coniferous mixed forests in the south to coniferous 

dominated boreal forests in the north. The common tree species in this vegetation transition 

zone include trembling aspen (Populus tremuloides Michx.), white birch (Betula papyrifera 

Marsh.), balsam popular (Populus balsamifera L.), balsam fir (Abies balsamea (L.) Mil!.), 

black spruce (Picea mariana (Mil!.) BSP), white spruce (Picea glauca (Moench) Voss.), 

eastern white cedar (Thuja occidentalis L.), and Jack pine (Pin us banksiana Lamb.) 

(Bergeron et al., 2004). 

In order to easily monitor tree phenology (bud burst, leaf/needle, and shoot 

development), our study site was selected in a young jack pine plantation forest at Lake 

Dances (48°3I'25"N, 79°25'13"W). In our study site, jack pine trees were planted around 

1992 and the clear cut was in 1979 (Claude-Michel Bouchard personal comm.). To avoid the 

impacts of both natural and human disturbances on tree growth, we chose 10 healthy trees for 

each species as our study trees to investigate tree phenology (bud burst) , the cambium 

dynamics and intra-annual xylem formation, and the development of shoot and foliage during 

the 2007 growing season. 

1.4.2 Data collection 

Field sampling 

Micro cores: 

To monitor the cambial activity and xyJem formation of these three species during the 

2007 growing season, wood micro-cores (2.5 mm in diameter and 20-25mm in length) were 

taken weekly at 1 m above ground in a spiral up the stem of 10 trees per species using 

Trephor (Rossi et al., 2006a), starting from May 3rd to the end of September, 2007. In order 

to avoid any disturbance from injury wood (Forster et al., 2000), at least 20-30mm distance 

was maintained between adjacent sampling locations. Each micro-core was stored 

immediately in a microtube with 50% aqueous ethanol and stored at 5°C in order to avoid 

tissue deterioration. In total, 630 samples were taken during 21 weeks growing season of 

2007 for these three species. 
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Tree phenology and the development of shoot and foliage: 

Tree phenology (bud burst), shoot elongation and needle/leaf enlargement were recorded 

for the three species (10 trees per species) from May 3rd to September 27th at the site Lac 

Dances. 

For each jack pine tree, two main branches were chosen from the middle canopy ta 

measure the length of new shoots growth three times per week; For each trembling aspen and 

white birch tree, five main branches were chosen from the middle canopy to measure the 

length of new branches and to count the number of the new leaves produced on these new 

branches three times per week. 

In order to measure the leaf area and leaf biomass of new leaves produced during the 

growing season and to avoid negative impacts of manual defoliation on the study trees, six 

reference trees were randomly chosen in the same plot three times per week. Leaves from one 

new shoot per tree were removed ta measure the needle/leaf area and needle/leaf biomass 

each time. 

In addition, DBR and tree height were measured for each studied tree. Increment cores 

were taken at DBR from each tree ta determine the exact age of the studied trees. Tree age, 

height and DBR are reported in Table 1. 

Table 1: Tree characteristics with standard deviations of sampled trees. 

Jack pine White birch Trembling aspen 
n=IO n=\O n=\O 

Mean DBR (cm) 10.18±1.58 6.82±1.94 8.31± 1.56 

Mean height (m) 6.59±1.01 7.54±1.84 7.46±0.89 

Mean age (year) 14±2 15±2 17±3 

Clïmate data 

The weather variables including daily maXImum, mInimUm, mean aIr and soil 

temperature, maximum and mInimum relative humidity, and precipitation in 2007 were 

obtained from the weather station at the Lake Duparquet Research Station, which is 2 km 



16 

from our study site. The detailed variations in meteorological factors in 2007 were shown in 

Appendix 1. 

1.4.3 Laboratory preparation 

Collected wood micro-cores were prepared for microscopy according to the following 

steps (Schweingruber, 1980; Deslauriers et al., 2003b): 1) the wood micro-cores were 

embedded in paraffin by means of dehydration with ethanol and D-Iimonene, and were 

immersed in liquid paraffin successively; 2) to facilitate cutting, wood and cel! lumens in 

both xylem and phloem were weI! penetrated by liquid paraffin and the microcores were then 

fixed on biocassettes (support) by means of paraffin blocks; 3) transverse sections of 12 flm 

were cut with a rotary microtome. In order to identify difference phases of xylem cell 

development (i.e. radial enlargement, cell wal! thickening and mature cel!) and count total 

cel! number, the sections were stained with cresyl fast violet (0.05%), and Safranin (1 %). 

When observing the sections under the light microscope, the cel!s during the cel! enlargement 

phase have pink cel! wal!s, the cel! walls of the cel! wal! thickening phase is violet, and the 

mature cell wall is complete in blue. The images of al! slices were taken with a digital camera 

under the microscope. Three radial files were selected randomly from each slice. The 

software Wincel!TM (Régent Instruments, lnc. 2007) was used to analyze the images and 

obtain a series of xylem formation parameters such as cel! number, cel! size, cel! wal! 

thickness, and intra-annual radial width. 

1.4.4 Standardization 

Due to eccentric growth, trees may produce different tree-ring widths at various places 

around the circumference of their trunks. The width of annual rings varied within the tree 

circumference and along the stem, among the different samples (Sclunitt et al., 2004). 

According to Rossi et al. (2003), the number of cells of the three previous years was counted 

on three radial files per sample and used to standardize the cel! number around the 

circumference of each stem. A ratio was obtained for each sample by dividing the mean cel! 
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number of the sample by the mean ceil number of ail samples per tree. The number of cells in 

each xylem formation phase (i.e. cell enlargement, cel! wall thickening, and mature cel!) was 

then multiplied by the ratio to standardize the data according to the sample's relative position 

on the stem (Deslauriers et al., 2003). According to the relative position of the sample, the 

standardized number of ceUs in eachj-sample and i-phase (nci)) was calculated as: 

nCij = nij (an)ai) 

with 
JI," 
)(.J, 
'-- J 

i=! 
al1l = -'-­

N 

Where ni) was the number of cel!s counted, aj the mean cel! number of the previous rings for 

eachj-sample, N the number ofj-samples and am the mean cel! number of the previous rings 

of al!j-samples. 

1.4.5 Statistical analysis 

1.4.5.1 Growth fitted by the Gompertz function 

The dates for the onset of xylem cell production were compared among three species 

using the nonparametric Kruskal-Wal!is one-way analysis of variances by ranks test (Sheskin, 

1997). The xylem cel! formation was modeled using a sigmoidal function, specifical!y the 

Gompertz function (Gompertz, 1825). Tree-ring increment pattern was determined by fitting 

the Gompertz function (Deslauriers et al., 2003; Rossi et al., 2006) on the data (weekly cell 

number, cell size) obtained by the micro-cores measurements. Al! analyses were conducted 

using the Sigma Plot statistical package (Sigma Plot Version 10, Systat Software lnc). The 

Gompertz function is described by Cheng and Gordon (2000) as fol!ows: 

(1) y = a exp (- e W·Kt)) 

in which, 

y: the cumulative sum of growth; 

t: the time computed in day of the year; 

a: the upper asymptote of the maximum growth where at tiY :;::: a; 
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~: the x-axis placement parameter; 

k: the rate of change parameter. 

Through fitting of the Gompertz function, the critical points and phases of intra-annual 

xylem development such as the onset date of cell formation, the timing of maximum cell 

numbers, the ending date of cell formation, the rate of cell production during different phases, 

etc. were determined. 

From the estimated constants, the weighted mean absolute rate of cell production (r) was 

calculated according to Richards (1959): 

(2) r = ak/(2(v+2)) 

Where the parameter v was set at 0.000 l, since the Gompertz function is a special case of 

the Richards function when v=O (Deslauriers et al., 2003): 

(3) r = ak/4 

1.4.5.2 Growth indices 

Wood cell formation may be controlled by both endogenous and exogenous factors. In 

order to detect which exogenous influences are operating during wood formation, the sigmoid 

trend of endogenous origin has to be removed, as it is common practice in dendrochronology 

(Fritts, 1976). Detrending processes involve transforming the value of ring width into a 

dimensionless index value through dividing the observed ring widths by the expected ring 

widths (Fritts, 1976) given by the spline function. The Gompertz function could weil fit the 

seasonal cell development curve. 

Ali data in Figure 1 (i) were converted to weekly increments of cell growth (Figure 1 (ii)) 

by taking the vertical difference between two subsequent points. 

(4) WRG= CNl - CN t_1 

WRG: Weekly Relative Growth
 

CN: Cumulative Number of cells
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Figure 1: Data measurement and transformation: (i) the dots represent the weekly cumulative 

cell production during the growth period; the so!id !ine represents the fitted Gompertz 

function, (ii) the dots are the weekly relative growth values (WRG) and the bell-shaped line 

represents the estimated WRG value derived from the Gompertz function, and (iii) time series 

of the weekly index (WI) as ratio between the measured and the estimated WRG. 

Here, the endogenous trend still exists but becomes bell shaped (the sol id line in the 

figure l (ii)). Then the endogenous trend is removed by dividing the measured weekly 

relative growth by the estimated weekly relative growth from the Gompertz function. 

(5) Weekly Index =WRGm/WRGg 

WRGm: Weekly Relative Growth by measurement
 

WRGg : Weekly Relative Growth estimated by the Gompertz function
 



20 

So the weekly growth index (Figure l (iii)) is fl'ee of any trend and the fluctuations of 

indices around the mean values of lare assumed to reflect the expected environmental signal. 

1.4.5.3 Climate dependence 

Based on the different phases identified, the relationships of these phases with 

meteorological factors on a weekly basis, including minimum, maximum, and mean air and 

soil temperature, precipitation, daily minimum and maximum VPD, and relative humidity 

(RH) were explored by correlation and regression analyses by statistical software. The 

limiting factors for different phases were determined. The relationships of intra-annual xylem 

formation ofthese three species with meteorological factors were also explol'ed by correlation 

and regression analysis. 

The growth of new shoots and foliage during the whole growing season was also fit by 

the Gompertz function to assess the processes of shoot extension growth and foliage 

expansion growth. The relationships between weekly shoot and foliage growth and 

meteorological factors were explored by correlation and regression analysis. 

Comparisons among species in timing of onset, duration and ending of xylogenesis, final 

number of ceIls produced, and the rate of cell production were performed using analysis of 

variance (ANOVA). 
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1.5 RESULTS 

1.5.1 Dynamics of intra-annual wood formation 

The number of cambial ce1ls and xylem cel!s of the three species in difference stages was 

presented throughout the 2007 growing season in Figure 2. Similar annual cambium 

dynamics were observed in the cambial zones of the three tree species (Figure 2). The 

dormant cambium consisted of six to eight ceIls when cell production did not occur from the 

end of August to the next beginning of May. ln May, the number of cel!s in the cambial zone 

had increased to 10-15, indicating the onset of cambial activity. The earliest increases in the 

number of cambium cells were observed in jack pine at the beginning of May, which was 2-3 

weeks earlier than trembling aspen and 3-4 weeks earlier than white birch. Cambium cells of 

jack pine, trembling aspen, and white birch reached their maximum on May 31, June 14, and 

June 21, respectively. Once annual cambium activity had finished, the number of cambium 

cells fel! to the minimum value which corresponded to the dormant condition of the cambium 

with 6-8 cambium cells. Termination of cambium activity of the three species occurred about 

mid August. 

The three speCles showed the same dynamics of xylem cell differentiation which is 

characterized by deJayed bell-shaped curves of enlarging and wall thickening ceUs, and an S­

shaped curve of mature cells. The onset of xylem cell enlargement of the three species, 

corresponding to the beginning of xylem differentiation, started 2-3 weeks later than the onset 

of cambium activity. The greatest rate of cell enlargement of the three species was observed 

in June. It took about a week for the xylem cells of al! three species to progress from the cell 

enlargement phase to the cell thickening phase. The jack pine ceU wall thickening phase to 

mature cell phase took two weeks, but trembling aspen and white birch took one week only. 

The first mature jack pine, trembling aspen and white birch xylem cells were detected on 

May 31, June 7 and June 14, respectively. 
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Figure 2: Number of cells in the cambial zone, radial enlargement, secondary cell wall 

thickening, and mature ceUs in jack pine, trembling aspen, and white birch during the 2007 

growing season. Dots represent the average ceUs and bars indicate the standard deviations 

among trees. 
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Weekly cumulative cell production was weil fit with the Gompertz function as shown by 

R2the values of 0.93, 0.94 and 0.92 for jack pine, trembling aspen and white birch, 

respectively (Figure 3). The parameters of the Gompertz function fit to the cell formation 

data of the three species are listed in Table 2. 
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Figure 3: Number of xylem cells over time and the Gompertz curve fit to cumulative œil 

production for the three species during the 2007 growing season. The dots represent the 

average cells, and the bars indicate standard deviations among trees. 

Table 2: Parameters of the Gompertz function fit to the cell formation data of the three 

species, Adj.R2 and the rate of the cell formation (r) of jack pine, white birch and trembling 

aspen in the 2007 growing season. 

a Adj. R2~ K 

Jack pine 125.8 6.45 0.0387 1.22 0.93 

Trembling aspen 166.2 8.39 0.0473 1.97 0.94 

White birch 150.2 8.92 0.0481 1.81 0.92 

The onset, duration and ending of cell differentiation were computed in days of the year 

for each tree of the three species. Averages were reported in Figure 4, where the bars 

correspond to the mean value and the error bars to the standard deviation among trees. The 

onset of cell formation of jack pine, trembling aspen and white birch, corresponding to the 

first xylem cell observed in the œil enlargement phase, occurred on May 7, May 28, and June 

5, respectively. It was significantly different among the three species (ANOYA, F=8.30, 
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P<O.O 1). The earliest start of ce11 formation was observed in jack pine. The latest start of ce Il 

formation occurred in white birch. Both jack pine and trembling aspen terminated cell 

formation (i.e. the lignifications of the xylem cell is completed) on September 13, which was 

one week later than whi te birch. The duration of cel! differentiation was between 98 and 126 

days and was significantly different among the three species (ANOVA, F=9.68, P<O.OI). 

Jack pine had the longest growing season, and white birch had the shortest growing season 

among three species. The total number of cell production for jack pine, trembling aspen and 

white birch was 125, 166 and 150, respectively, and no significant difference was detected 

between the two broadleaf species (ANOVA, F= 1.15, P>O.OS). The average rate of cell 

production for jack pine, white birch and trembling aspen was 1.22, 1.81, and 1.97 cells pel' 

day, respectively, and also no significant difference was detected between the two broadleaf 

species (ANOVA, F=0.24, P>O.OS). 

280 200 
<Il .!!l 

<Il~.~ '2 160 ID 180L­

e eu e eu 260 !!!. 
ID ID ID ID QiCl>­
~ ~ 150 ..Q ID 

u 160
 
">--5 ~ -5 240 -0
 
x ....a 0 140 00 ..0 

140 
~ >- E~ iU' 220 

:::J[!J 
Qi 

.~el .g 130 .- "lJ 120 
e~ "lJ~ Ze 

Wo 120- .... 200 100 
Pine Aspen Birch Pine Aspen Birch Pine Aspen Birch 

2,2.!!l 140 e
<Il o
ID 

~ai 120 :::J

2 

Cl 
o~ 15 ;=- 1.8 
>'<Il 0.-0 
X iU' 100 = !!!. 1.6 
0:2- ~ID 
e .... ~ 1,4o o80
 
~ ~ 1,2
 
:::J 

Il::o 60--

Pine Aspen Birch Pine Aspen Birch
 

Figure 4: Onset, ending and overa11 duration of ce11 differentiation, number of cells 

producted and the rate of cell production for jack pine, trembling aspen, and white birch 

during the 2007 growing season. The bars show the standard deviation among trees. 
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1.5.2 Development of shoot and foliage and wood formation 

The three species showed clear differences in the onset, duration and cessation of shoot 

elongation, of leaf enlargement, and of stem cell division (Figure 5). 

ln the field, we considered the timing of budburst as the timing of the onset of shoot 

elongation and foliage enlargement of the three species. Within a species, the onset of shoot 

elongation and leave enlargement was different when compared to the onset of stem cell 

division (Figure 5A). The onset of shoot elongation and foliage enlargement was on May 20, 

May 22, and May 27 for jack pi ne, white birch and trembling aspen, respectively. However, 

the onset of xylem cell division was detected on May 7, June 5 and May 28 for jack pine, 

white birch and trembling aspen, respectively. As a consequence, the onset of stem cell 

division of jack pine and trembling aspen was, respectively, 13 days and 1 day earlier than 

that of shoot elongation and needlelleaf enlargement. However, the onset of stem cell 

division of white birch was 14 days later than that of shoot elongation and leaf enlargement. 

The shoot elongation and needle enlargement of jack pine finished on June 28 and August 

2, respectively. The end of shoot elongation and leaf enlargement was on June 21 and July 10 

for h-embling aspen, and on July 12 and July 30 for white birch, respectively. The three 

species showed the same order in the ending date of shoot elongation, leaf enlargement, and 

stem cell division, i_e., ending of shoot elongation earlier than that of foliage enlargement, 

and ending of foliage enlargement earlier than that of stem cell division. 

Between the two broadleaf species, the onset of shoot elongation and leaf enlargement of 

trembling aspen were 5 days later than that of white birch. But the ending date of shoot 

elongation and leaf enlargement of trembling aspen was 21 days earlier than that of white 

birch. This indicates that the duration of shoot elongation and leaf enlargement of h-embling 

aspen is shorter than that of white birch (Figure 5B). The three species also showed that the 

duration of shoot elongation is shorter than the duration of stem cell division and leaf 

enlargement. 
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Figure 5: Onset date, ending date (A) and duration (B) of the principal phenological events 

(i. e. stem xylem cell division, shoot elongation, foliage enlargement) of the three species 

during the 2007 growing season. The closed cycle represents the onset date; the open cycle 

represents the termination date. The bars correspond to the mean value of duration and the 

error bars correspond ta the standard deviatian among trees. 

In Figure 6, the results showed similar growth pattern but delayed growth dynamics in 

shoot elongation, needlelleaf enlargement and stem cell production during the growing period 

in our studied species. Jack pine had a delayed S-shaped curvc for stem and needle 

developments compared with an S-shaped curve for shoot development. White birch 

demonstrated a delayed S-shaped curve of stem growth in comparison with the S-shaped 

curves of shoot and leaf growth. Trembling aspen was in tum found to have delayed S-shaped 

curves for shoot, leaf, and stem development. 
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Figure 6: Growth pattern of wood ceU formation (open circles), shoot elongation (closed 

circles), and leaf enlargement (triangle) and its Gompertz curve of the three species during 

the 2007 growing season. 
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1.5.3 Relationships between meteorological factors and intra-annual xylem 

formation, shoot and foliage development 

The immediate response of these three species to ambient weather conditions is c1ear 

from the result of the climate-growth analysis (Figures 7-9). Correlation analysis results 

showed that minimum air temperatures and minimum soil temperatures were significantly 

positively correlated with jack pine ceU production (Figure 7). Other meteorological variables 

such as mean and maximum air temperatures, precipitation, RH, or VPD were not statistically 

significant correlated with jack pine wood ceU formation of. Maximum air temperature was 

negatively correlated with ceU production of trembling aspen. Precipitation was positively 

correlated with both trembling aspen and white birch cell production. No significant 

correlations were found between wood formation oftrembling aspen and white birch and soil 

temperature, RH, and VPD. 
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Figure 7: Simple correlation coefficients (Pearson, p<O.OS) between the rate of intra-annual 

wood formation and meteorologicaJ factors during the 2007 growing season, Tair (air 

temperature), Tsoil (soil temperature), P (precipitation), RH (relative humidity), and VPD 

(vapor pressure deficit). Significant results (p<O,OS) are marked by open cycles. 

In Figure 8, the results show that mean, minimUm, and maximum 3lr temperatures 

significantly correlate with shoot elongation of jack pine during the growth period, Maximum 

air temperature was positively correlated with shoot elongation of trembling aspen and white 

birch. No significant correlation was found between shoot elongation of the three species and 

other meteorological variables. 
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Figure 8: Simple correlation coefficients (Pearson, p<O.OS) between the rate of shoot 

extension growth and meteorological factors during the 2007 growing season. Tair (air 

temperature), Tsoil (soil temperature), P (precipitation), RH (relative humidity), and VPD 

(vapor pressure deficit). Significant results (p<O.OS) are marked by open cycles. 

Our results show no significant correlation between leaf enlargement of the three species 

and meteorological variables (Figure 9). But most of the meteorological variables were 

positively correlated with leaf enlargement except for the negative correlation observed 

between leaf enlargement and maximum and minimum VPD. 
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Figure 9: Simple correlation coefficients (Pearson, p<O.OS) between the rate of foliage 

enlargement and meteorological factors during the 2007 growing season. Tail (air 

temperature), Tsoil (soil temperature), P (precipitation), RH (relative humidity), and VPD 

(vapor pressure deficit). Significant results (p<O.OS) are marked by open cycles, 

1.6 DISCUSSION 

Trees are vulnerable to climate extremes such as drought and frost during a growing 

season. Climate warming might result in increased frequency and amplitude of climate 
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extremes such as drought and frost during the growing season (IPCC, 2007; Huntington, 

2004). In our study, we found that different climate factors affect the intra-annual growth of 

the tree and of different tree parts. Difference in timing of intra-annual growth for each 

species might cause different growth periods among species. Thus trees that are affected by 

different c1imate factors and undergone different growth periods might be subjected to a 

different period ofvulnerability to drought and frost under climate warming. 

1.6.1 Intra-annual growth pattern and dynamics 

Past studies on the physiology of cambial activity suggested that, in conditions where 

temperature strongly limits the radial growth of trees, the temperature must be higher than a 

given threshold and the thawing of the upper soil layer after snow melt must have begun so 

that radial growth can begin (Vaganov et al., 1999; Kirdyanov et al., 2003). In this study, the 

onset of the first xylem cel! formation for jack pine was observed approximately on May 7th, 

when minimum air temperature during consecutive days from May 6th-1 Oth was above SoC 

(S-days mean temperature was S.3°C), and warmer than before. This temperature is 

consistent with the threshold temperature triggering tree growth in spring reported in previous 

studies. Schmitt et al. (2004) documented that at the tree line growth occurred when the daily 

temperature was above soc. Rossi et al. (2007) reported that xylogenesis was active when the 

mean daily air temperature was S.6°C-S.SoC. However, minimum air temperature for the 

onset of new xylem cell production of trembling aspen and white birch was approximately 

S.2°C-10A°C. We do not know if these diffcrcnt temperature thresholds are real or 

coincidental and the result of the c1imate pattern during the year in question. The different 

temperature triggering the onset of the xylem formation between jack pine and the two 

broadleaf species indicates that the onset of the xylem formation of broadleaf trees might bc 

control!ed by a different interaction between air temperatures, and external factors (e.g. 

photoperiod, water availability (Hanninen, 1995; Leinonen et al., 1997)) and internai factors 

(e.g. auxin production (Wang et al., 1997)). 

We found that the onset date of shoot and foliage development for trembling aspen was 

later than the onset date of the stem development, indicating that the carbohydrate reserved in 
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the previous growth year played an important role in producing new xylem cells. This 

supports the weil known fact that conditions of the previous year are of critical importance 

for radial growth of the CUITent year (Hogg et al., 2005; Leonelli et aL, 2008), since a good 

portion of the xylem growth precedes leaf extension. The onset date of shoot and foliage 

development for white birch was earlier than the onset date of stem growth, suggesting that 

the formation of early xylem cells rnight be triggered by photosynthesis in new leaves formed 

during early growing season. This supports the findings of sorne tree-ring studies that found 

that the climate conditions in the CUITent growth year are important for radial growth of white 

birch (Tardif et aL, 2001 b; Levanic and Eggertsson, 2008). Unlike many hardwoods, foliage 

development of most pine is a slow process. The onset date of the shoots and needles for jack 

pine was later than the date of onset of the stem, suggesting that the carbohydrate reserves in 

the previous year and photocarbohydrates produced by old needles might together stimulate 

new xylern cells formation during the early growing season. Our results show that the 

coordination of different organs in a given tree species is species-specific. In our study, the 

data of jack pine agreed with the study ofVaganov et al. (1999) who reported that the timing 

of the thaw in spring is critical for cambial initiation of boreal forests. Compared with the 

ever-green boreal conifers, broadleaf trees need a higher temperature for bud burst (about 

6°C, Grace et aL, 2002) after the soil thawing in spring because photosynthesis cannot OCCLU' 

while the new leaves are not produced. 

Among the three species, the duration of leaf enlargement for trembling aspen was shol'ter 

than the other two species. Since trembling aspen's ail leaves emerge simultaneously after 

budbl'eak with a short duration of shoot elongation, if late spl'ing fl'ost occurs after leaf 

emel'gence, subsequent tree growth during the growing season wi Il be suffel'ed seriously. The 

IPCC (2007) reported that there will be more fl'equent climate events such as spring frost, 

thus affecting trembling aspen growth. In contrast, the leaves of white birch emerge one by 

one successively after budbreak with a long duration of shoot elongation. Therefore 

subsequent white birch growth will be less suffered by late spring frosts. Trembling aspen is a 

shade intolerant species, and the short duration of its shoot elongation and leaf enlargement 

could help trees to occupy the upper canopy space and thus avoid the shade of other tree 

species. However, white birch is a more shade tolerant species than trembling aspen and the 
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long duration of its shoot and leaf development could allow the trees to invade new habitats 

by expanding photosynthetic organs as widely as possible using the CUITent year's products or 

by using newly-formed leaves (Kikuzawa, 1982). Therefore, white birch could often coexist 

with trembling aspen in the boreal forest (Bergeron, 2000). 

We found that the shoot elongation was complete earlier than foliage enlargement and 

stem cel! production. In the forest, due to species competition, trees attempt to reach 

maximum shoot length and tree height during a short time period to occupy a favourable 

spatial condition for photosynthesis. 

Intra-annual variations in the rate of cell division and differentiation determine variations 

among the cel1 queues, resulting in a typical annual pattern consisting of three bell-shaped 

curves (cambial, cell enlargement, and cell wal! thickening ceUs) and a growing S-shaped 

curve (mature cel!s). The bel!-shaped patterns are connected with the number of cel!s passing 

through each differentiation phase, whereas the S-shaped curves are associated with the 

graduai accumulation of mature cells in the tree ring. Similar bell-shaped curves of cambial 

ceUs and enlarging cells suggest that an increase in the rate of formation of new xylem cel!s 

was al ways accompanied by an increase in the number of ceUs in the cambial zone (Vaganov 

et al., 2006). 

A shorter duration of cel! changing from the wall thickening phase to the mature phase 

for trembling aspen and white birch than that of jack pine suggests that broadleaf species had 

faster maturation rate than jack pine. This might be caused by higher photosynthesis of 

broadleaf species than that of jack pine. Broadleaf species have a larger leaf area than jack 

pine, thus producing greater carbohydrates in a short time period than jack pine. Thus their 

cells become mature fast el' than jack pine. Great annual total cell production might be due to 

high cel! production rate. Among three studied species, the highest cell production rate of 

trembling aspen could result in the greatest total cel! number, whereas the lowest cell 

production rate of jack pine might lead to the smallest cell number. 
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The ending date of new cell production of jack pine, trembling aspen, and white birch 

was on August 9th, 16th, and 16th, respectively. Our results are consistent with Vaganov et 

al. (2006), who reported that at high latitude new cell production of tree species usually 

ceased in about mid-August. Thus the duration of new xylem cel! division is mainly 

determined by the onset date of new cell division (Vaganov et al., 2006). The modelled date 

of the first cell division depends on the estimated dates of the end of constant snow cover and 

threshold values of air temperature and effective temperature sum (Vaganov et al., 1999). 

Jarvis and Linder (2000) suggested that the timing of the thaw in spring is critical because 

neither cambial cell division nor uptake of nutrients and carbon dioxide can occur while the 

soil is frozen. Thus both spring temperature and the date of snow melt (relative with winter 

precipitation) are critical for not only the onset of new cell production, but also the duration 

of the cell production period. A warmer and earlier spring combined with less winter 

precipitation could result in a longer duration of cell production. In addition, minimum air 

temperature was about II.2°C when the new cell production of three species ceased at our 

study site, indicating that the new cell production ceased at a much higher temperature than it 

necessary for its initiation in the spring. 

When new xylem cell production ceases, the annual tree ring width almost reached final 

width because cell wall thickening occurs at the inside of the cell wall but does not affect cell 

size. Therefore in the current growing season, annual ring width is primarily influenced by 

the meteorological factors during the new cell production period, i.e., from mid-May to mid­

August. Dendroclimatic studies of birch in nOlih Iceland found that June and July 

temperature positively influence tree ring width (Levanic and Eggertsson, 2008). CeH wall 

thickness is related to wood density. Cell wall thickening is operated throughout the whole 

cell formation period. This indicates that wood density might be controlled by climate factors 

(mostly summer temperatures suggested in the past study (Wang et al., 2002» from the onset 

of cel! formation to the ending of cel! lignification (May-September). 

1.6.2 Climate dependence 

Intra-annual wood formation is controlled by both endogenous (age, size, gene) and 

exogenous factors (climate and disturbances). However, previous studies investigated the 
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effect of meteorological factors on intra-annual wood formation without removal of 

endogenous origin trend (Gruber et al., 2008). Thus their results are questionable. In this 

study, we found that the weekly cel1 index calculated after removal of the largely 

endogenously determined growth pattern performed better than other studies. Therefore 

removal of endogenous origin trend in the weekly cell growth is needed when exploring the 

effects of climate variables on the intra-annual xylem formation. 

During the period of xyJem cell production of jack pine from May 7th to August 9th, a 

positive correlation between the weekly cell increment index and air and soil minimum 

temperatures indicates that temperature was a dominant factor for positively controlling cell 

production of jack pine. Past studies found that the tracheids mainly divide and enJarge 

during the warmest period of the growing season (Wang et al., 2002) because temperature has 

a strong effect on assimilate and phytohormone production in needles (Lachaud, 1989). 

Gruber et al. (2008) also found that air and soil temperatures were shown to positively control 

xylem development of stone pine (Pinus cembra L.) in western Austria. Other studies also 

documented that temperature (Antonova and Stasova, 1993), especially night temperature 

(Richardson and Dinwoodie, 1959), is a critical factor for influencing radial cell enlargement, 

which is consistent with previous dendroclimatological studies of these three boreal tree 

species (Tardif et al., 200 la). The positive effect of temperature on radial cell growth was 

also supported by many tree-ring studies that found positive effect on radial growth of jack 

pine during the growing season (Hofgaard et al., 1999; Tardif et al., 200Ia). Warmer soil 

temperature could favour root activity and thus transport more water and nutrients for cell 

growth. 

Shoot elongation of jack pine was positively limited by temperature during the growth 

period. Kanninen (1985) documented that night temperature positively affected the shoot 

elongation rate more than day temperature through analysis of shoot elongation in Pinus 

sylvestris during the period of maximum elongation rate. Our study showed that the needle 

area was positively correlated with temperature, but did not reach a significant level at 

p<0.05. Junttila and Heide (1981) reported that the needle length of Pinus sylvestris was 

significantly positively associated with the mean temperature of the growing season, 
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especially June-August temperature ln Northem Fennoscandia. The non-significant 

correlation might result from insufficient weekly data or artificial errors during needle 

collection from the reference trees over the growing season. 

Cell production of trembling aspen was found to be positively correlated with 

precipitation, and negatively correlated with maximum air temperature from May 28th to 

August 16th. This indicates that trembling aspen was water-limited during cell production 

period in the sununer. Schweingruber (1996) observed that there was a negative correlation 

between xylem formation of trembling aspen and air temperature. He further interpreted that 

the negative effect of high temperature could be due to temperature-caused drought stress in 

trees, which in tum reduces photosynthesis production. White birch was also shown to be 

water-limited during cell production period from June 4th to August l6th. Our results 

together indicate that cell production of two broadleaf species were mainly water-limited 

during the cell production period in the growing season. Sufficient precipitation may be able 

to meet their water demands during leaf elongation in hot summer. Tardif et al. (2001a) also 

revealed that white birch was positively limited by June precipitation. Broadleaf species have 

been extensively reported to be water-limited during the growing season in many studies 

(Tardif et al., 2001a; 2001b; 2006; Hogg et al., 200S). 

Shoot elongation of trembling aspen and white birch was shown to be positively 

associated with air temperature. Leaf area growth of two broadleaf species was found to have 

non significant (P<O.OS) positive correlation with temperature. We attributed this 

insignificant cOiTelation to insufficient leaf area data collected during the sununer because the 

duration of leaf elongation (from the timing of the budburst to the timing of the maximum 

leaf size) of trembling aspen and white birch was short, around 43 days and 69 days, 

respectively. Since leaf measurements are destructive and we cannot remeasure the leaf area 

of the same leaf the scatter in the leaf area data is larger and we, therefore, failed to establish 

a significant correlation with climate. 
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1.7 CONCLUSIONS
 

In this study, we investigated the intra-annual growth of stem, shoot, and foliage of three 

major boreal tree species jack pine, trembling aspen, and white birch in northwestern Quebec 

during the 2007 growing season. Our results showed that soil and air temperature during the 

intensive growth period from mid-May to mid-August was a primary factor for positively 

affecting stem, shoot and needle growth of jack pine. The atmospheric and soil moisture 

conditions during the growth period were important for stem growth of trembling aspen and 

white birch, whereas June-August temperatures were critical for the shoot elongation and 

perhaps also for the foliage enlargement. The coordination among stem, foliage and shoot for 

a given species was species-specific. For example: the budburst was earlier in white birch 

than in trembling aspen, but the leaves are growing more rapidly and the maximum leaf area 

was attained earlier in trembling aspen than in white birch. The different timings of these 

phenological events show that trees will be sensitive to climate events during different time 

periods and will have different periods of climatic vulnerability. This study provides us some 

clues for the allocation of carbohydrates among different tree organs during the growth 

period. An extended growing season as a consequence of climate warming might lead to 

earlier budburst, shoot elongation, leaf enlargement) and stem cel! division. But they also 

might be suffered from some spring frosts) thus resulting in growth interruptions or 

reductions, which will have important impacts on forest productivity. Hence future more 

intra-annual growth of tree organs during subsequent several growing seasons will be needed 

to improve our understanding of tree growth and to better simulate and predict tree growth in 

the boreal forest 
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GENERAL CONCLUSION
 

Dnder climatic warmmg, changes in tree growth and wood properties may result in 

changes in forest productivity. To accurately assess forest growth and productivity for 

achieving the goal of sustainable forest management, we need to improve our understanding 

of tree growth in a detailed calendar. Investigation of intra-annual tree growth during a 

growing season can provide detailed information on how meteorological factors affect the 

growth of different organs and how these different organs coordinate with each other, which 

could improve our understanding of tree growth. In this study, we 1) investigated the intra­

annual shoot, foliage, and stem growth for three major boreal tree species jack pine, 

trembling aspen and white birch in northwestern Quebec during the 2007 growing season, 

and how different organs coordinate with each other during the growing period; 2) explored 

how meteorological factors influence their growth, and determined the major limiting 

meteorological factors. 

We found that the onset of xyiem cell production for jack pme was triggered by 

temperature since May 7th, and during new cell production period from May 7th to August 

9th air and soil minimum temperatures were dominant factors for positively controlling the 

xylem cell production of jack pine. Shoot growth of jack pine was also positively stimulated 

by sununer temperature. During the growth period from May 28th to August 16th, the xylem 

cell production of trembling aspen was affected positively by precipitation and negatively by 

air temperature. During the cell production period from June 4th-August 16th, the xylem cell 

production of white birch was also positively regulated by precipitation. Therefore, we 

conclude that two broadleaf species were mainly limited by moisturc conditions during cell 

production from June to August. Shoot growth of trembling aspen and white birch was 

positively correlated with air temperature. In addition, our study showed that the weekly cell 

increment indices calculated after the removal of endogenous origin in intra-annual ceU 

growth were a good index for exploring the relationships between the intra-annual xylem cell 

production and meteorological factors. 
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Among the three species, the onset of xylem cell formation of jack pinc is earliest, and 

that of white birch is latest. The terminate date of xylem cell formation of white birch is 

earlier than that of jack pine and trembling aspen. Therefore, the duration of xylem cell 

formation of white birch is shortest among three species, and jack pine has a longest duration 

of xylem cell production. 

We also found that the onset date of xylem cell formation and the development of shoot 

and foliage as weil as the end date of cell, foliage and shoot development were different 

within intra- and inter- species. Therefore, the carbohydrates reserved in the previous growth 

year played an important role in producing new xylem cells for trembling aspen. The climate 

conditions in the current growth year are critical for producing new xylem cells for white 

birch. The carbohydrates reserves in the previous year and photocarbohydrates produced by 

old needles of jack pine in the current growing season might together stimulate new cells of 

the xylem during the early growing season. 

Our study demonstrates that investigation of the intra-annual tree growth (shoot, leaf, and 

stem) at the weekly scale could be a valid tool to identify major climatic factors for 

influencing shoot, leaf and stem growth during a growing season. Future intra-annual tree 

growth studies should focus on not only stem growth, but also foliage and shoot growth 

during a growing season. This could give a clear picture about how tree organs react to 

meteorological factors and how they coordinate with each other under a warming climate. 

In addition, our study could allow us to predict the potential effect of future climate 

warming on growth of these three boreal species in northwestern Quebec. In Quebec, Huime 

and Shread (1999) reported that mean annual temperature in 2100 wou Id be about 3.SoC 

higher than today, as much as 5°C greater in winter, and accompanied by increased 

precipitation of lOto 25%. With the increased temperature and precipitation predicted and 

the prolonged growing season expected in northwestern Quebec in the near future, jack pine 

might take advantage of warming spring temperatures to increase stem cell production, shoot 

extension growth and needle area enlargement during a warmer growing season. Trembling 

aspen and white birch might benefit from increased temperature and precipitation to enhance 
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their stem cell production, leaf enlargement (possible increased leaf numbers and area) and 

shoot extension during a longer growing season. These potential changes in xylem cell 

production of stem and development of shoot and foliage will be likely to lead to potential 

change in tree growth and forest productivity in the long term. Consequently it will be 

possible to result in shift in species range and forest structure, and composition. The results 

obtained from these intra-annual tree growth studies could improve our ability to simulate 

tree growth and forest growth, and will favour the sustainable forest management in the 

future. Therefore future more studies on intra-annual growth of tree different parts will be 

necessary to improve our understanding of tree growth and our ability to predict the tree 

growth and forest productivity in the boreal biome. 
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APPENDICES
 

Appendix 1. Variations in meteorological variables during the 2007 growing season. 

(-): Mean air temperature in the site; C): Mean air temperature at the weather station; 

(-.-): Soil temperature; Solid bars: Precipitation. 
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Appendix 2. Number of cells in different phases of wood cell formation for Jack pine, 

trembling aspen, and white birch during the 2007 growing season. Latewood: III. 

(Radial enlargement phase D, cell wall lignifications phase D, and mature cell phase D). 
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Appendix 3. Time series of the weekly index (WI) of stem wood cell formation and shoot 

extension growth of the three species. A: Trembling aspen; B: White birch; C: Jack pine. 1: 

wood cell formation; 2: shoot extension growth. 
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Appendix 4. F-statistic and resulting probability of the analysis of variance (ANGY A, 

P=û.05) of parameters of Gompertz function of the three species. Xo is the date of the greatest 

cell production. Species 1: jack pine, Species 2: trembling aspen, Species 3: white birch. 
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Appendix 5. Onset, ending and duration of xylem cell division, shoot elongation and foliage 

enlargement of the three species in 2007 (n=10 trees/species). 

Observation Jack pine Trembling aspen White birch 

Onset ofxylem cell division 127±3.6 147 ±2.8 154±6.5 

End of new xylem cell division 221±4.2 228±5.1 228±7.0 

Duration of xylem cell division 94 ±7.1 80 ±8.5 74±8.2 

Onset of shoot elongation 140±3.1 149±2.7 142±2.0 

End of shoot elongation 179±5.2 172±3.6 193±7.3 

Duration of shoot elongation 39±6.4 24±4.8 51±8.2 

Onset of leave enlargement 140±3.1 149±2.7 142±2.0 

End of leave enlargement 218±4.7 191±4.0 211±6.7 

Duration of leave enlargement 78±5.6 43±4.8 69±7.1 


