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RESUMÉ 

Cette thèse établit, et étudie, un lien entre l'homologie de Khovanov et la topolo
gie des revêtements ramifiés doubles. Nous y introduisons certaines propriétés de sta
bilité en homologie de Khovanov, dont nous dérivons par la suite des obstructions à 
l'existence de certaines chirurgies exceptionnelles sur les nœuds admettant une involu
tion appropriée. Ce comportement, analogue à celui de l'homologie de Heegaard-Floer 
sous chirurgie, renforce ainsi le lien existant (dû à Ozsvath et Szab6) entre homologie 
de Khovanov, et homologie d'Heegaard-Floer des revêtements ramifiés doubles. Dans 
l'optique de poursuivre et d'exploiter plus avant cette relation, les méthodes développées 
dans ce travail sont appliquées à l'étude des L-espaces, et à déterminer, en premier lieu, 
si l'homologie de Khovanov fournit un invariant des revêtements ramifiés doubles, et en 
deuxième lieu, si l'homologie de Khovanov permet de détecter le nœud trivial. 

Mots clés: homologie de Khovanov, homologie de Heegaard-Floer, chirurgies de Dehn, 
involutions, variétés de dimension trois, revêtements ramifiés doubles 



ABSTRACT 

This thesis establishes and investigates a relationship between Khovanov homol
ogy and the topology of two-fold branched covers. Stability properties for Khovanov 
homology are introduced, and as a result we obtain obstructions to certain exceptional 
surgeries on knots admitting an appropriate involution. This stable behaviour is analo
gous to the behaviour of Heegaard-Floer homology under surgery, strengthening the re
lationship (due to Ozsvath and Szab6) between Khovanov homology and the Heegaard
Floer homology of the two-fold'branched coyer. In the interest of pursuing and exploiting 
this relationship further, the methods developed in this work are applied to the study of 
L-spaces, as weil as to the questions of whether Khovanov homology yields an invariant 
of two-fold branched covers and whether Khovanov homology detects the trivial lmot. 

Keywords: Khovanov homology, Heegaard-Floer homology, Dehn surgery, involutions, 
3-manifolds, two-fold branched covers 



INTRODUCTION
 

Khovanov's introduction of a homology theory for links in the three-sphere (Khovanov, 

2000), followed by Bar-Natan's early work providing calculations of this invariant for 

knots with 11 crossings (Bar-Natan, 2002), immediately pointed to phenomenon de

manding explanation. While these calculations exhibited that Khovanov homology was 

strictly stronger than the Jones polynomial (Jones, 1985) - a quantity arising as graded 

Euler characteristic - a vast majority of these small knots had homology that could be 

determined from the Jones polynomial and the signature. In particular, many of the 

knots in question had homology supported in a single diagonal, and such knots became 

referred to as thin. 

It was subsequently conjectured that any non-split alternating link should be thin, and 

this was later proved in the seminal work of Lee (Lee, 2005). The machinery developed 

in the proof of this fact led to the definition of the Lee-Rasmussen spectral sequence, 

and ultimately Rasmussen's definition of the s invariant together with his celebrated 

combinatorial proof of the Milnor conjecture (Rasmussen, 2004a). It was immediately 

clear that Khovanov homology contained powerful geometric information, while being 

highly computable by virtue of its combinatorial definition. 

The question of homological width more generally, that is, the number of diagonals 

supporting the Khovanov homology of a given link, has received continued attention. 

In particular, Shumakovitch provided further computations and conjectures in his work 

(Shumakovitch, 2004b), while Turner showed that torus knots provide examples of arbi

trarily wide homology (Turner, 2008) (see also (Stosié, 2007)). Ozsvath and Manolescu 

extended Lee's result by exhibiting that quasi-alternating links (a class strictly larger 

that alternating) are thin (Manolescu and Ozsvath, 2007), and more recently, Lowrence 

has studied the width of dosures of 3-braids (Lowrance, 2009). 
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In the direction of applications, Ng showed that Khovanov homology yields bounds 

on the Thurston-Benequin number of a knot (Ng, 2005), while Plamenevskaya defined 

a transverse invariant from Khovanov homology (Plamenevskaya, 2006a), related to 

the contact invariant in Heegaa.rd-Floer homology (Plamenevskaya, 2006b) (see also 

(Baldwin and Plamanevskaya, 2008)). Both results point to interesting interaction with 

contact topology. 

However despite these applications Khovanov homology, like the Jones polynomial, still 

lacks a complete geometric understanding. Various programs and frameworks exist in 

pursuit of this important open problem. 

For example, Seidel and Smith have defined a homology theory for links from sym

plectic geometry, conjectured to be equal to a suitable grading-collapsed version of 

Khovanov homology (Seidel and Smith, 2006). Further, it has been observed that there 

is a coincidence between the homology of an 5U(2) representation space of the fun

damental group of the knot complement, and Khovanov homology (for certain simple 

knots). Two frameworks for studying this phenomenon have been proposed by Kron

heimer and Mrowka (Kronheimer and Mrowka, 2008) and Jacobsson and Rubinsztein 

(Jacobsson and Rubinsztein, 2008). In addition, work of Gukov et. al. proposes a con

jectural relationship between generalizations of Khovanov homology (due to Khovanov 

and Rozansky (Khovanov and Rozansky, 2008)), and BPS invariants related to string 

theory, actively studied via Gromov-Witten theory (see for example (Gukov et al., 

2007; Gukov et al., 2005)). 

With this in mind, further geometric applications of the theory should be pursued. 

Such a pursuit should shed light on the geometric underpinnings of Khovanov homol

ogy, while developing the theory's role in low-dimensional topology and exploiting the 

combinatorial nature of the theory. 

That further applications should exist follows from an important advance due to Ozvath 

and Szab6: Khovanov homology may be viewed as the E 2 term of a spectral sequence 

converging to the Heegaard-Floer homology of the two-fold branched coyer (Ozsvath and 
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Szab6, 2üü5c). Since the latter has seen many powerful applications in low-dimensional 

topology since its inception, it seems reasonable to hope that Khovanov homology 

viewed as an approximation of Heegaard-Floer homology in this setting - might hold 

further geometric information about two-fold branched covers. Indeed, it was an interest 

in better understanding the higher terms and differentials of this spectral sequence that 

led to many of the results in this thesis. 

Summary of principal results 

The primary results in this thesis may be broken into three parts. 

Homological width as a surgery obstruction. Lee's result, combined with work 

of Hodgson and Rubinstein (Hodgson and Rubinstein, 1985) imply that if ~(S3, L) is 

a lens space then L must be a thin link, where ~(S3, L) denotes the two-fold branched 

coyer of the three-sphere with branch set L (see Theorem 4.24). Following work of 

Montesinos (Montesinos, 1976), as well as work of Boileau and Otal (Boileau and Otal, 

1991), we show (see Theorem 4.25): 

Theorem. If ~ (S3, L) has finite fundamental group then L is supported in at most two 

diagonals. 

Thus, relaxing Lens spaces to manifolds with finite fundamental group, the homological 

width of the associated branch sets remains relatively tame. 

Given a strongly invertible knot in S3, Dehn surgery on K may be viewed as a branch 

coyer S;/q(K) ~ ~(S3, T(~)). The width of the branch set is well behaved, as a result of 

a stability lemma (see Lemma 5.1) established in Chapter 5. This in turn implies that 

the quantity 'Wmin (respectively wmax ), the minimum (respectively maximum) width 

attained by the branch sets T(n) corresponding to integer fillings is well defined. In fact 

these quantities typically give upper and lower bounds for the width of the link T(~) 

(see Theorem 6.5): 

Theorem. Let K be a strongly invertible knot in S3, 50 that S;/q(K) ~ ~(S3, T(~)). 
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Under mild genericity conditions) l Wmin > 2 implies that Dehn surgery on K never 

yields a manifold with finite fundamental group. Moreover, Wmin may be determined on 

a finite collection on integers. 

Note that Wmin > 1 may be applied as an obstruction to lens space surgeries in the same 

way (see Theorem 6.4). While the genericity assumptions we impose seem mild relative 

to the branch sets that arise in practice, we remark that in the broader context of the 

exceptional surgery problem, tools such as the cyclic surgery theorem (Culler et al., 

1987), as weil as extensions due to Boyer and Zhang, (Boyer and Zhang, 1996; Boyer and 

Zhang, 2001) may be used to restrict the cases that must be checked should non-generic 

phenomena be encountered. 

Khovanov homology and two-fold branched covers. By studying constructions of 

branch sets for Seifert fibered spaces, we answer a question of P. Ozsvath (see Corollary 

7.5): 

Theorem. The total rank of the reduced Khovanov homology is not an invariant of the 

two-fold branched cover. 

This is demonstrated by example: Brieskorn spheres arise as two-fold branched covers 

of S3, typically in two distinct ways. We determine these branch sets, and establish 

that the rank of the Khovanov homology distinguishes the pair of branch sets in some 

cases (see Example 7.4). 

As discussed by Ozsvath, this question arises naturally when considering the possibility 

of defining an extension of Khovanov's invariant for more general closed 3-manifolds, by 

specifying the E 2 term of a spectral sequence converging to any theory satisfying Floer's 

exact triangle (Ozsvath, 2008). Such a generalization should coincide with Khovanov 

homology when restricting to two-fold branched covers. 

lEasily verified, and seemingly always satisfied, these conditions are disussed at length (and in 
particular made precise), in Section 5.6 and thoughout Chapter 6. 
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Invariants for detecting the trivial knot. In light of the spectral sequence relating 

Khovanov homology and Heegaard-Floer homology, one might hope to gain information 

about the former by applying geometric properties of the latter. In particular, the 

following open problem is of considerable interest: 

Question. Does Khovanov homology detect the trivial knot? 

This does not follow immediately from the spectral sequence, due to the existence of 

manifolds with Heegaard-Floer homology of rank one. However, such manifolds are 

rare, and as a result the above question has an affirmative answer on a particularly 

large class of knots (see Theorem 8.2). As a result, by pre-composing with certain 

satellite constructions, it is possible to construct a combinatorial invariant that detects 

the trivial knot using Khovanov homology (see Corollary 8.4): 

Theorem. The Khovanov homology of the (2, 1) -cable of a knot deteets the trivial knot. 

This result is joint work with M. Hedden (Hedden and Watson, 2008), and is in fact a 

single example of a satellite construction with which to pre-compose to yield an invariant 

for detecting the trivial knot. 

Overview 

The first three chapters of this work comprise an idiosyncratic introduction to the areas 

in which this work is cast; the majority of the content can be found elsewhere, and we 

endeavour to provide thorough references as well as context. The next two chapters 

contain our primary technical results, on which the final three chapters containing the 

principal results of this work are based. 

Chapter 1 contains the requisite material on 3-manifold topology that will be assumed 

throughout. Everything contained therein is standard, and this chapter serves to estab

lish the conventions relied on in the rest of the work. 
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Chapter 2 reviews Khovanov's construction of a homology theory categorifying the 

Jones polynomial. We make use of a non-standard normalization natural to our setting, 

as weIl as introduce the (J-normalized Khovanov homology. This normalization seems to 

be interesting, and arises naturaIly from the work of Manolescu and Ozsvath. We also 

prove sorne extensions of this work, obtaining new versions of the skein exact sequence. 

Chapter 3 gives a brief outline of Heegaard-Floer homology. It is very difficult to 

give a complete treatment of this area of intense activity, and we choose to focus on 

aspects relating to L-spaces and two-fold branched covers. In particular, we give a 

characterization of Seifert fibered L-spaces which appears to be new. 

Chapter 4 develops the necessary material to prove the width bound for branch sets 

of manifolds with finite fundamental group. In so doing, we prove a surgery result 

for quasi-alternating knots that seems very natural. In particular, this strengthens the 

relationship between this class of links (as branch sets) and certain weIl known L-spaces. 

Chapter 5 proves a form of stability for the Khovanov homology of branch sets for 

integer surgeries on a strongly invertible knot that is analogous to the stable behaviour 

of Heegaard-Floer homology for large surgeries. This is an essential step in making 

width a computable surgery obstruction. With this stability lemma in hand, we prove 

upper and lower bounds for width and establish genericity conditions for which these 

bounds depend only on the integer fillings. 

Chapter 6 states the surgery obstructions derived from Khovanov homology, and gives 

a range of examples illustrating the application of these obstructions. Notably, we 

compare our obstructions to sorne of those provided by the Alexander polynomial (as a 

result of Heegaard-Floer homology). 

Chapter 7 gives sorne Seifert fibered examples of manifolds that two-fold branch cover 

the three-sphere in two distinct ways, with branch sets distinguished by the rank of the 

reduced Khovanov homology. This shows that Khovanov homology is not an invariant 

of the two-fold branched cover. 
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Chapter 8 gives various results pertaining to the characterization of the trivial knot. In 

particular, we establish a large class of knots (containing unknotting number one knots) 

within which it may be demonstrated that Khovanov homology detects the trivial knot. 

This is the main ingredient for establishing invariants that detect the trivial knot com

bining satellites and Khovanov homology. In a similar vein, we give a characterization 

of the trivial knot, among strongly invertible knots, from Khovanov homology. 

The conclusion contains sorne open questions for continued research, and we have 

included an appendix giving an example of our obstructions applied to surgery on a 

knot in the Poincaré homology sphere. 

Conventions and Calculations 

Knots with 10 or fewer crossings were tabulated by Bailey and Rolfsen (Rolfsen, 1976, 

Appendix C), and this work introduced a notation that has now become standard. 

For knots with 16 or fewer crossings, tabulations are due to Hoste and Thistlethwaite, 

available via Knotscape (Hoste and Thistlethwaite, 1999), with a slightly different no

tation. As has become standard (see The Knot Atlas (Bar-Natan et al., 2004)), we 

will use Rolfsen's notation for knots with 10 or fewer crossings, and Knotscape notation 

otherwise. 

The examples computed during the course of this research relied heavily on computa

tional software by Shumakovitch (KhoRo) (Shumakovitch, 2004a) and Bar-Natan and 

Greene (JavaKh) (Bar-Natan and Green, 2006). The former was an improvement on 

Bar-Natan's pioneering software, and is an extremely useful too!. However, the speed 

improvements of JavaKh are enough to make the obstructions given in this work prac

tically calculable. 

In general, computations given in this thesis were obtained using JavaKh. 
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Chapter 1 Chapter 6 

Chapter 4
 

Chapter 2 Chapter 7
 

Chapter 5
 

Chapter 3 Chapter 8
 

Figure 0.1 Logical dependance: Chapters 1 to 3 give background and are essentially
 
independent, Chapters 4 and 5 establish technical results on which Chapters 6 to 8
 
(comprising the main results of this thesis) are based. The solid arrows give the de

pendance of the central material, while the dashed arrows indicate dependance of other
 
results and remarks.
 



CHAPTER l 

DEHN SURGERY ON 3-MANIFOLDS 

We begin by briefly outlining the material that will be needed in the sequel pertaining 

to 3-manifolds and Dehn surgery. AU of this material is well-known, and a standard 

reference is Rolfsen (Rolfsen, 1976). Much of what we will require can be found in 

the survey paper by Boyer (Boyer, 2002). We endeavour to give accurate references 

throughout for the results quoted, however for the appropriate historical context we 

point the reader to Gordon's article on the matter (Gordon, 1999). 

1.1 Slopes and fillings 

Let M be a compact, connected, orientable 3-manifold with torus boundary. 

Definition 1.1. A slope in aM is an element 0:' E Hl (aM; Z)j ± l, representing the 

isotopy class of a simple closed cv·rve in aM. 

Since Hl(aM;Z) ~ ZEBZ, the slopes in aM may be parameterized by reduced rational 

numbers {~} E QU {à} once a basis (O:',fJ) for Hl(aMjZ) has been fixed. That is, 

any slope may be written in the form pO:' + qfJ for relatively prime integers p and q, so 

that the slope 0:' is represented by Ô. There is sorne redundancy in this description that 

may be taken care of by fixing the convention q ;::: 0, say. Notice that, as a basis for 

Hl(aM;Z), we have that 0:' and fJ may be isotoped to intersect transversally in a single 

point. More generally, it will be useful ta measure the distance between any two slopes 

as follows. 
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Definition 1.2. The distance between two slopes a,(3 E H 1(M;Z)/±1 is given by their 

geometric intersection number, denoted b.(a, (3). 

As a result, notice that b.(a,(3) = la· (31 for any a,(3 E H1(Nl;Z)/ ± 1. 

Any slope determines a homeomorphism fa: Sl X Sl -+ aM, up to isotopy, by specifying 

fo.(p,) = a where p, = Sl x {point}. 

Definition 1.3. Let p, = aD2 x {point} in the boundary of a solid tOTUS D 2 x SI. For 

a given slope a on aM we define the Dehn filling of M to be the closed manifold 

where the identification of the boundaries is specified by the homeomorphism fa. 

1.2 Surgery on knots 

Examples of manifolds with torus boundary are given by complements of knots in S3, 

and this is where the notion of Dehn filling originates (Dehn, 1910). That is, M = 

S3" v(K) where v(K) = D2 x K is an open tubular neighbourhood of the knot K <.......t S3. 

A Dehn filling on such an M in referred to as a Dehn surgery, or simply surgery on the 

knot K (Rolfsen, 1976, Chapter 9). 

In this setting there is a preferred basis for surgery provided by a pair of canonical slopes. 

First, the knot meridian p, = aD2 x {point}, and second, the longitude of the knot À 

resulting from the fact that K bounds an oriented surface (a Seifert surface) in S3. That 

is, any knot K <.......t S3 comes equipped with a preferred framing given by the intersection 

of a Seifert surface for K with the boundary aM. l We may choose orientations on p, 

and À so that p, . À = l, and this convention will be assumed throughout. 

Now if a is a slope in aM, we may write a = ±(pp, + qÀ) for q ~ O. This gives rise 

lIndeed, this is always the case when considering a knot in an integer homology sphere, or more 
generally, a null-homologous lmot in any 3-manifold. 



11 

to the notation M(o:) = 5~/q(K) for the surgery. Invoking the convention Ô= 00, the 

trivial surgery 5f/o(K) ~ 53 is sometimes called the infinity surgery. Pertaining to 

orientations however, we note that 

where K* denotes the mirror image of K, and -M denotes M with opposite orientation. 

As a result, we may always work with positive surgery coefficients, at the expense of 

taking mirror images. 

By nature of this construction, we have that 

where ((0:)) denotes the normalizer of (0:) C 7fl(Jll{). And, since H1(M;Z) ~ Z ~ (/k) 

by Alexander duality, 

Notice in particular that 

(see, more generally, Lemma 1.5 below). 

Example. As a first example, when K is the right-hand trefoil, 

5~1 (K) is the Poincaré homology sphere (Poincaré, 1904). Indeed, 

this is Dehn's original construction of this particular integer homol

ogy three-sphere (Dehn, 1910). See (Rolfsen, 1976, Chapter 10) for a 

detailed account of the equivalence between the constructions of Dehn and Poincaré, and 

(Kirby and Scharlemann, 1979) for an account of various constructions of this famous 

3-manifold. 
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1.3 The rational longitude 

Suppose that H1(M;!Q) ~ !Q, as is the case, for example, when considering the com

plement of a knot in a rational homology sphere. Such manifolds M will be referred 

to as knot manifolds. Unless stated otherwise, we will generally make the additional 

assumption that a knot manifold M is irreducible. However, this is not an essential 

hypothesis in the following discussion, or in the praof of Lemma 1.5 below. 

Let i: 8M <-; M be the inclusion map, inducing a homomorphism 

Omitting the coefficients for brevity, consider the long exact sequence 

Since 8M is connected, the inclusion i induces an isomorphism Ho(aM) ~ Ho(M). 

Similarly, since we are working over a field, applying duality H3(M, 8M) ~ H°(Jv!) ~ 

H3 (M) results in an isomorphism H3 (M, aM) ~ H2(8M). Therefore, the sequence 

simplifies to yield 

Since we are working over a field, by duality we have 

and 

hence 
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Now we observe that rk(i*) = 1. Indeed, 

rk(i*)	 = b1(aM) - ker(i*) 

= b1(aM) - b1(M) + b1(M, aM) 

and 

byexactness. As a result, b1(aM) = 2(b[(M) - bl(M, aM)). Now since bl(aM) = 2, 

we conclude that rk(i*) = 1. 

Notice that this implies that i,,: H1(aM;'Z) -+ H1(M;'Z) carries a free summand of 

H1(aM; 'Z) ~ 'ZEB'Z injectively to H1(M; Z) ~ 'ZEBH (for sorne fini te abelian group H). 

Moreover, as the image of a free summand of H2(j\l1, aM; 'Z), ker(i*) must be generated 

by kÂM, for sorne primitive class Â!vI E H1(aM;'Z), and non-zero integer k. 

Note that this class is uniquely defined, up to sign, and hence determines a well-defined 

slope in aM. This gives a canonical slope in aM for any knot manifold, and in turn 

motivates the following definition. 

Definition 1.4. For any knot manifold M, the rational longitude Â!vI is the unique 

slope with the property that i* (Â!vI) is finite order in Hl (M; 'Z) . 

More geometrically, the rational longitude Â!vI is characterized among all slopes by the 

property that a non-zero, finite number of like-oriented parallel copies of ÂM bounds an 

essential surface in M. 

1.4	 A key lemma 

As with the canonical longitude for a knot in S3, the rational longitude controls the 

first homology of the manifold obtained by Dehn filling. 

Lemma 1.5. For every knot manifold M there is a constant CM (depending only on 
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M) such that 

Proof. Orient ÀM and fix a curve p, dual to ÀM so that p,·ÀM = 1. This provides a choice 

of basis (p" À M ) for the group Hl (aM; Z) ~ ZEBZ. Under the homomorphism induced by 

inclusion we have i*(p,) = (e, u) and i*(ÀM ) = (0, h) as elements of Hl (M; Z) ~ Z eH. 

Note that for any other choice of class p,' such that p,' . Àivf = 1 we have p,' = p, +nÀM 

so that i*(p,') = (e, u + nh). 

Let ( generate a free summand of Hl (M; Z) so that (the free part of) the image of p, 

is e( where i*(p,) = (e, u) E Z EB H, and let "1 generate the free part of H2(M, aM; Z). 

Then "1.( = ±1 under the intersection pairing H2(M, aM; Z) 12) Hl (M; Z) --t Z. 

Now suppose kh = 0 where k = ordH i*(À M ) so that the class kÀM bounds a surface in 

M. The long exact sequence in homology gives 

ef-I-------+. kÀM If--------'»-) 0 

50 there is a class e E H2(M, aM; Z) with image kÀ M . Now we have already observed 

in defining ÀM that rk(i*) = 1, and hence e = a"l for some integer a f. O. Therefore 

kÀM = aa"l, hence a"l = ~ÀM. But since i*(~ÀM) = 0, it must be that I~I = Ikl so 

that lai = 1. As a result, e= ±"I. In particular, up to a choice of sign a"l = kÀ M as an 

element of Hl(aM;Z). Now 

as claimed. 
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For a given slope a write a = af-l + bÀM so that i*(a) = (aR, au + bh). Then 

has presentation matrix of the form 

where r = (rI"'" rn) specifies the finite abelian group H = Z/r1Z EB ... EB Z/rnZ. 

Therefore IHI(M(a);Z)1 = aRrl" ·rn . Setting 

and noting that a = D.(a, ÀM ) proves the lemma. o 

1.5 Heegaard decompositions 

A Heegaard decomposition is a decomposition of a 3-manifold along an orientable surface 

bounding a pair of handlebodies. Such a decomposition exists for any 3-manifold by 

considering a tubular neighbourhood of the l-skeleton of a triangulation (Rolfsen, 1976, 

Chapter 9). 

Since our interest, ultimately, will be the role of such decompositions in Heegaard-Floer 

homology, it is most natural to approach these from the point of view of Morse theory 

(Milnor, 1963). As such, we follow Ozsva,th and Szab6 (Ozsvath and Szab6, 2üü4d) (see 

also (Ozsvath and Szab6, 2üü6a, Section 3)). 

Fix a Riemannian metric on a closed, connected, orientable 3-manifold Y. 

Definition 1.6. A continuous function on a 3-manifold f: y ----7 lR is called Morse if 

all of its critical points are non-degenerate. A Morse function is called self-indexing if 

for every critical point p we have that f(p) = index(p). Notice that for a self indexing 
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Morse function then, we have f: M --7 [0,3].
 

Proposition 1.7. (Milnor) 1963) Section 6) Every 3-manifold admits a self-indexing
 

Morse function. Further, for a closed, connected) orientable 3-manifold Y there is a
 

self-indexing Morse function with a single absolute maximum (critical point of index 3)
 

and a single absolute minimum (critical point of index 0).
 

Remark 1.8. The seminal advance of Morse theory is that the Morse function provides
 

a cellular decomposition of the manifold. As a result) the Morse function may be used to
 

compute the homology of the manifold. With this observation in hand (and the material
 

of (Milnor, 1963) understood)) a cellular decomposition of M consisting of a single O-cell
 

and a single 3-cell corresponds to a Morse function of the desired form.
 

Now since the Euler characteristic of a closed 3-manifold is zero, there must be the same 

number of index 2 critical points as index 1 critical points. Furthermore, the level set 

f- 1 (~) is a surface of genus 9 (given by the size of either of these two sets). The surface 

L:g = f-l(~) then, gives a combinatorial description of the 3-manifold if we record the 

intersections of flow lines of - \l (J) emanating from the index 2 and 1 critical points. 

That is, the data (I:g , a, (3), where a = {o:df=l and f3 = {,Bdf=l are two g-tuples of 

mutually non-intersecting, essential, simple, closed Curves in I:g , specifies a 3-manifold 

uniquely: the O:i specify the 1-handle attachments and the ,Bi specify the two-handle 

attachments. 

Definition 1.9. A Heegaard diagram is a triple (I:g , a, (3) consisting of an orientable 

surface of genus g, and two g-tuples of mutually non-intersecting, essential) simple) 

closed curves in I:g . 

Notice that, by the existence of a self-indexing Morse function on any 3-manifold, we 

have that every manifold admits a Heegaard decomposition (c.f. (Ozsvâth and Szabô, 

2006a, Lemma 3.7)), and that any Heegaard diagram uniquely determines a 3-manifold. 

In fact, the Heegaard diagram encodes the homology of the manifold as follows: 
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However, by nature of the construction a given 3-manifold rnay admit many seemingly 

distinct Heegaard diagrams. It is a result originally due to Singer (Singer, 1933) that 

any two sueh diagrams are related by sorne finite sequence of the following three moves: 

•	 isotopy: any ai may be replaced byan isotopie a~. Similarly for the 13i' 

•	 handleslides: any ai may be replaced by an a~ with the property that there is a 

triple (ai, a~, aj), disjoint from the remaining ak, bounding a pair of pants in Eg . 

Similarly for the 13i. 

•	 stabilizationjdestabilization: the genus of the Heegaard surface may be in

creased by taking Eg+1 = Eg#T, disjoint from 0: and {3, replacing 0: by 0: U ag+1 

and {3 by (3 U 13g+1 where ag+1, ,6g+J C T intersect in a single point. In a similar 

manner, we may reduce the genus of the Heegaard surface. 

For example, both diagrams in Figure 1.1 give a description of 53. The genus one 

description corresponds to a Morse function with a single critical point of each index. 

Figure 1.1 The standard genus one decomposition of 53 (left), and a genus two de
composition resulting from a stabilization, followed by a handleslide (right). 

While 53 is characterized as the only manifold admitting a genus 0 Heegaard decompo

sition (52 ,0,0), lens spaces2 are characterized as those manifolds admitting Heegaard 

diagrams of genus 1. 

Of course, a neighbourhood of the trivial knot decomposes 53 into two handlebodies of 

2Including S2 x SI, although we will generally take the viewpoint that this manifold is not a 
lens space. 
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genus 1. ln the interest of fixing our conventions, we conclude this section by comparing 

the sUl'gery description of these lens spaces, and their Heegaard decompositions. 

Consider the standard genus 1 splitting of S3 given in Figure 1.1. There is a single a 

curve (in red) and a single (3 curve (in blue). Considering S3 ~ IR. U {oo}, let the trivial 

knot U be the z-axis together with the point at infinity. Then the solid torus enclosed 

by the torus depicted in Figure 1.1 is the the complement of U, and a coincides with 

the longitude À (note that a bounds an essential disk). The (3 curve coincides with the 

meridian f.L of the trivial knot U. 

Now the lens space L(n, 1) is given by S~(U), so the corresponding Heegaard diagram 

for this manifold is 

More generally S;/q(U) admits the splitting 

(SI x sI, a = À, (3 = pf.L + qÀ). 

Remark 1.10. Our convention that f.L' À = 1 in SI x SI corresponds to the convention 

that f.L' À = -1 when aM is oriented as the boundary of M. 

1.6 Cyclic branched covers 

Another natural way in which knots and links arise in the study of 3-manifolds is as the 

fixed point set of a finite group action. That is, given a closed, connected, orientable 

3-manifold Y, together with a faithful action by diffeomorphisms Z/pZ x Y -----+ Y having 

1-dimensional fixed point set, the quotient of Y by the action has the structure of an 

orbifold. ln other words, Y may be viewed as a p-fold cyclic branched coyer, branched 

over sorne link (specified by the image of the fixed point set of the action in the quotient 

- the orbifold curve). 

Such manifolds may be constructed readily, given a knot in S3. Let M = S3"l/(K), then 

following (Rolfsen, 1976, Chapter 10), any surjective homomorphism 7rl(M) ---t 7l/pZ 
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must factor through the abelianization Hl (M; Z) ~ Z. As a result, the following triangle 

commutes 

pll-I-----+) Ü 

'Tl"} (M) ) ZjpZ 

~/ 
(f-l,) 

where J.L is the meridian of K, resulting in a short exact sequence 

1 ---+ r -+ 7fl (M) ---+ ZjpZ ---+ 1 

~ ~ 

Consider the corresponding p-fold cyelic cover M --t M with 7fl (M) = r. 

There is a p-fold cyclic branched cover of the disk D 2 = {z E <C: Izi ::; l} by itself 

specified by f(z) = zp. This extends in an obvious way to a p-fold cyclic branched cover 

D2 x Sl --t D2 X Sl, branched over the core {ü} x SI of the solid torus. Bere, the core 

{ü} x SI becomes a singular set of cone index p associated to the p-fold cyclic branched 

cover (viewed as an orbifold). This extension agrees, on the boundary, with the action 

of ZjpZ restricted to aM. With this observation in hand, Y = MU (D 2 
X Sl) gives a 

p-fold cyclic branched cover of S3, branched over the knot K. By construction 7fl (Y) is 

an index p subgroup of the orbifold fundamental group 7f1rb (S3, K), an object sensitive 

to the cone index of the singular set K. More precisely, there is a short exact sequence 

Our interest will be in two-fold branched covers, corresponding to manifolds with invo

lution. To this end we introduce the notation ~(S3, L) for the two-fold branched cover 

of S3 branched over a link L.3 In keeping with the discussion above, this notation spec

3More generally, ~(Y, X) will denote the two-fold branched cover of Y branched over X '-+ Y, 
whenever this cover makes sense. Thus, From the present discussion, D2 ~ ~(D2, {O}) and D2 x 51 ~ 
~(D2 x SI,{O} X 51). 
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ifies the singular set L, of cone index 2, when the two-fold branched cover is considered 

as an orbifold. 

Definition 1.11. A knot manifold is called strongly invertible if there is an involution 

f: M -? M with 1-dimensional fixed point set intersecting the boundary torus transver

sally in exactly 4 points. A knot is called strongly invertible if its complement is strongly 

invertible. 

The solid torus is strongly invertible, and by an observation attributed to Montesinos,4 

a strong inversion on M extEmds to an involution on M(a.), for any slope a. in DM 

(Montesinos, 1975). This gives a useful relationship between Dehn fillings and two-fold 

branched covers (c.f. Chapter 4). 

Proposition 1.12. (Montesinos, 1915) For any strongly invertible knot manifold M 

and slope a. in DM, the result of Dehn filling gives rise to a two-fold branched cover 

M(a.) ~ ~(Y, L), for some link L '----4 Y, where Y is the quotient of M(a.) by a unique 

extension of the strong inversion. 

Certain classes of 3-manifolds have a particularly strong correlation with possible branch 

sets as two-fold branched coverS of 53. For example, the Smith conjecture (resolved in 

the Z/2Z setting by Waldhausen (Waldhausen, 1969)) states that 53 ~ ~(53, L) if and 

only if L is the trivial knot. More generally, we have: 

Theorem 1.13. (Hodgson and Rubinstein, 1985) A two-fold branched cover ~(53, L) 

is a lens space if and only if L is a non-split two-bridge link. 

In a similar vein, work of Boileau and Otal (Boileau and Otal, 1991) gives the following 

consequence of the orbifold theorem (Thurston, 1982):
 

Theorem 1.14. (Boileau and Otal, 1991, Affirmation 2.5) If a two-fold branched
 

~(53, L) has finite fundamental group, then the branch set L '----4 53 is unique up to
 

isotopy.
 

40ften colloquially referred to as the Montesinos trick. 
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In fact, it turns out that every manifold with finite fundamental group arises in this 

way (see Proposition 1.16 and Remark 1.17). 

Example: The Poincaré homology sphere may be viewed as the two-fold branched coyer 

I:(S3, K) where K is the knot 10124 of Rolfsen's tables (Rolfsen, 1976). This knot turns 

out to be isotopie to the (3,5)-torus knot, as weil as isotopie to the (-2,3, 5)-pretzel 

knot. Of course, this manifold has fini te fundamental group the binary icosahedral 

group, so this observation is consistent with Theorem 1.14. 

1.7 Seifert fibered spaces 

We now describe a class of manifolds that will play an important role in this work. These 

were considered by Seifert (Seifert, 1933) and later by Raymond (Raymond, 1968); more 

details are given in (Boyer, 2002, Section 5.1) and the references therein. In general, 

the approach taken here follows (Scott, 1983). 

A Seifert fibre structure on a 3-manifold Mis a foliation by circles. A particular instance 

of such a structure is given by circle bundles over a surface. Thus, our first example 

is provided by the solid torus D 2 x SI. In fact, this manifold admits infinitely many 

Seifert fibre structures, as follows. Given a pair of relatively prime integers (p, q) with 

p 2: l, define 

Notice that this describes a foliation by circles induced from the intervals l in the 

quotient. This is simply a standard solid torus to which a ~-twist has been added. 

The result is homeomorphic to D 2 x SI, however the resulting circle foliation is non

standard: the core circle {O} x SI C D 2 X SI is a singular fibre of order p whenever 

p > 1. We take this as the definition of a singular fibre, in general. Work of Epstein 

shows that every fibered solid torus is fibre-preserving diffeomorphic to one of these 

standard Seifert fibrations (Epstein, 1972). 

Definition 1.15. A Seifert fibre structure on a 3-manifold M is a foliation by circles 
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(called fibres), such that the tubular neighbourhood of any fibre is fibre-preserving dif

feomorphic to one of the standard Vp,q described above. The index p ;:: 1 of the fibered 

solid torus is the index of the fibre; the fibre is singular (or exceptional) whenever p > 1, 

and regular otherwise. A manifold with a fixed Seifert structure will be referred ta as a 

Seifert fibre space. 

The orbit space of a given Seifert fibre space M is an orbifold 13, with underlying 

manifold given by a surface B. The collection of singular fibres of M correspond to a 

finite collection of cone points in the interior of 13, thus we denote 13 = B(Pl,P2,'" ,Pn). 

Thus, for a standard fibered solid torus Vp,q we have that 13 = D 2 (p). Notice that the 

fibres can always be given a coherent orientation locally, but need not admit a global 

orientation coherent with an orientation on the manifold. 

As an example, the Hopf fibration of 53 demonstrates that this manifold may be viewed 

as a Seifert fibration. However, the three sphere admits many distinct Seifert structures: 

one for every torus knot. Consider the genus 1 decomposition of 53 of Figure 1.1. Then 

every relatively prime pair (p, q) determines an essential simple closed curve on the 

torus, or a torus knot when included in 53. This is a regular fibre in a Seifert fibra.tion 

with base orbifold 52 (p, q). 

The geometry of a closed manifold admitting a Seifert fibration is completely determined 

by two quantities: the Euler number of the total space and the orbifold characteristic of 

the base (Scott, 1983, Table 4.1). Thus, for example, we have the following classification: 

Proposition 1.16. (Scott, 1983) A Seifert fibered manifold with finite fundamental 

group has base orbifold 5 2(p, q, r). If p, q, r > 1 then these fall into two classes: either 

5 2(2,2, n) for any n > 1 or 5 2(2, 3, n) for n = 3,4,5. 

Remark 1.17. Perelman's praof of the geometrization conjecture (Perelman, 2002; 

Perelman, 2003), carried out in detail by Morgan and Tian (Morgan and Tian, 2007; 

Morgan and Tian, 2008), implies that the Seifert fibered spaces of Proposition 1.16 

entail a complete list of manifolds with finite fundamental group. However, in the case 
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when the manifold in question admits a cyclic group action with non-empty fixed point 

set - as in the case for cyclic branched covers of S3, in particular - the same may be 

deduced by avoiding the work of Perelman and applying the orbifold theorem (Thurston, 

1982), to obtain a positive resolution to the geometrization conjecture in the presence of 

a cyclic group action with non-empty fixed point set (see (Boileau and Porti, 2001), and 

more generally (Boileau et al., 2005) removing the restrict'ion to cyclic group actions). 

While the present work will make use of this latter fact (see 'in part'icular Theorem 

4.25 and Remark 4.26), we will endeavour to be explicit when questions pertaining to 

geometrization arise. 

There is a short exact sequence 

where K < 7l"1 (M) is a cyclic group generated by a regular fibre cp (d. (Scott, 

1983, Lemma 3.2)). As a result, since 7l"1(B) (and hence Hl(B;Z)) is a quotient of 

7l"tb (B) = 7l"1 (M) / ((cp) ), there are strong restrictions on the underlying surface B of the 

base orbifold B whenever Hl (Mj Q) = O. Indeed, since surjectivity is preserved under 

abelianization, the surjection 7l"1 (M) ---7 7l"1 (B) gives a surjection Hl (NI; Z) ---7 Hl (B; Z). 

Now if Hl(M;Z) is finite, HI(B;Z) must be finite as weil so that B is either D2, S2 or 

RP2. 

Example: Revisiting our running example of the Poincaré homology sphere, this man

ifold admits a Seifert fibration witb base orbifold S2(2, 3, 5). This can be seen from the 

fact that this manifold is a two-fold branched coyer ~(S3, K) where K is the (-2,3,5)

pretzel knot (Montesinos, 1976) (see also (Boileau and Otal, 1991)). Of course, this 

knot is isotopie to the (3, 5)-torus knot, and viewed in this way (see (Seifert, 1933, Page 

222)) ~(S3,K) is a Brieskorn sphere, that is, the intersection of the unit 5-sphere with 

the complex surface 
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in ((:3 (Brieskorn, 1966b; Brieskorn, 1966a) (see (Saveliev, 1999) for a discussion of these 

notions more closely related to the present work). 

Brieskorn spheres provide a nice family of Seifert fibre spaces that branch cover S3. 

Proposition 1.18. (Milnor, 1.975, Lemma 1.1) The Brieskorn sphere resulting from 

the intersection of S5 with the complex surface 

in ((:3 for odd, relatively prime (p, q) is homeomorphic to :E (S3 ,K) where K is the 

(p,q)-torus knot. 

Proposition 1.19. (Seifert, 1933, Zusatz zu Satz 17) Let K be the (p, q)-torus knot, 

for p, q odd and relatively prime. Then the two-fold branched cover :E(S3, K) admits a 

unique Seifert fibered structure with base orbifold S2(2,p, q). 

Remark 1.20. Though the Seifert structure on this family of manifolds is unique, the 

involution need not be. In general, if such a manifold has infinite fundamental group, it 

may be realized as the two-fold branched cover of S3 in two different ways (Montesinos, 

1976). 

We now turn to Dehn surgery on Seifert fibered manifolds. This was studied by Moser 

(Moser, 1971) in the case of surgery on torus knots in S3, and subsequently generalized 

by Beil (Beil, 1974) (see also (Boyer, 2002, Theorem 5.1)). 

Theorem 1.21. (Heil, 1974) Let M be a Seifert fibered knot manifold, with base orbifold 

B of the form B(Pl, P2, ... ,Pn), where aB = S1. Let'P be the slope in aM corresponding 

to a regular fibre of M. Then for any filling M(ex), for which ex -=J 'P, the Seifert fibration 

extends and the resulting closed manifold has base orbifold 
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On the other hand) 

where the i th fibre is of type (pi, qi) and m is the twice the gen'us of B when B is 

orientable) or the number of Rp2 factors otherwise. 

Lens spaces provide a large class of Seifert fibered manifolds; this is now a quick ap

plication of the Heil's result. The base orbifold for the lens space S;//U) ~ L(p, q) 

is S2(p,q) = D2(p) U D2(q) (or if ~ = 0 we obtain S2 x SI). In other words, for the 

standard Heegaard decomposition of L(p, q), each solid torus may be fibered with base 

orbifold D 2(p) and D 2 (q) respectively. Note that, due to the nature of this construction 

and the definition of the Vp,q, the resulting Seifert structure on a given lens space is 

highly non-unique. 

As we have seen in Lemma 1.5, a Dehn filling is controlled by the rational longitude. 

However, as in the Theorem 1.21, Seifert fibrations come with a natural choice of slope 

given by a regular fibre in the boundary. We end this section with a curious collection 

of examples on which these slopes coincide. 

Proposition 1.22. Let <p be a regular fibre in a Seifert fibration on Y over Rp2, and 

set M = Y " v(<p). Then the rational longitude coincides with a regular fibre as slopes 

in aM. 

Proof. Recall that the rational longitude ÂM is characterized by the following property: 

sorne number of parallel copies of ÀM bounds an essential surface in M. Thus, it suffices 

to show that a regular fibre enjoys this property, and to this end we claim that the class 

2<p E H 1 (aM; Z) bounds an essential annulus in M. 
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To see this, first note that M has base orbifold B = B (Pl, P2, ... ,Pn) 

cwhere B = (I x 1)/ {(a, x) = (1,1 - x)} is a Mübius strip. Consider 

the curve {~} x 1 meeting the boundary in two points. This curve BA 

is covered by an annulus A '------t M where aA = cp U cp c aM. Notice 

that this embedding of A has orientation coherent with the orientation on A, since the 

fibres above a neighbourhood of the curve g} x 1 may be coherently oriented. 

It remains to see that this surface A is essential, and to this end notice that c = 1 x g}, 

as a curve in M, meets A transversely in a single point. As a result, since Hl (M; 'Il) ~ 

H2(M, aM; Z) we have the pairing 

for which ([c], [A]) :f O. D 

Notice that a fibration (without singular fibres) over the Mübius strip may be viewed 

as the twisted 1-bundle over the Klein bottle, Kx1. This 1-bundle with base space K 

is unique (MiInor and Stasheff, 1974), though it admits a second Seifert fibration with 

base orbifold D2(2,2). It follows that a Seifert fibration with base orbifold S2(2, 2, n) 

also admits a Seifert structure over Rp2(m) (for some m). However, such phenomena 

are the exception, not the rule. 

Theorem 1.23. (Scott, 1983, Theorem 3.9) If Y is a Seifert fibered rational homology 

sphere with infinite fundamental group, then the Seifert structure is unique. 

1.8 The exceptional surgery problem 

To this point, we have discussed essentially combinatorial aspects of 3-manifolds. Our 

interest however is in questions pertaining to the geometries that arise after Dehn fill

ing. We have seen that, in the case when a manifold admits a Seifert structure, the 

resulting Dehn fillings are easily understood (as Seifert spaces, c.f. Theorem 1.21), and 

subsequently the geometry is characterized (Scott, 1983). 
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In his pioneering work on the geometry and topology of 3-manifolds, Thurston showed 

that a hyperbolic manifold M with torus boundary admits a finite number of exceptional 

fillings (Thurston, 1980; Thurston, 1982). That is, those closed manifolds obtained from 

M by Dehn filling that are non-hyperbolic. Since then, the question of understanding 

and classifying exceptional surgeries has received considerable attention (see survey pa

pers (Gordon, 1991) and (Boyer, 2002)). What has come to be known as the exceptional 

surgery problem may be stated as follows: 

Question 1.24. Given a hyperbolic 3-manifold M with torus boundary, for which slopes 

0: is M (0:) non-hyperbolic? 

Of course, this question may be refined in various ways by asking, for example, when 

particular geometries arise, or when a particular class of manifolds arises. 

Perhaps the simplest non-hyperbolic manifold is a lens space. Restricting to comple

ments of knots in S3, Moser (Moser, 1971) showed that torus knots always admit lens 

space surgeries, and went as far as to conjecture that this was the only way to obtain 

a lens space by surgery on S3. Subsequently, Bailey and Rolfsen (Bailey and Rolfsen, 

1977) constructed an example of a lens space surgery on a non-torus knot (a particular 

cable of the trefoil),5 and Fintushel and Stern (Fintushel and Stern, 1980) obtained 

further examples including hyperbolic knots that admit lens space surgeries. 

In a now famous, unpublished note, Berge gives a list of knots in S3 that admit lens 

space surgeries (Berge, 1987). These knots are referred to as Berge knots, and it has 

since been conjectured that this list is complete. That is, if a knot in S3 admits a 

lens space surgery then it must be a Berge knot; this has become known as the Berge 

conjecture. 

In this vein, perhaps the most celebrated result pertaining to the exceptional surgery 

problem is the cyclic surgery theorem due to Culler, Gordon, Luecke and Shalen: 

5Bailey and Rolfsen's article provides an excellent, concise account of Kirby (sometimes referred 
to as Kirby-Rolfsen) surgery calculus. 
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Theorem 1.25. (Cut/er et al., 1987) Let M be a hyperbolic knot manifold and suppose 

M(a) and M({3) have cyclic fundamental group. Then 6.(a,{3) :::; 1. 

In particular, this implies that any surgery on S3 that yields a lens space must be an 

integer surgery. Further progress towards the Berge conjecture has come, more recently, 

from applications of Heegaard-Floer homology (Ozsvâth and SzabO, 2005b; Rasmussen, 

2004b). In fact, there is a active program towards solving the Berge conjecture that 

has resulted in a completely Heegaard-Floer theoretic version of the conjecture (Baker 

et al., 2007; Hedden, 2007; Rasmussen, 2007), suggesting that a positive resolution may 

be possible by way of Heegaard-Floer homology. 

Enlarging our class of interest slightly, one might ask instead if a manifold with fmite 

fundamental group can arise as a result of Dehn filling on M. We refer to such a filling 

as a finite filling. This has been treated in depth by Boyer and Zhang, proving the 

following results analogous to the cyclic surgery theorem, by developing and expanding 

the machinery and techniques from the proof of Theorem 1.25: 

Theorem 1.26. (Boyer and Zhang, 1996) Let M be a hyperbolic knot manifold. Then if 

M(a) has finite fundamental group, and M({3) has cyclic fundamental group, 6.(a, ,6) :::; 

2. 

Theorem 1.27. (Boyer and Zhang, 2001) Let M be a hyperbolic knot manifold. Then 

if both M(a) and M({3) have finite fundamental group, 6.(a, {3) :::; 3. 

One may proceed in this way, next asking for obstructions to Seifert fibre spaces with 

base orbifold S2(p, q, r). Such 3-manifolds are referred to as smalt Seifert fibered spaces. 

While this is far from a complete treatment qf the exceptional surgery question, we 

pause here to ask the central question of this thesis: can Khovanov homology provide 

obstructions to exceptional surgeries? 



CHAPTER II 

KHOVANOV HOMOLOGY 

We give a detailed overview of the definition of Khovanov homology (Khovanov, 2000). 

This has been treated in depth in the literature, and for this reason our introduction is 

streamlined and tailored ta the present purposes. In particular, the proaf of invariance 

will be omitted. We refer the reader to Khovanov's original paper (Khovanov, 2000), 

as well as (Bar-Natan, 2002; Bar-Natan, 2005). There is also an excellent survey by 

Rasmussen (Rasmussen, 2005), as well as a very detailed set of notes by Turner from a 

summer school in Marseille (Turner, 2006). 

2.1 Khovanov's construction 

The Khovanov complex of an 

oriented link L is generated by 00 -6. 
----i>

0
GiD 

first considering an n-crossjng 

diagram for L together with 

2n states, each of which is a 

collection of disjoint simple clo
00 

Y 
m 

----i>

(1,0,0) 6. (l,l,a) 

EB X EB 

00 -6. 00 
~ 
-6. 

----i> 00 
(0,0,0) (0.1,0) 6. (1,0,1) (1,1,1 ) 

sed curves in the plane. Each 

state s is obtained from a choice 

of resolution ::::: (the O-resolu

~ EB X 
00 -6. 

----i>

6. 

EB 

00 
h 

tion) or ) ( (the l-resolution) (0,0,1) (0,1,1) 

for every crossing X (notice 
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that for a crossing X the 0- and l-resolutions exchange roles). As a result, by fix

ing an order on the crossings, each state s may be represented by an n-tuple with 

entries in {a, 1} so that the states are in bijection with the vertices of the n-cube [0, l]n. 

This is referred to as the cube of resolutions for L. Let Isl denote the height of the state 

s, given by the sum of the entries of the n-tuple associated to s. 

Let V be a free, graded Z-module generated by v_ and v+, where deg(v±) = ±1. To 

each state s we associate V0es where .es > a is the number of closed curves in the given 

state. Set 

C'U(L) = EB V0es [O,l s l]· 
u=lsl 

Here, the operator ['l'] shifts the bigrading as follows. Note that we have defined a 

bigraded group 

C(L) = EBCU(L) = EB w~ 
U u,q 

for some finite collection of groups w~ where u is the homological (or primary) grading 

and q denotes the Jones (or secondary) grading. Now the shift operator1 affects these 

gradings by 

(W[i,j])~ = W:.=t 

With this notation in hand, the chain groups of the Khovanov complex are defined as 

where n+ = n+(L) is the number of positive crossings X in Land n_ = n_(L) is the 

number of negative crossings X in L. 

The differentials au: CKhU(L) ----+ CKhu+1(L) come from a signed sum over the col

lection of edges in the cube of resolutions moving from height u to height u + 1. The 

lIt can be easily verified that this operation corresponds to multiplication in the Poincaré poly
nomial recording the graded dimensions of these groups. Thus, V 0n has Poincaré polynomial (q-l +q)n, 
where the monomial mqT denotes that the dimension of the group in q-grading r is m. 
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operations on each edge correspond to multiplication and comultiplication in a partic

ular Frobenius algebra defined over V. 

Notice that each edge in the cube of resolutions connects a pair of states s and s' that 

differ in precisely one entry. That is, if Is'I = Isl + 1 then as elements of {O, l}n these 

states are of the form (El, E2, ... , Ek, ... ,En) where Ek = 0 for the state sand Ek = 1 

for the state s' (the remaining Ei are identical). Geometrically, this corresponds to the 

local change :::: ~ ) ( (or) ( ~ ::::), leaving the rest of the state unaltered. Therefore, 

each edge corresponds to either merging two circles of the state s into one to obtain s', 

or splitting a single circle of s in two to obtain s'. 

Such operations correspond to simple operations in a cobordism category C with abjects 

given by collections of circles (the states) and arrows given by surfaces. This is a 

monoidal category (C, U, 0), and defining a compatible Frobenius algebra amounts ta 

choosing a monoidal functor (i.e. a functor respecting the monoidal structures) to the 

monoidal category of ;Z:-modules, (Modz, ®, Z). Such a functor is called a TQFT: a 

topological quantum field theory (Kock, 2004). More precisely, there is an equivalence 

between isomorphism classes of finite dimensional commutative Frobenius algebras, and 

isomorphism classes of TQFTs. 

We now make the desired Frobenius algebra precise. To each edge of the cube of 

resolutions we assign the multiplication 

m: V®V-----7V 

v_® v_ f-------10 

v+®v_ f-------1V_ 

v_® V+ f-------1 v_ 

v+®v+f-------1v+ 
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whenever the edge s ----t s' merges two circles, and we assign the comultiplication 

b.: V ------+ V 0 V 

whenever the edge s ----t s' splits a single circle.2 Notice that v+ is the unit for multipli

cation, and that each of m and b. lower degree (the secondary grading) by 1. However, 

as operations in the cube of resolutions these are grading preserving in q since we have 

compensated in the definition if C(L) by shifting in the height [O,lsl]. 

As a result, viewed as a commutative diagram in the cobordism category C, the cube 

of resolutions has the property that every 2-dimensional face commutes. To obtain a 

chain complex then, it suffices to fix a sign convention on the edges so that every 2

dimensional face anti-commutes. In fact, any consistent choice will do, and one such 

choice is obtained by 
k-l 

if 

sign = i=l 
+ LEi= °(mod 2) 

k-l 

if	 LEi= 1 (mod 2) 
i=l 

where s = (El, E2, ... , Ek, ... ,En) and Ek is the entry changing from 0 to 1 as before. Let 

or be the operation (with appropriate sign) on the i th edge moving from height u ta 

height u + 1. Then the differential is defined as 

by summing over aIl edges at the prescribed height. By construction, (CKhU(L), aU) 

forms a chain complex. 

2In fact, the Frobenius algebra. (and in particular, the comultiplication) is determined by the 
multiplication and a counit ~ : V -> 2: defined by ~(v+) = 0 and ~(v_) = 1. Though we will not make 
use of this part of the structure, it is a good check to verify that under this Frobenius algebra. the toms 

evaluates to the map 2: ~ 2:, by observing that v+ is the unit fol' multiplication. 
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9 ;z 

7 IF 

5 7J, 

3 ;z 

1 ;z 

o 1 2 3 

Figure 2.1 The Khovanov homology of the trefoi1. The homological grading (u) is read 
horizontally, and the secondary grading (q) is read vertically. IF denotes the cyclic group 
Z/2Z. 

Definition 2.1. The Khovanov homology Kh(L) is given by the homology of the complex 

Notice that, as defined, Kh(L) is a bigraded cohomology theory. However, we will 

continue to refer to Khovanov homology, as has becorne common in the literature. 

Theorem 2.2. (Khovanov, 2000) Kh(L) is an invariant of the link L, with the property 

that 

where VL(a) is the unnormalized Jones polynomial, with Vu (a) = a- 1 + a for the trivial 

knot U. 

The proof of the first part of the Lheorem amounts to showing that the groups Kh(L) 

do not depend on the choices made in the construction of (CKhU(L), aU), notably, the 

choice of ordering on the crossings, the sign conventions, and the diagram for the link. 

In particular, invariance under the three Reidemeister moves3 must be verified, and this 

is done in (Khovanov, 2000). A quick praof (working over Q) is given in (Bar-Natan, 

2002), and a geometric proof of irwariance (of a more general invariant) is given in 

(Bar-Natan, 2005). A sketch of the praof that blends the two approaches can be found 

3There are 3 unoriented Reidemeister moves; more when equivalence of oriented diagrams is 
considered. 
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in ('TUrner, 2006). The second part of the theorem, pertaining to the Jones polynomial 

(Jones, 1985), is immediate from the definition of CKh(L): the Kauffman bracket may 

be easily recovered from the construction of the cube of resolutions as a graded Euler 

characteristic of C(L ). 

While an absolute Z EEl Z-grading is a function from homogeneous elements of the ho

mology to ZEElZ, a relative ZEElZ-grading is a similar function taking values in the affine 

space over ZEElZ. That is, only the difference in grading between homogeneous elements 

is weil defined. 

As an absolutely graded group, Kh(L) is concentrated in odd q-gradings whenever 

L has an odd number of components, and even q-gradings otherwise. As a result, 

notice that the homology H* (C(L)) is an invariant of the link as a relatively Z EEl 22.

graded group. This is an invariant of the unoriented link L that has the Kauffman 

bracket of L as graded Euler characteristic. The Kauffman bracket is an invariant 

of the link, up to multiplication by sorne monomial ak . Thus, the fixed overail shift 

in Kh(L) corresponds to adjusting the Kauffman bracket by the writhe to obtain the 

Jones polynomial (Kauffman, 1987). 

Remark 2.3. Viewed as a relatively Z EEl 2Z-graded group, Kh(L) is still a useful in

variant. In particular, it is an invariant of unoriented links. 

Another interesting, basic property of Khovanov homology is that the homology of the 

mirror L* of a link L gives the dual of Kh(L) (Khovanov, 2000, Section 7.3) (see also 

(Ozsvâth and Szab6, 2005c)). 

2.2 The skein exact sequence 

One of the fundamental tools in Khovanov homology is the skein exact sequence: this is 

a long exact sequence that plays the role of the skein relation in the Kauffman bracket 

definition of the Jones polynomial. This exact sequence is implicit in Khovanov's original 

work (Khovanov, 2000), but appears in the form given here in (Rasmussen, 2005). 
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Given a link L(X) with a distinguished positive crossing, fixing an order on the crossings 

so that this distinguished crossing occurs last, there is a subcomplex 

C (LO 0) [1,1] ce (L(X)) 

giving rise to a short exact sequence 

o-l C (LO 0) [1,1] ----7 C(L(X)) -l C (L(:::::)) -l0. 

Since L(:::::) inherits the orientation of L(X.), we set c = n_ (LO 0) - n_ (L(X)) for 

sorne choice of orientation on the affected strands of LO 0 to obtain 

This short exact sequence gives rise to a long exact sequence 

Bere, 0* is the map induced on homology from (the component of) the differential 

o : CKh~_l (L(:::::)) -7 CKh~'::::fc_2 (LO <n in CKh~ (L(X)). This connecting homo

morphism raises homological degree by one, and preserves the secondary grading. 

For example, in the complex for the right-hand trefoil (given in the 

previous section) we have circled the distinguished positive crossing 

(it is shown on the right). The subcomplex is given by states of the 

form (*, *,1), and 0* is induced by morphisms that take states of 

the form (*, *, 0) to (*, *,1). It is an instructive exercise to calculate that Kh~(K) ~ 

7l/271 for the right hand trefoil K. This results from the fact that the only non-trivial 

morphism in this long exact sequence arises for Khg(H) [0,1] -7 Kh~l(U) [3,8], where H 

is the Hopf link and U is the trivial knot, and turns out to be x 2 : 7l -7 7l (see (Turner, 

2006) for more details on this example). Torsion in Khovanov homology is somewhat 

mysterious, though it is conjectured that the torsion alone is enough to detect that a 
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knot is non-trivial (Shumakovitch, 2004b). 

Similarly, for a link L(X) with a distinguished negative crossing there is a long exact 

sequence 

2.3 Reduced Khovanov homology 

Given a link L, there is a reduction of the chain complex defined for L.: the link with 

a choice of marked arc in a diagram for L (Khovanov, 2003). This depends, in general, 

on a choice of marked component, but gives a well defined invariant for knots. We give 

two equivalent definitions. 

The multiplication m gives rise to an action V ® CKh(L.) -1 CKh(L.) by stipulating 

that a closed component introduced near the marked point merges at that point under 

the obvious cobordism. We note that the unit for multiplication acts trivially, and that 

the associativity of V ensures that the action is well defined. As a result, CKh(L.) is a 

complex of V-modules. 

Definition 2.4. The reduced Khovanov homology of L., denoted Kh(L.), is givm by 

the homology of the complex OO(L.) = CKh(L.) ®v V /(v_ . V). 

The reduced Khovanov homology is an invariant of L., depending in general on the 

marked component. As a result, we get a well defined invariant when restricting atten

tion to knots (i.e. single component links). 

There is also a natural way to view this reduction in terms of subcomplexes. The 

marking on L. descends to a marking of states s•. Since v+ is the unit for multiplication, 

we may form a subcomplex C(L.) c C(L) as follows: 

CU(L.) =	 L v_ ® V 0 (f s -l) 

u=lsl 
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where the marked circle in the state is always endowed with the element v_ E V. That 

C(L.) is a subcomplex is immediate from the definition of m and 6. in the associated 

Frobenius algebra. As a result, we may define CKh.(L.) = EBu CU(L.) to obtain the 

short exact sequence 

~ 

0-; CKh.(L.) -; CKh(L) -; CKh(L.) -; ° 
where CKh(L.) ~ CKh(L)jCKh.(L.) is taken as the definition of the reduced Kho

vanov complex. Indeed, this is precisely the tensor product (over V) with the one 

dimensional representation V / (v_ .V) given previously. As before, the homology of this 

complex is denoted Kh(L.). 

Theorem 2.5. (Khovanov, 2003) Kh(L.) is an invariant of the marked link L. (and 

in pa7ticular) gives an invariant for knots) with the property that 

where VL(t) is the standard Jones polynomial with normalization Vu(t) = 1 for the 

trivial knot U. 

The short exact sequence for the reduced complex gives rise to a long exact sequence of 

the form 

since CKh.(L.) ~ OO(L.)[O, 2] (see (Rasmussen, 2005)). While this sequence does 

not split in general, work of Shumakovitch implies that the connecting homomorphism 

is relatively tame. 

Theorem 2.6. (Shumakovitch, 2004b) The connecting homomorphism in the long exact 

sequence for the reduced complexis congruent to 0 modulo 2. 

Thus, working with coefficients in IF' = 7Lj27L we have a split long exact sequence. 
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2.4 Coefficients and further conventions 

For our purposes, it is not restrictive to work over JF = 1.,/21.,. And indeed, the benefits 

are such that we will fix this choice once and for aIl. As a result, we immediately have 

that Kh(L) is an invariant of unmarked links (i.e. does not depend on the choice of 

marked component), and 

Kh(L) ~ Kh(L)[O, -1] œKh(L)[O, 1] 

(Shumakovitch, 2004b). 

We now fix sorne conventions for the remainder of this work. Replacing the secondary 

grading by 1 (but preserving the notation q for this rescaling), we define fJ = u - q. 

Now we consider Kh(L) as a relatively ZœZ-graded homology theory in gradings fJ and 
~i 

q, so that group that until now has been written Khj(L) will from now on be denoted
 
~6 ..
 
Khq(L) where fJ = i - ~ and q = ~.
 

As a relatively graded group, this homology theory categorifies to the Jones polynomial 

in the following sense (c.f. Theorem 2.2 and Theorem 2.5). 

Theorem 2.7. Let u = fJ +q. Then there is a unique absolute 1., E9 ~ Z-grading (in (u, q)) 

on Kh(L) with the property that 

1 1
where VL(t) E Z[t2, C2"] is the Jones polynomial. 

Remark 2.8. We remark that the universal coefficient theorem 

Kh~ (L; JF) ~ Tor (Kh~+l(L; 1.,), JF) E9 Kh~ (L; 1.,) ® JF 

together with the fact that 

Tor(Z/2nZ, JF) = JF = Z/2nZ ® JF 
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ensures that rk Kh( L; lF) rk Kh(L; Q) + U, for some integer R ~ D, and the extra 

factors of lF cancel in pairs so that the graded Euler characteristic (giving rise to the 

Jones polynomial) is invariant of the coefficient field. 

Thus, the Jones polynomial arises as an appropriately defined graded Euler characteristic 

of the theory. According to our grading conventions, the usual Euler characteristic 

is obtained by collapsing the q grading. Note that this is only weil defined up to sign 

as 8 is a relative integer grading; we fix the convention X ~ O. 

Proposition 2.9. With the above notation, X(Kh(L)) = det(L) (the standard determi

nant of the link). 

Proof. 

X(Kh(L)) = 12)-1)<5 rkKh<5(L)1 
<5 

= 12)-1)8 rkKh:(L)1 
<5,q 

= 12)-l)U-q rkKh~(L)1 
u,q 

= 12)-1)U(-1)-qrkKh~(L)1 
u,q 

= 12)-1)U(-1)qrkKh~(L)1 
u,q 

= IVd-l) 1 

= det(L) 

o
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1 1 
1 

Figure 2.2 The reduced Khovanov homology of the trefoil (left) with w = 1, and the 
knot 10124 (right) with w = 2. The primary relative grading (0) is read horizontally, and 
the secondary relative grading (q) is read vertically. The values at a given bi-grading 
give the ranks of the abelian group (or F-vector space) at that location; trivial goups 
are left blank. 

Forgetting the q-grading in this way, and collecting the o-gradings, yields 

for non-negative integers bi, where bt and bk are non-zero. As a result, we arrive 

naturally at the following: 

Definition 2.10. The homological width of L is given by w(L) = k, the number of 

o-gradings supporling the reduced Khovanov homology. Links for which w = 1 are called 

thin (or homologically thin), white links with w > 1 are termed thick (or homologically 

thick). 

Renee, our grading convention gives homological grading by diagonals of slope 2 from 

the standard (u, q)-grading related to the Jones polynomial. 

Remark 2.11. The homological width is an interesting quantity. It is an invariant of 

the link taking values in N that cannot be recovered from the Jones polynomial. Bar

Natan's calculation of Kh(K) for knots with up to 11 crossings (Bar-Natan, 2002) first 

suggested that the quantity is of interest (see also (Khovanov, 2003; Shumakoütch, 

2004b)), and his conjecture that w(L) = 1 for non-split alternating links was subse

quently proved by Lee (Lee, 2005). Of course, these are not the only homologically thin 

links. In general the quantity w(L) seems mysterious, and worthy of study as a result. 
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With this notation in hand, 

k 

X (Kh(L)) = 12)-1)Obol 
i=o 

and 
k 

rkKh(L) = I)o, 
0=1 

giving rise to a first example of homologically thick links. 

Proposition 2.12. Any link L with det(L) = 0 must have w(L) > 1. 

Proof. Since VL(t) is a non-zero polynomial4 it follows that rkKh(L) > 0 for alllinks L, 

and in particular that there is at least one bo =1 O. But since det(L) = X(Kh(L)) = 0, 

there must be at least two such gradings supporting non-trivial groups. As a result, 

determinant 0 links are homologically thick. o 

2.5 Mapping cones and exaCt triangles 

The skein exact sequence for reduced Khovanov homology - which exists as a result of 

the observation that Kh(L) may be viewed as the homology of a subcomplex of CKh(L) 

- carries over directly to our grading conventions (see also (Rasmussen, 2005; Manolescu 

and Ozsvath, 2007)). For a link L(X) with distinguished positive crossing we have that 

-t Kh (LO 0) [-~c, ~(3c + 2)] -t Kh (L(X)) -t Kh (L(:::::)) [-~,~] -t 

and for a link with distinguished negative crossing L(X) we have 

Omitting grading shifts for the moment, and simplifying with the notation X for L(X), 

21L14Jones shows that VL(1) = - 1 (Jones, 1985, Theorem 15), hence VL(t) =1 0 for any link L. 
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these exact sequences are often represented by exact triangles of the form 

Kh(X)
 
/ ~
 

~ [1,0] ~ 

KhO 0 -« - - - - - - - Kh(:::::) 

Since we are working over a field, the homology Kh(L) is completely determined by the 

groups Kh(:::::) and KhO 0, together with the connecting homomorphism. This leads 

directly to the notion of a mapping cone (see (Weibel, 1994, Chapter 1), for example, 

or (Ozsvath and Szab6, 200Sc, Section 4)), which will be a useful point of view in the 

sequel. That is 

where 

D= (00 0)
a al 

is a differential (since we are working over IF) composed of the differential on 00(:::::) 
(denoted 00), the differential on 0000 (denoted al), and a, the component of the 

differential inducing the connecting homomorphism. Passing to homology, we have that 

where the connecting homomorphism raises homological 6-grading by one. 

Replacing the grading shifts (in terms of 6 and q), we have 

Kh(X) ~ H* (Kh(:::::) [- ~, ~] -; KhO 0[-~c, 1(3e + 2)]) 

Kh(X) ~ H* (KhO 0[- ~ (e + 1), ~ (3e + 1)] -; Kh(:::::)[1, -~]) 

The singly 6-graded group will be useful in many instances, and in this setting the 



43 

mapping cones simplify to yield 

Kh(X) ~ H* (Kh(:::::)[-~] -7 Kh() ()[-~c]) 

Kh(X) ~ H* (Kh() ()[-~(c + 1)] -7 Kh(:::::)[~]) 

where [.] shifts the O-grading. 

2.6 Normalization and Support 

In calculations involving the skein exact sequence absolute gradings are essential. There

fore, we will generally need to fix an orientation, although the final result will not depend 

on this choice so long as we remain consistent, according to Remark 2.3. 

In particular, w(L) depends only on Kh(L) as a relatively graded group, however deter

mining this quantity in practice will depend on absolute gradings. For this reason we 

introduce the notion of support Supp(Kh(L)) as an absolutely Z-graded quantity. Thus 

if 

Kh(X) ~ H* (Kh(:::::)[-~] -7 Kh() ()[-~c]) 

and Supp (Kh() ()[-~c]) ç Supp (Kh(:::::)[-~]) then we may write 

for bi 2: 0, since the connecting homomorphism l'aises O-grading by 1. 

The following will be a useful absolutely Z-graded object: 

Definition 2.13. The a-normalized Khovanov homology is an absolutely Z-graded the

ory defined by Kha(L) = Kh(L)[_a~L)] where a(L) denotes the signature of the link 

L. 

This turns out to be a natural grading to consider, despite the fact that we are interested 
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only in the relative grading, ultimately. Of course, Kho-(L) and Kh(L) coincide as 

relatively Z-graded groups. 

2.7 The Manolescu-Ozsvath exact sequence 

As a singly graded theory, there is a useful special case in which the skein exact sequence 

simplifies nicely in terms of the (J-normalization. 

Proposition 2.14. (Manolescu and Ozsvath, 2001, Proposition 5) Let L = L(X) 

be a link with sorne distinguished crossing, and set Lo = L(::::) and L 1 = L () O, If 

det(Lo), det(L1) > 0 and det(L) = det(Lo) + det(Ld then 

In the standard notation, this takes the form 

where (J = dL), (JO = dLo) and (Jl = dLd (see (Manolescu and Ozsvath, 2007)). 

Notice, in particular, that in this setting the orientation of the resolved crossing does 

not play a raIe and the pair of exact sequences have a single expression. 

2.8 A digression on the signature of a link 

We briefly review the work of Gordon and Litherland, constructing the signature of a 

link via the Goeritz matrix (Gordon and Litherland, 1978). The conventions we adopt 

are those of (Manolescu and Ozsvath, 2007), since our interest will be in proving a 

degenerate form of Proposition 2.14. 

The complement of a projection of a link L is divided into regions that may be coloured 

black and white in an alternating fashion to obtain the checkerboard colouring. Denote 



45 

the white regions by Ra, RI, ... , Rn. By eliminating nugatory crossings,5 we may assume 

that every crossing c of the diagram for Lis incident to distinct white regions, and assign 

an incidence number f.L(c) and type by the conventions of Figure 2.3. 

/ 
/ x 

J.L = +1 J.L = -1 Type l Type II
 
Figure 2.3 Incidence numbers and crossing types.
 

The incidence number of the diagram for L is obtained by taking the sum of incidences 

over crossings of type II. Setting 

f.L(L) = L f.l(c), 
cof type II 

the Goeritz matrix of G for the diagram of L is the n x n symmetric matrix 

- L f.L(c) i -1- j 
cER;j

9ij = 

- L9ik 't = J 
i# 

where ~j = ~ nRj for i,j E {1, ... ,n}. 

Then the signature of the link L is given by 

a(L) = signature(G) - f.L(L) 

and 

det(L) = 1det(G)1 

(Gordon and Litherland, 1978). 

5This amounts to applying Reidemeister l mayes. 
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2.9 Degenerations 

We now prove that Manolescu and Ozsvâth's exact sequence degenerates (in a very 

controlled manner) when one of the pair of determinants vanishes. Once again, a single 

expression is obtained in each case. 

Proposition 2.15. Using the same conventions as Proposition 2.14, if det(Lo) 0 

and det(L) = det(L I) -# 0 then 

Similarly, if det(Ld = 0 and det(L) = det(Lo) -# 0 then 

Proof. The proof closely follows the argument in (Manolescu and Ozsvâth, 2007) es

tablishing Proposition 2.14, and as such we will adopt the same notation. Throughout, 

a = a(L), ao = a(Lo) and al = a(Ld· There are 2 orientations to consider in each 

case, hence 4 cases to consider in total. 

Figure 2.4 Colouring conventions for case 1: L, Lo (the oriented resolution) and LI 
(the unoriented resolution) at the resolved positive crossing. For case 2 the white and 
black regions are exchanged to yield the dual colouring. 

Case 1: Suppose the distinguished crossing is positive, with det(Lo) = 0, and fix a 

checkerboard colouring of the diagram for L as in Figure 2.4 so that the distinguished 

crossing is of type II with incidence f.L = +1. Now writing Cl for the Goeritz matrix of 

LI, we have 

and Co = (a - 1 v) 
vT Cl 
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where G and Go are the Goeritz matrices of L and La respectively. As in (Manolescu 

and Ozsvath, 2007), we assume without loss of generality that G I is diagonal (with 

diagonal entries al, ... ,an) and write the bilinear form associated to G as 

Similarly, the bilinear form associated to Go may be written as 

n Vi2) 2 n ( Vi ) 2 
a - 1 - L ~ Xo + L ai Xi + ~xo( 

i=l t i=l t 

so that setting 
n 2 

L 
V. 

(3=a- -l.. 
a·

i=l t 

we obtain 

det(G) = (3det(G I ) and det(Go) = ((3 - 1) det(G I ). 

Now since 0 = det(Lo) = 1 det(Go)1 = 1,6 - 11 det(L I ) and det(LI ) 1- 0, we have that 

(3 = +1 and 

signature(G) = signature(Go) + 1 = signature(GI ) + 1. 

Using the Gordon-Litherland formula for the signature we have that 

a = signature(G) - M 

= signature(Ga) + 1 - (MO + 1) 

= ao 
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where J.t = J.t(L) and J.to = J.t(Lo), while writing J.tl = J.t(L l ) gives 

(J	 = signature(C) - J.t 

= signature(Cl ) + 1 - (J.tl + c + 1) 

as in (Manolescu and Ozsvath, 2007), noting that the incidence and type of a crossing 

determines its sign. Now sinee 

we have -1 = (J - (JO - 1 and -c = (J - (JI so that 

In terms of the (J-normalization, 

as claimed. 

Case 2: If once again we consider a positive distinguished crossing, but instead the 

resolution LI has det(Ld = 0, then fix the dual colouring to that of Figure 2.4 so that 

the distinguished crossing is of type l with incidence J.t = -1. Now letting C, Co and 

Cl be the Goeritz matrices for L, Lo and LI respectively, wehave that 

(a+ 1 v)and Cl = 
vT Co 

Diagonalizing yields 

det(C) = ;3det(Co) and det(Cd = (;3+ 1)· det(Go) 
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so our hypothesis forces (3 = -1, resulting in 

signature(G) = signature(Go) - 1 = signature(Gl ) - 1. 

Therefore, 

a	 = signature( G) - Il 

= signature(Go) - 1 - 110 

= (JO - 1 

while 

(J	 = signature(G) - Il 

= signature(G l ) - 1 - (111 + c) 

= al - c - 1 

so	 that -1 = (J - (JO and c = a - al + 1. Thus 

yields 

In terms of the a-normalization, 

as claimed. 

Case 3: Suppose the distinguished crossing is negative, with det(Ld = 0; the argument 

varies only slightly. This time, fixing the checlœrboard colouring for the diagram of L so 

that the distinguished crossing is again of type II, the incidence is Il = -1 (see Figure 
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2.5).
 

Figure 2.5 Colouring conventions for case 3: L, Lo (the unoriented resolution) and LI 
(the oriented resolution) at the resolved negative crossing. For case 4 the white and 
black regions are exchanged to yield the dual colouring. 

Following the conventions above, we have that 

a+ 1 v)and GI = ( vT Go 

(notice that the resolutions exchange roles and have been renamed accordingly). Diag

onalizing we obtain 

det(G) = ,6det(Go) and det(G I ) = (,6 + 1)· det(Go) 

so our hypothesis forces ,6 = -1, resulting in 

signature(G) = signature(Go) - 1 = signature(G I ) - 1. 

Now 

a = signature(G) - p 

= signature(Go) - 1 - (po + c) 

= ao - c - 1 
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as in (Manolescu and Ozsvath, 2007) while 

a = signature(G) - M 

= signature(Gd - 1 - (Ml - 1) 

Finally, since 

we conclude that 

In terms of the a-normalization, 

as claimed. 

Case 4: With distinguished negative crossing but det(Lo) = 0, we use the dual colouring 

to that of Figure 2.5, so that the distinguished crossing is of type l with incidence 

M = +1, and proceed as before. In this case we have 

and Go = 

Diagonalizing yields 

det(G) = ,6det(Gl) and det(Go) = (,6 - 1) . det(Gr) 

so our hypothesis forces ,6 = +1, resulting in 

signature(G) = signature(Go) + 1 = signature(G I ) + 1. 
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Therefore, 

a = signature(G) - /-l 

= signature(Go) + 1 - (/-lo + c + 1) 

= ao - c 

while 

a = signature(G) - /-l 

= signature(Gl) + 1 - /-lI 

= al + 1 

so that 

yields 

In terms of the a-normalization, 

as claimed. D 



CHAPTER III 

HEEGAARD-FLOER HOMOLOGY 

Shortly after the introduction on Khovanov homology, Ozsvath and Szab6 introduced 

an invariant of closed, orientable 3-manifolds called Heegaard-Floer homology (Ozsvath 

and SzabO, 2004d; Ozsvath and SzabO, 2004c). This area has been one of intense activity, 

and sorne of the developments parallel aspects of Khovanov homology. The intention of 

this chapter is not to attempt a complete account of this theory, but rather a survey of 

those aspects that relate to this thesis' focus on Khovanov homology. Indeed, certain 

elements of the two theories are closely entwined, and it is on this point that we aim to 

elaborate. 

There is a collection of notes that summarize the theory (Ozsvath and Szab6, 2006a; 

Ozsvath and Szab6, 2006b), as weIl as a survey paper (Ozsvath and Szab6, 200Sa). 

There is also a survey by McDuff giving a slightly different perspective (McDuff, 2006), 

outlining in particular the role played by Lagrangian-Floer homology. Sorne of the most 

important early developments in the theory are also due (independently) to Rasmussen, 

and as such his work provides an excellent account. We point to (Rasmussen, 2002) and 

(Rasmussen, 2003), in particular. 

3.1 Ozsvath and Szab6's construction 

We begin by giving a brief overview of the definition of HF(Y) associated to a smooth, 

oriented, closed, connected 3-manifold. As with Khovanov homology, we work over 



54 

lF = Z/2Z, and for the moment we make the further assumption that Y is a rational 

homology sphere. 

The construction depends on a choice of pointed Heegaard diagram (I:g , a, (3, z) for Y, 

where 9 denotes the genus of the Heegaard surface f-l(~) for sorne self indexing Morse 

function f ----7 [0,3] (as in Section 1.5), and z is a point in I:g " a " (3. 

The g-fold symmetric product of 2:9 is defined 

9 

Sym9 Eg = ~ / Sg 

where Sg is the symmetric group on 9 letters acting by permuting the coordinates. 

Symg I:g turns out to be a complex manifolds (see (Griffiths and Harris, 1994), for exam

pIe), essentially due to the fundamental theorem of algebra. 1 For example, Sym l I:1 2:! 

SI X SI (obvious) and Sym2 I:2 ~ (SI X sI X SI X SI )#CP2 (less obvious, see (Bertram 

and Thaddeus, 2001)). Symmetric products are studied extensively in (Macdonald, 

1962). 

Perutz demonstrates that Symg I:9 is a symplectic manifold (Perutz, 2008, Section 7), 

and the two natural tori 

T Cl: = CYl X ... x O:g 

and 

T,13 = {31 X ... x {3g 

are Lagrangian submanifolds. By isotopy of the surface I: g , we may assume that the 

intersection Tex n T,13 is transverse. The key idea then, is to consider the Lagrangian

Floer homology CF(Tex, T,I3) in this particular setting (Floer, 1988),2 and show that it 

1 In a local chart on L:g , the fundamental theorem of algebra allows us to move between the 
coefficients of a polynomial of degree 9 and its roots. 

2While this invariant is not always weil defined, the key observation here is that Symg Eg is a 
relatively simple symplectic manifold. In particular, 71'2 (Sym g Eg ) has relatively simple structure - in 
technical terms, Sym9 Eg is monotone - and as a result the chain complex CF(T"" T,B) is weil defined. 
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is an invariant of the under/ying 3-manifold. 

Let éF(y) be the lF-vector space generated by the set of intersection points x E T Q n 

T (3. The differential on the complex éF(y) arises from counting holomorphie disks 

in Symg 2:g . This assumes a choice of complex structure on 2:g , inducing an almost 

complex structure on Symg 2:g . 

Let D = {z : Izi ::; 1} be the standard unit disk in C. For intersection points x, y E 

T Cl: nT,B let 1f2(X, y) denote the homotopy classes of Whitney dises from x to y. That 

is 

r/J( -i) = x 

r/J(i) = yr/J : D --t Symg 2:g 
r/J(é) c T Q 

r/J(e-) c T{3 

where é = {z E aD : fR(z) > ü} and e- = {z E aD : fR(z) < ü}. 

When cP admits a holomorphie representative, we denote the Maslov index of r/J by f.L( cP); 

this quantity can be shown to be the expected dimension of the moduli space M (r/J) of 

holomorphie disks r/J. There is a natural JR action on D fixing ±i so that according to 

Gromov, M(r/J) = M(r/J)jIR is a fini te number of points whenever f.L(r/J) = 1 (Gromov, 

1985). Now the differential is defined by 

&= Xi(r/J)1 y.
I (mod2)

YET",nT,(3 
</>E1l'2 (x,y) 

J1.(</»=1 

'TI.z(</»=o 

Here, nz(r/J) is the algebraic intersection with the complex codimension 1 submanifold 

The definition of a depends on a variety of choices which we have glossed over. In 

particular, a choice of complex structure on 2:g is required,' as weil as a path of nearly 
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symmetric almost complex structures on Symg L: g (see (Ozsvath and SzabO, 2004d, 

Section 3.1; Section 4.1)). 

Theorem 3.1. (Ozsvath and Szabo, 2004d) There exist generic choices so that [p = O. 

Definition 3.2. Denote by HF(Y) the homology of the complex (éF(Y), ô). 

Theorem 3.3. (Ozsvath and Szabo, 2004d) The homology HF(Y) is an invariant of 

the manifold Y specified by the pointed Heegaard diagram (L:, 0:, (3, z) . 

Remark 3.4. The proof of invariance requires an analogue of Singer's result (see Sec

tion 1.5) for pointed Heegaard diagrams, described in (Ozsvath and Szabo, 2004 d, Sec

tion 7). 

There are sorne technical complications that arise when the restriction to rational homol

ogy spheres is removed. This is handled by considering a special subclass of admissible 

pointed Heegaard diagrams (Ozsvath and SzabO, 2004d, Section 4.2). With this done, 

the Heegaard-Floer homology groups are defined as above. 

3.2 Variants 

There is a variant CFOO(Y) that is given by a free IF[U, U-1]-module generated, once 

again, by intersections points x E Tex n T (3. In this setting, 

ôx= L L 
YET",nT,t3 

cPE"Tr2(X,y) 

J.l(cP)=l 

where deg(U) = -2. 

Using the identification Uix = [x, i], there is a natural subcomplex 

generated by [x, i] for i :; O. This is a free IF[U]-module, giving rise to a short exact 
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sequence 

o----; cp- (Y) ----; cpoo (Y) ----; cp+ (Y) ----; 0 

The induced action U : CP+(Y) ---7 CP+(Y) gives rise to a second short exact sequence 

Both short exact sequences induce long exact sequences between the resulting homology 

groups denoted HpOO(Y), HP-(Y) and HF+(Y), with :HF(Y) as above. 

Definition 3.5. The reduced Heegaard-Floer homology is the finitely generated IF -vector 

space given by HPred(Y) = ker(I-*). Equi'Valently, HPred(Y) = ker(UN ) c HP-(Y) for 

sufficiently large N. 

3.3 Gradings 

There are two gradings on éF(y) the first is a relative Zj2Z-grading that is switched 

by the differential, and the second is a splitting 

éF(y) = EB éF(y, s) 
.sESpinC 

that descends to a splitting of :HF(y). Both gradings make use of the isomorphism 

(3.1) 

The Zj2Z--grading may be seen in terms of homological data. Pixing an arbitrary 

orientation on both T 0: and T f3' we can compare this to the orientation L: g induces on 

Symg L:g in the following way: set I-(x) = ±1 depending on whether or not the orientation 

on Tx Symg L:g agrees with that of Tx T 0: ffi T x T f3. Then the algebraic intersection is 

given by 

To:· Tf3 = L I-(x), 
xET",nT{J 
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and only the overall sign on Tet' T {3 depends on the arbitrary choice of orientations on 

Tet and T{3' 

The same intersection may be defined directly on the Heegaard surface, since an arbi

trary orientation of the (Xi and f3i induces an orientation on Tet and T{3, respectively. 

Now if 9ij = (Xi' f3j then Tet' T {3 = det(9ij)· Notice however that, for the natural cel! de

composition obtained from the Morse function f, the matrix (gij) defines the differential 

C2 (Y; Z) ----7 Cl (Y; Z) on the cellular homology of Y. Therefore, Tet' T{3 = ±IHI(Y; Z)I. 

Now the Heegaard-Floer complex decomposes by cr = EBiEZ/2Z cri(Y) where t.(x) = 

(-l)i. Although /..(x) depends on the orientation imposed on Tet and T{3, /..(x)t.(y) = 

----7(-1)Jl(<t» for <P E 1f2(X,y). As a result, 8: cri(Y) cri+l' giving rise to a 7/.,(2Z

grading on HF(y). Moreover, by construction 

Thus, we have sketched: 

Lemma 3.6. (Ozsvath and Szabo, 2006b, Lemma 1.6) 

Here, and throughou t, we use the convention that IHI (Y; Z) 1 = 0 whenever the manifold 

has Hl (Y; Q) =F O. In general, we will fix this grading with the choice XHF(Y) 

IHI(Y;Z)I, as in the case of XKh(L) for L '-----+ 53. 

Remark 3.7. This relative Z(2Z-grading admits a lift to an absolute Q-grading (Ozsvath 

and Szabo, 2003a). 

There is a further refinement by decomposing according to SpinC-structures on Y. Such 

a structure is a lift of the frame bundle over Y (with structural group 50(3)) to a 

principle U(2)-bundle over Y. Turaev gives an equivalent definition in terms of vector 

fields on Y (Turaev, 1997). 
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Definition 3.8. Two non-vanishing vector fields Vl and V2 on a 3-manifold Y are called 

homologous if they are homotopie on the complement of a finite collection of 3-balls in 

Y. 

As a result, we get an equivalence relation on non-vanishing vector fields: Vl cv V2 if 

and only if Vl and V2 are homologous. Denoting by Vect(Y) the space of non-vanishing 

vector fields on Y, Turaev shows that 

SpinC(Y) = Vect(Y) / cv . 

This point of view is useful in the present context, sinee the Morse function f gives 

rise to a non-vanishing vector field on Y by the following procedure. Considel' the 

gradient vector field \lf on y (for some fixed Riemannian metric). By our choice of 

Morse function this has 29 + 2 cri tical points. For a gi ven x E T 0: n Tf3, we have a 

g tuple of points (Xl,"" Xg ) in L:g , determining 9 + 1 flow-lines rXjl'" , "/x g ,"/z· Note 

that a neighbourhood of "/z contains the index 0 and index 3 critical points, while the 

neighbourhoods of the "/Xi' taken together, contain the index 1 and index 2 critical 

points. As a result, \lf defines a non-vanishing vector field on Y once neighbourhoods 

of these flow lines are removed, and since each flow line contains exactly one critical 

point of each parity, deg\lflv(-Yxj) = deg\lflv(-yz) = 0 and hence the vector field may 

be extended to give .sz(x) E SpinC(Y) (see (Milnor, 1963)). 

Now given a pair of points x, y E T 0: nT,13, consider arcs a E T 0: and b E Tf3 beginning 

at x and ending at y; denote by E(X,y) E Hl(Y;Z) the image of the class [a - b] 

under the isomorphism (3.1). Ozsvath and Szab6 show that 7f2 (x, y) i' 0 if and only 

if E(X, y) = 0.3 The splitting of HF(Y) according to SpinC(y) results then from the 

following: 

3Str ictly speaking, we should restrict to 9 > 1 at this point. There are technical difficulties that 
arise when 9 = 1; these are handled in (Ozsvath and Szabo, 2üü4d, Section 2.4). 
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Lemma 3.9. (Ozsvath and Szabo, 2004d, Lemma 2.19) 

Remark 3.10. SpinC(Y) is an affine space for H 2(y; Z). For a fixed trivialization 

T: TY ----t Y x IR. we have 

where OT (v) = v* J.1,. Here v is taken to be orthonormal (having fixed a Riemannian metric 

on Y) and gives a homeomorphism v: Y ----t S2! and ft is the genemtor of H 2(S2; Z). 

This tums out to be a bijection, and although it depends on T, it can be shown that the 

difference 8(Vl, V2) = 8T (vd - 8T (V2) is independent of this choice. As a result, 

gives a bijection for any v E SpinC(Y), and writing 

(a, v) 1----+ a + v 

such that o(a + v, v) = a gives the affine structure. Details are spelled out in (Ozsvath 

and Szabo, 2DD4d, Section 2.6). 

Now we have that 

HF(Y) = EB HF (Y, 5), 
5ESpinC (Y) 

and this splitting respects the Zj2Z-grading. As a result, Lemma 3.6 may be refined: 

Lemma 3.11. (Ozsvâth and Szabo, 2DD4c, Proposition 5.1) 

____ {±l
XHF(Y,s) = 0 

otherwise 
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3.4 The surgery exact sequence 

There is a long exact sequence in Heegaard-Floer homology that results from considering 

surgery on a knot, or more generally fillings of a knot manifold. Given a manifold !VI 

with torus boundary, together with a pair of slopes a and (3 forming a basis for surgery 

(that is , a· (3 = +1), then the triple of manifolds (M(a), M((3) , M(a + (3)) form a triad 

of 3-manifolds; the triple (a, (3, a + (3) is a triad of slopes. 

The key property enjoyed by a triad is as follows. Note that, given a choice of orientation 

on the rational longitude À M , if there exists choices4 for which a· À M = + 1 and (3. À[\1/ = 

+1 we have 

IH1 (M(a + (3); Z)I = cM6(a + (3, ÀM) 

= cMla . ÀM + (3. ÀMI 

= cMla· ÀMI + cMI(3· ÀMI 

= IH1(M(a);Z)1 + IH1 (M((3);Z)1 

Now there is a long exact sequence relating any such triad 

----; HF(M(a)) ----; HF(M((3)) ----; HF(M(a + (3)) ----; 

Notice that this relates +1-surgery on a (3-framed knot in M(a), to the manifolds M(a) 

and M((3) , hence the terminology surgery exact sequence. In particular, for a knot 

K '-----+ 8 3 we have that 

for any n ~ o. 

With this exact sequence as a point of departure, Ozsvath and Szab6 demonstrate an 

4S uch choices always exist, though this generally cornes at the expense Ct· (3 = ±1. 
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incredible relationship between Khovanov homology and Heegaard-Floer homology. 

Theorem 3.12. (Ozsvath and Szabo, 200Sc, Theorem 1.1) There is a spectral sequence 

with E2 ~ Kh(L*), converging to Eoo ~ HF(~(S3, L)), where L* denotes the mirror 

image of L. 

Recall that Kh(L*) amounts to considering the dual of Kh(L). We will elaborate on 

aspects of this result in the next chapter, recording for the moment the following: 

Corollary 3.13. (Ozsvath and Szabo, 200Sc, Corollary 1.2) 

Proof. The first inequality follows from det(L) = IHl(~(53,L);Z)I, together with 

Lemma 3.6. The second inequality results from rkKh(L) = rkKh(L*), together with 

Theorem 3.12. D 

Of course, we have observed previously that det(L) = XKh(L), which yields the inequal

ity det(L) ::; rkKh(L) (see Section 2.4). 

3.5 L-spaces 

An L-space is a rational homology sphere with Heegaard-Floer homology that has small

est possible rank. The prototypical examples are lens spaces,5 and in particular 53 is 

an L-space. 

Definition 3.14. A closed, connected, orientable 3-manifold is an L-space if it is a 

rational homology sphere with the property that 

5Hence, L-space abbreviates the somewhat longer moniker Heegaard-FLoer homoLogy Lens space. 
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Equivalently, these manifolds are characterized by having HFred (Y) = O. While L-spaces 

are certainly of interest in the context of Heegaard-Floer homology, they seem to be an 

important class of manifolds more generally. 

Theorem 3.15. (Ozsvâth and Szabô, 2004 a, Theorem 1.4) L-spaces do not admit taut 

foliations. 6 

We devote this section to some interesting examples of L-spaces (see (Ozsvath and 

Szabô, 2005b; Ozsvath and Szabô, 2005c)). 

Proposition 3.16. :E(S3, L) is an L-space whenever L is a homologically thin link. 

Proof. This is immediate from Corollary 3.13, combined with the fact that det(L) = 

rk Kh (L) for thin links (see Section 2.4). D 

Since non-split, alternating links7 are thin (Lee, 2005), it follows that the two-fold 

branched coyer of a non-split, alternating link is an L-space. These links are a subset 

of a much larger class with the same property. 

Definition 3.17. The set of quasi-alternating links Q is the smallest set of links con

taining the trivial knot, and closed under the following relation: if L admits a projection 

with distinguished crossing L(X) so that 

det(L(X)) = det(L(:::::)) +det(L() 0) 

for which L(:::::), L() 0 E Q, then L = L(X) E Q as well. 

Ozsvath and Szabô show that non-split, alternating links are quasi-alternating, and that 

:E(S3,L) is an L-space whenever L is quasi-alternating (Ozsvath and Szabô, 2005c). 

GIn this context, a foliation F of Y is called taul whenever it is co-orientable, and there exists 
a closed curve in Y thal meets every leaf of F transversally (Eliashberg and Thurston, 1998). 

7Recall that, by definilion, an alternating link admits an allernating link diagram. 
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Indeed, this may be seen as a generalization of Lee's result, as Manolescu and Ozsvath 

have shown that quasi-alternating links are homologically thin (Manolescu and Ozsvath, 

2007). We remark however that w(L) = 1 (see Definition 2.10) is not equivalent to 

LE Q: examples of homologically thin knots that are not quasi-alternating have been 

given by A. Shumakovitch8 and J. Greene9 . 

Proposition 3.18. (Ozsvdth and Szab6, 2005b, Proposition 2.3) A manifold with el

liptic geometry (equivalently, finite fundamental group, see Remark 1.17) is an L-space. 

In fact, there is a complete characterization of Seifert fibered L-spaces (in terms of 

Seifert invariants) whenever the base orbifold is S2 (Ozsvath and Szab6, 2003c). 

As a particular example, the Poincaré homology sphere is an L-space, although this 

manifold (and its mirror image) is the only known prime, integer homology three-sphere 

with this property. 

Question 3.19. Are the Poincaré homology sphere, its mirror image, and S3 the only 

prime manifolds for which the Heegaard-Floer homology is rank one? 10 

Remark 3.20. This example demonstrates, however, that w(L) = 1 is not necessary to 

obtain an L-space b(S3, L): the Poincaré homology sphere arises as b(S3, 10124) (see 

Chapter 1) where W(10124) = 2 (see Chapter 2). 

From the surgery point of view, L-spaces are somewhat rare. For example: 

Theorem 3.21. (Ozsvath and SzabO, 2005b, Theorem 1.2) If K ~ S3 yields an L-space 

SIn a remark during a lecture by C. Manolescu at the conference Knots in Washington XXVI: the 
knot 946 has thin Khovanov homology but an off-diagonal 2/32 in odd-Khovanov homology (Ozsvath 
et al, 2007). 

9Private communication: the knot 11~0 has Khovanov, odd-Khovanov, and knot Floer homolo
gies ail supported in a single diagonal but it is not quasi-alternating. 

10 A conjecture has not been made, in print, in either direction. However, during his lectures at 
PCMI in 2006, Z. Szab6 conjectured that the answer is "yes". 
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via Dehn surgery, then 

k
 

6.K(t) = (_l)k + 2)-1)k-i(tni + e ni )
 

i=l 

where 6.K(t) is the Alexander polynomial of K, for some sequence of integers 0 < ni < 

This is quite restrictive, as demonstrated for example by (the proof of) the following 

fact: 

Theorem 3.22. (Ozsvath and Szab6, 2005b, Theorem 1.5) Surgery on a hyperbolic, 

alternating knot in S3 never yields an L-space. 

Further restrictions are given by the topology of the knot complement. 

Theorem 3.23. (Ghiggini, 2008; Ni, 2007) If K '-t S3 admits an L-space via Dehn 

surgery, then K must be fibered. 

Theorem 3.24. (Kronheimer et al., 2001; Hedden, 2007; Rasmussen, 2007) If S~(K) 

is an L-space, then 9 ~ n where 9 is the Se~fert genus of K. 

On the other hand, a given L-space surgery on S3 yields an infinite family of L-spaces. 

Proposition 3.25. (Ozsvath and Szab6) For any triad of 3-manifolds (M(a), M(/3), M(a+ 

(3)), if M (a) and M ((3) are L-spaces, then M (a + (3) is an L-space as well. 

Proof. Combining the surgery exact sequence with the homological properties of the 

triad we obtain 

rkHF(M(a + (3)) 5: rkHF(M(a)) + rkHF(M((3)) = IHi(M(a + (3); 2)1 

o 

It follows that if S~(K) is an L-space, then so is S~+i (K). More generally we have: 
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Proposition 3.26. (Ozsvath and 5zab6) Given a knot K '---+ 53 for which 5 3/ (K) is p q 

an L-space, 5;/s(K) is also an L-space for aU ~ ~ ~. 

Proof. We include a very quick - though machinery heavy - proof of this facto Cal

culating the rank of the Heegaard-Floer homology for surgery on a knot K '---+ 53 is 

accomplished by the formula 

from (Ozsvath and Szabo, 2005d, Proposition 9.5), for non-negative constants B](, CK 

depending on K. In our setting, we may assume that p, q > 0, and since 5;/q(K) is an 

L-space, rkHF(5;/q(K)) = p. This forces (2BK - l)q - P::::: 0 and C K = O. 

Now suppose ~ ~ ~. Then 

but 

BK < l(E + 1) < l(!: + 1)-2q -2s 

forces (2BK - l)s - r ::::: 0 so that rk HF(S;/s(K)) = r as claimed. o 

Thus) despite the fact that L-spaces seem to be rare in certain respects, it is easy to 

construct large families of L-spaces: 

Corollary 3.27. Up to taking mirrors, ail sufficiently large surgeries on a torus knot 

(or more generally, Berge knot) yield L-spaces. 

Another interesting family of examples results from considering certain pretzel knots. 

Theorem 3.28. (Goda et al., 2005; Ozsvath and 5zab6, 2005b) The (-2,3,q)-pretzel 

knots admit L-space surgeries for all q ~ 3. 
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This results from the caiculation of the knot Floer homology (see Section 3.7) for this 

family of knots (Goda et al., 2005, Theorem 5.1), together with (Ozsvath and Szab6, 

2005b, Theorem 1.3). See also (Ozsvath and Szab6, 2005b, Page 12). Of course, for 

q = 3,5 these are torus knots, when q = 7 this pretzel is a Berge knot (in fact, an 

example of a hyperbolic knot admitting a lens space surgery of (Fintushel and Stern, 

1980)), and when q = 9 we obtain an example of Bleiler and Hodgson of a hyperbolic 

knot admitting fini te fillings (Bleiler and Hodgson, 1996). 

The large-surgery property (Proposition 3.26) for L-spaces gives rise to another inter

esting class: 

Proposition 3.29. (Boyer and Watson, 2009) Suppose Y is a Seifert fibered space with 

base orbifold B = Rp2(al,' .. , an)' Then Y is an L-space. 

Proof. First recall that if B = Rp2(aI) then the Seifert structure is not unique. Such a 

y is either Rp3#Rp3 or admits a Seifert fibre structure with base orbifold S2(2, 2, n) 

for sorne n > O. Note however that Y has finite fundamental group in this case (see 

Proposition 1.16), and is therefore an L-space according ta Proposition 3.18. 

We take this as a base case for induction on the number of singular fibres. Suppose that 

any y with base orbifold Rp2(al,' .. , an) is an L-space. Choose a regular fibre cp in Y 

and let M = y" v (cp). This is a manifold wi th torus boundary for which Hl (M ;Q) = Q 

(see Section 1.7). The rational longitude ÀM coincides (as a siope in aM) with a regular 

fibre in aM according to Proposition 1.22. 

Choosing a meridian IL for the fibre cp with the property that IL' ÀM = 1 we have a basis 

for Dehn surgery. That is 

where a = PIL + qÀM' Note that this new Seifert fibered space has base orbifold 
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where an+1 = .6. (a, ÀM) by Theorem 1.21. In particular, by our induction hypothesis 

M(a) is an L-space whenever .6. (a, ÀM) = 1. This occurS whenever a = J.1, + qÀM for 

any q E IZ. 

Now (J.1" J.1, + ÀM, 2J.1, + ÀM) form a triad of slopes in âM. Since J.1,' ÀM = 1, this foIlows 

readily from the fact that 

IH1 (M(2J.1, + ÀM); IZ) 1 = CM .6.(2J.1, + ÀM, ÀM) 

= CM.6.(J.1" ÀM) + CM.6.(J.1, + ÀMl 'AM) 

= IH1 (M(J.1,);IZ)1 + IH1(M(J.1,+;w);IZ)1 

where CM > 0 is a fixed constant depending only on M as in Lemma 1.5. As a result 

Y2(~) = M(2J.1,+À M) is an L-space, and moreover Yn(~) = M(nj.!+ ÀM) is an L-space 

for aIl n > 0, since both M(J.1,) and M(J.1, + ÀM) are L-spaces. 

This observation does not depend on our choice of J.1" and more generally, given a = 

J.1, + qÀM for any integer q, the triple (a,na + ÀM, (n + l)a + 'AM) form a triad for 

any n > O. This completes the induction, as we have that Yp/q(p) is an L-space for 

every p, q with p, q E IZ for which (p, q) = 1 and p > 0.1 1 In other words, M(a) is an 

L-space for any slope ex =1 ÀM (that is, any slope other than the fibre slope). Of course, 

H1(M(ÀM);Q) = Q, so this manifold cannot be an L-space. o 

With these properties and examples in hand, consider the following open problem: 

Question 3.30. (Ozsvdth and Szabo, 200Sa, Question 11) 1s there a topological classi

fication on L-spaces (that is, one that does not reference Heegaard-Floer homology)? 

11 Indeed, for any slope P/k + qÀ M , writing /k = a ~ q' ÀM for sorne q' we have that P/k + qÀ M = 

pa + (q - pq')À M in terrns of the basis (a, ÀM ). 
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3.6 A characterization of Seifert fibered L-spaces 

Definition 3.31. A group G is called left-orderable if there exists a strict total ordering 

< on its elements such that 9 < h implies f 9 < f h for aU elements f, g, h E G. 

While the trivial group obviously satisfies such a criteria, for the present purposes we will 

fix the convention that the trivial group is not left-orderable. By a result of Howie and 

Short, any manifold M with torus boundary satisfying Hl (M; Q) = Q gives an example 

of a fundamental group that is left-orderable (Howie and Short, 1985). However, it is 

certainly possible that Dehn filling of such a manifold yields a manifold with fundamental 

group that is not left-orderable, and this phenomenon has been studied extensively in 

work of Boyer, Rolfsen and Wiest (Boyer et al., 2005). 

The aim of this section is to establish a connection between L-spaces and orderablity of 

fundamental groups. 

Theorem 3.32. (Boyer and Watson, 2009) Suppose Y is a closed, connected, ori

entable, Seifert fibered 3-manifold. Then Y is an L-space if and only if 1f1 (Y) is not 

left- orderable. 

Proof. If Y is a rational homology sphere then the base orbifold has underlying surface 

either 8 2 or Rp2 (see Section 1.7). 

By a result of Lisca and Stipsicz (Lisca and Stipsicz, 2007, Theorem 1.1), in the case 

where the base orbifold is 8 2 
, Y is an L-space if and only if Y does not admit a horizontal 

foliation. By a result of Boyer, Rolfsen and Wiest (Boyer et al., 2005, Theorem 1.3(b)), 

these Y admit a horizontal foliation if and only if ?Tl (Y) is left-orderable. 

The result of (Boyer et al., 2005, Theorem 1.3(b)) does not restrict to the case B = 8 2
, 

and indeed if B = Rp2 then ?Tl (Y) is never left-orderable (unless, of course, Hl (Y; Ql) i= 

0). Thus, to conclude the proof we appeal to Proposition 3.29. 0 

Remark 3.33. As noted previously, Ozsvrith and Szab6 give a characterization of Seifert 
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fibered L-spaces (in terms of Seifert invariants) whenever the base orbifold is S2 (Ozsvath 

and Szabo, 2003c). This, in turn, is exploited in (Lisca and Stipsicz, 2001), and leads to 

the above result when the base orbifold is orientable when combined with (Boyer et al., 

2005). 

3.7 The knot filtration 

There is a refinement of Heegaard-Floer homology to an invariant for knots in S3 (more 

generally, to rationally null homologous knots in an arbitrary 3-manifold). This arises 

from the fact that the knot induces a filtration on the Heegaard-Floer homology of the 

underlying 3-manifold; this filtration controls the Heegaard-Floer homology of manifolds 

obtained by surgery on the knot, a fact discovered independently in (Ozsvâth and 

Szab6, 2004b) and (Rasmussen, 2003). This is a powerful tool, and is the source of 

results such as Theorem 3.21, as well as machinery such as that used in the proof of 

Proposition 3.26. Indeed, the lmot filtration gives rise to a mapping cone formula for 

computing the Heegaard-Floer homology groups resulting from surgery (Ozsvâth and 

Szab6, 2008; Ozsvâth and Szab6, 2005d). 

A knot in S3 may be described by specifying a doubly pointed Heegaard diagram for 

S3, (L.g ,O'.,j3,z,w). This means that S3 decomposes along L.g according to sorne Morse 

function f : S3 --+ [0,3], and the union of the gradient flow lines specified by z and w 

form a knot K (passing through the index 0 and index 3 critical points of 1). 

Now éF(S3) may be described using the pointed Heegaard diagram (L.g , 0'.,13, z), and 

the knot K specified by introducing the second point w induces a filtration on the 

complex 

for any <p E 7f2(X, y). Notice that if y appears in 8x then F(x) - F(y) > 0 since 

nz(<p) = 0, defining a subcomplex 
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Considering the induced homomorphism H*(F(K, i)) ---t HF(S3) ~ JF gives rise to a knot 

invariant T(K), defined as the smallest integer i for which this morphism is non-trivial. 

In general, IT(K) 1 gives a lower bound on the Seifert genus, but whenever K admits 

lens space surgery we have that IT(K) 1 = g(K) (Ozsvath and SzabO, 2üü3b; Ozsvath 

and SzabO, 2üü5b). 

The homology of the associated graded quotient complex defines the knot Floer homol

ogy 

There is sorne information lost in passing to the homology of the associated graded 

quotient complex, but this still yields a powerful invariant. It may be computed by 

defining éFK(S3, K) the JF-vector space generated by Ta nT(3 as usual, but imposing 

the differential 

ox= L 
yET",nT{3 

<fJEJr2 (x,y)
 

jJ.(<p) =1
 

n z (<p)=O,n",(<fJ) =0
 

Writing HFK(S3, K, i) = :fIFK(K, i) we have that this theory categorifies the Alexander 

polynomial in the sense that 

While the similarity here to Khovanov homology is striking, it is particularly intriguing 

given that the constructions of each of these invariants is extremely different. 

3.8 Characterizations of the trivial knot 

As an invariant of knots in 8 3, knot Floer homology has the following notable property. 

Theorem 3.34. (Ozsvâth and Szabo, 2004a, Theorem 1.2) Let 9 be the Seifert genus 

of a knot K '--+ S3. Then HFK (K, g) f:- ü) and in particular this invariant detects the 

trivial knot. 
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There are sorne weaker incarnations of this fact that will be useful, characterizing the 

trivial knot in terms of surgery. 

Proposition 3.35. If S~(K) is an L-space for every n =1- °then K is the trivial knot. 

Proof. If S~(K) is an L-space, for all n =1- 0, then in particular S~l (K) is an L-space. 

Then by Theorem 3.24, 9 :s; n, and if K is non-trivial we may assume that 9 = 1. Hence 

by Theorem 3.23, K is a genus 1 fibered knot and must be the trefoil. In fact, S~l (K) 

must be the Poincaré sphere, and K is the right-hand trefoi1. 

Now consider S~l (K): this manifold must also be an L-space by our hypothesis. How

ever, it is well known that -l-surgery on the right-hand trefoil yields the same manifold 

as the +l-surgery on the figure eight knot (see, for example, (Rolfsen, 1976, Chapter 

9)). But this contradicts Theorem 3.22 as this knot is alternating but not torus, hence 

does not admit L-space surgeries. 12 D 

It is interesting to note that Proposition 3.35 is true only when restricting to knots in 

S3: Proposition 3.29 shows that any regular fibre in a Seifert fibration over Rp2 is a 

knot with this same property. 

Proposition 3.36. If S~(K) is an L-space, for all N large enough in absolute value, 

then K is the trivial knot. 

Proof. Since S~(K) is an L-space for N » ü we have that g(K) = T(K) by (Ozsvâth 

and Szab6, 2üü5b, Proposition 3.3). On the other hand, S~N(K) ~ -Slv(K*) is an 

L-space as well, so that g(K*) = T(K*). However, it is a standard property of T that 

T(K*) = -T(K) (Ozsvâth and Szab6, 2üü3b, Lemma 3.3). Therefore, since g(K) = 

g(K*) we have shown that T(K) = g(K) = -T(K) hence g(K) = °and K must be the 

trivial knot. D 

12Equivalently, it may be seen by direct computation via the mapping cone formula for integer 
surgeries (Ozsvath and Szab6, 2008) that -l-surgery on the right-hand trefoil is not an L-space. Note 
also that the calculation of HF(S~ (K)), when K is the trefoil, was originally given in (Ozsvath and 
Szab6, 2004c). In brief, Proposition 3.35 is certainly "known to the experts". 
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We remark that, from the argument above, it is enough to have the existence of tiome 

No for which both 8~No(K) and 8~No(K) are L-spaces to ensure that K is the trivial 

knot. 

Knots in 83 are also well understood in the context of Question 3.19 (see, for example, 

(Hedden and Watson, 2008)): 

Proposition 3.37. If 8?/q(K) is an L-space for some non-trivial knot K, then q = 1 

(respectively -1) and K is the right-hand (respectively left-hand) trefoil. In particular, 

the Poincaré homology sphere (and its mirror image) are the only non-trivial L-space 

integer homology spheres that arise via surgery on a knot in 8 3 . 

Proof. By passing to the mirror image of K if necessary, we may assume without loss 

of generality that q > O. 

Since 8?/q(K) is an L-space, Proposition 3.26 ensures that 8~1 (K) is an L-space as 

well. In this case, Theorem 3.24 forces g S 1, and since K is non-trivial by hypothesis 

we have that g = 1 (and the knot Floer homology of K must be that of the trefoil by 

(Ozsva,th and Szabô, 2005b)). Now Theorem 3.23 implies that K is fibered. Thus, as a 

fibered, genus one knot admitting an L-space surgery, K can only be the trefoi1. 0 



CHAPTERIV 

INVOLUTIONS AND TANGLES 

We turn now to tangles, one of our primary objects of study. These arise naturally as the 

component pieces of knots and links (the approach taken by Conway in his enumeration 

of knots (Conway, 1970)), however we will be more interested in tangles as the branch 

sets for certain manifolds with torus boundary (Lickorish takes this is the point of view 

(Lickorish, 1981)). 

It is difficult to give accurate historicai references for much of this material, as many of 

the results seem firmly entrenched in folklore. The decomposition of knots into tangles, 

and in particular the relationship between rational tangles and continued fractions, 

however, is generally attributed to Conway (Conway, 1970).1 For more on this approach, 

new proofs and further references see (Goldman and Kauffman, 1997; Kauffman and 

Lambropoulou, 2004). 

The study of tangles from the point of view of two-fold branched covers seems to have 

been popularized by Montesinos (Montesinos, 1975). The approach taken in this work 

is heavily influenced by Montesinos' unpublished notes (Montesinos, 1976), as well as 

the work of Lickorish in the study of prime knots (Lickorish, 1981). We also point to 

(Bleiler, 1985; Montesinos and Whitten, 1986) bearing particular relation to this work, 

though these references are certainly not exhaustive. 

lThe tangles that we will consider are 2-tangles, sometimes called Conway tangles. 
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Finally, much of the material that will be needed can be found in Rolfsen 's classic text 

(Rolfsen, 1976), which has become the standard reference. 

4.1 Tangles 

A tangle is a pair T = (B 3,r) where B 3 is a 3-ball and r '-----t B 3 is a pair of properly 

embedded arcs meeting the boundary transversally in 4 distinct points, together with a 

finite collection (possibly empty) of closed components. That is, 

Equivalence of tangles is through homeomorphism of the pair (B3,r) that need not fix 

the boundary in general (though or is always 4 points). This is the point of view taken 

in Lickorish, for example (Lickorish, 1981). 

Tangles arise naturally as component pieces of knots. Given a knot K '-----t S3 and an 

embedding S2 '-----t S3 such that S2 intersects K transversely in 4 points, the resulting 

decomposition of S3 into 3-balls restricts to a decomposition of K into tangles, denoted 

K = Ta U Tl, Since :E(S2, {4 points}) = :E(oB3, or) is a torus, the key observation is 

that such a decomposition of K lifts to a decomposition of the two-fold branched cover 

:E(S3, K) along a torus. 

A tangle is called rational whenever it is homeomorphic to the tangle (B3, ';::J These 

are the simplest tangles, but they play an important role. 

Definition 4.1. A knot K has tangle unknotting number one if there is a decomposition 

K = TauTl with the property that TauT2 is the trivial knot, where Tl and T2 are rational 

tangles. 

Notice that this generalizes the cornmon notion of unknotting number one: such a lmot 

contains the specific rational tangle (B3 , X), and becomes trivially knotted when this 

tangle is replaced with the tangle (B 3 , X). Of course (B3, X) ~ (B3 , X) as tangles (in 
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the present setting), though this is rarely the case when such a tangle is included in a 

knot since this effectively fixes a choice of framing (see below). 

4.2 An action of the 3-strand braid group 

As with knot diagrams, we will generally confuse a tangle T = (B3,T) and a diagram in 

the plane representing it. However, as we are considering tangles up to homeomorphism 

that need not fix the boundary, there are many diagrams (in the sense of Conway) 

representing a given tangle (in the sense of Lickorish). 

To this end, we introduce a particular action of the 3-strand braid group 

on the space of tangles, T. Braids in this setting are depicted horizontally, read from 

left to right, with standard generators 

For a given braid (3 E B3 the action 

(T, (3) 1-1 T{3 

is defined by taking T{3 as the tangle depicted in Figure 4.1. 

Figure 4.1 The tangle T{3. 
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It is straightforward to verify that this is a weil defined action on tangles (see (Watson, 

2006), for example). Notice that this specifies a homeomorphism of the given tangle, and 

as such this action is trivial when considering tangles up to homeomorphism (though 

the choice of diagram for a fixed tangle may be altered dramatically). However, this 

action of B 3 turns out to be useful when viewed as a change of framing. 

4.3 Strong inversions and two-fold branched covers 

A knot K <--.j S3 is called strongly invertible whenever there is an involution taking the 

knot to itself, and fixing exactly 2 points on the knot. Since there is a unique orientation 

preserving involution with non-empty fixed point set on S3 up to isotopy (Waldhausen, 

1969),2 an equivalent definition is that such knots may be put into general position with 

respect to the fixed point set of this involution, as follows (c.L Definition 1.11): 

Definition 4.2. Given a knot K <--.j S3, let f be the restriction of the standard involution 

on 53 to the complement M = 53 "v(K). A knot K <--.j 53 is strongly invertible if 

f is an involution on M for which Fix(J) intersects the boundary aM transversally in 

exactly 4 points. 

Notice that in this setting Fix(J) is always a pair of arcs embedded in M. 

A natural first example is given by the trivial knot. This is a strongly invertible knot 

by virtue of the fact that the solid torus is a two-fold branched cover of a solid ball, 

branched over a pair of unknotted arcs. These arcs are obtained by intersecting a 

tubular neighbourhood of the trivial knot (a solid tOI'us) wi th the fixed point set of 

the standard involution on 53. In fact, we have the following equivalent definition of a 

rational tangle (see (Lickorish, 1981)). 

Definition 4.3. A rational tangle has two-fold branched cover that is a solid torus. 

The collection of rational tangles arise by considering T/3 for all (3 E B3 where T = 

2Thus, we take as standard involution on S3 ~]R3 U {oo} the rotation fixing the z-axis. 
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(B3 
,:::::). As a result, each of these choices of representative for T are in bijection with 

the possible Seifert fibrations of the solid torus (as in Section 1.7) in the coyer (see 

(Montesinos, 1976)). 

More generally, we have the following: 

Proposition 4.4. When K '-----+ S3 is strongly inveriible, the quotient of M by the action 

of f is a 3-ball. 

Proof. Extending f to S3, across the surgery toms of the trivial surgery, gives the 

standard involution on S3 by definition of strong invertibility. The quotient of this 

involution is S3, decomposed along a sphere obtained by the quotient of the torus aM. 

Since S3 decomposes into a pair of 3-balls for any smooth embedding S2 '-----+ S3, M / f 

must therefore be homeomorphic to B 3 . 0 

As a result, for any strongly invertible knot K'-----+ S3, the complement M = S3 " v(K) 

is a two-fold branched coyer of a tangle T = (B3,T), where T is given by the image of 

Fix(J) in the quotient. Thus, while M / f is a relatively simple manifold, as an orbifold 

it may be quite complicated. 

A second example is provided by the trefoi1. This is a strongly invertible knot, as illus

trated in Figure 4.2. To construct the tangle that arises as the quotient, a fundamental 

domain for the involution is needed. Then the tangle may be obtained by isotopy, as 

shown. With a little more care, it is possible to keep track of the image of the canon

ical longitude in the quotient (see (Bleiler, 1985), for example). The resulting tangle 

diagrams illustrated are homeomorphic, giving two different representatives for the quo

tient tangle. Indeed, by (Schreier, 1924) or (Montesinos, 1976), this tangle is unique up 

to homeomorphism. 

Remark 4.5. There is another way to see that the tangle given in Figure 4.2 is accurate, 

from the point of view of (Montesinos) 1976). Notice that this tangle is a sum of two 

rational tangles: this refiects the Seifert fibre structure in the cover) recalling that the 



80 

Il;> 

Figure 4.2 The trefoil with its strong inversion (left) , an isotopy of a fundamental 
domain for the involution (centre), and two homeomorphic views of the tangle associated 
to the quotient (right). Notice that both representatives of the tangle have the property 
that T (t) is the trivial knot, giving a branch set for the trivial surgery. 

complement of the trefoil is Seifert fibered over D 2 (2,3). Indeed, the two tangles lift to 

a pair of solid tori identified along an essential annulus, the cores of which are singular 

fibres of order 2 and 3. 

There is a large class of examples from which to draw, since many "smaU" knots3 turn 

out to be strongly invertible. The same is true for some familial' classes of knots: aU two

bridge knots are strongly invertible (see (Montesinos, 1976)), as are aU torus knots by 

3Deliberately impresise, but we take this to mean knots with up to 11 crossings (Le. those found 
in Rolfsen's table), say. 
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a result of Schreier (Schreier, 1924). More generally, Berge knots provide an interesting 

class of strongly invertible knots (Osborne, 1981), since they embed on a Heegaard 

surface of genus 2. 

It is possible to work with a slightly larger class of manifolds with torus boundary. In 

general, a strong inversion on a manifold with torus boundary will refer to an involution 

with 1-dimensional fixed point set intersecting the boundary transversally in 4 points, 

as in Definition 1.11. 

Definition 4.6. Given an irreducible knot manifold M with Hl (M;!Q) = !Q, suppose 

that there is a strong inversion f E End(M) with the property that MI f is homeomor

phic to a ball. Such M will be called a simple, strongly invertible knot manifold. 

For a given simple, strongly invertible knot manifold, there is always a tangle T = 

(B3, T) associated to the quotient of the strong inversion. Thus M = :E(B3 , T), where 

T = (B3,T) will be referred to as the associated quotient tangle. Note that in the 

presence of multiple strong inversions, this tangle is not unique and depends on a fixed 

choice of involution. In the given notation, T refers to the homeomorphism class of the 

tangle, while T will denote a given choice of representative. Such a choice will often 

arise as a choice of diagram for the tangle. 

Notice that, by construction, there is a natural operation of refiection on a simple 

strongly invertible knot manifold given by M* = :E(B3, T*) where M = :E(B3 , T) and 

T* denotes the mirror of the branch set. 

While complements of strongly invertible knots in S3 provide the primary source of 

examples of simple, strongly invertible knot manifolds, we remark that the latter is 

certainly a much larger class. For example, the exterior of a generalized torus knot 

those manifolds Seifert fibered over the disk with two cone points - always provides 

such a manifold. The following is due to Montesinos. 

Proposition 4.7. (Montesinos, 1976) Let Y be a Seifert fibre space with base orbifold 

S2 (p, q, r). Then Y ~ M (a) where M is a simple strongly invertible knot manifold and 
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M has Seifert fibre structure with base orbifold D 2 (p, q). 

Proof. Let M be a knot manifold endowed with a Seifert fibre structure and suppose 

that the base orbifold is D2(p, q), the disk with two cone points. We may assume that 

D 2 = {z E C :Izi :s: 1}, and that the cone points p, q lie to either side of 0 on the 

real axis in the interior of D 2 . Note that such a Seifert fibre space is a union of solid 

tori along an essential annulus that corresponds to the lift of the imaginary axis in the 

interior of D 2 . As we have noted previously, the solid torus admits a strong inversion, 

and such a strong inversion fixes the singular fibre of any Seifert fibre structure on the 

solid torus. In particular, the solid torus as a Seifert fibre space has base orbifold D 2 

with a single cone point, and the strong inversion corresponds to a refiection in the real 

axis. Now the refiection p(z) = i in the real axis (fixing the cone points p, q) lifts to a 

strong inversion on M, and p fixes the singular fibres. 

Choose a regular fibre cp CaM. By Theorem 1.21, the Dehn filling M(cp) must be a 

connect sum of lens spaces. Further, extending the strong inversion across the surgery 

torus gives a strong inversion on M(cp), the quotient of which is S3 (Montesinos, 1976). 

As a result, MI f ~ B 3 as in the proof of Proposition 4.4. 

Now suppose that Y is Seifert fibered, with base orbifold S2(p, q, r). Removing a tubular 

neighbourhood of a singular fibre yields a knot manifold M that is Seifert fibered with 

base orbifold D 2 (p, q). Such an M must be simple and strongly invertible. 

As a particular example, it follows that the twisted I-bundle 

over the Klein bottle is a simple, strongly invertible knot man

ifold (this manifold is not the complement of a knot in S3, but 

rather the complement of a knot representing twice the gener

ator of the first homology in S2 x SI). The associated quotient 

tangle for this manifold is shown on the right; note that this 

is the unique manifold with a D2 (2, 2) structure (see, for example, (Montesinos, 1976)) 

and this structure, arising as the identification of two fibered solid tori (each with base 

0 
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orbifold D 2 (2)) along an essential annulus, is reflected in this tangle as the sum of 

rational tangles. 

4.4 Branch sets for Dehn fillings 

For a given simple strongly invertible knot manifold M, any representative of the as

sociated quotient tangle T has a pair of distinguished arcs (1'1,1'0) in the boundary as 
o 

illustrated in Figure 4.3 that meet in a single point. The hemisphere (that is, the eastern 

and southern hemisphere) containing each arc lifts to an annulus in 8M = 'L.(8B 3 , 8T), 

so that the pair hl, 1'0) lifts ta a (unoriented) basis for H I (8M; Z). By fixing an 
o 

orientation so that ;Yl . ;Yo = 1, we obtain a basis for Dehn fillings of M. 
o 

1'1 o 

1'0
 

Figure 4.3 The arcs 1'1 (red) and 1'0 (blue) in the boundary of T.
 
o 

Let ~ = [al, ... , ar ] denote the continued fraction expansion 

where al ~ 0 and ai > 0 for i > 1 when ~ 2 0 (when ~ :::; 0, al :::; 0 and ai < 0 for 

i > 1). To ~ we associate the braid 

r even 

r odd 

Now observing that 0 = [0], and fixing the convention ~ = [] (with length r = 0), denote 

by T( ~) the link obtained by the closure of T{3 depending on whether r is even or odd 

as in Figure 4.4 (a particular example is shown in Figure 4.5). 
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~ ~
T(O) 

Figure 4.4 The odd-closure T(O) and the even-closure T(Ô) of the tangle T. 

Now the strong inversion on M extends to an involution on a Dehn filling of M, giving 

rise to a two-fold branched cover of S3, branched over a link that we may now make 

explicit. 

Proposition 4.8. Let M be a simple strongly invertible knot manifold. For a given 

slope a = p-;Y~ + q-;Yo we have that :E(S3, T(~)) ~ M(a). 

Sketch ofproof. First observe that :E(S3,T(0)) ~ M(-;Yo) and :E(S3,T(Ô)) ~ M(-;Y!). 
o 

Now consider the action of 0"2. We daim that this half twist (viewed as an action on 

the disk with 2 marked points) lifts to a Dehn twist along the Curve -;Yl. Indeed, the 
o 

two fold branched cover of this disk is an essential annulus in aM (c.f (Rolfsen, 1976, 

Chapter 10)). In terms of the basis (-;Y!, -;Yo), this Dehn twist may be written 11 0), 
o ( 1 

Similarly, the action of 0"11 lifts to a Dehn twist about -;Yo; this takes the form (0
1 Il). 

In general, for ~ = [al"'" ar ], the action of the associated braid may be written (in 

the case r is even) as 

(the case r odd differs only in the first matrix of this product). We leave it to the reader 

to check that the first column of the rcsulting matrix is (;) so that we have specified 

the filling slope a = p-;Y! + q-;Yo as desired. Details may be found in Rolfsen (Rolfsen, 
o 

1976, Chapter 10). o 
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Corollary 4.9. Given a basis (~, (3) for surgery in àM there is a choice of representative 

for T so that ('1'1,1'0) lifts to (~, (3).
o 

Proof. For any choice of representative of T, write ~ = n~ + q%. In terms of this 
o 

representative then, M(~) = :E(53,T(~)). However, by removing the arcs forming the 

dosure as in Figure 4.4, the resulting tangle may be viewed as a reframing of T, and 

yields a representative compatible with ~. By twisting, this representative may be made 

compatible with (~,(3) since ~. (3 = 1. o 

As a result, for any choice of basis (~, (3) for Dehn surgery on a simple strongly invertible 

knot manifold, a compatible representative for the associated quotient tangle exists so 

that ~ =;Yl and (3 = ;Yo· Notice that, as a result of Lemma 1.5, we have that 
o 

once a basis for Dehn surgery, and compatible associated quotient tangle have been 

fixed. In particular, given a strongly invertible knot in 53 there is always a choice of 

associated quotient tangle for which 

Such a representative will be referred to as the canonical representative for the associated 

quotient tangle. 

The fact that Dehn surgery on simple, strongly invertible knot manifolds may be viewed 

as a rational tangle attachment in the branch set is a generalization - or perhaps, 

incarnation - of the Montesinos trick (Montesinos, 1975), which says that an unknotting 

number one knot has two-fold branch coyer that may be obtained by half-integer surgery 

on sorne other lmot in 53. More generally, we have: 

Proposition 4.10. The two-fold branched cover of a tangle unknotting number one 

knot may be obtained by surgery on a knot in 53. 
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Praof. Let K = Ta U TI be a tangle unknotting number one knot (as in Definition 4.1), 

and U = Ta U T2 the corresponding tangle decomposition of the trivial knot. Since Tl 

and T2 are rational, the branched covers :E(S3, K), :E(S3, U) differ only in a solid torus, 

that is, by a Dehn surgery. On the other hand, the branched cover of the trivial knot 

is the three-sphere. D 

Finally, the arguments in the sequel simplify considerably due to the following observa

tion which allows us, up to mirrors, to consider only positive surgery coefficients (and 

hence restrict to positive continued fractions). 

Proposition 4.11. Let M be a simple strongly invertible knot manifold, together with 

a fixed basis for Dehn surgery and compatible associated quotient tangle. Then 

Proof. Since M* = :E(B3,T*), we have that M*(a) = :E(S3, T(~)"'). From the definition 

for T(~), it follows that T(~)'" ~ T*(-~). D 

4.5 On continued fractions 

There are three fundamental properties for continued fractions relating to Dehn filling 

that will be essential for the inductive arguments that follow. Since it will always be 

possible as a result of Proposition 4.11 to work with positive4 surgeries - and hence pos

itive continued fractions - by passing to the mirror image, we will state these properties 

for positive continued fractions only. 

Therefore, we as'sume that ~ = [al"'" ar ] is positive, with al 2: 0 and ai > 0 for aU 

i> 1 

Property 4.12. l~J = al and r~l = al + 1. 

4More precisely, positive with respect to the rational longitude )w in the sense that the filling 
slope Q has the property Q . ÀM > O. 
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0 

Proof. It is immediate from the definition of ~ as a continued fraction that al :s ~ <
 

al+lfor~=[al, ... ,ar]'
 

Property 4.13. [al"", ar , 1] = [al" .. , ar + 1].
 

Proof. This is immediate from the partial evaluation of the continued fraction:
 

o 

Figure 4.5 The link T( g) obtained from the odd-closure with the fraction [1,3,3] (left) , 
is isotopie to the link obtained from the even-closure with the fraction [1,3,2 + 1] = 
[1,3,2,1] (right). 

It is important to note that this equality of continued fractions manifests itself as isotopie 

links when forming T(~), for any tangle. This results from the fact that the even- and 

odd-closures replace one another, as is illustrated in a particular case in Figure 4.5. 

Finally, we turn to the behaviour of T( ~) under resolutions. 

Definition 4.14. The terminal crossing of T( ~) is the last crossing added by the action 

of 13 E B 3 specified by the continued fraction. That is, the terminal crossing corresponds 

to the last generator in the braid word 13 = 0"~1 ... o"~r (where O"E is either 0"2 or 0"1 1 

depending on the parity of rJ. 

Our convention will be that the terminal crossing of T( 1?) is resolved to obtain T( 12Q)
q qo 

and T(El).
qI 
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P t 4 15 12 - EQ..±.El. h PQ - [ ] d Pl - [ - 1]roper y .. q - qo+ql W ere qo - al,···,ar-l an ql - al,···,ar-l,ar . 

Proof. Recall that a continued fraction may be recursively defined by convergents ~ 

where h_ l = 0, ho = 1 and hn = anhn- l + hn- 2 for n > 1, and k_ l = 1, ko = 0 and 

kn = ankn- l + kn -2 for n > 1. 

INow write hr_1 = Po and !lI:. = Pl then 12.Q.±.12l. = hr+hr - = [a ... a - 1 1] so that 
kr-I qo kr ql' qo+ql kr+kr_1 l" r " 

applying Property 4.13 we have pO++12 1 = [al, ... , ar ] = 12 as claimed. 0 
qo ql q 

Figure 4.6 Resolving the terminal crossing of T(i~) = T[I, 3, 3] gives O-resolution with 
El = [1 3 2] = Q and one resolution with PQ = [1 3] = 1.
ql " 7 qo ' 3 

A particular example of Property 4.15 is illustrated in Figure 4.6. Notice that PQ
qo 

corresponds to the O-resolution when ris even, and the l-resolution otherwise. Similarly, 

Pl corresponds to the l-resolution when r is even, and the O-resolution otherwise. 
ql 

When ~ = [al"", ar] we will use the notation T(~) = T[al,"" ar] for the closure when 

convenient. 

4.6 Triads for tangles 

Suppose a and {3 are a pair of slopes in aM with a . {3 = +1. Fix a compatible 

representative for the associated quotient tangle T = (B 3,T) with the property that 

M(a) = ~(S3,T(Ô)) and M({3) = ~(S3,T(O)). 

Proposition 4.16. If T( Ô) and T(O) are quasi-alternating, and a· )w, (3. ÀM > 0, then 

T(I) is quasi-alternating as well. 
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Remark 4.17. Note that the quasi-alternating hypothesis ensures that neither ex nor (3 

coincides with the rational longitude. 

Proof of Proposition 4.16. We need to calculate det(T(l)). To this end, by applying 

Lemma 1.5 we have that 

det(T(l)) = IH1 (M(ex + (3);Z)1 

= CM/:l( ex + (3, ÀM) 

= cMI(ex + (3) . ÀMI 

= cMlex· ÀM + (3. ÀMI 

= cMlex· ÀMI + cMI(3· ÀMI 

= cM6.(ex,ÀM) + cM6.((3,ÀM) 

= IH1 (M(ex);Z)1 + IH1(M(,6);Z)1 

= det(T(~)) + det(T(ü)), 

which verifies that T(l) is a quasi-alternating link, since both T(Ô) and T(Ü) are quasi

alternating. D 

Remark 4.18. Notice that the condition on intersection with ÀM may be relaxed at the 

expense of taking mirrors. For any M(ex) and M((3) with quasi-alternating branch sets 

T(~) and T(O) we can ensure positive intersection with ÀM at the expense of ex· (3 = ±1. 

In the case that ex . (3 = -1, the same argument works by passing to mirrors. Any 

quasi-alternating link has quasi-alternating mirror image so that if T(~) and T(Ü) are 

quasi-alternating then one ofT(-l) orT(l) is quasi-alternating. 

Definition 4.19. A triad of links (T(à),T(ü),T(l)) corresponds ta a triple (ex, (3, ex+ (3) 

where ex· (3 = l, ex· ÀM > 0, and (3 . ÀM > O. 

The requirement that ex and ,6 intersect positively with À M is stronger than necessary, 

since it is attainable up to taking mirrors. However, with this assumption we have: 
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Theorem 4.20. A triad of links, for which T(Ô) and T(O) are quasi-alternating, gives 

Tise to an infinite family of links T(~) E Q, for ~ ~ o. 

Proof. First observe that T(n) is quasi-alternating for every n ~ O. This is immediate 

by induction on n, since 

det(T(n)) = IHI(M(na + (3); Z)I 

= cM.6.(na + (3, ÀM) 

= cMI(na + (3) . ÀfV11 

= cMlna . À M + (3 . ÀMI 

= cMla· ÀMI + cMI((n - l)a + (3) . ÀMI 

= cM.6.(a, ÀM ) + cM.6.((n - l)a + (3, ÀM) 

= IH1(M(a); Z)I + IHI (M((n - l)a + (3); Z)I 

= det(T(t)) + det(T(n - 1)), 

with Proposition 4.16 providing a base case. 

For T(~), we need a second induction in the length of the continued fraction ~ = 
[al"", ar ]. The base case r = 1 is the observation above that T(n) is quasi-alternating, 

applying Property 4.12. 

Suppose then that T(~) is quasi-alternating for aIl ~ ~ 0 that may be represented by 

a continued fraction of length r - 1. By resolving the terminal crossing and applying 
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Property 4.15, 

det(r(~)) = IHI(M(pa + q,6);Z)1 

=cMD..(pa + q,6,)'M) 

= CM I(pa + q,6) . )'MI 

=cMI(po + PI)a . ÀM + (qO + ql),6· ÀMI 

= cMI(poa + qo,6) . ÀMI + CMI(PIŒ + ql,6) . ÀMI 

= CMD..(pOŒ + qo/3, ÀM) + CMD..(PIŒ + QI,6, ÀM) 

= IHI(M(Püa + Qo,6);Z)1 + IHI(M(Pla+ QI,6)jZ)1 

= det(r(~)) + det(r(~)) 

where Po = [al, ... ,ar -1] and Pql = [al, ... ,ar-l] when r is odd (and these are switched 
qo 1 

when r is even). In either case, we are reduced to a continued fraction of length r - 1 

which must be quasi-alternating by our induction hypothesis, and a continued fraction 

[al,'" ,ar -1] with r th entry reduced by one. 

Since [al, ... ,ar -I,l] = [al,'" ,ar-l + 1] by Property 4.13, repeating the above argu

ment ar - 1 times completes the induction. o 

Remark 4.21. We point out that Theorem 4.20 can be very useful if one is interested 

in constructing infinite families of quasi-alternating links. Indeed, this has been pursued 

in (Champanerkar and Kofman, 2001; Widmer, 2008) to construct such families of 

Montesinos links. However, these examples are verified using combinatorial methods 

for computing the determinant. Ey using the associated Dehn filling to control the 

determinant, a wider range of examples seem accessible. Indeed, it seems likely that the 

examples in both works may be recovered via Theorem 4.20. 

4.7 Branch sets for L-spaces obtained from Berge knots 

Theorem 4.20 gives a tool with which to study the overlap between the various classes 

of L-spaces introduced in Chapter 3. 
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Proposition 4.22. For large enough integer surgery coefficient N, the bmnch set for 

S~(K) is quasi-alternating whenever K is a Berge knot (up to possibly replacing K by 

its mirror). Moreover, for every ~ > N the branch set associated to ~ -surgery on K 

must be quasi-alternating. 

Proof. For any Berge knot K there is sorne integer N, positive up to taking mirrors, 

with the property that S~(K) is a lens space. As a result, (/1, N /1 + À, (N + 1)/1 + À) 

gives a triad of slopes, in terms of the canonical basis (/1, À) for K. 

Moreover, since Berge knots are strongly invertible, there is an associated quotient tangle 

T = (B 3 , T') with representative so chosen so that T'(5) is unknotted, and S~(K) = 

:E(S3,T'(0)). By construction, both branch sets are quasi-alternating: the trivial knot 

T'(5) and sorne non-split 2-bridge link T'(O). 

Now applying Theorem 4.20, T'(~) must be quasi-alternating for every ~ 2: 0, so that the 

L-space S(Nq+p)/q(K) is branched over S3 with quasi-alternating branch set T'(~).5 D 

As a result, many6 of the L-spaces arising as surgery on a Berge knot are also obtained 

as two-fold branched covers of quasi-alternating links. This implies in particular that 

the corresponding branch sets have thin Khovanov homology. Although this cannot be 

the case for ail possible fillings when K is non-trivial (c.f. Proposition 3.35), it turns 

out that in terms of homological width, the branch set corresponding to a filling of a 

Berge knot cannot be too much more complicated. 

Proposition 4.23. Surgery on a Berge knot has branch set with width at most 2. 

Proof. Fix a representative T = (B3, T') for the associated quotient tangle of K that is 

compatible with the basis for surgery (/1, N /1 + À), as in Proposition 4.22. According to 

SNotice that if N ::; ~ then Nq ::; T so that T = Nq + p for p ~ 0 and ~ = N~+P. 

6Though not al!: consider the Poincaré homology sphere, for example. 
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Proposi tion 4.22 then, T' (~) is homologicaUy thin for aU ~ > N (up to taking mirrors) 

by vi l'tue of being quasi-alternating. 

Notice in particular that T'(I) is a homologicaUy thin link, with 

(4.1 ) 

where c = n_(T'(t)) -n_(T'(I)) = n_(T'(t)) -n_(T'(O)). That the resolved crossing of 

T'(I) is positive foUows immediately from the fact that T'(Ô) is a trivial knot. RecaU that 

our choice of orientation is arbitrary, though fixed, since we are working with Khovanov 

homology as a relatively Z-graded group in this setting (d. Section 2.4). 

Similarly, 

Kh(T'(-I)) ~ H* (Kh(T'(Ô))[_c't1
] ---7 Kh(T'(O))[~]) 

Kh(T'(-I)) ~ H* (Kh(T'(Ô))[-~l---7Kh(T'(O))[-~][l]) 

~ H* (Kh(T'(Ô))[-~][-I]---7 Kh(T'(O))[-~]) [1] (4.2) 

Now by ignoring the overaU shift of [1] since we are working with the relatively 6-graded 

group, w(T'(I)) = 1 implies that W(T'( -1)) :S 2 (this foUows from comparison of the 

expressions (4.1) and (4.2)). 

In general, if n > 0 then 
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50 that by iteratively applying this sequence we obtain 

Kh(r'(-n)) ~ H. (E!1Kh(T'(~))[-'-~+l]~ Kh(T'(O))[~]) 

~ H, ( E!1Kh(T'(à))HII-1] ~ Kh(T'(OllH]) ["il] (4.3) 

As a result, TI(-n) may be computed for ail n > 0 in terms of TI(O) and TI(~), and it 

follows that w(TI(-n)) :s: 2 for ail n > O. Note that width 2 must occur: det(L) = 0 

implies w(L) > 1 according to Proposition 2.12. Nevertheless, we obtain the bound as 

claimed for ail branch sets associated to integer fillings: W(TI (n)) :s: 2 for every integer 

n. 

The key observation at this stage is that 

Supp (Kh(T'(n + l))[X]) ç Supp (Kh(T'(n))[x' ]) 

as absolutely Z-graded groups, when shifted (by sorne [x] and [Xl]) according to the 

mapping cones above (compare Equations (4.1), (4.2) and (4.3)). In particular, it 

follows that 

since det(TI(n + 1)) = det(TI(n)) + 1 (and applying Proposition 2.14 or Proposition 

2.15). 

To conclude the proof, fix the canonical representative for the associated quotient tangle. 

That is, S3(K) = ~(S3, T(O)) while T(~) is the trivial knot as before. We will show that 

W(T(~)) :s: max {w(Tl~J), w(Tr~l)} :s: 2 

for every ~-surgery. 

As before, we need only consider ~ > 0; the case ~ < 0 follows by considering mirrors. 

Since w(T (n)) :s: 2, we have a base case for induction in the length of continued fraction 
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~ = [al,'" ,ar ]. Suppose then that the result holds for aU continued fractions of length 

r - 1, and that either 

or the inclusion is reversed (recall that the 0- and l-resolutions alternate roles, depending 

on parity). We proceed in two cases. 

Case 1- 1 < 1?• g 

By resolving the the terminal crossing of T(~) = T[al,'" ,ar] we have that 

det(T(~)) = IHl(M(pf.L + qÀ); 2)1
 

= IHl (S;/g(K);2)1
 

=P 

= Po + Pl 

= IHl(S;o/go(K); 2)1 + IHl(S;l/gl (K); 2)1 

= det(T(~)) + det(T(Pl))go gl 

since we have fixed a representative compatible with the canonical framing. Notice that 

1 .:::; ~~, ~~, so that we are in a position to apply Proposition 2.14: 

KhO'(T[al,'" ,arD 

c:>! {H* (KhO'(T[al, ... ,ar -1]) ---t KhO'(T[al, ... ,ar-l])) for r odd 

H* (KhO'(T[al, .. ' ,ar-l]) ---t KhO'(T[al,'" ,Or -1])) for r even 
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By iterative application of Proposition 2.14 then we have 

Kha(T[al,'" ,arD 

~ {H* (EBar-l Kha(T[al, ... , ar-l + 1D---7 Kha(T[al, ... , ar-1D) for r odd 

H* (Kha(T[a1, ... ,ar- 1]) ---7 EBar_1Kha(T[al, ... ,ar-l +1])) for r even 

Now the result follows from the inductive hypothesis. Notice that the expression above 

is an abuse of notation: there may be further differentials to consider among the groups 

of Kha(T[a 1, ... , ar-l + 1]), however this can only lower the width and can be safely 

ignored in the present setting. Therefore for 1 2: ~ (indeed, 1 2: 1~ 1 after considering 

mirrors) we have that W(T(~)) ~ 2. 

Case 2: 0 < ~ < 1 

The argument is this case is identical, except when passing from length 2 to length 1: 

this step relies on the degenerative version of Manolescu and Ozsvath 's exact sequence 

in Proposition 2.15. 

When r = 2 we have ~ = [0, a2] so that 

since det(T(O)) = 0 and det(T[O, a2 - 1]) = det(T[O, a2]), hence 

bearing in mind that there are possible differentials among the Kha(T(O)). However, 

notice that Kha(T[O, 1D = Kha(T(l)) and this may be written as 

which we know to be of width at most 2. Indeed, in showing that this was the case 
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(compare (4.2) and (4.3) bearing in mind the framing change of 0 I---t -n), we might 

have observed that the group Kh(T(Ô)) is "added" to the second diagonal that must 

be present in Kh(T(O)) (and may or may not be present in Kh(T(l))). This is precisely 

the requirement on the support of these groups in the previous case, giving rise to the 

inductive hypothesis, and is enough to force w(T[O, a2]) ~ 2, completing the proof. 0 

4.8 Manifolds with finite fundamental group 

Combining work of Hodgson and Rubinstein with work of Lee, we have the following 

statement: 

Theorem 4.24. If Y is a Lens space, then Y is a two fold branched cover of S3, with 

branch set of width 1. 

PT'Oof. Hodgeson and Rubinstein show that Y is a lens space if and only if it is the 

two-fold branched cover of a non-split two-bridge link (Hodgson and Rubinstein, 1985) 

(see Theorem 1.13); this family of links is alternating, hence thin, by Lee's result (Lee, 

2005) (see also Section 5.7). o 

Note that this excludes the manifold S2 x SI since it is branched over the 2-component 

trivial link having width 2. 

Our main goal is to prove an analogous statement in the case of manifolds with finite 

fundamental group. 

Theorem 4.25. (Watson, 2DD8b) A manifold with finite fundamental group is a two

fold branched cover of S3, with branch set of width at most 2. 

Proof. Manifolds with fini te fundamental group are all Seifert fibered, and are either 

lens spaces or Seifert fibered over 52 with 3 singular fibres (see Propostion 1.16, as weil 

as Remark 1.17 and Remark 4.26). Due to Theorem 4.24, we need only consider the 

latter. 
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According to Proposition 1.16, there are two families of base orbifolds to consider: either 

S2(2, 3, n) for n = 3,4,5, or S2(2, 2, n) for n > 1. 

In each case, the manifolds in question may be constructed by filling Seifert fibered 

manifolds (with boundary) with base orbifold D2(2, 3) and D2(2, 2), respectively. Note 

that the trefoil exterior and the twisted I-bundle over the Klein bottle are the unique 

Seifert fibered manifolds with base orbifolds D2(2, 3) and D2(2, 2), respectively. 

In light of Theorem 1.14, it is enough to consider the branch sets related to these fillings, 

since each of the manifolds in question branches over S3 in a unique way. Each of the 

resulting branch sets - which exist by virtue of Proposition 4.7 - is a Montesinos link 

composed of 3 rational tangles, encoding the Seifert structure in the cover (Montesinos, 

1976). 

In the first case, when filling the complement of the trefoil we appeal to Proposition 

4.23: the branch set associated to filling a torus knot in S3 has width at most 2. 

To complete the proof then, we are left to consider the case of filling the twisted l -bundle 

over the Klein bottle, M. 

When considered with Seifert structure having base orbifold D2(2, 2), this manifold has 

the property that 6.(<p, ÀM ) = 1, where <p is a regular fibre in the boundary. Note that 

M (À M ) is S2 X sI, and M (n<p + ÀM) is a lens space for all n i ü by applying Theorem 

1.21. By fixing a representative for the associated quotient tangle compatible with the 

basis for surgery (<p, ÀM) it follows that w(T(n)) = 1 for all n i 0, and W(T(Ü)) = 2. 
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Now resolving the terminal crossing in T(~) we have, for ~ ::::: 0, 

det(T(~)) = IH1(M(p<p + qÀ M); Z)I 

= CM .6.(P<P + qÀM, ÀM ) 

= cMlp<p' ÀMI 

= cMI(po + Pl)<p' ÀM + (qO + qI)ÀM' ÀMI 

= CM 1(po<P + qOÀM) . ÀMI + CMI(Pl<P +q1ÀM ) . ÀMI 

= CM.6.(pO<p + qOÀM, ÀM) + CM.6.(Pltp + q1À M , ÀM ) 

= IH1(M(po<p+qOÀM);Z)1 + IH1(M(Pl<p+q1ÀM);Z)1 

= det(T(PO)) + det(T(Pl))
qo ql 

in terms of (<p, ÀM). 

This is enough to obtain the result, proceeding by double induction exactly as in the 

proof of Proposition 4.23, working wi th the basis (<p, ÀM) in place of the canonical basis 

(M, À). o 

Remark 4.26. The use of geometrization in this proof may be avoided by instead prov

ing the statement that two-fold branched covers with finite fundamental group 

have branch set with width at most 2. Sinee our applications will always pertain 

to manifolds admitting an involution having non-empty fixed point set, we are naturally 

in the setting of the orbifold theorem, as discussed in Remark 1.17. 

Alternatively - in the same spirit as Proposition 3.18 - we have the following statement 

(that does not depend on geometrization in any form): 

Theorem 4.27. A manifold with elliptic geometry is a two-fold branched cover of S3) 

with branch set of width at most 2. 



CHAPTER V 

WIDTH BOUNDS FOR BRANCH SETS 

In this chapter we turn our attention to the behaviour of the Khovanov homology of 

branch sets associated to surgery on simple, strongly invertible knot manifolds. For 

simplicity, we focus on the case of surgery on strongly invertible knots in 8 3, though 

similar results may be obtained more generally (see Appendix, for example). 

This material contained here is new, building on results in (Watson, 2008b), though 

width in Khovanov homology has received sorne attention recently. We point in par

ticular to recent work of Lowrence studying the homological width of closed 3-braids 

(Lowrance, 2009). In this setting, though the focus of each paper is quite different, 

sorne of the results have a similar fiavour. 

5.1 A mapping cone for integer surgeries 

Given a strongly invertible knot K '-+ S3, with fixed strong inversion, let T = (B3,T) 

be the associated quotient tangle, compatible with the canonical framing (ft, À). As 

in Chapter 4, we will refer to this as the canonical representative for the associated 

quotient tangle. Therefore, T(3) is the trivial knot, and Sg(K) ~ :E(S3,T(0)). As a 

result, Kh(T(b)) ~ IF, and W(T(O)) > 1 since det(T(O)) = O. Notice that T(O) is a two 

component link. 
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In the interest of studying the Khovanov homology of the branch sets associ

ated to integer surgery, we choose the orientation on T(O) shown on the right. 

That this is possible follows from the fact that T( à) is the trivial knot; that 

such a choice is copacetic results from the fact that Kh(T(O)), in the present context, is 

a relatively bi-graded group.! With this orientation on T(O), there is a natural constant 

related to a fixed diagram for the compatible representative of the associated quotient 

tangle 

Since T( à) has a single component, Cr is independent of choice of orientation on T( à). 

For example, we may rewrite the mapping cones in Khovanov homology as 

since C = n_(T(à)) - n_(T(-l)) = n_(T(à)) - n_(T(O)) - 1 = Cr - 1. Notice that in 

this case there is an overall [1,0] shift (which may be ignored, as our interest is in the 

relative gradings and not the absolute gradings) so that 

which allows for comparison of the homology of T(±l) in terms of Kh(T(O)) and the 

new generator Kh(T(à)) ~ IF. 

More generally, we have: 

lOnly the absolute grading depends on orientation, as per Section 2.4, so we are free to fix 
any orientation for convenience so long as we remain consistent when computing using the skein exact 
sequence. 
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Lemma 5.1. For any integer m, and positive integer n, 

as a relatively Z EB Z-graded group, where the integer m may be interpreted as a change 

of framing. More precisely, there exist explicit constants x and y and an identification 

n-l 

ES Kh(T(à))[x, y][O, q] ~ IF[Z/nZ] 
q=O 

as graded If-vector spaces so that 

Proo]. This amounts to a careful iterated application of the mapping cone for resolution 

of a positive crossing applied to the n positive crossings in T(m + n). When n = 1 we 

have 

where kT = CT + m. Set [x, y] = [-%'-, 3k;+2]. Now when n = 2 we obtain 

Kh(T(m + 2)) ~ H* (Kh(T(m + 1))[-~,~] ----+ Kh(T(à))[_kr;l, 3(kr~1)+2]) 

~ H* (Kh(T(m + 1)) [-~, ~] ----+ Kh(T(à))[x, y][-~, ~][O, 1]) 

or, by unpacking the group Kh(T(m + 1)) as in the previous case, 

Kh(T(m + 2)) 

~ H* (H* (Kh(T(m))[-~,~] ----+ Kh(T(à))[x, y]) [-~,~] ----+ Kh(T(à))[x, y][-~, ~][O, 1]) 

as an iterated mapping cone. Said another way, this expression is simply the repeated 

application of the long exact sequence. This simplifies considerably however, since the 

two occurrences of the group Kh(T(à)) ~ If appear in the same 6-grading. Since the 
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differential of the mapping cone (or, the connecting homomorphism of the long exact 

sequence) raises 6-grading by one, there cannot be a differential between the copies of 

Kh(T(Ô))' As result, 

Kh(T(m + 2)) 

~ H* (Kh(T(m))[-l, 1] ---., Kh(T(Ô))[X, y][-~,~] EB Kh(T(b))[x, y][-~, ~][O, 1]) 

~ H* (Kh(T(m))[-l, 1] ---., EB~=oKh(T(Ô))[X, y][-~, ~][O, q]) 

~ H* (Kh(T(m))[-~,~] ---., EB~=oKh(T(Ô))[x,YI[O,q]) [-~,~] 

Now suppose for induction that 

and consider the group 

Kh(T(m + n)) ~ H* (Kh(T(m + n - 1))[-~,~] ---., Kh(T(O))[-§, 3C;t-2]) 

where c = n_(T(ô))+n-l-n_(T(m+n-l)) = n_(T(ô))-n_(T(m))+n-l = kT+n-l. 

Then 

Kh(T(m + n)) 

n~ H* (Kh(T(m + n - 1))[-~,~] ---., Kh(T(O)) [_kx+2- 1 , 3(kT+~-1)+2]) 

~ H* (Kh(T(m+n-l))[-~,~] ---., Kh(T(O))[-~, 3kT/2][0,n_l][_n21, n21]) 

~ H* (H* (Kh(T(m))[-~,~] ---., EB;~g Kh(T(Ô))[X, y][O, q]) [- n22, n22][_~,~] 

---., Kh(T(Ô))[x,y][O,n-l][_n21, n21]) 

~ H* (Kh(T(m)) [-~,~] ---., EB;~6 Kh(T(b))[x, y][O, q]) [_n21, n21] 

noting once again that each of the occurrences of Kh(T( b)) differs only in the secondary 

grading. 
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Now as a relatively graded group, we are free to ignore the overall grading shift [- n21, n21 J. 

Moreover, since Kh(T( Ô)) ~ lF, fixing an identification 

n-l

EB Kh(T(Ô))[X + ~,y - ~][O, q] ~ lF[q]/qn ~ lF[Z/nZ] 
q=O 

we have that 

as a relatively Z EB Z-graded group. o 

Remark 5.2. As stated, this lemma might be viewed from the point of Heegaard-Floer 

homology. In particular, the long exact sequence for integer surgeries may be stated 

n 

where 

n 

when viewed with twisted coefficients (c.f. (Ozsvâth and Szabô, 2008, Theorem 3.1)). 

We have given an analogous statement in terms of the Khovanov homology of the asso

ciated branch sets in the case when K is strongly invertible, a fact that is particularly 

interesting in light of Theorem 3.12. 

Before turning to consequences of Lemma 5.1, we note that a similar statement is forced 

to exist for negative surgeries. Indeed, consider Kh(T(m - n)) for any integer m, and 

positive integer n. Setting m' = m - n we have that 
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and 

Kh(T(m)) ~ Kh(T(m' + n)) 

~ H* (Kh(T(m/)) --+ F[Z/nZ]) 

~ H* (Kh(T(m - n)) --+ F[Z/nZ]) . 

It follows that: 

Lemma 5.3. For any integer m, and positive integer n, 

as a relatively Z EB Z-graded group, where the integer m may be interpreted as a change 

of framing. More precisely, there exist an explicit constants Xl and yi (different than 

above) and an identification 

n-l 

EBKh(T(à))[X',y/][O,q] ~ F[Z/nZ] 
q=O 

sa that 

Remark 5.4. In fact, it should be immediately clear that in this case the group 

n-l 

EBKh(T(à))[X',y/][O,q] ~ F[q-ll/q-n ~ F[Z/nZ] 
q=O 

must lie in grading 0 - 1 relative ta the group 

n-l

EB Kh(T(à))[x +~, y - ~][O, q] ~ F[ql/qn ~ F[Z/nZ] 
q=o 

of Lemma 5.1 in grading O. Alternatively, Lemma 5.3 may be proved by an argument 

nearly identical ta the argument of Lemma 5.1, up ta renaming constants. 
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5.2 Width stability. 

There are two essential consequences that we derive from Lemma 5.1. Similar properties 

exist for branch sets associated ta negative surgeries, although we will not state these, 

opting instead to PasS to positive surgeries on the mirror co avoid negative coefficients. 

Lemma 5.5. For N» 0 the exact sequence for Kh(T(N +1)) splits so that} ignoring 

gradings} 

Kh(T(N + 1)) ~ Kh(T(N)) EB JF. 

Proof. Let N = m and n = 1 in the notation of Lemma 5.1, so that 

On the other hand, with m = 0 and n = N + 1 we have that 

Since the differential preserves the secondary grading, for N >> 0 the generator repre

sented by qN cannat be in the image of the differential. 

Lemma 5.6. Up to overall shift} the generators Kh(T(5)) ~ F} when they survive in 

homology, are aU supported in a single 6-grading. 

Proof. Immediate from the identification with the truncated polynomial ring in Lemma 

5.1. D 

As a result of Lemma 5.5, the width of the T(n) may be calculated for ail nonce some 

finite collection of the values is known. Moreover, these quantities must be bounded, in 

light of Lemma 5.6. 

Definition 5.7. For a given strongly invertible knot and compatible associated quotient 

0 
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tangle, define 

Wmax = max {W(T(n))}
nEZ 

and 

Wmin = min {W(T(n))}.
nEZ 

Lemma 5.8. Suppose Wmin = w(T(N)) for INI »0. Then either Wmin = 1 and 

T = (B 3 , T) is the tangle associated .to the trivial knot, or Wmin > 1 in which case 

Wmin = Wmax · 

Proof. First suppose Wmin = l, so that w(T(N)) = 1 for al! INI sufficiently large. 

Then by Proposition 3.16, SlN(K) = :E(S3,T(±N)) must be an L-space for aH N 

sufficiently large. However, by Proposition 3.36, K must be the trivial knot (and hence 

T(O) ~ 0 U 0)· 

Now suppose that Wmin > 1 for INI >> 0, and choose m sufficiently negative so that 

w(T(m)) = Wmin. Then we have 

for aH n > O. In particular, since Wmin = w(T(m + n) for n sufficiently large, it must 

be that Supp(F[Z/nZ]) C Supp(Kh(T(m)). As a result, a decrease in width would 

contradict our assumption that w(T(m)) is minimal, hence Wmin = Wmax ' 0 

Lemma 5.9. The maximum and minimum widths differ by at most 1. That is, either 

Wmax = Wmin or W max = Wmin + 1. 

Proof. First notice that the statement holds for the tangle associate to the quotient of 

the trivial knot by Lemma 5.8, since W(T(O)) = w( 0 U 0) = 2. 

Assuming then that K is non trivial, without loss of generality we may suppose that 

Wmin = w(T(N)) for N » 0 and that Wmax = w(T(N)) for N « O. Now choosing 

m sufficiently negative in the notation of Lemma 5.1 we have that Wmax = w(T(m)). 
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Further, 

for every n > O. Since Wmin = w(T(m + n)) for sonie n, the group lFn ~ lF[lZjnlZ] must 

be in a fixed grading supported by Kh(T(m)). Therefore, if 

Kh(T(m)) ~ EB lFb8 ~ lFb1 EB lFb1 EB ... EBlFbwmax 
/j 

then since the differential of the mapping cone raises 6-grading by one we have that 

W max = Wmin unless 

wherein this case the possibility arises for W max = Wmin + 1. o 

Remark 5.10. We remark that, whenever W max = Wmin + 1 for a tangle associated to 

a non-trivial knot in 53, there is a unique R for which w(T(R)) and w(T(R + 1)) differ. 

Moreover, we may assume up to taking mirrors that R ~ O. 

We note that, having fixed R~ 0 whenever W max = Wmin + 1, the width either expands 

or decays. More precisely, the width expands whenever 

and the possibility for width decay arises whenever 

for m = 0 in the notation of Lemma 5.1. 

For example, Berge knots (chosen so that the lens space surgeries are positive) give rise 
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to a family of tangles for which the width decays (c.f. Proposition 4.23). 

5.3 On determinants and resolutions 

In the arguments that follow, we will rely heavily on resolutions of terminal crossings 

(see Definition 4.14) in branch sets T(~) for which S;/q(K) = :E(B3, T(~)). As such, we 

remark that 

for any ~ 2: 0 (in ail cases, we deal with negative surgeries by passing to the mirror 

image). Moreover if T(PO) and T(El.) are the links resulting from resolution of the 
qo ql 

terminal crossing, then 

det(T(~)) = P = Po + Pl = det(T(~)) + det(T(~~)) 

by applying Property 4.13. 

As a result, Kh(T(~)) may be studied by applying Proposition 2.14 to the resolutions 

T(E9.) and T(El) whenever E > 1. In the case Tl. E (0,1) the same arguments work 
qo ql q q 

by using Proposition 2.15 when treating continued fractions of length r = 2: here 

det(T(E9.)) = det(T(O)) = O. 
qo 

By Lemma 5.1 we have that 

for a specifie identification of EB Kh(T(à)) ~ F[Z/nZ] as a graded group. As a result, n 

whenever n > 1, and 
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where Kh()"(T(à)) = Kh(T(Ô)) since the signature of the trivial knot is O. In either case, 

or 

as absolutely graded groups (where the fixed shifts are adjusted accordingly by [-il 
in the case of T(O)). Notice that these inclusions are equalities whenever w(T(n)) = 

w(T(n + 1)), so that the inclusions are only relevant in the case when the width changes 

byone. 

5.4 An upper bound for width 

Proposition 5.11. Let K be a strongly invertible knot in S3, with canonical associated 

quotient tangle T = (B 3,T). Then W(T(~)) is bounded above by Wmax fOT all ~ E <Qi. 

Proof. The proof is similar to that of Proposition 4.23 establishing the upper bound 

of 2 for the width of a branch set associated to surgery on a Berge knot. Again, we 

suppose without loss of generality that ~ 2: 0, and proceed in 2 cases. 

Case 1: 1 < 1? - q 

By its definition, W max provides the upper bound for w(T(n)) for any n. This pro

vides a base for induction in T, the length of the continued fraction representation 

First consider the case ~ = [al, 2]. Here we have 

det(1?) = P = Po + Pl = al + al + 1 = det(PO) + det(Pl)q qo ql 

where where ~~ = [al] corresponds to the 1-resolution of the terminal crossing, and 

~~ = [al, 1] = [al + 1] corresponds to the O-resolution of the terminal crossing. In either 



112 

case W(PO), W(12l.) < W max , and by applying Proposition 2.14 we have qo ql-

Moreover, according to Section 5.3 we have that either 

or 

as a consequence of Lemma 5.1. Therefore, 

W(T[al,2]) = W(T( 
2a h+ l 

)) 

::::; max{w(T l2ah+ l J), w(T r2ah+ l l)} 

= max{w(T(al)),w(T(al + 1))} 

::::; W max · 

The same statement holds for ~ = [al, a2]. By iterating Proposition 2.14 we have 

Kha(T(PO)) -----* Kha(T(E))
qO q 

t 
Kha(T(~)) -+Kha(T(~)) 

t 

where the connecting homomorphisms have been omitted. Once again, as a consequence 
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of supports we condude that 

W(T[al' a2]) = W(T(a1ai+ l )) 

::::; max{W(Tl a1ai+ l J), w(TraJa2+l1)} 

= maX{W(T(al)),W(T(al + 1))} 

::::; Wmax · 

Now for induction in r, given ~ [al, a2, ... ,ar-d the inductive hypothesis is that 

W(T(~)) ::::; W max and one of 

or 

holds. 

This being the case, we daim that 

By resolving the terminal crossing of T(~) and applying Proposition 2.14 

so that in either case W(T(~)) ::::; max{w(T(~)), W(T(~ ))} if ar = 2. By induction in ar 

we have that 
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by applying Property 4.13 together with the induction hypothesis on supports. 

As a result, by induction in length we have that 

concluding the proof in this case. 

Case 2: °< ~ < 1 

The proof in this case follows the same lines as the previous case, and differs only in 

passing from the case r = 2 to T = 1. Indeed, the argument here is identical, once 

we replace the use of Proposition 2.14 is with that of its degenerative counterpart, 

Proposition 2.15. This is due to the fact that, while the determinants remain additive 

under resolution, det(Tl~J) = °in this case. 

To see that this is so, consider once again the case ~ [al,2] = [0,2]. By applying 

Proposition 2.15 we have 

Moreover, according to Section 5.3 we have that either 

or 
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as a consequence of Lemma 5.1. Therefore, 

W(T[al,2])	 = W(Tea~+I)) 

~ max{w(Tl2a~+IJ),w(Tr2a~+11)} 

= max{w(T(ad),w(T(al +1))} 

~ W max · 

The same statement h01ds for ~ [al, a2]' By iterating Proposition 2.15 as in the 

previous case so that 

W(T[al, a2])	 = W(T(ala~+I)) 

~ max{w(Tl a1a1+1 J), w(Tr a1a1+11)} 

= max{w(T(al)),w(T(al +1))} 

~ W max ' 

o 

Remark 5.12. Case 2, when ~ E (0,1), will be present in all of the arguments that 

follow. However, in every setting this case simply amounts to replacing Proposition 2.14 

with Proposition 2.15 in passing from half-integer (continued fractions of length 2) to 

integer surgeries) as in the above proof. Thus) we will restrict, without loss of generality, 

to the case E. > 1 in the arguments below. q 

5.5 A lower bound for width 

Proposition 5.13. Let K be a strongly invertible knot in S3, with canonical associated 

quotient tangle T = (B3, T). If W max = Wmin then W(T( ~)) is bounded below by Wmin for 

all ~ E Q. 

Proof. Without 10ss of generality, assume that ~ 2': 1. 
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Since Wmax = Wmin = W, we have that W = w(T(n)) for every n E 'l. In particular, 

as a consequence of Lemma 5.1. Thus, applying Proposition 2.14 

bi -1 b~ for precisely one value 1 :::; i :::; w) then 

as a relatively graded group, since the differential of the mapping cane raises b-grading 

by 1. Notice in particular that bi ;::: b'l and b:V ;::: bw for Kh(T[al, 21) = lFbi EB ... EB lFb;'", 

sa that w(T[al, 2]) = W 

Similarly, for ~ = [al, a2] in general, we may iteratively apply Proposition 2.14 a2 - 1 

times ta the same end: 

sa that bi ;::: b'l and b:V > bw for Kh(T[al, a2]) = lFbi EB ... EB IFb;'", and once again 

w(T[al, a2]) = w. 

Ta complete the proof then, we induct in r with the assumption that W(T(~)) = W for 
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aH ~ = [al, .. . ,ar-l], and that 

holds.
 

This being the case, we daim that
 

Indeed, when ar = 2 we have that 

r even 

r odd 

by applying Proposition 2.14 so that in either case W(T(l::')) = W(T(E9.O)),W(T(El)) sinee 
q q0 ql 

the corresponding groups have the same support. By induction in ar we have that 

as before, by applying the induction hypothesis on supports. 

As a result, by induction in length we have that 

W(T(~)) = W, 

conduding the proof. o 

Combining Proposition 5.13 with Proposition 5.11 we have immediately that 

takes a single value W E N when W = Wmax = Wmin, where T = (B3 , T) is the canonical 
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representative for the quotient tangle associated ta a strongly invertible knot in S3. 

5.6 Expansion and decay 

By Remark 5.10, if W max = Wmin +1 then there is a unique value R, which we may assume 

is positive, for which either Wmin = w(T(R)) < w(T(f +1)) = W (width expansion) ormax 

W max = w(T(R)) > w(T(R + 1)) = Wmin (width decay). 

In each setting, we establish a sufficient (though certainly not necessary) condition for 

which Wmin still provides a lower bound for W(T(~)). 

Definition 5.14. T is expansion generic if bk > 1 where 

sa that Wmin = k and 

sa that W max = k + 1) where k > O. 

Definition 5.15. T is decay generic if b1 > 1 where 

sa that W max = k + 1 and 

sa that Wmin = k, where k > O. 

Both of these notions are weil defined, according Lemma 5.9. 

Notice that if T is expansion generic, then T* is decay generic, and vice versa. These 

both seem to be st ronger conditions than necessary, however genericity (in each sense) 
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tums out to be the rule rather than the exception when we tum to applications of 

homological width. 

Proposition 5.16. If T is expansion generic then W(T(~)) is bounded below by Wmin 

for aU ~ E Q. 

Proof. Let w(T(R)) = k = Wrnin and w(T(R + 1)) = k + 1 = wrnax . First notice that for 

~ 1- [R, R+ 1] the proof proceeds exactly as in the proof of Proposition 5.13. Thus we are 

left to consider the case when ~ E [R, R+ 1]. Without loss of generality, we may assume 

that R> 0: if this is not the case, the argument below goes through with Proposition 

2.15 replacing Proposition 2.14 where necessary, as is now familiar. 

Now when [al, a2] = [R,2], we have that 

by resolving the terminal crossing and applying Proposition 2.14. By applying Lemma 

5.1, notice that 

gives 

so that w(T[R,2]) ? k due to expansion genericity (bk > 1), since this ensures that 

groups in gradings 1 and k survive in homology. 

Now consider the case ~ = [R,3]. Again, we have that 

Kho-(T[R, 3]) ~ H* (Kho-(T(R)) ----t Kho-(T[R, 2]))) 

~ H* (Kho-(T(R)) ----t H* (Kho-(T(R)) ----t Kho-(T(R+ 1)))) 
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so that 

where E = 0, 1 arising from 

Note that b~ > 0, since w(r[R, 2]) ? k. If E = 0 then groups survive in degrees 1 and k 

so the width is k; in the case E = l, w(r[R, 3]) ? k due to expansion genericity as before. 

Proceeding in this way by iterating Proposition 2.14, we obtain the desired result for 

al! r(~) when ~ = [R, a2]' Notice that either 

in which case the proof concludes along the lines of the proof of Proposition 5.13, or 

In the case of the latter, we remark that Kh(r[R, a2]) ~ lFb1 EB· .. EBlFbk and Kh(r[R, a2]) ~ 

lFb; EB ... EB lFb~ EB lFb~+l with bk > b~+l' 

We now proceed by induction, assuming the result holds for continued fractions of length 

r - l, with the support the Khovanov homology of the zero resolution of the terminal 

crossing included in the support of the Khovanov homology of the one resolution (once 

the gradings have been shifted by the signatures, according to Proposition 2.14). 

Now for ~ = [R, a2,.· ., ar-l, 2], 

r even 

r odd 
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so that 

where bk > b~+l' Therefore, sinee there must be non-trivial groups in the first and 

kth gradings, W(T(~)) 2: k. To conclude the proof then it remains only to iterate this 

argument in ar , as in the case r = 2. o 

Proposition 5.17. 1fT is decay generic then W(T(~)) is bounded below by Wmin for ail 

~ E Q. 

Proof. The proof is almost identical to the proof of Proposition 5.16. 

Let W(T(e)) = k + 1 = W max and W(T(e + 1)) = k = Wmin' Again, notice that for 

~ ~ [e, e+ 1] the proof proceeds exactly as in the proof of Proposition 5.13. Thus we are 

left to consider the case when ~ E [e, e+ 1]. Without loss of generality, we may assume 

that .e > O. 

Now when [al, a2] = [.e,2] is a half-integer, we have that 

by resolving the terminal crossing and applying Proposition 2.14. Notiee however that 

sinee 

this gives 

so that w(T[e,2]) 2: k due to expansion genericity (b l > 1), sinee this ensures that 

groups in gradings 1 and k survive in homology. 

The conclusion then follows by induction in the length of the continued fraction associ
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ated to ~, assuming the inclusion of supports as before. D 

CoUecting the above results, we have that 

w(r( -)) : Q -T1~ 

takes values [Wmin, Wmin + 1] C N when in the decay or expansion generic setting, where 

T = (B3, r) is the canonical representative for the quotient tangle associated to a 

strongly invertible knot in S3. 

5.7 Lee's result, revisited 

We now have aU the material in place to see why 2-bridge knots have thin Khovanov 

homology, a result due originaUy to Lee, and key component of Theorem 4.24. 

Since two-bridge knots arise as the branch sets of lens spaces, we need to consider 

surgery on the trivial knot in S3; the associated quotient tangle is rational, and the 

canonical representative is (B 3 ,:::) since det (r(O)) = det( 0 U 0) = 0 (equivalently, 

S2 x Si = ~(S3, 0 U 0)). 

Since both r(~) and r(l) are the trivial knot, applying Lemma 5.1 we have that 

RecaU that Kh(r(ü)) ~ Il' EEJ Il' as a relatively Z-graded group. Now it follows that the 

branch sets corresponding to positive integer surgery have Khovanov homology 

hence w(r(n)) is thin for aU n =/: 0. 2 

20f course, there is enough information here to work out Kh(r(n)) completely as an absolutely 
bi-graded group. 
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Without loss of generality, we consider Kh(T(~)) for ~ > O. In fact, T[O, a2, a3,· .. , ar ] ~ 

T[a3, ... , ar ], so we need only consider ~ :2: 1. Now it is a quick application of Proposition 

5.11 to see that T(~) is a thin link, for aU ~ 1:- 0, since T(n) is thin for aU n 1:- O. 

Note that in constructing 2-bridge links in this way, we recover Schubert's.normal form 

for this class (Schubert, 1956). 



CHAPTER VI 

SURGERY OBSTRUCTIONS FROM KHOVANOV HOMOLOGY. 

We are now in a position to assemble the material developed to this point into obstruc

tions to certain exceptional surgeries. In particular, we give obstructions to lens space 

surgeries and finite fillings from Khovanov homology, and we give a range of calculations 

as illustration of this application of Khovanov homology. 

While these examples are essentia11y the content of (Watson, 2üü8b), the obstructions 

developed here represent a strengthening of the results found in that work. In particular, 

the results of this chapter do not depend on the cyclic surgery theorem (Theorem 1.25) 

or the related results of Boyer and Zhang (Theorem 1.26 and Theorem 1.27). 

6.1 Width obstructions 

Theorem 6.1. Let K ~ 53 be strongly invertible with canonical associated quotient 

tangle T = (B 3,T). Then W(T(~)) > 1 implies that 5~/q(K) is not a Lens space, and 

W(T(~)) > 2 implies that S;/q(K) kas infinite fundamental group. 

Proof. For W > 1 the statement fo11ows from Theorem 4.24; for W > 2 the statement 

fo11ows from Theorem 4.25. [J 

Our aim is to show that this is an effective obstruction by applying the results of Chapter 

5.
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Let T = (B3, r) be the canonical representative for the tangle associated to a strongly 

invertible lmot in 8 3 . Recall that r(5) is the triviallmot, and 

for some explicit identification 

as a graded IF-vector space. Here, n > 0 and the fixed grading shift depends on the 

tangle, and the integer m (c.f. Lemma 5.1). If 

as a relatively Z-graded IF-vector space, so that w(r(m)) = k, then the graded vector 

space IF[Z/nZ] is added to some fixed (relative) grading 5+ for 1 S 5+ S k + 1. 

In the situation that the width decays (c.f Definition 5.15), 5+ = 2, and in the situation 

that width expands, 5+ = k + 1 (c.f. Definition 5.14). If the width neither decays nor 

expands then the tangle will be referred to as width stable. 

Definition 6.2. The tangle T = (B3 , r) is generic if it is width stable, or if the width 

decays (respectively, expands) then it is decay generic as in Definition 5.15 (respectively 

expansion generic as in Definition 5.14). 

A much stronger form of genericity exists, and will be useful in application. 

Proposition 6.3. If for each 5-grading supporting Kh(r(m)), for any m, there is a 
-0 -0 

q-grading for which rkKh (r(m)) > rkKhq(r(m)) > l, then the associated quotient 

tangle is generic. 

Proof. This is immediate from Lemma 5.1: since the graded vector space IF[Z/nZ] has a 
-0 

unique generator in each secondary grading q, the condition rkKhq(r(m)) > 1 ensures 
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that be5 -j:. 0 in Kh(T(m + n)) ~ EB~=l JFb
6, for all n. As a result, the tangle is either 

~e5 ~e5 

width stable, or it is expansion generic as a result of rkKh (T(m)) > rkKhq(T(m)). 0 

Our main results then are the following: 

Theorem 6.4. Let K '---7 8 3 be strongly invertible with generic associated quotient 

tangle. Then Wmin > 1 implies that K does not admit non-trivial lens space surgeries. 

Moreover, determining Wmin is a finite check. 

Theorem 6.5. Let K '---7 8 3 be strongly invertible with generic associated quotient tan

gle. Then Wmin > 2 implies that K does not admit non-trivial finite fillings. Moreover, 

determining Wmin is a finite check. 

Remark 6.6. In practice, one group Kh(T(m)) is enough to determine Wmin and apply 

these obstructions. 

In the absence of the genericity hypothesis, the width is still a useful obstruction: In 

light of Theorem 1.25 it is enough to check the integer fillings of K when the question 

of lens space surgeries is of interest. Similarly, in the case of finite fillings only the 

integer and half-integer surgeries need to be considered in light of Theorem 1.26. In 

practice, however, genericity is easy to check and seems to be a relatively standard 

property. Indeed, the only example of a tangle failing this condition that this author 

has encountered in examples is given by rational tangles, that is, the tangle associated 

to the trivial knot. In the generic setting (see examples given below), it is particularly 

interesting that Khovanov homology is able to give useful surgery obstructions, without 

relying on these powerful theorems. 

6.2 On constructing quotients 

With the above in place, calculating width obstructions is straightforward, consisting 

of essentially three steps: realize a strong inversion on a knot, construct the quotient, 

and compute the Khovanov homology of the branch set for sorne integer surgery on the 
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knot. The final step is direct calculation and, assuming the first step is done the second 

presents the only challenge. It is not difficult to construct this quotient, though requires 

sorne patience and attention. 

Figure 6.1 The local behaviour for quotients of strongly invertible knot complements. 
Notice that the quotient of a crossing across the axis of symmetry gives rise to a clasp 
between the image of the fixed point set and the quotient of the boundary. 

To determine a fundamental domain for the action of the fixed involution, it suffices to 

'eut' the knot complement along the axis of symmetry, and then apply the rules given in 

Figure 6.1. This is best displayed in examples (see below), but is expanded on in detail 

in (Bleiler, 1985; Montesinos and Whitten, 1986; Zimmermann, 1997), for example. 

6.3 A first example: surgery on the figure eight 

It is well known that the figure eight knot K = 41 does not admit lens space surgeries. 

In fact, Thurston classified the non-hyperbolic fillings of 53 " v(K) and showed that, 

aside from the trivial surgery, they all have infinite fundamental group (Thurston, 1980). 

That K does not admit (non-trivial) lens space surgeries has been reproved using the 
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machinery of SU(2) representation spaces (Kirk and Klassen, 1990; Klassen, 1991), 

essential laminations (Delman, 1995), character varieties (Tanguay, 1996) and most 

recently, Heegaard-Floer homology (Ozsvath and Szab6, 2005b). As a first example of 

the width obstructions developed here, we endeavour to add Khovanov homology to 

this list. 

112 

Figure 6.2 The strong inversion on the figure eight (left); isotopy of a fundamental 
domain (centre); and two representatives of the associated quotient tangle (right). 

K is a strongly invertible knot, and this symmetry is shown in Figure 6.2 together with 

the associated quotient tangle. We have given two equivalent views of the associated 

quotient tangle. The first of these shows that the branch sets for integer surgeries may' 
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be expressed as closed 3-braids. For 

we have that T(n) ~ f3n, the closure of f3n' The Khovanov homology Kh(T(-l)), 

Kh(T(O)) and Kh(T( +1)) is given in Figure 6.3 (in particular, X (Kh(T(O))) = det(T(O)) = 

0). Notice that Wmin = 2 and that the tangle is decay generic. It follows at once that 

K does not admit lens space surgeries, and it seems worth pointing out that this result 

could have been inferred simply by inspection of the single Khovanov homology group 

Kh(T(O)). 

1 1 1 

1 

1 1 1 
1 1 1 1 1 1 

1 1 1 1 1 1 
1 1 1 1 1 

1 

1 1 
1 1 l 

Figure 6.3 The canonical representative for the associated quotie::: tangle T = (B3, T) 
of the figure eight, and the reduced Khovanov homology groups Kh(T(-l)), Kh(T(O)) 
and Kh(T(l)) (from left ta right). Theb+ grading has been highlighted, in accordance 
with Lemma 5.1 setting m = O. 

More generally, we may use Lemma 5.1 to calculate: 

Proposition 6.7. 

Kh(T(n)) ~ JF EB JF5 EB JF4 n = 0 

JFlnl EB JF4 Et! JF4 n < 0 

Proof. The grading b+ is identified in Figure 6.3. By calculating that Kh(T(-2)) ~ 
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JF2 EB JF4 EB JF4, Lemma 5.1, together wi th the groups 

Kh (T ( -1)) ~ JF EB JF4 EB JF4 

Kh(T(O)) ~ JF EB JF5 EB JF4 

Kh(T(l)) ~ JF5 EB JF4 

forces the result. o 

In fact, we have enough to recover Thurston's result: 

Theorem 6.8. Khovanov homology detects that the figure 8 admits no finite fillings. 

Proof. First notice that w(T(n)) = 3 for n ~ O. As a result, a fini te filling cannot 

arise by negative surgery on the figure eight. However, since the figure eight knot is 

amphicheiral, the same must be true for positive surgeries. 0 

Remark 6.9. This result also follows quickly from Heegaard-Floer homology by applying 

Theorem 3.22, since the figure eight is alternating and hyperbolic, together with the fact 

that manifolds with finite fundamental group are L-spaces. Note that the Alexander 

polynomial for this knot is -t- 1 + 3 - t (cI Theorem 3.21). 

6.4 Sorne pretzel knots that do not admit finite fillings 

According to Mattman (Mattman, 2000), it is unknown if the (-2, p, q)-pretzel knots 

admit fillings with finite fundamental group for q 2:: p 2:: 5. When p = q = 5 we have 

the following. 

Theorem 6.10. The (-2,5, 5)-pretzel knot does not admit finite fillings. 

Proof. We begin by noting that the (-2,5, 5)-pretzel knot, K, is strongly invertible in 

two ways as indicated in Figure 6.4. We will make use of the inversion indicated by the 
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--------m----

Figure 6.4 Two strong inversions on the (-2,5, 5)-pretzel knot. 

Figure 6.5 Isotopy of the fundamental domain for a strong inversion on the (-2,5,5)
pretzel knot. Notice that the resulting tangle has the property that integer closures are 
representable by closed 4-braids. 

solid verticalline; the associated quotient tangle is calculated in Figure 6.5. Notice that 

the associated quotient tangle in this case gives rise to an obvious collection of 4-braids 

giving the branch sets for integer fillings. Setting 

we have T(n) = /3n by verifying that Kh(T(ü)) ~ lF16 EB lF2ü EB lF4 so that det(T(ü)) = Ü. 

The homologies of T(n) for n = -18, -17, -16, -15, -14 are given in Figure 6.6. This 



133 
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1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
2 1 1 2 1 1 2 1 1 2 1 1 2 2 1 2 2 1 
3 1 3 1 3 1 2 1 2 1 2 1 

3 3 3 1 3 1 3 1 3 1 
4 1 3 1 3 1 3 1 3 1 3 1 
2 2 2 2 2 2 
2 2 2 2 2 2 

1 1 1 1 1 1 

Figure 6.6 Kh(T(n)) for n = -18, -17, -16, -15, -14 (from left to right). 

data is enough to infer that 

n < -16 

n < -16 

lF16 œlF20+n œlF4 n > -16 

as relatively Z-graded groups. In particular, Wmin = Wmax = 3 and the associated 

quotient tangle is generic. 

The result now follows from Theorem 6.5. o 

Considering the same involution on the (-2,p,p)-pretzel knot K p for aIl p ~ 5 we have 

that, in terms of the canonical associated quotient tangle, Tp(n) = !3n,p where 

so that S~(Kp) ~ :E(S3,Tp(n)). Notice that this expression changes only the number of 

double-strand full-twists in the associated quotient tangle (see Figure 6.5). From this 
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expression, we were able to calculate Kh (T p ( -4 - 2p)) for p odd in the range 5 :S p :S 31. 1 

These calculations yield generic tangles in each case, with w( Tp ( -4 - 2p)) = p - 2, from 

which we conclude: 

Theorem 6.11. The (- 2, p, p) -pretzel knots do not admit finite fillings for 5 :S p :S 31. 

In fact, these calculations indicate a strong pattern from which one might guess that 

Kh(Tp(O)) has graded groups of rank 

(N + 12, 2N + 12, N, N, N - 8, N - 8, ... , 12,12,4,4) 

where N = 4 + 8(p - 5), for every odd p 2 5 (note that for p = 5 we have ranks 

(16,20,4)). In particular, it seems reasonable to conjecture that w = p - 2 for the 

branch sets associated to surgery on K p , so that Khovanov homology obstructs finite 

fillings on this class of knots. 

We do not pursue this here, since the result may be shown by other means. Indeed, it is 

possible to use Theorem 3.21 to rule out L-space surgeries by considering the Alexander 

polynomials of the (- 2, p, p)-pretzel knots, 2 and this has been carried out very recently 

by Ichihara and Jong completing Mattman's classification of Montesinos knots admitting 

finite fillings (Ichihara and Jong, 2008). Since then the result has received a different 

treatment by Futer, Ishikawa, Kabaya, Mattman and Shimokawa (Futer et al., 2008). 

We remark that Mattman's classification (Mattman, 2000) using character variety meth

ods illustrates some subtleties. Indeed, the (-2,3, q)-pretzel knots admit L-space surg

eries for ail q 2 3 (see Theorem 3.28). Despite this fact however, Mattman shows that 

for q > 9 none of these manifolds can have finite fundamental group. On the other 

hand, for the (-2,p,p)-pretzel knots the character variety methods of Mattman were 

inconclusive, but this is precisely the setting in which Heegaard-Floer homology - and, 

lWhen p = 31 this illustrates the limits of available computational tools: the resulting branch 
set has 140 crossings and reduced Khovanov homology of rank 1850. 

2This was pointed out to the author by M. Hedden. 
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as seen here, Khovanov homology - obstructs finite fillings. 

6.5 Khovanov homology obstructions in context: a final example 

In light of the discussion above, it is natural to put the obstructions from Khovanov 

homology in contrast with those coming from Heegaard-Floer homology. The latter 

theory gives very stringent restrictions for the knot Floer homology of a knot admitting 

an L-space surgery (Ozsvath and Szab6, 2üü5b), and in particular the quickly impIe-

mented obstruction from the Alexander polynomial of Theorem 3.21. Since manifolds 

with finite fundamental group are known to be L-spaces (Proposition 3.18), this gives 

a useful obstruction to finite fillings. However, the criteria given in Theorem 3.21 can 

fai1. 3 For example, 

where K is the 14 crossing, non-alternating knot shown in Figure 6.7. Since this is a 

Figure 6.7 The strongly invertible knot K = 14ï1893 has Alexander polynomial 
6K(t) = C 3 - C 2 + Cl - 1 + t - t2 + t3 . 

3Though it rarely does: of the 27436 non-alternating 14-crossing lmots, this obstruction fails on 
the order of 60 times. Among these knots, fewer still are strongly invertibJe. 
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strongly invertible knot, we are in a position to apply width obstructions from Khovanov 

homology, and to point out a particularly useful computational technique. The associ-

Figure 6.8 Isotopy of a fundamental domain for the involution on the complement of 

14"].\893 . 

ated quotient tangle is determined in Figure 6.8: notice that by construction the trivial 

knot T(~) is obtained by connecting the endpoints of the arcs of T with two horizontal 

arcs inside the smal! sphere shown. Therefore, without knowing the framing, we can 

be sure that the branch sets for integer surgeries result from adding vertical half-twists 

inside the sphere, as shown in Figure 6.9. 

Note that by doing this we have avoided incurring possible errors in further simplifying 

the tangle, and inspection of the resulting group immediately gives that the associated 

quotient tangle is generic, and the width is at least 4, for al! n. As a result, we conclude: 

Theorem 6.12. 14î1893 does not admit finite fillings; one Khovanov homology group 

suffices. 

In this setting, by switching the circled crossing of Figure 6.9 from positive to negative, 
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Figure 6.9 The branch set for sorne sorne integer surgery S~(K). Note that Kh(T(n)) 3:! 

1F2ü EB 1F36 EB 1F39 EB 1F16 so that X = 59 - 52 = 7 and n = ±7. 

we can determine that 

Kh(T(-9)) 3:! 1F2ü EB 1F36 EB 1F41 EB lF 16 

Kh(T( -7)) 3:! 1F2ü EB 1F36 EB 1F39 EB lF 16 

so that Wmin = W max = 4, and T is generic in the strong sense of Proposition 6.3, 

determining the width for the branch set of any surgery on K. 

While it is possible that the full knot Floer homology of K obstructs L-space surgeries, 

this example shows that in certain settings the Khovanov homology obstructions may 

be more convenient from a computational standpoint when the question of finite fillings 

is of interest. Further, these obstructions may allow one to [ule out finite fillings among 

L-spaces, a distinction that can be subtle. 



CHAPTER VII 

KHOVANOV HOMOLOGY AND THE TWO-FOLD BRANCHED 

COVER, REVISITED. 

Mutation provides an easy method for producing distinct knots sharing a common two

fold branched coyer: The mutation in the branch set corresponds to a trivial surgery in 

the coyer. Due to a result of Wehrli (Wehrli, 2007), this provides a range of examples of 

manifolds that branch coyer 53 in more than one way, but for which the distinct branch 

sets have identical rank1 in their respective Khovanov homology groups over lF. 

From this point of view this fact is not completely surprising, given that Khovanov ho

mology is closely related to the Heegaard-Floer homology of two-fold branched covers. 

More generally however, the following question has been posed by Ozsvath: is Kho

vanov homology an invariant of the two-fold branched coyer? More precisely, Ozsvath's 

question asks if the total rank of the reduced Khovanov homology is an invariant of the 

two-fold branched coyer. This chapter gives a negative answer by constructing mani

folds that are two-fold branched covers of 53 in two different ways where the two branch 

sets are distinguished by the total rank of their Khovanov homology. 

The examples given here are aIl Seifert fibered, and were given in (Watson, 200Sa). Hy

perbolic examples seem difficult to obtain, and we give some constructions of infinitely 

many manifolds that branch in two different ways, with branch set that is distinguished 

lIn fact, the full Khovanov homology group of each mutant is the same, according to (Wehrli, 
2007), although the question remains open in the case of Z-coefficients. Infinite families of mutants with 
identical Khovanov homology (without restricition on coefficients) are produced in (Watson, 2007). 
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by Khovanov homology, but for which the total rank is the same. As a result, such 

examples are non-mutant, and serve as an illustration of Lemma 5.1 as a calculation 

tool. 

7.1 Seifert fibered two-fold branehed eovers 

Throughout this section, let K be the positive (2,5)-torus knot. In general, Tp,q will 

denote the positive (p, q) torus knot in 8 3 , so that K = T2,5' 

Proposition 7.1. 8il/n(K) is Seifert fibered with base orbifold 8 2 (2, 5, IOn =f 1). 

Proof. Let M = 83 " II(K) so that M(a) = S;/q(K) for a = pf..l + qÀ. Let cP denote a 

regular fibre in aM; it is weil known that cP = IOf..l+ À (see (Moser, 1971), for example). 

Now M is Seifert fibered with base orbifold D 2 (2, 5), and M(a) is Seifert fibered with 

base orbifold 8 2 (2,5, 6(a, <p)) whenever ai- <p, according to Theorem 1.21. 

In the present setting, a = ±f..l + nÀ for n > 0 so that M (a) = Sil/n (K). Therefore, 

IOn - 1 for positive surgeries 
6(a, <p) = I(±f..l + nÀ) . (IOf..l + À)I = 

{ IOn + 1 for negative surgeries 

As a result, M(±f..l+nÀ) = Sil/n(K) is Seifert fibered with base orbifold S2(2, 5, 10n=fl) 

as claimed. 0 

Proof. The Seifert structure on Sil/n(K) is unique (see Proposition 1.19 or Proposition 

1.23) and as a result this manifold must be homeomorphic to the Brieskorn sphere 

~(T5,lO'fd of Proposition 1.18. o 

Since K is strongly invertible, there must be a second involution on Sil/n (K) arising by 

extending the involution to the Dehn surgery. This corresponds to a Montesinos knot, 
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constructed as follows. 

112 

Figure 7.1 The strong inversion on the cinqfoil K (left); isotopy of a fundamental 
domain (centre); and two representatives of the associated quotient tangle (right). No
tice that the Seifert fibre structure on the complement of K is refiected in the sum of 
rational tangles of the associated quotient tangle. 

First, the associated quotient tangle is determined by isotopy of a fundamental domain 

for the fundamental for the action. This is shown in Figure 7.1. We must fix the 

canonical representative for the associated quotient tangle, and this is shown in Figure 

7.2. Note that the knot T(à) is trivial, so we need only ensure that T(O) gives a branch set 

for the zero surgery on K There are two ways to see that this is the case. First recall that 

Sfo(K) is a connect sum of lens spaces (see (Moser, 1971), for example) . This is refiected 

in the numerator closure of either representative shown in Figure 7.1 as a connect sum of 

two-bridge knots. Alternatively, it suffices to check that X (Kh(T(O))) = det(T(O)) = 0 

(see Figure 7.3 below). 
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Figure 7.2 The canonical representative of the associated quotient tangle for the cin
qfoil, K. 

Proposition 7.3. rkKh(T(~))::; 16n-l andrkKh(T(-~))::;16n+ 1. 

Proof. First note that rkKh(T(±I)) = 16=r= 1, as shown in Figure 7.3. The result follows 

by induction in n: by applying the long exact sequence for Khovanov homology we have 

that 

and 

o 

By construction, we have that 

Further, direct calculation shows that rkKh(Ts,lO±l) = 65 ± 8 and rkKh(Ts,20±1) = 

257 ± 16. As a result, we have the following: 

Example 7.4. The Seifert fibered spaces S~1/2(K), S~l (K), Sr(K) and Sr/2(K) each 



143 

Figure 7.3 The reduced Khovanov homology of T( -1) (left), T(O) (centre), and T(l) 
(right). Notice that Kh(T(O)) ~ IF8 EB IF8 implies that det(T(O)) = O. 

branch cover 8 3 in two ways. Moreover, the rank of the reduced Khovanov homology 

distinguishes the pair of branch sets in each of the four cases. 

Corollary 7.5. The total rank of the reduced Khovanov homology is not an invariant 

of the two-fold branched cover. 

These examples show that the Seifert and Montesinos involutions on Seifert fibered ho

mology spheres may be distinguished by the rank of Khovanov homology. Experimental 

evidence suggests that the rank of the Khovanov homology for torus knots grows at a 

rate that is at least linear. As such it seems safe to make the following conjecture: 

Conjecture 7.6. The Seifert and Montesinos involutions are distinguished by the rank 

of Khovanov homology for Seifert fibered homology spheres obtained by surgery on the 

cinqJoil. 

While this is certainly not the case for surgery on the trefoil,2 it seems likely that further 

examples may be obtained by considering surgery on T2,2n+l for n> 2. 

2Indeed, the Seifert and Montesinos involution coincide for +1-surgery on the trefoil (see The
orem 1.14). 
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7.2 Hyperbolic two-fold branched covers. 

A natural question is whether a similar example exists in the hyperbolic setting. 

Question 7.7. Does there exist a hyperbolic two-fold branched cover of 53, branching 

in more than one way, so that the rank of Khovanov homology distinguishes the branch 

sets? 

We remark that a hyperbolic two-fold branched cover can have at most 9 non-equivalent 

branch sets (Reni, 2000, Corollary 1). Indeed, it has been shown that this bound is 

realized (Kawauchi, 2006). 

7.2.1 Pretzel knots, revisited. 

As we have seen, the (-2,5, 5)-pretzel knot is strongly invert

ible in two distinct ways. By considering surgery on this knot 

then we 0 btain two (possi bly distinct) branch sets for the re

sulting manifold as a two-fold branched cover of 53. We have 

determined the associated quotient tangle for one of the two 

involutions shown in Section 6.4, and the second tangle may 

be determined by the same method. Both tangles are shown in Figure 7.4, though not 

with canonical framing. 

Canonical framings are obtained by adding 14 and 22 (positive) haH twists to the 

diagrams of Tl and T2 shown, respectively. As a result, we compute Kh(TI(Ü)) ~ 

l['16 EB l['2Ü EB l['4, and have Kh(T2(0)) ~ l['4 EB l['2Ü EB l['16 from Section 6.4. These groups 

are shown in Figure 7.5 

More generally, from the behaviour of these groups we have that 
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Figure 7.4 The tangles Tl (left) and T2 (right) associated to the distinct involutions 
on the (-2,5, 5)-pretzel 

1 
lj 1 1 

1 1 1 1 
1 1 1 1 
1 1 1 1 
1 1 1 1 
1 1 1 1 
1 1 1 1 
1 1 1 1 
1 1 1 1 
1 1 1 1 
1 1 1 1 
1 1 1 1 1 1 
1 1 1 1 
1 1 1 1 1 1 1 1 
1 1 1 1 3 1 3 1 

1 1 :[ 1 2 2 
2 2 1 2 2 1 4 1 4 1 
2 1 2 1 1 4 1 4 
3 1 3 1 2 2 
3 1 3 1 1 3 1 3 
2 2 1 1 1 1 
2 2 
1 1 1 1 

Figure 7.5 The groups Kh(Tl(O)) and Kh(TI(l)) (left) , and the groups Kh(T2(O)) and 
Kh(T2(1)) (right). The 5+ grading for Tl is the second column, while for T2 it is the 
third. 
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and 

for n 2: 0 by calculating that 

and 

applying Lemma 5.1. As a result, while the groups clearly distinguish the links Tl (n) 

and T2(n), we have that rkKh(Ti(n)) = 40 + n for n 2: O. 

1 11 1 1 1 1 
3 3 13 3 1 3 1

1 

3 3 2 2 2 
14 4 1 4 1 4 1 14 1 

1 4 1 4' 1 4 1 4 1 4 
2 2 2 2 2 

1 3 1 3 1 3 1 3 1 3 
1 1 1 1 1 1 J. 1 1 1 

1 1 1 1 1 

Figure 7.6 Kh(T2(n)) for n = -18,-17,-16,-15,-14 (from left ta right). The 5+ 
grading is highlighted for m = -18 in the notation of Lemma 5.1 

In fact, it can be verified that this is true for ail n > -16, and indeed by inspection of 

Figure 7.6 we have that 

8-n forn<-16 

rkKh(Ti(n)) = 26 for n = -16 

40 + n for n > -16 

for i = 1,2 (compare Figure 6.6). 

Remark 7.8. Using the width ofKh(TI (n)) we were able to conclude that the (-2,5,5)
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pretzel knot does not admit finite fillings (see Theorem 6.10). Notice that such a result 

depends, in general, on the choice of involution, as demonstrated by this example: the 

same conclusion cannot be made using T2 since Wmin = 2 in this case. 

7.2.2 Paoluzzi's example 

Figure 7.7 Two views of the knot 10155' 

The knot 10155 admits a pair of strong inversions as shown in Figure 7.7, however rather 

than meeting in a point (as in the previous example), Paoluzzi shows that the two fixed 

point sets for the respective involutions in this setting form a Hopf link (Paoluzzi, 2005, 

Section 5, Figure 10). 

Proceeding as in Section 6.5, the zero surgery has two distinct branch sets. These are 

illustrated in Figure 7.8 

Therefore, we have that 

and 

so that the ranks coincide. By considering the +5 surgery (say) III each case, and 

applying Lemma 5.1 we may conclude that 
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1 

1 
1 1 

1 1 
1 1 1 1 

1 1 2 1 
3 2 2 2 

3 1 2 2 1 
1 5 1 3 2 
2 5 2 1 4 1 
2 3 1 3 1 

3 3 2 3 
3 2 2 3 
2 1 1 
2 1 
1 1 

Figure 7.8 The homology of the pair of branch sets associated to the zero surgery on 
the knot 10155. Note that the Euler characteristic (and hence the determinant) is zero 
in both cases. 

and 

for ail n > O. As a result, 

n=O _ {so

rkKh(Ti(n)) = 

48+n n>O 

for i = 1,2. Interestingly, in this case the width alone is enough to distinguish these 

branch sets, while the rank is not. 

Remark 7.9. We note that both branch sets give rise to generic tangles, so that in 

either case we may conclude that 10155 does not admit finite fillings. More generally, 

sznce 

this knot does not admit L-space surgeries. 
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7.3 Manifolds branching in 3 distinct ways 

By a construction of Zimmermann (Zimmermann, 1997, Section 5), the following method 

gives rise to a two-fold branched cover of 53 with three distinct branch sets (this example 

taken from (Paoluzzi, 2005)). 

Figure 7.9 A knotted theta graph r. 

Consider the knotted theta graph r shown in Figure 7.9. Notice that this graph has 

the property that r" 'Yi is the trivial knot, and as a result 53 = :E(53, r" 'Yi) for each 

edge 'Yi. 

Now define Ki = ;Yi, the lift of arc meeting the (trivial) branch set in 2 points giving 

rise to a knot in 53. That is, 

The Ki may be determined by the method of (Zimmermann, 1997, Section 5), and are 

given in (Paoluzzi, 2005, Figure 3).3 

Zimmermann's result is that the collection of 3-manifolds {:E(53, Ki)} for i = 1,2,3 

are homeomorphic, as they are aH obtained as a branched cover of the graph r. 

3Note however that the theta graph given in (Paoluzzi, 2005, Figure 3) is incorrect. 
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We compute
 

and 



CHAPTER VIn 

DOES KHOVANOV HOMOLOGY DETECT THE TRIVIAL KNOT? 

The question of the existence of a non-trivial knot with trivial Jones polynomial has 

received considerable attention since the discovery of this revolutionary knot invariant. 

While the question remains open, Khovanov homology - the categorification of the Jones 

polynomial - gives rise to a natural reformulation: 1s there a non-trivial knot for which 

the reduced Khovanov homology has rank 1? This chapter explores certain aspects of 

this question, and in particular establishes a class of knots for which the answer is no. 

As a result, Khovanov homology may be used to construct combinatorial knot invariants 

that detect the trivial knot. 

Sorne of the results in this chapter are joint work with M. Hedden (Hedden and Watson, 

2008). 

8.1 Strongly invertible knots 

We begin with an observation regarding Khovanov homology and non-trivial, strongly 

invertible knots in S3. 

Theorem 8.1. Let K be a strongly invertible knot in S3 with associated quotient tangle 

T = (B 3 , T). Then Kh(T(n)) is thin for every non-zero integer n if and only if K is the 

trivial knot. 

Proof. If K is the trivial knot, then T(n) is two-bridge link, and Kh(T(n)) is thin for 
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n#-O (c.f. Theorem 4.24). We treat the converse. 

Recall that from Corollary 3.13 we have the following inequalities: 

FUrther, whenever Kh(L) is thin, IH1(~(S3, L); 2)1 = rkKh(L) so that ~(S3, L) is an 

L-space (see Proposition 3.16). 

Now suppose that Kh(T(n)) is thin for every non-zero integer n. Then from the discus

sion above L:;(n) ~ S~(K) is an L-space for n #- O. Applying Proposition 3.35, K must 

be the trivial knot. 0 

Using the symmetry group of the knot it is possible to determine when a knot is not 

strongly invertible. As a result, Khovanov homology may be used to detect the trivial 

lmot in the following sense: since the trivial knot is strongly invertible, Khovanov 

homology, together with the symmetry group of the knot, detects the trivial knot via 

Theorem 8.1. Note that Lemma 5.1 combine to ensure that the minimal width Wmin of 

Kh(T(n)) is determined on a finite collection of integers. However, it is certainly true 

that calculating the symmetry group is a difficult task in general. 

ln light of the relationship between Heegaard-Floer homology and Khovanov homology 

by way of two-fold branched covers it is interesting to recall that knot Floer homology, 

which is closely tied to the Heegaard-Floer homology of surgeries on a knot, detects the 

trivial knot (see Section 3.8). Here, Khovanov homology detects the trivial knot among 

knots whose complements are branched covers of tangles. 

8.2 Tangle unknotting number one knots 

Theorem 8.2. (Hedden and Watson, 2008) Suppose K '---' S3 has tangle unknotting 

number one (as in Definition 4.1). Then rk Kh(K) = 1 if and only if K is the trivial 

knot. 
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This follows immediately from Proposition 4.10 which asserts that the two-fold branched 

cover of a tangle unknotting number one knot may be obtained by surgery on a knot in 

S3, combined with the following more general statement. 

Theorem 8.3. Let K be a non-trivial knot in S3 with the property that ~k 9:: S;/q(K') 

for sorne knot K' in S3. Then rk Kh(K) > 1. 

Proof. As in Section 8.1, the proof relies heavily on the machinery of Heegaard-Floer 

homology, in particular Corollary 3.13 which gives the bound 

Suppose that ~k 9:: S;/q(K'). By passing to the mirror image if necessary we may 

assume that ~ > 0 (notice that since we are considering knots the case ~ = 0 is 

omitted). In this setting we obtain 

and Theorem 8.3 follows immediately if p > 1. Therefore we may reduce to the case 

of ~-framed surgeries so that S{/q(K') is a Z-homology sphere. Specifically, our task 

is to consider the case rk HF(S{/q(K')) = 1. That is, the case when surgery on a knot 

in S3 yields a Z-homology sphere L-space. But now we may apply Proposition 3.37 to 

conclude that K' must be the trefoi1. 

We are left to deal with the case when K' is the trefoi1. This is a strongly invertible 

knot, and the associated quotient tangle is determined in Figure 4.2. The branch set 

associated to +1 surgery on K' can be identified as the (- 2,3,5 )-pretzel knot (the knot 

10124)' Recall that this is the unique such branch set by Theorem 1.14. The result now 

follows by direct calculation: rkKh(10124) = 7 as can be seen in Figure 2.2. D 
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8.3 Invariants for detecting the trivial knot 

While Theorem 8.2 gives a very large class of knots on which the question of Khovanov 

homology detecting the trivial knot may be answered, the result becomes particularly 

interesting in light of the following corollary, which indicates that the Khovanov homol

ogy of many satellite knots can be used to detect the trivial knot. To describe it, let 

P(K) be the satellite knot of K with pattern P. By pattern, we mean that P is the 

knot in the solid torus which is identified with the neighbourhood of K in the satellite 

construction. 

Corollary 8.4. Let P ~ Si X D 2 be a knot in the solid torus. Suppose that 

• For any K, P(K) has tangle unknotting number one. 

• P(K) ~ U if and only if K ~ U, where U is the trivial knot. 

Then rk Kh( P( K)) = 1 if and only if K ~ U. In particular, the reduced Khovanov 

homology of the satellite operation defined by P detects the trivial knot. 

Proof. Observe that if Ki ~ K 2 then P(Kl ) ~ P(K2 ), so that the operation defined by 

P does indeed descend to isotopy classes of knots. Given an invariant of a knot, K, this 

observation allows us to define infinite families of invariants: simply apply the invariant 

to all the various satellites of K. 

In the case at hand, the invariant we are considering is the reduced Khovanov homology. 

Suppose that we choose a pattern P so that P(K) has tangle unknotting number one 

for every knot K, and so that P(K) ~ U, if and only if U is the trivial knot. In this 

situation, Theorem 8.2 applies to show that rk Kh(P(K)) = 1 if and only if P(K) is the 

trivial knot which, in turn, happens if and only if K is trivial. 0 
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A simple infini te family of satellite constructions whose 

Khovanov homologies detect the trivial knot are pro

vided by the patterns shown in the solid torus on the 

right, where n denotes the number of half twists. It is 

straightforward to verify that each of these patterns 

satisfies the hypotheses of Corollary 8.4. Note that the (2, ±l)-cable of K is obtained 

for n = ±1. Similarly, the positive (respectively negative) clasp, untwisted Whitehead 

double of K is obtained for n = 2 (respectively n = -2). The case n = 0 is always the 

trivial knot, while the convention n = àgives rise to the 2-cable of the knot K (this 

latter satellite is a link, and is handled by a different technique in (Hedden, 2008)). 

As a result, we obtain an infinite family of invariants, each of which detects the trivial 

knot: denoting by K n = P(K) the satellite using the pattern specified by the figure, 

with n half-twists, we have that rk Kh(Kn ) = 1 if and only if K is trivial for any choice 

n =1= o. 

We remark that for the satellites specified by the figure, it is straightforward to de

termine the knot in 8 3 on which one performs surgery to obtain the double branched 

covers: 

Indeed, there is an obvious strong inversion on K #K exchanging the two summands. 

From this, one can see that the quotient is 8 3 and the image of the fixed-point set is 

K n . See Akbulut and Kirby (Akbulut and Kirby, 1980) or Montesinos and Whitten 

(Montesinos and Whitten, 1986) for details. 

8.4 Khovanov homology and L-space homology spheres 

We remark that the answer to a seemingly more difficult question (c.f. Question 3.19) 

may shed light on the question of whether Khovanov homology detects the trivial knot. 

Proposition 8.5. If the Poincaré homology sphere is the only non-trivial) prime) L
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space, integer homology 3-sphere, then Khovanov homology detects the trivial knot. 

Proof. Let K be a non-trivial, prime knot in S3. Then det(K) is non-zero, and provides 

a lower bound for rk Kh(K). Thus we need only consider the case when det(K) = l, 

that is, when :E(S3, K) is an integer homology sphere. More specifically, we need 

only consider the case when :E(S3, K) is an L-space, integer homology 3-sphere, since 

rkHF(:E(S3, K)) provides a lower bound for rkKh(K) (see Corollary 3.13). 

If the answer to Question 3.19 is yes, then :E(S3, K) must be the Poincaré homology 

sphere. However, as we have seen, this implies that K is the knot 10124 with rkKh(K) = 

7. As a result, Khovanov homology detects the trivial knot. D 

Note that it would be enough to show that the Poincaré homology sphere is the only 

non-trivial, prime, L-space, integer homology 3-sphere among two-fold branched covers 

of S3 to obtain the above result. However, does not appear to simplify Question 3.19 

in any obvious sense. 

We emphasize that knowing that Khovanov homology detects the trivial knot does not 

give any information towards Question 3.19. Indeed, this seems to be a much harder 

problem in general. On the other hand, an example of a non-trivial knot with trivial 

Khovanov homology would immediately yield a new L-space integer homology 3-sphere 

as two-fold branched coyer. 

8.5 Sorne exarnples of Eliahou, Kauffrnan and Thist1ethwaite 

The basic construction of (Eliahou et al., 2003) is that given a pair 

of tangles, wired together as shown on the right, there is an operation 

altering the diagram that is undetected by the bracket polynomial (and 

hence the Jones polynomial, up to a possible shift). Consider the action 

of the 3-strand braid group on tangles described in Section 4.4. For a 

given braid {3 E B 3 denote the result of the action of {3 applied to a tangle T by Tf3. For 
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the fixed diagram on the right for the link L (for given tangles T and U), denote LfJ the 

link obtained by replacing the pair (T, U) with the pair (TfJ, UfJ-
1 

). Eliahou, Kauffman 

and Thistlethwaite prove the following: 

Proposition 8.6. (Eliahou et al., 2003) The links Land LfJ have the same Jones 

polynomial, up to a possible shijt, for f3 = (T~(Jll(J§. 

Recall that Hl(~(S3,Q)) 1= 0 if and only if det(L) = O. Sorne version of the following 

may be found in (Hedden, 2008). 

Proposition 8.7. Let L be a link with det(L) = O. If 114JIIT > 1 for [4J] E H2 (:E (S3, Q); Z) 

then rkKh(L) > 1. Here II· liT denotes the Thurston norm. 

When T and U are rational tangles, notice that the resulting link L is com

posed of a pair of two-bridge links. Dunbar shows that, in the case that both 

of these links are non-trivial torus links, 1:(S3, L) is geometric and has Solv 

geometry (Dunbar, 1988, Table 9). In particular, ~(S3, L) is a torus bundle 

so that 114JIIT = 1 rendering Proposition 8.7 ineffective. In this setting how

ever, it can be shown that for non-trivial links L, the Jones polynomial is 

trivial if and only if the pair of torus links are the trefoil and its mirror (Eliahou et al., 

2003). That is, L is the closure of the 4-braid 

The reduced Khovanov homology for this link is displayed in the right, hence rkKh(L) = 

26 for this particular link (notice that X (Kh(L)) = 13 - 13 and that the bracket 

polynomial will be sorne shift of the bracket for the two-component triviallink). 

Note that since Dunbar shows that the case of linked toms knots has geometric two-fold 

branched cover, we can conclude that the cover is geometric for any choice of rational 

tangles. This is particularly useful in light of Dunbar's classification: perusing the tables 

of (Dunbar, 1988) we conclude immediately that I:(S3, L) must be hyperbolic (in which 

case 114>IIT > 1) or Seifert fibered. 
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The latter case is ruled out by observing that the link L is neither torus nor Montesinos 

whenever one of the underlying two-bridge links is hyperbolic. Note that L cannot be a 

torus link if one of its components is not a torus link, so it remains to show that the link 

L is not Montesinos. Notice however that as a satellite of the Hopf link, this possibility 

is ruled out. 

As a result, whenever the pair of tangles (T, U) for L are rational tangles, if L is non

trivial with det(L) = 0 then rk Kh(L) > 1. In summary, since the particular family 

LL2 (n) of (Eliahou et al., 2003) is contained in this family, we have: 

Theorem 8.8. The family LL2(n) with trivial Jones polynomial are distinguished [rom 

the triviallink by Khovanov homology when n =1 O. 

In this notation, LL2(0) corresponds to the two-component trivial link. Note that we 

have proved that any non-triviallink formed by two-bridge knots, modelled on the Hopf 

link as constructed here, must have non-trivial Khovanov homology (compare Section 

8.3). 



CONCLUSION 

The relationship between Khovanov homology and Heegaard-Floer homology indicates 

that approaching Khovanov homology by way of two-fold branched covers is natura!. 

Perhaps more surprising, the correspondence between the complexity of the geometry 

in the two-fold branched cover and the coarse complexity of the Khovanov homology 

of the branch set (measured in terms of width) arises without reference to Heegaard

Floer homology, and suggests that further geometric properties and applications may be 

possible by way of Khovanov homology. These relationships - between Heegaard-Floer 

homology and Khovanov homology, and between Khovanov homology and the geometry 

of the two-fold branched cover - should be studied further. As such it seems fitting to 

conclude with a list of problems that may act as a guide for future work. 

Strengthening the relationship to Heegaard-Floer homology 

Lemma 5.1 gives a strong analogy to Heegaard-Floer homology in the context of surgery 

on knots in 8 3 (see Remark 5.2). As a result, though the splitting 

is a consequence of the simplicity of Kh(T( Ô)) ~ JF, it is natural to ask if this splitting 

is natural, in the following sense: 

Question. Let M be a simple, strongly invertible knot manifold, with associated quotient 

tangle T = (B 3 , T). Is there a choice of representative for T with the property that 
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We remark that, whenever k = 1 (so that T(Ô) is thin), the proof of Lemma 5.1 goes 

through as before. More generally, in specifie instances, it is certainly possible to say 

something concrete about the behaviour of the width, despite the possibility differentials 

interacting among the (EB~=l IFbô) [0, i]. 

While a better understanding of this question is of interest regarding the interaction of 

Khovanov homology and Heegaard-Floer homology, immediate application of results in 

this direction would be the calculation of Khovanov homology for dosures of arbitrary 

tangles by rational tangles, without returning to the complex level for the connecting 

homomorphisms. Aside from the Lee-Rasmussen spectral sequence, the skein exact 

sequence is currently the only computational tool in Khovanov homology. 

L-space knots 

Khovanov homology may be used as an obstruction to lens space surgeries and finite 

fillings, while Heegaard-Floer homology obstructs L-spaces, a decidedly larger dass of 

manifolds. Call K an L-space knot if it admits an L-space surgery. It would be very 

interesting to have a classification of L-space knots in terms of Khovanov homology (at 

least among strongly invertible knots). 

Let K '-7 S3 be a strongly invertible knot, with canonical associated quotient tangle 

T = (B 3 ,T). Say T is stably thin if w(T(n)) = 1 for n large enough. Note that we may 

assume that n > 0 up to taking mirrors. 

Question. If K admits an L-space surgery, is T stably thin? 

The converse obviously holds, though we have no reason beyond never having encoun

tered phenomena to the contrary to assume that the answer should be "yes". Further

more, we know of no examples of L-space knots that are not strongly invertible. Such an 

example would be very interesting, as it would yield examples of L-spaces that do not 

admit a strong inversion; currently there are no known examples of this phenomenon. 
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Khovanov homology and the geometry of two-fold branched covers 

The homological width of the branch sets for small Seifert fibered spaces may be ar

bitrarily large, since such manifolds (Brieskorn spheres in particular) may arise as the 

two-fold branched cover of torus knots. On the other hand, examples of thin links with 

hyperbolic two-fold branched cover are easy to produce (consider large integer surgery 

on a hyperbolic Berge knot, for example), and as such one should not expect to obstruct 

hyperbolicity using the width of the branch set. 

However, it seems possible that obstructions to other geometries exist. 

Question. Gan width be related to other geometries? 

In particular, we expect that Euclidean and Sol geometries may arise as two-fold 

branched covers of links with boundable width, and intend to pursue this question 

further. 

Finally, w and the total rank are the simplest possible invariants that one may derive 

from Khovanov homology. While these are certainly homological quantities (in that 

they cannot be recovered from the Jones polynomial in general), Khovanov homology 

contains a wealth of rich and interesting structure that has yet to be explained or 

exploited. 



APPENDIX
 

AN EXAMPLE: SURGERY ON THE POINCARÉ SPHERE
 

In application of the surgery obstructions from this work, the requirement that the 

knot be strongly invertible seems restrictive. However, while such an involution is 

required, we remark that the obstructions presented may be applied in broader settings 

beyond knots in the three sphere. As illustration of this, we study surgery on a strongly 

invertible knot in the Poincaré homology sphere, Y. Dehn surgery on knots in this 

manifold have been considered by Tange in the context of the Berge conjecture and 

Question 3.19 (Tange, 2007). 

Figure 9.1 The branch set B (the knot 10124) and the arc 1 giving rise to l' = K 
in the two-fold branched cover Y = 'L,(S3,B) (the Poincaré sphere). The canonical 
associated quotient tangle is shown on the right. Note that T(Ô) ~ Band Kh(T(O)) 2:: 

lf80 EB lf176 EB lf180 EB lf84 so that det(T(O)) = O. 

Recall that Y 2:: 'L,(S3,B) where B is the knot 10124, the (-2,3,5)-pretzel. Consider 

the knot K '-t Y given by the lift l' = K where 1 is the arc illustrated in Figure 

9.1 with endpoints on the branch set B. Note that K '-t Y is strongly invertible (by 

construction), and that M = y" l/(K) is a simple, strongly invertible knot manifold 

(c.f. Definition 4.6). 
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Since Hl (Y; Z) ~ 0, there is a preferred longitudinal slope À in âM so that Hl (M(À); Z) ~ 

Z and !:..(j.t, À) = 1. As a result, as in the case a of a knot complement in S3, 

M ~ :E(B3 ,r) where we fix the canonical representative T = (B 3 ,r) of associated 

quotient tangle. This tangle is illustrated in Figure 9.1; notice that r(t) '::::' B is ob

tained by filling with the tangle (B 3 , ) () (thus, a branch set for the trivial surgery on 

K) and Yo(K) ~ :E(S3, T(O)) where r(O) is obtained by filling with (B 3, -::::"). 

In analysing the homology Kh(T(~)) for the branch sets associated to Yp/q(K), 1 

first recall that Kh(T ( -6- )) .~ ][<3 EB][<4 as a singly graded group (the bigraded . 1 

group is illustrated on the right). As a result, we do not have a general form 1 1 

of stability as in Lemma 5.1, a priori. However, it will make sense to consider 

the groups Kh(T(m ± 1)) for a fixed integer m. For example, when m = °we 

1 
1 

1 

have that 

Kh(T(+1)) ~ ][<80 EB ][<176 EB ][<183 EB ][<88 

Kh(r(O)) ~ ][<80 EB ][<176 EB ][<180 EB ][<84 

Kh(r( -1)) ~ ][<80 EB ][<176 EB fl77 EB f80 

as relatively Z-graded groups (which verifies in particular that det(r(O)) o and 

det(r(±1)) = l, as claimed). Notice that this forces each of 

and 

for dimension reasons (suppressing the grading shifts), since in each case the groups in 

(relative) grading 3 and 4 are increased by 3 and 4 respectively. 
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This behaviour should not be expected in general, l though we do have that 

and this mapping cone may be iterated as in the proof of Lemma 5.1. For example, the 

groups 

Kh(T( -11)) ~ ]F8Ü EB ]F176 EB lF155 EB lF48 

Kh(T( -la)) ~ ]F8Ü EB lF176 EB lF154 EB lF48 

lF8Ü EB lF176 EB lF153 EB lF48Kh(T( -9)) ~ 

are illustrate in Figure 9.2. When m = -11, -10, these groups illustrate the behaviour 

of the above mapping cone. Notice that the total rank decreases by one in each case. 

More generally, though differentials among the Kh(T(Ô))[X, y][O, q] may be present, the 

groups still only occupy two -fixed diagonals when Kh(T(m+n)) is viewed as a relatively 

graded group. 

We now analyse the behaviour of w(T(n)) for nEZ. First notice that 

so that 

by our calculations above. More generally, for m > 0 

1 However, it is very interesting that in this particular example Kh(T(-9 + n) rv 

H. (Kh(T(-9) ~ EB;;:-~ Kh(T(~))[X,Y][O,q]),at least for 0 < n::; 10, as in Lemma 5.1. 
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1 1 1 
3 3 3 

1 5 1 5 1 5 
5 7 5 7 4 7 
11 8 10 8 10 8 

1 17 8 1 17 8 1,16 8 
5 22 7 5 ~1 7 5 21 7 
12 25 5 12 25 5 12 25 5 
19 24 3 19 24 3 19 24 3 

1 25 21 1 1 25 21 1 1125 ~2 1 
4 29 15 4 29 ~6 4 29 16 1 

7 28 9 7 28 9 7 28 9 
10 24 4 10 24 4 10 24 4 
13 18 1 13 18 1 13 18 1 
13 10 13 10 13 10 
12 4 12 4 12 4 
10 1 10 1 10 1 
6 6 6 
3 3 3 
1 1 1 

~ ~ ~ 

Figure 9.2 The groups Kh(T(-ll)), Kh(T(-lO)) and Kh(T(-9)) from left to right. 
The change in each group (corresponding to a +1 surgery in the cover) is circled; 
the support of Kh(T(à)) 3:! lF3 E9 lF4 is shaded in grey so that Kh(T(m + 1)) 3:! 

H* (Kh(T(m)) ----; lF3 E9lF4
). 

by analysing the grading shifts as in the proof of Lemma 5.1. In particular, bi > 0 for 

aIl m > 0 due to the shift by 1 in the secondary grading at each step (note that b1 = 80, 

for aIl m). 

Similarly, notice that 

this time by resolving the single negative terminal crossing (corresponding to the -1
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surgery in the caver). More generally, for m < 0 

by inspection of the grading shifts as in Lemma 5.1. Analysing the groups in Figure 

9.2, we see that b1 = 80 as before (for any m), while b4 is necessarily non-trivial due ta 

the shift by -1 in the secondary grading at each step. 

As a result, we conclude that w(T(n)) = 4 for every nEZ. 

With this in hand, we may determine W(T(~)) for every ~ E Q: W(T(~)) is bounded 

above by 4 (proceeding as in Propostion 5.11) and bounded below by 4 (proceeding as 

in Proposition 5.13, since Wmin = W max = 4 in this case). Said another way. the function 

is constant, with value 4. As a result, applying Theorem 4.25 we conclude that K '-----7 Y 

does not admit finite fillings. 
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