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RESUME

La modélisation du climat & haute résolution est nécessaire pour une meilleure
compréhension des impacts des changements climatiques. Les modeles régionaux du climat
(MRC) constituent une des principales sources de ce type de données puisque les modeles de
circulation générale (MCG) ne fonctionnent toujours pas a une résolution suffisante pour
répondre a ces besoins.

Une fois que les MRC sont devenus des outils capables de générer des simulations
physiquement réalistes, un effort important a été fait pour évaluer leur capacité de mise a
I’échelle, en se concentrant principalement sur des variables moyennées temporellement. Cet
effort ne s’est pas traduit par des améliorations sans équivoque par rapport aux simulations
produites par les MCG.

L'objectif principal de cette étude est d’examiner I’existence de la valeur ajoutée dans les
simulations du modele régional Canadien du climat (MRCC) par rapport a celles du modéle
de circulation général canadien (MCGC) utilisé comme pilote. Dans cette premiére étape, il a
¢té nécessaire d’analyser les échelles temporelles et spatiales communes aux deux modeles,
le MRCC et le MCGC. Une comparaison est effectuée en ramenant les données a haute
résolution des stations météorologiques et du MRCC a la résolution du MCGC.

L'évaluation se base sur la comparaison des histogrammes d’intensités de précipitation et des
95° centiles des distributions afin de caractériser les événements extrémes. On estime le degré
de chevauchement entre les distributions simulées et observées en utilisant la mesure S
définie par Perkins et al. (2007). Cette derniére refléte principalement le comportement des
intensités faibles et modérées.

Les résultats montrent que les statistiques quotidiennes des précipitations simulées par le
MGCC et le MRCC sont généralement trés similaires. En comparant les résultats des deux
modeles, il n'existe aucune preuve de l'existence de la valeur ajoutée. En outre, pendant 1'été,
les données simulées par le modéle MCGC sont plus proches des observations que celles
générées par le MRCC. Cette amélioration provient d'une meilleure simulation de la
fréquence des jours secs. Pour les événements quotidiens les plus intenses, le MCGC produit
aussi des résultats plus proches des valeurs observées que le MRCC. Ce dernier montre une
sous-estimation constante de la fréquence d'occurrence des événements intenses. C'est aussi
le cas dans les régions caractérisées par d'importants forgages de surface, ou la différence
entre les topographies des deux modgles pourrait avoir un impact.

Mots clés : MRCC, mise a I’échelle, précipitation, valeur ajoutée, histogrammes.
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INTRODUCTION

Les outils principaux permettant d’étudier le climat futur sont les mod¢les couplés de
circulation générale (MCCG). Ces modéles sont dérivés des lois physiques fondamentales et
incluent, entre autres, des composants dynamiques décrivant des processus atmosphériques,
océaniques, de la surface terrestre, ainsi que de la glace de mer. La dynamique est soumise a
des approximations appropri€es pour la grande échelle du systéme climatique (par exemple,
I’approximation hydrostatique dans la composante atmosphérique) et la discrétisation des
équations provoque une approximation supplémentaire. La multitude et la complexité des
processus a résoudre, la longueur nécessaire des simulations pour 'étude du climat, ainsi que
la nécessité d’effectuer des ensembles de simulations comprenant plusieurs membres afin
d’obtenir des estimations statistiquement robustes imposent des contraintes de temps de
calcul qui limitent I’intervalle de la grille sur laquelle les équations sont discrétisées.
Présentement, les distances horizontales des grilles atmosphériques varient entre 125 et 400
km (Randall et al., 2007), et elles sont insuffisantes pour reproduire la structure & petite
échelle des variables climatiques. Par conséquent, des paramétrages doivent &tres utilisés
pour représenter les procédés physiques non résolus. Ainsi, la confiance envers les modéles
climatiques pour fournir des estimations quantitatives crédibles du climat est limitée aux

échelles continentales et plus grandes (Randall ef al., 2007).

Dans ce contexte, une alternative pour obtenir des projections climatiques régionales
futures est l'utilisation des modeles régionaux du climat (MRC) a haute résolution, en
utilisant des conditions aux fronti¢res latérales (CFL) des MCG & plus basse résolution

(Dickinson et al., 1989; Giorgi et Bates, 1989; Laprise, 2006).

La plus haute résolution horizontale des MRC implique deux grands avantages potentiels
par rapport aux MCG : une discrétisation plus précise des équations qui permet une plus large
gamme d'échelles spatiales explicitement résolues et, peut-étre plus importante encore, une
amélioration de la représentation des forgages de surface comme la topographie, les

contrastes terre - mer, efc.



L'impact de l'augmentation de la résolution horizontale a été le sujet de plusieurs études
dans les MCG (Boer et Lazare, 1988; Boville, 1991; Boyle, 1993) et dans les MRC
(Marinucci et Giorgi, 1996; Castro et al., 2005; Xue et al., 2007), généralement en utilisant
des résultats du méme modéle mais pour différentes résolutions. Ces études montrent que les
simulations a plus haute résolution ne produisent pas nécessairement des résultats plus
proches des valeurs observées, mais que les performances dépendent fortement du
comportement des paramétrages. En d'autres termes, [’augmentation de la résolution
horizontale peut aggraver le comportement des paramétrages des processus de sous échelles
et donc, nécessiter de faire appel & des nouveaux paramétrages ou a modifier ceux qui
existent déja. Par exemple, Marinucci et Giorgi (1996) ont étudié des données de
précipitation simulés par un MRC a haute résolution et ont constaté que «the effects of
physical forcings (e.g., a better representation of topography and coastlines) may be masked
by the direct sensitivity of the model parameterizations to resolution itself, at least in the

continental scaley.

Les avantages provenant de l'utilisation de plus haute résolution des MRC sont influencés
non seulement par la sensibilité des paramétrages a la résolution elle-méme, mais aussi par la
fiabilité technique de mise a |I’échelle dynamique. Ici, la fiabilité de la mise a I’échelle
dynamique est définie de maniére similaire au second principe de Laprise et al. (2007) : la
petite échelle générée par le MRC possédes des amplitudes et statistiques climatiques qui
seraient présents dans les données de pilotage si elles n'étaient pas limitées par la résolution.
Cette affirmation a été étudiée en isolant les erreurs de la technique de pilotage sans prendre
en compte ceux qui viennent des modeéles particuliers ou des CFL, c'est-a-dire dans le
contexte d’une approche parfaite. Tel qu’établi par Laprise ef al. (2007), le second principe
semble étre valable dans certaines conditions particuliéres: aux latitudes moyennes, pour les
niveaux inférieurs et pour des domaines suffisamment grands. La méthode la plus populaire
des approches parfaites a ét¢ développée par Denis et al. (2002) et est désignée sous le nom
de I’Expérience Grand Frére (EGF). Le protocole de ’EGF a été appliqué dans plusieurs
contextes (voir Denis et al., 2002, 2003; Antic et al., 2005, de Elia et al., 2002; Dimitrijevic
et Laprise, 2005; Herceg, 2006; Koltzow ef al., 2008).



La fiabilité de la technique de mise & I’échelle dynamique prouve l'existence de valeur
ajoutée potentielle dans des simulations du MRC et constitue une condition nécessaire a
I'existence de valeur ajoutée réelle. Cette derniére doit étre identifiée par I'étude des
simulations du MRC dans des contextes plus réalistes que des approches parfaites, en
établissant |'utilité de la petite échelle générée par le modéle. Certaines des difficultés qui

apparaissent sur la détermination de la valeur ajoutée seront examinées au cours du mémoire.

Certaines études se sont penchées sur la présence de la valeur ajoutée dans des
simulations des MRC en comparant avec un certain type de données observées. Giorgi ef al.
(1998) ont comparé la précipitation et la température de surface simulées par le modéle
régional du NCAR RegCM et par le modele mondial CSIRO avec des données observées
(Legates et Willmott, 1990) dans la région du Missouri, de I’lowa, du Nebraska et du Kansas
(région MINK). La comparaison des moyennes saisonnieres des précipitations dans la région
MINK montre des différences importantes entre les résultats des deux modéles et les
observations. L'existence de valeur ajoutée par le MRC n’est donc pas évidente. Le résultat le
plus intéressant est la représentation des champs de précipitation pour la saison estivale. Bien
que la région MINK ne soit pas caractéris€ée par une topographie complexe, la corrélation
spatiale de la moyenne estivale entre les champs observés et simulés par le MRC est de 0,77
alors qu’elle est de —0,69 entre les observations et les résultats du MCG, ce qui montre une

grande amélioration dans la distribution spatiale de la précipitation.

Durman et al. (2001) ont étudié la précipitation quotidienne simulée par deux versions du
modele HadCM2 : une version mondiale et une version a plus haute résolution et a aire
limitée (HadRCM) qui utilise comme pilote la version mondiale. En comparant les
distributions de fréquence d'intensité simulées et observées, ils trouvent que, pendant I'hiver,
le. MRC produit trop souvent des événements caractérisés par des taux de précipitation
intenses. Au contraire, pendant 1'été, le MRC produit une meilleure représentation de la
distribution de précipitation par rapport au MCG, particuliérement due & une amélioration de

la simulation des événements les plus intenses.

Feser (2006) utilise un filtre spatial pour séparer les résultats du MRC en deux gammes
d’échelles spatiales : les échelles moyennes (entre 250 et 550 km) et les grandes échelles

(plus de 700 km). Les résultats montrent que, lors de 'évaluation des variables a grande



échelle, comme la pression au niveau de la mer, les structures spatiales produites par le MRC
ne sont pas trés différentes de celles qui sont obtenues par les réanalyses du NCEP/NCAR.
Au contraire, lors de I'évaluation de la température prés de la surface dans les échelles
moyennes, la performance du MRC dans la représentation des structures spatiales surpasse
celles des réanalyses NCEP. L'auteur suggére que I'amélioration provient d’une meilleure

représentation des propriétés de la surface dans le MRC.

L'objectif principal de ce projet est de contribuer a détecter objectivement la valeur
ajoutée générée par un modéle régional du climat. Comme premiére étape dans ce but
général, nous avons évalué les statistiques quotidiennes des précipitations simulées par un
MRC et un MCG (utilisé comme pilote du MRC) a l'aide d’observations, pour plusieurs
régions du Canada. L'analyse se concentre sur des échelles temporelles et spatiales
représentées par les deux modeles, mondial et régional, mais ou le modéle mondial devrait
avoir peu d'habileté pour résoudre les processus dii au fait que les €chelles sont prés de sa
limite de troncature (Laprise, 2003; Feser, 2006). La fine échelle temporelle et spatiale
produite par le MRC n’a pas été explicitement évaluée parce que, comme nous allons le
montrer plus tard, celle-ci suit une approche complétement différente. Certes, pour obtenir
une évaluation plus globale, ce travail devra étre complété par des études examinant d'autres
aspects de la valeur ajoutée, y compris les caractéristiques spatiales et temporelles de fine

échelle, d'autres variables, etc.

Le travail est présenté sous forme d’article rédigé en anglais dans le but de le soumettre a
une revue scientifique. La premiére partie de I’article comprend une bréve discussion de
certaines questions importantes sur ['évaluation de la valeur ajoutée. Par la suite, les données
observées et simulées utilisées dans les comparaisons et les différentes statistiques servant .a
évaluer les performances des modéles sont présentées. Ensuite, on présente 1’analyse des
résultats obtenus lors de I'évaluation du cycle annuel et la valeur quotidienne des

précipitations pour conclure avec une discussion et un résumé des résultats obtenus.
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VALEUR AJOUTEE DANS LE MRCC : COMPARAISON DE LA PRECIPITATION
AUX ECHELLES DU MGC
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Abstract

High-resolution climate information is currently in high demand in climate-change impact
studies. Regional climate models (RCMs) constitute one of the main sources of this kind of
datasets since present-day General Circulation Models (GCMs) do not run at a resolution
sufficient to satisfy these needs.

Once RCMs were shown to be technically feasible, a large effort has since ensued to assess
their capability as a climate downscaling tool, mostly concentrating on time-averaged fields.
This effort has not resulted into unequivocal gains when compared to GCM simulations
performed at much coarser resolution.

The primary aim of this study is to investigate the existence of added value in the Canadian
RCM simulations compared to its driving Canadian coupled GCM simulations. As a first but
necessary step, temporal and spatial scales that are common to both, the CGCM and the
CRCM, are considered in the analysis. The comparison is performed by upscaling, at the
CGCM level, data from the CRCM and from meteorological stations.

The assessment is based on the comparison of simulated and observed intensity frequency
distributions of precipitation and on the computation of 95" percentile of the distributions to
characterize more extreme events. The S score defined in Perkins et al. (2007) is used to
measure the overlap between simulated and observed distributions and reflects mainly the
simulation of light-moderate precipitation rates.

Results show that the daily statistics of precipitation as simulated by the CGCM and by the
CRCM are generally very similar and, when comparing both data, there is no evidence of the
existence of added value in CRCM simulations. Moreover, in summer season, the CGCM
shows a better agreement with observed data than the CRCM and this improvement comes
from a better simulation of the frequency of observed dry days. In the case of more extremes
daily values, the CGCM produce results closer to the observed values than the CRCM. The
latter shows a consistent underestimation of the frequency of occurrence of heavier events.
This is even the case in regions characterized by important surface forcings, where
differences between model topographies may be expected to have an impact.

Key words: Regional Climate Model, driven data, added value, upscale precipitation,
intensity frequency distributions.



1. Introduction

The primary and most comprehensive tools to study future climate are the Atmosphere-
Ocean General Circulation Models (AOGCMs). These models are derived from fundamental
physical laws and include dynamical components describing atmospheric, oceanic and land
surface processes, as well as sea ice and other components. The dynamics is subject to
approximations appropriate for the large-scale climate system, such as the hydrostatic
approximation, and then further approximated through mathematical discretization. The large
number and complexity of processes to be resolved, the long simulations needed for climate
studies, and the need of ensemble members for better statistical estimates impose
computational constraints that restrict the horizontal grid mesh used in the discretized
equations. Present horizontal grid intervals of the atmospheric component, usually between
125 and 400 km (Randall et al., 2007), are insufficient to capture the fine-scale structure of
climatic variables and parameterizations need to be used to represent the unresolved, subgrid-
scale physical processes. As a result, confidence that climate models provide credible
quantitative estimates of present-future climate is particularly true at continental scales and

above (Randall et al., 2007).

In this context, an alternative to obtain future regional climate projections is the use of
high-resolution Regional Climate Models (RCMs), nested at their lateral boundaries with
low-resolution AOGCMs (Dickinson et al., 1989; Giorgi and Bates, 1989; Laprise, 2008).
The enhanced horizontal resolution of the RCM implies two great advantages with respect to
the AOGCM: a more accurate discretization of equations which permits a broader range of
spatial scales explicitly resolved and, perhaps more important, an improvement in the

representation of surface forcings such as topography, coastal regions, etc.

The impact of increasing resolution has been discussed by several authors, both for
GCMs (Boer and Lazare, 1988; Boville, 1991; Boyle, 1993) and RCMs (Giorgi and
Marinucci, 1996; Castro et al., 2005; Xue et al., 2007), generally using results from the same
model running at different resolutions. These studies show that simulations at higher
resolution do not necessarily produce results closer to the observed values and that the

performances are strongly dependent on the behaviour of parameterizations. That is, the
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increase in horizontal resolution may alter the appropriateness of parameterized subgrid-scale
processes and hence call for new parameterizations or a retuning of the existing ones. For
example, Giorgi and Marinucci (1996) studied the simulated precipitation by a RCM when
increasing resolution and found that “the effects of physical forcings (e.g., a better
representation of topography and coastlines) may be masked by the direct sensitivity of the

model parameterizations to resolution itself, at least in the continental scale”.

Benefits coming from the use of higher resolution RCMs are influenced not only by the
sensitivity of parameterizations to resolution itself but also by the reliability of the one-way
nesting technique. Here, the reliability of the dynamical downscaling technique is defined in
a similar way as Tenet 2 in Laprise et al. (2008): the small scales generated (by RCMs) have
the amplitudes and climate statistics that would be present in the driving data if it were not
limited by resolution. This assertion was studied by isolating errors from the nesting
technique without considering those coming from particular models or from lateral boundary
conditions (LBCs), i.e. in the context of perfect prognosis approach. As stated by Laprise et
al. (2008), Tenet 2 appears to be valid in some special conditions: mid-latitudes, low levels
and for suitable large domain size. The most popular perfect prognosis approach was
developed by Denis et al. (2002) and is referred as the “Big Brother Experiment” (BBE). The
BBE framework has been applied in several contexts (see Denis et al., 2002, 2003; Antic et
al., 2005; de Elia et al., 2002; Dimitrijevic and Laprise, 2005; Herceg, 2006; Koltzow et al.,
2008).

The reliability of the one-way nesting technique, as proven in the context of the BBE,
demonstrates the existence of “potential added value” in RCM simulations and constitutes a
necessary condition to the existence of “real added value”. This later added value must be
identified through studying RCM simulations in more realistic frameworks than the perfect
prognosis approach, establishing the usefulness of the small scale generated by the RCM. In
other words, the study of added value in RCM simulations should also be carried out by
including in the analysis those errors coming from the model itself and/or from LBC. The
most obvious way to address this problem is by comparing RCM results with the observed

climate.
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Some studies have tried to identify the added value in RCM simulations by comparing
with observations. Giorgi et al. (1998) compared the precipitation and surface temperature
simulated by NCAR RegCM regional model and its driving CSIRO GCM in the Missouri,
Towa, Nebraska and Kansas (MINK) region. Comparisons of seasonal mean precipitation in
the MINK region showed a large bias for both models, and there are no clear evidences of
added value. The most interesting result is the representation of the spatial patterns during the
summer season. Although the MINK region is not characterized by pronounced local
topographic variability, the spatial correlation coefficients between observed and control run
RCM for mean summer fields is 0.77 and between observed and control run GCM is —0.69,

showing a great improvement in the spatial pattern.

Durman et al. (2001) studied the simulated daily precipitation by two versions of the
HadCM2 model: a global (HadCM2) and a limited area version (HadRCM). The HadRCM is
driven by the HadCM2 and the comparison is performed in two HadCM2 grid boxes that
includes Scotland and south-east England. Comparisons between simulated and observed
intensity frequency distributions show that, in winter season, the HadRCM has a large
positive bias in the frequencies of heavier events and performs worse than the HadCM2. On
the contrary, in summer season, the HadRCM greatly outperforms the HadCM2, particularly

because of a better representation of the upper tail of the distribution.

Feser (2006) uses a spatial filter to separate the RCM results into two spatial-scale ranges:
for medium scales (between 550 and 250 km) and for large scales (larger than about 700 km).
Results show that, when evaluating a large-scale quantity such as the sea level pressure,
spatial patterns produced by the RCM are similar to those given by the NCEP/NCAR
reanalyses. On the other hand, when assessing near-surface temperature in medium spatial
scales, the RCM outperforms the NCEP reanalyses in the representation of the seasonal mean
spatial patterns. The author suggests that the improvement is coming from the better

representation of physiographic data in the RCM.

The main objective of this project is to contribute to the effort of objectively detecting the
added value generated by regional models. As a step in this direction, we have evaluated the
statistics of daily precipitation as simulated by a RCM and a GCM (the same used to drive

the RCM) using observations in several regions across Canada. The analysis is concentrated
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in those scales that are represented by both, the global and the regional model, but where the
global model is expected to have little skill due to the fact that scales are near its truncation
limit (Laprise, 2003; Feser, 2006). No attempt is made to explicitly evaluate the fine
temporal-spatial scales produced by the RCM because, as we will show later, this must
includes a different approach. Certainly, to get a more complete assessment, this work will
have to be complemented by studies examining other aspects of added value, including fine

spatial and temporal scale features, others variables, etc.

The work is organized as follows. In section 2 a brief review of some important issues
that arise in the evaluation of added value in realistic frameworks is introduced. In section 3,
observed and simulated data used in the comparisons are presented. The different statistics
used to evaluate the performance of models are introduced in section 4. Section 5 includes
results obtained when evaluating the annual cycle and daily values of precipitation. The

article ends with a discussion and a summary of the results obtained.



2. Issues in the evaluation of added value

In this section some topics that we consider important when evaluating added value in
RCMs are briefly discussed. Most of them are inherently present when studies of added value
are carried out (e.g., resolved scales in numerical models, the poor knowledge of climate
statistics in regional scales, etc.), while others are particular issues associated with the present

work (e.g., representativity of precipitation data).

2.1 Availability of observed data

A very important limitation when evaluating the performance of RCMs is the spatial and
temporal resolution for which observed data are available (Christensen et al., 2007; Laprise et
al., 2007). For example, high-resolution analyses with reliable information in fine spatial
scales are necessary to assess spatial variability of atmospheric fields. Observed gridded
dataset with grid spacing on the order of 10-50 km exists for some variables (precipitation,
temperature, sea level pressure) and for some regions around the world. Surface observing
networks with sufficiently high density of stations are limited to specific regions (generally
near the more densely populated areas) and the produced gridded datasets have fine-scale

information only in those areas (some parts of Europe and North America).

Given these limitations, the assessment of temporal variability of RCM-simulated climate
is an interesting alternative since reliable estimations can be made in local-regional scales.
However, these evaluations are also limited due to lack of data with adequate fine temporal

information.



16

2.2 Point observations vs. model-simulated precipitation

When comparing simulated and observed data, an assumption about the
“representativity” of the different types of data must generally be made. For example,
weather station data are usually believed to constitute point estimations of precipitation. On
the contrary, it is generally accepted that climate models produce area-averaged estimations
of precipitation (Osborn and Hulme, 1997; Cherubini et al., 2002; Frei et al., 2003;
McSweeney, 2007; Perkins et al., 2007; Chen and Knutson, 2008). The reasoning behind this
agreement js that many of the processes that produce precipitation within a climate model are
parameterized (not explicitly resolved) and parameterizations of precipitation are generally
implicitly areal in their implementation (Skelly and Henderson-Sellers, 1996), as is the case
of mass-flux-based moist convection parameterizations (Chen and Knutson, 2008). Also,
parameterizations are “tuned” to reproduce time- and area-average statistics, not the details of
the time series of observational records. Differences in the spatial scales of both estimations
may produce very distinct statistics. Spatial averaging, in a similar way to temporal
averaging, tends to smooth prominent characteristics of the original (point source) time
series, decreasing the frequency of occurrence of extreme events in both tails of the
distribution, such as producing fewer dry days and fewer heavy precipitation events. In other
words, temporal variability in weather station data is expected to be higher than that of
simulated data, and the lower the resolution of the model, the more accentuated this

difference should be.

An equitable comparison between simulated and observed data is then possible when at least
one of the two estimates is processed so that both data are thought to represent similar spatio-
temporal scales. The process of converting a grid-box average into point estimation requires
the use of a downscaling technique. The quality of the simulated data is then influenced by
the performance of the downscaling technique hence adding a new source of error. The other
alternative is to convert the point measurement into an area- average quantity, an operation
that is usually referred to as upscaling. A reliable estimation of the spatially averaged
precipitation will be possible with a suitable number of stations that are able to correctly

account for spatial variations within the region. As stated by McSweeney (2007), “the
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number of stations required ... depends on the grid box size and shape, station distribution
over the area, station distribution over time, and the spatial variability in the region”. For
example, the spatial variability of precipitation is greater in regions characterized by complex
topography so that a large number of stations, appropriately distributed, is required to well
describe the area-averaged rainfall. The spatial scale of precipitation systems is associated
with the atmospheric circulation and so, as a first approximation, the number of stations

could depend also on the weather regime and the season considered.

2.3 Effective resolution in climate models

An important issue when dealing with results from numerical models is related to the
actual resolution that outputs are supposed to represent. A number of authors have discussed
differences between effective resolution and grid spacing, generally in terms of the minimum
length scale that is resolved by the grid-point numerical models (Pielke, 1991; Durran, 2000;
Walters, 2000) and spectral models (Laprise, 1992). For example, Walters (2000) has defined
a numerical model’s effective resolution as “the minimum wavelength the model can
describe with some required level of accuracy”. Effective resolution is suggested to be
greater or equal than four grid intervals and the [evel of accuracy depends on the geometric
relationship between the numerical grid and the true solution, but also on the discretization
schemes used and the spatial arrangement of variables on the computational grid. As stated
by Walters (2000), this definition of effective resolution “can be related to both the spatial
variation of the structure at a given time step and the behaviour of the amplitude of the error
as a function of time”. That is, the definition of effective resolution in most studies is
understood as the effective resolution of instantaneous fields. But statistics used in climate
studies are generally computed from temporal mean fields (daily, monthly, etc.), not directly
from instantaneous values, and little is known on how to deal with effective resolution in

these temporal scales.

In practice, the assumption of an effective resolution of four grid intervals involve

producing spatial averages in regions of four by four grid points of the model output data,
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which prevent the identification of added value at the finest represented scales. Because of
this, studies generally consider directly single grid-point results, for example in RCMs
(Réisdnen and Joelsson, 2001; Kunkel et al., 2002; Gutowski et al., 2003; Diffenbaugh et al.,
2005; Buonomo et al., 2007; Boberg et al., 2008) or in GCMs (Wang and Zwiers, 1999;
Kharin and Zwiers, 2000; Kharin et al., 2007; Perkins et al., 2007).

2.4 Resolved spatial scales: RCM vs GCM

Differences between RCM- and GCM-resolved spatial scales could be conceptually seen
in a diagram adapted from Laprise (2003) presented in Fig. 1. In this diagram, four grid
intervals are considered as the effective resolution of both climate models; the GCM with
horizontal grid spacing of 400 km and the RCM with 50 km. The full blue arrow indicates
spatial scales that are resolved by the GCM (between 1 600 and 30 000 km) and the red one
those resolved by the RCM (between 200 and 5 000 km). The dotted blue arrow denotes
those spatial scales that are only represented by the GCM (Gs, larger than 5 000 km) because
of the limited-area domain of the RCM and dotted red arrow denotes scales only represented
by the RCM (Rss, smaller than 1 600 km) because its higher horizontal resolution. Between
both regions, there is an interval of wavelengths (between 1 600 and 5 000 km) that are

represented by both models and its denoted by a full black arrow in the diagram.

There is a general consensus that the added value is mainly associated with those spatial
scales at which the coarse resolution driving re-analysis system or global simulation model
has little or no skill (e.g., Laprise et al., 2002; Feser, 2006; Laprise, 2006; Castro et al., 2005).
Here, little (or no) skill refers to the ability of the GCM to represent scales that are poorly (or
not) resolved by the GCM because they are near (below) the truncation limit of the model.
Thus, the interval of wavelength where added value is present is suggested to correspond to

those spatial scales in the Rgs region.

The evaluation of added value in region Rgs could be separated in two parts: (1) for
wavelengths between 400 and 1 600 km (designated with a dashed black square in Fig. 1),

where data from both models coexists and; (2) for wavelength smaller than 400 km where
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only data from RCM exists. Part 1 allows the evaluation of added value in a direct way by
comparing results from the two models with observations to determine which one produces a
better performance. The analysis of Part 2 is quite different because only data from the RCM
is present and a direct comparison between the GCM and the RCM is not possible. As was
stated in the introduction, this work will concentrate in the added value generated by the

RCM in part 1 of the spectrum.

From what has been said above, it is understood that the search for added value should
proceed for variables and climate statistics whose variance is important in spatial (and
temporal) scales that are expected to be better resolved by the RCM. Precipitation, one of the
most important variables in climate studies, displays a wide range of spatial scales. The
advantage of using this variable can be seen by just comparing power spectra of precipitation
with that of any predominantly large-scale variable, such as geopotential or sea level
pressure. While the former shows that variability is important at all scales, the second shows
that variance in small scales is several orders of magnitude lower than in large scales
(Separovic et al., 2008). Precipitation is also a key variable because some of the most
important societal impacts of climate change will probably result from changes in

precipitation (Gutowski et al., 2003; lorio et al., 2004, Trenberth et al., 2003).

Spatial scale dependence of any variable is also strongly dependent on the climate
statistics used for the analysis. The analysis of time-averaged fields is not the ideal method to
identify the benefits of increased resolution. The variance of time-averaged fields is always
more concentrated into larger spatial scales than the original time-varying fields. For
example, Boer and Shepherd (1983) and Boer (1994) studied the scale-dependence behaviour
of the vertically integrated rotational kinetic energy field when decomposed in its time-mean
and transient eddy component. Their results show the dominance of the mean structures for
small wavenumbers and of the transient component for wavenumbers beyond about 10
(wavelengths of approximately 3 000 km). Whatever the intensity and location of particular
weather events, time averaging will always smooth out the most outstanding features. As a
consequence, time-averaged RCM fields do not look substantially different from those

produced by much coarser global models. Some important exceptions, however, do exist,
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especially with respect to features associated with strong fine-scale surface forcing (e.g.

complex topography).



3. Data

3.1 Observed data: meteorological stations

Observed data used in this study were provided by the National Climate Data and
Information Archive, operated and maintained by Environment Canada. Over 6000
meteorological stations with daily total precipitation rate in the period 1971-1990 are
available for the analysis. Total precipitation includes all types of precipitation: rain, drizzle,
freezing drizzle, freezing rain, hail and snow. Any snow quantity registered is melted and its
liquid water amount is recorded in millimeters and added to amounts from other forms of
precipitation. Daily total precipitation is recorded in mm with a precision that varies between
0.1 and 0.2 mm depending on the instrument used. Graduated to the nearest 0.2 mm, the
Type-B rain gauge is presently used to measure rainfall at most of the stations (Metcalfe et
al., 1997). Weighing-type precipitation gauges and tipping bucket gauges are also used on a
number of automatic meteorological stations to measure precipitation rates at shorter time
intervals with a precision of 0.1 mm (Metcalfe et al., 1997; see also

http://www.climate.weatheroffice.ec.gc.ca).

Observed data is subject to several sources of errors and uncertainties. Systematic
measurement bias arises from wind undercatch and wetting-evaporation loss in point
measurements (Groisman and Easterling, 1994; Metcalfe et al., 1997). The first one, due to
the wind deflection of hydrometeors, is on the order of 10 % in summer and could arise 50 %
in winter (more important for snow precipitation) according to the results obtained by Sevruk
(1982) in U.S. stations. Wetting on internal walls of the collector and evaporation from the
container produce also an underestimation of the “ground truth” precipitation that could
attain 10 %. In this study, no corrections for any on these problems are performed in any of

the different types of rain gauges.

Another source of error in measurements of daily precipitation comes from observer bias,
that is, the tendency for the observer to favor or avoid some precipitation values compared to
others (Daly et al., 2007). As is shown in the Appendix A, these errors are very important in

the definition of the “effective precision” of the instruments.
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3.2 Coupled Global Climate Model: CGCM 3.1

The global model used in this study is the third generation of the Canadian Centre for
Climate Modelling and Analysis Coupled Global Climate Model (CGCM3), hereafter
referred as CGCM. The use of this model is two-fold. First, their fields of horizontal velocity,
temperature, surface pressure, specific humidity and sea surface temperature are used to
provide the LBC to the Canadian Regional Climate Model (hereafter called CRCM). Second,
its simulated precipitation is used to determine the existence of added value in CRCM

simulations.

The CGCM makes use of the same ocean component as that used in the earlier version, but it
makes use of a substantially updated atmospheric component (AGCM). The ocean
component is described in detail in Flato and Boer (2001) and Kim et al. (2002, 2003), and its
sea-ice component is described in Flato and Hibler (1992). The third-generation AGCM
(McFarlane et al., 2005; Scinocca et al., 2008) shares many basic features with the second-
generation version (McFarlane et al., 1992): the spectral transform method is used to
represent the horizontal spatial structure of the main prognostic variables while the vertical
representation is in terms of finite elements defined for a hybrid vertical coordinate as
described by Laprise and Girard (1990). The spectral representation currently used in the
AGCM corresponds to a higher horizontal resolution than that used in the earlier version,
being comprised of a 47-wave triangularly truncated (T47) spherical harmonic expansion.
The vertical domain of this atmospheric component extends from the surface to the

stratopause region (1 hPa, approximately 50 km above the surface) with a total of 32 layers.

In version 3, the penetrative mass-flux scheme of Zhang and McFarlane (1995) is used to
model deep cumulus convection. This scheme is based on a bulk representation for an
ensemble of cumulus clouds comprised of entraining updrafts and evaporative driven
downdrafts. The gridded output of precipitation occurs on a 96 by 48 Gaussian grid (output

data has a grid spacing of 3.75° in latitude and longitude).

It is important to note that the minimum interval from which cumulative precipitation is

available from the CGCM corresponds to 24 hours, which prevents extending the analysis to
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sub daily temporal scales. This could constitute a severe limitation to our attempt at

identifying the added value of the CRCM.

3.3 Regional Climate Model: CRCM 4.2.0

The regional model used for this study is the version 4.2.0 of the Canadian Regional
Climate Model initially described in Caya and Laprise (1999) but upgraded through the use
of subgrid-scale physical parameterization package of the third-generation CGCM (see
section 3.2), except for the Bechtold-Kain-Fritsch (BKF) deep and shallow convection
parameterization. The BKF scheme is also a bulk mass flux scheme (Arakawa and Schubert,
1974) that follows the precepts of Kain and Fristch (1990) for closure assumption and cloud
model but is slightly different in the formulation of the trigger function. For derivation details

see Bechtold et al. (2001).

The CRCM simulations were performed with horizontal grid spacing of 45 km (on a polar-
stereographic projection true at 60° N) over a North American domain covering Canada,
United States and most of Mexico, with a total of 201 by 193 grid points (see Fig. 2). In the
vertical, 29 unequally spaced Gal-Chen scaled-height levels were used (Gal-Chen and
Somerville, 1975); the lowest thermodynamic level is about 25 m above the surface, and the
computational rigid lid was located near 29 km. The use of semi-Lagrangian and semi-

implicit marching schemes allows the use of a 15-min time step at this resolution.

The CRCM was driven at its lateral boundaries by the traditional nesting of Davies (1976) as
well as in its interior with large-scale nudging (Riette and Caya, 2002). The CRCM uses a
spectral nudging technique that follows closely the approach developed by von Storch et al.

(2000) but it uses a scale decomposition based on the Discrete Cosine Transform (Denis et
al., 2002).

Two CRCM simulations were considered in the present investigation differing only in the
LBC used as nesting data. One simulation is driven by the CGCM and will be designated as
CRCM (CGCM). The other simulation is nested by the National Centers for Environmental
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Prediction (NCEP) - National Center for Atmospheric Research (NCAR) reanalyses (Kalnay
et al., 1996) and will be designated as CRCM (NCEP).

Table 1 summarizes some important information on the three simulations used in the
study. Column 1 gives the acronym of each simulation used in the text. Column 2 gives the
name of the model and its source. Column 3 denotes the type of model, the horizontal grid
spacing/triangular truncation and the number of vertical levels. Finally, column 4 indicates

the data used to drive the regional model in each simulation.



4. Methodology

The methodology used to investigate the presence of added value in CRCM simulations is
based on the assessment of CRCM performance when compared to its driving model

(CGCM) and observed data.

With the aim of studying the added value under different atmospheric circulations, climate
statistics are computed for annual values but also for the different seasons defined in the
usual way, namely: March, April and May (MAM), June, July and August (JIA), September,
October and November (SON), and December, January and February (DJF).

Evaluation of the effective resolution of the global model is investigated by assessing two
different spatial scales. This is carried out by considering spatial-average precipitation in two
size regions: regions corresponding to one CGCM grid point and regions including four (i.e.,

2 by 2) CGCM grid points.

4.1.  Regions and period of study

With the aim of investigating the response of climate models under diverse surface forcing
conditions such as complex topography, land-surface variations and land-sea contrasts,
different regions are considered in the analysis. Availability of observed data imposes some
restrictions on the possible areas that could be evaluated. According to Osborn and Hulme
(1997), a minimum of 10 to |5 stations are necessary to accurately estimate the variance and
the rain-day frequency in the CSIRO-AGCM grid-box. This result was derived using rain
gauge data from United Kingdom but it is acknowledged that the number of stations could
change depending on the relative importance of the surface forcings (McSweeney, 2007). In
this study we have used the same criteria as Osborn and Hulme (1997), but as we will see
later, the number of stations used within the regions of interest far exceeds this threshold,

giving further confidence to our results.
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Fig. 3 shows a map of Canada with all available stations that measured daily total
precipitation in at least some part of the period 1971-1990. Because of the relatively good
spatial coverage, 5 different zones across Canada are selected for the analysis. A total of 10
regions are considered, 5 including one CGCM grid point and 5 including four CGCM grid
points, indicated in the Fig. 3 with blue and red boxes respectively. Boundaries in latitude
and longitude for all regions are presented in Table 2. Each zone is designated with the
abbreviation of the province to which it belongs: BC for British Columbia, ALTA for
Alberta, SAS for Saskatchewan, MAN for Manitoba and QC for Quebec. The name of each
region is then completed by adding a digit that establishes the number of CGCM grid points
including in the region (e.g., BC.1 is the region that belongs to British Columbia which size
is one CGCM grid-box). Fig. 4 shows each region separately with the topography in colour
filled contours as represented in the CRCM. BC region (BC.1 and BC.4) is characterized by
complex topography from the Rocky Mountains and also may be influenced by land-sea
interactions near the Vancouver area. ALTA region is also characterized by complex
topography but in the leeward side of the Rocky Mountains. SAS, MAN and QC regions
show a relatively simple topography, although SAS could be influenced by topography of the
Rocky Mountains due to its proximity and the strong western flow characteristic of mid-

" Jatitudes.

It is important to note that the horizontal distribution of stations within each region is not
uniform. A more homogeneous distribution is generally found in regions including only one
CGCM grid point than in those including four CGCM grid points. Also, for both sizes of
regions, MAN and QC zones seems to show more heterogeneous horizontal distribution than
the others zones. These differences could have an impact in the estimation of the spatial-

average precipitation rate.

Fig. 5 shows the number of stations in each region as a function of time in the period 1961-
1990, and Table 3 indicates minimum and mean values of the number of stations within each
region. Regions defined by a single CGCM grid-box (four CGCM grid-box) include a
minimum of 70 (151) rain gauges per day during the period 1971-1990, exceeding by a factor
5 the minimum proposed by Osborn and Hulme (1997). It is interesting to note that all

regions present an annual cycle in the number of stations, with a minimum during winter and
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a maximum in summer. Differences between both seasons are on the order of 15 stations
except for ALTA region where it reaches approximately 80 stations. Interannual variations
are also important and some regions indicate a significant increase in the density of stations
from 1961 to 1971 and, for this reason, the period 1971-1990 is selected with the aim of

increasing the confidence of regional daily precipitation estimations.

Table 3 also shows the number of model grid points within each region. The number of
CRCM grid points within a single CGCM grid box is variable because of the use of the polar-

stereographic conformal projection in the CRCM.

4.2. Temporal and spatial scales of analysis

As discussed in section 2.2, a direct comparison between an RCM, a GCM and observed
values can be properly done only when quantities are equivalent for the three sources of data.
By equivalent, here it is meant that the evaluation is carried out at scales that are greater or
equal than that of the coarser resolution model or observation system. In our case, the CGCM
defines the minimum area at which to perform the comparison and this corresponds to one
CGCM grid box. The choice of the coarser resolution as the unit of comparison forces us to
transform high-resolution data into lower resolution. Assuming that climate models produce
area-average estimations of precipitation (see section 2.2), upscaling RCM and observed
results to the GCM level simply consists in computing the spatial-average of all grid-points
and stations data within each GCM grid box. Similarly, the fact that the GCM cumulative
precipitation data was archived at 24-hour intervals forces to carry the comparison at this

time scale, thus discarding shorter time interval information.

For each source of data, let us denote with PR=PR;;, the mean precipitation rate of the j*
day for the i” point within the region r of interest. In our case, j € [1,J] with J=7300 since we
consider 20 years between 1971 and 1990 with 365 values each. The spatial average for each

region r, in day j, is simply computed as:
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1
(PR), =%EPRU,. (0

where the subscript i represents stations or model grid points in each region . Values of [ for
each data set and region are presented in Table 3. In the case of simulated data, the total
number of grid points within each region is constant with time (e.g., / = constant). On the
other hand, for observed data, all stations available each day are included in the estimations
of the area-averaged precipitation rate, and the total number of stations depends on the
completeness of the archive (i.e., I = I(j)). The minimum and mean values of I(j) during the

period 1971-1990 for each region are presented in Table 3.

For observed data, as was discussed in section 2.2, the accuracy of the estimation of the area-
average is related to the number of stations, their spatial distribution, weather regime, etc. In
the case of the CRCM data, the upscaling is done directly because the nature of data (area-
average output) from the CGCM and of the CRCM is the same. We only have to make sure
that in the calculation of the eq. (1), CRCM grid boxes overlap the CGCM region.

4.3, Statistical analysis tools

As was discussed in section 2.4, time-averaged variables may not be the ideal method to
evaluate model performance. For this reason, an assessment of daily statistics derived from
the calculation of intensity frequency distributions is performed in addition to the study of

monthly mean values.

4.3.1. Monthly mean values

Following the notation defined above, monthly mean values for each time series are

calculated in the usual form:
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1990

1
{PR),., =55 >(PR),,, 2)

y=1971

where (PR),,, correspond to the mean precipitation rate of the month m € [1,12] for the year
y € [1971,1990] in the region r. In the same way we can calculate seasonal mean

precipitation rate values ((PR),,) by averaging over 3-month periods.

Simulated seasonal errors are calculated as departures from observed seasonal mean
values and then normalized by the observed values, so that results from different regions,
seasons and weather regimes could be compared in terms of relative differences. Normalized

seasonal deviations (NSD) could then be expressed as

mod obs

PR
< > Sr , (3)

» ~(PR)
< P R>obs

sr

NSDM? -

To determine if NSD exhibits substantial differences for a particular region or weather
regimes, the average of absolute values of NSD across seasons and regions respectively is

calculated. Absolute values (ANSD =|NSD)) are used in the calculation of mean values to

avoid compensations between regions and seasons with NSD of different signs.

4.3.2. Estimation of precipitation intensity distributions

Intensity distributions of simulated daily precipitation have been used in several studies

(e.g., Durman et al., 2001; Gutowski et al., 2003; Perkins et al., 2007; Boberg et al., 2007). In
" all of these studies, the bins width of precipitation used to construct the histograms were kept
constant. In this work, we have chosen variable bin sizes that vary logarithmically in order to
account for the reduction on the number of events with increasing intensity. Histograms for
each time series are constructed from the frequency of occurrence of events function defined

in the following way:
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where DD correspond to our adopted definition of “dry days” that includes those events with
precipitation rates less than 1 mm/day. The function WD represents the “wet days” and
includes those events with precipitation rates greater or equal than 1 mm/day. Thresholds of
the categories that define the histogram are determined by the parameter k. A more detailed
explanation of the construction of histograms as well as their associated error bars is given in

Appendix B.

With the aim of obtaining an objéective comparison between precipitation distributions, a
simple measure defined in Perkins et al. (2007) is used. This score measures the overlap

between observed and simulated distributions and is given by:

9
s70 = X min{ £ (k),£2(k))- (5)
k=0
S varies between 0 indicating that no overlap exists between the distributions, and 1, when

both distributions are identical.

As stated by Lettenmaier (1995), at daily time scales, precipitation amounts do not have a
continuous probability distribution. Instead, there is a discontinuity in the probability of zero
and non-zero amounts of precipitation. The estimation of the probability of zero amounts is
particularly difficult when working with gauge measurements. The limited precision of
instruments induces a threshold in the definition of “zero” precipitation values. As discussed
in appendix A, the precision of precipitation measurements is suggested to be 0.8 mm/day,
with a threshold of equal value. These imply that a good way to characterize the zero
precipitation events is through the frequency of events with precipitation rates smaller than
1.0 mm/day. This minimum category is conceptually different from the “zero” or “dry day”

category usually used because it includes some small precipitation amounts. Notwithstanding
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this discrepancy, we will still name the minimum category as “dry days” and the rest of the

distribution (values greater or equal than 1.0 mm/day) as “wet days*.

To complete the analysis of the performance of simulated frequency distributions
accomplished through the S score, a separate study of dry and wet days is performed. In the
next subsections, statistics used to evaluate these two different parts of the distribution are

presented.

4.3.3. Analysis of dry days

To study the performance of the simulation of dry days, the ratio between simulated and
observed values is computed as

Rmod - - . (6)
dd fObS(k :O) DDObS

Defined in this way, Rgg = 1 when there is a prefect agreement between observed and

simulated dry days, Rqa > 1 suggest an overestimation and Ryq < 1 an underestimation of the

simulated frequency of dry days.

4.3.4. Analysis of heavier precipitation rate events

To study the performance of the simulations in the representation of heavier precipitation
intensity events, values of 95" percentile are estimated. The 95-percentile is the minimum
precipitation rate that exceeds the 95 % of the data. In this study, percentiles are computed

from the wet day variable defined in equation (4).



5. Results

5.1. Monthly mean precipitation rate

5.1.1. The case with one CGCM grid point

Fig. 6 shows monthly mean precipitation rates observed and simulated by the CGCM and
CRCM in the five regions defined by a single CGCM grid point (see Fig. 3 and Table 2 for
boundary specifications). CRCM simulated precipitation is shown for the two simulations
(see section 3.3 and Table 1) differing only in its LBC: one using the CGCM (CRCM
(CGCM)) and the other using the NCEP/NCAR reanalyses (CRCM (NCEP)). Each region
displays different climatic regimes evidenced by their individual annual cycle. BC.1 region,
west of the Rocky Mountains and characterized by the presence of complex topography,
shows a very wet winter with a relatively drier summer. ALTA.1, SAS.1 and MAN.1 regions,
located east of the mountains, show moderately dry regimes with a maximum in summertime
precipitation. QC.1 region shows a rather uniform monthly distribution of precipitation, with

a maximum between summer and autumn seasons.

The observed annual cycle is generally well simulated in all regions by both models but
differences between simulated and observed monthly values are noticeable. The most
outstanding feature is a systematic over-estimation of monthly mean values, found in almost
all regions and seasons. Fig. 7 shows normalized deviations, in all seasons and regions, for a)
the CGCM, b) the CRCM driven by the CGCM and ¢) the CRCM driven by the
NCEP/NCAR reanalyses. The overestimation is clear in results from both models with the
exception of QC.1 region, particularly during winter. It is not surprising that ALTA.1 region
shows the greatest normalized deviations in winter season because of its very low
precipitation. For example, in DJF in ALTA.1, the difference between the observed and the
CRCM (CGCM) simulated precipitation is less than 0.6 mm/day, which is not very large but

of the same order that the observed precipitation.

With the aim of investigating whether deviations are related systematically to some

particular model or season, normalized absolute deviations between observed and simulated
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seasonal values, averaged across regions, are presented in Fig. 8a. Mean relative errors vary
between 5 and 35 % and are of the same order of magnitude in all seasons, with minimum
values in spring. Differences between seasonal values simulated by the CGCM and the
CRCM (CGCM) are quite evident. However, the existence of added value is difficult to
confirm since a systematic improvement of seasonal values is not found in the CRCM. For
example, the inter-regional mean (normalized) deviations in SON vary from 35 % in the
CGCM to less than 5 % in the CRCM (CGCM). In MAM on the other hand, the CRCM
(CGCM) simulated precipitation produces a larger seasonal mean error. Annual errors of
CRCM (CGCM) are smaller due to a large overestimation of precipitation in autumn season
in CGCM simulations.

CRCM-simulated precipitation depends strongly on the driving data, showing important
differences between seasonal mean values when using NCEP reanalyses or the CGCM as
nesting data. It is interesting to note that seasonal values of precipitation simulated by the
regional model when using the more realistic LBC from reanalyses does not systematically

produce better simulation of the precipitation than when using LBC from the CGCM.

Fig. 8b shows normalized absolute deviations of simulated annual values for all models
as a function of region. Differences between regions are sometimes important but generally
of the same order as the inter-model differences. The exception is ALTA.1 that shows the
largest errors (~ 30 %) with little dispersion between models. BC.l, SAS.1 and MAN.I
regions exhibit a better performance of the CRCM (for both LBC) to simulate annual values
compared with those produced by the CGCM. On the other hand, QC.1 region seems to show
a slightly better representation of annual precipitation in the CGCM compared to the CRCM.

5.1.2. The case with four CGCM grid points

Fig. 9 shows monthly mean precipitation rates observed and simulated for the five
regions including four CGCM grid points (see Fig. 3 and Table 2 for boundary
specifications). BC.4 and ALTA.4 regions, with important topographic features, tend to

display slightly different climatic regimes compare to the corresponding smaller regions
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shown in Fig. 6. For example, BC.4 region shows a decrease of the amplitude of the annual
cycle when compared to BC.1, probably due to the influence of the different surface forcings
affecting each sub region. The small region is located almost entirely west of the Rocky
Mountains (see Fig. 4) and is greatly influenced by the topography-induced precipitation
associated with the forced upward movement of large-scale west flow. Region BC.4 includes
areas on the leeward side of the mountains with the precipitation shadowing effect of
mountains ranges, producing a decrease in the spatial-average precipitation. The opposite
effect (inclusion of areas with mountains forced precipitation) is probably causing the
increment in spatial-average precipitation in ALTA.4 region when compared to ALTA.].
Regions SAS.4, MAN.4 and QC.4, with very little influence of the topography, show no

significant differences compared to their respective smallér regions.

The performance of the CGCM and the CRCM in the five regions defined by four CGCM
grid points are quite similar to that of a single CGCM grid boxes. Fig. 10 shows seasonal
normalized deviations for a) the CGCM, b) the CRCM (CGCM) and ¢) CRCM (NCEP).
Deviations are of the same order of magnitude as in the case of regions including one CGCM
grid point but over-estimations are less important than in those regions, especially in the

CRCM simulated precipitation.

As in the case of single CGCM grid box regions, there is a better simulation of annual
precipitation rates in the CRCM (for both LBC) than in the CGCM, this difference coming
particularly from larger errors in CGCM-simulated precipitation in SON and JJA (see Fig.
11a and Fig. 11b). BC.4 and SAS.4 regions indicate the largest improvements on annual
values with normalized deviations changing from 25-30 % in the CGCM to 10-15 % in the
CRCM.
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5.2. Intensity frequency distributions of daily precipitation rate

5.2.1  The case with one CGCM grid point

As in the case of the annual cycles, each region displays distinct distributions of daily
precipitation intensities. Fig. 12 shows observed and simulated daily precipitation intensity
distribution in winter season for the five regions including a single CGCM grid point. The
distribution for the very humid winter characteristic of BC.1 region shows a broad range of
intensities where daily precipitation occurs. Regions ALTA.1, SAS.1 and MAN.1, located in
the transition dry zone on the downstream slopes of the Rockies, show a narrow range of
daily precipitation rates with more than 75 % of observed dry days. QC.1 region, with
moderate precipitation in winter (mainly as snow), shows a wide range of intensities of

precipitation with fewer heavy precipitation events than BC.1 region.

As was explained in section 4.2.2, the degree of overlapping between simulated and
observed distributions can be quantified by using the S score (see equation (5)). Fig. 14
displays S values calculated for each season as a function of regions and models. In winter,
differences in distributions across regions are well reproduced by both models but some
difficulties arise in the representation of the lower and upper limits of distributions in regions
QC.1 and ALTA.1, showing an underestimation of both, dry days and more extreme events.
In SAS.1 and MAN.1 regions, S score is greater than 0.93 for the three simulations analyzed
but it is important to stress that in these two regions, S describes mainly the simulation of
non-precipitation events (observed dry days are more than 80 %). Finally, both models
simulate very well the precipitation distribution in winter in QC.1, with a slightly over-
estimation of dry days and underestimation of moderate precipitation rates (those between 4
and 16 mm/day). Table 4 summarizes seasonal results by showing the inter-region mean S
score for the three simulations analyzed. In winter, values of the mean S score are 0.92 for

the CGCM and 0.91 for the CRCM (for both LBC).

Based on these results, it is difficult to establish whether a model performed better than

the other. While in regions SAS.1, MAN.1 and QC.1 both models performed similarly, some
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differences arise in the others regions, particularly between CRCM simulations for different

LBC.

The representation of precipitation intensity distribution in summer season (Fig. 13)
seems to be a more difficult task for both models, and systematic differences are noted in all
regions, with maybe the exception of ALTA.1 that maintains a similar behaviour to that of
DJF. Mean values of S across regions (Table 4) are 0.85 for the CGCM, 0.76 for the CRCM
(CGCM) and 0.82 for the CRCM (NCEP), showing not only a worse performance than in

winter but also greater differences between the simulations analyzed.

Simulated daily precipitation by the CGCM consistently outperforms that from the
CRCM (for both LBC) in almost all regions. Also interesting is that in all regions, the CRCM
when driving by NCEP reanalyses performed better than the same model nested by the
CGCM, suggesting that LBC are playing an important role in summer statistics. It is also
difficult to establish whether any of the regions are more challenging but it seems that models

perform poorly in BC.1 region.

In all regions and seasons but particularly in summer, both simulated distributions show
the same pattern of deviations compared to observed ones: an underestimation of dry days
associated with an overestimation of light precipitation rate events. To confirm that the
source of differences between simulated and observed distributions comes from the different
representation of dry days, Fig. 15 shows the ratio between simulated and observed dry days
(Rqq) as a function of region for a) DIF, b) MAM, c) JJA and d) SON. The dependence of S
with Ryq is evident: a good simulation of observed dry days (Rqg~ 1) is associated with a high
degree of overlapping (S ~ 1) and the opposite is found when the simulation of dry days is
poor. This means that differences between simulated and observed distributions are
dominated by differences in the representation of dry days. The greater differences in
summer season are related to important underestimations of dry days, attaining a ratio Rgq of

0.4 in the CRCM (CGCM) in some regions.

Interestingly, in winter season, QC.1 region present ratios slightly larger than 1 for both
models, indicating that simulated events with precipitation rate smaller than 1 mm/day are

more frequent than in observations.
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5.2.2  The case with four CGCM grid points

Similar results are obtained when regions including 4 CGCM grid points rather than one-
grid box regions are analyzed (see Fig. 16 and Fig. 17). Values of the S score are of the same
magnitude and higher skills are found in winter season compared to summer one. In winter,
inter-regions mean S score is 0.92 for both the CGCM and the CRCM (CGCM) while in
summer values are 0.81 for the CGCM and 0.74 for the CRCM (CGCM).

Similar to results from BC.1 region, BC.4 shows systematically the lowest values of S,
for both models, when compared to the other regions. The difficulties of the models to
represent the precipitation in this region may be related to the presence of complex

topography.

5.3 Heavier precipitation rates

The 95™ percentile is used to study the performance of models to reproduce those events with
the highest rates of precipitation in each season and region. Fig. 18 shows the 95" percentile
calculated for each simulation and season in regions including one CGCM grid point. As a
first approximation, values of 95" percentile could be related with the total seasonal
precipitation, showing higher values in JJA (DJF) for regions ALTA.1, SAS.1, MAN.] and
QC.1 (BC.1 region) because of its maximum summertime (wintertime) precipitation.
However influences of other forcings, such as the presence of complex topography, could be
important in the frequency and intensity of more extreme events. For example, in JJA, the
highest 95™ observed percentiles correspond to QC.1 (19.4 mm/day) and BC.1 (17.0
mm/day) regions, the latter with the minimum total summer precipitation between all regions.
The relative greater importance of heavy precipitation rate events in the total summer
precipitation of BC.1 region is probably related to the presence of complex topography. The
precipitation generation type could influence the frequency and intensity of heavier events, in

a similar way that the presence of topographical forcing. However, due to differences in the
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total seasonal precipitation, it is difficult to determine whether the dominance of convection
in summer produces distinct statistics of heavier precipitation events than the large-scale
precipitation in winter. It seems that, at daily time scales, convection does not generate

heavier precipitation events than large-scale precipitation.

Differences in the 95" percentile values across regions are generally well simulated by both
models in all seasons. For example, in winter season, observed and simulated percentiles
reach maximum values in BC.1, minimum values in MAN.1 and show a secondary maximum
in QC.1 region. However, a quantitative analysis shows some important differences between

simulated and observed percentiles as well as between the different simulations.

The most outstanding feature is the consistent underestimation of CRCM-simulated 95"
percentile when compared to observed values. This underestimation is seen in all regions and
seasons (more important in JJA and SON) whatever the LBC used to drive the CRCM. The
CGCM produces generally a better agreement with observed 95t percentiles than the CRCM
in all seasons, showing a slightly underestimation in BC.1 region and an overestimation in

QC.1 region.

The influence of surface forcings in BC.1 is not well simulated by models that show an
important underestimation of heavier events. The CRCM expected to better resolve

topographical features and associated precipitation, shows similar results to the CGCM.

Differences between the CRCM simulation when driven by CGCM and NCEP/NCAR
reanalyses are generally small and it is difficult to establish if one produces a better

performance than the other.

Values of 95" percentiles for regions including 4 CGCM grid points (Fig. 19) are smaller
than the one-grid box regions because of the larger area used in the average. However, the
relative performance of climate models in reproducing observed percentiles is similar to

those in one-CGCM grid box regions.



6. Summary and Discussion

The primary aim of this study was to investigate the existence of added value in CRCM
simulations used to downscale CGCM-simulated fields. As a first but necessary step,
temporal and spatial scales that are common to both, the CGCM and the CRCM, are
considered in the analysis. The comparison is performed by upscaling, at the CGCM level,

data from the CRCM and from meteorological stations.

Our evaluation is focused on daily precipitation as simulated by the CRCM and the CGCM
using as reference daily observational time series. Temporal series of spatially-averaged
observed precipitation are constructed from meteorological stations operated by Environment
Canada. Because of their relatively good spatial coverage, five different zones across Canada
are selected for the analysis, all exceeding by a factor five the minimum number of stations

proposed by Osborn and Hulme (1997) when computing area-average estimations.

The assessment is based on the comparison of simulated and observed intensity frequency
distributions of daily precipitation and on the computation of 95" percentile of the
distributions to characterize more extreme events. The S score defined in Perkins et al. (2007)
is used to measure the overlap between simulated and observed daily distributions and
reflects mainly the simulation of light-moderate precipitation rates. Considering different
regions in the analysis allows the evaluation of added value as a function of surface forcings.
In the same way, the dependence in weather regimes is studied by analysing seasonal

statistics.

Results show that the daily statistics of precipitation as simulated by the CGCM and by the
CRCM are generally very similar and, when comparing both data, there is no evidence of the
existence of added value in CRCM simulations. For example, in winter season, the CGCM
and the CRCM display similar skills to simulate the frequency and intensity of observed daily

values by showing similar values of the S score, independently of region considered.

In summer season, both models have more difficulties than in winter season to reproduce the
observed daily distribution, presenting smaller values of S than in wintertime. As suggested
by the S score, the CGCM shows a better agreement with observed data than the CRCM and

this improvement is coming from a better simulation of the frequency of observed dry days.
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Representation of dry days is a recurrent problem in climate models (Trenberth et al., 2003),
generally associated with an overestimation of the frequency of light intensity precipitation
events (Dai et al., 1999; Paquin et al. 2002; Frei et al., 2003; Dai and Trenberth, 2004). All
simulations presented in this study show an underestimation of dry days and an
overestimation of light precipitation (underestimation/overestimation pattern), almost
independently of the seasons and region considered. The only exception to this behaviour is
winter season in Quebec region. Although both models underestimate the frequency of dry
days, the CRCM seems to produce a pattern of underestimation/overestimation still more
pronounced than the CGCM. A comparison of the simulated distributions of precipitation
between the CRCM and others state-of-the-art regional climate models adds some evidence
supporting this statement. Fig. 20 (taken from Christensen et al. (2008)) shows histograms of
precipitation as simulated by 14 regional climate models in a domain that includes all Europe.
The CRCM (identified as OURANOS_CRCM in Fig. 20) produces more light precipitation
(and also less moderate-heavy precipitation) events than any other regional models

considered in the evaluation. .

In the case of more extreme daily values, results show that the CGCM produces a better
agreement with observed values than the CRCM. The latter shows a consistent
underestimation of the frequency of occurrence of heavy precipitation events. This is even
the case in regions characterized by important surface forcings, where differences between

model topographies may be expected to have an impact.

More than a problem of relative performances of models, the absence of added value might
be related to the failure of the assumptions from which added value could be expected. The
hypothesis that support the assumption of existence of added value in our particular

comparison was presented in section 1 and is given by:

Global model should have less skill at their smallest resolved scales due to the fact that these

scales are near the truncation limit (Laprise, 2003; Feser, 2006).

As was discussed in section 2.3, this hypothesis has been studied generally for instantaneous
fluctuating quantities but not for time-average quantities (e.g., daily and monthly values) and
for discontinuous variables (e.g., precipitation). In this study, the hypothesis has been tested

by comparing results obtained in regions including one and four CGCM grid points. The skill
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of the global model seems to be similar in the two sizes of regions analyzed, suggesting that
the model is “working well” in both spatial scales. In other words, because of the very good
performance of the global model, independently of the size of regions considered, the

hypothesis does not seem to be appropriate at least for the time scales here analyzed.

To avoid a misinterpretation of our results, it may be interesting to briefly discuss two
particular features of the methodology. Both are linked to the partial character of the model

evaluation:

* The approach employed in this study is based on the assessment of spatial and
temporal scales of precipitation that are represented by the two models but which
are near the truncation limit of the global model. Advantages of the RCM
simulations due to its higher spatial-temporal resolution are not explicitly
considered and, clearly, this is not the ideal way to highlight the benefits of the
increased resolution in RCMs. For example, the minimum interval from which
cumulative precipitation of 24 hours imposed by the CGCM could filter out some
added value existing in smaller temporal scales. This characteristic of the study

must be taken into account at the time of evaluating these results.

¢ The relative performance of some statistics of precipitation as simulated by both
models with respect to observational data is used as a tool to detect added value.
This approach has its downside. As stated by Oreskes et al. (1994), “If a model
fails to reproduce observed data, then we know that the model is faulty in some

way, but the reverse is never the case”.

In other words, if a model A produces results that are closer to observed data than those of
model B, these does not necessarily imply that model A is better than B. A better
performance could be attained by compensation and not necessarily because of the right
reasons. An example that attempts to illustrates this latter possibility is the LBC paradox
shown in section 5: results produced by the CRCM when driven by the global model are
sometimes closer to observed values than those using NCEP/NCAR reanalysis as LBC.
Although NCEP/NCAR reanalyses are subject to errors, there is no doubt that they constitute
a more reliable estimation of an evolving state of the atmosphere than GCM simulated data.

So, how can it be possible to obtain “better” results when using worse LBC? Necessarily, the
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errors in the LBC must be compensated by the CRCM, suggesting that the better results are

coming from errors in the CRCM.

Analysing the added value generated by RCM is a complex issue. We have tried to
contribute to this important subject in two different ways: a) by quantifying added value in a
particular case and; b) by discussing some general issues that must be taken into account
when conducting this kind of analysis. Among the several important questions that still

remain open we can include:

* What is the effective resolution of climate models? What is the dependence of

effective resolution on the time scale of the variable analyzed?

* RCMs present some advantages with respect to the coarser resolution GCMs
such as a better representation of surface forcings, a greater range of processes
resolved, etc. What is the relative importance of each advantage in producing

added value?
*  What is the dependence of added value on temporal and spatial scales?
* Is there any added value in large-scale results?

Finally, it could be very interesting to repeat the analysis with others models such as those
involved in the European project PRUDENCE (Prediction of Regional Scenarios and
Uncertainties for Defining European Climate Change Risks and Effects;
http://prudence.dmi.dk/) or/and in the North American Regional Climate Change Assessment
Program (NARCAAP; http://www.narccap.ucar.edu/; Mearns et al., 2005). The use of several
models would help to determine whether some of the findings are inherent to the

downscaling technique or related with a particular model.



Appendix A: Precision of observed data

As suggested by Osborn and Hulme (1997), the minimum precipitation measure (0.2-0.25
mm) could be used to separate periods with zero precipitation (e.g., dry day) and non-zero
precipitation (e.g., wet day) at each station. Implicit in this definition of dry days is the
assumption that precision in observed precipitation is the same as that of instruments.
However, observer bias (by definition the tendency of the observer to favor or avoid some
precipitation values compared to others) could be an important problem when defining the
precision of observed data. This was shown by Daly et al. (2007) using daily precipitation
measurements in the United States Cooperative Network (COOP). They found that there are
two major types of observer biases: 1) underreporting amounts of less than 0.05 in, and 2)
over-reporting of daily precipitation amounts evenly divisible by 5 and/or 10. They also
suggest that underreporting of light intensities (less than 0.05 in) is associated with an
unusual high frequency of zero amounts, possibly as a result of higher thresholds for
inconsequential precipitation for some observer than others. Although observer biases
discussed in Daly et al. (2007) refer to the COOP data measure system, characterized by
measures in English units, some similar behaviour may be expected independently of the SI

system used.

Fig. A1 shows observed precipitation intensity distributions of daily precipitation rate for
the five regions indicated in blue in Fig. 3 (see Table 2 for boundaries specifications).
Histograms are constructed with four different bin sizes: 0.1, 0.2, 0.4 and 0.8 mm per day.
Constant bin sizes are used because only intensities less or equal 5 mm/day are shown in
histograms and the number of events are relatively homogeneous at these rates. With the aim
of investigating whether biases are widespread, histograms are constructed including all
available data in each region between 1971 and 1990. The total number of values in each
histogram depends on the number of stations in each region and on the completeness of each
time series. Table Al presents the mean and maximum number of stations in each region
during the period 1971-1990 and the resulting total number of data. Also included is the

equivalent number of years of a daily time series built assuming that all data are from the

same site.
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As stated by Daly et al. (2007), “the more precipitation events included, the smoother the
appearance of the frequency histogram; at least 10 years of data are typically required to
obtain a smooth histogram at an unbiased site, and to provide enough frequency counts in
various precipitation bins to produce stable statistical results”. In the present work we. count
with the equivalent of over 1400 yr of data, which suggests that the statistical robustness of

the histogram is beyond question.

For the 0.1 mm/day bin size histogram (black line in Fig. A1), relative maxima associated
with intensities of integer values (1, 2, etc. mm/day) are noticeable in all regions, suggesting
an observer bias similar to type 2 of Daly et al. (2007). Another interesting signature is that
there are no observations of events with an intensity of 0.1 mm/day in regions 2, 4 and 5, and
negligible numbers in the other two regions, indicating a possible increase in zero thresholds

for some observers, in accordance with Daly et al. (2007) results.

When using 0.2 mm/day as the interval value for constructing histograms, results are less
irregular but still large departures from smoothness are observed. For example, when
analyzing two stations with no visible observer bias (both passed all tests) and with very
different precipitation regimes, Daly et al. (2007) find a similar behaviour in the distributions.
Both stations exhibit a maximum frequency at 0.01 in (0.25 mm), with a relatively smooth
decrease in frequency of occurrence as the daily precipitation amount increases (see Fig.
A.2). Following this results and its apparent validity under different conditions, one should
expect similar behaviour in the histograms presented in Fig. Al. However, all regions show
that the number of events with precipitation rate in [0.2, 0.4] mm/day is smaller than the
amount in [0.4, 0.6] mm/day. This is probably related to error of type 1 of Daly et al. (2007),

presenting an overestimation of the dry days classification.

Accumulated results suggest that the use of the minimum precipitation measure (0.2
mm/day) as the definition of dry days could be an important source of error when comparing
against simulated dry days. To avoid this potential error, a new “effective precision” will be
considered. From Fig. Al, irregularity in the data seems to be important until a resolution of
four times the precision is used and a bin width of 0.8 mm/day is chosen as the minimum

interval from which observed precipitation is well resolved.
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It is important to note that due to the variable bin sizes used to construct histograms (see
Appendix B), this change in the precision of observed data only modifies the first
classification (selection of dry days threshold). So, if we consider 0.8 mm/day as the
resolution of observed daily precipitation, the definition of the minimum category correspond
to the daily precipitation rate that is less or equal 0.8 mm/day.

When combining a number of stations that fall in a CGCM grid box, we define the dry day
when the n-station average of each day is dry (e.g., the n-station mean is less than the

" threshold).



Appendix B: Construction of histograms and error sampling

Following von Storch and Zwiers (1999), to obtain a frequency histogram the interval of
possible outcomes of daily precipitation rate is initially partitioned into / subsets €2, of 0.2
mm/day width, starting at 0.8 mm/day, and then divided by the total number of outcomes to
obtain the frequency in each bin. Following the notation of section 4, the frequency
histogram variable could be expressed as,

n° of (PR) €[08+£:0.2,08+(h+1)-02]

_ J M B.1
f(h) total n® of (PR) N’ B

J
where £ varies between 0 and 1750, my, is the number of events in the classification A and N
represent the total number of values in the temporal series. 1750 is chosen as the maximum A,

giving a maximum precipitation rate of 350.8 mm/day, because simulated and observed

values are always less or equal than 327 mm/day.

Due to decreasing daily precipitation events for increasing intensity rates, the resulting plot
may behave irregular, depending on the choosing bin size and the total number of events.
Decisions about the bin size also have consequences on the error made when estimating the
frequency of occurrence of a particular event. This sampling error is inversely proportional to
the number of events in the given category and, because of the general form of daily
precipitation distribution, the error sampling is larger for more rare events when considering
constant bin sizes as in eq. B./. To account for the reduction on the occurrence of events
when increasing intensity rates, a logarithmic scale is considered to determine the threshold
used in each class. The histogram function at constant bin size is then used to construct a new
frequency histogram where the interval of possible outcomes is partitioned into K subsets £2.
Thresholds of €2, are given by 1, 2, 4, 8§, 16, 32, 64, 128, 256 and 512 mm/day and intervals
for each classification is defined without including events which values are exactly the
threshold. This function was expressed as WD(k) in eq. (4) and, when adding the dry days
category, we obtain the histogram function f{k) (see eq. (4)). When plotting the histograms,
frequencies are indicated in percentage using a logarithmic scale in base ten for ease of

presentation.
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In order to add error bars to the histograms of precipitation, confidence intervals could be
constructed around the estimated frequency of each classification. These are intervals
constructed to be wide enough to contain, with a specific probability, the population quantity
corresponding to the sample statistic. To build the confidence intervals, we consider for each
classification k, the variable m defined as the number of times that daily precipitation rate
((PR)) is included in the interval width €, during the period 1971-1990. In this way, the
variable takes the value 1, when (PR), € £, and 0 when (PR), & £2,. This random variable has
a binomial distribution, where one or the other of two events occurs, and its distribution

function B is given by,
N m N-m
B(m)= [;)-fk (=5 (B3)

where N is the total number of events and f, the frequency of occurrence of a given

classification. The mean and variance of the binomial variable m are given by

wm)=N-f,

(B.4)
o(m)=N-fi-(1-f;)

If N is sufficiently large, the variable m will follow approximately the Gaussian distribution.
Different criteria are used to determine when N is sufficiently large. Wilks (1995) suggest

that, for a given m, N must satisfy the following criterion

O<fk121—fk(1NJ<l (B.5)

Chalmer’s criterion says that both (7-f,) N and fiV must be greater than 5 and so there must be

at least 5 occurrences in each interval for the Gaussian approximation to be valid.

So, considering that m is greater than 5 and that is normally distributed, the variable defined

by

L IN(m-p)

g

(B.6)

has a normal distribution with mean 0 and standard deviation equal 1. Because the real value

of the variance is not known (we have an estimation S), confidence intervals are given by
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S S
Pm-ty—<u<m+ty—|=1-p (B.7)
VN N

’

where S is the estimated variance and ¢y is the p=1—% th percentile of the probability

distribution. For a 90 % confidence interval, p‘ is chosen to be 0.05 (two tails test) and ¢, =

toosy wWith (n-1) degrees of freedom.
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Fig. 1 Spatial scales resolved by a GCM (full blue arrow) and a RCM (full red arrow) with
grid spacing of 400 km and 50 km respectively. Also indicated is the interval of wavelengths
only resolved by the GCM (blue dotted arrow) and by the RCM (red dotted arrow). The black
dashed square designates the spatial scales that will be considered in this study (see
explanations in text).
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Fig. 2 Computational domain used in the CRCM (201 x 193 grid points) for the two
simulations analyzed.
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Fig. 3 Specification of areas of interest. Red and blue boxes indicate regions including four
and one CGCM grid points respectively. Blue squares outlined the CGCM grid points
available in North America.
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Fig. 4 Weather stations (black points), CRCM grid points (red points) and CGCM grid points
(blue points) for regions indicated in Fig. 1: (1) BC, (2) ALTA, (3) SAS, (4) MAN and (5)
QC. As in Fig. 1, the blue boxes denote those regions including one CGCM grid point and
the red ones those regions that include four grid points. The topography field as represented
in the CRCM is shown in color filled contours.
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Type
Lateral
Simulation Model label and Grid spacing Period
o /truncation Boundary
name Institution analyzed
N° of vertical Conditions
levels
CGCM version 3.1
) Global Model
Canadian Centre
CGCM for Climate 47
Modelling and 132
Analysis
1971 — 1990
i CGCM version
CRCM CRCM version Regional Model
(CGCM) 42.0 3.1
45 km at 60° N
Ouranos

CRCM . 19 NCEP/NCAR
(NCEP) Consortium reanalyses

Table 1. Simulations used in the study. Column 1 is the acronym of each simulation used in
the text. Column 2 is the name of the model and its source. Column 3 denotes the type of
model, the horizontal grid spacing/triangular truncation and the number of vertical levels and
column 4 indicates the data used to drive the regional model in each simulation. Finally,
column 5 gives the period of analysis of simulations.
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Region Sive (degrec Latitude (°N) Longitude (°W)
name
South limit North limit Westlimit  East limit
BC.1 48.22 51.97 125.62 121.87
ALTA.1 48.22 51.97 114.37 110.62
SAS.1 3.75x3.75 48.22 51.97 106.87 103.12
MAN.1 48.22 51.97 99.37 95.62
QC.1 44.52 48.27 73.12 69.37
BC.4 48.20 55.70 125.62 118.12
ALTA M 48.20 55.70 118.12 110.62
SAS.4 7.5x7.5 48.20 55.70 110.62 103.12
MAN.4 48.20 55.70 103.12 95.62
QC4 40.78 48.28 76.87 69.37

Table 2. Name, sizes (degrees’) and boundaries in latitude and longitude for the regions
examined in the study. The name of the region is composed by the abbreviated name of the

province where it belongs and a digit that refers to the number of CGCM grid points within
the region.
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Station data

Region CGCM CRCM
Minimum Mean
BC.1 1 61 150 165
ALTA.1 1 58 60 70
SAS.1 I 61 60 80
MAN.1 1 60 70 85
QC.1 1 66 150 170
BC.4 4 230 280 324
ALTA.4 4 233 203 257
SAS.4 4 231 154 198
MAN.4 4 231 151 185
QC.4 4 257 251 333

Table 3. Number of grid points of each model and number of weather stations within each
region for the period 1971-1990. In the case of observed data, the minimum and mean value
of stations are indicated.



Size of region CRCM CRCM
2 Season CGCM

(degree’) (CGCM) (NCEP)

DIF 0.92 0.91 0.91

MAM 0.94 091 0.89

75x75

JJA 0.85 0.76 0.82

SON 0.88 0.88 0.90

DIF 0.92 092 0.93

MAM 0.93 091 0.89

3.75x3.75
JJA 0.81 0.74 0.79
SON 0.84 0.87 0.88

87

Table 4. Inter-region mean S score (Perkins et al., 2007) calculated between the simulated
and observed distribution for each season and for each simulation. Results are presented for
both sizes of regions. Minimum and maximum values in each simulation are denoting in blue

and red respectively.
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NF° of stations

. Total n° Equivalent
Region val o of ve

Mean Maximum alues n-olyears
BC.1 165 322 1204 500 3300
ALTA.1 70 143 511000 1 400
SAS.1 80 128 584 000 1 600
MAN.1 85 135 620 500 1 700
QC.1 170 259 1241 000 3400

Table Al Mean and maximum number of stations in each region including one CGCM grid
point during the period 1971-1990. Also presented are, the total number of data and the

equivalent number of years of a daily time series built assuming that all data are from the
same site.



CONCLUSION

L'objectif principal de cette étude était d’examiner I’existence de la valeur ajoutée dans
des simulations du MRCC lorsque le MCGC est utilis¢ comme pilote. Des échelles
temporelles et spatiales communes aux deux modéles MRCC et MCGC ont été considérées
dans l'analyse. La comparaison a €t¢ effectuce en ramenant les données a haute résolution des

stations météorologiques et du MRCC a la résolution du MCGC.

Notre évaluation a été focalisée sur la simulation de la précipitation selon le MRCC
et le MCGC en utilisant comme référence des séries temporelles observées. Des observations
journalieres, moyennées spatialement, ont été construites a4 partir des stations
météorologiques d’Environnement Canada. En raison du niveau relativement bon de la
couverture spatiale, cing (5) différentes régions qui traversent le Canada ont été choisies pour
l'analyse. Dans toutes les régions, le nombre minimum de stations pour estimer la moyenne
dans I’espace, est cing (5) fois plus grand que la méme proposée par Osborn et Hulme
(1997).

L'évaluation a été basée sur la comparaison des histogrammes d’intensités de
précipitation et des 95° centiles des distributions afin de caractériser les événements les plus
extrémes. La mesure S, définie dans Perkins ef al. (2007), a été utilisée pour estimer le degré
de chevauchement entre les distributions simulées et observées. Cette derniere refléte

principalement le comportement des intensités faibles et modérées.

La considération des différentes régions dans l'analyse permet d’évaluer la valeur
ajoutée en fonction des forgages de surface. De la méme maniere, la dépendance de la valeur

ajoutée dans les régimes de temps est étudiée suivant I'analyse des statistiques saisonni€res.

Les résultats montrent que les statistiques quotidiennes des précipitations simulées
par le MCGC et par le MRCC sont généralement trés similaires et, en comparant les deux
données, qu’il n'existe aucune preuve de I'existence de la valeur ajoutée. Par exemple, lors de
la saison hivernale, les modéles MCGC et le MRCC montrent des performances semblables
pour simuler la fréquence et l'intensité des valeurs observées, tout en donnant des valeurs du

Strés similaires, indépendamment de la région considérée.
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Pendant la saison estivale, les deux modéles ont plus de difficultés a reproduire la
distribution observée et présentent des valeurs plus petites de .S qu’en hiver. Comme le
montre la mesure §, le MCGC fournit un meilleur accord avec les données observées
comparativement au MRCC. Cette amélioration vient d'une meilleure simulation de la

fréquence des jours secs.

La représentation des jours secs est un probléme récurrent dans les modéles climatiques
(Trenberth et al., 2003), généralement associé & une surestimation de la fréquence des
événements de faibles intensités (Dai et al., 1999; Paquin et al., 2002; Frei ef al., 2003, Dai et
Trenberth, 2004). Toutes les simulations présentées dans cette étude montrent une sous-
estimation des jours secs et une surestimation des événements de précipitations faibles,
presque indépendamment des saisons et de la région considérée. La seule exception a ce
comportement est la saison d'hiver dans le sud du Québec (région QC.1). Bien que les deux
modéles sous-estiment la fréquence des jours secs, le MRCC semble souffrir d’un biais de
distribution encore plus prononcée que le MGCC. Une comparaison avec d'autres modeéles
régionaux du climat ajoute des évidences en faveur de cette supposition (voir, par exemple,

Fig. 20 de Christensen et al. (2008)).

Dans le cas des événements journaliers les plus extrémes, les résultats montrent que le
MCGC produit un meilleur accord que le CRCM avec les valeurs observées. En effet, le
CRCM montre une sous-estimation de la fréquence d'occurrence d'événements plus intenses.
C'est aussi le cas dans les régions caractérisées par d'importants forcages de surface ou les

différences entre la topographie des modeles pourraient avoir un impact.

Plus qu’un probleme des performances relatives des modeles, I’absence de valeur ajoutée
pourrait étre liée aux mauvaises hypothéses énoncées sur la valeur ajoutée dans les échelles
étudiées. L hypothése soutenant I’existence de la valeur ajoutée dans notre comparaison a été

présentée dans I’introduction et est énoncée comme suit :

Le modeéle mondial a peu d'habileté pour résoudre les processus de fine échelle dii au
fait que les échelles considérées dans [’analyse sont prés de sa limite de troncature

(Laprise, 2003; Feser, 2006).

Cette hypothése a été généralement étudiée dans le cas des variables instantanées, mais

non lorsque la variable représente une moyenne temporelle (par exemple: pour des valeurs
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journalieres, mensuelles, etc.). Dans cette étude, I'hypothése a été testée en comparant les
résultats obtenus dans différents domaines : ceux définis par un seul point de grille et ceux
comprenant quatre points de grille du MGCC. La performance du modele mondial semble
étre similaire dans les deux domaines, ce qui suggere que le modéle «fonctionne bien» dans
les deux échelles spatiales. En d'autres termes, en raison de la trés bonne performance du
modele global, indépendamment de la taille des régions considérées, I'hypothése ne semble
pas étre appropriée au moins pour les échelles de temps analysées ici (données journaliéres et

mensuelles).

Pour éviter une mauvaise interprétation de nos résultats, il est intéressant d'examiner
brievement deux caractéristiques particulieres de la méthodologie étant liées au caractére

partiel de [’évaluation des modeles :

L'approche utilisée dans la présente étude est basée sur I'évaluation des échelles spatiales
et temporelles des précipitations qui sont représentées par les deux modéles, mais proches de
la limite de troncature du modele global. Les avantages des simulations du MRC, en raison
de sa plus haute résolution spatio-temporelle, ne sont pas explicitement pris en considération
ce qui n'est pas la maniére la plus efficace pour mettre en évidence les avantages d’une
augmentation de la résolution dans un modele MRC. Cette caractéristique de I'étude doit €tre

prise en compte au moment de I'évaluation de ces résultats.

La performance relative de certaines statistiques de la précipitation simulée par les deux
modeles par rapport aux données d'observation est utilisée comme outil pour détecter la
valeur ajoutée. Cette approche a ses revers. Comme I'ont déclaré Oreskes et al. (1994), « If a
model fails to reproduce observed data, then we know that the model is faulty in some way,
but the reverse is never the case ». En d'autres termes, si un modéle A produit des résultats
qui sont plus proches des données observées que ceux du modéle B, ceci n'implique pas
nécessairement que le modéle A soit meilleur que le modéle B. Une meilleure performance
peut €tre atteinte par des compensations des erreurs dans le modéle et pas nécessairement
pour un meilleur représentation des processus physiques. Un exemple qu’essaie d’illustrer la
suggestion précédente, est le paradoxe CFL: les résultats obtenus par le MRCC lorsque celui
est piloté par le modele global sont parfois plus proches des valeurs observées que lorsque

celui-ci utilise les réanalyses NCEP/NCAR comme pilote. Bien que les réanalyses
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NCEP/NCAR soient sujettes a des erreurs, il ne fait aucun doute qu'elles constituent une
estimation plus fiable de I’évolution de I'état de I'atmosphére comparativement aux données
simulées par le MCGC. Comment est-t-il donc possible d'obtenir de "meilleurs" résultats en
utilisant des données de pilotage d’une qualité inférieure? Les erreurs dans les CFL doivent
nécessairement étre compensés par le MRCC. Ceci suggére que les meilleurs résultats

proviennent d'erreurs dans les MRCC.

L'analyse de la valeur ajoutée générée par la MRC est un travail complexe. Nous
avons essay¢ de contribuer a cette importante étude de deux maniéres différentes : a) par la
quantification de la valeur ajoutée dans un cas particulier; et b) en débattant sur certaines
questions générales qui doivent &étre prises en compte dans ce type d'analyse. Parmi les

nombreuses questions importantes restant en suspens, nous pouvons inclure :

*  Qu'est-ce que la résolution effective des modéles climatiques? Quelle est la
dépendance de I'efficacité de résolution sur I'échelle de temps, de la variable

analysée?

* Les MRC présentent certains avantages comparés aux modéles de circulation
générale & plus basse résolution comme une meilleure représentation des forgages
de surface, un plus large éventail de processus résolus, etc. Quelle est

I'importance relative de chaque avantage dans la production de la valeur ajoutée?

*  Qu'est-ce que la dépendance de la valeur ajoutée dans les échelles temporelles et

spatiales?

* Y at-il une valeur ajoutée & grande échelle dans les résultats?

Enfin, il peut étre trés intéressant de répéter I'analyse avec d'autres modeles tels que
ceux impliqués dans le projet européen PRUDENCE (Prediction of Regional Scenarios and
Uncertanties for Defining European Climate Change Risks and Effects) et/ou dans le
programme d’évaluation des changements climatiques régionaux de 1’Amérique du Nord
(NARCAAP en anglais). L'utilisation de plusieurs modéles aiderait & déterminer si certaines
des conclusions sont inhérentes & la technique dynamique de mise & 1’échelle ou liées & un

modéle particulier.
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