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RÉSUMÉ

L’apprentissage des représentations s’est établi comme une méthode efficace pour
effectuer de diverses tâches d’apprentissage sur les graphes. Cette approche vise
à projeter le graphe dans un espace vectoriel qui encode à la fois sa structure et
son contenu. Bien que l’apprentissage des représentations ait eu un grand suc-
cès sur de nombreuses tâches d’apprentissage sur les graphes, la compréhension
des structures qui sont encodées par les représentations vectorielles reste limitée.
Par exemple, nous nous demandons si les caractéristiques topologiques, telles que
le nombre de triangles, le degré du nœud, et autres mesures de centralité sont
encodés concrètement dans les représentations. De plus, nous nous demandons
si la présence de ces structures dans les représentations est nécessaire pour une
meilleure performance sur les tâches descriptives et prédictives comme le cluster-
ing et la classification. Pour adresser ces questions de recherche, nous menons
une étude empirique approfondie sur trois classes de modèles d’apprentissage de
représentations non-supervisés et sept variations de Graphe Autoencodeurs. Nos
résultats révèlent que cinq caractéristiques topologiques, en particulier: le degré
d’un nœud, le score de regroupement local (Local Clustering Score), la central-
ité d’interdépendance (Betweenness Centrality), la centralité des vecteurs propres
(Eigenvector Centrality) ainsi que le nombre de triangles (Triangle Count) sont
concrètement préservés dans la première couche du Autoencodeur qui utilise la
règle d’agrégation SUM, à condition que le modèle préserve la proximité du deux-
ième ordre. Nous présentons d’autres preuves de l’encodage de ces caractéristiques
en révélant une hiérarchie dans la distribution des caractéristiques topologiques
dans les représentations du modèle susmentionné, particulièrement pour: le degré
du nœud, le score de regroupement local, la centralité d’interdépendance et le nom-
bre de triangles. Nous montrons également qu’un modèle avec de telles propriétés
peut surpasser d’autres modèles sur certaines tâches en aval (p. ex. clustering ou
classification), en particulier lorsque les caractéristiques topologiques préservées
sont pertinentes pour la tâche à accomplir. Enfin, nous évaluons l’impact de
nos résultats en effectuant une étude de cas qui se rattache à la prédiction de
l’influence sociale.

Mots-clés Intelligence artificielle, Apprentissage profond, Réseaux de neurones
pour les graphes, Apprentissage des représentations, Characteristiques topologiques.



ABSTRACT

Representation learning has proven to be an effective method for performing var-
ious learning tasks in the domain of graphs. This approach aims to project the
graph into an embedding space that captures both its structure and content.
While representation learning has yielded a great success on many graph learning
tasks, there is little understanding behind the structures that are being captured
by these embeddings. For example, we wonder if the topological features, such
as the Triangle Count, the Degree of the node, and other centrality measures are
concretely encoded in the embeddings. Furthermore, we ask if the presence of
these structures in the embeddings is necessary for a better performance on the
downstream tasks, such as clustering and classification. To address these ques-
tions, we conduct an extensive empirical study over three classes of unsupervised
graph embedding models and seven different variants of Graph Autoencoders.
Our results show that five topological features: the Degree, the Local Cluster-
ing Score, the Betweenness Centrality, the Eigenvector Centrality, and Triangle
Count are concretely preserved in the first layer of the Graph Autoencoder that
employs the SUM aggregation rule, under the condition that the model preserves
the second-order proximity. We supplement further evidence for the presence of
these features by revealing a hierarchy in the distribution of the topological fea-
tures in the embeddings of the aforementioned model, in particular for the Degree,
Betweenness, Clustering Score and Triangle Count. We also show that a model
with such properties can outperform other models on certain downstream tasks,
especially when the preserved features are relevant to the task at hand. Finally,
we evaluate the suitability of our findings through a test case study related to
social influence prediction.

Keywords Artificial Intelligence, Deep Learning, Graph Neural Networks, Rep-
resentation Learning, Topological Features.



CHAPTER I

INTRODUCTION

1.1 Context

Graph embedding approaches have emerged in recent decades as a powerful set

of tools for learning representations on graphs, as well as for improving the per-

formance on downstream tasks such as node clustering (Wang et al., 2019a),

classification (Wu et al., 2019) and link prediction (Ma et al., 2019). While these

embedding techniques do bring a lot of advantages over classical methods, such as

learning with handcrafted features or direct learning on graphs, they do face a set

of challenges that affect their quality and performance. Among these challenges,

the greatest contributor to a “good” graph embedding is a vector representation

that preserves the structure of the graph (Goyal & Ferrara, 2018). However, while

many studies cite “the preservation of the graph structure by the embedding” as

a requirement (Goyal & Ferrara, 2018; Cai et al., 2018; Hamilton et al., 2017a),

few works have attempted to investigate concretely this assumption and study its

effect on the downstream learning tasks. To this end, this work aims at answering

the following important questions: (1) Are relevant topological structures being

captured in the graph embeddings? (2) If yes, which embedding models best pre-

serve these structures? and (3) What is the effect of preserving these structures

on the downstream learning tasks? We believe that answering these questions will
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Figure 1.1: A chart summarizing the consecutive steps of our empirical study.

help us better understand and explain the content of the graph embeddings and

the source of their representational power.

It is important to note that the preservation of certain structural characteristics

such as the orders of proximity is trivial, since the models that generate these

embeddings are generally optimized to preserve a certain order of proximity be-

tween the embedded components (Goyal & Ferrara, 2018; Cai et al., 2018). This

means that two components having a high value for a certain order of proximity

between them, will have similar vector representations. However, the preservation

of other important topological features such as the Degree of the node, its Local

Clustering Score, and other centrality measures is yet to be studied in depth.

To address the questions put forward by this work, we perform a detailed em-

pirical study. First, we position the problem of graph embedding in the context

of Unsupervised Learning on attributed graphs. Accordingly, we study the em-

beddings generated by three different classes of unsupervised graph embedding
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models: (1) Matrix Factorization, (2) Random Walk techniques, and (3) Graph

Autoencoders (GAE). We further focus on Graph Autoencoders and study the

embeddings generated by seven different variations of GAE.

Second, we investigate the preservation of the topological features in the embed-

dings and pinpoint the models that best preserve these structures. We hypothe-

size, that if a certain topological feature can be approximated using the embed-

dings, then, the embeddings do encode certain information about the approxi-

mated feature. To this end, we adopt two strategies: (1) We directly predict the

topological features with Linear Regression, using the embeddings as attributes

(Rizi & Granitzer, 2017); (2) We transform the problem of preservation of the

topological features into a classification problem (Bonner et al., 2019). Further-

more, to better understand the content of the embeddings, we visualize them in

2D space. This visualization will serve as an additional proof for the success of

some models over others in preserving the topological features.

Third, we study the effect of the preservation of the topological features on the

downstream tasks such as node clustering and node classification. We believe

finding a positive correlation between the preservation of the topological features

and a good performance on the downstream tasks will be a strong argument for

the necessity of having these features encoded in the embeddings. To this end, we

evaluate the performance when the embeddings are used on three separate tasks:

(1) We cluster the embeddings according to the ground truth of each dataset and

measure the homogeneity of each cluster, (2) We evaluate the suitability of the

embeddings on the task of node clustering, and (3) We evaluate the effect of the

embeddings on the task of node classification. Finally, we evaluate the suitability

of our findings through a test case study related to social influence prediction.

The performance gains demonstrated in the case study would be an argument for

the importance of adopting a “Topological Features Preservation” strategy when
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building a GNN architecture. Figure 1.1 illustrates the sequence of steps to be

undertaken in our empirical study.

1.2 Motivations

While graph embedding as a whole has received a great deal of interest in recent

years, few studies have focused on the representational power of the embeddings

or the structures that are being encoded in the vectors. Two closely related works

to our study are (Rizi & Granitzer, 2017) and, (Bonner et al., 2019). In (Rizi &

Granitzer, 2017), the authors only focused on the Random Walk based techniques,

where they attempted to use the embeddings as attributes to reconstruct the

centrality measures of the nodes using linear regression. While the authors did

find that the Closeness Centrality was being approximated to an extent by the

embeddings, they had poor results for the preservation of the other topological

features such as the Degree, Betweenness Centrality, and Eigenvector Centrality.

The authors in (Bonner et al., 2019) hypothesized that if a mapping can be found

between the embedding space and the topological features, then, these features

are approximately captured in the embedding space. To this end, they trans-

formed the problem of the preservation of topological features into a classifica-

tion problem, where the centrality measures were divided into six classes using

histogram binning. Subsequently, multiple classification models such as SVM,

Logistic Regression, and Multi-Layer Neural Networks were used to predict the

topological class of each node using the embeddings as attributes. However, their

results were inconclusive on the majority of the tested benchmarks, except for

the Eigenvector Centrality on the ego-Facebook dataset. Furthermore, the pa-

per (Bonner et al., 2019) missed studying the embeddings of the Graph Neural

Network (GNN) models under the assumption that the GNN models only cover
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supervised learning. This assumption is, however, not necessarily true. Graph

Autoencoders (Kipf & Welling, 2016) have been widely used as an unsupervised

learning variation of GNN for generating embeddings that hold state-of-the-art re-

sults on many unsupervised graph learning tasks (Wang et al., 2019a; Schlichtkrull

et al., 2018; Hasanzadeh et al., 2019).

In the domain of Graph Neural Networks, the Graph Isomorphism Network (GIN)

(Xu et al., 2019) was one of the first articles to study the expressive power of the

SUM aggregation rule. In their seminal work, the authors in (Xu et al., 2019)

studied the capacity of several variants of GNN at distinguishing different graph

structures. By representing the features of the node neighbors as multisets, the

authors argued that a maximally powerful GNN would always aggregate different

multisets into different representations. Subsequently, they proposed GIN, a sim-

ple GNN that is as powerful as the Weisfeiler-Lehman (WL) graph isomorphism

test (Weisfeiler & Leman, 1968). The WL test is broadly used to distinguish

different graph structures. WL is similar to the Graph Neural Networks in that

it iteratively updates the node features by aggregating the features of the node

neighbors (Xu et al., 2019). On the other hand, GIN uses the SUM rule to ag-

gregate the features of the node neighbors and an MLP to map the aggregated

features into a representation. Unlike the MEAN and MAX aggregators, the SUM

aggregator can represent an injective multiset function, making it maximally pow-

erful at distinguishing different multisets. Similarly, unlike the 1-layer perceptron,

an MLP is a universal approximator of multiset functions, allowing it to map dif-

ferent multisets to different representations. However, in our work, we go beyond

the capacity of the SUM aggregator at distinguishing general graph structures and

study its ability to capture specific graph properties. Furthermore, we investigate

the graph structures captured by each layer of the Graph Autoencoder, contribut-

ing to a better explainability and understanding of the model functionality.
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Lastly, the authors in (Wu et al., 2019) developed a Degree-specific GNN model

that explicitly preserves the Degree of the nodes in the embedding using multi-

task learning. They found that the presence of the Degree in the embedding did

improve the performance of the model. However, the datasets used in (Wu et al.,

2019) to evaluate the model are generally skewed in favor of having the Degree

in the embedding, either by having the Degree of the node as the ground-truth

to be predicted, or by having the ground-truth labels heavily correlated with the

Degree of the node. In our study, we show that the Degree and other topological

features are naturally preserved in the first layer of the GNN that utilizes the SUM

aggregation rule, without the need for explicitly preserving them. On the other

hand, our results also suggest that the effect of having the topological features

preserved in the embeddings is task-dependent, and may not always lead to a

better performance on the downstream tasks.

1.3 Contributions

Motivated by the inconclusive results of the previous studies (Rizi & Granitzer,

2017; Bonner et al., 2019) and their limited scope in covering the most recent

graph embedding models such as the GNN, we perform, in this work, an extensive

empirical study that covers the Graph Autoencoder models. Our experimental

results reveal that the topological features are concretely preserved in the first

layer of the Graph Autoencoders that employs the SUM aggregation rule. We

further accentuate these findings by revealing an organized hierarchical structure

in the distribution of the node Degree, Betweenness, Clustering Score and Triangle

Count in the embeddings of this particular model. The visualized embeddings,

depicted in the Experiments section, corroborate our claim.
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To the extent of our knowledge, we are the first study to investigate the preserva-

tion of the topological features for the Graph Autoencoders and their effect on the

downstream tasks, and the first study to show substantial and conclusive results

in favor of one type of model, across several benchmarks.

We summarize the significance of our work1 as follows:

• We investigate the representational power of graph embeddings in an ex-

tensive set of four test bed experiments that cover three different types of

embedding models and seven different variants of Graph Autoencoders over

eleven datasets.

• We empirically demonstrate that the topological features are best preserved

in the first layer of the Graph Autoencoder that employs the SUM aggre-

gation rule under the condition that the model preserves the second-order

proximity.

• We experimentally show that the presence of the topological features in the

embeddings can generally improve the performance on the downstream task

when the preserved features are relevant to the task.

• We show significant performance gains in a social influence prediction case

study that leverages the findings of our experiments and demonstrates the

importance of having a “Topological Features Preservation” strategy when

building a GNN architecture.

1Published in Neurocomputing: https://doi.org/10.1016/j.neucom.2021.06.034.
The related framework and code have been accepted for publication by Software Impacts:
Maroun Haddad, Mohamed Bouguessa (2021). TopoDetect: “Framework for topological fea-
tures detection in graph embeddings”.
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Finally, for reputability and reproducibility, we draw the attention of the reader

that the code, the datasets used in this work as well as more experimental results

are also available at: https://github.com/MH-0/RPGAE

1.4 Thesis Plan

The rest of this thesis is organized as follows:

• Chapter 2, introduces graph structures, node embedding, as well as the

unsupervised embedding models used in this study. We elaborate on three

categories of models (1) Matrix Factorization, (2) Random Walk techniques,

and (3) Graph Autoencoders.

• Chapter 3, delineates our extensive test bed experiments, their setup, pa-

rameters, and results. The chapter is further enriched with visualizations, an

in-depth analysis for the performance of the different models, and concludes

with our recommendations and suggestions.

• Chapter 4, is devoted for a case study on social influence prediction, where

we put the findings of our study and our recommendations into application.

• Chapter 5, concludes the thesis with an overall discussion of our work, its

importance and impact in regards to graph representation learning, and

discusses future lines of research.



CHAPTER II

UNSUPERVISED GRAPH EMBEDDING

In this chapter, we start by introducing important background information related

to graph-structured data. Next, we discuss unsupervised node embedding in the

context of plain and attributed graphs and formalize the problem according to a

general encoder-decoder architecture. Finally, we elaborate on three categories of

representation learning models that would be employed in the subsequent test bed

experiments. The models are laid out according to their chronological appearance

in literature: (1) Matrix Factorization techniques and one of their earliest algo-

rithms Laplacian Eigenmaps. (2) Random Walk techniques and two of their most

known variants, DeepWalk and Nod2Vec. (3) Graph Autoencoders (GAE), which

represent the core of our study and which we introduce in the context of deep

learning on graphs and Graph Neural Networks.

2.1 Background Information

A graph is defined as a set of objects connected in pairs via links. In the literature,

the objects are referred to as nodes (or vertices) and the links as edges. This type

of data structure lends itself naturally to many systems in the real world where we

are interested in modeling the relationships or interactions of the internal com-

ponents of the system. For example, when analyzing the connections between
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users on social networks (e.g., friends on Facebook or followers on Twitter), prod-

uct reviews by customers on shopping sites (e.g., recommendation systems), and

information research and semantic reasoning on knowledge graphs (e.g., Google

Brain determining the context of a search query). Given the diversity and com-

plexity of real-world systems, several types of graph structures have been adapted

to fit each type of system. In this study, we focus on directed/undirected and

attributed/unattributed graphs.

We start by defining the graph in its simplest form as a plain undirected graph.

Let G(V,E) be a plain undirected graph. G is defined as a set of nodes V =

{v1, v2, ..., vn} and a set of edges E = {e1, e2, ..., em} such as ek = (vi, vj) = (vj, vi)

with vi, vj ∈ V and ek ∈ E. The structure of a graph G can be expressed as

an adjacency matrix that we denote by A with a size |V | × |V |. Every element

Aij in A represents a link between two nodes vi and vj. For plain undirected

graphs, A is binary and symmetrical, and we have Aij = Aji ∈ {0, 1}; where 1

indicates the presence of an edge between two nodes vi and vj and 0 indicates the

absence of the edge. The adjacency matrix plays an important role in the analysis

and treatment of graphs and serves the role of input or reconstruction target for

several representation learning models. The graph G1 in Figure 2.1 illustrates a

plain undirected graph and A1 its corresponding adjacency matrix.

On the other hand, the edges in a graph can also have one specific direction.

In this case, we refer to the graph as directed. G(V,E) is a directed graph if

∀ek ∈ E, ek has a direction from a source node vi to a destination node vj such

as ek = (vi, vj) 6= (vj, vi). When illustrating a directed graph, the edges are

represented as arrows from the source node to the destination node. For example,

G2 and G3 in Figure 2.1 depict a directed graph. Furthermore, the adjacency

matrix of an undirected graph can be asymmetrical (see for example A2 and A3 in

Figure 2.1). Note that an undirected graph can be considered as a directed graph
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Figure 2.1: A1 is an adjacency matrix of the undirected graph G1. A2 is an adjacency
matrix of the directed graph G2. A3 is an adjacency matrix of the weighted directed
graph G3. X ∈ R|V |×k is an attributes matrix where the ith row represents the attributes
vector of the ith node.

where all the edges are bidirectional. Directed graphs are an important structure

when representing systems where the relationships that connect the entities only

go in one direction. For example, in Twitter, a user can follow another user,

without the latter following him back.

Moreover, the strength of the link between two nodes in a graph can be modeled as

a weight on the edge connecting them. We refer to this type of graph in literature

as a weighted graph1. G(V,E,W ) is a weighted graph, if every edge ek ∈ E has a

weight wk ∈ W such as wk ∈ R and ek = (vi, vj, wk). In this case, every element in

the adjacency matrix Aij = wk, that is, Aij holds the weight on the edge ek. For

example, in Figure 2.1, A3 is an adjacency matrix corresponding to the weighted

graph G3. Weighted graphs are important for modeling systems where the force of

the relationships in the system may vary. For example, in recommender systems,

the number of stars that a customer grants to a product in a review could be

modeled as a weight on the edge.

1We have explored weighted graphs in this section to facilitate the comprehension for
the reader when we mention this type of graph in the context of node proximity and Laplacian
Eigenmaps. However, in our experimental datasets, we do not include weighted graphs and
leave the study of the preservation of topological features in the context of weighted graphs for
future work.
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Figure 2.2: A weighted graph, where the weights on the edges represent the force of the
link between the nodes.

Unlike plain graphs, attributed graphs are associated with vectors that incorporate

additional information about the nodes. A graph G(V,E,X) is attributed if every

node vi is associated to an attributes vector xi ∈ X, such as X ∈ R|V |×k, where

k represents the dimensionality of the attribute vectors. The matrix X in Figure

2.1 designates the attributes associated to the nodes of the graphs G1, G2 and

G3. Attributed graphs are important for modeling systems where the topological

structure alone is not sufficient to represent the entirety of the system.

Now that we have introduced four different categories of graphs that are of interest

to this study, we tackle the concept of “node proximity” which lies at the heart

of numerous node embedding models. The proximity between two nodes in a

graph is studied on several orders or levels, where each order corresponds to a

neighborhood level of a node. In the context of weighted graphs, the first-order

proximity (k = 1) between the nodes is measured as the force of the direct link

between them. The higher the force of the link, the higher the proximity. We

denote the first-order proximity between two nodes vi and vj by s
(1)
ij . As we can

observe in Figure 2.2, for nodes v1 and v2, we have s(1)
12 = w12 = 0.5, whereas

s
(1)
19 = 0 for v1 and v9. We denote the proximity vector of order k = 1 between v1

and all other nodes as s(1)
1 = [s

(1)
11 , s

(1)
12 , ..., s

(1)
1|V |] = [0, 0.5, 0.75, 0, 0, 0, 2, 0, 0].



13

While the first-order proximity is defined in regards to the direct link between two

nodes, their second-order of proximity (k = 2) is measured in reference to the

similarity between their first-level neighborhoods. We denote the second-order

of proximity between two nodes vi and vj by s
(2)
ij . Here, s(2)

ij can be estimated

by calculating a similarity measure (e.g., Cosine similarity) between s(1)
i and s(1)

j

(first-order proximity vectors of vi and vj, respectively). For example, in Figure

2.2, if we take v1 and v4, we have s(1)
1 = [0, 0.5, 0.75, 0, 0, 0, 2, 0, 0] and s

(1)
4 =

[0, 0.5, 0.75, 0, 1.5, 2, 2, 0, 0]. Accordingly, s(2)
14 = cosine(s

(1)
1 , s

(1)
4 ) = 0.66. Here, we

can remark that, even though v1 and v4 are not linked directly (that is, their first-

order proximity s(1)
14 = 0), they share a large portion of their neighborhood. On

the other hand, v1 and v7 have a relatively high first-order proximity (s(1)
17 = 2),

whereas s(2)
17 = cosine(s

(1)
1 , s

(1)
7 ) = 0, since their neighborhoods do not intersect.

Similarly, the proximity can be generalized to higher orders, where the Kth-order

of proximity (k = K) between two nodes vi and vj is measured in reference to

the similarity between theirK−1 level neighborhoods (s(K−1)
i and s(K−1)

j ). Finally,

it is important to note that the orders of proximity are not limited to the weights

on the edges but can be calculated for other measures of similarity between the

nodes. For example, they can be measured by the presence or the absence of

an edge between two nodes in plain graphs, or the similarity between the nodes

attributes in attributed graphs. The orders of proximity encode vital information

about the position of the node in the graph and its relationship with other nodes

and are one of the main characteristics to be preserved by the embedding models.

2.2 Node Embedding

Virtually, the problem of node embedding aims to encode the nodes of the graph

in a vector representation form while preserving their important characteristics.



14

𝑧𝑖 𝑧𝑗

𝐄𝐧𝐜𝐨𝐝𝐞𝐫 𝐃𝐞𝐜𝐨𝐝𝐞𝐫 𝑙(𝑠𝑖𝑗 , 𝑠𝑖𝑗
′ )

𝐔𝐩𝐝𝐚𝐭𝐞

𝑠𝑖𝑗
′

𝑮

𝑣𝑖

𝑣𝑗

𝑣𝑖
𝑣𝑗

Figure 2.3: An image representing a conceptual node embedding architecture in the
form of an Encoder-Decoder (Hamilton et al., 2017a). For two nodes vi and vj , the
Encoder (blue) projects the nodes into their respective embedding vectors zi and zj .
The Decoder (green) reconstructs a proximity measure s′i,j between vi and vj out of
their representation vectors. The loss l between the reconstructed proximity s′ and the
groundtruth proximity s is calculated and the error is used to update the Encoder part
of the model.

While many different types of embeddings exist, including node (Song et al., 2018),

edge (Li et al., 2019), cluster and entire graph embedding (Dong et al., 2020), in

this study, we focus on node embedding, as it is among the most widely used.

Subsequently, for the rest of the thesis, node embedding and graph embedding

are used interchangeably.

Definition: Let G = (E, V ) be a graph with V = {v1, v2, ..., vn} a set of nodes

of G and E = {e1, e2, ..., em} its set of edges. f is an embedding model such as

∀ i ∈ n, f(vi) → zi ∈ Rd, where zi is the representation vector of vi with d � n

(d is the dimension of the embedding space while n denote the dimension of the

adjacency matrix of G which in turn corresponds to the number nodes in G). The

embedding model aims at projecting the nodes into an embedding (or latent) space

such as the nodes that are "close" in the graph have similar vector representations

(Goyal & Ferrara, 2018; Hamilton et al., 2017a; Cai et al., 2018). Therefore, the

main challenge of any embedding model would be to define the "closeness" or

proximity measure to be preserved in the embedding space between the nodes

(Goyal & Ferrara, 2018).
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Before exploring three categories of node embedding models, that are: Matrix

factorization based techniques, Random Walk based algorithms and Graph Au-

toencoders, we review a unified framework that can be used to describe these

various approaches. The authors in (Hamilton et al., 2017a) organized the dif-

ferent node embedding models under one unifying architecture in the form of

an encoder-decoder. In this conceptual framework, depicted in Figure 2.3, we

have f = ENC an encoder that projects the nodes V of G into a latent space,

and DEC a decoder that reconstructs a pairwise proximity between the nodes

from their learned low-dimensional embeddings. If the decoder is successful at

reconstructing the pairwise proximity between the nodes, then in principle, the

embeddings do encode structural information about the position of the node in

the graph and contain the information necessary for downstream machine learn-

ing tasks. The goal for the embedding model is then to optimize the encoder and

decoder by minimizing the proximity reconstruction error, such as:

DEC(ENC(vi), ENC(vj)) = DEC(zi, zj) ≈ S(vi, vj) (2.1)

Here S is a pairwise proximity function that measures how closely vi and vj

are connected in the graph G. The reconstructed pairwise proximity could be

of the first-order, for example, whether two nodes are connected with an edge,

or the weight on the edge that connects them, such as: S(vi, vj) = Ai,j. The

reconstructed proximity could also be of higher order, for example, whether two

nodes share a large portion of their neighborhood, or the probability that a node

appears during a random walk in the neighborhood of another node.

The objective of the model then becomes to minimize the pairwise loss l between

the proximity reconstructed from the representation space and the actual prox-
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imity of the nodes. The general loss function L of the model is defined as:

L =
∑

vi,vj∈V

l(DEC(zi, zj),S(vi, vj)) (2.2)

This conceptual framework allows us to view the various node embedding architec-

tures, with all their diversity and complexity, through a simple unifying lens that

emphasizes the importance of the reconstruction and preservation of a proximity

measure in the embeddings. However, as we have previously stated, in this work,

we will go beyond the standard proximity measures that are explicitly preserved by

the model and look into the indirect preservation of the topological and centrality

features in the embeddings. Now that we have introduced important background

information related to the graphs and defined the problem of node embedding, we

start exploring three mainstream categories of graph representation models.

2.3 Matrix Factorization

Some of the earliest methods for generating vector representations on graphs re-

lied on Matrix Factorization. Laplacian Eigenmaps (LE) (Belkin & Niyogi, 2001)

is one of the first algorithms to apply this technique. LE aims to project nodes

having a high first-order proximity between them into similar vectors in the em-

bedding space. This method takes advantage of the relationship between the

eigenvectors and eigenvalues of the graph Laplacian and the connectivity of the

graph components. The spectral decomposition of the Laplacian of a graph G is

given as:

Ly = λy

λ = yTLy
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Where L is the Laplacian of G, y is an eigenvector and λ is its associated eigen-

value. Since L is symmetrical and semi-definite, then all its eigenvalues are pos-

itive and real. Subsequently, the problem of embedding G in d dimensions rests

on finding the d smallest eigenvectors of L (excluding the first eigenvector).

We summarize the algorithm of Laplacian Eigenmaps in the following four steps.

For a set of n points x1, x2, ..., xn ∈ Rk, that we want to project in Rd with d� k:

• Step 1 - Build a weighted graph (represented by an adjacency matrix) with

n nodes, one for each point. We connect the nodes in the graph using one

of the following methods:

1. Add an edge between 2 points, if the euclidean distance between them

is small(||xi − xj||2 < ε), with ε a small integer defined by the user.

2. Use the algorithm K-Nearest Neighbor (KNN). Link every point to its

K-nearest neighbors.

• Step 2 - Add weights on the edges of the graph using one of the following

methods:

1. Simply add 1 to the connected edges.

2. Calculate the heat-kernel such as: wij = e
||xi−xj ||

2

t

• Step 3 - Calculate the Laplacian of the graph and derive its eigenvectors

and eigenvalues.

• Step 4 - Take the first d eigenvectors Y = y1, y2, ..., yd corresponding to the

smallest d eigenvalues. For a point xi, the embedding zi = Y T
i (the ith line

of Y ).

Evidently, if we want to embed the nodes of an existing graph, we skip the first
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two steps of the algorithm. In what follows we detail the theoretical analysis for

the success of the LE method:

For a graph G = (V,E) with n nodes, where A is the adjacency matrix of G. We

want to project the nodes into an embedding space, in a way that two nodes that

have a high first-order proximity (that are connected and/or have a high weight

on their edge) to have similar vector representations in the embedding space. In

other words, for two nodes vi and vj with a high weight on their edge (Aij) the

distance between their embedding (distance(zi, zj)) should be small. Therefore,

for an embedding of size (d = 1), we want to minimize the distance:

∑
i,j

(zi − zj)2Aij (2.3)

Under the constraint that z is a unit vector (i.e.,
∑

i z
2
i = 1), the sum in (2.3) can

be written as:

1

2

∑
i,j

(zi − zj)2Aij = zTLz (2.4)

Where L is the graph Laplacian defined as L = D−A, with D the diagonal degree

matrix, defined as Dii =
∑

j Aij. Therefore, the sum in (2.3) can be written as

a spectral decomposition of the Laplacian of G, where the embedding2 z is the

eigenvector of L.

By supposing the graph is undirected and A is symmetrical, the equality in (2.4)

can be verified as follows:

2We have denoted the eigenvector as ‘z’ instead of the standard ‘y’ notation, in order to
facilitate the association with the embedding notation which is usually ‘z’.
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∑
i,j

(zi − zj)2Aij =
∑
i,j

(z2
i + z2

j − 2zizj)Aij

=
∑
i,j

z2
iAij +

∑
i,j

z2
jAij − 2

∑
i,j

zizjAij

=
∑
i

z2
iDii +

∑
j

z2
jDjj − 2

∑
i,j

zizjAij

= 1.
∑
i

Dii + 1.
∑
j

Djj − 2
∑
i,j

zizjAij

= 2
∑
i,j

Dij − 2
∑
i,j

zizjAij

= 2
∑
i,j

zizj(Dij − Aij)

= 2
∑
i,j

zizjLij = 2zTLz

(2.5)

Therefore the problem of minimizing (2.3) can be reduced to minimizing (zTLz).

However, the solution for this problem is already known. It is the second smallest

eigenvalue λ1 with zoptimal = z1 the eigenvector that belongs to λ1, denoted by

the Fiedler Vector. Note that λ0 = 0 and z0 =1 can also be considered a solution,

however it is trivial, since it is independent of L, and only depends on whether

G is a connected graph. The verification we have provided is for an embedding

space of size 1 (d = 1), however for an embedding of size d, it suffice to take the

first d eigenvectors Z = z1, z2, ..., zd corresponding to the smallest d eigenvalues.

Thus, for a node vi we have the embedding zi = ZT
i (the ith line of Z).

If we model this algorithm according to the Encoder/Decoder architecture estab-

lished in section 2.2 of this chapter, we find that the decoder is directly recon-

structing the similarity of the first-order proximity, such as:
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L = min
∑

vi,vj∈V

DEC(zi, zj).S(vi, vj)

= min
∑

vi,vj∈V

(zi − zj)2.S(vi, vj) with S(vi, vj) = Aij

(2.6)

The Laplacian Eigenmaps method is simple and direct and widely used, however

it suffers from several limitations:

• It only preserves the first-order proximity. However, there exists some ex-

tensions that attempt to preserve the second-order of proximity (Ou et al.,

2016).

• It only captures the structure of the graph, since it relies on the adjacency

matrix. However, other characteristics of the graph, such as the attributes,

can also be important for the embedding.

• It suffers from the problem of scaling since calculating the eigenvectors and

eigenvalues of the Laplacian is computationally expensive for large graphs.

• It only operates on undirected graphs since the Laplacian ignores the direc-

tions of the edges.

2.4 Random Walk Techniques

The distribution of nodes appearing in random walks follows a power-law, much

like the distribution of words in natural language (Perozzi et al., 2014). This ob-

servation allowed the authors of DeepWalk (Perozzi et al., 2014) to adapt the same

architecture of Word2Vec (Mikolov et al., 2013), that is used for word embedding,

and repurpose it for node representation learning.
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Similar to Word2Vec, the DeepWalk model is divided into two main steps: 1) Data

preparation and 2) Model Training. In the first step, the model prepares the data

by performing random walks on the graph in order to generate sequences of nodes.

These node sequences are equivalent to the sentences in Word2Vec. Subsequently,

a sliding window is glided over these sequences to generate segments of consecutive

nodes with a constant size. The number and size of the walks, as well as the size

of the sliding window are hyperparameters that could be tuned by the user. As for

the input nodes, they are encoded with one-hot-encoding in order to be processed

by the learning model.

In the second step, the model is trained on the prepared sequences. Each node

in the center of the window is passed through a Skip-Gram network which is

optimized to predict the neighbors of the input node. The number of forward

passes of each node is equal to the number of neighbors in the sliding window.

The Skip-Gram network contains a single hidden layer, without an activation

function, which serves as a lookup table for the input node. A Softmax is applied

on the output layer, which generates a probability for each neighbor. Backward

propagation is used to adjust the weights of the layers based on the loss between

the predicted neighbors and the groundtruth neighbors of the input node. At the

end of the training, the output layer is discarded and the weights of the hidden

layer are extracted as the embeddings of nodes. Figure 2.4 details the steps of a

standard DeepWalk model.

While DeepWalk uniformly samples the nodes during the random walk, Node2Vec

(Grover & Leskovec, 2016) is another variation of the same architecture that

introduces two parameters p and q that control the sampling during the random

walk. The parameter p controls the probability of going back to a node v after

visiting another node t. The parameter q controls the probability of moving away

from node v after visiting it. Node2Vec improves on DeepWalk by allowing a more
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flexible and controllable exploration of the graph neighborhoods thus enhancing

the quality of the sampled sequences in the data preparation step. For these

reasons, in our experimentation, we have opted to use Node2Vec instead of the

standard DeepWalk model.

It is important to note that in the DeepWalk and Node2Vec implementations,

the authors used Hierarchical Softmax instead of the standard Softmax, which

is also inspired by Word2Vec. The reason is that the standard Softmax is not

optimal on large-scale data. As a solution for the scaling problem, a tree is built

out of binary classifiers, with the nodes of the graph as its leaves. The problem is

thus reduced to maximizing the path from the root to a node on the binary tree

(i.e., the product of the probabilities given by the classifiers on the tree). Huffman

coding is used to quickly access frequent items in the tree. This reduces the model

complexity from O(V ) to O(log(V )).

The RandomWalk based techniques have demonstrated adequate results in a wide

range of studies. Their architecture is simple and does not require the tuning of

many hyperparameters. However, they do present some limitations:

• They only work on weighted and unattributed graphs and do not consider

important characteristics of the graph such as the nodes attributes.

• They cannot generalize and lack the weight-sharing capacity during training.

This entails that the size of their weights increases linearly with the size of

the graph, rendering these models hard to scale on large graphs (Hamilton

et al., 2017a).

• They are very slow in comparison with the other models. The data prepa-

ration phase which generates the sequences adds a significant overhead to

the processing time.
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Figure 2.5: An example of message (attributes) passing from layer to layer in the GNN
from the perspective of one node (central node: orange). We can observe that the Layer
1 allows the passing of the first-level neighborhood messages (K1: green) to the central
node. While Layer 2 allows the passing of the second-level neighborhood messages (K2:
blue) to the central node.

2.5 Graph Autoencoders

The multi-layer neural networks in the domain of deep learning on graphs are

generally referred to in literature as GNN (Graph Neural Networks). The GNN

adopts the concept of message passing over the graph. In this technique, each

node collects the messages, that is, the attributes of its direct neighborhood,

which are then aggregated to form the new message of the node. Figure 2.5 shows

an example of message passing from the perspective of one node 3.

Given a graph G = (V,E,X), where V is the set of nodes, E the set of edges and

X the set of node attributes. The GNN takes two matrices as entry, the adjacency

matrix A ∈ R|V |×|V |, and the attributes matrix X ∈ R|V |×k. In the case of an non-

3This operation is shown from the perspective of one node, however in practice, it
happens in parallel on all nodes of the graph.
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attributed graph, one-hot-encoding is used for messages instead of X. The main

component of these networks is the forward propagation rule denoted by FWD .

This function dictates the way the messages are being passed and aggregated in

the network. FWD takes two arguments as input, the adjancency matrix A and

the previous layer’s hidden state Hk−1:

Hk = FWD(Hk−1, A) (2.7)

FWD is usually a non-linear function such as ReLU , Sigmoid or tanh. For the

first layer we use the attributes of the nodes as input, such as H0 = X. For

the subsequent layers, the output of each layer serves as input for the next layer.

The messages on the nodes are accumulated from layer to layer, therefore, every

layer enables the exploration of a new level of neighborhood. A weight matrix

W is added to each layer to be learned and standard backpropagation is used for

updating the weights.

The message passing and aggregation operation can be accomplished by multi-

plying the adjacency matrix with the node attributes matrix: A × X. In order

to accumulate the messages from layer to layer, self-loops are added to each node

Â = A+ I, where I is the identity matrix. Throughout the years, several forward

propagation rules were proposed with different aggregation methods. In what

follows, we explore three of the main aggregation functions used in the literature.

The following forward propagation rule aggregates the messages via SUM, where

σ is the activation function:

Hk = σ(ÂHk−1Wk) (2.8)
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1 2 3 4 5 6

1 0 0 1 0 0 0

2 0 0 1 0 0 0

3 0 0 0 1 0 0

4 0 0 0 0 1 1

5 0 0 0 0 0 0

6 0 0 0 0 0 0

A = Adjacency Matrix

Backpropagation

Forward propagate the hidden state

Output 𝐻2

• 𝜎 : Can be any activation function
(e.g., ReLU, Sigmoid, or Tanh).

• 𝜎 : Has to be sigmoid in case of 
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case of multi-class (applied row-
wise).

1

2

3 4

(1,1)

(2,2)

(3,3) (4,4)

5

6

(5,5)

(6,6)

• 𝑊1 ∈ ℝ𝐶×𝐻

o 𝐶 is the size of the attributes vector.

o 𝐻 is the size of the representation.

• 𝑊𝑁 ∈ ℝ𝐻×𝐹

o 𝐻 is the size of the representation.

o 𝐹 is the number of classes.

Structure Attributes

Class 1 Class2 Class3

1 0.1 0.2 0.7

2 0.3 0.3 0.4

3 0.1 0.7 0.2

4 0.1 0.0 0.9

5 0.2 0.7 0.1

6 0.3 0.4 0.3

Softmax output (NxF)

Class 1 Class2 Class3

1 0 0 1

2 0 1 0

3 0 1 0

4 0 0 1

5 0 0 1

6 0 1 0

Real node labels

output

Loss

*In the case of a non-attributed
graph, we use one-hot-encoding
as input.

Figure 2.6: A layout of a GNN architecture with N layers using the SUM aggregation
rule, used in a classification task. The output of each layer (green arrows) is used as
input for the next layer. The input of the first layer is X (the attributes matrix). The
loss is calculated between the output of the last layer (n) and the groundtruth (real node
labels). Backpropagation (red arrows) is used to update the weights in all layers.

In order to aggregate the MEAN of the messages, a normalized adjacency matrix

can be used (Â multiplied with the inverse degree matrix D̂−1/2):

Hk = σ(D̂−1ÂHk−1Wk) (2.9)

Another rule that was developed in (Kipf & Welling, 2017) for the Graph Con-

volutional Network (GCN), is the SPECTRAL rule that utilizes a renormalized

symmetric adjacency matrix:

Hk = σ(D̂−
1
2 ÂD̂−

1
2Hk−1Wk) (2.10)

Figure 2.6 displays a complete GNN architecture. We can observe from the figure

that the adjacency matrix A is the only component that differentiates a Graph

Neural Network architecture from a standard Neural Network.
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1 2 3 4 5 6
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2 0 0 1 0 0 0

3 1 1 0 1 0 0

4 0 0 1 0 1 1

5 0 0 0 1 0 0

6 0 0 0 1 0 0

Original Adjacency Matrix

1 2 3 4 5 6

1 0.2 0.1 0.6 0 0.4 0.5

2 0.2 0.1 0.8 0.2 0 -0.7

3 0.5 0.7 0.2 0.9 0.1 0.3

4 0 0 0.8 0 0.8 0.9

5 0.2 0.4 0 1 0 0

6 0.1 0.2 0.2 0.7 0.1 0.1

Reconstructed Adjacency Matrix 
𝑷(𝑨|𝒁)

Reconstruction 
Loss

Figure 2.7: A layout of a GAE architecture using the spectral rule. The encoder part is
made of a sequence of GCN layers. While the decoder is made of a Sigmoid applied on
the latent space (Z) multiplied by its transpose (ZT ).

After introducing the GCN model, the authors in (Kipf & Welling, 2016) extended

the architecture into a Graph Autoencoder (GAE).

The encoder section of the GAE is built from GNN layers. Here is an example of

a two-layer GAE using the SPECTRAL rule:

H1 = ReLU(D̂−
1
2 ÂD̂−

1
2XW1)

H2 = ReLU(D̂−
1
2 ÂD̂−

1
2H1W2)

(2.11)

The decoder simply reconstructs the adjacency matrix (Ā). In order to reconstruct

the matrix, the output of the encoder (latent space Z = H2) is multiplied with

its transpose and then a Sigmoid is applied element-wise on the product:

Ā = Sigmoid(ZZT ) (2.12)

Figure 2.7 is a pictorial representation of a Graph Autoencoder using the SPEC-

TRAL rule for the encoder part.
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𝑝𝑖 = 𝑝𝑖 +
1

2
𝐿(𝑝𝑖)

𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖)

𝑝𝑖+1
𝑝𝑖−1

Figure 2.8: An example of curve smoohting, where each point on the line is adjusted
according to the position of its neighbors.

After the success of the GCN model, several works have attempted to formalize

the model in order to explain its success. The authors in (Li et al., 2018) described

the GCN SPECTRAL rule as a form of Laplacian Smoothing. In order to smooth

a curve, as shown in Figure 2.8, each point on the line is iteratively adjusted

according to the positions of its neighbors. Below is the formula for smoothing a

curve:

pi = pi +
1

2
L(pi)

with L(pi) =
pi−1 + pi+1

2
− pi

(2.13)

Where pi is the position of the point, pi−1 and pi+1 the position of its two adjacent

points. On the other hand, if we want to smooth the points in a graph, we can

use the following formula:

Pl+1 = (I − γLnorm)Pl (2.14)

Where Lnorm is the Normalized Laplacian, which has two forms:

• Random Walk: Lrw = D−1L

• Symmetrical: Lsym = D−
1
2LD−

1
2 .
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In (2.14) γ is a factor that controls the force of the smoothing (0 < γ ≤ 1). If we

take γ = 1 with Pl+1 = H (the first hidden layer output) and Pl = X (the input

attributes), and use Lrw for the Normalized Laplacian, we can write (2.14) as:

H = (I − γLnorm)X

= (I − Lrw)X

= (I − (D−1L)X

= (I − (D−1(D − A))X

= (I − (
D

D
−D−1A))X

= (I − I +D−1A)X

= D−1AX

(2.15)

The result of (2.15) is exactly theMEAN rule that we have introduced in the previ-

ous section. On the other hand, if we use the Symmetrical Normalized Laplacian,

we arrive to the SPECTRAL rule (D−
1
2AD−

1
2X). We can conclude that the GNN

MEAN and SPECTRAL rules are equivalent to the graph smoothing formulas.

Therefore, these rules are smoothing the input attributes of the graph so that the

strongly connected nodes would be closer to each other, which would help the

downstream tasks like clustering and classification.

However, one problem that arises from the smoothing effect is the risk of over-

smoothing. In fact, the more layers we add to the GNN (i.e., the deeper the

GNN), the more the range of aggregated neighborhoods would increase. A wide

range of aggregation would lead to a high overlap in the aggregated attributes

thus resulting in similar vector representations for distinct nodes. This effect

would eventually reduce the discriminative power of the embeddings. Figure 2.9

displays the node embeddings of the Zachary karate club graph projected into 2D



30

Layer: 0 Layer: 2 Layer: 3 Layer: 5Layer: 1 

Figure 2.9: A 2D-tSNE projection of embeddings generated by a GCN of five layers on
the Zachary karate club dataset.

space. We can observe the effect of oversmoothing with a GCN of five layers. For

a small dataset such as Zachary karate club of only 34 nodes, a five layer GCN

would be considered too deep. Figure 2.9 clearly illustrates that the embeddings

of the nodes have converged into a single point by layer 5. Such convergence of

the representations would likely cause a deterioration in the performance of the

embeddings on downstream tasks.

The Graph Neural Network models hold state of the art results on many graph

learning tasks, specifically classification and clustering, but they also suffer from

some problems:

• The risk of oversmoothing with the increase in the number of layers. This

fact prevents the GNN from capitalizing on the power of deep networks in

deep learning.

• The difficulty of scaling the GNN to large graphs. Some variations of the

GNN have attempted to tackle this problem by using sub-sampling and

training on mini-batches of nodes (Hamilton et al., 2017b).

• The SPECTRAL rule used in the GCN only works on undirected graphs as

it is based on the symmetrical normalized Laplacian. However, this rule can

be substituted with other rules such as the MEAN or SUM. The effect of

the different aggregation rules on the learning and the structures that they
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encode is one of the main focal points of our study.

• The model assigns the same importance to the synthetic self-loops added for

message aggregation as to the real neighboring edges. This might introduce

some bias to the learning. One possible solution would be to add a weighting

factor to the self-loops: Â = A+ λI (Kipf & Welling, 2017).

In the following chapter, we thoroughly explore the representational power of the

node embedding models in an extensive set of experiments that cover topolog-

ical feature preservation and downstream learning tasks. We further highlight

our findings with principled analysis and rich visualizations that corroborate our

claims. Finally, we conclude the chapter with our recommendations and propose

a strategy for node embedding model design.



CHAPTER III

EXPLORING THE POWER OF GRAPH AUTOENCODERS

This chapter aims to deeply investigate the representational power of Graph Au-

toencoders. To this end, an extensive experimental protocol is conducted to study

the characteristics being captured by the embeddings and their effect on down-

stream tasks such as node clustering and classification. In order to perform this,

we need to specify the scope of our experiments and the required experimental

configurations.

3.1 Scope of the Experiments

In order to achieve the goals put forward in this thesis, we have laid out the

four experiments of this study over three main steps. In the first step, we build

multiple variations for each class of embedding model. This is so, in case one

of the models is successful, we could pinpoint which elements contributed to its

success against the other variations. Next, we perform the first experiment for the

purpose of identifying the models that are successful in preserving the topological

features, and highlight the reasons for their success. This experiment is further

supplemented by a visualization section that serves as additional evidence for the

success of some models in preserving the topological features over others. In the

final step, we perform three experiments that evaluate the embeddings over three
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Table 3.1 Graph Datasets.

Dataset Nodes Edges Classes Type
Cora 2,708 5,429 7 Citation
Citeseer 3,327 4,732 6 Citation
email-Eu-core 1,005 25,571 42 Email
USA Air-Traffic 1,190 13,599 4 Flight
Europe Air-Traffic 399 5,995 4 Flight
Brazil Air-Traffic 131 1,074 4 Flight
fly-drosophila-medulla-1 1,781 9,016 NA Biological
ego-Facebook 4,039 88,234 NA Social
soc-sign-bitcoin-alpha 3,783 24,186 NA Blockchain
soc-sign-bitcoin-otc 5,881 35,592 NA Blockchain
ca-GrQc 5,242 14,496 NA Collaboration

separate tasks (cluster homogeneity, node clustering, and node classification). For

every experiment, we compare the performance of the models that preserved the

topological features versus the models that did not. This comparison helps in

highlighting the importance of the presence of the topological features in the

embeddings. We conclude the experiments by an overall analysis of the results

and recommendations for embedding model choices.

3.2 Datasets and Compared Baselines

We evaluate the embeddings generated by three types of architecture: (1) Matrix

Factorization, (2) Random Walk and (3) Seven variations of Graph Autoencoders.

For this purpose, we use eleven real datasets retrieved from the Stanford Large

Network Dataset Collection (Leskovec & Krevl, 2014), Deep Graph Library (Wang

et al., 2019b) and (Wu et al., 2019). Table 3.1 summarizes the main characteristics

of the collected datasets. Note that, Cora and Citeseer are attributed graph

datasets. The dimensionality of Cora’s attributes is 1,433 while the dimensionality

of Citeseer’s attributes is 3,703. The rest of the datasets are plain graphs where

one-hot-encoding is used for attributes.
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Figure 3.1: Seven variations of Graph Autoencoders.

In what follows, we briefly describe the compared baselines:

Matrix Factorization: We use the implementation for Laplacian Eigenmaps

(Belkin & Niyogi, 2001) included in Scikit-learn with the default parameters of-

fered by the library.

RandomWalk: We use two different variations of Node2Vec (Grover & Leskovec,

2016) with the same setup presented in (Bonner et al., 2019). Node2Vec-Structural

(p = 0.5, q = 2.0) which explores global structures in the graph during the random

walk and Node2Vec-Homophily (p = 1.0, q = 0.5) which explores local structures

around the starting node. For both variations we use the parameters of the original

paper (walk-length = 80 and number-walks = 10).

Graph Autoencoders: We study seven different variations on the original archi-

tecture (see Figure 3.1). We explore multiple aggregation rules: SUM (Xu et al.,

2019), MEAN (Hamilton et al., 2017b), SPECTRAL (Kipf & Welling, 2017)).
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We also look into different ways for selecting the embedding: Last layer output

(Kipf & Welling, 2016), First layer output, or Concatenation of all layers outputs

(Xu et al., 2019), as well as, the effect of reconstructing multiple orders of proxim-

ity. We adopt a two-layer architecture for all variations except when we mention

otherwise.

GAE_L1_SUM is a Graph Autoencoder with a one-layer encoder using the

SUM rule, with Z as the embedding:

Z = tanh(ÂXW1) (3.1)

GAE_L2_SUM is a Graph Autoencoder with a two-layer encoder using the

SUM rule, with the output of the last layer as embedding:

H1 = tanh(ÂXW1)

H2 = tanh(ÂH1W2)

Z = H2

(3.2)

GAE_CONCAT is a Graph Autoencoder using the SUM rule. However, the

embedding is formed by concatenating the output from all the layers of the en-

coder, with H1 and H2 the output of the first and second layer respectively:

H1 = tanh(ÂXW1)

H2 = tanh(ÂH1W2)

Z = H1 ‖H2

(3.3)

GAE_FIRST is a Graph Autoencoder using the SUM rule. However, the em-

bedding is the output of the first layer of the encoder:
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H1 = tanh(ÂXW1)

H2 = tanh(ÂH1W2)

Z = H1

(3.4)

GAE_MEAN is a Graph Autoencoder using the MEAN rule:

H1 = tanh(D̂−1ÂXW1)

H2 = tanh(D̂−1ÂH1W2)

Z = H2

(3.5)

GAE_SPECTRAL is a Graph Autoencoder that has a GCN as encoder and

aggregates the messages using the SPECTRAL rule:

H1 = tanh(D̂−1/2ÂD̂−1/2XW1)

H2 = tanh(D̂−1/2ÂD̂−1/2H1W2)

Z = H2

(3.6)

GAE_MIXED is a Graph Autoencoder using the MEAN rule that reconstructs

two orders of proximity. While the standard GAE reconstructs A. GAE_MIXED

reconstructs A and A3. We use the same encoder as GAE_MEAN. However, the

output of the first layer is used to reconstruct A, while the output of the second

layer is used to reconstruct A3. We have tested the reconstruction of multiple

orders of proximity and selected A and A3 as they gave the best results.

For the following models: GAE_L1_SUM, GAE_L2_SUM, GAE_CONCAT,

GAE_FIRST, GAE_MEAN and GAE_SPECTRAL the loss is the reconstruc-

tion error of the adjacency matrix A calculated from the output of the last layer

Hl:

L =
1

|V |2

|V |∑
i=1

|V |∑
j=1

(σ(Hl.H
T
l )− A)2

ij (3.7)
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For GAE_MIXED, the loss is the sum of both reconstruction errors of A and A3.

The output of the first layer H1 is used to reconstruct A and the output of second

layer H2 is used to reconstruct A3 with an attenuation factor alpha = 0.5:

L =
1

|V |2

|V |∑
i=1

|V |∑
j=1

(σ(H1.H
T
1 )− A)2

ij + α.
1

|V |2

|V |∑
i=1

|V |∑
j=1

(σ(H2.H
T
2 )− A3)2

ij (3.8)

For the compared models, we use an embedding of size 64. For all Graph Au-

toencoders, we use a hidden layer of size 64 and an output layer of size 64 with

hyperbolic tangent activation function and batch normalization on all layers with-

out any dropout. We use an optimizer Adam with a learning rate of 0.01. We

train for 250 epochs with a patience of 10. For the model GAE_CONCAT we use

layers of size 32 so the total would be 64. All experiments are run 10 times and

we report the mean of the results. We regenerate the embeddings for each run.

3.3 Topological Features Prediction

We start our experiments by evaluating if the embeddings are capturing any of

the graph topological features. We focus our study on the following five distinct

features:

• Degree DG(v) = Kv = deg(v) is the number of edges connected to a node

v, counted twice for every self-loop.

• Triangle Count TC(v) = ∆v. The number of triangles of a node v. A

tirangle or triplet ∆v is a pair of neighbours of v that are also connected

among each other.

• Local Clustering Score LC(v) = 2∆v

Kv×(Kv−1)
. It is the number of triangles
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or triplets ∆v over the number of possible edges of v. The Local Clustering

Score measures the connectivity of the neighborhood of a node v. For a

directed graph (such as email-Eu-core), the number of possible edges is

Kv × (Kv − 1) and LC(v) = ∆v

Kv×(Kv−1)
.

• Eigenvector CentralityEC(v) = 1
λ

∑
n∈N (v)

EC(n). Where λ is a constant

that is the largest eigenvalue. It measures the influence of a node calculated

in reference to the influence of its neighborhood. It indicates that if the

measure is high for v then it is high for its neighbours.

• Betweenness Centrality BC(v) =
∑

s6=t6=v

σst(v)
σst

. Where σst is the number

of shortest routes between two nodes s and t, and σst(v) is the number of

shortest routes between s and t that pass through v. It measures the impact

of node v on the data transfer in the graph.

It is worth noting that, in this work, we do not aim at defining new features to

reflect the topological structure of a graph. This would be far beyond the scope of

our study. Many topological features have already been proposed in the current

literature. In our experiments, we utilize existing, well-known features that may

characterize the topological structure of a graph, and focus on evaluating if the

embeddings are capturing any of the graph topological features. It is also impor-

tant to note that we have used distinct features that investigate the topological

structure of a graph from the perspective of the node, its neighbourhood, its role

and importance in the graph.
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To address the problem of the preservation of topological features, two approaches

are possible: (Rizi & Granitzer, 2017) and (Bonner et al., 2019). In the first

approach (Rizi & Granitzer, 2017), the topological features are directly predicted

with Linear Regression using the embeddings as attributes. A low prediction error

indicates that the predicted feature is indeed encoded in the embeddings. In the

second approach (Bonner et al., 2019), the problem is addressed as a classification

problem. To this end, the range of values for each topological feature is divided,

using histogram binning, into a set of intervals, where each interval of values

corresponds to a topological class. This means that, in addition to its ground-

truth class, each node will also have a Degree class, a Local Clustering Score class,

an Eigenvector Centrality class, a Betweenness Centrality class, and a Triangle

Count class. The topological class of the node indicates the interval into which its

topological feature value falls. While dividing the topological features into bins,

we have tested over multiple number of bins and selected the ones that generated

balanced classes. In our study, in order to mitigate the limitations that any of

the aforementioned approaches might have, and to further support our claims, we

have adopted both approaches, that is, direct prediction and classification.

In order to reconstruct the topological features, we use Linear Regression (LN-

R) evaluated with the Mean Square Error (MSE). A low value of MSE suggests

a good result. For the classification of the nodes into their topological feature

classes, we apply four models: Logistic Regression (LG-R), linear SVM (SVM-L),

SVM with RBF Kernel (SVM-RBF) and a MultiLayer Perceptron (MLP). Note

that, for the MLP, we use two hidden layers with a ReLU activation function,

an Adam optimizer and a 0.001 learning rate. We train for 200 epochs without

early stopping. We used the implementation in Scikit-learn for all algorithms

with a 5-fold cross validation. To evaluate LG-R, SVM-L, SVM-RBF and MLP,

we report two evaluation metrics Macro-F1 and Micro-F1. The higher the values
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of these metrics the better the results. Given the large number of experiments

for the task of topological features classification (5 topological features times 11

datasets) and in order to avoid encumbering the thesis, we present a representative

and diversified subset of the results. Recall that a complete list of all the results

can be found at: https://github.com/MH-0/RPGAE

Tables 3.2, 3.3, 3.4, 3.5 and 3.6 list the results for a combination of topological

features and datasets. The first column of each table holds the results of the linear

regression while the rest of the columns display the results of the classification.

We found that GAE_FIRST and GAE_CONCAT outperform the other models

by a large margin for both approaches (i.e., regression and classification), notably,

over 60% for the prediction of the node Degree on the Cora dataset (Table 3.2).

Based on the results of our extensive empirical study, we have observed that the

success of these two models in preserving the features, especially the Degree of

the nodes, can be attributed to their use of the SUM aggregation rule and the

inclusion of the first layer output in the embedding.

In order to sustain the aforementioned observations, we provide in the following

a principled analysis regarding the preservation of the Degree in the first layer of

the GNN when using the SUM rule. In our analysis, we consider two cases: (1)

Non-attributed graphs, and (2) Attributed graphs.

Let G be a graph with a set of nodes V . GAE is a Graph Autoencoder applied to

G, with a GNN encoder that uses the SUM forward propagation rule (FWDSUM ),

such as:

Hk = FWDSUM (Hk−1, Â) = σ(ÂHk−1Wk) (3.9)



Table 3.2 Cora - Degree.
LN-R LG-R SVM-L SVM-RBF MLP

Models MSE Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1
GAE_FIRST 0.107 ±0.023 0.865 ±0.026 0.899 ±0.020 0.789 ±0.046 0.837 ±0.037 0.869 ±0.031 0.904 ±0.025 0.768 ±0.03 0.850 ±0.018
GAE_CONCAT 0.152 ±0.035 0.818 ±0.035 0.860 ±0.028 0.682 ±0.043 0.737 ±0.041 0.765 ±0.038 0.796 ±0.039 0.692 ±0.042 0.791 ±0.019
GAE_L1_SUM 4.086 ±0.097 0.126 ±0.012 0.400 ±0.005 0.062 ±0.006 0.151 ±0.003 0.415 ±0.031 0.446 ±0.033 0.155 ±0.015 0.415 ±0.008
GAE_L2_SUM 3.478 ±0.134 0.232 ±0.013 0.401 ±0.010 0.199 ±0.011 0.306 ±0.018 0.238 ±0.011 0.317 ±0.015 0.186 ±0.021 0.408 ±0.011
GAE_MEAN 4.160 ±0.055 0.155 ±0.008 0.375 ±0.006 0.188 ±0.009 0.262 ±0.014 0.156 ±0.008 0.345 ±0.010 0.120 ±0.003 0.391 ±0.002
GAE_MIXED 4.137 ±0.053 0.151 ±0.009 0.374 ±0.004 0.187 ±0.008 0.253 ±0.019 0.158 ±0.008 0.346 ±0.012 0.116 ±0.003 0.392 ±0.001
GAE_SPECTRAL 4.177 ±0.000 0.113 ±0.000 0.394 ±0.000 0.138 ±0.014 0.219 ±0.015 0.340 ±0.010 0.415 ±0.013 0.115 ±0.004 0.394 ±0.002
Matrix Factorization 4.177 ±0.000 0.113 ±0.000 0.394 ±0.000 0.104 ±0.006 0.170 ±0.003 0.134 ±0.006 0.234 ±0.005 0.113 ±0.000 0.392 ±0.001
Node2Vec-S 4.251 ±0.072 0.148 ±0.009 0.358 ±0.005 0.175 ±0.006 0.190 ±0.007 0.173 ±0.008 0.287 ±0.013 0.130 ±0.007 0.381 ±0.006
Node2Vec-H 4.165 ±0.084 0.154 ±0.006 0.364 ±0.005 0.169 ±0.012 0.181 ±0.013 0.173 ±0.009 0.298 ±0.015 0.131 ±0.005 0.381 ±0.008

Table 3.3 fly-drosophila-medulla-1 - Local Clustering Score.

LN-R LG-R SVM-L SVM-RBF MLP
Models MSE Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

GAE_FIRST 1.574 ±0.130 0.425 ±0.028 0.551 ±0.022 0.292 ±0.043 0.342 ±0.068 0.52 ±0.014 0.642 ±0.01 0.386 ±0.019 0.557 ±0.017
GAE_CONCAT 1.416 ±0.112 0.435 ±0.027 0.562 ±0.018 0.367 ±0.018 0.465 ±0.031 0.502 ±0.010 0.634 ±0.008 0.406 ±0.036 0.583 ±0.029
GAE_L1_SUM 1.496 ±0.074 0.405 ±0.017 0.551 ±0.014 0.292 ±0.028 0.321 ±0.040 0.428 ±0.012 0.606 ±0.006 0.331 ±0.030 0.538 ±0.018
GAE_L2_SUM 1.694 ±0.109 0.346 ±0.020 0.508 ±0.015 0.319 ±0.033 0.453 ±0.044 0.322 ±0.022 0.481 ±0.039 0.307 ±0.022 0.520 ±0.014
GAE_MEAN 1.816 ±0.090 0.317 ±0.017 0.484 ±0.014 0.272 ±0.013 0.392 ±0.026 0.266 ±0.021 0.438 ±0.026 0.273 ±0.021 0.489 ±0.010
GAE_MIXED 1.651 ±0.074 0.343 ±0.014 0.498 ±0.010 0.282 ±0.026 0.395 ±0.027 0.325 ±0.022 0.488 ±0.020 0.283 ±0.021 0.490 ±0.016
GAE_SPECTRAL 2.173 ±0.000 0.167 ±0.000 0.500 ±0.000 0.187 ±0.010 0.348 ±0.010 0.358 ±0.010 0.508 ±0.008 0.167 ±0.000 0.500 ±0.000
Matrix Factorization 2.173 ±0.000 0.167 ±0.000 0.500 ±0.000 0.169 ±0.000 0.294 ±0.000 0.182 ±0.002 0.291 ±0.001 0.167 ±0.000 0.500 ±0.000
Node2Vec-S 2.239 ±0.038 0.208 ±0.005 0.459 ±0.006 0.236 ±0.012 0.279 ±0.017 0.210 ±0.012 0.449 ±0.020 0.187 ±0.009 0.470 ±0.010
Node2Vec-H 2.235 ±0.040 0.206 ±0.008 0.459 ±0.006 0.232 ±0.010 0.280 ±0.008 0.210 ±0.008 0.444 ±0.014 0.187 ±0.006 0.474 ±0.011

Table 3.4 email-Eu-core - Eigenvector Centrality.

LN-R LG-R SVM-L SVM-RBF MLP
Models MSE Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

GAE_FIRST 0.340 ±0.020 0.680 ±0.016 0.683 ±0.016 0.644 ±0.020 0.646 ±0.020 0.666 ±0.013 0.668 ±0.013 0.354 ±0.021 0.439 ±0.021
GAE_CONCAT 0.325 ±0.033 0.703 ±0.022 0.705 ±0.021 0.694 ±0.026 0.696 ±0.026 0.692 ±0.013 0.692 ±0.013 0.393 ±0.050 0.468 ±0.039
GAE_L1_SUM 0.784 ±0.069 0.522 ±0.010 0.528 ±0.010 0.468 ±0.017 0.472 ±0.017 0.526 ±0.012 0.540 ±0.011 0.307 ±0.024 0.392 ±0.023
GAE_L2_SUM 0.784 ±0.056 0.540 ±0.015 0.542 ±0.015 0.517 ±0.019 0.520 ±0.018 0.498 ±0.017 0.493 ±0.017 0.327 ±0.026 0.401 ±0.023
GAE_MEAN 0.601 ±0.043 0.573 ±0.010 0.574 ±0.009 0.534 ±0.019 0.536 ±0.019 0.507 ±0.017 0.503 ±0.018 0.303 ±0.022 0.373 ±0.020
GAE_MIXED 0.735 ±0.046 0.521 ±0.013 0.526 ±0.013 0.480 ±0.017 0.485 ±0.017 0.491 ±0.013 0.489 ±0.013 0.288 ±0.030 0.361 ±0.031
GAE_SPECTRAL 1.426 ±0.193 0.333 ±0.033 0.415 ±0.019 0.123 ±0.032 0.219 ±0.021 0.491 ±0.051 0.509 ±0.040 0.113 ±0.040 0.226 ±0.042
Matrix Factorization 4.372 ±0.000 0.191 ±0.000 0.236 ±0.000 0.062 ±0.000 0.174 ±0.000 0.380 ±0.000 0.403 ±0.000 0.070 ±0.012 0.173 ±0.010
Node2Vec-S 4.019 ±0.174 0.214 ±0.010 0.237 ±0.010 0.145 ±0.008 0.155 ±0.010 0.212 ±0.010 0.266 ±0.009 0.130 ±0.019 0.200 ±0.014
Node2Vec-H 4.268 ±0.212 0.199 ±0.013 0.226 ±0.012 0.147 ±0.016 0.156 ±0.018 0.213 ±0.014 0.261 ±0.012 0.129 ±0.020 0.189 ±0.019

Table 3.5 soc-sign-bitcoin-otc - Betweeness Centrality.

LN-R LG-R SVM-L SVM-RBF MLP
Models MSE Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

GAE_FIRST 0.595 ±0.042 0.572 ±0.02 0.689 ±0.011 0.315 ±0.031 0.382 ±0.036 0.524 ±0.016 0.585 ±0.029 0.576 ±0.014 0.690 ±0.009
GAE_CONCAT 0.529 ±0.037 0.596 ±0.016 0.702 ±0.008 0.360 ±0.053 0.454 ±0.070 0.526 ±0.021 0.592 ±0.030 0.576 ±0.025 0.696 ±0.012
GAE_L1_SUM 1.975 ±0.086 0.264 ±0.018 0.539 ±0.009 0.067 ±0.003 0.148 ±0.006 0.130 ±0.024 0.137 ±0.015 0.299 ±0.043 0.565 ±0.021
GAE_L2_SUM 1.320 ±0.130 0.407 ±0.020 0.576 ±0.014 0.317 ±0.022 0.423 ±0.025 0.354 ±0.034 0.429 ±0.041 0.397 ±0.022 0.583 ±0.012
GAE_MEAN 1.659 ±0.060 0.370 ±0.010 0.536 ±0.007 0.278 ±0.023 0.363 ±0.028 0.339 ±0.026 0.501 ±0.018 0.333 ±0.016 0.544 ±0.017
GAE_MIXED 1.555 ±0.041 0.381 ±0.011 0.545 ±0.007 0.293 ±0.024 0.359 ±0.041 0.365 ±0.022 0.507 ±0.023 0.353 ±0.013 0.555 ±0.009
GAE_SPECTRAL 2.333 ±0.000 0.167 ±0.000 0.500 ±0.000 0.189 ±0.007 0.315 ±0.017 0.355 ±0.006 0.490 ±0.005 0.167 ±0.000 0.500 ±0.000
Matrix Factorization 2.333 ±0.000 0.167 ±0.000 0.500 ±0.000 0.074 ±0.000 0.158 ±0.000 0.109 ±0.001 0.192 ±0.001 0.166 ±0.001 0.492 ±0.008
Node2Vec-S 2.341 ±0.023 0.188 ±0.004 0.488 ±0.002 0.163 ±0.011 0.192 ±0.010 0.136 ±0.006 0.250 ±0.006 0.185 ±0.004 0.476 ±0.005
Node2Vec-H 2.371 ±0.023 0.186 ±0.005 0.485 ±0.003 0.181 ±0.010 0.205 ±0.009 0.137 ±0.008 0.259 ±0.009 0.186 ±0.007 0.476 ±0.006

Table 3.6 Brazil Air-Traffic - Triangle Count.

LN-R LG-R SVM-L SVM-RBF MLP
Models MSE Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

GAE_FIRST 0.082 ±0.014 0.917 ±0.015 0.918 ±0.014 0.910 ±0.017 0.911 ±0.017 0.892 ±0.012 0.893 ±0.011 0.534 ±0.113 0.619 ±0.097
GAE_CONCAT 0.111 ±0.015 0.888 ±0.015 0.889 ±0.015 0.891 ±0.026 0.892 ±0.025 0.832 ±0.028 0.833 ±0.027 0.577 ±0.082 0.651 ±0.065
GAE_L1_SUM 0.191 ±0.029 0.809 ±0.022 0.814 ±0.022 0.804 ±0.026 0.808 ±0.025 0.798 ±0.026 0.800 ±0.025 0.508 ±0.085 0.586 ±0.063
GAE_L2_SUM 0.237 ±0.045 0.768 ±0.037 0.773 ±0.037 0.751 ±0.033 0.758 ±0.032 0.693 ±0.032 0.707 ±0.029 0.493 ±0.064 0.563 ±0.060
GAE_MEAN 0.258 ±0.031 0.752 ±0.024 0.763 ±0.024 0.749 ±0.029 0.756 ±0.029 0.739 ±0.023 0.746 ±0.021 0.489 ±0.075 0.545 ±0.069
GAE_MIXED 0.323 ±0.025 0.712 ±0.028 0.723 ±0.024 0.702 ±0.021 0.712 ±0.019 0.770 ±0.023 0.778 ±0.021 0.492 ±0.078 0.559 ±0.065
GAE_SPECTRAL 0.401 ±0.019 0.534 ±0.004 0.655 ±0.004 0.240 ±0.006 0.400 ±0.007 0.780 ±0.021 0.790 ±0.019 0.207 ±0.047 0.365 ±0.036
Matrix Factorization 1.491 ±0.071 0.303 ±0.024 0.393 ±0.018 0.168 ±0.000 0.336 ±0.000 0.818 ±0.000 0.825 ±0.000 0.207 ±0.029 0.346 ±0.023
Node2Vec-S 1.390 ±0.104 0.306 ±0.055 0.332 ±0.052 0.283 ±0.047 0.317 ±0.050 0.308 ±0.035 0.345 ±0.031 0.252 ±0.045 0.336 ±0.048
Node2Vec-H 1.391 ±0.158 0.306 ±0.050 0.326 ±0.050 0.278 ±0.047 0.317 ±0.047 0.255 ±0.043 0.290 ±0.044 0.237 ±0.035 0.330 ±0.030
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(1) Non-attributed graphs:

For non-attributed graphs, we use one-hot-encoding as input for the first layer,

such as H0 = I, where I is an identity matrix. Therefore, H1 = σ(ÂH0W1) =

σ(ÂIW1). Since ÂI = Â, we have H1 = σ(ÂW1). This implies that the hidden

state of a node v : h1(v) in layer 1 is formed from an aggregation over a set

of weights from that layer. Furthermore, there is a one-to-one correspondence

between the indices of the nodes in A and the indices of the weight vectors in W1.

Therefore, ignoring σ, we have:

h1(v) =
∑

n∈Ni(v)

wn =
∑

w̄∈W̄Ni(v)

w̄ (3.10)

Where Ni(v) is the set of indices of the neighbors of v. wn is a weight vector in

W1 that corresponds to the nth neighbor of v. We further define W̄Ni(v) as the set

of weights in W1 whose indices correspond to the indices in Ni(v).

Let V̄ ⊆ V be a subset of nodes of G, where the nodes of V̄ have high second-

order proximity among each other. For example, all the nodes in V̄ have the

same label. We define Ni(V̄ ) as the set of all neighbor indices for the nodes in

V̄ . W̄Ni(V̄ ) is the set of weights whose indices correspond to Ni(V̄ ). If GAE

preserves the second-order proximity between the nodes of V̄ in the embeddings,

then the distance between the embedding of any pair of nodes in V̄ is small, such

as: ∀(vi, vj) ∈ V̄ we have dist(h1(vi), h1(vj)) < ε, where ε is a small positive value

close to zero. Following Equation (3.10), we have:

dist

(∑
W̄Ni(vi),

∑
W̄Ni(vj)

)
< ε (3.11)

Since the nodes in V̄ have a high second-order proximity among each other, then

∀(vi, vj) ∈ V̄ we have Ni(vi) ' Ni(vj) ⇒ W̄Ni(vi) ' W̄Ni(vj). Since this is true
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∀(vi, vj) ∈ V̄ , then as ε→ 0 we observe that the weights in W̄Ni(V̄ ) converge closer

to each other, such as: ∃w̄c, ∀w̄ ∈ W̄Ni(V̄ ) we have dist(w̄, w̄c) < δ. For δ > 0 and

small. Then, ∀v ∈ V̄ we have:

h1(v) =
∑

n∈Ni(v)

wn ≈ |Ni(v)|.w̄c (3.12)

This effect is however lost in the subsequent layers of the encoder, since ÂHk 6= Â

for k > 0. That is why the vanilla GAE_L2_SUM that uses the output of the

last layer in the encoder as embedding does not preserve the topological features.

On the other hand, when we use the output of the first layer as the embedding

or when we concatenate it with the output of the other layers, we preserve the

topological features.

(2) Attributed graphs:

For attributed graphs, we consider sparse Bag-of-words attributes, such as the

ones used in our experiments with Cora and Citeseer datasets. In this case,

we have a binary sparse attribute matrix X ∈ {0, 1}. We observe that ÂX ≈

Â. Therefore, in case of a GAE with a SUM aggregation rule, we have H1 =

σ(ÂH0W1) = σ(ÂXW1) ≈ σ(ÂW1). This leads to the same effect of aggregating

over a converging set of weights, as described in the case of non-attributed graphs.

In both cases, of attributed and non-Attributed graphs, the condition of the preser-

vation of the second-order proximity is crucial for the preservation of the topo-

logical features in the embeddings. We observe this fact in our experiments with

the under-performance of GAE_L1_SUM (Autoencoder with one layer). Since it

uses the SUM rule and the output of the first layer as embedding, it should have

preserved the topological features. However, one layer is not sufficient for the
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Degree Local clustering score Eigenvector centrality Betweenness centrality Triangle count

GAE_FIRST
GAE_CONCAT
GAE_L1_SUM
GAE_L2_SUM
GAE_MEAN
GAE_MIXED
GAE_SPECTRAL
Matrix Factorization
Node2Vec-S
Node2Vec-H

Figure 3.2: The number of times each model outperformed the others on the ten evalu-
ation metrics over the eleven datasets per feature.

GAE to converge on a dataset of the size of either Cora or Citeseer. This means

that the weights associated to the neighbors of two nodes that have the same

label, might not be similar. Aggregating these weights will not lead to similar

embeddings for the two nodes even if they have the same number of neighbors.

On the other hand, for relatively small networks such as USA Air-Traffic, or the

ego-Facebook, one layer networks are sufficient for convergence and the topological

features are preserved in GAE_L1_SUM. This is why the condition for the model

convergence (i.e., the preservation of the second-order proximity) is necessary for

the preservation of the topological features in the first layer.

Furthermore, in order to have a better understanding of the performance of the

models across the large number of experiments conducted in this work, we compile

the results in a figure that illustrates the overall trends in the scores for the task

of preservation of the topological features. Figure 3.2 shows the number of times

each model outperformed the others for the ten evaluation metrics over the eleven

datasets (that is, 11 x 10 = 110 evaluation scores per feature). The evaluation

metrics are (MSE and MAE) for: Linear Regression. (F1-Macro and F1-Micro)
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for each of the four models: Logistic Regression (LG-R), Linear SVM (SVM-L),

SVM with RBF Kernel (SVM-RBF), and Multilayer Perceptron (MLP).

Figure 3.2 clearly shows that GAE_FIRST (dark blue) and GAE_CONCAT (or-

ange) outperform all other models by a large margin. In particular, it shows that

GAE_FIRST is favorable for capturing the Degree and the Triangle Count, while

GAE_CONCAT better captures the Local Clustering Score and the Eigenvector

Centrality. As for the Betweeness Centrality, the results are shared between both

GAE_FIRST and GAE_CONCAT. We believe that this is due to the nature

of each feature. The Degree and Trianle Count of the node are related to its

one-hop neighborhood. For this reason, the Degree and Triangle Count are best

preserved in the first hidden layer of the encoder, since this layer aggregates the

one-hop neighborhood features of the node. However, the Eigenvector Centrality

and the Local Clustering Score are two measures that depend on the two-hop

neighborhood, that is, the importance and structure of the neighborhood of the

node. The Eigenvector Centrality for a certain node is high, if it is also high for

its neighbors. As for the Local Clustering Score, it measures the connectivity of

the neighborhood. This is why these features are best preserved when we also

include the output of the second hidden layer in the embedding, since this layer

captures information about the two-hop neighborhood of the node.

3.4 Visualisation

In this section, we aim to visualize the embeddings for the purpose of better under-

standing the success of GAE_FIRST and GAE_CONCAT in preserving the topo-

logical features. To this end, we project the embeddings to two dimensions using

t-SNE (t-distributed Stochastic Neighbor Embedding)(Maaten & Hinton, 2008).
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GAE_FIRST GAE_CONCAT GAE_MIXED Matrix FactorizationGAE_L1_SUM

Figure 3.3: 2D t-SNE projection of the embeddings of Cora. The embeddings are colored
according to the seven different ground-truth labels of the dataset.

GAE_FIRST GAE_CONCAT GAE_MIXED Matrix FactorizationGAE_L1_SUM

Eigenvector  Centrality

Clustering Score

Betweenness

Degree Degree Degree Degree Degree

Betweenness Betweenness Betweenness Betweenness

Clustering Score Clustering Score Clustering Score Clustering Score

Eigenvector  Centrality Eigenvector  Centrality Eigenvector  Centrality Eigenvector  Centrality

Triangles Triangles Triangles Triangles Triangles

Figure 3.4: The embeddings of 5 models projected in 2D for the Cora dataset and colored
according to the the topological classes of the vertices (Degree Class, Betweenness Class,
Local Clustering Score Class, Eigenvector Centrality , Triangle Count). The colors listed
in ascending order are: Blue, Red, Orange, Green, Yellow and Cyan. The figure clearly
shows that the embeddings of GAE_FIRST and GAE_CONCAT (highlighted in bold)
are organized according to the topological classes of the vertices.
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Cora Citeseer email-Eu-core fly-drosophila-medulla-1soc-sign-bitcoin-otc

USA Air-Traffic Brazil Air-Traffic Europe Air-Traffic ca-GrQc ego-Facebook

Figure 3.5: An illustration of the hierarchical arrangement of the node Degree classes for
the embeddings generated by GAE_FIRST. Every color represents a range of Degrees
as defined in the binning phase of the experiments. The plots show that the degrees
in the embedding are arranged in a hierarchy from the smallest (Blue) to the largest
(Cyan).

Figures 3.3 and 3.4 1 display the 2D projections of the embeddings generated on

Cora dataset. As we can see from Figure 3.3, when we color the nodes according

to the ground-truth, we notice that, for GAE_FIRST and GAE_CONCAT, each

cluster of points in the plot is dominated by a class. This is due to the fact that the

embedding models are mostly optimized to preserve the first-order and second-

order proximity which are generally correlated with the ground-truth labels of the

nodes. For example, in the case of the Cora dataset, the nodes are articles, the

edges are citations, and the labels are the field of publication per article. Two

articles (nodes) that have a high first-order and second-order proximity tend to

belong to the same field of publication (i.e., they have the same label). A model

that well preserves the orders of proximity, will also be preserving the labels of

the graph.

However, in Figure 3.4, when we color the nodes according to their topological fea-

1All figures in this thesis are best viewed in color/screen.
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ture classes (Degree class, Local Clustering class, Betweenness class, Eigenvector

Centrality class, and Triangle Count class), we notice that, for GAE_FIRST and

GAE_CONCAT, the colors are clearly arranged in an organized manner, in con-

trast to the other models. In fact, the colors for the Degree in particular, exhibit

a hierarchy in their arrangement, where, the nodes that have the lowest Degree

are projected close together (colored blue), followed by the nodes with higher De-

gree (colored red) in an ascending order, all the way to the nodes belonging to

the highest Degree range (colored yellow). For GAE_FIRST in particular, this

hierarchy in the arrangement of the Degrees is consistent with the majority of the

tested datasets as illustrated by Figure 3.5.

This neat arrangement in the topological features is, however, absent from the

embeddings of the other models. Consider, for example, the models that use the

MEAN aggregation rule such as GAE_MIXED. As we can see from Figure 3.4, the

topological features are arbitrarily distributed without any structure in the em-

beddings. The pictorial illustration of the organization of the topological classes

in the embeddings of GAE_FIRST and GAE_CONCAT corroborate our claim

on the fact that these two models preserve the topological features in their embed-

dings. Furthermore, we can confirm the failure of GAE_L1_SUM in capturing

the topological features on Cora, as it failed to preserve the second-order prox-

imity (GAE_L1_SUM in Figure 3.3 shows no clear separation of ground-truth

labels) and therefore did not preserve the topological features (GAE_L1_SUM

in Figure 3.4)

3.5 Task 1: Embedding Clusters Homogeneity

Next, we study the homogeneity of the embeddings when clustered according to

the ground truth labels of each dataset. We look into three well-known evaluation

metrics.
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Table 3.7 Embedding clusters homogeneity.

Cora email-Eu-core
Models DB CH SC DB CH SC
GAE_FIRST 3.095 ±0.288 144.535 ±15.695 0.066 ±0.015 3.965 ±0.214 15.863 ±1.547 0.026 ±0.006
GAE_CONCAT 3.248 ±0.523 213.227 ±26.267 0.100 ±0.033 4.204 ±0.268 11.018 ±1.077 0.043 ±0.005
GAE_L1_SUM 3.899 ±0.509 92.613 ±33.691 -0.065 ±0.028 4.764 ±0.35 6.472 ±0.774 -0.008 ±0.008
GAE_L2_SUM 2.938 ±0.371 297.779 ±31.627 0.176 ±0.029 4.687 ±0.386 5.095 ±0.446 -0.047 ±0.01
GAE_MEAN 2.158 ±0.518 392.946 ±59.420 0.186 ±0.024 6.205 ±0.202 3.545 ±0.244 -0.017 ±0.004
GAE_MIXED 2.051 ±0.401 390.704 ±48.115 0.211 ±0.027 6.043 ±0.142 3.188 ±0.107 -0.038 ±0.004
GAE_SPECTRAL 5.000 ±0.429 40.336 ±5.400 -0.044 ±0.010 6.165 ±0.131 3.728 ±0.3 0.01 ±0.005
Matrix Factorization 5.174 ±0.085 10.706 ±0.998 -0.196 ±0.035 7.353 ±0.13 0.871 ±0.03 -0.135 ±0.001
Node2Vec-S 29.233 ±1.473 1.026 ±0.127 -0.034 ±0.003 11.506 ±3.325 1.021 ±0.345 -0.059 ±0.01
Node2Vec-H 28.532 ±1.293 1.074 ±0.092 -0.042 ±0.003 11.635 ±2.015 0.764 ±0.155 -0.07 ±0.012

Citeseer USA Air-Traffic
Models DB CH SC DB CH SC
GAE_FIRST 4.294 ±0.594 131.461 ±14.800 -0.061 ±0.016 4.647 ±0.310 139.871 ±9.416 0.019 ±0.007
GAE_CONCAT 4.721 ±0.606 155.863 ±20.255 -0.026 ±0.019 5.906 ±0.419 93.810 ±8.284 0.044 ±0.009
GAE_L1_SUM 6.366 ±1.432 34.739 ±4.089 -0.215 ±0.022 4.946 ±0.402 57.761 ±5.151 -0.050 ±0.010
GAE_L2_SUM 5.612 ±1.048 209.234 ±22.836 0.014 ±0.032 8.219 ±1.201 45.644 ±6.358 0.016 ±0.008
GAE_MEAN 4.088 ±0.608 306.785 ±71.098 0.094 ±0.041 7.624 ±0.686 31.904 ±2.373 0.016 ±0.002
GAE_MIXED 3.151 ±0.378 371.070 ±55.394 0.172 ±0.029 8.843 ±0.733 42.489 ±3.717 0.025 ±0.003
GAE_SPECTRAL 8.882 ±0.662 26.218 ±2.863 -0.032 ±0.005 12.555 ±1.235 6.217 ±0.995 -0.088 ±0.003
Matrix Factorization 9.615 ±0.265 10.407 ±0.171 -0.07 ±0.005 9.781 ±0.029 2.705 ±0.017 -0.183 ±0.001
Node2Vec-S 33.581 ±1.514 1.087 ±0.115 -0.01 ±0.002 26.090 ±1.715 0.952 ±0.165 -0.033 ±0.003
Node2Vec-H 34.023 ±1.832 1.042 ±0.119 -0.012 ±0.002 25.775 ±2.798 1.097 ±0.293 -0.028 ±0.003

Europe Air-Traffic Brazil Air-Traffic
Models DB CH SC DB CH SC
GAE_FIRST 5.347 ±0.351 34.376 ±3.991 -0.015 ±0.003 3.965 ±0.214 15.863 ±1.547 0.026 ±0.006
GAE_CONCAT 6.126 ±0.394 25.105 ±2.491 -0.010 ±0.004 4.204 ±0.268 11.018 ±1.077 0.043 ±0.005
GAE_L1_SUM 6.938 ±0.208 11.394 ±0.402 -0.061 ±0.003 4.764 ±0.350 6.472 ±0.774 -0.008 ±0.008
GAE_L2_SUM 7.782 ±0.657 9.631 ±1.413 -0.061 ±0.006 4.687 ±0.386 5.095 ±0.446 -0.047 ±0.010
GAE_MEAN 10.252 ±0.563 5.414 ±0.455 -0.056 ±0.004 6.205 ±0.202 3.545 ±0.244 -0.017 ±0.004
GAE_MIXED 10.174 ±0.577 5.699 ±0.365 -0.070 ±0.002 6.043 ±0.142 3.188 ±0.107 -0.038 ±0.004
GAE_SPECTRAL 8.158 ±0.240 12.623 ±1.197 -0.010 ±0.001 6.165 ±0.131 3.728 ±0.300 0.010 ±0.005
Matrix Factorization 11.537 ±0.000 1.140 ±0.000 -0.166 ±0.000 7.353 ±0.13 0.871 ±0.030 -0.135 ±0.001
Node2Vec-S 11.287 ±1.993 4.281 ±0.728 -0.033 ±0.004 11.506 ±3.325 1.021 ±0.345 -0.059 ±0.010
Node2Vec-H 11.871 ±1.319 3.590 ±0.396 -0.020 ±0.003 11.635 ±2.015 0.764 ±0.155 -0.070 ±0.012

Davies-Bouldin Index (DB): The lower the value, the better the results (Davies

& Bouldin, 1979).

Silhouette Score (SC): Score between -1 and 1 with 1 being the best score

(Rousseeuw, 1987).

Calinski-Harabasz (CH): The higher the value, the better the consistency of

the clusters (Caliński & Harabasz, 1974).

Table 3.7 reports the results on the datasets with ground truth labels. We find two

trends in the results. On one hand, the models that use the MEAN and SPEC-

TRAL aggregation rules (GAE_MIXED, GAE_MEAN and GAE_SPECTRAL)
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Figure 3.6: 2D t-SNE projection of the GAE_FIRST embeddings for USA Air-Traffic
dataset - The colors show that, to a large extent, the vertices that belong to the same
ground-truth class also belong to the same Degree class.

perform best on the Cora, Citeseer and email-Eu-core datasets. This is most

probably due to the smoothing effect that these two rules have on the attributes

(Li et al., 2018), leading to more homogeneous embeddings. We also notice that

GAE_MIXED, the model that reconstructs two orders of proximity, gave the best

results on two out of the three datasets. On the other hand, the models that pre-

served the topological features (GAE_FIRST and GAE_CONCAT) dominated

the three flight datasets (USA, Europe, and Brazil). The nodes in these datasets

are airports, the edges are flights connecting the airports and the ground-truth

labels are set according to the amount of activity that each airport receives. There-

fore, there is a direct relation between the Degree of each node (the number of

flights that connect to it) and its label (the amount of activity the airport re-

ceives). The knowledgeable reader can observe this fact from Figure 3.6, where

we notice that, to a large extent, the nodes that have the same ground-truth label

also belong to the same Degree class. That is why the models that capture the

Degree in the embedding best perform on these datasets.

3.6 Task 2: Node Clustering

Let us now evaluate the suitability of the embeddings on the task of node clus-

tering. To this end, we apply K-means and a recently proposed algorithm named
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Table 3.8 Clustering node embeddings - using K-means.

Cora email-Eu-core
Models ACC NMI ARI ACC NMI ARI
GAE_FIRST 0.438 ±0.039 0.324 ±0.030 0.133 ±0.027 0.363 ±0.015 0.564 ±0.01 0.228 ±0.016
GAE_CONCAT 0.586 ±0.059 0.440 ±0.031 0.367 ±0.059 0.344 ±0.018 0.558 ±0.012 0.247 ±0.025
GAE_L1_SUM 0.372 ±0.018 0.194 ±0.029 0.044 ±0.016 0.364 ±0.008 0.531 ±0.008 0.163 ±0.013
GAE_L2_SUM 0.629 ±0.036 0.469 ±0.022 0.403 ±0.028 0.384 ±0.017 0.567 ±0.011 0.327 ±0.028
GAE_MEAN 0.668 ±0.021 0.505 ±0.021 0.430 ±0.031 0.432 ±0.011 0.605 ±0.008 0.356 ±0.011
GAE_MIXED 0.659 ±0.019 0.507 ±0.017 0.417 ±0.028 0.438 ±0.035 0.603 ±0.013 0.350 ±0.038
GAE_SPECTRAL 0.419 ±0.050 0.231 ±0.031 0.158 ±0.038 0.395 ±0.040 0.547 ±0.057 0.172 ±0.013
Matrix Factorization 0.304 ±0.002 0.010 ±0.002 0.000 ±0.001 0.170 ±0.020 0.218 ±0.032 0.006 ±0.007
Node2Vec-S 0.229 ±0.006 0.005 ±0.001 0.002 ±0.002 0.109 ±0.003 0.195 ±0.004 0.000 ±0.001
Node2Vec-H 0.217 ±0.005 0.004 ±0.001 0.001 ±0.003 0.109 ±0.004 0.183 ±0.005 0.000 ±0.001

Citeseer USA Air-Traffic
Models ACC NMI ARI ACC NMI ARI
GAE_FIRST 0.370 ±0.027 0.181 ±0.027 0.048 ±0.011 0.468 ±0.009 0.273 ±0.005 0.196 ±0.004
GAE_CONCAT 0.450 ±0.035 0.217 ±0.024 0.156 ±0.029 0.484 ±0.01 0.200 ±0.012 0.184 ±0.016
GAE_L1_SUM 0.231 ±0.007 0.056 ±0.009 -0.001 ±0.001 0.468 ±0.016 0.224 ±0.028 0.169 ±0.024
GAE_L2_SUM 0.460 ±0.037 0.234 ±0.028 0.178 ±0.031 0.452 ±0.021 0.141 ±0.025 0.134 ±0.028
GAE_MEAN 0.565 ±0.041 0.309 ±0.030 0.297 ±0.036 0.432 ±0.038 0.125 ±0.025 0.120 ±0.030
GAE_MIXED 0.609 ±0.037 0.361 ±0.029 0.352 ±0.039 0.469 ±0.007 0.182 ±0.024 0.184 ±0.024
GAE_SPECTRAL 0.353 ±0.038 0.098 ±0.019 0.089 ±0.020 0.351 ±0.019 0.059 ±0.012 0.033 ±0.011
Matrix Factorization 0.224 ±0.018 0.024 ±0.024 0.004 ±0.006 0.254 ±0.004 0.01 ±0.003 0.000 ±0.000
Node2Vec-S 0.204 ±0.003 0.003 ±0.001 0.000 ±0.001 0.282 ±0.007 0.006 ±0.002 0.003 ±0.001
Node2Vec-H 0.204 ±0.004 0.003 ±0.001 -0.000 ±0.001 0.287 ±0.007 0.008 ±0.003 0.005 ±0.003

Europe Air-Traffic Brazil Air-Traffic
Models DB CH SC DB CH SC
GAE_FIRST 0.425 ±0.010 0.199 ±0.017 0.175 ±0.015 0.479 ±0.021 0.304 ±0.009 0.219 ±0.012
GAE_CONCAT 0.394 ±0.018 0.108 ±0.012 0.098 ±0.017 0.490 ±0.016 0.293 ±0.025 0.235 ±0.022
GAE_L1_SUM 0.411 ±0.011 0.133 ±0.006 0.123 ±0.005 0.496 ±0.042 0.257 ±0.048 0.187 ±0.046
GAE_L2_SUM 0.362 ±0.023 0.078 ±0.021 0.051 ±0.020 0.420 ±0.028 0.175 ±0.041 0.090 ±0.041
GAE_MEAN 0.336 ±0.010 0.061 ±0.012 0.027 ±0.008 0.351 ±0.014 0.079 ±0.015 0.022 ±0.012
GAE_MIXED 0.329 ±0.011 0.058 ±0.011 0.020 ±0.008 0.354 ±0.023 0.107 ±0.023 0.029 ±0.017
GAE_SPECTRAL 0.439 ±0.016 0.213 ±0.010 0.178 ±0.011 0.482 ±0.031 0.278 ±0.050 0.215 ±0.038
Matrix Factorization 0.261 ±0.011 0.025 ±0.011 0.001 ±0.001 0.257 ±0.005 0.043 ±0.005 -0.001 ±0.000
Node2Vec-S 0.316 ±0.013 0.026 ±0.009 0.017 ±0.008 0.305 ±0.013 0.020 ±0.007 -0.003 ±0.007
Node2Vec-H 0.320 ±0.007 0.029 ±0.005 0.014 ±0.004 0.310 ±0.018 0.022 ±0.009 0.000 ±0.007

FINCH (a hierarchical agglomerative method) (Sarfraz et al., 2019) on the em-

beddings of each model2. For evaluation, we consider three well known metrics:

Adjusted Rand Index (ARI), Normalized Mutual Information (NMI) and Clus-

tering Accuracy (ACC) as in (Wang et al., 2017) and (Park et al., 2019). All

the metrics are between 0 and 1 with 1 being the best result. We use the node

2We draw the attention of the reader to the fact that the goal of this work is not
to evaluate clustering algorithms but to evaluate the embeddings generated by various graph
learning models for the task of clustering. We elected the use of K-means due to its efficiency and
simplicity. We selected FINCH (Sarfraz et al., 2019) because it is a recent efficient parameter-
free clustering algorithm that does not require any parameters setting, including the number of
clusters.
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Table 3.9 Clustering node embeddings - using FINCH.

Cora email-Eu-core
Models ACC NMI ARI ACC NMI ARI
GAE_FIRST 0.555 ±0.042 0.439 ±0.030 0.342 ±0.047 0.305 ±0.009 0.443 ±0.012 0.164 ±0.014
GAE_CONCAT 0.580 ±0.064 0.435 ±0.036 0.362 ±0.060 0.330 ±0.018 0.482 ±0.014 0.232 ±0.019
GAE_L1_SUM 0.397 ±0.056 0.234 ±0.092 0.070 ±0.051 0.294 ±0.011 0.428 ±0.006 0.149 ±0.015
GAE_L2_SUM 0.624 ±0.044 0.464 ±0.027 0.397 ±0.037 0.338 ±0.009 0.490 ±0.010 0.243 ±0.007
GAE_MEAN 0.656 ±0.035 0.502 ±0.021 0.423 ±0.029 0.369 ±0.011 0.508 ±0.018 0.262 ±0.023
GAE_MIXED 0.638 ±0.030 0.492 ±0.019 0.402 ±0.029 0.359 ±0.012 0.497 ±0.015 0.215 ±0.023
GAE_SPECTRAL 0.309 ±0.033 0.048 ±0.057 0.006 ±0.032 0.272 ±0.027 0.312 ±0.041 0.042 ±0.025
Matrix Factorization 0.293 ±0.003 0.036 ±0.007 -0.003 ±0.003 0.245 ±0.017 0.387 ±0.010 0.153 ±0.015
Node2Vec-S 0.250 ±0.010 0.004 ±0.001 -0.001 ±0.003 0.100 ±0.004 0.052 ±0.005 -0.000 ±0.001
Node2Vec-H 0.202 ±0.015 0.004 ±0.001 -0.000 ±0.001 0.099 ±0.004 0.052 ±0.005 -0.001 ±0.002

Citeseer USA Air-Traffic
Models ACC NMI ARI ACC NMI ARI
GAE_FIRST 0.467 ±0.046 0.240 ±0.038 0.172 ±0.039 0.458 ±0.056 0.232 ±0.022 0.210 ±0.040
GAE_CONCAT 0.468 ±0.036 0.223 ±0.022 0.176 ±0.029 0.410 ±0.048 0.202 ±0.022 0.162 ±0.035
GAE_L1_SUM 0.259 ±0.035 0.060 ±0.032 0.017 ±0.023 0.413 ±0.024 0.238 ±0.021 0.160 ±0.014
GAE_L2_SUM 0.463 ±0.041 0.236 ±0.028 0.182 ±0.029 0.382 ±0.036 0.158 ±0.009 0.122 ±0.018
GAE_MEAN 0.558 ±0.047 0.309 ±0.029 0.295 ±0.040 0.348 ±0.023 0.171 ±0.011 0.109 ±0.013
GAE_MIXED 0.601 ±0.037 0.368 ±0.021 0.360 ±0.028 0.369 ±0.015 0.196 ±0.008 0.118 ±0.009
GAE_SPECTRAL 0.211 ±0.004 0.016 ±0.005 0.000 ±0.001 0.354 ±0.030 0.071 ±0.020 0.062 ±0.029
Matrix Factorization 0.427 ±0.017 0.170 ±0.010 0.158 ±0.011 0.309 ±0.021 0.063 ±0.013 0.046 ±0.013
Node2Vec-S 0.211 ±0.003 0.004 ±0.001 0.001 ±0.001 0.232 ±0.012 0.005 ±0.001 0.000 ±0.001
Node2Vec-H 0.206 ±0.003 0.004 ±0.001 0.002 ±0.002 0.245 ±0.019 0.007 ±0.002 0.001 ±0.001

Europe Air-Traffic Brazil Air-Traffic
Models ACC NMI ARI ACC NMI ARI
GAE_FIRST 0.36 ±0.039 0.154 ±0.034 0.120 ±0.034 0.402 ±0.044 0.262 ±0.03 0.173 ±0.037
GAE_CONCAT 0.321 ±0.027 0.123 ±0.013 0.094 ±0.018 0.415 ±0.048 0.261 ±0.021 0.182 ±0.032
GAE_L1_SUM 0.343 ±0.014 0.110 ±0.012 0.103 ±0.011 0.424 ±0.05 0.245 ±0.054 0.188 ±0.065
GAE_L2_SUM 0.332 ±0.035 0.123 ±0.016 0.093 ±0.019 0.391 ±0.034 0.250 ±0.024 0.164 ±0.028
GAE_MEAN 0.267 ±0.015 0.049 ±0.008 0.031 ±0.009 0.330 ±0.020 0.166 ±0.023 0.090 ±0.018
GAE_MIXED 0.266 ±0.016 0.048 ±0.013 0.030 ±0.012 0.337 ±0.021 0.162 ±0.014 0.095 ±0.015
GAE_SPECTRAL 0.280 ±0.013 0.073 ±0.019 0.005 ±0.005 0.283 ±0.006 0.102 ±0.007 0.000 ±0.001
Matrix Factorization 0.238 ±0.000 0.022 ±0.000 0.000 ±0.000 0.297 ±0.018 0.051 ±0.008 0.008 ±0.004
Node2Vec-S 0.233 ±0.012 0.030 ±0.006 0.010 ±0.005 0.255 ±0.016 0.042 ±0.007 -0.002 ±0.007
Node2Vec-H 0.234 ±0.012 0.035 ±0.005 0.012 ±0.004 0.266 ±0.025 0.046 ±0.011 0.002 ±0.009

labels as ground truth. As depicted by Tables 3.8 and 3.9, the results on this

task are consistent with those of the embedding homogeneity, with GAE_MEAN

and GAE_MIXED performing best on Cora, Citeseer and Email-Eu-Code. On

the other hand, GAE_FIRST and GAE_CONCAT performed best on the flight

datasets. However, it is important to note that the models that did preserve the

topological features under-performed the vanilla model GAE_L2_SUM on three

out of the six dataset for the task of clustering.
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Table 3.10 Node Classification - using Logistic Regression.

Cora email-Eu-core
Models Macro-F1 Micro-F1 Macro-F1 Micro-F1
GAE_FIRST 0.796 ±0.009 0.809 ±0.008 0.516 ±0.018 0.683 ±0.010
GAE_CONCAT 0.758 ±0.015 0.780 ±0.014 0.447 ±0.018 0.639 ±0.012
GAE_L1_SUM 0.132 ±0.024 0.348 ±0.022 0.475 ±0.011 0.629 ±0.006
GAE_L2_SUM 0.733 ±0.025 0.76 ±0.016 0.330 ±0.016 0.544 ±0.009
GAE_MEAN 0.765 ±0.016 0.783 ±0.017 0.509 ±0.016 0.681 ±0.008
GAE_MIXED 0.752 ±0.016 0.775 ±0.015 0.532 ±0.014 0.696 ±0.007
GAE_SPECTRAL 0.066 ±0.000 0.302 ±0.000 0.025 ±0.001 0.169 ±0.002
Matrix Factorization 0.067 ±0.001 0.303 ±0.001 0.008 ±0.000 0.112 ±0.000
Node2Vec-S 0.107 ±0.005 0.259 ±0.004 0.024 ±0.006 0.077 ±0.007
Node2Vec-H 0.105 ±0.005 0.257 ±0.004 0.020 ±0.005 0.078 ±0.005

Citeseer USA Air-Traffic
Models Macro-F1 Micro-F1 Macro-F1 Micro-F1
GAE_FIRST 0.630 ±0.010 0.682 ±0.011 0.650 ±0.009 0.654 ±0.009
GAE_CONCAT 0.581 ±0.013 0.634 ±0.016 0.643 ±0.009 0.646 ±0.010
GAE_L1_SUM 0.133 ±0.022 0.264 ±0.019 0.634 ±0.022 0.634 ±0.022
GAE_L2_SUM 0.549 ±0.014 0.614 ±0.017 0.552 ±0.031 0.564 ±0.027
GAE_MEAN 0.584 ±0.017 0.655 ±0.018 0.594 ±0.014 0.597 ±0.014
GAE_MIXED 0.608 ±0.012 0.689 ±0.009 0.593 ±0.014 0.597 ±0.012
GAE_SPECTRAL 0.058 ±0.000 0.211 ±0.000 0.414 ±0.021 0.439 ±0.019
Matrix Factorization 0.325 ±0.004 0.433 ±0.003 0.482 ±0.001 0.499 ±0.001
Node2Vec-S 0.153 ±0.009 0.189 ±0.010 0.239 ±0.014 0.248 ±0.011
Node2Vec-H 0.150 ±0.008 0.189 ±0.008 0.240 ±0.016 0.247 ±0.015

Europe Air-Traffic Brazil Air-Traffic
Models Macro-F1 Micro-F1 Macro-F1 Micro-F1
GAE_FIRST 0.509 ±0.023 0.524 ±0.022 0.564 ±0.032 0.572 ±0.030
GAE_CONCAT 0.502 ±0.029 0.518 ±0.029 0.554 ±0.029 0.569 ±0.030
GAE_L1_SUM 0.461 ±0.027 0.474 ±0.026 0.522 ±0.018 0.528 ±0.022
GAE_L2_SUM 0.400 ±0.017 0.414 ±0.021 0.488 ±0.023 0.509 ±0.024
GAE_MEAN 0.468 ±0.014 0.478 ±0.011 0.495 ±0.026 0.511 ±0.026
GAE_MIXED 0.453 ±0.013 0.469 ±0.013 0.496 ±0.023 0.514 ±0.022
GAE_SPECTRAL 0.347 ±0.004 0.469 ±0.004 0.290 ±0.0210 0.400 ±0.022
Matrix Factorization 0.149 ±0.000 0.198 ±0.000 0.203 ±0.008 0.247 ±0.009
Node2Vec-S 0.311 ±0.020 0.334 ±0.019 0.238 ±0.035 0.257 ±0.036
Node2Vec-H 0.297 ±0.029 0.323 ±0.029 0.231 ±0.048 0.252 ±0.049

3.7 Task 3: Node Classification

Here, we evaluate the effect of the embeddings on the task of node classifica-

tion. We apply the same models used for the classification of the topological fea-

tures with the same parameters (LG-R, Linear SVM, SVM with RBF Kernel, and

MLP). We use the embeddings as attributes and the dataset node labels as ground

truth. We report the results of the Logistic Regression classifier (Table 3.10) eval-

uated with Micro-F1 and Macro-F1. Note that, as reported in the supplementary

material website associated with this thesis (https://github.com/MH-0/RPGAE),
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the results of the other models, that is, SVM-L, SVM-RBF and MLP, are to a

large extent consistent with that of Logistic Regression.

From Table 3.10, we notice that GAE_FIRST outperforms the other models

on five out of the six datasets, with GAE_CONCAT in close second, while

GAE_MIXED gave the best results on email-Eu-Core. The good performance

of GAE_FIRST and GAE_CONCAT on the flight datasets for all three tasks is

a reconfirmation for the importance of the encoding of the topological features

in the embeddings, especially when the ground-truth labels are related to the

structural role of the node. On the other hand, the consistent performance of

GAE_MIXED on all three tasks is a sign for the importance of the preservation

of multiple orders of proximity in the embeddings.

3.8 Analysis and Recommendations

Following the extensive experiments that we have performed, we conclude that,

though it is primarily beneficial to have the topological features encoded in the

embeddings of the Graph Autoencoder, it is not always necessary. The choice of

model should come down to two main factors: (1) The type of task for which the

embeddings will be used, such as node classification or clustering, and (2) The

correlation between the ground-truth labels of the dataset and the topological fea-

tures of the nodes. For example, if the embeddings will be used for clustering, and

the ground-truth labels are not related to any topological feature, we recommend

using the MEAN or the SPECTRAL rule. This is so the model can harness their

smoothing power, even if it will be at the expense of losing some of the topologi-

cal information in the embeddings. On the other hand, if the ground-truth labels

are correlated to the Degree of the node or its Triangle Count, we recommend

using a model that employs the aggregation by SUM, and that includes the first
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layer of the encoder in the embedding. Furthermore, if the ground-truth labels

are correlated to a feature that depends on the two-hop neighborhood such as

Eigenvector Centrality or the Betweenness Centrality, we recommend concatenat-

ing the output of the first layers with the outputs of deeper layers to form the

embedding.

This practice could be standardized whenever designing a new architecture for

learning on graphs, in what we denote as "Topological Features Preservation"

strategy. First, the developer pinpoints the topological features relevant to the

task at hand. Second, the developer adopts an architecture that is suitable for the

task and also capable of encoding the relevant topological features. This strategy

would help improve the performance and better guide the developer to design

his/her architecture. In the upcoming chapter, we put this proposed strategy to

work in a case study on social influence prediction.



CHAPTER IV

CASE STUDY

In this chapter, we put our findings to work with an application that highlights

the importance of adopting a “Topological Features Preservation” strategy when

designing a GNN architecture. The purpose of our case study is to show that by

adopting an architecture capable of capturing topological features relevant to the

underlying task of the model, we can boost the performance of this model without

the need for any hand-crafted features. To illustrate our point, we have elected

the use of DeepInf (Qiu et al., 2018), a recent deep learning approach for social

influence prediction. In what follows, we lay out the scope of our case study over

three main steps. First, we introduce DeepInf framework with a summary of its

architecture, main components, and any modifications that we have made for the

purpose of our case study. Next, we identify the topological features relevant to

the social influence problem and adopt an architecture capable of capturing these

features, following our findings and recommendations as suggested in the previous

section. Finally, we conduct detailed experiments to assess the suitability of the

adopted architecture.
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Figure 4.1: A summary of the DeepInf framework, slightly modified for this work. The
node v (blue) is the ego-node while the node u (orange) is a neighbor. For the original
architecture, please refer to (Qiu et al., 2018).

4.1 DeepInf Framework Summary

DeepInf (Qiu et al., 2018) is an end-to-end Graph Neural Network framework that

predicts the user-level social influence in a graph. In other words, DeepInf tries to

predict whether a user will perform a certain action (or be activated) after being

influenced by his surrounding or local network. For example, whether a user will

buy a product that his friends bought or will share a story about a subject that

his friends are sharing. When this problem is modeled as a graph, the status of

a node (i.e., whether activated or not) is referred to as Action Status stv ∈ {0, 1}

(1 for node v activated at time t, 0 for node v not activated at time t). DeepInf

accomplishes the task of social influence prediction, by taking the structure and

Action Status of the local neighborhood of a node as input and employing it to

learn a latent feature representation of that node. The learned representation is

subsequently used to predict whether that node will be activated or not in the

future.

Below is a summary that enumerates the steps of the DeepInf framework:
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(1) In the first step, DeepInf samples nodes from the graph and extracts their

local neighborhoods (i.e., ego-graphs) by using the technique Random Walk with

Restart (RWR) (Tong et al., 2006). The ego-graphs are then sampled to have

an equal number of nodes and balanced Action Statuses. Subsequently, the ego-

graphs are fed into the model in random batches, which accelerates the training

and introduces stochasticity to the learning.

(2) Next, an Embedding Layer generates feature representations for the nodes. In

our work, we use the same pre-trained features provided by (Qiu et al., 2018)

(3) In the Input Layer, the features of each node are concatenated with two

extra fields. One field determines the Action Status of the node, and the other

determines the type of the node, i.e., whether this is the central node (ego-node)

or a neighbor node.

(4) In this step, a GNN Layer builds a representation of the nodes using both

the structure and embedding features of the ego-graph as input. In (Qiu et al.,

2018), two variations of the GNN Layer were proposed, DeepInf-GCN, a GNN

that employs the SPECTRAL rule (Kipf & Welling, 2017) and DeepInf-GAT, a

GNN that uses multi-head attention when aggregating the features of the node

(Velickovic et al., 2018). In this work, we focus on improving the performance of

DeepInf-GCN.

(5) Finally, the Output Layer predicts the Action Status of the central node,

minimizing the following loss function:

L(Θ) = −
N∑
i=1

log(PΘ(st+∆t
vi
|Ḡr

vi
, S̄tvi)) (4.1)

Therefore, the problem of predicting the user-level influence is reduced to a binary

classification problem that is solved by minimizing the negative log-likelihood for
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the Action Status of a node at time t + ∆t w.r.t to the model parameters Θ.

Where Ḡr
vi
is the graph structure of the sampled neighborhood of node vi at time

t, and S̄tvi is the Action Status of the neighborhood of node vi at time t.

Figure 4.1 represents a summary of the DeepInf framework. Note that in our

work, two steps were removed from the original framework: The first is Instance

Normalization. This step normalizes the embeddings with learnable parameters

to avoid overfitting, as described in (Ulyanov et al., 2016). The effect of such

parametrized normalization on the preservation of the topological features is be-

yond the scope of this study, therefore this step was omitted. The second is

concatenating Hand-crafted Centrality Features to the pre-trained embeddings.

We forgo this step since we want to test the ability of the models to predict the

influence, by leveraging their own capacity at automatically encoding the central-

ity features, rather than using manually defined ones. More details about the

original framework can be found in (Qiu et al., 2018).

4.2 Datasets and Compared Baselines

Motivated by the fact that the social influence of a node is highly connected

to some of its topological features, such as Degree, Eigenvector, and Between-

ness Centrality (Li et al., 2016), we leverage the finding of our work — that

GAE_CONCAT is capable of capturing these important centrality measures in its

embedding — and propose DeepInf-CONCAT, a simple variation to the DeepInf-

GCN model. As we will show, our experimental results illustrate that DeepInf-

CONCAT significantly improves the prediction capacity of the original model,

without the need for explicitly introducing hand-crafted features in the training.

In the following, we describe DeepInf variations that we have considered in our

comparative analysis.
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• DeepInf-CONCAT-64* is a variation of with two layers that uses the

SUM aggregation rule and concatenates the output of the first and second

layer as embedding, equivalent to GAE_CONCAT.

• DeepInf-L1-SUM-128 is a variation with one layer that uses the SUM

aggregation rule, equivalent to GAE_L1_SUM.

• DeepInf-L2-SUM-128 is a variation with two layers that uses the SUM

aggregation rule and the output of the second layer as embedding, equivalent

to GAE_L2_SUM.

• DeepInf-MEAN-128 is a variation with two layers that uses the MEAN

aggregation rule with the output of the second layer as embedding, equiva-

lent to GAE_MEAN.

• DeepInf-GCN-128 is the same model presented in (Qiu et al., 2018). It

aggregates the messages using the SPECTRAL rule and uses the output of

the last layer as embedding, equivalent to GAE_SPECTRAL.

For the hidden layers of the models, we use the hyperbolic tangent activation

function for the new variations, and a hidden layer of size 128, except for DeepInf-

CONCAT-64 where we use a hidden layer of size 64. It is important to note that

given the nature of the DeepInf model as a GNN rather than GAE, implementing

an equivalent to GAE_FIRST or GAE_MIXED is not possible. Furthermore,

since the effect of multi-head attention on the preservation of topological features

is beyond the scope of this work, and for a fairer and clearer comparison between

the other models that do not employ attention, we do not include the results of

DeepInf-GAT.

To properly measure the effect of the proposed variations on the DeepInf-GCN

model, we adopt the same benchmarks in (Qiu et al., 2018): Digg, Twitter, OAG,
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Table 4.1 Graph Datasets for the DeepInf experiments - The field Observations
indicates the number of sampled ego-graphs. The figures are retrieved from (Qiu
et al., 2018).

Dataset Nodes Edges Observations

Digg 279,630 1,548,126 24,428

Twitter 456,626 12,508,413 499,160

OAG 953,675 4,151,463 499,848

Weibo 1,776,950 308,489,739 779,164

and Weibo, with the same experimental and training setup. Table 4.1 summarizes

the details of the four datasets.

4.3 Prediction Results and Discussion

We report four metrics for evaluating the performance of the models: Area Under

Curve (AUC), Precision (REC), Recall (REC), and F1-Measure (F1). Table 4.2

lists the performance of the compared models on the four datasets. Note that

we have also included the results of DeepInf-GCN as reported in the original

paper (DeepInf-GCN-128-HF). That is DeepInf-GCN trained with the inclusion

of the hand-crafted features and the instance normalization trick. The results

clearly show that DeepInf-CONCAT-64 outperforms the other models for both

AUC and F1 on all four benchmarks. Furthermore, as shown in Table 4.3, DeepInf-

CONCAT-64 significantly outperforms DeepInf-GCN-128 with 10.1% and 7.6%

gains on both OAG and Weibo datasets respectively.

This boost in performance can be attributed in part to the ability of DeepInf-

CONCAT to automatically encode topological features that are relevant to the

node-level influence in the graph. This observation can be further backed by the

fact that the other variations, which also use the SUM aggregation rule, under-

performed DeepInf-CONCAT. In other words, the gains of DeepInf-CONCAT are
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Table 4.2 Prediction results on the four datasets for the five variations of
DeepInf-GCN.

Dataset Model AUC PREC REC F1

OAG

DeepInf-CONCAT-64 0.675 0.338 0.672 0.450

DeepInf-L1-SUM-128 0.651 0.327 0.660 0.438

DeepInf-L2-SUM-128 0.671 0.348 0.632 0.449

DeepInf-MEAN-128 0.652 0.331 0.647 0.438

DeepInf-GCN-128 0.613 0.289 0.746 0.417

DeepInf-GCN-128-HF 0.635 0. 302 0.743 0.430

Digg

DeepInf-CONCAT-64 0.881 0.722 0.718 0.720

DeepInf-L1-SUM-128 0.874 0.686 0.716 0.701

DeepInf-L2-SUM-128 0.874 0.718 0.692 0.705

DeepInf-MEAN-128 0.804 0.606 0.675 0.639

DeepInf-GCN-128 0.866 0.680 0.720 0.699

DeepInf-GCN-128-HF 0.841 0.587 0.676 0.628

Twitter

DeepInf-CONCAT-64 0.783 0.473 0.665 0.553

DeepInf-L1-SUM-128 0.762 0.442 0.671 0.533

DeepInf-L2-SUM-128 0.772 0.448 0.675 0.539

DeepInf-MEAN-128 0.727 0.408 0.624 0.494

DeepInf-GCN-128 0.768 0.459 0.633 0.532

DeepInf-GCN-128-HF 0.766 0.443 0.667 0.532

Weibo

DeepInf-CONCAT-64 0.810 0.472 0.732 0.574

DeepInf-L1-SUM-128 0.781 0.445 0.708 0.547

DeepInf-L2-SUM-128 0.796 0.444 0.742 0.556

DeepInf-MEAN-128 0.774 0.433 0.723 0.542

DeepInf-GCN-128 0.753 0.410 0.707 0.519

DeepInf-GCN-128-HF 0.768 0.424 0.713 0.532

Table 4.3 Relative gain of DeepInf-CONCAT-64 in terms of AUC against
DeepInf-GCN-128 and DeepInf-GCN-128-HF (With Handcrafted Features).

Model OAG Digg Twitter Weibo

DeepInf-CONCAT-64 0.675 0.881 0.783 0.810

DeepInf-GCN-128 0.613 0.866 0.768 0.753

Relative Gain 10.1% 1.7% 2.0% 7.6%

DeepInf-GCN-128-HF 0.635 0.841 0.766 0.768

Relative Gain 6.3% 4.8% 2.2% 5.5%
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Table 4.4 Comparison between the results of DeepInf-CONCAT with hidden
layers of size 64 and hidden layers of size 128.

Dataset Model AUC PREC REC F1

OAG
DeepInf-CONCAT-64 0.675 0.338 0.672 0.450

DeepInf-CONCAT-128 0.674 0.342 0.663 0.451

Digg
DeepInf-CONCAT-64 0.881 0.722 0.718 0.720

DeepInf-CONCAT-128 0.885 0.738 0.723 0.730

Twitter
DeepInf-CONCAT-64 0.783 0.473 0.665 0.553

DeepInf-CONCAT-128 0.785 0.470 0.659 0.549

Weibo
DeepInf-CONCAT-64 0.810 0.472 0.732 0.574

DeepInf-CONCAT-128 0.811 0.474 0.728 0.575

partly due to the concatenation of the first and second layers to form the em-

bedding and the relevant topological information that they encode. As shown

in table 4.3, DeepInf-CONCAT-64 also outperforms DeepInf-GCN-128-HF on all

four benchmarks, highlighting the importance of allowing an automatic encoding

of the relevant topological features vs manually defining them.

It is important to note that DeepInf-CONCAT-64 outperforms the other models

while having half their hidden layer size. To study the effect of the hidden layer size

and eliminate overparameterization as a potential cause for the underperformance

of the other models, we compare DeepInf-CONCAT-64 to DeepInf-CONCAT-128,

which constitutes the same model with a hidden layer size of 128. As shown in

table 4.4, with DeepInf-CONCAT-128, we notice an even higher boost in per-

formance on most of the datasets, further demonstrating the effectiveness of the

DeepInf-CONCAT model.

To summarize, in this section, we have demonstrated how we can put to practice

the findings of our work concerning the representational power of graph embed-

dings. We have shown that by carefully choosing an architecture that has been

experimentally shown to preserve task-relevant topological features, we are able

to significantly improve the model’s performance. We believe that such an un-
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derstanding of the representational power of the GNN and the specialization of

each layer in preserving the topological features can greatly reduce the time of

the model-search step in the development process and architecture design.



CHAPTER V

CONCLUSION

In this study, we investigated the representational power of the graph embeddings

at preserving important topological structures in the graph. For this purpose, we

conducted an extensive empirical study on three unsupervised classes of embed-

ding models, and seven different variants of Graph Autoencoders. Our results

show that five topological features: The Degree, the Local Clustering Score, the

Betweenness Centrality, the Eigenvector Centrality, and Triangle Count are con-

cretely preserved in the first layer of the Graph Autoencoder that employs the

SUM aggregation rule, under the condition that the model preserves the second-

order proximity. We further support our claims with 2D visualizations that reveal

a well-organized hierarchical distribution of the topological features in the em-

beddings of the aforementioned model. Furthermore, we studied the effect of

topological features preservation on downstream tasks. Our results show that the

presence of the topological features in the embeddings can significantly enhance

the performance of the model on downstream tasks, especially when the preserved

topological features are relevant to the target task. Finally, we put our findings to

practice in a case study that involved applying our recommendations to a social

influence prediction framework. Our results show a great boost in performance,

highlighting the importance of having a “Topological Features Preservation” strat-

egy when designing a GNN architecture.
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We believe that having a better understanding of embeddings composition would

help the interpretability and explainability of the graph learning results. Subse-

quently, this would help the developers of the Graph Neural Network technology

better design their architectures, by having a deeper understanding of the role

of each layer in the network and the specialization of the different aggregation

functions. This knowledge would guide them in devising robust models that are

better suited for the downstream tasks and greatly reduce the model search-time

step in the development process. Furthermore, we emphasize that few works have

explored the interpretability aspect of graph embeddings. Therefore, we are con-

fident that our work would constitute a reference for future studies to expand

the investigation into other important structures that might be encoded in the

embeddings and their role and effect on graph learning.

For future studies, it would be interesting to explore the representational power

of the embedding models in the context of other types of graph structures and

their unique characteristics. For example, investigating how the temporal as-

pects of the dynamic graphs are encoded in the embeddings. Or, how different

dimensions could be encoded in multidimensional graphs. It would be equally

interesting to investigate the effect of the preservation of topological features on

other types of downstream tasks. For example, the task of link prediction in het-

erogeneous graphs when encoded with relational Graph Neural Networks (rGNN)

(Schlichtkrull et al., 2018). Another important venue would be the study of the

effect of attention (GAT) (Velickovic et al., 2018) on the preservation of the topo-

logical features and its subsequent effect on downstream tasks. We believe that

all these directions would help further our understanding of the composition of

the embeddings and would lead to substantial improvements in graph learning.
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