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RÉSUMÉ

Les produits d’assurance automobile ont traditionnellement été tarifés en fonction des attributs auto-déclarésfournis par les assurés. Ces attributs incluent généralement différents facteurs de risque tels que le sexe,l’âge, le lieu de résidence, le statut marital, l’utilisation du véhicule et l’historique des réclamations. Les as-sureurs se basent sur ces informations pour évaluer le niveau de risque associé à chaque contrat d’assuranceet déterminer la prime appropriée. Récemment, les assureurs ont commencé à collecter des données surla conduite de leurs assurés, ce qui ouvre de nouvelles possibilités en termes de tarification automobile etentraîne une véritable révolution dans le monde de l’assurance. Ces données télématiques comprennentdes informations détaillées telles que la vitesse, l’accélération, le freinage, la distance parcourue et la po-sition géographique. Une tarification basée sur ces données, connue sous le nom d’assurance basée surl’usage, a été démontrée pour offrir de nombreux avantages. Cette approche permet une tarification plusprécise et personnalisée en se basant sur les habitudes de conduite réelles de chaque assuré. Les avantagesde l’assurance basée sur l’usage incluent également une meilleure équité dans la tarification, la promotiond’une conduite responsable, une amélioration de la sécurité routière et une réduction des émissions de gazà effet de serre.
Cependant, cette nouvelle source de données présente de nombreux défis. L’un de ces défis est lié à lagestion et au stockage de ces données, qui sont souvent volumineuses. Un autre défi majeur réside dans letraitement et l’analyse de ces données. Afin de tirer pleinement parti des avantages offerts par ce nouveauparadigme, il est essentiel de développer des algorithmes avancés permettant d’extraire des informationspertinentes à partir de ces données. Cela implique notamment le développement de nouveaux algorithmesde tarification capables d’utiliser demanière optimale les données télématiques. Il est également importantde comprendre ces données, notamment les relations entre les différentes variables télématiques et lerisque d’accident.
En s’appuyant principalement sur des algorithmes d’apprentissage automatique, cette thèse a pour objec-tif d’améliorer les méthodes de tarification avec données télématiques en assurance automobile tout enapprofondissant la compréhension du lien unissant les données télématiques et le niveau de risque des as-surés. Au Chapitre 1, nous abordons la question de la quantité minimale de données télématiques requisepour obtenir une estimation précise du risque d’un assuré. En effet, il est dans l’intérêt d’un assureur deminimiser la quantité de données utilisées en raison de leur coût de stockage élevé et du temps de calculconsidérable qu’elles exigent dans les algorithmes. Nous abordons cette question en utilisant unmodèle derégression logistique avec régularisation lasso dans le contexte de la classification de réclamations, où le butest d’estimer la probabilité de réclamer pour chaque contrat d’assurance. Au Chapitre 2, nous développonsune procédure basée sur des algorithmes non-supervisés de détection d’anomalies permettant d’extraireautomatiquement des variables à partir des données télématiques. Cette méthode implique le calcul d’unscore de « routine » et de « péculiarité » pour chaque trajet effectué par un véhicule. L’ensemble de cesscores constitue un profil de routine et de péculiarité pour chaque véhicule, à partir desquels des quantilessont extraits pour être utilisés dans un algorithme de classification des réclamations. Nous proposons unmodèle de classification incluant ces quantiles comme prédicteurs et utilisant une régularisation elastic-net,permettant une sélection automatique des variables. Enfin, au Chapitre 3, nous développons de nouveauxmodèles de régression de comptage des réclamations utilisant des données télématiques. Notre approcherepose sur une architecture de réseau neuronal spécifiquement conçue pour résoudre des problèmes actu-ariels, le Combined Actuarial Neural Network (CANN). Cette architecture combine un modèle de régressionclassique avec un réseau neuronal, offrant ainsi lemeilleur des deuxmondes. Alors que lemodèle de régres-
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sion classique fournit une base solide et interprétable, le réseau neuronal permet de capturer des relationscomplexes et des interactions non linéaires entre les variables. Cela signifie qu’il est capable d’extraireautomatiquement des variables, ou représentation latentes, à partir des données télématiques dans sescouches cachées. Un aspect clé de ce chapitre est l’adaptation de l’architecture CANN à la spécificationbinomiale négative multivariée pour les données longitudinales.
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ABSTRACT

Automobile insurance products have traditionally been priced based on self-reported attributes providedby insureds. These attributes typically include various risk factors such as gender, age, dwelling location,marital status, vehicle usage, and claim history. Insurers rely on this information to assess the level of riskassociated with each insurance contract and determine the appropriate premium. Recently, insurers havestarted collecting telematics car driving data from their insureds, leading to new avenues in automobilepricing and revolutionizing the insurance industry. Telematics car driving data includes detailed informa-tion such as speed, acceleration, braking, distance traveled, and geographical location. Pricing based onthis data, known as usage-based insurance, has proven to offer many benefits. This approach allows formore accurate and personalized pricing based on the actual driving behavior of each policyholder. The ben-efits of usage-based insurance also include improved fairness in pricing, promotion of responsible driving,enhanced road safety, and reduced greenhouse gas emissions.
However, this new data source presents several challenges. One of these challenges is related to the man-agement and storage of the often large volumes of data. Another major challenge lies in processing andanalyzing this data. To fully leverage the benefits offered by this new paradigm, it is essential to develop ad-vanced algorithms capable of extracting relevant information from the data. This includes the developmentof new pricing algorithms that can effectively use telematics data. Understanding the data is also crucial,including the relationships between different telematics variables and the risk of accidents.
Relying mainly on machine learning algorithms, the goal of this thesis is to improve pricing methods usingtelematics data in automobile insurance while gaining a deeper understanding of the relationship betweentelematics data and insured risk levels. In Chapter 1, we address the question of the minimum amount oftelematics data required to obtain an accurate estimation of an insured’s risk. Minimizing the amount ofdata used is of interest to insurers due to the high cost of storage and considerable computational timerequired in algorithms. We tackle this question using a logistic regression model with lasso regularization inthe context of claims classification, where the goal is to estimate the claiming probability for each insurancecontract. In Chapter 2, we develop a procedure based on unsupervised anomaly detection algorithms thatautomatically extract features from telematics data. This method involves computing a “routine” and “pe-culiarity” score for each vehicle trip. The collection of these scores forms a routine and peculiarity profilefor each vehicle, from which quantiles are extracted for use in a claim classification algorithm. We pro-pose a classification model that includes these quantiles as predictors and use elastic-net regularization,enabling automatic variable selection. Finally, in Chapter 3, we develop new claim count regression modelsusing telematics data. Our approach is based on a neural network architecture specifically designed foractuarial problems, the Combined Actuarial Neural Network (CANN). This architecture combines a classicalregression model with a neural network, offering the best of both worlds. While the classical regressionmodel provides a solid and interpretable foundation, the neural network captures complex relationshipsand nonlinear interactions between input variables. This means it can automatically extract features, orlatent representations, from the telematics data in its hidden layers. One key aspect of this chapter is theadaptation of the CANN architecture to the multivariate negative binomial distribution specification forlongitudinal data.
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INTRODUCTION

Contexte

L’assurance joue un rôle de premier plan dans l’économie depuis plusieurs millénaires. La première forme
connue de transfert de risque remonte à la civilisation babylonienne, vers le IIe millénaire avant notre ère,
avec le « prêt à la grosse aventure » (Wikipedia contributors, nd), une forme de prêt à haut risque dans
laquelle un prêteur octroyait des fonds à un capitaine de navire pour financer un voyage commercial. Selon
ce type de prêt, si le voyage se déroulait comme prévu et que le navire revenait à bon port, le prêteur se
faisait rembourser son prêt initial en plus de recevoir un intérêt supplémentaire. En revanche, si le navire
coulait ou si la cargaison était endommagée ou perdue d’une quelconquemanière, le prêteur devait renon-
cer à être remboursé et perdait donc son investissment initial. Le risque était alors partagé entre plusieurs
prêteurs, atténuant ainsi le risque supporté par le capitaine. Cela procurait essentiellement deux avantages
majeurs : d’une part, le capitaine était protégé d’une possible perte économique catastrophique, et d’autre
part, les commerçants étaient davantage incités à entreprendre des voyages commerciaux, ce qui favorisait
le développement économique. De nos jours, l’assurance revêt de nombreuses formes et constitue un pilier
central dans notre économie de marché. En assumant une partie des risques liés aux événements incer-
tains tels que les accidents, les maladies ou les catastrophes naturelles, l’assurance permet aux individus,
aux entreprises et aux institutions de se prémunir contre des pertes financières potentiellement dévasta-
trices. Cela encourage l’entrepreneuriat, l’investissement et l’innovation en réduisant les risques associés
à de nouvelles activités économiques, ce qui favorise la stabilité et la croissance économiques.

La présente thèse porte sur l’assurance automobile, qui vise à protéger les individus et les entreprises con-
tre divers risques liés aux dommages matériels, aux blessures corporelles et à la responsabilité civile. Dans
l’industrie de l’assurance, on observe ce qu’on appelle un « cycle de production inversé », signifiant que le
coût d’un produit d’assurance n’est pas connu à l’avance, contrairement à la plupart des produits disponibles
sur lemarché. Par exemple, le coût de la tasse qui est, aumoment d’écrire ces lignes, posée surmon pupitre
de travail, est connu par le manufacturier bien avant la vente de celle-ci. Pour un produit d’assurance, une
partie significative des coûts sont aléatoires puisqu’ils dépendent de la fréquence et de la sévérité des ré-
clamations futures de l’assuré, réputées pour être hautement imprévisibles. En conséquence, un agent,
généralement un ou une actuaire, a l’important mandat de déterminer le coût des produits d’assurance.
En général, les actuaires se concentrent à calculer la prime pure, c’est-à-dire le montant à charger pour
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couvrir les éventuelles réclamations liées aux sinistres. La prime pure est systématiquement moins élevée
que la prime réellement chargée à l’assuré car elle n’inclut pas les diverses marges telles que les frais
d’administration, les marges de profit, les taxes et autres frais associés à l’exploitation de l’assureur. Des
modèles statistiques sont employés pour calculer la prime pure à charger à chaque assuré. Pour estimer le
risque en assurance automobile, ces modèles s’appuient sur des caractéristiques du risque, telles que l’âge,
le genre, la situation matrimoniale et le code postal de l’assuré, ainsi que sur des attributs liés au véhicule
tels que le modèle et la marque. Ces caractéristiques sont sélectionnées selon leur pouvoir prédictif, c’est-
à-dire selon la force de leur lien avec le risque à évaluer.

Jusqu’à récemment, les assureurs s’étaient contentés pendant plusieurs décennies de tarifer leurs produits
d’assurance automobile en utilisant un ensemble restreint de ces caractéristiques du risque fournies à des
modèles linéaires généralisés. Or, l’essor de la technologie télématique dans les dernières années a introduit
une nouvelle source de données disponibles aux assureurs, ouvrant la voie à un changement de paradigme
en assurance automobile, etmêmeplus largement en assurance de dommages. « Télématique » est unmot-
valise formé en combinant les mots « télécommunications » et « informatique ». Il est utilisé pour décrire
le domaine qui se situe à l’intersection de ces deux branches, et fait référence, de manière fondamentale,
à la transmission de données à distance. En assurance automobile, la technologie télématique est utilisée
pour collecter des données sur la conduite des assurés via des dispositifs installés dans les véhicules ou
des applications mobiles. Ces données comprennent notamment des informations telles que la vitesse de
conduite, l’accélération, le freinage, les virages, la distance parcourue, les heures de conduite et la position
géographique. Naturellement, les données télématiques ont un fort potentiel d’utilisation en tarification
automobile car elles fournissent de l’information détaillée sur les habitudes et le style de conduite des
assurés. Plusieurs assureurs collectent déjà ce genre de données auprès de leurs assurés et les utilisent
pour établir leur tarification. Par exemple, certains offrent des rabais à ceux et celles qui répondent à leurs
critères de conduite responsable. Cette approche est fréquemment désignée sous le terme d’assurance
basée sur l’usage (UBI, acronyme anglais pour Usage-Based Insurance).

L’assurance basée sur l’usage est sur le point de révolutionner le monde de l’assurance en apportant des
bénéfices considérables à de multiples entités impliquées, avec peu d’inconvénients. D’abord, elle pourrait
avoir un impact considérable sur la sécurité des routes en encourageant une conduite plus responsable.
De plus, en adoptant une tarification basée sur la distance parcourue, elle pourrait contribuer à la réduc-
tion des émissions de gaz à effet de serre en incitant une utilisation parcimonieuse du véhicule. Du point
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de vue de l’assureur, l’information télématique permet un calcul plus précis et plus segmenté des primes,
permettant d’attirer les bons risques tout en évitant l’antisélection, ce qui confère un avantage concurren-
tiel. Finalement, les assurés bénéficient de ce type d’assurance puisqu’elle permet une tarification plus
équitable et basée sur le comportement réel de conduite de chaque individu. Ainsi, plusieurs injustices
seront résolues, notamment le cas d’un assuré appartenant à une classe de risque présentant un risque
élevé, alors que son risque réel est en réalité faible. Les assurés jugés à haut risque à la lumière de leurs
données télématiques auront quant à eux l’option d’améliorer leur comportement routier. Les données
télématiques ont même le pouvoir de rendre obsolètes certaines variables traditionnellement utilisées en
tarification automobile qui sontmaintenant jugées éthiquement sensibles. D’ailleurs, certains pays ont déjà
interdit ou restreint l’utilisation de certaines variables, telles que le genre et la région de l’assuré, pour le
calcul tarifaire. L’assurance basée sur l’usage a ainsi le potentiel de réduire la discrimination fondée sur
des critères personnels et immuables, en privilégiant plutôt une tarification basée sur le comportement de
conduite.

Le concept d’assurance basée sur l’usage est attribué à l’économiste William Vickrey qui, en 1968, a remis
en question le système traditionnel de tarification, soutenant que les facteurs de risque utilisés ne sont
pas directement liés au risque d’accident et peuvent donc créer des biais et des injustices dans la tarifica-
tion. Il a été le premier à suggérer aux assureurs d’utiliser des données télématiques pour établir le prix de
leurs primes. Cependant, à l’époque, la technologie télématique était encore à ses balbutiements, rendant
impossible l’application de ses idées. Le géo-positionnement par satellite (GPS), par exemple, n’a été pleine-
ment opérationnel qu’en 1995. Ainsi, les chercheurs ont véritablement commencé à s’intéresser au domaine
de l’assurance basée sur l’usage au début des années 2000, dès lors que les compagnies d’assurance ont
commencé à collecter des données sur la conduite de leurs assurés. Depuis lors, de nombreuses recherches
ont été conduites afin de comprendre différentes facettes de ces nouvelles données. Les chercheurs ont
cherché à comprendre les multiples impacts de cette nouvelle méthode de tarification, notamment sur
les plans économique, sociétal, environnemental, juridique et éthique. Parallèlement, des études ont été
menées pour explorer les possibilités offertes par cette nouvelle source de données. Des chercheurs se sont
ainsi penchés sur la modélisation de la conduite, essayant de comprendre les comportement et les habi-
tudes de conduite des assurés. D’autres se sont focalisés à développer de nouveau modèles de tarification
mettant à profit les données télématiques.
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Problème posé

Autrefois, posséder des données était pratiquement synonymede savoir. Cependant, nous avons aujourd’hui
accès à une telle profusion de données qu’il ne suffit plus de les posséder: il est desormais essentiel de
savoir quoi en faire et de quel angle les traiter. Les données télématiques, en raison de leur volume con-
sidérable, présentent un défi majeur en termes de gestion, de traitement et d’analyse. Les chercheurs se
retrouvent confrontés à la tâche complexe de comprendre ces données riches en information et d’en tirer
des connaissances exploitables, notamment pour la tarification en assurance automobile. Afin d’optimiser
les avantages reliés à l’assurance basée sur l’usage discutés précedemment, il est important de mettre en
place une tarification adéquate adaptée à ce nouveau paradigme. Les données de conduite des assurés con-
tiennent de l’information précieuse pour évaluer leur risque individuel et pour déterminer une prime juste.
Il a par exemple été démontré dans le cadre de plusieurs études que la distance parcourue, qui représente
une mesure d’exposition au risque, est fortement liée au risque d’accident. Cependant, la distance par-
courue n’est pas la seule information télématique pertinente pour évaluer le risque d’un assuré, ce qui fait
que d’autres études ont été menées pour identifier les meilleurs moyens d’extraire des facteurs de risque
à partir de ces données.

Parmi les études proposant desmodèles de tarification basée sur l’usage, plusieurs proposent d’extraire des
variables de tarification à partir des données de conduite en se basant sur le jugement humain. Par exemple,
il est envisageable que la connaissance des périodes de la journée dans lesquelles un assuré conduit le plus
souvent puisse contribuer à une meilleure évaluation de son risque. Une chercheuse peut alors obtenir, à
partir des données de conduite, la proportion de la distance conduite dans différentes plages horaires, telles
que les périodes de pointe et les périodes de faible affluence routière. En d’autres termes, la chercheuse
essaie, en utilisant son jugement et son bon sens, d’extraire des variables qui, avec un peu de chance, seront
corrélées avec le risque d’un assuré, permettant ainsi de mieux estimer son niveau de risque.

Ces dernières années, des approches dites « data driven » ont émergé, c’est-à-dire des approches qui
mettent davantage l’accent sur les données. On pourrait dire que celles-ci permettent aux données de
s’exprimer plus « librement », sans être contraintes par des hypothèses ou jugements subjectifs. Par rap-
port à l’approche décrite dans le précédent paragraphe, elles ont l’avantage d’être moins influencées par
les failles et les biais humains. Elles nécessitent néanmoins des algorithmes plus sophistiqués capables
d’extraire automatiquement des variables de tarification à partir de données télématiques très détaillées.
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Il est désormais indéniable que les fournisseurs d’assurance doivent privilégier l’assurance basée sur l’usage.
Au cours des dernières années, la recherche s’est attelée à déterminer comment tirer le meilleur parti des
données télématiques. Cependant, ce domaine en est encore en pleine effervescence et il est essentiel de
poursuivre les recherches afin d’explorer de nouvelles perspectives et approches permettant de réaliser le
plein potentiel offert par la télématique.

Objectifs et structure de la thèse

La présente thèse a pour objectif d’améliorer les méthodes de tarification basée sur l’usage en assurance
automobile ainsi que de mieux comprendre le lien unissant les données télématiques au risque. Pour par-
venir à cet objectif, nous nous appuyons principalement sur des méthodes d’apprentissage automatique.
Nous disposons de données télématiques sous la forme de résumés de trajets, ainsi qu’un jeu de données
traditionnel d’assurance comprenant divers attributs liés à l’assuré, au véhicule et à l’expérience de sin-
istres. Une clé nous permet d’associer chaque résumé de trajet à un contrat d’assurance du jeu de données
traditionnel.

La thèse est divisée en trois chapitres, chacun correspondant à un article scientifique. Au Chapitre 1, nous
nous intéressons à la quantité minimale de données télématiques nécessaire pour obtenir une estimation
précise du risque d’un assuré. Les données télématiques sont souvent très volumineuses et leur coût de
stockage, élevé. De plus, elles requièrent un temps de calcul considérable lorsqu’elles sont utilisées dans
des algorithmes de plus en plus exigeants en puissance de calcul. Il est donc dans l’intérêt de l’assureur
de garder et d’utiliser un minimum de ces données. Nous abordons cette question dans le contexte de la
classification de réclamations, où l’objectif principal est d’estimer la probabilité de réclamer pour chaque
assuré. De plus, nous proposons un algorithme de classification qui utilise de la régularisation lasso et
intègre des variables extraites manuellement à partir des données télématiques.

Au Chapitre 2, nous examinons si le niveau de routine et de particularité d’un assuré peut contribuer à
l’estimation de son risque de réclamation. Nous développons une procédure pour extraire automatique-
ment des variables à partir des données télématiques. La procédure consiste à d’abord extraire un profile
de « routine » et un profil de « péculiarité » pour chaque véhicule en utilisant des algorithmes de détec-
tion d’anomalies non supervisés. Des quantiles sont ensuite extraites de ces profils, et nous étudions leur
pouvoir prédictif dans le contexte de la classification des réclamations.
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Au Chapitre 3, nous développons des modèles transversaux et longitudinaux de régression de comptage
des réclamations en utilisant une architecture spéciale de réseau de neurones appelée Combined Actuarial

Neural Network (CANN). Cette architecture est spécifiquement conçue pour les problématiques actuar-
ielles et permet de combiner un modèle de tarification classique avec un réseau de neurones. Alors que
la partie classique du modèle fournit une base solide, le réseau de neurones nous permet d’analyser plus
en profondeur les données afin d’identifier des signaux qui pourraient avoir été négligés par le modèle de
tarification classique. Plus précisément, nous utilisons un perceptronmulticouches pour traiter les données
télématiques et en extraire automatiquement des variables utiles pour la tâche de régression. Pour la spé-
cification du nombre de réclamations, nous considérons trois distributions : Poisson, binomiale négative et
négative binomiale multivariée. Cette dernière distribution permet une analyse longitudinale plutôt que
transversale et tient donc compte de la dépendance entre les contrats appartenant à un même véhicule.
Cette approche nous permet demieuxmodéliser les réclamations et d’obtenir des estimations plus précises
du risque associé à chaque contrat.

Article associé au Chapitre 1

Duval, F., Boucher, J. P., & Pigeon, M. (2022). HowMuch Telematics Information Do Insurers Need for Claim
Classification?. North American Actuarial Journal, 26(4), 570–590.

Article associé au Chapitre 2

Duval, F., Boucher, J. P., & Pigeon, M. (2023). Enhancing claim classification with feature extraction from
anomaly-detection-derived routine and peculiarity profiles. Journal of Risk and Insurance, 90(2), 421–458.

Article associé au Chapitre 3

Duval, F., Boucher, J. P., & Pigeon, M. (2023). Telematics Combined Actuarial Neural Network for Cross-
Sectional and Longitudinal Claim Count Data. Soumis pour publication.
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CHAPTER 1

HOWMUCH TELEMATICS INFORMATION DO INSURERS NEED FOR CLAIM CLASSIFICATION?

1.1 Introduction
Il a été démontré à plusieurs reprises dans la littérature que les données télématiques collectées dans le
cadre de l’assurance automobile aident à mieux comprendre le risque de conduite d’un assuré. Les as-
sureurs qui utilisent ces données en tirent plusieurs avantages, tels qu’unemeilleure estimation de la prime
pure, une tarification plus segmentée et moins d’antisélection. Le revers de la médaille est que les infor-
mations télématiques collectées sont souvent sensibles et peuvent donc compromettre la vie privée des
assurés. De plus, en raison de leur grand volume, ce type de données est coûteux à stocker et difficile à
manipuler. Ces facteurs, combinés au fait que les régulateurs de l’assurance ont tendance à émettre de plus
en plus de recommandations concernant la collecte et l’utilisation des données télématiques, rendent im-
portant pour un assureur de déterminer la bonne quantité d’informations télématiques à collecter. En plus
des facteurs de risque traditionnels tels que l’âge et le sexe de l’assuré, nous avons accès à un jeu de don-
nées télématiques où les informations sont résumées par trajet. Nous dérivons d’abord plusieurs variables
de tarification à partir de ces résumés de trajet avant de construire un modèle de classification des récla-
mations en utilisant à la fois des facteurs de risque traditionnels et télématiques. En comparant quelques
algorithmes de classification, nous constatons que la régression logistique avec une pénalité lasso est la
plus adaptée à notre problème. En utilisant ce modèle, nous développons une méthode pour déterminer
la quantité d’informations sur la conduite des assurés qui doivent être conservées par un assureur. En util-
isant des données réelles provenant d’une compagnie d’assurance nord-américaine, nous constatons que
les données télématiques deviennent redondantes après environ 3mois ou 4 000 kilomètres d’observation,
du moins du point de vue de la classification des réclamations.

1.2 Abstract
It has been shown several times in the literature that telematics data collected in motor insurance help to
better understand an insured’s driving risk. Insurers that use this data reap several benefits, such as a better
estimate of the pure premium, more segmented pricing and less adverse selection. The flip side of the coin
is that collected telematics information is often sensitive and can therefore compromise policyholders’ pri-
vacy. Moreover, due to their large volume, this type of data is costly to store and hard to manipulate. These
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factors, combined with the fact that insurance regulators tend to issue more and more recommendations
regarding the collection and use of telematics data, make it important for an insurer to determine the right
amount of telematics information to collect. In addition to traditional contract information such as the age
and gender of the insured, we have access to a telematics dataset where information is summarized by trip.
We first derive several features of interest from these trip summaries before building a claim classification
model using both traditional and telematics features. By comparing a few classification algorithms, we find
that logistic regressionwith lasso penalty is themost suitable for our problem. Using thismodel, we develop
a method to determine how much information about policyholders’ driving should be kept by an insurer.
Using real data from a North American insurance company, we find that telematics data become redundant
after about 3 months or 4,000 kilometers of observation, at least from a claim classification perspective.

Keywords: motor insurance, telematics, supervised statistical learning, dichotomous response, claim clas-
sification, lasso logistic regression

1.3 Introduction
Usage-Based Insurance (UBI) is a type of motor insurance for which premiums are determined using infor-
mation about the driving behaviour of the insured. This information is usually collected using telematics
technology, most often through a device installed in the vehicle or a mobile application. Because of its
multiple benefits, this type of insurance is increasingly promoted by insurers. It also seems to be more and
more appreciated by consumers. A survey (Watson, 2017) conducted byWillis Towers Watson on 1005 in-
surance consumers in the United States reports that 4 out of 5 drivers are in favour of sharing their recent
driving information in exchange for a personalized insurance product. Among the benefits, it seems clear
nowadays that the addition of telematics information into the insurance pricing models improves the pre-
cision of the pure premium (see for instance (Ayuso et al., 2019), (Pérez-Marín et Guillen, 2019), (Verbelen
et al., 2017) and (Lemaire et al., 2015)). UBI also has many positive impacts on society (see for instance
(Greenberg, 2009) and (Bordoff et Noel, 2008)). Indeed, because it encourages individuals to drive less
andmore safely, it helps making roads safer, reducing traffic congestion, limiting greenhouse gas emissions,
and making insurance more affordable, among other things.

The idea of usage-based insurance was first articulated by William Vickrey, considered as the father of UBI.
In (Vickrey, 1968), he criticizes the premium structure then used in motor insurance. He believes that the
insurance premium should be modulated according to the use of the vehicle, and thus appear as a variable
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cost to the insured. In order to correct the premium structure that he considers deficient, Vickrey proposes
in the late 1960s a new type of insurancewhere the premium increaseswith usage. In particular, he suggests
pricing through a tax applied to gasoline or tires: insureds who consumemore gasoline (or tires) would then
have a higher premium. However, due to the lack of technology and organizational barriers, it was not until
the mid-1990s that the first UBI program appeared in the United States. Nowadays, several major general
insurance companies have their own UBI program, and this type of insurance is still growing in popularity.
It is now a fact that UBI is collectively beneficial in many ways, and that is why it seems to be the future of
motor insurance.

A fairly general section of the UBI literature discusses the feasibility, implemention, costs and benefits of
UBI. (Litman, 2007) explores the practicability, pros and cons of differents types of distance-based insurance,
such as Mileage Rate Factor and Pay-at-the-Pump. (Greenberg, 2009) establish that every mile driven
insured with UBI rather than conventional insurance brings a significant benefit to the community, which
they quantify at $0.016. With this in mind, he proposes benefit-maximizing rules and incentives to increase
the size of the UBI market. (Bordoff et Noel, 2008) estimate that the change from traditional insurance to
UBI reduces mileage by 8% in average, resulting in yearly savings of $658 per vehicle. Indeed, the fact that
the premium increases with usage is a strong incentive to drive less. They state that most of these savings
are attributable to reduced congestion and accidents.

In the recent literature on automobile insurance pricing, among all information you can get from a telem-
atics device, several papers only focus on the distance driven, which is probably the most useful measure
for ratemaking. (Boucher et al., 2017) simultaneously analyze the impact of distance driven and duration
on claim frequency using Generalized Additive Models (GAMs) for cross-sectional count data. They find
that neither distance nor duration is proportional to frequency, but that frequency tends rather to stabilize
once a certain distance or duration has been reached. The authors invoke a “learning effect” and a “high-
way effect” to explain the fact that a policyholder travelling 2x miles is less than twice as dangerous as an
insured travelling x miles. (Boucher et Turcotte, 2020) go further and analyse the link between distance
driven and frequency using models for panel count data, including a Generalized Additive Model for Loca-
tion, Scale and Shape (GAMLSS) and a GAM with fixed effects. They refute the idea of the “learning effect”
to explain the non-linearity of frequency. Instead, they find that the relationship between frequency and
distance driven is approximately linear, and that the apparent non-linearity is due to residual heterogeneity
incorrectly captured by GAMs.
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Since an insured rarely hasmore than one claim per year (see for instance (Boucher et al., 2007)1), assigning
a probability of claiming is almost like assigning a premium. Therefore, a significant amount of studies
related to UBI ratemaking have focused on claim classification. (Pesantez-Narvaez et al., 2019) compare the
predictive performance of a non-penalized logistic regression and a boosting algorithm called XGBoost using
classical and telematics information, including distance driven, fraction of driving at night, fraction of driving
in urban areas and fraction of driving above speed limit. In (Huang et Meng, 2019), the authors compare
the performance of various classification algorithms while proposing a way to bin continuous telematics
variables in order to create a finite number of risk classes and thus increase interpretability. It turns out that
this discretization also increases the predictive power of the algorithms. (Paefgen et al., 2013) also compare
multiple classification algorithms on real claim classification data and propose a novel way to aggregate
telematics information into what they call an “aggregate risk factor”.

Moreover, the question of how to transform telematics data into useful information for pricing is still a
thorny issue to this day. Indeed, it is not yet clear how to use raw telematics information in an optimal way.
This falls within the field of feature engineering. Some simply create features manually from the raw data,
while others contributed using techniques from machine learning, deep learning and pattern recognition
((Weidner et al., 2016), (Gao et Wüthrich, 2018), (Gao et al., 2018), (Gao et Wüthrich, 2019)).

Despite itsmanybenefits, the growing popularity ofUBImeans that insurers are accumulating large amounts
of sensitive data about their insureds. (Dewri et al., 2013) have shown that it is possible to deduce users’
destinations by analyzing their driving data, without even having access to the geographical coordinates of
the trips. In recent years, concerns have been arising about the use of telematics technology, particularly
with respect to confidentiality and data usage. In Canada and in other countries, insurance regulators make
recommendations regarding UBI products. In particular, Financial Services Commission of Ontario (FSCO)
and Financial Services Regulatory Authority of Ontario (FSRA) state that telematics data fall under the defi-
nition of “personal data”, and must therefore be handled according to the relevant legislation (see (Howell,
2013)). They also mention that the insurer must inform the consumer in several respects, such as the type
of information collected and the use made of it. In spite of these recommendations, the fact remains that
large amounts of personal data are stored by insurance companies. From an ethical, practical and econom-
ical point of view, it is nowadays important for an insurer to keep a minimal amount of personal data on its
insureds. Notably, collecting less data reduces storage and manipulation costs in addition to facilitate data

1 Table 2 of this paper informs us that 99.5% of the policyholders have 1 claim or less.
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leakage prevention.

This raises the question of how much information an insurer should collect on the driving behavior of its
insureds, which should be just enough to get a good idea of how the insured drives, but not too much for
the reasons cited in the the preceding paragraph. We explore this avenue through the binary claim classi-
fication framework, where the goal is to assign each insured a probability of claiming. In addition to data
traditionally used in motor insurance pricing, we have access to telematics data in a format where we have
one observation per trip, which allows us to derive interesting and representative features of the insured’s
driving. We first build a classification model using both classical and telematics features. To this effect, we
determine which classification algorithm is the most suited to our problem by comparing among a logistic
regressionwith lasso penalty, a logistic regressionwith elastic-net penalty and a random forest, all this while
accounting for interactions between features. It turns out that the lasso model is best suited to our task.
Using this classification model, we then develop a method for determining how much telematics informa-
tion an insurer should collect. For this purpose, we derive several classification datasets using increasing
amounts of information about the insured’s driving. We then fit a lasso model on each of these datasets
and compare performance: telematics information is considered redundant when it no longer substantially
improves the classification score.

In Section 1.4, we describe the classical and telematics data available to us in conjunctionwith details of how
telematics features are derived. Section 1.5 follows, where we show how the classification datasets are built
using varying amounts of information as well as other preprocessing steps. Then, in Section 1.6, the math-
ematical framework of supervised classification is introduced, in addition to explaining the functioning of
the 3 preselected algorithms, namely the two penalized logistic regressions and the random forest. This is
followed by Section 1.7, in which we first make a choice among the classification models presented in Sec-
tion 1.6. We choose the lasso logistic regression for its good performance and for its simplicity. We also find
that adding interactions does not substantially improve the performance of the models. Using our classifi-
cation model as well as the datasets built in Section 1.5, we then develop a method to determine the right
amount of telematics information to collect based on non-parametric bootstrapping. Using the data pro-
vided by the North American insurer, we find that telematics information no longer improves substantially
classification after about 3 months, or 4,000 kilometers of observation. Finally, we conclude in Section 1.8.
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1.4 Data
All the data is provided by aNorth American insurer and is related to personal auto insurance in the province
of Ontario. We have access to a telematics database consisting of 210,854,092 summaries of trips made by
67,355 vehicles between January 2016 and December 2018, for which an extract is shown in Table 1.1. The

VIN Trip number Departure datetime Arrival datetime Distance Maximum speed

A 1 2016-04-09 15:23:55 2016-04-09 15:40:05 10.0 72

A 2 2016-04-09 17:49:33 2016-04-09 17:57:44 4.5 68... ... ... ... ... ...
A 3312 2019-02-11 18:33:07 2019-02-11 18:54:10 9.6 65

B 1 2016-04-04 06:54:00 2016-04-04 07:11:37 14.0 112

B 2 2016-04-04 15:20:19 2016-04-04 15:34:38 13.5 124... ... ... ... ... ...
B 2505 2019-02-11 17:46:47 2019-02-11 18:19:22 39.0 130

C 1 2016-01-16 15:41:59 2016-01-16 15:51:35 3.3 65... ... ... ... ... ...
Table 1.1: Extract from the telematics dataset. Dates are displayed in the yyyy-mm-dd format.

recording of a trip, made using an On-Board Diagnostics (OBD) device, begins when the vehicle is turned
on and stops when the ignition is turned off. Each trip is summarized in 4 measurements: the datetime of
departure and arrival, the distance driven and the maximum speed reached. Trips are also associated with
a vehicle via the vehicle identification number (VIN), but there is no column to identify the insured person,
which makes it impossible to know who the driver is. Therefore, our analysis is based on vehicles rather
than policyholders. For 57,671 of these vehicles, which are all observed during one or more insurance con-
tracts, we have access to features traditionally used in motor insurance (gender, age, region, etc.) as well as
claiming information. Among these features, that we will call “classical features”, 10 were selected and are
described in Table 1.2. Distributions of the classical numeric features and those of the classical categorical
features are shown in Figures 1.6 and 1.7 of Appendix 1.9, respectively. Only vehicles having at least one
full-year contract are kept for the analysis, which means we end up with 29,799 vehicles. In the following
section, the telematics dataset will be aggregated by contract (which means the latter will go from one row
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Classical feature name Description Type

annual_distance Annual distance declared by the insured Numeric
commute_distance Distance to the place of work declared by the insured person Numeric
conv_count_3_yrs_minor Number of minor contraventions in the last 3 years Numeric
gender Gender of the policyholder Categorical
marital_status Marital status of the policyholder Categorical
pmt_plan Payment plan chosen by the policyholder Categorical
veh_age Vehicle age Numeric
veh_use Use of the vehicle Categorical
years_claim_free Number of years since last claim Numeric
years_licensed Number of years since driving licence Numeric

Table 1.2: Classical features selected for the analysis.

per trip to one row per contract) and then merged with classical features and claim information (which
are already on a contract basis). The resulting dataset will then be given as input to supervised learning
algorithms. Since we know that supervised learning algorithms generally learn best on independent ob-
servations, we keep only the earliest one-year contract for each vehicle, which allows us to get rid of the
dependency that exists between the different contracts associated with the same vehicle. In their observed
year, 99.8% of the vehicles have made less than 5,000 trips, for an average of 1,581 trips per vehicle. The
complete distribution is shown in Figure 1.1.

Based on the trip summaries of Table 1.1, wewish to derive telematics features that best depict the insured’s
driving behavior by aggregating the trips for each vehicle. Indeed, we want these features, or covariates,
to have a good predictive power when inputted into a supervised classification algorithm. This falls within
the field of feature extraction, which is often a crucial step in machine learning. However, extracting (or
creating) features from raw telematics data in an optimal way is not a simple task and is a research avenue
in itself. This problem is addressed in several articles such as (Wüthrich, 2017) and (Gao et Wüthrich, 2018).
Features extracted in these two studies nevertheless require second-by-second data, which we do not have
at hand. We are therefore largely inspired by features of the “usage”, “travel habits” and “driving perfor-
mance” types derived in (Huang et Meng, 2019). From the telematics dataset, we thus extract a total of 14
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Figure 1.1: Histogram of the number of trips for the 29,799 vehicles in their observed year.

features, all described in Table 1.3 and for which the distribution is shown in Figure 1.2. In Table 1.3, we
also display the average value of the telematics features for two groups of vehicles, namely the claimants
(those who have claimed at least once during their observed year) and the non-claimants (those who have
not claimed during their observed year), and a two-sample t-test is conducted for each of the features to
determine whether the mean differs significantly between the two groups. It turns out that the difference
in the mean is significant (at a 95% confidence level) for half of the 14 features, which we have highlighted
in bold in Table 1.3. This suggests that these 7 features contain predictively relevant information. Note that
claimant vehicles tend to travel more distance and make more trips, which seems natural. They also tend
to have a lower average median speed. This may be due to the fact that claimant insureds have a higher
propensity to drive in the city, where average speed is lower and the risk of collision, higher than elsewhere.
Claimants also tend to have a higher maximum speed reached in their observed year, drive less in the mid-

2 0h-6h
3 11h-14h
4 20h-0h
5 7h-9h Monday to Friday
6 17h-20h Monday to Friday
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Mean value

Feature name Description Non-claimants (94.7%) Claimants (5.3%) p-value (t-test)

avg_daily_distance Average daily distance 44.3 50.1 < 0.0001

avg_daily_nb_trips Average daily number of trips 4.3 4.8 < 0.0001

med_trip_avg_speed Median of the average speeds of the trips 28.8 28.0 < 0.0001

med_trip_distance Median of the distances of the trips 5.2 5.2 0.9203

med_trip_max_speed Median of the maximum speeds of the trips 69.6 70.0 0.2906

max_trip_max_speed Maximum of the maximum speed of the trips 138.2 141.9 < 0.0001

prop_long_trip Proportion of long trips (> 100km) 0.0108 0.0103 0.4114

frac_expo_night Fraction of night driving2 0.0262 0.0276 0.1630

frac_expo_noon Fraction of midday driving3 0.210 0.198 < 0.0001

frac_expo_evening Fraction of evening driving4 0.0845 0.0965 < 0.0001

frac_expo_peak_morning Fraction of morning rush hour driving5 0.0968 0.0985 0.4453

frac_expo_peak_evening Fraction of evening rush hour driving6 0.137 0.143 < 0.0001

frac_expo_mon_to_thu Fraction of driving on Monday to Thursday 0.582 0.582 0.6786

frac_expo_fri_sat Fraction of driving on Friday and Saturday 0.299 0.300 0.5475

Table 1.3: Mean value of the 14 features extracted from the telematics dataset for claimants and non-
claimant. Two-sample t-tests were conducted to determine whether themean differs significantly between
the two groups.

day and more in the evening, especially in the rush hour. Note that we have at our disposal 2 “mileage”
variables. The first one, annual_distance, is declared by the insured at the very beginning of the contract
and corresponds to the number of kilometers that the insured estimates he/shewill drive during the follow-
ing year. The second, avg_daily_distance, is measured by the OBD device and is the actual number of
kilometers the insured has driven during the year, divided by 365.25, which is the average number of days
in a year. One could argue that these two features tell roughly the same thing about an insured and that
we should get rid of one of them. However, insureds underestimate their distance travelled in a year by an
average 1,399 kilometers. Indeed, the average of the avg_daily_distance feature times 365.25 is 16,374
kilometers while the average of annual_distance is 14,975 kilometers. Moreover, the Pearson correla-
tion coefficient between these two is only 0.37, which means there is a considerable discrepancy between
annual_distance and avg_daily_distance. We therefore keep both of these features in our analysis,
since each one tells a different story about an insured. In order to determine which features (classical and
telematics combined) are significant in predicting the occurrence of a claim, a non-penalized logistic regres-
sion was fitted to the data. The coefficients obtained for the 24 features and their standard deviations are
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Figure 1.2: Distributions over the 29,799 vehicles of the 14 features extracted from the telematics dataset.

shown in Figure 1.8 of Appendix 1.9. It turns out that 10 of the 24 coefficients, among which 7 are related to
telematics features, are significant (using a 5% threshold).

Example 1 In order to illustrate the exact calculation of the 14 telematics features, let us imagine that a

insured, during a given contract that we assume lasts 7 days, made only 5 trips, summarized in Table 1.4.

The calculation of the telematics features related to this insured would then be done according to Table 1.5.

One must be careful when analyzing telematics data. Indeed, insureds who have chosen to be observed
telematically for insurance purposes do not correspond to the general population of insureds, whichmeans
our data cannot be considered a simple random sample of the company’s insured population. As far as
we are concerned, 10% to 15% of the insureds in our North American insurance company’s portfolio are
observed with a telematics device, and these are generally worse and younger drivers. This is because
at the time the data was collected, in order to encourage policyholders to choose the telematics option,
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Trip number Departure time Arrival time Weekday Distance Average speed Maximum speed

1 18:20 18:28 Monday 8 60 73

2 17:40 17:54 Monday 9 39 70

3 09:35 09:48 Tuesday 17 78 102

4 07:30 07:37 Thursday 9 77 92

5 12:20 13:35 Saturday 109 88 120

Table 1.4: Summaries of the 5 trips made by a fictitious insured. Note that weekday and average speed can
be easily derived from the telematics dataset.

insurers were offering a 5% entry discount in addition to a renewal discount ranging from 0% to 25%. At
that time, it was also not possible for insurers, at least in the regionwhere the datawas collected, to increase
the premium based on telematics information: the latter could only be reduced. Because car insurance in
Ontario is very expensive, any discount is welcomed by high-premium policyholders such as bad drivers
and youths. As a consequence, an unexpectedly large proportion of bad/young drivers end up using the
telematics option. However, this selection bias does not affect our analysis since the models and methods
we develop apply only to telematically observed insureds. Onemust only be careful not to draw conclusions
from these data and apply them to the general population of insureds.

1.5 Data preparation
1.5.1 Design of the classification datasets
With the data we have at hand, we wish to build several classification datasets using a varying amount of
telematics information, or trip summaries. We will later on perform classification on each of them and
compare performance, which will allow us to determine how much telematics information is needed to
obtain a proper classifier. For this purpose, we compute telematics features of Table 1.3 in several versions,
which we do in two different ways. The first way to proceed, called the “time leap” method (TL), consists
in first calculating features using only one month of trip summaries for each vehicle, and then add one
month worth of data to each subsequent version. Since vehicles are observed over one year, telematics
features of Table 1.3 are derived in 12 different versions. In general, the kth version is calculated using the
first k months of telematics information related to a given vehicle, for k = 1, . . . , 12. The second way
to proceed, called the “distance leap” method (DL), is quite similar to the time leap way, but uses 1,000-
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Feature Computation Value

avg_daily_distance (8 + 9 + 17 + 9 + 109)/7 21.7

avg_daily_nb_trips 5/7 0.71

med_trip_avg_speed med{60, 39, 78, 77, 88} 77

med_trip_distance med{8, 9, 17, 9, 109} 9

med_trip_max_speed med{73, 70, 102, 92, 120} 92

max_trip_max_speed max{73, 70, 102, 92, 120} 120

prop_long_trip (> 100km) 1/5 0.2

frac_expo_night 0/(8 + 9 + 17 + 9 + 109) 0

frac_expo_noon 109/(8 + 9 + 17 + 9 + 109) 0.72

frac_expo_evening 0/(8 + 9 + 17 + 9 + 109) 0

frac_expo_peak_morning 9/(8 + 9 + 17 + 9 + 109) 0.06

frac_expo_peak_evening (9 + 8)/(8 + 9 + 17 + 9 + 109) 0.11

frac_expo_mon_to_thu (8 + 9 + 17 + 9)/(8 + 9 + 17 + 9 + 109) 0.28

frac_expo_fri_sat 109/(8 + 9 + 17 + 9 + 109) 0.72

Table 1.5: Telematics features calculated for the fictitious insured of Table 1.4.

kilometer leaps instead of one-month leaps to jump from version to version. For the sake of uniformity,
we also derive telematics features in 12 different versions using this second method. In general, the kth
version of a telematics feature for vehicle i is calculated using the first 1,000 × k kilometers of telematics
information related to this vehicle, for k = 1, . . . , 12. If it turns out that the vehicle has done less than
1,000k kilometers in its observed year, we simply use all available telematics information from this vehicle.
Note that 37%of the vehicles have accumulated less than 12,000 kilometers of driving during their observed
year, which means that they end up with some identical versions of the telematics features for the distance
leap method. For instance, a vehicle that has accumulated 5,500 kilometers of driving has its distance leap
versions 6 to 12 of the telematics fatures calculatedwith the sameamount of telematics information, namely
with 5,500 kilometers of trip summaries. Each version of the telematics features can be represented by a
29,799 × 14 matrix, where each row corresponds to a vehicle and each column to a feature. The matrix
containing the kth version of the telematics features derived according to the time leap method is noted
xTL
k , while the one derived according to the distance leap method is noted xDL

k . Let us also denote by
xc the 29,799 × 10 matrix containing the classical features of Table 1.2 and by y the response vector of
length 29,799, which indicates whether or not each vehicle had a claim in its observed year. By using time
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leap versions of the telematics features, we then build 12 classification datasets, denotedDTL
1 , . . . ,DTL

12, all
sharing the same classical features xc as well as the same response vector y. The only difference between
them is the version of the telematics features used or, in other words, the amount of trip summaries used
to compute telematics features. In general, DTL

k , k = 1, . . . , 12, is the classification dataset built with the
matrix of telematics features xTL

k , which means it is obtained by concatenating xc, xTL
k and y. In addition

to these 12 classification datasets, we also create a dataset containing no telematics information, noted
DTL

0 . The latter is therefore built by concatenating xc and y. Note that all 13 datasets describe the same
vehicles and therefore have the same number of rows. In a similar fashion, 13 datasets DDL

0 , . . . ,DDL
12 are

built using the distance leap versions of the telematics features. In order to properly test models, it is
common in machine learning to split the observations into training and testing sets. For future use, we thus
randomly draw 70% of the 29,799 vehicles to make up the training set, and the remaining 30% forms the
testing set. Training and testing datasets are respectively denoted by T m

k and Vmk , where k = 0, . . . , 12

andm ∈ {TL,DL}.

1.5.2 Preprocessing
Training and testing datasets need to be preprocessed every time they are being fed to the models, either
for training or scoring purposes. The reasons for this are manifold. First, some of our features are categori-
cal (gender, marital_status, pmt_plan and veh_use), and many supervised learning algorithms cannot
handle this type of information, which means we need a way to encode them numerically. For this, we
choose an embeding method called “target encoding”, which consists in replacing the value of each cate-
gory, that is originally a string of characters, by a real number based on the response (or target) column.
In the special case of mean target encoding, the value of each observation is replaced by the mean of the
response variable for the category to which that observation belongs. For instance, imagine we have the
feature “gender” with categories “woman” and “man” and that the mean of the response variable is 0.09
for women and 0.11 for men. Women would then be encoded with the value 0.09 while men would be as-
signed the value 0.11. What we use is similar to mean encoding, except that the encoded values are derived
using a GLM rather than using the mean. Suppose we are in the context of supervised binary classification
and we want to encode the feature x, which is categorical with k categories. GLM target encoding consists
in first fitting a logistic regression without intercept using only x to explain the binary response variable
y, which yields coefficient estimates ˆ︁β1, . . . , ˆ︁βk. Then, each of the k categories is encoded with its corre-
sponding coefficient. Hence, category j is encoded with the value ˆ︁βj , for j = 1, ..., k. This means that the
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k-category categorical feature x becomes a numerical feature with k unique values. In order to perform
target encoding, the step_lencode_glm function of the embed package in the R programming language
((R Core Team, 2020)) is used. Note that prior target encoding the categorical features, rare categories (i.e.,
those associated with 5% of the observations or less) are lumped together in a catch-all category.

Figure 1.3: Flowchart of the feature preprocessing “recipe”, that
is applied every time a model is trained or validated in this anal-
ysis.

Secondly, the commute_distance fea-
ture, which is numerical, is missing for
22.3% of the observations. Since many
classification algorithms cannot handle
missing values, we need a way to im-
pute them. Virtually any prediction al-
gorithm could be used to perform impu-
tation, but some are more suitable than
others. We choose an algorithm based
on bagged decision trees (see (Breiman,
1996)) as they are known to be good
at imputing missing data, partly because
they generally have good accuracy and
because they do not extrapolate be-
yond the bounds of the training data.
Bagged decision trees are also prefer-
able to random forest because they re-
quire fitting fewer decision trees to have
a stable model. The idea is to first con-
sider the feature to be imputed, namely
commute_distance, as a response variable. Then, a bagged decision tree model is trained on all observa-
tions for which commute_distance is not missing, using all features except the latter as predictors. This
fittedmodel is then scored on all observations with amissing commute_distance value, and the prediction
is used as a replacement value. To implement bag imputation, we use the step_bagimpute function of the
recipe package in R.

Thirdly, supervised learning algorithms generally learn best when the data is preprocessed in a certain way.
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For instance, they generally benefit from normalized and rather symmetrical feature distributions. To nor-
malize features, we use the z-score normalization, which is a quite popular choice. Consider the numerical
feature vector x = (x1, . . . , xn). The z-score normalized version of this vector is

x∗ =

(︃
x1 − x
s

, . . . ,
xn − x
s

)︃
,

where x = 1
n

∑︁n
i=1 xi and s =

√︂
1

n−1

∑︁n
i=1(xi − x)2 are the empirical mean and standard deviation of

vector x, respectively. In order to obtain more symmetric feature distributions, we use the Yeo-Johnson
transformation (see (Yeo et Johnson, 2000)), which is similar to the Box-Cox transformation except that it
allows for negative input values. Yeo-Johnson transformation also has the effect of making the data more
normal distribution-like. The Yeo-Johnson transformation ψ applied on a real value x is defined as follows:

ψ(x, λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

((x+ 1)λ − 1)/λ if λ ̸= 0, x ≥ 0

ln(x+ 1) if λ = 0, x ≥ 0

−[(−x+ 1)2−λ − 1]/(2− λ) if λ ̸= 2, x < 0

− ln(−x+ 1) if λ = 2, x < 0,

where λ is a parameter that is optimized by maximum likelihood so that the resulting empirical distribution
resembles a normal distribution as closely as possible. Note that the preprocessing steps are performed in
a specific order and depends on the feature type. Figure 1.3 illustrates the data preprocessing “recipe”.

1.6 Binary classification algorithms
1.6.1 Binary classification framework and classification algorithm preselection
Let us be in the context of binary supervised classification, in which we have at our disposal n labeled
examples {(xi, yi)}ni=1, where xi = (xi1, . . . , xip) and yi ∈ {0, 1} are respectively the p-dimensional vec-
tor containing the features and the label (or response variable) for observation i. The goal is to estimate
E[Y |x], the conditional mean of Y given the features, which can also be seen as the conditional probability
P(Y = 1|x). Many algorithms have been developed to estimate this probability, including logistic regres-
sion, random forest, artificial neural networks, support vector machines, etc. For the analysis, we retain
two supervised learning algorithms, i.e. penalized logistic regression and random forest. The reason for
this choice is that the latter often give excellent classification results while requiring little preprocessing of
the data. In fact, these two could be qualified as “off-the-shelf” algorithms because they perform implicitly
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feature selection and do not require much data preprocessing, unlike other algorithms such as neural net-
works. They are also quite easy to tune because they do not have too many hyperparameters. Note that
some algorithms that require more care before inputting the data into the model can probably lead to bet-
ter classification performance, but our goal is not really in that way. For the penalized logistic regression, we
consider two specifications, namely the lasso penalty (also called ℓ1-penalty) and the elastic-net penalty.

1.6.2 Logistic regression
In logistic regression, the goal is to approximate the conditional probability of having a positive case (Y = 1)
by applying the sigmoid function over a linear transformation of the features. The model can therefore be
expressed as

pi := P(Yi = 1|xi) = σ

⎛⎝β0 + p∑︂
j=1

βjxij

⎞⎠ , (1.1)
where σ, the sigmoid function, ensures that the output is a real number between 0 and 1. The model is
parametrized by the unknown parameter vector β = (β1, . . . , βp), and the intercept β0. These parameters
are often estimated by maximum likelihood, which leads to asymptotically unbiased estimates. Maximizing
likelihood is equivalent to minimizing cross-entropy loss, given by

L(β0,β) = −
1

n

n∑︂
i=1

yi ln(pi) + (1− yi) ln(1− pi). (1.2)
There is no closed formula for maximum likelihood parameter estimates in the logistic regression frame-
work, but a variety of numerical optimization methods can be used. Most of the time, the method of
iteratively reweighted least squares (IRLS) is used.

1.6.3 Lasso logistic regression
Maximum likelihood estimator is the asymptotically unbiased estimator with the smallest variance. How-
ever, it is rarely the best for prediction accuracy. Indeed, although it has a low bias, it has a rather large
variance. In 1996, (Tibshirani, 1996) proposes a new method called least absolute shrinkage and selection

operator (lasso) for estimating parameters in linear regression that reduces the variance of the parame-
ters at the cost of increased bias. In practice, this decrease in variance more than offsets the increase in
bias, thus improving predictive performance. Although this method was originally used for models using
the least squares estimator, it generalizes quite naturally to generalized linear models. In the case of logis-
tic regression, a penalty proportional to the sum of the absolute values of the parameters is added to the
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cross-entropy loss of Equation 1.2. In lasso logistic regression, the optimization problem thus becomes

min
β0,β

⎧⎨⎩L(β0,β) + λ

p∑︂
j=1

|βj |

⎫⎬⎭ , (1.3)

where λ ≥ 0 is the penalty hyperparameter. In the special case where λ = 0, the penalty term disappears
and we recover the conventional non-penalized logistic regression. This penalty hyperparameter is not
directly optimized by the algorithm and must therefore be chosen by the user, for instance with cross-
validation and grid search. Equation 1.3 is called the Lagrangian formulation of the lasso logistic regression
optimization problem. It can be useful to rewrite this in the constrained form,

min
β0,β
{L(β0,β)} s.t. p∑︂

j=1

|βj | ≤ s. (1.4)
Note that there is a one-to-one correspondance between λ and s. This formulation allows to realize that
the model gives itself a “budget” of parameters. Indeed, the sum of the absolute values of the coefficients,
which is the ℓ1 norm of the parameter vector β, must always be less than or equal to the constant s set by
the user. This has the effect of shrinking and even zeroing some of the logistic regression coefficients. The
lasso logistic regression fits into themore general framework where the constraint on the parameter vector
is given by

p∑︂
j=1

|βj |q ≤ s, (1.5)
where q ≥ 0 is a fixed real number. In particular, setting q = 1 retrieves the lasso constraint, whereas
q = 0 and q = 2 correspond respectively to best subset selection and Ridge logistic regressions. Best
subset selection and Rigde have both their pros and cons. Ridge regression only shrinks coefficients: it
never sets them to zero, which makes interpretation more difficult. In general, one prefers to have a sparse
model: according to Occam’s Razor Principle, a simple explanation of a phenomenon is to be preferred to a
more complex one. Best subset selection leads to sparse models, but it involves resolving a nonconvex and
combinatorial optimization problem, and becomes infeasible above about 50 features. Lasso regression
attempts to retain good features from both subset selection and Ridge: it leads to sparse models while
being a convex optimization problem. In fact, we can show that q = 1 is the smallest value that leads
to a convex problem, and this partly explains why lasso regression is so popular. The loss function to be
minimized in Equation 1.3 is not differentiable due to the absolute values in the penalty term, but it is
convex, and a wide range of methods from convex optimzation theory have been developped to compute
the solution, including coordinate descent, subgradient andproximal gradient-basedmethods. In this paper,
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lasso logistic regression is fit using the glmnet library of the R programming language. This library uses a
proximal Newton algorithm, which consists in making a quadratic approximation of the log-likelihood part
of the loss function and then applying a weighted coordinate descent, iteratively. For more details about
lasso logistic regression, we refer to (Friedman et al., 2010), (Hastie et al., 2015) and (Hastie et al., 2016).

1.6.4 Elastic-net logistic regression
Even though lasso regression often performs very well on tabular data, it has a few drawbacks. Among
other things, when there is a group of features that are highly correlated with each other, the lasso tends
to select only one feature in the group and does not care which one is selected. This can be a problem for
us, as some of the telematics features we have created (or even classical features) may be highly correlated
with each other (e.g. avg_daily_distance and avg_daily_nb_trips). (Zou et Hastie, 2005) address
this problem by proposing a new regularization and variable selection method called “elastic-net”. The
elastic-net regression combines the penalties of Ridge and lasso regressions and thereby retains the best
of both worlds. Ridge regression is known to share parameters among highly correlated features, which
often improves performance, while lasso yields sparse models and thus performs feature selection, which
is desirable. Elastic-net regression thus yields sparse models while improving the treatment of highly cor-
related features. More precisely, elastic-net regression includes a penalty term in its loss function that is a
linear combination of the ℓ1 (lasso) and ℓ2 (Ridge) penalties. In the particular case of binary classification,
elastic-net coefficients are therefore obtained by solving

min
β0,β

{︃
L(β0,β) + λ

[︃
(1− α)

2
∥β∥22 + α ∥β∥1

]︃}︃
, (1.6)

where a new “mixing” hyperparameter 0 ≤ α ≤ 1 appears. Ridge and lasso regressions are in fact special
cases of elastic-net regression, when α = 0 and α = 1, respectively. If α and λ are known, Criterion 1.6 is
convex and can be solved by a variety of algorithms such as coordinate descent.

1.6.5 Random forest
Random forest classifier was first formalized by Leo Breiman in (Breiman, 2001) and enjoy great popularity
for its many strengths, including a usually high accuracy on structured data. It consist in building several
decision trees on slightly modified versions of the original dataset. The final prediction is then obtained by
aggregating all the trees, often by taking the mean on the individual predictions. The trees built are usually
very deep and therefore have little bias, but have a large variance. Aggregating them allows to drastically
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decrease the variance and to obtain a much more flexible prediction function, increasing the predictive
power compared to a single tree. The main advantage of random forest over logistic regression is that it
can approximate a wider range of functions since it is a non-parametric algorithm, making fewer assump-
tions about the form of the underlying data generating function. Another benefit is that it automatically
takes into account the interactions between features due to the tree structure of its components. Like lasso
and elastic-net logistic regressions, random forest has an embeded feature selection mechanism. On the
other hand, random forest is harder to interpret, so for equal performance, logistic regression is preferred.
Note that since logistic regression assumes a linear relationship between the features and the log-odd of a
positive case, random forest usually outperforms it when this relationship is rather non-linear. In order to
train a random forest model, one first generates bootstrap samples of the training dataset on which deci-
sion trees will later be built. This is done by drawing observations with replacement, and usually, as many
observations as there are in the original training set are drawn. Then, for each of these bootstrap samples,
1 ≤ p∗ ≤ p features are randomly picked, p∗ being a previously chosen hyperparameter. This last step al-
lows the decision trees to be built on different subsets of features, which has the effect of decorrelating the
predictions, thus improving performance. Finally, a CART-like classification tree (see (Breiman et al., 1984))
is built on each of these datasets, each one yielding an estimated probability of having a positive case for
every point of the feature space. The criterion we use to build the trees is the impurity of the nodes, mea-
sured by the Gini index. Every time the feature space is split in two, we thus choose the splitting point that
decreases the Gini index the most. Other criteria are also possible. For a given point, a final prediction is
obtained by averaging the individual predictions of all trees. More details about the general procedure are
given in Algorithm 1. For more information about random forest, we refer to (Breiman, 2001), (Hastie et al.,
2015) and (Hastie et al., 2016).

1.7 Analyzes
1.7.1 Claim classification model
In order to choose among the 3 classification models presented in Section 1.6 (lasso logistic regression,
elastic-net logistic regression and random forest), wemake them compete on the dataset whose telematics
features are computed with all available trip summaries of the observed year for each vehicle, namelyDTL

12.
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Algorithm 1: Random forest binary classifier
Inputs :
• Training dataset T = {(xi, yi)}ni=1 containing p features
• Number of features to pick 1 ≤ p∗ ≤ p
• Number of trees (or bootstrap samples)B

for b = 1, . . . , B do

1. Generate a bootstrap sample T ∗ by drawing with replacement nobservations from T .
2. Pick at random p∗ of the p features.
3. Build a CART classification tree on T ∗ using only the p∗ features previously picked,yielding the prediction function ˆ︁Tb(x).

end
Output: Random forest classifier f̂RF(x) = 1

B

∑︁B
b=1

ˆ︁Tb(x)
1.7.1.1 Hyperparameter tuning
First of all, the 3 models need to be tuned since they all involve hyperparameters that are not directly op-
timized by their respective algorithm. The general idea behind tuning is to test several combinations of
hyperparameters and evaluate the out-of-sample performance for each of them, which is often done using
a validation set or cross-validation on the training set. One then usually chooses the combination of hyper-
parameters yielding the best performance. We choose to use 5-fold cross-validation with the Area Under
the receiver operating characteristic Curve (AUC) as the metric for evaluating classification performance.
This metric is often used in binary classification, notably because it does not depend on the threshold used
for classification and because it works well on unbalanced datasets (our dataset is highly unbalanced since
there aremanymore non-claimant vehicles than claimant ones). Differentmethods have been developed to
choose which combinations of hyperparameters to try out, including grid search, random search, Bayesian
optimization, gradient-based optimization and evolutionary optimization. For penalized logistic regression,
it is generally not necessary to use a sophisticated tuning algorithm, and one usually proceeds with a simple
grid search, which we do. For the random forest, we choose a more refined method, namely a Bayesian
optimization method, who have been shown to yield better results than grid search and random search
(see for instance (Snoek et al., 2012)).

The lasso requires the tuning of only one hyperparameter, which is the penalty parameter λ of Equation 1.3.
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We first create a grid of 100 penalty values ranging from 10−10 to 1 uniformly distributed on a logarithmic
scale, namely the set

Gλ =
{︂
10−10+ i−1

9.9

}︂100

i=1
.

Then, 5-fold cross-validation AUC is assessed on the training set T TL
12 using each of the values in Gλ as a

candidate. It turns out that the best value forλ is 0.000231 (which is the value inGλ associatedwith i = 64),
yielding an AUC of 0.6373. For the elastic-netmodel, themixing parameterαmust also be tuned in addition
to the penalty parameter (see Equation 1.6). With a grid search, one usually uses a coarse uniform grid of
values for α. We thus choose to use 5 values uniformly distributed between 0 and 1 inclusively, namely the
grid Gα = {0, 0.25, 0.5, 0.75, 1}. For λ, we use the same grid as for lasso, i.e. Gλ. The performance of the
|Gλ|×|Gα| = 100×5 = 500 possible combinations of hyperparameters is thereafter evaluated and it turns
out that λ = 0.00298 (which is the value in Gλ associated with i = 75) and α = 0 is the best choice, with
an AUC value of 0.6377, slightly better than lasso.

Regarding the random forest, two hyperparameters are tuned, namely the number of features drawn every
time a tree is built p∗ (see Algorithm 1) and the minimum number of observations required to make a fur-
ther split in any leaf n∗. Note that for simplicity, the latter does not appear in Algorithm 1. The total number
of trees B must also be chosen, but it is not strictly speaking a hyperparameter. It only needs to be large
enough for the performance to stabilize. We choose B = 1000, which is plenty for the number of obser-
vations we have. Note thatB cannot be too large since a random forest can never overfit due to too many
trees. However, increasing the number of trees obviously increases the computation time. Bayesian opti-
mization is used to find the best possible pair (p∗, n∗). Basically, it consists in treating the unknown function
that maps hyperparameter values to the loss function evaluated on a test set (or with cross-validation) as
a random function. An a priori distribution, which captures beliefs about the behavior of this function, is
defined. Then, as combinations of hyperparameters are tested and evaluated, the a priori distribution is
updated, yielding the a posteriori distribution. The latter is thereafter used to find the next combination of
hyperparameters to try out. So unlike grid and random search, Bayesian optimization leverages past evalu-
ations to find the most promising candidates faster. To implement this procedure, we use the tune_bayes
function of the tune package in R, which uses a Gaussian process to model the probability distribution over
the function. One can think of the Gaussian process as a generalization of the normal distribution concept
to functions. It turns out that (p∗, n∗) = (1, 39) is the best pair that has been tested, yielding an AUC value
of 0.6004. This means only one feature is picked every time a tree is built and that the growth of a tree
stops when all its leaves have less than 39 observations.
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1.7.1.2 Interactions
A limitation of logistic regression is that it does not naturally take into account interactions between fea-
tures, unlike random forest. Fortunately, this can be overcome bymanually calculating interactions. Accord-
ing to the interaction hierarchy principle (see (Kuhn et Johnson, 2019)), lower-level interactions are more
likely than higher-level ones to explain variation in the response variable. For instance, level 2 interactions
are more likely to be predictive than level 3 interactions, which are more likely to be predictive than level
4 interactions, and so on. Therefore, in order to keep computation time reasonable, we only consider level
2 (or pairwise) interactions. We also limit ourselves to calculating the interactions between the 10 classi-
cal features of Table 1.2 as well as telematics features whose mean value is significantly different between
claimant and non-claimant vehicles (i.e. the 7 bolded features in Table 1.3). These 7 features are presumed
to have good predictive power, and according to the principle of heredity (see (Kuhn et Johnson, 2019)),
they have a higher probability than other features of creating interactions that also have good predictive
power. This entails calculating (︁172 )︁ = 136 pairwise interactions. Next, lasso and elastic-net regressions are
tuned on the training dataset T TL

12 expanded with the 136 interactions as new columns. For this purpose,
the same grid search procedure described in Section 1.7.1.1 is used.

1.7.1.3 Out-of-sample performance comparison
Optimal hyperparameter(s) found as well as the 5-fold cross-validation AUC value for each of the 5 tuned
models are shown in Table 1.6. The interaction-free elastic-net model has the best cross-validation score,
with an AUC of 0.6377. However, it does not outperform the lasso model, which has an AUC of 0.6373,
enough to justify the extra complexity. Indeed, an elastic-net model takes more time to tune since it has
an additional hyperparameter, and also takes longer to fit. Note also that with or without interactions, the
two logistic regressions perform similarly considering the variability of the AUC. Since one always prefer the
simplest model for equal performance, we reject the twomodels including interactions. Finally, the random
forest is the worst model, with an AUC of only 0.6004, which is considerably lower than the penalized logis-
tic regressions. We therefore reject the latter. Note that the Bayesian optimization algorithm has found that
the optimal value for the hyperparameter p∗ is 1, reinforcing the belief that interactions between features
do not carry useful information for classification. Indeed, the fact that p∗ = 1means that the decision trees
that make up the random forest are built with only one feature at a time, thus eliminating the possibility of
including interactions.
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Ideally, in order to properly estimate performance in supervised learning, a model should be evaluated on
samples that have not yet been used to build or fine-tune it. We therefore use the testing dataset VTL12 to
assess the performance of the 5 tuned models. The models are first trained on the full training dataset T TL

12

before being scored on VTL12, which allows us to compute an AUC value for each of them, shown in Table 1.6.
The AUC values on the testing set are slightly lower than those obtained by cross-validation, which is normal.

Optimal hyperparameters

Models λ α p∗ n∗ AUC (5-fold cross-validation) AUC (testing set)

Lasso 2.31× 10−4 – – – 0.6373(0.0052) 0.6189

Elastic-net 2.98× 10−3 0 – – 0.6377(0.0049) 0.6176

Random forest – – 1 39 0.6004(0.0064) 0.5889

Lasso (with interactions) 1.18× 10−3 – – – 0.6350(0.0050) 0.6214

Elastic-net (with interactions) 1.52× 10−2 0 – – 0.6359(0.0046) 0.6198

Table 1.6: Tuning results on the training set T TL
12 and classification performance on the testing set VTL12. Num-

bers in superscript indicate standard deviations.

In fact, the relatively close values indicate that we did not leak too much information into the models. The
lasso model with interactions have the best testing set AUC value (0.6214), but we believe it is not enough
to justify the addition of the 136 interaction columns to process. From now on, we will consequently use
the lasso logistic regression model without interactions. Note that the AUC values obtained are around 0.6,
which is in concordance with the literature on claim classification (see for instance (Huang et Meng, 2019)
and (Baecke et Bocca, 2017)).

1.7.1.4 Feature importance
Once the models are trained, in addition to the performance, it is interesting to look at which features
contributed the most to classify observations. For the 3 models compared, it is possible to calculate an im-
portance score for each feature. For lasso and elastic-net logistic regressions, since the models are trained
with normalized versions of the features, the absolute value of the estimated parameter may be used for
this purpose. For instance, if the estimated parameter associated with avg_daily_distance is ˆ︁β1, its im-
portance score is |ˆ︁β1|. For the random forest, there are many ways to compute feature importance. We
choose to use the mean decrease of the Gini index. This method consists in assessing for each feature how
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much it has contributed to decrease the impurity of the tree nodes, measured with the Gini index. Once the
importance score is obtained for all the features, we can order them from the most to the least important,
which we did in Figure 1.4 for each of the 3models. Looking at this figure, we can notice that the lasso and

Figure 1.4: Ranking of the features according to their importance for each of the 3 models. Telematics
features have been given the prefix “t_”, while classical features have the prefix “c_”.

the elastic-netmodels have a high degree of agreement since they consider the same 12most important fea-
tures and that the links intersect very little. This is not so surprising as these two logistic regression models
work in a similar way. On the other hand, the random forest has a lower degree of agreement with the latter
two since the links intersect a lot. This is probably because a random forest makes no assumptions about
the nature of the relationship between the features and the response variable, whereas logistic regression
assumes that this relationship is logistic-linear. The random forest therefore probably leverages better the
features with rather non-linear relationships with the response variable, in contrast to logistic regression.
However, all 3 models agree that avg_daily_nb_trips, avg_daily_distance, max_trip_max_speed,
frac_expo_evening and frac_expo_mon_to_thu are important features for prediction, all ranked in the
top 10 most important features. One last important thing to note is that telematics features are considered
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more important by the models than their classical counterparts. Indeed, telematics features have an aver-
age ranking of 9.45, while for classical features, this value is 16.77. This makes us believe that telematics data
tells a better story about an insured’s risk than traditional ratemaking information, which is consistent with
the literature. For instance, (Verbelen et al., 2017) show using GAMs that telematics features have better
predictive power than their classical counterparts. Indeed, their GAM model which only uses telematics
outperforms their GAM using only classical factors, at least according to some criteria. In traditional pric-
ing, i.e. in pricing without driving data, gender is an important factor in determining an insured’s premium.
Note that here, gender only ranks 10th, and this is probably due to the fact that gender is a proxy for other
factors related to driving habits. As pointed out by (Ayuso et al., 2016b), it seems that the difference in
the risk of accident between men and women is mainly due to the difference in driving intensity, which is
captured by two of our telematics features, namely avg_daily_nb_trips and avg_daily_distance.

1.7.2 Classification performance assessment on the 13 classification datasets
Remember that ourmain objective is to develop amethod to estimate the amount of telematics information
that an insurer should collect from its policyholders. The method we propose consists in first tuning and
training a lasso model on each of the training datasets T m

0 , . . . , T m
12 ,m ∈ {TL,DL} derived in Section 1.5.

The lasso model tuned and trained on dataset T m
k is denoted byMm

k , for k = 0, . . . , 12 andm ∈ {TL,DL}.
We then assess the performance of these fittedmodels on their corresponding testing dataset. For instance,
the fitted modelMm

k is assessed on the testing datset Vmk , for k = 0, . . . , 12 and m ∈ {TL,DL}. The
performance is evaluated using the AUC and in order to obtain a distribution of the latter, a non-parametric
bootstrap strategy is used. Non-parametric bootstrap is a method used to estimate the distribution of
any statistic and consists in generating new samples (or datasets) called “bootstrap samples”. A bootstrap
sample is simply obtained by drawing with replacement as many observations as there are in the original
sample. An empirical distribution is then obtained by calculating the desired statistic on each bootstrap
sample. Therefore, we generate b = 500 bootstrap samples for each of the 13 testing dataset Vm0 , . . . ,Vm12,
m ∈ {TL,DL}. Then, in order to obtain an AUC distribution for modelMm

k , we score the latter on each
of the 500 bootstrap samples related to Vmk , noted {(j)Vmk }500j=1 and we derive the 500 corresponding
AUC values, which form the empirical distribution. Once the empirical distribution of the AUC has been
obtained for each of the modelsMm

0 , . . . ,Mm
12, m ∈ {TL,DL}, it is thereafter possible to inspect them

and determine at what point telematics information becomes redundant or, in other words, at what point
the addition of telematics information in the lasso model no longer meaningfully improve the classification
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performance. The AUCdistributions are shown in Figure 1.5 for the 13 lassomodels and for both approaches,

Figure 1.5: Distribution of the classification performance (AUC) obtained with non-parametric bootstrap for
the 13 models and for both approaches. Black stars show the AUC value obtained on the original testing
set.
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namely the time leap approach (upper panel) and the distance leap approach (bottompanel). The first thing
that can be noticed when looking at the boxplots is that the addition of telematics features into the model
significantly improves its performance, which is in line with the literature. Indeed, the first boxplot from
the left in each of the upper and bottom panels, which corresponds to the classical model, is lower than
all the other ones. Looking at the upper panel, we realize that with the addition of as little as one month’s
worth of trip summaries, we can drastically improve classification performance. Similarly, adding just 1,000
kilometers of telematics data into the classical model also improves performance substantially (bottom
panel). After 1 month or 1,000 kilometers, although the marginal improvement is less substantial, the AUC
slightly increases but stabilizes fairly quickly, after about 3 months or 4,000 kilometers. After this point,
telematics information collected seems redundant and no longer improves classification. This suggests that
telematics features calculated with 3 months of trip summaries have about the same predictive power as
those calculated with 1 complete year of data.

1.8 Conclusions
In this paper, we first created several relevant telematics features from trip summaries in order to incorpo-
rate telematics information into supervised classification models. Then, using these features in conjunction
with features traditionally used in automobile insurance, and by adequately preprocessing the data, we
compared the performance of 3 popular classification algorithms, namely a lasso logistic regression, an
elastic-net logistic regression and a random forest. We found that random forest, which often gives good
results in classification tasks, performs the worst, while the two logistic regressions are on equal footing.
However, we chose the lasso as our classification model because of its greater simplicity. We also consid-
ered interactions between features, and found that they contain little or no predictive power since their
addition into the models does not improve out-of-sample classification performance. Then, based on the
lasso model and thus remaining within the framework of supervised classification, we developed a novel
method for determining when information on the insured’s driving becomes redundant. A great strength
of our method is that it requires little computational time and does not require second-by-second trip data,
which are large and therefore time-consuming to process and difficult to manipulate. Also, it can be used
by any insurance company that has access to a dataset similar to the one used in the analysis, namely a
telematics dataset where each observation corresponds to a trip. Using real data from a North American
insurance company, we found out, using non-parametric bootstraping, that after about 3 months or 4,000
kilometers of observation, telematics no longer help achieving a better classification performance, at least
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if measured with the AUC. This means it is probably not worth for this insurer to observe its policyholders
during long periods of time. Rather, it is better off observing them during a predetermined short period.
Indeed, people generally do not enjoy being tracked, and telematics data is both costly and risky to store
and manipulate. In addition, collecting less telematics information can help to meet the recommendations
of insurance regulators and facilitate the prevention of data leakage.

As reported in (Bolderdijk et al., 2011), policyholders tend to adopt better driving habits in the early months
of telematics observation when a financial incentive is given. Therefore, it is probably not a good idea to
observe an insured’s driving habits for 3 months (or 4,000 kilometers), determine a discount (or surcharge)
and then apply that same discount (or surcharge) ad vitam aeternam. This could indeed result in pure pre-
miums that are too low, since the observed behavior would be biased due to a lack of financial incentive to
drive well after the observation period. A simple solution to this issue would be to monitor policyholders
at random times during their contract, so as to eventually collect 3 months (or 4000 kilometers) of data.
(Guillen et al., 2021) address this issue by making pricing dynamic. Basically, they propose a pricing scheme
in which the premium is updated weekly, which drives the insured to adopt good driving habits on an ongo-
ing basis. They combine a baseline premium related to traditional risk factors with extra charges related to
driving behaviors deemed unsafe captured by what they call “near-miss events”, such as hard braking and
smartphone use when driving. Moreover, they provide an alternative way to solve the problem of minimiz-
ing data storage since their method only requires keeping one week of telematics data. However, unlike our
paper, they do not use information related to driving habits such as the proportion of night driving, average
speed, proportion of long trips, etc., which have a demonstrated link to claim experience. Their method
also requires collecting good near-miss data, which is not trivial. In this analysis, only collision coverage
claims were considered, i.e. the target column given as input to the clasification models is the indicator of
a collision claim, at-fault or not. One could repeat the analysis by considering at-fault and non at-fault col-
lision claims separately, and see whether either type needs more of less telematics history to have a good
estimate of the claiming probability. The analysis could also be performed again using collision-free claims,
including theft, vandalism and fire, and see if we come to similar conclusions. Lastly, we could generalize
the approach for count data. Therefore, instead of having the indicator of a claim as the response variable,
we would instead have the number of claims, moving us into a counting regression context.
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1.9 Appendix A

Figure 1.6: Distributions over the 29,799 vehicles of the 6 classical numeric features selected for the analysis.
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Figure 1.7: Distributions over the 29,799 vehicles of the 4 classical categorical features selected for the
analysis.

Figure 1.8: Non-penalized logistic regression coefficients and their standard deviation for classical and telem-
atics features obtained with the 29,799 vehicles.
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CHAPTER 2

ENHANCING CLAIM CLASSIFICATION WITH FEATURE EXTRACTION FROM

ANOMALY-DETECTION-DERIVED ROUTINE AND PECULIARITY PROFILES

2.1 Introduction
L’assurance basée sur l’usage devient la nouvelle norme en matière d’assurance automobile: il est donc
pertinent de trouver des moyens efficaces d’utiliser les données de conduite des assurés. En appliquant la
détection d’anomalies (AD) aux résumés de trajets des véhicules, nous développons une méthode perme-
ttant de dériver un profil de « routine » et un profil de « singularité » pour chaque véhicule. À cette fin,
des algorithmes de détection d’anomalies sont utilisés pour calculer un score d’anomalie de routine et un
score d’anomalie de singularité pour chaque trajet effectué par un véhicule. Le premier mesure le degré
d’anomalie du trajet par rapport aux autres trajets effectués par le véhicule concerné, tandis que le second
mesure son degré d’anomalie par rapport aux trajets effectués par n’importe quel véhicule. Les vecteurs de
scores d’anomalies résultants sont utilisés comme profils de routine et de singularité. Des caractéristiques
sont ensuite extraites de ces profils, pour lesquelles nous étudions le pouvoir prédictif dans le cadre de la
classification des réclamations. En utilisant des données réelles, nous constatons que les caractéristiques
extraites du profil de singularité des véhicules améliorent la classification.

2.2 Abstract
Usage-based insurance is becoming the new standard in vehicle insurance; it is therefore relevant to find
efficient ways of using insureds’ driving data. Applying anomaly detection (AD) to vehicles’ trip summaries,
we develop a method allowing to derive a “routine” and a “peculiarity” anomaly profile for each vehicle.
To this end, AD algorithms are used to compute a routine and a peculiarity anomaly score for each trip a
vehicle makes. The former measures the anomaly degree of the trip compared with the other trips made
by the concerned vehicle, while the latter measures its anomaly degree compared with trips made by any
vehicle. The resulting anomaly scores vectors are used as routine and peculiarity profiles. Features are
then extracted from these profiles, for which we investigate the predictive power in the claim classification
framework. Using real data, we find that features extracted from the vehicles’ peculiarity profile improve
the classification.

37
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2.3 Introduction and Motivations
Although the idea dates back to (Vickrey, 1968), usage-based insurance (UBI) is a fairly new insurance
scheme mostly used in vehicle insurance, in which the insured’s premium is estimated by making use of
their driving data, which is recorded by a mechanism, usually an on-board diagnostics (OBD) device or a
smartphone application. Nowadays, the latter is favored by insurers over the OBD device because it is
cheaper and more practical. Determining a fair pure premium for each insured is a crucial task for any
sensible insurance company; traditionally, automobile insurers have relied mainly upon static attributes re-
lated to the vehicle or the insured, which are indirectly related to accident risk. With the rise of telematics
technology, it is now feasible for insurers to offer a more customized premium that is more in line with an
insured’s risk, which may now be determined by considering the insured’s volume, habits and style of driv-
ing. UBI, or pricing using telematics data, seems likely to be the future standard in automobile insurance
and themarket share of UBI products is currently growing quickly. According to a study1 conducted by Allied
Market Research, a market research firm based in Portland, Oregon, the worldwide UBI market is expected
to expand at a compound annual growth rate of 25.1% from 2020 to 2027, reaching US$ 149.2 billion by
2027. The reason for this rapid expansion is that UBI products are valuable to both insurers and insureds.
On one side, UBI benefits insurers because usage-based premiums tend to attract safer drivers2, which low-
ers claim costs and increases profit margins. In other words, having more granular premiums allows them
to avoid adverse selection and helps them stay competitive in a fierce market. On the other hand, it goes
without saying that safer drivers and drivers with low driving volume are eager to buy this type of insurance
product, which saves them money. UBI may even attract riskier drivers who wish to adjust their driving
behavior in order to obtain a discount. Perhaps they are only risky drivers because they previously had few
monetary incentives for safe driving. UBI products also seem to increase customer satisfaction because they
allow customers to have more control over their premium. On top of that, usage-based premiums can help
achieve societal goals because they promote less and safer driving, thereby reducing road congestion and
pollution (see, for instance, (Litman, 2007) and (Bordoff et Noel, 2008)). They also help reduce discrimina-

1 https://www.alliedmarketresearch.com/usage-based-insurance-market

2 This is only true in a free market. In some regions, the UBI market is not free due to regulations that prevent insurers from
applying a surcharge based on insureds’ driving data.
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tion by insurers based on immutable criteria, such as the gender of the insured. The COVID-19 pandemic
has accelerated the shift toward telematics insurance. Indeed, with the recent boom in work-from-home
culture, people are using their vehicles less and are therefore attracted to UBI, which is more beneficial to
them.

For pricing purposes, insurers generally model claim risk using supervised learning models, typically gener-
alized linear models (GLM; (Nelder et Wedderburn, 1972), (Dionne et Vanasse, 1989)), and use risk factors
as independent variables. Traditionally, risk factors involved in pricing have been static insured- or vehicle-
related features that are thought to be correlated with the policy risk, such as the insured’s gender, the
vehicle age, the bonus-malus level, etc. Such risk factors are easily used in prediction models because they
can be encoded with just one entry per policy. With devices recording telematics data, each policy can now
be linked with a complete history of driving information. One of the challenges insurers face is therefore
to translate this data into relevant telematics-based risk factors. Perhaps the most obvious one that can
be derived from driving data is the total distance driven during the policy, or mileage, which can be seen
as a measure of risk exposure. Motor insurance in which pricing is done using mileage as a rate factor is
often referred to as pay-as-you-drive (PAYD) insurance. It has been shown in several studies that distance
driven is strongly linkedwith claim frequency (see for instance (Litman, 2005), (Ferreira Jr. etMinikel, 2010),
(Boucher et al., 2013) and (Lemaire et al., 2016)). Consequently, some papers have focused upon this risk
factor and have further investigated the relation between mileage and claim frequency: (Boucher et al.,
2017) make use of generalized additive models (GAM; (Hastie et Tibshirani, 1990)) and splines to model the
non-linear effect of mileage on claim frequency and propose a pricing scheme that incorporates this in-
formation; more recently, (Boucher et Turcotte, 2020) find, using generalized additive models for location,
scale and shape (GAMLSS; (Rigby et Stasinopoulos, 2005)), that while the apparent association between
mileage and claim frequency seems non-linear, the true relationship is quite linear. Accordingly, they con-
clude that each additional kilometer driven by an insured increases the expected number of claims by about

1
15,000 , and state that this could be used to give a surcharge/rebate to an insured that drives more/less than
expected.

Although distance driven is probably the best telematics-based feature for predicting claims, it does not tell
the whole story about an insured’s risk and therefore, further driving data may be useful for pricing. Driving
data can be divided into two classes: driving-habits-related data and driving-style-related data. The former
includes information on when, where and how much the insured drives, whereas the latter describes how
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they drive. In this regard, motor insurance in which the premium is computed using driving style-related
data is often referred to as pay-how-you-drive (PHYD) insurance. Some studies focus on driving habits-
based risk factors ((Paefgen et al., 2013), (Paefgen et al., 2014), (Guillen et al., 2019)). (Verbelen et al.,
2017), besides using mileage and number of trips, compute compositional predictors based on information
such as the distribution of distance driven over different time slots and types of road. (Ayuso et al., 2019)
propose a methodology in which driving habits-related risk factors are used as a correction to the premium
calculated with traditional risk factors. Other studies, in conjunction with driving habits, investigate the
predictive power of driving style-related data ((Wüthrich, 2017), (Gao et al., 2018), (Gao et al., 2019), (Gao
et Wüthrich, 2019), (Huang et Meng, 2019), (Gao et al., 2021), (So et al., 2021)). (Guillen et al., 2020) and
(Guillen et al., 2021) develop a pricing scheme in which near-miss events, situations in which an accident is
“narrowly” averted, and which comprise harsh braking, harsh acceleration and smartphone usage events,
are used to update a baseline premium on a weekly basis.

Table 2.14 of Appendix 2.13 gives an overview of the recent literature on UBI pricing. Of these studies, many
use handcrafted telematics-based risk factors or, in other words, extract telematics features by means of
human guesswork. Aside from total distance driven, some of the most popular handcrafted telematics
features include the average distance per trip, the fraction of night and urban driving and the fraction of
distance traveled above the speed limit (see, for instance, (Verbelen et al., 2017), (Guillen et al., 2019),
(Ayuso et al., 2016b), (Huang et Meng, 2019), (Ayuso et al., 2019), (Ayuso et al., 2014), (Ayuso et al., 2016a),
(Geyer et al., 2020)). Although these handcrafted features often lead to a substantial improvement in claim
risk modeling, some are arbitrary and subjective, which may favor or penalize some drivers. In addition,
they may not be optimal for risk estimation. Take, for instance, the fraction of night driving. Where do you
draw the line between night and day? If this line is at 00:00, an insuredwho often drives between 11:30 p.m.
and 00:00will be favored, while another who often drives between 00:00 and 00:30 a.m. will be penalized,
because night driving is often considered more dangerous than day driving. Regarding variables akin to
the fraction of distance driven above the speed limit, it is not clear where to set the threshold. Is it really
dangerous to drive a little faster than the speed limit? In this paper, we address this issue by proposing a
human-guesswork-free procedure for feature extraction. Indeed, we believe that algorithms are better than
humans at finding useful patterns in the data. Furthermore, most of the models developed in the studies
of Table 2.14 are not robust to irrelevant of redundant features; most of them use algorithms that do not
perform automatic feature selection or regularization and that do not handle collinearity well. On our end,
we use a logistic regression model regularized by an elastic-net penalty to perform the classification task,
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which allows for automatic feature selection and for a proper handling of collinear features.

The core of this paper consists in the development of an automatic procedure allowing the extraction of
telematics features from driving-habits-related data. As it has been stated, this procedure has the benefit
of not requiring human guesswork and is thereforemore objective and fair. For this purpose, both a routine
and a peculiarity profile are first derived for each vehicle by means of anomaly detection algorithms. Such
algorithms allow the computation of an anomaly score, which measures the level of “outlierness” for each
observation in a dataset. These algorithms are used to derive both a routine and a peculiarity score for each
vehicle trip. For this, anomaly detection algorithms are applied using two different approaches, which are
referred to as the local and global schemes. Scores calculated according to the former scheme correspond
to the routine scores, while those calculated with the latter scheme are referred to as the peculiarity scores.
In the local scheme, algorithms are applied to each vehicle individually and in silo, whichmeans the anomaly
score of a given trip made by a vehicle x is defined only with respect to all the other trips made by vehicle
x. Each driver thus defines their own normality against which their trips are compared. The routine-scores
vector for a vehicle forms what we call its routine profile. In the global scheme, algorithms are applied
to all trips by all vehicles at once, meaning that the anomaly score of a given trip made by vehicle x is
defined with respect to information on trips made by vehicle x and all other vehicles. The peculiarity scores
vector for a vehicle capture where its driving habits lie in relation to the other vehicles and is referred to as
its peculiarity profile. We believe that the insureds’ routine and peculiarity profiles can help differentiate
between claimants and non-claimants. Our hypothesis is that more routine drivers, who know more about
the trips theymake, are less prone to claim than less routine ones. Indeed, an insuredwho alwaysmakes the
same trips knows their way and how to copewith sensitive parts of it. On the other hand, we believe drivers
who tend to make peculiar trips are more likely to claim than others because it is expected that peculiar
trips, which are made, for instance, at unusual times of the day or speeds, are more dangerous. Features
are subsequently extracted from these profiles, whereupon their predictive power is investigated through
an elastic-net logistic regression model. In particular, we answer the question of how an insured’s routine
and peculiarity profile influences their likelihood of claiming, which has never been addressed before in the
literature.

In addition to a traditional automobile insurance pricing dataset, we have at hand information on the driv-
ing habits of the vehicle’s main driver in the format of trip summaries. Both datasets are described in Sec-
tion 2.4. Before being fed to the anomaly detection algorithms, telematics data need to be preprocessed,
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which is done in Section 2.5, together with some data visualization. Section 2.6 follows, where the three
anomaly detection algorithms used, namely Mahalanobis’ method, the Local Outlier Factor and the Isola-
tion Forest, are presented in detail. The claim classification model we use, which is a logistic regression
model with elastic-net regularization, is then described in Section 2.7. We also detail all the preprocessing
steps required for the input features. Both the anomaly detection algorithms and the classification model
have hyperparameters that need to be calibrated, which is done in Section 2.8. In Section 2.9, models using
features extracted from the routine and peculiarity profiles are scored on the testing set, whereupon their
performance is compared to a baseline model. We conclude in Section 2.10.

2.4 Data Description
2.4.1 Telematics dataset
The data we have at hand is provided by a Canadian property and casualty insurer. We have access to a
telematics dataset in which each entry matches a trip made with an insured vehicle. The recording of a
trip, which is done using an OBD device, starts when the engine is turned on and ends when it is turned off.
This type of recording is sometimes referred to as a key-on key-off event (see for instance (Verbelen et al.,
2017)). The dataset is comprised of 7,438,883 of these events reported by 4,834 vehicles, each of which
is identifiable by its vehicle identification number (VIN). All of them were observed over a one-year period
coinciding with a one-year insurance policy, starting somewhere between December 30th, 2015 and January
1st, 2019. Each trip is characterized by four quantities: the datetime of departure and arrival, the distance
driven and the maximum speed reached. Along with the VIN and an identifier for trips, this translates into
a six-column dataset, an extract of which is shown in Table 2.1.

2.4.2 Traditional dataset
We also have a 4,834-row dataset that provides us with information about the policy during the one-year
observation period for each of the 4,834 vehicles in the telematics dataset. Each entry in this dataset depicts
an insurance policy with ten risk factors that are traditionally leveraged in automobile insurance pricing,
related to either the policyholder or the insured vehicle, all of which are detailed in Table 2.2. Most of these
risk factors are commonly used in pricing models in the literature (see, for instance, (Guillen et al., 2020),
(Boucher et al., 2017) and (Verbelen et al., 2017)). This dataset, which we will refer to as the traditional
dataset, also features the target variable that will later be used for claim classification, namely the indicator
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VIN Trip ID Departure datetime Arrival datetime Distance Maximum speed

A 1 2017-05-02 19:04:15 2017-05-02 19:24:24 25.0 104

A 2 2017-05-02 21:31:29 2017-05-02 21:31:29 6.4 66... ... ... ... ... ...
A 2320 2018-04-30 21:17:22 2018-04-30 21:18:44 0.2 27

B 1 2017-03-26 11:46:07 2017-03-26 11:53:29 1.5 76

B 2 2017-03-26 15:18:23 2017-03-26 15:51:46 35.1 119... ... ... ... ... ...
B 1485 2018-03-23 20:07:08 2018-03-23 20:20:30 10.1 92

C 1 2017-11-20 08:14:34 2017-11-20 08:40:21 9.7 78... ... ... ... ... ...
Table 2.1: Extract from the telematics dataset. Dates are displayed in the yyyy-mm-dd format. The actual
VINs have been hidden for privacy purposes.

of the occurrence of a claim during the coverage period. Finally, there is the VIN column, which we need
to merge the two datasets. Our goal is to extend the traditional dataset with features extracted from the
telematics dataset.

2.4.3 Training and testing sets
In order to properly assess the performance of the models on new instances, a portion of the data must be
set aside. To this end, 70% of the VINs (that is, 3384 VINs) are used to build the training set, whereas the
remaining 30% (that is, 1450 VINs) comprise the testing set. The training set will later be used to preprocess
the data as well as to tune and train the models, while the testing set will only come into play at the very
end of the modeling process to assess the generalization performance of the previously tuned and trained
models.

2.5 Telematics data preprocessing and visualization
In Section 2.6, three popular anomaly detection (AD) algorithms are introduced, each of which is used to
compute both a routine and a peculiarity score for each vehicle trip. Note that since the routine scores are
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Variable name Description Type

vin Unique vehicle identifier ID
annual_distance Annual distance declared by the insured Numeric
commute_distance Distance to the place of work declared by the insured Numeric
conv_count_3_yrs_minor Number of minor contraventions in the last three years Numeric
gender Gender of the insured Categorical
marital_status Marital status of the insured Categorical
pmt_plan Payment plan chosen by the insured Categorical
veh_age Vehicle age Numeric
veh_use Use of the vehicle Categorical
years_claim_free Number of years since last claim Numeric
years_licensed Number of years since obtaining driver’s license Numeric
claim_ind Indicator of the occurrence of a claim Categorical

Table 2.2: Overview of the traditional dataset.

calculated in the local scheme, these are also referred to as local anomaly scores, while peculiarity scores,
which are calculated through the global scheme, are also called global anomaly scores. Both local and global
anomaly scores are calculated exclusively from information found in the telematics dataset of Table 2.1.
However, we first preprocess the latter in order to extract useful information. Indeed, the raw telematics
data we have are not in the ideal format to use as input to the AD algorithms. First of all, the departure
datetime, which is stored as the time (in seconds) elapsed since an arbitrary point in time (January 1st, 1970
in the R software), is not very meaningful for AD algorithms. It might be more useful to have information
about the time of day and the day of theweek the trip started. From the departure datetime, we thus create
two new trip attributes, namely the time elapsed since midnight (in seconds) and the time elapsed since
Monday midnight (in days), respectively referred to as the time-of-day and time-of-week trip attributes.
These two newly created variables are cyclical in nature and need to be encoded accordingly. Let us consider
the time-of-day attribute, which ranges from 0 to 86,400. The non-cyclical encoding of this attribute over
five days as a function of the datetime is shown in Figure 2.1a. Looking at the latter, one can understand the
concern with supplying non-properly encoded cyclical data into the algorithms: there are discontinuities in
the graph at the end of each day (when time goes from 23:59:59 to 00:00:00). Indeed, 00:00:00 is encoded
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as 0 whereas 23:59:59 is encoded as 86,399. This create inconsistencies: without cyclical encoding, a trip
starting at 23:59:59 would be considered very “far” from another trip that starts at 00:00:00 according to
the AD algorithms. This is obviously an issue because the two trips are only one second apart. In order to
address this, we use sine and cosine functions, which are cyclical, to encode both time-of-day and time-
of-week attributes. To this end, we first normalize both of them so that a cycle (which is 86,400 seconds
for the time-of-day attribute and seven days for the time-of-week attribute) is compressed between 0 and
2π, and then apply the sine/cosine function. Mathematically, the sine and cosine transformations of the
time-of-day attribute are expressed with

time_of_daysin = sin

(︃
2π

86400
× time_of_day

)︃
,

time_of_daycos = cos

(︃
2π

86400
× time_of_day

)︃
.

In a similar fashion, the time-of-week attribute is encoded with
time_of_weeksin = sin

(︃
2π

7
× time_of_week

)︃
,

time_of_weekcos = cos

(︃
2π

7
× time_of_week

)︃
.

Sine and cosine encodings for the time-of-day attribute are shown in Figure 2.1b, where one sees that dis-
continuities have disappeared, which is desirable. It is worth noting that these cyclical attributes need to
be encoded with two dimensions, that is, with both sine and cosine functions. Indeed, if they are encoded
with only the sine (or cosine) transform, the encoding would not be unique. For instance, in the case of the
time-of-day attribute, the sine transform for midnight (0 seconds since midnight) is the same as for noon
(43,200 seconds since midnight), since

sin

(︃
2π

86400
× 0

)︃
= sin

(︃
2π

86400
× 43200

)︃
= 0.

Secondly, two additional trip attributes are created from the four existing ones in Table 2.1, namely the
average speed (in kilometers per hour) and the duration (in minutes) of the trip. Finally, because anomaly
detection algorithms benefit from centered and scaled data, trip attributes undergo a z-score normalization.
Consider the numerical vector x = (x1, . . . , xn). The z-score normalized version of x is

x∗ =

(︃
x1 − x
s

, . . . ,
xn − x
s

)︃
,

where x = 1
n

∑︁n
i=1 xi and s =

√︂
1

n−1

∑︁n
i=1(xi − x)2. In essence, AD algorithms are applied on the

preprocessed version of the telematics dataset of Table 2.1, for which the eight attributes are described
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(a) Non-cyclical encoding

(b) Sine and cosine encodings

Figure 2.1: Encoding of the time-of-day attribute (number of seconds elaspsed since midnight)
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Trip attribute Description

duration Trip duration (in minutes)
distance Trip distance (in kilometers)
avg_speed Trip average speed (in kilometers per hour)
max_speed Trip maximum speed (in kilometers per hour)
time_of_day_sin Sine encoding of the number of seconds elapsed since midnight
time_of_day_cos Cosine encoding of the number of seconds elapsed since midnight
time_of_week_sin Sine encoding of the number of days elapsed since Monday midnight
time_of_week_cos Cosine encoding of the number of days elapsed since Monday midnight

Table 2.3: Variables (or trip attributes) of the eight-dimensional dataset to which anomaly detection algo-
rithms are applied. All eight variables undergo a z-score normalization.

in Table 2.3. Because the AD algorithms are applied to such a dataset, the anomaly degree of a trip is
defined exclusively in terms of these attributes, which may be summarized as the driving habits. Therefore,
AD algorithms seek to identify trips that exhibit an anomalous combination of duration, distance, average
speed, maximum speed, time of day and time of week: the more anomalous the combination of attributes,
the higher the anomaly score. In Figure 2.2, the distributions of the eight attributes of Table 2.3 over the
whole telematics dataset are shown. In fact, only six distributions are plotted because for both the “time of
day” and “time of week” attributes, the non-encoded version is shown to facilitate interpretation. As can
be seen, trips of more than 50 km are fairly rare, as are night trips. The vast majority of trips are made at
an average speed of less than 100 km/h and at a maximum speed of less than 150 km/h. Moreover, the
insureds in our portfolio drive slightly less on Sunday than on any other day. It should be noted that all trips
were made in an area where the maximum speed limit is 110 km/h.

2.6 Multivariate Anomaly Detection Algorithms
In this section, three popular anomaly detection algorithms are presented, each of which is used to derive
both a routine and a peculiarity profile for each vehicle or, equivalently, both a local and a global anomaly
score for each vehicle trips. Because the vehicles’ trips are not labeled as anomalies or non-anomalies,
we find ourselves more specifically in the framework of non-supervised anomaly detection. Therefore, the
three algorithms used are selected from non-supervised anomaly detection algorithms, which do not re-
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Figure 2.2: Distribution of the trip attributes.
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quire a label to derive anomaly scores.

In the local scheme, the anomaly score of a trip, which we refer to as “local,” is computed by applying an AD
algorithm to each vehicle separately, and thus reflects its anomaly degree with respect to all the other trips
made by the vehicle in question. This means that a trip that seems very unlikely, such as a 200 kilometer
trip made on Tuesday at 3 a.m., could be assigned a low local anomaly score, as long as the vehicle regularly
takes this kind of trip. On the other hand, a trip that seems very common, for instance a ten kilometer
trip on Monday at rush hour, could be assigned a high local anomaly score if the vehicle rarely makes this
kind of trip. A trip with a high local anomaly score is one that bears little resemblance to trips typically
made by the vehicle. The set of local anomaly scores for a vehicle’s trips forms a vector of real numbers,
or empirical distribution, which we call the “routine profile.” A routine vehicle is one that does not have a
wide variety of trips, while a non-routine vehicle has a diverse range of them. To illustrate, a cliché example
of a routine vehicle would be one driven by someone who lives very simply and only uses their car to get
food and essentials every Sunday at noon. A cliché example of a non-routine vehicle would be one driven
by a pizza delivery person who has a changing schedule and is always making different kinds of trips at all
times of the day and week. This being said, it is expected that a routine vehicle will have a small dispersion
of local anomaly scores, while a non-routine one will have a large dispersion. To return to the illustration,
the person who only uses their car to get food and essentials every Sunday at noonwould then have amuch
less dispersed distribution of their scores than the pizza delivery person. This is why we refer to the local
score vector as a “routine profile.”

In the global scheme, the anomaly score of a trip, which we refer to as “global,” is calculated by applying an
AD algorithm to all vehicles in the telematics dataset at once. The global anomaly score of a trip thus reflects
its anomaly degree with respect to all other trips in the dataset. In this case, a 200 kilometer trip made on
Tuesday at 3 a.m. is likely to be assigned a high anomaly score because this kind of trip, using common
sense and looking at Figure 2.2, is hardly ever made by the general population of vehicles. Conversely, a ten
kilometer trip made on Monday at rush hour will probably be assigned a low global anomaly score. Along
these lines, a trip with a high global anomaly score is one that bears little resemblance to trips typically
made by the general population of vehicles. The set of global anomaly scores for a vehicle’s trips forms
a vector of real numbers, or an empirical distribution, that we call the “peculiarity profile.” A somewhat
peculiar vehicle is one that makes trips considered rather anomalous by the AD algorithm (i.e., it has high
anomaly scores), while a somewhat non-peculiar vehicle makes trips considered rather ordinary (i.e., it has
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low anomaly scores). We believe that peculiar trips have a different risk than more “standard” trips. For
instance, the AD algorithms could detect trips made at night, which have been shown to be more prone to
cause a claim, long trips, where driver fatigue may be a risk factor, or trips made at a high speed, which can
be risky. We therefore think that deriving a peculiarity profile for the vehicles can help better capture their
risk.

Let us consider a dataset where n equally weighted observations (or instances) are described by p numeric
variables. We denote byX = (xij)n×p the data matrix, where xij is the value of the ith observation for
the jth variable. We also denote by xi = (xi1, . . . , xip) ∈ Rp the ith observation (or row) of this matrix.
Note that the observations x1, . . . ,xn define a cloud of n points inRp. In the AD context, one is interested
in determining an anomaly score, which is a real number that reflects the extent to which an observation
is considered anomalous, for each observation.

2.6.1 Mahalanobis’ method
A simple way of obtaining an anomaly score for each pointxi is to compute its distance from the centroid of
the point cloud x = 1/n

∑︁n
i=1 xi. Indeed, the distance from the center of the distribution seems a natural

way of measuring the anomaly level of an observation: the further an observation is from the center, the
more it should be considered anomalous. For this purpose, standard Euclidean distance is not a suitable
distance metric if the variables are on different scales. The Mahalanobis distance ((Mahalanobis, 1936)) is
more advisable to use and is actually a fairly popular way of performing unsupervised AD. Mahalanobis’
method computes the Mahalanobis distance between a point x and a point cloud with centroid x and
covariance matrix Σ, given by

dM (x) =
√︂

(x− x)⊤Σ−1(x− x),

which can be directly used as an anomaly score.

2.6.2 Local Outlier Factor
The local outlier factor (LOF) algorithm ((Breunig et al., 2000)) is based upon the concept of local density,
where “local” is defined by the k nearest neighbors of a point. It is worth mentioning that k is a hyperpa-
rameter and thus, its value must be carefully chosen by the user. A point has a low (respectively high) local
density if its neighborhood has a low (respectively high) concentration of points. To determine whether a
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point is an anomaly or not, one compares its local density with those of its neighbors. If the local density of
the point is higher (respectively lower) than those of its neighbors, it will be given a low (respectively high)
anomaly score.

To understand exactly how this method works, let us first introduce the concept of k-distance, which is
simply the distance between a point and its kth nearest neighbor. One typically uses the Euclidean distance
metric on previously scaled data, which is equivalent to using the normalized Euclidean distance metric on
non-scaled data. The k nearest neighbors of x, whose set of indices is denoted withNk(x), are the set of
points that lie at a distance of k-distance(x) or less from x. Note that in case of a tie (i.e., if more than one
point is at a distance of exactly k-distance(x) fromx), the setNk(x) actually contains more than k indices.

The reachability distance (RD) of a point x from another point xi is defined as
RDk(x from xi) = max {k-distance(xi), d(x,xi)} ,

where d(x,xi) is the distance between pointx and pointxi. It may perhaps be observed that “reachability
distance” is a slight misuse of language because it is actually not a distancemetric in themathematical term
because it lacks the symmetry property. In other words, the RD of x from xi is the actual distance between
the two points, but is at least the k-distance of xi. Therefore, if the two points are “sufficiently” close, the
actual distance is replaced by the k-distance of xi. (Breunig et al., 2000) state that using the RD instead of
a real distance metric helps to achieve more stable results.

Using the RD, one can define the local reachability density (LRD) of a point x, given by
LRDk(x) =

1

averagei∈Nk(x)
{RDk(x from xi)}

.

The LRD of a point is thus the inverse of the arithmetic average reachability distance from its neighbors. If
a point is easily “reachable” by its neighbors (i.e., if the average reachability distance is low), it means that
the neighbors will be relatively close to the point, and then, taking the inverse, the LRD will be relatively
high. Conversely, if a point is not easily “reachable” by its neighbors, the LRD will be low. To sum it up, the
LRD of a point measures the concentration of points in its neighboorhood.

Then, the LRD of a point x is compared to those of its neighbors, and its LOF anomaly score may be derived
with

LOFk(x) = averagei∈Nk(x)
{LRDk(xi)}

LRDk(x)
.
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The LOF score of a point is therefore the arithmetic average LRD of its neighbors divided by its own LRD. If
point x has a low LRD relative to its neighbors, it means that its neighborhood is sparse compared to those
of its neighbors, and that it is an outlier. In that case, its LOF will be greater than 1. Conversely, if pointx has
a high LRD relative to its neighbors, it is considered an inlier, and consequently, its LOF will be lower than 1.

2.6.3 Isolation Forest
The isolation forest (IF) algorithm, developed in (Liu et al., 2008), detects anomalies by means of an en-
semble of binary trees, called isolation trees, built upon the data matrix. What one calls a tree is in fact the
representation of the recursive splitting (or partitioning) in two parts of the variable space Rp. IF deviates
from the AD mainstream, where normal observations are first modeled before anomalies can be identified
as observations that do not conform to the modeled distribution. In contrast, IF directly detects anoma-
lies using the concept of isolation. Indeed, anomalies are few in number and are different from other data
points (which means they are found in sparse regions of the variable space), making them easier to isolate
relative to normal data points.

In essence, an isolation tree works by recursively partitioning the variable space Rp into two parts until all
observations are isolated. At each step, the splitting is done by randomly selecting a variable and a split
value for that variable. Assuming all observations are distinct, the partitioning process thus ends when
all observations are in their own leaf corresponding to a hyperrectangular region of Rp resulting from the
partitioning. From then on, one can count the number of splitting steps required to isolate each observation
i, denoted h(xi), which can be interpreted as the path length within the tree to reach the leaf where
observation i lies starting from the root node. The shorter the path length, the easier it is to isolate the
observation, and the higher its degree of anomaly.

Because a single tree may yield unstable results, IF buildsM isolation trees in order to create an ensemble
(or forest), yielding M path lengths h1(xi), . . . , hM (xi) for each observation i. One could compute the
average path length for allM trees h(xi) for each observation i and use it directly as an anomaly score.
However, the authors standardize the average path length to improve comparison and interpretation. For
each observation i, they first divide h(xi) by the expected path length for any observation of the dataset,
which depends only on the sample size n, given by

c(n) = 2H(n− 1)− 2(n− 1)

n
, (2.1)
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where H(i) is the harmonic number, which can be estimated with H(i) = ln(i) + 0.5772156649. Equa-
tion 2.1 originates from the field of binary search trees (BST). Indeed, isolation trees have a structure equiv-
alent to BSTs, and thus the expected path length of an observation is the same as the expected length of an
unsuccessful search in a BST. The ratio of h(xi) over c(n) is thereafter exponentiated in a way to obtain an
anomaly score between 0 and 1. The anomaly score for observation i is hence given by

s(xi, n) = 2
−h(xi)

c(n) . (2.2)
The higher the score s, the more the observation is considered anomalous.

It is worth noting that trees that make up an IF are usually not built on the entire dataset. IF is in fact known
to work well when the sample size is small. Consequently, one usually chooses the number of instances b
to pick every time a tree is built.

2.7 Supervised Binary Classification Model
Every supervised learning task requires n labeled observations (or examples, or samples) gathered in a
training datasetD = {(xi, yi)}ni=1, where xi = (xi1, . . . , xip) ∈ X is the p-dimensional input (or feature)
vector for the ith observation and yi ∈ Y , the corresponding response (or label, target, output). The sets
X and Y are often referred to as the feature space and the output space, respectively. Supervised learning
theory assumes that observations from dataset D are realizations of the random vector (X, Y ), so that
a joint probability distribution pX,Y (x, y) = pX(x)pY |X(y|x) exists. The goal for a new observation is
to predict its response y given its features x as accurately as possible. This is accomplished by training a
supervised learning algorithm on the training dataset, which will “learn” a function that maps the features
to the response as best as possible. Mathematically, a supervised learning algorithm seeks to find amember
h : X −→ A of a predefined hypothesis function spaceH such that h(x) is as close as possible to y for all
observations, whereA is the set of all possible predictions. In order to define “closeness” and thus properly
choose h, a loss function ℓ : A × Y −→ R+ is defined, where ℓ(y, h(x)) measures the distance between
the prediction h(x) and the actual response y. The goal is usually to minimize the empirical risk over the
training set, given by

ˆ︁R(h) = 1

n

n∑︂
i=1

ℓ(y, h(x)).

From then on, supervised learning algorithms use optimization algorithms to find a function h that mini-
mizes, globally or locally, the empirical risk function. We find ourselves specifically in the context of super-
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vised binary classification when the response can take two distinct values (often encoded with 0 and 1),
namely when Y = {0, 1}.

2.7.1 Logistic Regression
Logistic regression is among the most popular algorithms for supervised binary classification problems. It
assumes that the conditional distribution of the response given the features is a Bernoulli distribution, which
is

pYi|Xi
(yi|xi) = πyii (1− πi)1−yi , yi = 0, 1,

where πi := P(Yi = 1|Xi = xi) is the conditional probability of being in class “1” for observation i. It
further assumes that πi can be expressed as the sigmoid transform σ(·) of the linear predictor xiβ, where
β = (β0, . . . , βp) is a parameter vector:

πi =
1

1 + exp (−xiβ)
:= σ(xiβ).

Therefore, logistic regression seeks to find a function, which takes the form of the sigmoid transform of a
linear transformation of the predictors, mapping the features x to a probability. The hypothesis space is
thusH = {x ↦→ σ(xβ)|β ∈ Rp}, and the set of possible predictions,A = [0, 1]. From then on, a function
h ∈ H must be chosen, which is equivalent to choosing (or estimating) the parameters β. This is often
done by minimizing the empirical risk with binary cross-entropy loss, given by

ˆ︁R(β) = − 1

n

n∑︂
i=1

yi ln(πi) + (1− yi) ln(1− πi). (2.3)
It is noteworthy thatminimizing the empirical risk in Equation 2.3 is equivalent to estimating the parameters
bymaximum likelihood, because the right-hand side of the equation is just the Bernoulli log-likelihood times
minus one. The estimated parameter vector that minimizes (2.3), denoted as ˆ︁βMLE, can be computed with
a variety of numerical optimization methods, such as the method of iteratively reweighted least squares.
Once estimated, the parameters can be used to obtain a prediction for a new observation i = 0:

ˆ︁π0 = σ
(︂
x0
ˆ︁βMLE)︂

. (2.4)

2.7.2 Elastic-Net Regularization
Having low bias and low variance predictions are two desirable properties of a supervised learning model.
Indeed, one can break down the reducible error of a prediction model as the sum of bias and variance.
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From the well-known bias-variance tradeoff in machine learning, we know that one can decrease the bias
of a model by increasing its variance, and vice-versa. It can be shown that the parameter vector’s maximum
likelihood estimator ˆ︁βMLE of Subsection 2.7.1 is the asymptotically unbiased estimator of the true parameter
vector β that has the smallest variance. However, it rarely is the best estimator for prediction because it
still exhibits large variance, as do the resulting predictions. Regularization adds a regularization (or penalty)
term to the empirical risk, which reduces variance at the cost of increasing bias. Inmany cases, the decrease
in variance more than offsets the increase in bias, which improves prediction performance.

In the case of Ridge-regularized logistic regression, a penalty term that is proportional to the sumof squared
coefficients is added to the empirical risk. The optimization problem hence becomes

ˆ︁βRIDGE
= argmin

β

⎧⎨⎩ ˆ︁R(β) + λ

p∑︂
j=1

β2j

⎫⎬⎭ , (2.5)

where λ ≥ 0 is a hyperparameter that controls the amount of regularization. Examining Equation 2.5,
one notices that the algorithm must not only minimize the empirical risk, but also the magnitude of the
parameters, which has the effect of shrinking them toward zero. The resulting estimates (and thus the
predictions) are biased because they are being pushed toward zero from the unbiased maximum likelihood
estimates. In return, predictions have a lower variance because they result from smaller parameters (in
absolute value). The larger the λ hyperparameter, the more biased the estimators will be and the less their
variance will be. The aim is to find a good tradeoff between bias and variance by tuning the value of λ. For
a given value of λ, the optimization problem of Equation 2.5 is convex and can therefore easily be solved
using numerical optimization methods.

Although Ridge regression shrinks the coefficients towards zero, it never actually sets them to zero, yielding
non-parsimonious models. Put another way, Ridge regression has no built-in feature selection mechanism,
which is a flaw because sparser models are more easily interpreted by humans. Lasso regression, on the
other hand, has the ability to set coefficients to zero due to the nature of its regularization term, and thus
allows for automatic feature selection. Lasso works in a similar way as the Ridge regression except that
the penalty term is proportional to the sum of the absolute values of the coefficients, and the optimization
problem thus becomes

ˆ︁βLASSO
= argmin

β

⎧⎨⎩ ˆ︁R(β) + λ

p∑︂
j=1

|βj |

⎫⎬⎭ . (2.6)
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As with Ridge regression, one wants to find a good tradeoff between bias and variance by tuning the λ
hyperparameter. Once the value is set for λ, the convex optimization problem in (2.6) can be solved fairly
easily using convex optimization theory.

Equations (2.5) and (2.6) are called the Lagrangian formulations of Ridge and lasso logistic regressions,
respectively. In order to better understand the impact of both types of penalties, it is useful to represent
them both with a constrained optimization problem, given by

ˆ︁β = argmin
β

{︂ ˆ︁R(β)}︂ s.t p∑︂
j=1

|βj |q ≤ s, (2.7)
where q = 1 and q = 2 correspond respectively to the lasso and Ridge cases, and where s is a hyperparam-
eter with a one-to-one correspondence to the λ hyperparameter of the Lagrangian formulation. It is easier
to remark with this constrained formulation that regularization gives a coefficient “budget” to the model.
Indeed, the aim is to minimize the empirical risk while staying within the budget of s for the ℓq-norm (raised
to the power of q) ||β||qℓq =

∑︁p
j=1 |βj |q of the parameter vector. The constraint in Equation 2.7 actually

defines a hypersolid (or constraint region) in Rp in which the estimated parameter vector must lie. In the
special case of Ridge regression (i.e. q = 2), the constraint region is actually a hyperball, while for lasso (i.e.
q = 1), it is a polytope. In the logistic regression framework with cross-entropy as a loss function, the em-
pirical risk is convex and thus has the shape of a p-dimensional infinite bowl. Consequently, the solution to
the optimization problem will always lie on the boundary of the constraint region, which means one looks
for the point ˆ︁β where the bowl-shaped empirical risk function intersects with the constraint region. With
this in mind, the shape of the hypersolid can help in understanding the behavior of regularized models.
Indeed, the rationale for Ridge not performing automatic feature selection is that its constraint region has
no sharp corners, being a hyperball. Therefore, the intersection point will almost surely not touch one of
the axes which means that no coefficient will be set to zero. In contrast, lasso performs feature selection
because a polytope has sharp corners. In two dimensions, namely if β = (β1, β2) ∈ R2, the border of the
constraint region is a circle in the Ridge case and a rhombus in the lasso case, and they are illustrated in
Figure 2.3.

Lasso regression, however, is known to handle groups of features that are highly correlatedwith one another
poorly due to the sharp corners of its constraint region. Indeed, for a group of strongly correlated features,
lasso tends to choose only one of them in the group and does not care which one is selected. In contrast,
Ridge will select all features and share the coefficient “budget” approximately equally among them, which
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Figure 2.3: Boundary of the constraint regions in two dimensions (i.e. β = (β1, β2)) for Ridge, lasso and
elastic-net regressions, for s = 1. For the elastic-net regression, we set α = 0.5.

is more desirable. Elastic-net regularization ((Zou et Hastie, 2003)) compromises between Ridge and lasso
penalties, and solves the following optimization problem:

ˆ︁βE-N
= argmin

β

⎧⎨⎩ ˆ︁R(β) + λ

⎡⎣(1− α) p∑︂
j=1

β2j + α

p∑︂
j=1

|βj |

⎤⎦⎫⎬⎭ , (2.8)

whereα ∈ [0, 1] is a “mixing” hyperparameter that controls the tradeoff between Ridge and lasso penalties.
Alternatively, one can solve the following constrained optimization problem:

ˆ︁βE-N
= argmin

β

{︂ ˆ︁R(β)}︂ s.t (1− α)
p∑︂

j=1

β2j + α

p∑︂
j=1

|βj | ≤ s, (2.9)
where s is a hyperparameter analogous to the λ hyperparameter of Equation 2.8. In Figure 2.3, one notices
that the elastic-net constraint region shares both Ridge and lasso properties, having both roundededges and
sharp corners. The former allows for feature selection, while the latter help to cope with highly correlated
features by sharing the coefficient budget among them. Elastic-net regularization thus combines the best
of both worlds. Moreover, it solves a convex program, which means the parameters can be estimated quite
readily using convex optimization techniques.

In addition to yielding parsimonious and interpretable models as well as handling collinearity effectively,
elastic-net regression has another major benefit. Indeed, elastic-net regression can be considered an “off-
the-shelf” algorithm, meaning that it can be applied to data and quickly achieve good results. In point of
fact, elastic-net regression requires very little data preprocessing and has very few hyperparameters (only
two: α and λ), meaning they are easily tunable. In contrast, some neural networks and boosting algorithms
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can include dozens of hyperparameters, all of which must be carefully tuned. For further information about
elastic-net regularization (or more generally, regularization), we refer to (Hastie et al., 2015).

2.7.3 Preprocessing
2.7.3.1 Anomaly scores
First of all, let us recall that each of the AD algorithms presented in Section 2.6 is used to compute both
a local and a global anomaly score for each vehicle trip in the telematics dataset. Once these scores are
computed, the collection of which constitutes a vehicle’s routine or peculiarity profile, the goal is to use
them in conjunction with traditional risk factors and distance driven in an elastic-net logistic regression
model to perform claim classification, as they are expected to convey important information about the
occurrence of claims. Note that we use distance driven as a telematics feature since it is clearly related to
the risk of claiming, as this is ameasure of risk exposure. However, we do not arbitrarily handcraft additional
telematics features since part of our research’s goal is precisely to automate feature extraction. Obviously,
not all vehicles completed the same number of trips during their one-year observation period, meaning
their routine or peculiarity profile vector has a variable length. Consequently, the profile vectors cannot be
entered directly as covariates in the elastic-net model, because the latter only accepts a rectangular design
matrix as input. We therefore need a way to “translate” the profile vectors so that they are understood
by the machine learning algorithm, i.e. the elastic-net model. In other words, it is required to extract
features from these profile vectors. In this regard, we extract for each vehicle 11 evenly spread out quantiles
of its profile vector, namely the 0th, 10th, . . . , 90th and 100th percentiles. The 0th and 100th percentiles
are also referred to as the minimum and the maximum of the profile vector, respectively. This way, each
vehicle’s telematics data is summarizedwith 11 real numbers,meaning each vehicle ends upwith 11 extracted
telematics features, whichwill later be used to enhance claim classification. Onemight ask why in particular
we extract evenly spread out quantiles, or deciles. The reason for this choice is that we believe it is the least
arbitrary and most neutral way to proceed. This way of proceeding also ensures that the machine learning
model has the complete information on the distribution of the scores, and allows themodel to find by itself
the important information hidden in the profile vectorswhile reducing human intervention. This is desirable
since the model has the benefit of receiving feedback from the response vector, as opposed to humans. In
short, we think this is better than summarizing the score vectors with arbitrarily chosen statistics. The
preprocessing of the anomaly scores is illustrated in Table 2.4.
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VIN Trip ID Anomaly score

A 1 R

A 2 R... ... ...
A 2320 R

B 1 R

B 2 R... ... ...
B 1485 R

C 1 R... ... ...

extract
======⇒percentiles

Anomaly score’s percentiles

VIN 0th 10th . . . 90th 100th

A R R . . . R R

B R R . . . R R

C R R . . . R R

Table 2.4: Example of anomaly score preprocessing from the extract of Table 2.1.

2.7.3.2 Features
Although elastic-net logistic regression can be qualified as an off-the-shelf model, the features still need
a few preprocessing steps before they can be entered into the classification algorithm, either for training
or scoring. Features include the ten traditional risk factors from Table 2.2, the distance driven and the 11
telematics features extracted in Subsection 2.7.3.1, which makes for a total of 22 features. Each of them un-
dergoes different preprocessing steps according to their nature. To carry out this preprocessing efficiently,
the very handy recipes package from the R programming language is used. This package allows the def-
inition of a preprocessing “recipe” (or workflow) consisting of multiple preprocessing steps to apply every
time amodel is either trained or scored. The recipes package can be used to center/scale features, impute
missing values, numerically encode and groupmodalities for categorical features, etc. A key benefit of using
this package is that a preprocessing recipe can be easily paired with a predictive model, thus avoiding data
leakage. Indeed, it is not advisable to preprocess the whole dataset once at the beginning of the modeling
pipeline because in such a case, information from the testing set may leak into the training set, which could
lead to an overestimation of the model’s performance. Similarly, information from the validation fold could
leak into the training folds while cross-validating. In order to properly assess generalization power, the test-
ing/validation set must indeed be completely disjoint from the training set. This is why it is best to make
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preprocessing an integral part of the modeling process by treating preprocessing and the prediction model
as a single entity. That way, the preprocessing steps are performed every time a model is either trained or
scored, and not using data that should be kept for testing/validation.

2.7.3.2.1 Categorical features
Just like many other supervised learning algorithms, elastic-net logistic regression is unable to deal with
categorical features as is; they must first be numerically encoded. The categorical features used in the
classification model include the four numerical traditional risk factors from Table 2.2, namely gender,
marital_status, pmt_plan and veh_use. For this purpose, we choose a fairly standard way of transform-
ing categorical features into numerical ones called “target encoding”, which uses the target (or response)
variable to assign a real number to each of the feature’s categories. This is done by fitting a non-penalized lo-
gistic regressionmodel without an intercept term on the response variable (which is the indicator of a claim
in the observation period) using the feature to be encoded as the only covariate. This results in a coefficient
for every category that is indicative of the claim risk for that category. These coefficients are then directly
used as encoding values. This type of encoding is an alternative to the more common binary (or dummy)
encoding, which creates several dummy variables from a categorical feature that indicates whether or not
the observation belongs to each category. Conversely, target encoding has the benefit of not increasing the
dimensionality of the dataset. Note that prior to target encoding, rare categories, namely those whose oc-
currence in the data is 5% of the observations or less, are pooled in an “other” category. This prevents from
having categories with very few observations, which could lead to high prediction variability for these cate-
gories. Once they have been converted to numeric data, categorical features still need a few preprocessing
steps related to numerical features, described in the next paragraph.

Example 2 (Target encoding) Let us consider the small fictitious dataset in Table 2.5, with only one feature

x and a binary response y. Suppose one wishes to target encode feature x, which is categorical with three

categories: “blue”, “white” and “red”. Using non-penalized logistic regression without an intercept term,

one first obtains the three coefficients by minimizing the empirical risk in Equation 2.3 or, equivalently, by

maximizing likelihood: ˆ︁βblue = 0, ˆ︁βwhite = −20.57, ˆ︁βred = 20.57. These estimated coefficients are then

used to encode x.
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y x xencoded

1 red 20.57

0 blue 0

1 red 20.57

1 blue 0

0 white −20.57

Table 2.5: Example of target encoding with a non-penalized logistic regression on a fictitious dataset.

2.7.3.2.2 Numerical features
Thenumerical features used in the classificationmodel include six of the features in Table 2.2 (annual_distance,
commute_distance, cov_count_3_yrs_minor, veh_age, years_claim_free and years_licensed),
distance driven, the four numerically encoded categorical features of Table 2.2 (gender, marital_status,
pmt_plan and veh_use) and the 11 quantiles extracted from the routine and peculiarity profiles in Subsec-
tion 2.7.3.1. First, let us point out that the prediction function outputted by an elastic-net model is rather
linear as the derived classification rule splits the hyperspace with hyperplanes. Therefore, in order to help
break the linearity and better capture the vehicles’ routine and peculiarity profiles, all (︁112 )︁ = 55 degree
two interactions between the 11 anomaly scores-based features are first computed. All 6+4+11+55 = 76

numerical features then undergo a Yeo-Johnson transformation followed by a z-score normalization. The
Yeo-Johnson transformation reduces the skewness of the features’ distributions and gets them closer to
a normal distribution, which is usually beneficial for supervised learning algorithms. Mathematically, the
Yeo-Johnson transformation ψ of x ∈ R is defined as

ψ(x, λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

((x+ 1)λ − 1)/λ if λ ̸= 0, x ≥ 0

ln(x+ 1) if λ = 0, x ≥ 0

−[(−x+ 1)2−λ − 1]/(2− λ) if λ ̸= 2, x < 0

− ln(−x+ 1) if λ = 2, x < 0,

(2.10)

where λ is a parameter that is usually optimized bymaximum likelihood such that the empirical distribution
of the transformed values is as close as possible to the normal distribution. Z-score normalization has the
effect of centering and scaling the feature vectors. The centering allows us to omit the intercept parameter
β0 in the elastic-net model, while the scaling ensures that features all have equal importance in the mod-
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Figure 2.4: Flowchart of the feature preprocessing workflow, which is applied every time a model is either
trained or scored.

eling process. It is strongly recommended to scale features prior to feeding them into regularized logistic
regression models because they are not scale invariant. Consider the feature vector x = (x1, . . . , xn)with
empirical mean x = 1

n

∑︁n
i=1 xi and standard deviation s = 1

n−1

∑︁n
i=1(xi − x)2. The z-score normalized

version of x is
x∗ =

(︃
x1 − x
s

, . . . ,
xn − x
s

)︃
. (2.11)

Note that all features are complete except commute_distance from Table 2.2, which has a missing rate
of 21.5%. We choose to impute these missing values with a rather popular imputation technique named
“bagged trees imputation”, which first trains a committee of 25 regression trees on all instances having a
non-missing value for commute_distance feature. It then substitutes missing values with the predictions
produced by the tree committee. The complete data preprocessing workflow is illustrated in Figure 2.4.

2.8 Hyperparameter tuning
2.8.1 Anomaly Detection Techniques
Among the three AD algorithms presented in Section 2.6, LOF and IF have hyperparameters that need to be
tuned. Indeed, with the LOF algorithm, onemust choose the size of the neighborhood, defined by k, while in
the case of IF, one must choose a value for the sampling size b. Our goal is to obtain the best possible claim
classification performance and to this end, hyperparameter values are chosen in such a way to optimize
the area under the receiver operating characteristic curve (AUC) when anomaly scores-based features are
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used alone in a non-penalized logistic regression model. Recall that anomaly scores are computed in two
different ways, namely the local way, where AD is applied separately on each vehicle and the global way,
where the latter is applied once on thewhole portfolio. Therefore, four hyperparameters needoptimization,
namely k and b for both local and global schemes. Hyperparameter tuning is done using grid search, and
AUC is obtained using five-fold cross-validation. It should be noted that only the training set is used to tune
hyperparameters: the testing set is put aside until the very end of themodeling process, whenwe are ready
for validation.

2.8.1.1 Local scheme
In the local scheme, the neighborhood size in the LOF algorithm and the sampling size in the IF algorithm are
expressed as a fraction of the number of trips for each vehicle. Therefore, kfrac and bfrac, which represent
respectively the fraction of trips used as the nearest neighbors in the LOF algorithm and the fraction of trips
to draw every time an isolation tree is built in the IF algorithm, are tuned instead of k and b. The relation
between k and kfrac as well as between b and bfrac are given by

ki = kfrac × ni, (2.12)
bi = bfrac × ni, (2.13)

where ni is the number of trips made by the ith vehicle. That way, algorithms are applied to each vehicle i
using its corresponding value ki (or bi), which is proportional to its number of trips. The values tested for
kfrac and bfrac go from 0.05 to 0.6 and from 0.05 to 1, respectively, in leaps of 0.05. Therefore, the grids
used for the grid search are Gkfrac = {0.05i}12i=1 and Gbfrac = {0.05i}20i=1.

A cross-validation AUC value is obtained for each value in Gkfrac and Gbfrac , whereupon the two chosen
values (one for kfrac and one for bfrac) are those that maximize AUC. Note that the anomaly scores are
preprocessed according to Table 2.4 and Figure 2.4. The tuning results for the local scheme are shown in
Figure 2.5. It turns out that the optimal hyperparameter values that are found are kfrac = 0.35 for LOF and
bfrac = 0.85 for IF, with respective AUCs of 0.5450 and 0.5320. These are the hyperparameter values that
will be used from now on in the local scheme. It is worth noting that Mahalanobis’ method, which has no
hyperparameter, yields an AUC of 0.5200. The optimal hyperparameter for each local AD method and its
corresponding AUC value are given in Table 2.6.
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(a) Local LOF

(b) Local IF

Figure 2.5: Tuning results for local AD algorithms. The five-fold cross-validation AUC and its corresponding
standard deviation (represented as the length of the vertical segment) is shown for each hyperparameter
value.
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2.8.1.2 Global scheme
In the global scheme, hyperparameter tuning is done in a similar way as in the local scheme with the ex-
ception that the neighborhood size and the sampling size are not expressed as a fraction of the number of
trips, but as an actual number of trips. The hyperparmeters k and b are thus tuned directly. Again, a grid
search is used with Gk = {5i}10i=1 and Gb = {100i}10i=1 as tuning grids, and the chosen value for k (and
for b) is the one matching the highest cross-validation AUC. The tuning results for the global scheme are
shown in Figure 2.6. It turns out that the optimal hyperparameter values found are k = 50 for LOF and
b = 400 for IF, with respective AUCs of 0.5318 and 0.5398. These are the hyperparameter values that will
be used from now on in the global scheme. The optimal hyperparameter for each global AD method and
its corresponding AUC value are given in Table 2.6.

Hyperparameter value
Anomaly detection algorithm kfrac bfrac k b AUC
Local Mahalanobis – – – – 0.5200(0.010079)

Local LOF 0.35 – – – 0.5450(0.009192)

Local IF – 0.85 – – 0.5320(0.009704)

Global Mahalanobis – – – – 0.5481(0.006750)

Global LOF – – 50 – 0.5318(0.010498)

Global IF – – – 400 0.5398(0.014215)

Table 2.6: Best hyperparameter value for each AD method and the resulting five-fold cross-validation AUC.
Standard deviation is displayed as a superscript.

2.8.2 Elastic-Net Logistic Regression
Once LOF and IF are tuned for both local and global schemes, they, as well as Mahalanobis’ method, are
each employed to derive both a routine and a peculiarity profile for each vehicle, from which telematics
features are extracted as quantiles according to Table 2.4. These telematics features, along with traditional
risk factors (TRF) and distance driven, are then used together in an elastic-net logistic regression model.
We have in total six different anomaly scores for each trip, six sets of telematics features are extracted.
The classification performance of the six resulting models is compared to a baseline model that does not
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(a) Global LOF

(b) Global IF

Figure 2.6: Tuning results for global AD algorithms. The five-fold cross-validation AUC and its corresponding
standard deviation (represented as the length of the vertical segment) is shown for each hyperparameter
value.
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use AD at all, namely an elastic-net model that only uses the ten traditional risk factors and the distance
driven as covariates. Remember that the elastic-net penalty has two hyperparameters, namely λ, which
controls the severity of the penalty and α, which represents the fraction of the lasso-type penalty to be
used. Tuning is done separately for each of the seven models using grid search as the hyperparameter
space searching strategy and AUC as the performance metric. For the λ hyperparameter, a grid of 50 log-
uniformly distributed values between 10−10 and 1, namely Gλ = {10

10
49

i}49i=0, is used. On the other hand,
a coarse grid of five uniformly distributed values between 0 and 1 is considered for the mixing parameter
α, namely Gα = {0, 0.25, 0.5, 0.75, 1}. For each of the seven models, cross-validation is employed on the
training set to find the best combination of hyperparameters. For a given elastic-net model, five-fold cross-
validation AUC is thus computed for each of the |Gλ| × |Gα| = 250 hyperparameter combinations. The
values for λ and α that lead to the best cross-validation performance are thereafter chosen as the optimal
pair. The optimal pair found for each of the sevenmodels and the resulting AUC value are shown in Table 2.7.

Optimal value
Feature set used λ α AUC
TRF + Distance driven (baseline) 2.33× 10−2 1 0.6096(0.01300)

TRF + Distance driven + Local Mahalanobis 2.33× 10−2 1 0.6095(0.01289)

TRF + Distance driven + Local LOF 2.22× 10−3 0.5 0.6112(0.01392)

TRF + Distance driven + Local IF 2.33× 10−2 1 0.6096(0.01299)

TRF + Distance driven + Global Mahalanobis 9.10× 10−3 1 0.6149(0.01550)

TRF + Distance driven + Global LOF 3.56× 10−3 1 0.6124(0.01410)

TRF + Distance driven + Global IF 9.10× 10−3 0 0.6126(0.01498)

Table 2.7: Hyperparameter tuning results for the seven elastic-net models.

2.9 Analyses
2.9.1 Analysis of routine and peculiarity profiles
The AD algorithms have been tuned in Subsection 2.8.1 and are now ready to be applied to the processed
telematics dataset in order to derive both a routine and a peculiarity profile for each vehicle, which we
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do. Let us first look at whether simple statistics calculated from these profiles can discriminate between
claimants and non-claimants. In Table 2.8 is shown the mean value for 13 different statistics of routine and
peculiarity profiles derived with Mahalanobis’ method. The same results for the Local Outlier Factor and
Isolation Forest algorithms are shown in Table 2.12 and Table 2.13 of Appendix 2.11, respectively. As can be
seen, the mean and standard deviation of the profile vectors do not seem to be discriminating between the
two groups. Also, we note that the peculiarity profiles are more successful in differentiating claimants from
non-claimants than their routine counterparts, and mainly with the lower deciles of the distribution. This
means that in order to estimate the claiming probability of a vehicle, one would look at how peculiar its
least peculiar trips are. The peculiarity profiles derived with the tuned AD algorithms thus seem promising
for creating useful telematics features for classification.

Local Mahalanobis score (routine) Global Mahalanobis score (peculiarity)

Mean value Mean value

Statistics Claimants Non-claimants p-value (t-test) Claimants Non-claimants p-value (t-test)

Mean 7.99 7.99 0.8588 8.34 9.33 0.6844

Standard Deviation 12.28 12.30 0.9423 40.17 78.40 0.6099

Minimum 2.58 2.55 0.0060∗ 2.93 2.92 < 0.0001∗

1st decile 3.71 3.69 0.0916 3.58 3.55 0.0006∗

2nd decile 4.23 4.21 0.1367 3.98 3.94 0.0039∗

3rd decile 4.73 4.71 0.1676 4.42 4.37 0.0287∗

4th decile 5.27 5.26 0.1538 4.93 4.90 0.2124

5th decile 5.90 5.88 0.2072 5.55 5.52 0.4904

6th decile 6.65 6.64 0.7894 6.29 6.28 0.8658

7th decile 7.64 7.64 0.7350 7.22 7.24 0.6676

8th decile 9.13 9.15 0.2906 8.47 8.52 0.4780

9th decile 12.14 12.19 0.1457 10.62 10.67 0.6856

Maximum 286.57 293.76 0.3470 1009.76 2381.39 0.5556

Table 2.8: Mean value of several statistics calculated from the profile vectors derived with Mahalanobis’
method for claimants and non-claimants. Two-sample t-tests were conducted to determine whether the
mean differs significantly between the two groups. A star indicates that the difference is significant at a 95%
confidence level.
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Ideally, we would like the derived profile vectors to help us differentiate between routine and non-routine
vehicles, as well as between peculiar and non-peculiar ones. In other words, we would like the AD al-
gorithms to have a similar concept of “routine” and “peculiarity” of a vehicle as a human observing the
different trip attributes would have. By inspecting the distribution of the trip attributes for each vehicle
separately, we thus select two vehicle pairs: a routine/non-routine one and a peculiar/non-peculiar one.
The former is shown in Figure 2.9 of Appendix 2.12 and it is clear that the first vehicle (Figure 2.9a) is more
routine than the second (Figure 2.9b) in terms of the six trip attributes. Indeed, the former tends to make
trips of about 13 km concentrated around 11:00 a.m. and 9:00 p.m., while the latter makes trips of various
distances at almost any time of the day. The attribute distributions of the selected peculiar/non-peculiar
pair are presented in Figure 2.10 of Appendix 2.12, where the black density line corresponds to the global
distribution of the attributes, i.e., the attributes’ distributions on the whole telematics dataset. We have
deemed the first vehicle peculiar because the distribution of its attributes does not match the global distri-
bution very well, unlike the second vehicle, which is deemed non-peculiar.

In Figure 2.7, we compare the density of the routine and peculiarity profiles derived using each of the three
AD algorithms for both the routine/non-routine and the peculiar/non-peculiar vehicle pairs. Looking at
Figure 2.7a, it is clear that AD algorithms applied locally fail to capture how routine a vehicle is. Indeed,
the distribution of local anomaly scores for the selected routine vehicle coincides almost perfectly with
that of the non-routine one, indicating that local anomaly scores computed with Mahalanobis’ method,
LOF and Isolation Forest all fail to distinguish a routine vehicle from a non-routine one. Conversely, global
Mahalanobis and Isolation Forest scores seem to capture the peculiarity profile of vehicleswell, unlike global
LOF scores. Indeed, one sees that the peculiar vehicle has a distribution of global scores much further to
the right of the real numbers axis than the non-peculiar one, indicating more unusual trips. As a result,
we expect the global anomaly scores from Mahalanobis’ method and the Isolation Forest to improve the
ability to discriminate claimant from non-claimant vehicles, while local scores are expected to be of very
little help.

2.9.2 Classification results
Elastic-netmodels, whichwere tuned in the previous section, are now ready to be trained on the full training
set, which we do. They are then scored on the testing set, which has never been used before and is there-
fore totally unknown to the seven trained models. Classification performance is then measured with four
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(a) Routine profile for the routine/non-routine vehicle pair.

(b) Peculiarity profile for the peculiar/non-peculiar vehicle pair.

Figure 2.7: Comparison of routine and peculiarity profiles for the routine/non-routine and the peculiar/non-
peculiar vehicle pair.
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metrics, namely AUC, accuracy, sensitivity and specificity. Accuracy is simply the number of correctly classi-
fied observations divided by the total number of observations. Sensitivity measures the ability of themodel
to correctly detect positive cases, i.e., claimants, while specificity measures the ability to correctly detect
negative cases, i.e., non-claimants. The threshold used for the latter three metrics is 0.5, which means the
hard prediction is 0 if the estimated probability of claiming is less than 0.5 and is 1 otherwise. In Table 2.9,
the improvement of the six models that use anomaly detection-based features over the baseline model is
displayed, as well as the baseline model’s absolute performance. The latter achieves an AUC of 0.5948,

Anomaly detection algorithm AUC Accuracy Sensitivity Specificity
TRF + Distance driven (baseline) 0.5948 0.5634 0.5862 0.5407

TRF + Distance driven + Local Mahalanobis 0.0001 0 0 0

TRF + Distance driven + Local LOF −0.0013 −0.0013 −0.0193 0.0165

TRF + Distance driven + Local IF 0 0 0 0

TRF + Distance driven + Global Mahalanobis 0.0184 0.0214 0.0110 0.0317

TRF + Distance driven + Global LOF 0.0006 0.0042 0.0028 0.0055

TRF + Distance driven + Global IF 0.0117 0.0063 −0.0372 0.0496

Table 2.9: Improvement of the six elastic-net models using AD over the baseline model and the baseline
model’s performance.

which is fine considering the small amount of data. In point of fact, the elastic-net models are tuned and
trained on the training set, which has 3384 rows, and are scored on the testing set, which has 1450 rows.
Moreover, AUC values are usually fairly low in claim classification due to the inherent randomness of the
problem.

Clearly, features extracted from global anomaly scores, namely features extracted from the peculiarity pro-
files, are better candidates for classification than those extracted from local scores because they consistently
yield superior results. In fact, the features extracted from local anomaly scores are deemed completely use-
less by the classificationmodel because their inclusion does not improve (or evenworsens) the performance
metrics. This means that the routine profile we derived does not influence the risk of a claim. Conversely,
global anomaly scores-based features nearly always improve classification metrics, regardless of whether
Mahalanobis, LOF or IF is used to derive the anomaly scores. Global Mahalanobis performs best, with an
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Figure 2.8: Elastic-net logistic regression non-zero coefficients obtained using features derived from global
Mahalanobis anomay scores.

improvement in AUC, accuracy, sensitivity and specificity of 0.0184, 0.0214, 0.0110 and 0.0317 over the
baseline model, respectively. This means that the peculiarity profiles we computed convey important infor-
mation about the insureds’ risks that traditional risk factors and distance driven (which is often considered
one of themost predictive telematics features) do not capture. Although the improvement may seemmod-
est, it has the potential to translate into thousands of dollars in additional profits for an insurer. Indeed, the
improvement in classification suggests that with the newly extracted telematics features, insurers will be
able to compute amore precise pure premium, which could help reduce adverse selection. LOF is the worst
among global algorithms overall, showing only a slight improvement over the baseline model. We success-
fully extracted useful features from the global anomaly scores, indicating that the peculiarity profile of a
vehicle impacts the probability of claiming. This is in line with the analysis performed in Subsection 2.9.1.

We shall now examine how the peculiarity profile of a vehicle influences the claim risk. To this end, we ana-
lyze the estimated coefficients of our best model, namely the one using features derived from global Maha-
lanobis scores. The sign and the absolute value of each estimated coefficient indicates how its related fea-
ture influences the probability of claiming. Furthermore, because features have been standardized prior to
training themodel, the absolute value of a coefficient can be interpreted as a measure of the importance of
the underlying feature. In Figure 2.8, the sign and absolute value of every non-zero coefficient is displayed.
Interestingly, out of the 77 features given as input to the model, only 12 are assigned a non-zero coefficient,
which means the model deemed the remaining 65 features irrelevant for the classification task. The 12 fea-
tures selected by the model include eight traditional risk factors (veh_age, years_claim_free, gender,
annual_distance, pmt_plan, marital_status, years_licensed andveh_use), distance driven (distance)
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and three features extracted from global Mahalanobis scores (q0_x_q20, q0_x_q10 and q0). Interestingly
enough, among the 11 extracted telematics features (q0, q10, . . . , q90, q100) and their 55 two-fold inter-
actions (q0_x_q10, q0_x_q20, . . . , q80_x_q90, q90_x_q100), only features involving the 0th percentile
(i.e. the minimum of the anomaly score vector) and low percentiles are kept by the model, namely the 0th
percentile itself (q0), the interaction between the 0th and 10th percentiles (q0_x_q10) and the interaction
between the 0th and 20th percentile (q0_x_q20). This indicates that lower global anomaly scores for a ve-
hicle are predictive of the occurrence of a claim. Moreover, the coefficients of the abovementioned three
anomaly score-based features are negative, which means, ceteris paribus, that the lower the percentile of
the scores of a vehicle, themore likely it is to claim. Thismay seem counterintuitive because onemight think
that more anomalous trips must be more risky. However, when analyzing correlations between global Ma-
halanobis score and the eight trip attributes in Table 2.10, one notices that the anomaly score ismore closely
linked to duration, distance, avg_speed and max_speed than attributes related to time of day and time
of week. This is because the four axes time_of_day_sin, time_of_day_cos, time_of_week_sin and

Trip attribute Spearman correlation

duration 0.62

distance 0.79

avg_speed 0.35

max_speed 0.28

time_of_day_sin 0.09

time_of_day_cos 0.09

time_of_week_sin −0.02

time_of_week_cos 0.02

Table 2.10: Spearman correlation of the eight trip attributes with the global Mahalanobis anomaly score.

time_of_week_cos have fewer anomalous values than the axes duration, distance, avg_speed and
max_speed. Therefore, the anomalies are mostly determined using the first four attributes in Table 2.10.
Given that the four attributes duration, distance, avg_speed and max_speed have a strong positive
correlation with the anomaly score, this means that trips that are identified as anomalous (i.e., trips with
a high anomaly score) are also trips with high values for the four abovementioned attributes. Naturally,
trips with high values for these four attributes are most likely to have been taken on highways, which are
usually safer than other types of roads. This would explain the negative coefficients associated with the
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global Mahalanobis scores-based features q0, q0_x_q10 and q0_x_q20.

In order to economically assess the performance of a claim classification model, one can look at the pure
premium it would charge to positive and negative instances in the testing set, where “pure premium” is
understood as the claiming probability times the insured amount. In Table 2.11, we therefore computed
the average pure premium for claimants and for non-claimants for both the baseline model and our best
model using anomaly detection. We used an insured amount of 1,000 monetary units. As can be seen,
both models charge more for claimants than for non-claimants, which is desirable. One also notices that
our model using anomaly detection is able to better differentiate between the two at the premium level,
charging 1.4 monetary units more for claimants and 1.4 monetary units less for non-claimants relative to the
baseline model.

Model

TRF + distance driven (baseline) TRF + distance driven + global Mahalanobis
Claimants 83.6 85.0

Non-claimants 80.7 79.3

Table 2.11: Pure premium calculated with both the baseline model and the best model using anomaly de-
tection, for claimants and for non-claimants. An insured amount of 1000 monetary units is assumed.

2.10 Conclusions
In this study, a novel method that allows the incorporation of telematics data into a claim classification
model has been developed. The procedure, which utilizes anomaly detection algorithms, automatically
extracts features from summarized information about trips made by insured vehicles. While most studies
create telematics features by hand and subjectively, which may favor or disfavor certain insureds, the ap-
proach developed in this paper has the benefit of being objective and automatic. Our paper also addresses
the lack of models doing automatic variable selection and regularization in the literature by incorporating
elastic-net regularization into a logistic regression model. Although the method has been tested in the con-
text of claim classification, it could easily be applied to the context of frequency or even severity modeling,
because these are supervised learning problems as well. We found that anomaly scores computed globally
can distinguish peculiar from non-peculiar vehicles and using a thorough machine learning methodology,

74



we showed that these scores convey important information about the claiming risk of a vehicle. Indeed,
features extracted from them allow the improvement of classification performance when added to the
baseline model, especially whenMahalanobis’ method is at play. We also found out that lower quantiles of
the peculiarity profile vector are the most predictive of the claiming risk, and that these quantiles are neg-
atively correlated with the probability of claiming. It seems that locally calculated anomaly scores, which
is to say the routine profiles, do not help to improve classification, and this is probably due to the fact that
such anomaly scores are unable to discern routine from non-routine vehicles.

In our method, each instance, or vehicle, is described with a distribution of local and global anomaly scores.
From these distributions, quantiles are extracted and used as features in a penalized logistic regression
model. While this type ofmodel has a goodperformance/interpretability ratio, it is not themost appropriate
for detecting complex interactions between features, whichwe thinkmay be useful to properly characterize
the anomaly scores’ distribution and thus improve prediction. Such models also deal poorly with non-
linear relationships between features and response. In fact, the current model only allows for linear links
between features and log-odds, and uses the extracted telematics features as is, without trying to make
them interact. For future research, we believe it would be wise to apply a neural network on the quantiles
extracted from the routine and peculiarity profiles. Indeed, neural networks are known to automatically
learn useful features from raw data. This way, instead of being arbitrary, the feature extraction process
would be guidedby the feedback of a loss function, whichwould probably enhance prediction. Alternatively,
one could apply a neural network directly to the routine and peculiarity profile vectors. Furthermore, we
still believe that the trips’ degree of routine could possibly help to better classify the vehicles, but that the
anomaly detection algorithms as implemented had a hard time capturing this degree of routine. Thus, for
future research, one could try to find a way to better capture vehicles’ routine profiles.
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2.11 Appendix A: two-sample t-tests for LOF and IF algorithms
Local LOF score (routine) Global LOF score (peculiarity)

Mean value Mean value

Statistics Claimants Non-claimants p-value (t-test) Claimants Non-claimants p-value (t-test)

Mean 1.0601 1.0612 0.1454 1.0287 1.0292 0.4506

Standard Deviation 0.2167 0.2188 0.4537 0.0639 0.0647 0.9357

Minimum 0.9700 0.9694 0.0012∗ 0.9708 0.9709 0.2123

1st decile 0.9818 0.9816 0.0335∗ 0.9899 0.9901 0.0196∗

2nd decile 0.9871 0.9870 0.0413∗ 0.9953 0.9957 0.0054∗

3rd decile 0.9924 0.9923 0.4229 1.0002 1.0007 0.0060∗

4th decile 0.9986 0.9986 0.7088 1.0054 1.0060 0.0093∗

5th decile 1.0067 1.0070 0.1836 1.0116 1.0123 0.0225∗

6th decile 1.0187 1.0191 0.3136 1.0194 1.0203 0.0352∗

7th decile 1.0375 1.0378 0.5626 1.0304 1.0315 0.0761

8th decile 1.0703 1.0712 0.3871 1.0478 1.0490 0.1948

9th decile 1.1494 1.1540 0.0588 1.0831 1.0840 0.5396

Maximum 4.4216 4.5207 0.1062 1.8994 1.9434 0.8646

Table 2.12: Mean value of several statistics calculated from the profile vectors derived with LOF method for
claimants and non-claimants. Two-sample t-tests were conducted to determine whether the mean differs
significantly between the two groups. A star indicates that the difference is significant at a 95% confidence
level.
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Local IF score (routine) Global IF score (peculiarity)

Mean value Mean value

Statistics Claimants Non-claimants p-value (t-test) Claimants Non-claimants p-value (t-test)

Mean 0.4423 0.4418 0.2391 0.4718 0.4717 0.8756

Standard Deviation 0.0593 0.0593 0.9131 0.0501 0.0504 0.3920

Minimum 0.3195 0.3183 0.1045 0.3841 0.3835 0.0001∗

1st decile 0.3759 0.3754 0.3807 0.4173 0.4167 0.0447∗

2nd decile 0.3934 0.3930 0.4578 0.4295 0.4287 0.0668

3rd decile 0.4074 0.4069 0.3313 0.4403 0.4396 0.1543

4th decile 0.4204 0.4199 0.2879 0.4513 0.4508 0.4168

5th decile 0.4335 0.4329 0.2455 0.4630 0.4629 0.8404

6th decile 0.4477 0.4471 0.2470 0.4761 0.4764 0.7312

7th decile 0.4643 0.4638 0.2234 0.4911 0.4917 0.5090

8th decile 0.4858 0.4853 0.2666 0.5094 0.5103 0.3887

9th decile 0.5198 0.5194 0.3905 0.5364 0.5371 0.5594

Maximum 0.7415 0.7448 0.0625 0.7010 0.7018 0.6178

Table 2.13: Mean value of several statistics calculated from the profile vectors derived with Isolation Forest
method for claimants and non-claimants. Two-sample t-tests were conducted to determine whether the
mean differs significantly between the two groups. A star indicates that the difference is significant at a 95%
confidence level.
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2.12 Appendix B: routine/nonroutine and peculiar/nonpeculiar vahicle pairs

(a) Routine selected vehicle

(b) Non-routine selected vehicle

Figure 2.9: Histograms of trip attributes for the routine/non-routine pair.
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(a) Peculiar selected vehicle

(b) Non-peculiar selected vehicle

Figure 2.10: Histograms of trip attributes for the peculiar/non-peculiar pair. The black line shows the densi-
ties of the attributes for the whole telematics dataset.
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2.13 Appendix C: literature review about claim prediction with telematics data
Reference Problem tackled Telematics covariates Modeling tech-

nique(s)

Some pros Some cons

(Paefgen et al., 2013) Claim classification Mileage, road type, handcrafted fea-
tures related to daytime, weekday and
average velocity

GLM, neural net-
work, decision tree

Flexible modeling No feature selection or
regularization, arbitrary
choice of intervals for
daytime, weekday and
velocity variables

(Paefgen et al., 2014) Claim classification Mileage, road type, handcrafted fea-
tures related to daytime, weekday and
velocity

GLM Variable selection with a
stepwise approach

Very few telematics fea-
ture engineering

(Ayuso et al., 2016b) Time to first claim
modeling

Mileage, fraction of driving at night,
over the speed limit and on urban
roads

Weibull regression Find that gender has lit-
tle impact on claims ex-
perience once mileage is
taken into account

Very few telematics
feature engineer-
ing, no feature selec-
tion/regularization

(Boucher et al., 2017) Claim frequency
modeling

Mileage GAM Flexible modeling Use of mileage alone as
telematics feature

(Verbelen et al., 2017) Claim frequency
modeling

Mileage, number of trips, road type,
handcrafted features related to day-
time and weekday

GAM Compositional features
assessment, flexible
modeling

Arbitrary choice of time
slots for daytime and
weekday variables

(Huang et Meng, 2019) Claim classifi-
cation, claim
frequency model-
ing

Milage, handcrafted features related
to travel habits, driving performance
and critical incidents

GLM, SVM, random
forest, XGBoost,
neural network

Flexible modeling, many
telematics features used

Very few telematics
feature engineer-
ing, no feature selec-
tion/regularization

(Pesantez-Narvaez et al., 2019) Claim classification Mileage, fraction of driving at night,
over the speed limit and on urban
roads

Logistic regression,
XGBoost

Flexible modeling No feature selec-
tion/regularization,
very few telematics fea-
ture engineering

(Ayuso et al., 2019) Claim frequency
modeling

Mileage, fraction of driving at night,
over the speed limit and on urban
roads

GLM Use of telematics infor-
mation as a correction of
the premium calculated
with classic covariates

No feature selec-
tion/regularization,
very few telematics fea-
ture engineering

(Guillen et al., 2019) Claim frequency
modeling

Fraction of driving at night, over the
speed limit and on urban roads

Zero-inflated Pois-
son regression

Account for the excess of
zeros

Very few telematics
feature engineer-
ing, no feature selec-
tion/regularization

(Boucher et Turcotte, 2020) Claim frequency
modeling

Mileage GAM and GAMLSS Flexible modeling, longi-
tudinal approach

Use of mileage alone as
telematics feature

(Guillen et al., 2020) Near-miss fre-
quency modeling

Mileage, urban and nighttime driving,
speeding

GLM, GAM Flexible modeling, more
balanced dataset with
near-misses

No feature selection or
regularization

(Guillen et al., 2021) Claim frequency
modeling

Mileage, near-misses (acceleration,
braking and smartphone usage events)

GLM Premium can be updated
weekly

No feature selec-
tion/regularization

(Gao et al., 2022) Claim frequency
modeling

Average driving time, velocity-
acceleration heatmaps

GLM, feed-forward
neural network,
convolutional neu-
ral network

Automatic feature extrac-
tion with neural networks

No use of data related to
driving habits

Table 2.14: Literature review about claim prediction with telematics data.
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CHAPTER 3

TELEMATICS COMBINED ACTUARIAL NEURAL NETWORKS FOR CROSS-SECTIONAL AND LONGITUDINAL

CLAIM COUNT DATA

3.1 Introduction
Nous présentons de nouveaux modèles transversaux et longitudinaux de comptage des réclamations pour
l’assurance automobile, construits sur le cadre du Combined Actuarial Neural Network (CANN) proposé
par (Wüthrich et Merz, 2019). L’approche CANN combine un modèle actuariel classique, tel qu’un modèle
linéaire généralisé, avec un réseau neuronal. Cette fusion de modèles aboutit à un modèle à deux com-
posantes comprenant un modèle de régression classique et une partie réseau neuronal. Le modèle CANN
exploite les forces des deux composantes, fournissant une base solide et une bonne interprétabilité, tout en
exploitant la flexibilité et la capacité à capturer les relations et interactions complexes offertes par le réseau
neuronal. Dans nos modèles proposés, nous utilisons des modèles log-linéaires de régression de comptage
des réclamations bien connus pour la partie de régression classique et un perceptron multicouche (MLP)
pour la partie réseau neuronal. La partie MLP est utilisée pour traiter les données télématiques fournies
sous forme de vecteur caractérisant les habitudes de conduite de chaque conducteur assuré. En plus des
distributions de Poisson et binomiale négative pour les données transversales, nous proposons une procé-
dure pour entraîner notre modèle CANN avec une spécification binomiale négative multivariée (MVNB). Ce
faisant, nous introduisons unmodèle longitudinal qui tient compte de la dépendance entre les contrats d’un
même assuré. Nos résultats révèlent que les modèles CANN présentent des performances supérieures par
rapport aux modèles log-linéaires qui reposent sur des facteurs de risque télématiques extraits manuelle-
ment.

3.2 Abstract
We present novel cross-sectional and longitudinal claim count models for vehicle insurance built upon the
Combined Actuarial Neural Network (CANN) framework proposed by (Wüthrich et Merz, 2019). The CANN
approach combines a classical actuarial model, such as a generalized linear model, with a neural network.
This blending of models results in a two-component model comprising a classical regression model and
a neural network part. The CANN model leverages the strengths of both components, providing a solid
foundation and interpretability from the classical model while harnessing the flexibility and capacity to
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capture intricate relationships and interactions offered by the neural network. In our proposed models, we
use well-known log-linear claim count regression models for the classical regression part and a multilayer
perceptron (MLP) for the neural network part. The MLP part is used to process telematics car driving data
given as a vector characterizing the driving behavior of each insured driver. In addition to the Poisson and
negative binomial distributions for cross-sectional data, we propose a procedure for training our CANN
model with a multivariate negative binomial (MVNB) specification. By doing so, we introduce a longitudinal
model that accounts for the dependence between contracts from the same insured. Our results reveal
that the CANN models exhibit superior performance compared to log-linear models that rely on manually
engineered telematics features.

Keywords: Automobile insurance, Combined Actuarial Neural Network, Deep Learning, Claim count data,
Multivariate negative binomial

3.3 Introduction and Motivations
Vehicle insurance products have traditionally been priced based on self-reported attributes provided by in-
sureds. These attributes commonly include various risk factors, including gender, age, vehicle usage, and
claim history. Insurers rely on this information to assess the level of risk associated with each insurance
contract and determine appropriate premium rates. With the introduction of telematics technology, insur-
ers can now collect a wide range of driving data through devices installed in the vehicles of policyholders
or through mobile applications. This includes information such as vehicle speed, acceleration and braking
behavior, mileage, location data, and factors like the time of day or types of roads frequently traveled. By
leveraging this wealth of data, insurers can gain a more accurate and objective understanding of each indi-
vidual’s driving habits and style, enabling them to customize insurance offerings and pricing based on their
actual driving behavior. This emerging paradigm, known as Usage-Based Insurance (UBI), revolutionizes the
insurance landscape in various ways. For insurers, telematics data means more accurate risk assessment
algorithms, which can often translate into a competitive advantage. For insureds, it means fairer premium
rates that align more closely with their actual risk profiles rather than being computed based on broad
demographic categories. It also means that they are priced based on risk indicators over which they have
control. From a societal perspective, UBI also offers many advantages. One of the key benefits is the po-
tential to improve road safety. By giving incentives for safe driving behavior and reduced mileage, UBI not
only helps reduce the frequency and severity of accidents, ultimately saving lives and reducing the eco-
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nomic burden associated with road accidents, but also contributes to reducing greenhouse gas emissions.
Additionally, telematics provide insurers with viable alternatives to sensitive risk factors, thereby helping to
prevent unfair discrimination. For a more extensive overview of the benefits of UBI, we refer to the works
of (Litman, 2007), (Bordoff et Noel, 2008) and (Ziakopoulos et al., 2022).

One of the most prominent questions related to UBI is how to make the most out of the collected driv-
ing data. A significant subset of the literature has focused on incorporating mileage into pricing models
due to its acknowledged importance as a risk factor in assessing risk and determining premium rates (see,
for instance, (Boucher et al., 2017), (Lemaire et al., 2015), and (Turcotte et Boucher, 2023)). However,
mileage alone fails to provide the whole story about an insured individual’s driving behavior, prompting
researchers to consider additional telematics information. One prevalent approach involves drawing upon
domain knowledge to craft telematics features from raw data. By applying their expertise in the field, re-
searchers can engineer features that capture critical aspects of driving behavior, specifically driving char-
acteristics that are thought to be correlated with the risk of accident. Common examples of such features
include harsh braking/acceleration events, cornering events, speeding, distracted driving, the fraction of
driving during both different time slots (e.g., rush hour, late-night hours, weekdays), and on different road
types (e.g., urban roads, highways), as well as the fraction of driving in different speed slots. While this ap-
proach captures signals missed by traditional risk factors and mileage (thereby improving pricing accuracy),
it relies heavily on human judgment, with its inherent flaws and biases. With countless possible telemat-
ics features that can be engineered from raw telematics data, selecting the optimal ones for pricing is not
straightforward. Furthermore, this process necessitates the setting of thresholds. For example, how should
night driving or harsh braking be precisely defined?

The limitations of the aforementioned approach have motivated researchers to explore a new set of meth-
ods that rely more on data and decrease the need for human judgment. As highlighted in a recent study
by (Embrechts et Wüthrich, 2022), the increasing amount of data available presents a challenge in manu-
ally designing features, leading actuaries to increasingly depend on tools like neural networks to learn and
extract meaningful representations from the data. (Blier-Wong et al., 2021) underline the importance of
learning valuable representations from emerging data sources such as text, image, and sensor data. These
sources, which include telematics car driving data, can enrich traditional data and offer improved insights
for predicting future losses in insurance contracts. Neural networks are regarded as the most effective
means for automatically extracting valuable features from raw data, which validates their practical appli-
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cation. In recent years, researchers have successfully applied the toolbox of deep learning, namely neural
networks architectures with a large number of hidden layers, to handle telematics data and other types
of unstructured data. In their work, (Wüthrich, 2017) introduce the speed-acceleration heatmap, a matrix
representation that characterizes the driving style of an insured driver, which is well-suited for process-
ing by deep learning algorithms. Subsequent studies ((Gao et Wüthrich, 2018), (Gao et al., 2019), (Gao et
Wüthrich, 2019), (Gao et al., 2022)) have effectively leveraged these heatmaps by employing neural net-
works to learn representations from them. In (Meng et al., 2022), the authors propose a supervised driving
risk scoring convolutional neural network model that uses telematics car driving data to improve automo-
bile insurance claims frequency prediction. (Blier-Wong et al., 2020) propose a Convolutional Regional
Autoencoder model for generating geographical risk encodings using convolutional neural networks. The
resulting encodings, which aim to replace the traditional territory variable, proved beneficial for risk-related
regression tasks.

In this paper, we present novel claim count models based on the Combined Actuarial Neural Network
(CANN) approach, initially proposed by (Wüthrich et Merz, 2019). The CANN approach involves embed-
ding a classical regression model, such as a generalized linear model (GLM; see (Nelder et Wedderburn,
1972) and (Dionne et Vanasse, 1989)), into a neural network, achieved by blending the regression functions
of both models. Consequently, the resulting model comprises the two following components: the classi-
cal regression (or actuarial) model and the neural network. This blending process can be interpreted as
a form of neural network boosting for the actuarial model, combining the strengths of both approaches.
The calibration of the CANN neural network is performed using the classical actuarial model as the initial
value in the gradient descent algorithm, with the negative log-likelihood of the specified distribution used
as the loss function. One of the key benefits of this specific architecture is the solid foundation offered by
the classical model, complemented by the network component’s flexibility and pattern recognition capabil-
ities. Neural networks excel in approximating highly nonlinear functions and possess the ability to compute
valuable interactions between input variables automatically. Consequently, the CANN approach combines
the best of bothworlds, leveraging the interpretability and reliability of the classicalmodelwhile capitalizing
on the power of neural networks to capture complex relationships and patterns in the data. A few studies
have successfully leveraged this approach: (Schelldorfer et Wuthrich, 2019) present a case study where a
Poisson GLM for predicting claims frequencies is initially used, then enhanced through generalized additive
models (GAMs) with natural cubic splines and finally combined with a neural network, resulting in a CANN
approach. The study also explores the use of embedding layers for more efficient treatment of categori-
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cal variables; (Gabrielli et al., 2020) boost an overdispersed Poisson model with a multilayer perceptron
to improve individual loss reserving; (Tzougas et Kutzkov, 2023) use the CANN approach to enhance binary
classification; (Laporta et al., 2023) apply the CANN architecture in the context of quantile regression.

Ourmodels employ a log-linearmodel for the actuarialmodel part and amultilayer perceptron (MLP) for the
network part. Telematics information is incorporated into the MLP as a telematics vector, which is given as
input to represent the driving behavior of each insured driver. TheMLP part additionally includes traditional
risk factors as inputs, enabling interactions between traditional and telematics inputs, while the log-linear
part, constrained in estimating complex functions, is only given traditional risk factors. We explore three
distinct distribution specifications for the claim count: Poisson and negative binomial for cross-sectional
analysis, andmultivariate negative binomial (MVNB; see (Hausman et al., 1984) and (Boucher et al., 2008)),
also known as negativemultinomial, for longitudinal analysis. TheMVNB distribution is a popular choice for
modeling longitudinal claim count data, as it captures the dependence between contracts from the same
insured. However, to our knowledge, this specification has never been adapted to a neural network model
for claim count regression. In this study, we extend the application of the MVNB distribution by incorpo-
rating it into the neural network framework, specifically the CANN architecture, for modeling longitudinal
claim count data. This adaptation allows us to leverage the strengths of both the MVNB distribution and
the neural network architecture. Our findings indicate that the CANNmodels perform better than their log-
linear counterparts that rely on manually engineered telematics features. Furthermore, the CANN model
using theMVNB specification exhibits a significant improvement compared to the two cross-sectional spec-
ifications.

In Section 3.4, we present the two datasets available to us: the contract dataset and the telematics dataset.
Following that, in Section 3.5, wedelve into the theory behind the CANNclaim countmodels and also discuss
the log-linearmodels that serve as benchmarks. Moving on to Section 3.6, weprovide an explanation of how
we apply the models on our specific dataset and show how we preprocess telematics data. In Section 3.7,
we assess the performance of the models on a holdout sample and interpret the CANN models through
permutation feature importance and partial dependence plots. Lastly, we conclude in Section 3.8.

3.4 Data
We have access to data from a Canadian property and casualty insurance company, which comes in two
distinct datasets: the contract and the telematics dataset.
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3.4.1 Contract dataset
In the contract dataset, each row represents a unique insurance contract. Contracts typically last for one
year, but there are instances where their duration may be shorter or longer. Each vehicle is observed over
one or more contracts; therefore, one vehicle can be represented by one or more rows in this dataset.
Based on risk factors, a premium must be computed for each contract. When using a cross-sectional data
model, contracts from the same vehicle are assumed to be independent of each other. On the other hand,
a longitudinal data model assumes a dependence between contracts, allowing it to use information from
previous contracts (including traditional risk factors, telematics data, past claims, etc.) to compute the
premium. The contract dataset includes attributes commonly used in vehicle insurance pricing models.
These traditional risk factors, displayed in Table 3.1, are recorded for 117,268 insurance contracts initiated
between December 15th, 2015 and December 31st, 2018. In cases wheremultiple drivers are associated with

Variable name Description Type

vin Unique vehicle identifier ID
annual_distance Annual distance declared by the insured Numeric
commute_distance Distance to the place of work declared by the insured Numeric
conv_count_3_yrs_minor Number of minor contraventions in the last three years Numeric
distance Real distance driven Numeric
expo Contract duration in years Numeric
gender Gender of the insured Categorical
marital_status Marital status of the insured Categorical
pmt_plan Payment plan chosen by the insured Categorical
veh_age Vehicle age Numeric
veh_use Use of the vehicle Categorical
years_licensed Number of years since obtaining driver’s license Numeric
nb_claims Number of claims Numeric

Table 3.1: Variables of the contract dataset.

a particular contract, attributes of the principal driver are used. Additionally, the dataset includes the vehicle
identification number (VIN), allowing us to identify the insured vehicle accurately, alongside the reported
claim count. As our goal is to perform claim count regression on contracts, the claim count variable will
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serve as the response for our supervised learning algorithms, namely the log-linear and the CANN models.
The 117,268 contracts are associated with 49,671 distinct vehicles, resulting in an average of approximately
2,36 contracts per vehicle. The histogram of the number of contracts per vehicle is shown in Figure 3.1.

Figure 3.1: Number of contracts per vehicle.

3.4.2 Telematics dataset
All 117,268 contracts have been logged using an on-board diagnostics (OBD) device, capturing driving infor-
mation. This data is stored as trip summaries in the telematics dataset, which comprises 117,566,259 trips.
Each row in the dataset represents a specific trip, and every trip is described by 4 attributes: the departure
and arrival date and time, the distance driven, and the maximum speed reached. Additionally, each trip is
associated with a VIN, and with the date information, it is thus possible to link each trip with one of the
117,268 contracts. An extract from the telematics dataset is presented in Table 3.2.

3.4.3 Training, validation, and testing datasets
In supervised learning analysis, splitting the available data into training, validation, and testing sets is paramount
for ensuring the reliability and ability to generalize of the learned model. The training set, which usually
comprises the largest portion of the data, is used to train the model’s parameters and optimize its perfor-
mance. However, relying solely on the training set for performance assessment can lead to overfitting, par-
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VIN Trip ID Departure datetime Arrival datetime Distance Maximum speed

A 1 2017-05-02 19:04:15 2017-05-02 19:24:24 25.0 104

A 2 2017-05-02 21:31:29 2017-05-02 21:31:29 6.4 66... ... ... ... ... ...
A 2320 2018-04-30 21:17:22 2018-04-30 21:18:44 0.2 27

B 1 2017-03-26 11:46:07 2017-03-26 11:53:29 1.5 76

B 2 2017-03-26 15:18:23 2017-03-26 15:51:46 35.1 119... ... ... ... ... ...
B 1485 2018-03-23 20:07:08 2018-03-23 20:20:30 10.1 92

C 1 2017-11-20 08:14:34 2017-11-20 08:40:21 9.7 78... ... ... ... ... ...
Table 3.2: Extract from the telematics dataset. Dates are displayed in the yyyy-mm-dd format. The actual
VINs have been hidden for privacy purposes.

ticularly when the model has a high capacity. To address this, the validation set is used during the modeling
process to assess the model’s performance on unseen data. It plays an important role in tuning hyperpa-
rameters, selecting the optimal model architecture, and preventing overfitting. By assessing the model’s
performance on the validation set, one can obtain an estimate of its generalization performance and make
necessary adjustments to improve its ability to generalize well to new, unseen examples. However, it is im-
portant to note that the back-and-forth process of evaluating the model on the validation set and adjusting
its hyperparameters can introduce information leakage from the validation set into the training set. This can
create an illusion of better performance than the model would exhibit in real-world scenarios. As a result,
the testing set is reserved for the final evaluation of the learnedmodel. It serves as an unbiased assessment
of how well the model will perform on completely unseen data. This final evaluation provides an estimate
of the model’s true performance and helps determine its reliability in real-world scenarios. By keeping the
testing set separate from the training and validation sets, we can ensure an unbiased evaluation and avoid
any potential data leakage. We partition the data as outlined in Table 3.3 for our analysis. Approximately
60% of the vehicles are allocated for training, while approximately 20% is assigned to the validation and
testing sets.

88



Set Symbol Number of vehicles Number of contracts Number of trips

Training Tr 30,000 70,451 71,416,560

Validation Va 10,000 23,368 22,611,829

Testing Te 9,671 23,449 23,537,870

Total – 49,671 117,268 117,566,259

Table 3.3: Data partitioning

3.5 Count Regression Models
We consider a training dataset denoted as Tr, which consists of |Tr| rows representing vehicle insurance
contracts. Contracts are grouped by vehicle and each vehicle i is observed over Ti contracts. We define
Yit as a discrete random variable denoting the number of claims during the tth contract of vehicle i. Fur-
thermore, we have xit a vector containing relevant predictor variables associated with the tth contract of
vehicle i. Importantly, we assume independence among all insured vehicles. In claim count regression, the
ultimate goal is to estimate the probability mass function (PMF) of the number of claims, given all past and
current information about the vehicle. Mathematically, we seek to estimate:

P
(︂
Yit = yit|yi,(1:t−1),xi,(1:t)

)︂
, yit ∈ N, (3.1)

where yi,(1:t−1) = (yi1, . . . , yi,t−1) is the vector of past claims and xi,(1:t) = {xi1, . . . ,xit} is the set of
past and current covariate vectors for vehicle i.

3.5.1 Cross-sectional models
In addition to assuming independence between vehicles, cross-sectionalmodels also assume independence
between contracts from the same vehicle. Consequently, these models do not use the history of a vehicle
to estimate its future risk. The PMF of the number of claims can thus be written as:

P
(︂
Yit = yit|yi,(1:t−1),xi,(1:t)

)︂
= P (Yit = yit|xit) , yit ∈ N. (3.2)

3.5.1.1 Poisson regression
The Poisson distribution is widely used in supervised learning analysis for claim count data due to its good
properties and simplicity. Under the Poisson specification, the PMF of the claim count for the tth contract
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of vehicle i, denoted by Yit, given its predictor vector, denoted by xit, is defined by
P(Yit = yit|xit) =

e−µ(xit)µ(xit)
yit

yit!
, for yit ∈ N, (3.3)

with E[Yit|Xit = xit] = Var[Yit|Xit = xit] = µ(xit). The mean parameter µ(xit) denotes the condi-
tional expectation (and conditional variance) of Yit. The regression function µ(·) captures the relationship
between the predictors xit and the mean parameter in the Poisson distribution, indicating how the condi-
tional expected count is influenced by the predictors. Subsequently, one must choose a specific functional
form for µ(·), which defines a hypothesis function space H that includes all the candidate functions for
modeling µ(·). The next step involves selecting the optimal function ˆ︁µ ∈ H, equivalent to estimating the
parameters of the specified functional form based on the available data.

In order to define what constitutes a good regression function, it is necessary to select a suitable loss func-
tion that quantifies the dissimilarity between the estimated probability mass and the true label. The goal is
to minimize this dissimilarity, improving the model’s predictive performance. The cross-entropy loss, also
known as the negative log-likelihood loss, is a commonly chosen option. For a specific observation i, the
cross-entropy loss is given by− ln(pi), where pi is the estimated probability of observing the true label yi.
This loss function assigns a higher penalty to larger discrepancies between the true label and the predicted
probability, incentivizing themodel to converge towardsmore accurate predictions. To estimate the param-
eters, we typically aim to minimize the average loss function over the training set, also called the empirical

risk. In the case of Poisson regression, this involves minimizing the average Poisson cross-entropy by solving
the following optimization problem:

ˆ︁µ = argmin
µ∈H

⎧⎨⎩− 1

|Tr|
∑︂

(i,t)∈Tr

yit ln[µ(xit)]− µ(xit)− yit!

⎫⎬⎭ . (3.4)

Note that this is equivalent to maximizing the likelihood function. For some specifications of µ(·), notably
the log-linear specification, the criterion in Equation (3.4) is convex, which enables various convex optimiza-
tion techniques to be applied. Alternative estimation techniques can also be used. One common option is
regularization techniques, including lasso, Ridge, and elastic-net regressions. Instead of solely minimizing
the average cross-entropy, these methods involve minimizing a modified objective function that includes a
penalty term. Regularization is particularly beneficial for addressing common issues such as multicollinear-
ity and overfitting.
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3.5.1.1.1 Log-linear Poisson regression.
In the Poisson regression context, one notable specification for the regression function is the log-linear
form, where the mean parameter is expressed as the exponential of a linear function of the predictors:

µLL(x;β) = exp {⟨x,β⟩} , (3.5)
where β denotes a vector of parameters, and ⟨x,β⟩ stands for the inner product between the predictor
vectorx and the coefficient vectorβ. The use of the exponential function ensures that themean parameter
remains positive. Log-linear Poisson regression has favorable properties, notably its interpretability stem-
ming from the quasi-linearity of the link function µ(·). Moreover, when maximum likelihood is used for
parameter estimation, this regression model falls within the framework of generalized linear models. GLMs
provide valuable properties, such as the asymptotic Gaussian distribution of the parametersβ, allowing for
the estimation of standard errors, hypothesis testing, and construction of confidence intervals.

However, log-linear regression does have a significant drawback – its regression function, being linear, lacks
flexibility. To address this limitation, various techniques can be employed. In fact, any supervised learning
technique could be used for the specification of µ(·). One simple approach to incorporating non-linearity
involves adding polynomial terms of the predictors to the model alongside the linear terms. Splines, on
the other hand, offer a flexible and powerful method for modeling non-linear relationships. Instead of
fitting a single global function, splines divide the predictor range into smaller intervals and fit separate
polynomial functions within each interval. This approach enables more localized and flexible modeling of
the relationship between the predictors and the mean parameter.

3.5.1.1.2 CANN Poisson regression.
In some cases, the supervised learning problem may require even more flexibility, and neural networks are
particularly useful in such scenarios. Neural networks are formidable function approximation machines,
well-known for their ability to estimate a wide range of highly non-linear multivariate functions. One of the
key advantages of neural networks is their ability to handle raw and unstructured data effectively. Because
we deal with detailed telematics data, this capability forms the basis for adopting the Combined Actuarial
Neural Network (CANN) approach of (Wüthrich et Merz, 2019), which embeds a classical actuarial model
into a neural network architecture. A CANN model consists of two distinct components: the classical re-
gression model component and the neural network component. This architecture offers great flexibility,
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allowing for seamless integration of any classical model whose regression function is compatible with a
neural network architecture. Likewise, the neural network component can employ various types of super-
vised architectures, such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and
other architectures tailored to the specific problem at hand. The classical regression model provides good
initial estimations and serves as a guide for the neural network component. It offers a starting point for
the network’s optimization process, enabling faster convergence. The neural network component, in turn,
refines the initial estimations, capturing additional signals and uncovering patterns that may have been
missed by the classical model alone.

In our specific case, we use log-linear count regression as the classical model and a multilayer perceptron
(MLP) as the neural network component in the CANNmodel. As a result, we have the following specification
for the regression function:

µCANN(x;β,θ) = µLL(x;β)× µMLP(x;θ), (3.6)
where µMLP(·) is the regression function learned by a multilayer perceptron parametrized with θ. In a nut-
shell, an MLP consists of interconnected layers, including an input layer, hidden layers, and an output layer.
Each layer applies an affine transformation to the inputs it receives, followed by a non-linear activation func-
tion. This combination of linear transformations and non-linear activations allows MLPs to model complex
non-linear relationships in the data. To delve into the mathematical description of an MLP, we can break
down its structure starting from the input layer and progressing towards the output layer:

1. Input layer (l = 0): The input layer consists of n0 nodes representing the input variables x =

[x1, x2, . . . , xn0 ].
2. First hidden layer (l = 1): The first hidden layer contains n1 nodes, connected to the nodes from

the input layer (l = 0) and the nodes in the subsequent layer (l = 2). The computations in the first
hidden layer involve an affine transformation of the input variables followed by the application of a
non-linear activation function, which introduces non-linearity into the network. Let us denote the
weight matrix between layers l = 0 and l = 1 asW (1) with dimensions (n1, n0) and the bias vector
as b(1) with dimensions (n1, 1). The activation function applied to the transformed inputs is denoted
as ϕ. The computations in the first hidden layer can then be expressed as:

a(1) = W (1)x+ b(1), z(1) = ϕ
(︂
a(1)

)︂
, (3.7)
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where a(1) represents the preactivation values in the first hidden layer, and z(1) represents the post-
activation values. It is worth noting that the activation function ϕ is applied element-wise on the
preactivation vector a(1).

3. Subsequent hidden layers (l = 2, 3, . . . , L − 2): Each subsequent hidden layer l contains nl nodes,
connected to the nodes from the previous layer (l − 1) and the nodes in the following layer (l + 1).
Similar to the first layer, the computations in the subsequent hidden layers involve an affine transfor-
mation of the inputs z(l−1) followed by the application of the non-linear activation function ϕ. Let us
denote the weight matrix between layers l−1 and l asW (l) with dimensions (nl, nl−1) and the bias
vector as b(l) with dimensions (nl, 1). The computations in the hidden layers can then be expressed
as:

a(l) = W (l)z(l−1) + b(l), z(l) = ϕ
(︂
a(l)
)︂
, (3.8)

where a(l) represents the preactivation values in the lth hidden layer, and z(l) represents the post-
activation values.

4. Output layer (l = L − 1): The output layer consists of nL−1 nodes, representing the final output(s)
of the MLP. Similar to the hidden layers, the output layer involves an affine transformation followed
by an activation function g. We denote the weight matrix between layers L − 2 (last hidden layer)
and L− 1 asW (L−1) with dimensions (nL−1, nL−2) and the bias vector as b(L−1) with dimensions
(nL−1, 1). The computations within the output layer can be expressed as:

a(L−1) = W (L−1)z(L−2) + b(L−1), z(L−1) = g
(︂
a(L−1)

)︂
. (3.9)

Note that the number of output neurons nL−1 should match the number of modeled distribution param-
eters. In the context of Poisson regression, where we are modeling a single parameter µ, only one output
neuron is necessary. The choice of the output activation function g(·) is important and should be aligned
with the specific problem being tackled since it determines the range and properties of the output values.
For instance, in the classic case of a multi-class classification problem (where the multinoulli distribution is
used as a specification for the target variable), each output neuron represents a class, and the predicted
probabilities for each class should be positive and sum up to 1. In this scenario, a common choice for the
activation function is the softmax function, which normalizes the outputs and ensures they are positive and
sum up to 1. In our case, we need to ensure that the parameter µ, which represents the expected count, is
always positive. While the exponential function is a natural choice to enforce positivity, it can sometimes
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lead to numerical instability, especially for large input values. As a better alternative, we choose to use
the softplus function as the activation function for the output layer, defined as ζ(x) = log(1 + exp(x)).
The softplus function is well-behaved even for large input values, mitigating the issue of numerical insta-
bility that can arise with the exponential function. The parameters of the generic MLP described above,
consisting of weight matrices and bias vectors, can be denoted as:

θ =
{︂
W (1), b(1),W (2), b(2), . . . ,W (L−1), b(L−1)

}︂
. (3.10)

Naturally, these parameters must be estimated. However, the criterion in Equation (3.4) is typically not
convex, making it challenging to find the global minimum of the empirical risk. In practice, the goal is to
find a “good enough” local minimum that yields satisfactory performance on the task. Gradient descent
algorithms, such as stochastic gradient descent (SGD) and its variants, are commonly employed to update
iteratively the parameters θ in the direction of the steepest descent. The backpropagation algorithm effi-
ciently computes the gradients and propagates them through the network, enabling parameter updates.
With the introduced notation for the MLP, we can now express the specification in (3.6) as

µCANN(x;β,θ) = ζ
{︂
⟨x,β⟩+ a(L−1)(x;θ)

}︂
. (3.11)

The corresponding computational graph for L = 5 (i.e., 3 hidden layers) is shown in Figure 3.2. Like a
standard MLP, the network parameters β and θ can be estimated using gradient descent. A simplified
pseudo-algorithm for the training of the Poisson CANN model is provided in Algorithm 2. The learning rate
η is a hyperparameter that determines the step size taken every time a gradient descent step is performed.
In other words, it controls how quickly or slowly the network parameters are updated during training. A
higher learning rate allows for larger steps, which can lead to faster convergence. However, an excessively
high learning rate may cause the optimization process to overshoot or oscillate around the minimum, hin-
dering convergence. Conversely, a very low learning rate might result in slow convergence, requiring more
iterations to reach an acceptable solution. Finding the right learning rate is important and is typically an
empirical process that requires experimentation and tuning. In practice, mini-batch gradient descent is
commonly used for training neural networks. It works by dividing the training data into smaller subsets,
called mini-batches, and computing the gradients and parameter updates based on these mini-batches.
This approach offers computational efficiency and improved generalization compared to regular gradient
descent, making it a preferred choice in practice. For a comprehensive understanding of neural networks,
we refer to the excellent book (Goodfellow et al., 2016).
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Figure 3.2: CANN architecture for the Poisson specification. The MLP’s preactivation output value a(4)1 is
added to the log-linear model’s preactivation output value ⟨x,β⟩ before being transformed with the soft-
plus function ζ(·). The resulting µ value is compared to the ground truth y using Poisson cross-entropy loss.
The architecture shown employs a 3-hidden-layer MLP, but can be customized with any number of layers.

3.5.1.2 Negative binomial regression
One issue with the Poisson distribution is its equidispersion assumption. Indeed, we have that µ(x) =

E[Yit|X = x] = Var[Yit|X = x]. In practice, claim count data often exhibit overdispersion, where the
observed variance of the claim count is greater than the mean. To address this limitation, alternative distri-
butions allowing for overdispersion can be used. Among them, the negative binomial distribution (see, for
instance, (Denuit et al., 2007) and (Cameron et Trivedi, 2013)) stands out as a common choice. Under the
negative binomial specification, the PMF of the claim count for the tth contract of vehicle i (Yit), given its
predictor vector (xit), can be written as

P(Yit = yit|xit) =
Γ(yit + ϕ)

yit!Γ(ϕ)

(︃
ϕ

ϕ+ µ(xit)

)︃ϕ(︃ µ(xit)

µ(xit) + ϕ

)︃yit

, for yit ∈ N, (3.12)
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Algorithm 2: Parameter estimation procedure – Poisson CANN model
Input: Training dataset {(xit, yit)}(i,t)∈Tr , learning rate η, number of epochs E
Output: Trained model parameters θ̂, β̂ and ŵϕ

Initialize model parameters θ̂ = 0, β̂ = β̂
MLE and ŵϕ.

for epoch← 1 to E do1. For each contract (i, t), apply the CANN regression function with current network parameters tocompute the current estimated mean parameter µ̂it:
µ̂it = µCANN(xit; β̂, θ̂).

2. Compute the empirical risk over the training dataset:
R = − 1

|Tr|
∑︂

(i,t)∈Tr

yit ln[µ̂it]− µ̂it − yit!.

3. Perform backpropagation to compute the gradients ofR with respect to the network parameters:
∇βR and ∇θR.

4. Perform gradient descent using the learning rate:
β̂ ← β̂ − η∇β̂R,

θ̂ ← θ̂ − η∇θ̂R.

end

where ϕ > 0 is a dispersion parameter. This can be seen as a generalization of the Poisson distribution.
Indeed, the Poisson distribution is recovered when 1

ϕ → 0. The first two centered moments are given by:
E[Yit|Xit = xit] = µ(xit) and Var[Yit|Xit = xit] = µ(xit) +

µ(xit)
2

ϕ
. (3.13)

As can be seen, the negative binomial specification assumes overdispersion since Var[Yit|Xit = xit] >

E[Yit|Xit = xit]. Once the specification for the regression function µ(·) has been chosen, which defines a
set of candidate functionsH, one can estimate the parameters of the regression function µ(·) along with
the dispersion parameter ϕ by maximum likelihood or, equivalently, by minimizing the empirical risk over
the training set:

{ˆ︁µ, ˆ︁ϕ} = argmin
µ∈H,ϕ>0

⎧⎨⎩− 1

|Tr|
∑︂

(i,t)∈Tr

ln

[︃
Γ(yit + ϕ)

yit!Γ(ϕ)

]︃
+ ϕ ln

[︃
ϕ

ϕ+ µ(xit)

]︃
+ yit ln

[︃
µ(xit)

µ(xit) + ϕ

]︃⎫⎬⎭ . (3.14)
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3.5.1.2.1 Log-linear negative binomial regression.
As in the Poisson case, a common specification for µ(·) is the log-linear form, defined in Equation (3.5). In
this case, the criterion in (3.14) is convex, and convex optimization can be used to estimate β and ϕ.

3.5.1.2.2 CANN negative binomial regression.
Similar to the approach used for the Poisson case, a CANN architecture can be used to model the mean
parameter in the negative binomial distribution. The specification for the regression function µ(·) remains
identical to the Poisson case, as defined in Equation (3.11). In order to incorporate the extra distribution
parameter ϕ, an additional output neuron is introduced in the network. This output neuron is connected
to a neural network weight wϕ ∈ R through the softplus function, ensuring that ϕ remains positive, i.e.,
ϕ = ζ(wϕ). It is important to highlight that the distribution parameter ϕ is not directly connected to
the input variables x. As a result, no heterogeneity is incorporated into this parameter, and a common
estimated value ˆ︁ϕ is used for all observations. The exact architecture for the negative binomial CANNmodel
is depicted in Figure 3.3. The network parameters β, θ, and wϕ can be learned by minimizing the criterion
in Equation (3.14) using the procedure described in Algorithm 3.

3.5.2 Longitudinal models
Cross-sectional models assume independence between all contracts. However, in our case, the data ex-
hibits clustering due to contracts being grouped by vehicle. While it is reasonable to assume independence
between contracts from distinct vehicles, this assumption is less valid for contracts from the same vehi-
cle. In reality, the claim counts of contracts within the same vehicle may be influenced by shared vehicle-
specific characteristics, unobserved risk factors, or policy-level effects, resulting in dependence between
observations within each vehicle cluster. To appropriately address this dependence, we transition from
cross-sectional to longitudinal models, enabling the introduction of within-vehicle dependence. In the case
of claim count data, a longitudinal model can efficiently leverage the history of the vehicles to refine the
risk estimation for future contracts.

While variousmodels are available to analyze longitudinal data, such as randomeffectsmodels, fixed effects
models, generalized estimating equations (GEE), and autoregressive models (AR), among others, empirical
evidence in the context of claim count regression supports the effectiveness of random (or mixed) effects
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Figure 3.3: CANN architecture for the negative binomial specification. TheMLP’s preactivation output value
a
(4)
1 is added to the log-linear model’s preactivation output value ⟨x,β⟩ before being transformed with the

softplus function ζ(·) to obtain the µ value of the negative binomial distribution. The ϕ value is obtained
by transforming a real-valued parameterwϕ through the softplus function. The resulting parameters µ and
ϕ are then compared to the ground truth y using negative binomial cross-entropy loss. The architecture
shown employs a 3-hidden-layer MLP, but can be customized with any number of layers.

models (see (Boucher et al., 2008)). In these models, a random effect, which is a random variable, is intro-
duced in the specified distribution. For instance, in the case of count data, the specified distribution could
be the Poisson distribution. The random effect is assumed to follow a certain distribution, such as a nor-
mal, gamma, or another appropriate distribution. The inclusion of the random effect allows for capturing
the unobserved heterogeneity or individual-specific effects that cannot be accounted for by the observed
covariates. It introduces additional variability into the model and accounts for the dependence within clus-
ters. In longitudinal analysis, we need, for each vehicle i, to model the random vector of claim counts
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Algorithm 3: Parameter estimation procedure – Negative binomial CANN model
Input: Training dataset {(xit, yit)}(i,t)∈Tr , learning rate η, number of epochs E
Output: Trained model parameters θ̂, β̂ and ŵϕ

Initialize model parameters θ̂ = 0, β̂ = β̂
MLE and ŵϕ.

for epoch← 1 to E do1. For each contract (i, t), apply the CANN regression function with current network parameters tocompute the current estimated mean parameter µ̂it:
µ̂it = µCANN(xit; β̂, θ̂).

2. Compute the current estimated parameter ϕ̂:
ϕ̂ = ζ(ŵϕ).

3. Compute the empirical risk over the training dataset:
R = − 1

|Tr|
∑︂

(i,t)∈Tr

ln

[︄
Γ(yit + ϕ̂)

yit!Γ(ϕ̂)

]︄
+ ϕ̂ ln

[︄
ϕ̂

ϕ̂+ µ̂it

]︄
+ yit ln

[︄
µ̂it

µ̂it + ϕ̂

]︄
.

4. Perform backpropagation to compute the gradients ofR with respect to the network parameters:
∇βR, ∇θR and ∇wϕ

R.

5. Perform gradient descent using the learning rate:
β̂ ← β̂ − η∇β̂R,

θ̂ ← θ̂ − η∇θ̂R,
ŵϕ ← ŵϕ − η∇ŵϕ

R.

end

Y i,(1:Ti) = (Yi1, . . . , Yi,Ti). The joint PMF can be expressed with

P
(︂
Y i,(1:Ti) = yi,(1:Ti)|xi,(1:Ti)

)︂
=

∫︂ ∞

−∞

(︄
Ti∏︂
t=1

P(Yit = yit|xi,(1:Ti), θi)

)︄
f(θi)dθi, (3.15)

where f(θi) is the PDF of the ramdom effect.

3.5.2.1 Multivariate negative binomial regression
A multivariate negative binomial regression model is obtained by introducing a gamma-distributed ran-
dom effect in the mean parameter of the Poisson distribution. Specifically, we assume that the conditional
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distribution of Yit, givenΘi = θi, follows a Poisson distribution with mean µ(xit)θi, whereΘi is a gamma-
distributed random variable with mean 1 and variance 1/ϕ. The density ofΘi is given by

fΘi(θi) =
ϕϕ

Γ(ϕ)
θϕ−1
i e−ϕθi , θi > 0. (3.16)

By using Equation (3.15), one can derive the joint distribution for the vector of claim counts:
P
(︂
Y i,(1:Ti) = yi,(1:Ti)|xi,(1:Ti)

)︂
=

Ti∏︂
t=1

(︃
µ(xit)

yit

yit!

)︃
Γ(yi• + ϕ)

Γ(ϕ)

(︃
ϕ

µi• + ϕ

)︃ϕ(︃ 1

µi• + ϕ

)︃yit

, (3.17)
where µi• =∑︁Ti

t=1 µit and yi• =∑︁Ti
t=1 yit. This joint distribution is commonly referred to as the multivari-

ate negative binomial (MVNB) or negative multinomial distribution. Note that the Poisson distribution is
retrieved when 1

ϕ → 0. Furthermore, given the past claim history denoted as yi,(1:t−1) = (yi1, . . . , yi,t−1)

as well as current and past covariate vectors denoted as xi,(1:t) = (xi1, . . . ,xit), one can show that the
number of claims at time (or contract) t follows a negative binomial distribution. The probability of observ-
ing yit claims at time t, given the past claim history as well as past and current covariate vectors, is thus
expressed with
P(Yit = yit|yi,(1:t−1),xi,1:t) =

Γ(yit + αit)

yit!Γ(αit)

(︃
γit

γit + µ(xit)

)︃αit
(︃

µ(xit)

µ(xit) + γit

)︃yit

, t = 1, 2, . . . , Ti,

(3.18)
where αit = ϕ + Σ

(y)
it and γit = ϕ + Σ

(µ)
it . Σ(y)

it =
∑︁t−1

t′=1 yit′ and Σ
(µ)
it =

∑︁t−1
t′=1 µ(xit′) represent the

number of past claims and the sum of past µ values for contract (i, t), resepctively. In the special case when
t = 1, there is no past history and we set Σ(y)

it = Σ
(µ)
it = 0, which yields αi1 = γi1 = ϕ. The expected

claim count, given the past history, is given by:
E
[︂
Yit|yi,(1:t−1),xi,1:t

]︂
= µ(xit)

(︄
ϕ+Σ

(y)
it

ϕ+Σ
(µ)
it

)︄
(3.19)

= µ(xit)

(︃
αit

γit

)︃
. (3.20)

Fitting anMVNBmodel, therefore, amounts to fitting a negative binomial model, where the parameters αit

and γit depend on the vehicle’s history. Once the specification for the regression function µ(·) is chosen,
the parameter ϕ and the parameters in the regression function µ(·) can be estimated by minimizing the
empirical risk over the training set. This can be achieved through the following optimization problem:
{ˆ︁µ, ˆ︁ϕ} = argmin

µ∈H,ϕ>0

⎧⎨⎩− 1

|Tr|
∑︂

(i,t)∈Tr

ln

[︃
Γ(yit + αit)

yit!Γ(αit)

]︃
+ αit ln

[︃
γit

γit + µ(xit)

]︃
+ yit ln

[︃
µ(xit)

µ(xit) + γit

]︃⎫⎬⎭ .

(3.21)
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3.5.2.1.1 Log-linear multivariate negative binomial regression.
If the specification for µ(·) is the log-linear form, defined in Equation (3.5), the criterion in (3.21) is convex,
and convex optimization can be used to estimate β and ϕ.

3.5.2.1.2 CANN multivariate negative binomial regression.
In the MVNB case, the CANN architecture, as defined in Equation (3.11), can also be used as a specifica-
tion for the regression function µ(·). To incorporate the additional distribution parameters αit and γit, two
additional output neurons are introduced in the network, as depicted in Figure 3.4. The distribution pa-
rameters αit and γit stem from a common parameter ϕ > 0, and for the tth contract of vehicle i, we have
αit = ϕ+ Σ

(y)
it and γit = ϕ+ Σ

(µ)
it . The neuron representing ϕ is connected to a network weight wϕ ∈ R

through the softplus function, i.e., ϕ = ζ(wϕ). AnMVNB CANNmodel can be trained with backpropagation
and gradient descent, as outlined in Algorithm 4. Notice that for a vehicle i, the parameter γit depends on
the µ parameter values for its past contracts. As the training procedure of the CANN model is iterative, the
estimated µ values change at each iteration. Hence, it is crucial to update Σ

(µ)
it for each contract (i, t) at

every iteration. This updating procedure is carried out in step 2 of Algorithm 4.

3.6 Pratical Application with Telematics Data
In this section, we explain how our CANN regression models are applied to our datastet. Additionally, we
describe the application of the log-linear models, which serve as benchmark models in our analysis.

3.6.1 Log-linear models
The Poisson, negative binomial, and MVNB log-linear models are benchmarks for the Poisson, negative bi-
nomial, and MVNB CANN models. These models incorporate all 11 traditional risk factors from Table 2.2,
including the real distance driven (although not strictly classified as a traditional risk factor). For each con-
tract (i, t), these traditional risk factors are denoted by the vector x(trad)

it . Notice that among the 11 tradi-
tional risk factors, 4 are categorical: gender, marital_status, pmt_plan, and veh_use. For these risk
factors, the approach involves initially grouping all rare categories, defined as those representing 5% or less
of the total number of observations, and labeling them as “others.” We then encode them numerically
using dummy encoding. All the resulting traditional covariates are then centered and scaled. Moreover,
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commute_distance contains missing values, which we fill in using median imputation.

Unlike neural networks, log-linear models do not have the ability to learn features directly from raw data.
As a result, we must manually engineer features from the telematics data used by these models. These 13
telematics features, described in Table 3.4, were specifically engineered from the telematics dataset as risk
factors potentially correlated with the claiming risk. For each contract (i, t), these numerical handcrafted
telematics features are denoted by the vector x(hand)

it . Note that these handcrafted telematics features are
also centered and scaled prior to being input into the log-linear models. The regression function for the µ
parameter can thus be written as

µ
(︂
x(trad, hand);β

)︂
= exp

(︂
⟨x(trad, hand),β⟩

)︂
, (3.22)

where x(trad, hand) is the concatenation of x(trad) and x(hand). The parameters estimated on the training
set are shown in Table 3.5. Notably, when using telematics information, the estimated ϕ parameter in the
MVNB log-linearmodel is higher. A higherϕ value brings the correcting factor in Equation 3.20 closer to one,
indicating reduced importance on past experience when telematics features are used. This underscores the
relevance of the engineered telematics features.

3.6.2 CANN models
For the CANN regression models, we extract low-level descriptor vectors that are specifically designed to
accurately describe the driving patterns within a particular contract, at least with the dataset we have. We
expect the MLP component within the CANN models to learn meaningful high-level features from these
low-level vectors. The hope is that the learned features in the hidden layers will be more relevant than
the handcrafted features of Table 3.4. Each contract (i, t) is described by the following descriptor vectors,

1 20h-0h
2 0h-6h
3 11h-14h
4 17h-20h Monday to Friday
5 7h-9h Monday to Friday
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which provide a summary of its telematics information:
x
(h)
it =

(︂
x
(h)
it,1, . . . , x

(h)
it,24

)︂
∈ R24,

x
(d)
it =

(︂
x
(d)
it,1, . . . , x

(d)
it,7

)︂
∈ R7,

x
(a)
it =

(︂
x
(a)
it,1, . . . , x

(a)
it,14

)︂
∈ R14,

x
(m)
it =

(︂
x
(m)
it,1 , . . . , x

(m)
it,16

)︂
∈ R16,

x
(k)
it =

(︂
x
(k)
it,1, . . . , x

(k)
it,10

)︂
∈ R10.

• The elements in vector x(h)
it represent the fraction of driving during each of the 24 hours of the day.

Therefore, x(h)it,j is the fraction of driving during the jth hour of the day for contract (i, t).
• The elements in vector x(d)

it represent the fraction of driving during each of the 7 days of the week.
Therefore, x(d)it,j is the fraction of driving during the jth day of the week for contract (i, t). Monday,
Tuesday, Wednesday, Thursday, Friday, Saturday, and Sunday are denoted by j = 1, 2, 3, 4, 5, 6, 7,
respectively.

• The elements in vector x(a)
it represent the fraction of trips made in different average speed slots. For

instance, x(a)it,j denotes the fraction of trips made at an average speed between 10(j − 1) and 10j

kilometers per hour.
• The elements in vector x(m)

it represent the fraction of trips made in different maximum speed slots.
For instance, x(m)

it,j denotes the fraction of trips made where the maximum speed reached falls be-
tween 10(j − 1) and 10j kilometers per hour.

• The elements in vector x(k)
it represent the fraction of trips made in different distance slots. For in-

stance, x(k)it,j denotes the fraction of trips between 5(j − 1) and 5j kilometers.

These descriptor vectors capture specific aspects of the driving patterns, such as hourly, weekly, average
speed, and maximum speed distribution, providing valuable information for the MLPs. Since MLPs can only
accept vectors as input, we concatenate these four vectors into a global telematics vector:

x
(tele)
it =

(︂
x
(h)
it ,x

(d)
it ,x

(a)
it ,x

(m)
it ,x

(k)
it

)︂
.
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We incorporate this telematics vector into the MLP component of the CANN models, together with the
traditional risk factors x(trad), enabling interactions between telematics and traditional inputs. In contrast,
the log-linear part of the CANN models only includes the traditional risk factors due to the difficulty of
processing low-level information. The regression function for the µ parameter can thus be written as

µCANN
(︂
x(trad, tele);β,θ

)︂
= ζ

{︂
⟨xtrad,β⟩+ a(L−1)(xtrad,tele;θ)

}︂
. (3.23)

where x(trad, tele) is the concatenation of x(trad) and x(tele).

The CANN models are trained using the torch library in the R programming language, using mini-batch
gradient descent with 256 observations per batch. The optimizer we use to perform gradient descent is
the Adam optimizer, which is a fairly popular choice for training neural networks. Additionally, we use the
reduce-on-plateau learning rate scheduler, which dynamically adjusts the learning rate basedon themodel’s
performance, automatically reducing it when the improvement plateaus, allowing for better optimization
and convergence during training. For the MLP component of our CANN models, we opt for 3 hidden layers
(L = 5) with 128, 64, and 32 hidden units, respectively (n1 = 128, n2 = 64, n3 = 32). We choose the
rectified linear unit (ReLU) as the activation function ϕ(·) used in the hidden layers. Additionally, we add
batch normalization and dropout layers in-between fully connected layers. Batch normalization applies a
normalization transformation to the input of a layer by subtracting the mini-batch mean and dividing by
the mini-batch standard deviation. By maintaining a stable mean and variance throughout the network, it
can mitigate the vanishing or exploding gradients problem, enabling more effective and efficient training.
The dropout layers, on the other hand, serve as a regularization technique that helps prevent overfitting.
During training, dropout randomly sets a fraction of the hidden units of a given hidden layer to zero at each
iteration, which forces the network to learn redundant representations and reduces the reliance on specific
features. This regularization technique improves the model’s ability to generalize well to unseen data.

3.6.3 CANN hyperparameter tuning
To maximize the performance of our CANN models, we use grid search for hyperparameter tuning, with
the average loss observed on the validation dataset Va as our optimization criterion. Additionally, we in-
corporate a regularization technique known as “early stopping” to determine the best number of epochs.
This approach allows us to prevent overfitting and select the optimal number of epochs based on the low-
est average loss achieved during training. We focus on three key hyperparameters: p, which represents
the probability of dropout in the dropout layers, l_start, denoting the initial learning rate used in the
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reduce-on-plateau learning rate scheduler, and factor, indicating the factor by which the learning rate is
multiplied upon reaching a plateau. A plateau is the point where there is no observed improvement in the
validation loss for two consecutive epochs. We compute the average validation loss for all 45 combinations
derived from the following hyperparameter values:

• l_start: 0.00001, 0.00005, 0.0001, 0.0005, 0.001
• factor: 0.3, 0.4, 0.5
• p: 0.2, 0.3, 0.4.

Remember that the network parameters in the classical components of the CANN models are initialized
with the maximum likelihood estimators of the corresponding log-linear model, which is why we use rela-
tively small learning rates. At the initialization stage, the network already produces reasonable predictions,
reducing the need for large gradient descent steps. The validation loss for each of the 45 combinations and
the three specifications is presented in Table 3.6. It is worth noting that eachmodel is trained for 30 epochs,
and as early stopping is employed, the displayed average validation loss is based on the optimal number of
epochs, which can be less than 30. As can be seen, for all learning rates higher than 0.00001, the mini-
mum average validation loss is achieved after a very small number of epochs, indicating that the network
learns too quickly. Although the negative binomial and MVNB models perform best at a learning rate of
0.0001, we believe that with more epochs, we could achieve a lower average loss with a learning rate of
0.00001. This is particularly true since the average losses are quite similar for lr_start = 0.00001 and
lr_start = 0.0001. When examining the first 9 rows of Table 3.6, it becomes apparent that the factor
hyperparameter has a negligible effect on the validation loss. On the other hand, the p hyperparameter
only seems to have an impact on the validation loss for the Poisson model, performing best when p = 0.4.
Although the dropout rate does not significantly affect the performance for both the negative binomial and
MVNB models, we also choose p = 0.4 for these two models since the best performance is achieved at a
high number of epochs (29 and 30 epochs, respectively). This suggests that with more epochs, there is
potential for further performance improvement. Therefore, we select lr_start = 0.00001, factor = 0.3,
and p = 0.4 as the hyperparameters for all three specifications. We train the models again on the training
set, this time for 100 epochs. The performance of the three models on the validation set is displayed in
Table 3.7. As can be seen, all 3 specifications require 35 epochs to minimize the average validation loss.
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3.7 Analyzes
3.7.1 Performance assessment on the testing set
After carefully tuning the hyperparameters of our CANN models, we have at hand promising claim count
models that are now nearing implementation. The next crucial step is to estimate their generalization capa-
bilities accurately. To achieve this, we cannot rely on the validation set, as it has been extensively usedduring
the hyperparameter tuning process. Instead, we assess the models’ generalization performance using the
testing set Te, which has remained untouched until now. Using this independent dataset, we can estimate
the models’ predictive performance on unseen data points and determine their suitability for real-world
applications. Furthermore, we perform a comparative analysis between the CANN and the benchmark
models, namely the log-linear models that use telematics information in the form of handcrafted telem-
atics features. This comparative assessment allows us to evaluate our CANN models’ relative performance
and effectiveness against established approaches. In order to fully capture the value of telematics data, we
also evaluate the performance of all 6 models (Poisson, negative binomial and MVNB log-linear and CANN
models) using only the 11 traditional risk factors as covariates. In the CANN models, the MLP component
therefore only comprises the 11 traditional risk factors. This analysis helps us understand the contribution
of telematics information in improving the predictive power of the models.

All 12 models are trained on the learning set, and their performance is evaluated on the testing set. To
assess the performance, we employ 3 different scoring rules, namely the Poisson deviance, the logarithmic
score, and the squared error. For each scoring rule, we compute the average value on the testing set. To
assess the magnitude of the achieved performance, we begin by calculating the average scoring rule values
for a baseline model. This baseline model is defined as a homogeneous Poisson log-linear model, where
the estimation of the mean (and variance) parameter µ is estimated by the average number of claims per
contract observed in the learning set:

µ̂ =
1

|{Tr,Va}|
∑︂

(i,t)∈{Tr,Va}

yit. (3.24)

The average scoring rule values for this baseline model on the testing set are reported in Table 3.8. We
can then evaluate the performance of each of the 6 models in terms of percentage improvement over the
baseline model, as shown in Table 3.9. As can be seen, our CANNmodels consistently outperform their cor-
responding log-linear benchmark models across all scoring rules. Moreover, our longitudinal MVNB CANN
model offers a significative improvement over both Poisson and negative binomial distributions, suggesting
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a substantial dependence among contracts within a vehicle.

3.7.2 Permutation feature importance and partial dependence plots
One substantial drawback of neural networks is their difficulty of interpretation. However, researchers have
developed tools to shed light on the inner workings of these black box algorithms. Two particularly useful
tools in this context are permutation feature importance and partial dependence plots.

Permutation feature importance is amodel-agnostic technique that computes an importance score for each
input (or variable) in a supervised learning algorithm. It achieves this by randomly permuting the values of
a specific input while holding the other inputs constant and observing the resulting effect on the model’s
performance. By comparing the original model’s performance with the permuted performance, we can de-
termine the variable’s importance relative to the chosen performance metric. Suppose we have a trained
model and a holdout sample for evaluation purposes. We can initially score the model on this sample and
measure its performance using a chosen metric, such as the average loss. Let us denote the average loss
obtained with the original holdout sample as ℓoriginal. To assess the importance of input j in the prediction
process, we randomly shuffle the values of input j in the holdout sample and rescore the model. This pro-
cess yields a new average loss, denoted as ℓ(j)permuted, where the superscript j indicates that input j has been
permuted. If input j is indeed important for the model’s prediction, the permuted average loss ℓ(j)permuted
is expected to be greater than the original average loss ℓoriginal. This suggests that permuting the values of
input j has a detrimental effect on the model’s performance. To obtain an importance score for input j, we
can compute the difference between the permuted average loss and the original average loss, resulting in
the feature importance score FIj :

FIj = ℓ
(j)
permuted − ℓoriginal.

To obtain a more reliable estimate of the importance score, this procedure can be repeated a certain num-
ber of times for input j, creating a distribution of the increase or decrease in the average loss. The whole
procedure can then be repeated for all inputs. In Figure 3.5, the importance scores of the 20 most im-
portant variables for our best model, the MVNB CANN, are visualized using boxplots. Please note that the
names used for the telematics inputs in Figure 3.5 differ from the introduced notation. However, a transla-
tion table is provided in Table 3.10 of Appendix 3.9 to clarify the correspondence between the names used
and the introduced notation. Each boxplot represents the distribution of the 100 importance scores as-
signed to a specific input obtained by shuffling and assessing themodel 100 times. The performancemetric
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used is the average cross-entropy loss. The analysis reveals interesting findings regarding the claim count
model. As can be seen, the top 5 most important variables are from our set of 11 traditional risk factors.
Notably, veh_age, distance, and expo play a significant role in the model’s performance. When it comes
to telematics inputs, those related to maximum speed demonstrate a substantial impact on the model’s
performance. Particularly, vma_16, representing the fraction of trips made at a maximum speed exceeding
150 kilometers per hour, stands out as the most important input. In general, the fraction of trips made at
high maximum speeds, such as vma_14, vma_15, and vma_16, proves to be valuable for predicting claims.
Additionally, it is interesting to observe that h_22 and h_2, which represent the fraction of driving during
night hours, contribute substantially to the assessment of risk. Importantly, the gender variable, often used
by insurers as a risk factor, is rendered useless in the presence of telematics inputs. It ranks as the 70th most
important variable (not showed in Figure 3.5), indicating its insignificance in the model’s predictive power.

Partial Dependence Plots (PDP) are valuable tools for understanding the relationship between a specific
input variable and the output of a supervised learning model. PDPs are also model-agnostic, meaning they
can be applied to different types of models. They provide insights into how changes in a particular input
variable influence the model’s predictions while keeping all other variables at fixed values. In other words,
they illustrate the marginal effect of an input variable on the predicted outcome. To compute a PDP for a
specific input variable j, the process involves the following steps. First, a grid of values is defined to cover
the entire or plausible range of the variable’s values. Next, while holding all other variables fixed, the input
vector in the holdout dataset is sequentially replaced with each value from the defined grid. Subsequently,
predictions are obtained using the trainedmodel on themodifiedholdout dataset for each value. By plotting
the input variable values on the x-axis and the corresponding average prediction on the y-axis, the resulting
PDP visually showcases the relationship between the input variable and the model’s predictions. Figure 3.6
displays the PDPs of the 8 most important telematics inputs in the MVNB CANN model. The plots reveal
that the risk, expressed as the expected number of claims, appears to increase in a linear fashion with the
proportion of trips made at high maximum speeds, indicated by the input variables vma_14, vma_15, and
vma_16. Additionally, there appears to be a positive linear association between the expected number of
claims and the proportion of driving taking place during nighttime hours, specifically between 9 p.m. and
10 p.m. (h_22) and between 1 a.m. and 2 a.m. (h_2). It is important to emphasize that when interpreting
partial dependence plots, caution must be exercised, as the procedure assumes that the input variables are
independent of each other. In particular, the interpretation of the PDPs related to the fraction of driving
on Tuesdays (p_2) is challenging due to the correlation between the proportions of driving on different
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days of the week. For instance, if an insured individual drives in smaller proportions on Tuesdays, they will
systematically drive in larger proportions on other days of the week.

3.8 Conclusions
In this study, we developed three novel claim count regression models leveraging telematics data in the
form of trip summaries. Our models are based on the Combined Actuarial Neural Network architecture,
specifically designed to address actuarial problems and harness rich and complex information such as data
provided by telematics technology. One key aspect of ourwork is the adaptation of the CANNarchitecture to
accommodate theMVNB distribution specification. This adaptation allows us to effectively capture the time
dependence between insurance contracts, which is important for accurately modeling claim counts. Fur-
thermore, our findings highlight the importance of telematics inputs related to themaximumspeed reached
during trips in the claim count models. With partial dependence plots, we found that claim frequency is
positively correlated with the fraction of trips made at high maximum speeds. Overall, the new approaches
developed in this article represent a significant advancement in accurately modeling claim counts and en-
hancing the performance of predictive models in the context of usage-based insurance. Remarkably, the
CANN regression models consistently outperform traditional log-linear models using handcrafted telemat-
ics features, as demonstrated by the superior performance across three performancemetrics. These results
are further supported by the use of a proper machine learning methodology that effectively prevents data
leakage and mitigates the risk of producing falsely optimistic results.

While the available telematics data has been instrumental in improving our claim count models, we believe
that further improvement can be achieved with access to richer data. For instance, if second-by-second
data or additional information such as harsh acceleration/braking and distracted driving were accessible,
we believe the performance could be further improved. Depending on the data format, different types
of neural networks, such as convolutional and recurrent neural networks, could be used as the network
component in the CANN models. Additionally, we acknowledge that with more time and computational
power, a more comprehensive fine-tuning process of the CANNmodels could yield even better results than
what we achieved. Notably, we were constrained in adjusting the number of hidden layers and units in
the MLP components of the CANN models due to time and computational limitations. Moreover, a more
advanced tuning method, beyond the grid search approach used in this study, could be employed to opti-
mize model performance. In this study, we used the MVNB distribution as our longitudinal specification.
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However, alternative longitudinal specifications, such as the beta-binomial distribution, exist and could be
easily implemented as they share similarities with the MVNB specification. Finally, it would be interesting
to conduct further research investigating the impact of using a longitudinal model on telematics variables.
It is expected that the importance of certain telematics variables would decrease when considering past
claim history, as this historical data can provide insights into the claiming risk of an insured.
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Figure 3.4: CANN architecture for the MVNB specification. The MLP’s preactivation output value a(4)1 is
added to the log-linear model’s preactivation output value ⟨x,β⟩ before being transformed with the soft-
plus function ζ(·) to obtain the µ value of the negative binomial distribution of Equation (3.18). The ϕ value
is obtained by transforming a real-valued parameterwϕ through the softplus function. To obtainα, the sum
of past claims Σ(y) is added to the ϕ parameter, while for γ, the sum of past µ values Σ(µ) is added to the
same ϕ parameter. The resulting distribution parameters µ, α and γ are then compared to the ground truth
y using negative binomial cross-entropy loss. The architecture shown employs a 3-hidden-layer MLP, but
can be customized with any number of layers. 111



Algorithm 4: Parameter estimation procedure – MVNB CANN model
Input: Training dataset {(xit, yit)}(i,t)∈Tr , learning rate η, number of epochs E
Output: Trained model parameters θ̂, β̂ and ŵϕ

Initialize model parameters θ̂ = 0, β̂ = β̂
MLE and ŵϕ.

Compute the number of past claims for each contract (i, t): Σ(y)
it =

∑︁t−1
t′=1 yit′ .

for epoch← 1 to E do1. For each contract (i, t), apply the CANN regression function with current network parameters tocompute the current estimated mean parameter µ̂it:
µ̂it = µCANN(xit; β̂, θ̂).

2. Initialize or update the sum of past µ values for each contract (i, t): Σ̂(µ)
it =

∑︁t−1
t′=1 µ̂it.

3. Compute the current estimated parameter ϕ̂:
ϕ̂ = ζ(ŵϕ).

4. Compute the current estimated parameter α̂it and γ̂it:
α̂it = ϕ̂+Σ

(y)
it ,

γ̂it = ϕ̂+ Σ̂
(µ)
it .

5. Compute the empirical risk over the training dataset:
R = − 1

|Tr|
∑︂

(i,t)∈Tr

ln

[︃
Γ(yit + α̂it)

yit!Γ(α̂it)

]︃
+ α̂it ln

[︃
γ̂it

γ̂it + µ̂it

]︃
+ yit ln

[︃
µ̂it

µ̂it + γ̂it

]︃
.

6. Perform backpropagation to compute the gradients ofR with respect to the network parameters:
∇βR, ∇θR and ∇wϕ

R.

7. Perform gradient descent using the learning rate:
β̂ ← β̂ − η∇β̂R,

θ̂ ← θ̂ − η∇θ̂R,
ŵϕ ← ŵϕ − η∇ŵϕ

R.

end
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Feature name Description

avg_daily_nb_trips Average daily number of trips
frac_expo_evening Fraction of evening driving1
frac_expo_fri_sat Fraction of driving on Friday and Saturday
frac_expo_mon_to_thu Fraction of driving on Monday to Thursday
frac_expo_night Fraction of night driving2
frac_expo_noon Fraction of midday driving3
frac_expo_peak_evening Fraction of evening rush hour driving4
frac_expo_peak_morning Fraction of morning rush hour driving5
max_trip_max_speed Maximum of the maximum speed of the trips
med_trip_avg_speed Median of the average speeds of the trips
med_trip_distance Median of the distances of the trips
med_trip_max_speed Median of the maximum speeds of the trips
prop_long_trip Proportion of long trips (> 100km)

Table 3.4: Handcrafted telematics features extracted from the telematics dataset.

Figure 3.5: Importance scores of the 20 most important variables obtained for the MVNB CANN model.
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No telematics With telematics

Parameters Poisson Negative binomial MVNB Poisson Negative binomial MVNB
Intercept −2.8310 −2.8311 −2.8281 −2.8454 −2.8456 −2.8430

annual_distance 0.0273 0.0280 0.0288 0.0353 0.0359 0.0367

commute_distance 0.0055 0.0055 0.0056 0.0159 0.0159 0.0157

conv_count_3_yrs_minor 0.0470 0.0474 0.0469 0.0381 0.0384 0.0380

distance 0.1697 0.1706 0.1681 0.1244 0.1252 0.1232

expo 0.1945 0.1943 0.1957 0.1812 0.1813 0.1834

gender_Male −0.0234 −0.0238 −0.0236 −0.0409 −0.0415 −0.0415

marital_status_Single 0.0241 0.0243 0.0243 0.0194 0.0194 0.0192

marital_status_other 0.0342 0.0341 0.0341 0.0299 0.0297 0.0298

pmt_plan_EFT.Monthly 0.0963 0.0965 0.0969 0.0828 0.0830 0.0833

pmt_plan_Monthly 0.0856 0.0854 0.0850 0.0773 0.0771 0.0768

pmt_plan_other 0.0134 0.0135 0.0131 0.0111 0.0111 0.0107

veh_age −0.1552 −0.1543 −0.1540 −0.1433 −0.1425 −0.1422

veh_use_other −0.0085 −0.0083 −0.0084 −0.0100 −0.0098 −0.0100

veh_use_pleasure −0.0025 −0.0023 −0.0027 −0.0014 −0.0013 −0.0018

years_licensed −0.1061 −0.1064 −0.1076 −0.0538 −0.0539 −0.0547

avg_daily_nb_trips – – – 0.0428 0.0424 0.0411

frac_expo_evening – – – 0.0734 0.0738 0.0741

frac_expo_fri_sat – – – 0.0290 0.0288 0.0294

frac_expo_mon_to_thu – – – 0.0854 0.0852 0.0857

frac_expo_night – – – 0.0192 0.0193 0.0198

frac_expo_noon – – – 0.0103 0.0100 0.0092

frac_expo_peak_evening – – – 0.0049 0.0047 0.0046

frac_expo_peak_morning – – – 0.0072 0.0073 0.0071

max_trip_max_speed – – – 0.1084 0.1087 0.1079

med_trip_avg_speed – – – −0.1465 −0.1470 −0.1472

med_trip_distance – – – 0.0082 0.0088 0.0081

med_trip_max_speed – – – 0.0725 0.0723 0.0736

prop_long_trip – – – 0.0310 0.0314 0.0322

ϕ – 2.8397 3.4868 – 3.1193 3.9119

Table 3.5: Estimated parameters of the log-linear models on the training set.
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Hyperparameter values Average validation loss Number of epochs

l_start factor p Poisson Negative binomial MVNB Poisson Negative binomial MVNB
0.00001 0.3 0.2 0.2357 0.2351 0.2350 8 16 170.00001 0.3 0.3 0.2354 0.2350 0.2350 10 24 220.00001 0.3 0.4 0.2353 0.2351 0.2349 18 29 300.00001 0.4 0.2 0.2358 0.2351 0.2350 8 16 170.00001 0.4 0.3 0.2355 0.2350 0.2350 10 24 220.00001 0.4 0.4 0.2353 0.2351 0.2349 18 29 300.00001 0.5 0.2 0.2360 0.2351 0.2350 8 16 170.00001 0.5 0.3 0.2356 0.2350 0.2350 10 24 220.00001 0.5 0.4 0.2354 0.2351 0.2349 18 29 30
0.00005 0.3 0.2 0.2355 0.2351 0.2349 2 4 40.00005 0.3 0.3 0.2355 0.2351 0.2349 3 5 50.00005 0.3 0.4 0.2363 0.2352 0.2351 4 8 70.00005 0.4 0.2 0.2355 0.2351 0.2349 2 4 40.00005 0.4 0.3 0.2355 0.2351 0.2349 3 5 50.00005 0.4 0.4 0.2365 0.2352 0.2351 4 8 70.00005 0.5 0.2 0.2355 0.2351 0.2349 2 4 40.00005 0.5 0.3 0.2355 0.2351 0.2349 3 5 50.00005 0.5 0.4 0.2369 0.2352 0.2351 4 8 7
0.0001 0.3 0.2 0.2354 0.2349 0.2349 1 3 30.0001 0.3 0.3 0.2354 0.2350 0.2348 2 3 30.0001 0.3 0.4 0.2371 0.2352 0.2350 2 5 40.0001 0.4 0.2 0.2354 0.2349 0.2349 1 3 30.0001 0.4 0.3 0.2354 0.2350 0.2348 2 3 30.0001 0.4 0.4 0.2374 0.2352 0.2350 2 5 40.0001 0.5 0.2 0.2354 0.2349 0.2349 1 3 30.0001 0.5 0.3 0.2354 0.2350 0.2348 2 3 30.0001 0.5 0.4 0.2378 0.2352 0.2350 2 5 4
0.0005 0.3 0.2 0.2356 0.2350 0.2350 1 1 10.0005 0.3 0.3 0.2354 0.2352 0.2350 2 1 10.0005 0.3 0.4 0.2358 0.2352 0.2350 2 4 30.0005 0.4 0.2 0.2356 0.2350 0.2350 1 1 10.0005 0.4 0.3 0.2354 0.2352 0.2350 2 1 10.0005 0.4 0.4 0.2358 0.2352 0.2350 2 4 30.0005 0.5 0.2 0.2356 0.2350 0.2350 1 1 10.0005 0.5 0.3 0.2354 0.2352 0.2350 2 1 10.0005 0.5 0.4 0.2358 0.2352 0.2350 2 4 3
0.001 0.3 0.2 0.2358 0.2353 0.2351 1 1 10.001 0.3 0.3 0.2362 0.2352 0.2349 1 1 10.001 0.3 0.4 0.2362 0.2350 0.2349 2 2 20.001 0.4 0.2 0.2358 0.2353 0.2351 1 1 10.001 0.4 0.3 0.2362 0.2352 0.2349 1 1 10.001 0.4 0.4 0.2362 0.2350 0.2349 2 2 20.001 0.5 0.2 0.2358 0.2353 0.2351 1 1 10.001 0.5 0.3 0.2362 0.2352 0.2349 1 1 10.001 0.5 0.4 0.2362 0.2350 0.2349 2 2 2

Table 3.6: Coarse hyperparameter tuning for the CANN models. The training process is stopped after 30epochs. The provided validation loss corresponds to the optimal number of epochs, consistent with theearly stopping procedure.
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Specification Average validation loss Number of epochs

Poisson 0.2352 35
Negative binomial 0.2351 35
MVNB 0.2349 35
Table 3.7: Optimal CANN models’ performance on the validation set.

Scoring rule Baseline model

Poisson deviance 0.3682
Logarithmic score 0.2470
Squared error 0.0697

Table 3.8: Performance of the baseline model on the testing set.

Figure 3.6: Partial dependence plots showcasing the 8most important telematics inputs in theMVNB CANN
model. The histogram above each line plots shows the input’s distribution.
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No telematics With telematics

Scoring rule Log-linear model CANN model Log-linear model CANN model
Poisson

Poisson deviance 5.23 % 5.53 % 5.68 % 5.78 %
Logarithmic score 3.90 % 4.12 % 4.23 % 4.31 %
Squared error 2.10 % 2.26 % 2.30 % 2.38 %

Negative binomial
Poisson deviance 5.24 % 5.58 % 5.68 % 5.81 %
Logarithmic score 3.99 % 4.24 % 4.31 % 4.41 %
Squared error 2.10 % 2.27 % 2.30 % 2.37 %

MVNB
Poisson deviance 5.36 % 5.65 % 5.79 % 5.90 %
Logarithmic score 4.07 % 4.27 % 4.38 % 4.46 %
Squared error 2.13 % 2.29 % 2.34 % 2.41 %

Table 3.9: Performance comparison of the CANN models and their corresponding log-linear benchmark
model on the testing set.
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3.9 Appendix A: Telematics Input Names Translation
Introduced notation Notation in the plots Description

x
(h)
it,1 h_1 Fraction of driving between midnight and 1 a.m.
x
(h)
it,2 h_2 Fraction of driving between 1 a.m. and 2 a.m.... ... ...

x
(h)
it,24 h_24 Fraction of driving between 11 p.m. and midnight

x
(d)
it,1 p_1 Fraction of driving on Mondays
x
(d)
it,2 p_2 Fraction of driving on Tuesdays... ... ...
x
(d)
it,7 p_7 Fraction of driving on Sundays

x
(a)
it,1 vmo_1 Fraction of trips with average speed between 0 and 10 kph
x
(a)
it,2 vmo_2 Fraction of trips with average speed between 10 and 20 kph... ... ...

x
(a)
it,14 vmo_14 Fraction of trips with average speed exceeding 130 kph

x
(m)
it,1 vma_1 Fraction of trips with maximum speed between 0 and 10 kph
x
(m)
it,2 vma_2 Fraction of trips with maximum speed between 10 and 20 kph... ... ...

x
(m)
it,16 vma_16 Fraction of trips with maximum speed exceeding 150 kph

x
(k)
it,1 d_1 Fraction of trips with distance between 0 and 5 km
x
(k)
it,2 d_2 Fraction of trips with distance between 5 and 10 km... ... ...

x
(k)
it,10 d_10 Fraction of trips with distance exceeding 45 km

Table 3.10: Telematics Inputs Names Translation
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CONCLUSION

Dans cette thèse, nous avons proposé des méthodes novatrices pour améliorer la tarification basée sur
l’usage en assurance automobile et approfondir notre compréhension de l’impact des données téléma-
tiques sur le niveau de risque des assurés. En utilisant des techniques d’apprentissage automatique, nous
avons développé des modèles prédictifs capables d’exploiter efficacement l’information télématique.

Au Chapitre 1, nous avons proposé plusieurs modèles de classification des réclamations utilisant les don-
nées télématiques sous forme de variables créées manuellement, à savoir une régression logistique avec
régularisation lasso, une régression logistique avec régularisation elastic-net et une forêt aléatoire. Nous
avons constaté que le modèle lasso est le mieux adapté pour cette tâche. En utilisant ce modèle, nous
avons développé une procédure pour estimer la quantité minimale d’informations télématiques nécessaire
afin d’évaluer de manière précise le risque d’un assuré. Nos résultats montrent qu’après environ 3 mois,
ou 4000 kilomètres d’observation télématique, l’ajout d’informations supplémentaires n’améliore pas de
manière substantielle la performance de l’algorithme de classification. Cette information est précieuse pour
les chercheurs et les assureurs, car elle leur permet de réduire l’utilisation de ces données volumineuses
dans des algorithmes gourmands en puissance de calcul, tout en maintenant une estimation précise du
risque.

Au Chapitre 2, nous avons formulé l’hypothèse selon laquelle le degré de « routine » et de « péculiar-
ité » d’un assuré est lié à son risque de réclamation. En utilisant des algorithmes de détection d’anomalies
non-supervisés appliqués aux données télématiques, nous avons calculé des profils de routine et de pécu-
liarité pour chaque assuré. À partir de ces profils, nous avons extrait des variables sous forme de quantiles,
lesquels ont ensuite été évalués en termes de pouvoir prédictif via un modèle de régression logistique avec
une pénalité elastic-net. Les résultats, obtenus grâce à une méthodologie appropriée d’apprentissage au-
tomatique, ont démontré que les quantiles issus des profils de péculiarité des assurés permettent d’améliorer
l’estimation du risque. Cette méthode présente l’avantage d’être objective, car elle minimise l’utilisation du
jugement humain, parfois sujet à des biais, dans l’extraction de représentations utiles à partir des données
télématiques.

Au Chapitre 3, nous avons exploité un perceptron multicouches pour automatiser et optimiser l’extraction
de représentations à partir des données télématiques brutes. Dans cette optique, nous avons développédes
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modèles de régression de comptage des réclamations basés sur une architecture de réseau de neurones
appelée Combined Actuarial Neural Network (CANN). Cette architecture hybride combine les avantages
d’un modèle de régression classique avec ceux d’un réseau de neurones, nous permettant ainsi de tirer
profit des deux approches. Grâce au perceptron multicouches, nous avons pu extraire automatiquement
des représentations utiles des données télématiques en utilisant une approche supervisée, où le modèle
apprend en se basant sur la variable réponse. Un élément clé de ce chapitre réside dans l’adaptation du
modèle CANN à la spécification binomiale négative multivariée, ce qui permet une modélisation longitudi-
nale des réclamations et donc une prise en compte de l’historique des réclamations. Les résultats obtenus
démontrent que nosmodèles CANN, utilisant les données télématiques brutes, surpassent lesmodèles clas-
siques qui utilisent des variables créées manuellement à partir de ces données. En analysant notre modèle
CANN longitudinal à l’aide d’un graphique de l’importance des variables par permutation et de graphes
de dépendance partielle, nous avons constaté que la proportion de trajets effectués à des vitesses maxi-
males élevées ainsi que la proportion de conduite à des heures tardives jouent un rôle important dans la
détermination du niveau de risque d’un assuré, et qu’elles sont positivement corrélées au risque.

En bref, cette thèse a permis de faire avancer les connaissances et les méthodes dans le domaine de la
tarification basée sur l’usage en assurance automobile. Les différents modèles proposés ont ouvert la voie
à des approches plus efficaces et plus précises pour l’évaluation du risque. Au fil de nos analyses, plusieurs
constatations ont émergé. Parmi les variables traditionnelles de tarification utilisées, l’âge du véhicule
(veh_age), la durée du contrat (expo), le plan de paiement (pmt_plan) et le nombre d’années depuis
l’obtention du permis de conduire (years_licensed) se sont avérés être des facteurs clés pour modéliser
la sinistralité. Les variables télématiques, en particulier la distance parcourue, jouent également un rôle
déterminant dans cette modélisation, tout comme les variables liées à la vitesse maximale atteinte lors des
trajets, qui s’avèrent assez utiles pour la tarification. Dans le cadre de cette thèse, nous avons procédé à
une évaluation de divers algorithmes d’apprentissage supervisé: les modèles linéaires généralisés, la régu-
larisation Lasso, la régularisation elastic-net, les forêts aléatoires et les réseaux de neurones. Les résultats
exposés dans le Chapitre 1 ont montré que les modèles linéaires généralisés régularisés surpassent les per-
formances des forêts aléatoires. Par conséquent, nous préconisons l’utilisation de la régularisation dans le
cadre de ces données, car elle améliore considérablement les performances prédictives tout en facilitant la
sélection automatique des variables les plus pertinentes. En outre, en raison de leur meilleure interpréta-
bilité, nous privilégions les modèles linéaires généralisés régularisés par rapport aux modèles basés sur des
arbres de décision. Au Chapitre 3, nous avons démontré que l’application de réseaux de neurones sur les
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données télématiques peut améliorer la précision de la tarification. Toutefois, étant donné leur difficulté
d’interprétation, nous recommandons de les utiliser uniquement lorsque les données le justifient. En effet,
nous estimons que les réseaux de neurones sont particulièrement utiles lorsqu’il s’agit de données com-
plexes qui ne peuvent pas être correctement traitées par des algorithmes plus simples, tels que les modèles
linéaires généralisés ou l’expertise humaine. Cependant, pour des données plus simples, il est probable que
les gains de performance soient négligeables. Dans ce cas, nous préconisons l’utilisation d’algorithmes plus
interprétables, tels que les modèles linéaires généralisés ou les modèles additifs généralisés.

Enfin, diverses possibilités d’extension qui pourraient faire l’objet de recherches futures sont identifiées.
D’unepart, toutes les approches proposées pourraient être généralisées enutilisant desmodèles de fréquence-
sévérité, au lieu de se limiter à desmodèles de classification oude régression de comptage des réclamations.
Cela permettrait une analyse plus complète des risques en calculant directement la prime pure. D’autre
part, les approches pourraient être adaptées à des données télématiques plus détaillées. Dans cette thèse,
nous nous sommes limités à l’utilisation de résumés de trajets pour nos analyses. Cependant, l’utilisation de
données télématiques plus détaillées, telles que des observations collectées seconde par seconde, pourrait
nous fournir une compréhension plus approfondie des habitudes de conduite et des comportements des
assurés, tout en fournissant de l’information plus riche aux modèles prédictifs. Bien sûr, cela nécessiterait
une adaptation des algorithmes pour prendre en compte la nature différente et le volume plus important
de ces données.
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ANNEXE A

CARACTÉRISTIQUES DE L’ORDINATEUR UTILISÉ POUR LES CALCULS EFFECTUÉS DANS CETTE THÈSE

Marque Apple
Modèle MacBook Pro 2016
Processeur 2,6 GHz Intel Core i7 quatre cœurs
Mémoire RAM 16 Go 2133 MHz LPDDR3
Stockage 256 Go SSD
Carte graphique Intel HD Graphics 530 1536 Mo
Écran Rétina 15,4 pouces (2880 × 1800)
Systèmes d’exploitation MacOS Mojave, Catalina, Big Sur et Monterey
Numéro de série C02TG07MGTFL

Table A.1: Spécifications de l’ordinateur
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