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RÉSUMÉ

Le cancer de la peau est un des cancers les plus fréquents dans le monde. Plusieurs
types de cancers de la peau existent, parmi lesquels le mélanome est le plus sérieux
car il peut, s'il n'est pas diagnostiqué tôt, causer le décès du patient. Des mod-
èles d'apprentissage profond ont été utilisés pour classi�er les lésions cutanées
causées par les cancers en di�érentes classes en utilisant des images digitales.
Ces modèles d'apprentissage, qui utilisent des architectures de réseaux de neu-
rones à convolution modernes, telle que E�cientNet, furent testés en appliquant
l'approche de transfert d'apprentissage (i.e. transfer learning). Des méthodes
de clustering ont aussi été employées pour tenter de regrouper les images à la
base de caractéristiques générales a�n de produire des jeux de données plus ho-
mogènes qui permettraient d'e�ectuer la classi�cation supervisée avec une plus
grande précision. Certaines méthodes de clustering que nous avons appliquées
ont permis d'obtenir des meilleurs résultats que ceux obtenus avec des jeux de
données de taille équivalente produits aléatoirement. Cependant, dans tous les
cas, les meilleurs résultats ont été obtenus avec les jeux de données complets (i.e.
sans appliquer le regroupement au préalable). Durant mon projet, j'ai aussi ef-
fectué les tests nécessaires pour la mise en place de DUNEScan, une nouvelle
application web pour l'analyse d'images de cancers de la peau avec des réseaux de
neurones profonds. J'ai également participé à la rédaction d'un article qui décrit
cette application.

Mots-clés: skin cancer, skin lesion, deep learning, clustering, convolution neural
network, classi�cation, computer vision, diagnosis



CHAPTER I

INTRODUCTION

Skin cancer is the most common and widespread form of cancer in the world ((Lacy

et Alwan, 2013),(Karimkhani et al., 2017)). In the recent decades the number of

cases has increased signi�cantly due, in most cases, to increased over-exposure to

ultraviolet light emitted by the sun. Skin cancer cases are more abundant than the

combined counts of breast, lung and colon cancers. Various types of skin cancers

exist, among which, melanoma, which a�ects the melanin-producing skin cells,

is the most serious type and can be lethal if not diagnosed early-on. Melanoma,

like other types of skin cancers (e.g. basal cell carcinoma and squamous cell

carcinoma) can either be malignant or benign. These must therefore be correctly

diagnosed and followed with close attention to ascertain that they don't develop

into a more aggressive form. All forms of skin cancer are characterized by the

appearance of skin lesions with an abnormal coloration and irregular shape.

Traditionally initial diagnosis of these skin lesions has been performed by der-

matologists with the use of digital dermoscopic images. Dermoscopy is a form

of imaging that uses polarized light that generates high resolution images that

allow a deeper detailed view of the texture by reducing light re�ection (Toader

et al., 2017). Some of the lesion traits such as size, shape and texture can be

used to di�erentiate them successfully. However, due to their complex morpho-
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logical structure and overall similarity in appearance, visual analysis can lead to

miss-diagnosis, which may have severe health consequences (Lee et al., 2018).

For this reason, the development of computer-assisted diagnosis (CAD) tools to

assist experts is highly desirable.

CAD systems are now commonly used in various medical �elds where di�erent

forms of imaging and radiology are used (Anwar et al., 2018). These applica-

tions use computer vision algorithms based on deep learning, a recent advance

in the machine learning �eld. In most cases, these rely on convolutional neural

network (CNN) models, a form of arti�cial neural network that can be trained for

image recognition and classi�cation. In this context, convolution is a process used

to extract image features and, when used in sequence, several convolution steps

transform the images into abstract forms that can be interpreted by a computer

to distinguish between di�erent pre-de�ned classes of images.

Each convolution step uses a speci�ed number of small �lters (usually 3x3 or 5x5

pixels) that parse the image to recognize speci�c forms or features. The image

is interpreted as a matrix of pixel values and each �lter unit corresponds to a

trainable parameter value (or weight). As one �lter parses the image, usually by

a stride of one pixel at a time, the sum of the multiplications of each �lter unit

with the corresponding pixel value is returned to produce a feature map. The

number of �lter maps returned correspond to the number of �lters used.

The produced �lter maps are then passed on to the next convolutional layer where

in turn other �lters are used to extract information. At each convolution step the

�lters correspond to a matrix with a speci�ed x*x size and a depth equivalent to

the number of input layers. For example, if a colour image is analyzed this image

is interpreted as matrix with three layers, where each layer corresponds to red,

green and blue pixel values. A �rst set of 3x3 convolution �lters would actually
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correspond to 3x3x3 matrices which would allow parsing of the three image layers

silmultaneously. Such a �lter would therefore contain 27 units or 27 trainable

parameters (weights).

As the information is propagated forward, feature maps can be condensed by

merging (pooling) information. Finally, when the speci�ed number of steps in the

convolution architecture are completed, all values in the �nal feature maps are

transformed into a one-dimensional vector. These �nal values are interpreted by

a classi�er to predict the class of the input image. As training of a CNN occurs,

the predicted class is compared to the actual class and an error value is obtained.

This value is then used by an optimizer function to modify the weights of all the

the �lters by backpropagation of the error gradient.

Generally, CNN models rely on a very high number of labelled images for training

so it learns how to discriminate between image classes and achieve high accuracy

predictions. In many cases, although skin cancer is a relatively common disease,

the number of quality skin lesion images in local databases is limited. Also,

because the skin lesions produced by di�erent types of skin cancers show a low

degree of variation, producing a reliable model can be a challenging task.

In the following sections and subsections, I will summarize the current state of the

�eld of CAD system development for skin lesion diagnosis, present the problem

setting, our proposed research and the expected impacts, present the material and

methods used, the results of my research and a discussion.



CHAPTER II

STATE OF THE ART IN SKIN LESION IMAGE DIAGNOSIS

2.1 skin lesion image classi�cation

Some skin lesion classi�cation methods have been developed based on models that

take in consideration the visible attributes of skin lesions such as the diameter,

pigmentation, shape and texture, to make predictions(Moura et al., 2019). How-

ever, this approach requires segmentation of the lesion images in order to produce

a mask that delimits the lesion and allow accurate measurements to be made.

Such masks can be produced manually, but again these require the help of an ex-

pert, or automatically with a CNN approach. In (Moura et al., 2019) images with

available, manually-produced masks were used as source data to develop a model

that uses such physical data in combination with features extracted by CNNs to

detect melanocytic lesions. However, since the limited set of skin lesion images

used in their study is not su�cient to develop and train a CNN model speci�c for

skin lesion classi�cation, they use an alternative approach called transfer learning.

Transfer learning consists of using CNN architectures that have been pre-trained

to classify unrelated images and applying them to a new classi�cation task. Since

the pre-trained architectures used have already learned to extract features from a

vast collection of images of varying objects, they apply the same method to their

lesion images to rapidly produce feature sets. Speci�cally, in the development of
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their method, the authors tested several state-of-the-art CNN architectures that

were all pre-trained on the ImageNet image collection (Deng et al., 2009)(Rus-

sakovsky et al., 2015). This collection contains several thousand images of dif-

ferent objects that belong to 1000 di�erent classes. The CNN architectures used

included the AlexNet (Krizhevsky et al., 2012), Ca�eNet (Jia et al., 2014) and

the VGG-16 and VGG-19 (Simonyan et Zisserman, 2014) architectures.

After testing the di�erent CNNs, they selected the two that best di�erentiated

the melanocytic lesions from the others. They combined the features obtained

from the �nal convolutional layers with the obtained physical features to generate

a very large multi-feature descriptor of the lesion images. They selectively used

only the features that have the best ability to di�erentiate the images and fed

them into a classi�er consisting of a few layers of fully connected neurons ( a

multi-layer perceptron) that achieves 94.9% prediction accuracy with their binary

classi�cation problem (melanoma vs. others). However, since their model can

only di�erentiate melanocytic lesions from non-melanocytic lesions, it does not

permit to identify the type of cancer that caused the non-melanocytic lesions. In

addition, since their approach was developed using a relatively small number of

images from two databases, it may not generalize well on images from di�erent

sources and non-segmented images.

Several other groups have also recently produced models that rely solely on

transfer-learning and �ne-tuning to develop multi-class skin lesion classi�ers ((Yu

et al., 2018), (Dorj et al., 2018),(Han et al., 2018),(Menegola et al., 2017)).

In most cases they use similar pre-trained state-of-the-art architectures as those

mentioned previously. They use the pre-set parameters of most of the convolution

layers of these pre-trained CNNs, and only �ne-tune the parameters of the last

layer. Fine-tuning is done by further training the CNNs with labelled skin-lesion
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images in such a way that the parameters are adjusted and adapted to di�erentiate

between di�erent types of skin lesions. Because these new models no longer rely

on measured physical traits, segmentation has become a less essential step. This

approach has been made possible because a large number of skin lesion images

have recently been made publicly available.

In order to carry out �ne-tuning, many groups use the human against machine

(HAM10000) skin lesion image collection which was used in the 2018 International

Skin Imaging Collaboration (ISIC) skin challenge (Codella et al., 2019). In this

competition, scientists were asked to develop algorithms than can perform di�er-

ent tasks related to image classi�cation (e.g. segmentation, classi�cation). The

HAM10000 collection is made up of 10,015 expert-labelled images that represent

lesions from seven di�erent types of skin cancers or diseases (Tschandl et al.,

2018). These include melanoma, melanocytic nevus, basal cell carcinoma, actinic

keratosis, benign keratosis, dermato�broma and vascular lesions. Other, less large

skin lesion image collections have also become available which contain images from

other types of skin diseases. As an example, the Dermo�t image collection, con-

tains a small number of images from squamous cell carcinoma (88) and pyogenic

granuloma (24).

In most cases, images obtained from these databases are preprocessed before being

used to train a model. Such preprocessing includes hair removal to reduce noise as

well as contrast and brightness normalization. In one noteworthy study (Esteva

et al., 2017), a model was developed using a transfer learning approach with a

very large dataset of images. Images were pooled from many databases including

the ISIC repository images (pre-HAM10000 era), the dermo�t library and other

large private image collections. Altogether they generated a dataset of 129,450

images, which was composed of normal digital photographic images and only 3,374
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dermoscopic images. Using this large dataset, they produced a model using the

pre-trained GoogleNet Inception V3 state-of-the-art architecture (Szegedy et al.,

2016), for which they �ne-tuned every layer of the CNN.

Data-augmentation, but no traditional preprocessing was applied to the images.

Data-augmentation is a process through which a dataset can be increased in size

by using techniques, such as rotation and �ipping of images to generate new images

and increase the variability of the dataset. This approach allowed them to generate

a model robust to photographic variation. By comparing the prediction of their

model with those of a panel of dermatologists in di�erent binary classi�cation

tasks, they showed that their model is at least as accurate as the expert panel.

In a later study by a di�erent group (Bakkouri et Afdel, 2019), the same model

was tested exclusively on the HAM10000 dataset for comparison purposes and

achieved an accuracy of 91.6%.

More recently, a novel method was developed that combines �ne tuning of state-of-

the-art architectures with a multi-layer fusion approach (Bakkouri et Afdel, 2019).

Other studies have shown that the initial (lower) layers of a CNN detect general

features that can often be used to de�ne various types of images, whereas medium

and high-level layers detect more detailed features speci�c to the di�erent image

classes analyzed. Because of this, as a �rst step in (Bakkouri et Afdel, 2019), they

determined how many layers from each of three CNNs should be �ne tuned to

obtain the best possible classi�cation accuracy. Here they found that both VGG-

16 and ResNET-18 (He et al., 2016) performed better when the weights of the

�rst three convolution layers were frozen (not �ne-tuned) and the remaining were

�ne-tuned. In the case of DenseNet-121 (Huang et al., 2017), a more recent and

larger CNN architecture, the �rst four convolutional layers were frozen to obtain

optimal performance.
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The frozen parts of each of these architectures were then used to feed a novel

convolutional fusion unit architecture in which multi-level feature maps from each

of these architectures are fused together and further convoluted. Information from

di�erent levels of convolution were also used to produce the �nal image descriptor.

This method, to my knowledge obtained the highest level of average classi�cation

accuracy of 98.1% with the HAM10000 image collection. There results show

that combining the information obtained at multiple levels of CNN can result in

improved di�erentiation between skin lesion images of multiple classes. However,

it is important to note that the model used is very complex and training was

very time consuming. Nonetheless, once training was completed, obtaining a

classi�cation with each test image was quite quick (i.e. 4 seconds with a GPU

and 7.5 seconds with a CPU).

Clearly, research in classi�cation of skin lesion images for the diagnosis of skin can-

cers has progressed signi�cantly in the recent years. Many models which achieve a

very high accuracy level have been produced using di�erent approaches. However,

in general terms most of the best performing models rely to a certain extent, if

not solely, on transfer learning.

2.2 CAD application developement

Several applications have been developed to allow self-diagnosis and assist derma-

tologists in the diagnosis of skin lesions images (Wise, 2018) (Abbott et Smith,

2018). Most apply recent advances in convolutional neural network (CNN) ar-

chitecture design and allow to obtain a diagnosis with an accuracy that match

that obtained by dermatologists. Some recent studies have shown that current

CNN models developed for skin cancer diagnosis can even surpass the accuracy of

dermatologists in their diagnosis (Brinker et al., 2019). However, several of the
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currently available applications use proprietary models and require a licence to

permit their use (Abbott et Smith, 2018). This limits their availability and also

the ability to assess their performance on public skin lesion image datasets.

Also, to our knowledge, all skin cancer diagnosis applications do not allow to

estimate the con�dence level with which they make their predictions. As a con-

sequence, although large leaps have been made in the development of such CAD

applications and this �eld of research is very competitive, their is still room to

produce high quality applications that are more accessible and have additional

features.



CHAPTER III

RESEARCH PROBLEMATIC AND PROPOSED RESEARCH

As discussed in the previous section, due to the high prevalence and important ef-

fect of skin cancers on global population health, a large amount of e�ort has been

invested to develop high accuracy CAD systems for skin lesion diagnosis. Nonethe-

less, recent studies based on a large, novel and publicly available skin lesion image

dataset, made up of images from di�erent sources, showed that developing models

that can generalize well and accurately di�erentiate images representing multiple

disease class is very challenging. Even the winning participants of the ISIC 2019

skin challenge who were charged with this task only achieved a very limited level

of classi�cation accuracy (Gessert et al., 2020).

The initial goal of our project is to, by comparing available CNN architectures

and deep learning strategies, develop an e�cient model that can generalize well

and be used to analyze and classify skin lesions images from di�erent sources. The

general approach will be to pretrain some of the most recent state-of-the art CNN

models available by transfer learning with the same dataset used in the ISIC2019

challenge and assess their performance.

We are particularly interested in investigating the reason behind the low perfor-

mance achieved by Gessert et al.(2020) as compared to that achieved, as previously

discussed, by some other groups with the HAM10000 dataset used independently.
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For this purpose, when the best performing model for classi�cation of the ISIC2019

dataset is identi�ed, we will proceed to analyze the images originating from dif-

ferent sources as sperate sub-groups with the same model.

We also aim to investigate if, when such a large, diverse skin lesion image dataset

is available for model training, a basic unsupervised clustering approach (e.g.

K-means) may allow us to produce specialized models that achieve higher clas-

si�cation accuracies. Possibly, K-means clustering of images based on di�erent

image features such as pixel composition or other general image features may be

useful to form more homogenous groups of images. Such image groups may allow

us to produce classi�cation models with improved performance.

If such a strategy proves to be successful, a two-step image classi�cation pipeline

could be implemented. As a �rst step, an input image would be classi�ed with a

pretrained unsupervised clustering model to determine to which cluster the image

belongs to. The result of this �rst classi�cation step, would allow us to determine

which model, amongst a subset of specialized models, would be best suited to, as

a second step, accurately determine the disease class of the image.

Finally, in addition, we aim to contribute to the development of a CAD system

that carries out high accuracy skin lesion diagnosis. If our previously described

attempts to develop a novel classi�cation stategy is fruitful, we would aim to

implement this strategy as part of the proposed application. Otherwise, the ap-

plication will be designed to rely on di�erent pre-trained state-of-the-art CNN

architectures.

As previously mentioned, high performance CAD systems can be very useful in

assisting specialists in the diagnosis of various types of diseases. The development

of an open source, freely accessible CAD application may be of greater use than

the currently available expensive, proprietary systems trained on private datasets.
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In the future, such an application could be potentially implemented as a mobile

device application that could be used to diagnose images obtained with such

devices (e.g. smartphones, tablets). Such an application would allow users to

carry-out a self-assessment of detected skin lesions and hopefully encourage them,

when necessary, to look for further medical advice by specialists.



CHAPTER IV

MATERIALS AND METHODS

4.1 source of data

The image dataset used for the ISIC2019 Challenge was used in this study. This

dataset contains a collection of 25,331 skin lesion images originating from three

separate sources: 12,413 images from the BCN_20000 (BCN) dataset (Combalia

et al., 2019), 10,015 from the HAM_10000 (HAM) previously described dataset

(Tschandl et al., 2018) and 2,903 images from the MSK dataset(Berseth, 2017).

The HAM dataset contains images of size 600x450 that were centered and cropped

around the lesion and histogram corrections were applied to some images by the

dataset curators. The BCN images are of size 1024x1024 and contain many un-

cropped regions or hard to diagnose lesions in uncommon body locations. Finally,

the MSK images have various sizes and many images labelled as downsampled.

The dataset contains eight unbalanced classes of skin disease images: melanoma

(MEL), melanocytic nevus (NV), basal cell carcinoma (BCC), actinic keratosis

(AK), benign keratosis (BKL), dermato�broma (DF), vascular lesion (VASC) and

squamous cell carcinoma (SCC). The previously described HAM dataset was re-

annotated to produce the new SCC class, which was absent in the original 2018-

version of the dataset.
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Table 4.1: Distribution of the images amongst the di�erent disease classes in the
datasets.
The number of images for the di�erent datasets used in this study in each of the
eight disease classs is indicated along with the proportion of the total number
of images represented by each class indicated between parentheses. The datasets
include the full ISIC2019 dataset, the MSK sub-dataset, the BCN sub-dataset and
the HAM sub-dataset. Also, all datasets corresponding to K-means (K=2) clusters
generated from pixel vectors and ResNet50 (RN50) extracted feature vectors. The
pixel vector-based datasets include those produced with the raw pixel vectors
(rawImg), those produced from Z-score normalized pixel vectors (scaledImg) and
those produced with minmax-normalized pixel vectors further reduced to two
features by SVD (MinMaxSVD). The RN50 feature vector-based datasets were
all produced using global average pooled RN50 feature vectors (avg) or global
maximum pooled RN50 feature vectors (max). These vectors were either minmax-
normalized (MinMax) or non-normalized (NoNorm) and further reduced to two
features by SVD. In addition, the distribution of two randomly produced BCN
image datasets (random6200_1 and random6200_2) is presented. These two
datasets were designed to maintain the same class distribution as the full BCN
sub-dataset.

Datasets MEL NV BCC AK BKL DF VASC SCC Total
ISIC2019 4522 (0.179) 12875 (0.508) 3323 (0.131) 867 (0.034) 2624 (0.104) 239 (0.009) 253 (0.010) 628 (0.025) 25331
MSK 552 (0.190) 1964 (0.677) 0 0 387 (0.133) 0 0 0 2903
HAM 1113 (0.111) 6705 (0.670) 514 (0.051) 130 (0.013) 1099 (0.110) 115 (0.011) 142 (0.014) 197 (0.020) 10015
BCN 2857 (0.230) 4206 (0.339) 2809 (0.226) 737 (0.059) 1138 (0.092) 124 (0.010) 111 (0.009) 431 (0.035) 12413
BCN K-means
Pixel Vectors
rawImg
2-0 1534 (0.213) 2952 (0.411) 1446 (0.201) 309 (0.043) 574 (0.080) 69 (0.010) 74 (0.010) 220 (0.031) 7178
2-1 1323 (0.252) 1254 (0.239) 1363 (0.260) 428 (0.082) 564 (0.108) 55 (0.011) 37 (0.007) 211 (0.040) 5235
scaledImg
2-0 1536 (0.257) 2079 (0.348) 1261 (0.211) 304 (0.051) 528 (0.088) 45 (0.008) 64 (0.011) 163 (0.027) 5980
2-1 1321 (0.205) 2127 (0.331) 1548 (0.241) 433 (0.067) 610 (0.095) 79 (0.012) 47 (0.007) 268 (0.042) 6433
MinMaxSVD
2_0 1541(0.214) 2954(0.411) 1442(0.201) 310(0.043) 576(0.080) 69(0.010) 74(0.010) 219(0.030) 7185
2_1 1316(0.252) 1252(0.239) 1367(0.261) 427(0.082) 562(0.107) 55(0.011) 37(0.007) 212(0.041) 5228
NoNormSVD
2_0 1539(0.214) 2958(0.411) 1446(0.201) 310(0.043) 577(0.080) 69(0.010) 74(0.010) 219(0.030) 7192
2_1 1318(0.252) 1248(0.239) 1363(0.261) 427(0.082) 561(0.107) 55(0.011) 37(0.007) 212(0.041) 5221
RN50 Features
avgMinMaxSVD
2-0 1508 (0.251) 1566 (0.261) 1501 (0.250) 465 (0.077) 626 (0.104) 62 (0.010) 44 (0.007) 234 (0,039) 6006
2-1 1349 (0.211) 2640 (0.412) 1308 (0.204) 272 (0.042) 512 (0.080) 62 (0.010) 67 (0.010) 197 (0.031) 6407
avgNoNormSVD
2-0 1510 (0.250) 1624 (0.269) 1488 (0.246) 469 (0.078) 622 (0.103) 64 (0.011) 42 (0.007) 226 (0.037) 6045
2-1 1347 (0.212) 2582 (0.405) 1321 (0.207) 268 (0.042) 516 (0.081) 60 (0.009) 69 (0.011) 205 (0.032) 6368
maxMinMaxSVD
2-0 1225 (0.204) 2573 (0.428) 1175 (0.196) 248 (0.041) 486 (0.081) 61 (0.010) 62 (0.010) 175 (0.029) 6005
2-1 1632(0.255) 1633 (0.255) 1634 (0.255) 489 (0.076) 652 (0.102) 63 (0.010) 49 (0.008) 256 (0.040) 6408
maxNoNormSVD
2-0 1683 (0.251) 1713 (0.255) 1730 (0.258) 503 (0.075) 688 (0.103) 67 (0.010) 52 (0.008) 271 (0.040) 6707
2-1 1174 (0.206) 2493 (0.437) 1079 (0.189) 234 (0.041) 450 (0.079) 57 (0.010) 59 (0.010) 160 (0.028) 5706
BCN random
random6200-1 1427 (0.230) 2101 (0.339) 1403 (0.226) 368 (0.059) 568 (0.092) 62 (0.010) 55 (0.009) 215 (0.035) 6199
random6200-2 1427 2101 1403 368 568 62 55 215 6199
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The distribution of the images of the ISIC2019 dataset and each sub-datasets

is presented in Table 4.1. As can be observed the most abundant, predominant

disease class is the NV class. The MEL class is the second most abundant class in

all datasets. The BCN dataset shows a more balanced distribution amongst the

MEL, NV, BCC, AK, and BKL image classes than the HAM dataset, whereas

in both these datasets some classes such as the DF and VASC are largely under-

represented. The MSK dataset is particular as it only contains images from three

classes: MEL, NV and BKL.

4.2 preprocessing

The same strategy as used by Gessert et al.(2020) was implemented with MatLab

to normalize the images. This included image cropping to center the skin lesion

and reduce the large black border present in several images from the BCN dataset.

Brie�y, binarized versions of the images (converted to 0 and 1 pixel values) were

produced with a low threshold such that the dermoscopy area (the area containing

the actual image) was assigned a 1 value. This allowed us to �nd the center of

mass of the images along with the major and minor axis of an ellipse that has

the same second central moment as the inner area of the image. Based on these

values a rectangular bounding box was derived and used to crop the relevant �eld

of view.

The necessity for cropping was determined based on a heuristic that tests if the

mean intensity inside the bounding box is substantially di�erent from the mean

intensity outside the box. After the cropping step, the Shades of Grey color

constancy method (Mendoza et Lu, 2015) was used to normalize the intensity of

the images. Finally, the images were resized such that the longer side was equal

to 600 pixels while preserving their aspect ration.
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4.3 input preparation

The images were transformed from their original sizes with a same-size cropping

strategy. A random crop of the speci�ed input size is taken from the preprocessed

images.

For each experiment, the images are scaled and autoaugmented by applying vari-

ous transformations at each training epoch. We use random brightness and con-

trast changes, random �ipping, random rotation, random scaling and random

shear. Random cut-out is also used where one hole of size 16 is randomly placed

in the image.

4.4 CNN models

Most experiments were done using the E�cientNet B4 model. A series of seven

E�cientNet models has recently been developed by Tan et al.(2019) (Tan et Le,

2019). These models were produced using a compound scaling approach by which

in each model a balanced scaling approach was used to increase the CNN depth

(number of layers), the layer width (number of channels) and the input image

resolution.

The largest model of this series E�cientNet B7 obtained state-of-the-art accuracy

when tested on ImageNet dataset (Tan et Le, 2019). The base model of this

series, E�cientNet B0, is composed of convolution blocks similar to the residual

network blocks of the MobileNetV2 model (Sandler et al., 2018) to which squeeze-

and-excitation optimization (SE) (Hu et al., 2018) was added to allow dynamic

channel-wise feature recalibration. This model takes as input images of 224x224

resolution. In the case of E�cientNet B4 input images of 380x380 resolution were

required.
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Residual networks CNNs were �rst used in the Residual Network (ResNet) models

developed by He et al. (2016). These residual networks consist in using skip

connections between convolution blocks. For each convolution block, in addition

to being passed to the next convolution block the output is also passed to the

second next block of higher level in the architecture.

This development represented a breakthrough in the design of CNN architectures

as it provided a solution to the vanishing gradient problem encountered by very

deep CNN models. Previously, the improvement of accuracy of CNN models by

increasing their depth was limited. In very deep CNNs the gradient error that is

backpropagated through the layers to adjust the weights of the convolution �lters

diminished progressively and became close to zero. The skip connections of the

ResNets preserve the gradient error through a greater number of layers.

Two new variants of ResNet models were tested in our study: SE-ResNet50 (Hu

et al., 2018) and ResNext101 (Xie et al., 2017). The SE-ResNet50 is a mid-

size traditional ResNet model to which SE was added to all convolution blocks.

In contrast RexNext101 is a larger, more recent version of the ResNet models

in which, instead of using a single �lter at each convolution layer, similar �lters

are used in multiple branches and the produced feature maps are concatenated.

Images of 224x224 resolution were used with both these models.

In addition, the InceptionV3 model (Szegedy et al., 2016) was also tested. Like

ResNext models, the Inception models use multiple �lters in separate branches

at each convolutional layer. InceptionV3 also uses additional strategies such as

factorized convolutions, asymmetric convolutions as well as regularization by an

auxiliary classi�er to improve its performance (i.e. favoring accuracy while keeping

computational costs relatively low). To evaluate the importance of the auxiliary

classi�er, InceptionV3 was used either by using the error obtained by the auxil-
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iary classi�er compounded with those of the main classi�er during training or by

ignoring the error of the auxiliary classi�er. As recommended images of 299 x 299

resolution were used with this model.

Finally, DenseNet121 (Huang et al., 2017), another popular CNN model was

tested. This model also used inter-layer connections such as those used in the

residual networks, but in this case feature maps produced by one convolutional

layer are shared with all forward layers. This approach is an alternative to the

simple shortcut connections of the residual networks to avoid the vanishing gra-

dient problem. Consequently, DenseNet models are said to use densely connected

layers and, like ResNets, can be very deep.

4.5 CNN training

The CNN models were implemented with the Python PyTorch library for deep

learning. In each experiment a 80:20% split of the image datasets was used for

training and validation steps respectively. Most pretrained CNN architectures

were obtained from the PyTorch pretrained models module with the exception of

e�cientNets, which were obtained from the e�cientNets PyTorch module.

The models were trained for 60 or, in most cases, 100 epochs with the Adam op-

timizer. A weighed cross-entropy loss function was used where under-represented

class images received a higher weight-based frequency in the training set. The

weight of each class was calculated with the w = Ni/N formula where Ni repre-

sents the number of images in the class and N the total number of images used for

training. In each case a batch-size of 20 images were used and an initial learning

rate of 0.000015. The learning rate was halved after every 25 epochs to allow �ner

adjustments of the CNN weights. The performance is evaluated every 10 epochs

on the validation set and the model achieving the best mean sensitivity score is
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saved.

At every evaluation step a confusion matrix was produced from the classi�cation

of the validation image set. From this matrix several metrics that allow to evaluate

the e�ciency of the classi�cation were calculated. The accuracy, the sensitivity,

the speci�city and the AUC for each image class was produced in the output. In

addition, the F1, the mean accuracy (average of all accuracies) and the balanced

(weigted) accuracy were calculated. In most cases the results generated at each

evaluation step were saved in a log �le in order to allow the generation of plots

showing the weighted accuracy (WACC) over an increasing number of training

epochs.

The balanced (weighted) accuracy (WACC) is calculated as the sum of True Pos-

itives (TP) of each class divided by the number of images of the respcective class

(
∑n

i=1
TPi

Ni
) (Grandini et al., 2020). True Positives (TPi) are correctly classi�ed

images for class (i) and Ni is the total number of images of the respective class

(i). This metric is equivalent to the mean sensitivity. Since this metric gives

an average of how likely images from each class will be classi�ed correctly, we

chose to use this metric to evaluate the performance of the models in our di�erent

experiments.

In all cases training was done using a Colab-Pro online account at Google Col-

laboratory whish allocates a single GPU of di�erent type at each runtime session.

With a Colab Pro account the GPU type allocated is either an NVIDIA Tesla T4

or Tesla P100.
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4.6 K-means analysis

In order to subdivide the datasets into clusters (subgroups), in all cases we used a

classic K-means algorithm (Elkan, 2003). The K-means algorithm aims to produce

clusters of data points (image vectors) with the smallest inertia (i.e. the smallest

intra-cluster distance between the data points).

For each iteration of the K-means algorithm, K (number of clusters selected) image

vectors are randomly selected as cluster centroids and each member of the sample

set is assigned to the closest cluster based on Euclidian distance from the centroid.

New mean centroid values are then calculated based on all the data points of the

same clusters and the clustering is repeated with these new centroid values. These

last two steps (i.e. calculation of the new mean centroids and clustering based on

these new mean centroids) are repeated until convergence (i.e. the centroids of

the clusters do not change or the points remain assigned to the same clusters) or

the maximum number (300) repetitions is reached.

The random selection of centroid values (K-means algorithm iteration) was re-

peated ten times in each K-means clustering experiment and the iteration pro-

ducing the smallest �nal total inertia for all clusters was preserved. After the best

K-means model was identi�ed, the quality of the clustering was assessed with the

Silhouette method (Kaufman et Rousseeuw, 2009).

The Silhouette clustering evaluation approach evaluates the quality of the clusters

produced by not only taking into account the inertia (cohesion) of the clusters

but also the separation between the di�erent clusters. This method measures the

cohesion (A) and the sieparation (B) of the clusters by measuring the average

distance of each data point (image vector) between all other data points of the

same cluster and their average distance between data points of the nearest cluster,
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respectively.

Silhouette coe�cients are produced using those two measures by dividing the

di�erence between A and B by the greater value between A and B (i.e. max(A,B)).

By evaluating the coe�cient of all points an average cluster coe�cient is produced

(also called the average score). The Silhouette average score produced ranges

between -1 and 1, where a score near one indicates that the clusters are dense and

well separated (i.e. a good quality clustering) and a score near zero indicates that

the clusters are overlapping. In contrast a score below zero suggest that points in

the clusters may be wrongly assigned.

Di�erent approaches were used to generate input data for the K-means algorithm.

First the images were resized to a 150x150 resolution and matrices representing

the raw pixel values of all three color channels (RGB) were used to produce linear

vectors that could be fed to the K-means algorithm. Resizing (downsampling) of

the images was carried out with the Python pillow module using the LANCOS

algorithm.

In a second approach normalized (scaled) image pixel vectors were produced by

Z-score normalization of the matrix containing all raw image pixel vectors. The

Z-scored vectors were also analyzed by K-means clustering.

As a third approach, the pixel vector array, either non-normalized or normalized

by the Z-score or MinMax method, were analyzed by SVD or PCA dimension

reduction algorithms to produce a small number of new representative features of

the image vectors. Again, these reduced vectors were analyzed by K-means.

For each feature (pixel column), Z-score normalization is achieved by subtracting

the mean feature value (m) from each feature value (x ) and dividing the result

by the standard deviation (s) (i.e. Z = (x − m)/s). The resulting normalized
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features have a mean of O and a standard deviation of 1.

MinMax normalization is achieved by transforming the feature values as values

in the range between 0 and 1. This is done by subtracting the minimum feature

value (min(x)) from each feature value (x ) and dividing the result by the di�erence

between the maximum value (max(x)) and the minimum value (i.e. scaledX =

(x−min(x))/(max(x)−min(x))). With this method the minimum value will be

assigned a value of 0, the maximum value will be assigned a value of 1, and all

other values will be transformed into intermediate values between 0 and 1.

Principal component analysis (PCA) and singular value decomposition (SVD) are

related methods based on eigen values which were used to reduce the dimention-

allity of vectors in order to produce a small number (2-3) of features which best

represent the variability of the data.

Finally, in order to use potentially more informative data, the images were fed

into a ResNet50 (RN50) (He et al., 2016) CNN architecture pretrained on the

ImageNet dataset to extract features from the images. The �nal layer of the CNN

architecture was reduced in size by either average pooling or maximum pooling to

generate �attened vectors of 2048 features. These non-normalized or normalized

(minmax, z-score) vectors were further reduced in size by PCA or SVD to extract

principal components before being used for K-means clustering.



CHAPTER V

RESULTS

5.1 analysis of the full ISIC dataset

A similar strategy to that used by Gessert et al. (2020) was applied to train

CNN models with the full ISIC2019 dataset. The group of Gessert et al. were

the winners of the ISIC 2019 Skin Classi�cation Challenge (Gessert et al., 2020),

which aimed to correctly classify the images from the dataset into nine classes

corresponding to the assigned labels. Although the ISIC dataset represents only

eight classes of labelled skin lesions, the aim of the challenge was to produce a

model that could classify images into nine classes in such a way that additional test

images, not corresponding to any of the eight o�cial classes, would be classi�ed

as "other". In our study we solely aimed to get highly accurate classi�cation into

the eight actual classes.

Initially E�cientNet pretrained CNN models were used and assessed (Tan et Le,

2019). A series of E�cientNet models (B0 to B7), which take as input images of

increasing sizes and use CNN architectures of increasing depth and width was de-

veloped at Google Brain and was found to produce state-of-the-art performance on

the ImageNet dataset. The ImageNet dataset contains a collection of millions of

images representing 1000 object classes and is commonly used to evaluate the per-

formance of new CNN image classi�cation architectures (Deng et al., 2009)(Rus-
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sakovsky et al., 2015). The approach of optimizing three key aspects (image size,

CNN layer width and CNN depth) of CNN architectures allowed them to produce

models that are more e�cient and outperform many other recent models (Figure

5.1).

The pretrained E�cientNet and other pretrained models presented below were

all pretrained with the ImageNet dataset and then used by transfer learning to

classify the ISIC2019 skin lesion images. Since E�cientNet models larger than

B4 require signi�cantly greater amounts of computing resources for diminishing

amounts of performance (accuracy) improvement (Figure 5.1), only E�cientNet

B0 and B4 modesl were used in our study. As shown in Figure 5.1, obtained

from (Tan et Le, 2019), the E�cientNet models B0 to B4 show a much greater

performance improvement for relatively small increase in resource requirement

than the larger E�cientNet models.

By using an esemble of various deep learning models based largely, but not ex-

clusively on the E�cientNet CNN architectures, Gessert et al. (2020) achieved

an average balanced (weighed) accuracy (WACC) of 0.725 ±0.017 (standard de-

viation) from �ve-fold cross-validation results. Trials carried out with various in-

dividual models including E�cientNets, ResNext (Xie et al., 2017) variants and

SeNET (Hu et al., 2018) produced best average WACCs between 0.653 ±0.008

and 0.688 ±0.007. With individual models, in Gessert et al.'s 2020 study the

ResNext-WSL model showed the worst average WACC and the best was obtained

with the largest E�cientNet model (B6) tested.

In all our classi�cation experiments, in a similar fashion to Gessert et al. (2020).

the performance of the individual models tested were evaluated by �ve-fold cross-

validation. The hyperparamaters used, as described in the Materials and Methods

section, were also the same as those used in Gessert et al. (2020). In a prior study
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Figure 5.1: Model size vs. ImageNet accuracy
The �gure shows the Top 1 accuracy (accuracy at predicting the correct object)
achieved by the various E�cientNet models (B0-B7) and various popular mod-
els with the ImageNet dataset plotted against the model size represented as the
number of parameters. Since the number of parameters can be interpreted as
a computational cost value, the �gure shows that the E�cientNet models out-
perform all other models of comparable size tested. Particular attention can be
placed on the ResNet-50, the DenseNet-201 and RexNeXt-101 models as variants
of these models were used in this study. In addition, as illustrated, a smaller
gain in accuracy for a signi�cantly greater number of parameters is achieved for
E�cientNet models larger than the B4 version. This �gure was obtained from
(Tan et Le, 2019)
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Table 5.1: Classi�cation results of the ISIC2019 dataset and its sub-datasets into
eight classes.
The best mean WACC and the standard deviation achieved with various models
with the full ISIC2019 dataset when classifying the images in all eight labeled
disease classes. The results of E�cientNet models with the individual BCN and
HAM sub-datasets are also shown as well as those obtained with the combined
BCN and HAM datasets. For all experiments the best average WACC along
with the standard deviation was calculated from �ve-fold cross-validation. For all
experiments the number of images (#Imgs), the model used (CNN), the number
of epochs (#Epochs) of training completed for each cross-validation and the mean
best WACC (AvgWACC) ± the standard deviation are shown.

Datasets #Imgs CNN #Epochs AvgWACC ±Std
ISIC2019 25331 E�cientNetB0 60 0,6193 ±0.0245
ISIC2019 25331 E�cientNetB4 100 0.6632 ±0.0108
ISIC2019 25331 SE-ResNext50 100 0.6156 ±0.0189
ISIC2019 25331 DenseNet121 100 0.6309 ±0.0053
ISIC2019 25331 ResNext101 100 0.6268 ±0.0116
ISIC2019 25331 InceptionV3 100 0.6573 ±0.0062
ISIC2019 25331 InceptionV3(Aux) 100 0.6600 ±0.0119
HAM 10015 E�cientNetB0 60 0.7599 ±0.0202
HAM 10015 E�cientNetB4 100 0.8346 ±0.0129
BCN 12413 E�cientNetB0 60 0.6823 ±0.0194
BCN 12413 E�cientNetB4 100 0.8933 ±0.0096
BCN+HAM 22428 E�cientNetB4 100 0.8747 ±0.0079

by Gessert et al. (Gessert et al., 2018), extensive work was done to determine

the best parameters to use for transfer learning of pretrained models for the clas-

si�cation of skin lesion images and therfore we chose to use the same parameters

in order to be able to reproduce their results.

As seen in Table 5.1, by implementing E�cientNets to classify the full ISIC2019

dataset, as expected, we obtained very similar results to those of Gessert et al.

(2020). With the smallest version of E�cientNet (B0) we obtained a best aver-

age WACC of 0.6193 ±0.0245, whereas with the larger B4 model we obtained a
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signi�cantly improved best average WACC of 0.6632 ±0.0108. As seen in Figure

5.2, the best WACC with E�cientNet B4 was reached after only 20 epochs of

training. This indicates that �ne-tunning of the E�cientNet model is achieved

rapidly when a large number (0.8*25531=20425) images are used for training.

In comparison, with the same models, Gessert et al. (2020) obtained best average

WACCs of 0.658 ±0.017 (B0) and 0.678 ± 0.011 (B4). Likely, the superior results

obtained by Gessert et al. are due to the fact that the dataset they used was

supplemented with additional datasets such as the SevenPoint dataset (Kawa-

hara et al., 2018), which contains 4.11 images, and another in-house dataset of

unknown size.

Based on Figure 5.1, E�cientNets appear to currently (at the time of writing) be

the most e�cient and best performing models based on ImageNet classi�cation

accuracy result. Nonetheless, we aimed to test a few more recent and popular

pretrained models to compare their performance at classifying skin lesion images

by transfer learning and see if possibly better results can be achieved.

We chose to test two models based on the residual networks (ResNet) architecture,

SE-ResNet50 (Hu et al., 2018) and ResNext101 (Xie et al., 2017). The SE-

ResNet50 model is similar to the original ResNet50 model (He et al., 2016)

which revolutionized the use of deep CNNs for image classi�cation and other

various tasks. However, in a similar-fashion to the E�cientNet models, a squeeze-

and-excitation block was added to the convolution blocks to optimize the channels

(feature maps) produced at each convolution step. As seen in Table 5.1, this model

achieved a best average WACC of 0.6156 ±0.0189 with the ISIC2019 dataset.

In comparison, the ResNext101 uses a di�erent convolution layer design where

multiple identical branches of convolution are used at each convolution step to

produce several (32) feature maps that are afterwards concatenated. This model
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Figure 5.2: Mean WACC with the ISIC2019 dataset after increasing numbers of
training epochs.
The mean WACC obtained at the �rst and every ten epochs for classi�cation
of the ISIC2019 dataset into the eight labelled disease classes with various CNN
models were calulated on the validation set from cross-validation experiments. For
E�cientNet B4 (blue) and InceptionV3 ignoring the auxiliary classi�er (red), the
mean WACCs were calculated from �ve-fold cross-validation. For DenseNet121
(green) and ResNext101 (black), the mean WACCs were calculated from three
and four-fold cross-validation, respectively. The reduced number of experiments
used for densenet121 and resnext101 was due to errors in the generation of the
log �les required to produce the data. The error bars for each mean WACC value
represent the standard deviation.
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achieved a slightly improved best average WACC of 0.6268 ±0.0116.

The other two models used, DenseNet121 (Huang et al., 2017) and InceptionV3

(Szegedy et al., 2016) have their own particularities in terms of their CNN archi-

tecture design (see Materials and Methods), but have all achieved high accuracy

results with the ImageNet dataset. DenseNet121 achieved a best average WACC

of 0.6309 ±0.0053 with the ISIC2019 dataset. In the case of InceptionV3, which

normally utilizes an auxiliary classi�er to regularize the main classi�er during

training, two training strategies were used. In one case the error obtained with

the auxiliary classi�er was taken into account and compounded with the error of

the main classi�er during training, whereas in the second case, the error obtained

with the auxiliary classi�er was ignored. As can again be seen in Table 5.1, the

model where the auxiliary classi�er was taken into account (InceptionV3(Aux))

achieved a slightly better best average WACC (0.66 ±0.0119) than the model

where the auxiliary classi�er is ignored (InceptionV3, 0.6573 ±0.0062).

Again, the increase in average WACC achieved by ResNext101, DenseNet121

and the InceptionV3 model (ignoring the auxiliary classi�er) during �ne tunning

for 100 epochs is shown in Figure 5.2. Like E�cientNet B4, in general these

models achieved the best average WACC after a low number (10-20) of epochs.

DenseNet121 which uses a large number of inter-connections between its convo-

lution layers produced a smoother curve and reached its peak slightly later after

50 epochs. In general, we can see in Figure 5.2 that, for all the models, after the

average WACC peak is reached, a plateau is formed where the its value slightly

�uctuates and, in some cases, decreases. However, no severe continuous decrease

in the average WACC is observed suggesting that the models to not su�er from

strong over�tting.

Based on the results achieved (Table 5.1) we can see that the di�erent models
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achieve broadly similar best average WACC classi�cation results with the full

ISIC2019 image dataset. However, we can see that E�cientNet B4 achieved the

best average WACC and is followed closely by the InceptionV3 model where the

auxiliary classi�er was taken into account. Actually, if we take the standard devi-

ation associated with the best average WACCs achieved by these two models, we

cannot say that one model performs signi�cantly better than the other. Nonethe-

less, for the remainder of our study we chose to use the E�cientNet B4 model

which is very e�cient and has a relatively low computational cost.

5.2 seperation of the datasets

As mentioned in the introduction, several studies related to skin cancer image

classi�cation have been performed in the recent past. Some studies linked to the

ISIC2018 skin challenge competition, where the HAM dataset was used for the

classi�cation of images into seven classes, are of particular interest. Classi�ca-

tion accuracy (WACC) obtained with this limited dataset surpassed the results

obtained with the full ISIC2019 dataset. For example, with a similar approach as

that described in the previous subsection, the group of Gessert et al. (2018), who

placed second in this challenge, obtained an average sensitivity (same as WACC)

score of 0.795 with the densenet4.1 model and 0.808 with ResNext101.

As also previously mentioned in the introduction, later-on the group of Bakkouri et

al. (2019) were able to improve these results signi�cantly by using a more complex

model and obtained an average sensitivity of 0.934 with the HAM dataset. Here

they selected only the later CNN layers of di�erent models (i.e. VGG16, ResNet50

and densenet4.1) for �ne tunning and used a CNN layer fusion approach with their

di�erent models working in parallel to achieve high accuracy classi�cation.

These results strongly suggest that smaller datasets that may contain more ho-
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mogenous images (such as the HAM dataset) can be more e�ciently classi�ed than

larger datasets produced by combining di�erent datasets (such as the ISIC2019

dataset). Most likely, the source of the images making up the datasets and the

preprocessing strategy applied by the dataset curators have an important e�ect

on class�cation accuracy. It is likely that, when several datasets are pooled to-

gether to produce a greater sample size, the classi�cation models have a greater

di�culty to correctly separate the di�erent skin lesion classes if the images from

these classes appear slightly di�erent from one dataset to another.

In order to determine if this is generally true, we evaluated the performance of the

E�cientNet models in classifying the two largest subsets of the ISIC2019 dataset

(i.e. the HAM and the BCN datasets) separately. However, in this case, since the

datasets were annotated to produce eight skin lesion classes, we aimed to classify

the images into these eigth classes. This is in contrast to the previously described

studies where only seven classes were de�ned.

With the HAM dataset, using the same model con�gurations than those used

with the full ISIC2019 dataset, with the E�cientNet B0 model we obtained an

average WACC of 0.7599±0.0202, which is signi�cantly greater than that achieved

with the full ISIC2019 dataset (Table 5.1). Furthermore, we obtained an even

greater average WACC of 0.8346 ±0.0129 with the larger E�cientNet B4 model.

This result is better than that obtained with Densenet4.1, the best performing

individual model used in Gessert et al.'s 2018 study. This further demonstrates

that the newer, more recent E�cientNet models (such as B4) can surpass the

e�ciency of the older models. This is also particularly noteworthy since in this

experiment the classi�cation task was more complex than those in Gessert et al.

(2018) due to the extra image class added.

Signi�cantly, even better classi�cation accuracy results were obtained with the
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BCN dataset (Table 5.1). With this slightly larger dataset the E�cientNet B4

model produced an average classi�cation WACC of 0.8933 ±0.0096, which is strik-

ingly greater than that observed with the HAM dataset. This is very surprising

since, as mentioned before, this dataset is said to include images of di�cultly

classi�ed lesions due to their location in uncommon body areas. One would be-

lieve that these images could have made the classi�cation task more complex and

less accurate with this dataset. This may also be why the smaller less complex

E�cientNet B0 model, in contrast to the B4 model, performed less well with the

BCN dataset than with the HAM dataset and only achieved a WACC of 0.6823

±0.0194.

As could be expected, an increased number of epochs were required to reach the

best average WACC with these individual datasets due to the reduced number of

images (Figure 5.3). In these cases, the best average WACC were obtained after

approximately 60 or 70 epochs. However, it is signi�cant that the best average

WACC results obtained with these two separate datasets are clearly higher than

those obtained with the full ISIC2019 dataset. To determine if such results only

occur if these two datasets are separated, we performed a classi�cation experiment

with the HAM and BCN datasets combined. In this case E�cientNet B4 achieved

a best average WACC of 0.8747 ±0.0079 (Table 5.1).

Although the WACC observed with the combined HAM and BCN datasets is

slightly lower than that achieved with the BCN dataset independently, the high

classi�cation accuracy suggests that the images in these two datasets are similar.

Even if the HAM and BCN datasets have likely been obtained and preprocessed

di�erently, the images representing each lesion class in these datasets most likely

share very similar traits and make accurate classi�cation feasible. Importantly,

the fact that the WACC obtained with the combined HAM and BCN datasets is
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Figure 5.3: Mean WACC with the BCN and HAM datasets after increasing num-
bers of training epochs.
The mean WACC obtained at the �rst and every ten epochs for classi�cation of
the ISIC2019 sub-datasets (BCN and HAM) into the eight labelled image classes
with the E�cientNet B4 model were calculated on the validation sets from cross-
validation experiments. The results for the BCN dataset (blue) and the HAM
dataset (red) were calculated from three-fold and �ve-fold cross-validation exper-
iments, respectively. The error bars for each mean WACC represent the standard
deviation.
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much higher that that obtained with the full ISIC2019 dataset indicates that the

presence of the MSK dataset in the latter is responsible for making classi�cation

more challenging and less e�cient.

It seems that the MSK dataset, the smallest dataset, which contains images of

variable sizes, produces noise in the training of the models and makes classi�cation

more di�cult. It is interesting that, unlike the HAM and BCN datasets, the MSK

dataset only represents three of the eight lesion classes present in the ISIC2019

dataset (Table 4.1). Also, it is noteworthy that unlike any images from the HAM

or BCN dataset, a large proportion of the MSK images are labeled as being

downsampled. However, no details are provided as to how and why these images

were downsampled. It seems likely that the images making up this dataset are, in

some way, signi�cantly di�erent than those making up the HAM or BCN datasets.

Most liekly some inherant di�erences between the MSK images and those of the

other datasets make the classi�cation task more challenging in the full ISIC2019

dataset.

5.3 unsupervised classi�cation of images

We aimed to �nd a strategy that would allow us to separate the images according

to possible unclear, inherent di�erences and may allow to improve classi�cation

by the CNN models. To achieve this, we initially used the K-means unsupervised

classi�cation algorithm (Elkan, 2003) to separate the BCN dataset into subgroups

(clusters) of images with similar characteristics. We chose to use this dataset since

it contains a more even proportion of images in all of the eight labeled classes.

As a �rst approach, we produced linear vectors representing all pixel values of

each BCN image. In order to produce manageable and comparable vectors, all
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the images of the BCN dataset were �rst resized (downsampled) to a 150x150

resolution. The produced linear vectors contained three values for each pixel

position representing the three colour channels of the images: red, green and

blue.

The resulting large vectors, each containing 67,500 features (pixel values), for

each image were fed into the K-means algorithm to produce di�erent number

of subgroups. The K-means algorithm (Elkan, 2003) was used to separate the

images into two to �ve clusters (K=2-5) and the image clusters generated were

evaluated using the Silhouette method (Kaufman et Rousseeuw, 2009). The K-

means algorithm tries to produce clusters with the smallest possible inertia (i.e.

smallest intra-cluster distance between members of the cluster).

As an initial proof of concept experiment, we selected a small number of images

(10) with clearly di�erent visual appearances (�ve MEL and �ve VASC). K-means

was found to clearly separate these images based on their corresponding raw pixel

vectors (data not shown).

Ideally, we would also have liked to show that K-means can also distinguish be-

tween images from the MSK dataset and those from the other datasets since it

was found that, as mentioned previously, the MSK images may be somehow dif-

ferent than those making up the other datasets. For this purpose, we carried out

clustering experiments with a pixel vector dataset (EqualDistImgs) representing

all the MSK images and two equal-sized subsets of images from the BCN and

HAM datasets (Table 5.2). In this case the BCN and HAM image subsets used

contained the same disease class (MEL, NV and BKL) image proportions as those

in the MSK dataset. In addition, we further carried out experiments with smaller

sub-datasets in which images were separated using two approaches: 1) based on

the two most abundant disease classes (MEL and NV) and 2) based on the la-
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Table 5.2: K-means clustering results with the MSK image dataset and subsets
of the BCN and HAM datasets.
Z-scored (scaledImgVector) and non-normalized (rawImgVector) pixel vectors
(Pixel based, left side) were generated with images of the EqualDistImgs dataset,
which includes all the MSK images available (2903) and equal-sized subsets of
the BCN and HAM datasets. These latter subsets contained the same propor-
tions of each disease class (NV, MEL and BKL) as those found in the MSK
dataset. Non-normalized (avgNoNormSVD) and MinMax-normalized global av-
erage pooled ResNet50 (RN50) feature vectors (RN50 features, righ side) were
also produced with the images of the EqualDistImgs and further reduced to two
features by SVD. All vector matrices produced were analyzed by K-means (K=2
or K=3) and the number (#MSK) and proportion (%MSK) of the MSK images in
each cluster is presented. The number of images (#Imgs) in the original dataset
and in all clusters produced are indicated.

Pixel based RN50 features
Dataset #imgs #MSK %MSK Dataset #imgs #MSK %MSK
equalDistDataset 8709 2903 0.3333 equalDistDataset 8709 2903 0.3333
rawImgVector avgNoNormSVD
K-2_0 5239 1688 0.3222 K-2_0 5869 2063 0.4026
K-2_1 3470 4.15 0.3501 K-2_1 2840 840 0.2958
K-3_0 3747 1301 0.3472 K-3_0 3818 1865 0.4885
K-3_1 4.14 72 0.0646 K-3_1 1586 212 0.1337
K-3_2 3848 1530 0.3976 K-3_2 3305 826 0.2499
scaledImgVector avgMinMaxSVD
K-2_0 4217 1532 0.3633 K-2_0 2407 760 0.3157
K-2_1 4492 1371 0.3052 K-2_1 6303 2143 0.3400
K3_0 950 56 0.0611 K-3_0 2891 1576 0.5591
K-3_1 3996 1341 0.3356 K-3_1 1570 230 0.1465
K-3_2 3763 1506 0.4002 K-3_2 4248 1097 0.2582

belling MSK images as downsampled and those with no such labelling (Table

5.3).

However, in all the above cases, attempts to separate MSK image pixel vectors

from those produced with HAM or BCN images with K-means failed. As seen in

Table 5.2 and Table 5.3, these experiments did not even produce clusters where

the MSK images were predominant over the others.

Since it is possible that the noise produced by the MSK images in the classi�cation
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Table 5.3: K-means clustering of pixel vectors produced with the NV and MEL
image datasets including BCN, HAM and MSK images.
Z-scored (scaledImgVector) and non-normalized (rawImgVector) pixel vectors
were generated with images from the three parent datasets: BCN, HAM and
MSK. The vector matrices produced were analyzed by K-means (K=2 or K=3)
and the number (#MSK) and proportion (%MSK) of the MSK images in each clus-
ter are presented. The number of images (#Imgs) in all original datasets and in
all clusters produced are also indicated. The EqualDownNV and EqualDownMEL
datasets contain all the NV (4.16) or MEL (374) images from the MSK dataset la-
beled as downsampled, respectively. The EqualOriNV and EqualOriMEL datasets
contain all the MSK images of the NV (648) or MEL (178) images from the MSK
which are not labeled as downsampled, respectively. All of the EqualDown and
EqualOri datasets contain an identical number of images of the same class from
each of the BCN and HAM datasets.

Dataset #Imgs #MSK %MSK Dataset #Imgs #MSK %MSK
equalDownNV 3948 4.16 0.3333 EqualDownMEL 5.12 374 0.3333
rawImgVector rawImgVector
K-2_0 2428 712 0.2932 K-2_0 206 10 0,0485
K-2_1 5.10 604 0.3974 K-2_1 916 364 0.3974
K-3_0 5.16 705 0.4346 K-3_0 434 138 0.4383
K-3_1 4.17 597 0.3114 K-3_1 487 227 0.0446
K-3_2 405 14 0.0346 K-3_2 201 9 0.3180
scaledImgVector scaledImgVector
K-2_0 1747 716 0.4098 K-2_0 536 139 0.2481
K-2_1 2201 608 0.2762 K-2_1 586 235 0.4010
K-3_0 2000 591 0.2955 K-3_0 447 140 0.4315
K-3_1 4.10 718 0.4460 K-3_1 186 9 0.0484
K-3_2 338 7 0.0207 K-3_2 489 225 0.3132
equalOriNV 1944 648 0.3330 EqualOriMEL 534 178 0.3333
rawImgVector rawImgVector
K-2_0 568 179 0.34.1 K-2_0 405 159 0.3926
K-2_1 1376 470 0.3416 K-2_1 129 19 0.1473
K-3_0 948 283 0.2985 K-3_0 114 11 0.0965
K-3_1 267 45 0.1685 K-3_1 211 93 0.4408
K-3_2 729 520 0.7133 K-3_2 209 74 0.3541
scaledImgVector scaledImgVector
K-2_0 908 347 0.3922 K-2_0 255 78 0.3059
K-2_1 1036 301 0.2905 K-2_1 279 100 0.3584
K-3_0 221 32 0.1448 K-3_0 218 95 0.4358
K-3_1 959 293 0.3055 K-3_1 214 73 0.3411
K-3_2 564 323 0.5727 K-3_2 102 10 0.0980
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Table 5.4: Silhouette scores obtained for di�erent K-means BCN image clusters
based on pixel vectors// Silhouette average scores for K-means clustering into K
clusters produced with BCN image pixel vectors. These clusters include those
produced with the raw image vectors (rawImg), the Z-sored normalized image
vectors (scaledImg) and those produced with the pixel vectors normalized by
MinMax (MinMaxSVD) or non-normalized (NoNormSVD) prior to being reduced
to two features by SVD. The vectors shown in bold are those which produced the
clusters with the best Silhouette scores (for 2 clusters (K=2) in all cases) and were
used for analysis in our study. As shown, many permutations of normalization
methods (Norm), dimension reductions methods (Red) and number of dimensions
(Dim) (features) were tested to obtain the best clustering possible.

Vectors Norm Red Dim K=2 K=3 K=4 K=5
rawImg NA NA NA 0.3179 0.2354 0.1683 0.1545
scaledImg Zscore NA NA 0.1762 0.1747 0.1502 0.1405
MinMaxSVD MinMax SVD 2 0.5194 0.4515 0.3953 0.3764
MinMaxSVDtest2 MinMax SVD 3 0.4680 0.3865 0.3213 0.3188
MinMaxPCAtest1 MinMax PCA 2 0.5184 0.4510 0.3961 0.3724
MinMaxPCAtest2 MinMax PCA 3 0.4675 0.3859 0.3206 0.3185
NoNormSVD NA SVD 2 0.5227 0.4540 0.3966 0.3761
NoNormSVDtest2 NA SVD 3 0.4721 0.3903 0.3264 0.3199
NoNormPCAtest1 NA PCA 2 0.5214 0.4535 0.4000 0.3700
NoNormZscoreSVDtest1 Zscore SVD 2 0.3437 0.3742 0.3748 0.3686
NoNormZscorePCAtest1 Zscore PCA 2 0.3437 0.3742 0.3748 0.3686

of the full ISIC2019 dataset is only caused by a subset of the MSK images, we

chose to proceed with our strategy and see if we can achieve better classi�cation

with image clusters generated with the BCN dataset.

As shown in Table 5.4, the average Silhouette scores for our initial experiment

ranged between 0.32 and 0.15 indicating that the clustering is rather poor. The

greater value (0.32) was achieved with two clusters (i.e. K=2). Due to the large

dimensionality of the pixel vectors used to produce the clustering, it is impossible

to produce a visualization of the clusters produced, however the distribution of

the Silhouette coe�cients for the data points (pixel vectors) of each cluster is

shown in Figure 5.4.
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In all cases, the fact that the coe�cient for a large majority of points sits well

below the average score is a visual indicator of poor clustering. As a second

approach, we used Z-score normalization to produce a normalized array of pixel

vectors in which all features (columns) were scaled. After feeding this normalized

array to the K-means algorithm and again evaluating the clustering results by

Silhouette, we saw that the clustering is even worst than that obtained without

normalization. As seen is Table 5.4 and Figure 5.5, after normalization the average

Silhouette scores range between 0.18 and 0.14. In this case also, the highest score

was obtained for two clusters.

Although, the clustering results obtained were poor, we examined the distribution

of the images for each cluster. As can be seen in Table 4.1, with both approaches

(raw (rawImg) and normalized (scaledImg) vectors) the produced clusters were

uneven and contained di�erent number of images. With the raw image vectors,

clusters of 7178 and 5235 images were produced, and with the normalized vectors,

the clusters contained 6433 and 5980 images. As can be seen in Figure 5.6A and

5.6B, the presented Venn diagrams indicate that the images making up the clusters

generated with the raw image vectors and those produced with the normalized

(scaled) image vectors are very di�erent.

As can also be seen in Table 4.1, the distribution of the images amongst the

di�erent image classes, particularly the ones generated with the raw image vectors,

is somewhat di�erent from the distribution in the full BCN dataset. However,

all clusters still contain images assigned to each disease class. Therefore, the

clustering does not seem to separate the images according to their class, but rather,

more likely, as desired, based on their general overall pixel composition. To see if

the separation produced can improve classi�cation results, datasets were produced

for both clusters produced by K-means with each array of vectors (original and
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Figure 5.4: Silhouette coe�cient distributions for K-means clustering of non-
normalized BCN image pixel vectors.
Silhouette method evaluation of the K-means clusters produced with the non-
normalized BCN image pixel vectors. The di�erent panels illustrate the Silhou-
ette coe�cients with K=2 (top-left), K=3 (top-right), K=4 (bottom-left) and
K=5 (bottom-right) where the value of K represents the number of clusters spec-
i�ed to the K-means algorithm. In each panel the area containing the Silhouette
coe�cients for all the image pixel vectors (data points) making up each cluster
is �lled with a di�erent color. The average Silhouette score for all the clusters is
indicated by the red dashed line.
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Figure 5.5: Silhouette coe�cient distributions for K-means clustering of Z-score
normalized BCN image pixel vectors.
Silhouette method evaluation of the K-means clusters produced with the Z-scored
normalized BCN image pixel vectors. The di�erent panels illustrate the Silhou-
ette coe�cients with K=2 (top-left), K=3 (top-right), K=4 (bottom-left) and
K=5 (bottom-right) where the value of K represents the number of clusters spec-
i�ed to the K-means algorithm. In each panel the area containing the Silhouette
coe�cients for all the image pixel vectors (data points) making up each cluster
is �lled with a di�erent color. The average Silhouette score for all the clusters is
indicated by the red dashed line.
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Figure 5.6: Overlap between K-means image clusters produced from pixel vectors.
Venn diagrams showing the overlap between pairs of datasets resulting from the
K-means clustering (K=2) of the BCN images based on pixel vectors. The �rst
cluster produced from clustering with the non-normalized image vectors (raw2_0)
is compared to the �rst (A) and second (B) cluster produced with the Z-score
normalized image pixel vectors, scaled2_0 and scaled2_1, respectively. In C
and D, the raw_0 cluster is compared to one cluster produced with MinMax
normalized pixel vectors and one cluster produced with the non-normalized pixel
vectors prior to being reduced to two features by SVD, minmaxSVD2_0 and
noNormSVD2_0.
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normalized).

The classi�cation results with the E�cientNet B4 model, shown in Table 5.5,

produced WACC results of 0.8164 ±0.0037 (with 7178 images) and 0.7840±0.0074

(with 5235 images) with the original vector clusters. The classi�cation results

with image clusters produced with the normalized vectors were slightly better

and produced WACC results of 0.8259 ±0.0074 (with 5980 images) and 0.8246

±0.0081 (with 6433 images). Overall, these results are signi�cantly lower than

that obtained with the full BCN dataset (WACC 0.8933 ±0.0096), but this may

be due in part to the lower number of images used to train the model.

In order to compare the classi�cation e�ciency when similar number of images

are used, two 6199 image datasets were produced with randomly selected images

from each disease class and with a class distribution equal to that of the original

BCN dataset (random6200_1 and random6200_2). As seen in Figure 5.7, the two

randomly produced datasets are quite di�erent from one another. Classi�cation of

these datasets with the E�cientNet B4 model produced best average WACCs of

0.7615 ±0.0130 and 0.8012 ±0.0037 over �ve cross-validations (Table 5.5). This

suggests that indeed the lower classi�cation WACC observed with the clusters

is in large part caused by the lower number of images available for training. In

addition, these results suggest that with some clusters, those produced with the

normalized image vectors, a slightly higher classi�cation accuracy can be obtained

than that observed with the random datasets. This therefore suggests that some

useful separation of the images is achieved.

It is noteworthy to mention that in these cases where classi�cation was performed

on reduced number of images, best average WACC results in each training exper-

iment were reached after a similar number of epochs to that necessary for the full
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Table 5.5: Classi�cation results with K-means BCN image pixel vector clusters
into eight disease classes.
The mean best WACC and standard deviation achieved with the E�cientNet
B4 model with various datasets when classifying the images in all eigth labelled
disease classes. The classi�cation results of the full BCN dataset (BCN) previously
presented in Table 5.1 is shown for reference purposes. The clusters produced
from BCN image pixel vectors include those produced with the raw image vectors
(rawImg), the Z-sored normalized image vectors (scaledImg) and those produced
wiht the pixel vectors normalized by MinMax and reduced to two features by SVD
(MinMaxSVD). For all experiments the K-means cluster (Cluster), the number of
images (#Imgs), the number of cross-validations performed (#CVs), the number
of epochs (#Epochs) of training completed for each cross-validation and the mean
best WACC ± the standard deviation (AvgWACC ±Std) is shown. In addition,
the results obtained with the two randomly produced datasets (random6200_1
and random6200_2) are shown for comparision purposes.

DataSet Cluster #Imgs #CVs #Epochs AvgWACC ±Std
BCN NA 12413 5 100 0.8933 ±0.0096
BCN K-means (K=2)
rawImg 2_0 7178 5 60 0.8164 ±0.0037

2_1 5235 3 100 0.7842 ±0.0074
scaledImg 2_0 5980 3 100 0.8259 ±0.0074

2_1 6433 3 100 0.8246 ±0.0081
MinMaxSVD 2_0 7185 5 100 0.8204 ±0.0090

2_1 5228 5 100 0.7842 ±0.0071
BCN random
random6200_1 NA 6199 5 100 0.7615 ±0.0130
random6200_2 NA 6199 5 100 0.8012 ±0.0037
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Figure 5.7: Overlap between randomly produced datasets of BCN images.
Venn diagrams showing the overlap between the two randomly procuced BCN
image datasets, BCNrandom6200_1 (BCNrandom_1) and BCNrandom6200_2
(BCNrandom_2). Each dataset contains 6199 images in the same proportions for
all eight disease classes as those in the full BCN dataset. As depicted, slightly
less than half of the images (3042) are present in both datasets.
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BCN dataset. As presented in Figure 5.8 we can see from the blue and red curves

produced with the random BCN datasets that the WACC increases gradually,

in a similar fashion than that observed with the full BCN dataset (Figure 5.3).

Generally, the best average WACC was seen after 60 to 100 epochs. Although

in some cases (not shown) the best WACC was obtained after the maximal num-

ber of epochs (100) performed, a plateau of average WACC was reached after

approximately 60 epochs and any increase in WACC after that was minimal.

To determine if the large number of features (67,500) used to produce the clusters

in each previous case may impede the performance of the K-means algorithm and

limit the quality of the clustering, we used di�erent dimension reduction algo-

rithms to reduce the number of features. We aimed to extract the most represen-

tative and important components from the image pixel vector matrices with the

singular value decomposition (SVD) and the principal component analysis (PCA)

algorithms. In all cases we aimed to obtained new features that best represented

the variability in the raw or normalized image pixel vectors.

We tested various approaches where the raw (original) pixel vector array was

either not normalized or normalized with the standard-scaler (Z-score) approach

or the MinMax approach. The resulting arrays were reduced by SVD or PCA

to extract two or three principal components. The resulting reduced vectors for

each image were analyzed by K-means clustering in two to �ve clusters and the

clustering was evaluated by Silhouette (Table 5.4).

The best Silhouette scores were obtained when the vectors were not normalized

and reduced to two components with SVD (Silhouette scores between 0.5227 to

0.3764 for K=2 to 5 (Table 5.4 and Figures 5.9 and 5.10)) or normalized with

the MinMax method and again reduced to two components with SVD (Silhouette

scores 0.5194 to 0.3761 with K=2 to 5 (Table 5.4 and Figures 5.11 and 5.12)).
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Figure 5.8: Mean WACC with the BCN random datasets after increasing numbers
of training epochs.
The mean WACC obtained at the �rst and every ten epochs for the BCNran-
dom6200 image datasets with the E�cientNet B4 model were calculated on the
validation sets from �ve-fold cross-validation experiments. The random datasets
(BCNrandom1 and BCNrandom2) each contain 6199 images selected randomly
from the BCN dataset in such a way that these smaller datasets have the same
proportion of images from each disease class as the full BCN dataset. The blue
and red lines show the mean WACC obtained from classi�cation of the random
datasets (1 and 2, respectively) in the eight labelled disease classes (8). The green
and black lines show the mean WACC obtained from classi�cation of the random
dataset images (1 and 2, respectively) in two classes (2): MEL or Others. The
error bars on for each mean WACC value represent the standard deviation.
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In each case, the best Silhouette scores were obtained when the image vectors

were separated into two clusters (i.e. K=2). As can be seen in Table 5.4, these

Silhouette scores are considerably higher than those obtained with the full vectors

(without dimension reduction), suggesting that the clusters are more tight and

better separated.

In these cases, since only two features (components) were used to cluster the

images, we can visualize the clusters on a two-dimensional plot as shown in Figures

5.9 to 5.12. As can be seen in the two cluster images (Figures 5.9 and 5.11, top-

right panels) two dense clusters are produced with a large number of data points

near the intersection. These latter points must contribute to the relatively low

Silhouette score ( 0.5 out of a maximum of 1). As can also be seen in the other

clustering images (K-3 to K-5) in Figures 5.9 to 5.12, using a higher value of K

produces clusters that are clearly not well separated.

Again, the image clusters produced with each approach were uneven and had a

slightly di�erent distribution of images amongst the di�erent classes than that of

the full BCN dataset (Table 4.1). However, both approaches produced clusters

with very similar numbers of images (75.1 vs 7185) and (5221 vs 5228) for the

rawSVD (NoNormSVD) and MinMaxSVD vectors, respectively, and very similar

distributions (Table 4.1). Moreover, the size of the clusters produced were almost

identical to those obtained with the full raw (rawImg) non-normalized pixel vectors

(7179 and 5235).

As shown in the Venn diagrams in Figure 5.6C and 5.6D, the clusters produced

with these reduced vectors (minmaxSVD2_0 and noNormSVD2_0) were almost

identical to the clusters produced with the raw original vectors (raw2_0). In

fact, more than 99% of the images contained in the larger rawSVD (99.65%) and
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Figure 5.9: Silhouette coe�cient distributions and K-means clusters (K-2 and
K=3) of non-normalized image pixel vectors reduced with SVD.
Silhouette method evaluation of the K-means clusters produced with the non-
normalized BCN image pixel vectors reduced to two features by SVD. The two
panels on the left illustrate the Silhouette coe�cients with K=2 (top) and K=3
(bottom) where the value of K represents the number of clusters speci�ed to the
K-means algorithm. In both panels the area containing the Silhouette coe�cients
for all the image pixel vectors (data points) making up each cluster is �lled with
a di�erent color. The average Silhouette score for all the clusters is indicated by
the red dashed line. The panels on the right illustrate the corresponding clusters
where the position of each data point is determined by the value of the two vector
features. The same-colour data points make up the di�erent clusters. The centroid
and number of each cluster is indicated by numbered white circles.
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Figure 5.10: Silhouette coe�cient distributions and K-means clusters (K=4 and
K=5) of non-normalized image pixel vectors reduced with SVD.
Silhouette method evaluation of the K-means clusters produced with the non-
normalized BCN image pixel vectors reduced to two features by SVD. The two
panels on the left illustrate the Silhouette coe�cients with K=4 (top) and K=5
(bottom) where the value of K represents the number of clusters speci�ed to the
K-means algorithm. In both panels the area containing the Silhouette coe�cients
for all the image pixel vectors (data points) making up each cluster is �lled with
a di�erent color. The average Silhouette score for all the clusters is indicated by
the red dashed line. The panels on the right illustrate the corresponding clusters
where the position of each data point is determined by the value of the two vector
features. The same-colour data points make up the di�erent clusters. The centroid
and number of each cluster is indicated by numbered white circles.
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Figure 5.11: Silhouette coe�cient distributions and clusters for K-means cluster-
ing (K=2 and K=3) of MinMax normalized BCN image pixel vectors reduced with
SVD.
Silhouette method evaluation of the K-means clusters produced with the MinMax-
normalized BCN image pixel vectors reduced to two features by SVD. The two
panels on the left illustrate the Silhouette coe�cients with K=2 (top) and K=3
(bottom) where the value of K represents the number of clusters speci�ed to the
K-means algorithm. In both panels the area containing the Silhouette coe�cients
for all the image pixel vectors (data points) making up each cluster is �lled with
a di�erent color. The average Silhouette score for all the clusters is indicated by
the red dashed line. The panels on the right illustrate the corresponding clusters
where the position of each data point is determined by the value of the two vec-
tor features. The same-colour data points make up the di�erent clusters. The
centroid and number of each cluster is indicated by numbered white circles.
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Figure 5.12: Silhouette coe�cient distributions and clusters for K-means cluster-
ing (K=4 and K=5) of MinMax normalized BCN image pixel vectors reduced with
SVD.
Silhouette method evaluation of the K-means clusters produced with the MinMax
normalized BCN image pixel vectors reduced to two features by SVD. The two
panels on the left illustrate the Silhouette coe�cients with K=4 (top) and K=5
(bottom) where the value of K represents the number of clusters speci�ed to the
K-means algorithm. In both panels the area containing the Silhouette coe�cients
for all the image pixel vectors (data points) making up each cluster is �lled with
a di�erent color. The average Silhouette score for all the clusters is indicated by
the red dashed line. The panels on the right illustrate the corresponding clusters
where the position of each data point is determined by the value of the two vec-
tor features. The same-colour data points make up the di�erent clusters. The
centroid and number of each cluster is indicated by numbered white circles.
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minmaxSVD (99.60%) clusters were also contained in the largest cluster produced

with the full raw pixel vectors. By deduction we can conclude that all three

methods group the images in a very similar fashion and that the large size of

the full pixel vectors does not seem to be detrimental to the clustering. The

di�erence in Silhouette scores obtained for the clusters produced with the full raw

pixel vectors and those produced with the reduced vectors appears to be simply

caused by the higher dimensionality of the vectors used to calculate the Euclidian

distances (both intra and inter cluster).

For this reason, we decided to use only the MinMax normalized and SVD re-

duced clusters for classi�cation with the E�cientNet B4 model to con�rm that

the very small di�erence between the clusters (Figure 5.6C and 5.6D) does not

have large e�ects on classi�cation e�ciency. As expected, and as can be seen in

Table 5.5, the best average WACC achieved with the two clusters (MinMaxSVD),

0.8204 ±0.0090 with 7185 images and 0.7842 ±0.0071 with 5228 images, is practi-

cally identical to the best average WACC values obtained with the full raw pixel

(rawImg) vectors (0.8164 ±0.0037 and 0.7842 ±0.0074).

Since pixel values, raw or normalized, may not be the best informative features to

e�ciently di�erentiate images into groups with similar characteristics, we chose to

explore a di�erent approach. In this case we chose to use a CNN model, ResNet50

(He et al., 2016), pretrained on the ImageNet dataset to extract features from the

BCN images. The ResNet50 architecture is a traditional model, one of the �rst

deep CNN neural networks, which has shown to have a very good performance

for the classi�cation of the ImageNet images (He et al., 2016)(Koonce, 2021).

We anticipated that a model pretrained on the ImageNet images may be able to

extract general features that could group the images based on inherant unseen

characteristics, rather than sperating them into disease classes.
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For this purpose, we fed the BCN images to the pretrained ResNet50 CNN with-

out any dense layers and initially captured the features produced by the model

and �attened the output of the last convolutional layer. This produces vectors

containing 100,352 features, the result of �attening the information contained

in 2048 7x7 feature maps. In order to avoid using very large vectors we chose

to add a pooling step at the end of the CNN architecture. Two di�erent pool-

ing approaches were used: global average pooling (GAP) or global max pooling

(GMP). These pooling operations produce a single feature from each of the 7x7

feature maps. GAP produces features representing the average of all the values of

7x7 feature maps whereas GMP outputs the maximal value of the feature maps.

These operations therefore produce feature vectors containing 2048 values which

are smaller-sized representative versions of the full original unpooled vectors.

Again, after extracting the features from the BCN images, we used the K-means

algorithm to separate the images into two or more clusters based on the feature

vectors. Since these feature vectors are still quite large, we �rst applied the pre-

viously described normalization and dimension reduction algorithms to produce

even smaller vectors. With both the GAP and GMP vector arrays the best Sil-

houette scores were obtained with two clusters (i.e. K=2) after either applying

SVD to non-normalized vectors (0.5860 with GAP (Table 5.6 and Figures 5.13

and 5.14) and 0.5865 with GMP (Table 5.6 and Figures 5.17 and 5.18)) or SVD

after MinMax normalization (0.6087 with GAP (Table 5.6 and Figures 5.15 and

5.16) and 0.5998 with GMP (Table 5.6 and Figures 5.19 and 5.20)) of the vector

arrays.
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Table 5.6: Silhouette scores obtained for di�erent K-means BCN image clusters
based on RN50 feature vectors// Silhouette average scores for K-means clustering
into K clusters produced with the BCN ResNet50 (RN50) feature vectors. These
clusters were all produced with either global average pooled (GAP) feature vectors
or global maximum pooled (GMP) feature vectors. The feature vectors were
either further MinMax-normalized (MinMax) or non-normalized (NoNorm) prior
to being reduced to two features by SVD. The vectors shown in bold are those
which produced clusters with the best Silhouette scores (for 2 clusters (K=2) in all
cases) and were used for analysis in our study. As shown, many permutations of
normalization methods (Norm), dimension reductions methods (Red) and number
of dimensions (Dim) (features) were tested to obtain the best clustering possible.

GAP
avgMinMaxSVD MinMax SVD 2 0.6087 0.4621 0.396 0.3528
avgMinMaxSVDtest2 MinMax SVD 3 0.4631 0.4637 0.4109 0.3568
avgMinMaxSVDtest3 MinMax SVD 4 0.3849 0.3779 0.3633 0.3244
avgNoNormSVD NA SVD 2 0.5860 0.4383 0.3745 0.3528
avgNoNormSVDtest2 NA SVD 3 0.4367 0.4708 0.4299 0.3546
avgNoNormSVDtest3 NA SVD 4 0.3530 0.3768 0.3521 0.2946
avgZscoreSVDtest1 Zscore SVD 2 0.4658 0.5331 0.5123 0.4567
avgZscoreSVDtest2 Zscore SVD 3 0.3611 0.4020 0.4041 0.3853
GMP
maxMinMaxSVD MinMax SVD 2 0.5998 0.4561 0.4056 0.3784
maxMinMaxSVDtest2 MinMax SVD 3 0.4604 0.4491 0.3853 0.3441
maxMinMaxSVDtest3 MinMax SVD 4 0.3956 0.3776 0.3568 0.3262
maxNoNormSVD NA SVD 2 0.5865 0.4923 0.3943 0.3786
maxNoNormSVDtest2 NA SVD 3 0.4372 0.4202 0.3814 0.3376
maxNoNormSVDtest3 NA SVD 4 0.3727 0.3499 0.3320 0.3062
maxZscoreSVDtest1 Zscore SVD 2 0.4647 0.5065 0.4877 0.4375
maxZscoreSVDtest2 Zscore SVD 3 0.3523 0.3890 0.3834 0.3671
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Figure 5.13: Silhouette coe�cient distributions and cluster for K-means clustering
(K=2 and K=3) of non-normalized BCN image RN50avg feature vectors reduced
with SVD.
Silhouette method evaluation of the K-means clusters produced with the BCN
image non-normalized ResNet50-extracted and global average pooled (RN50avg)
feature vectors reduced to two features by SVD. The two panels on the left il-
lustrate the Silhouette coe�cients with K=2 (top) and K=3 (bottom) where the
value of K represents the number of clusters speci�ed to the K-means algorithm.
In both panels the area containing the Silhouette coe�cients for all the image
RN50avg feature vectors (data points) making up each cluster is �lled with a
di�erent color. The average Silhouette score for all the clusters is indicated by
the red dashed line. The panels on the right illustrate the corresponding clusters
where the position of each data point is determined by the value of the two vec-
tor features. The same-colour data points make up the di�erent clusters. The
centroid and number of each cluster is indicated by numbered white circles.
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Figure 5.14: Silhouette coe�cient distributions and clusters for K-means clus-
tering (K=4 and K=5) of non-normalized BCN image RN50avg feature vectors
reduced with SVD.
Silhouette method evaluation of the K-means clusters produced with the BCN
image non-normalized ResNet50-extracted and global average pooled (RN50avg)
feature vectors reduced to two features by SVD. The two panels on the left il-
lustrate the Silhouette coe�cients with K=4 (top) and K=5 (bottom) where the
value of K represents the number of clusters speci�ed to the K-means algorithm.
In both panels the area containing the Silhouette coe�cients for all the image
RN50avg feature vectors (data points) making up each cluster is �lled with a
di�erent color. The average Silhouette score for all the clusters is indicated by
the red dashed line. The panels on the right illustrate the corresponding clusters
where the position of each data point is determined by the value of the two vector
features The same-colour data points make up the di�erent clusters. The centroid
and number of each cluster is indicated by numbered white circles.
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Figure 5.15: Silhouette coe�cient distributions and clusters for K-means cluster-
ing (K=2 and K=3) of MinMax normalized BCN image RN50avg feature vectors
reduced with SVD.
Silhouette method evaluation of the K-means clusters produced with the
BCN image MinMax normalized ResNet50-extracted and global average pooled
(RN50avg) feature vectors reduced to two features by SVD. The two panels on
the left illustrate the Silhouette coe�cients with K=2 (top) and K=3 (bottom)
where the value of K represents the number of clusters speci�ed to the K-means
algorithm. In both panels the area containing the Silhouette coe�cients for all
the image RN50avg feature vectors (data points) making up each cluster is �lled
with a di�erent color. The average Silhouette score for all the clusters is indicated
by the red dashed line. The panels on the right illustrate the corresponding clus-
ters where the position of each data point is determined by the value of the two
vector features. The same-colour data points make up the di�erent clusters. The
centroid and number of each cluster is indicated by numbered white circles.
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Figure 5.16: Silhouette coe�cient distributions and clusters for K-means cluster-
ing (K=4 and K=5) of MinMax normalized BCN image RN50avg feature vectors
reduced with SVD.
Silhouette method evaluation of the K-means clusters produced with the
BCN image MinMax normalized ResNet50-extracted and global average pooled
(RN50avg) feature vectors reduced to two features by SVD. The two panels on
the left illustrate the Silhouette coe�cients with K=4 (top) and K=5 (bottom)
where the value of K represents the number of clusters speci�ed to the K-means
algorithm. In both panels the area containing the Silhouette coe�cients for all the
image RN50avg feature vectors (data points) making up each cluster is �lled with
a di�erent color. The average Silhouette score for all the clusters is indicated by
the red dashed line. The panels on the right illustrate the corresponding clusters
where the position of each data point is determined by the value of the two vector
features The same-colour data points make up the di�erent clusters. The centroid
and number of each cluster is indicated by numbered white circles.
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Figure 5.17: Silhouette coe�cient distributions and clusters for K-means clus-
tering (K=2 and K=3) of non-normalized BCN image RN50max feature vectors
reduced with SVD.
Silhouette method evaluation of the K-means clusters produced with the BCN im-
age non-normalized ResNet50-extracted and global maximum pooled (RN50max)
feature vectors reduced to two features by SVD. The two panels on the left il-
lustrate the Silhouette coe�cients with K=2 (top) and K=3 (bottom) where the
value of K represents the number of clusters speci�ed to the K-means algorithm.
In both panels the area containing the Silhouette coe�cients for all the image
RN50max feature vectors (data points) making up each cluster is �lled with a
di�erent color. The average Silhouette score for all the clusters is indicated by
the red dashed line. The panels on the right illustrate the corresponding clusters
where the position of each data point is determined by the value of the two vec-
tor features. The same-colour data points make up the di�erent clusters. The
centroid and number of each cluster is indicated by numbered white circles.
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Figure 5.18: Silhouette coe�cient distributions and clusters for K-means clus-
tering (K=4 and K=5) of non-normalized BCN image RN50max feature vectors
reduced with SVD.
Silhouette method evaluation of the K-means clusters produced with the BCN im-
age non-normalized ResNet50-extracted and global maximum pooled (RN50max)
feature vectors reduced to two features by SVD. The two panels on the left il-
lustrate the Silhouette coe�cients with K=4 (top) and K=5 (bottom) where the
value of K represents the number of clusters speci�ed to the K-means algorithm.
In both panels the area containing the Silhouette coe�cients for all the image
RN50max feature vectors (data points) making up each cluster is �lled with a
di�erent color. The average Silhouette score for all the clusters is indicated by
the red dashed line. The panels on the right illustrate the corresponding clusters
where the position of each data point is determined by the value of the two vec-
tor features. The same-colour data points make up the di�erent clusters. The
centroid and number of each cluster is indicated by numbered white circles.
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Figure 5.19: Silhouette coe�cient distributions and clusters for K-means cluster-
ing (K=2 and K=3) of MinMax normalized BCN image RN50max feature vectors
reduced with SVD.
Silhouette method evaluation of the K-means clusters produced with the BCN
image MinMax-normalized ResNet50-extracted and global maximum pooled
(RN50max) feature vectors reduced to two features by SVD. The two panels on
the left illustrate the Silhouette coe�cients with K=2 (top) and K=3 (bottom)
where the value of K represents the number of clusters speci�ed to the K-means
algorithm. In both panels the area containing the Silhouette coe�cients for all
the image RN50max feature vectors (data points) making up each cluster is �lled
with a di�erent color. The average Silhouette score for all the clusters is indicated
by the red dashed line. The panels on the right illustrate the corresponding clus-
ters where the position of each data point is determined by the value of the two
vector features. The same-colour data points make up the di�erent clusters. The
centroid and number of each cluster is indicated by numbered white circles.
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Figure 5.20: Silhouette coe�cient distributions and clusters for K-means cluster-
ing (K=4 and K=5) of MinMax-normalized BCN image RN50max feature vectors
reduced with SVD.
Silhouette method evaluation of the K-means clusters produced with the BCN
image MinMax-normalized ResNet50-extracted and global maximum pooled
(RN50max) feature vectors reduced to two features by SVD. The two panels on
the left illustrate the Silhouette coe�cients with K=4 (top) and K=5 (bottom)
where the value of K represents the number of clusters speci�ed to the K-means
algorithm. In both panels the area containing the Silhouette coe�cients for all
the image RN50max feature vectors (data points) making up each cluster is �lled
with a di�erent color. The average Silhouette score for all the clusters is indicated
by the red dashed line. The panels on the right illustrate the corresponding clus-
ters where the position of each data point is determined by the value of the two
vector features. The same-colour data points make up the di�erent clusters. The
centroid and number of each cluster is indicated by numbered white circles.
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As seen in Table 5.6 (vs Table 5.4), these approaches produced the highest Sil-

houette scores observed as of yet in our study. Also as seen in Figures 5.13 to 5.20

(top-right panel for all), although the clusters produced are still not clearly sepa-

rated, in all cases the most concentrated areas appear to be clearly distinct from

one another. However, like the pairs of clusters produced by the non-normalized

and MinMax-normalized pixel vectors reduced with SVD (Figures 5.9 and 5.11,

top-rigth panels) the clusters with the feature vectors also have many data points

near the cluster intersection and are not clearly separated.

However, in these cases the clusters produced contained a more even number of

images than those produced with pixel-based vectors (Table 4.1, RN50 Features

section). The GMP vectors with normalization produced the two image clusters

with the largest size di�erence where one cluster contained 6797 images and the

other 5706 (Table 4.1, maxMinMaxSVD). In all cases the produced clusters again

had somewhat di�erent image distributions amongst the di�erent disease classes

as compared to that observed in the full BCN dataset. However, again the images

did not seem to be segmented based on class as each cluster contains images from

all eight classes.

As shown in the Venn diagrams in Figure 5.21, the di�erent pairs of clusters

produced by feature extraction are all quite similar to one another, but show

some small di�erences. More importantly, as seen in Figure 5.22 where clusters

obtained with MinmMax-normalized and SVD-reduced GAP ResNet50 feature

vectors (RN50avgMM2_0 and RN50avgMM2_1) are used as representatives of

the clusters produced from ResNet50 features, we can see that these clusters are

signi�cantly di�erent to those produced with pixel vectors (raw full pixel vectors

(raw2_0) and Z-scored-normalized full pixel vectors (scaled2_0)).
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Figure 5.21: Overlap between K-means image clusters produced from ResNet50-
extracted features.
Venn diagrams showing the overlap between pairs of datasets resulting from the
K-means clustering (K=2) of ResNet50-extracted features. Global average pooled
ResNet50 feature vectors (RN50avg) and global maximum pooled ResNet50 fea-
ture vectors (RN50max) were used to produce the clusters. In all cases the
feature vectors used to produce the K-means clusters were reduced to two fea-
tures by SVD. The �rst cluster produced from clustering with MinMax-normalized
RN50avg vectors (RN50avgMM2_0) was compared to the �rst cluster produced
with non-normalized RN50avg vectors (RN50avgNone2_0) (A) and the second
cluster produced with MinMax-normalized RN50Max vectors (RN50maxMM2_1)
(C). The large overlaps show that the clusters produced with MinMax normal-
ization and those produced without normalization of the RN50avg vectors are
very similar (A). The same applies for the clusters produced with the MinMax-
normalized RN50avg and RN50max vectors (C). In panel B, a cluster produced
with MinMax-normalized RN50max vectors (RN50maxMM2_0) is shown to be
very similar to a cluster produced with the non-normalized RN50Max vectors
(RN50maxNone2_1). Finally, in panel D, a cluster produced with the non-
normalized RN50avg vectors (RN50avgNone2_0) is shown to largely overlap with
a cluster produced with non-normalized RN50max vectors (RN50maxNone3_0).
Overall the �gure illustrates that all pairs of image clusters produced with
ResNet50-extacted features a generally very similar.
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Figure 5.22: Overlap between K-means image clusters produced from pixel vec-
tors and those produced from ResNet50-extracted features.
Venn diagrams showing the overlap between pairs of datasets resulting from the K-
means clustering (K=2) of the BCN images based on pixel vectors and ResNet50-
extracted features. Global average pooling was used to produce the ResNet50
feature vectors (RN50avg). The �rst cluster produced with the non-normalized
image pixel vectors (raw2_0) (A and B) and the �rst cluster produced with the
Z-score-normalized pixel vectors (scaled2_0) (C and D) are each compared to
both clusters produced with the MinMax-normalized RN50avg feature vectors re-
duced to two features by SVD (RN50avgMM2_0 and RN50avgMM2_1). These
diagrams show that overall, the pairs of image clusters produced with the pixel
vectors di�er signi�cantly from those produced with the ResNet50-extracted fea-
ture vectors.
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To assess if this approach allowed us to get improved classi�cation when the

images from each cluster were analysed separately, we again used the E�cientNet

B4 model to classify the images in the eight disease classes. As can be seen in Table

5.7, the best average WACCs achieved with these datasets were in the same range

as those achieved with the Z-scored normalized pixel vector (Table 5.5) with some

exceptions. In particular one of the MinMax-normalized GAP ResNet50 feature

cluster (avgMinMaxSVD2_1) produced the best result obtained with any of the

clusters (all methods) with a best average WACC above 0.85 (0.8560 ±0.0037).

Also, one of the clusters produced with non-normalized GAP ResNet50 feature

vectors (avgNoNormSVD2_1) produced only a slightly lower best average WACC

(0.8443 ±0.0113).

The best average WACCs obtained with at least one of the clusters produced by K-

means (K=2) with the di�erent SVD-reduced ResNet50 feature vectors are much

better than those obtained with the same-sized random BCN datasets (Table 5.7).

However, even if clustering can yield better classi�cation e�ciency with a reduced

number of images than that achieved with the random dataset, it remains that

the best classi�cation e�ciency was produced with the full BCN dataset in its

entirety (Table 5.7). Again this is likely attributed to the fact that this latter

dataset is much larger (i.e roughly twice as large as the cluster datasets).

Finally, we assessed if K-means clustering with ResNet50 feature vectors could sep-

arate MSK images from images originating from the other datasets. We generated

extracted features from the various, previously described, balanced datasets con-

taining equal amounts of images from all three ISIC2019 sub-datasets: MSK, BCN

and HAM. We generated ResNet50 feature vectors from the images with two of

the same approaches used in the previous classi�cation studies. Speci�cally, non-

normalized (avgNoNormSVD) or MinMax-normalized (avgMinMaxSVD) GAP
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Table 5.7: Classi�cation results with K-means BCN image RN50 feature vector
clusters into eight disease classes.
The mean best WACC and standard deviation achieved with the E�cientNet B4
model with various datasets when classifying the images in all eigth labelled dis-
ease classes. The classi�cation results of the full BCN dataset (BCN) previously
presented in Table 5.1 is shown for reference purposes. The BCN k-means clus-
ters produced from RN50 feature vectors were all produced with either global
average pooled feature vectors (avg) or global maximum pooled feature vectors
(max). These feature vectors were either MinMax normalized (MinMax) or non-
normalized (NoNorm) prior to being reduced to two features by SVD. For all
experiments the K-means cluster (Cluster), the number of images (#Imgs), the
number of cross-validations performed (#CVs), the number of epochs (#Epochs)
of training completed for each cross-validation and the mean best WACC ± the
standard deviation (AvgWACC ±Std) is shown. In addition, the results obtained
with the two randomly produced datasets (random6200_1 and random6200_2)
are shown for comparision purposes.

DataSet Cluster #Imgs #CVs #Epochs AvgWACC ±Std
BCN NA 12413 5 100 0.8933 ±0.0096
RN50 Features
avgMinMaxSVD 2_0 6006 5 100 0.7932 ±0.05.1

2_1 6407 5 100 0.8560 ±0.0037
avgNoNormSVD 2_0 6045 5 100 0.8086 ±0.0053

2_1 6368 5 100 0,8443 ±0.0113
maxMinMaxSVD 2_0 6005 3 100 0.8228 ±0.0060

2_1 6408 3 100 0.8270 ±0.0029
maxNoNormSVD 2_0 6707 3 100 0.8363 ±0.0043

2_1 5706 3 100 0.8092 ±0.05.1
BCN random
random6200_1 NA 6199 5 100 0.7615 ±0.0130
random6200_2 NA 6199 5 100 0.8012 ±0.0037
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ResNet50 feature vectors were produce with all the images and further reduced

to two features with SVD.

As can be seen in Tables 5.2 and 5.8, again, no clear speparation was achieved. In

all cases with K-means clustering in two or three clusters (K=2 or K=3), images

of the MSK dataset were dispersed in the di�erent clusters and no cluster was

produced that was predominantly composed of MSK images.

5.4 classi�cation in reduced numbers of classes

Since most of the research carried out to produce CAD models to diagnose skin

cancer lesion images aims only to classify the images between malignant and

benign lesions (Dick et al., 2019), we were interested to see if our K-means

clustering approach may improve classi�cation of images when the classes were

more broadly de�ned. Of the di�erent classes represented in the ISIC2019 dataset,

melanoma is by far considered to be the most malignant. However, BCC and SCC

can also metastasize and have severe deteriorating e�ects on patients. For this

purpose, we produced new labels for the di�erent datasets that group some of

the disease classes together and will allow classi�cation into a reduced number of

classes.

In a �rst case melanoma was labelled as malignant and all other image classes

were considered as benign (MEL vs Others). In a second approach we considered

MEL, BCC and SCC to be malignant and all other classes to be benign (MBS

vs Others). These new labelling strategies allowed us to do binary classi�cation

experiments. We also produced a third set of labels in witch four separate classes

were produced: MEL, BCC, SCC and others. This last set was produced to see if

classi�cation between the four most important classes could yield improved results
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Table 5.8: K-means clustering of ResNet50 feature vectors produced with NV and
MEL image datasets including BCN, HAM and MSK images.
ResNet50-extracted feature vectors were generated with images from the three
parent datasets: BCN, HAM and MSK. Non-normalized (avgNoNormSVD) and
MinMax-normalized (avgMinMaxSVD) global average pooled ResNet50 (RN50)
feature vectors from the images of the di�erent datasets were reduced to two fea-
tures with SVD. The vector matrices produced were analyzed by K-means (K=2
or K=3) and the number (#MSK) and the proportion (%MSK) of MSK in each
dataset is presented. The number of images (#Imgs) in all original datasets and in
all clusters produced is also indicated. The EqualDownNV and EqualDownMEL
datasets contain all the NV (4.16) or MEL (374) images from the MSK dataset la-
beled as downsampled, respectively. The EqualOriNV and EqualOriMEL datasets
contain all the NV (648) or MEL (178) images from the MSK dataset which are
not labeled as downsampled, respectively. All of the EqualDown and EqualOri
dataset contain an identical number of images of the same class from each of the
BCN and HAM datasets.

equalDownNV 3948 4.16 0.3333 EqualDownMEL 5.12 374 0.3333
avgNoNormSVD avgNoNormSVD
K-2_0 1853 379 0.2045 K-2_0 325 19 0.0462
K-2_1 2095 937 0.4472 K-2_1 797 355 0.4454
K-3_0 1085 472 0.4350 K-3_0 552 277 0.5018
K-3_1 1233 180 0.1460 K-3_1 250 13 0.0520
K-3_2 1630 664 0.4073 K-3_2 320 84 0.2625
avgMinMaxSVD avgMinMaxSVD
K-2_0 1468 795 0.5416 K-2_0 844 359 0.4254
K-2_1 2480 521 0.2100 K-2_1 278 15 0.0540
K-3_0 1137 103 0.0906 K-3_0 398 166 0.44.1
K-3_1 1299 692 0.5327 K-3_1 244 12 0.0492
K-3_2 4.12 521 0.3446 K-3_2 480 196 0.4083
equalOriNV 1944 648 0.3333 EqualOriMEL 534 178 0.3330
avgNoNormSVD avgNoNormSVD
K-2_0 1267 434 0.3425 K-2_0 180 32 0.1778
K-2_1 677 214 0.34.1 K-2_1 354 146 0.4124
K-3_0 692 146 0.2110 K-3_0 5.1 44 0.2716
K-3_1 865 409 0.6150 K-3_1 233 108 0.4635
K-3_2 387 93 0.2403 K-3_2 139 26 0.1871
avgMinMaxSVD avgMinMaxSVD
K-2_0 1499 542 0.3616 K-2_0 173 30 0.1734
K-2_1 445 106 0.2382 K-2_1 361 148 0.3885
K-3_0 764 344 0.4502 K-3_0 133 34 0.2556
K-3_1 375 85 0.2267 K-3_1 271 123 0.4539
K-3_2 805 219 0.2720 K-3_2 130 21 0.4.15
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over those achieved with all eight original disease classes.

Again, we solely focused on the BCN dataset for these experiments as this is

the dataset that contains a higher proportion of images in the classes considered

malignant (Table 4.1). The MEL vs Others dataset produced was still largely

unbalanced between the two classes as the MEL class only contains 2857 images,

less than a quarter (proportion = 0.23) of the full dataset, and the others together

make up 9556 images (proportion = 0.77). In the case of the MBS vs Others,

6097 images are labelled as malignant and 6316 images were labelled as benign.

This dataset is therefore much better balanced, but the malignant class in this

labelling strategy is expected to contain more image variation than in the MEL

vs Others dataset. Finally, the four-class dataset contains 2857 MEL, 2809 BCC,

431 BCC and 6316 others. This dataset, like the MEL vs Others, also represents

an important classi�cation challenge due to the fact that it is largely unbalanced.

We used a modi�ed version of the E�cientNet B4 model to carry out experiments

in which images are classi�ed into a reduced number of classes. In these cases,

we again used a weighted cross-entropy loss function to counter the unbalanced

property of the datasets. Also, we based our evaluation on the average WACC

obtained from evaluation on the validation dataset in three-fold cross-validation.

To test if our clustering approach is advantageous for the classi�cation in a reduced

number of classes, we �rst carried out classi�cation experiments with the full BCN

dataset (no clustering). This dataset was classi�ed based on the three labelling

approaches described above. As can be seen in Table 5.9, as expected, due to

the lower complexity of the classi�cation associated with the reduced number of

classes, we achieved very high best average WACC (above 0.9) values in all cases.

The best average WACC was obtained with the MEL vs Others classi�cation task
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Table 5.9: Classi�cation results with K-means BCN image clusters into two or
four disease classes.
The mean best WACC and the standard deviation achieved with the E�cientNet
B4 model with various datasets when classifying the images in two or four classes.
The classi�cation of the full BCN dataset was done in three separate ways: MEL
class images vs. Others (MELvsOthers), MEL+BCC+SCC vs Other (MBCv-
sOthers) and MEL, BCC, SCC, Others (M, B, S, Others). The BCN K-means
(K=2) cluster images were classi�ed only in the MELvsOthers fashion. Only the
K-means cluster datasets produced with the ResNet50 (RN50) feature vectors
were analyzed. These clusters were all produced with either global average pooled
feature vectors (avg) or global maximum pooled feature vectors (max). These
feature vectors were either MinMax normalized (MinMax) or non-normalized
(NoNorm) prior to being reduced to two features by SVD. For all experiments
the K-means cluster (Cluster), the number of images (#Imgs), the classi�cation
approach used (Classes). the number of cross-validations performed (#CVs), the
number of epochs (#Epochs) of training completed for each cross-validation and
the mean best WACC ± the standard deviation (AvgWACC ±Std) are shown.
In addition, the results obtained with the two randomly produced datasets (ran-
dom6200_1 and random6200_2) are shown for comparison purposes.

DataSet Cluster #Imgs Classes #CVs #Epochs AvgWACC ±Std
BCN NA 12413 MELvsOthers 3 100 0.9392 ±0.0057
BCN NA 12413 MBCvsOthers 3 100 0.9301 ±0.0021
BCN NA 12413 M, B, S, Others 3 100 0.9105 ±0.0088
BCN Keans
RN50 Features
avgMinMaxSVD 2_0 6006 MELvsOthers 3 100 0.9287 ±0.0047

2_1 6407 MELvsOthers 3 100 0.9078 ±0.04.1
avgNoNormSVD 2_0 6045 MELvsOthers 3 100 0.9180 ±0.0047

2_1 6368 MELvsOthers 3 100 0.8960 ±0.04.1
maxMinMaxSVD 2_0 6005 MELvsOthers 3 100 0.8710 ±0.0130

2_1 6408 MELvsOthers 3 100 0.9229 ±0.0037
maxNoNormSVD 2_0 6707 MELvsOthers 3 100 0.9247 ±0.0029

2_1 5706 MELvsOthers 3 100 0.8941 ±0.05.1
BCN random
random6200_1 NA 6199 MELvsOthers 5 100 0.8940 ±0.0050
random6200_2 NA 6199 MELvsOthers 5 100 0.8802 ±0.05.1
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where we saw an average WACC close to 0.94 (0.9392 ±0.0037). We achieved a

slightly lower average WACC of 0.9301±0.0021 with the other binary classi�cation

task (MBS vs Others). Presumably this is due to the higher variation in the images

considered as malignant. Finally, probably due to the higher number of classes,

we achieved the lowest best average WACC of 0.9105 ±0.0088 with the four-class

classi�cation task (MEL, BCC, SCC vs Others).

As could be expected, in all reduced class number experiments we achieved a

higher best average WACC than was observed for classi�cation of the full BCN

dataset with all eight labelled classes (0.8933 ±0.0037 (Tables 5.1). This is to

be expected since generally classi�cation into multiple classes is more challenging

than binary classi�cation or classi�cation with a reduced number of classes. In

these latter cases, more broad feature sets allow to predict the class in contrast to

cases where a larger number of classes is speci�ed as, in this case, more speci�c

features are required to distinguish between the classes.

Interestingly, binary classi�cation into the MEL vs Others class produced near

state-of-the art results (Blundo et al., 2021). The best average WACC achieved

with the full BCN dataset is broadly comparable to that achieved by Moura et al.

(Moura et al., 2019) (0.949) with a smaller and likely less variable dataset.

Next, in order to test our K-means clustering strategy, we used some of the same

image clusters produced in the previous part of our study to see if we could achieve

higher best average WACCs. Since we achieved the best classi�cation results with

the datasets corresponding to the groups produced with the ResNet50 feature

vectors (Table 5.7) and the clusters obtained with this strategy had the best

Silhouette scores (Table 5.6), we chose to limit our analysis to these datasets.

Also, since the best results with the full BCN dataset was achieved with the MEL

vs Others binary classi�cation approach and this strategy is the most commonly
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used in the �eld, again we limited our study to test only this classi�cation task.

With all the smaller, ResNet50 feature vector-based datasets produced by K-

means clustering, as can be seen in Table 5.9, the average WACC achieved was

generally slightly lower than that obtained with the full BCN dataset. With the

MinMax-normalized GAP clusters (avgMinMaxSVD) we observed best average

WACCs of 0.9287 ±0.0047 and 0.9078 ±0.0131 with the two clusters. Compa-

rable results were obtained with MinMax-normalized GMP clusters (maxMin-

MaxSVD), with which we observed the slightly weaker best average WACCs

of 0.8710 ±0.0130 and 0.9229 ±0,0037. Finally, comparable results were pro-

duced with the non-normalized GAP and GMP clusters (avgNoNormSVD and

maxNoNormSVD, repectively) (Table 5.9). Of course, the similarity observed in

the results obtained with these di�erent datasets is expected due to the similar-

ity previously shown between the clusters produced with the di�erent ResNet50

feature vectors (Figure 5.21).

Here, for comparison purposes, we again classi�ed the similar-sized random BCN

datasets (random6200_1 and random6200_2). With both these datasets we again

obtained weaker best average WACCs of 0.8940 ±0.0050 and 0.8802 ±0.05.1,

respectively (Table 5.9). This further supports the conlusion that the K-means

clustering with ResNet50 features, can separate the images to a certain extent

based on some unknown characteristics to produce better classi�cation results.

However, in this set of experiments we can again see that best classi�cation results

are achieved with the full BCN dataset rather than those produced by clustering.

Therefore, a larger dataset of homogenous, but possibly slightly more variable

images is better for training and classi�cation than smaller size datasets. This

again demonstrates the commonly known fact that the size of the dataset, when

the data is homogeneous, is a key factor in obtaining better trained models and
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best accuracy results.

5.5 CAD application for binary skin lesion image classi�cation

A new application, Deep Uncertainty Estimation of Skin Cancer (DUNEScan),

that addresses some of the drawbacks of currently available skin cancer diagnosis

applications, has been developed as a collaborative e�ort by Mazoure et al (2022).

The application uses six state-of-the-art CNN-based publicly available models to

give a prediction of a skin lesion image being a malignant or benign cancer. Four

of these models, Inceptionv3 (Szegedy et al., 2016), ResNet50 (He et al., 2016),

MobileNetv2 (Sandler et al., 2018), E�cientNet (Tan et Le, 2019), are traditional

models trained in a supervised fashion with labeled images, whereas the other two,

BYOL (Grill et al., 2020) and SwAV (Caron et al., 2020), are self-supervised

models and were trained with unlabelled images.

Although recent self-supervised learning models can match the performance of

supervised learning models, no skin cancer detection applications have integrated

self-supervised models in their pipelines so far. The major advantage of self-

supervised methods is the ability to leverage large amounts of unlabeled data

to pretrain the latent representation, which can then be used to train a simple

classi�er, matching the accuracy of fully supervised methods (Grill et al., 2020).

Also, in contrast to models used in currently available applications, all the above

models were trained using publically available image datasets obtained from the

International ISIC archive. Furthermore, di�erent approaches are used by the

application to evaluate the uncertainty of the predictions, including Grad-CAM

(Selvaraju et al., 2017), UMAP and binary dropout techniques. Importantly, this

application is publicly available (i.e. does not require a licence) on a web-server

that can be reached at https://www.dunescan.org
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We contributed to the preparation of a manuscript describing DUNEScan, which

was recently published in the Scienti�c Reports journal (Mazoure et al., 2022).

Since the development and implementation of DUNEScan was carried out by

our collaborator, we refer you to the published article (Mazoure et al., 2022)

describing the application for detailed information on the materials and methods

used. In addition to contributing to the editing of the manuscript as a whole, more

importantly we were responsible for the testing of the application, the preparation

of the test-related table, the related �gures and the corresponding text which is

presented in the "testing of the application" section of the summarized results

below.

In the following sections we present the key sections of the results presented in

the published manuscript. These include an explanation of the strategies used

to estimate the uncertainty of the predictions made by the di�erent models, an

explanation of the general output made by the DUNEScan application and the

results of the tests we performed on the application.

5.5.1 uncertainty estimation

In risk-sensitive �elds such as medical imaging, where a false negative prediction

can make a di�erence between life and death, it is crucial to quantify the con�-

dence level of a given model. DUNEScan uses the technique proposed by (Gal et

Ghahramani, 2016), randomly disabling parameters of the classi�er in an inde-

pendent set of replicates, and thus achieving an approximate Bayesian posterior

over the possible estimates of the model for a given skin lesion image.

The DUNEScan user can select the number of random replicates to be used for a

given model. DUNEScan provides uncertainty estimates for each classi�er through

a boxplot (see Figure 5.23b). If the prediction probabilities with the replicates are
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tightly concentrated around the mean, this implies that the classi�er is con�dent

in its class prediction for the input image and the prediction is trustworthy. In

contrast, if the prediction probabilities for the benign and malignant image classes

are dispersed and their con�dence intervals overlap, this implies that the classi�er

is not con�dent and hence, the prediction is not trustworthy.

In addition to the boxplots described above, a classi�cation manifold is also pro-

duced with the trained MobileNetv2 model, the fastest of the six available models

(see Figure 5.23d). This plot provides an alternative illustration of the con�dence

of the MobileNetv2 classi�er obtained for the input image class prediction.

In the classi�cation manifold graph, each green dot represents a benign skin lesion

image used for training, and each red dot represents a malignant one (see Figure

5.23d). If the input image, represented by a blue dot, is located close to the middle

of the benign (green) cluster - then the MobileNetv2 model is con�dent that the

lesion is benign, but if it is located close to the middle of the malignant (red)

cluster - then the MobileNetv2 model is con�dent that the lesion is malignant.

However, if the blue dot is located close to the boundary of the green and red

clusters, then the model exhibits uncertainty in the prediction.

5.5.2 description of the DUNEScan output

DUNEScan �rst produces and presents the output plot of Grad-CAM (Selvaraju

et al., 2017) that highlights the regions of high importance on the input image

detected by the MobileNetv2 model (see Figure 5.23c). The above described

MobileNetv2 classi�cation manifold is then presented, followed by the uncertainty

estimate boxplot for each model selected to analyze the input image (see Figure

5.23b).



78

Moreover, the output contains a bar-graph showing the average prediction prob-

abilities of both classes obtained with each model used (see Figure 5.23a). By

providing the classi�cation probabilities together with means to assess the con�-

dence of these predictions, the DUNEScan server allows practitioners to quickly

evaluate the probability that a given skin lesion is benign or malignant. This

probability is computed by passing a given skin lesion image through one of the

six available models, which outputs a vector of 2 real values (i.e. logits). These

values are passed through the softmax function, which maps them onto the prob-

ability simplex. Hence, all probabilities computed in the paper are of the form:

P[malignant|skin lesion image].

5.5.3 testing of the application

Our application was tested by using images from the HAM10000 dataset (Tschandl

et al., 2018). This original version of the dataset was used as source data for the

ISIC 2018 challenge (Codella et al., 2019). As described in the introduction, this

dataset includes images of skin lesions corresponding to seven di�erent classes:

actinic keratosis (AK), basal cell carcinoma (BCC), benign keratosis (BKL), der-

mato�broma (DF), melanocytic nevi (NV), melanoma (MEL) and vascular lesions

(VASC). In contrast to the newer version of the HAM10000 dataset incorporated

into the ISIC2019 dataset, no images were labelled as representing the squamous

cell carcinoma (SCC) disease class.

Amongst these, MEL and BCC are considered to be malignant skin diseases,

whereas the other lesion types are considered as benign. Again, as previously

mentioned, the class labels assigned for more than 50% of the images were con-

�rmed by histopathology, while for the others the labels were derived from expert

consensus or con�rmed by in-vivo confocal microscopy. Selected images were ana-
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lyzed using 50 replicates with all six CNN models available in DUNEScan to give

an overall classi�cation prediction.

MEL and NV images, the most common malignant and benign classes of lesions in

the dataset, representing 11% and 67% of the dataset, respectively, were used to

assess the performance of the application. In general, the prediction average and

the con�dence in the prediction vary between the di�erent algorithms. However,

in most cases they broadly tend to agree on the prediction with some exceptions.

For example, for the MEL1 image (ISIC_24482) presented in Figure 5.24a, all the

algorithms, except BYOL, give a malignant prediction with a probability greater

than 0.80 (Table 5.10; for improved readability, it is expressed in percentages in

Figures 5.23 to 5.26). As also illustrated in Figures 5.24 to 5.26, half of the algo-

rithms (ResNet50, E�cientNet and SwAV) are highly con�dent in their predic-

tions as they all output low-variance probability distributions. The MobileNetv2

and InceptionV3 models also yield reliable predictions, but the spread of their ap-

proximate posterior distribution is noticeably larger. However, the BYOL model

generally provided low-con�dence predictions for the images analyzed, and thus

should be used with caution.

In the case of the MEL2 image (ISIC_24751), most algorithms yield a high prob-

ability of malignancy (above 0.90) with the exception of InceptionV3 and BYOL,

which suggest that the lesion is benign with a probability of 0.74 and 0.93, re-

spectively (see Table 5.10 and Figure 5.24b). Although the con�dence intervals

produced by InceptionV3 do not overlap, they are considerably larger than those

produced by the other models. Therefore, the results produced by InceptionV3

and BYOL are less reliable than the consensus prediction obtained with the rest

of the models for the MEL2 image.



80

Figure 5.23: Screenshots of the main features of our DUNEScan web server.
(a) Average model predictions for a given skin lesion image (malignant or benign)
provided by the six available CNN models, (b) boxplots showing uncertainty of
model predictions, (c) Grad-CAM gradient saliency plot of most important lesion
features, (d) classi�cation manifold from the MobileNetv2 features, (e) confusion
matrices computed over the test set for all six CNN models.

Table 5.10: Class prediction probabilities obtained for various images by the dif-
ferent CNN models available in DUNEScan.
The predictions are represented as probability of malignancy, p(malignancy). The
probability of benignancy can be obtained by 1-p(malignancy). The names in the
Image �eld are short-hand acronyms used for referencing. The Image Identi�er
corresponds to the ISIC image identi�er. E�Net, Incept and MobNet are abbre-
viations for E�cientNet, InceptionV3 and MobileNetV2, respectively.

Image Image Identi�er ResNet50 E�Net Incept MobNet SwAV BYOL
MEL1 ISIC_0024482 0.95 0.81 0.81 0.81 0.96 0.01
MEL2 ISIC_0024751 1.00 0.91 0.26 0.95 0.96 0.07
NV1 ISIC_0024320 0.00 0.48 0.27 0.12 0.36 0.03
NV2 ISIC_0024334 0.02 0.27 0.66 0.36 0.03 0.06
NV3 ISIC_0024307 0.45 0.43 0.53 0.58 0.03 0.10
BKL1 ISIC_0024337 0.30 0.09 0.16 0.12 0.05 0.47
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Figure 5.24: Boxplots representing uncertainty estimates for two malignant lesion.
The original images of the malignant MEL skin lesions ISIC_0002482 (MEL1, a)
and ISIC_0024751 (MEL2, b) are presented at the top-left of each panel. The
Grad-CAM output is presented on the top-right part of the panels. In both
panels the boxplots provided by the six CNN models available on DUNEScan are
presented bellow for the corresponding skin lesion images.



82

Interestingly, the InceptionV3 model again produces an outlier result with the NV2

image (ISIC_24334, see Figure 5.25b). In this case, all other algorithms predict

that the lesion is likely benign (all producing a probability of malignancy below

0.36), whereas InceptionV3 predicts that the lesion is malignant with a probabil-

ity of 0.66 (see Table 5.10). In this case, the two models predicting the lesion

to be benign with the highest probabilities, ResNet50 (0.98) and SwAV (0.97),

have the tightest prediction distribution, whereas those of both InceptionV3 and

MobileNetv2 are broad and overlapping (see Figure 5.25b). The distributions of

the prediction probabilities obtained with E�cientNet are intermediate in size,

but do not overlap. Based on these results, by relying on the models producing

predictions with higher con�dence (ResNet50, SwAV and E�cientNet), one could

conclude that the image is indeed benign.

From the sample of NV images tested, it seems that the models have a di�culty

producing a consensus benign prediction with high probability and con�dence.

Nevertheless, for most NV images, such as NV1 (ISIC_24320), an overall con-

vincing set of benign prediction probabilities (all 0.52 or greater) are obtained

from all models (see Table 5.10). The E�cientNet which produces the 0.52 prob-

ability is clearly unable to assign the lesion image to one class over the other. This

is clearly illustrated by the fact that all replicate prediction probabilities for both

benign and malignant classes overlap with a mean near 0.50 (see Figure 5.25a).

All other models, which give higher benign prediction probabilities have varying

levels of con�dence based on the corresponding boxplots (see Figure 5.25a).

Since MEL and NV lesions often appear to be visually similar, this may explain

why in some cases most of the models have a di�culty in favoring one class over the

other. For example, with the NV3 image (ISIC_24307, Figure 5.26a) most models

output predictions close to 0.50 for both classes (see Table 5.10). Interestingly,
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Figure 5.25: Boxplots representing uncertainty estimates provided for a �rst pair
of benign lesions.
The original images of the benign NV skin lesions ISIC_00024320 (NV1, a) and
ISIC_0024334 (NV2, b) are presented at the top-left of each panel. The Grad-
CAM output is presented on the top-right part of the panels. In both panels the
boxplots provided by the six CNN models available on DUNEScan are presented
bellow for the corresponding skin lesion images.
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with this image, only SwAV classi�es the lesion as benign with a high probability

(0.97) and con�dence (see Table 5.10 and Figure 5.26a).
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Figure 5.26: Boxplots representing uncertainty estimates for a second pair of
benign lesions.
The original images of the benign NV skin lesion ISIC_00024307 (NV3, a) and
the benign BKL skin lesion ISIC_0024337 (BKL1, b) are presented at the top-left
of each panel. The Grad-CAM output is presented on the top-right part of the
panels. In both panels the boxplots provided by the six CNN models available on
DUNEScan are presented bellow for the corresponding skin lesion images.

Finally, we present the results obtained with the benign BKL1 image (ISIC_24337,

Figure 5.26b), which has a clearly di�erent appearance to those of NV and MEL

lesions. In this case, all models except BYOL predict the lesion to be benign

with a probability of 0.70 or greater (Table 5.10). We obtain dispersed (but non-

overlapping) replicate prediction probability distributions with the InceptionV3

and MobileNetv2 models (see Figure 5.26b), suggesting that the overall predic-

tions that the lesion is benign (0.84 and 0.88, respectively, see Table 5.10), may

not be highly accurate. However, based on Figure 5.26b, the predictions from all

other models, except BYOL, appear to be trustworthy. The results presented in

Table 5.10 provide a representative sample for a handful of malignant and benign

skin lesions. The confusion matrices for all six models computed for the entire

test set can be found in Figure 5.23.

Overall, it appears that most models, with the exeption of BYOL, are capable of

giving valuable predictions in most test cases. In the case of BYOL, which has dif-

�culty giving accurate malignancy predictions, additional training with adjusted

parameters is likely required to obtain better performance. Nonetheless, when ig-

noring BYOL predictions, the application may be useful in assisting practitioners

in the analysis of skin lesion images.



CHAPTER VI

DISCUSSION

Classi�cation of skin cancer images may be considered a challenging computer

vision task because the characteristics of some images belonging to the di�erent

classes do not appear to be clearly distinct (i.e. to the naked eye images from

one class can be very similar looking to those of another). In the recent years,

relatively large, novel annotated skin lesion image datasets (e.g. ISIC2019) have

become publicly available. In the case of the ISIC2019 dataset the classi�cation

is made more di�cult due to the large imbalance between the number of im-

ages representing each class. Some classes, such as the DF, VASC and SCC, are

signi�cantly under-represented in the dataset.

Class imbalance generally results in the most abundant classes having more in-

�uence on the weight adjustment in the convolution steps of CNN models during

training and therefore these become better recognized by the classi�er. In contrast,

under-represented classes become less accurately di�erentiated from one another.

In order to overcome the problem of class imbalance, a similar approach to that

used by Gessert et al. (2020) was used. A weighted cross-entropy loss function

was used where a greater weight is placed on images of poorly represented classes,

and, as a consequence, miss-classi�cation of one of these images has more impact

on the �ne-tuning of the CNN by back-propagation than miss-classi�cation of an
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image from the more abundant classes.

After testing some of the more recent state-of-the-art CNN architectures pre-

trained on the ImageNet dataset, we observed that all the models tested achieved

broadly similar results. All models achieved best average WACCs between 0.61

and 0.66 with the ISIC2019 dataset (Table 5.1), which represents rather poor over-

all classi�cation accuracy. From those tested, the best performing models were

E�cientNet B4 and Inception V3. These models achieved best average WACCs

of 0.6632 ±0.0108 and 0.6600 ±0.0119. It is likely that better results could have

been achieved by one of the larger versions of the E�cientNet series, but the

possible bene�t of such models would have been o�set by greater demands on

computing resources. We therefore selected to use the E�cientNet B4 model for

the remainder of our experiments.

As shown in this study, it appears that classi�cation can be made even more di�-

cult if images originate from di�erent sources and may not have been preprocessed

in an identical fashion by the dataset curators (i.e. some forms of batch e�ect).

This is clearly illustrated by the fact that a much greater best average WACC can

be achieved with the BCN (0.8933 ±0.0096) and HAM (0.8346 ±0.0129) datasets

when they are analysed separately or together (0.8747 ±0.0079) as compared to

that achieved when the MSK dataset is included (Table 5.1). This clearly shows

that, although the number of images used for training is generally considered to be

an important factor determining how well a CNN will perform in a classi�cation

task, variation in some general underlying composition of the images can have a

large negative e�ect in a classi�cation task.

A key feature of a good CAD classi�cation model to separate skin lesion im-

ages into di�erent disease classes is to be able to generalize well across images

originating from di�erent sources. In order to achieve this, perhaps a better pre-
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processing pipeline applied prior to training and classi�cation would be required.

This would be an avenue worth investigating. In addition, in this study the

weights of the pretrained CNN architectures tested were simply readjusted by us-

ing batch normalization when re-training the networks with skin lesion images. It

may be worthwhile to apply a more classical transfer-learning strategy by which

the weights of a proportion of the convolution layer blocks are re-adjusted by �ne-

tunning. This may likely improve the performance of models by helping them to

identify features that better separate the skin lesion image classes. However, in

our study we chose to investigate if we could separate images based on some gen-

eral traits or inherent characteristics into subgroups of images in order to improve

the classi�cation e�ciency. To test this we chose to focus our study on the BCN

image dataset since this dataset contains the largest number of images amongst

the three sub-datasets composing the ISIC2019 dataset. In addition, the rarer

disease classes are better represented in this dataset (i.e. the classes represent a

greater proportion of the dataset) than in the HAM dataset, the second largest

sub-dataset.

In all attempts made to subdivide the BCN dataset we used the K-means algo-

rithm to produce clusters based on the Euclidian distance metric between image

vectors produced by di�erent strategies. With this algorithm, we can argue that

the best results were obtained with vectors of features extracted from the images

by the ResNet50 CNN architecture pretrained on ImageNet. With this approach,

when classifying the images into eight classes with the E�cientNet B4 model,

we achieved higher best average WACC scores with some clusters (best 0.8560

±0.0037, Table 5.7) than with datasets of the same size composed of randomly

selected BCN images (best 0.8012 ±0.0037, Table 5.7). However, none of the

clustering approaches used were able to produce a subgroup of images with which

we could outperform models trained with the full BCN dataset (0.8933 ±0.0096,
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Table 5.1).

Similar results were obtained when we tried classifying the images in a smaller

number of classes (Table 5.9). In this case we used the same clusters generated by

K-means with the ResNet50 extracted feature vectors as datasets to do binary clas-

si�cation between the MEL disease class and all other classes combined. E�cient-

Net B4 was found to achieve better best average WACCs with some clusters (best

0.9297 ±0.0047) than with the same-sized random BCN datasets (best 0.8940

±0.0050). However, in the same classi�cation approach we again achieved a sig-

ni�cantly better best average WACC with the full BCN dataset (0.9392 ±0.0057).

These data clearly indicate that in the case of the BCN dataset, maintaining

a higher number of images used for training is more important than separating

the images based on what are likely relatively small general di�erences. This

suggests that since the BCN images were likely all obtained from a common source

and, perhaps more importantly, were all preprocessed in a similar fashion by the

dataset curators, the images are likely generally homogenous. It may also be

possible, however, that the methods used simply do not allow us to detect the best

characteristics to segregate the images. In support of this view, it is important

to note that none of the selected approaches used to produce image clusters were

able to e�ciently di�erentiate between MSK images and those from the HAM or

BCN datasets (Tables 5.2, 5.3 and 5.8).

Since the various K-means clustering approaches used were unable to segregate

the MSK images from those of the other datasets, it is not yet clear exactly why

this dataset appears to create noise in training and classi�cation (Table 5.1). As

described previously, the MSK images seem to be the odd ones out and reduce

the general classi�cation accuracy when they are included in a classi�cation task

along with the HAM and BCN datasets. Therefore, one would expect that these
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images have underlying characteristics that make them, in some way, generally

di�erent from the HAM and BCN images and cause the E�cientNet B4 model to

underperform.

However, it is also possible that only a sub-set of the MSK images are problematic

either by being outliers for particular disease classes or by having di�erent inherent

characteristics not distinguished by the clustering approaches used. It is possible

that other clustering algorithms such as those based on density (e.g. HDBscan

(McInnes et al., 2017), OPTICS (Ankerst et al., 1999)) rather than distance

(e.g. K-means) may help to segregate the images in a more e�cient manner.

Nonetheless, since some visible improvement in classi�cation accuracy was ob-

served with the image clusters produced by K-means with ResNet50 extracted

feature vectors, it would be interesting to apply a similar approach to a larger

dataset. For example, if this approach was used on the combined BCN and HAM

datasets, larger clusters similar in size to the BCN or HAM datasets (i.e. 10000

images) would be produced and, potentially, results obtained for classi�cation

of these larger clusters may surpass the accuracy observed with either of these

individual original datasets.

It may also be worthwhile to implement the approach used by Bakkouri et al.

(2019) with the ISIC2019 dataset. As described previously their approach con-

sisted in using several older �ne-tuned CNN models (i.e. VGG16, ResNet18 and

DenseNet121). Feature maps produced by these di�erent models were fused to-

gether and further convoluted. The resulting model trained with the HAM dataset

yielded an average accuracy of 0.981. It is likely that the model produced may

not generalize very well with images from other sources than the HAM dataset

(i.e. it may be overspecialized), but by training a similar model with the ISIC2019

dataset we may achieve better results than those obtained with the di�erent mod-
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els tested individually in this study. Also, by using a similar approach with more

recent state-of-the-art CNN models we may be able to produce a better performing

and better generalizing model.

Interestingly, recently Tian et al.(2021) used a broadly similar approach to what

we tried to do with the a completely di�erent dataset. They used a self-supervised

approach to extract features from a very large dataset containing many classes of

images and used K-means to cluster the images into subgroups based on the fea-

tures produced by the self-supervised model. Expert classi�ers were then trained

and learned to classify images from the di�erent subgroups produced by K-means.

Finally, the expert classi�ers produced with the di�erent subgroups were distilled

(fused) together to produce a model that achieves state-of-the art results with the

ImageNet dataset (Tian et al., 2021).

Intuitively, using a self-supervised approach may be a better strategy than using

a pretrained CNN (e.g. ResNet50) to detect underlying di�erentiating charac-

teristics between images from di�erent datasets or within a dataset when these

characteristics are unknown or poorly de�ned. Self-supervised learning learns

representations from unlabelled images (Kolesnikov et al., 2019) and these rep-

resentations may then be more informative that the ImagNet-learned features

extracted by a pretrained network. In a similar fashion to the extracted fea-

tures, the image representations could be clustered together into a potentially

small number of sub-groups that would allow more accurate classi�cation with a

traditional classi�er (i.e. supervised learning).

Interestingly, DeepCluster (Caron et al., 2018) and Deep K-means (Fard et al.,

2020), new, recently repotted clustering methods, were speci�cally developed to

cluster data based on the parameters and features assigned by a neural network

These methods can be implemented jointly with unsupervised CNN models and
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assist them in learning useful representations. These methods are likely to yield

greater success than the simple clustering strategies used in this study and the

implementation of such methods to skin lesion image classi�cation is another

avenue which would clearly be worth exploring.

Finally, in the last part of our study we describe DUNEscan (Mazoure et al.,

2022), a new CAD application for skin lesion images. This new application ad-

dresses some drawbacks of other currently available applications: 1) it is an open-

access application which utilizes models solely trained on publicly available skin

lesion images, and 2) it implements methods that evaluate the uncertainty of the

predictions made by the various models used. This latter feature allows users to

get a clear statistical metric that indicates how trustworthy is the prediction made

by each model.

The DUNEscan application is a valuable tool to assist specialists in the diagnosis

of skin lesion images. However, as shown in our results, the fact that in some

cases, the di�erent models used give con�icting predictions, can make these hard

to interpret. For this reason, it would be helpful to investigate if using an ensemble

approach to determine if the predictions made by some of the models could be

combined to produce a single, more accurate prediction. Such a strategy would

make the results produced by the application much easier to interpret and thus

make the use of the application more attractive.



CHAPTER VII

CONCLUSION

In conclusion, this study has shown that not only the sample size is important to

produce highly accurate CNN based classi�ers, but the homogeneity of the data

also plays an important part. Optimal preprocessing may be able to improve

the homogeneity of the data, but it remains that segregating the data based on

unseen inherent characteristics may be able to improve the results. However,

the detriment to such an approach is that the sample size becomes smaller in all

subgroups produced.

The methods used in this study to separate the data by K-means using image pixel

vectors or feature vectors produced by feature extraction with a model pretrained

on ImageNet, show signs that clustering may be a useful approach. However, other

approaches including, the use of alternative unsupervised classi�ers to K-means,

Deep K-means and/or using self-supervised feature extraction are avenues worth

exploring and may yield better results.

As presented in the last section the some of the pretrained models tested in this

study, although they do not perform very well with the ISIC2019 dataset as a

whole, can still be useful when considered together to produce an application (i.e.

DUNEScan) that should help medical specialists to classify skin lesion images.



95

The main feature of DUNEScan is an intuitive estimation and visualization of un-

certainty for the predictions made by the selected state-of-the-art classi�ers used.

Uncertainty estimates are reported via boxplots of dropout replicates, Grad-CAM

highlighting of regions of interest on the input image, as well as the projection of

the input image onto the MobileNetv2 classi�cation manifold. Thus, DUNEScan

provides valuable information for bioinformaticians, dermatologists and health

practitioners, looking for an accurate skin cancer diagnosis.
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