
Vol.:(0123456789)

Machine Learning
https://doi.org/10.1007/s10994-023-06340-x

1 3

A moment‑matching metric for latent variable generative
models

Cédric Beaulac1 

Received: 20 September 2022 / Revised: 7 March 2023 / Accepted: 9 April 2023
© The Author(s) 2023

Abstract
It is difficult to assess the quality of a fitted model in unsupervised learning problems.
Latent variable models, such as variational autoencoders and Gaussian mixture models,
are often trained with likelihood-based approaches. In the scope of Goodhart’s law, when
a metric becomes a target it ceases to be a good metric and therefore we should not use
likelihood to assess the quality of the fit of these models. The solution we propose is a new
metric for model comparison or regularization that relies on moments. The key idea is to
study the difference between the data moments and the model moments using a matrix
norm, such as the Frobenius norm. We first show how to use this new metric for model
comparison and then for regularization. We show that our proposed metric is faster to com-
pute and has a smaller variance than the commonly used procedure of drawing samples
from the fitted distribution. We conclude this article with a demonstration of both applica-
tions and we discuss our findings and future work.

Keywords  Moment estimators · Latent variable models · Goodness-of-fit · Frobenius norm

1  Introduction

When fitting supervised models, statisticians and computer scientists alike have come up
with a variety of metrics in order to evaluate the quality of their predictions, from the sim-
ple mean-squared error to more general loss functions. However, in the context of unsu-
pervised learning there is no direct measure of success and it can be difficult to assess the
validity of the fitted model (Hastie et al., 2009).

Assume an unsupervised learning context where we have a data set S = {x1,… , xN} and
the abstract goal of capturing the distribution p(x) . One way to train such model is to assume
a distribution and then maximize the likelihood of the data set with respect to the parame-
ters of the distribution. If multiple models are trained, they are usually compared using the

Editors: Nathalie Japkowicz.

 *	 Cédric Beaulac
	 beaulac.cedric@gmail.com

1	 Département de mathématiques, Université du Québec à Montréal, Montréal, QC, Canada

http://orcid.org/0000-0002-6050-5313
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06340-x&domain=pdf

	 Machine Learning

1 3

likelihood as well. Goodhart’s law (Goodhart, 1984; Strathern, 1997) states that when a meas-
ure becomes a target, it ceases to be a good measure and thus we should not strictly rely on
the likelihood to evaluate models that were trained with the likelihood.

In this article we propose a new way to assess the quality of the fit of a large family of
unsupervised models with respect to our abstract goal of capturing the distribution p(x) . In
other words, we propose a new way to measure if an estimated distribution p̂(x) resembles the
observed distribution pS(x) . More precisely, we offer a diagnostic technique for parametric
latent variable models such as Variational AutoEncoders (VAEs) (Kingma & Welling, 2014;
Kingma, 2017) and Gaussian Mixture Models (GMMs). Our proposed metric evaluates the
quality of the fitted model; we compare the learned parameters of the unsupervised model with
the observed data distribution the model is trying to capture. We do so by building distinct
moment estimators and comparing them. The main purpose of such metric is to provide a
new way to compare the fit of multiple models from different families by assessing how well
these models captured the first two moments of the data. Though capturing the first and sec-
ond moment of a data set is not a sufficient condition to claim the trained model has perfectly
captured the data distribution, it certainly is a necessary condition under some assumption we
discuss later.

In statistics and machine learning, Goodhart’s law is often compared with the concept of
overfitting. One popular way to circumvent model overfitting has been regularization. Con-
sequently, we offer a second perspective on our new metric; it can be used for regularization.
Our metric favours simple models and thus it can be easily integrated in the optimization pro-
cedure as a regularizer.

The technique we propose is fast to compute, works for a wide range of models and is built
upon a rigorous mathematical formulation. It provides a new way to compare multiple models
or regularize them and behaves similarly to previously used heuristic techniques.

In the next section, we establish the family of latent variable models that this metric was
designed for. We then discuss related work in Sect. 3 and we introduced the moment estima-
tors used in Sect. 4. In Sect. 5, we present our metric and its implementation and next we
demonstrate how it performs for model evaluation on simple examples in Sect. 6. We then
introduce the framework for the application of our metric for regularization in Sect. 7 and we
demonstrate how it behaves as regularizer in Sect. 8. Finally, we discuss the limitations of our
approach in Sect. 9 before some concluding remarks in Sect. 10.

2 � Latent variable generative models

Let us first define what we refer to as latent variable generative models (LVGMs). Assume
we have a data set S = {x1,… , xN} consisting of N observations of a D-dimensional variable
x where x ∈ X which is D-dimensional. We want to estimate the distribution of the random
variable x but it is too complicated to be captured by a simple distribution. Latent variable
models suppose there exist an unobserved latent variable, say z , that has a direct influence on
the distribution of x

where we assume z ∈ Z which is M-dimensional. The model proposed by Eq. (1) is quite
general but allows relatively complex marginal distributions over observed variables x to

(1)p(x) = ∫z

p(x‖z)p(z)dz,

Machine Learning	

1 3

be expressed in terms of more tractable conditional distributions p(x‖z) (Bishop, 2007).
Similarly, it leads to a tractable joint distribution as well

and this is quite often represented using a simple graph as seen in Fig. 1.
These models are generative models because learning p(x, z) = p(z)p(x‖z) allows us to

generate new samples of x using ancestral sampling. What makes this model probabilistic is
that the mapping from z to x is not a deterministic function f ∶ Z → X but instead a proba-
bilistic mapping from Z to Θ , where Θ is the parameter space of p�(x‖z) ; � ∈ Θ . We call
p�(x‖z) the emission distribution or observation distribution interchangeably.

When training or fitting such models, we train the function f ∶ Z → Θ to maximize the
likelihood of the data set S under the model of Eq. (1). This mapping f explains the effect
of z on x and is at the centre of latent variable models. Therefore learning this function f is
the main challenge of training latent variable models and the Expectation-Maximization algo-
rithm (EM) or variational inference are common solutions to this problem. In most cases, p(z)
is assumed to be known and fixed but in some cases the parameters of p(z) are estimated as
well.

Usually p�(x‖z) is a simple parametric distribution and the latent variable increases the
complexity of p�(x) . Additionally, the function f can take many forms, from simple linear
combination to neural network functions. We use f (z) interchangeably with f or the distribu-
tion parameters it outputs directly.

Let us begin with a simple example. Assume the emission distribution is Poisson:
p�(x‖z) = Poisson(�) then f ∶ Z → ℝ

+ because � = � ∈ ℝ
+ and we use f (z) and �(z)

interchangeably. If there exist a simple mapping from the parameters of the distribution to
its expectation and its variance, we also use them interchangeably. For the Poisson example,
Ex[x‖z] = �(z) and Varx[x‖z] = �(z).

One important detail to bring up is that the moments are only meaningful for a certain fam-
ily of emission distributions. For the application of our metric, we will consider the family of
emission distribution for which the moment generating function exists.

2.1 � Probabilistic principal component analysis

The Probabilistic Principal Component Analysis (pPCA) (Tipping & Bishop, 1999;
Bishop, 2007) is a member of the LVGM family we just described where p(z) is assumed
to be a normal distribution N(0, I). The emission distribution is also assumed to be Normal:
p(x‖z) = N(Wz + b, I�2) . In this formulation, we see that f ∶ ℝM → ℝD is a linear function
that maps the latent variable z to Ex[x‖z] : Ex[x‖z] = �(z) = Wz + b . Outside of estimating
W and b as part of f, the model also estimates the parameter �2 though it is not a function of z .
However it is a function of D and M, the dimension of X and Z.

The parameters of pPCA can be obtained analytically as the solution of a direct maximiza-
tion of the likelihood or with the EM algorithm.

(2)p(x, z) = p(z)p(x‖z),

Fig. 1   Graphical representation of latent variables models with joint distribution p(x, z) = p(z)p(x‖z)

	 Machine Learning

1 3

2.2 � Variational autoencoders

The VAE is also a member of the LVGM family. It is assumed that z is a continuous vari-
able where p(z) is assumed to be N(0, I) in the introductory papers (Kingma & Welling,
2014; Kingma, 2017). p(x‖z) can be any parametric distribution where f (z) outputs the
parameters of this distribution. For instance, if p(x‖z) is normal then f (z) will output a
mean and a variance parameter, f ∶ ℝM → ℝD ×ℝ

+
(D,D)

.
One novelty of VAEs is that the function f proposed is much more flexible than a linear

combination; it is a neural network. In turn, this makes the posterior distribution p(z‖x)
intractable and prevents the model from being fitted by the EM algorithm. The solution
proposed is to assume a variational distribution q(z‖x) and optimize the likelihood by max-
imizing the Evidence Lower BOund (ELBO) (Bishop, 2007; Kingma & Welling, 2014), a
lower bound of the observed-data log-likelihood.

2.3 � Gaussian mixture models

For a GMM with K-components we define z as a K-class categorical variable with
z ∈ {1,… ,K} = Z and p(z) , a categorical distribution where �j = p(z = j) and ∑K

j=1
�j = 1 . Finally, setting p(x‖z = j) = N(�j,Σj) leads to a GMM:

In this situation, f maps the latent variable to a pair of distribution parameters, � and Σ ,
f ∶ {1,… ,K} → ℝD ×ℝ

+
D×D

 . In this particular case Ex[x‖z] = f1(z) where f1 is the first
output of f (z) or simply �(z) and Varx[x‖z] = f2(z) = Σ(z).

The GMM is a special case of LVGM where we also estimate the parameters
{�j ∶ j ∈ 1,…K} of p(z) , identifiable up to a permutation. A GMM is usually trained with
the EM algorithm.

3 � Related works

In this article we propose a new metric to evaluate the goodness-of-fit for the family of
latent variable models defined in Sect. 2 and in this section we discuss some common alter-
natives. When proposing new LVGMs researchers rely either on the likelihood of the data
under the fitted model or a heuristic analysis of generated data points (Kingma & Well-
ing, 2014; Li et al., 2015; Higgins et al., 2017; Zhao et al., 2019; Vahdat & Kautz, 2020).
To evaluate the performance of the models, both those techniques have their fair share of
problems which we discuss in this section. The metric we propose is an alternative to those
techniques.

A problem with evaluating models with the likelihood is that a high likelihood does
not necessarily mean that the proposed model captured the distribution of the observed
data. For instance, Bishop (2007) demonstrate that for GMMs it is possible to have the
likelihood be infinite ( ∞ ) by setting the mean of one component to be exactly one of the
observed points, say xi , and then pushing the variance of that component to 0, thus the

(3)p(x) =

K�

j=1

�jp(x‖z = j).

Machine Learning	

1 3

likelihood of xi under that particular component will be infinite. Similarly, Zhao et al.
(2019) built a toy example where the ELBO (a lower bound of the log-likelihood) would
converge to infinity.

Another commonly employed strategy is to generate new observations and try to deter-
mine if they look like real data with a simple visual inspection, this is a technique used by
many authors (Kingma & Welling, 2014; Li et al., 2015; Higgins et al., 2017; Kingma,
2017; Zhao et al., 2019; Vahdat & Kautz, 2020). A weakness of visual inspection is that
it is subjective, it incentivizes cherry-picking of results and it is not a rigorous means of
comparing models.

Outside of papers that introduced new LVGMs, some techniques have been developed
to compared samples from different distribution and to assess goodness-of-fit using ker-
nels. The Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) is a measure of simi-
larities between two samples which the authors used to construct statistical tests to deter-
mine if the two samples are drawn from different distributions. Unfortunately, this requires
to sample from the fitted distribution, which we later demonstrate to be a slow procedure
and the original implementation proposed by the authors is no longer available online.
The Kernel Stein Discrepancy test (Liu et al., 2016) is a goodness-of-fit test that was later
extended specifically for latent variable models (Kanagawa et al., 2019; Jitkrittum et al.,
2020). Both of these Kernel Stein Discrepancy goodness-of-fit tests have strong theoretical
guarantees. Unfortunately, these guarantees only hold under strict assumptions that can be
complicated to verify. Additionally, the magnitude of this discrepancy metric is not only
affected by the evaluated models by also the choice of reproducing kernel (Kanagawa et al.,
2019). On the opposite, our proposed metric works for any LVGMs that fit the definition of
Sect. 2 and is not affected by arbitrary choices.

Comparing data moments with model moments have been proposed in the past but only
for training purposes (Anandkumar et al., 2012, 2014; Chaganty & Liang, 2014; Li et al.,
2015; Podosinnikova, 2016). Anandkumar (Anandkumar et al., 2012, 2014) proposes effi-
cient ways to code and optimize latent variable models by comparing the true data set with
a sample generated from the model. Podosinnikova (Podosinnikova, 2016) approaches this
topic very thoroughly in their thesis where they also discuss the use of moment-generating
function estimators. What we propose here is different; we propose a metric. Even though
we discuss the possibility of using our metric for optimization in later sections we believe
there already exists a rich literature that discusses new ways of optimizing latent variable
models but few publications that address the lack of evaluation metrics.

4 � Moment estimators

In this section we define two different moment estimators for the first and the second
moment. The goal is to build different estimators containing different information. To
begin, we define moment estimators of the data set, we call those Data Estimators (DE).
Then we define another set of moment estimators that represent the distribution captured
by the LVGM which we call Forward Model Estimators (FME).

4.1 � Second moment

We build two different estimators of the same quantity, the second moment. One uses
observed data while the other uses the proposed generative model. What makes the

	 Machine Learning

1 3

proposed FME different is that we do not sample new data points from the LVGM but
instead rely on a simple probability identity to build the FME.

To do so, let us introduce the well-know Law of Total Variance

and notice that

We combine and reorganize both equations

We have reorganized both terms in this particular was so that the left-hand side of Eq. (6)
is independent of the latent variables and can be estimated from S independently from the
choice of model while the right-hand side contains information about both the expectation
and the variance of the generative model. Additionally, notice the left-hand side is actually
Ex[x

2] , the second moment of x and thus our work here consists of comparing two different
estimators of Ex[x

2] which we introduce next. The left-hand side of Eq. (6) can be esti-
mated using the observed data

where x̄ is the mean vector. The right-hand side of Eq. (6) can be estimated using the pro-
posed generative model with a Monte Carlo sample from p�(z) and using both Varx(x‖z)
and Ex(x‖z).

where zi ∼ p(z) , and Ex(x‖z = zi) and Varx(x‖z = zi) are expressed as functions f. Conse-
quently this estimator relies on both components of the fitted LVGM: p(z) and f (z) . This is
the forward model estimate (FME). Notice that this estimator does not require we sample
from p�(x‖z) and directly uses the estimated parameters of the emission distribution. It is
faster to sample a large amount of z than sample a large amount of x because traditionally
M << D . Additionally, this is a simple Monte Carlo sample and it is unbiased(Rosenthal,
2019).

Given a sample of Ex(x‖z = zi) and Varx(x‖z = zi) , it takes D2 + m operations to
compute the FME. Based on Shalev-Shwartz and Ben-David’s definition of efficiency
(Shalev-Shwartz & Ben-David, 2014), computing the FME would be considered effi-
cient with respect to D and m as the number of operations required is a polynomial
function of those parameters, opposed to an exponential function which would be con-
sidered inefficient.

Thus it follows from Eq. (6) that

(4)Varx(x) = Ez[Varx(x‖z)] + Varz[Ex(x‖z)],

(5)
Varz[Ex(x‖z)] = Ez[Ex(x‖z)2] − (Ez[Ex(x‖z)])2

= Ez[Ex(x‖z)2] − (Ex[x])
2.

(6)Varx(x) + (Ex[x])
2 = Ez[Varx(x‖z)] + Ez[Ex(x‖z)2].

(7)Varx(x) + (Ex[x])
2 ≈

∑n

i=1
(xi − x̄)T (xi − x̄)

n − 1
+ x̄

T
x̄ ∶= DE,

(8)

Ez[Varx(x‖z) + Ex(x‖z)2] = ∫z

(Varx(x‖z = z) + Ex(x‖z = z)2)p(z)dz

≈
1

m

m�

i=1

�
Varx(x‖z = zi) + Ex(x‖z = zi)

T
Ex(x‖z = zi)

�

∶= FME,

Machine Learning	

1 3

and since both the DE and the FME are unbiased estimators of the second moment then
consequently, the gap between those two estimators reflects how the LVGM captured the
second moment of the data set; the bigger the gap is, the poorer the fit is. Thus, we propose
to analyse the following moment estimator gap

which is a matrix of dimension D × D.

4.2 � First moment

Similarly, for the first moment we have

where we estimate the left-hand side with x̄ (DE) and the right-hand side with
1

m

∑m

i=1
Ex(x‖z = zi) where zi ∼ p�(z) (FME). At this moment, we proposed looking at

the gap between moment estimators for both the first and the second moment. However,
with machine learning models being mostly optimized towards point estimation, the first
moment estimator gap is usually less interesting than its second moment counterpart.

4.3 � Additional justifications

For any generative models, it is always possible to generate a new sample of G points say
SLVGM = {x̃1,… , x̃G} and a simple model estimator of the first and second moment would
be to simply compute 1

G

∑G

i=1
(x̃i) for the first moment and similarly 1

G

∑G

i=1
(x̃ix̃

T
i
) for the

second moment. Let us call these sample estimators (SE). These estimators could replace
both FMEs defined previously as they also reflect the distribution learned by the LVGM.
Conceptually, the SEs are simple and easy to use and metrics such as the MMD relies on
additional samples; thus we want to justify why our estimators (FMEs) are better.

To begin, FMEs are faster to compute. In order to draw the same sample size for the
Monte Carlo estimates, say a sample of size m, we need to sample m times for the FMEs.
However, for the SEs have to draw twice as many samples (2m), since we must sample
from p(z) m times and then from p(x‖z) an additional m times. More importantly, because
M << D it means that not only FMEs require half as many samples, but these samples are
from a much lower dimension distribution which further increases the difference in compu-
tational cost between the FMEs and the SEs.

Another reason why we prefer FMEs over SEs is that FMEs have a smaller variance for
both the first and the second moment. Both FMEs and SEs are unbiased estimators of the
same value, but the lower variance of FMEs is a huge benefit. A complete proof is located
in the appendices.

Finally, we demonstrated with a simulation that over multiple Monte Carlo samples sizes,
the FMEs are closer to the true LVGM moments than SEs. For simple models, such as GMMs,
we can compute analytically Ez[Varx(x‖z)+ Ex(x‖z)2] , the LVGM second moment. We com-
pared the gap between the true LVGM second moment and the FME to the gap between the
true LVGM second moment and the SE and plotted both against m the number of Monte Carlo

(9)(Varx(x) + (Ex[x])
2) − (Ez[Varx(x‖z)] + Ez[Ex(x‖z)2]) = 0,

(10)DE − FME = 2MEGA,

(11)Ex[x] = Ez[Ex(x‖z)],

	 Machine Learning

1 3

samples. We can see in Fig. 2 that the estimator we proposed (FME) is overall closer to the
true LVGM second moment than the SE while being faster to compute.

5 � MEGA: a new metric for comparing LVGMs

For latent variable models as defined in Sect. 2 we assess the ability of the model to capture
the moment of the data set S by comparing the DE with the FME. Since we are looking at the
difference between two different moment estimators of the same value, we named this met-
ric the Moment Estimators Gap (MEGA). We study the difference between our two second
moment estimators and we refer to this matrix as 2MEGA. Similarly, we refer to the vector
representing the first moment estimator gap as 1MEGA.

5.1 � Selecting a matrix norm

In order to make the MEGA tangible and comparable, we propose to use a matrix norm of the
MEGA as our metric. There exist a wide range of possible candidates. Let us introduce a few
and justify our finale choice.

We want to use a norm that looks at the global properties of the matrix and fortunately
Rigollet (Rigollet & Hütter, 2015) introduces and studies the behaviour of well-established
matrix norms. To begin, we use norms inspired by vector norms. Given the vector v, assume
‖v‖q is the following vector norm

and given the matrix M, its matrix equivalent is ‖M‖q

(12)‖v‖q =
�
�

i

‖vi‖q
�(1∕q)

,

Fig. 2   The evolution of both gaps plotted against m. These gaps are computed using the Frobenius norm as
justified in Sect. 5

Machine Learning	

1 3

When q = 2 , this is a special case call the Frobenius norm

where Tr is the trace operator that sums the elements of the diagonal of the input matrix.
This norm is also a member of the Schatten q-norms (for q = 2 ) which is a family of

matrix norms defined as the vector norm of Eq. 12 for the singular values of the matrix.
Since we work with second moment estimators, our matrix M is a squared matrix (dimen-
sion m × m ) and symmetric and thus the singular values of M are equal to its eigenvalues.
We identify the vector of eigenvalues as � . Consequently, the Schatten q-norm for matrix
M is ‖‖M‖‖q = ‖�‖q.

Another member of this family is considered, when q = ∞ we define
‖‖M‖‖∞ = �max = ‖‖M‖‖op and this is referred to as the operator norm.

In random matrix theory and in matrix estimation, these norms appear frequently and
are consequently well known in the statistical research community. For instance, in covari-
ance matrix estimation it is possible, under mild assumptions, to bound the operator norm
of the difference between the true covariance matrix and simple estimators (Rigollet &
Hütter, 2015). Because of the popularity and the known properties of both the Frobenius
norm and the operator norm, they are both legitimate options to measure the MEGA.

The bigger the 2MEGA is, the further away our model second moment is from the
data second moment. However, one can perceive the Frobenius norm as the length of the
hypotenuse of a multidimensional triangle whose sides are given by the eigenvectors of the
matrix while the operator norm is the length of the longest cathetus of the same multidi-
mensional triangle. For computational reasons expressed in the next section, we selected
the Frobenius norm and this will serve as our metric in the sections to come. In other
words, the metric we propose to evaluate the quality of the fit for the second moment is

Additionally, if we also consider 1MEGA, we can then again simply use the Frobenius
norm (the vector q-norm with q = 2 ) on the vector 1MEGA

5.2 � Implementation of the selected norm

Implementing the Frobenius norm is quite straight forward. To compute to Frobenius norm,
we need to square the 2MEGA, which involves m2 operations, and then sum its diagonal
which results in m2 + m operations. The largest eigenvalue of a matrix can be estimated
with the von Mises iteration (Mises & Pollaczek-Geiringer, 1929), where each of the p iter-
ations will require m2 operations resulting in pm2 operations in total. Once again, based on
Shalev-Shwartz and Ben-David’s definition of efficiency (Shalev-Shwartz & Ben-David,
2014), computing the Frobenius norm of the MEGA would be considered efficient with
respect to m. Because we can implement an exact computation of the Frobenius norm and

(13)‖M‖q =
�
�

ij

‖Mij‖q
�(1∕q)

.

(14)‖M‖2 = ‖M‖F =

�
�

ij

‖Mij‖2
�(1∕2)

=
√
Tr(MTM),

(15)2MEGA-F ∶= ‖2MEGA‖F .

(16)1MEGA-F ∶= ‖1MEGA‖2.

	 Machine Learning

1 3

because it is computationally faster than the operator norm (as soon as p ≥ 2 ) we strictly
consider the Frobenius norm for the rest of this article. However, there could be some merit
to exploring the operator norm in future work.

We implemented the vector Frobenius norm and the matrix Frobenius norm in Python
using the NumPy library (Harris et al., 2020) and using the Pytoch library (Paszke et al.,
2019). We also implemented a MEGA function that takes as input a sample of Varx(x‖z)
and Ex(x‖z) alongside the data set S and returns 1MEGA-F and 2MEGA-F. These imple-
mentations are publicly available on the author’s GitHub (Beaulac, 2021).

6 � Experiments: comparing models

Now that we established the metric, let us use it to compare distributions p̂(x) learned from
different models.

For this demonstration we use simple 2-dimensional observations. We demonstrate that
large MEGAs are associated with poor fit when visualizing generated data from LVGMs.
We also show that it is concordant with the MMD in most cases. In other words, our metric
is concordant with the currently used techniques while providing a new perspective.

Figure 3 contains both the training observations (in blue) and generated data points (in
red) from four LVGMs. Table 1 lists the 1MEGA-F, the 2MEGA-F and the MMD for all

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Fig. 3   Generated data from four different LVGM models trained on the three clusters data set

Machine Learning	

1 3

four models. We notice first that the 2MEGA-F and the MMD agree on the worst perform-
ing model being model 2. A visual inspection of Fig. 3 does support that model 2 fits the data
rather poorly. Similarly we notice that 2MEGA-F and MMD agree on the best performing
model being model 4 which is also supported by a visual inspection of Fig. 3. We can also use
both MEGA metrics to better understand specific problems with fitted models. For instance,
even though a visual inspection of model 1 reveals a poor fit, a small 1MEGA-F tells us the
problem is not coming from a poor estimation of the expectation of x . As a matter of fact, the
2MEGA-F and the MMD are also rather small, indicating the bad fit of model 1 is not due to
a poor estimation of the variance either. It is most likely caused by model 1 being unimodal,
something that is not measured in the metric we currently propose.

Next, we propose another small demonstration with a second data set as illustrated in
Fig. 4.

By visually inspecting Fig. 4, model 4 seems like a good contender for best fit. In Table 2,
Model 4 has indeed the lowest 2MEGA-F, which demonstrates again that our proposed met-
ric behaves somewhat intuitively. Additionally, this is concordant with the MMD for which
model 4 is also the best model. Visually comparing model 1 and model 2 would be a difficult
task since they both seem equally good or equally bad. However, the proposed metric and the
MMD are in agreement that model 1 is worse than model 2. Finally, model 3 requires a bit
more attention. Even though a visual inspection seems to be positive towards that model it has
a rather large first moment estimator gap. Indeed, a closer examination of Fig. 4c reveals that
the centre of mass of the fitted model is at the right end tip of the top half moon rather than
in the centre of both half-moons. A careful examination of the metric we propose can help us
identify good models, but also reveal aspects of fitted models that require more attention.

Finally, we provide an additional experiment using real data this time. In this last dem-
onstration, we analyse the well-known MNIST data set (Lecun et al., 1998) in an unsuper-
vised way. A sequence of GMMs was trained with K = {2, 4, 6, 8, 10, 12, 14} . We expect
intuitively K = 10 to be a good choice, since the data contains 10 different digits.

In Table 3, we see that the MEGAs and the MMD agree that the models with 10 and 14
components provide the two best fits of the data. Moreover, our proposed metric favours
the model with 10 components which is intuitively a good choice. A natural consequence
of using a metric for model comparison is to use it for model selection. In this experiment,
we would choose the model with 10 components. In Sect. 7, we explore that concept fur-
ther by discussing the use of the proposed metrics for regularization.

7 � MEGA for regularization

As we previously mentioned, based on the principle of Goodhart’s Law, we proposed to use
the proposed metrics 1MEGA-F and 2MEGA-F to compare complex LVGMs such as IAF-
VAEs (Kingma et al., 2016) or NVAEs(Vahdat & Kautz, 2020). In Sect. 3 we discussed

Table 1   MEGA and MMF for
the four LVGM models trained
on the three clusters data set

1MEGA-F 2MEGA-F MMD

Model 1 0.2704 2.0392 0.0812
Model 2 2.4222 4.5510 1.6717
Model 3 3.1166 3.1712 0.0069
Model 4 0.2974 1.7014 0.0012

	 Machine Learning

1 3

Fig. 4   A closer examination of figure on the half-moon data set

Table 2   MEGA and MMD for
the four LVGMs trained on the
half-moon data set

1MEGA-F 2MEGA-F MMD

Model 1 0.2565 0.5633 0.0141
Model 2 0.0023 0.5248 0.0008
Model 3 0.7616 0.8126 7.4341e−05
Model 4 0.1072 0.4851 1.2092e−05

Table 3   MEGA and MMD for
the sequence of GMM models
trained on the MNIST data set

The number of components suggested by the metrics are in bold

K 1MEGA-F 2MEGA-F MMD

2 0.24997318 2.92840915 0.0131
4 0.26690068 3.03135908 0.0111
6 0.2578028 2.925411 0.0121
8 0.26219767 3.00054297 0.0108
10 0.23850984 2.82369332 0.0089
12 0.26362526 3.09359567 0.0104
14 0.24450328 2.92585433 0.0084

Machine Learning	

1 3

some issues with the likelihood as an evaluation metric in some special cases. Additionally,
it is unfair to use likelihood as a metric to compare two models when one is trained using a
likelihood approach and the other is not.

However, if this metric has some merit when comparing models, can we use it for model
selection and can we directly integrate it in the optimization process ? We answer these
questions in this section.

Because the likelihood and the moments reflect different aspects of the distribution p(x)
then incorporating MEGA as part of the optimization process for models trained by maxi-
mum likelihood acts as regularization.

This is easy to see for models with Gaussian emission distribution such as GMMs and
VAEs. When fitting a single Gaussian distribution with maximum likelihood, we set its
parameters � and � to the data mean and the data standard error and thus a single Gaussian
performs very well according to the MEGAs. As we increase the number of components
K in a GMM, we increase its likelihood but we also increase its MEGA. This means that
we can use the MEGA as a model selection (or regularization metric) to fit GMM in place
of alternatives such as AIC and BIC in order to get a model that balances likelihood and
moment matching.

One way to do so is to select the model that maximizes:

where ll(S) is the log-likelihood of the data S under the fitted model and � is a hyper-param-
eter that interpolates between maximum-likelihood and moment estimator. Similar to what
is produced when using Lasso (Tibshirani, 1996; Simon et al., 2011; Friedman et al., 2010)
we can draw an entire regularization path (complexity selection path) by evaluating the
regularized likelihood of Eq. 17 over different values of �.

Similarly, we can use a MEGA term in the objective function when training a VAE. Our
proposed metric again serves as a regularizer in order to ensure the VAE model captures
those moments by maximizing:

Arguments have been made in the past (Kingma, 2017; Higgins et al., 2017) that the KL
divergence term serves as a regularizer and that adding a � parameter can provide a way to
adjust the strength of the regularization. Adding a MEGA term to the ELBO should pro-
vide a different type of regularization. The KL divergence term provides regularization for
the distribution q(z‖x) and the MEGA term provides regularization for p(x):

As previously demonstrated (Beaulac, 2021), tunning a VAE to obtain both good recon-
struction and generative performances is difficult. For instance, when using the �-VAE
(Higgins et al., 2017, 2018) we can make the hyper-parameter � arbitrary small and obtain
close to perfect reconstruction but this leads to poor generative performance because the
distribution q(z) used for training would be significantly different from p(z) used for gen-
eration. The additional term we add to the VAE objective function should help with gen-
erative perspectives of VAEs.

Thus, to understand the benefits of integrating this additional term to the objective func-
tion we have to understand how different it is from the first term. The first term measures

(17)ll(S) − �(1MEGA-F +
√
2MEGA-F),

(18)Eq[ln p(x‖z)] − KL(q(z‖x)‖p(z)) − �(1MEGA-F +
√
2MEGA-F).

(19)Eq[ln p(x‖z)]
Reconstruction error

− �KL(q(z‖x)‖p(z))
Regularization for q(z‖x)

− �(1MEGA-F +
√
2MEGA-F)

Regularization for p(x)
.

	 Machine Learning

1 3

the reconstruction error because the likelihood p(x‖z) is computed on latent variable z
sampled from q(z‖x) . In contrast, the MEGA penalty term evaluates the first and second
moment of p(x) independently from q(z‖x) but rather based on the generative model where
p(x) = ∫

z
p(x‖z)p(z)dz . We believe this additional constraint in the objective function

should lead to samples that matches the true distribution of p(x) more closely.

8 � Experiments: regularization

8.1 � Regularizer for GMMs

For GMMs, increasing the number of components increases the likelihood and thus it is
necessary to regularize this model; we cannot simply select the ideal number of compo-
nents based on the likelihood alone. We have generated a simple data set from a 3-com-
ponent GMM. Figure 5 is a scatter plot of the simulated data, by looking at the figure we
would like the model selection procedure to settle on three components.

The Akaike Information Criteria (AIC) (Akaike, 1974, 1998) is a well-establish penal-
ized likelihood function that can be used to select the number of components in a GMM.
The AIC can be expressed as

where ll(S) is the log-likelihood of the data S under the model, and p is the number of
parameters ( p = 2K in the GMM case). In Eq. 20 we see a natural tradeoff; −2ll(S) goes
down as we increase the number of components but 2p goes up. To select the right GMM
model, we can fit multiple GMM with various number of components and we select the
model that minimizes the AIC.

Based on Fig. 6, the AIC is minimized at K = 3 which is concordant the model used to
generate the data.

(20)AIC = 2p − 2ll(S),

Fig. 5   Scatter plot of the simulated data set

Machine Learning	

1 3

Next, we use our MEGA-penalized likelihood function described in Eq. 17 to select the
number of components.

We have computed the MEGA-regularized log-likelihood as expressed in Eq. 17 for dif-
ferent values of � . In Fig. 7, we plot the number of components of the model that maxi-
mizes the MEGA-regularized log-likelihood for different values of � . With small � , there
is no regularization and the selected model has K = 20 components which is the highest
complexity model fitted. With large values of � , the model with the smallest complexity
(the model with K = 1 component) is selected. In between those two extremes may lie a
sequence of nested models and the best one can be selected with the use of a validation set.
In the demonstration, only one model is proposed between the two extreme cases, a model
with 3 components which is concordant with both the AIC and the true generative model.

Compared to the AIC, the flexibility given by the hyper-parameter � is both a benefit
and a drawback. Using the hyper-parameter, we can easily adjust how strong we want the
penalty to be but on the flip side there are no automated ways to adjust it.

8.2 � Regularized GMMs for anomaly detection

Because GMMs are popular models for unsupervised tasks, they have been used for anom-
aly and outlier detection for quite a while now (Zimek et al., 2012) and are still at the
centre of the development of new models such as the deep autoencoding Gaussian mixture
model (Zong et al., 2018). For outlier detection, we rely on the following procedure. First
we fit a GMM to a data set and then point with likelihood lower than a predetermined
threshold are considered outliers.

For this demonstration, we use the ionosphere data set (Sigillito et al., 1989). This data
set consists of 33 variables and 351 observations. This data set has been previously used
to test anomaly detection techniques (Liu et al., 2008; Keller et al., 2012) and 126 outliers
have already been identified.

Fig. 6   AIC plotted against the number of components for trained GMM models (lower is better)

	 Machine Learning

1 3

In this experiment, we select the GMM that maximizes the MEGA-regularized like-
lihood of Eq. 17 and we then use this model for anomaly detection. For simplicity, we
assumed we know there are about 35% of outliers, this allows us to easily select a threshold
that labels the 35% lowest likelihood data to be outliers. This results in 123 points consid-
ered outliers.

Based on Figs. 8 and 9, the AIC suggests a GMM with 20 components and the MEGA-
regularized likelihood suggests a model with 3 components. The model suggested by the
AIC correctly identifies 67 outliers, thus missing 59 outliers and miss-labelling 56 obser-
vations as outliers. In contrast, the model selected using MEGA correctly identifies 103
outliers while miss-labelling 20 observations as outliers. This also means that this model
missed 23 outliers.

8.3 � Regularizer for VAEs

Finally we experiment with using MEGA as a regularization for VAEs. Now that we used
MEGA as part of the objective function we can no longer use it to assess the quality of the
samples so we will visually inspect samples and their parameters as well as rely on the Fré-
chet Inception Distance (FID) (Heusel et al., 2017).

We run this demonstration on a subset of the MNIST data set (Lecun et al., 1998) that
contains only the digit four. We have experimented with a wide range of parameters � and
� , as defined in Eq. 19 and fixed the hyper-parameters to the values leading to the more
realistic-looking images.

Figures 10 and 11 illustrate our results. The images on in the left column were produced
by a VAE trained without MEGA and the right one with MEGA. We have included images
of a sample and its mean.

The images themselves are very difficult to analyse which is why we have incorpo-
rated Table 4 that contains the FID for both models. Even with the MEGA regulariza-
tion, the samples are still grainy and this is due to the pixel-independence assumption

Fig. 7   Number of components of the selected model plotted against different values of �

Machine Learning	

1 3

of the simple VAE which only learns individual pixel variance and not a full-covariance
matrix. This is why when data are generated with VAEs, it is common to simply sample
�(z).

Based on the FID, the images produced with the MEGA-regularized VAE are more real-
istic. To better understand why that is, we also calculated the FID for the sample of means
�(z) . Since those are pretty equivalent for both model, we conclude that the improvement
in the image generated with the regularized VAE comes from the captured variance.

Fig. 8   AIC plotted against the number of components for trained GMM models (lower is better)

Fig. 9   Number of components of the selected model plotted against different values of �

	 Machine Learning

1 3

In all of the other experiments, the MEGA was computed only a few times, which
is extremely fast even on a single CPU. However, for this task, the MEGAs have to be
computed for every mini-batch during training. Computing the MEGA over 25 epochs
of 20 mini-batch each, for a D = 784 dimensional observation x using a Mont Carlo

Fig. 10   A sample of 64 images from p�(x‖z) = N(�(z), �(z)) where z ∼ N(0, 1)

Fig. 11   The 64 sampled mean of the images: �(z) where z ∼ N(0, 1)

Table 4   FID for VAE and
regularized-VAE samples

FID for x FID for �(z)

Without MEGA 94.9096 46.2973
With MEGA 58.3258 47.5723

Machine Learning	

1 3

sample size of m = 5000 took 1246.0781 s on a single CPU (Ryzen 5 5600X). Because
the computational time is a polynomial function of these 4 parameters, we believe
MEGA can be used as a regularizer on more complex data sets and problems espe-
cially if those are trained on clusters of powerful computers.

9 � Discussion

As a comparative metric, MEGA is fast to compute and easy to interpret. The larger
1MEGA is, the larger the gap is between the first moment of the trained distribution
p̂(x) and the empirical first moment of the data set S. Similarly, the larger 2MEGA is,
the larger the gap is for the second moment. This can give us a quick and easy way to
compare and evaluate the quality of fitted models.

However, there are still some limitations to this approach. The most obvious is that
the formulation we propose only allow us to quickly evaluate the gap for the first two
moments. This leads to an incomplete comparison of the learned and empirical dis-
tribution which can create some problems in niche cases. A example of this problem
is the high performance of the simple Gaussian distribution. Usually, when fitting a
Gaussian distribution to a data set we set the parameters � and � to be the empirical
mean and the empirical standard deviation, thus the Gaussian mixture with a single
component shows very good results (low MEGA).

Fortunately, we have designed this metric for complex latent variable model and there
are no reasons to use it when assessing the fit of a single Gaussian. Additionally, other
comparative strategies discussed in Sect. 3 can still be used in parallel of our proposed
one. For instance, the MMD agree with MEGA in most experiments we have done but
when they don’t agree, they provide different information and can be complementary.

If a trained distribution has low MEGA but bad-looking generated samples, this still
provides us with insightful information. It indicates that the problem is in the LVGM
distribution’s higher moments and our metric was able to provide us with that informa-
tion very quickly.

For regularization applications, we were able to successfully used MEGA with
two different LVGMs, GMMs and VAEs. Though in both these cases we managed to
achieve good results, selecting the appropriate constraint using the hyper-parameters is
not an easy task. We recommend plotting the selected number of components against
various values of � and to consider all of the models between the most and the least
complex model. The use of a validation set can also help select the right value for �.

We are currently working on a generalization of MEGA. We want to extend our metric
not only to higher moments of x but to any functions g(x) . This would not only allow us
to compare the skewness of the trained model compared to the data but also more com-
plicated properties of distributions such as multimodality. This generalized MEGA would
provide a more complete evaluation of models than the currently proposed metric.

10 � Conclusion

In this article we introduced a fairly simple and computationally efficient way to check
the generative model’s distribution of a large class of LVGMs. This metric, MEGA,
evaluates the gap between the LVGM distribution’s first and second moment and the
training (or validation) data set’s first and second moment.

	 Machine Learning

1 3

The premise of the proposed metric is theoretically simple and quite intuitive. Both
the DE and the FME are unbiased estimators of both the first and the second moment
and if a gap exists between them then the LVGM distribution does not match key aspects
of the data distribution.

To support our theoretical arguments, we have demonstrated how to use this metric
for two different purposes. First, as an evaluation metric that can replace the more heu-
ristics approaches that rely on eyeballing generated samples. Second, since this metric
is currently available for the first two moments, it favours a simple model, such a single
Gaussian, and thus can be used as regularization for models such as GMMs and VAEs.

However, we believe we have only scratched the surface of all of the applications
and ways to incorporate these moment-gap-based metrics in model fitting and model
selection pipelines. We hope to make further progress in this direction in future work.
Another future work direction is to extend these moment gap estimators to sequential
LVGMs, such as hidden Markov models and state-space models. Finally, the biggest
improvement we could work on is to extend the moment estimators to higher moments;
this would make the evaluation metrics much more valuable.

Nonetheless, we believe this work is a first step in data-driven automated model
selection based on moments and we hope it inspires similar contributions.

Appendix: Proof that FMEs have a small variance than SEs

First moment

For the SE, we first sample z1,… zm , a set of m latent variables where z ∼ p(z) then sam-
ple x1,… , xm with x ∼ p(x‖zi) ; this implies that x ∼ p(x‖z)p(z) = p(x) . Then, the SE for
the first moment is 1

m

∑m

i=1
xi.

When building our FME, we sample z1,… zm , a set of m latent variables where z ∼ p(z)
and then compute 1

m

∑m

i=1
Ex(x‖z = zi).

Then using the Law of Total Variance we have that:

and thus our FME has lower variance than the commonly used alternative.

(21)Varx(SE) = Varx

�∑m

i=1
xi

m

�
=

1

m2

m�

i=1

Varx(xi) =
Varx(x)

m
.

(22)

Varz(FME) = Varz

�∑m

i=1
Ex(x‖zi)
m

�
=

1

m2

m�

i=1

Varz(Ex(x‖zi)) =
Varz[Ex(x‖zi)]

m
.

(23)

Varx(x) = Ez[Varx(x‖z)] + Varz[Ex(x‖z)]
≥ Varz[Ex(x‖z)]

⇒
Varx(x)

m
≥ Varz[Ex(x‖zi)]

m

⇒ Var(SE) ≥ Var(FME),

Machine Learning	

1 3

Second moment

For the SE, we first sample z1,… zm , a set of m latent variables where z ∼ p(z) then sample
x1,… , xm with x ∼ p(x‖zi) ; this implies that x ∼ p(x‖z)p(z) = p(x) . Then, the SE for the sec-

ond moment is 1
m

∑m

i=1
x
2
i
.

When building our FME, we sample z1,… zm , a set of m latent variables where z ∼ p(z)
and then compute 1

m

∑m

i=1

�
Varx(x‖z = zi) + [Ex(x‖z = zi)]

2
�
.

Now let’s take a closer look at the numerator of Eq. (25).

Finally, let us apply the Law of Total Variance to x2:

Acknowledgements  I want to thank Yanbo Tang for his valuable help with selecting the matrix norm and
for providing sketches for the demonstration that FMEs have smaller variances than SEs. I also want to
thank David Duvenaud, Michael Lalancette, Jeffrey S. Rosenthal, Anthony Coache and Renaud Alie for
their insightful comments.

Author’s contribution  Not applicable (only one author).

(24)Varx(SE) = Varx

�∑m

i=1
x2
i

m

�
=

Varx(x
2)

m
.

(25)
Varz(FME) = Varz

�∑m

i=1

�
Varx(x‖z = zi) + [Ex(x‖z = zi)]

2
�

m

�

=
Varz

�
Varx(x‖z = zi) + [Ex(x‖z = zi)]

2
�

m
.

(26)

Varz

�
Varx(x‖z = zi) + [Ex(x‖z = zi)]

2
�
= Varz

�
Ex[x

2‖z] − Ex[x‖z]2 + Ex[x‖z]2
�

= Varz

�
Ex[x

2‖z] − Ex[x‖z]2 + Ex[x‖z]2
�

= Varz

�
Ex[x

2‖z]
�

= Ez

�
Ex[x

2‖z]2
�
− Ez

�
Ex[x

2‖z]
�2

= Ez

�
Ex[x

2‖z]2
�
− Ex

�
x
2
�2

⇒ Var(FEM) =
Ez

�
Ex[x

2‖z]2
�
− Ex

�
x
2
�2

m

(27)

Varx(x
2) = Ez(Varx[x

2‖z]) + Varz(Ex[x
2‖z])

= Ez(Varx[x
2‖z]) + Ez

�
Ex[x

2‖z]2
�
− Ez(Ex[x

2‖z])2

= Ez(Varx[x
2‖z]) + Ez

�
Ex[x

2‖z]2
�
− Ex[x

2]2

⇒ Varx(x
2) ≥ Ez

�
Ex[x

2‖z]2
�
− Ex[x

2]2

⇒
Varx(x

2)

m
≥ Ez

�
Ex[x

2‖z]2
�
− Ex[x

2]2

m

⇒ Var(SE) ≥ Var(FME)

	 Machine Learning

1 3

Funding  The author was funded by the Ontario Graduate Scholarship (OGS) program and the University of
Toronto School of Graduate Studies during the early parts of this project and was funded by the Canadian
Statistical Sciences Institute (CANSSI) during the later parts.

Data availability  The simulated data was generated using publicly available packages, the code used to gen-
erate the data is provided. The real data application uses MNIST, a widely used and publicly available data
set.

Code availability  The code used in preparation of this manuscript is available on the author’s GitHub page:
https://​github.​com/​Cedri​cBeau​lac/​LVGM_​Analy​sis. The URL is referenced in the article. The files contain-
ing the proposed metric are clearly commented and easy to import and use.

Declarations 

Conflict of interest  The author has no conflict of interest to declare.

Consent for publication  Not applicable.

Consent to participate  Not applicable.

Ethics approval  All ethical responsibilities were considered and respected.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Akaike, H. (1998). Information theory and an extension of the maximum likelihood principle. Selected
papers of hirotugu akaike, 199–213

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Con-
trol, 19(6), 716–723.

Anandkumar, A., Foster, D. P., Hsu, D. J., Kakade, S. M., & Liu, Y.-K. (2012). A spectral algorithm for
latent dirichlet allocation. In Advances in Neural Information Processing Systems, vol. 25. Curran
Associates, Inc., Red Hook, NY

Anandkumar, A., Ge, R., Hsu, D., Kakade, S. M., & Telgarsky, M. (2014). Tensor decompositions for learn-
ing latent variable models. Journal of Machine Learning Research, 15(80), 2773–2832.

Beaulac, C. (2021). MEGA for LVGM. GitHub. https://​github.​com/​Cedri​cBeau​lac/​LVM_​Analy​sis
Beaulac, C. (2021). Performance and accessibility of statistical learning algorithms for applied data analy-

sis. PhD thesis, University of Toronto
Bishop, C. M. (2007). Pattern recognition and machine learning. New York: Springer.
Chaganty, A. T., & Liang, P. (2014). Estimating latent-variable graphical models using moments and

likelihoods. In International Conference on Machine Learning (pp 1872–1880). PMLR
Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via

coordinate descent. Journal of Statistical Software, 33(1), 1–22.
Goodhart, C. A. (1984). Problems of monetary management: The UK experience. Monetary theory and

practice (pp. 91–121). Palgrave, London. https://​doi.​org/​10.​1007/​978-1-​349-​17295-5_4
Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., & Smola, A. (2012). A kernel two-sample

test. Journal of Machine Learning Research, 13(25), 723–773.
Harris, C. R., Millman, K. J., der Walt, S. J. V., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E.,

Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M.,

https://github.com/CedricBeaulac/LVGM_Analysis
http://creativecommons.org/licenses/by/4.0/
https://github.com/CedricBeaulac/LVM_Analysis
https://doi.org/10.1007/978-1-349-17295-5_4

Machine Learning	

1 3

Haldane, A., del R’ıo, J. F., Wiebe, M., Peterson, P., Oliphant, T. E. (2020). Array programming
with NumPy. Nature, 585(7825), 357–362. https://​doi.​org/​10.​1038/​s41586-​020-​2649-2

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning (2nd ed., p. 100).
New York: Springer.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., & Hochreiter, S. (2017). Gans trained by a two
time-scale update rule converge to a local nash equilibrium. Advances in Neural Information Pro-
cessing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY.

Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., & Lerchner, A. (2018). Towards
a definition of disentangled representations. arXiv:​1812.​02230

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., & Lerchner, A.
(2017). beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR,
2(5), 6.

Jitkrittum, W., Kanagawa, H., & Schölkopf, B. (2020). Testing goodness of fit of conditional density
models with kernels. In Conference on Uncertainty in Artificial Intelligence (221–230). PMLR,
New York

Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., & Gretton, A. (2019). A kernel stein test for
comparing latent variable models. arXiv:​1907.​00586

Keller, F., Muller, E., & Bohm, K. (2012). HiCS: High contrast subspaces for density-based outlier ranking.
In 2012 IEEE 28th international conference on data engineering (pp. 1037–1048). IEEE.

Kingma, D. P. (2017). Variational inference & deep learning: A new synthesis. PhD thesis, Universiteit
van Armsterdam

Kingma, D. P., & Welling, M. (2014). Auto-encoding variational bayes. In: 2nd International Confer-
ence on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14–16, Conference Track
Proceedings

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., & Welling, M. (2016). Improved
variational inference with inverse autoregressive flow (pp. 4743–4751). Curran Associates Inc.

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11), 2278–2324.

Li, Y., Swersky, K., & Zemel, R. (2015). Generative moment matching networks. In International Con-
ference on Machine Learning (pp. 1718–1727). PMLR

Liu, Q., Lee, J., & Jordan, M. (2016). A kernelized stein discrepancy for goodness-of-fit tests. In Pro-
ceedings of The 33rd International Conference on Machine Learning, vol. 48, (pp 276–284).
PMLR, New York

Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation forest. In: 2008 Eighth IEEE International Con-
ference on Data Mining, Piscataway, New Jersey, pp. 413–422. IEEE

Mises, R., & Pollaczek-Geiringer, H. (1929). Praktische verfahren der gleichungsauflösung. ZAMM-
Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und
Mechanik, 9(1), 58–77.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkur-
thy, S., Steiner, B., Fang, L., … Chintala, S. (2019). Pytorch: An imperative style, high-perfor-
mance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox,
& R. Garnett (Eds.), Advances in neural information processing systems 32 (pp. 8024–8035). Red
Hook: Curran Associates Inc.

Podosinnikova, A. (2016). On the method of moments for estimation in latent linear models. PhD thesis,
PSL Research University

Rigollet, P., & Hütter, J.-C. (2015). High dimensional statistics. Lecture notes for course 18S997 813, 814
Rosenthal, J. S. (2019). Monte Carlo methods. Lecture notes for course STA2431
Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding Machine Learning: From Theory to Algo-

rithms. Cambridge University Press.
Sigillito, V. G., Wing, S. P., Hutton, L. V., & Baker, K. B. (1989). Classification of radar returns from

the ionosphere using neural networks. Johns Hopkins APL Technical Digest, 10(3), 262–266.
Simon, N., Friedman, J., Hastie, T., & Tibshirani, R. (2011). Regularization paths for cox’s proportional

hazards model via coordinate descent. Journal of Statistical Software, 39(5), 1–13.
Strathern, M. (1997). ‘Improving ratings’: Audit in the British university system. European Review, 5(3),

305–321.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical

Society: Series B (Methodological), 58(1), 267–288.
Tipping, M. E., & Bishop, C. M. (1999). Probabilistic principal component analysis. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 61(3), 611–622.

https://doi.org/10.1038/s41586-020-2649-2
http://arxiv.org/abs/1812.02230
http://arxiv.org/abs/1907.00586

	 Machine Learning

1 3

Vahdat, A., & Kautz, J. (2020). Nvae: A deep hierarchical variational autoencoder. In Proceedings of the
34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red
Hook, NY, USA

Zhao, S., Song, J., & Ermon, S. (2019). Infovae: Balancing learning and inference in variational autoencod-
ers. In Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892

Zimek, A., Schubert, E., & Kriegel, H.-P. (2012). A survey on unsupervised outlier detection in high-dimen-
sional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal, 5(5),
363–387.

Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., & Chen, H. (2018). Deep autoencoding
gaussian mixture model for unsupervised anomaly detection. International Conference on Learning
Representations.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	A moment-matching metric for latent variable generative models
	Abstract
	1 Introduction
	2 Latent variable generative models
	2.1 Probabilistic principal component analysis
	2.2 Variational autoencoders
	2.3 Gaussian mixture models

	3 Related works
	4 Moment estimators
	4.1 Second moment
	4.2 First moment
	4.3 Additional justifications

	5 MEGA: a new metric for comparing LVGMs
	5.1 Selecting a matrix norm
	5.2 Implementation of the selected norm

	6 Experiments: comparing models
	7 MEGA for regularization
	8 Experiments: regularization
	8.1 Regularizer for GMMs
	8.2 Regularized GMMs for anomaly detection
	8.3 Regularizer for VAEs

	9 Discussion
	10 Conclusion
	Appendix: Proof that FMEs have a small variance than SEs
	First moment
	Second moment

	Acknowledgements
	References

