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RÉSUMÉ

Dans cette thèse, je développe un nouveau modèle théorique qui prédit le prochain
mot d'une phrase. Ce modèle s'inspire de plusieurs disciplines académiques et in-
tègre di�érents cadres et outils de la linguistique théorique, des sciences cognitives,
de la linguistique computationnelle et des modèles du raisonnement analogique.
En utilisant une perspective hautement interdisciplinaire concernant la nature de
la prédiction linguistique et les types de processus cognitifs qui y sont impliqués, je
présente un ensemble de desiderata cognitifs que les théories linguistiques doivent
prendre en compte : incrémentalité, non-monotonie et interprétabilité du contenu
sous-propositionnel. Je distingue deux types de contributions lors de la dérivation
d'une prédiction linguistique : celles provenant de di�érents niveaux de granular-
ité sémantique et celles provenant de la coordination de l'interaction linguistique
et je présente un modèle de langage qui marie ces deux contributions.

Cette approche est testée à la fois pour l'adéquation empirique et pour le réalisme
cognitif. A�n de répondre aux contraintes d'adéquation empirique, nous avons
véri�é que les prédictions du modèle re�ètent les résultats d'études empiriques sur
la procédure de cloze. Lors d'une tâche de cloze, un participant se voit présenter
une phrase (ou une série de phrases) où des mots ont été omis, et le participant
est ensuite invité à compléter le mot manquant. Par exemple, si on montre à un
participant une phrase comme �J'ai posté ma lettre, mais j'ai oublié de mettre le...�,
il est relativement facile de deviner que le prochain mot sera probablement timbre
et non voiture. Une fois que plusieurs participants ont accompli la même tâche de
cloze, nous pouvons attribuer une valeur de prédictibilité à chaque mot enregistré
en fonction de leur fréquence d'utilisation. La prédictibilité est souvent utilisée
en psycholinguistique et en neurolinguistique pour mesurer les propriétés liées à
la prédiction et au traitement linguistique; elle a été liée avec le temps de lecture
en psycholinguistique et avec la valeur des composants N400 dans les expériences
EEG en neurolinguistique. Cette thèse modélise ces valeurs de prédictibilité à
l'aide d'outils statistiques et informatiques pour prédire les continuations les plus
probables pour une phrase donnée en fonction du sens de cette phrase et, surtout,
de la sémantique du discours précédent.

Dans la théorie développée dans cette thèse, les continuations sont calculées à
l'aide d'un réseau sémantique basé sur l'activation où le niveau d'activation de
tout concept à un moment donné représente le degré auquel ce dernier est activé
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par les informations extraites de la phrase tronquée et par le contexte global.
Cette valeur d'activation est proportionnelle au poids des connexions entre ces
concepts et elle peut être traitée comme une probabilité de cooccurrence entre
deux mots. À un instant donné, ces probabilités de cooccurrence déterminent
la prédiction linguistique qui est basée sur l'interrelation entre tous les concepts
représentés dans le réseau sémantique. Je dérive les réseaux sémantiques à partir
des matrices de similarité qui représentent la similarité de cooccurrence entre
di�érents niveaux de constructions linguistiques.

Lors de l'attribution d'une probabilité relative d'occurrence pour les continuations
potentielles, nous considérons à la fois la contribution de la phrase tronquée et
la contribution du contexte global. J'ai développé des modèles pour deux types
d'informations contextuelles : un modèle de topic et un modèle de situation, et je
présente une représentation multicouche de la prédiction linguistique qui intègre
la contribution des représentations au niveau de la phrase, la contribution du
niveau contextuel et la constante interaction entre eux. Les deux niveaux de
représentation ont un rôle primordial dans la dérivation de cette prédiction.

Le modèle de prédiction linguistique présenté dans cette thèse est centré sur la
coordination de l'interaction linguistique, et il illustre le lien crucial entre les
niveaux de représentation impliqués dans le traitement pragmatique.

Mot-clés: prédiction linguistique, représentation du contexte, in�uence du con-
texte, tâche de cloze, espace conceptuel



ABSTRACT

This thesis develops a new theoretically-driven model that predicts the antici-
pation of upcoming words in a sentence. This model draws from a number of
academic disciplines, and it incorporates di�erent frameworks and tools from theo-
retical linguistics, cognitive science, computational linguistics, and computational
models of analogical reasoning.

Using a highly interdisciplinary perspective regarding the nature of linguistic pre-
diction and the kinds of cognitive processes involved therein, I present a set of
cognitive desiderata that linguistic theories must consider: incrementality, non-
monotonicity, and interpretability of sub-propositional content. I di�erentiate two
kinds of contributions when deriving a linguistic prediction: those coming from
di�erent levels of semantic granularity and those coming from the coordination
of linguistic interaction, and I present a language model that marries these two
contributions.

This approach is tested for both empirical adequacy and cognitive realism. In or-
der to respond to the constraints of empirical adequacy, we veri�ed that the model
output mirrors the results of empirical studies on the cloze procedure. A cloze
procedure is a task where a participant is presented with a sentence (or a series
of sentences) where words have been omitted, and the participant is then asked
to complete the missing word. For example, if a participant is shown a sentence
like �I posted my letter, but I forgot to put the...�, it is relatively easy to guess
that the next word will probably be stamp and not car. When many participants
have completed the same cloze task, we can assign a predictability value to every
recorded word based on their frequency of use. Predictability is often used in psy-
cholinguistics and neurolinguistics to measure properties related to prediction and
linguistic processing, and it has been correlated with processing time in reading
time studies in psycholinguistics and also with the N400 components of EEG ex-
periments in neurolinguistics. This thesis models these predictability values using
statistical and computational tools to predict the most likely continuations for a
given sentence based on the meaning of that sentence and, notably, the semantics
of prior discourse.

In the theory developed in this thesis, the possible continuations are obtained
using an activation-based semantic network where the level of activation of any
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concepts at a particular time represents the degree by which they are triggered by
the information retrieved from the truncated sentence and the global context. This
relative value of the spreading activation is proportional to the connection weight
between these concepts, which can be treated like a probability of co-occurrence
between two words. At any given time, these co-occurrence probabilities deter-
mine the linguistic prediction based on the relationships between all the concepts
represented in the semantic network. I derive the semantic network from similarity
matrices representing the similarity of co-occurrence between di�erent linguistic
constructions.

When assigning a relative probability of occurrence for potential continuations,
we consider both the contribution from the truncated sentence and the contri-
bution from the global context. I developed models for two kinds of contextual
information: a topic model and a situation model, and I present a multi-layered
representation of linguistic prediction that integrates the contribution from the
sentence-level representations, the contribution from the contextual level, and the
constant interaction between them. Both representational levels have a primordial
role in the derivation of this prediction.

The model of linguistic prediction presented in this thesis is centered around the
coordination aspect of linguistic interaction, and it illustrates the crucial connec-
tion between the representational levels involved in pragmatic processing.

Keywords: linguistic prediction, representation of the context, contextual in�u-
ences, cloze task, conceptual space



INTRODUCTION

This resolutely integrative thesis investigates linguistic anticipation, namely how

we anticipate the next word of a sentence, bringing together di�erent notions and

approaches to propose a theoretical processing model for linguistic prediction.1

First, we consider the cloze task. The most common version of a cloze task is a task

in which participants are asked to complete a sentence that has been truncated.

For example, participants are shown sentences like �I posted my letter, but I forgot

to put the...�. In this particular sentence, it is relatively easy to guess that the next

word will most probably be stamp and not car or something else. When many

participants have completed the same cloze Task, it is possible to assign a cloze

score (or cloze value) to every recorded word based on their frequency of use. Once

we have computed the di�erent cloze scores for di�erent incomplete sentences, we

can use this information in di�erent experimental settings to measure di�erent

properties related to linguistic prediction and sentence processing.

Secondly, predictability has been de�ned as the easiness one can predict the up-

coming word given a speci�c linguistic context. Predictability is often used in both

psycholinguistic and neurolinguistic empirical studies. It has been correlated with

processing time in reading time studies in psycholinguistics, and it has been cor-

related with the N400 components of EEG experiments in neurolinguistics. One

problem is that the notion of predictability seems to overlap many other notions

1The theoretical framework I am presenting in this thesis should be understood as a
general theory of prediction that could be used to develop di�erent concrete models of lin-
guistic prediction. Throughout this thesis, I use the word model to refer to the more speci�c
implementation of this theoretical framework I am presenting here.
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like those of plausibility and possibility. Thus, a rede�nition of the concept of

predictability or at least a full investigation of the exact nature of the cloze task

itself would be bene�cial.

Thirdly, computational approaches of meaning and many tools have been recently

developed to represent meanings of words and sentences at di�erent detail levels.

For example, Distributional Semantic and neuronal network approaches are now

rapidly improving, and some recent cognitive models of surprisal (or prediction)

are interested in simulating empirical results. The recent advances in these three

�elds make it possible to combine their respective contributions to develop an

integrative view of linguistic processing.

For this purpose, I �rst present the basics regarding the nature of the cloze task

and the kinds of cognitive processes involved (Chapter 1). I then discuss the cur-

rent state of empirical research about prediction and processing time regarding the

role of predictability and cloze scores (Chapter 2). Chapter 3 presents a desidera-

tum for linguistic tools, and I present di�erent linguistic approaches that �t well

with these requirements. Chapter 4 presents a language model that integrates the

contribution from meaning compositions. The contribution from the coordination

aspect of linguistic prediction and its relationship with the meaning compositions

is discussed in Chapter 5. Finally, in Chapter 6, I discuss issues and potential

improvements for the model, and I compare its structure and characteristics with

other related approaches interested in linguistic prediction.



CHAPTER I

WHAT IS LINGUISTIC ANTICIPATION?

We can start by asking ourselves one question: is it possible for someone to predict

or anticipate upcoming words during day-to-day communication? One might say

no, because we normally do not know in advance what our interlocutor will say. It

is indeed di�cult to precisely predict what one wants to utter without any other

clues. However, surprisingly enough, it is not uncommon to do so, at least at the

utterance level. Consider, for example, (1) where the last word of the utterance

is missing:

(1) I went to the bakery for a loaf of ...

When we ask di�erent people to �nd the missing word of (1), they almost all say

that this word should be bread. This task has been completed by 400 participants,

and 98% of them chose bread as the missing word (Block & Baldwin, 2010).

This result shows that even if we usually think that we cannot predict the next

upcoming word, we can still do so, and it seems that our prediction is very similar

to other's predictions.

Using examples like (1) we could even question the optionality of this prediction.

If I utter (1) in a conversation and I stopped right before the last word, you might
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already have predicted the next word, and you would have di�culties not pre-

dicting it. In other words, the hearer cannot not predict the next upcoming word

when facing incomplete utterance like (1). Another property of this prediction is

the uniformity of responses made by di�erent participants, i.e., 98%.

The sentence in (1) is called a High-Constraining Utterance (HCU) because it

triggers speci�c predictions about upcoming words (Grisoni et al., 2017; Kuper-

berg et al., 2020): the di�erent information that was expressed by (1) made it

possible to narrow down the possibilities to a single word. During this predictive

process, we might start our search for the next word using the fact that not all

kinds of lexical categories can follow a preposition like of. Usually, in English,

after a preposition, we have an adjective or a noun phrase that already constrains

the category of the upcoming word because it tells us that we should not look

for a verb, for example. Then, we can use the fact that the lexical meaning of

the word loaf is almost always associated with bread, so if we want to continue

the constituent `a loaf of...' we will most probably use bread instead of something

else like meat. To de�nitively reject meat as the continuation, we could use the

lexical meaning of the word bakery, which, once associated with loaf, will surely

be enough to select bread as the expected continuation.2

Unfortunately, highly-constraining utterances like (1), where almost everyone pre-

dicts the same word, are relatively rare compared with less constraining ones like

(2).

(2) The kind old man asked us to ...

2Throughout this thesis, the term continuation refers to the word that follows the point
of truncation of a given sentence. It should not be mistaken with the concept of �continuations�
used in theoretical computer science that refers to the context surrounding an expression (Barker
& Shan, 2014).
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Here, it is more di�cult to predict the missing word because we have more op-

tions that would be regarded as an acceptable continuation of this utterance. To

illustrate this di�culty, we can try to reproduce the same predictive process I

described for (1). First, we note that the kind of word that follows to is usually

a verb or a noun phrase, but here if we consider the bigger constituent `asked us

to' instead, then the next word is de�nitely going to be a verb. The problem here

is that we cannot use the meaning of any word in the rest of the utterance to

help constrain the domain of possibilities because kind, old, man, asked are not

strictly associated with one single word. In this case, it would help us consider the

larger context of the utterance, but since we only have access to (2), we remain in

an uncertain world, having to guess more than predict the next upcoming word.

This uncertainty is re�ected by the many responses gathered by Bloom & Fischler

(1980). Here the continuations were more diverse: stay (26%), help (21%), leave

(10%), dinner (5%). An utterance that is not constraining enough to the next

word is called a Low Constraining Utterance (LCU).

The distinction between the two cases (LCU versus HCU) is related to the number

of clues available to help derive our prediction. In this thesis, I am interested in

describing how these clues are combined to in�uence our predictions.

Before presenting evidence for the presence of anticipatory behavior during lin-

guistic processing, it is important to distinguish between anticipation and pre-

diction. As de�ned by Van Petten & Luka (2012), `prediction' is used when the

comprehender anticipates a speci�c word (or lexical item) from the sentence, and

`anticipation' is used as a broader umbrella term to indicate that a reader/listener

anticipates some semantic content, and may or may not have narrowed that ex-

pectation to a particular word (Van Petten & Luka, 2012). Although worded dif-

ferently, this distinction is close to the one proposed by Lederer (1978). Lederer

described two types of anticipation: linguistic anticipation and sense expectation
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(or extra-linguistic anticipation). The linguistic anticipation is based on language

knowledge and is used to predict the end of sentences like (3-a). Whereas for

the sense expectation, we need extra-linguistic information because it cannot be

completed from linguistic cues only as we seen in (3-b) (Vandepitte, 2001).

(3) a. She was green with...

b. They held o�...

There is certainly a parallel to make between Lederer's distinction between linguis-

tic anticipation and sense expectation and what was described in the �rst section

as High-constraining and Low-constraining utterances (HCU and LCU). As was

the case for the HCU, we would generally be able to predict that the next word

of (3-a) would most probably be envy, but we would have di�culty predicting the

continuation of (3-b) as it was the case for the LCU case because we lack clues

that would constrain the possibilities. In the latter case, we need extra-linguistic

information from the larger context to derive this prediction.

What has been divided procedurally as anticipation based on semantics and an-

ticipation based on pragmatics by Lederer is instead viewed as a di�erence in

the kind of results, either a speci�c word or a vaguer idea of semantic content.

In this thesis, I use prediction when referring to a speci�c lexical prediction and

anticipation when considering a broader, more general view of prediction.

1.0.1 Anticipation and linguistic processing

Le Ny (1978) suggested that anticipation was an ongoing cognitive activity run-
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ning in parallel to the perception of the incoming speech sounds and their semantic

analysis; Kalina (1992) argued that anticipation was part of processing a source

text. In a famous series of experiments, Tanenhaus et al. (1995) measured the

gaze of interlocutors when spoken to. Their results showed that the interlocutor

established a visual reference to an object during the processing of linguistic data,

i.e., the interlocutor anticipated the referents of some word even before this word

had been fully pronounced. In their experiments, they asked participants to move

di�erent objects around by using utterances like (4).

(4) Pick up the candy. Now put it above the fork.

For this particular case, Tanenhaus et al. (1995) showed the participants' eye

gaze was initiated towards the candy approximately 145 ms after the end of the

pronunciation of the word candy. Because it takes about 200 ms to change the

direction of the eye gaze, this means the identi�cation of the object `candy' pre-

cedes the complete pronunciation of the word candy. In another example, they

asked a participant to move a card as in (5).

(5) Put the �ve of hearts that is below the eight of clubs above the three of

diamonds.

Here, the participant looked at an eight of clubs that was above the �ve of hearts

immediately after below the. This particular example showed that a person does

not wait until the whole meaning of a sentence has been uttered before processing

the information available at any given moment. This evidence points towards

an incremental and greedy process of the interpretation of linguistic meaning.

Therefore, a person is not only able to integrate incomplete information, but she
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does it at the earliest moment possible, as soon as she can establish a reference

even if it has not been explicitly stated yet (Tanenhaus et al., 1995). Put together,

the results for (4) and (5) support the idea that a person anticipates the next

upcoming bit of information.

This human propensity for anticipation was also used to explain evidence from Se-

divy et al. (1999) which showed that adjectives were also processed incrementally.

Their experiment asked participants to grab di�erent objects among four di�erent

objects (one pink comb, one yellow comb, one yellow bowl, and one knife) while

registering their gaze.

(6) Touch the pink comb. Touch the yellow ... (comb/bowl).

Their results indicated that most of the time, the modi�ed noun was interpreted

contrastively, i.e., participants were looking at the comb and not the bowl, and

this implied that the adjective yellow was processed as soon as uttered. Their

results provide additional evidence that linguistic processing is incremental and

that interpretation is derived moment-by-moment (Sedivy et al., 1999).

Evidence for incremental processing has also been observed beyond the sentence

level. In Rohde & Horton (2014), they were interested in coherence relations be-

tween utterances, and their results discon�rmed the Clausal Integration account,

which states the �intersentential pragmatic relationships can only be made after

the structural and semantic properties of the two individual sentences have been

determined� (Rohde & Horton, 2014, p.669). Instead, they showed that anticipa-

tory looks revealed a preference for particular coherence relations, such as Cause

and Consequence relations, even before the end of the utterance. For this purpose,

they trained participants to look at di�erent locations, each representing di�erent
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coherence relations. The participant's gaze was measured when they read sentence

continuations that violate the verb-based expectation for coherence relations.

(7) Prompt: Arthur scolded Patricia in the hallway. [Cause bias]

a. Cause continuation: She had put thumbtacks on the teacher's chair.

b. Occasion continuation: He then sent her to the principal's o�ce.

(8) Prompt: Heidi shipped Eric a package. [Occasion bias]

a. Occasion continuation: He wrote her a thank you note.

b. Cause continuation: She thought he'd like some cookies from home.

They showed that the looking behavior before the verb and the looking behav-

ior after the verb were not the same, and this change was sensitive to verb

classes. These results demonstrated that establishing a coherence relation is an

expectation-driven process because participants were trying to predict the co-

herence relations from the available cues from the �rst sentence before having

processed the second sentence.

Finally, we could also mention the event-related brain potential (ERP) experiment

by Van Berkum et al. (2005) where they observed an e�ect coming from the

gender of the preceding article of an expected word. ERP experiments will be

introduced in more detail in Chapter 2, but we can still brie�y look at their

results here. The participants were presented Dutch stories that supported a

speci�c noun's prediction, but these stories were continued with a gender-marked

adjective whose su�x mismatched the upcoming noun's syntactic gender (Van

Berkum et al., 2005).

(9) The burglar had no trouble locating the secret family safe.
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a. Of course, it was situated behind a bigNeuter but unobtrusive painting.

(consistent)

b. Of course, it was situated behind a bigCommon but unobtrusive book-

case. (inconsistent)

Van Berkum et al. (2005) observed that ERP e�ects were larger when the adjective

was inconsistent with the expected upcoming word and that reading time was

slower for these cases. Their results suggest that a prediction about the upcoming

word is already derived when the participant is processing the adjective, and this

implies that prediction also play an active role during the incremental linguistic

process.3

Put together, this evidence from Tanenhaus et al. (1995), Sedivy et al. (1999),

Rohde & Horton (2014), and Van Berkum et al. (2005) support an incremental

view of linguistic processing, and they are also compatible with the idea that the

role of anticipation is essential for linguistic processing.4 The fact that linguistic

processing is incremental allows the hearer to process every new input as soon

as possible, which would imply that if an input is processed faster, it should be

bene�cial for the hearer. Anticipation would then be a natural way to shorten

the processing time because an input that is correctly predicted is an input that

is already partly processed.5

3If we are not presenting a non-incremental point of view it is because there is no
dispute regarding the incrementality of sentence processing, only di�erent ways of modelling the
granularity of this incrementality.

4Observations about participants being able to anticipate Discourse Relations (Scholman
et al., 2017) are also pointing in the same direction.

5As we will discuss in Chapter 5 and Chapter 6, predictions are derived in parallel at
di�erent spatial and temporal scales which means that even though a prediction at a particular
scale turns out wrong, the error signals that is propagated across scales will eventually be
suppressed by a higher-level prediction (Clark, 2016; Friston, 2005). In other words, the cost



11

As argued by Kamide et al. (2003), incremental processing and anticipation are

independent of one another, and it is essential to mention that anticipatory be-

havior does not diminish the importance of the interpretation process in itself

because, in the end, an input has still to be interpreted, and it is the output of

this interpretation process that is then compared with the information that the

system has predicted. In the words of Van Berkum et al. (2005, p.464): �predicting

the trajectory of a frisbee does not preclude actually catching it.�

Furthermore, anticipation could also naturally explain current results in turn-

taking studies (De Ruiter et al., 2006; Levinson & Torreira, 2015; Levinson, 2016;

Corps et al., 2018). In a similar fashion to what Tanenhaus et al. (1995) proposed,

Levinson & Torreira (2015) argued that anticipation is a key explanation when

trying to make sense of the short gap between speaking turns. Namely, the gaps

between speaking turns are very short (around 200 ms), but the latencies involved

in language production are much longer (600 ms). Positing the existence of some

anticipatory behaviors related to language processing would easily explain this

discrepancy between short gaps and longer latencies because if the second speaker

can anticipate the complete utterance of the �rst speaker, then she is also able

to plan her response (Holler et al., 2015; Levinson, 2016; Riest et al., 2015). In

other words, a speaker starts thinking about the next utterance even before the

previous speaker has �nished his utterance.

To better understand the mechanics of the anticipation process during turn-taking,

Corps et al. (2019) used constrained and unconstrained utterances during a dia-

logic simulation (see (10-a) and (10-b)) to show that linguistic prediction did not

in�uence the anticipation of the end of speaking turn. Although, it seems that

the broader discourse context plays a more critical role when a listener tries to

of recovering a wrongful prediction will be counterbalance by the bene�ts of having a correct
prediction at a higher level.
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anticipate the end of a speaking turn: they found that listeners responded earlier

in the constrained case ((10-b)) compared to the unconstrained case ((10-b)).

(10) a. [Constrained]: What music do you listen to? I really like Taylor

Swift.

b. [Unconstrained]: Is there anything speci�c I should know about you?

I really like Taylor Swift.

These results support the idea that anticipation involves processes that are taking

place above the sentence level.

1.0.2 Anticipation or Prediction?

Anticipation has also been discussed in other �elds related to communication in

general, e.g., in the domain simultaneous interpretation (SI). In SI, the interpreter,

who is translating from one language to another on the �y, has to form a complete

proposition from a truncated one, i.e., from a proposition that has yet to be

expressed entirely (Le Ny, 1978; Lederer, 1978).

(11) sugars
Le

are playing important positive
role

roles.
positif et important des sucres.

In this example taken from Vandepitte (2001), an expert interpreter can produce

the word role in French even before the word roles has been pronounced in En-

glish. This need for anticipatory SI behavior has already been studied by Chernov

(2004) and also by Vandepitte (2001). Vandepitte sees anticipation as producing
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a particular mental representation without being completely induced yet through

the speaker's sounds (Vandepitte, 2001, p.38).

This kind of anticipatory behavior is very close to what was described by Lau et

al. (Lau et al., 2013, p.487) as the �generation of expectancies from contextual

representations held in working memory.� If the role of anticipation in SI is

well accepted, its role in a `standard-setting,' where two individuals talk to each

other, is still debated. For example, in Vandepitte's view (2001), anticipation

involved in SI should not be mistaken with a �normal comprehension process�

because, in the latter, the hearer does not have to engage in anticipation. In

contrast, the interpreter always has to anticipate to be better at his task. The

di�erence between SI and `normal' conversation is the di�erence in the goal of the

anticipatory process.

An interpreter's goal is not to translate one-to-one the meaning of every word but

to convey the idea behind the sentence. The interpreter has to make sure she

translates as fast as possible the uttered content to minimize the lagging between

the source utterance and the translated one. On the other hand, in a `normal'

conversation, the hearer's goal is generally to retrieve the meaning conveyed by the

speaker, and this might involve being able to vaguely anticipate what a speaker

says during his speaking turn, and, in that case, the temporal constraint is less

important (Ferreira & Lowder, 2016).

The idea defended by Vandepitte (2001) that anticipation is motivationally driven

or goal-oriented is in phase with the recent empirical results from Brothers et al.

(2017) where they measured di�erent brain responses by varying the instructions

to the participants. In the �rst part of their experiment, they asked the participant

to read a text passage, while in the second part, they asked them to predict each

passage's �nal word. Brothers et al. (2017) showed the di�erent brain activation
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patterns relative to these two instructions, which in turn implies that the nature

of the goal of a task in�uences the way anticipatory behavior is used.

Notwithstanding this signi�cant result, the question here should not be about the

in�uence of di�erent goals on anticipation, but rather it should be about the pos-

sibility that anticipation is a strategy that could be applied at the comprehension

stage (Kalina, 1992). The most common reason to justify the need to have an-

ticipatory behavior is that it should help minimize the cognitive e�ort to process

upcoming information because predicting the upcoming information should facil-

itate the integration of this information during language comprehension (Ferreira

& Chantavarin, 2018).

In recent years, this question about the role of anticipation in language processing

has drawn much attention from the linguistic and cognitive science communities

(Kuperberg & Jaeger, 2016), but despite being increasingly investigated, empirical

measures for the role of such predictive features (Jaeger & Snider, 2013; Lau et al.,

2013) were inconclusive, and, as of now, the exact role of predictive behavior in

linguistic processing is still debated (Ferreira & Chantavarin, 2018; Huettig &

Mani, 2016; Nieuwland, 2019).6

1.1 Cloze task

Having introduced linguistic prediction and some empirical data that motivate

it, we turn to this thesis's main subject, namely the cloze task. In linguistics,

the interest in the anticipation of an upcoming word has grown recently, but

6Huettig (2015), for example, argues that even if anticipation is an essential aspect of
language processing, it may not be one of its fundamental principles.
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almost all data sources on the subject are based on the classic article by Taylor

(1953). In this paper, Taylor introduces the `cloze procedure' to measure the

cloze probability of a word. A cloze procedure is a task where a participant is

presented a sentence (or a series of sentences) where words have been omitted, and

the participant is asked to complete the missing word (Bloom & Fischler, 1980).

All the responses for every incomplete sentence are then weighted according to

their respective frequency of occurrence, and this proportion is called the cloze

probability (or predictability) of a word given this particular context.

Over the years, this kind of cloze task was very often used, and many variations

of the instructions have been observed: some participants are asked to �nd the

most natural continuation, the most plausible, the `best' one, or they are asked

to name the word that �rst come to mind when wanting to complete a truncated

sentence (Staub et al., 2015, p.2). In all these cases, even if the instruction might

vary slightly, the gist of the experimentation is the same: to retrieve the most

predictable word given a preceding context.

(12) He loosened the tie around his ...

For example, the sentence in (12) was completed by neck 96% of the time in the

Bloom & Fischler (1980) study and 97% of the time in the Block & Baldwin (2010)

study. In this linguistic context, the word neck has a very high cloze probability.

Generally, a high cloze score is attributed to results that occurred more than

66 percent of the time, while the words below 66 percent are described as low

cloze scores (Block & Baldwin, 2010). Predictability is assessed from the cloze

probability value by comparing di�erent words for the same incomplete sentence

and creating a predictability scale accordingly.
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Another way to measure the e�ect of predictability is to compare the reading time

of the same word for two di�erent contexts, one in which the word has a high cloze

value and the other one for which the cloze value is low. It is now widely accepted

that predictability is correlated with reading time, which means that a word with

lower predictability should take longer to process (Staub et al., 2015).7 Even

if this strong correlation has already been argued for over the past years using

di�erent results that measured di�erent aspects of expectation-driven processes:

lexical, semantic, syntactic, pragmatic, we still do not know much about what is

achieved by the participant during a cloze task (Smith & Levy, 2013).

1.1.1 Cloze tasks in linguistics

Apart from measuring cloze probability values, cloze tasks are often used in lin-

guistics to investigate di�erent linguistic phenomena such as pronoun production

and anticipation of thematic roles. One illustration of these completion tasks is

given in Kaiser & Cherqaoui (2016):

(13) a. Aurélie a bousculé Thérèse hier au cinema, alors... celle-ci s'est mise

à pleurer.

`Aurélie shoved Thérèse yesterday at the movies, so... this one started

to cry.'

b. Arnaud a battu Pascal pendant la soirée chez des amis, et après ...

il lui a présenté ses excuses.

`Arnaud beat Pascal during the evening with friends, and then ... he

7I will come back to this notion of reading time in Chapter 2.
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apologized to him.'

c. Philippe a poussé Jacques dans l'escalier Dimanche, et après ... celui-

ci s'est fait mal en tombant.

`Phillippe pushed Jacques on the stairs on Sunday, and then ... this

one hurt himself while falling.'

In their experiment, Kaiser & Cherqaoui (2016) manipulated the form of the

anaphoric expression (she, this one) and the connective between the two clauses

(then, as a result). They showed that pronouns tend to be �interpreted as referring

to subjects, and anaphoric demonstratives tend to be interpreted as referring to

objects� (Kaiser & Cherqaoui, 2016, p.66).8 This result is fascinating because it

supports the idea that certain words are more likely to be associated with certain

kinds of constituents in a sentence, without any regard to the actual sentence. In

other words, it shows that participants seem to have an anticipative bias towards

the use of pronouns and the use of demonstratives concerning what they could

refer to.

If initial models of pronoun production were centered around expectation-driven

processes and coherence relations (Kehler, 2002), more recent models are deliber-

ately focussing on �nding a way to understand how these two components, namely

the comprehender's expectations and the production-based anticipatory bias, play

a role in pronoun interpretation (Kaiser, 2013).9

Anticipation about longer dependencies has also been observed, i.e., anticipation

about goals and thematic roles rather than only locally licensed information like

8This same result was also observed in German (Kaiser, 2011).

9More recent models are adopting a Bayesian approach that can link production with
interpretation directly (Kaiser & Cherqaoui, 2016; Kehler & Rohde, 2018; Kaiser, 2013; Rohde
& Kehler, 2014; Kehler et al., 2008).
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an object or a subject (Kamide et al., 2003). In this study, Kamide et al. (2003)

used 3-place verbs such as spread and slide where both verbs subcategorized 2

arguments that are located after the verb itself, the third argument being a goal:

Spread(Agent,Theme,Goal).

(14) a. The woman will spread the butter on the bread.

b. The woman will slide the butter to the man.

By measuring eye gaze, they showed that participants were able to anticipate

the goal of the action in advance as they looked more at the man when they

encountered sentences like (14-b) (Kamide et al., 2003). Once again, it seems

that anticipation is possible even just after the verb, which is another evidence

for an incremental interpretative process.

Finally, these results are also in line with those of Rosa & Arnold (2017) where

they found that pronoun production was more prominent when referring to a

goal than when referring to a source. In their experiment, they contrasted causal

statements like (15) and transfer-of-possession events like (16), and in both cases,

participants interpreted the pronoun to be referring to the implicit cause or the

goal of the event (Rosa & Arnold, 2017).

(15) a. The butler blamed the chau�eur because he.... (murdered someone).

b. The butler impressed the chau�eur because he... (�gured out the

case).

(16) a. The butler gave the threatening note to the chau�eur and he...

(turned it in to the police).

b. The butler received a ticking bomb from the chau�eur and he ...
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(chucked it into the river).

According to their results, the goal argument is considered more predictable be-

cause the chances are, it will be mentioned in the sentence. This result seems

like an anticipatory bias towards interpreting a pronoun as primarily referring to

a goal instead of a source (Rosa & Arnold, 2017). These results can be easily

linked with the one from Kaiser & Cherqaoui (2016) since object interpretation

is more associated with causal cues or goals, whereas subject interpretations are

more associated with non-causal or temporal uses.10

1.1.2 Limitations of the cloze task

The cloze task and the predictability value have been used extensively in the

literature in psycholinguistics and neurolinguistics, but that does not mean that

we have a detailed understanding of all its intricacies. We can ask a participant

to complete a truncated sentence, and then we can measure the predictability of a

given word, but, as stated by Smith & Levy (2011), we still know almost nothing

about what the nature of this task is. We know that performing a cloze task does

not automatically involve the exact mechanisms used for language processing. In

other words, asking someone to complete a sentence is not the same as processing

an already completed sentence. Completing a cloze task is an o�ine task where the

participant has time to think and decide the best response possible, which is not

the case for standard language processing (Smith & Levy, 2011). Predictability

10In Chapter 3, this anticipatory bias will be translated into a correspondence function
between a speaker (or an interpreter) and a conveyed meaning, and its in�uence will further be
discussed in Chapter 5.
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is thus an o�ine measure, and this has to be taken into account when using the

cloze task results in a study about linguistic processing (Chow et al., 2016b).

In both cases, it is a matter of using the correspondence between a linguistic

representation and a state of the world, but the directionality is not the same.

The distinction between interpretation and prediction will be discussed in Chapter

3, but the critical thing to note here is that it is not clear from the cloze task results

alone how the participant makes this prediction or this choice of words. Do they

generate their response by probability assessment of the most probable word in

the context or by using associative pre-activation (Smith & Levy, 2013)?

If the choice is activation-based, then a cloze task is to be understood as a race to

retrieve the �rst word coming to mind when interpreting the incomplete sentence,

i.e., the �rst word that is activated above some threshold level of activation (Staub

et al., 2015). If this choice is expectation-based, i.e., based on the probability of

occurrence given the context, then a cloze task is a measure of this conditional

probability; it is a sampling from a subjective probability distribution. We thus

have two di�erent kinds of probabilities: conditional probability of word occur-

rence and the probability that a word is reaching the activation threshold �rst

(Staub et al., 2015) and we have no easy way to know which of them is measured

during a cloze task.

Another problem with the cloze task is that once a cloze probability (or pre-

dictability), has been measured, there are two ways we can interpret the results

(Staub et al., 2015). To illustrate the di�erence between the two, let us suppose

two words were used to continue a truncated sentence as shown in (17).

(17) Truncated sentence ...

a. the word car has a cloze score of 90%.
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b. the word boat as a cloze score of 10 %.

The most common interpretation for these results would be that the expectation

to encounter the word car in the given context are higher than the one for the

word boat. This higher expectation should be treated as applying to any individual

performing a similar task. Therefore, the cloze result here is considered a measure

of predictability linking a word with a linguistic context without considering the

participants' idiosyncrasies. For example, when participants are asked to provide

multiple answers and sort them by probability like in Roland et al. (2012), then

these classi�cations can be used to compute the average preferred response, and

one can conclude that this answer generally has the highest predictability among

all the participants. Under this interpretation, car is more predictable even for

participants that did not classify it in the �rst position in their list (Staub et al.,

2015).

The other interpretation for the cloze scores is about individual variability. In

this view, the fact that car has a cloze score of 90% means that for 90 percent of

the participants, it was the best candidate for the continuation of the sentence.

Here the variability of cloze scores is due to the variability in personal experi-

ence and linguistic knowledge between participants (Staub et al., 2015). Under

this interpretation, every participant has only one most expected word, and the

cloze score is a measure of the individual variability of the possible response. For

example, there is evidence that participants prefer words that are more familiar,

shorter, and less formal since they want them to be felicitous in the formal con-

text of an experiment (Smith & Levy, 2011). This discrepancy between these

two interpretations of a cloze score is challenging because most data gathering

involves multiple trials and averaging the results. In principle, cloze values are

compatible with both interpretations (Van Petten & Luka, 2012). In this thesis,
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I only consider the �rst interpretation because it is the most common one, but

also because building a personal cloze task simulator is a much bigger and more

challenging problem to tackle.11

1.1.3 Simulating a cloze task

By choosing the �rst view, we could treat predictability results as conventionalized

cloze scores across a population, making it easier to bring consistency to the

model. In this thesis, I am interested in describing a theoretically driven model

to explain cloze task results, i.e., to simulate linguistic prediction directly from

a truncated sentence. Cloze values are usually measured by asking participants

to complete a given sentence and then averaging all the answers, but the goal

here is to compute them without outsourcing. Cloze tasks are generally tailored

to ful�ll speci�c experimental requirements, and every empirical study has its

measures and particular ways of designing a cloze task. In this thesis, I chose

as a starting point the well-known study by Bloom & Fischler (1980) where they

give completion norms for 329 sentences. A follow-up study by Block & Baldwin

(2010) added 398 new sentence completion norms and made their results available

for the scienti�c community's bene�t. In the following chapters, I discuss how to

develop a model that would simulate linguistic prediction at the word level while

also being compatible with the most recent experimental results about linguistic

prediction and its e�ect on linguistic processing.

11However, this does not mean it is not be feasible to do so. See Chapter 6 for a discussion
about this issue.
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1.2 Interdisciplinary Nature of this Thesis

We can de�ne the nature of this thesis in terms of Marr's three levels of analysis

(Marr, 1982). According to Marr's book, any information-processing task, or any

complex system, could be divided into three levels of analysis: computational,

algorithmic, and implementational.

• Computational level

The goal is to describe the strategy or the nature of the process: What does

the system do? What is the logic behind this strategy?

• Algorithmic level or representational level

The goal is to specify the system's algorithm to process the information:

How does the system work? What kind of representations does it use?

• Implementational level

The goal is to understand the physical realization of the algorithmic level:

What neural structures or neuronal activities are involved in the process?

The three levels are intertwined, and every level is thought to be a realization

of the level before it. To achieve a complete understanding of a system, we thus

have to work towards developing integrative models that could encompass all three

levels. The goal here is to cover the necessary avenues related to the nature of

linguistic prediction in order to develop a tentative model that could ful�ll the

requirements of an integrated theory.

This thesis is inherently multidisciplinary because predictive behaviors are also

inherently multidisciplinary. Language comprehension is often represented at the

center of a triangle comprising computational linguistics, information theory, and



24

cognitive neuroscience because they must all be involved when trying to under-

stand language (Armeni et al., 2017). In this thesis, I use a slightly di�erent

schematic and terminological view where linguistic prediction could be modeled

with the collaboration of cognitive science, computational approaches, and lin-

guistics, as in Figure 1.1 (Armeni et al., 2017, adapted from their Figure 1).

Language Prediction

Cognitive Science(Chap. 2)
- Neurolinguistics

- Psycholinguistics

Linguistics(Chap. 3)
- Meaning compositions

- Coordination

Computional Tools
- Word Embeddings (Chap. 4)

- Probabilistic Language Models (Chap. 5)

Figure 1.1 A schematic depiction of the interdisciplinary collaboration required
to model linguistic prediction

Following this view, to develop a model capable of simulating linguistic prediction,

we need to consider all three domains of knowledge because the said model has

to respond the constraints from all of these �elds. Interestingly, it is possible to

establish a relationship between each contribution from these three domains and

Marr's three levels. Within this schematic representation, the cognitive science

domain provides the empirical data the model should be based on, but it also gives

clues about the physical realization of linguistic processing, i.e., the implementa-

tional level. The contribution from linguistics resides more at the computational

level, where the theoretical constraints of the linguistic processes are determined

in a principled way by looking at di�erent linguistic behaviors in communication.

Finally, the tools developed by computational approaches, despite their names, are
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closer to the algorithmic level than the computational levels since they provide

representations one can work with to develop a model about linguistic predic-

tion. The correspondence between Marr's three levels and the contribution from

these three domains of research is far from perfect, but at least it underlines their

respective importance, and it provides an opportunity to work towards an inte-

grative theory of language processing/prediction. In the following subsections, I

discuss the respective contribution of these three �elds, and I present the general

organization of this thesis.

1.2.1 Cognitive Science

For this thesis's scope, I consider that all empirical studies interested in how lan-

guage is cognitively processed are part of cognitive science. In the schematic view

that inspired Figure 1.1, Armeni et al. (2017) used `cognitive neuroscience' instead

of `cognitive science,' and their views would more readily correspond to the im-

plementational level. However, I chose to stick with the more general appellation

`cognitive science' because I think it encompasses more naturally the contribution

from neurolinguistics studies and psycholinguistic studies. It could be argued that

psycholinguistic results would not be characterized as contributing to understand-

ing the implementational level. However, if we think of the physical constraints

for realizing a process, psycholinguistics and neurolinguistics both provide clues to

understand better how linguistic prediction works (Hasson et al., 2018), and both

o�er results upon which implementation models would be evaluated. Chapter 2 is

entirely dedicated to discussing empirical results about linguistic processing and

linguistic prediction, and these results will serve as a cognitive thread with which

I intend to tie the linguistic and computational approaches.
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1.2.2 Linguistics

Linguistics is generally described as being divided into di�erent sub-�elds such as

phonetics, syntax, or semantics. This way of separating sub-�elds in linguistics is

relevant when one is interested in distinguishing di�erent linguistic units. How-

ever, since my purpose is to discuss linguistic processing and how di�erent kinds of

information are taken into account during an anticipatory process, I chose to use

a di�erent distinction based on the nature of the information used to derive the

prediction. Hence, I divide the relationship between linguistic prediction and lin-

guistics into two types of contributions: the linguistic information emerging from

the combination of di�erent words or linguistic units, i.e., meaning compositions,

and the information derived from the fact that communication, and therefore pre-

diction, are about linguistic coordination between two agents, i.e., coordination

processes. This distinction in terms of di�erent contributions to meaning blurs

the conventional separation between semantics and pragmatics. The di�erence

between the contribution coming from the meaning compositions and the coor-

dination aspect of linguistic interactions will be presented in Chapter 3, and the

intricacies of the interaction between the two will be discussed in Chapter 5. In

this thesis, I do not discuss the lower granularity levels of linguistics because I am

primarily interested in simulating a prediction at the level of the word and not

beyond that. However, this is not to say that phonology could not help form a

prediction at the word level since. As argued by Van Berkum & Nieuwland (2019),

di�erent levels of granularity all provide their respective contexts, and these con-

texts all contribute to the understanding of the entire discourse. The approach

presented in this thesis is centered around a prediction about an upcoming word,

and I do not discuss discriminating units below the level of the word.
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1.2.3 Computational Approaches

The third important domain for understanding linguistic prediction is the whole

spectrum of knowledge related to the development of new computational ap-

proaches to cognition and language. Computational tools (or approaches) pervade

both linguistics and cognitive science, and, in this thesis, I focus on two of them:

word embeddings and probabilistic models of cognition.

The idea behind word embeddings emerged from the distributional hypothesis

(Harris, 1954) that words expressed in similar contexts must have similar mean-

ings. Word embeddings are generally derived indirectly by examining how words

and their neighbors are distributed within a corpus of data. Chapter 4 discusses

these word embeddings and explains how they can be used to represent the contex-

tual meaning of a word (Gastaldi, 2020). The fact that they are well-de�ned math-

ematical objects, namely vectors, makes them helpful when representing meaning

because they can be easily combined to form more complex units of meaning.

Finally, probabilistic models, and Bayesian approaches especially, are more pop-

ular than ever for explaining empirical data both in psycholinguistics (Jurafsky,

2002; Heller et al., 2016; Kehler & Rohde, 2018) and in neurolinguistics (Nicen-

boim et al., 2020; Delaney-Busch et al., 2019). Chapter 5 introduces them and

explains how they could contribute when taking into account the coordination

between two agents.
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1.2.4 Summary

This thesis is an integrative e�ort to bene�t from the recent developments within

three �elds of research: linguistics, cognitive science, and computational ap-

proaches. In the following chapters, I look more closely at each of these disciplines

to circumscribe their contribution to linguistic prediction and their respective

constraints when developing an integrated model of linguistic prediction. This

thesis's primary purpose is to develop an explanatory model of linguistic predic-

tion that could help bridge the gap between the higher-computational and the

lower-implementational levels.12 This thesis is in line with the recent tendency to

explain how representations are combined within one's mind while using neuro-

logical data to develop mechanistically realistic models (Baggio, 2018; Hagoort,

2020; Nieuwland & Martin, 2017).

Additionally, this thesis helps improve our understanding of linguistic processing,

which is sometime divorced from computational models, especially in machine

learning and deep learning (Linzen, 2019). In a world where machine learning

and computational models of prediction have become more and more e�cient, it

is still of utmost importance that a model of linguistic prediction could help us

better understand the cognitive and the linguistic rami�cation of such process, in

addition to being able to perform well in a cloze task. For example, you could

turn to a well-known search engine and input any truncated sentence, and it would

probably give you a sensible answer, but it would not help you understand how

a human mind would have provided you with this answer. In other words, even

though computational models based on neural networks are becoming more and

12This problem is often called the mapping problem (Poeppel, 2012) because it involves
the mapping of representations between language science and cognitive science.
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more sophisticated, they are not very informative about what is going on in the

mind of a person that has to perform a cloze task. The opacity of neural networks

is generally described as a signi�cant limitation when building a cognitively sound

model of a given process (Marcus, 2018). Even though some language models

have now achieved a high-performance level, it does not mean that they have

acquired linguistic knowledge like compositionality (Linzen, 2019). It is the role

of linguistics to provide detailed requirements about the capacities necessary for

language processing and, in this case, linguistic prediction.

Finally, methods using deep learning have great di�culty dealing with hierarchical

structures, which is a big problem when tackling linguistic processing because

hierarchical structures are the foundation stones of modern linguistics (Marcus,

2018). These �aws have led many to advocate for more signi�cant interaction

between neural networks and linguistics to bene�t from one another (Pater, 2019;

Linzen, 2019). This thesis is an integral part of this discussion by presenting

a tentative way to develop an integrated model. Linguistics is critical in this

equation because linguists can contribute from all three fronts by delineating the

linguistic constraints that have to be met by computational models while keeping

in mind the empirical results from cognitive science (Linzen, 2019).



CHAPTER II

COGNITIVE SCIENCE AND PREDICTION

Until recently, the idea that someone would be able to predict upcoming linguistic

information was viewed as improbable because it was deemed cognitively too

demanding to deal with the massive space of possibilities (Kutas et al., 2011). It

was only more recently that linguistic processing models shifted away from the

modular view of language (Fodor, 1983) and turned to less constrained and more

interactive models of language processing (Ferreira & Lowder, 2016). In turn,

even though some argued that the role of prediction for actual word recognition

seems to be minimal (Brouwer et al., 2012), the fact that linguistic pre-processing

(anticipation or pre-activation) plays an active role in sentence comprehension

is now more widely accepted than ever (Delong et al., 2014). It has become an

important �eld of research (Jaeger & Snider, 2013; Van Petten & Luka, 2012;

Levy, 2008; Nieuwland & Van Berkum, 2006).

For the most part, recent studies support the conclusion that prediction mecha-

nisms are the best way to explain a lot of empirical results (DeLong et al., 2005;

Kutas & Federmeier, 2011; Lau et al., 2013). For example, Ito et al. (2018) showed

that even if anticipatory behaviors involved a higher cognitive load, it was still

advantageous during linguistic processing because of the bene�ts of a correct pre-

diction compared with the additional cost of a wrong prediction. Rommers &
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Federmeier (2018) also argues that a veri�cation process speeds up the processing

of correctly predicted linguistic units because it allows for less thorough analysis

as the brain has already partially treated that new information.

However, despite all the research on the subject, it is still di�cult to grasp the

exact role of prediction within language processing. One reason for that might

be that a prediction can be formed from several di�erent kinds of processes, be

it linguistic pre-processing, neural pre-activation, or a simple expectancy of up-

coming semantic content or syntactic structure (Delong et al., 2014; DeLong &

Kutas, 2020), and it could be challenging to try and measure these processes

independently.

2.1 Di�erent kinds of predictions

Linguistic prediction mechanisms are generally separated into Type I, which is

about automatic activation of associated information, and Type II, which is re-

lated to a more deliberate and re�exive mechanism (Huettig, 2015). Similarly,

Brothers et al. (2017) di�erentiate between these two types by naming them as-

sociative pre-activation (Type I) or speci�c lexical predictions (Type II).

According to the �rst view, a given concept is associated with other concepts

that are automatically passively co-activated when the �rst concept is processed

because they share some features (Lau et al., 2013). Nieuwland (2019) gives

the example of the word chocolate that facilitates the understanding of the word

candy because the two are related, and hearing the �rst word will automatically

pre-activate the second one.
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In the second option, the prediction is derived from the interpretation of the mean-

ing expressed by the words in the context (Kutas et al., 2011). The second family

of views about predictions is called active prediction because it involves using an

inferential process to derive the prediction. As opposed to passive co-activation,

the active prediction is a prediction about the upcoming meaning and not only

about a speci�c lexical item. This active prediction is a decision-like cognitive

process that allows the hearer to weigh the possible options for a prediction and

choose the one that best maximizes its utility (Kuperberg & Jaeger, 2016).

The distinction between the two is sometimes described as the di�erence between

intra-lexical association (or spreading activations within the lexicon) and mean-

ing associations (or constructed relationship between di�erent words) (Ferreira

& Lowder, 2016) or even `dumb' prediction and `smart' prediction Karimi et al.

(2019). In this thesis, following Nieuwland (2019), I di�erentiate between the two

kinds of predictions by comparing the two processes: the �rst one is a passive

prediction while the second one is an active inferential process.

2.1.1 Passive pre-activation: Similarity

According to the passive pre-activation view, anticipation is not about forming a

precise prediction of the next upcoming information but rather about activating

information related to the processed information. For example, if we consider the

lexical level, then a concept associated with other concepts would be automatically

passively co-activated when the �rst concept is processed (Lau et al., 2013). For

example, the words windy, kite and �y are semantically associated which means

that when one hears windy and �y, the word kite then also becomes automatically
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activated, as in Figure 2.1.

windy �y

kite

pre-activate

Figure 2.1 Pre-activation of the word kite when windy and �y are heard

This kind of anticipation is quali�ed as passive because the co-activation is done

without any inferential input from the hearer, i.e., the activation from one word

or one concept is passively spreading towards associated or related concepts. The

degree to which a related word is activated depends on its relatedness with the pri-

marily uttered word. Passive co-activation can be translated in terms of similarity

measures between words. I will come back to this notion of semantic similarity

in Chapter 4, but the vital thing to note here is that the more similar two words

are, the higher the co-activation between those two words.

When a word is uttered, only the words closely related to this word will be ac-

tivated. If many words are all co-activating the same word, then this word will

become the most activated, and the hearer will be able to pick this word as the

most probable lexical prediction. This is precisely what was described in the case

of a truncated sentence containing park, windy, �y from which one can predict

that the following word will most likely be kite. One advantage of this view is

that this form of spreading activation is relatively resource-free because it does not

involve any attentional or dedicated cognitive processes (Brothers et al., 2017).
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2.1.2 Active Prediction: Predictability

Generally, active predictions are divided into two sub-phenomena: predictability

and plausibility. The notion of predictability is contingent on the concept called

cloze probability (Kuperberg & Jaeger, 2016) which we discussed in Chapter 1.

Predictability is directly linked with the likelihood that a participant completes

a given cloze task using a particular word (Quante et al., 2018). For example, we

can recall the example (18), where the continuations were stay (26%), help (21%),

leave (10%), dinner (5%) (Bloom & Fischler, 1980).

(18) The kind old man asked us to ...

For most empirical studies, the linguistic context or the sentences are so particular

that more general predictability measures do not apply, so they have to conduct

a small cloze task beforehand if they want to control predictability. Once they

have the results for predictability, it is then possible to generate examples with

high and low predictability and measure how the level of surprise in�uences the

processing of these sentences. As discussed in Chapter 1, higher predictability is

linked with faster and less e�ortful processing (Van Petten & Luka, 2012).

According to this view, the upcoming word predicted by a hearer would generally

be the one with the highest predictability according to the situation. Even if their

by-products could be the same, an active prediction based on predictability and

a passive co-activation should not be confused, as they ask for di�erent cognitive

processes. They also show distinct patterns of brain activity during language

comprehension (Frank & Willems, 2017).
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2.1.3 Active Prediction: Plausibility

Plausibility is another kind of active prediction, but instead of being related to a

cloze score, it is related to a plausibility score. In a plausibility test, the participant

has to rate the plausibility of events described in a sentence (Nieuwland et al.,

2019; DeLong et al., 2014; DeLong & Kutas, 2020; Quante et al., 2018). For

example, in Quante et al. (2018), they asked participants to rate the plausibility

of the sentence pair's meaning from 1 to 5, 5 being very plausible.

(19) a. Alice brach sich ihr Bein im Wanderurlaub.

`Alice broke her leg while hiking.'

b. Der Arzt röntge ihr Bein und legte es in einen [Gips, Rollstuhl, Vogel]

für zehn Wochen.

`The doctor x-rayed her leg and put it in a [cast, wheelchair, bird]

for 10 weeks.'

In (19-b), the word cast was deemed to be the most expected word for this utter-

ance, while wheelchair and bird were respectively judged plausible and implausible

continuations. For these tasks, rather than asking to complete the truncated sen-

tence, the participants are asked to evaluate the sentence's plausibility as a whole.

Thus, these plausibility values are not related to a particular word in the sentence

but are rather associated with the plausibility of the whole composed sentence.

To illustrate this distinction, we can compare the plausibility values of the two

sentences in (20).

(20) a. John went to the park to �y a kite.
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b. John went to the park to �y a plane

In this case, we would not be comparing the plausibility of kite and plane, but

the plausibility of those two words within their respective sentence. For example,

in (21), it is not that piano itself is plausible or not, but that �John plays the

piano� in its entirety is plausible. Plausibility is thus a global measure, whereas

predictability is more of a local measure.

(21) John plays the piano.

Using plausibility as an active prediction process implies that the upcoming word

is predicted by maximizing the whole sentence's plausibility. This process is very

di�erent from the one involving predictability because, in the latter case, the word

was chosen to best �t with the other words of the sentence, whereas in this case,

the word is chosen to best �t within a sentence. For example, if one wants to

predict the next word of the sentence (22) using a plausibility-driven process, one

has to �nd the word that would make the sentence (22) as plausible as possible.

So the predictive process here demands that we represent the composed sentence

while the predictability process is only required to represent the meanings of the

words contained in the sentence.

(22) Lucie went to the library to borrow a ...

Plausibility is linked with the `semantic integration view,' where the predicted

lexical item is interpreted and then integrated within a partial semantic represen-

tation of the incomplete sentence (Nicenboim et al., 2020). According to this view,

more plausible words are easier to integrate compared with implausible words.
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Some authors have considered a third case of active prediction based on what

they called possibility (Quante et al., 2018; Warren & McConnell, 2007), and they

illustrated the di�erence between a merely implausible event and an impossible

event with sentences like (23).

(23) She in�ated the carrots.

This sentence is not only implausible, but it is semantically non-well-formed.

Lexical knowledge indicates that the verb in�ated requires an in-
�atable object because the context restricts carrots to refer to non-
in�atable vegetables and because carrot-in�ating events are never en-
countered� (Warren & McConnell, 2007, p.1)

In the literature, these infelicitous cases are referred to as impossible. In this

thesis, I only consider plausibility, and I do not further discuss possibility because

I treat the latter as an extreme case of the former, i.e., if it is impossible, then

it is not plausible, and, if it is plausible, then it is possible. The gradability of

the possibility scale lies on the same scale as plausibility itself, as it represents

the lowest spectrum of cases on the scale of plausibility. In other words, it is

when the plausibility becomes very low that we might transition from possibility

to impossibility, and I thus conceptualize the possibility scale as being a sub-scale

of the plausibility scale.
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2.2 Measuring a Prediction

In Chapter 1, I brie�y discussed some empirical results supporting an incremental

view of linguistic processing, in this chapter I turn more speci�cally to empirical

measures involving similarity, predictability and plausibility. There are several

empirical methods to measure the e�ect of predictive behaviors in language pro-

cessing. According to Ferreira & Lowder (2016), we have two empirical disciplines

that are interested in measuring markers of linguistic prediction: psycholinguistics

studies and neurolinguistics studies. The latter being interested in brain signals

while the former is interested in online measures of a linguistic process like reac-

tion times and eye-movements.13 Both �elds of research measure what Armeni

et al. (2017) calls covert linguistic markers. These are not direct measures of

prediction, as they rather are indirect measures of wrongful predictions. Instead

of determining the lexical prediction of a reader/listener in a given linguistic con-

text, covert markers measure the e�ect of a prediction, mainly the consequence

an unexpected word has on linguistic processing. In this section, I start by dis-

cussing studies about eye-tracking experiments and results that link reading time

to the role of prediction within language processing and then discuss in detail

ERP studies about the N400 component and other indirect measures of the e�ect

of prediction on language processing.

13In Armeni et al. (2017), they used the broader term of Cognitive neuroscience, but
throughout this thesis, I use the term neurolinguistics to refer to cognitive neuroscience studies
speci�cally interested in linguistic prediction and language processing.
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2.2.1 Psycholinguistics

Eye-tracking studies measure prediction through reading times and direction of

gaze, and they have shown that the predictability of a word strongly in�uences

the time it takes to read that word, and higher predictability has been linked with

more e�cient language processing (Staub, 2015). Language processing is thus

facilitated when upcoming inputs are correctly anticipated.

A measure that has been widely used in psycholinguistics is the reading time (RT).

Studies about prediction and reading time have supported the idea that prediction

plays a role in language processing (Levy & Gayler, 2008; Linzen & Jaeger, 2016),

and the amount of time it takes to read a word has been linked directly with

processing di�culties. In turn, processing di�culties have also been correlated

with the ability one has to predict the upcoming word (Smith & Levy, 2011, 2013;

Staub et al., 2015). The correlation between predictability and cognitive e�ort

makes sense if we assume that the cognitive representations for an expected word

are more activated than those for a less expected word. This higher activation

implies it is easier to retrieve the word from memory and process it (Roland et al.,

2012).

On the other hand, whenever a new word is processed, it shifts the expected struc-

ture of the sentence. Furthermore, when this shift in expectation is signi�cant,

it takes longer to process the sentence, and this results in a longer reading time

(Kutas et al., 2011). A garden-path sentence like (24) is a good example of this

kind of shift in the expected representation of a sentence.

(24) The horse raced past the barn fell.
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Levy (2008) was one of the �rst to use the correlation between reading time and

processing di�culty to show that unpredictable sentence structure took longer to

read. Levy then went further by describing this unexpected (or unpredicted) shift

in sentence structure as a surprisal e�ect which is a measure of the transition

between di�erent informational states when new words are processed. The sur-

prisal is the unexpectedness of a word given the context, and it is mathematically

represented by taking the logarithm of the probability of the predicted di�culty

over processing the ith word (wi) given the context and the current input (w1...i−1)

(Levy, 2008), as in (25).

(25) di�culty ∝ − logP (wi|w1...i−1,CONTEXT)

This probability is the probability that a given word is expressed given a particular

linguistic context. In other words, when a word is least expected, it takes more

cognitive energy to process it. This correlation between processing di�culty and

conditional probability has been empirically supported by results from reading

times studies (Smith & Levy, 2013), from eye-tracking data (Demberg & Keller,

2008) and from ERP studies (Frank et al., 2015). Even if some recent results

question the logarithmic nature of this relationship and instead argue in favor of

a linear pre-activation account (Brothers & Kuperberg, 2021), surprisal is still

used widely when modeling sentence processing (Futrell et al., 2020; Venhuizen

et al., 2019).14

It is possible to have di�erent interpretations of the e�ect of surprisal (Roland

14The notion of linear relationship might be a bit confusing in the literature about sur-
prisal because some are referring to the relationship between surprisal itself and processing
di�culty (Ryskin et al., 2020; Goodkind & Bicknell, 2018) which is linear, while others refer to
the relationship between predictability and processing di�culty (Brothers & Kuperberg, 2021)
which is logarithmic according to the surprisal account.
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et al., 2012). For example, Jurafsky (2002) considers surprisal to be related to the

amount of information conveyed by a word. In contrast, Hale (2001) characterizes

it as the probability strength of the interpretations rejected once a word has

been processed. The interpretation that was �rst proposed by Levy (2008) is

most commonly viewed as the relative di�erence between the probability that the

world is in a given state just before reading this new word and just after. In other

words, the more surprising is the word, the more the posterior probability will be

di�erent from the prior one.

This strict correlation between predictability and RT has lately been challenged

because recent empirical studies showed that in cases where the predictability is

low, reading times are only faster when the previous linguistic context is highly

constraining (Staub et al., 2015). For example, (26-a) is said to have low pre-

dictability with a high level of constraint, and election has a high predictability

score, 61%. Although they have lower cloze scores, all the other responses were

nevertheless related in meanings with election: contest, battle, award, and prize

(Staub et al., 2015). On the other hand, (26-b) has low predictability and low

constraining as it elicited very diverse response such as bird, girl, cat, and crying.

(26) a. [Low predictability, High constraining]: He complained to win the ...

b. [Low predictability, Low constraining]: He heard a faint sound of one

...

In their experiments, Staub et al. (2015) asked participants to verbally complete

sentences while recording their response time, and they measured shorter times

when predictability was high. However, when predictability was low, responses

were only faster when the linguistic context was highly constraining, i.e., only for

cases like (26-a). These results point toward a rede�nition of the strict relationship
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between cloze score and predictability because it seems other factors might also

intervene in the process. These results imply that predictability cannot be the

only factor in�uencing RT measures (Yun et al., 2012).

Roland et al. (2012) has also observed an e�ect of similarity on reading times.

They showed that words similar to the previous linguistic context were processed

faster, and they found this e�ect to be independent of the in�uence of the pre-

dictability score. The similarity in this scenario is de�ned as the semantic simi-

larity measure described in the passive pre-activation section. To illustrate their

results, let's consider (27-a) and (27-b), a modi�ed version of their examples.

(27) a. The soldier jabbed the angry lion with a/an ...

b. The soldier attacked the angry lion with a/an ...

In the context of (27-a), the next word could be spear, sword or machete, whereas

in the context of (27-b) it could be sword, stick, knife or rock or gun. According

to Roland et al. (2012), in order to �nd the word that is the best candidate in its

respective context, the interpreter might use a combination of both the notion of

predictability and the measure of similarity, and, most importantly, they argued

that the similarity e�ect between these words and the preceding context would

supersede the predictability e�ect for the same words. In Figure 2.2 (Roland et al.,

2012, adapted from their Figure 2), we can see that the similarity between the

candidates is better in the jab context than in the attack context since both rock

and gun are less related with the other possible continuations. What Roland et al.

(2012) showed is that the reading time for cases where the similarity was bigger

between potential candidates was shorter than for cases where the similarity was

less signi�cant, independently of the predictability values of the candidates.
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sword spear fork

knife

machete

jab context attack context

sword spear

knife

stick

rock

gun

Figure 2.2 Representations of the semantic similarity between spear and other
options for both the `jab' and the `attack' context

Their results thus support the idea of this precedence of the similarity over the

predictability. It is interesting to note that despite their results, Roland et al.

(2012) did not dismiss predictability altogether, and they opened the door to

the integration of the two e�ects into a hybrid model of RT. This conclusion is

important because it contradicts the model of Levy (2008) which is based strictly

on predictability. An in�uence of similarity on reading time has also been reported

by Yun et al. (2012), which supports the idea that RT is not only in�uenced by

predictability but that it might also be dependent on the similarity between words.

In another experiment, Roland et al. (2012) measured another in�uence on the

RT, but this time it was an interaction between frequency and predictability. In

psycholinguistics, the notion of frequency is tied with the unconditional probabil-

ity that a word is occurring, regardless of the speci�c linguistic context (Smith &

Levy, 2013). This result, combined with the previous one about similarity, only

strengthens the assumption that predictability does not act alone.

Finally, the last point I want to mention regarding predictability is that even

though the correlation between predictability and reading time has been estab-

lished and accepted (Staub et al., 2015; Smith & Levy, 2013) and even tough we

are able to calculate predictability and cloze probability, there is a an open ques-
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tion about what these measures represent in terms of cognition (Smith & Levy,

2011).

The di�culty here lies in the many possible ways to interpret RT results because

of the di�erent ways to theorize the underlying process. One perspective state

that the predictability e�ect comes from the anticipatory pre-activation of words,

i.e., similarity, and another stance supports the idea that the e�ect is happening

only post hoc, i.e., that it is happening when the word meaning is integrated

(Smith & Levy, 2013). A third option would be for someone to predict the next

upcoming word using a bit of both process (Staub et al., 2015). In Chapter 4,

we develop a hybrid view where similarity and plausibility each have their role to

play during the derivation of a linguistic prediction.

2.2.2 Neurolinguistics

In recent years, many event-related potential (ERP) studies focussed on predic-

tion, and it is fair to say that the N400 component has become central in the

neurolinguistic literature about prediction. The N400 component is a negative

de�ection in an ERP waveform peaking around 400 ms after stimulus onset and

is more signi�cant over centro-parietal electrodes (Cosentino et al., 2017). If in

reading time studies, unpredicted information was correlated with surprisal and

longer reading time, in ERP experiments, unexpected information is correlated

with a larger N400 e�ect. The N400 e�ect is used to show that lower surprisal is

linked with predictable words, and faster and e�ortless processing (Kutas et al.,

2011; Van Petten & Luka, 2012).15 To illustrate this N400 e�ect, we can look at

15See Nieuwland et al. (2018); Nieuwland (2019) for an exhaustive review of N400 results.
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Figure 2.3 (Ito et al., 2016, adapted from their Figure 1) where the lowest value

is for the most expected word, namely book. According to this graph, the second

most expected word is page. The words hook and sofa elicited the higher N400

e�ect, and they are thus deemed to be the most surprising of the four.

The student is going to the library to borrow a hook/page/sofa/book tomorrow.

Figure 2.3 Illustration of N400 e�ect

The N400 e�ect is the di�erence in N400 components measured under two di�erent

stimuli. This e�ect was described for the �rst time by Kutas & Hillyard (1980),

and it has been extensively investigated ever since (Nieuwland et al., 2018; Nieuw-

land, 2019). In their original experiment, Kutas & Hillyard (1980) compared N400

components for words that had mismatches for meanings compared with the �rst

part of a sentence. For example, in (28), the largest N400 component should be

the one for the word socks because it is unexpected, and it thus requires a sizeable

cognitive e�ort to process (Kutas et al., 2011).

(28) He spread his warm bread with butter/socks.
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N400 e�ects are also observed when a visual stimulus or an image is unexpected

in a given situation (Lau et al., 2013), and, in this sense, it transcends linguistic

processing as a measure of the e�ect of unexpectedness, i.e., the e�ect of a wrong

prediction.16

In Chapter 1, I mentioned that I would not discuss in length linguistic prediction

below the word level, but it is worth mentioning that ERP studies about gender

prediction have tested the e�ect of phonological information on the N400 com-

ponent. In Ito et al. (2020), they compared expected nouns that had di�erent

phonological or gender classes. The truncated sentences like (29) were continued

either by an expected article and expected noun, a phonological mismatch article

and a noun, or a gender mismatch article and a noun.

(29)
The

Il
tra�c

tra�co
on

in
the

autostrada
motorway

e
came

rimasto
to

bloccato
a

a
standstill

causa
because

di...
of...

a. unmasc. incidentemasc. (accident)

b. unmasc. scontromasc. (collision)

c. unfem. inodazionefem. (�ooding)

Ito et al. (2020) showed that gender information was processed quicker than phono-

logical information, although both kinds of mismatches elicited a larger N400 ef-

fect. Similar studies were also performed in other language and they gave rise

to similar results, e.g. Szewczyk & Schriefers (2013) (Polish), Nicenboim et al.

(2020) (German), Van Berkum et al. (2005) (Dutch), and DeLong et al. (2005)

16I do not discuss these extra-linguistic scenarios in this thesis, but the fact that N400
e�ect also applies to visual expectations should not be a surprise for those who conceptualize
language interpretation as being linked with perceptual information.
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(English). The exact nature of this N400 e�ect is still debated, but most agree it

is certainly related to the degree by which input matches its predicted value (Ito

et al., 2016) or related to the �ease of accessing semantic features and properties

associated with incoming words� (Kuperberg, 2016, p.603).

The last thing to note about the N400 results is their empirical role in helping to

di�erentiate di�erent processing streams of incoming information that are taken

into account when deriving the prediction of the upcoming word (Kuperberg et al.,

2020).

Apart from the N400 components, there is also a late positive response named the

P600 (Leckey & Federmeier, 2020). Contrary to the N400, which is measured be-

tween 300-500ms after the onset of the target word, the P600 is measured between

600-1000ms after this onset (Brouwer et al., 2017; Sassenhagen & Fiebach, 2019;

Kim et al., 2018; Bornkessel-Schlesewsky & Schlesewsky, 2008). In a series of ex-

periments where they manipulated the length of the prior context, Brothers et al.

(2020) compared the N400 and P600 components' responses. They observed that

in a setting where the prior context was absent, it did not elicit a P600 response.

Whereas they observed a P600 in cases the prior contexts were constraining. More

speci�cally, they observed a late posterior positivity for locally constraining con-

texts, and both a late posterior positivity and a late frontal frontal positivity for

globally constraining contexts as in (30).

(30) a. No context:

James unlocked the (door/laptop/gardener).

b. Locally constraining context:

He was thinking about what needed to be done on his way home. He

�nally arrived. James unlocked the (door/laptop/gardener).

c. Globally constraining context:



48

Tim enjoyed baking apple pie for his family. He had just �nished

mixing the ingredients for the crust. To proceed, he �attened the

(dough/foil/onlookers)...

In the �rst experiment, Brothers et al. (2020) did not use any context as in a

conventional cloze task. In the second and third experiments, they added some

context in front of the truncated sentence. In (30-b), the events described by

the �rst two sentences are not strongly associated with the event described in

the third sentence, and it did not help select the best candidate since door and

laptop are both possible. Finally, for cases like (30-c), the event described in

the third sentence followed naturally from the interconnected events described in

the �rst two sentences. Their �ndings point toward the importance of contextual

constraints in predicting the upcoming word. However, most importantly, they

support the idea that we could di�erentiate ERP components in terms of their

respective contribution during linguistic processing.17

2.3 Cognitive Constraints for a Model of Linguistic Prediction

In this section, I look more closely at some key results about the way linguistic

prediction is realized cognitively. I am interested in underlining empirical results

that help us retrieve the structural and cognitive constraints we must consider

when developing a model of linguistic prediction.

17In a di�erent study, Brothers et al. (2017) showed that the broader linguistic context
and the speci�c goal of the listener could in�uence the anticipatory process during language
processing. This other result adds weight to the hypothesis that the context of the enunciation
has to be taken into account when trying to understand how lexical prediction operates.
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The most important thing to note from the many empirical results on linguis-

tic prediction is that there are no hard architectural constraints on the �ow of

activity within the interpreter's mind and both in�uences coming directly from

the input, and predictions derived from information that is already known, are

possible concurrently (Kuperberg, 2016). As put forward by Khachatryan et al.

(2018), the N400 component re�ects the interaction between these two processes.

When the discrepancy between the two is more signi�cant, i.e., when the input

does not correspond to the prediction, the ERP responses become larger, and this

signals a wrong prediction or an unexpected word.

2.3.1 Distinguishing the kind of prediction

The correlation between predictability, plausibility, and similarity makes it hard

to clearly understand their respective e�ects on linguistic processing because it is

di�cult to di�erentiate between their contribution (see section 2.1). This corre-

lation is easily understandable because when an N400 e�ect is encountered in a

high-cloze situation, i.e., a high-predictability context, it might also be the case

that we also are in a high-similarity or a high-plausibility scenario. For example,

DeLong et al. (2019) and Ito et al. (2016) noticed that participants' plausibility

values were higher when semantically related words were involved, even for cases

when these words did not correspond to the given context of the sentence.

Additionally, following Nieuwland et al. (2019), if the truncated sentence is (31),

then the word bicycle is more predictable than the word elephant, but it is also the

case that the word bicycle makes the whole sentence more plausible compared with

a sentence containing the word elephant. In this particular case, predictability is
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related to higher plausibility, making it di�cult to single out any of those two

contributors to the N400 e�ect.

(31) You never forget how to ride a...

Simultaneously, the word bicycle might be predicted from an active process using

a cloze score, i.e., predictability, or it might also come from a passive co-activation

process because it co-occurred with the word ride. The same N400 results could

thus be caused by a mixture of the three kinds of predictions discussed previously,

and it is of utmost importance to use experimental conditions speci�cally designed

to help us di�erentiate between these potential contributors. Nieuwland (2019)

explored these potential cross-contributions from existing studies and performed

their own set of experiments by varying the nature of the three variables (Nieuw-

land et al., 2019). Their experiment used 80 di�erent sentences, each having two

conditions: expected and unexpected article noun combinations. They also mea-

sure predictability, plausibility, and similarity distinctively for every article noun

combination. Predictability was given as a cloze score going from 0 to 100%,

plausibility was measured on a scale from 1 to 7, and similarity was measured

using Latent Semantic Analysis (LSA). I will describe in length how it is possible

to measure similarity in Chapter 4, but, for now, we can still illustrate the pos-

sible variations between these three conditions using these examples taken from

Nieuwland et al. (2019).

(32) It was di�cult to understand the foreign professor because he had an/a

...

a. accent : Predictability of 100%, Plausibility of 6.13, Similarity of 0.29

b. lisp: Predictability of 7%, Plausibility of 6, Similarity of 0.12
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(33) Although the basketball team's defense was very strong they did not have

so much of an/a ...

a. o�ense: Predictability of 34%, Plausibility of 5.32, Similarity of 0.26

b. coach: Predictability of 0%, Plausibility of 3.33, Similarity of 0.53

(34) Every time they went for walks Sylvia's dog Rex would break into a run

as soon as he spotted a/an ...

a. cat : Predictability of 27%, Plausibility of 6.1, Similarity of 0.34

b. owl : Predictability of 10%, Plausibility of 4.3, Similarity of 0.29

In (32), it is the predictability that is the de�ning contribution since the plausibil-

ity and the similarity are not varying signi�cantly between the two continuations.

In (33), is it the plausibility and the similarity that contribute more (taking into

account that both o�ense and coach have pretty low predictability scores), and in

(34), it is the plausibility that has the most considerable variability. They mea-

sured the N400 components for all these cases, and their results were consistent

with a hybrid, multi-process view of prediction where predictability, plausibility,

and similarity each contribute to the lexical prediction that was formed by the

hearer (Nieuwland et al., 2019).

Veldre & Andrews (2018) arrived at a similar conclusion while using eye-gaze

recordings and target words that were either plausible or predictable. They showed

that plausibility a�ected target �xation duration measures that could not be ex-

plained by relying solely on predictability scores.

(35) She put �rewood into the... (stove)

In another study Khachatryan et al. (2018) used intracranial EEG measures to
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argue that the complex interaction between the three kinds of prediction depends

on the speci�c task and local context of the target sentence. For example, in

highly constraining cases like (35), the linguistic prediction seems to be mainly

derived from predictability, and conversely, when the sentence is not constraining

enough, the contribution from the lexical associations is required.

2.3.2 Multiple Processing Streams

In order to model word-level linguistic prediction, not only do we have to be careful

about these three contributors, but we also have to take into account the di�erent

potential sources of linguistic information that could simultaneously in�uence the

derivation of this prediction. When tuned correctly, ERP results can help un-

derstand these di�erent mechanisms contributing to linguistic prediction. Until a

couple of years ago, the standard view was that the N400 component was related

to semantic surprisal, while the P600 component measured the syntactic surprisal

Osterhout & Holcomb (1992); Hagoort et al. (1993). The two were also usually

thought of as being co-dependant e�ects, but when a more thorough examination

was done using more speci�c stimuli, it was shown that the two components could

be independent of one another (Kuperberg, 2007; Brouwer et al., 2017).

Payne et al. (2015) found that the N400 component was in�uenced by the degree of

syntactic constraint coming from the context, and Brothers et al. (2020) provided

evidence that the P600 component, in some contexts, was not solely a measure

of syntactic violations. To explain these results, Kuperberg (2007) posited two

processing streams that could both in�uence ERP measures. In (36-a), the object

noun tourist is both related with the overall topic, and respects the animacy
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constraints imposed by the verb told, whereas in (36-b) the animacy constraints

are violated by the object suitcase.

(36) a. The woman told the tourist ...

b. The woman told the suitcase ...

By comparing ERP measures for when a preceding discourse was added or not,

Nieuwland & Van Berkum (2005) got a large P600 e�ect but no N400 e�ect in the

case of (36-b) without any preceding discourse, but they observed an N400 and no

P600 e�ects when a preceding discourse was taken into account. Kuperberg (2007)

explained these results by arguing for dissociating syntactic and semantic process-

ing into two separate streams. These results suggested that these two streams are

highly interactive, but also that they can act independently (Kuperberg, 2007,

p.41).

According to Kuperberg (2007), semantic-thematic representation is a hybrid pro-

cess that is dependent on the syntactic stream for the combinatorial of lexical

items together, but it also needs to be interpreted by a semantic stream. In other

words, the semantic-thematic relations are derived by the syntactic streams, but

their plausibility is assessed by their relationship with the real world (Kuperberg,

2007). It is from the con�ict between these two processing streams that the P600

would arise (Kuperberg, 2007).18

From there, it seems clear that when discussing cloze task or linguistic prediction,

we must consider two independent processing streams: the syntactic and the se-

18In a recent paper Fedorenko et al. (2020) showed fMRI results that do not support
this independence between the syntactic and lexico-semantic processing, but their results still
support the prevalence of the latter over the former. These results are vital if we want to build a
realistic mechanistic model of linguistic processing, and they are still compatible with the model
I present in Chapter 4 and Chapter 5.
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mantic one (Kuperberg et al., 2020). Moreover, the P600 component has then

been further divided into two other sub-e�ects: a semantic verb-argument viola-

tion and a syntactic violation (Kuperberg, 2007; Shetreet et al., 2019). These two

P600 components, i.e., the syntactic P600 and the semantic P600, are considered

to be strong evidence that syntactic and semantic processing can be independent.

There are ways of explaining these with single streams models (Brouwer et al.,

2017), but for the purpose of this thesis, we follow the dominant view that these

streams are processed independently.

The �rst stream is responsible for processing the structure of linguistic input

via combinatorial mechanisms based on morpho-syntactic rules, and the second

stream is about semantic-memory retrieval of lexical items.

The semantic and syntactic streams appear interdependently modulated even

though they could still be dissociable (Kuperberg, 2007). To illustrate this, we

can use these examples from Chow et al. (2016b):

(37) The restaurant owner forgot which customer/waitress the waitress had

served during dinner yesterday.

(38) The superintendent overheard which tenant/realtor the landlord had evicted

at the end of May.

In their results, Chow et al. (2016b) showed the N400 component measured in

(38) on the verb evicted was smaller for sentences containing tenant relative to

the one containing realtor, but they showed no di�erence between the two pos-

sible sentences in (37). This result tells us that the interpreter did not use the

syntactic information from the sentence to predict the upcoming verb served. To

explain this result, Chow et al. (2016a) proposed separate processing streams:
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one mechanism responsible for pre-activating verbs that are thematically related

to the arguments without considering the structural roles of these arguments, and

one slower syntactic mechanism that assigns lexical items to structural, thematic

roles. This interaction between the two streams depends on the evidence available

at the time of the input integration (Kuperberg, 2016).

Having two di�erent processing streams is also compatible with evidence about

parafoveal processing (Veldre & Andrews, 2018). Parafoveal processing is related

to how a reader previews an upcoming word using his gaze's parafoveal area. In

doing so, it should facilitate the subsequent identi�cation of this word. In their

experiment, Veldre & Andrews (2018) replaced a target word within a sentence

with a di�erent word as soon as the reader made a saccade over the word that

preceded the target word, i.e., as soon as the gaze crossed the word `spare' in

(39). To understand the in�uence of syntactic and semantic information in read-

ing, they compared the �xation duration between four kinds of continuations: a

continuation identical to the target words (39-a), a plausible continuation that

shares the same grammatical class as the target word (39-b), an implausible con-

tinuation that shared the same grammatical class as the target word (39-c), and

an implausible continuation that was from a di�erent word class to the target

word.

(39) She eventually found a spare [...] behind the crowded bar.

a. stool

b. glass

c. uncle

d. begin

From their results, Veldre & Andrews (2018) concluded that parafoveal processing
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was most bene�cial when both syntactic and semantic information was plausible,

which suggests that readers can treat both kinds of information in parallel.

One last thing we should note about these two processing streams is the prece-

dence of the semantic stream over the syntactic stream. Precedence not because

the syntactic stream is contributing less, but because in the absence of any syn-

tactic indication, it is still possible to predict an upcoming word from semantic

information only, while the contrary is not possible (Baggio, 2018). This apparent

limitation of the syntactic processing stream is in line with the idea that seman-

tics is autonomous from syntax and can supersede it if necessary. In other words,

semantics generally has a more signi�cant e�ect than syntax in prediction tasks

(Kuperberg, 2007). According to this view, semantics is not only autonomous

from syntax, but it is also prevalent to syntax (Michalon & Baggio, 2019; Bag-

gio, 2018; Gärdenfors, 2014; Morgan et al., 2020). The only time syntax has a

more signi�cant in�uence on the prediction in cases where the semantic evidence

is weak (Kuperberg, 2016), as in the case of `nonce words' as in (40).

(40) The griop surked the ...

This precedence of semantic over syntactic processing does not contradict ERP

results where the P600 components had been triggered by a syntactic anomaly.

However, it does imply that the syntactic stream is not strong enough by itself

to form a prediction for the next word.19 The fact that both semantic memory-

based associations and semantic-theme relationships could in practice overcome

the syntactic stream makes for a less syntactico-centric processing perspective

19See Kim et al. (2015) and Kuperberg (2016) for di�erent examples where semantically
incongruous sentences were repaired by ignoring the syntax so that the correct thematic roles
could be re-attributed accordingly and Kuperberg (2007) for a list of conditions where such
semantic precedence could happen.
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than what is usually considered (Kuperberg, 2007).20 This view is also in line

with the parallel processing approach of Jackendo� (2007); Culicover & Jackendo�

(2006) which states that language components are processed distinctively and are

put together using di�erent interface rules that take place between the di�erent

streams.21

2.3.3 Representational Level and Linguistic Prediction

The idea of the lexical level being the level that is predicted is in line with the

word recognition hypothesis (Nieuwland, 2019). According to this hypothesis, the

prediction is measured against the real input only after the speci�c word form

has been recognized, i.e., after the lexical item has been processed. This idea is

in opposition to the sensory hypothesis for which predictions are implemented as

perceptual templates representing both the phonology and the visual appearance

of a word (Nieuwland, 2019).

The question of the time measurements of the prediction, i.e., the temporality

of the N400 surprisal e�ect, is essential to di�erentiate between these two views.

This distinction originates from the di�erence in the trigger of surprisal: pre-

lexical, lexical, or post-lexical. The pre-lexical phase usually refers to phonological

predictions, the lexical phase to predictions about the word form, and the post-

20This idea has also been discussed and argued for in the `good-enough' approach of
linguistic processing (Ferreira & Swets, 2002; Ferreira & Lowder, 2016; Ferreira & Chantavarin,
2018) which is presented in Chapter 5.

21Culicover & Jackendo� (2006); Jackendo� (2007) proposed to treat semantics as au-
tonomous to syntax. Under this view, from passive elements of syntactic trees, words become
active in determining the structure of an interpretation at the phonological, syntactical, and
semantic levels.
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lexical phase refers to the moment when the meaning expressed by a given word is

integrated within a sentence-level representation (Nieuwland, 2019; Kutas et al.,

2011).

At the pre-lexical stage, non-semantic lexical features like grammatical and phono-

logical features might also be pre-activated, but it does not imply that the word

form is necessarily also pre-activated (Baggio, 2018). To illustrate this di�erence,

we can look at Figure 2.4, where the surprisal e�ect for an incorrect prediction

is measured from the onset of the word in the case of pre-lexical anticipation,

whereas it is measured after the meaning of the word had been interpreted in the

case of post-lexical anticipation. Regarding the levels of representations: at the

pre-lexical phase, we are dealing with representations that are below word-level,

while at the post-lexical phase, we have to use the above word-level representa-

tions to compose the meaning of the words together.

Figure 2.4 Di�erent triggers of prediction: pre-lexical, lexical, post-lexical

These three di�erent processing stages are linked with the distinction between the

`access view' and the `semantic integration view' of linguistic prediction (Nicen-

boim et al., 2020). According to the `access view,' every time one reads some

word w, it triggers memory access, and all these memory accesses are combined

to pre-activate the next word. The interesting thing with this view is that this

pre-activation could be happening both at the pre-lexical and the lexical level.

In other words, when we read a word, not only does it pre-activate other lexical
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items that are associated with it in our memory, but it also pre-activates semantic

features that are themselves linked with lexical item (Kutas et al., 2011; Rabovsky

& McRae, 2014; Kuperberg & Jaeger, 2016).22

As for the `semantic integration view,' it states that after reading the word w,

the reader integrates it within the local and global contexts expressed by the

sentence (Baggio & Hagoort, 2011). When word w is encountered, the semantic

representation is partial because the sentence is still incomplete at this point

(Nicenboim et al., 2020). ERP measures would thus be related to the easiness

of integrating a new word within this partial representation. For example, if the

word is easily integrated because it is easily predictable, then the N400 component

would be lower.

It remains unspeci�ed whether the N400 results can be directly linked with a

compositional process like the `semantic integration view' or just a co-activation

of meanings in the sentence like the `access view' because we seem to have evidence

supporting both sides (Nieuwland et al., 2019). For example, using a Bayesian

random-e�ects meta-analysis on publicly available data, Nicenboim et al. (2020)

were able to show clear evidence supporting the `access view' account, whereas

Fitzsimmons & Drieghe (2013) data about word skipping during reading were

compatible with an approach of linguistic processing where every word that is

read is integrated quite rapidly within a sentential representation. However, the

critical thing to note is that these two views about lexical processing units' levels

are not incompatible. In other words, if we want to build a model of linguistic

prediction, we ought to take both the pre-lexical semantic features and the post-

lexical semantic information into account.

22It could as well pre-activate other kinds of features like grammatical and phonological
features (Nicenboim et al., 2020), but these are not discussed in this thesis.
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According to Nieuwland (2019), one thing that ERP results are showing is the

necessary departure from the strong prediction view about the role of anticipation

in linguistic processing. According to this strong prediction view, a prediction

formed by a hearer is represented at all levels at the same time, which means

that the anticipation is not limited to the lexical meaning but also includes the

phonological and grammatical pre-activation associated with the predicted word.

Following this strong prediction view, when someone is in an unexpected situation,

the surprisal e�ect should follow not only from the meaning of the word but also

from the phonological activation coming from the input. In other words, if the �rst

syllable of the following word does not correspond to one of the predicted words,

we should then observe an e�ect similar to the N400 component but happening

a bit earlier. The problem is that we do not have, at this point, enough evidence

that the initial phoneme of the predicted noun is pre-activated at the same time

as the word itself, and we have �no clear evidence to support routine probabilistic

pre-activation of a noun's phonological form during sentence comprehension �

(Nieuwland et al., 2018, p.14).23

2.3.3.1 Semantic Features

Following Kuperberg (2007), we can distinguish between two levels of represen-

tations: the lexical level, which is about the relationships between words stored

in the semantic memory, and the feature level, which is about the relationships

between features related to these words. These features include thematic relation-

23Prediction at the phonological level has been associated to an N200 e�ect detected 200
ms after the stimulus's onset (Boudewyn et al., 2015; Connolly & Phillips, 1994), but, as argued
by Nieuwland (2019), the N200 results by themselves are not strong enough to validate the
strong prediction view.
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ships that can constrain the number and types of arguments assigned by a verb

(Kuperberg, 2007), and they usually sit in between the syntactic and semantic

streams.

(41) The soldier jabbed the angry lion with ...

To illustrate the role of such features, we can go back to the example from Roland

et al. (2012) where (41) had to be completed. In this case, when considering only

the lexical level, machete would be a potentially strong candidate. However, when

we take into account the lexical features of the word jabbed which is associated

with �sharp pointy object,� it activates another subset of the lexicon, and this

activated subset might compete with the lexical level so that machete might not

have the highest cloze score after all. The complete activation pattern of the

words present in the lexicon is derived from the contribution coming from both

kinds of representational levels: lexical and semantic features.

There has been much ERP evidence supporting the view that semantic features

facilitate linguistic prediction (Boudewyn et al., 2015; Kuperberg, 2013). For

example, Federmeier & Kutas (1999) showed the N400 component was lower for

words that had the same semantic category as the most expected candidate. If

we take the sentence in (42) as given, (42-b) elicited a lower N400 than (42-c)

because both `pines' and `palms' are trees, while `tulips' is not.

(42) They wanted the hotel to look more like a tropical resort. Along the

driveway, they planted ...

a. palms

b. pines

c. tulips
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The use of semantic features dates back to studies on categorization and con-

ceptual representation (McRae et al., 2005), but they are now used frequently

in computational models of linguistic prediction (Nicenboim et al., 2020). For

example, Rabovsky (2019) has used them to simulate N400 results for a series of

di�erent cases (Rabovsky & McRae, 2014; Rabovsky et al., 2016, 2018; Rabovsky,

2020).24

2.3.3.2 Semantic Information above word-level

According to the post-lexical hypothesis, the N400 e�ect caused by the mismatch

between the prediction and the actual input is triggered only once the meaning of

the new word (the input) is integrated within a sentence-level representation of the

meaning expressed by the previous words. In other words, it would not directly

be the word itself that is predicted but the meaning associated with it. Following

this view, sentence-level representations would be at the center of predictive be-

havior.25 At this post-lexical stage, once this above word-level representation is

derived, then it can be used to generate a prediction about the word that would

best �t the meaning expressed by the sentence-level representation, i.e., much like

the plausibility type of prediction.

A signi�cant development towards understanding these above word-level in�u-

ences is the multiple-layer representational model of Kuperberg et al. (2020) in

24I discuss the semantic features and their role in linguistic prediction in more detail in
Chapter 4.

25This is very similar to what is described by Rabovsky (2019); Rabovsky et al. (2016,
2018); Rabovsky (2020) as a Sentence-Gestalt (SG) representation. I discuss their model in
Chapter 6.



63

which they present a theory of linguistic prediction involving three hierarchical

levels of representations. At the top of the hierarchy, the situation model is a

model of the more global situation surrounding the event described by the sen-

tence. This level represents the structure of the events and comprises the complete

set of events, actions, and characters that could be involved in them. In the middle

level, the representation of the event itself contains the information required to tell

which sets of events are compatible with the situation described in the sentence.

Finally, the lowest level of representation is the semantic level, which is concerned

with the semantic features of di�erent individual words associated with these two

other levels (Kuperberg et al., 2020). Each of these three representational levels

plays a role when trying to complete an utterance. As an illustration, consider

(43).

(43) a. [Preceding context]: The lifeguards received a report of sharks right

near the beach. Their immediate concern was to prevent any inci-

dents in the sea.

b. Hence, they cautioned the ... (swimmers/trainees/drawers).

Figure 2.5 (Kuperberg et al., 2020, Figure 1) depicts this hierarchical model,

where, at the situation level, we have a beach scene in which we have two life-

guards, a person, and where someone is being cautioned. The event level is a

representation of the event structure (e.g., the lifeguards cautioned someone),

and then the semantic feature level is at the level of individual words and their

features (e.g., the cautionee, or the patient, which, in this case, must be sentient

and be able to move).26

26See Kuperberg et al. (2020) for a more thorough presentation of the three levels.
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Figure 2.5 Kuperberg et al.'s hierarchical model

In their experiments, Kuperberg et al. (2020) showed that the late frontal positiv-

ity was related to updates located at the situation-level of the model. In contrast,

the late posterior positivity resulted from an impossibility to update the situation

level due to a con�icting constraint.27

The main improvement coming from this multiple-layer model over the single-

layer one is that in addition to the input from the sentence itself, we now need

to consider the potential interactions between the di�erent hierarchical levels of

representations because they play a constraining role in predicting an upcoming

word.28 The interactions between these representational levels are discussed in

27Brothers et al. (2020) �ndings in their �rst experiments seem to contradict this idea of
having a higher comprehension of the context of a sentence, but it was argued that maybe the
participants were not able to build such situation models because the material was not correctly
contextualized.

28This multi-layered model is compatible with the view that hierarchical syntactic struc-
ture also conditions word-by-word expectations (Brennan & Hale, 2019).
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detail in Chapter 4 and Chapter 5.

2.4 Architecture of Linguistic Prediction

So far in this chapter, I have presented three main conclusions that can be drawn

from empirical results regarding linguistic prediction: the semantic stream has

precedence over the syntactic stream, the predictability, the similarity, and the

plausibility are all inter-related, and, �nally, when deriving a prediction we have to

consider representations above and beyond the level of the word. When developing

a theoretically-driven model of linguistic prediction, we thus have to consider these

conclusions and use them as primary cognitive constraints.

Baggio (2018) describes empirical results and introduces a processing architecture

that corresponds to recent empirical evidence. The model of linguistic prediction

I present in this thesis was developed with the general architecture of Baggio's

model in mind, and it is thus relevant to introduce it brie�y.29

According to Baggio (2018), linguistic processing can be divided into three systems

or neuro-cognitive representations: the R-system, the I-system, and the E-system.

These three systems are motivated by empirical results in neurolinguistics and

psycholinguistics, and the di�erences between these three are well motivated in

his book.

The R-system maps the meaning of the lexical items stored in the memory into

relational structures constituted from these lexical units. The I-system is the in-

terpretation system that takes care of the referential, elaborative, and inferential

29Please see Baggio (2018) for more detail about his approach and his conclusions.
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processes at each interpretation point. It is responsible for computing a minimal

discourse model, i.e., interpreting tokens for the relational structure that the R-

system has generated. Finally, the E-system is the internalization of pragmatic

representation, �it is a dynamic record of the status of coordination and commu-

nication with other agents� (Baggio, 2018, p.203). Its main goal is to manage the

coordination between uses of a linguistic expression and its meaning with respect

to the state of the world.

As far as the processing streams we just described, both the R-system and the

I-system would be involved within the semantic stream while the syntactic stream

would a separate system for grammatical processing, as we can see in 2.6. One

novel element coming from Baggio (2018) is the E-system and its role in the coor-

dination between meaning, linguistic unit, and the state of the world. I present in

greater detail the coordination aspect of communication in Chapter 3 and Chap-

ter 5, but for now, the vital thing to keep in mind is that a model of linguistic

prediction should explain cloze results by resorting to mechanisms or processes

that could be linked with one or more of these processing systems. The three

systems are represented in Figure 2.6 (Baggio, 2018, adapted from p.186).

In Figure 2.6, the R-system and the I-system are represented in blue, the grammat-

ical stream in green, and the E-system in magenta. According to Baggio (2018),

the �rst phase of the interpretation is related to the two processing streams de-

scribed by Jackendo� (2007). The grammar stream, see the upper blue arrow,

generates a morpho-syntactic analysis (`S') every time a new word is presented in

the input. In the semantic stream (the lower blue arrow), each word's meaning

is activated along with related lexical-semantic types (`R'). In the second phase

of processing, the I-system builds a parse tree using a compositional process (`c')

and computes an interpretation model from the semantic analysis (`i'). Together,
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Figure 2.6 Cognitive architecture for Linguistic Processing

these two sub-processes build a mental model of the input.

It is interesting to note that the R-system and the I-system interact with each other

at the morpho-syntactic analysis level (`S') and the level of the semantic analysis

(`R'). In the latter case, the relational structures may be updated directly from

the model when a new compositional contribution is processed. In the case of

`S,' it is formed both from the bottom-up constraints processed at the level of the

word (wlc) but also from the update coming from the phrase and sentence-level

constraints derived directly from the mental model processed by the semantic

stream (pslc).30 Finally, the last phase of this cycle is about the E-system and the

coordination function between the mental model and the hearer's attribution of

meaning. Additionally, it is essential to note that this coordination between the

I-system's output and the E-system exists both from the interpretation and the

production side of communication (Baggio, 2018).

The model of linguistic prediction I present in this thesis is a bit di�erent from

30These phrase structure level constraints that act as predictive processes in input pro-
cessing will be described in more detail in Chapter 5.
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Baggio (2018) because it is about prediction and not interpretation. However,

it is nonetheless meant to be compatible with the interpretative processing cycle

presented in Figure 2.6.

2.5 Simulating a Linguistic Prediction

In this thesis, I am presenting a cognitively sound theoretically-driven model of

linguistic prediction. The �rst thing to note is that I am not trying to simulate

reading time (RT) or ERP results; instead, I am interested in generating predic-

tions given a particular context because I think it might be a more direct way

to assess linguistic prediction than ERP measures. After all, there is still much

uncertainty regarding the ERP components and their relationship with speci�c lin-

guistic information. For example, Bornkessel-Schlesewsky & Schlesewsky (2019)

has described 12 di�erent kinds of potential in�uences on the N400 component

spanning from unexpectedness to lexical frequency to cross-linguistic di�erences.

N400 readings alone, as helpful as they can be to help understand language pro-

cessing, cannot directly answer the pressing questions regarding when and how

anticipation is used in linguistic processing.

Furthermore, as was carefully argued by Nieuwland (2019), N400 results coming

from isolated studies are challenging to reduplicate, which has the unfortunate

consequence of hindering the �rm conclusions drawn about prediction and lan-

guage processing from some of the studies that are often cited as a reference.31

31Some have proposed to use measures of what is happening during language processing,
i.e., the activation related to a prediction, instead of a measure of the result of this prediction
like the N400 component (Grisoni et al., 2017; Aurnhammer & Frank, 2019b).



69

Some models of linguistic prediction are interested in modeling linguistic predic-

tion in terms of N400 components. However, I do not discuss them in this thesis.32

Instead, rather than modeling cognition, we are modeling the result of the cloze

directly, i.e., the prediction of an upcoming word. This will help disambiguate

between the respective roles of similarity, predictability, and plausibility within

language processing.

32One of these models is the one proposed by Bornkessel-Schlesewsky & Schlesewsky
(2019); Bornkessel-Schlesewsky et al. (2015) in which they present a predictive coding architec-
ture to explain empirical results about the amplitude of the N400 component. Another model
of linguistic prediction is the one developed by Rabovsky (2019, 2020); Rabovsky & McClelland
(2020) which I brie�y present in Chapter 6.



CHAPTER III

LINGUISTICS AND PREDICTION

After empirically circumscribing the cognitive structure of linguistic prediction,

we have to make sense of this from the perspective of linguistics. In this chapter, I

present a desideratum for linguistic tools to be compatible with, and then I present

di�erent linguistic approaches that could correspond to these requirements.

To better di�erentiate all the necessary components of linguistic prediction, I

separate the treatment of linguistic information into two kinds of contribution:

meaning compositions and coordination processes.33

Compositional processes follow from The Principle of Compositionality which tells

us that the meaning of a sentence is a function of its parts and the way they are

combined (Partee, 1984; Pelletier, 1994; Dowty, 2007). Compositionality is a pro-

cess that combines words and smaller linguistic units into larger bits of information

such as constituents and sentences. In terms of linguistic prediction, meaning com-

position is responsible for constraining the prediction using information present

at various levels of granularity.

33This distinction is somewhat parallel to what Clark (1996) described as the di�erence
between the Chomskian tradition that is focussing on the products of language, in my case, the
product of composition, and the perspective from the pragmatics tradition that is focussing on
the action of language, which I translated as coordination.
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The other important aspect we need to consider is that communication is driven

by consideration of coordination between speakers and hearers. This coordination

aspect of linguistics includes being able to derive what our interlocutor is trying

to use pragmatic clues and retrieving the correct meaning of a word. This view

about coordination stems from the fact that �meanings are equilibrium points in a

system of exchanges� (Gärdenfors, 2014, p.73) and also from the regularity nature

of language (Gastaldi, 2020). This coordination is present at di�erent levels of

communication, and it usually involves some attribution of intentions.34 Coordi-

nation processes are constraining the linguistic prediction using information that

is not coming directly from the words expressed in the sentence. For example,

the situation model from Kuperberg et al. (2020) that we described in Chapter

2 could be considered a result of this coordination between the two communica-

tors. Once derived, the situation model constrains or limits the realm of possible

continuations for a given truncated sentence.35

3.1 Desiderata for a theory of linguistic prediction

In order to use linguistic theory to model linguistic prediction, we need to write

down a desideratum of features that the linguistic tools must be able to take into

34For example, Reboul (2011) makes a distinction between proximate and ultimate in-
tentions because these are linked to di�erent levels of communication. A proximate intention
has to do with the speaker's informative and communicative intentions. In contrast, an ultimate
intention is related to the speaker's behavior to induce the hearer.

35It is important to mention that the distinction between meaning composition and co-
ordination processes is not naturally matched with the di�erent disciplines of linguistics as
semantics itself could be thought to appeal to both.
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account. The �rst requirement is that of empirical adequacy.36 In addition, we

must also care about explanation, and we believe the most interesting linguistic

theories are closely connected to cognitive realities. The following is a list of fea-

tures that a theory of linguistic prediction should ideally meet. The �rst feature

is incrementality because linguistic interpretation is also incremental, as was pre-

sented in Chapter 1. In addition, two critical features related to incrementality

are non-monotonicity and interpretability at a sub-compositional level.

Before discussing each of these features in more detail, it is essential to note these

features must hold for the two kinds of linguistic contributions since they are

features linked with the structure of the linguistic theory, and this structure is

independent of the nature of the linguistic meaning itself, be it derived from com-

position or coordination. Finally, these desiderata are meant to be requirements

externally imposed on any processing theory of linguistic prediction.

3.1.1 Incrementality

Incrementality is the property of a system that processes its input one by one as

soon as new input is encountered. For language processing, an incremental system

processes every new utterance word-by-word incrementally so that the system can

compute some output at every step along the way. At each of these steps, the

output is a partial interpretation of the meaning of this incomplete utterance.

The incrementality of a system has been described as a `greedy' process because

outputs are updated as soon as new inputs are processed (Michalon & Baggio,

36In this thesis, the empirical data comes from the results of Bloom & Fischler (1980)
which will be discussed in Chapter 4 and Chapter 5.
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2019), and the interpretation process does not wait for a complete utterance before

debuting. In this thesis, I am interested in linguistic prediction at the word level,

and I thus omit to discuss incrementality at lower levels of granularity. However,

by requiring a linguistic model to process input incrementally at the word level,

this should also reverberate at the level of the morphemes and the phonemes.37

Incremental processing view has been discussed for language production (Ferreira

& Swets, 2002; Levelt, 2012), and it has also been discussed with respect to inter-

pretation in psycholinguistics and computational linguistics (Ambati et al., 2016;

Smith & Levy, 2013).38

As we saw in Chapter 1, if someone is asked to predict the next word of the

utterance in (44), this person would be able to do it by interpreting the �rst part

of the truncated sentence.

(44) John went to the park to �y a...

This person would also be able to predict the next word if the utterance was

only �John went to the park to� or even �John went to the.� When the utterance

gets shorter, it becomes more di�cult to guess the upcoming word because the

prediction is less constrained, and we have more options for the words to choose

from. However, it would still be possible to predict an upcoming word for any

degree of truncation of a sentence. Incrementality is thus a compulsory feature

of linguistic interpretation, and it is also by ricochet a requirement for modeling

37This lower-level incrementality has been observed at the syntactic and phonological
level (Marslen-Wilson, 1973; Marslen-Wilson & Tyler, 1980; Tanenhaus et al., 1995)

38Incrementality �ts well with the idea that a speaker does not plan all of his upcoming
sentences at once, but instead �interleave planning and execution processes to maximize �uency
as well as allocation of resources� (Ferreira & Lowder, 2016, p.235).
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linguistic prediction.39

3.1.2 Interpretability of sub-propositional content

Naturally deriving from the incrementality of linguistic processing is the idea that

sub-propositional content is readily interpretable by the hearer. Sub-propositionality

comes as a consequence of incrementality because a partial interpretation must

be updated every time a new input is processed. Propositions have been the

basic unit of propositional logic and formal approaches of semantics for a long

time (Moore, 1953; Russell, 1903, 1910; Stalnaker, 1976; Frege, 1884, 1984) and

they have been linked with the evaluation of truth value. However, the incre-

mentality forces us to process or evaluate content that is not yet truth-evaluable

because not fully propositional. Therefore, the interpretative process must not

use propositions or sentences as its basic unit and must be able to build integra-

tive constructive inferences with heterogeneous information as soon as they can

(Baggio et al., 2019, p.761).

(45) John went to the park to �y a...

Going back to our previous example, if (45) is processed incrementally, then every

time a new word is heard, the system can use this new word to update the partial

interpretation of the incomplete utterance. Starting from �John� then �John went,�

then �John went to,� to �John went to the park to �y� the hearer is able, at

39Incrementality will be discussed in more detail in Chapter 6, but even though is a
desideratum when developing a model of linguistic prediction, it will unfortunately not be part
of the vanilla model presented in the next two chapters.
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every step, to interpret every sub-proposition. Even if �John went to the� is not

propositional, the hearer can still grasp its probable meaning and then interpret it.

Interpretability of non-propositional content is also a requirement for a predictive

theory because if we want to predict the upcoming word, we must also interpret

non-propositional content.

3.1.3 Non-monotonicity

Non-monotonicity is linked with the interpretability of sub-propositional content.

Non-monotonicity is a property of the consequence relation of logic when an in-

ference is derived defeasibly. A defeasible inference is an inference that can be

retracted when more information is taken into account (Strasser & Antonelli,

2019). Simply put, a non-monotonic inference is an inference that is not mono-

tonic, where monotonicity is de�ned as in (46).

(46) If Ω ` σ, then Ω ∪ Γ ` σ

The idea of non-monotonicity has already been discussed when it comes to dis-

course interpretation (Baggio et al., 2008, 2019). In discourse, the logic behind

the derivation of inferences must also be non-monotonic since the inferences are

defeasible. In other words, an interpretation derived from an utterance might

change when new information is added, as in the following example taken from

(Baggio et al., 2019).

(47) I began the novel in November. The pupils listened attentively. However,
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some found dictation extremely boring.

From the �rst sentence, we may interpret that the novel is being written. The

second sentence then suggests that reading it is the most likely action, and the

third sentence turns the current interpretation around again. In this example, the

interpretation of the �rst sentence changes every time a new sentence is processed.

What is true here at the discourse level is also true at the utterance level itself.

For example, in a garden-path sentence like (48), the sentence structure's �rst

interpretation is updated when the sentence is completed. When the �rst part

of the sentence is processed, i.e., �The horses raced�, raced is interpreted as a

verb, but when the whole sentence is processed, then raced become a passive

participle. Thus, the sentence has an interpretation, but it has to be re-analyzed

or recomputed after the word past is processed because the structure assignment

breaks down (Fodor & Ferreira, 1998).

(48) The horses raced past the barn fell.

Another argument for non-monotonicity is illustrated by the fact that a person

can usually build a partial representation of an event even before attributing all

the thematic roles for this event. For example, we could derive the event-structure

spreading something on bread in (49) without having encountered the `something'

place holder yet. Deriving this event structure requires being able to interpret

or process sub-propositional content, and here the output of the interpretative

process is not a proposition but the structure of a proposition (Kuperberg, 2016).

(49) He spread the warm bread with ...
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If we need non-monotonicity to render a dynamic interpretative process, it is also

a condition we must meet when considering predictive processing.

3.2 Language is about meaning composition

The Principle of Compositionality tells us that the meaning of a complex expres-

sion is derived from the meaning of its parts and the way they are combined.

In linguistics, this usually implies that a sentence is composed of the meaning of

words and from their syntactic combination. For example, in predicate semantics,

we can translate the meaning of the sentence Malika is strong and brilliant into

(50), where the meaning of the sentence is composed of two predicates that are

combined using a conjunction sign. Additionally, these predicates are attributed

to `Malika' as an argument.

(50) strong(m) ∧ brilliant(m)

If we know the meaning of strong(m) and brilliant(m), and the nature of a con-

junction, we can derive the meaning of any sentences composed by these three el-

ements. Composition also plays a role in the formation of syntactical constituents

like the one in (51) because when we change the syntactical relationship between

the words, it leads to a change in meaning (Sausages brought Frank.).
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(51) S

VP

NP

N

sausages

V

brought

NP

N

Frank

This section discusses syntactical and semantics approaches and presents how

these two linguistics disciplines can deal with the desideratum introduced previ-

ously.

3.2.1 Syntax

Incremental theories have many uses when it comes to language modeling (Ambati

et al., 2016; Morrill, 2000), and there is almost a universal agreement that incre-

mental parsing is cognitively plausible (Marslen-Wilson, 1973; Sedivy et al., 1999;

Milward, 1995). However, surprisingly, not that many approaches in grammatical

formalisms are trying to integrate incremental features (Purver, 2015). There are

many di�erent theories of grammar (Steedman & Baldridge, 2011), and I do not

plan to cover all of them. Instead, I focus solely on a kind of lexicalized grammar

called Combinatory Categorial Grammar or CCG (Steedman, 1999; Steedman &

Baldridge, 2011; Steedman, 2019) because CCG is better positioned than most

syntactic theories when it comes to incrementality and non-monotonicity (Phillips,

2003).

Combinatory Categorial Grammar (Steedman, 1996, 1999) is a context-sensitive
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grammar formalism (Stanojevi¢ & Steedman, 2019) in which the linear order of

the constituents and their interpretation are entirely de�ned by the lexical entries

for the words (Steedman, 2014). In CCG, every word is assigned a syntactic

type and the words are then combined using di�erent combinatory rules that

are entirely conditioned on those syntactic types (Ambati et al., 2015). Those

combinatory rules are independent of the structure or the derivation (Steedman,

2014). In CCG, the notion of constituent structure is very �exible which allows

for a natural integration of incrementality when constructing derivation trees for

a sentence. This incrementality present in CCG allows for a �exible constituency

since a constituent formed at the beginning of a sentence might not exist anymore

when the full sentence is parsed, i.e. it is possible to have constituency con�icts

throughout the incremental parsing (Phillips, 2003). In (52) we see an example

of an incremental parsing using CCG:

(52) Leon saw Elliot

NP (S\NP)/NP NP
<

S\NP
>

S

(53) Leon saw Elliot

NP (S\NP)/NP NP
TR

S/(S\NP)
FC

S/NP
>

S

CCG o�ers the possibility to parse the same sentence two di�erent ways, either

incrementally or not. For example in (53), by using what is called a Type Raising

(TR) operation (Phillips, 2003) it is possible to combine Leon and saw together
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�rst and then combine the output with Elliot by Forward Composition (FC). In

non-incremental parsing, the semantic connection between Leon and the verb saw

would only be established when the full sentence had been processed. In CCG,

the meaning of �Leon saw� would be readily available as soon as it is processed

(Stanojevi¢ & Steedman, 2019).

One consequence of this incremental construction is the constituent's �exibil-

ity, i.e., constituents may be built and destroyed during the incremental parsing

(Phillips, 2003). This notion of constituent �exibility is crucial because it re-

lates to the previous section's non-monotonic condition. Here the constituency

is non-monotonic when building the structure of the sentence, and this a feature

that is not present in dependency grammar where c-command relations are added

monotonically (Phillips, 2003). Finally, CCG can represent a partial structure or

partial constituent without any di�culty (Stanojevi¢ & Steedman, 2019). Thus, it

would not be a problem to interpret partially derived sub-propositional bits of sen-

tences using CCG and then combining them incrementally to form the complete

sentence.

In summary, CCG checked all the requirements for a theory to be able to model

linguistic predictions: it is incremental, it allows interpretation of partial con-

stituents (which was labeled sub-propositional interpretability in the previous

section), and its constituent �exibility opens the door for non-monotonicity.40

I present this model because I think it could be a helpful framework moving for-

ward for integrating the syntactic contribution for linguistic prediction. However,

in the model presented in this thesis, the contribution from syntax was instead

computed by hand for the reason of space and time.

40For this thesis, I do not discuss other syntactic theories that could also meet the re-
quirements. For example, Dynamic Syntax (DS) (Kempson et al., 2001; Purver & Kempson,
2004) is also inherently incremental, but because of its monotonicity, it might be less natural
than CCG to use it in a model about linguistic prediction.
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3.2.2 Semantics

I do not discuss here the multitude semantic theories that could be used to build a

theory of linguistic prediction. Historically, some semantic theory were not incre-

mental by nature, but after the dynamic turn in semantics (Kamp, 1981; Heim,

1982), some semantic theory invented new ways to take into account incremental-

ity in natural language semantics.

In Dynamic Semantics, time is taken into account, interpretation becomes a pro-

cess, and the meaning of an expression or a discourse is incrementally updated

every time a new bit of information is encountered. This view is in line with

empirical results from psycholinguistics that support the idea of an incremental

process for semantic interpretation (Sedivy et al., 1999; Tanenhaus et al., 1995).

This perspective somewhat clashed with the static view of semantics put forward

by standard predicate logic for which composition is not a process and for which

interpretation must wait for the composition to produce a complete proposition

before it may start (Baggio, 2018). On the other hand, in Dynamic Semantics,

the meaning is seen as a potential of change coming from the context (Kamp,

1981; Heim, 1982). Within the Dynamic Semantic perspective, I choose to focus

on the approach called Discourse Representation Theory or DRT (Kamp, 1981,

1995, 2008; Kamp et al., 2011).

In DRT, meanings are called Discourse Representation Structures (DRSs), a men-

tal representation built by the interpreter. Every time a piece of new information

is processed, the DRS is updated accordingly. The DRS content may consist of

either an object referred to within the discourse or consists of conditions over

which the objects are referred to. On their own, the DRSs are static, but their

constant update makes it possible to represent the dynamic incremental process of



82

Table 3.1 Comparison between standard predicate logic formalisms and DRT

Standard predicate logic

∃x[dog(x) ∧ bark(x)] → ∃x[dog(x) ∧ bark(x)] ∧ black(x)

DRT

x : dog(x), bark(x) →
x, y : dog(x), bark(x), black(y)

x, y : x = y, dog(x), bark(x), black(y)

x : dog(x), bark(x), black(x)

semantic interpretation. The way the DRT is de�ned implies that it can represent

semantic interpretation at both the sentence level and the discourse level as long

as a new object or a new condition is introduced by the speaker. The di�erence

between standard predicate logic and DRT is illustrated in Table 3.1 using the

example (54) (Baggio, 2018, p.106):

(54) A dog barks. It is black.

In standard predicate logic, the occurrence of x in bark'(x) is not bound by the

existential quanti�er ∃, and this is problematic because we have to �nd a way to

insert this anaphoric meaning within the scope of the quanti�er (Baggio, 2018).

As for the DRT framework, a new sentence causes the DRS to be updated with

the new information. Similarly, when the new information bark'(y) is processed,

it is added to a new DRS, and then the two DRSs are merged. This merge

operation combines the two DRSs into one DRS containing all the referents and

conditions of both. From there, it is possible to resolve anaphoric dependencies,

and we can combine the two variables x and y because they both have the same

referent (Venhuizen et al., 2018). This operation is possible because, in DRT, the
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discourse referents are not bound variables under syntactic constraints coming

from the quanti�ers (Baggio, 2018).

Incrementality is naturally taken into account in DRT because it is a discourse

processing account of semantic interpretation, i.e., a DRS is to be incrementally

updated each time a piece of new information is processed. That being said, it

is implied that the DRS is used to represent propositional content (Kamp et al.,

2011), and it is never really discussed in the literature about DRT if it would

also support lower levels of incrementality, i.e., word-by-word semantic interpre-

tation.41 This lack of consideration for a lower level of incrementality is also

re�ected in the lack of information about the capacity of DRT to integrate sub-

propositional content because both features are linked with one another.

As for the non-monotonicity, according to the way the original version of the DRT

was presented (Kamp, 1995), the merging between two DRSs always occurred be-

tween a DRS derived from new information against a DRS already containing the

information presented in the existing context. As argued by van Eijck (2001),

this causes a problem because it implies that DRSs merging is non-monotonic.

However, what van Eijck (2001) sees as a problem, I see as a liability because

non-monotonicity is required if we want to develop a model of linguistic pre-

diction.42 At the discourse level, monotonicity is sometimes called persistence

or accommodation. Suppose there is no new information from the discourse that

negates or terminates a speci�c referent or condition within the DRS. In that case,

this state of a�airs is deemed to persist to exist until such terminating information

41As discussed by Baggio (2018, p.115), this moderate version of incrementality is not the
result of intrinsic limitations of the formal apparatus, but the lack of need to push incrementality
at the word level to capture what is really of interest for DRT, namely anaphora resolution.

42Many updated models have since tried to resolve this issue by proposing di�erent mono-
tonic mechanisms (van Eijck & Kamp, 1997, 2011). However, those are outside the scope of this
thesis.
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arises (Kamp et al., 2011).43

3.3 Language is about Coordination

Communication is a communion of minds, and coordination is necessary for the

communicative exchange to be successful and for communication to exist in the

�rst place. If two people want to exchange information, then they need to use the

same language, the same points of reference, and, on a certain level, a similar view

about their knowledge about the world. For communication to be successful, it is a

matter of linguistic units and a matter of the hearer understanding the intention

of the speaker (Levinson, 2016; Hasson et al., 2018).44 Some even argue that

meaning emerges from this coordination between the world and the speaker's

mental schemes and the hearer (Gärdenfors, 2014). To illustrate this need for

coordination between the speaker and the hearer, we can turn to the example in

(55).

(55) [Speaker A:] Take the blue square.

If we only have the utterance (55), it is not easy to understand what Speaker A

meant, but if we add a little bit of context, it becomes relatively easy to retrieve

the intended meaning. For example, if Speaker A had to choose between three

43DRT is not the only incremental approaches of dynamic semantics, and other frame-
works could be also be envisioned. For example, File-change Semantics that was developed in
parallel to DRT by Irene Heim (Heim, 1982, 2008) is also very interesting, although its mono-
tonicity could potentially lead to complications when modeling linguistic prediction.

44Coordination between two parties is not the same as cooperation. The latter implies
the former, but not the other way around.
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squares (two red and one very pale blue), you would quickly conclude that speaker

A wants you to take a very pale blue square. In another setting, if the three shapes

were all blue (royal blue, very pale blue, and a greenish-blue), then you might

interpret his `blue' to mean something like `stereotypical blue.' In these situations,

the broader context in�uences the way the hearer interprets the words. In this

particular case, it is as if the context directly in�uences the meaning of the word

`blue.' This example clearly illustrates the importance of the coordination aspect

of communication for retrieving the information that the speaker intended.45

Gärdenfors (2014) distinguishes between two types of coordination: coordination

about the meaning of a term, like in (55), and coordination of the knowledge

about the state of the world (Gärdenfors, 2014, p.97). Coordination of knowledge

is illustrated in (56), where we asked a participant to complete the sentence.

(56) John plays ...

Without any other clues, it would be di�cult to guess the correct word. However,

suppose I tell you that John is an avid chess player. In that case, it increases the

probability that the next word be `chess.' If I also mention that we are at a chess

tournament and that the truncated sentence is uttered during the tournament,

this would tip the scale for you to predict that the next word will most probably be

`chess.' In this case, the linguistic prediction is in�uenced by what information you

have about the contextual setting of the utterance, i.e., what is your knowledge

about the state of the world when this sentence is uttered.

45Determining the meaning of words from the interaction between the sentence and the
word itself is described as wholism by Pelletier (2012) and is in agreement with this idea that
words are ad hoc representations (Clark, 1996; Casasanto & Lupyan, 2015). Under this view,
the meaning of a word is constructed from its use within a higher representational level, like the
sentence level.
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These two kinds of coordination are examples of mappings that need to happen

between the world, the minds of both the speaker and the hearer. These mappings

allow for reconstructing the mental representations of a speaker using the linguis-

tic expressions that she used her.46 This is very similar to what was described by

Baggio (2018) when discussing the I-system of relations and the retrieval of ref-

erents. With a di�erent mapping or di�erent coordination, we could end up with

di�erent referents for the same expression. To avoid any potential misattribution

of expression and referents, the hearer must make sure that his mapping function

follows the speaker's mapping closely.

One thing that signi�cantly helps the hearer to achieve just that is the regular

nature of language. Language is about regularities at every scale, and this property

opens the door to using mapping functions based on frequency or similarities

(Gastaldi, 2020). I discuss similarity measures in Chapter 4, but for the moment,

let me mention that the view described here is compatible with the words-as-cues

views from Lupyan & Lewis (2017).47 Under this perspective, a word is like a cue

to access the inter-individual correspondence of meaning: mapping the world or

the broader context and the expression. According to this view, the interlocutor

himself is being taken into account, but this broader context can also include

information about his emotions, preferences, moods, and motives (Van Berkum

& Nieuwland, 2019). To understand how to model linguistic prediction, we must

�rst underline the di�erence between the mapping between the words and the

concepts and the one that is interesting for us, the mapping between the context

and the concepts.

46Poeppel (2012) distinguishes between the maps problem which related with the spatial
information about the activity in the brain and the mapping problem which has to do with the
formal transposition of the representations that are dealt with in linguistics and neurosciences.

47Lupyan & Lewis (2017) rejected the word-as-mappings view where a word is a mapping
between words and pre-existing concepts.
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3.3.1 Coordination and Prediction

This section discusses linguistic prediction by comparing it with linguistic produc-

tion and linguistic interpretation. To understand the nature of what a prediction

is and what it takes cognitively to anticipate a linguistic unit, we also have to

look at the production and interpretation of a linguistic unit. My goal here is to

illustrate how production, interpretation, and anticipation are linked and present

how anticipation would �t within the coordination aspect of communication.

3.3.1.1 Production

We usually say want we have in mind, and we use the production of an utterance

to represent what we want to express. By producing an utterance, we change the

world around us by updating it with some new information. Generally speaking,

the directionality of the action is from the mind of oneself to the world. My

purpose here is not to discuss all the intermediate steps involved in the actual

production of an utterance but to di�erentiate it from prediction and interpreta-

tion.48

An utterance is a channel or a vehicle by which communication between the mind

and the world is made possible. Of all the possible utterances you might use, you

have to choose the one that best conveys what you think and, most importantly,

the one that would be interpreted the way you intended to, given the particular

48For more information about the production mechanism, see Levelt (2012). In addi-
tion, recent studies have been investigating the intricacies between meaning production and
phonological and grammatical articulation (Pickering & Garrod, 2013a,b).
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context you are in. For example, if you want to convey that you are unhappy

about something, you can always say something like (57), but you might also

choose a more assertive approach like (58) or (59).

(57) I am not happy about this.

(58) I am angry about this.

(59) I could not disagree more about this.

The sentiment expressed might seem a bit stronger in the latter cases, but the

thought that triggered these utterances could be the same in all three cases. So

the same thought can be expressed di�erently, using di�erent utterances.

To illustrate the importance of considering the broader context when choosing the

utterance that best expresses our intended meaning, we can consider a situation

where two co-workers, Ronald and Margaret, know each other but are not close

in the o�ce. Suppose that Ronald's parents are getting divorced, but that infor-

mation was not shared directly with Margaret. After a couple of weeks, the news

about the divorce was disseminated to almost everybody in the o�ce, and thus

Ronald knows that Margaret is aware of his parents' divorce even though he did

not directly relay that information to her. While discussing at the co�ee machine

about Christmas and fruit cakes, Ronald tells Margaret:

(60) [Ronald:] My mother used to make one every year, but she did not make

one this year.

(61) [Margaret replies with an acquiescing nod while pursing her lips.]
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From Margaret's reaction, Ronald instantly assumes that she pursed her lips be-

cause she thought his mother's reason for not making a cake this year was related

to the divorce. However, Ronald knew the real reason had to do with his mother

not �nding the ingredients to make the cake this year. Thus, Margaret misinter-

preted that the reason was related to his mother's divorce, while Ronald intended

no such interpretation. This example shows that even a simple utterance like (60)

might convey additional non-intended meaning in some particular context.

The interpretation of an utterance has to do with its relationship between thoughts

and the world, which is linked to the concept of `Sense' as discussed by Frege

(1892, 1984). According to Frege, we refer to the same thing using di�erent paths

of meaning. In this scenario, the thoughts are the referent, and the utterance is the

sense that refers to this referent. This association between utterance and senses

(or meaning) is already known to the speaker because, in his life, the speaker

has already been gathering statistics of correspondence between utterances and

states of the world. This knowledge allows the speaker to choose the corresponding

utterance using a mapping function between utterance and world states. To choose

an utterance to express oneself, one needs to �nd the best vessel to convey his

intentions/thoughts from his minds to the real world, and this vessel is chosen

using experience about corresponding states of the world and ways to express

them. We can summarize this with the formula in (62), where f1 and f2 represent

mapping functions between two di�erent kinds of representation.

(62) UtteranceProd ∝
(
f1(thoughts,utterance)× f2(utterance,world)

)

Utterance production is thus a function of two correspondences: the correspon-

dence between thoughts and utterances and the correspondence between utter-

ances and the world.
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3.3.1.2 Interpretation

Even if it has some parallel with language production, language interpretation

builds on a di�erent relationship between language and the world. Now, the

spoken utterance is an object of knowledge that the speaker has already created,

and in order to interpret it, the hearer has to build a correspondence between an

utterance and a state of the world. The idea is to retrieve the exact correspondence

that the speaker used. Doing so, the hearer uses the same knowledge about

coordinating world states and utterances as before, and she also considers the

speaker's perspective.

Another aspect of interpretation is linked with the state of the world in itself.

An utterance is like a hint to retrieve a new state of the world. Given this

clue, the hearer can infer the new state of the world from the correspondence

between utterances and states of the world, but the hearer also uses her knowledge

of the world's current state to infer the updated state. Before producing the

utterance, the speaker has some knowledge about what is true or not in the current

world, and this knowledge allows him to infer new information and update the

current state of the world. When a hearer encounters an utterance, she must

combine this new information with the information she already possesses. The

correspondence between world states and utterances has to be weighted according

to the knowledge she already has about the state of the world at that time.

For example, suppose in a particular context, it is be deemed almost impossible

for an athlete to break the world record in a given discipline at the Olympics. In

that case, even if the hearer encounters an utterance that explicitly said that the

world record was broken, the hearer has to take into account the unlikeliness of

such an event for her to be able to interpret the utterance from the correspondence
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between this utterance and the new world state it is describing.

The same correspondence between an utterance and a world state could lead to

di�erent interpretations in di�erent contexts. Let me recall the previous exam-

ple of Margaret and Ronald. This misunderstanding happened because the same

utterance was meant in one way by the speaker. The hearer interpreted it dif-

ferently because the latter did not use the same correspondence function as the

former. The correspondence function is primordial if one wants to retrieve the

intended meaning, but this correspondence might evolve according to the context

and according to the di�erent perspectives of the speaker and the hearer.

To sum up, the interpretation process is about combining this correspondence

function with actual knowledge about the world and contextual probabilities about

potential new world states. In other words, to interpret is to use what you already

know about the world so you can �nd the correspondence between an utterance

and what information it conveys, as in (63), where f1 and f2 represent mapping

functions between two di�erent kinds of representation. These indices are there to

help di�erentiate the two mappings functions, and these should not be confused

with the mapping functions previously expressed in (62). P is the probability

distribution representing the state of the world.

(63)

UtteranceInter ∝
(
f1(utterance,world)× P(world)

× f2(thoughts,world)
)

Utterance interpretation is a function of the correspondence between utterances

and the world, but it is also a function of the world itself. This second term en-
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compasses the automatic update of world states from already acquired knowledge

and the information about the probability of transiting from one state to another.

This latter probability is related to the continuity of world states, i.e., if we are in

state A, then we can reach state B by following a continuous path over di�erent

intermediate states that are all linked with each other.

In principle, interpretation would also involve epistemic judgements about said

derived interpretation,and the last term in (63) is there to represent this relation-

ship between the content expressed by the utterance and the judgement made by

the hearer about this content. This relationship is sometimes called the Relia-

bility of the speaker (McCready, 2014). If we also consider the believability of

this content, we can more generally use the term Epistemic Vigilance mechanisms

(Sperber et al., 2010) to refer to such processes.49

3.3.1.3 Prediction

If language production was about externalizing thoughts to the world, and in-

terpretation was about retrieving information about the world, then a linguistic

prediction is a combination of those two. A prediction is �rst generated via a

production process which is also about the correspondence between the state of

the world and utterances. Prediction is somewhat the reverse process because the

goal is to anticipate a piece of information necessary for the hearer to retrieve the

correct meaning expressed by an utterance.

For example, when a hearer encounters an incomplete utterance and then uses

49See Corbeil (2014) for a discussion about the role Epistemic Vigilance Mechanisms play
during the interpretation process. However, this issue is beyond the scope of this thesis.
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the correspondence between this incomplete piece of information and an updated

state for the world, under some circumstances, this hearer might be able to use

what she already knows about the world and this partial utterance to infer the

missing piece of information. In other words, it is possible that, under the right

circumstances, a hearer can guess the rest of the utterance �long before the speaker

has completed its delivery� (Geurts, 2010, p.73).

When the hearer partially interprets an incomplete utterance, she can still update

the state of the world, and then, from this updated state of the world, gener-

ate the missing pieces of information by using the same correspondence between

utterances and states of the world that is used in language production. Under

this view, a prediction is both an interpretation process and a production process:

interpretation of the partially constituted utterance and production of the miss-

ing piece of information from the derived partial interpretation. The prediction

generated by the hearer is the piece of information that, once combined with the

incomplete utterance, would give rise to the same state of the world that the one

which resulted from the partial interpretation process as in (64), where we again

have two mapping functions f1 and f2, and a is the probability distribution P

representing the state of the world.

(64)

WordPred ∝
(
f1(partial utterance,world)× P (world)]Inter

× [f2(utterance,world)]Prod
)

A prediction is the internal generation of an output O that would not change the

state of the world if it was interpreted from the input. In our case, this output

O is a word that would make the partial utterance complete. This prediction is
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entirely internal, meaning that it is generated internally by the hearer, and it is

not an external input (Michalon & Baggio, 2019).

A prediction is a generalization of an outcome; it is a process that goes beyond the

actual data and creates new data (Phillips, 2018). Here, the interpretation of the

partial information and the generation of a prediction are happening concurrently.

In other words, the hearer starts attributing a corresponding updated state of the

world (or conveyed meaning) to this utterance, and she then uses this partial

interpretation to �nd a correspondence between this inferred new state of the

world and the complete utterance that would have led her to this same conclusion

about the updated states of the world. Finally, she can generate the missing

information to bridge the gap between this updated state of the world and the

incomplete utterance.

Under this perspective, a prediction is similar to an interpretation or a production,

although the uncertainty associated with these processes is di�erent. When it

comes to production, the uncertainty is related to the representational process

of matching an intention with a new state of the world and then matching it to

a corresponding utterance. As for the interpretation process, the uncertainty is

caused by the correspondence between the utterance and the world states and the

uncertainty of the hearer's prior knowledge about this world state. In addition,

there is an uncertainty in the correspondence between utterances and the world

for both production and interpretation. When we consider linguistic prediction,

a certain level of uncertainty is inevitable because the output of the prediction

process is derived using both interpretation and production, and these processes

have themselves uncertain outputs.

In this section, I have described predictions using utterances. However, I could also

have discussed other linguistic levels. In this thesis, I am interested in predicting
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upcoming words, but studies have already shown that other linguistic units may

also be predicted in some situations.50

3.3.2 Pragmatics

Pragmatics is the discipline in linguistics that is interested in coordination. In this

thesis, I espouse the view that pragmatics is about communicative actions and how

they interact with conventionalized meanings (Gärdenfors, 2014). This notion of

`action' or `use' has led pragmatics to conceptualize language as a `game' played

by two opponents or players (Lewis, 1969). These `communicative games' are

described and understood with some notions of strategy, intentions, and moves.

Over the years, many di�erent pragmatics approaches have tried to understand

how this coordination took place and what the consequences were for linguistic

interpretation. The �rst kind of coordination about the meaning of a term led to

the development of lexical pragmatics (Blutner, 1998; Wilson & Carston, 2007;

Allott & Textor, 2012) while the other kind of coordination about the knowledge of

the world fostered Gricean Pragmatics, Relevance Theory, and Game-theoretical

Pragmatics, to name a few. For both kinds of coordination, a mapping is necessary

to arrive at the �xpoints or equilibrium points that allow communication to be

successful (Gärdenfors, 2014).

50See Chapter 2 and Huettig (2015); Nieuwland (2019); Levy (2008).
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3.3.2.1 Gricean Pragmatics

Grice's work led to the development of a new perspective for the role of pragmatics

in communicative studies and linguistics (Zu�erey, 2016). The two principal con-

tributions of Grice are related to his distinction between natural and non-natural

meaning (Grice, 1957) and the advent of what is called conversational implicatures

(Grice, 1989). In his view, the natural meaning is related to the external world,

while non-natural meaning is instead linked with the linguistic meaning expressed

in an utterance (Huang, 2016). Using this distinction, he developed a theory of

communication and meaning in terms of a speaker's expressed intentions and a

hearer recognizing those intentions. According to Grice, communication is based

on communicative intentions, and it is viewed as resolutely inferential rather than

purely conventional. In inferential communication, the speaker and the hearer use

mind-reading abilities to retrieve the other's intentions. This kind of capability is

required to understand communications like this:

(65) a. [Speaker A]: Are you coming to the �eld with us?

b. [Speaker B]: I have to go to the doctor at 4 pm.

In this example, Speaker B does not answer Speaker A's query directly, but we

can infer that Speaker B will not go to the �eld with Speaker A. This inference

about Speaker B not going to the �eld is made possible because of our belief that

Speaker B must have had a reason to utter (65-b) instead of something else, i.e., if

he had been going to the �eld, he would have said so more clearly. This inference

is based on speci�c assumptions about the communicative behavior of a speaker.

Another example of this inferential view of communication is the `pointing the
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empty glass' gestures often observed at a restaurant or during a cocktail party.

When you see someone across the room that points to the empty glass in her

hand, you can infer that this person is trying to communicate something to you.

The intention of this agent is for you to recognize that she means something and

for you to infer that she probably wants you to bring her a glass full of what she

was having before.

This agent intended this new meaning, and you were able to retrieve it using

your knowledge about the world and your knowledge about what communication

usually is. However, you could not associate this particular gesture to some sort

of conventionalized meaning, i.e., you had to use a non-deductive inference to

understand what she meant. This non-deductive inference is called abduction

and is de�ned as an inference where the premises do not entirely warrant the

conclusion. In other words, it is to �nd the best possible explanation for a given

observation (Bunt, 2016). To illustrate this idea, we can use an example where

the conventional meaning is pragmatically enriched:

(66) a. Fabio got the car to start.

b. Fabio got the car to start. In fact, he started it in the normal way.

In (66-a), the meaning explicitly expressed would be compatible with other situa-

tions where the car started, but (66-a) would often be understood as also conveying

the information that it was di�cult than expected for Fabio to start the car. This

information is not entailed by the content of the utterance because it is defeasible,

i.e., it is possible to cancel this information without any major problem like in

(66-b). This notion of meaning has been introduced by Grice (Zu�erey, 2016),
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and it has been named a conversational implicature (Huang, 2016).51

3.3.2.1.1 Conversational Implicatures

Conversation Implicatures (CI) have two mean features or properties: defeasibil-

ity and non-detachability. We just illustrated the �rst one when we argued that a

conversational implicature could be canceled by enriching the linguistic context,

i.e., by adding another utterance as we did in (66-a). The other important prop-

erty of CIs is related to them being retrievable from the meaning associated with

an utterance rather than from the explicit content of this utterance. For exam-

ple, if an utterance like (67-a) triggers an implicature like (67-c), then another

utterance composed of di�erent words, but conveying the same meaning as (67-b)

could also trigger the same CI (Potts, 2004).

(67) a. Could you give me the salt, please?

b. Can you reach the salt?

c. [Conversational Implicature]: please pass me the salt.

The fact that an implicature is detachable from any speci�c item composing

the utterance, but not-detachable from alternative ways of expressing the same

meaning, distinguishes CI from conventional implicatures (Geurts, 2010; Zeevat,

2015a).52 According to Grice, CIs are derived from some general principles related

51Grice also introduced the notion of conventional implicature although most of his writ-
ing is focussed on conversational implicatures. I will not discuss conventional implicatures here,
but you can see Potts (2004) or Bach (1999) for a more thorough introduction.

52Grice (1989) also distinguished between two kinds of CI: Generalized and Particularized.
However, this distinction is not deemed relevant by all scholars (Recanati, 2003; Russell, 2012;
Carston & Powell, 2006; Geurts, 2010; Green, 1995) and I thus do not discuss it in this thesis.
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to communication. These principles include a cooperative principle and a series

of maxims (Grice, 1957). It is important to mention the maxims do not directly

determine the CIs. Instead, the interpreter uses them as an implicit guide to

retrieve these CIs (Bach, 2012).

The principles presented comes from the original approach from Grice (1989), but

many adjustments or improvements have been proposed throughout the years.

For example, Neo-Griceans approaches have proposed to reduce Grice's maxims

to fewer principles (Huang, 2016): Horn (1984, 1995, 2010) put forward a Q-

principle and R-principle, and Levinson (1983, 2000) a Q-principle, an I-principle

and an M-principle. Others, like Relevance Theorists (Sperber & Wilson, 1995;

Wilson, 2016; Carston, 2012), which are sometimes called post-Griceans, have

reduced even more the number of maxims to keep only a modi�ed version of the

maxim of Relevance as we will see in the following subsection.

3.3.2.1.2 Prediction and Gricean Pragmatics

Grice defended the idea that communication was inferential and that Conversa-

tional Implicatures were retrieved with the help of maxims of communication.

However, his approach was never meant to be cognitively realistic. Grice was an

analytical philosopher and what he o�ered was a rational reconstruction of how

CIs are derived. His proposals were not supposed to be viewed as psychologically

sounded, but only as normative claims about the communicative behavior of ra-

tional individuals (Saul, 2002). Thus, it is di�cult to discuss whether Gricean

pragmatics would be compatible with the desiderata that need to be satis�ed by

a model of linguistic prediction because many di�erent cognitive accounts could

be descriptively compatible with the Gricean account. Despite this, it remains

possible to discuss the three main features of predictions at a general level and
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their potential correspondence within the Gricean account.

The �rst thing to note is that non-monotonicity seems readily achieved since a

CI is defeasible when we add another utterance after the one that leads the in-

terpreter to derive it in the �rst place. However, the Gricean derivation of an

implicature is usually considered a post-compositional process. This means the

implicature is derived only once the full proposition has been formed (Recanati,

2003). Bach (2012) calls the derivation of an implicature a post-propositional pro-

cess. Under this perspective, conversational implicatures, as described by Grice,

always `remain external' to the explicit meaning of the utterance (Recanati, 2017,

p.2). This implies that Gricean pragmatics would neither be incremental nor sub-

propositionality interpretable because only when a complete proposition is formed

would we be able to derive an associated implicature.

In terms of incrementality, a prediction about a conversational implicature could

occur after the last word has been uttered, and this would be problematic for lin-

guistic prediction. Similarly, an incomplete utterance would not be interpretable

according to the classical Gricean view because only propositional content can be

used to derived implicatures, not sub-propositional content. These two desiderata

are not achieved because of the strict obedience to the notion of propositionality.

Even though nothing within the Gricean framework directly forbids us from treat-

ing an incomplete utterance as a complete one, relaxing the propositional con-

straint is not really in line with the spirit behind the Gricean account. Therefore,

we should accept that the Gricean account seems to only accommodate one con-

dition out of three, but this is not a big problem per se because other accounts in

pragmatics can accommodate all three conditions.
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3.3.2.2 Relevance Theory

Relevance Theory (RT) is often categorized as a post-Gricean theory because it

develops Grice's ideas in line with psychology and cognition (Carston, 2012). Even

if Grice might have inspired a psychological account of pragmatics, his central

theme was mainly centered around philosophy and semantics, and his treatment

of the derivation of an implicature was only rational reconstructions of how one

mind might work (Wilson, 2016). Now, before discussing the compatibility of RT

with the desiderata of a theory of linguistic prediction, I present a brief overview

of some essential features of Relevance Theory.

3.3.2.2.1 Inferential approach to communication

If communication was purely about encoding and decoding, we should expect

pragmatics to be neutral, i.e., communication should be symmetrical. This neu-

trality comes from the fact that the process of encoding the information is simply

the reverse of the decoding process performed by the hearer (Moeschler, 2013).

However, Relevance Theory rejects this purely encoding-decoding view and sup-

ports an inferential approach to communication.

On this approach, pragmatic interpretation is ultimately an exer-

cise in meta-psychology, in which the hearer infers the speaker's in-

tended meaning from the evidence she has provided for this purpose.

An utterance is, of course, a linguistically-coded piece of evidence, so

that verbal comprehension involves an element of decoding. However,

the decoded linguistic meaning is merely the starting point for an in-
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ferential process that results in the attribution of a speaker's meaning

(Sperber & Wilson, 2002, p.2).

This framework acknowledges a crucial encoding-decoding component of commu-

nication and argues that some inferential processes are always involved in the

interpretation process.

3.3.2.2.2 Relevance

Relevance is a double-sided property involving balancing the cognitive e�orts it

takes to process information and the cognitive e�ect that the processing will cre-

ate. The more processing e�ort it takes to derive those e�ects, the less relevant

it is; conversely, the more cognitive e�ect it has, the more relevant a piece of

information is (Wilson & Sperber, 2012). The most important claim of Relevance

Theory is that human cognition is geared towards optimizing relevance (Sperber

& Wilson, 1995). In turn, this means that cognitive processes are in�uenced by

the relevance of a piece of information and that the human mind only considers

making an e�ort necessary to process something if it deems it relevant enough

at that given moment. This constitutes the �rst principle of Relevance Theory

(Wilson & Sperber, 2004):

• Cognitive Principle of Relevance

Human cognition tends to be geared to the maximization of relevance.

The second principle of Relevance Theory is that, in communication, an ostensive

stimulus will always be considered to be relevant enough to be worth processing

it (Wilson & Sperber, 2004):
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• Communicative Principle of Relevance

Every ostensive stimulus conveys a presumption of its own optimal relevance.

This presumption of optimal relevance is primordial because it is the trigger that

allows the interpretation process to begin. Even in cases where the satisfactory

level of relevance seems not to be attained, the hearer will likely assume that

the speaker has tried to be optimally relevant and failed to do so (Sperber &

Wilson, 1995). The hearer will indeed begin the interpretative procedure because

he thinks that the utterance is optimally relevant. He will �rst recognize the

utterance as a communicative act and then accepts �the presumption of relevance

it automatically conveys� (Wilson & Sperber, 2012, p.236) in order to begin the

procedure to retrieve the intended meaning.

3.3.2.2.3 Interpretation procedure

The interpretation procedure follows a path of least e�ort until the expectation of

relevance is ful�lled. This procedure can be broken down into two steps (Carston,

2002):

1. Follow a path of least e�ort in computing cognitive e�ects: Test interpre-

tative hypotheses (disambiguation, reference resolutions, implicatures, etc.)

in order of accessibility.

2. Stop when your expectations of relevance are satis�ed.

Interpretative hypotheses are derived in order of the amount of cognitive e�ort

necessary to process them (from least e�ort to most e�ort). The derivation con-

tinues until one hypothesis can reach the expectations of the hearer's relevance
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at that moment. These expectations of relevance are de�ned as the threshold

at which an interpretation is considered relevant enough for the addressee. The

process will only stop when the expected cognitive e�ect is worth the cognitive

e�ort to derive the interpretative hypothesis. Hence, in a case where the expected

cognitive e�ect is wholly indeterminate, the hearer is likely to choose the most

accessible interpretative hypothesis, i.e., the less cognitively demanding one, as he

would consider it relevant enough for a lower cognitive e�ort (Sperber & Wilson,

1996).

3.3.2.2.4 Prediction and Relevance Theory

Now that we have introduced RT, we can describe whether it complies with the

previously mentioned desiderata. The RT interpretative process is incremental,

even if it is never explicitly described in the RT literature. However, the incremen-

tality here is related more to the process itself and less with partial information.

What is incremental in RT is the way an implicature is derived using di�erent

steps along the way. Whenever a new assumption is derived, or a new piece of

information is used to infer something, it is a new step towards the complete

interpretation of the utterance.

This idea is very similar to what we discussed for Grice because here, the process

is incremental in terms of the rationality behind the interpretation and less in

terms of interpreting partial representation right away. Although this other type

of incrementality is not incompatible with RT in principle, it was never discussed

explicitly in the literature.53

53An incremental view of Relevance Theory is described in Corbeil (2014, 2015). Accord-
ing to this view, the interpretation process of RT is incremental below the utterance level since
every time new information is processed, be it coming from a word or coming from any other
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With incrementality not being an issue in RT, we must also discuss sub-propositional

interpretation. One of the central premises behind RT is that utterances are under-

determined (Carston, 2002), which means that an utterance by itself becomes

propositional only when pragmatically enriched, is really in line with what was

described earlier when discussing the interpretation of a partial sub-propositional

sentence. In the case of RT, the notion of propositionality is only linked with the

�nal form of the interpretation, namely the explicature and the implicature, but

it does not play an active role in the interpretation process per se. In other words,

propositional or sub-propositional, an utterance will be enriched and allow the

derivation of an implicature from it.

Finally, it should not be surprising that non-monotonicity is also compatible

with RT. As it was also discussed about Gricean pragmatics, implicature is non-

monotonic and the procedure to pragmatically enrich an utterance to form a

proposition is also non-monotonic because it remains defeasible. It is thus appar-

ent that RT checks all of the boxes we need for a model of linguistic prediction.

3.3.2.3 Game Theoretic Pragmatics

Game theory has been used to understand interactive decision-making within

di�erent �elds such as sociology, economics, and linguistics (Franke, 2013). It

o�ers a mathematical way to study strategic interaction between multiple rational

agents called `players' where one decision's outcome is in�uenced by the decisions

of others (Allott, 2006; Jäger, 2014; De Jaegher, 2008; van Rooy, 2004; Clark,

perceptual input, it automatically updates the state of the world by which the interpretation is
derived from.
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2012).

An easy example of such a strategic interaction is a situation where you have a

choice to make when getting dressed for your prom. During the prom, a person

wants to show her personality by wearing something bold, but at the same time,

this person does not want to be considered to be too bold and also does not want

to wear the same out�t as somebody else. The decision about which out�t to wear

is strategic because the boldness has to be weighted with respect to the possibility

that one made the same out�t decision. In this simple game, the outcome of this

choice of out�t also depends on the choices made by other people playing the same

game.

In this kind of game, the strategy is to weigh what you think others will do while

keeping in mind that each player can have her strategy of action. Additionally,

every player also has their preferences over the possible outcomes of the game

(Jaeger, 2008). In this case, not everyone has the same tolerance for boldness or

the same need for being recognized by a crowd of people, and everyone has their

preference ordering for the outcome.

In every game, di�erent outcomes lead to di�erent utilities for the player. In game-

theory, utility functions are related with preference ordering using the relation �

(Binmore, 2009):

(68) u(a) ≤ u(b) if and only if a � b

This means that the utility associated with the outcome a is bigger than the

one associated with the outcome b because a is preferred over b. A player will

thus use a strategy that will enable her to maximize her utility (Benz et al.,

2005). Usually, utilities are represented by real numbers attached to every possible
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outcome, and these utilities are di�erent for each player (Jaeger, 2008). Because

most games involved coordinated action, like the out�t example, a player's action

cannot determine by itself the outcome of a given game. Thus, the player has

to consider the other players as well, and there are, in general, three families of

games with respect to the kind of decision one may choose.

If a player already knows which of his actions will lead to speci�c outcomes, we

say that this decision was taken under certainty (Benz et al., 2005). On the other

hand, if the player can assign a probability for every possible decision, we can label

this a decision under risk. Finally, if the player cannot assign any probabilities,

i.e., if he does not even know the potential outcome of a given decision, he has

taken his decision under uncertainty. Most papers on game theory focus on risky

and uncertain games because real-world decisions under certainty are rare. An

example of a game of uncertain decision is the classic Rock, Paper, Scissors game.

Game theory allows modeling the best solution for a particular game by looking at

possible outcomes. Using utilities and the information that the other players also

have access to the same board, we can predict how players will behave in given

situations. The best solution will always be the one that is the most rational

according to the agent. In other words, a player has to use a rational strategy to

solve the game to his advantage, i.e., to maximize his utility.54 In Rock, Papers,

Scissors, the best strategy for both players is to play every move with equal

probability.

Zero-sum games have primarily been used in logic and truth-conditional semantics

(Clark, 2012). Communication is a bit di�erent because both players can win if

they participate in successful communication. When a hearer grasps the meaning

54A Nash equilibrium is a �strategy pro�le where each player believes the other players
know his strategy in advance� (Jaeger, 2008, p.408).
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expressed by a speaker, both players bene�t from the interaction, and thus we

cannot use a zero-sum game to represent this kind of game. Instead, when the

player's utilities are aligned like in a conversation, we use a coordinating game or,

more particularly, a Signalling game (Lewis, 1969, 1979).

3.3.2.3.1 Signalling Games

Language games have been �rst developed by Lewis (1979, 1969) and their treat-

ment has been continuously updated and developed since then (van Rooy, 2004;

Franke, 2009, 2010).

In this thesis, I am assuming that coordination between two agents or players is

happening at the language level, meaning that when two people are discussing,

they have to �nd a way to coordinate their linguistic strategy pro�le in order to

communicate successfully (Jäger, 2014).55

Signaling games, as described by Lewis (1969), is composed of two players, a

sender (a speaker) and receiver (a hearer) (Franke & Jäger, 2013). The main

reason Lewis (1969) invented the Signalling game was to explain how conventions

of meanings were maintained and used by interlocutors (van Rooij, 2004; Franke,

2016; Franke & Jäger, 2013). In a Signalling game, a receiver has to react to a

signal produce by the sender, this signal being about private information that the

receiver lacks (Franke & Jäger, 2013). In other words, the sender has privileged

information about the state of the world, chooses a signal, and sends this message

to the hearer, which will then act upon receiving this message (Franke, 2016).

55Another view was one of Prashant Parikh (2000); Parikh (2001) that looked at commu-
nicative situations as coordinated by rational behaviors of the agents without having to recourse
to any speci�c linguistic constraints. However, I will not discuss this view here.
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This action directly responds to this message, and this response can be physical

(closing a window) or epistemic (believing in something). The Signalling game is

successful when the response from the receiver matches the state of the world that

the speaker observed. In a Signalling game, an utterance selected by the sender

has no predetermined meaning, and the meaning emerges only from the strategic

interaction between the two players (van Rooij, 2004).

A Signalling game thus involved two moves: one by the speaker and one by the

hearer. The speaker uses a correspondence function from a state of the world

to signals (or utterances), while the hearer uses a correspondence function from

signals to states of the world. In a successful Signalling game, the strategy used

by the hearer and the one used by the speaker will lead the hearer to �nd the

best action in response to the signals sent by the speaker, and the outcome or

the utilities of both players will depend on both correspondence functions (Franke

et al., 2012). For example, if the set of possible states of the world is represented

as SW and one particular state as s1, then:

(69) s1 ⊂ SW

(70) If m ∈M, =⇒ JmK ⊂ SW

In (69) and (70), M is the set of all possible messages available to the sender, m

is a particular message, and JmK the semantic meaning of m. The receiver has

access to the set of actions A, and he picks one action a in response to the message

m. In the simplest situations, the action available to the hearer is to update his

beliefs to correspond to the state of the world, so we might say that A = T in

most cases.

From these, we could thus write down the correspondence function for the sender
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and for the receiver (Franke et al., 2012):56

(71) Correspondence functionSpeaker = T →M

(72) Correspondence functionHearer = M → T

We can illustrate the importance of communication and Signalling games with an

example adapted from Jäger (2014). Let us suppose that Margot and Fiona are

planning to go to the movie theatre. When they arrived at the cinema, Fiona

has to choose between two di�erent kinds of movies, both starting at the same

time: movie A and movie B. Fiona wants to pick a movie that Margot would

also want to see, but they both do not know the other's preferences. This sit-

uation can be formalized as in Table 3.2 (Jäger, 2014, adapted from their Table 1).

Table 3.2 Example of Signalling Game

Player 2 (Fiona)
a1 a2

sA (1,1) (0,0)
Player 1 (Margot) sB (0,0) (1,1)

In Table 3.2, we see two possible states of the world: sA where Margot prefers

movie A, and sA where Margot prefers movie B. Fiona has a choice to make

about which movie they will see; she could choose movie A (a1) or movie B (a2),

but she has no idea what state of the world we are in. Then we can represent

potential payo�s or outcomes for possible actions with respect to the state of the

world. This table shows that choosing the wrong movie will bene�t neither as

56Lewis (1969) assumes that communication is costless, but I return to the issue of pro-
cessing cost in Chapter 6.
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their payo�s would be 0 each while picking the right movie will give them a payo�

of 1 each. The average payo� for both of them will thus be 0.5, but they can

raise this average if they communicate because if Margot can inform Fiona of

her preference, then Fiona will be able to choose a better outcome for the two of

them. For example, if Margot tells Fiona �I like Movie A�, Fiona will adapt her

actions accordingly. Both players are better o� when communication is involved,

but communication also opens the door to some potential ambiguities.

If Margot says �I like Movie A� while in sA and �I like Movie B� while in sB, then

Fiona interprets �I like Movie A� as meaning they are both in sA, and interprets

�I like Movie B� as meaning they are both in sB. This mapping from states of the

world to utterances can be written as a function F1. Another option for Margot

would be to say �I like Movie B� while in sA and �I like Movie A� while in sB. This

utterance could lead Fiona to interpret �I like Movie A� to mean they are both

in sB and �I like Movie B� to mean they are both in sA. This mapping function

between states of the world and utterances could be called F2.

One problem here is that Fiona has no way of deciding which mapping function

Margot has used, which means that Margot could well be using F1 while Fiona

thinks that she used F2. If there is a mismatch like this, then the two will have the

worst payo�, i.e. (0,0). Generally, it would be more plausible that Margot used

F1 because we can assume Margot is a rational speaker that follows the Quality

maxim from Grice. However, we generally must not rely on honesty or credibility

to choose our path of actions (Jäger, 2014).57

To explain how to decide which mapping function a speaker is using, we have to use

an iterative inference process conditioned over di�erent levels of beliefs regarding

57Franke (2011) de�nes a particular class of Signalling games called an Interpretation
game in which basic Gricean assumptions of cooperativity are implemented.
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the speaker and the hearer. This back-and-forth process is about determining the

beliefs the speaker and hearer respectively have about each other's beliefs (Franke

& Jäger, 2013). This step-by-step strategic iterated reasoning has already been

integrated within an approach that takes into account the meanings of the signals

used by the speaker, and these models have been called Iterative Best-Response

reasoning (Franke, 2011; Franke & Jäger, 2013; Franke, 2009; Franke & Jäger,

2013).58 These iterated approaches are very interesting when modeling pragmatic

processes, and I discuss probabilistic approaches in Chapter 5.

3.3.2.3.2 Evolutionary Game Theory

Evolutionary Game Theory (EGT) was �rst proposed by Smith & Price (1973)

where they used it to study the Darwinian natural section. The basic idea behind

EGT is that instead of single agents, the players are populations of individuals

(van Rooy, 2004). When these populations interact, it a�ects these populations'

reproductive rate, and the utility for each outcome represents the expected num-

ber of o�spring of this population. The strategies are considered to be a genet-

ically determined disposition of behaviors (Jaeger, 2008). Put di�erently, EGT

is interested in determining the best strategies so that a population has the best

reproductive rate possible.

We could illustrate this idea of evolutionary game theory by transposing it into

our Rock, Paper, Scissors example. If you play this game once, you will probably

have no idea how to choose. However, if you play the same game with the same

opponents for 5, 10, or even 100 times, you will adapt your strategy along the

58Some other version of iterated game theory can be found in Jäger (2014) and Benz
et al. (2006).
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way: you will slowly modify your prior expectation of what the other player will

do in light of the set of this past actions. The strategies you have will change

when a series of the same game is considered (Benz et al., 2005).59

This kind of evolution is categorized as vertical evolution by Franke (2016) as op-

posed to what is called horizontal evolution. Vertical in the sense that populations

of agents converge on a single mapping function between a signal and a state of

the world. This vertical evolution is responsible for the conventionalization of the

mapping function.60 On the other hand, horizontal evolution is about learning

more about the strategies employed by a speci�c agent throughout a series of

games (Skyrms, 2010).

If we transpose EGT into our Signalling game, we get that the outcome is not the

number of o�spring, but the likelihood that a strategy or an action is imitated

throughout many iterations (Benz et al., 2005) because strategies that lead to a

higher utility are more likely to be played again after. Having a series of games

will thus make some actions better than others in the long run, and it is those

actions that the evolutionary process will naturally select. In linguistic terms, the

mapping function we had between Margot's states of the world and utterances

will slowly be conventionalized during the evolutionary process, leading Fiona to

have a �xed strategy over time.

This stable evolutionary solution is called an Evolutionarily Stable Strategy (ESS)

59It is essential to note that being able to play a large amount of time also make a
di�erence when playing a zero-sum game like Rock, Paper, Scissors or even when playing a co-
ordination game like the famous prisoner's dilemma. See Clark (2012) for a thorough description
of this classic game.

60The process of conventionalization is related to the fact that the more often a meaning
is interpreted, �the more entrenched it becomes, resulting in easier access and faster processing�
(Christiansen & Chater, 2016, p.18). A convention here broadly refers to a crystallized mapping
between a concept and use and not the usual interpretation of a social code of conduct.
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(van Rooy, 2004). EGT here can explain how conventionalization takes place

between interlocutors during a series of conversations or dialogues. It is analog

to what Dawkins called memes, i.e., cultural traits that spread from person to

person by imitation is a cultural system (Dawkins, 2006). After a series of games

between Fiona and Margot, Fiona will be better at guessing the probable mapping

function that Margot uses because she will have experienced the di�erent payo�s

for her di�erent guesses.

Slowly, the probability attached to either mapping function will �uctuate accord-

ing to the retrieved payo� at every cycle, and after many games, one mapping

function will become more probable than the other until one of them becomes

almost inevitable. This �xation of the mapping function's probability will lead

Fiona to choose a stable strategy of action. This conventionalization process is

fundamental because, as we will see in Chapter 5, the mappings between the

sentence-level representations and the contextual level representations play an

important role in my predictive model.

3.3.2.3.3 Prediction and Game Theory

The core idea behind game theory is to model the behaviors of rational players to

predict their strategy of actions. Concerning the incrementality feature, the kind

of games I described in this section are static games like Rock, Papers, Scissors,

or, when considering evolutionary game theory, a series of static games. Rock,

Papers, Scissors is static because the players have only one action to perform

simultaneously, not in the sense that this game does not involve any dynamic

reasoning about the beliefs of the other player.

However, there is another extension of Signalling games where there are two speak-
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ers or senders at the same time (Barrett, 2009), and this situation can be shown

to be equivalent to one speaker sending two consecutive signals (Skyrms, 2010).

In this consecutive game, also called a �syntactic game�, a receiver gets a series of

signals and has to perform an action for every one of these signals (Franke, 2016).

A syntactic game involving a speaker sending a series of signals where a receiver

acted every step would be incremental. It also seems that the interpretability of

sub-propositional content would not be a problem for a syntactic game because it

would always be possible to divide a composed message into smaller components

and then treat them as di�erent separate games.

The non-monotonic aspect of prediction is a bit more challenging to assess in

classical game theory. However, it follows naturally from the iterated version of

game theory, where an iterated inferential process occurs between the speaker

and the hearer. When a hearer represents the speaker's beliefs, it corresponds

to the �rst level of iterated response. The second level would be for the speaker

to build a representation of the hearer's representation of the speaker's beliefs.

This iterative process could continue until one of the players' cognitive resources

become depleted or when one of the judges that the other one has already stopped

this iterative process.

At every iterative cycle, there is a certain probability that the representation of

the other player's beliefs is updated and changes a bit. In other words, the rep-

resentation of the other player's beliefs is defeasible because, at every cycle of

iteration, this belief could change and be adjusted. To illustrate this defeasibility,

we could transpose this idea of iteration into the Gricean program. This move

is not too far-fetched considering the natural connection between game theory

and Gricean pragmatics (Stalnaker, 2006). In the Gricean approach, we most

commonly assume that the �rst representation of an utterance is a literal inter-

pretation, but when one of the maxims seems violated, we can revise the �rst
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interpretation (Sperber & Wilson, 2012). One main advantage of iterative game-

theoretic approaches of pragmatics is that it bypasses the need for having maxims

in the �rst place (Franke & Jäger, 2013).

In this discussion about the desiderata of a predictive model of linguistic meaning

and game theory, I omitted anything about evolutionary game theory because

it does not play the same role as classical or iterated game theory. EGT is in-

teresting because it explains why and how conventionalization arises over time,

and it will play an important role when determining the correspondence mapping

function between meanings and utterances. However, predictive behaviors are not

to be modeled directly from EGT. The conventions derived from the evolutionary

perspective are used to determine the best action to take, i.e., the best word to

predict, but it is only indirectly considered in the iterated inferential process of

prediction.

3.4 A Model of Linguistic Prediction: Interim Summary

In the �rst chapters of this thesis, I have presented empirical evidence describ-

ing the constraints imposed upon the derivation of a linguistic prediction during

language processing. In addition, I have proposed desiderata for a theory of lin-

guistic prediction. In this section, I summarize what we have discussed so far,

and I introduce a summary of the coming chapters.
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3.4.1 A Cognitive Model

The goal of the model presented in this thesis is to simulate how linguistic predic-

tion is derived when participants complete a truncated sentence. In Chapter 2,

we separated semantic and syntactic processing into two streams. When it comes

to the derivation of a linguistic prediction, these two kinds of processing streams

give rise to di�erent types of constraints that contribute to the derivation of a

prediction. The syntax constrains the probability value for a particular syntactic

category type of the predicted word, while the semantic constraints are respon-

sible for predicting the meaning that would best correspond to the rest of the

sentence. Furthermore, in Chapter 2 and this chapter, we saw arguments that

syntactic constraints are not usually su�cient to derive a linguistic prediction,

and we presented the view that the semantic stream has precedence over the syn-

tactic stream. The model of linguistic prediction that is developed in this thesis

is thus centered around the semantic constraints that lead to the derivation of the

meaning of a prediction.61

In the model developed in this thesis, the semantic prediction results from com-

bining di�erent predictions derived for di�erent linguistic units at the lexical level

and beyond. These di�erent linguistic units are the output of the meaning com-

position process. When two words are combined (e.g., red and car), the composed

meaning, in addition to the lexical meaning, also comprises the combination of

semantic properties of these words and the relational properties that bind them.

Once these predictions between the meaning expressed in the sentence and the

predicted word are combined, we can compute a conditional probability of occur-

61The relative role of the syntactic constraints compared to the semantic constraints is
discussed in Chapter 4.
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rence corresponding to the predictability value we are looking to generate.

In addition to the contribution coming from meaning composition, we also have

to consider the coordination aspect of a linguistic interaction responsible for the

choice of mapping function that helps retrieve the meaning of a sentence within

a particular context. In the model of linguistic prediction developed here, the

contribution from the coordination aspect of language is twofold: it allows the

hearer to derive a representation of the context, and it allows the hearer to use

this contextual representation to constrain the derivation of a linguistic prediction.

This contribution from the coordination aspect of linguistic interaction is discussed

in Chapter 5. In Chapter 4, I present a language model that integrates the

contribution from the meaning compositions.

3.4.2 A Language Model

A language model is a model designed to predict the next word of a sentence

(Smith, 2019). It is usually written as the conditional probability of a linguistic

representation given a speci�c context (Armeni et al., 2017). In this thesis, the

linguistic representation that is predicted is a word.

(73) P (word|context)

The conditional probability in (73) is also called the predictability of a word

given a context. A language model is thus a model of predictability, and these

probabilities can be derived from di�erent approaches (Hale, 2016). In this thesis,

I am interested in providing a principled explanation of the derivation of this
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conditional probability.

Some approaches to cloze tasks have directly equated cloze scores with conditional

probability and then argued that predictability was the sole in�uence when it

comes to reading time results (Smith & Levy, 2011). However, some other models

have proposed that semantic similarity also played an important role. In Chapter

2, we mentioned that Roland et al. (2012) argued that the e�ect of similarity

should be taken into account independently from the e�ect of predictability. In

other words, it is the combination of both the predictability and the similarity

that in�uences the participant to choose a speci�c word.62

If we further develop this idea, we could argue that words predicted during a cloze

task are the words that have been the most activated by di�erent factors, be it

from syntactic or semantic in�uences. This idea has been defended by Staub et al.

(2015) when they argued that a cloze task is a task where multiple in�uences are

used to activate di�erent words. When a particular word reaches a threshold of

activation, only then does it become a possible valid continuation. A similar idea

about the general pre-activation across multiples domains of language processing

is also defended by Brothers & Kuperberg (2021). Taking into account di�erent

activation levels is compatible with the idea that di�erent words are processed with

di�erent levels of di�culty. In that case, low cloze words are less activated, and

high cloze words are the words that are more strongly activated by the preceding

linguistic context. Within this activation model, cloze score would be correlated

to the relative level of activation (Staub et al., 2015).

Approaches based on surprisal are interesting because they give us a mathemat-

ical model of the e�ect of this conditional probability and the cognitive e�ort

62Their argument is compatible with surprisal theory, as it does not rule it out, but it
states that there is an additional similarity e�ect that can top it out (Roland et al., 2012).
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needed to process the new input. However, they do not inform us about how

this probability is derived during the cognitive process because the notion of sur-

prisal is independent of how this probability is derived. As described by Hale

(2016), these expectation-based approaches are sitting at the computational level

of Marr's analysis, and they are not directly linked with any psychological process

per se. However, when developing a cognitive language model, we must make sure

it is compatible with these computational-level theories.63

In following chapters, I present a language model based on the pre-activation of

di�erent levels of representations. This pre-activation is related to the similar-

ity measures between di�erent linguistic units, but it is di�erent than what was

described by Roland et al. (2012). In Roland et al. (2012), they argued that simi-

larity measures were independent of the surprisal e�ect. I take a slightly di�erent

path in the language model presented here because I treat similarity as contribut-

ing indirectly to predictability via an activation-based semantic network. Since

my focus is on developing a model of predictability, I leave to one side the question

of how predictability is then linked to processing di�culty because it is outside

the scope of this thesis.

63Conversely, surprisal theory is also agnostic with respect to the nature of the linguistic
representations used to compute the conditional probability (Futrell et al., 2020).



CHAPTER IV

LINGUISTIC PREDICTION AND MEANING COMPOSITION

This chapter presents a language model that integrates the contribution from the

meaning compositions. The backbones of this model are the Similarity Spaces (SS)

and the word embeddings. Similarity spaces are used to measure the similarity

between word embeddings. This value is directly linked with the derivation of

a speci�c word's prediction given an incomplete sentence. In addition, I argue

that meaning composition involves di�erent levels of granularity associated with

their compositional units. Finally, I detail the procedure by which we can derive

the contribution from these di�erent representational levels to retrieve a linguistic

prediction, and I show some worked out examples. At the end of this chapter,

I revisit the distinction we already discussed in Chapter 2 between similarity,

predictability, and plausibility in terms of these representational levels.

4.1 Similarity Spaces and Word Embeddings

According to the distributional approaches of linguistics, the meaning of a word

comes from its use; or as Firth (1957, p.11) puts it: �You shall know a word by the

company it keeps�. To retrieve the meaning of a word or at least to circumscribe
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it, you can look at the other words surrounding it. Under this perspective, it

should be possible to de�ne the meaning of a word in terms of its neighbors

within a particular sentence. When using a big enough corpus, every lexical

entry is di�erentiated because every word is not precisely appearing in the same

contextual windows, e.g., a couple of words before and a couple of words after the

target word.64

Classically, this particular operation of extracting a word's distribution involved

creating a co-occurrence matrix that would represent words as rows and contex-

tual elements as columns (Li et al., 2004). This matrix is be derived by counting

how many times a target word occurred in a particular context. For example, if

we pick the word candies as the target, we can build a row matrix that represents

the number of times another word is co-occurring with it in a linguistic corpus.

Thus, this row-matrix or vector represents the meaning of the word candies in

this corpus.

sugar children sweet dessert
candies 2 3 3 1

Figure 4.1 Example of the vectorial representation of the word candies

Word vectors can be derived manually by looking at the distribution of neighbor-

ing words, but it is also possible to derive them using machine learning mecha-

nisms. Word vectors derived using the learning techniques in Natural Language

Processing (NLP) are usually called word embeddings.65

64Distributional approaches typically use corpora having a vast number of words like
the British National Corpus (10 million words) (Burnard, 2007) or ukWaC (100 million words)
(Baroni et al., 2009) which allows choosing a smaller window without jeopardizing the precision-
score (Kiela & Clark, 2014).

65The term vector is usually used in the Distributional Semantics literature, while the
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A similarity space is a space where the relative position of di�erent objects is

determined by their similarity. For example, if we represent three word-vectors

on the same 2d plot, we can compare two pairs of words based on their relative

position in the similarity space. In the following example, we can readily see in

Figure 4.2 that w1 and w2 sits closer to each other than w1 and w3. In this case,

if we posit the euclidean distance to be a valid measure of similarity, then we can

understand that w1 and w2 are more similar than the pair w1 and w3.

w1

w2

w3

Figure 4.2 Representation of three word-vectors in a 2D similarity space

Word embeddings are a useful computational tool for linguistic modeling, but

they are also interesting for modeling cognitive processes more generally (Mandera

et al., 2017). For example, in cognitive science, vectors are also a natural way to

model prototype theory (Rosch & Lloyd, 1978), but the main di�erence is that

prototype vectors are directly derived from questioning participants, and they are

not automatically derived from frequency measures (Turney & Pantel, 2010).

more general term distributed representation is mostly used in the literature about connectionism
(Hinton et al., 1986; McClelland et al., 1986). Throughout this thesis, I use the term word

embeddings which is widely used in computational linguistics to refer to such representations of
meaning.
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4.1.1 Deriving Word Embeddings

One limitation of the classical way of deriving word vectors is that, by count-

ing the number of co-occurrences, we end up with huge sparse vectors, i.e., high

dimensionality vectors, where most of the components are 0 because only a few

words do co-occur. Some techniques were developed to reduce dimensionality and

to densify these word vectors. Singular Value Decomposition (SVD) (Landauer

& Dumais, 1997) is such a technique, and it led to the development of Latent

Semantic Analysis (Landauer et al., 1998) which is still widely used today when

it comes to representing word-vectors in similarity space. The term word em-

beddings originates from the fact that words are mapped or `embedded' into a

low-dimensional similarity space (Levy et al., 2015; Levy & Goldberg, 2014).

Machine learning has recently taken computational linguistics by storm, and many

algorithms were developed to automatically derive word embeddings from a given

corpus. These newer algorithms are often based on neural networks, which are

computing systems that were �rst inspired by how neurons interacted in the hu-

man brain (Rosenblatt, 1958). The great advantage of using such neural networks

is that they are very �exible to the task they are trained to perform.

A neural network consists of many layers of neurons linked together, and every

time a speci�c neuron is activated, it sends a signal to connected neurons. This

signal's strength is proportional to the weight of the connection between these

neurons (Goodfellow et al., 2016). There exist di�erent ways of training a neural

network to perform a given task, but the basic idea remains the same. Namely,

that we provide inputs and outputs so that the network learns to match them by

adjusting the weights of the many connections between the di�erent layers of neu-

rons as represented in Figure 4.3 (Marcus, 2018, taken from p.4). In other words,
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training a neuron network is like solving an optimization problem (Smith, 2019).66

Figure 4.3 Basic representation of a simple neural network with four layers

A downside of these approaches is that in order to train these neural networks,

we need a massive amount of data. On the other hand, neural word embeddings

are shown to be very e�ective to model various tasks in computational linguistics

such as paraphrase detection (Socher et al., 2011), sentiment analysis (Bojanowski

et al., 2016), syntactic parsing (Socher et al., 2013), short answer tasks (Koleva

et al., 2014), or sentence entailment (Sadrzadeh et al., 2018).67

Another limitation of the neural networks is the lack of explainability because

when a neural network is trained, it does not inform us of the role of a speci�c

node within the network, i.e., how the model's performance is linked with speci�c

regions of the network. The opaqueness of neural networks is often problematic

for those of are interested in understanding the internal mechanisms that lead to

the realization of a given task (Eppley, 2014), but that does not mean that we

could not still bene�t from these computational models. Approaches based on

66The term Deep Learning refers to the process of training neural networks that have
multiple hidden layers.

67I do not discuss these applications further as they are outside the scope of this thesis.
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deep learning help provide an infrastructure that contributes to the understand-

ing of linguistic processing, and the role of the linguist is to contribute to the

improvement of realistic language models (Linzen, 2019).

4.1.1.1 Word2vec

In this section, I brie�y present two ways to derive word embeddings.68 One of the

best-known models for deriving word embeddings is Google's word2vec Mikolov

et al. (2013a,b,c). Word2vec is a three-layer neural network that is trained one

word at a time to learn word representations to predict the words surrounding the

input word (Lupyan & Lewis, 2017).

Two main learning algorithms are available in word2vec, i.e., two model architec-

tures to derive word embeddings: continuous bag-of-words (CBOW) and contin-

uous skip-gram. In the CBOW model, the target word is predicted according to

its surrounding linguistic context, whereas in the skip-gram model, surrounding

words are predicted from the target word (Mikolov et al., 2017). It is generally

accepted that the CBOW model is faster to train, but the skip-gram model re-

mains better with less frequent words within a particular corpus (Mikolov et al.,

2013a).

4.1.1.1.1 Continuous Bag-of-words

In word2vec, the CBOW model learns word embeddings by predicting a wordj

68In this thesis, I am primarily interested in the di�erences in representations and training,
and I will not delve into technical details nor discuss comparative results for speci�c NLP tasks.
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from its linguistic context, consisting of a symmetrical window of words surround-

ing this target word. In Figure 4.4 (Mikolov et al., 2013a, Figure 1), we see that

the word wj is predicted from the previous words words wj−2, wj−1, and the next

words wj+1, wj+2. These contextual windows can be large (8 words) or small (only

the preceding and succeeding words), depending on the training algorithm.

Figure 4.4 The architecture of the CBOW model

In the CBOW model, word order is not taken into account by the training al-

gorithm, and sentences are treated as lists of words. For example, the sentence

(74) would be decomposed into a list of words, and the two lists (74-a) and (74-b)

would be treated the same way by the model even though the words are ordered

in di�erent ways.

(74) Kim is playing badminton.

a. �Kim�, �is�, �playing�, �badminton�

b. �badminton�, �Kim�, �playing�, �is�
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During the training phase, the algorithm tries to maximize the probability of the

target word conditional's log-likelihood to a given linguistic context. For example,

in Figure 4.4, we use four di�erent words surrounding the target word wj, i.e., two

words before and two words after, to derive the probability of having this target

word wj as an output. After every prediction cycle, when a prediction is not good

enough, an error signal is sent to adjust the vector's values for the target word,

and the components of the word-vectors are adjusted to re�ect the probability of

the prediction better.

4.1.1.1.2 Continuous Skip-gram

The other alternative is based on the n-gram model, which can store information

about word order within a sentence (Bojanowski et al., 2016). Contrary to the

CBOWmodel, the skip-gram model's training objective is to predict nearby words

from a word (Mikolov et al., 2017) as in Figure 4.5 (Mikolov et al., 2013b, Figure

1). The continuous Skip-gram model is an e�cient method for learning high-

quality distributed vector representations that capture a large number of precise

syntactic and semantic word relationships (Lupyan & Lewis, 2017). The model

architecture is di�erent from the CBOW because the input is a single word, but

the output is multiple pairs of words.

In the skip-gram model, a sentence is decomposed into n-grams which consists of

a consecutive subsequence of length n of some tokens k. For example, in (75), if

we set the size of the training context to 2 and we choose the input word to be

two, then we can form 4 di�erent 2-grams (or bigrams) as seen in (75-a).

(75) Kimiko bought two big grapefruits.
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Figure 4.5 The architecture of the Skip-gram model

a. 2-grams: (two, Kimiko), (two, bought), (two, big), (two, grapefruits)

During the training phase, the word representation of the input word is used to

maximize the conditional log-likelihood of the output n-grams. The input word-

vector is then adjusted accordingly. At every training cycle, a di�erent input

word is used. Its word-vector is also updated from the predicted probability of

the outputs until the adjustment process reaches a stable state (Gastaldi, 2020).69

Other models of word embeddings like GloVe have proven to perform well when

measuring similarity and representing analogies (Pennington et al., 2014). How-

ever, GloVe only performs better than word2vec when the training corpora are

very large; with smaller corpora, GloVe is slightly worse than word2vec (Lupyan

& Lewis, 2017). Additionally, word2vec is faster to train than GloVe (Levy et al.,

2015). One limitation of count-based statistics like GloVe is their permeability

to the addition of new material (Lenci, 2018). When new distributional data

69Improved versions of word2vec now exist where the continuous skip-gram model is
extended, i.e., FastText (Bojanowski et al., 2016), or even versions where training mechanism
can learn richer word representations (Mikolov et al., 2017) but I will not discuss these here.
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is added, we must re-train the model to integrate these new data because their

word embeddings are derived from global statistics. For all these reasons, I use

word2vec word embeddings for the calculation in this thesis.70

4.1.2 Comparing Word Embeddings: Similarity

Landauer & Dumais (1997) de�ned the word similarity as the distance between

the vectors representing those words. Cosine similarity is the most used measure

of similarity in the literature (Baroni et al., 2014b), and it is the cosine similarity

used by word2vec and GloVe when dealing with analogy relations (Mikolov et al.,

2013c; Pennington et al., 2014). The cosine measure is the value of the angle

between the two vectors.

(76) Sim(−→w 1,
−→w 2) = Cosine(−→w 1,

−→w 2) =
−→w 1.
−→w 2

‖−→w 1‖‖−→w 2‖

In (76) ‖−→w 1‖ =
√∑

iw
2
i is the norm of the vector. The more similar two vectors

are, the smaller the angle is. The cosine measure gives out a real number from -1

to 1, 1 being perfect similarity.71 As we see in Figure 4.6 in this hypothetical two-

70Another very popular word embeddings model is BERT (Devlin et al., 2018). BERT
is derived di�erently than GloVe or word2vec, it has context-dependant word embeddings and
it generally needs to be �ne tuned to a particular corpus of data (see section 5.3.2.3 in Chapter
5). In this thesis, I am using a context independent approach like word2vec to illustrate how
a vanilla model could be implemented without any need for �ne-tuning like when using BERT.
I will leave this for future work, but it would be relevant and interesting to perform the same
calculations using BERT and compare the results.

71The possible range for the cosine measure depends on the normalisation used for the
word-vectors. If the word-vectors only have positive components, then the angle between two
vectors will not be greater than 90◦ which means the cosine measure will be between 0 and 1.
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dimensional representation, the similarity between
−−−→
co�ee = (2, 3) and

−→
tea = (4, 1)

is measured by the cosine of the angle θ between the two vectors. In this case

Sim(
−−−→
co�ee,

−→
tea) = 0.740.

−−−−−→
Coffee

−−→
Teaθ

Figure 4.6 Hypothetical Vector representations for Co�ee and Tea

An alternative to the cosine measure is the Euclidean distance between two vec-

tors, i.e., the segment's length connecting their endpoints. One problem with this

distance is its sensitivity to the magnitude of the vector (Baroni et al., 2014a).

Consider, for example, a situation where we want to compare two-word vectors,

one of which is often present in the corpus and the other that is rarely used. This

computation would result in one vector being large (the one with the word with

the higher occurrence) and one vector being small (the one with the rarely used

word).

If we measured the Euclidean distance between the two vectors, the result would

be big because of the signi�cant di�erence in length between the two-word vectors.

This could be problematic because we would get a low similarity because of the rel-

ative di�erence in the words' occurrences even though these two words might have

a similar meaning. In comparison, the cosine measure is about the angle between

the vectors, and their relative length does not in�uence it. In Table 4.1 we show

di�erent cosine similarity results computed using the CBOW and the Skip-gram
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training model of word2vec with word embeddings trained on the novel Peter Pan.

Table 4.1 Cosine similarities computed using the CBOW and the Skip-gram
training model of word2vec

Word 1 Word 2 Model Cosine similarity
peter wendy CBOW 0.99993336
peter wendy Skip-gram 0.9958692
peter temperature CBOW 0.73825425
peter temperature Skip-gram 0.8839463

In this thesis, we use the cosine measure. Still, there are other alternatives like Lin

(1998) who proposed a similarity metric based on information theory, and Curran

(2003) who introduces other methods like the Sorensen-Dice coe�cient and the

Jaccard measure that originate from ecology.72 There is also the Kullback-Leibler

divergence (or KL-divergence) which is an entropy-based measure about the dis-

tance of the entropy of two probability distributions (Balkir et al., 2015). The

Kullback-Leibler is used in other �elds such as Cognitive Neurobiology and Predic-

tive Processing (Friston et al., 2013, 2015) or Game-theoretical models (Skyrms,

2010; Franke & Degen, 2015).73

We can represent the similarities between all the words present in a corpus by

using a similarity matrix. In a similarity matrix, each element corresponds to the

similarity value (sim) between the wordi and the wordj as illustrated in Figure

4.7, where each row j and each column i correspond to a speci�c word embedding

within the corpus. For cases where i = j, the similarity sim(wordj,wordi)=1. The

72See Kiela & Clark (2014) for a systematic study of many di�erent similarity measures
for semantic spaces.

73Other novel measures based on the Kullback-Leibler divergence such as Lookahead
information Gain (LIG) (Aurnhammer & Frank, 2019a,b) have been proposed, but I am not
going to discuss them here.
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dimension of this similarity matrix is N × N , where N is the number of word

embeddings.

... wordi−1 wordi wordi+1

... ... ... ... ...
wordj ... sim(wordi−1,wordj) sim(wordi,wordj) sim(wordi+1,wordj)
... ... ... ... ...

Figure 4.7 Similarity Matrix for every combination of word embeddings

Distributional models were �rst developed to deal with words in isolation, but

they rapidly expanded to represent not only words but whole sentences (Clark,

2015), and the cosine measure can also be used to compute the similarity be-

tween sentences. The only di�erence here is that the vectors are sentence-vectors

rather than word-vectors. Sentence similarity is used in several applications like

paraphrase detection and short answer tasks (Koleva et al., 2014), automatic sum-

marisation (Erkan & Radev, 2004), image and web page retrieval (Li et al., 2006)

and machine translation (Liu & Zong, 2004).

4.1.3 Using Word Embeddings

It is important to note that within the distributionalist perspective that emerged

in linguistics, we can distinguish two kinds of distributionalism: a weak and a

strong version (Lenci, 2008).

According to the weaker version, the distribution of a word's use allows extracting

some paradigmatic features about the meaning of this word. In other words, by

looking at the context in which a word is used, we can learn something about the
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semantic and syntactic features this word possesses. Similarly, if two words are

often present in the same linguistic context, we can readily assume that they also

possess similar features and must have a similar meaning. However, this does not

entail that these features are linked with how the representation of this word's

meaning is stored within one's mind.

On the other hand, in the stronger view about distributionalism, the syntactic and

semantic features extracted from the context of use are linked to how concepts are

learned and categorized in the mind. When a word is encountered, it is learned

from its distribution, and the information originating from this context helps the

learner de�ne and circumscribe its meaning. This strong distributionalism view

is not that di�erent from the multiple-trace memory model of Hintzman (1986)

that argues that each experience encountered by a learner produces a trace in its

memory, and it is this trace that associated with a concept or a memory cue. For

example, we could learn the meaning of a word like banana by looking at one ba-

nana or by hearing someone describing one, but we could also learn it by noting the

linguistic context in which it is used (Lupyan & Lewis, 2017). This view about

cognitive distributionalism was espoused quite early during the development of

distributional semantics, and both Latent Semantic Analysis (Landauer & Du-

mais, 1997; Landauer et al., 1998) and Hyperspace Analogue to Language (Lund

& Burgess, 1996) were construed as a psychological and cognitive representation

of words (Lenci, 2008).

It is often argued that a distributional model �o�ers both a model to represent

meaning and computational methods to learn such representations from language

data� (Lenci, 2018, p.152), but the nature of this linguistic data is rarely discussed.

It is essential to understand what they represent and what their limits are (Lupyan

& Lewis, 2017). In the remainder of this section, I discuss the nature of these word

embeddings, and I draw an analogy between their associated similarity spaces and
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the notion of conceptual spaces as de�ned by Gärdenfors (2004); Gärdenfors &

Williams (2001).

4.1.3.1 Nature of Word Embeddings

Distributional semantics is generally based on the statistics of the context of use

for a word (Turney & Pantel, 2010). If we happen to know these statistics, then

we can know which word is most likely to be used given a particular context. For

example, let us consider the linguistic context in (77-a), and the possible target

words in (77-b).

(77) a. The men saw the chair on the ... that was glowing through the mist.

b. grass (75%), bridge (25%)

If someone had encountered this linguistic context many times during her lifetime,

and if for about 3 out of 4 of these encounters, this linguistic context was completed

with the word grass, then it would only be natural for this person to use grass

to complete this sentence. This example shows that we need the co-occurrence

statistics to predict the target word but that we do not need to understand why

this co-occurrence existed in the �rst place.

Using a co-occurrence statistic to complete a sentence is very similar to what the

participants have to do when performing a cloze task. In those cases, the only

di�erence is that the participant does not explicitly have access to these statistics.

They thus have to �nd ways to come up with their statistics of use. This is

precisely what the predictability value is: the statistics of co-occurrence given
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by participants that were asked to match linguistic context with target words.

The question now becomes: how can these participants derive these predictability

values if they do not have access to these co-occurrence statistics.

Word embeddings models are designed to feed on the natural regularities of lan-

guage to capture linguistic features that represent the complex structural system

of opposition that holds language together (Gastaldi, 2020). To illustrate what

these structures of opposition are, we can go back to the previous example.

(78) a. The men saw the chair on the ... that was glowing through the mist.

b. grass (75%), bridge (25%)

In (78), we have only two possible continuations. This means that if grass is

used, then bridge could not be used. The fact that only grass or bridge could

be used is not directly related to their similarity of meaning, but it is related to

the regularity of their use. These two words are thus opposed when it comes to

their use within this linguistic context. This conception of word uses in terms

of opposition is in line with the view that communication is a language game

in the sense that meaning emerges when a game is being played between two

interlocutors (Wittgenstein, 1953). In a particular language game, a speaker's

move consists of selecting a word and rejecting other words, and this move puts

the rejected words in opposition to the chosen one.

This relationship between the linguistic context and a continuation word is thus

not really about co-occurrence, but about bi-duality, i.e. �about the relation of

duality a term maintains with the dual contexts of another term� (Gastaldi, 2020,

p.35). Two words are similar if they both have a similar relationship with di�erent

contexts. This relationship must be bi-dual because the relationship goes both
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ways: two words are similar if they both are alternatives in a similar context,

and if they both are not alternatives in other contexts. For example, cat and dog

would be similar because they could be both used in similar contexts, and they

also would not both be used in other similar contexts.

(79) a. I adopted a (cat/dog).

b. I went to the library to borrow a (��cat/���dog).

Word embeddings are an indirect way to measure this coordination between lin-

guistic contexts and words, and it gives us an image of language use that is both

abstract and autonomous from any pre-conceived analysis about the meaning of

words (Gastaldi, 2020).74 Word embeddings models that use big corpora extract

these bi-duality relations and can then represent them in terms of similarities. It

is important to note that these similarities are not primarily about meaning but

use.

4.1.3.2 Cloze Task and Similarity Measures

As discussed in Chapter 2, similarity measures have often been linked with pro-

cessing di�culty. For example, the results of Roland et al. (2012) tend to show

that more similar words were processed more rapidly, even in a context where

the more similar words were supposedly less predictable. From their results, they

argued for similarity over purely predictability-based approaches.

74In his paper, Gastaldi (2020) describes the bi-duality relations in terms of Hjelmslev's
and Saussure's conception of language, but it would be beyond the scope of this thesis to discuss
this here.
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Measuring the e�ects of similarity when processing a word is not the same as using

similarity to predict an upcoming word directly. In a processing task, participants

are given a linguistic context and the target words, and what is measured is the

relative processing time between di�erent alternatives for this target word. This

way, similarity measures between the prior context and the target words can be

compared for the di�erent alternatives.

In a predictive task, the goal is to predict an upcoming word, and this involves a

di�erent use for similarity measures. To illustrate how similarity measures could

be used to derive a prediction, we can build a toy model in which the similarity

measure between the target word and the rest of the sentence would drive the

predictive process. In (27-a), reprinted here as (80), we can see that spear, sword,

machete and rock are all probable continuations for this truncated sentence. The

upcoming word that best �ts the context will be the most similar to the context.

In this toy model, we are not considering meaning compositions, which means

that the truncated sentence is processed like a list of words. In this case, we have

the words soldier, jabbed, angry and lion that needs to be accounted for.75

(80) The soldier jabbed the angry lion with a...

To measure its similarity with the di�erent possible alternatives, we �rst take the

average of the word-vectors present in this context (Mikolov et al., 2013a) and then

compute the words that are the most similar with this average context. Table 4.2

presents a list of predicted words and their respective similarity value as computed

using the word2vec-google-news-300 and the GloVe-twitter-200 pre-trained word

75Very common words like the short function words the and a are referred to as stop

words and they are generally �ltered out when processing natural language data. Depending on
the context, stop words could play an important role when deriving a linguistic prediction, but
taking them into account is a challenge laying outside the scope of this thesis.
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embeddings.76

Table 4.2 Words that are most similar to the truncated sentence in (80)

Training Corpus Words Similarity Measures

GloVe-twitter-200

enraged 0.520

wounded 0.492

man 0.488

shouted 0.485

yelled 0.485

word2vec-google-news-300

enraged 0.546

solider 0.509

irate 0.507

policeman 0.500

jabbing 0.492

In Table 4.2, we see that the predicted words make little sense. These results

show that we cannot solely rely on similarity measures to �nd the best possible

continuation for a truncated sentence. In turn, we can conclude that bi-duality

relations are not enough by themselves to model linguistic prediction.

This poor result should not be too surprising because trying to predict the next

word using an average context would be like trying to �nd a word that has a

similar bi-dual relationship with the context expressed in the truncated sentence.

76By taking the average of the word-vectors, we are not taking into account the syntax of
the sentence. This lack of consideration for the syntax traces back to the �rst implementation
of the Latent Semantic Analysis (LSA) (Landauer & Dumais, 1997), where sentences were
represented as the sum of the word-vectors composing them. Under the LSA perspective, it was
thought that the syntax had only a negligible contribution to the information retrieved from
the sentence (Gastaldi, 2020). This `omission' is undoubtedly one of the most prominent critics
against such models of distributional representations (Turney & Pantel, 2010).
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This is very di�erent from when participants are asked to perform a cloze task.

Consequently, we must consider other relevant linguistic information if we want

to use word embeddings to compute a linguistic prediction. For example, we have

to consider that we are looking for a speci�c word that will �t well with the whole

context and �t well with the di�erent granularities of linguistic information.

For example, the fact that the predicted word follows the preposition with is a

strong indicator that the target word will be an instrument of some sort.77 For

the predictive model to consider this, we have to account for the di�erent levels of

meaning within the sentence. The solution to this problem is to compute similarity

measures between meaning compositions rather than between words. This way,

we could account for the di�erent levels of meaning within the sentence and the

fact that it is hierarchically parsed (Ding et al., 2017).

4.1.3.3 Cloze Task and Semantic Networks

The fact that we can generally predict the next word of (81) to be bread is lin-

guistically motivated, i.e., it is not that bread is similar to the rest of the words

in the sentence, it is because the meaning expressed by the word bread �ts well

with the meaning composition expressed the �rst part of the sentence. However,

before discussing the nature of these meaning compositions, we must �nd a way

to transpose similarity measures into measures that could �t with the cognitive

process associated with cloze tasks.

77Instrument in the sense of something that a soldier could jab a lion with.



141

(81) I went to the bakery for a loaf of ...

When a participant reads or processes a sentence during a cloze task, this person

is also incrementally building a mental representation of this sentence's meaning.

Although essential to understand the cognitive processes that are taking place in a

communicator's mind, I postpone the discussion on incrementality to Chapter 6 to

focus more on the nature of this mental representation in Chapter 4 and Chapter

5. In these chapters, I am primarily interested in discussing the principles behind

the derivation of a linguistic prediction, and these principles are independent of

the incremental nature of linguistic processing.

To predict the upcoming word, the participant must weigh all possible continua-

tions and choose the one word that best �ts this mental representation. One way

to illustrate how these possible continuations are obtained is to represent them

in an activation-based semantic network node. A semantic network is a network

where words are represented as lexical units related to other words via semantic

relations as illustrated in Figure 4.8. One of the most famous databases of such

semantic relations is WordNet (Miller, 1995).

In Figure 4.8, we see that mammal is related to animal, and that animal is in

turn related to �sh. This particular network does not represent the weight of

the connection between the lexical units. However, it still allows us to see that

mammal sits closer to animal than to �sh. In terms of activation levels, this

means that if someone utters mammal, the co-activation of animal will probably

be stronger than the one for �sh. Activation-based semantic networks allow us to

represent the strength by which two lexical units are connected. Most importantly,

it allows us to derive the activation level at a given node in terms of the activation

of other nodes. In a semantic network, not every word is related to all the other
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Figure 4.8 Example of a semantic network centered around the word mammal

words, and it is possible to have only a few selected words activated while most

of them are not activated.

Activated-based semantic networks could help represent the constraining process

happening during the derivation of the prediction. To achieve this, we can use an

association game where someone is asked to match words together like in (82).

Here, it is clear that the word elephant would not be associated with the word

car.

(82) car : wheel, motor, �����elephant

It is possible to transpose this idea of associations between words to the cloze task

where a given mental representation corresponding to the meaning of a sentence

could only give rise to the activation of certain speci�c target words. In a cloze

task, the best word for the continuation of a sentence is selected only from the

words that are minimally activated, not from all the words that the participant
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knows. This kind of activation-based semantic network allows us to model linguis-

tic prediction as a spreading-activation process (Collins & Loftus, 1975). However,

since our primary material is coming from word embedding models, we must �nd a

way to transpose them to use similarity measures in this activation-based semantic

network.

4.1.3.3.1 Similarity Spaces are Conceptual Spaces

In order to transpose word embeddings into activation-based semantic networks,

I am using the notion of Conceptual Space (Gärdenfors, 1996, 2000; Gärdenfors &

Williams, 2001; Gärdenfors, 2004, 2014). A conceptual space is a geometric frame-

work �designed for modeling and managing concepts� (Gärdenfors & Williams,

2001, p.1). One advantage of conceptual spaces is that their geometric nature

allows them to �exibly interact with di�erent kinds of representations, enabling

them to act as a sort of Lingua Franca of knowledge representation (Lieto et al.,

2016), and this is precisely what we need.

A conceptual space is a multidimensional feature space where a concept's position

is based on various quality dimensions (Khater & Taw�k, 2009). These quality

dimensions correspond to the di�erent ways in which concepts are judged to be

similar (Gärdenfors, 2004). Analogously to what I described before, conceptual

spaces can also be viewed as an n-dimension vector space where concepts are

represented as regions of this space. Conceptual spaces are represented with a

Voronoi diagram, a plane divided into di�erent contiguous regions corresponding

to these quality dimensions. As an illustration, we see that in Figure 4.9 (Petitot,

1988, taken from p.69), the stop consonants are spatially positioned using two

axes: voicing and place of articulation.
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Figure 4.9 A Voronoi diagram of the boundaries of stop consonants

In Figure 4.9, the regions surrounding each consonant represent the possible vari-

ability in the pronunciation of such consonants, i.e., the prototypical pronunciation

would be centrally located within a region (Gärdenfors & Williams, 2001). Ad-

ditionally, the boundaries represent the transition points between those regions,

i.e., when the place of articulation changes from labial to dental, then the /b/

becomes a /d/.

Positioning a concept in a conceptual space is equivalent to categorizing it in terms

of its qualities. One way to do this is to measure its similarity with the prototype

of this category. For example, a concept X belongs to the same category as the

prototype Y as long as there is not another prototype that is more similar to it

(Gärdenfors, 2004). Similarity relations are crucial for conceptual spaces because

they represent an essential aspect of the di�erences between concepts (Gärdenfors

& Williams, 2001). This way, di�erences between concepts are calculated as the

distance between two concepts on the Voronoi plane (Gärdenfors, 1996). As in

any geometrical plane, measuring a distance could be done using di�erent methods

(e.g., Euclidean distance, cosine distance).
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One limitation of this approach is that we usually need to involve psychologi-

cal experiments about similarity judgments to construct these conceptual spaces.

However, with the advent of modern computational approaches, similarity spaces

could be directly derived from word embeddings and machine learning methods

(Douven & Gärdenfors, 2020). Once we have derived these similarity spaces, we

can use transformational matrices to map one space to another (Lieto et al., 2016).

One crucial di�erence between similarity spaces for word embeddings and concep-

tual space is the fact that the latter has n-dimensions that correspond to quality

dimensions (Gärdenfors, 2004). On the other hand, dimensions of similarity spaces

correspond to unidenti�ed bi-dual regularities between a target word and the con-

text it is used in, as we described in Section 4.1.3.1. Even if word embeddings

dimensions have been described as not being explicitly meaningful (Lieto et al.,

2016), they do capture a regularity of structures that may encompass a regularity

of meanings. The model presented in this chapter is compatible with the idea put

forward by Gärdenfors (2004) that judgments of similarity are related to cognitive

structures of knowledge.

4.1.3.3.2 From Word Embeddings to Semantic Networks

When transposing the similarity spaces into semantic networks, we can use the

size of a region as the threshold of similarity between two words, i.e., if a word w1

is equally similar to two di�erent prototypes p2 and p4, then it will sit precisely

at the boundaries between these two regions as in Figure 4.10 (Gärdenfors, 2004,

adapted from their Figure 6).

If a particular region is large, then its prototype will have a more signi�cant in-
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Figure 4.10 Radius around a prototype in a Voronoi diagram

�uence on its neighborhood than a prototype from a smaller region (Gärdenfors

& Williams, 2001). This geometrical notion of similarity could be helpful when

dealing with non-monotonic e�ects related to context updating. For now, ge-

ometric considerations are not essential because we are primarily interested in

the activation-based semantic network, which, by themselves, are not geometric

spaces anymore.78

To transpose word embeddings into an activated-based semantic network, we use

the fact that similarity measures correspond to the weight of the connection be-

tween words. This transposition in terms of spreading activation improves lexical

processing models based solely on similarity measures (Rotaru et al., 2018).

For example, suppose the similarity measure between Worda and Wordb is 0.9,

and the similarity measure between Worda and Wordc is 0.5. In that case, the

weight of the connection between Worda and Wordb will be greater than the

weight between Worda and Wordc. This transposition of similarity measure into

78Geometric considerations of the similarity space could play a role when integrating
contextual in�uences, and I discuss this issue in Chapter 6.
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connection weight is illustrated in Figure 4.11 where the thickness of the connec-

tion represents the weight of the connection, and the similarity measure is taken

to be the Euclidean distance.

Worda

Wordb

Wordc

Worda

Wordb Wordc

Figure 4.11 Example of a transposition of similarity spaces into connection
weight in 2D

Once the weight of the connection has been derived from the similarity measures,

we can use this weight to measure the activation level of Wordb given Worda.

Proceeding this way, we are assuming that the connection weight between two

words is bi-directional. This feature comes from the fact that similarity measures

are symmetrical. Even if this bi-directionality is not a problem at this point, it

might play a role in some contexts. For example, if we are asked to name the �rst

words that come to mind when we hear (83-a). Then many participants could

answer de Janeiro. Under this activation-based semantic network account, this

answer would mean that the strongest connection weight from Rio was with de

Janeiro, which in turn would imply that their similarity was the highest. However,

it is also possible that when the �rst word is (83-b), then the answer is Rio, which

would again mean that the highest similarity was between Rio and Carnival.

(83) a. Rio
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b. Carnival

Those two results would thus contradict each other, and it suggests that bi-

directional or symmetrical relations like similarity might not be the best to use

when it comes to transforming them into semantic networks. However, in this

thesis, I use similarity relations between word embeddings because this unidirec-

tional aspect of similarity becomes relevant only when considering incremental

models, which is not the case here.79

After transposing all the word embeddings into a level of activation, we end up

with a graph-like structure linking all the words to their nearest neighbors like in

Figure 4.12.

When the interpreter processes a speci�c word, it is as if we are sending a signal

through a graph like in Figure 4.12. The signal is maximal at the beginning, and

it is then divided into di�erent branches. Every time the signal encounters a new

branch in the road, the signals become weaker, which is also indicative of the

relative activation between words, i.e., if the connection weight between Worda

and Wordb is stronger than the one between Worda and Wordc, then Wordb

will be more activated than Wordc which implies, in turn, that the other words

that are related with Wordb will also be more activated than the one linked with

Wordc. This hierarchy of activation goes on up until the signal dissipates and

becomes negligible.

From there, we can compute the activation level of a target word with respect to

other words' activation. Going back to our previous example The soldier jabbed

the angry lion with a ..., if we consider that all the words that are expressed in

79Another solution to this caveat would be to use an unidirectional relationship measures
between word embeddings like the KL-divergence I mentioned earlier.
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Figure 4.12 Example of an activation-based graph with normalized connection
weight

the truncated sentence are equally fully activated (e.g., 1.00), then we can send

this signal through the graph to get the most activated words.

In this section, I introduced word embeddings, showed di�erent approaches to

derive them, and explained that comparing word embeddings could lead to the

computation of useful linguistic information. I then discussed the possible parallel

between the similarity spaces described in distributional approaches and the con-

ceptual space described in cognitive linguistics. Finally, I argued that similarity

measures could predict the next word, but that we �rst had to transpose similarity

measures into an activation-based semantic network. In the next section, I present

the relevant representational levels of the meaning compositions and explain how
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to compute similarity measures for every one of them.

4.2 Compositional Units

The need to have di�erent kinds of linguistic units has already been assessed

empirically in Chapter 2. We also discussed it in Chapter 3 when I argued that

language use was about meaning composition and combining linguistic units into

larger units of meaning. In this thesis, I consider four di�erent representational

levels of meaning related to the derivation of a linguistic prediction. After assessing

their respective nature and computed their contribution separately, I discuss how

to combine them to derive the linguistic prediction.

I have already mentioned that word embeddings are the primary data used by this

model of linguistic prediction. However, one major problem of word embeddings

is that they cannot naturally deal with the hierarchical features involved with

meaning compositions, and this has to do with the way they are learned (Marcus,

2018).80 The features used during the training process of the word embeddings are

non-hierarchical, which means that any information about the way the meaning

of two words is composed together is not taken into account during the training

phase. One way to resolve this problem would be to modify the training algorithm

so that the word embeddings could intrinsically consider meaningful hierarchical

features.

80The importance for distributional representations to take into account compositions of
words instead of a series of single words has already been the focus of a debate between supporters
of connectionism and supporters of classical symbolic architecture (McClelland et al., 1989, 1986;
Fodor & Pylyshyn, 1988; Chalmers, 1993). See Doumas & Hummel (2012) for more information
about the di�erences between these two kinds of architectures.
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In this thesis, I am instead proposing to treat meaning composition in terms

of di�erent combinations of word embeddings, each corresponding to a di�erent

representational level of the composition. Much like the lexical meanings stored

in memory that we combine to construct the meaning of a multi-word utterance

(Hagoort, 2020), word embeddings can be used as building blocks to derive a more

complex composition of meanings. Using a compositional function to combine

word embeddings is in line with the many hybrid symbolic-connectionist models

developed in recent years (Doumas & Hummel, 2012; Baroni, 2013; Clark, 2016).

In the remainder of this section, I describe four representational levels associated

with meaning compositions: I explain their respective contribution to linguistic

prediction, and I argue that each representational level lives on parallel similarity

spaces, which have all to be considered when deriving a linguistic prediction.

4.2.1 Composition of Word-vectors

The three requirements that a compositional model must meet are the following

Martin & Doumas (2020, p.5): 1) we must have representations that give informa-

tion about the state of the world, 2) we must have a compositional mechanism by

which new structures are inferred from existing structures, 3) we must have a com-

positional mechanism that is independent of the derivation of the representational

elements.

The �rst requirement is readily met by using word embeddings because these

representations of lexical meaning are used to describe a state of the world. As

for the second requirement, the idea is that once we represent the meaning of

a word as a vector, we then have to combine di�erent word-vectors to build a
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representation for the meaning of a whole sentence (Clark, 2015). The Principle

of Compositionality tells us that the meaning of a sentence is a function of its

parts and how they are combined (Pelletier, 1994), and it is possible to write

down the representation of a sentence or a constituent as a function of di�erent

word embeddings. Various approaches to combine word-vectors into sentence-

vectors have been proposed by numerous scholars (Baroni et al., 2014b; Clark

et al., 2008; Clarke, 2012) and many of them are based on the multiplication of

word embeddings (Mitchell & Lapata, 2010; Coecke et al., 2010).

In their article, Mitchell & Lapata (2010) compared nine di�erent compositional

functions, and they concluded that `simple multiplication' was better suited for

sentence similarity tasks. The model proposed by Coecke et al. (2010) takes into

account the structure of the composed sentence. The idea behind their approach

is that �syntax drives the compositional process� (Clark, 2015, p.26) and that the

composition follows the rules of pregroup grammar (Lambek, 2008).81

The major problem of the compositional approaches based on multiplication is

that the similarity will depend equally on all the words present in the composition

(Doumas & Hummel, 2012). For example, if we compare red dog and red house,

the similarity will be as large as the one between dog and house. Models based on

multiplication fails to grasp that the compositions red dog and red house have more

in common than dog and house because these former are part of the same set of

things that are red. Multiplicative approaches are thus incompatible with the third

requirement from Martin & Doumas (2020), which was that new representational

structures are inferred from the existing structures.

This third requirement stipulates that the compositional function should not mod-

81For a much more detailed description of this model, see Grefenstette et al. (2014);
Grefenstette (2013); Sadrzadeh et al. (2013); Sadrzadeh (2016).
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ify or a�ect the constituents' meaning within the composition. Multiplicative

composition is thus problematic because it precludes any kind of generalization.

After all, the representation of a compound will mostly depend on one word and

not the composition as a whole (Doumas & Hummel, 2012). In this thesis, instead

of multiplying vector embeddings, I am modeling compositions by adding features

present at di�erent representational levels.

Even though some proposed a hybrid approach with both multiplicative and ad-

ditive combination (Baron & Osherson, 2011), vector addition has been described

as a better way to implement the derivation compositional elements because it

ful�lls the three requirements for compositionality (Doumas et al., 2008, 2017,

2018) and because it sits closer to the way neurophysiological computations work

(Calmus et al., 2020; Martin & Doumas, 2020). Even though the speci�c details

regarding the link between this hierarchical representation and cortical represen-

tations remain to be speci�ed (Martin & Doumas, 2017), it does open the door

for a more mechanistic modeling of semantic composition (Martin, 2019).

In this section, I focus on one particular kind of additive model motivated by

the temporal synchrony of neurons �ring (Hummel & Holyoak, 2003, 2005). The

basic idea behind this approach is that when two words are combined, the rep-

resentations of both words are added together similarly to when two neurons are

co-activated and both �re at the same time (Doumas et al., 2008).

This model called Learning and Inference with Schemas and Analogy (LISA) is

a hybrid symbolic-connectionist model that codes relational structure and can

represent both objects and relational roles as patterns of activation over units

representing semantic features (Hummel & Holyoak, 2005, p.154). This model was

�rst developed to help solve the incapacity for traditional connectionist networks

to represent relational structures explicitly (Hummel, 2011). For example, in a
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traditional connectionist setting, the relational structure of loves(Kyle,Lory) is

represented as a whole, and it does not contain the explicit contribution from

either the role or the �ller.

Instead of a purely connectionist model, we can use a symbolic structure in a

connectionist setting to model the binding relations between a role and a �ller

(Hummel & Holyoak, 2003) while maintaining the independence of the compo-

nents that are composed together (Martin & Doumas, 2020). This hybrid model

remains unique because of its ability to �provide an overarching vista on theoret-

ical, computational and experimental research on syntactic and semantic compo-

sition.� (Martin & Baggio, 2020, p.6).

In the LISA model, a proposition like knows(Sally,loves(John,Sally)) is hierarchi-

cally represented using four levels (Hummel & Holyoak, 2003, 2005; Doumas et al.,

2008; Martin & Doumas, 2017) as we can see in Figure 4.13 (Hummel & Holyoak,

2005, from their Figure 1). The lowest level consists of di�erent features related to

the given words, i.e., Semantics Units. For example, in the left-most part of Figure

4.13 we can see that both Sally and John are connected with the semantic features

`human' and `adult'. The second level is for the localist Predicate-Object units

for individual objects (Sally and John) and predicates (lover and beloved), i.e.,

PO units or lexical level. The third level is for sub-propositions that bind objects

and predicates (John is the lover). It is about local role-binding, i.e., RB units.

Finally, at the top level, we have the complete proposition, i.e., P units. For cases

where we have a complex proposition like knows(Sally,loves(John,Sally)), then we

have to represent the P unit of the lower order proposition, i.e., loves(John,Sally),

and then embed it as an argument of the higher-order P unit, i.e., knows(Sally,...)

(Doumas et al., 2008).
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Figure 4.13 Representation of the proposition knows(Sally,loves(John,Sally)) in
the LISA model

According to this view, the meaning expressed by a proposition is thus conceived

as the addition of all the units created by this proposition. In terms of neuron

�ring, a proposition can be represented as the sum of the activation of semantics

features, lexical units, PO units, and RB units. To better visualize this, we can

use a time-series illustration of the representation of a particular proposition like

in Figure 4.14 (Hummel & Holyoak, 2003, from their Figure 3). It is important to

note that in LISA the units corresponding to Bill and the one corresponding to

lover �re synchronously, but in asynchrony with those for Mary and for beloved

(Hummel & Holyoak, 2003).

The fact that in LISA, we have a systematic asynchrony, i.e., some units �re in
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Figure 4.14 Left-side: Representation of the proposition loves(Bill,Mary))in the
LISA model. Right-side: Time-series illustration of this representation

synchrony, some do not, is problematic in the sense that it seems to imply that

the predicate units and the object units are of two di�erent kinds (Doumas et al.,

2018). This assumption is made because the only way to di�erentiate a predi-

cate and an object that �res simultaneously would be to have non-overlapping

semantic features for both of them (Doumas et al., 2008). To remedy this limita-

tion, a new asynchronous model was developed to represent this temporal �ring of

di�erent units: Discovery of Relations by Analogy (DORA) (Martin & Doumas,

2017). Although it is systematically asynchronous, DORA is a generalization of

LISA (Doumas et al., 2008), and it is still bound to the same requirements we

already discussed for a compositional model. The general hierarchical structure of

a proposition is the same in LISA and DORA. Still, in the latter, the asynchronic-

ity means the temporal �ring is di�erent, as shown in Figure 4.15 (Doumas et al.,

2008, from their Figure 3).



157

Figure 4.15 Left-side: Representation of the proposition bigger(Fido,Sarah) at
four di�erent time in the DORA model. Right-side: Time-series illustration of
this representation

In this asynchronous binding, the PO units for larger �re �rst, followed by the PO

units Fido, and so on up until all the PO units have �red. The distinction between

synchronous and asynchronous binding is relevant primarily when we are taking

into account incremental processing. Because the model presented in this chapter

is not incremental, I will not further emphasize LISA and DORA's di�erences.

Crucially, both LISA and DORA support the idea that a multi-place proposition

is represented as a series of single-place predicates that are all linked to each other,

and they both posit the necessity to represent meaning composition in terms of

di�erent hierarchical levels (Martin & Doumas, 2017). The LISA and DORA

framework represents compositional units as a hierarchical structure of activation

comprising four levels. The meaning of these compositional units is represented

as the addition of the contribution from these four levels. In the remainder of



158

this section, I show how to adapt this proposed representational structure to be

integrated within a model of linguistic prediction.

The main idea is to transpose this representational structure into the activation-

based semantic network we previously described. This way, we would consider

the meaning of a composition of words by summing the contributions from the

di�erent representational levels: semantic features, lexical units, RB-units, and P-

units. In other words, when predicting the next word of a sentence, we are taking

into account the similarity measures between all the units that are activated at

these four levels. To illustrate this process, we can transpose the representational

levels as depicted in LISA for the sentence The cup is bigger than the ball (left-side

of Figure 4.16 (Doumas et al., 2018, Figure 2)), into a representational model for

a truncated sentence (right-side of Figure 4.16).

Figure 4.16 Left-side: Representation of the proposition bigger(cup,ball) in the
LISA model. Right-side: Representation of the truncated sentence bigger(cup,...)

In LISA and DORA, when a proposition is activated, it produces a systematic

�ring pattern originating at the P-level and going down to the semantic features

level (Martin & Doumas, 2019). The time-series of this cascade of �ring was

depicted in 4.15. When it comes to using this hierarchical approach to represent

the contribution from the compositions of word embeddings, it is slightly di�erent
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because of the incrementality of linguistic processing.

As explained before, when we encounter a truncated sentence, the �rst level that is

activated is the lexical level and not the level of the proposition. However, because

we are not taking incrementality into account in the model we are presenting in

this chapter, we are considering the respective contribution from these levels to be

independent of time, which means that we can simply add up the contribution at

every level to retrieve the linguistic prediction. In the remainder of this section, I

explain the contribution from the four levels by presenting each hierarchical level

separately and explaining how to measure their similarity.82

4.2.2 Lexical units

The predicated-object (PO) units represent the individual predicates and the ob-

jects present in the composition (Doumas et al., 2017; Martin & Doumas, 2019).

In this thesis's model, I use the term lexical units instead of PO-units to underline

the fact that these are directly represented as word embeddings.

To derive the lexical level contribution, we use the similarity matrix we already

constructed for the lexical level, and we compute the most activated continuations.

For the example at hand, we derive the most activated lexical units for the three

PO-unit involved in bigger(cup,...), namely, larger, smaller and cup as depicted

in Figure 4.16. From there, we add the contributions from these three words to

82In this thesis, I deliberately chose to associate these four representational units with
the same word embeddings. In other words, I assume these four units can be derived from the
same basic conceptual space. In future work, it would be interesting to associate di�erent word
embeddings with di�erent representational units and compare the results with the vanilla model
I present in this thesis.
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come up with a linguistic prediction at the lexical level. This operation is very

similar to what we already described in section 4.1.2.

4.2.3 Semantic Features

Semantic features act as distinguishing features between di�erent concepts, and

they have been useful to conceptually represent concepts and categories of con-

cepts (McRae et al., 2005). In LISA, the semantic features are treated separately

from the higher level of representations which means that the semantic units are

the same whether related to a predicate or an object (Hummel & Holyoak, 2003).

An example of di�erent semantic features that are attached to two words is de-

picted in Figure 4.17. In this particular case, we see that the semantic feature

big is shared both by truck and by elephant. In terms of activation levels, Figure

4.17 (Doumas et al., 2008, Figure 1) tells us that if both truck and by elephant

are being activated, then the semantic unit for big would be activated twice.

Figure 4.17 Representations of the semantic features of elephant and truck

Semantic units are activated when the word they are categorizing is activated,
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but we could also determine which word is activated the most by a given set of

semantic units and their respective activation level. This idea is tantamount to

what we did in the previous section when we computed the best continuation as

the highest activated word within the set of all the possible continuations. The

main di�erence here lies in the fact that semantic features are not derived from

computational methods based on word embeddings.

Concretely, we can show how it is done by going back to a proposition like big-

ger(cup,?), where the last word has been removed. The �rst thing to do is to

write down the semantic features for all lexical units present in Figure 4.16, i.e.

larger, cup, smaller.

(84) a. larger : size, attribute, high

b. cup: dish, mug, kitchen, handle, breakable,..

c. smaller : size, attribute, low

In this particular example, I used empirically derived semantic features from

McRae et al. (2005) for the word cup, but I had to simplify the form of the

semantic features so it would be easier to compare using a similarity matrix. For

example, I adapted is_breakable to breakable. For the words larger and smaller,

the semantic features are similar because both are attributes of size, one having

a higher value than the other.

Once we have the semantic features associated with the words present at the

lexical level, we can transpose these semantic features into word embeddings and

compute the most activated word embeddings using the same procedure as the

one used for the lexical level.83 From the semantic features that are activated from

83At this point I do not di�erentiate the relative activation between features associated
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the words expressed in the truncated sentence, we derive a set of pre-activated

semantic features, and we can map these semantic features into lexical items using

the same set of semantic features production norm from McRae et al. (2005)

or use other sources for semantic features like Wordnet (Miller, 1995; Fellbaum,

1998).84 The semantic-features units act as a constraint on the number of possible

continuations. In other words, the activation of the semantic features associated

with the lexical units indirectly triggers a spreading activation at the lexical level.

4.2.4 RB-units

The RB-units are representing the role-binding units or the `sub-propositions' ex-

pressed by the full proposition. These RB-units link a single role (or predicate)

with its argument to form speci�c role-argument (or role-�ller) pairs (Doumas

& Hummel, 2012; Doumas et al., 2018, 2017). For example, in the proposition

loves(John,Mary), there is one binding of the features of John to the features of

the lover, and one binding of the features of Mary to the features of the beloved

(Holyoak & Morrison, 2005). Binding is the attribution of the �ller to the argu-

ment role, and it is part of the compositional process (Martin & Doumas, 2020).

To compute a prediction at this level, we have to measure the similarity between

with the same word and I consider that every one of them is equally activated. For more
information about di�erent measures of informativeness of semantic features, please see McRae
et al. (2005).

84In this thesis, I used both McRae et al. (2005) and Wordnet to de�ne the semantic
features that were relevant for a given sentence. It would be beyond the scope of this thesis
to discuss in which ways these two sources are obtained, but the important thing to keep in
mind is that once these semantic features are transposed into a semantic network, every feature
behaves the same way, i.e. every semantic feature will activate other features that are similar
to it within the conceptual space.
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the RB-units. This similarity is measured as the weighted average of the similarity

between the words within the sub-propositions (Martin & Doumas, 2020).85

(85) cos(A(w1, w2), A(w3, w4)) = (cos(w1, w3) + (1− n)(cos(w2, w4))

In (85), A(w1, w2) is the composition of w1 and w2, and n is a weighting parameter

which is set to 0.5 (Martin & Doumas, 2020). In this model, the predicates of

the composition w1 and w3 have a greater role in the global similarity between

two propositions. This way of measuring the similarity between two compositions

allows us to compare the structure of the composition and not only the words con-

stituting it as it di�erentiates the predicates and the �ller. Consequently, (86-a)

are more similar to (86-b), than to (86-c) even though the two �llers are the same

because the predicates have more in�uence on the meaning of the composition.

(86) a. snores(Carl)

b. snores(Jackie)

c. run(Carl)

When it comes to linguistic prediction, we can use (85) to predict a missing word

from one of the propositions. For example, if the second proposition's �ller is

missing, we can �nd the word w4 to maximize this similarity measure. In order to

do so, we have to construct a similarity matrix at the RB-level by computing the

similarity for all the potential compositions using the word embeddings and the

85Martin & Doumas (2020) used this de�nition to show that human similarity ratings
were corresponding better with the DORA compositional mechanism than with a compositional
process involving the tensor product.
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formula in (85). This similarity matrix is shown in Table 4.3. In this case, instead

of the similarity value between two word embeddings w1 and w2, the similarity

value (sim) is measured between two compositions A(w1, w2) and A(w3, w4). The

dimension of this similarity matrix at the RB-level is N2 × N2 where N is the

number of word embeddings, and N2 is the number of possible binary composi-

tions between these word embeddings.

Table 4.3 Similarity Matrix for every binary combination of word embeddings

A(wi, wj−1) A(wi, wj) A(wi, wj+1)
... ... ... ...

A(wm, wn) ... sim(A(wm, wn), A(wi, wj)) ...
... ... ... ...

These meaning compositions correspond to the set of sub-propositions or RB-units

that are derived from the word embeddings. From this similarity matrix at the

RB-level, we can then compute the most activated sub-propositions. The �nal

step is to extract the missing word from the most similar RB-unit. For example,

if A(wi, wj) is most similar with A(wm, wn), we can then retrieve the word wn

from the composition to get the predicted word at the RB-level.

4.2.5 P-units

We also have to consider how the propositional units, or P-units, themselves give

rise to a prediction about the upcoming word. In this case, we start from an

incomplete proposition, e.g., bigger(cup,?), and we compute the complete propo-

sition that best �ts this context. The idea is to measure the similarity between an
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incomplete proposition like bigger(cup,?) and the set of all the complete proposi-

tions to �nd the most similar complete proposition and then derive the prediction

from it. This derivation is very similar to what we described in terms of plau-

sibility in Chapter 2. The idea is to �nd the continuation that would make the

proposition the most plausible, given the incomplete information we possess.

To do this, we derive a representation for the incomplete proposition and a repre-

sentation for the complete one and then measure the similarity between the two.

We already mentioned that in both DORA and LISA, a composition of words is

derived by adding vectors. This additive operation between a predicate and a �ller

is represented at the RB-level in 4.16, and I already presented how to measure

the similarity between two sub-propositions in (85).

Here, it is slightly di�erent because we are dealing with the similarity between

an incomplete proposition and a complete one. The simplest way to derive those

representations is to add all the word vectors together, but we have to keep in

mind that we still have to consider a weighting parameter of 0.5 to di�erentiate

between the contribution from the predicate and the �llers.

The representation for a proposition is the sum of two sub-propositions that

are contained within it, i.e., the weighted sum of the two RB-units as shown

in (87-a). Additionally, we have to do the same for the incomplete proposition,

which amounts to the computation without the last word as in (87-b).

(87) a. bigger(cup,ball) = (larger+cup) + (smaller+ball) = larger + 0.5 cup

+ smaller + 0.5 ball

b. bigger(cup,?) = (larger+cup) + (smaller+?) = larger + 0.5 cup +

smaller
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Under this approach, we can measure the similarity between two entities that have

a di�erent number of words as illustrated in (88).

(88) cos(P (w1, w2, w3), P (w5, w6, w7, w8)) = cos(w1+w2+w3, w5+w6+w7+w8)

We then compute the similarity matrix at the P-level that gives the similarity

measures between every incomplete propositions P (w1, w2, w3) and every complete

ones P (w5, w6, w7, w8) as illustrated in Table 4.4. We can �nd the most activated

complete propositions with this matrix when a speci�c incomplete proposition is

expressed. Going back to our example, this means that we are comparing big-

ger(cup,?) with every other possible complete proposition to determine the one

complete proposition that is most similar with bigger(cup,?). The dimension of

the similarity matrix at the P-level if N3 × N4, where the number of rows cor-

responds to the number of RB-units times the number of word embeddings, i.e.,

N2 × N = N3, and the number of columns correspond to the number of combi-

nation between two RB-units, i.e., N2xN2 = N4.

Table 4.4 Similarity Matrix for every combination of RB-units

... P (wi, wj, wk, wl) ...
... ... ... ...

P (wm, wn, wo) ... sim(P (wm, wn, wo), P (wi, wj, wk, wl)) ...
... ... ... ...

Once we have determined the most activated propositions, we can extract the last

word from these propositions, i.e., w8 or wl, like what we did for the RB-level,

and use it as a lexical prediction at the P-level.
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4.3 Computing a Prediction

The predictive model's basic premise is that the conditional probability of a word

given a particular context, namely the predictability, is derived by considering dif-

ferent levels of representations. Each of these levels contributes to the derivation

of a linguistic prediction as in Figure 4.18 (Doumas et al., 2018, adapted from

their Figure 3).

Figure 4.18 Four contributions to the derivation of a linguistic prediction

The contributions for the four representational levels we discussed, i.e., the seman-

tic feature level, the lexical level, the RB-level, and the P-level, are all computed

using activation-based semantic networks. This makes it easy to take all of them

into account at once. Every level's output is a graph-like structure containing

words that are all activated at di�erent degrees. The idea is to simply add all

the activations together to come up with the highest activated words. In other

words, the �nal linguistic prediction is derived by summing up the activation of

the linguistic prediction at each of these levels as in (89), where MAP is a set of

most activated predictions at a given representational level.
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(89) Prediction = MAPs.f. +MAPPO +MAPRB +MAPP

Figure 4.19 summarizes the derivation of the MAP for each representational lev-

els. In Figure 4.19, the orange arrows represent the extraction of the information

that leads to representing the four compositional units: P-unit, RB-unit, lexical

unit, and semantic features. This operation is performed concerning the respec-

tive de�nition I presented for these four levels. The blue arrows from the units

to the MAP represent the derivation of the most activated prediction, and it is

performed using the similarity matrices at the P-level, at the RB-level, and the

lexical level. This last one being used at both the lexical level and at the level of

the semantic features. Each MAP corresponds to a set of predicted words, and

the black arrows represent their combination into a set of predicted words that is

computed by adding the four MAPs together.

Figure 4.19 Depiction of the linguistic prediction process

It is important to note that the word with the highest activation level in total

does not need to be the best candidate at each representational level. To illustrate

the relative contribution from two levels of contributions, we can go back to our
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example about the angry lion. In (27-a), reprinted here as (90), the lexical level

might activate a particular subset of the lexicon, andmachete may be the strongest

candidate. However, the similarity features level for �sharp pointy object� might

activate another subset of the lexicon, which would compete with the former so

that machete might not have the highest cloze score, in the end, (Roland et al.,

2012).

(90) The soldier jabbed the angry lion with ...

Another critical point is that in this basic model, the di�erent representational

levels cannot interfere with each other. They can be summed up, but they do not

in�uence the activation level of one another. For example, the P-level is entirely

independent of the semantic feature level regarding the activation-based semantic

networks, not in terms of the representational units themselves. This means that

we can simply add the contributions without modeling the possible interactions

between two representational levels. This independence is mainly because we are

not considering incrementality, so the model acts as if all the contributions are

already derived when the summation is performed.86

Finally, it is important to note that because this model is activation-based, the

most activated word should not be thought of as a 100% sure prediction, but

it is instead an indication of the predictability of this word (Ferreira & Lowder,

2016). The output of this model is not linked with a particular realization of the

close task, but it provides us a list of words categorized by their activation level

concerning a particular context, i.e., P (wi|Context).

86This simpli�cation is not always possible when using incremental models of linguistic
prediction.



170

What about Syntax? In this chapter, I have developed a model of linguistic pre-

diction following the empirical results discussed in Chapter 2, which supported the

view that the semantic stream had precedence over the syntactic stream.87 For

example, the way we dealt with compositional units was by focussing on meaning

compositions. However, even though we did not handle syntax explicitly, other

than by eliminating by hand syntactic continuations that would be ungrammati-

cal, it is partly taken into account as part of the di�erent representational levels,

since John ate the apple does not involve the same hierarchical representations

as The apple ate John. One way to consider syntactic information without mod-

ifying the basic structure of the model presented here would be to integrate this

information by modifying word embeddings training algorithms to account for

syntactic information or by training these embeddings on parsed corpora (Linzen,

2019).

Instead, this thesis has taken a meaning-driven predictive approach since distribu-

tional representations, and activation-based semantic networks are primarily re-

lated to the semantic stream. When it comes to linguistic prediction, the meaning

expressed at a di�erent representational levels is important, but to help constrain

the possible outcomes, we need to use syntactic information from the truncated

sentence. As discussed in Chapter 3, Combinatory Categorial Grammar (CCG)

(Steedman, 1996, 1999) ful�lled the three conditions of the desiderata for modeling

linguistic prediction, and it is an excellent way to model the constraints imposed

by the syntax. For example, in (91), if we are using the CCG terminology, the

missing word category should be `N' because it should combine with to �y a to

form an `S/NP' that could, in turn, combine with the rest of the sentence to give

rise to a complete sentence of type `S.'

(91)

87See also Baggio (2018) for a description of the relationship between these two processing
streams.
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The day was breezy so the boy went to the park to �y a ....

This hypothesis about the syntactic type of the missing word is obtained using

the syntactic stream that uses morpho-syntactic rules to compute the missing

category of words so that the complete sentence is compositional, i.e., that the

sentence has the type `S.' This syntactic combinatorial stream is thus capable of

predicting the missing word category by computing the conditional probability of

this syntactic type given the syntactic type of the rest of the sentence.

In this case, the conditional probability over the syntactic type is obtained by

looking at all the possible continuations and picking the most probable one. In the

syntactic stream, this operation is made possible because the parser is incremental,

and so at every step of the process, the system automatically looks at potential

syntactic types to complete the composition of the sentence.

In the present model, when computing a linguistic prediction, syntactic constraints

limit the possibilities to ease the computation. At the end of the process, instead

of measuring the similarity between all the word embeddings at the lexical level,

we select only the word embeddings that correspond to the expected syntactic

category. For example, if the sentence structure demands the linguistic prediction

to be a noun, only the nouns will be selected as potential predictions. In the

model of linguistic prediction presented in this thesis, the constraining in�uence

originating from the syntactic processing is implicitly taken into account, even

though it is not explicitly implemented in the model.88

88Even if syntax has a role to play in the process, it is essential to distinguish a meaning-
driven process where syntax is only taken into account at the end of the derivation process, i.e.
it is only after all the continuations have been derived that the syntactic constraints are applied,
with a syntax-�rst process where these constraints would be used right at the beginning and
would forbid some continuations to be activated. The way syntax is taken into account here is
similar to what was described by Baggio (2018, p.186) as phrase structure level constaints (pslc)
that may be imposed on the input string S (see also Section 2.4 and Section 5.5).
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4.4 Worked-out Examples

This section illustrates how this linguistic prediction model works using three

di�erent kinds of truncated sentences: a high constraining sentence, a low con-

straining sentence, and a sentence where the in�uence of the previous context

is crucial. Similarity measures were computed from the Gensim Python library

using pre-trained word2vec-google-news-300 embeddings.89,90

4.4.1 Example 1: High Constraining Sentence (HCS)

In a high constraining sentence, the number of possible continuations is low, and

one continuation usually has a particularly high predictability score. For the

sentence given in (92), it is the word neck that has the highest predictability as

measured by Bloom & Fischler (1980) (96%) and by Block & Baldwin (2010)

(97%).

(92) He loosened the tie around his ...

To compute the linguistic prediction, the �rst thing to do is represent the trun-

cated sentence in terms of the four representational levels. This representation

89To avoid any prediction of very rare words, only the 100'000 most frequent words were
used for the calculations.

90In this thesis, I use pre-trained word2vec word embeddings to show how to implement a
vanilla model of linguistic prediction. In the future, it would be interesting to compare the results
not only for di�erent models of word embeddings but also for di�erent pre-trained embeddings
of the same model.
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is illustrated in Figure 4.20. From there, we can derive the Most Activated Pre-

dictions (MAP) at each of these levels and combine them to obtain the linguistic

prediction.

Figure 4.20 Representation of the proposition loosened(he,around(tie,?)

The representation depicted in Figure 4.20 is di�erent from the representations we

could expect in LISA and DORA, and this is due to the fact that I am using word

embeddings to compute similarities, and the words or the expressions depicted

in the representation must be present as word embeddings in the corpus. For

example, instead of loosener+he and loosens+around(tie,?), I used loosen for the

RB-units because both loosener and loosens are not in the 100'000 most frequent

words. However, to remain true to the principle behind DORA and LISA, loosen

is taken into account twice by the model because it is linked with two di�erent

RB-units.
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4.4.1.1 MAP at the Lexical-level: HCS

At the lexical unit level, the MAPs are computed by �nding the words that are

the most similar to the words expressed in the �rst part of the sentence. Using

the similarity matrix that we have derived at the lexical level, we measure the

similarity between the predicted words and the lexical units present in (92).

(93) MAPL = Lexical-unit that is the most similar to he, loosen, loosen, tie,

around.

Table 4.5 First �ve MAP for the Lexical-units of (92)

win 3.285

back 3.020

tie 2.983

semi�nal 2.364

�nish 2.176

In Table 4.5, the activation level for every MAP is the sum of the contributions

from the �ve lexical units given in (93). As explained before, only the words

associated with the relevant grammatical categories are selected in this model,

and the rest are discarded. In this Table and all subsequent tables, we only

represent the words with the relevant grammatical categories. In the case of (92),

the predicted word should be a noun. Interestingly, at the lexical level, the word

neck is not present at all in the MAPs, which means that it is not activated.
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4.4.1.2 MAP at the Semantic Feature-level: HCS

At the Semantic Features (SF) level, the MAPs are computed similarly to that

we have done for the lexical level, but here the MAP corresponds to the most

similar words to the semantic features activated by the lexical units. Using the

same similarity matrix for the lexical units, we measure the similarity between

the predicted words and the semantic feature units present in (92).

(94) MAPSF = Lexical-unit that is the most similar to male, person, tightness,

lessen, clothing, neck, encircling, surrounding.

Table 4.6 First �ve MAP for the SF-units of (92)

forearm 8.560

thigh 7.626

tendinitis 7.509

rib_cage 6.875

groin 6.863

At the level of the semantic features, the word neck does not appear in the �rst

�ve MAPs, but it is activated. Its activation is 5.071.91

91The di�erence in the absolute values of the activation for the MAPs in Table 4.6 and
those in Table 4.5 arises because the normalization factor is not the same for the di�erent levels
of similarity. When combining the contribution from two di�erent levels, we have to renormalize
the activation so that every level contributes equally.
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4.4.1.3 MAP at the RB-level: HCS

At the level of the RB-unit, the MAPs are computed by �nding the complete

RB-units that are the most similar to the incomplete RB-unit aroundRB. Using

the similarity matrix that we already derived for the RB-units, we measure the

similarity between the complete RB-units and the incomplete RB-unit, which

consists, in the case of (92), of the lexical unit around. Once we have computed

the MAP at the RB-level, we can retrieve the last word of the RB-unit, which

corresponds to the prediction of a lexical unit.

(95) MAPRB = RB-unit that is the most similar to aroundL

Table 4.7 First �ve MAP for the RB-units of (92)

around+back 0.934

around+past 0.922

around+neck 0.842

around+tie 0.8412

around+legs 0.836

In Table 4.7, the words in italic correspond to lexical prediction retrieved from

the RB-units.
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4.4.1.4 MAP at the P-level: HCS

At the level of the P-unit, the MAPs are computed by �nding the complete propo-

sitions that are the most similar to the incomplete proposition given in (92). Using

the similarity matrix we derived for the complete propositions, we measure the

similarity between these complete propositions and the incomplete proposition,

which consists, in the case of (92), of loosen(he(around(tie,?)). Once we have

computed the MAP at the P-level, we can retrieve the last word of the proposi-

tion corresponding to the prediction at the lexical level.

(96) MAPP = Proposition that is most similar to loosen+heRB+tie+aroundRB+aroundL

Table 4.8 First �ve MAP for the P-unit of (92)

(loosen+he) + (tie+around) + (around+back) 0.983

(loosen+he) + (tie+around) + (around+neck) 0.963

(loosen+he) + (tie+around) + (around+legs) 0.960

(loosen+he) + (tie+around) + (around+knees) 0.958

(loosen+he) + (tie+around) + (around+tie) 0.952

In Table 4.8, the words in italic corresponds to lexical prediction retrieved from

the propositions.
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4.4.1.5 Deriving the Linguistic Prediction: HCS

To derive the linguistic prediction, we have to combine the MAPs obtained at every

level by summing up the activation of the linguistic prediction as in (97). In order

to treat the contributions equally, we normalize the MAP at every level in terms

of their relative activations with respect to the number of possible predictions at

that level.

(97) Prediction = MAPSF +MAPPO +MAPRB +MAPP

Table 4.9 First �ve MAP for the sentence (92)

back 0.055

neck 0.052

thigh 0.051

rib_cage 0.051

legs 0.051

To derive the �nal MAP at every level, I have summed up the activations of the

di�erent realizations of the words, e.g., the contribution from the words Hand,

hands, hand. On the other hand, the contribution from related words that have

di�erent grammatical types was not included in this sum, e.g., handy or handling.

There are no clear indications in Bloom & Fischler (1980) or Block & Baldwin

(2010) as to whether plurals were recorded as di�erent answers, but I chose to

combine these contributions to re�ect the fact that this is a comprehension-centric

model of linguistic prediction where it is the meaning of a word that is predicted

instead of a speci�c lexical entry. In Table 4.9, I assumed that every level is
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contributing equally to the derivation of the linguistic prediction.92 Even though

the relative contribution from the di�erent levels might be di�cult to grasp from

these tables, we can still readily see every levels contains at least one continuation

that is present in the overall prediction. The word thigh for example is only

present in the �ve most activated prediction at the semantic features level, while

the lexical level contains four candidate words that are expelled from the top �ve

when combined with the other levels.

4.4.2 Example 2: Low Constraining Sentence (LCS)

In a low constraining sentence, the number of possible continuations is signi�cant

and there are no continuations that have particularly high predictability score. For

the sentence given in (98), the cloze scores are the following (Bloom & Fischler,

1980): hands (49%) , glove (32%), mitt (8%), teeth (4%).

(98) Dan caught the ball with his ...

To compute the linguistic prediction, the �rst thing to do is represent the trun-

cated sentence in terms of the four representational levels. This representation

is illustrated in Figure 4.21. From there, we can derive the Most Activated Pre-

dictions (MAP) at each of these levels and combine them to obtain the linguistic

prediction.

92In this model, it is possible to modify the contribution weight of a speci�c level. This
issue is discussed in Chapter 6.
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Figure 4.21 Representation of the proposition caught(he,ball)+with(?)

4.4.2.1 MAP at the Lexical-level: LCS

Using the similarity matrix that we derived at the lexical level, we measure the

similarity between the predicted words and the lexical units present in (98).

(99) MAPL = Lexical-unit that is the most similar to catcher, he, catches, ball,

with.

Table 4.10 First �ve MAP for the Lexical-units of (98)

catcher 7.476

quarterback 7.038

shortstop 6.825

pitcher 6.458

baseman 5.778

At the lexical level, the word hands does not appear in the �rst �ve MAP, as its
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activation is only 0.161. The activation of the word glove is 0.688.

4.4.2.2 MAP at the Semantic Feature-level: LCS

Using the same similarity matrix for the lexical units, we measure the similarity

between the predicted words and the semantic feature units present in (98).

(100) MAPSF = Lexical-unit that is the most similar to male, person, receive,

object, thrown, round, game, instrument.

Table 4.11 First �ve MAP for the SF-units of (98)

game 6.462

semi�nals 5.465

quarter�nals 5.453

tournament 5.400

�nals 4.668

At the level of the semantic features, the word hand is not activated, but the word

glove is. Its activation is 0.100.

4.4.2.3 MAP at the RB-level: LCS

Using the similarity matrix that we already derived for the RB-units, we measure

the similarity between the complete RB-units and the incomplete RB-unit, which
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consists, in the case of (98), of the lexical unit with. Once we have computed

the MAP at the RB-level, we can retrieve the last word of the RB-unit, which

corresponds to the prediction at the lexical level.

(101) MAPRB = RB-unit that is the most similar to withL

Table 4.12 First �ve MAP for the RB-units of (98)

with+hands 3.275

with+glove 2.124

with+socks 0.760

with+toes 0.738

with+legs 0.734

In Table 4.12, the words in italic correspond to lexical prediction retrieved from

the RB-units.

4.4.2.4 MAP at the P-level: LCS

Using the similarity matrix that we already derived for the complete proposi-

tions, we measure the similarity between the complete propositions and the incom-

plete proposition, which consists, in the case of (92), of the RB-units catcher+he,

catch+ball, and of the lexical unit with. Once we have computed the MAP at the

P-level, we can retrieve the last word of the proposition, which corresponds to the

prediction at the lexical level.
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(102) MAPP = Proposition that is most similar to he+catcherRB+catches+ballRB+withL

Table 4.13 First �ve MAP for the P-unit of (98)

(catcher+he) + (catches+ball) + (with+hands) 3.821

(catcher+he) + (catches+ball) + (with+glove) 1.882

(catcher+he) + (catches+ball) + (with+mitt) 1.876

(catcher+he) + (catches+ball) + (with+�ngers) 1.855

(catcher+he) + (catches+ball) + (with+socks) 0.944

In Table 4.13, the words in italic correspond to lexical prediction retrieved from

the propositions.

4.4.2.5 Deriving the Linguistic Prediction: LCS

To derive the linguistic prediction, we have to combine the MAPs obtained at

every level. This linguistic prediction is derived by summing up the activation

of the linguistic prediction at each of these levels as in (103), but we �rst have

to normalize the MAP at every level so that they each contribute to the same

proportion to the linguistic prediction.

(103) Prediction = MAPSF +MAPPO +MAPRB +MAPP

In 4.14, we see the order of the �rst three MAPs is the same as the one obtained by

(Bloom & Fischler, 1980). However, the word teeth is not activated by the model.

When comparing the contribution coming from the four levels, we readily see that



184

Table 4.14 First �ve MAP for the sentence (98)

hands 0.164

glove 0.118

mitt 0.078

�ngers 0.077

socks 0.040

here, both the top �ve continuation at the lexical and the semantic features levels

seems to contribution less to the �nal combined prediction. This is not to the

�rst �ve MAP for the sentence (98) are not activated at these levels, but only

they stand out less than it was the case for the HCS example. This should not be

surprising at this latter case is less constrained than the former.

4.4.3 Example 3: The in�uence of the context (IoC)

In some cases, the prior context might increase the probability of a particular

non-conventional combination of words. For example, Nieuwland & Van Berkum

(2006) showed that, when given a suitable discourse context, participants pro-

cessed animacy-violating predicates more easily, i.e. the peanut was in love, than

canonical predicates like the peanut was salted. Their result was obtained by com-

paring the measured N400 e�ect with and without a context that supported this

animacy-violation. In the example (104) taken from Nieuwland & Van Berkum

(2006), the association between the meaning of peanut and the possible continu-

ation is modi�ed by the use of a speci�c context where the peanut is attributed
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anthropomorphic characteristics.93

(104) [Full context] A woman saw a dancing peanut who had a big smile on

his face. The peanut was singing about a girl he had just met. And

judging from the song, the peanut was totally crazy about her. The

woman thought it was really cute to see the peanut singing and dancing

like that. The peanut was [salted/in love], and by the sound of it, this

was de�nitely mutual. He was seeing a little almond.

In this section, I use my model to derive the linguistic prediction for the sentence in

(105). The goal here is to test whether it could tackle such particular cases where a

previous context in�uences the expectations regarding the possible continuations.

In this chapter, I am only considering the truncated sentence, and in Chapter 5,

I will take into account the previous context.

(105) The peanut was ...

In the previous examples, we derived a prediction for a speci�c argument of a

predicate, but here we have to predict a predicate directly. This di�erence rever-

berates in the way the incomplete proposition is represented in Figure 4.22. Here,

the RB-level and the P-level are merged because we only have a single argument

predicate which means we can omit the P-level for the derivation. From this rep-

resentation, we can derive the Most Activated Predictions (MAP) at each of these

93Another similar result was obtained by Cosentino et al. (2017) when they compared
the N400 components for cases with Telic and Atelic noun-verb combinations. They considered
two kinds of discourses: a neutral context, and a context that induced a new function for an
object. Their results showed that the prior function-inducing context was reducing signi�cantly
the N400 component for the non-Telic noun-verb combinations cases.
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levels and combine them to obtain the linguistic prediction.

Figure 4.22 Representation of the proposition ?(peanut).

In the case at hand, the goal is not to predict the upcoming word, but to illustrate

the di�erent expectations regarding the processing of the words salted and love.94

4.4.3.1 MAP at the Lexical-level: IoC

Using the similarity matrix that we derived at the lexical level, we measure the

similarity between the predicted words and the lexical units present in Figure

4.22.

(106) MAPL = Lexical-unit that is the most similar to peanut

94In the wiki-news corpus, the expression in-love is present but is very rare, i.e., its rank
is 664'236. In this calculation, I instead use the word embedding love.
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Table 4.15 First �ve MAP for the Lexical-unit of (105)

dairy 2.685

milk 2.567

meat 2.474

pork 2.290

rice 2.263

4.4.3.2 MAP at the Semantic Feature-level: IoC

Using the same similarity matrix for the lexical units, we measure the similarity

between the predicted words and the semantic feature units present in Figure

4.22.

(107) MAPSF = Lexical-unit that is the most similar to seed, edible, plant.

Table 4.16 First �ve MAP for the SF-units of (105)

plant 4.113

vegetables 4.098

wheat 3.612

corn 3.277

rice 2.984
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4.4.3.3 MAP at the RB-level: IoC

Using the similarity matrix that we derived for the RB-units, we measure the

similarity between the complete RB-units and the incomplete RB-unit, which

consists, in the case of Figure 4.22, of the lexical unit peanut.

(108) MAPRB = RB-unit that is the most similar to peanutL

Once we have computed the MAP at the RB-level, we can retrieve the last word

of the RB-unit, which corresponds to the prediction at the lexical level.

Table 4.17 First �ve MAP for the RB-unit of (105)

peanut+potato 0.960

peanut+vegetable 0.960

peanut+peach 0.960

peanut+tomato 0.955

peanut+strawberrry 0.954

In Table 4.17, the words in italic correspond to lexical prediction retrieved from

the RB-units.

4.4.3.4 Deriving the Linguistic Prediction: IoC

To derive the linguistic prediction, we have to combine the MAPs obtained at

every level. This linguistic prediction is derived by summing up the activation
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of the linguistic prediction at each of these levels as in (109), but we �rst have

to normalize the MAP at every level so that they each contribute to the same

proportion to the linguistic prediction.

(109) Prediction = MAPSF +MAPPO +MAPRB +MAPP

Table 4.18 First �ve MAP for the sentence (105)

milk 0.028

wheat 0.028

dairy 0.027

meat 0.027

grain 0.027

We see from Table 4.18 that the linguistic prediction does not make much sense,

but, as described before, the goal here was not to predict the upcoming predicate

but to compare the activation of love and salted. As it turns out, neither of them

is activated in the model. However, we do have activation for the word salt, which

is semantically related to salted. Its activation is 0.007. Contrary to what we had

before, the contribution coming from the RB-level seems to be minimal here as

the �rst �ve MAP for the sentence (105) looks very similar to the most activated

continuations for the lexical and the semantic features levels.

In this calculation, the prior context is not taken into account, and the information

present in this prior context might in�uence the relative activation between the

word love and salted. In Chapter 5, we revisit this example while taking into

account the prior context to see how it a�ects the relative activation between the

two.
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4.5 Summary

In this chapter, I have presented a model of linguistic prediction based on the pre-

activation of words at di�erent levels of representations. The basic idea behind

this approach is that linguistic prediction can be modeled as a series of activation

paths within the conceptual space. Every time a meaningful linguistic unit is

processed, it lights up a corresponding region in conceptual space, and from this

region, the activation spreads to conceptual neighbors similar to this linguistic

unit. In this model, I have considered four levels of spreading activation, and each

of them is linked with a particular level of linguistic representation. This multi-

level view of linguistic prediction is in line with what we described in Chapter 2

about the parallel architecture of Baggio (2018).

Similarity, Predictability, and Plausibility The predictability is the cloze values

of a word, and it is equivalent to the conditional probability of using a word

given a particular context. To derive the result of this conditional probability,

we considered four representational levels and their associated activation-based

semantic networks. These networks are constructed from the similarity measures

between the di�erent linguistic units, i.e., semantic features, lexical units, RB-

units, and P-units.

Usually, semantic similarity only refers to the similarity at the lexical level, but

here, the similarity is used to derive the most activated predictions at di�erent

representational levels. When measuring the similarity between linguistic units,

we have to take into account the nature of these linguistic units and how they

are formed. Consequently, the way this similarity is computed varies for each

representational level. Going back to the distinction we underlined in Chapter 2



191

between similarity and plausibility, we can associate them to speci�c representa-

tional levels.

For example, the linguistic prediction process involving the notion of plausibility

is tantamount to the similarity measured at the P-level, because the linguistic

prediction is derived using the correspondence between the predicted word and

the whole sentence. Similarly, the passive co-activation process we discussed in

Chapter 2 would correspond to the similarity at the lexical level within this multi-

representational model of linguistic prediction.

In summary, in this model, the predictability is obtained using di�erent repre-

sentational levels of MAP, and it encompasses what was previously described as

passive co-activation and plausibility. This view about linguistic prediction helps

disambiguate these three notions and explains why it is di�cult to treat them

separately.

In the last section of this chapter, I have presented three examples to illustrate

could be implemented. In the case of the High Constraining Sentence, the model

was able to retrieve the word neck as the second most activated prediction, just

behind the word back. When I considered the Low Constraining case, the ordering

for activations for the words hands, glove, and mitt exactly corresponds to the

ordering for the cloze scores obtains by Bloom & Fischler (1980). Put together,

these results supports the empirical adequacy of this model. Finally, in the case

where we had to compute the relative activation of the word love and the word

salted, the model did not activate the word love and it only activated salt instead

of salted. In the following chapter, I come back to these worked-out examples,

and I integrate the contribution coming from the coordinated aspect of language.



CHAPTER V

LINGUISTIC PREDICTION AND COORDINATION

5.1 Communication and Cloze task

The previous chapter presented how a prediction for the upcoming word can be

derived from the meaning composition represented using di�erent linguistic units,

namely the semantic features level, the lexical level, the RB-level, and the P-

level. However, when we add these contributions together to derive a linguistic

prediction, we are not considering the coordination aspect of communication.

As I already described in Chapter 3, the meaning composition is about the mean-

ing that emerges from combining the words presented in a sentence. When dealing

with coordination, we also have to take into account the speaker that uttered this

sentence because communication involves two agents, and each of them has an

active role to play during a linguistic exchange.

The present chapter discusses this coordination aspect by considering that sen-

tences, and more generally linguistic information, be thought of as communicative

acts. This perspective about coordination has signi�cant consequences for how a

linguistic prediction is derived.
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5.1.1 Communication and Coordination

Communication originates from an interaction between two agents: a speaker con-

veys a particular meaning and produces a sentence, while a hearer retrieves the

conveyed meaning that was intended. One important characteristic of commu-

nicative interaction is the inherent uncertainty that is involved. This uncertainty

arises naturally when the hearer interprets as language itself is uncertain or am-

biguous.95

For example, in (110-a), the meaning of the word bank is uncertain because it

could either refer to a �nancial institution or a rising ground bordering a river.

This is just one example of lexical ambiguity, but we also have other kinds of

uncertainties. In (110-b), we have morphological uncertainty because the -s could

have di�erent meanings, and we have a phonological uncertainty in (110-c) because

the same phonemes are attached to di�erent meanings. Finally, in (110-d), there

is uncertainty concerning the referent of the turtle. In a case where the only

information we have about the turtle is that Moira took it, then we might be able

to grasp a generic meaning of a turtle, but we would not be able to attribute this

act of being taken to a speci�c turtle.

(110) a. The �sherman went to the bank.

b. Mark-'s, pen-s, eat-s

c. too, two, to.

95Piantadosi et al. (2012) and Gibson et al. (2019) used the term ambiguity to refer to
lexical and syntactic ambiguity. In this thesis, I use uncertainty instead of ambiguity because
uncertainty could also encompass other notions such as vagueness, underdetermination, and
context sensitivity which are all present in communication. See Sennet (2016) for a detailed
de�nition of these notions.
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d. Moira took the turtle.

These examples show that linguistic units by themselves are not informationally

strong enough to compensate for their innate meaning �exibility. However, this

natural uncertainty is not a problem for communication per se because we seem

to have relatively few problems understanding each other during a day-to-day

conversation. Most importantly, having to deal with uncertainty should not be

thought of as incompatible with the view that language is a sound communication

system. In a perfect communication system, i.e., a maximally precise communica-

tion system, uncertainty would be non-existent, and each word, or each linguistic

unit, would be expressing only one meaning and vice-versa. The correspondence

between meaning and linguistic form would thus be perfectly bi-directional.

A perfect communication system has some advantages because listing unique map-

pings between words and meanings would decrease lexical uncertainty. However,

this implies that the number of mappings we have to learn would dramatically

increase. Additionally, in this perfectly non-ambiguous communication system, to

convey some simple meaning, we would have to use perfectly speci�c words that

would only describe a very particular meaning and nothing else.

Instead of learning new words that are more speci�c and less ambiguous, another

option would be to use more words to avoid uncertainty, as in (111). However, this

method is not very e�cient because it increases the complexity of the production

phase tremendously (Piantadosi et al., 2012). For example, in (111) we have to

produce at least three more words to specify the meaning of the single word bank.

(111) a. The �sherman went to the bank.

b. The �sherman went to the bank of the river.
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c. The �sherman went to the bank to make a deposit.

In fact, in a real-life conversation, a speaker would most probably choose to utter

(111-a) and would rely on the hearer to be able to grasp the intended meaning of

bank. Instead of spending extra energy on trying to be as speci�c as possible, the

speaker puts the burden of interpretation on the hearer's shoulder, which has to

disambiguate the message. In everyday conversation, the speaker almost always

takes this e�ortless path, and, interestingly, we still rarely face communicative

complications because of this decision. Language is not a maximally precise com-

munication system, but it seems that maximum precision is not compulsory for

successful communication.

The main reason why ambiguous language communication does not have to be

perfect is that hearers are very good at disambiguating meanings in context (Pi-

antadosi et al., 2012). As illustrated in (111), the hearer is usually able to grasp

the meaning of (111-a) from the information present in the context of production,

and from this perspective, it would have been a wasted e�ort for the speaker to

be more speci�c.

The key is that a hearer can disambiguate using information from the context,

and it is this contribution from the context that makes language communication

e�cient despite its inherent ambiguity (Gibson et al., 2019). This perspective

about language is in line with the description given in Clark (1996) where language

use is de�ned as error-prone and more context dependant than what is often

suspected. The idea that an interpreter uses the context to disambiguate the

meaning of a word or a sentence is a primordial feature of a communication system

because it improves e�ciency both on the production and the interpretation side.

Assuming the context is disambiguating, we no longer need a perfectly e�cient
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communication system because it is cognitively easier and still communicatively

successful to produce ambiguous sentences (Piantadosi et al., 2012). Furthermore,

this means that we can re-use the same words and expressions to refer to di�erent

things. It also implies that a speaker does not have to be maximally precise

when producing a sentence because the hearer can complete the meaning of that

sentence using the information from the context (Piantadosi et al., 2012).96

In a balanced communication system, in addition to the context, we also need

words and sentences to guide the interpretation process because the context is

usually not enough to disambiguate all complex meanings.97 In other words,

we have a contribution coming from the words, but we also have a contribution

coming from the context. When it comes to linguistic prediction, there are no

principled distinctions between the two (Casasanto & Lupyan, 2015), and they

both have to be taken into account.

In Chapter 4, I discussed the contribution from the compositional aspect of com-

munication, and I used the term context to refer to the local context, i.e., the

linguistic information explicitly derived from the words and the compositions that

are expressed in a sentence. This local context exists in addition to the global

context that is derived beyond the single sentence. I use the term global here

to avoid any confusion with the concept of broader context that was brie�y dis-

cussed in Chapter 4. The distinction between broader context and local context

is measured in terms of their distance with respect to the target linguistic unit.

96Although it was worded quite di�erently, this argument for the contribution from the
context is somewhat parallel to what has been described as the `Semantic Underdeterminacy
view' in the literature about the distinction between semantic and pragmatics (Carston, 2002;
Recanati, 2005; Bach, 2004).

97See Piantadosi et al. (2012) for a mathematical argument that the contextual contri-
butions help minimize the entropy (the ambiguity) of a linguistic unit whenever the context is
informative.
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For example in (112), the terms breezy and day are considered to be part of the

broader context, whereas to �y is part of the local context compared with the

point of truncation.

(112) The day was breezy, so the boy went to the park to �y....

What brings the broader and the local context together is that they refer to the

information expressed within a sentence. On the other hand, the term global

context I use here refers to the sum of information available to the interpreter

at the time of the prediction. This information could be derived from linguistic

sources like the previous sentences or non-linguistic perceptual inputs originating

from vision or hearing.98

Thus, the global context encompasses both the broader context and the local con-

text because they also contribute to the linguistic prediction and any other forms

of contextual information relevant to their understanding of a given situation at

a speci�c time.99 Following this de�nition, the distinction between local context

and global context is related to the amount of information taken into account and

not about the nature of this information. Others like Bach (1997, 2001) have

separated the context into two kinds depending on the nature of the derivation of

the contextual information: a narrow context corresponding to the semantic inter-

pretation and a wider context corresponding to the pragmatic interpretation.100

98Other information like general knowledge about the world, or our own prejudices could
also be included in the global context. However, for the purpose of this thesis, we only consider
linguistic information from the preceding discourse.

99I coined the term global context to avoid any confusion with the many di�erent de�ni-
tions or uses of the term context in Linguistics or Cognitive Science.

100See Carston (2004); Recanati (2005, 2002) for more explanations about this distinction.



198

In this thesis, the global context and the local context are not distinguished in

terms of their informational content, only in terms of their scope. Also, I do not

di�erentiate between linguistic and non-linguistic contextual information. Finally,

when it was argued that the context played a disambiguating role during commu-

nication, the kind of context that was referred to was the global context, i.e., the

sum of the information that can serve as an informational foundation upon which

the hearer can derive an interpretation or, in our case, a linguistic prediction.

5.1.2 Coordination and Context

The importance of this global context follows from the very nature of the coordina-

tion between two communicators.101 To understand how vital is this relationship

between context and coordination, we can go back to the expression presented

in Chapter 3 about the nature of the anticipatory process. In (113), two kinds

of coordination are linked with the interpretation and the production phase of a

linguistic prediction.

(113)

WordPred ∝ [f1(partial utterance,world)× P(world)]Inter

× [f2(utterance,world)]Prod

The �rst kind of coordination is represented by the function f1 that maps a partial

101For the rest of this thesis, unless it is speci�ed otherwise, I am using the term context

to mean global context.



199

utterance into a state of the world, i.e., f(partial utterance,world). In Chapter 3,

we called this the mapping functions between states of the world and utterances,

and the hearer needed to know which mapping function was used by the speaker

to avoid any mismatches like in the cinema example about Margot and Fiona.

This mapping function is directional, and it goes from the partial utterance to

the state of the world. For example, if a sentence is of the form presented in

(114), the hearer has to update her representation of the state of the world to

correspond with the new information that Viola has three something. Keeping

in mind that the global context is the sum of all information available to the

hearer at a time t, the global context corresponds to the world's state, and we

could treat this mapping function as a function linking the global context and the

partial utterance.102

(114) Viola has three ...

The second function term in (113), i.e., P(world), does not directly involve a

coordination component because this term is about the correspondence between

states of the world at two contiguous times. Put di�erently, it is similar to the

transition probability for going from state to state without any external input,

but because it is not related to coordination, I will not discuss it further at this

point.103

102This mapping function between the global context and the information expressed at the
word level could be transposed in scene recognition studies in terms of the relationship between
the gist of a scene and the individual objects present in that scene. See Oliva & Torralba (2001);
Oliva (2005); Torralba & Sinha (2001) for more details about perceptual studies.

103An example of these kinds of inferences would be to use information already known to
derive a new conclusion, i.e., to auto-generate a new state of the world without processing any
new inputs.
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The other important mapping function from (113) is the one involved in the

production phase of the prediction process, namely the mapping f2 between the

world state and the utterance. This mapping is about choosing utterances that

can be used to describe the world in this particular situation. Here, the mapping

function goes from the state of the world, i.e., the global context, to an utterance.

(113) thus illustrate the importance of the global context that naturally emerges

from the coordination involved between the hearer and the speaker when consid-

ering linguistic prediction. There are two kinds of coordination: the �rst kind

involves the speaker, and it maps his partial utterance with the context, and the

second kind involves the hearer, and it maps the context to an utterance.

To better understand the di�erent roles of these two kinds of coordination, I start

from the traditional coding-decoding perspective of communication and adapt it

to illustrate the global context's contribution. In the conduit metaphor view of

linguistic communication (Reddy, 1979), the speaker intends to convey a particu-

lar meaning, and, after that, he encodes this meaning using linguistic units. The

hearer has then to decode these linguistic units to retrieve the conveyed meaning

that the speaker intended. The crucial contribution from the context is often

not explicitly represented in this traditional coding-decoding view. To illustrate

the contribution from the context, I use the recent Information-Theoretic picture

of Communication presented in Gibson et al. (2019), and I present an updated

version of their Figure 1 in Figure 5.1 where the context is represented explicitly.

In Figure 5.1 (Gibson et al., 2019, modi�ed from their Figure 1), the context has

to be accounted for by the speaker at the production phase and by the hearer at

the interpretation phase. To produce the best possible utterance (the signal), the

speaker has to determine the words that will, in conjunction with the contextual

information at time ti, be interpreted as intended. On the other hand, the hearer
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must use this signal in conjunction with the context at time ti+1 to retrieve the

intended conveyed meaning.

Signal Receiver
Interpreted
Utterance

Sender
Intended
Utterance

Noise

Contexti Contexti+1

Production Interpretation

Figure 5.1 A schematic depiction of linguistic communication

Another essential feature of linguistic communication represented in this graph is

the potential noise within the communication channel. In Chapter 6, I discuss

the fact that the representation of the context is lossy (Futrell et al., 2020). This

means that the representation of a word becomes noisy as time passes, which,

in turn, implies that words that are close to the predicted target word should

contribute more (Futrell et al., 2019, 2020). This lossy-context noise is related

to the incremental decoding process, and it is part of the potential noise that

could play a structural role during linguistic communication. Similarly, we can

also have a lossy input which would be related to the perceptual uncertainty of

the signal (Levy, 2011). For example, if in a crowded room or a stadium full of

noises, it can be challenging to understand the uttered words. Having a noisy

input is not mutually exclusive from having a lossy-context representation since

the two originate from di�erent cognitive mechanisms. The former being related

to the correct representation of the word, while the former is instead related to
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the lossy nature of its representation in memory.

The third kind of noise, illustrated in Figure 5.1 as a curved red arrow, originates

from the extra-linguistic information. This noise is related to the uncertainty

about the state of the world from the hearer's perspective and the uncertainty

about the state of the world from the speaker's perspective, respectively. For

example, we could be uncertain about the current state of the world, i.e., we

might not be sure whether a given statement is true or not, or we might not be

sure whether the speaker knows about another statement being true.

The presence of these noises/uncertainties is not problematic as they do not pre-

vent us from communicating. When facing a noisy channel, a hearer uses what

is known as rational statistical inferences (Gibson et al., 2013) to interpret the

correct meaning despite these noisy representations, but I will come back to these

inferences about uncertainty in a later section of this chapter.

In Summary, in Figure 5.1, we see that during the production phase, the coor-

dination is between the contexti and the intended utterance, and it involves the

speaker, whereas, in the interpretation, the coordination is between the contexti+1

and interpreted utterance. It does not directly involve the speaker. This dis-

tinction is vital because this latter coordination is present independently of the

presence of the speaker. In other words, no matter the origin of the signal, in-

terpretation always involves coordinating a representation of the context with an

interpreted utterance. These two kinds of coordination are essential for linguistic

prediction, and I will discuss how to model their contributions shortly, but �rst,

we still have to specify the role of this coordination aspect when it comes to the

cloze task.
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5.1.3 Context and Cloze Task

The main di�erence between full-�edge linguistic communication and performing

a cloze task is that there is no strong relationship between the sentences during

the latter because, in a cloze task, every sentence is situated in a context of

its own. Consequently, it is more di�cult to build a coherent global context

from only one sentence.104 However, this does not proscribe the existence of a

contextual contribution because all single sentences are nonetheless contextually

situated. As described by Bach (2004, p.39), when a hearer encounters sentences

in isolation, �certain default assumptions are made about the circumstances of

the utterance�. These default assumptions or heuristics arise because language is

about regularities (Gastaldi, 2020). This regularity is present at di�erent linguistic

levels, as we already discussed in Chapter 4, and it is also present beyond the

utterance level.

When trying to predict the next word of a truncated sentence, our experience

concerning linguistic communication shapes our expectations towards upcoming

information (Brehm et al., 2019). During our lifetime, we not only learn to predict

the next upcoming word from the previous linguistic context, but we also learn the

correspondence between global context and upcoming information. To illustrate

this correspondence between the context and the linguistic prediction, we could

go back to the example discussed in Chapter 1.

(115) a. The kind old man asked us to ...

104Brothers et al. (2020) make a distinction between Deep interpretation when a hearer
can derive a global context, and Surface interpretation when a hearer is not able to derive a
global context. In Chapter 6, I come back to these di�erent depths of interpretation and argue
that they could play a role when modeling linguistic prediction.
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b. [After a day-long trek, we arrive at a mountain hut, and we see that

the other guests have already joined the host at the table.] The

kind old man asked us to ...

With a truncated sentence like (115-a), it is very di�cult to predict the next word,

because the context is not constraining enough, and, as a result, we end up with

many di�erent continuations (Bloom & Fischler, 1980): stay (26%), help (21%),

leave (10%), dinner (5%). However, if we add a global context before the sentence

as in (115-b), then the cloze values of the possible continuations would certainly

be di�erent, i.e., dinner would most probably have a higher cloze score. The idea

here is to argue that without any other linguistic clues from the �rst part of the

sentence, the participant has no other choice than to rely on a general context of

his own to come up with a sensible prediction. This correspondence between the

global context and the upcoming word would be derived from these same heuristics

and expectations about the regularity of language we already discussed.

The fact that the context could contribute to the linguistic prediction should not

be surprising because we already have empirical evidence supporting the idea that

a person can have expectations about upcoming information beyond the level of

the word.

For example, Rohde et al. (2011); Rohde & Horton (2014) showed that the inter-

preters (or the hearers) were able to build up expectations regarding the coherence

relations of upcoming sentences. Similarly, Brothers et al. (2017) measured the

e�ect of the contextual in�uences coming from the di�erent instructions given to

the participants for the same task: one set of instructions emphasized the task's

predictive nature while the other did not. Their results provided evidence that

predictions do not depend solely on the nature of the stimuli presented to the

participant but also on the experiment's contextual setting.
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Finally, more empirical evidence for a prediction made above word-level comes

from studies on turn-taking that argue that one must anticipate the end of a

speaking turn to prepare her response in advance Levinson (2016); Levinson &

Torreira (2015); Riest et al. (2015). In such cases, it is the whole sentence that is

anticipated and not only the word form.105

What transpires from these results and this discussion is that the in�uence from

the context is signi�cant and that it might play a facilitating role in linguistic

prediction. Crucially, contextual contributions must not be relegated to the back-

ground as they are fundamental for understanding language comprehension and,

in our case, linguistic prediction (Hasson et al., 2018). In this chapter, my goal is

to describe the nature of these contextual in�uences, how they could be modeled

and combined with the contribution from the meaning compositions we discussed

in Chapter 4.

5.2 Representing Context

To model the mutual e�ects between the context and a sentence, we need to

represent the context to compute its contribution during linguistic prediction.

This section discusses two kinds of information that contribute to the derivation

of this contextual representation: the Situation Model and the Topic Model. These

two kinds of representation naturally correspond to the distinction we discussed in

105The same kind of e�ect about predictions derived from higher-level expectations was
described by Karuza et al. (2017) when they asked participants to generated expectations about
upcoming images that were presented to them. When these images were presented in a struc-
tured way that allowed the participant to form a higher-level representation of this network
architecture, the uncertainty about the upcoming images was minimized, and the reaction time
decreased accordingly.
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Chapter 3 about di�erent kinds of coordination (Gärdenfors, 2014): coordination

about the meaning of a term, which correspond to the topic model, and the

coordination of knowledge about the state of the world, which correspond to the

situation model. After discussing the nature of these two models, I present a

multi-layered representational approach for modeling linguistic prediction.

5.2.1 Situation Model

The origin of the situation model lies in the approach put forward by Bransford

et al. (1972) where the interpretation of a sentence is linked with the derivation of

a model about the state of the world, and this situation model is then stored within

the long-term memory of the hearer.106 A situation model is an integrated mental

representation of a particular state of the world (Zwaan, 2008). When creating

or updating a situation model, we have to consider three kinds of information

that can be represented: the situational framework, the situational relations, and

the situational content (Zwaan, 2016). The situation framework is related to

the spatio-temporal anchoring of the situation, while the situational relations

are about the representations of the relationships between the di�erent events

expressed by the sentences. The situational content contains information about

the entities and their features.

For example, when reading (116), we are deriving a situation model containing

two entities and some basic features about Jonas being animate and bottle being

inanimate. We also derive information about the event described in the sentence,

106The Situation Model was �rst introduced by van Dijk & Kintsch (1983) around the
same time as the Mental Models of Johnson-Laird (1983).
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namely, Finding(Jonas,bottle). We might also have a spatio-temporal time-stamp,

i.e., January 21st, 1987, for example.

(116) Jonas �nds a bottle.

Situations have to be distinguished from schemata that are type-representations

of stereotypical situations. Schemata usually contained the entities present in the

situation, i.e., the objects used and the actions that are stereotypically performed

at this location, while situations models are token-representation about a speci�c

moment at this location (Zwaan & Radvansky, 1998). To illustrate this di�erence,

if we set the location to be a school. Then schemata representation would be

about the di�erent people at school, the di�erent kinds of objects we could use,

the di�erent actions that could be performed, whereas the situation model would

be about a particular moment at this school, e.g. �I was in school on December

20th with Ayesha in D-3323�.

One way to represent these situation models is to use the DRT boxed representa-

tion. In Chapter 3, we argued that DRT ful�lled our requirements for a theoretical

model of linguistic prediction; it is thus natural to use discourse representation

structures (DRSs) to represent situation models. In Table 5.1, we see the repre-

sentation of a situation for the sentence Jonas �nds a bottle.

At any given time t0 during, a situation model contains all the entities and events

that were expressed at time t<0. The nature of the representation of the situation

model is very close to what is usually thought of when de�ning the context of

enunciation, i.e., the time, location, and information about the state of the world

and the entities involved in the current situation.
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Table 5.1 Representation of a situation model in the DRT boxed format

Jonas �nds a bottle.

x : Jonas(x)

y : bottle(y)

finds(x, y)

To illustrate the in�uence the situation model has on our expectations regarding

upcoming information, we can go back to the example we presented in Chapter

3. Without any context, is it di�cult to predict the next word in (117-b) because

the number of possibilities is very large. However, if we add a situation model

like (117-a), it becomes much easier to predict that the next word will probably

be chess.

(117) a. [x, y, z, : John(x), chess_board(y), chess_tournament(z), Being_at(x, z)]

b. John plays ...

In this situation, the local context John plays is not constraining enough, so we

need the contribution from the situation model to limit the number of possible

answers. This example shows that a situation model can in�uence the results of

a linguistic prediction. However, some cases could not be explained by using a

situation model, and we need a di�erent kind of contextual information, i.e., we

need a topic model.
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5.2.2 Topic Model

Topic models are based on the idea that a document is an amalgamation of di�er-

ent topics where each topic is itself a probability distribution over di�erent words

(Steyvers & Gri�ths, 2010). Topic models are statistical (or probabilistic) models

used in machine learning and natural language processing to discover the topics

occurring in a document or a series of documents (Blei et al., 2003). The term

topic should not be confused with the concept of topic usually used in linguistics

when discussing information structure within a sentence (Halliday, 1967). In lin-

guistics, the information structure comprises the basic notion of focus, givenness

and, most importantly, the topic which speci�es what the statement is about.107

When it comes to the topic model used here, a topic is simply a probability distri-

bution over the words present in a document, and it is not explicitly linked with

the information structure at the level of the individual sentences.

According to the topic model approach, to interpret a sentence, an interpreter

has to retrieve the referred concepts from long-term memory (Kintsch, 1988), and

this retrieval process is facilitated when the interpreter uses a representation of

the context to help her predict related concepts and disambiguate word meanings

(Gri�ths et al., 2007, p.211). It is possible to represent this contribution from the

context using several di�erent methods: associative semantic networks (Collins

& Loftus, 1975), similarity spaces (Gastaldi, 2020), or probability distribution

between a word and a topic (Steyvers & Gri�ths, 2010). These three kinds of

representations are illustrated in Figure 5.2 (Gri�ths et al., 2007, from their Fig-

ure 1).

107See Krifka (2008) for a thorough introduction of these three notions.
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Semantic Network Similarity Space Topic Modeling

Figure 5.2 Three ways to represent semantic information

Both semantic networks and similarity spaces have di�culties tackling topic mod-

eling because they both involve unipartite graphs. A unipartite graph is a graph

where all nodes are of only one kind and which can all be connected indiscrim-

inately, as it is illustrated on the left side of Figure 5.3. This limitation to a

unipartite graph is problematic because it means we cannot distinguish between

the nodes. In Chapter 4, we derived particular similarity spaces at the RB-level

and the P-level because their respective linguistic units were not part of the lexical-

level similarity space. To capture the contribution from the context, we also need

to have a graph with two kinds of nodes to distinguish the level of the words from

the topic-level (Gri�ths et al., 2007).

A bipartite graph consists of two disjoints sets of nodes, and the only connections

that are allowed are between these di�erent kinds of nodes (Rosen, 2012). A bi-

partite graph is illustrated on the right side of Figure 5.3. Topic modeling needs

this hierarchically structured graph to represent the di�erence in representational

level between the words from a sentence and the topic to which they are linked.

The representation of a topic is a probability distribution over di�erent words

(Blei et al., 2010). Conversely, each word is probabilistically linked with a series
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Figure 5.3 Left-side: Unipartite graph. Right-side: Bipartite graph

of topics via a latent structure (Steyvers & Gri�ths, 2010). To di�erentiate be-

tween this latent structure and the level of the words, we need a bipartite graph

representation as in 5.4 (Gri�ths et al., 2007, adapted from their Figure 4).

Latent structure (l)

Words (w)

Topic level

Word level

Figure 5.4 Latent structure and Generating model at word-level

The latent structure l, i.e., the topic model, generates words w using the con-

ditional probability distribution P (w|l). This way, a word is more likely to be

generated if it is more probable within that topic and vice-versa. We can illus-

trate this with an example given in Gri�ths et al. (2007). Suppose we have a high

probability for generating the words woods and stream. In that case, the topic is

likely to be `countryside.' Similarly, if we have a high probability of generating

the words federal and reserve, then the topic is probably `�nance.' Conversely, if

we know that the topic represented in the latent structure is `�nance,' then we
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would have a higher expectation regarding the production of a word like bank over

a word like woods. We could summarize all this using the probability that a word

wi is produced within a document, given a topic z and several topics T (Steyvers

& Gri�ths, 2010).

(118) P (wi) =
∑T

j=1 P (wi|zi = ji)P (zi = j)

In (118), the term P (zi = j) refers to the probability that the jth topic is sampled

from the ith word and P (wi|zi = ji) is the probability of word wi under topic j.

Polysemy One great feature of these topic models is their ability to disambiguate

lexical meaning (Gri�ths et al., 2007) or, put di�erently, to capture polysemy

(Steyvers & Gri�ths, 2010). This disambiguation is made possible because it is

possible to infer the meaning m of a word w given a topic z (Gri�ths et al., 2007).

(119) P (m|w, z) = P (w,m|z)∑
m P (w,m|z)

Following the topic model approach, the polysemy of a word is represented as

uncertainty over possible topics (Gri�ths et al., 2007), and it is this uncertainty

over topics that allows solving the ambiguity about di�erent meanings of a word.

For example, the polysemy of the word play is depicted in Figure 5.5 with respect

to three di�erent topics: play music, theater play, play games.108. In Figure 5.5

(Steyvers & Gri�ths, 2010, Figure 9), we see that the three senses of play have a

relatively high probability for all their respective topics.

108This �gure was obtained from a 300 topic solution for the TASA corpus, and it is taken
from Steyvers & Gri�ths (2010)
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Figure 5.5 Three topics related to the word play

5.2.3 Multi-layered Representation of Linguistic Prediction

To model the contribution coming from these two models, we have to understand

the di�erent levels of representations involved in linguistic prediction (Berkum,

2013) and the relationship between them. The �rst thing to do is treat the sen-

tence level separately from the context level using a bipartite graph. From there,

we can then build a multi-layered representational view of linguistic prediction as

illustrated in Figure 5.6.

Even though incrementality is not taken into account by the model at this point,

it is still important to note that the temporal relationship between these two

di�erent levels is crucial as the representations for the situation and the topic

models at time t are based on the linguistic information processed at time ti−1.

The sentence-level representations are crucial contributors to the derivation of

these contextual-level representations. In turn, the contextual representations

constraint the way these sentence-level representations are interpreted at time
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Figure 5.6 Temporal Depiction of the Co-dependence between the sentence-level
representations and the contextual representations

ti+1. In other words, the contextual representations and the interpretation of

perceptual inputs are constraining each other (Zwaan, 2016). This compositional-

contextual processing loop is depicted in Figure 5.6. This thesis assumes that

the mapping between the contextual-level representations and the sentence-level

representations is mediated through coordination.109

Figure 5.7 integrates two contextual representations we just described and the

four sentence-level representations we discussed in Chapter 4. In this thesis, I

distinguish between two kinds of mapping functions: the functions that derive the

109A hierarchical view of language processing is consistent with many results from visual
scene recognition studies where the participants use global features rather than local features
to describe a scene (Oliva & Torralba, 2001; Oliva, 2005). In such scenes, the global features of
the scene, i.e., the gist of the scene, in�uences the way local predictions are made (Torralba &
Sinha, 2001).
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Figure 5.7 A Multi-layered Representations of meaning

contextual level from the sentence-level representations and the mapping function

corresponding to the in�uence of the contextual level representations imposed over

the sentence-level linguistic prediction. These mapping functions are respectively

associated with a bottom-up signal and a top-down signal, and these two signals

represent the contribution from the coordination aspect of linguistic communica-

tion. The critical thing to retrieve from Figure 5.6 is that both mapping functions

play a role when deriving a linguistic prediction.

The bottom-up signal is responsible for the constant update of the contextual

level. This signal is called bottom-up because it goes from the sentence level up to

the contextual level. The top-down signal represents the constraints imposed on

the sentence level by the expectations derived at the contextual level. It is called a

top-down signal because it starts at the top and goes down in the representational
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hierarchy. These two signals involve di�erent kinds of coordination: the bottom-

up signal is about the coordination between two agents, whereas the top-down

signal is about the coordination between the contextual representation and the

sentence-level representation.

It should also be mentioned that intra-representational level in�uences have been

deliberately omitted from Figure 5.7. This means the possible interactions be-

tween the four di�erent representations at the sentence level and those between

the two contextual representations are not taken into account in this approach.

It would be interesting to investigate these intra-representational level in�uences,

especially when considering an incremental linguistic prediction model. However,

it is outside the scope of this thesis.110

Finally, the terms bottom-up and top-down are often used in cognitive science

and linguistics, but it is rarely de�ned what these refer to (Rauss & Pourtois,

2013). Before presenting how to model these bottom-up and top-down signals, it

is crucial to specify how these signals are interpreted with respect to this multi-

layered representation. These two notions are often centered around the per-

spective that bottom-up processing is transforming a lower-level representation

into a higher-level representation, and top-down processing is doing the contrary

(Palmer, 1999). To have bottom-up and top-down signals, we need to process

information hierarchically at di�erent representational levels, and the exchange

of information between these levels need to be bidirectional (Rauss & Pourtois,

2013). However, di�erent hierarchies can have di�erent structural and functional

�exibility. Engel et al. (2001) distinguished between four families of hierarchies:

anatomical, cognitivist, gestaltist, and dynamicist. In the anatomical hierarchy,

110Notwithstanding the direction of information �ow, these in�uences would not strictly
qualify as top-down or bottom-up signals because they do not involve a coordinated representa-
tional transition as the one between the sentence-level and the contextual level representations.
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the top-down and bottom-up processes are strictly functional, which means that

the di�erent levels are linked with a processing connection. In the cognitivist

hierarchy, bottom-up and top-down signals respectively correspond to stimulus-

driven and expectation-driven processing. According to the gestaltist view, top-

down processes are contextual modulations of bottom-up processing. Finally, in

the dynamicist hierarchy, large-scale dynamics can have a predominant in�uence

on the local processing of information.

In the multi-layered representation presented here, the top-down and the bottom-

up signals are of the dynamicist type, and it is compatible with the idea that the

information is processed simultaneously at all representational levels.111

5.2.3.1 Top-down Signal

Top-down in�uences are in�uencing the lower-level representations by modifying

the expectations of the hearer. For example, if we go back to the truncated

sentence John plays... and we assume that it is uttered when the two interlocutors

are at a chess tournament and discuss chess players in the room.

(120) John plays...

a. chess.

b. cello.

The top-down signal acts as a constraining signal that in�uences the probability

111I come back to this issue in Chapter 6 when discussing predictive processing architec-
tures.
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distribution of potential continuations. For example, if we know we are at a

chess tournament via the situation model, then the continuation (120-a) would

be highly probable. However, if we also know that at that particular moment,

the topic of our discussion was the musicians we knew, then the combination of

the topic model and the situation model would transform (120-b) into the most

probable continuation. To model these kinds of contextual constraints, I propose

a probabilistic approach that can encompass both the e�ects from the topic model

and the ones from the situation model while being compatible with the model I

presented in Chapter 4.112

5.2.3.2 Bottom-up Signal

Now that we have discussed the top-down in�uences from the contextual represen-

tational level, we must also acknowledge how this level is derived in the �rst place.

As we saw in Figure 5.6, the content of the situation model and the topic model at

time ti is constructed from the linguistic content expressed by the sentence-level

representations at time ti−1. Put di�erently, when we are presented with linguistic

information in the form of a truncated sentence at time ti−1, this information is

interpreted and is used to derive a topic model and a situation model at time ti.

At the beginning of this chapter, we mentioned that a hearer could usually under-

stand a speaker even for cases when the interpretation of the sentence is inherently

uncertain because of the disambiguating e�ect coming from the context. For ex-

ample, in Chapter 3, we presented a case of referential uncertainty between a blue

112To model the top-down in�uences, it is also possible to use a topological approach based
on the geometry of the conceptual space. This other approach is discussed in Chapter 6.
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square and a green square where the hearer had to rely on the mapping function

of the speaker to retrieve the correct reference.

Similarly, to use the topic model, we have to take into account that these models

are derived from the sentence-level representations, which are themselves produced

by the speaker. This implies that we must also retrieve the speaker's intended

meaning if we want to derive the correct topic model.

This problem about the ambiguity of meaning, referential or otherwise, is not

related to the situation model or the model per se, but it must be taken into

account at the lexical level when deriving a particular contextual model. One

way to do this is to use a built-in representation of the speaker's perspective to

retrieve the intended meaning for every linguistic unit. Integrating this speaker's

perspective during the interpretation process could be performed using the same

kind of game-theoretic process described in Chapter 3. In this chapter, I use

probabilistic approaches based on game theory to model this bottom-up signal.

5.3 Modeling Coordination

In the last section, I have presented a multi-layered view of the representations in-

volved in the derivation of a linguistic prediction. I mentioned that the bottom-up

signal and the top-down in�uence between the contextual and compositional levels

were modeled probabilistically. This section introduces the Bayesian framework

and discusses its importance for the modelization of di�erent linguistic phenom-

ena. I then present how to use a Bayesian approach to model both bottom-up

and top-down signals.
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5.3.1 Bayesian Framework

The Bayesian Framework's core idea is that inferences are probabilistic (Jones &

Love, 2011), which implies that given a set of premises, a consequence is drawn

by using probabilistic knowledge about the relationship between these premises

and this conclusion. Bayesian inferences are to be distinguished from other kinds

of statistical inferences like frequentist inferences. According to the frequentist

approach, an inference is thought to be related to the number of occurrences

and the potential repeatability of an event, while the Bayesian inference is about

modeling the uncertainty of an outcome (Chater et al., 2006b). When considering

a series of experiments involving repetitive manipulation, such as a series of coin

tosses, one can use a frequentist inference to guess the subsequent outcome. In the

case of Bayesian inferences, the inference is derived from a subjective conception

of probability, meaning that the inference is about degrees of beliefs about the

possible outcomes, and it is not be based on the frequency of this event (Chater

et al., 2006b; Jones & Love, 2011). For example, two persons might have di�erent

subjective probabilities for the same event because their prior knowledge about

such events is di�erent (Chater et al., 2006a). Bayesian inference is thus a rational

way to account for uncertainty about the state of the world around us (Oaksford

et al., 2009).

Treating Bayesian inferences as inferences about uncertainty has some signi�cant

advantages because complex probabilistic models can now be worked out using

powerful computational tools developed in such �elds as statistics, machine learn-

ing, and arti�cial intelligence (Gri�ths et al., 2008, p.3). It o�ers a potentially

unifying framework to help better understand many di�erent aspects of cognition

by modeling them as inferences about uncertainty (Jones & Love, 2011). In re-
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cent years, Bayesian approaches have been used to address a plethora of di�erent

problems coming from di�erent disciplines in cognitive sciences: inductive learn-

ing and generalization (Tenenbaum et al., 2006), language acquisition (Chater &

Manning, 2006; Xu & Tenenbaum, 2007), symbolic reasoning (Oaksford & Chater,

2001), motor control (Körding & Wolpert, 2006).113 In each of these �elds, the

probabilistic nature of these Bayesian inferences about the uncertainty of an out-

come remains the same, but the structures that are being inferred are speci�c to

the �eld in question (Chater & Manning, 2006).

Modeling empirical data using a Bayesian approach is not necessarily correlated

with the idea that the human brain is itself a Bayesian machine. Most people

have some di�culties with textbook probability problems that are not related to

assessments of causal e�cacy or causal models (Chater et al., 2006a; Oaksford

et al., 2009), and, even though this idea is still disputed (Chater et al., 2006a;

Jones & Love, 2011), it is often argued that people are not purely Bayesian, but

only approximately Bayesian (Jacobs & Kruschke, 2011).

It has been argued that Bayesian approaches might not be the most natural way

to o�er a mechanistic explanation of how a biological system works (Martin &

Doumas, 2017; Gri�ths et al., 2008), but arguing that people are approximately

Bayesian should not be construed as a strong constraint at the implementational

level of analysis as de�ned by Marr (1982). Furthermore, even at the algorithmic

level, there is no �rm commitment as to how these probabilities are computed

in the �rst place (Oaksford et al., 2009). Besides, most Bayesian approaches are

meant to be formulated at the computational level (Gri�ths et al., 2008), and

they are simply interpreted as a rational way to model uncertain inferences.

113A probabilistic approach has also been developed to explain empirical results for the
famous Wason's selection task (Oaksford & Chater, 1994, 1996).
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5.3.1.1 Bayesian Model

A prediction is nothing more than the expression of a belief about a state of the

world (Norris et al., 2016), and Bayesian inferences are used to predict this state

of the world given a particular global context. To predict the state of the world

given a particular set of conditions, we need to use our beliefs about the current

state of the world and our beliefs about the relationship between this state and

other potential states of the world. In other words, we need to know the prior

probability and the likelihood function (Trapp et al., 2016).

To better distinguish these two notions, we use the concept of hypothesis space,

where every hypothesis acts like potential states of the world. Here, the term

hypothesis refers to a probability distribution, and it is not related to the concept

usually used in psychology, which has nothing to do with explicit reasoning (Jones

& Love, 2011). The likelihood is the probability that a particular observation or

feature is present in the world, given a particular hypothesis, and it can be written

as in (121).

(121) P (observation|hypothesis) = P (o|h)

The other important component of the Bayesian model is the prior probability

distribution representing one's beliefs about each hypothesis. This prior probabil-

ity distribution about a speci�c hypothesis can be written as P (h), and it should

be thought of as being independent of any observation, i.e., what is my belief

regarding the state of the world without any new sensory input (Gri�ths et al.,

2008). For example, to infer whether a new input is consistent with what we

expect, e.g., �a white ladder all covered with water�, we have to consider both the
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prior probability of a ladder being covered with water, but also the likelihood that

such as situation is happening given the actual state of the world (Trapp et al.,

2016).

Together, the prior and the likelihood are the two main components of the Bayesian

Model (Jones & Love, 2011), and we can combine them using Bayes' Theorem or

Bayes' rule (Bayes, 1764) to obtain the posterior probability as in (122). Crucially,

Bayes' rule itself does not specify how the priors and the likelihood are obtained,

so it does not forbid us to use symbolic techniques to estimate these probability

distributions (Zeevat, 2015b).

(122) P (h|o) = P (o|h)P (h)
P (o)

According to (122), the posterior probability of having a belief that the world is

in the state h given a particular sensory input or observation o is proportional to

the prior probability of being in a world h and the likelihood of encountering an

observation o within this world h. The term P (o) is the prior probability related to

the observation o, and it could be rewritten as the sum of the other variables in a

joint distribution: P (a) = σbP (a, b). This last operation is called marginalization

and is made possible by using the fact that a marginal probability of a property

a is equivalent to the probability distribution when the other variables are not

taken into account. Using this transformation, we can rewrite Bayes' rule as in

(123) (Gri�ths et al., 2008; Tenenbaum et al., 2006), where H is the set of all

hypotheses about the state of the world. The denominator in (123) acts as a

normalization factor.114

114The normalization factor is there to make sure that the sum over all possible outcome
is equal to 1
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(123) P (h|o) = P (o|h)P (h)∑
h′∈H P (d|h′)P (h′)

In summary, a Bayesian model is to be viewed as a method to derive a posterior

probability distribution from the prior probability distribution and the likelihood

probability distribution. To illustrate this process, we can look at the Figure 5.8

(Körding & Wolpert, 2006, Fig.I) where x acts as our hypothesis h and we see

that combining our prior and our likelihood gives rise to a probability distribution

that has weighted the hypotheses by their likelihood (Jones & Love, 2011).

Figure 5.8 A schematic depiction of the Bayes's rule
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5.3.1.2 Rational Speech Act (RSA) Model

An exciting domain of application for the Bayesian framework is pragmatics.

Chapter 3 discussed di�erent approaches to pragmatics, namely Gricean prag-

matics, Relevance Theory, and Game-theoretic pragmatics. Here I present the

Rational Speech Act (RSA) model, which uses a Bayesian approach to model

linguistic coordination between two agents during communication (Goodman &

Stuhlmüller, 2013; Goodman & Frank, 2016; Bergen et al., 2012; Frank & Good-

man, 2012; Franke & Jäger, 2016; Scontras et al., 2018).115 Similarly to these

other approaches in pragmatics, Bayesian pragmatics conceives language inter-

pretation as �rational inference based on an intuitive theory of language produc-

tion� (Goodman & Stuhlmüller, 2013, p.174), and it sits close to Game-Theoretic

pragmatics because it is interested in modeling behaviors in terms of reasons and

purpose without the recourse to communicative maxims (Franke & Jäger, 2013).

Instead of basing their assumptions on maxims, Bayesian approaches of pragmat-

ics assume that the listener considers that the utterance is chosen optimally by

the speaker. The listener then interprets this utterance probabilistically using a

Bayesian inference (Goodman & Stuhlmüller, 2013).

To better understand the relationship between Game-Theoretic pragmatics and

Bayesian Pragmatics, we can recall the signaling game we discussed in Chapter 3.

In a signaling game, we have a speaker, a listener, and a conversational move that

consists of an utterance produced by the speaker. A signaling game could thus be

thought of as a context of enunciation, and the goal of the game is for the listener

115What I describe here as Bayesian pragmatics is often categorized as probabilistic prag-
matics (Tessler & Goodman, 2014; Franke & Degen, 2015; Franke & Jäger, 2016) because it
involves the use of probabilities.



226

to retrieve the new state of the world from her prior knowledge and this utterance.

In Game-theoretic pragmatics, the pragmatic reasoning required to retrieve the

state of the world is modeled as game-theoretic solution concepts (Franke, 2013).

In Bayesian pragmatics, these inferences are modeled using probabilistic tools

and Bayesian statistics (Frank & Goodman, 2012), and this formal framework is

called the Rational Speech Act theory of language understanding or RSA model

(Goodman & Stuhlmüller, 2013; Goodman & Frank, 2016).

RSA model's central tenet is that a speaker chooses to produce an utterance

parsimoniously while taking into account other alternatives in a given context

(Goodman & Frank, 2016). This optimality of the speaker allows the listener to

retrieve the interpretation of the sentence by inverting the model of the speaker

(Goodman & Stuhlmüller, 2013). Under this view, to interpret an utterance,

we have to go through a recursive social reasoning (Bergen et al., 2012) about

the speaker's perspective (Bergen et al., 2012), much like what was described for

Game-Theoretic pragmatics in Chapter 3. Once this recursive social reasoning is

accomplished, the listener can use the speaker's beliefs to derive the interpretation

of the utterance and then update her own beliefs accordingly via a Bayesian

inference (Goodman & Frank, 2016).

This iterative and recursive inversion of perspective requires a back-and-forth

reasoning about each other's point of view and each other's beliefs about the state

of the world (Franke, 2009). In RSA terms, the listener uses Bayesian inference to

retrieve the speaker's intended meaning given the utterance he produced (Frank

& Goodman, 2012). This recursive approach is sometimes called intentions-�rst

approaches to pragmatics, or iterated X-response (IxR) models (Franke & Jäger,

2013). These IxR models were �rst developed to capture epistemic e�ects, such as

taking into account the belief of the speaker (Goodman et al., 2009) but they are

close with the RSA model. The main di�erence between the two comes from the
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fact that the IxR models are primarily interested in modeling actions performed

by the listener after processing an utterance. In contrast, RSA is instead focussed

on modeling the speaker's beliefs that help the listener retrieve the interpretation

of this utterance (Franke & Jäger, 2013).

To understand how this recursive social reasoning works, we �rst consider the

literal (or naive) listener's perspective L0. This literal listener uses Bayes' rule to

update her beliefs while assuming that the literal meaning of the utterance u is

true (Goodman & Frank, 2016). In (124), we have that the conditional probability

that the state of the world s is given the utterance u is proportional to the product

of the semantic denotation of u evaluated at s which is written JuK(s) and the

probability of being in the state s in the �rst place (Scontras et al., 2018).

(124) PL0(s|u) ∝ JuK(s) · P (s)

When a speaker chooses to utter a particular utterance, he might produce the

easiest utterance without any concern to the person that has to understand it,

but, generally speaking, the speaker has to take into account that the literal lis-

tener will try to retrieve the meaning of this utterance using (124). This more

sophisticated speaker is called a pragmatic speaker because he considers the lis-

tener when choosing his utterance. Another way to put this is to say that the

pragmatic speaker wants to minimize the e�ort that the literal listener must ex-

ert when retrieving the world's state from the utterance (Scontras et al., 2018).

Mathematically, the conditional probability that a pragmatic speaker chooses one

utterance in particular from the set of all alternatives is expressed as being pro-

portional to the exponential of the Expected Utility function US1 as we see in

(125) (Goodman & Stuhlmüller, 2013).
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(125) PS1(u|s) ∝ exp(α/US1(u; s))

In (125), the α is a parameter that captures the rationality of the speaker, and

the Expected Utility function US1 is to be thought of as the weighted average of

all the utilities, i.e., the desirability of a given option, that a speaker expects when

choosing one alternative over another (Franke & Jäger, 2016; Bergen et al., 2012).

This Expected Utility function is given in (126), where C(u) represents the cost

of producing the utterance u.116

(126) US1(u; s) ∝ logPL0(s|u)− C(u)

The Expected Utility is thus proportional to the logarithmic probability that the

literal listener retrieves the state of the world s from the utterance u minus the

production cost. Now that we have presented the pragmatic speaker, we must also

consider that real-world listeners are usually not literal in that they also consider

the speaker's perspective when interpreting utterances. In other words, we need

to have a pragmatic listener that will use Bayes' rule to infer the probability of a

state of the world s from the utterance u from the speaker's perspective.

(127) PL1(s|u) ∝ PS1(u|s) · P (s)

In (127) we have that this probability is proportional to the probability that the

pragmatic speaker chooses u given s times the prior probability that the world

is itself in the state s.117 Putting all these together, we get that the RSA model

116At this point, I am not taking into account the cost C(u), but I come back to discussing
processing costs in Chapter 6.

117Please see Franke & Jäger (2016); Goodman & Frank (2016); Scontras et al. (2018) for
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framework o�ers a Bayesian recursive structure to understand the interpretation

process during a coordinated interaction between two agents.

When a speaker wants to utter something to convey a given state of the world, he

chooses an utterance that will be easy to interpret for a literal listener. When the

chosen utterance has been produced, the listener takes this perspective into ac-

count by interpreting the utterance chosen by the speaker within a set of possible

alternatives.118 To better illustrate the di�erence between the literal listener and

the pragmatic listener in the RSA model, we can consider a Reference Game where

the goal is to retrieve the reference that the speaker intended. In this example,

the speaker can only produce one word, and only three objects can be referred to,

as in Figure 5.9 (Frank & Goodman, 2012, adapted from their Fig.A).

Figure 5.9 Three objects that can be referred to

Let us �rst consider that the word that the speaker had uttered is green. Then it

will be easy for the listener to retrieve the correct referent intended by the speaker

because there is only one possible referent that is green. On the other hand, if

the word that had been uttered is blue, the literal listener interpretation would be

based on the truth value about the possible referents and, because there are two

a more detailed explanation of the role of the utility function and all the motivations behind
the pragmatic speaker and the pragmatic listener as well as a presentation of the normalization
constants needed to transform these proportional relations into equalities

118In the RSA model, utterances are usually taken into account as a whole. More recent
implementations tackle incremental processing of utterances (Cohn-Gordon et al., 2019), but
those approaches are outside this thesis's scope.
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possible referents, the literal listener attributes a 50/50 probability to both these

options, namely the blue circle and the blue square.

If we keep the same word blue, but we instead consider the pragmatic listener,

the outcome is di�erent. According to the pragmatic listener, the speaker chose

to utter blue instead of other possible words to refer to a particular object. The

word blue is compatible with two objects, but when considering the perspective

of the speaker, the pragmatic listener infers that if the speaker intended to refer

to the blue square, him uttering square would be a more rational choice because

it disambiguates the interpretation. Therefore, that the speaker has chosen to

utter blue probably means that the referred object is the blue circle. Depend-

ing on the parameter α that we presented earlier, the pragmatic listener would

attribute a higher probability to the blue circle than the blue square. If we in-

crease the value of α, i.e., the speaker is becoming more optimal, the probability

ratio P (blue circle)/P (blue square) will tend to in�nity because the probability

of referring to the blue square will decrease drastically. On the other hand, if we

decrease the value of α, i.e., the speaker is becoming less optimal, the probabil-

ity ratio P (blue circle)/P (blue rectangle) will revert to 1 as was the case for the

literal listener.

Here we have only presented a simple example of a Reference Game, but the RSA

model does not simply hypothesize about simple linguistic interpretation cases.

It gives us a whole spectrum of variations that can be explored by modifying and

adding more parameters while maintaining the same Bayesian structure (Good-

man & Frank, 2016). Many recent implementations of the RSA have tackled such

issues like Scalar Implicatures (Goodman & Stuhlmüller, 2013; Franke & Bergen,

2020), Free-Choice Inferences (Champollion et al., 2019), and non-literal and �g-

urative language by parametrizing the model to include uncertainty at di�erent

levels, but these implementations are beyond the scope of this thesis.
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5.3.2 Modeling Bottom-up Coordination

In our multi-layered representation depicted in Figure 5.7, we had that the bottom-

up signal was the signal that derived the contextual representations, i.e., the topic

model and the situation model from the sentence-level representations.

Topic model Situation model

P-units

RB-units

Lexical level

Semantic features

Contextual-level representations

Sentence-level representations

Coordination Aspect
of Communication

Bottom-up
Signal

Bottom-up
Signal

Figure 5.10 A depiction of the Bottom-up signals

As shown in Figure 5.10, we have to consider two bottom-up signals, one for

each kind of contextual representation, and I treat each topic model and situation

model bottom-up signals separately.
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5.3.2.1 Situation Model

In the last section, we described the situation model as a model of the entities

and the events expressed by a sentence. The derivation of such a model requires

recognizing and storing information about these entities and events. To do so, we

can use a DRT-like implementation to derive a Discourse Representation Structure

(DRS) and use it as our situation model. For example, following the DRT format

given in Bos (2015), the sentence in (128) would be represented by the DRS given

in Figure 5.11.

(128) John grabs the donkey.

x1

.............

named(x1,john,per)

e1 x2

grab(e1)

agent(e1,x1)

theme(e1,x2)

donkey(x2)

Figure 5.11 DRS for the sentence �John grabs the donkey.�

In Figure 5.11 we can see there is a person x1 named �John� and there is an event

e1 involving an entity x1 (John) and an entity x2 which is a donkey. This DRS

gives us the thematic role labeling for the entities involved in this event, e1, which,
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in this case, is that event e1, x1 is an agent, and x2 is a theme. If we were to

summarize the information presented in this DRS, we would have a list of entities,

a list of events, and a thematic role attribution linking the events and the entities.

As a whole, this DRS represents the state of the world the listener is in when

retrieving the meaning of the following information. In other words, this DRS is

tantamount to the contextual level situation model derived by the listener.

To integrate this DRS content into our linguistic prediction model, we have to

represent it using word embeddings, much like what we did in Chapter 4. One

way to do this is to note that the way this DRS content is structured makes it

possible to �nd correspondences with the four compositional units we previously

described: semantic features, lexical level, RB-units, and P-units. The P-units,

representing a complete proposition, would correspond to the DRS event, the

lexical-level units would correspond to the entities present in the DRS, and the

thematic roles could be transposed as RB-units. In the case of the RB-units, every

thematic role would correspond to one RB-unit.119

In Chapter 4, we presented an example about a cup being taller than a ball, but

it would not be too far-fetched to transpose this idea for predicates with thematic

roles such as agent and theme. For example, in the case of grab(John,donkey), the

RB-units consist of one unit being grabber+John and another being grabbed+donkey.

In addition, the semantic features level would correspond to the property of the

entities. In the case that concerns us, John is the name of a person, i.e., per-

son(John). With these correspondences in mind, we can rewrite the DRS content

119The explanation of the transition from the DRS to the Situation Model is merely to
illustrate how this transposition could be achieved, but it is by no means compulsory to start
from the DRS described in Figure 5.11 to obtain the Situation Model in Figure 5.12. In this
thesis, I choose to represent the Situation Model using the 4 di�erent levels described in the
preceding chapter and the focus in this thesis should be on the Situation Model itself rather
than on the way it could be obtained.
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in terms of di�erent word embeddings.

The situation model described in Figure 5.12 is thus constructed from many dis-

tributed representations, and the �nal step would be to combine them to form only

one integrated distributed representation for the whole situation model. Having

the situation model represented by one integrated vector is desirable because it

makes it easier to model the top-down in�uence of the situation model on the

linguistic prediction.

Entities

−−→
John
−−−−→
donkey

Features
−−−−−−−−→
person+john

Thematic Roles

−−−−−−−−−−−−→
grabber+0.5john
−−−−−−−−−−−−−−→
grabbed+0.5donkey

Event
−−→
grab

Figure 5.12 Detailed Situation Model for the sentence �John grabs the donkey.�

The process by which the vector representing the situation model as a whole is

derived is reminiscent of what we did when we presented the four di�erent simi-

larity spaces in Chapter 4. Every compositional unit had its own similarity space

attached to it, and it allowed us to perform di�erent similarity measures for each

of these units. However, it is important to note that all the content and the struc-

ture of the Detailed Situation Model as in Figure 5.12 is di�erent from just the

sum of all the activation of its parts. For example, if we were to compute the acti-

vation caused by all the constituents from the sentence �John grabs the donkey�,

we would need to take into account the distributed representations expressed in

Figure 5.13 in terms of the di�erent compositional units.
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P-unit
−−−−−−−−−→
grabber+john +

−−−−−−−−−−−−→
grabbed+donkey

RB-units

−−−−→
graber + 0.5

−−→
john

−−−−−→
grabbed + 0.5

−−−−→
donkey

Lexical-units

−−−→
grabs
−−−−→
donkey
−−→
john

Semantic Features
−−−−→person
−−−−→
animal

Figure 5.13 Compositional units and their associated distributed representations
for the sentence �John grabs the donkey.�

Here we kept the semantic features limited to those that are generally relevant

in DRSs like features of entities, i.e., John is a person and donkey is an animal.

In Chapter 4, each representational level was computed independently, and they

each give rise to a di�erent similarity space, whereas in the case of Figure 5.13,

the situation model is taken into account as a whole.

One way to avoid any problem when trying to derive situation vectors is to con-

catenate the contributions instead of simply adding them together. In Figure

5.13, we see there are four components or sections of the situation model, which

means that there will be three concatenations. This way, even if the vectors are

added together within each section, these sections will keep their dimensionality.

The whole process is illustrated in (129), where _ represents the concatenation

operation.

(129)
−−−−−−→
Situation =

−−−−−→
Entities_

−−−−−→
Features_

−−−→
Roles_

−−−→
Event
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In the case of our example about John grabbing the donkey, the word embeddings

for the four sections of the DRS can be written as in (130). and the representation

of the situation model is the concatenation of these four sections. Thus, the

situation vector has the total dimension of these four other vectors, which is

4×N , where N is the dimension of word embeddings.

(130) a.
−−−−−→
Entities =

−−→
john +

−−−−→
donkey

b.
−−−−−→
Features = −−−−→person +

−−−−→
animal

c.
−−−→
Roles =

−−−−−→
grabber + 0.5

−−→
john +

−−−−−→
grabbed + 0.5

−−−−→
donkey

d.
−−−→
Event =

−−−→
grabs

(131) a. dim(
−−−−−−→
Situation) = dim(

−−−−−→
Entities) + dim(

−−−−−→
Features) + dim(

−−−→
Roles)

+ dim(
−−−→
Event)

b. dim(
−−−−−−→
Situation) = (N) + (N) + (N) + (N) = (4×N)

To remain coherent with our linguistic prediction approach from Chapter 4, we

used word embeddings to derive the situation model, but it would also be pos-

sible to derive it using another approach. For example, Frank et al. (2009) and

Venhuizen et al. (2019) used a pre-de�ned microworld to train a Distributed Sit-

uation Space (DSS), where each observation is linked to a proposition. Even if

the derivation method di�ers, these approaches entertain the same kind of ideas

that we argued for here regarding the nature and the importance of the situation

model in linguistic processing and especially in linguistic prediction.120

120Venhuizen et al. (2019) also argued for the importance to take into account the situation
model in computational models of linguistic processing.
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5.3.2.2 Topic Model

As was the case for the situation model, every new linguistic input contributes

to the topic model's derivation. When building this kind of topic model, we can

use the fact that a topic is itself a probability distribution over di�erent words

(Steyvers & Gri�ths, 2010). As we described previously, a topic can be repre-

sented as a vector where each value corresponds to the probability of encountering

a speci�c word when discussing this topic. For example, in Table 5.2, the com-

ponents of the vectors are the conditional probability that a speci�c word n is

produced with respect to a given topic i.

Table 5.2 Example of a Topic Vector

word1 word2 word3 ... wordn

topici 0.34 0.56 0.42 ... P (wn|topici)

Once we have a topic vector for all the possible topics, we can build a topic

probability matrix consisting of all the words and possible topics. Topic vectors

are obtained by training a topic model on a given corpus in a similar fashion as

described for word embeddings in Chapter 4. One of the most popular approaches

to train a topic model is the Latent Dirichlet Allocation (LDA) method that was

�rst developed by Blei et al. (2003).121 Starting from a list of documents, the

idea behind LDA is to determine which words belong to a particular topic. This

is done �rst by randomly assigning a topic to each word and then going through

121See Kherwa & Bansal (2018) for a comprehensive review of di�erent approaches to topic
modeling.
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each document and computing the probability that a given topic t is present in

a document given the proportion of words that are assigned to the topic t in

this document: P(topic|document). From this, we can compute the conditional

probability that a word is associated with a particular topic: P(word|topic). The

topic for which this conditional probability is the largest will then be re-assigned

to this word, and the process goes on for every word in all the documents. Basic

LDA approaches treat every document as a list of strings, and the grammatical

role of the words is not taken into account. In this thesis, I use a topic model

trained on the enwiki-20170220 corpus with the LDA module of Gensim in python.

It is essential to note that the topic model' obtained from topic modeling is not the

same as what I described before as the topic model as a contextual representation.

The topic model is a probability distribution containing all the activated topics

by an utterance at time t. These two are linked because we need to have a topic

model', i.e., a topic probability matrix, to compute a representational topic model

as the sum of all potential topics relevant given a speci�c linguistic input.

To derive the representation of a topic model, I transpose the topic probability

matrix in terms of the probability of having a speci�c topic given a series of words.

One way to do so is to sum the probability for all the topics given a particular

word. When we encounter two words, e.g., red and car, these words contribute to

the formation of a representation of a topic model.

Table 5.3 Transpose of the Topic probability Matrix

topic1 topic2 topic3

red 0.34 0.89 0.22

car 0.56 0.20 0.10
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In Table 5.3 we see that when red is uttered the probability P(topic|red) is 0.34

for topic1 and 0.56 for topic2. If we also consider car, the conditional probability

P(topic1|red,car) becomes 0.45, i.e. the average of the conditional probabilities

for both words. To obtain the representational topic model, we have to consider

all the conditional probabilities for all the words in the utterance. This way, we

end up with a probability distribution where the components are computed with

the formula given in (132).

(132) P (topici|word1, ...wordj) =
∑j

1 P (topici|word1)
j

With (132) we can derive the representational topic model as a probability distri-

bution using all the uttered words.

5.3.2.3 Coordination and Uncertainty

One aspect of coordination and communication I completely omitted thus far when

I presented the bottom-up coordination for the situation and the topic models is

the uncertain nature of the derivation process. This uncertainty occurs naturally

because we rarely have all the information in hand before interpreting a sentence.

In the previous paragraphs, we took for granted that the derivation of contextual

level representations was straightforward in terms of the correspondence between

the words that have been uttered and the words that are being interpreted as such

by the listener.

To illustrate the importance of modeling uncertainty, we can go back to the sen-

tence �John grabs the donkey.�, where the word donkey could refer to an animal,
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but it could also refer to an obstinate person. These di�erent interpretations lead

to very di�erent situation models and topic models, and it is thus essential to

determine which interpretation is favored by the listener.

To model how this lexical interpretation works, I use an extension of the RSA

model that deals with uncertainties (Scontras et al., 2018). The Bayesian inference

responsible for interpreting a linguistic expression requires the listener to consider

the speaker's perspective. In other words, the probability that a state of the

world s is retrieved from the utterance u will depend on the probability that the

speaker chooses u to express s. In this uncertain RSA extension, we acknowledge

the fact that the speaker's choice could be, by itself, uncertain. For example, if

the speaker produces an utterance without fully knowing the state of the world,

this uncertainty about s should then be taken into account by the listener when

retrieving the meaning conveyed by the speaker.

In the uRSA model, the structure of the framework remains the same, but we

have a new parameter a as in (133). This parameter a �refers to any factor that

might in�uence the speaker's behavior, including uncertainty about the conver-

sational topic, word meanings, background knowledge, or general discourse con-

text� (Goodman & Frank, 2016, p.8). The pragmatic listener infers the state of

the world and, at the same time, infers the parameter s. This is called a joint

inference on the part of the listener because it involves two inferences derived

simultaneously about the same thing (Scontras et al., 2018).

(133) PL1(s, a|u) ∝ PS1(u|s, a) · P (s) · P (a)

This new parameter allows for the uRSA model to tackle more complicated issues

like the interpretation of non-literal meaning (Kao et al., 2014b), metaphor un-
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derstanding (Kao et al., 2014a), and even irony (Kao & Goodman, 2015). For our

purpose, I use the uRSA to model the uncertainties regarding the lexical meaning

of words, i.e., should we interpret donkey as an animal or a person. This uncer-

tainty about lexical meaning is signi�cant because words are the foundation on

which both the topic and situation models are derived. If a word is interpreted

di�erently, this means it might not refer to the same thing and, consequently, to

the same word embeddings.122

Until now, we always have taken for granted that a word refers to a single word

embedding, but following this lexical uncertainty problem, we should consider

that a word might be associated with di�erent word embeddings depending on its

meaning. One way to model this uncertainty is to replace the lexical meaning cor-

respondence function with a probabilistic correspondence function that attributes

meanings using a set of lexical entry for every word.123

One way to model this is to use the RSA model's lexical-uncertainty extension

that was presented in Bergen et al. (2014). In their model, they replaced the

�xed lexicon L with a set of lexica Λ (Bergen et al., 2014). A �xed lexicon L is

responsible for mapping utterances and states of the world via truth-values as in

(134).

(134) L(u, s) =

1 if s ∈ JuK

0 if s /∈ JuK

122Lexical uncertainty is undoubtedly linked with the noisy channel view of communication
we discussed at the beginning of this chapter. In this view, a listener derives the most likely
interpretation of a sentence or a lexical item while taking into account the noise of the signal
that has to be interpreted (Gibson et al., 2013).

123Every word refers here to any polysemous words or words that could refer to at least
two di�erent things.
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A set of lexical Λ is a probability distribution P (Λ) containing a set of lexica Li,

and it represents the uncertainty about the literal meaning of an expression. All

of these lexica Li are mapped di�erently with respect to their state of the world.

This means that the choice of L in�uences the truth-value and thereby the global

interpretation of the utterance. The approach developed by Bergen et al. (2014)

was �rst used to model M-implicatures which are derived for cases where two

utterances were semantically equivalent (Horn, 1984; Levinson, 2000). For those

particular cases, they had to assign meanings and attribute a lexicon to a whole

utterance.

In this thesis, I have been interested in representing utterances as a composition

of word embeddings, and I must also be able to model uncertainty at the word

level and not only at the utterance level. Interestingly enough, their model allows

considering atomic utterances, i.e., utterances that comprise only one word, which

means that we could use it to model the lexical uncertainty of a word expressed

by a speaker.

However, their lexical uncertainty model's transposition into our approach of lex-

ical prediction would not be so straightforward. One di�culty would be to know

whether to resolve this lexical uncertainty before or after the compositional pro-

cess. In other words, do we interpret the lexical meaning of a word and adjust

it accordingly before composing the utterance together, or is it resolved after

the whole utterance has been derived? In the former case, Bergen et al. (2014)

describe this as lexical enrichment.

For the cases we described here about the derivation of the situation and the topic

model, we should think of these models as representing the interpretation retrieved

by the listener. Lexical uncertainty is certainly involved during the derivation

of this interpretation, but we have no principled way to di�erentiate between a
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compositional derivation or a post-compositional derivation at this point. From

a practical point of view, it might be easier to resolve linguistic ambiguity before

going through the derivation of both the representations at the contextual levels

because then the derivation process would remain the same. In contrast, it is

not clear how we could modify the situation and the topic models after their

derivation.

Another crucial point is that if we want to consider lexical uncertainty and con-

tinue using word embeddings, we have to have multiple word embeddings for

every word; otherwise, we would only have one mapping for every word. Word

embeddings like word2vec and GloVe have only one word-vector for every word,

which implies that they only have one lexicon L for every word. Therefore, using

word2vec or GloVe, we could not model lexical uncertainty because we would not

have a set of lexica attached to words.

A solution to this problem would be to use contextualized word embeddings like

the ones trained with BERT (Devlin et al., 2018) but this would be beyond the

scope of this thesis.124 These two training algorithms produce contextualized word

embeddings which means that they have di�erent word-vector to represent that

a word might have di�erent meanings depending on the context it is used in.

However, even if we use these contextualized word embeddings that allow a set of

lexica to be used to a single word, it would not resolve the compositional/post-

compositional issue about lexical uncertainty.

In this thesis, I chose not to integrate lexical uncertainties within the linguistic

prediction approach because I assume that its e�ect will be limited since we only

consider single utterances considered to be relatively unambiguous. However, lex-

124BERT, Bidirectional Encoder Representations from Transformers, is based on the net-
work architecture introduced as the Transformer by Vaswani et al. (2017). This Transformer
model relies on self-attention to learn contextual relations between words.
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ical uncertainty undoubtedly plays a crucial role in other communication settings,

especially during written conversations where the perceptual intake that could

help disambiguate meanings is minimal.

5.3.3 Modeling Top-down In�uences

The top-down in�uences from the topic model and the situation model are respon-

sible for the constraints imposed on the potential linguistic prediction, as shown

in Figure 5.14.

Topic model Situation model

P-units

RB-units

Lexical level

Semantic features

Contextual-level representations

Sentence-level representations

Coordination Aspect
of Communication

Top-down
Signal

Top-down
Signal

Figure 5.14 Depiction of the Top-down signals

This in�uence takes the form of a conditional probability imposed by these contextual-
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level representations, i.e., P (input|context), where context is both the situation

model and the topic model. Transposing this expression to account for linguistic

prediction at the word level, we get (135).

(135) P (word|topic, situation)

This conditional probability represents the constraints imposed upon the possible

words that can be predicted according to the context. Whenever we try to predict

an upcoming word, we are in such a state that this top-down in�uence conditions

it. Under this perspective, it is not the prediction process itself that is constrained

but rather the probabilistic prior. To illustrate this idea, we can go back to

our example with the sentence �John plays ...� where the context of being at a

chess tournament in�uences the probability of playing chess to compare to the

probability of playing water polo.

Here, this contextual plausibility is a score conditioned on the higher-representational

context that helps determine what a speaker might say or mean (Chater et al.,

2006a). In terms of activation-based prediction, the top-down in�uences modify

the upstream values in the similarity matrices for the linguistic units (P-unit, RB-

unit, lexical-unit, semantic features). When taking into account the context, the

conceptual space upon which is based the similarity matrices is itself updated to

satisfy the conditional probability in (135).

This probabilistic approach to top-down in�uences models these in�uences to

be compatible with the activation-based model of linguistic prediction described

in Chapter 4. In other words, the degree of activation a of a word within the

similarity matrix is determined probabilistically P (a) (Heylighen, 2005) and the

context conditions this probability.
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From (135), we can use Bayes' rule to transform it into an expression that we

can compute. Now, the fact that we consider the situation model and the topic

model to be independent of each other allows us to compute the e�ect of both

contextual models separately. It is the combination of these e�ects that modulate

the activation level of every potential prediction.

(136) a. P (word|topic, situation) = P (word|topic)× P (word|situation)

b. P (word|topic) = P (word)×P (topic|word)
P (topic)

c. P (word|situation) = P (word)×P (situation|unit)
P (topic,situation)

5.3.3.1 Situation Model

To compute the conditional probability that a word be predicted given the situa-

tion model in (137), we have to compute three elements: P (word), P (situation|word)

and P (situation).

(137) P (word|situation) = P (word)×P (situation|word)
P (situation)

P (word) is the prior probability of predicting any speci�c word. This prior is

to be understood as the probability that a word be predicted at the time of the

prediction. For example, if the linguistic prediction is derived at ti, the prior will

then be the probability computed at a previous time ti−1, which is the instant that

is existing right before the linguistic prediction is derived. However, because we are

implementing a non-incremental model of linguistic prediction, ti−1 corresponds

to the time when we do not have any information whatsoever about the linguistic
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prediction, i.e., a time where the sentence has not been processed yet. Therefore,

we suppose that we have �at priors in this model, namely that all words are

equally probable.125

P (situation) is the probability distribution that the hearer has derived a speci�c

situation at time ti. Doing so, we end up with a P (situation) that is constituted

from a probability of 1 for the situation-vector that was derived and 0 everywhere

else.

The third term is P (situation|word), and it corresponds to the Distributed Situ-

ation Space matrix, which consists of the correspondence between situations and

words as in Table 5.4.

Table 5.4 Distributed Situation Space Similarity Matrix

word1 word2 word3 wordj

situationi P (w1|situationi) P (w2|situationi) P (w1|situation3) ...

... ... ... ... ...

To compute the value of the conditional probabilities in the matrix, I use the

fact that the situation model is constituted from 4 kinds of vectors concatenated

together: entities, features, thematic role, and event. This means that we can

compute the activation-based similarity between these components and a given

word embedding separately by disjoining the situation model. This operation is

readily performed by using the similarity matrices we already derived in Chapter

4. For example, when considering a wordi, we have to compute the activation-

based similarity between this word and the situation model's four components.

125This simpli�cation does not hold when considering incremental linguistic prediction.
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To obtain the total activation-based similarity value between this word and the

situation model, we can sum the activation for all of the four components.

(138) P (situationi|wordj) =
∑4

1(P (Components of the situation|wordj)

Finally, we can combine P (situationi|wordj) and P (situation) to get P (word|situation).

5.3.3.2 Topic Model

To compute the conditional probability that a word be predicted given the topic

model in (139), we have to compute three elements: P (word), P (topic|word), and

P (topic).

(139) P (word|topic) = P (word)×P (topic|word)
P (topic)

Similarly, the prior is taken to be �at, which means that P (word) is equal for

every word. The second term P (topic|word) is given by having a speci�c topic

given a list of words. Finally, P (topic) is the probability distribution represented

by the topic model we derived for the truncated utterance. To sum up, the e�ect

of the top-down in�uence originating from the topic model on the activation level

of a wordi is given in (140).

(140) P (wordi|topic) ∝ P (topic|wordi)
P (topic)

For example, the probability that the word chess is activated given that we are at
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a chess tournament is proportional to P(tournament|chess)/P(tournament), where

P(tournament|chess) is the probability that the topic `tournament' is elicited by

the word chess and P(tournament) is the value of the probability that we are in

fact as at a chess tournament.

5.4 Worked out Examples

In this section, I revisit the worked-out examples presented in Chapter 4 while

taking into account the top-down in�uences from the topic model and the situa-

tion model. For these three cases, the situation model and the topic model were

derived separately using the approach described in this chapter. In this section, I

assume that the contextual-level representations do not modify the similarity val-

ues between two concepts but rather in�uence the concepts' pre-activation within

the conceptual space. The in�uence coming from both the situation model and

the topic model can thus be taken into account independently from the calcula-

tion we already performed in Chapter 4. Once the situation model and the topic

model are derived, we can combine them with the MAPs we already calculated

in the previous chapter by simply adding their contribution to the activation of

the words to the activation we calculated in Chapter 4. In the following section, I

display a subset of the situation model and the topic model for every worked-out

example, and I show how the �nal MAPs change when we include the top-down

in�uences coming from these representations.
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5.4.1 Example 1: High Constraining Sentence (HCS)

For the sentence given in (141), it is the word neck that has the highest predictabil-

ity as measured by Bloom & Fischler (1980) (96%) and by Block & Baldwin (2010)

(97%).

(141) He loosened the tie around his ...

5.4.1.1 Situation Model: HCS

The �rst thing to do is to derive the situation model and the topic for this trun-

cated sentence. As represented in (142), the situation model can be written as

the combination of four di�erent kinds of information: entities, features, roles,

and events. The situation model of truncated sentence in (141) is represented in

Figure 5.15.

(142)
−−−−−−→
Situation =

−−−−−→
Entities_

−−−−−→
Features_

−−−→
Roles_

−−−→
Event

Entities:
−→
he,
−→
tie

Features:
−−→
male,−−−−→person,

−−−−−−→
tightness,

−−−→
lessen,

−−−−−→
clothing,

−−→
neck,

−−−−−−→
encircling,

−−−−−−−−→
surrounding

Roles: (
−−−→
loosen + 0.5×

−→
he), (

−→
tie + 0.5×

−−−−→
around)

Events:
−−−→
loosen

Figure 5.15 Representation of the situation model for the sentence in (141)

With this situation model, using similarity measures, we can compute the ac-
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tivation of all the words pre-activated by this situation model. Each kind of

information gives rise to a distribution of words and their associated activation.

When we concatenate and add up these word-activation pairs, we get a distri-

bution of activation levels corresponding to the e�ect of the situation model. A

small subset of these word-activation pairs is depicted in Table 5.5.

Table 5.5 Subset of the activation coming from the situation model of (141)

tighten 4.607

sti�en 3.560

grip 2.964

cut 2.981

neck 2.276

The situation model a�ects the activation of words within the conceptual space

regardless of their grammatical type. The syntactical constraints we discussed in

Chapter 4 played a role when deriving a prediction, and they were already taken

into account when deriving the MAPs at every level. However, there is no need to

implement them here since we are computing the intersection of those two sets.

For example, if a word is present in the situation model and absent from the

MAPs we calculated in Chapter 4, it will simply not appear in the prediction.

Conversely, if a word is present in the MAPs and is not present in the situation

model, it will still be a valid prediction, but it will not be pre-activated by the

situation model.

(143) MAPChap 4 ∩ Situation Model

Once we intersect and superpose the situation model and the MAPs we got in
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Chapter 4, we can retrieve the situation model's �nal prediction. A comparison

between the results in Chapter 4 and those obtained when taking into account

the situation model is shown in Table 5.6.

Table 5.6 First �ve MAP for the situation model of (141)

Chapter 4 with Situation Model

back 0.055 neck 13.702

neck 0.052 thigh 13.499

thigh 0.051 ankles 12.089

rib_cage 0.051 wrists 12.008

legs 0.051 back 11.829

It is interesting to see that once we combine the activations from the situation

model and those we already calculated for that MAPs in Chapter 4, the word neck

now becomes the most activated word. Conversely, the word back, because the

situation model activates other words more, is now relatively lower than before.

5.4.1.2 Topic Model: HCS

To include the top-down e�ect coming from the topic model, we have to determine

which topics are associated with the words present in the truncated sentence of

(141). This �rst operation is done using a word-topic probability matrix obtained

from the training of a topic model.126 To determine which topic is the most

126As I already mentioned, the topic model used in this chapter was trained on the enwiki-
20170220 using the LDA module of Gensim. The result was a model containing 150 di�erent
topics and their associated word-topic probability.



253

probable, I used the words loosened and tie that were expressed in (141).127. As

a result, I obtained that the most probable topic was the number 049, and the

probability was 0.5033. All the other topics had the same probability of 0.00333

and were not included in the calculation.

From that topic, we can retrieve the words that are the most probable when dis-

cussing this topic. A subset of the resulting distribution of words is given in 5.7.

Table 5.7 Subset of the activation coming from the topic model of (141)

match 0.013

round 0.013

rank 0.011

championship 0.010

draw 0.010

Then, similarly to what we did for the situation model, we can �nd the intersec-

tion of this set of words with the one from the MAP we calculated in Chapter

4 and add up the contribution of the topic model. A comparison between the

results in Chapter 4 and those obtained when taking into account the topic model

is shown in Table 5.8.

127I could not used either he or around since they are not accounted for during the training
because they usually bear little topical content (Wang et al., 2011)
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Table 5.8 First �ve MAP for the topic model of (141)

Chapter 4 with Topic Model

back 0.055 thigh 9.326

neck 0.052 forearm 8.560

thigh 0.051 elbow 7.365

rib_cage 0.051 neck 6.876

legs 0.051 rib_cage 6.875

5.4.1.3 Deriving the Linguistic Prediction: HCS

Finally, we can add the contribution from the situation model and from the topic

model to obtain the linguistic prediction.

Table 5.9 First �ve MAP for the sentence (141)

neck 13.702

thigh 13.499

ankles 12.089

wrists 12.008

back 11.829

5.4.2 Example 2: Low Constraining Sentence (LCS)

For the sentence given in(144), the cloze scores are the following (Bloom & Fis-

chler, 1980): hands (49%) , glove (32%), mitt (8%), teeth (4%).
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(144) He caught the ball with his ...

5.4.2.1 Situation Model: LCS

The �rst thing to do is to derive the situation model and the topic for this trun-

cated sentence. The situation model of truncated sentence in (144) is represented

in Figure 5.16.

(145)
−−−−−−→
Situation =

−−−−−→
Entities_

−−−−−→
Features_

−−−→
Roles_

−−−→
Event

Entities:
−→
he,
−−→
ball

Features:
−−→
male,−−−−→person,

−−−−→
receive,

−−−→
object,

−−−−→
thrown,

−−−→
round,−−−→game,

−−−−−−−→
instrument

Roles: (
−−−−→
catches + 0.5×

−→
he), (

−−−−→
catches + 0.5×

−−→
ball)

Events:
−−−−→
catches,

−−−−→
catcher

Figure 5.16 Representation of the situation model for the sentence in (144)

From this situation model, we can compute the activation of all the words that are

pre-activated by it. When we concatenate and add up these word-activation pairs,

we get a distribution of activation levels corresponding to the e�ect of the situa-

tion model. A small subset of these word-activation pairs is depicted in Table 5.10.

Once we intersect and superpose the situation model and the MAPs we got in

Chapter 4, we can retrieve the situation model's �nal prediction. A comparison

between the results in Chapter 4 and those obtained when taking into account

the topic model is shown in Table 5.11.
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Table 5.10 Subset of the activation coming from the situation model of (144)

guy 4.039

bat 3.815

him 3.715

throw 3.544

hands 1.385

Table 5.11 First �ve MAP for the situation model of (144)

Chapter 4 with Situation Model

hands 0.164 hands 10.046

glove 0.118 glove 8.765

mitt 0.078 mitt 5.543

socks 0.077 stick 3.127

toes 0.040 knee 2.742

5.4.2.2 Topic Model: LCS

To determine which topic is the most probable, I used the words caught and ball

that were expressed in (144). As a result, I obtained that the most probable topic

was the one with the number 120 and the probability was 0.669. All the other

topics had the same probability of 0.00222 and were not included in the calcula-

tion. From that topic, we can retrieve the words that are the most probable when

discussing this topic. A subset of the resulting distribution of words is given in

5.12.

Then, similarly to what we did for the situation model, we can �nd the intersec-
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Table 5.12 Subset of the activation coming from the topic model of (144)

he 0.049

but 0.047

hand 0.042

glove 0.040

�ngers 0.039

tion of this set of words with the one from the MAPs we calculated in Chapter

4 and add up the contribution of the topic model. A comparison between the

results in Chapter 4 and those obtained when taking into account the topic model

is shown in Table 5.13.

Table 5.13 First �ve MAP for the topic model of (144)

Chapter 4 with Topic Model

hands 0.164 hands 0.164

glove 0.118 glove 0.118

mitt 0.078 mitt 0.078

socks 0.077 �ngers 0.077

toes 0.040 socks 0.040

5.4.2.3 Deriving the Linguistic Prediction: LCS

Finally, we can add the contribution from the situation model and from the topic

model to obtain the linguistic prediction.
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Table 5.14 First �ve MAP for the sentence (144)

hands 9.239

glove 8.765

mitt 5.543

stick 3.856

toes 1.832

In 5.14, the order of the �rst three MAPs is still the same as the one obtained

by (Bloom & Fischler, 1980), but the word teeth is still not present in the list of

MAPs.

5.4.3 Example 3: The in�uence of the context (IoC)

In this example taken from Nieuwland & Van Berkum (2006), the association

between the meaning of peanut and the possible continuation is modi�ed by the

use of a speci�c context (146) where the peanut is attributed anthropomorphic

characteristics. In Chapter 4, we retrieved the linguistic prediction by looking

only at the truncated sentence (147). Here, we derive the situation model and the

topic model of this preceding context (146), and we integrate their contribution

into the model of linguistic prediction.

(146) [Full context] A woman saw a dancing peanut who had a big smile on

his face. The peanut was singing about a girl he had just met. And

judging from the song, the peanut was totally crazy about her. The

woman thought it was really cute to see the peanut singing and dancing
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like that.

(147) The peanut was [salted/in love].

5.4.3.1 Situation Model: IoC

The situation model of the preceding context (146) is given in Figure 5.17.

Entities: 2×−−−−→woman, 3×−−−−→peanut,
−−→
face,

−→
girl,
−→
he,
−→
her,−−→song

Features: 4×
−−−−→
female, 5×−−−−→person,

−−−→
body, 6×

−−−−→
human,

−−→
male, 3×

−−−−→
legume, 3×−−−→

edible,
−−−→
music,

−−−→
words

Roles: (−→saw + 0.5 × −−−−→woman), (−→saw + 0.5 × (
−−−−−→
dancing + 0.5 ×

−−−−→
peanut)), (

−−−−→
smiling + 0.5 ×

−−→
face), 2 × (

−−−−→
singing + 0.5 ×

−−−−→
peanut), (

−−→
met + 0.5 ×

−→
he), (

−−→
met + 0.5 ×

−→
girl), (−−−→crazy + 0.5 ×

−−−−→
peanut), (−→see+ 0.5×−−−−→peanut), (−→see+ 0.5×−−−−→peanut), (

−−−−−→
dancing+

0.5×−−−−→peanut), (
−−−−−→
thought + 0.5×−−−−→woman)

Events: −→saw, 2×
−−−−−→
dancing,

−−−−→
smiling, 2×−−−−→singing,

−−→
met,−−−→crazy,

−−−−−→
thought,−→see

Figure 5.17 Representation of the situation model for the sentence in (147)

The transcription of the context in (146) into the situation model is not straight-

forward. First of all, some predicates like having-a-smile are not present in our

corpus, so we had to represent them using other predicates, smiling in this case.

For the same reason, we also simpli�ed the representations of some roles. I used

the predicate saw for both the woman and the peanut even though the woman is

an agent and the peanut a theme. Also, I do not consider the adverbial clauses

even though they contribute to the meaning expressed by a sentence. For example,

the clause judging from the song is not represented in this situation model. In this
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thesis, I have tried my best to remain faithful to the principle behind the LISA

and DORA representational approaches, but it is clear that the transposition of

longer and more complex propositions into word embeddings forces us to make

some simpli�cation. It would be relevant to develop a more formal and systematic

transposition mechanism in the near future, but this would be outside the scope

of this thesis.

From this situation model, we can compute the activation of all the words that are

pre-activated by it. When we concatenate and add up these word-activation pairs,

we get a distribution of activation levels corresponding to the e�ect of the situa-

tion model. A small subset of these word-activation pairs is depicted in Table 5.15.

Table 5.15 Subset of the activation coming from the situation model of (147)

man 12.956

girl 12.551

lady 12.330

love 7.950

salted 1.549

In Table 5.15, it is interesting to note that love signi�cantly more activated than

salted.

Once we intersect and superpose the situation model and the MAPs we got in

Chapter 4, we can retrieve the situation model's �nal prediction. A comparison

between the results in Chapter 4 and those obtained when taking into account

the topic model is shown in Table 5.16.

Even though they are not part of the �ve most activated linguistic prediction, the

words love, lovely, loves all have a quite high activation, i.e., respectively 0.06,
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Table 5.16 First �ve MAP for the situation model of (147)

Chapter 4 with Situation Model

milk 0.028 chocolate 0.009

wheat 0.028 drink 0.009

dairy 0.027 bird 0.008

meat 0.027 sweet 0.006

grain 0.027 meat 0.006

0.05, and 0.04. Most importantly, these three words are all more activated by the

situation model than the words salty (0.002) and salted (0.001).

5.4.3.2 Topic Model: IoC

As explained before, to determine the most probable topic, I used all the words in

(146), except the non-topical words like he or she. As a result, I obtained that the

most probable topics were the ones with numbers 4, 10, and 12. Their respective

probability of occurrence is 0.199, 0.510, and 0.250. All the other topics were not

included in the calculation. From these topics, we can retrieve the words that

are the most probable when discussing these topics. A subset of the resulting

distribution of words is given in 5.17.

Here, the words love and the word loves are activated by the topic model, whereas

the word salted is not activated at all.

Then, similarly to what we did for the situation model, we can �nd the intersection

of this set of words with the one from the MAP we calculated in Chapter 4 and
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Table 5.17 Subset of the activation coming from the topic model of (147)

rio 0.00109

brazil 0.00105

hotel 0.00089

restaurant 0.00065

love 0.00037

add up the contribution of the topic model. A comparison between the results in

Chapter 4 and those obtained when taking into account the topic model is shown

in Table 5.18.

Table 5.18 First �ve MAP for the topic model of (147)

Chapter 4 with Topic Model

milk 0.028 milk 0.0205

wheat 0.028 wheat 0.0203

dairy 0.027 dairy 0.0194

meat 0.027 meat 0.0194

grain 0.027 rice 0.0192

When taking into account the topic model, the activations for the words love and

salted is equal at 0.0007.

5.4.3.3 Deriving the Linguistic Prediction: IoC

Finally, we can add the contribution from the situation model and from the topic

model to obtain the linguistic prediction.
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Table 5.19 First �ve MAP for the sentence (147)

cook 0.011

chocolate 0.0091

drink 0.0086

eat 0.0085

bird 0.0078

The interesting results here are not the �ve most activated prediction, but the

fact that when we take into account the situation model and the topic model, we

get that love is now more highly activated at 0.005 than the word salted which

is activated at 0.001. This means that the situation model and the topic models

have changed the expectation of encountering the word love. It was absent from

the distribution of linguistic prediction in Chapter 4, and it now has become more

activated, or more highly expected, than the word salted or the word salt (0.003).

5.5 Discussion: A Cognitive Architecture for Linguistic Prediction

Chapter 2 presented the cognitive architecture for linguistic processing proposed

by Baggio (2018). I now compare this cognitive architecture with the multi-

layered representation of linguistic prediction presented throughout this chapter.

This multi-layered representation corresponds to the hearer's di�erent representa-

tional levels needed to predict the upcoming word, and it is illustrated in Figure

5.18.

Let me recall that Baggio (2018) described three systems that were involved in
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Topic model

Situation model

P-units

RB-units

Lexical level

Semantic features

ti

P-units

RB-units

Lexical level

Semantic features

ti−1

Topic model

Situation model

P-units

RB-units

Lexical level

Semantic features

ti+1

Figure 5.18 Representational processing structure involved in linguistic predic-
tion

linguistic processing. The R-system is responsible for mapping lexical items into

relational structures and is triggered every time a new word is processed. The

I-system is responsible for interpreting these relational structures and their trans-

position into a mental model of the input, and it is triggered at every new re-

ferring expression. Finally, the E-system is linked with the coordination aspect

of communication, and it treats whole signals or whole communicative actions.

The cognitive architecture from Baggio (2018) is depicted in Figure 5.19 (Baggio,

2018, adapted from p.186).

To �nd the correspondence between Figure 5.18 and Figure 5.19, i.e., to transpose

the di�erent characteristics of my multi-layered approach of linguistic prediction

into the cognitive architecture from Baggio (2018), we have to look more closely at

every stage of processing. Baggio (2018) distinguished two main processing paths:
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Input

S

Modelt

R

t-1

t+1

t Hearer

(semantic stream) i

wlc

u

pslc

(grammatical stream)

wlc

u

c

(coordination)

Figure 5.19 Cognitive architecture for Linguistic Processing

the grammatical path, which is related to the syntactic processing we discussed in

Chapter 2, and the semantic path, which has to do with the semantic processing

stream.

It is important to note that these two streams co-exist but that their relative con-

tribution varies from word to word (Baggio, 2018). For example, the grammatical

stream might have a greater contribution for words where the lexical meaning is

unknown. In the linguistic prediction model presented here, this word-to-word

relative contribution was not considered since our model is not incremental. How-

ever, I did acknowledge that semantics usually had precedence over syntax by

focussing mainly on the semantic stream.

In Figure 5.19, the grammatical stream is represented by the following path:

I → S → M(→ R). The input word I is �rst grammatically analyzed with

respect to word-level constraints (i.e., wlc) to transform it from a token into a

grammatical type representation at S. From there, the model M is derived using

compositional operations. In my linguistic prediction approach, I did not explicitly

discuss the speci�cs involved in the syntactic stream in Chapter 4. However, it
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was included in the discussion about compositional units because determining the

P-unit and the RB-units of a composition presupposes a grammatical analysis of

every component of this composition. In other words, to retrieve the four levels

of compositional units, we had to consider this wlc process implicitly. Within this

grammatical stream, the �nal step from M to R is the optional updating of the

stored representations of semantic types at R. Besides, this constraint imposed by

the grammatical stream via the process u also indirectly in�uences the prediction

concerning the semantic types or the upcoming word's semantic features.

The semantic stream is represented by the arrows going from I → R→M(→ S).

Here, the token input I is bound with the previous linguistic context as a relational

structure of semantic types. This relational structure R is then interpreted (i) and

included within the model M . Once M is updated, it might impose phrase and

sentence level constraints (pslc) on the grammatical types represented at S. For

example, an inde�nite NP might have a higher probability than a de�nite NP in a

linguistic context where the referent of this de�nite NP is not explicitly expressed.

When it comes to linguistic prediction, the step pslc was described in Chapter 4

as a constraining mechanism that in�uenced by limiting the possible grammatical

types of possible continuation, i.e., the grammatical type of the upcoming word

has to bear a speci�c grammatical type for the complete sentence to compose. To

illustrate this, we could compare the three contexts and the possible continuation

in (148).

(148) a. Peter has recently visited a speaker in Munich.

He said that the/a speaker had been very nice.

b. Peter has recently visited a lecture in Munich.

He said that the/a speaker had been very nice.

c. Peter has recently met Hannah in Munich.
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He said that the/a speaker had been very nice.

If the chosen word is the it will form a de�nite NP whereas it constitutes an

inde�nite NP if a is used. When there is no clear referents available from the

linguistic context as in (148-b) and (148-c), a should thus be a more probable

continuation than the. In fact, larger P600 e�ect were elicited for those two cases

compared with (148-a) (Baggio, 2018).

Once again, in terms of our linguistic prediction model, the processes r and i

were not explicitly described, and I decided to directly consider the sentence-level

units (P-unit, RB-units, lexical units, and semantic features units) as given for

a particular sentence. The multi-layered representations approach of linguistic

prediction presented in this chapter depicts the structural interaction between

these di�erent representational levels, but it does not consider how these sentence-

level units are derived in the �rst place.

Going back to Figure 5.19, it is tantamount to say that the model of linguistic

prediction originates at M in the �gure. However, the model we are considering

as a starting point is solely constituted from the sentence-level units. In other

words, the grammatical and semantic streams are responsible for the derivation

of the minimal model M that consists of the sentence-level units associated with

a given sentence.

The contextual-level representations are higher on the representational scale than

this minimal model, which means they should be distinguished from the modelM

from Baggio (2018). This implies that the situation model and the topic model,

which are conceptual constructions derived from this simple sentential model M ,

should be represented at a di�erent level in this architecture. Putting all of this

together, we can represent my architectural model in terms of the three systems
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described by Baggio (2018).

Input
S

R
M

Topic Model

Situation Model

PPS Prediction

Figure 5.20 Representational structure of this model of linguistic prediction

Figure 5.20 shows that the R-system (I → R) lies outside the scope of our model

of linguistic prediction. This is not a surprise because the model's primary inputs

are word embeddings that correspond to semantic types or grammatical types. In

the I-system, the composition of di�erent word embeddings gives rise to the model

M , which contains the four sentence-level units derived using both the semantic

types from the word embeddings and the grammatical types associated with these

word embeddings. The core of this linguistic prediction model sits within the E-

system, which is responsible for the coordination aspect of communication. This

coordination between the speaker and the hearer allows us to derive the situation

model and the topic model from the compositional model M .

The right-hand side of Figure 5.20 represents the predictive process itself, and it is

not part of any processing system per se, but it could well be integrated within the

E-system because it is also related to the coordination aspect of communication.

I already argued that both the bottom-up signals and the top-down in�uences

involved coordination: the �rst one is coordination between a speaker and a hearer,

and the second one is coordination between states of the world.
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It would therefore be natural to include these top-down in�uences into the E-

system. However, when it comes to linguistic prediction, it is not the minimal

model M that is constrained but the activation-based similarity network derived

from this model. In other words, it is not the representations from the model that

are directly a�ected by the contextual level but the level of activation of other

lexical items related to these representations. This is why, in Figure 5.20, the

pre-prediction state (PPS) is represented as an activation-based network obtained

from the model M and in�uenced both by the situation model and the topic

model. The linguistic prediction is then derived from this PPS.

In Figure 5.21, I illustrated the general architecture of the model of linguistic

prediction discussed in this thesis in terms of the processing architecture from

Baggio (2018). To the general architecture that we already discussed regarding

the composition of meaning, I added a higher representational level to refer to the

coordination aspect we described in this Chapter. According to Figure 5.21, both

the Topic model and the Situation model would be considered being part of the

E-system represented in magenta which may in�uences the way the next input is

processed.

When we discussed the uncertainty that is inherently involved in the coordination

aspect of communication, I mentioned that the resolution of such lexical uncer-

tainty was realized either before or after the composition. In terms of the three

processing systems, this implies that the I-system could transform types into ref-

erents before or after the derivation of the minimal modelM . Even though Baggio

(2018) stipulates that the E-system also contains the I-system, he also argues that

the E-system operates from the I-system outputs as depicted in Figure 5.21 since

both the Topic and the Situation Models are derived from the Modelt itself. In this

thesis, I am agnostic regarding the pre- versus post- compositional resolution of

these lexical ambiguities, but it should be noted that the pre-compositional view
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would imply a direct link between of the E-system on the I-system, i.e. instead

of being derived from the Modelt, the Topic and the Situation Models would be

derived directly from R in Figure 5.21.128

Input

S
Modelt

R

t-1

t+1

t
(semantic stream)

i
pslc

(grammar stream) u

c

Topic Modelt

Situation Modelt

Figure 5.21 General architecture of this model of linguistic prediction

Despite its apparent complexity, the existence of this representational processing

structure does not contradict the view that language processing is often based on

shallow processing. (Ferreira & Swets, 2002; Ferreira & Lowder, 2016), which stip-

ulates that when processing linguistic inputs, we often end up with representations

that are not fully parsed or chunked (Kaiser, 2013).

The present model is also in line with this view, generally called the �now-or-never

128Figure 5.21 is presented to make a parallel between the general framework of linguistic
prediction presented in this thesis, and it was beyond the scope of this thesis to develop an
exhaustive representation of linguistic processing that would include the coordination aspect of
communication.
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bottleneck� (Christiansen & Chater, 2016), which bears some similarities with the

�good-enough processing� view (Ferreira & Lowder, 2016). Basically, according to

the �now-or-never bottleneck� view, incoming information has to be treated as fast

as possible to keep some cognitive resources available to treat any new incoming

information. This bottleneck is generally described as a processing constraint on

perception and action. One way to save cognitive space from processing much

incoming information at the same time is to chunk it and represent it at di�erent

representational levels (Christiansen & Chater, 2016).

This bottleneck is easy to understand when we think of language processing be-

cause when someone is talking, we have to process a vast amount of information

in a short amount of time. After all, if we cannot keep up, newer information

rapidly overwrites the older one. To avoid this, linguistic information is processed

and chunked rapidly to form a linguistic structure which is then processed at a

higher level of representation (Christiansen & Chater, 2016). The fact that the

contextual level is part of this representational structure implies that it must be

taken into account during the chunking process, but, fortunately, the spreading

of activation happening at di�erent representational levels is a relatively shallow

and e�ortless cognitive process.

5.6 Summary

In this chapter, I develop a linguistic prediction model that underlines the im-

portance of the contextual-level representations and the top-down in�uences that

result from them. Also, I argued that the multi-layered representational process-

ing structure shapes how these linguistic predictions are derived. Doing so, I am
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supporting the idea that language-centric explanations and contextual represen-

tations at the discourse-level (Hasson et al., 2018) have to be taken into account

if we aim to have a deeper understanding of linguistic prediction.

I used word embeddings as the primary input for the model and integrated these

into a representational structure that processed the information in a certain way to

constrain the derivation of the linguistic prediction. These word embeddings carry

primordial statistical information about how words are used in natural language

(Christiansen & Chater, 2016), but it is the combination of this statistical infor-

mation and the proposed processing structure that gives out a prediction. In other

words, when developing a generative model of linguistic prediction, we not only

need the statistics of use, but we have to structure these statistics to understand

the causal matrix responsible for linguistic prediction (Clark, 2013), i.e., we have

to think of representation structures as a processing mechanism (Christiansen &

Chater, 2016).

In the last section of this chapter, I have revisited the three worked-out examples

discussed in Chapter 4. In the case of the High Constraining Sentence, we now

have the word neck as the most activated prediction, and this corresponds to the

empirical result obtained by (Bloom & Fischler, 1980). In the Low Constraining

case, as was the case before, the ordering for activations for the words hands,

glove, and mitt exactly corresponds to the ordering for the cloze scores obtains

by Bloom & Fischler (1980). Finally, in the case where we had to compute the

relative activation of the word love and the word salted, the model did activate the

word love more than the word salted which points towards a strong contribution

of the contextual representations. Once again, these results support the empirical

adequacy of this model.



CHAPTER VI

DISCUSSION

In the previous chapters, I have presented a theoretically oriented model of lin-

guistic prediction where, given an input of words and sentences, the model gives

a ranked list of possibilities for the next word. This model derives the most likely

continuations for a given sentence from the meaning expressed in that truncated

sentence and, for the �rst time, the semantics of prior discourse. To derive the

linguistic predictions, I used general pre-trained word embeddings, rather than a

closed world with pre-determined world-states like most connectionist approaches

(Schuster et al., 2020). In this model, word embeddings were used to create di�er-

ent levels of representations like semantic features level, lexical level, RB level, and

P level. I then developed a theoretical model to generate the contribution from

the contextual level representations, which were also derived using word embed-

dings. The contribution from these contextual models was then taken into account

when predicting the upcoming word. I also presented three worked-out examples

illustrating how this model of linguistic prediction could be implemented, and I

showed the model made the correct predictions for three kinds of cases. This

combination of the contributions coming from the sentence and contextual levels

achieved empirical adequacy in that the prediction matched the attested experi-

mental results.
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In this thesis, my motivations were to present a cognitively and linguistically

sound approach to the in�uence of contextual-level representations. The model

of linguistic prediction presented in this thesis represents the �rst step towards

a better understanding of the role of pragmatics within linguistic prediction and

linguistic processing more generally. Out of necessity, this thesis has prioritized

the presentation of the tools and motivations to build this highly transdisciplinary

approach. As such, some simpli�cations were posited along the way.

As we continue to develop a more sophisticated implementation of this model of

pragmatic processing in future work, there is a number of other considerations to

improve the existing model, and those will be explored in section 6.1. The insights

present in this model could also be compared with other frameworks, and this is

discussed in section 6.2. Finally, in section 6.3, I present a di�erent and more

mathematical way to model conceptual spaces.

6.1 Extensions to the Model

In this section, I discuss four kinds of possible extensions. The �rst has to do

with the parametrization of the model. In this thesis, I present a base model

which could later be �ne-tuned. This parametrization will not change the results

presented in the previous chapters, but it could widen the scope of application

to model more precisely other kinds of complex examples. For the second dis-

cussion, I revisit the incremental nature of linguistic processing discussed in the

previous chapters. It is essential to mention that the tools and the approaches

were chosen so that the model could be incremental, even though it is not cur-

rently implemented in an incremental way. Another aspect that I did not tackle is
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that cognitive processes are costly, meaning we have to consider processing costs

when modeling linguistic prediction. Finally, I return to an aspect that I brie�y

discussed in Chapter 1: the individual variability in the cloze scores.129

6.1.1 Parametrization and the Vanilla Model

The worked-out examples presented in Chapter 4 and Chapter 5 were derived using

a �vanilla� model of linguistic prediction, which means that some parameters were

pre-determined or not present for simplicity. As we improve the model, we are

able to modify some parameters without modifying the model's core structure.

In this subsection, I look at three kinds of possible parametrization that could be

more thoroughly examined in future model implementations.

6.1.1.1 Threshold of activation

A threshold of activation is a score below which a concept is considered not to be

activated. In the vanilla model presented here, we did not determine the threshold

of activation empirically. Instead, we selected all the possible candidates every

time, even though it might not be cognitively realistic because it is unlikely that

a participant always activates all words semantically related to another word.

129The fact there are several possible values for the di�erent parameters used in the im-
plementation of the model that was presented in the preceding chapters should not be seen as
a hindrance to the development of this general theory of next-word prediction. In this Chapter,
I discuss di�erent avenues that could be explored or improved without questioning the basic
assumptions behind this theoretical framework.
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To have a more cognitively realistic model, we could add a parameter for the

activation threshold, below which words will not be activated. This way, when

a word is encountered in the sentence, it only activates the most highly similar

words.

6.1.1.2 Weight of Contribution

In Chapter 4, the four sentence-level representations (SF-units, Lexical-units, RB-

units, P-unit) contribute equally to the derivation of a linguistic prediction. How-

ever, this might not be the case for all situations. Yun et al. (2012) found that

semantic similarity had a more substantial e�ect when the linguistic informa-

tion expressed in the sentence was less constraining, and it had a weaker e�ect

when the linguistic context was more constraining. A more constraining linguistic

context leads to faster processing because the predicted word is easier to acti-

vate above a certain threshold of activation (Staub et al., 2015). The constraints

coming from a sentence are linked to the number of possible endings, and these

endings are themselves linked to the relative entropy over all the possible words

that could complete this sentence (Kuperberg, 2016). In other words, the dif-

ference in activation between the most and the least activated concept is greater

for a high-constraining context than for a less constraining context (Staub et al.,

2015).

In Yun et al. (2012), they only considered one level of representation, namely the

lexical level, and they compared the contribution from similarity with that from

predictability. My model is di�erent because predictability is modeled from in-

direct measures of similarity. In terms of the four sentence-level representations,
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this result can be interpreted as giving more weight to the lexical level in a less

constraining context because the contribution from the other sentence-level repre-

sentations is not enough. To model the di�erence between strongly constraining

and weakly constraining, we could add additional weight to the four di�erent

sentence-level representations' relative contributions.

6.1.1.3 Local and Broader Context

Finally, it is essential to discuss the di�erence between the local and the broader

context. We can illustrate this di�erence by looking at a sentence like (149).

(149) The day was breezy, so the boy went to the park to �y...

In a sentence like this, the local context might be the particle to �y... or even

to the park to �y..., while the broader context is the �rst part of the sentence,

i.e., The day was breezy. In (149), the local context plays a role in the deriva-

tion of the linguistic prediction, i.e., kite. However, in this particular case, the

broader context also seems to play a role since breezy, and boy also contribute to

constraining the number of possible candidates for the continuation.

As described by Smith & Levy (2013), many empirical results have shown that

local context models usually outperform broader context models when looking at

the accuracy of responses. However, this is not to say that the broader context

does not contribute to the prediction, but it supports the idea that locality e�ects

have a more considerable impact on sentence processing. One recent model that

is in line with this statement about the local context is the lossy-context surprisal



278

model from Futrell et al. (2020); Futrell (2019); Futrell & Levy (2017). Accord-

ing to their approach, a linguistic prediction is derived using a noisy memory

representation, i.e, a probabilistic representation of the information coming from

previous words or from prior discourse (Futrell et al., 2020)

They decompose the surprisal into two parts: an unconditional surprisal and

a Pointwise Mutual Information (PMI) component (Futrell & Levy, 2017). In

(150), the �rst term represents the surprisal of having the word wi without any

linguistic context, and the PMI is an information-theoretic measure of the strength

of association (Futrell et al., 2019) between two linguistic entities. PMI can also

be viewed as comparing the number of shared bits between two representations

(Futrell et al., 2020).

(150)

Dsurprisal(wi|Context) ∝ −log[p(wi|Context)] =

− log[p(wi)]− pmi(wi|Context)

The idea here would be to integrate their lossy-context approach directly into the

model. Even though theirs is a surprisal-based model while mine is predictability-

based, we could still take this lossy-context into account when measuring the

similarity between words at the lexical level. If we assume a lossy-context rep-

resentation, then it implies that we also have a principle of information locality

(Gibson et al., 2019). In other words, if the representation of the context becomes

noisier as we go back in time, it means that the local context must have a more

substantial contribution when predicting the next word.

In Futrell et al. (2020), this principle of information locality is de�ned as the



279

erasure noise that reduces the PMI linearly as the distance increases. To illustrate

this, we go back to the sentence about the kite, and we could add two weights

that are normalized according to their distance to the predicted word, e.g., day

has the smallest weight, and �y has the highest one, as we can see in (151).

(151) The [0.2 day] was breezy so the boy went to the park to [0.8 �y]....

In the present model, the erasure probability ed that increases monotonically with

the distance d could be transposed as a normalized weight that increases linearly.

6.1.2 Incrementality

As discussed in Chapter 3, incrementality is a desideratum when developing a

model of linguistic prediction. However, a non-incremental model is easier to

implement as a base model, and, in this thesis, my focus was on describing the

pragmatic stream's structural processing view. It is essential to mention that

the model presented in this thesis is inherently compatible with an incremental

processing view, even though it has not been integrated into the model yet.

In this model, I consider that a linguistic prediction is performed at a given point

in time and that, when trying to determine the upcoming word of a truncated

sentence, we are using all the information accessible to us at this time. Thus,

the pre-predicting processes that consist of collecting the information used at the

predicting stage and the prediction process are separate. The prediction phase

is the transition between the representation of world knowledge, consisting of all

the representations available to the hearer at that time and the predicted word.
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In contrast, the pre-prediction phase consists of the derivation of those represen-

tations from the given input as in Figure 6.1.

Representation of
world knowledge

Input Predictied
Word

Prediction
Pre-processing
the information

Figure 6.1 Depiction of a Linguistic Prediction in Terms of Processing Phases

The model presented in this thesis allows the incremental build-up of the repre-

sentations of world knowledge, and it is thus compatible with an incremental view

of this pre-predicting phase. However, when considering incrementality, we must

make sure that the processes involved in the derivation of these representations

are also incremental.

Concerning the syntactic and semantic processes involved in linguistic processing,

we saw in Chapter 3 that incrementality is not a problem. I presented linguistic

approaches that are compatible with incrementality, such as Combinatory Catego-

rial Grammar (CCG) (Steedman, 1996, 1999), Discourse Representation Theory

(DRT) (Kamp et al., 2011; Kamp, 2008, 1995), and Relevance Theory (Sperber &

Wilson, 1995) which acknowledged the incremental aspect of pragmatics during

the back-and-forth derivation process of the implicature and the explicature. I

also discussed the incremental nature of game-theoretic pragmatics because, in

a `syntactic game' (Skyrms, 2010), we can always divide the signal into a sum

of sub-signals, where each sub-signal is like a word within a complete sentence.

Viewing every input as a series of sub-inputs means that this time t at which

an interpreter predicts the upcoming word could well be divided as a series of

transitory moments.
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Representation of
world knowledge

Input Predictied
Wordt1 t2 t3 t4

Figure 6.2 Incremental Processing in Terms of Di�erent Temporal Moments

In Figure 6.2, the time before which the prediction is derived is divided into a

series of moments ti, and each of these moments is a moment where the repre-

sentation of world knowledge is derived from the information available at that

moment. In other words, there should be no principled distinction between the

processes involved at each moment of the pre-predicting phase of the sentence

being developed in (152).

(152) a. John went to the ...

b. John went to the park to ...

c. John went to the park to �y a ...

Every time a participant has to predict the upcoming word, this prediction is based

on their representation of world knowledge at the time of this prediction. This is

not to say that the information available to the interpreter at all these moments

is the same, but rather that the processes required to obtain this information are

working the same way.130

As far as bottom-up signals and top-down in�uences are concerned, incrementality

could be readily integrated within the model. Chapter 5 presented a probabilistic

130It is important to make a distinction between incrementality and the dichotomy between
pre-compositional and post-compositional derivation of implicatures. In Chapter 5, I brie�y
mentioned the di�erences between the two views, and we should note that incremental processing
is compatible with these two views. See Foppolo & Marelli (2017); Breheny et al. (2013a,b) for
more details about incremental processing of implicatures.



282

approach of top-down in�uences where the contextual-level representations were

responsible for constraining the sentence-level conceptual space. The fact that this

constraining process depends on the representational content at the contextual

level implies that it would not be directly in�uenced by incrementality, i.e., the

nature of the top-down in�uence would remain the same. However, in taking into

account incrementality, we would have to update the contextual representations

incrementally, and this is where incrementality could pose a problem.

As described in Chapter 5, the Rational Speech Act model usually considers whole

utterances as inputs (Cohn-Gordon et al., 2019). To update the topic model and

the situation model incrementally, we need to have a model of coordination that

can tackle such increments at the contextual level. In line with what we just

described for the `syntactic game' (Skyrms, 2010), where a signal was divided into

sub-signals, Cohn-Gordon et al. (2019) presented an incremental implementation

of RSA where utterances are divided into sequences of linguistic units. I will not

present this approach here because it would be beyond the scope of this thesis,

but it is interesting to note that incremental approaches in pragmatics are at the

heart of modeling linguistic prediction.

Another consequence of having an incremental model relates to the temporality

associated with the linguistic prediction. When using an incremental model to

update the contextual representations, we also need to acknowledge that at every

moment ti, the activation level of any words within the activation-based semantic

network is a function of the activation level at time ti−1. In Chapter 4, I explained

that when a word is encountered, it activates other words related to it, and the

connection weight between the two is derived from their similarity value. We

can compare this process with a �ow of activation that spreads throughout the

semantic network (Rotaru et al., 2018).
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Figure 6.3 Depiction of the Spreading Activation at three consecutive moment t

In the non-incremental model presented here, the network reaches a global state

where all the activations have distributed over time. In an incremental model,

the spreading activation is incremented at every step ti, and the �ow of activation

might not have had enough time to distribute throughout. To illustrate this

incrementality in the �ow of activations, we can use Figure 6.3 which is similar

to the Figure representing the activation-based semantic network I presented in

Chapter 4.

When a word w0 is processed at time ti, it activates w1 and w2 at time ti+1 with

respect to their respective connection weights with w0. At the time ti+2, the acti-

vation spreads again and reaches the third level of activation. In an incremental

model of linguistic prediction, the activation level of a word depends on the mo-

ment t. In contrast, in the non-incremental version of the model implemented in

this thesis, the activation levels used to derive the prediction are the accumulation

of the activations at all times. Furthermore, if we consider that the activation level

of a word fades away over time, taking into account incrementality would increase

the importance of information locality when it comes to a linguistic prediction,

and this would be in line with the results from Futrell (2019).

The di�erent treatment of the activation levels of the incremental and the non-
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incremental model is also reminiscent of the distinction between the synchronous

and the asynchronous binding, respectively, associated with the LISA and DORA

model (Doumas et al., 2018; Doumas & Martin, 2018). Asynchronous binding

allows representing a composition in terms of temporal �ring patterns, much like

what we just described for the incremental linguistic prediction model. Besides

being highly similar to human cortical signals (Martin & Doumas, 2017), asyn-

chronous binding seems to work well with an incremental treatment of activation-

based semantic networks.

Finally, another aspect when considering incrementality is that we could have

intra-sentential in�uences, e.g., the P-level representation might in�uence the ac-

tivation at the RB-level and vice-versa. To model these kinds of in�uences, we

can use the DORA-like time series that we presented in Chapter 4. In Figure

6.4 (Doumas et al., 2008, Figure 3), we see that the activation of the di�erent

sentential units is represented temporally. However, when modeling incremental

linguistic prediction, the activation does not start at the P-level but at the lexical

level because the �rst processed units are the words themselves. In other words, to

model the incremental intra-sentential in�uences on the activation-based semantic

network, we could use a time series centered around the lexical units.

6.1.3 Processing Cost

A third interesting factor that has to be considered is the processing cost involved

in a linguistic prediction. It is essential to di�erentiate between the cost required

to produce an input, which is usually associated with the speaker, and the pro-
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Figure 6.4 Left-side: Representation of the proposition bigger(Fido,Sarah) at
four di�erent time in the DORA model. Right-side: Time-series illustration of
this representation

cessing cost of actually deriving a prediction, which would be associated with the

interpreter.

The production cost of an utterance needs to be taken into account during the

bottom-up derivation of the contextual representations. When the speaker chooses

the best utterance to convey the intended meaning, production cost must be con-

sidered because the speaker wants to balance production cost and e�ectiveness.

All things being equal, a speaker is more likely to choose a less costly utterance

than an utterance with a very high production cost. When interpreting an ut-

terance, the hearer uses this information about the production cost to infer the

conveyed meaning from the speaker's perspective.

Brothers & Kuperberg (2021) di�erentiate between two kinds of processing cost

on the interpreter's side: the �rst kind is related to the inherent di�culty of
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processing a speci�c word and the second kind has to do with the di�culty of in-

tegrating the interpretation of this word into the contextual-level representations.

This distinction has been supported by empirical evidence that associates each

processing cost with a di�erent neural response: an N400 e�ect when it comes to

lexical access, and an increased late posterior positivity P600 e�ect for a violation

involving higher-level representations (Kuperberg et al., 2020).

Concerning linguistic prediction, the �rst kind of processing cost is related to an

upcoming word's unexpectedness correlated with its prior activation level. For

example, when a word is not expected, this word is not activated within the

activation-based semantic network, and this implies that it requires more cognitive

e�ort to activate it from scratch when encountered. In comparison, when a word

has already been activated within the interpreter's semantic network, the e�ort

necessary to increase its activation level will be lower.

The second kind of processing cost has to do with updating the representations

at the contextual level. It is a measure of the unexpectedness of the change that

needs to occur at the contextual level to correspond with the latest incoming input

that is processed. Since both the topic and the situation models are described

as probabilistic distributions, the processing cost for integrating new information

can be considered proportional to the discrepancy between the probability distri-

butions before the update and after the update. Thus, a processing cost is the

amount of cognitive energy required to change one's mental con�gurations.

Both of these processing costs are related to surprisal (Hale, 2001; Levy, 2008) be-

cause they are measures of the di�culty of processing a given piece of information,

be it lexical or supra-lexical. These are measures of the cognitive e�ort required

to integrate new information with respect to the hearer's expectation. In other

words, this surprisal is a measure of the discrepancy between a prediction and an
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input and not a measure of the cognitive cost required to generate a prediction

(Delaney-Busch et al., 2019). However, if we consider the incremental aspect of

linguistic prediction that we just described, the two become related because the

surprisal at time ti becomes the processing cost at time ti+1.

If we recall the noisy-context surprisal model (Futrell et al., 2020; Futrell & Levy,

2017), the processing di�culty or the processing cost is proportional to the word's

surprisal with respect to the noisy representation of the preceding context. In

terms of our model of linguistic prediction, this means that when a new input

is processed, the di�culty of integrating it within the representation of world

knowledge at this time t is proportional to the degree by which it deviates from

the probabilistic representation of the world knowledge at time ti−1.

We can illustrate the processing cost's e�ect by looking at the three examples in

(153) where we have two target positions per sentence. In terms of surprisal at the

�rst target word, we can say that �y should be less surprising than paint since the

latter is not usually associated with the context described by the �rst part of the

sentence. Then, when the �rst target is paint, the surprisal at the second target

position should be higher for the word lamppost compared with the word picture

because it is much more common to paint a picture than to paint a lamppost.

In terms of processing cost, (153-c) should thus be the sentence with the highest

processing cost because it has two unexpected words.

(153) a. The day was breezy, so she went to the park to �y a kite.

b. The day was breezy, so she went to the park to paint a picture.

c. The day was breezy, so she went to the park to paint a lamppost.

Integrating these costs into the model of linguistic prediction presented in this
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thesis requires the transposition of these unexpected changes at the various rep-

resentational levels. At the �rst target position, the word �y should be easier to

predict in the sense that its activation level should be higher than the one for paint

since the topic model, the situation model, and the sentence-level representations

would all contribute more to the activation of �y over the activation of paint.

Now, if we were to ask participants to complete (153-b) after paint a, the word

picture would certainly be predicted more often than the word lamppost. This

could be explained by the fact that the linguistic prediction at the second target

position is more in�uenced by the preceding word paint than by the broader

context of being in a park on a breezy day. In addition to the argument that the

local context has more weight than the broader context, the linguistic prediction is

also derived after the processing of an unexpected word, which means the cognitive

e�ort to integrate the word paint at the contextual level has already been made.

Consequently, it will have shifted those representations to �t this unexpected

input, and it would then need an even bigger cognitive e�ort to shift it back to

accommodate lamppost.

In terms of linguistic prediction, we can say that the hearer follows a path of least

e�ort when predicting and that the processing cost is linked with the change to

the probabilistic representations. In the case of the sentence-level representations,

this processing cost is proportional to the di�erence in activation level. In the case

of contextual representations, this change could be thought of as the di�erence

between two probabilistic distributions.131

131In the last section of this chapter, I go further by linking the processing cost to an
energy-based mechanism.
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6.1.4 Individual di�erences

The third important issue that we ought to discuss is the individual di�erences

between participants and how these di�erences could be modeled. Chapter 1 dis-

cussed the inter-individual variability in the cloze scores, and I mentioned that the

cloze values are generally understood as average preferred responses. However, the

fact that di�erent individuals predict di�erent words for the same sentence shows

that the linguistic prediction might not be derived the same way by everybody.

This variability does not call into question the structural organization of the rep-

resentations used in the linguistic prediction. Still, it illustrates that these repre-

sentations might not be derived or used the same way by all individuals. Beyond

the standard uncertainty involved in the derivation of these contextual level rep-

resentations, each person would derive them using the same kind of bottom-up

signal, and the e�ect of the higher-level representations would still work out as

top-down in�uences. These inter-individual di�erences can be explained in terms

of di�erent knowledge about the world or in terms of di�erent conceptual spaces.

Between-population di�erences, like children and older adults, can be explained

partly by this discrepancy of knowledge (Ryskin et al., 2020). This knowledge

discrepancy can be accounted for in our linguistic prediction model by utilizing

di�erent word embeddings for di�erent individuals or by using di�erent mapping

functions between these word embeddings and the contextual level representa-

tions.

Another option to explain this inter-individual variability is to consider the di�er-

ential contribution between the contextual-level and the sentence-level representa-

tions. It might be possible that the contribution coming from top-down in�uences

varies from individuals to individuals, and many empirical results seem to point
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in that direction. Using an eye-tracking study, Huettig & Janse (2016) showed

that individuals with higher working memory abilities and faster processing speed

had more anticipatory eye movements. Similarly, Brothers et al. (2020) results

are in line with the idea that skilled readers are better at detecting coherence

breaks during online processing because they deal better with higher-level rep-

resentations. Finally, Payne & Federmeier (2019) showed that individuals with

a faster reading pace had larger predictability e�ects on the N400 components,

which seems to be correlated to their capacity to take into account top-down con-

textual constraints; conversely, older adults (mean age of 68) are less likely to use

top-down contextual constraints, and they rely more �rmly on the sentence level

representations (Payne & Federmeier, 2018).

Putting all this together, it seems that some individuals are better at taking

into account higher-level representations. This ability to use top-down contextual

constraints has been associated with a limitation of domain-general executive

resources (Ryskin et al., 2020; Delaney-Busch et al., 2019). Even though I will

not discuss these limitations in detail because it would be beyond the scope of this

thesis, we can still mention how we could integrate such e�ects into this model

of linguistic prediction. The simplest way to model this di�erential contribution

from the sentence level and the contextual level is to de�ne a Top-to-Bottom

(TtB) ratio representing the relative ratio of the contribution between these two

levels, as in (154).

(154) TtB = Contribution from the contextual-level
Contribution from the sentence-level

This Top-to-Bottom ratio is similar to a ratio of interpretation concerning the

di�erent kinds of interpretations presented in Brothers et al. (2020), namely a deep

interpretation involving higher-level representations and a surface interpretation
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does not involve higher representational levels. For example, if older adults rely

more on the sentence level, then the top-down in�uence could be diminished by

a corresponding factor, let us say 60%. Adding this TtB ratio would modulate

the top-down constraining process at the source by modifying the probability

distribution e�ect over the conceptual space.

Another crucial aspect of this Top-to-Bottom ratio is that it could also be relevant

when comparing linguistic predictions performed in two di�erent languages or two

di�erent cultures that speak the same language. For example, speci�c languages

might be more under-determined than others, which might increase the impor-

tance of the contribution from the contextual level. Similarly, two populations

might have di�erent TtB ratios depending on their respective social and cultural

characteristics of language use.

6.2 Related Approaches

To better contextualize the model of linguistic prediction presented in this the-

sis, it is crucial to discuss how it compares with other approaches. I present a

connectionist approach that also uses a context-like representation. I also discuss

possible connections between my model and the ever-growing number of predic-

tive processing approaches, which view the brain as constantly generating and

updating a multi-layered mental model of the representation of world knowledge.
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6.2.1 Connectionnist Approaches

In a series of articles, Rabovsky et al. presented a computationally explicit ac-

count of the prediction process underlying the N400 amplitudes (Rabovsky, 2020;

Rabovsky & McClelland, 2020; Rabovsky, 2019; Rabovsky et al., 2018, 2016). In-

stead of predicting words directly, they used Bayesian surprisal (Levy & Gayler,

2008) to produce N400 amplitudes so they could compare them with empirical

results. Notably, a feature of their model is that they consider that prediction

at the word level re�ects changes happening at a higher level of representation.

They allow predictions at the word level, but they state that the N400 component

is triggered by representational updates in the integrated meaning of the sentence

(Rabovsky et al., 2018; Rabovsky, 2019).

According to (Rabovsky et al., 2018), sentences are conveying information about

situations or events, and a representation of a sentence should thus contain prob-

abilistic information about the aspects of this situation or event (Rabovsky et al.,

2018). In their model, they manipulate the representation of an event described

by a sentence rather than representations of sentences directly. They call this

representational level the �sentence-gestalt� (SG). The SG is a distributed rep-

resentation containing all the information present in the sentence (St. John &

McClelland, 1990), i.e., it represents the meaning a speaker wants to convey, and

the form of this implicit SG-level representation is not constrained whatsoever.

In their model, they used distributed representations (DR) to represent concepts

from a �pattern of activity over a collection of neurons� (Plate, 2006, p.2). In

local representation, a concept is linked with a singular value or a scale. In a

distributed representation, every concept is linked with the activation of more than

one neuron, and conversely, every neuron can be linked with more than one concept
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(Hinton et al., 1986). For simplicity reasons, I leave out the implementation

side of things and only consider that a neuron is a state-like dimension that can

be activated or not. A distributed representation has functional properties far

more precise than non-distributed representations because it is easy to alter their

properties slightly to emphasize certain features of a representation (St. John &

McClelland, 1990), whereas it is not as straightforward to do so with isolated units.

Also, distributed representations are ideal candidates for representing semantic

meaning because they possess internal structure and carry more information than

a single node (Chalmers, 1990). Finally, distributed representations allow for

information to be processed simultaneously, and they are much closer to being

able to represent a continuum (St. John & McClelland, 1990).

The fact that this representation is implicit allows representing aspects of meaning

that are not explicitly expressed by the sentence. For example, if an event involves

cutting a steak, then it would be understood that a knife is involved even if it is

not explicitly expressed in the sentence. In other words, the meaning associated

with the knife would be present in this implicit representation of the sentence

even though the knife is not mentioned directly in the sentence. This is why we

say that this implicit representation is a description of an event, and the SG-level

represents the sentence describing this event. Instead of predicting a word directly,

their model predicts which SG representation is the most plausible one and then

predicts the word that would be�t this most plausible distributed representation

for the SG, much like what we did when comparing P-units. Their SG model

supports the idea that thematic roles are fundamental constituents of events and

that a representation of an event is constituted from pairs of thematic roles and

words �lling this role (St. John & McClelland, 1990).

The Sentence Gestalt model holds that sentences constrain an im-

plicit probabilistic representation of the meanings speakers to intend
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to convey through these sentences. (Rabovsky et al., 2018, p.23).

In this connectionist model, we have to learn the SG-level representations to

predict the upcoming word incrementally. These SG-level representations are

derived from the meaning of the words expressed by the proposition, which, in

turn, is represented as a sum of semantic features. This is very similar to what we

had for the DORA model. Additionally, just like ours, these semantic features are

based on McRae et al. (2005) empirically derived features (Rabovsky & McRae,

2014). For example, the meaning of the word write would be associated with the

semantic features: is_an_action, is_done_with_letters, and is_productive.

To map the sentences' semantic features to the properties of the events, the con-

nectionist approach uses a large number of sentences and events described in

advanced (St. John & McClelland, 1990). If the number of matching pairs is

large enough, then the system can discover the regularity of this matching, e.g.,

when �the man� is followed by a transitive verb in the active voice, the sentence

refers to an event where �the man� is an agent.

The learning procedure involves learning the mapping between the events (se-

mantic representation of the words) and the sentence representation. The idea is

not to explicitly list all possible sentences and match them against all potential

events, but to generate an appropriate response to given sentences so that the

model can build a probabilistic distribution of the possible events linked with this

sentence (Rabovsky et al., 2018). In other words, the goal of the learning phase

is to generate sentence-event description pairs probabilistically. On one side, we

have sentences composed of words, and on the other side, we have event descrip-

tions that are a set of queries and associated responses. In this model, queries

are related to the thematic role of the word concept, and it could, in general,

be very large in scope and encompass other kinds of meaning (Rabovsky et al.,
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2018). Also, Rabovsky et al. (2018) chose to model this prediction implicitly in-

stead of explicitly because they did not want to constrain in any way the form

of the representation even if the implicit representation is indirectly constrained

by the choice of probes and queries. Instead of determining the exact structure

(thematic roles and �llers) of an event, this implicit representation contains an

ensemble of aspects represented as an ensemble of queries about the event, where

each query is being associated with an ensemble of possible responses (Rabovsky

et al., 2018). As depicted in Figure 6.5 (Rabovsky et al., 2018, Figure 1), the

interaction between the input layer and the �rst hidden layer can be described as

bottom-up constraints (also called `constraints vectors') coming from each word

to determine how each of these words in�uences the evolution of the SG-level (St.

John & McClelland, 1990).

Figure 6.5 The sentence gestalt (SG) model architecture

The goal of the learning phase is to be able to match the probability distribu-

tion over possible answers to queries with this SG-level representation. Once this
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phase has been performed, this method can recover probabilistic distributions for

sentences it has never seen before. In such cases, the model tries to match this

new sentence to an event using the same regularities it has observed and incorpo-

rated during the training. From there, we can use the retrieved SG representation

to model changes incrementally. When the model encounters a word n, then

the implicit representation is updated accordingly by minimizing the divergence

between the prior distribution and the posterior distribution that �ts the encoun-

tered word best. Their model learned the implicit representations using a close

world containing a �nite number of possible words.132

Rabovsky's model bears some resemblance to what I have described for the DORA

and the LISA hierarchical structure, even though the latter is a hybrid symbolic-

connectionist approach. However, in Rabovsky's model, the training phase that

determines the dynamics of activation given the input words is purely connection-

ist, making it more challenging to make sense of a single event's compositional

features.

An essential di�erence between their model and the model that I described here

is that they trained their model from a `simple microworld' (Rabovsky et al.,

2018, p.693). That is to say that all words that are used during the training

are �xed in the model and, most importantly, the probabilities for every event,

i.e., the priors, are also arti�cially pre-determined.133 Training representations

from a microworld give an excellent opportunity to model the e�ect of contextual

information that is usually di�cult to graphs formally. This is a bit di�erent from

the approach I presented here because I used the similarity space derived from

132See Rabovsky et al. (2018) for the complete list of words and events.

133For their model of the in�uence of the world knowledge on linguistic processing, Ven-
huizen et al. (2019) followed a similar path when training their representations using a pre-
determined microworld.
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word embeddings models without any exterior in�uence related to the plausibility

of a particular event. Using this similarity space as a starting point allows us to

construct a similarity matrix built directly from a corpus of data without pre-�xing

the in�uence coming from the context.

Finally, in Rabovsky's model, the probability that a particular word is chosen as

a continuation is computed from the SG-level representation only. In my model, I

am considering di�erent contributions in parallel: the semantic features, the lexi-

cal units, the RB-units, and the P-units. Despite these few di�erences, Rabovsky's

model is an up-and-coming model that uses SG representations to translate be-

tween sentences and events, and they described events as consisting of action, a

location, and some thematic roles like agent and patient. It does not presuppose

strong compositionality by letting the interactions between SG-level and word-

level determine how the SG-level is updated. Another advantage of this approach

is that it allows top-down in�uences to override bottom-up activation from a

word whenever the contextual constraints are very strong St. John & McClelland

(1990) which is to say that the contribution from the word di�ers depending on

the representation at the SG-level (McClelland et al., 1989), much like what I

have described in this thesis.

6.2.2 Predictive Processing

I now discuss the Predictive Processing view and its relationship with what I

presented in this thesis.134 When performing a cloze task, participants are asked to

134Predictive processing is sometimes described as Prediction Error Minimization or PEM,
or even more strictly as predictive coding (Hohwy, 2018). Here, the term predictive processing

encompasses approaches for which prediction acts to minimize error when processing informa-
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predict the upcoming word using the information that is accessible to them at the

point of truncation. This predictive process can be categorized as optional because

it is not compulsory by nature to predict the missing word. However, according

to the Predictive Processing approach, predicting is automatic and unavoidable.

Predictive features of the brain have been highlighted in neuroscience (Friston,

2008; Kveraga et al., 2007; Kunde et al., 2007; Bubic et al., 2010), and, in recent

years, it has been recognized that prediction is a much more ubiquitous process

than simply completing a cloze task. Predictive features encompass terms like

prediction, anticipation, and expectation, and they refers to the idea that the

brain is naturally inclined to predict the following upcoming input. Predictive

processing helps minimize cognitive e�ort and speeds up computation (Clark,

2013; Hohwy, 2013; Clark, 2016), i.e., if the input matches the prediction, then

the amount of cognitive e�ort needed to process the input is reduced Friston et al.

(2016).

These approaches generally assume that predictive processing is also valid at the

implementation level (Marr, 1982) and that it is thus possible to regroup cognition,

perception, action, and attention under a common framework (Clark, 2013; Bubic

et al., 2010). Basically, following the predictive processing hypothesis, the brain

does not passively wait for the following input, but it actively keeps adjusting to

the kind of information it expects to process next Kveraga et al. (2007); Friston

et al. (2016). In other words, it is the predictive processes that drive the actions to

be realized, and, conversely, any actions are necessarily triggered by an anticipated

response Kunde et al. (2007).

This idea of predicting in advance to minimize the cognitive e�ort spent when

processing new information is in line with the good-enough and now-or-never pro-

tion.
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cessing views I discussed in Chapter 5 because the goal of anticipation is to prepare

the mind or the brain to process new information (Ferreira & Chantavarin, 2018).

Given the limited amount of cognitive resources, this preparation facilitates the

integration of this new information (Ferreira & Lowder, 2016; Luke & Christian-

son, 2016). Additionally, predicting the upcoming information in advance allows

it to be readily processed, i.e., to begin the chunk-and-pass operation as early as

possible (Christiansen & Chater, 2016).

Generally speaking, a prediction at a lower representational level is derived by

using higher-level representations. In this thesis, I described the inter-level rela-

tionship between the sentence level and the contextual level, but there could be

many more levels involved, and each of these levels could be treating its kind of

information at its own speci�c time-scale (Hohwy, 2016). Within this multi-level

environment, the information �ows from one level to the other using top-down

generative models and bottom-up inputs (Clark, 2013). These top-down genera-

tive signals derive a prediction at a lower level which is then compared with the

bottom-up input.

If the prediction is correct, the input is processed most rapidly because the sys-

tem is already prepared. On the other hand, in cases where the prediction is not

accurate, an error signal is sent to update the representations to �t the newly

encountered information Kuperberg & Jaeger (2016). To generate such predic-

tions, the brain uses the speci�c context of the situation to activate associations

of related representations by �nding analogies between the input and memory

Kunde et al. (2007). The main di�culty with this approach is that to predict the

upcoming information, a hearer must know which world model is correct. In other

words, the brain has to predict a piece of information that it has not encountered

yet (Hohwy, 2018). One way to understand how this could work is to use the

free-energy principle, which is used in statistical physics and theoretical biology,
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to model the self-preservation of the energy of an organism (Friston, 2009, 2008;

Friston et al., 2016, 2017). This principle guides the conservation of the neural

energy available in the brain (Friston, 2010).

Friston et al. (2017) described the brain as a self-organizing inference machine that

actively predicts and is dedicated to optimizing predictions. These predictions

are generated from top-down signals that are then compared with bottom-up

sensory inputs, and the goal of the brain is to optimize the predictions, so the

discrepancy between them and the upcoming input is minimized (Friston, 2010).

These predictions could be derived using Bayesian inferences that combine prior

probability distributions with observations to compute a prediction about the

posterior probability distribution (Jones & Love, 2011; Aitchison & Lengyel, 2017;

Zeevat, 2015a).

(155) P (w|s) = P (w)P (s|w)
P (s)

This probability of w given a state s is generated and then compared with the

following upcoming input. According to Friston (2010), to minimize the surprisal

at one level, one has to adjust one's own beliefs at a higher representational level.

In other words, this di�erence between the representations at a particular level is

responsible for the updates at the levels above it. This process is called �active

inference� (Friston et al., 2016), and it corresponds to the inference that arises

as to the consequence of minimizing the free-energy (Friston et al., 2015). In

other words, the active inference updates the representations levels to minimize

the free-energy, which is, in itself, equivalent to minimizing surprisal (Mirza et al.,

2016). This approach based on the free-energy principle is fascinating because it

models the brain as a physical dynamical system. Although I will not describe

Friston's model in its entirety because it would be beyond this thesis's scope,
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it is interesting to note that it aligns with what I described in Chapter 5 when

discussing the e�ect of top-down in�uences on conceptual spaces.

This predictive processing mechanism guides perception and actions, but as stated

by Clark (2013), language di�ers from both action and perception, which means

that the transposition to language processing might not be that straightforward.

Even though Friston et al.'s active inference model might not have been primarily

designed for modeling language processing, more recent implementations are now

beginning to integrate linguistically related simulations Friston et al. (2017).135

When it comes to language, the top-down prediction is about pre-activating

the lexical features of upcoming inputs with respect to their expected likelihood

(Brothers & Kuperberg, 2021) much like what we discussed throughout this thesis.

The hierarchical model described by Friston seems to �t well with the structure

of the model of linguistic prediction described in this thesis because it already has

a hierarchical structure where a transition at a higher level entails a sequence of

transitions at lower levels (Friston et al., 2017).

However, in the multi-level representational model we presented in Chapter 5, the

bottom-up signals contribute to the derivation of the higher-level representations,

and the top-down in�uences are constraining the processes happening at lower

levels. The main goal of this model is to predict the following upcoming informa-

tion. In comparison, under the predictive processing perspective, the top-down

signals are compared with the bottom-up inputs being processed. Error signals

are then generated from the discrepancy between these two opposing signals. The

system aims to optimize the representational levels to minimize these prediction

error signals, i.e., to minimize the surprisal. Within this perspective, every level is

135See Friston et al. (2017) for a presentation of a mixed model aimed at simulating
reading.
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hierarchically accountable (Friston, 2010). If the representation at a given level,

say the contextual level, is updated for some reason, e.g., from new contextual

information, then the linguistic processing at lower levels will be constrained ac-

cordingly.

Another di�erence between the two is that the multi-layer model presented here

is not strictly hierarchical because the four compositional levels are treated inde-

pendently when it comes to their contribution to the contextual level representa-

tions. In contrast, the usual depiction of a predictive processing architecture is

strictly linearly hierarchical. Every representational level sits between two other

representational levels, and the error signal is generated from the interaction of

a top-down signal coming from a higher level and a bottom-up input coming

from below. Notwithstanding this structural di�erence, the linguistic prediction

structure I presented in this thesis has been developed to be compatible with the

predictive processing architecture. In this thesis, I remained agnostic regarding

the hierarchical organization of the di�erent intra-level representations involved

at the sentence and contextual levels. However, it could be possible to rearrange

them to ful�ll the stricter hierarchical requirements of the predictive processing

account.

The simple parallel I trace here between linguistic prediction and predictive pro-

cessing opens the door for broader integration of these predictive processes within

more general models of linguistic processing. Concerning pragmatic processing,

considering predictive processing could enable us to revisit the nature of some

pragmatic phenomena in terms of predictive processes. Additional pragmatic

factor could include, the implicature, the amount of prior context, , and pre-

supposition, to name a few. The growing interest in these predictive processing

approaches will undoubtedly in�uence the development of di�erent research �elds

interested in linguistic information processing.
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6.3 Looking Forward: A Topological Model of Linguistic Prediction

In this thesis, I used Bayesian inferences to model both bottom-up signals and top-

down in�uences, but other approaches involving the geometry of the conceptual

space are also very promising. The purpose of this last section is to revisit our

model of linguistic representations in terms of a topological approach to conceptual

space.136 This discussion is exploratory, and it is by no means an exhaustive

introduction to topological and energy-based approaches.

6.3.1 Top-down In�uences

Top-down in�uences are a natural candidate to be modeled using a topological

approach because they are directly responsible for modifying the con�guration

of the conceptual space. Contextual in�uences a�ect the conceptual space in a

non-monotonic way, and the changes to the conceptual space reverberate as mod-

i�cations to the categorization of di�erent concepts within this conceptual space.

This idea is in line with the results from Roth & Shoben (1983) where they got

di�erent typicality judgments when immersed in di�erent contexts. Similarly,

Barsalou & Sewell (1984) showed that categorization was in�uenced by the par-

ticipant's point of view, i.e., by their global context. When an individual changes

its own categorization, the conceptual space regions are modi�ed: the quality

dimensions attached to these regions are either changing or weighted di�erently

(Khater & Taw�k, 2009).

136Topology is a mathematical approach interested in the preservation of the properties
of an object that undergoes a continuous deformation like bending, stretching, twisting, etc.
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Gärdenfors & Williams (2001) presents three di�erent ways to model the contex-

tual modi�cations applied to a conceptual space. The basic premise is to posit

that the context modi�es the conceptual space itself. This modi�cation can be

done by adding or removing certain concepts or prototypes or by changing the

boundaries and the categorical regions (Gärdenfors, 2000).137

One way to modify the conceptual space is to directly change the distance be-

tween regions/concepts, a�ecting the boundaries between regions (Gärdenfors &

Williams, 2001). The problem with this avenue is that it does not seem to �t the

contextual representations I described. For example, when discussing the topic

model's e�ect, I mentioned that the topic in�uences the probability distribution

for the possible continuations, but this in�uence does not modify the set of possible

continuations, only their relative activation. Another problem with this approach

is related to the fact that both the situation model and the topic model do not

change our general conceptual space, but they adapt it to the context. In other

words, during a linguistic prediction, we do not forget or create concepts, i.e., we

keep on using what we already know, but we select our conceptual knowledge that

is the most relevant to the situation at hand.

A second approach is to change the mapping between objects and regions of the

conceptual space (Gärdenfors & Williams, 2001). Here, instead of modifying the

weights of the di�erent regions, the context would change the concepts' position

within the conceptual space. Gärdenfors & Williams (2001) illustrate this idea

by discussing the di�erent mappings for a word like Tweety. If we know that

Tweety has feathers and two wings and is very close to the generic prototype of

a bird, then it would be mapped onto the same region as other generic birds,

137These three approaches also work when considering semantic networks and the
activation-based account we discussed in Chapter 4 because we could apply it to the similarity
space from which the activation-based network is derived.
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but if we were to learn new information about it, e.g., that it cannot �y, then

we would re-map it onto the non-�ying bird region containing the emu and the

kiwi for example. In a case like this, when the global context is updated with new

information about the meaning of a word, the mapping between this word and the

conceptual space is also updated. Here, updating the context thus modi�es the

mapping of a word while keeping the regions of the conceptual space unchanged.

A third way to think of the context's in�uence on the conceptual space is to keep

the same conceptual space and narrow down the number of accessible regions.

In other words, when immersed in a context, we would only be able to access a

small region of the whole conceptual space. This operation could be performed by

combining or bounding some regions. It could also be done by adding new weights

to the quality dimensions so that the regions remained the same even though the

similarity between them would be modi�ed. Using this approach would have the

e�ect of contracting some regions while dilating others (Gärdenfors & Williams,

2001), thus changing the distance between two points in the conceptual space

(Khater & Taw�k, 2009) without modifying the content of the conceptual space.

This contraction-dilatation operation on the conceptual space is illustrated in

Figure 6.6 (Gärdenfors & Williams, 2001, Figure 5). In Figure 6.6, the left side

represents the conceptual space at a prior time, and the right side represents it

at a posterior time. The dotted line represents the prior con�guration of the

conceptual space.

As we can see in Figure 6.6, the content of the conceptual space remains the same,

i.e., we still have p1, p2, p3, and q, and it is the relationship between these points,

and their relationship to the space that changes.138

138For those interested in the mathematical properties of the model, if we consider that
the conceptual space is a manifold, we could see these changes as changes about the metric or
the geometry of this manifold.
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Figure 6.6 Dilation and Contraction of the Conceptual Space

This third approach is very interesting because it conceptualizes contextual e�ects

as geometrical constraints imposed on the conceptual space. Furthermore, modi-

fying the mapping between conceptual space and a concept could well be modeled

as a change in the weights to the quality dimensions because the resulting concep-

tual space would be the same. However, the converse is not true because changing

a mapping is not like narrowing down to a smaller region of the conceptual space,

even though the resulting state after changing a mapping could be equivalent to

a space where the salience weights between the regions have been altered.

Going back to our topic model, we could say that the contextual representations

modify the probability distribution for possible continuations because a given

topic increases the salience of the words related to it by bringing them closer in

the conceptual space. In other words, a topic acts like an attractor that brings

words closer together if they are related to it.

This method based on the geometrical aspect of the conceptual space, as elegant

as it can be, is very complex to implement, but one way to model these top-

down in�uences could be to use Attractor Networks (Hop�eld, 1982) which are

a set of nodes sitting on a D-dimension space that allows mapping a continuous



307

space to a discrete space. In attractor networks, the nodes are activated when

there is enough appropriate input to activate them.139 Even if these networks are

biologically plausible (Baggio & Hagoort, 2011), they are di�cult to work with,

and they are computationally demanding to implement (Zemel et al., 2008).140

6.3.2 Conceptual Spaces and Energy

Once we obtain a bent conceptual space, we can then use a dynamic energy-based

approach to model linguistic prediction and other kinds of transitions involving

di�erent states of the world. Energy-based topological models can be viewed as

a generalization of probabilistic models (Lecun et al., 2019) which implies we can

represent probabilistic states of the world as local minima separated by potential

energy barriers as in Figure 6.7. Energy-based models associate scalar energy to

each con�guration of the variables (Lecun et al., 2019), and, under this perspec-

tive, a prediction is derived by �nding the best local minimum corresponding to

the input at a given time t.

In Figure 6.7 the con�guration of the variables correspond to the representation

of world knowledge si, and the scalar energy is related to the probability of a

given state within a particular context, i.e., the representation of world knowl-

edge that is the most preferable, or the most relevant. We can understand this as

a correspondence between the contextual representations and the expected repre-

139Some modern implementations of these networks can be added as a layer during deep-
learning to provide new ways to train models (Ramsauer et al., 2020).

140Another promising topological approach is related with sheaving construction where
meaning is grounded by the topological space (Phillips, 2020). See Phillips (2018); Abramsky
& Brandenburger (2011) for more information about this approach.
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Figure 6.7 Probabilistic States of the World Represented as Local Minima

sentation of world knowledge, where a predictive inference consists of �nding the

representation of world knowledge that minimizes the scalar energy (Lecun et al.,

2019).

For cases when the prediction is inaccurate, the hearer is forced to transit from a

local minimum to another local minimum by following a path of minimum e�ort.

This means that when the representation of world knowledge is updated to �t

this new input, the interpreter chooses the easiest cognitive path, i.e., transiting

through the smallest energy barrier available. If the gain of information is worth

it compared to the processing cost, the update is triggered. On the contrary,

if the gain of information is too small, the cognitive e�ort is not worth it, and

the representation of world knowledge does not change. As shown in Figure 6.7,

the cognitive cost is the height of the potential barrier between two contiguous

states of the world, and the cognitive e�ect is the di�erence in the position of

the two statess1 to s2, which is determined from the content of the these states.

For example, if s2 contains more information than s1, the cognitive e�ect will be
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positive if we go from s1 to s2.141

Even though there are still several aspects of this topological and energy-based

approach to work out, the capacity to use energy or the space metric to conceptu-

alize the in�uence of the context and the transition between the di�erent states of

the worlds during linguistic processing is very promising. The use of local attrac-

tors or local minima could help explain non-commutativity linguistic issues where

the derivation of a particular interpretation is dependent on the order in which

the information is presented to the hearer. For example, modeling linguistic in-

terpretation as a dynamical process happening in a topological conceptual space

might help better understand the role of information locality during linguistic

processing since the transition between states of the world would happen locally

because global transitions would require much more cognitive e�ort. To sum up,

an energy-based approach would not change the nature of the representational

structure, but it would certainly change the way these signals are modeled.

141Considerations about this processing cost for transiting between states are naturally
integrated within Friston et al. (2015) predictive processing model in the form of an expected
cost derived from an expected gain of information.



CONCLUSION

This thesis develops a new theoretically-driven model that predicts the antici-

pation of upcoming words in a sentence. Using a highly interdisciplinary per-

spective regarding the nature of linguistic prediction and the kinds of cognitive

processes involved therein, I present a set of cognitive desiderata that linguistic

theories must consider: incrementality, non-monotonicity, and interpretability of

sub-propositional content. I di�erentiate two kinds of contributions when deriving

a linguistic prediction: those coming from di�erent levels of semantic granularity

and those coming from the coordination of linguistic interaction, and I present a

language model that marries these two contributions. Finally, empirical adequacy

was assessed by the three worked-out examples for which the theory match the

ordering that was obtained empirically.

Throughout the thesis, I discussed di�erent kinds of truncated sentences. For

example, in (156-a), the presence of the word loaf is a strong indicator that the

missing word is bread because the two have very high statistics of co-occurrence.

On the other hand, in (156-b), the information expressed in the �rst part of the

sentence leaves much room in terms of possible continuations because there are

many things a kind old man can ask us to do.

(156) a. I went to the bakery for a loaf of ...

b. The kind old man asked us to ...

To better understand how this linguistic prediction is performed, I chose to divide

it in terms of the questions we have to answer:
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1. How can we determine the realm of possible continuations from the infor-

mation available to the participant?

2. How can we represent the information that is available to the participant

when deriving a prediction?

The �rst question is related to the correspondence function that allows the in-

terpreter to derive the lexical items that best �t the truncated sentence. In the

approach described in this thesis, the realm of possible continuations is obtained

using an activation-based semantic network where the level of activation of any

concepts at a particular time represents the degree by which they are triggered

by the information retrieved from the truncated sentence and the global context.

This relative value of the spreading activation is proportional to the connection

weight between these concepts, which can be treated like a probability of co-

occurrence between these two words. At any given time, these co-occurrence prob-

abilities determine the linguistic prediction based on the relationships between all

the concepts represented in the semantic network. The mapping function that

goes from information, i.e., a state of the world, to a linguistic prediction, i.e., a

lexical item, in this case, is thus derived from these co-occurrence activation-based

probabilities.

These relationships between the words and their associated connection weights

can be obtained from di�erent methods. In this thesis, I derived the semantic

network from similarity matrices representing the similarity of co-occurrence be-

tween di�erent linguistic constructions. We thus have one similarity matrix for

the lexical items, one for the RB-units, one for the P-units, and one for the SF-

units. These similarity matrices are computed using a distributional approach

representing words as n-dimension vectors that can be directly compared using

mathematical operations such as the cosine similarity measure. One great ad-
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vantage of representing word-meaning as vectors is that many di�erent learning

algorithms can extract these vectors from massive corpora. On the other hand,

the main downside is that all the downstream computation depends on these word

embeddings and how they are obtained. In this thesis, I used word2vec word em-

beddings as a basis for the derivation of the similarity matrices. However, I could

have used other training algorithms as well.142

Once we have a way to assign a relative probability of occurrence for potential

continuations, we can turn to the second question related to retrieving the infor-

mation available to the hearer right before the linguistic prediction. As I already

described, this available information is equivalent to the state of the world the

interpreter conceives herself to be in at that moment. However, to derive the

representation of this state of the world, we must consider both the contribution

from the truncated sentence and the contribution from the global context.

Chapter 3 distinguished two aspects of linguistic interaction, the compositional

aspect, and the coordination aspect. The coordination aspect is related to the

fact that when a speaker wants to convey meaning using a given utterance, this

speaker must consider the hearer's perspective to maximize the chance that the

utterance is correctly interpreted. Besides, the interpreter must also consider

the perspective of the speaker when retrieving the expressed meaning. On the

other hand, the compositional aspect of linguistic communication is related to the

expression of complex meaning as di�erent linguistic units. This compositional

aspect is crucial because it is by combining words and compounds that complex

meaning emerges.

The compositional aspect of linguistic meaning involves both syntax and seman-

142Word embedding models are constantly improving their capability to extract linguistic
information from language use, and the model presented here is not committed to a particular
kind of word embeddings.
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tics. In Chapter 2, I presented empirical evidence that supported the idea that

syntax and semantics were two separate processing streams and that the semantic

stream usually has precedence over the syntactic stream. Only when the meaning

of a word is almost absent, i.e., when we encounter a new unknown word, the syn-

tactic stream's contribution might supersede the one from the semantic stream.

Keeping this in mind, in Chapter 4, I decided to focus on the contribution from

the semantic aspect of the composition, which is not to say that syntax does not

contribute to the derivation of the linguistic prediction. The contribution from

the syntax does not play the same role as does the semantic meaning of a compo-

sition, but it still has a role to play because it is constraining at the level of the

grammatical type of the upcoming word. In contrast, the semantic stream plays

a role at the semantic type level, i.e., what kind of meaning should be expected.

I use this semantic information as a basis for my model of linguistic prediction.

Furthermore, the semantic information available to the hearer when a composition

is processed is decomposed into four types of representations.

(157) The cup is bigger than the ball.

a. P-unit: bigger(cup,ball)

b. RB-units: larger+cup, smaller+ball

c. Lexical-level: cup, bigger, ball

d. Semantic features: size, attribute, high, low, dish, mug, kitchen, ...

After having processed (157), the representation of world knowledge in the mind

of the hearer, i.e., the activation level of the concepts represented in the semantic

network, consists of the superposition of the information presented at every level of

the sentence. The meaning of a composition is the combination of all the meanings

expressed by the sentence-level units. In the case of (157), the compositional
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meaning triggers the linguistic units expressed at these four levels. In other words,

when we hear that the cup is bigger than the ball, not only are we representing this

as a P-unit, but we also process semantic information at the sub-propositional level

like that the cup is larger and the ball is smaller, and that that size is a semantic

feature of this composition.

In this thesis, I presented a language model where a linguistic prediction is derived

from the combination of the contributions from these four levels and where each

level triggers an activation signal that spreads throughout the semantic network.

This language model is strictly about a linguistic prediction in a cloze task setting,

which means this model's output is the predictability value discussed in Chapter

2. As discussed in Chapter 4, the problem concerning the concepts of similarity,

predictability, and plausibility being all interrelated and di�cult to separate is

thus evacuated in my language model because the predictability obtained from

this language model encompasses both the similarity and the plausibility values.

In this model, the linguistic prediction is derived from the similarity values for

di�erent sentence-level representations, and plausibility is transposed into a sim-

ilarity value between two propositions or between two P-units.

Chapter 3 described how to model the coordination aspect of linguistic interac-

tion using the existing tools o�ered by di�erent approaches to pragmatics, but

we still had to �nd a way to represent the contextual information that a�ects the

derivation of a linguistic prediction. For this thesis, I created two kinds of models

to represent contextual information: the topic and situation models. I presented a

multi-layered representation of linguistic prediction that integrates the contribu-

tion from the sentence-level representations, the contribution from the contextual

level, and the constant interaction between them.

From the bottom-up, the sentence-level representations are responsible for the
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derivation of these contextual models because the only information available to

the hearer is expressed in the truncated sentence. Therefore, we have to transpose

linguistic information into contextual information using Bayesian inferences where

the higher-level representations were derived probabilistically from the lower-level

ones. The topic model is derived from a pre-trained topic distribution space

representing the relationship between topics and words. The situation model is

derived from the speaker's perspective using these sentence-level representations

as building blocks.

These contextual representations then in�uence the predictive process by con-

straining the linguistic prediction. Consequently, continuations that are not sup-

ported by the context are inhibited within the semantic network. This means that

we can keep the same derivation process as before because it is not the prediction

itself that is in�uenced by the contextual representations but the conceptual space

upon which the activation levels of potential prediction are derived. Given the

interaction between these levels, we see that both have a primordial role in the

derivation of any prediction. This structural model is centered around the coor-

dination aspect of linguistic interaction, and it illustrates the crucial connection

between the representational levels involved in pragmatic processing.

Chapter 2 discussed the phonological, syntactic, and semantic streams' indepen-

dence, but the pragmatic stream is often either wholly omitted or integrated within

the semantic stream. In this thesis's model, the pragmatic stream in�uences the

syntactic and semantic streams, as depicted in Chapter 5. Moreover, the contri-

bution from this pragmatic stream or its e�ect on linguistic prediction is primarily

due to the structure of processing responsible for treating this information. The

particularity of this pragmatic stream is about the interrelated representational

levels. Especially the fact that to transfer the information from one level to an-

other, we ought to consider the other agent involved and our knowledge about the
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world.

The syntactic stream and the semantic stream are context-free processes regarding

the information treated as an input and the one given as an output, i.e., the nature

of the process does not change with respect to the context. In other words, no

matter the global context we are in, the syntactic stream transforms a word-token

into a syntactical type, and the semantic stream transforms a word-token into a

semantic type as in the processing architecture from Baggio (2018).

This principle of stability regarding linguistic processing should also be valid for

the pragmatic stream. Generally speaking, the most exciting thing about the

context is not the correspondence between a particular context and a sentence

but the general structure of this correspondence. The model developed in this

thesis is in line with the idea that we could, in principle, determine a process-

ing structure that could be applied to any situation, i.e., context-free contextual

processing. No matter the context we are in, both the bottom-up signals and

the top-down in�uences are involved. This means that the focus on pragmatic

processing should not be about the relationship between a particular input and

its output but about the general processes by which this input is transformed into

this output. Conceptualizing the pragmatic stream as a processing structure is

one step towards developing a context-free theory of pragmatics.
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