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ABSTRACT

Adjustments for the wind-induced undercatch of snowfall measurements use transfer functions to account

for the expected reduction of the collection efficiency with increasing the wind speed for a particular

catching-type gauge. Based on field experiments or numerical simulation, collection efficiency curves as a

function of wind speed also involve further explanatory variables such as surface air temperature and/or

precipitation type. However, while the wind speed or wind speed and temperature approach is generally

effective at reducing the measurement bias, it does not significantly reduce the root-mean-square error

(RMSE) of the residuals, implying that part of the variance is still unexplained. In this study, we show that

using precipitation intensity as the explanatory variable significantly reduces the scatter of the residuals.

This is achieved by optimized curve fitting of field measurements from the Marshall Field Site (Colorado,

United States), using a nongradient optimization algorithm to ensure optimal binning of experimental

data. The analysis of a recent quality-controlled dataset from the Solid Precipitation Intercomparison

Experiment (SPICE) campaign of the World Meteorological Organization confirms the scatter reduction,

showing that this approach is suitable to a variety of locations and catching-type gauges. Using compu-

tational fluid dynamics simulations, we demonstrate that the physical basis of the reduction in RMSE is the

correlation of precipitation intensity with the particle size distribution. Overall, these findings could

be relevant in operational conditions since the proposed adjustment of precipitation measurements only

requires wind sensor and precipitation gauge data.

1. Introduction

In situ liquid and solid automatic precipitation

measurements commonly employ catching-type gauges

to collect hydrometeors as they approach the surface.

Factors affecting the capability of the gauge to collect

and measure the actual precipitation occurring at a

given site include wind, wetting, splashing, etc. (WMO

2014). For a given gauge, we define the collection ef-

ficiency (CE) as the ratio between the precipitation

amount Pmeas (mm) measured by the gauge and the

true precipitation Ptrue (mm):

CE5
P

meas

P
true

. (1)

The true precipitation is generally unknown. When CE

is evaluated from analytical or numerical calculations

Ptrue is given as an input, while in field studies it is
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common to replace Ptrue with a reference value Pref

obtained from high-quality instruments and/or specific

installations.

In case of snowfall measurements, wind plays a

dominant role in reducing the gauge collection effi-

ciency (Goodison et al. 1998; Rasmussen et al. 2012).

Ne�spor and Sevruk (1999) and Constantinescu et al.

(2007) used computational fluid dynamics (CFD)

simulations to evaluate the wind-induced undercatch

of rainfall. Thériault et al. (2012) used it for snowfall

and compared the results with detailed observations

of snow crystals. A recent analysis by Colli et al.

(2015) showed good agreement between the collec-

tion efficiency predicted by time averaged models

of wind speed and particle trajectories and the field

observations made at the NCAR–NOAA–FAAMarshall

Field Site (Colorado, United States; Rasmussen et al.

2012). A shielded automatic gauge in theDouble Fence

Automatic Reference (DFAR) configuration pro-

vided the reference precipitation, since this reference

system was designated within Solid Precipitation

Intercomparison Experiment (SPICE) as the interna-

tional standard gauge/shield configuration for snowfall

measurement (Nitu et al. 2018).

Adjustment methodologies (e.g., Yang et al. 1999)

have been developed and are typically algebraic rela-

tionships between CE and the mean wind speed Uw

(m s21) at the gauge catchment height, also referred to

as transfer functions. Thériault et al. (2012) and Colli

et al. (2015) specified CE curves as a function of wind

speed for different solid precipitation types (following

Rasmussen et al. 1999) and particle size distributions

(PSD). Wolff et al. (2015) proposed a sigmoidal func-

tion for the CE using the observations collected in

Haukeliseter (Norway). This relationship includes the

air temperature as an additional parameter to consider

the likely amount of water contained in the precipita-

tion particles.

Wolff et al. (2015) and Colli et al. (2016b) showed that

the influence of the type of precipitation on the catch

performance of precipitation gauges could be considered

by specifying the CE values according to the air temper-

ature when considering the transition from snow to rain.

The air temperature (T) is an efficient indicator to deter-

mine the type of precipitation (Sims and Liu 2015) such as

rainfall (T. 28C), wet snow (228 , T,128C) and dry

snow (T,228C). However, this is not representative of

the large variety of crystal types and the degree of riming

(Rasmussen et al. 1999; Thériault et al. 2012).
Recently, Kochendorfer et al. (2017a,b) described a

simplified inverse exponential formulation for the univer-

sal transfer function using wind speed and air temperature.

Their analysis is based on measurements collected at the

Marshall and Haukeliseter field sites (Kochendorfer et al.

2017a) and at eight SPICE field sites (Kochendorfer

et al. (2017b) and highlighted that a significant root-mean-

square error (RMSE) still remain even though a transfer

function can reduce the gauge’s bias to near zero. Thériault
et al. (2012), using observations and simulations, suggest

that theRMSE is due to the large variability in the particle

type and size distribution of snowfall. The temperature

can help determining the phase of the precipitation but

not the size of hydrometeors, which helps explain the

small impact of air temperature on the RMSE. Recent

CFD studies showed that the snowfall measurements

performed by the DFAR can also be affected by a sig-

nificant bias in windy conditions, with residual uncer-

tainties related to the microphysical characteristics of

precipitation (Thériault et al. 2015).
Further numerical simulationswere conducted to study

the fundamental processes leading to the large scatter in

the data for a given wind speed. Colli et al. (2015) pre-

sented dry snow CE estimations for an unshielded and a

Single Alter (SA) shielded gauges (Alter 1937) based on

data from the Marshall Field Site. The comparison of

CFD simulations with the observations (Thériault et al.
2012; Colli et al. 2015) showed that a large part of the CE

variability for a given wind speed is explained by the

particle size distribution. Thériault et al. (2012, 2015)
reported that the catch performance of a shielded gauge

is also related to the particle’s fall speed in the vicinity of

the gauge.

These studies suggest that the particle type, size, and

the wind field can affect the gauge collection efficiency.

To explore this further, we note that it is possible to

represent the size distribution of precipitation particles

by an inverse exponential function (Marshall and Palmer

1948) that depends on two parameters, the slope and the

intercept of its logarithmic representation. Pruppacher

and Klett (2010) show that the slope of the PSD is closely

related to the precipitation rate. As the precipitation rate

increases, the slope of the size distribution decreases,

leading to a higher concentration of large particles.

Previous studies (e.g., Folland 1988; Ne�spor and Sevruk

1999), focusing on liquid precipitation only, specified the

functional relationships betweenwind-induced undercatch

and wind for different rainfall rate classes. Therefore, we

suggest that the precipitation rate, that is, snowfall inten-

sity (SI), can be used to improve adjustments based on the

CE curves. Such a possibility is explored in this paper

and is shown to significantly reduce the RMSE.

Our method of investigation first considers precipi-

tation gauge data collected at the Marshall (Colorado,

United States), CARE (Canada), and Haukeliseter

(Norway) field test sites. Second, using CFD simula-

tions, different PSDs are numerically tested and the CE
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is evaluated based on the associated precipitation in-

tensity. This allows testing the proposed hypothesis in a

simplified environment where the noise that is typical of

experimental datasets is avoided. The results show a

good agreement of the CE values with field data and a

clear dependency on the SI.

The measurements and the data processing method

used to perform the field data analysis are presented in

section 2. Section 3 reports on the observed correlation

between CE and the measured SI or the environmental

temperature. A description of the data binning optimi-

zation according to SI is also included. The influence of

the chosen temporal aggregation of measurements on

the derived CE is described in section 4. In section 5, the

dependency between the CE and the measured SI is

investigated using CFD simulations with the aim of

providing a physical basis for the correlation observed in

section 3.

2. Methodology of field data analysis

a. Field data processing

The development and testing of new methodologies

to retrieve the CE requires the availability of quality

controlled, high-frequencymeteorologicalmeasurements

from a properly instrumented testbed. The snowfall

measurements used in this study were collected by two

weighing gauge systems, one consisting of an SA shield

surrounding a Geonor T200B weighing gauge with a 6-s

sampling frequency and the second a DFIR shielded

Geonor T200B. Both systems were collocated at the

Marshall Field Site (Rasmussen et al. 2012) during 2013–

15 as part of the SPICE program by WMO (Nitu et al.

2018). Ancillary data were also collected at theMarshall

Field Site every minute to support investigation into

factors that might affect the CE. The SAGeonor T200B

gaugemeasurements are compared to thosemade by the

DFIR shieldedGeonor T200B gauge, which was defined

as the working automated reference for WMO-SPICE

(Kochendorfer et al. 2018).

Wind speed is measured 2m above the ground surface

using a propeller anemometer (Model 05103 Wind

Monitor, RM Young) whereas the temperature was

measured 1.5m above the ground surface using a fan-

aspirated (Model 076B Radiation Shield, Met One

Instruments) platinum resistance thermometer (Model

CS500-L, Campbell Scientific).

Geonor weighing gauges are based on vibrating

wire technology. Noise in the output is typically due

to environmental factors that cause oscillations of the

measuring bucket. These effects have been reduced by

postprocessing the 6 s raw time series with a Gaussian

linear time-invariant filter characterized by a filtering

window equal to 2min and a standard deviation equal

to 1min. A correction of the vibrating wires’ sensitivity

to the environmental temperature has been applied as

well. In addition, an automatic quality control was per-

formed to check the occurrence of missing data, de-

creasing trends or jumps in the precipitation time series,

and inconsistent data from the three vibrating wires of

the Geonor T200B gauge (Reverdin 2016).

The measured CE, already defined in section 1, is now

better specified as the ratio between the precipitation

amount measured by the SA shielded gauge (PSA) and

the one measured by the DFIR shielded gauge (PDFIR),

as follows:

CE5
P
SA

P
DFIR

. (2)

As for the Marshall Field Site, we focused on the

WMO-SPICE 30-min quality controlled site event

datasets (SEDS; see online supplemental material),

according to the procedure described inReverdin (2016)

and Kochendorfer et al. (2017b). Only 30-min data

with reference precipitation (PDFIR) larger or equal to

0.25mm were considered, for a total of 72 days of pre-

cipitation recorded from October 2013 to April 2015.

The dataset was further reduced to consider events with

an environmental temperature less than 228C, to avoid

the occurrence of liquid precipitation (Colli et al. 2015),

resulting in a final dataset of 213 thirty-minute intervals

(A-SEDS in Table 1).

The SEDSs from CARE (Canada) and Haukeliseter

(Norway) were processed in a similar way and denoted

B-SEDS and C-SEDS respectively in Table 1. At the

CARE field site, the wind speed and temperature mea-

sured at 2m above ground were measured by a NWS425

anemometer and HMP155 thermometer (Vaisala). At the

Haukeliseter field site, wind speed measurements were

made at 10m level above the groundby aWindObserver II

anemometer manufactured by Gill Instruments and a

PT100 platinum resistance thermometer sensor mea-

sured the environmental temperature. We adopted the

Kochendorfer et al. (2017a) approach to converting 10-m

wind to 2-m gauge height wind. This entails correcting the

10-m wind by a factor of 0.71; U10m 3 0.71, assuming a

logarithmic vertical profile of wind speed (Thom 1975).

Because the snowfall type, particle size distribution

and terminal velocity at a given location are highly

variable in time, shorter time intervals were also tested.

Most meteorological services (Matrosov et al. 2009;

Gergely and Garrett 2016) use 30- or 60-min intervals.

To investigate the influence of the sampling interval on

the CE variation with wind speed, the original 1-min

dataset from the Marshall Field Site from January 2013
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toApril 2015 was aggregated to 5-, 10-, and 20-min time

intervals. The wind speed and temperature datasets

were averaged over the same time intervals. A minimum

snowfall ratewas set for theDFARas SIDFIR5 0.5mmh21

to avoid cases of very light snow. Under these conditions,

the total dataset—indicated as A in Table 1—is composed

of a total of 6943 one-minute samples recorded during

29 different precipitation events.

b. Data analysis method

We analyze the CE as a function of wind speed and

air temperature, as suggested byWolff et al. (2015) and

Kochendorfer et al. (2017a), then we investigate the

role of SI as an alternative explanatory variable. The SI

is linked to the PSD and the vertical velocity of parti-

cles by the following equation:

SI5a

ðDmax

Dmin

N(D)3w
p
(D)3D3 dD , (3)

where D is the particle diameter (mm), N(D) the num-

ber of particles with diameter D, wp(D) the vertical

velocity (m s21), and a is a factor that accounts for the

shape of the snowflakes.

The CE function suggested by Kochendorfer et al.

(2017a) as a function of wind and the air temperature is

expressed as

CE5 e2a(Uw)(12ftan21[b(T)]g) , (4)

where a(Uw) 5 a 3 Uw and b(T) 5 b 3 T, Uw is wind

velocity, T is the air temperature, while a, b, and c

are empirical coefficients that depend on the gauge,

shield, and site (Tables 2 and 3 of Kochendorfer

et al. 2017a).

The role of the SI is tested here by simply assuming

that SI rather than T actually shapes the collection ef-

ficiency, therefore adopting the following equation:

CE5 e2a3Uwf12[tan21(b3SI)1c]g , (5)

where a, b, and c are numerical best-fit coefficients.

Equation (4) considers the precipitation phase as a

driving factor, while in Eq. (5) the size distribution of the

hydrometeors is considered.

3. Results from the field data analysis

The empirical CE for the SA shielded gauge as a

function of wind speed is shown in Fig. 1 using the

30-min dataset A-SEDS. In the two panels, CE data are

color coded according to the air temperature T (Fig. 1a)

and to the snowfall intensity SISA (Fig. 1b). No signifi-

cant correlation is visually evident in Fig. 1a, while

Fig. 1b shows a distinct cluster of low precipitation rates

in the lower part of the CE range. Although for any

given wind speed different CE may occur depending

on the SISA, there is a higher CE observed when the

gauge collects the higher SI. This trend becomes more

evident when the mean horizontal wind speed is

higher than 2m s21.

One explanation of the larger CE is related to larger

particle sizes having trajectories that are less prone to

deflection by the deformed airflow above the gauge

collector [as detailed in Thériault et al. (2012) for dif-
ferent crystal types and by Colli et al. (2016a,b)]. Colli

et al. (2015) showed a correlation between the slope

parameter of the PSD outside the tested gauge and its

TABLE 1. Location, measurement period, time interval, and data consistency of SEDS (site event dataset) considered in the analysis.

Dataset Location Period Time interval (min) No. of data

A Marshall (United States) Jan 2013–Apr 2015 1 6943

A-SEDS Marshall (United States) Oct 2013–Apr 2015 30 213

B-SEDS CARE (Canada) Nov 2013–Apr 2015 30 234

C-SEDS Haukeliseter (Norway) Nov 2013–Apr 2015 30 485

FIG. 1. Collection efficiency CE 5 PSA/PDFIR for the 30min SA

shielded gauge measurements from the Marshall Field Site in the

period October 2013–April 2015. Data are color coded according

to (a) the air temperature T and (b) the measured snowfall inten-

sity SISA.
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CE by means of CFD analysis and the results were

supported by disdrometers field data. Larger particles

are associated with lower slope of the PSD and therefore

higher SI (Pruppacher and Klett 2010).

A least squares regression was performed on the in-

verse exponential function of the CE based on wind

speed and temperature, Eq. (4), and the one based on

wind speed and SI, Eq. (5). The coefficients obtained

from the best-fit analysis are listed in Table 2.

The two regressions are presented in Fig. 2. These are

the CE(Uw, T) (Fig. 2a) and CE(Uw, SISA) (Fig. 2b)

surfaces together with the field measurements (red dots).

The CE surfaces are color coded. The CE(Uw, SISA) re-

gression shows a relevant dependency on the measured

snowfall intensity. In contrast, the CE(Uw, T) regression

shows a weaker dependency on the environmental tem-

perature T than on the SI.

To ensure optimal regression of the observed de-

pendency between the CE and the SI measured by

the uncorrected gauge, a nongradient multiobjective

genetic optimization algorithm, implemented in the

DAKOTA open source toolkit (Eldred et al. 2007),

was used to retrieve the best SI class limits. The fol-

lowing classes were obtained: 0.0 , SISA # 0.4mmh21,

0.4 , SISA # 0.6mmh21, 0.6 , SISA # 1.0mmh21, and

1.0 , SISA # 1.5mmh21. The optimization objectives

were to maintain a significant sample size for each bin

and to minimize the scatter (RMSE) of the residuals.

Figure 3 presents CE(Uw, SISA) plots for smaller subsets

of field data according to the optimized SI classes. The

results show that each intensity category has a different

fit to a sigmoid function, with the lowest SI class having

the steepest decrease in CE with increasing wind speed.

This is again explained by the highest intensities being

associated with the largest particles, therefore slowly

decreasing their CE with wind speed.

Figure 4 compares best-fit CE curves computed as a

function of wind speed and either temperature or the SI.

It shows that there is evidence of much stronger de-

pendence on the SI classification (solid lines) than on

temperature (dotted lines). The four CE(Uw, T) curves

(dashed lines) show similar trends and are very close to

TABLE 2. Best-fit coefficients a, b, and c of the inverse exponential function, number of 30-min intervals used (n), and linear correlation

coefficient r based on measurements made by the SA shielded gauge at the Marshall (Colorado, United States), CARE (Canada), and

Haukeliseter (Norway) field test sites fromOctober 2013 to April 2015. Coefficients are calculated for both the CE(Uw, SISA) and CE(Uw, T) at

each field test site.

Field test site CE formulation a b c n r

Marshall CE(Uw, SISA) 0.4156 8.7795 20.7062 213 0.91

CE(Uw, T) 0.0560 0.2148 20.8542 213 0.82

CARE CE(Uw, SISA) 12.5937 338.0402 20.5737 234 0.84

CE(Uw, T) 0.3103 0.0116 0.7711 234 0.7

Haukeliseter CE(Uw, SISA) 0.5557 11.0022 20.7073 485 0.87

CE(Uw, T) 0.1713 0.0767 20.0579 485 0.75

FIG. 2. Best-fit CE surfaces for the 30-min SA shielded snow gauge measurements made at the Marshall Field

Site (red dots). Two regressions are shown by expressing CE as a function of the wind speed and either (a) the

air temperature T or (b) the measured snowfall intensity SISA.
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each other, demonstrating that there is no significant

correlation of the CE with temperature below 228C. In
contrast, the curves show a distinct separation when

categorized by SI for the 30-min dataset (solid lines).

An evaluation of the improved snowfall accumulation

estimates when using the SI-dependent curve fit is

shown in Fig. 5a, where the corrected CE is shown and

the RMSE of the residuals is reported. The residual

scatter is quantified by a RMSE equal to 0.10 and the

color coded distribution based on the environmental

temperature appears quite random. A larger scatter

(RMSE5 0.14) is observed when the measurements are

corrected using wind speed and temperature (Fig. 5b,

traditional approach). Note that Fig. 5b shows a color

separated dependence of the residuals on the SI, indi-

cating that notwithstanding the CE(Uw, T) correction

some form of dependency persists between the SA

shielded gauge undercatch and the characteristics of

precipitation.

The best fit coefficients of the collection efficiency

regression obtained with the CARE and Haukeliseter

datasets are reported in Table 2 for both the CE(Uw, T)

and CE(Uw, SISA) formulations. The correction of the

measurements based on such transfer functions is shown

in Figs. 6 and 7. The RMSEs of the residuals for the

CARE measurements are equal to 0.09 in the case of

CE(Uw, SISA) and 0.12 in the case of CE(Uw, T) while

the residuals for the Haukeliseter measurements show

RMSEs that are equal to 0.16 and 0.22, respectively.

TheseRMSE results confirm that the approach based on

the wind speed and SI leads to an improved correction

FIG. 3. Empirical CE for the 30-min SA shielded snow gauge measurements made at the

Marshall Field Site as a function of wind speed. The solid line in each panel is the sigmoidal best

fit to the data. Each panel represents a different SI range as defined in the legends and reports

the RMSE of the residuals.

FIG. 4. Best-fit CE curves of the 30-min measurements made by

the SA shielded snow gauge at the Marshall Field Site using either

the air temperature T (dashed lines) or the measured SI (solid

lines). SI curves are the same as in Fig. 3.

1044 JOURNAL OF HYDROMETEOROLOGY VOLUME 21

Unauthenticated | Downloaded 09/20/22 06:41 PM UTC



of the solid precipitation measurements. The results

of the field data analysis suggest that the environ-

mental temperature can be used to provide an ap-

proximated criterion to recognize the precipitation

phase (liquid, mixed, or solid) while the SI is a more

efficient explanatory variable since it is directly re-

lated to the PSD.

4. Sensitivity to the time aggregation

The analysis of field data proposed in section 3 has

been repeated on the 1-min measurements performed

by the SA shielded gauge at theMarshall Field Site from

January 2013 to April 2015 and aggregated over time

intervals equal to 5, 10, 30, and 60min. The regression

coefficients obtained by applying the inverse exponen-

tial functions described by Eqs. (2) and (3) are reported

in Table 3. Figure 8 shows the CE curves calculated for

different measured snowfall intensities SISA and time

resolutions Dt. In all cases, a strong CE dependency on

SISA draws distinct variations with wind speed, which do

not overlap with each other. On the other hand, CE

curves obtained from observations at a larger aggrega-

tion time (e.g., 30min) tend to be closer to each other,

and hence the dependency on SI slightly decreases.

This is partially explained by the fact that SISA is

strongly aggregation dependent and when the intensity

measurements are averaged over a large time inter-

val they become less representative of the internal

variability.

The representativeness of the proposed CE(Uw, T)

transfer functions (represented by their linear correla-

tion coefficient r in Table 3) with respect to the field

measurements decreases sharply below 5min for tem-

perature, while it does not for CE(Uw, SISA), suggesting

that the T dependence becomes weaker at high resolu-

tion while the SISA dependence not so much. A similar

behavior is reported in Table 4 in terms of RMSE,

FIG. 5. Residuals obtained after correcting the 30-min snow

gauge measurements from the SA shielded at Marshall Field Site

using (a) Eq. (5) and (b) Eq. (4), with the associated RMSE values.

Residuals are color coded according to (a) the environmental

temperature T and (b) the snowfall intensity SISA.

FIG. 7. Residuals obtained after correcting the 30-min snow

gauge measurements from the SA shielded at the Haukeliseter

(Norway) field test site using (a) Eq. (5) and (b) Eq. (4), with

the associated RMSE values. Residuals are color coded ac-

cording to (a) the environmental temperature T and (b) the

snowfall intensity SISA.

FIG. 6. Residuals obtained after correcting the 30-min snow

gauge measurements from the SA shielded at CARE (Canada)

field test site using (a) Eq. (5) and (b) Eq. (4), with the associated

RMSE values. Residuals are color coded according to (a) the en-

vironmental temperature T and (b) the snowfall intensity SISA.
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where the transition between the 5-min and the 1-min

aggregation intervals yields the larger RMSE in-

crease for the CE(Uw, T) formulation. Therefore,

the dependence on SISA is more robust with respect to

time aggregation. As shown in section 3, WMO-SPICE

used a 30-min aggregation interval to assess the CE,

which still shows significant variability at any given

wind speed.

Figure 8 demonstrates that the 10-min time interval

may represent a trade-off point between the avail-

ability of correlated SISA and CE observations and

the need of aggregating the measurement over a

longer interval during low precipitation intensity. An

evaluation of the impact of the data integration time

on the correction of the PSA observations was made

by considering snowfall accumulations computed at

different aggregation intervals. Table 4 shows that a

larger dispersion of the CE of the corrected measure-

ments (quantified by the RMSE) around the optimal

value (CE 5 1) is observed when short aggrega-

tion intervals are considered. Table 4 also shows that

smaller RMSEs are systematically observed when the

CE is calculated using the measured SI. Indeed, shorter

aggregation intervals yield a larger improvement of the

correction when using the measured SI rather than tem-

perature, as demonstrated by larger values of the difference

DRMSE 5 RMSE[CE(Uw, T)] 2 RMSE[CE(Uw, SI)].

The fact that the amount of scatter reduction DRMSE

increases with shorter aggregation intervals, seems to

support the need of high-resolution measurements to

improve the accuracy of the snow data. For instance,

the scatter resulting from the correction of 30-min

accumulation measurements based on wind speed

and temperature can be achieved for 10-min accu-

mulation measurements if the SI is used for the cor-

rection. Thus, by using the SI in the transfer function

instead of temperature, one can either achieve a

higher skill for a given aggregation time or achieve a

higher aggregation interval with a RMSE similar to

the one traditionally obtained for a longer aggrega-

tion interval.

5. CFD simulation and validation

The following section presents the CFD modeling

framework used to compare to the observations in

section 3 and to validate the physical basis of using

the SI as an explanatory variable for the CE.

a. Airflow modeling and CE calculation

The flow field around a SA shielded gauge was nu-

merically simulated using the Open Foam software and

is described by Colli et al. (2015). The time-averaged

air velocity, turbulent kinetic energy and pressure

fields were solved by means of a Reynolds averaged

Navier–Stokes k–v SST model.

The trajectories of dry snow particles falling through

the CFD flow field are calculated using a Lagrangian

model (Colli et al. 2015) for wind speeds between 1 and

8ms21. The particle characteristics are fromRasmussen

et al. (1999).

Several particle sizes were simulated to capture the

dependence of CE on particle size. The PSD of snowfall

events can be described using the gamma distribution,

TABLE 3. Coefficients (a, b, and c) of the inverse exponential function fitted at various aggregation intervals for the CE(Uw, T) and

CE(Uw, SISA) formulations, with the associated linear correlation coefficient r, and number of data available (n). The calculation used

measurements made by the SA shielded gauge at the Marshall Field Site from January 2013 to April 2015.

CE(Uw, T) CE(Uw, SISA)

Dt (min) A (—) B (—) C (—) r (—) A (—) B (—) C (—) r (—) n (—)

1 0.1687 0.3419 0.8915 0.57 21.3664 290.6924 20.5718 0.86 6943

5 0.1885 0.6830 1.311 14 0.72 234.801 3630.7 20.5710 0.89 1405

10 0.1281 0.5099 0.8071 0.81 1.3253 26.2030 20.6198 0.91 697

30 0.1144 0.5177 0.6670 0.87 0.4325 9.2192 20.7403 0.92 226

60 0.2196 1.2223 1.6033 0.89 0.3078 6.1165 20.8012 0.94 115

FIG. 8. Best-fit CE(Uw, SI) curves of the SA shielded snow gauge

at the Marshall Field Site at 1, 5, 10, 30, and 60-min sampling in-

tervals (different line types) grouped by the measured SI (different

line colors).
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as shown by Brandes et al. (2007), which is similar to the

one by Marshall and Palmer (1948), but uses a shape

parameter:

N(D)5N
0
3Dm 3 e2l3D , (6)

where D is the snowflake diameter, N0 is the scale pa-

rameter,m characterizes the curvature, and l is the slope

of the distribution. According to Brandes et al. (2007)

m can be estimated by the following expression:

m520.00499l21 0.798l2 0.666. In thisworkweadopteda

general intercept value equal to N0 5 106mm212mm23

and, based on observations, the slope parameters used

are 0.5, l, 1.5mm21 (Brandes et al. 2007; Houze et al.

1979). The estimation of CE is based on the particle

counting technique described in Colli et al. (2016b):

CE(U
w
)5

ðdpmax

0

V
w
(d

p
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inside
(d

p
,U

w
)N(d

p
)d

pðdpmax

0

V
w
(d

p
)A

gauge
(d

p
, U

w
)N(d

p
)d

p

, (7)

where Ainside(dp, Uw) is the effective collecting area as-

sociated with the number of particles collected by the

gauge and Agauge(dp, Uw) is the area associated with the

entering particles in the case of undisturbed airflow.

Finally, Vw(dp) is the equivalent water volume.

b. PSD and snowfall intensity collected by the gauge

The link between snowfall intensity computed based

on the simulation and the slope of the size distribution is

given in Table 5. It shows that steeper slopes of the PSD

(represented by higher l), and as a consequence smaller

mean particle sizes, are characterized by lower values of

the CE. This is due to the fact that the trajectories of the

smaller particles can be easily deflected by the airflow

around the gauge collector. Furthermore, the simulation

results (Table 5) show that CE becomes sensitive to the

snow particle distribution (here reported by the l term)

when the wind speed is higher than 3ms21.

The CFDanalysis performed by Thériault et al. (2012)
found that the type of precipitation and their sizes ex-

plained some of the scatter in the gauge catch efficiency

for a given Uw. Colli et al. (2015) confirmed this con-

clusion by providing different CE(Uw) functions as well

as an improved drag coefficient using the same slope

parameters (l 5 0.25, 0.50, and 1mm21) as in Thériault
et al. (2012).

To link the snowfall intensity with the PSD, an ex-

ample of the simulated size distribution of dry snow

particles that fall into the gauge is shown in Fig. 9 for a

sample precipitation characterized by l5 1.0mm21 and

N0 5 106mm212mm23. These PSD parameters were

suggested by Houze et al. (1979) who observed the snow

size distribution in different atmospheric conditions. In

agreement with Fig. 9 of Thériault et al. (2012), it is

shown that the gauge starts missing the lower particle

sizes whenUw approaches 4ms21, and higher wind speeds

correspond to narrower ranges of particle diameters that

TABLE 4. RMSE of precipitation measurements made by the

SA shielded gauge at the Marshall Field Site over different

aggregation intervals Dt after applying the correction based on

SI, CE(Uw, SISA), and air temperature, CE(Uw, T), and their

difference DRMSE.

Dt (min)

RMSE [CE(Uw, T)]

(—)

RMSE [CE(Uw, SISA)]

(—)

DRMSE

(—)

1 0.26 0.16 0.10

5 0.19 0.12 0.07

10 0.16 0.11 0.05

30 0.13 0.08 0.04

60 0.12 0.07 0.05

TABLE 5. Ratio between the collected SI and the reference SI

by varying the wind speed Uw (m s21) and the slope parameter

l (mm21) of the PSD.

l 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

SI 8.49 3.86 2.1 1.26 0.81 0.54 0.38 0.27

Uw 5 1m s21 1 1 1 1 1 1 1 1

Uw 5 2m s21 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

Uw 5 3m s21 0.94 0.93 0.93 0.93 0.93 0.93 0.93 0.92

Uw 5 4m s21 0.87 0.86 0.85 0.84 0.84 0.83 0.82 0.81

Uw 5 5m s21 0.78 0.74 0.7 0.67 0.63 0.6 0.57 0.54

Uw 5 6m s21 0.69 0.61 0.54 0.47 0.41 0.35 0.31 0.27

Uw 5 7m s21 0.51 0.39 0.29 0.21 0.15 0.11 0.08 0.06

Uw 5 8m s21 0.32 0.19 0.11 0.06 0.03 0.02 0.01 0.01

FIG. 9. CFD simulated PSD of dry snow collected by the SA

shielded gauge under different wind conditions using l5 1.0mm21

and N0 5 106mm212mm23.
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are collected by the gauge (and higher curvature param-

eter m). A lower number of such smaller particles fall in

the gauge at 4m s21 than previously found by Thériault
et al. (2012). This is probably due to the updated drag

coefficient.

For larger diameters, the PSD of the precipitation

collected by the gauge maintains the same slope l of

the reference and slightly decreases the concentration

number N0 with increasing Uw. The collected N(Dp)

values are lower than the reference PSD but maintain

the same order of magnitude. An exception is repre-

sented by the smaller diameter of the PSDs collected

under wind speeds higher than 4ms21. In this case, the

N(Dp) value is approximately one order of magnitude

lower than the reference one. The wind-induced un-

derestimation of the SISA for a given l is due to the

massive loss of themany small particles, which fail to fall

into the gauge.

c. Comparing the results of field observations and
CFD simulations

The computed CE variation with wind speed as a

function of SI is shown in Fig. 10. The results of the

CFD trajectory analysis are shown in Fig. 10a while

the Marshall Field Site measurements are reported in

Fig. 10b. The plot is comparable to Fig. 8 of Colli et al.

(2015) where the correlation between the simulated

CE and the PSD was discussed. For any given wind

speed, a set of eight CE values have been computed

according to the slope l of the reference PSD, which

is correlated with the SI measured by the gauge, Eq. (3).

The CFD results show that when the wind speed is

higher than 3m s21, there is an abrupt increase of the

CE scatter from 1, SISA , 1.5mmh21 (red points) to

0 , SISA , 0.5mmh21 (blue points), associated with a

decrease of the CE at any given wind speed (Fig. 10a).

When the average wind speed is lower or equal to 3ms21

the dependency of the CE on the measured SI becomes

less significant, meaning that even the smaller particles

are mostly collected by the SA shielded gauge. The latter

result is not confirmed by the field measurements pro-

vided in Fig. 1 that show a persistent scattering of the CE

even at the lower wind speeds. Such behavior has been

already explained by Colli et al. (2016b) that demon-

strated the role of the airflow turbulence generated by

the wind shield in the CE scattering by means of time-

dependent CFD simulation.

The results of the CFD simulations therefore highlight

the physical dependency between the CE and the SI

measured by the gauge, and this dependency varies

according to the wind speed. Figure 10b shows the CE

field observations for the 10-min aggregation interval

dataset, categorized by SI confirming the dependency

between collected precipitation, measured intensity and

wind speed.

The added value of using the SI in the transfer func-

tion is best visualized in the SISA versus SIREF scatter-

plot shown in Fig. 11a, where SIREF is the reference SI

(assumed coincident with SIDFIR for the field data). In

this graph, where the wind speed is color-coded ac-

cording to the side bar, the iso-CE lines would be linear

(gray dotted lines) in the absence of a clear influence

of the SISA on the CE. A clear deviation from linearity

is observed, showing that the collection efficiency in-

creases far beyond linearity with the measured SI at any

wind speed class. This deviation vanishes when Uw / 0

and increases with the wind speed, therefore justifying

the larger spread of CE values observed toward the

right-hand side of Figs. 10a and 10b.

6. Concluding remarks

The present analysis of recent WMO-SPICE quality

controlled 30-min accumulation data from the Marshall

Field Site (Colorado) revealed that the wind-induced

undercatch of solid precipitation gauges is best corre-

lated with the measured snowfall intensity, rather than

temperature, in addition to wind speed. While the en-

vironmental temperature provides general relevant in-

formation about whether the precipitation is rain (Auer

1974; Sims and Liu 2015), wet or dry snow (Rasmussen

et al. 1999; Sims and Liu 2015) it is not clear how the

exact type of solid precipitation can be easily deter-

mined in the field. At cold temperatures, which are often

associated with dry snow, it is also possible to observe

rime particles that would have higher collection effi-

ciency (Thériault et al. 2012). On the other hand, the

measured snowfall intensity has the advantage of in-

cluding information about the PSD (Pruppacher and

Klett 2010). Optimal curve fitting used to derive the

FIG. 10. CE scatter of the 10-min SA shielded gauge measure-

ments simulated by means of the (a) time-averaged CFD model

and (b) field measurements made at the Marshall Field Site. Data

are color coded according to the measured SI.
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transfer function for the GEONOR gauge in a Single

Alter shield and in a DFIR configuration indicates that

accounting for SI indeed reduces the scatter of the

residuals.

This result is confirmed by the analysis of data

from other field sites, such as CARE (Canada) and

Haukeliseter (Norway), and shows a consistent be-

havior under different climatological conditions.

Recent results from Chubb et al. (2015) found im-

proved undercatch correction after including the

precipitation amount parameter in the catch ratio curves

for an ETI weighing gauge using data collected in the

SnowyMountains of Australia. This supports our results

and suggests that other snow gauges can benefit from

this type of adjustment.

The physical basis for the improved parameterization

of the transfer function by using the measured SI was

shown through CFD modeling of the gauge snow col-

lection process to be due to the correlation of large

particles with high intensities. Large particles are pref-

erentially collected by a snow gauge, even in strong

wind, due to their higher fall velocity, allowing them to

break through streamlines of flow above the gauge and

be collected. The CFD modeling was able to reproduce

the CE pattern observed in the field providing strong

evidence of the hypothesized behavior.

The analysis of the optimal aggregation interval of

snowfall measurements was based on the evaluation of

the residual data scattering after applying adjustments

based on wind speed and either environmental tem-

perature or the measured SI. It has been observed that

shorter accumulation intervals increase the dependency

of the CE on SI and a stronger benefit in using the

proposed approach. On the other hand, it was also ob-

served that larger accumulation intervals are generally

associated with a smaller residual scattering of the mea-

surements. According to our analysis, the 10-min aggre-

gation interval may represent a trade-off point between

the availability of correlated SI and CE observations and

the need of accumulating significant amounts of snowfall

when lower precipitation intensities occur.

Overall, these findings provide an attractive method

to improve operational measurements since no addi-

tional instrument, except for a wind sensor, is required

to derive the adjusted estimates of snow accumulation.
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FIG. 11. (a) Deviation from linearity of the CE (gray dotted lines) when increasing the wind speed (color coded according to the side

bar) in the measured vs reference SI plane. The deviation is evident in both the results of the (a) numerical simulation (solid colored lines

and diamonds) and (b)–(e) field data (white circles in panels) although with some residual scatter. The field data are presented together

with power law regressions performed for various wind speed classes.
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