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RÉSUMÉ

La concentration spatiale de l’activité économique fascine par ses extrêmes et
intrigue en même temps par les paradoxes qui l’accompagnent. Pour tenter de
mieux comprendre ce phénomène, cette thèse apporte une contribution essen-
tiellement empirique à travers ses trois chapitres.
Dans le chapitre 1 intitulé, "Land for production : Evidence from Canadian
Manufacturing Industries", nous combinons des microdonnées des établisse-
ments avec des données de polygons pour construire une mesure de la quantité
d’espace utilisé par les établissements manufacturiers au Canada. Puis, à l’aide
d’un cadre conceptuel simple, nous montrons comment le foncier par unité de
travailleur varie avec les prix relatifs du foncier, le paramètre technologique et
l’élasticité de substitution entre le travail et le foncier. Nos résultats suggèrent
que le foncier et le travail sont des substituts imparfaits, que le foncier a une
compposante fixe, et comporte des coûts d’ajustement non négligeables.
Dans le chapitre 2 intitulé "The causes of the agglomeration of innovation :
Evidence from the coagglomeration patterns", nous utilisons la mesure de Du-
ranton and Overman (2005) pour décrire la coagglomération de l’innovation
au Canada. Cette description révèle que l’innovation canadienne est concen-
trée et même plus que la production. Ensuite, nous estimons l’effet causal de
"l’échange des intrants", de "l’utilisation d’un bassin commun de travailleurs"
et de la "diffusion des connaissances" sur la coagglomération de l’innovation.
L’analyse montre qu’en plus de la coagglomération de la production, seule la
diffusion de connaissances a un effet positif et significatif sur la coaggloméra-
tion de l’innovation.
Dans le chapitre 3 intitulé "A complément to the test of localization of Duran-
ton and Overman (2005)", nous appliquons la méthodologie de Duranton and
Overman (2005), en utilisant un nouveau contrefactuel pour étudier l’agglomé-
ration des établissements manufacturiers canadiens. Le nouveau contrefactuel,
qui tient compte plus précisément des choix de localisation possibles des en-
treprises, détecte mieux la localisation et la dispersion des industries. De plus,
des différences substantielles sont observées entre la classification générée avec
le nouveau contrefactuel et celle du contrefactuel classique. Nos résultats sug-
gèrent par ailleurs que la localisation et la dispersion seraient plus fortes que
ce qui est généralement admis.



ABSTRACT

The spatial concentration of economic activity fascinates by its extremes and at
the same time intrigues by the paradoxes that accompany it. In an attempt to
better understand this phenomenon, this thesis makes an essentially empirical
contribution through its three chapters.

In Chapter 1, "Land for production: Evidence from Canadian Manufacturing
Industries", we combine detailed micro-geographic establishment-level data
with polygon shapefiles to construct a new dataset with information on land
used by a large representative sample of Canadian manufacturing plants. Us-
ing a conceptual framework with productivity-augmenting parameters for land
and labor, we show how land per worker varies with relative land prices, tech-
nological parameters, and the elasticity of substitution between labor and land.
Our results suggest that land and labor are imperfect substitutes, land largely
appears to have a fixed component, and it has sizable adjustment costs.

In chapter 2 entitled "The causes of the agglomeration of innovation: Evidence
from the coagglomeration patterns", we use the continuous measure of Du-
ranton and Overman (2005) to describe the coagglomeration of innovation in
Canada. The observed patterns reveal that Canadian innovation is concen-
trated and even more than production. Then, we analyze the effects of labor
pooling, input sharing, and knowledge spillover on the coagglomeration of in-
novation. The analysis shows that on top of the coagglomeration of the produc-
tion, only the knowledge spillover unambiguously causes the coagglomeration
of innovation.

In chapter 3 entitled "A complement to the test of localization of Duranton and
Overman (2005)", we apply the methodology of Duranton and Overman (2005),
using a new counterfactual to study the agglomeration patterns of Canadian
manufacturing establishments. The new counterfactual which accounts more
precisely for firms’ possible location choices, better detects the departure from
randomness, and generates substantial differences between the patterns that
we uncovered compared to those obtained with the classical counterfactual.
Our results suggest that localization and dispersion may be stronger than what
is usually thought.



INTRODUCTION

L’un des faits saillants du paysage économique partout dans le monde est la

concentration spatiale. Au Canada par exemple, seule 20% de la surface na-

tionale est habitée et environ 81% de la population vit en zone urbaine. Cette

extrême concentration a de tout temps fasciné et intrigué les économistes sur-

tout à cause des apparents paradoxes rattachés à ce phénomène. Par exemple,

un logement à Vancouver en Colombie-Britannique est 2.5 fois plus cher qu’un

logement à Saguenay au Québec. Pourtant, la densité de la population à Van-

couver a augmenté au fil du temps pour se situer à environ 5400 habitants au

kilomètre carré. Au même moment la densité de la population de Saguenay

n’est que de 2.9 habitants au kilomètre carré. 1

Pour mieux comprendre la concentration spatiale, les questions qui orientent la

recherche sur ce phénomène portent essentiellement sur les raisons de son exis-

tence et ses conséquences sur l’activité économique. Une autre question tout

aussi importante est celle de sa mesure.

Comment la concentration affecte-t-elle l’activité économique?

L’agglomération de l’activité économique génère aussi bien des gains que des

coûts pour les acteurs économiques (Brinkman, 2016). S’agissant des gains, les

externalités positives de l’agglomération sont notamment les gains de produc-

tivité (Mayer et al., 2015; Fujita and Thisse, 2002). Ces gains de productivité,

1. Voir le site https ://www.rentseeker.ca/ pour l’estimation des prix de logement, et

https ://www150.statcan.gc.ca/n1/pub/11-630-x/11-630-x2015004-eng.htm et worldpopula-

tionreview.com pour les densités de population
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sont entre autres dus à la sélection spatiale des entreprises et des travailleurs

les plus productifs dans les endroits les plus concentrés (Behrens et al., 2014).

En termes chiffrés, il est couramment admis que doubler la taille d’une ville par

exemple se traduirait par une augmentation de la productivité de l’ordre de 3

à 8% (Rosenthal and Strange, 2004), et doubler la densité de l’emploi augmen-

terait l’intensité d’innovation de 20% (Carlino et al., 2007).

Les coûts économiques de l’agglomération quant à eux se traduisent par une

plus grande congestion spatiale (Graham, 2007), des prix plus élevés aussi bien

pour les biens de consommation que pour les facteurs de production (Tabuchi

and Yoshida, 2000; Combes et al., 2019). Au sujet du foncier en particulier, le

modèle monocentrique utilisé comme base pour plusieurs théories en écono-

mie urbaine suggère que dans les endroits les plus denses, la quantité de loge-

ments utilisés est beaucoup plus petite que dans les endroits les moins denses.

Plusieurs faits empiriques valident cette prédiction notamment pour ce qui est

du foncier résidentiel (Duranton and Puga, 2015). Du côté de la production, très

peu d’études empiriques se sont penchées sur la question, à cause notamment

d’une absence de microdonnées appropriées pour pleinement explorer ce sujet.

Comment se forment les "clusters" économiques?

En plus des avantages naturels que certains endroits pourraient présenter par

rapport à d’autres, la théorie économique met en évidence le rôle de trois mé-

canismes à l’origine de l’agglomération de l’activité économique. Il s’agit no-

tamment de «l’échange des intrants», «le partage d’un bassin commun de tra-

vailleurs", et «la diffusion de connaissance». En effet, la possibilité de parta-

ger des intrants et des installations de production, l’efficacité de l’appariement

entreprise-travailleur et la facilité de créer, d’accumuler et de diffuser des connais-

sances au sein d’un "cluster" sont autant d’incitations à l’agglomération de l’ac-
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tivité économique (Duranton and Puga, 2004). D’un point de vue empirique, de

nombreuses études ont testé l’existence de ces forces et ont fourni des preuves

convaincantes de leur rôle dans la génération de l’agglomération de la produc-

tion (Ellison et al., 2010; Audretsch and Feldman, 1996; Rosenthal and Strange,

2001; Ellison and Glaeser, 1999). Cependant, plusieurs champs de validation

de ces mécanismes restent encore inexplorés. Par exemple, comment se forme

l’agglomération de l’innovation? Cette question est d’autant plus intéressante

que quelques faits notables distinguent l’agglomération de la production de

celle de l’innovation. Par exemple, l’innovation est beaucoup plus concentrée

que la production et les entreprises ne localisent pas leurs unités productives

aux mêmes endroits que leurs unités de Recherche et Développement (Kelly

and Hageman, 1999; Feldman and Kogler, 2010)

Comment l’agglomération est-elle mesurée?

Les méthodes de mesure du degré de concentration industrielle ont connu

de nombreuses avancées au cours de cette dernière décennie. En effet, mesu-

rer adéquatement le degré de concentration de l’activité économique est une

question de premier ordre, car de cet exercice dépendent plusieurs politiques

en matière d’agglomération. Dans ce sillage, les divers efforts des chercheurs

pour quantifier le degré de concentration ont donné lieu à des mesures inté-

ressantes, allant du simple indice de Gini à des mesures plus élaborées telles

que la fonction de Ripley (Marcon and Puech, 2003). Cependant, une caracté-

ristique particulière de ces mesures est qu’elles n’ont pas de signification en

soi. Elles doivent plutôt être comparées à un point de référence pour évaluer

le degré de concentration de la réalité qu’elles sont supposées quantifier. De-

puis Ellison et Glaeser (1997), il est communément admis qu’un test adéquat

de concentration industrielle devrait tenir compte de la tendance naturelle de

l’activité industrielle à se localiser dans l’espace. En effet, une distribution in-
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égale de l’activité industrielle à travers l’espace ne traduit pas forcément de

la concentration industrielle. Ce constat a porté les chercheurs à accorder un

soin particulier à la définition de la référence à laquelle il conviendrait de com-

parer une distribution spatiale de l’activité économique. La référence la plus

couramment utilisée suppose qu’en absence de toute forme d’agglomération,

la distribution spatiale serait celle d’une assignation aléatoire des entreprises à

travers l’espace. Cependant, il se trouve que certaines localisations ne seraient

pas éligibles pour abriter certaines entreprises pour des raisons propres à la

nature de l’activité de l’entreprise ou simplement pour des questions légales

ou réglementaires. En clair, un site productif au Centre-ville de Montréal ac-

cueillerait difficilement une industrie de production pétrolière pour des raisons

environnementales et/ou d’espace. À date, la prise en compte de ce genre de

questionnement dans la définition des "références" qui servent à détecter le de-

gré de concentration n’est pas encore courante. Pourtant, de la référence utilisée

dépend entièrement la classification des industries en termes de degré d’agglo-

mération.

Cette thèse à travers ses trois chapitres, apporte des contributions à chacune

des problématiques abordées précédemment.

De manière plus précise, dans le chapitre 1 intitulé « Land for production :

Evidence from Canadian Manufacturing Industries », nous discutons de l’in-

cidence de la taille de la ville et de la distance au centre des villes (negative-

ment correlée à la densité locale) sur l’utilisation du foncier par les industries

manufacturières au Canada. En l’absence de données appropriées sur la quan-

tité d’espace utilisée par les entreprises canadiennes, notre première tâche a

consisté à construire une base de données du foncier utilisé dans la production

manufacturière. Pour cela, nous exploitons les données d’accès libre sur les po-

lygones représentant les bâtiments et parcelles du Canada. Et, à l’aide des outils
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des Systèmes d’Information Géographique, nous parvenons à construire une

mesure du foncier utilisé par les entreprises canadiennes. Nous utilisons en-

suite cette mesure pour décrire de manière toute nouvelle l’intensité du facteur

foncier dans la production. Cette description fait état entre autres d’une assez

grande hétérogénéité sectorielle et spatiale dans la consommation du foncier

par les entreprises manufacturières au Canada. En second lieu, éclairés par un

cadre conceptuel simple, nous mettons en lumière quelques faits stylisés liés à

cette variable. Nos résultats permettent de tirer trois leçons importantes sur le

rôle du foncier dans la fonction de production des établissements manufactu-

riers : (i) l’élasticité de l’espace foncier par travailleur au niveau de l’établisse-

ment est d’environ -0,6 ce qui indique que le foncier est en partie un facteur

de production fixe ; (ii) l’élasticité de la l’espace foncier par travailleur par rap-

port à la distance au centre des villes est positive mais faible en valeur absolue,

ce qui suggère que l’espace foncier et le nombre de travailleur sont imparfai-

tement substituables ; (iii) enfin, notre analyse suggère également la présence

d’importants coûts d’ajustement en rapport avec le facteur foncier.

Le chapitre 2 s’intitule "The causes of the agglomeration of innovation : Evi-

dence from the coagglomeration patterns". La littérature théorique qui discute

des microfondements des économies d’agglomération souligne la présence de

trois causes principales liées à ce phénomène. Il s’agit notamment de "l’échange

d’intrants", "le partage d’un bassin commun de travailleurs" et "la diffusion de

connaissance". De nombreux faits empiriques valident l’effet positif de chacune

de ces forces sur l’agglomération de la production. Ce chapitre quant à lui s’in-

téresse à l’effet de ces mêmes déterminants sur la colocalisation industrielle,

mais plutôt du côté de l’innovation. Tout d’abord, nous nous servons d’une

base de données de brevets canadiens pour construire une mesure de coloca-

lisation de l’innovation. Ensuite, nous utilisons cette mesure pour décrire la
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configuration spatiale de l’innovation au Canada. Ce premier exercice repro-

duit pour le cas du Canada, un fait stylisé qui met en contraste la concentration

de l’innovation et celle de la production : Au Canada également, l’innovation est

plus concentrée que la production. À la suite de cette analyse descriptive, nous

estimons l’effet causal des trois déterminants microfondés des économies d’ag-

glomération sur la colocalisation de l’innovation. Notre analyse montre qu’une

part essentielle de la concentration de l’innovation est le simple reflet de la

concentration de la production. De plus, outre la concentration de la produc-

tion, seule «la diffusion de connaissance» a un effet positif et significatif sur la

colocalisation de l’innovation.

Le chapitre 3 s’intitule "A complement to the test of localization of Duranton

and Overman (2005)". Dans ce chapitre, nous proposons une amélioration des

tests de détection de la localisation industrielle. Notre approche s’appuie sur la

méthodologie proposée par Duranton et Overman (2005, 2008) pour identifier

des industries localisées ou dispersées. Ces deux auteurs ont développé une

approche de test de localisation industrielle, basée sur l’estimation du noyau

de densité des distances bilatérales entre les établissements d’une industrie.

Cette mesure de concentration est par la suite comparée à une mesure de réfé-

rence encore appelée mesure contrefactuelle. La mesure contrefactuelle permet

entre autres de distinguer la concentration industrielle effective, d’une simple

inégalité spatiale naturelle à l’industrie manufacturière en général. La défini-

tion de cette référence pour une industrie donnée s’appuie sur un tirage aléa-

toire de sites parmi l’univers des sites manufacturiers. Ces tirages aléatoires

sont ensuite attribués à cette industrie comme sites hypothétiques et utilisés

pour construire la mesure de référence. Toutefois, Duranton et Overman (2005,

2008) reconnaissent que cette façon de procéder ne prend pas en compte le fait

que certains sites pourraient être inappropriés, voire interdits à certaines entre-
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prises pour des raisons de tailles, de procédés de production, de réglementa-

tion, etc.

Nous utilisons la même méthodologie que Duranton et Overman (2008) et pro-

posons une nouvelle approche de construction de la mesure de référence. Notre

approche utilise une méthode de classification hiérarchique pour définir des

catégories de sites. Ensuite, la mesure de référence pour une industrie donnée

est construite par des tirages aléatoires de sites, sous la contrainte que chaque

établissement de l’industrie d’intérêt ne peut se voir attribuer qu’un site qui ap-

partient à la même catégorie que le site sur lequel l’établissement est observé.

En procédant ainsi, nous minimisons le risque qu’un établissement soit réassi-

gné à un site "non admissible" en raison de possibles contraintes de taille, de

réglementation, etc.

Nous appliquons cette nouvelle approche à des données d’entreprises cana-

diennes, et les résultats obtenus suggèrent que cette nouvelle approche de dé-

finition de la mesure de référence, comparée à la méthode traditionnelle est

plus précise dans la détection de la localisation/dispersion des industries. De

plus, des différences substantielles sont observées dans les classifications de

certaines industries, telles que générées par la nouvelle approche et celle tra-

ditionnelle. En effet, près de 20% des industries passent de localisées (respecti-

vement dispersées) avec la mesure contrefactuelle classique, à dispersées (res-

pectivement localisées) avec notre nouvelle mesure contrefactuelle. Enfin, la lo-

calisation industrielle telle qu’identifiée par la nouvelle mesure contrefactuelle

apparait à des distances plus courtes que celles identifiées par la mesure contre-

factuelle classique.



CHAPTER I

LAND FOR PRODUCTION: EVIDENCE FROM CANADIAN

MANUFACTURING INDUSTRIES

Abstract

We combine detailed micro-geographic establishment-level data with polygon

shapefiles to construct a new dataset with information on land used by a large

representative sample of Canadian manufacturing plants. Using a conceptual

framework with productivity-augmenting parameters for land and labor, we

show how land per worker varies with relative land prices, technological pa-

rameters, and the elasticity of substitution between labor and land. Our results

suggest that land and labor are imperfect substitutes, land largely appears to

have a fixed component, and it has sizable adjustment costs.

Keywords: Land use for production; geo-referenced data; building and parcel

polygons; adjustment costs; manufacturing.

JEL Classification: R32; R14; L60.
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1.1 Introduction

All human activity to some degree requires land. The availability of land and its

allocation among competing uses are thus paramount to our understanding of

the spatial structure of economic activity and society in general. Analyzing the

distribution of economic activity and population across and within cities is the

hallmark of urban economics and the land it requires is the focus of a large and

well-established body of theoretical literature. 1 There is also a growing empir-

ical literature that seeks to understand land supply and land-use patterns for

primarily residential purposes. 2 However, surprisingly little is known—both

theoretically and empirically—on the role of land in the production process of

firms (Duranton and Puga, 2015). 3 How does land consumption for produc-

tion vary across sectors? Across space? How substitutable are land and labor

inputs for firms? How and when do firms adjust their land inputs? And is land

1. See, e.g., Fujita and Ogawa (1982), Lucas and Rossi Hansberg (2002) Duranton and Puga

(2015), and Brinkman (2016) for land-use patterns; Cheshire and Sheppard (2004) and Hilber

and Robert-Nicoud (2013) for land-use regulations; and Fujita (1989), Anas et al. (1998), and

Fujita and Thisse (2013) for comprehensive general treatments.

2. See, e.g., Saiz (2010) and Carozzi (2020) for estimates of land supply elasticities; Epple

et al. (2010) and Combes et al. (2019) for estimations of the production function for housing;

and Glaeser et al. (2005) for the costs of land-use regulations.

3. Canonical urban models assume that production is concentrated in dimensionless ‘busi-

ness districts’, i.e., production requires no land. Notable exceptions, where firms and residents

compete for land, include Fujita and Ogawa (1982), Lucas and Rossi Hansberg (2002), Empir-

ically, land for production has been mostly analyzed in relation to land-use regulations (e.g.,

Cheshire et al. 2014; Haskel and Sadun 2012). There is a literature on commercial real estate

prices (Drennan and Kelly, 2010; Ahlfeldt and McMillen, 2015), and on the effects of real estate

collateral on firm-level investment (Gan, 2007; Chaney et al., 2012). More closely related to our

study, Barr and Cohen (2014) analyze the floor-to-area ratio gradients of commercial properties

in New York.
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a variable or a fixed production factor?

Providing answers to these questions is both important and difficult. It is im-

portant for urban economic theory because it can inform the way we model

land as a production factor. It is also important from an applied perspective

because differences in land requirements across industries and establishments

of different sizes shape the patterns of within- and between-city distributions

of economic activity and productivity, which are the targets of many costly eco-

nomic policies. Answering these questions is, however, difficult because of the

paucity of data on land consumption for production. 4 Data on land is almost

always conflated with data on non-land capital inputs, and quantity measures

are usually not available (price times quantity, i.e., value is generally reported).

We tackle these difficulties by constructing establishment-level quantity mea-

sures of land used for production and dissect them to uncover hitherto unno-

ticed patterns. Previewing our key findings, we show that the elasticity of land

consumption per worker to plant-level employment is around -0.6, indicating

that land is partly a fixed production factor; the elasticity of land consumption

per worker to distance to the city center, is positive but small in absolute value,

suggesting that land and labor are poor substitutes; finally, we find that land is

potentially subject to sizeable adjustment costs.

Our contribution is threefold. First, we combine detailed micro-geographic

establishment-level data with polygon shapefiles to construct a new dataset

with information on the amount of land used by a large representative sample

of Canadian manufacturing plants. We build a measure of land consumption

4. “Mergent Intellect" and “Scotts’ National All Business Directories" are two databases that

report ‘square footage’ for establishments. However, it is mostly missing and when it is re-

ported it is too noisy to be useful. We are not aware of the existence of usable plant-level land

data in other datasets.
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based on the surface of the parcels occupied by the plants. The key strength of

our dataset is that it measures quantities rather than values. Combining it with

plant-level employment information enables us to construct a measure of land

per worker, a key theoretical quantity in the firm’s production function.

Second, we propose a conceptual framework with productivity-augmenting

parameters for land and labor across plants and industries, and we show how

land per worker varies with relative land prices, technological parameters, and

the elasticity of substitution between labor and land. Using that framework,

we discuss identification problems that bias the estimates of this elasticity of

substitution. We then dissect our data along various dimensions to show how

land consumption varies by industry, city size, distance to the city center, and

a series of plant-level characteristics such as employment size. Our empirical

model explains around half of the variation in the amount of land per worker

used by manufacturing establishments. We document substantial variation of

land consumption within and between sectors, and land per worker varies

more than total land consumption.

The key finding of our analysis is that land and labor are imperfect substitutes

and that land has some characteristics of a fixed cost. Indeed, while city size is

not significantly associated with plants’ per worker land consumption, we find

a significantly positive and robust effect of distance to the city center on that

variable. However, this elasticity is small in absolute value, suggesting that

land and labor are poor substitutes. Moreover, the elasticity of per capita land

consumption for production to plant-level employment is around -0.6. Put dif-

ferently, a 10% increase in employment reduces the land per worker at the plant

level by about 6% on average. This result is very robust across specifications; it

shows that land is partly a fixed cost for firms.
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Third, we discuss how the relationship between plant-level per worker land

consumption, plant size, city size, and distance to the city center varies sectors.

We hardly find any significant heterogeneity across sectors. We finally, provide

also suggestive evidence of sizable adjustment costs for land. 5 Plants do not

change their land consumption often, and when they do it is mostly within

cities. Larger plants are less likely to relocate, and employment growth over

the past four years is negatively related to current land-to-labor ratios. These

findings suggest that land consumption cannot be adjusted significantly in the

short- or medium run. Although we find heterogeneity across sectors, our esti-

mates of adjustment costs are too imprecise to be very revealing.

Though largely descriptive, we think our results are interesting for urban economists

because there is so little we know empirically about land use for production.

Taken altogether, they show that in order to quantify the contribution of land

to the production process of firms, a framework different from the usual Cobb-

Douglas production function approach is needed. 6 Since Canadian manufac-

turing is representative of manufacturing in other developed countries, our

data and results are potentially interesting for other researchers, e.g., to cali-

brate models or for structural estimation exercises. Furthermore, the increasing

availability of big open-source data on building polygons—such as Microsoft’s

database or the ongoing collection of building outlines by Open Street Map—

5. There is a large literature on adjustment costs for factor inputs (e.g., Hamermesh and

Pfann, 1996; Hall, 2004). However, land is almost never even mentioned in that literature, in

line with our observation that it is usually subsumed by ‘capital’. Sood (2020) and Bergeaud

and Ray (2021) are recent exceptions.

6. Duranton et al. (2015) is the only contribution we are aware of estimating production

functions for manufacturing firms where land is a production factor. They find a somehow

low elasticity of value added to land input (0.13) but they estimate a standard Cobb-Douglas

production function.



13

provides ample opportunities to replicate and extend our exercise to other

countries.

The remainder of the paper is organized as follows. Section 1.2 explains the

construction of our dataset and shows its representativeness. Section 1.3 pro-

vides descriptive statistics and dissects keys features of the amount of land

used for production by Canadian manufacturing establishments. Section 1.4

estimates the elasticity of plant-level land consumption to city-size, distnce to

the city and some plant-level characteristics. Section 1.5 discusses our concep-

tual framework and discusses estimation issues. Last, section 1.6 concludes.

Details on the construction of our database and robustness checks are relegated

to the Appendix.

1.2 Data construction

We collect information on the amount of land occupied by manufacturing es-

tablishments. 7 We construct and use two main measures throughout the paper.

First, the surface area of the parcels where plants are located. It is derived from

the polygons of the parcels. This measure captures both the building footprint

and the outdoor space used by the plant for storage, parking, or green space.

The second measure is the building-to-parcel ratio, i.e. the share of the parcel

covered by the footprint of the buildings where plants are located. To compute

it, we need the surface area of the building footprint, which is derived from the

polygons of the buildings where plants are grounded. 8 We do not observe the

floor space used by manufacturing establishments and we cannot infer it from

7. In what follows, we interchangeably use the terms ‘establishment’, ‘plant’, and ‘firm’.

8. The building footprint is known as Gross Area Floor in the assessment roll terminology.
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the data we have. This is why our analysis is not about the amount of space

used by establishments; it is about the amount of land they occupy.

1.2.1 Methodology

We first briefly present the methodology used to construct the dataset. De-

tails for each step of the procedure and an extensive discussion of the quality

of the final dataset are relegated to Appendices 1.7.2–1.7.5. The dataset we

build combines proprietary data for geo-referenced Canadian manufacturing

establishments with open-source data for parcel- and building polygons. We

use GIS tools to associate each establishment with specific building and parcel

polygons. We then compute the parcel size and the building footprint for each

plant using the surface of its associated polygons.

Data collection and processing

i) Establishment-level data

We use the proprietary Scott’s National All Business Directories, a dataset that

draws information on plants operating in Canada from Business Register records

and telephone surveys. It provides a fairly exhaustive coverage of the manu-

facturing sector on which we focus in this paper. Although the data span the

years 2001–2019, 9 we exploit the dataset as a cross-section in 2017, the closest

year to the reference year for the polygon datasets that we use. This choice re-

duces potential measurement error due to changes in the delineation of build-

ings and parcels. 10 The variables of interest for the analysis include the precise

9. Data for 2015 are missing from our dataset.

10. It also allows for more precise geocoding as street names and configurations may have
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postal address information of each plant, its industrial classifications (North

American Industry Classification System, NAICS 6-digit level), an estimate of

the number of workers at the site, and dummy variables for whether the plant

reports an export activity and whether or not it is a headquarter. The dataset

also contains information on the products manufactured by the plants and the

broad sectors in which it is active (manufacturing, wholesale, professional, sci-

entific and technical services etc.). We geocode each plant in the dataset using

the procedure explained in Appendix 1.7.1. 11

ii) Polygon datasets.

We collect parcel and building polygons from numerous Canadian provincial

and metropolitan sources. The full list of sources from which we collect these

datasets, as well as a discussion of their quality, are relegated to Appendix 1.7.2

(see Table 1.4). Concerning parcels, we collect more than 4.5 million polygons

covering the entire provinces of British Columbia (BC), Quebec (QC), and New

Brunswick (NB) as well as the cities of Toronto, Oshawa, Windsor, and York in

Ontario (ON). For the other provinces, we obtain data for Banff in Alberta (AB),

Winnipeg in Manitoba (MB) and Regina and Saskatoon in Saskatchewan (SK).

We did neither obtain data for Nova Scotia (NS), Newfoundland and Labrador

(NL), and Prince Edward Island (PE), nor for the three Territories. Concerning

buildings, we collect information from the Open Source data on building foot-

prints in Canada released by Microsoft. These datasets consist of 12,663,475

changed significantly since 2001.

11. The dataset already records geographic coordinates for each plant but some of these co-

ordinates are based on postal code centroids obtained from Post Canada’s Postal Code Conver-

sion files. These are necessarily less accurate than coordinates obtained from rooftop geocoding

and do not permit to precisely associate plants with building- or parcel polygons.
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building footprints covering all provinces and territories. 12

iii) Other datasets.

To make use of spatially fine-grained population census data, we collect the

shapefiles of the boundaries of all dissemination areas (DA; the smallest ge-

ographic unit at which public census data are released), census metropolitan

areas and census agglomerations (CMA and CA), economic regions (ER, which

are sub-provincial units), and provinces in Canada. Combined with data from

the population census of 2016, we obtain files that contain information on the

population, the surface area, and the relations between the different levels of

the census geography. We also collect polygon files released by DMTI which

record basic zoning restrictions in Canada, namely the main type of activity al-

lowed in each area by local zoning policies (commercial/industrial, residential,

recreational). Finally, we collect from Statistics Canada additional information

on some major infrastructures such as highways junctions (from the Canadian

road network files), as well as the location of airports, seaports, and train freight

stations (from the Open Government geographic data portal).

Construction of the surface measures

We use GIS tools to relate each geocoded plant in the establishment dataset to

parcel and building polygons (see Appendix 1.7.3 for technical details). The

mapping between plants and polygons then allows us to construct the mea-

sures of land occupied by manufacturing establishments. The parcel size is the

surface of the parcel polygon that contains the establishment, while the build-

ing footprint is the ground floor area of the building polygon that contains the

establishment.

12. See https://blogs.bing.com/maps/2019-03/microsoft-releases-12-million-canadian-building-footprints-as-open-data
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There is not a one-to-one mapping between establishments on the one hand,

and parcel and building polygons on the other hand. Sometimes, several es-

tablishments fall on the same parcel. Put differently, there is some parcel- and

building- sharing. This should, however, not be a major problem for our anal-

ysis: compared to services establishments, manufacturing plants are less likely

to have many neighbors. In the sample used for the analysis of parcel size,

the average number of neighbors identified for each establishment based on

the Scotts data is 1.3 and the median is 0. Yet, this means that there are still

some establishments that share the same parcel or building. Thus, we control

in the regression analysis for (a polynomial function in) the number of neigh-

bors as measured in the Scotts data. We also check that the main results remain

unchanged when focusing on establishments with no identified neighbors. 13

Also, the properties occupied by manufacturing establishments may be com-

posed of several contiguous parcels, not only of the one on which establish-

ments fall following the geocoding process. The discussions we had with em-

ployees from the Land Register of Quebec let us think that this situation rarely

occurs. This is coherent with the fact that, as shown by Brooks and Lutz (2016),

assembled parcels have a much higher value than the sum of values of the

individual parcels, so that owners of contiguous parcels have an incentive to

assemble them. Moreover, for the city of Montreal, we have exhaustive infor-

mation from the property assessment roll that allows us to compute the number

of parcels in the properties occupied by establishments. 85% of the manufactur-

ing establishments in Montreal occupy properties composed of only one parcel,

13. Note that the Scott’s dataset—though providing an extensive coverage of the manufac-

turing sector—is not the universe of productive plants in Canada. There may be some mea-

surement error in the count of neighbors. We discuss the implication of this for the estimation

results in section 1.4.
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confirming our discussion with the Land Register of Quebec. Hence, as long

as Montreal is representative of the rest of the country, measurement error re-

mains very limited here.

Finally, for some plants, the surface area of the parcel is smaller than the build-

ing footprint. This is because the assignment of establishments to parcels on

the one hand and to buildings on the other hand being done independently, an

establishment can be assigned to a building and a parcel that do not correspond

to the same lot. This may also come from polygons that are misidentified by

the automatic recognition procedure (amalgamation of adjacent buildings). In

a robustness check, we reproduce the results using only the sample of estab-

lishments for which we have both the parcel size and the building footprint,

and for which the parcel size is larger than the building footprint.

1.2.2 Quality assessment

Assigning geocoded data to polygons delineated thanks to satellite images in-

herently brings issues regarding data quality and methodology accuracy. We

relegate the detailed discussion of these issues to Appendix 1.7.4. We simply

mention here that to gauge the quality of the data obtained after the whole

geocoding and assignment process, we make use of the subset of data for the

province of Quebec (QC). The reason is that the polygon identifiers in the QC

dataset are the same as the official identifiers of the polygons as recorded on

the governmental website of the Land Register “Infolot”. We can, therefore,

randomly draw from the dataset we build a set of plants in QC and compare

their parcel identifier from “Infolot” to the one obtained with the assignment

procedure we follow. Based on this comparison we are able to build a qual-

ity variable—which we construct for the whole dataset, not just Quebec—with



19

three categories: Excellent, good, and acceptable (see Appendix 1.7.3 for addi-

tional details). In the remainder of the paper, we only keep observations with

‘excellent quality’ (77.1% of the observations for which we have a measure of

parcel size). We check in a robustness test that our results hold when using

observations with a lower quality.

1.2.3 The final dataset

The final sample used for the analysis contains the manufacturing plants from

the Scott’s database that: (i) are precisely geocoded (see Appendix 1.7.5) and (ii)

have an excellent quality in terms of assignment to parcel- or building polygons

(see 1.7.3). we further trimmed the 1% tails of each 3-digit industry. We now

discuss its representativeness.

Out of the 32417 manufacturing plants recorded in the Scott’s database for 2017,

we can assign parcel size of excellent quality to 8708 (26.86%) of them and

building footprint size of excellent quality to 20443 (73%) of them. The loss of

data is mainly due to the absence of polygons for some cities and provinces and,

to a lesser extent, to accuracy issues from the geocoding and polygon assign-

ments (See Table 1.5 for more details). Concerning the sectoral representative-

ness of the estimation, Table 1.6 in Appendix 1.7.6 shows that the distribution

of the (3-digit) industries is broadly similar to that in the raw Scott’s database.

The correlation between these distributions exceeds 0.98. Some sectors have

few observations in the two samples (e.g., “313 Textile Mills”, “316 Leather, al-

lied product manufacturing” and “324 Petrol, coal product manufacturing”).

We keep those sectors for the pooled analysis but we will not consider them for

the sectoral analysis.

From a geographic perspective, Table 1.7 in Appendix 1.7.6 presents the distri-
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bution of plants across provinces. As explained before, we lack parcel polygons

for entire provinces, which are then missing in the estimation sample. Yet, the

correlation of the geographic distribution with the raw Scott’s data remains

reasonably high (equal to 0.77). Moreover, the provinces that host the major

part of manufacturing in Canada are very well represented. These provinces,

namely Ontario, Quebec, and British Columbia, account for 80.1% of the over-

all number of manufacturing plants in Canada. They represent 87.3% of the

plants in the parcel sample.

To conclude, the sectoral representativeness of the final dataset is excellent and

its geographic coverage is good. There could still be some selection based on

establishment characteristics. We hence use a probit model to assess the extent

to which the establishments in the final sample exhibit specific characteristics

compared to those for which we do not have reliable information on parcel size.

Table 1.11 in Appendix 1.7.6 shows that beyond the geographic fixed effects,

very few establishment characteristics are related to the probability to be in the

regression sample. Moreover, the pseudo R-square of the regression is quite

low, equal to 0.34. Hence, there is few selection in the sample used for the

analysis, and most of it is related to selection across provinces due to the fact

that we could not get parcel data for entire provinces in Canada.

1.3 Land occupied by manufacturing establishments: Some sectoral statis-
tics

We now present sectoral statistics on the size of the parcels occupied by man-

ufacturing establishments in Canada, and on the share of their surface area

covered by the footprint of the building on it (building-to-parcel ratio).
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1.3.1 Size of parcels by sector

Figure 1.1 reveals substantial heterogeneity in the amount of land occupied by

manufacturing establishments, both between and within sectors (Table 1.8 in

Appendix 1.7.6 presents the figures associated to the graph).

Figure 1.1 – Plant-level parcel size by industry

Notes: This graph represents the distribution of the parcel sizes across the industries. The industry 312 (Beverages and

Tobacco) has been removed to keep the graph readable. The red line represents the mean value for the whole sample.

The average plant-level parcel size is around 13,350m2, but the median is more

than twice smaller, thus suggesting a right-skewed distribution of the parcel

size. Moreover, the coefficient of variation equals 270%, revealing substantial

heterogeneity in our sample. Part of that heterogeneity reflects between-sector
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differences, with some sectors having on average large parcels (e.g., beverages

and tobacco (not on the graph); primary metal; petroleum and coal products;

and paper manufacturing) whereas others have much smaller parcels (e.g.,

leather; clothing and textile; printing; and miscellaneous manufacturing). The

coefficient of variation is large in all sectors, ranging from 130% to 530% and

showing that the size of parcels is not only heterogeneous between sectors but

also within sectors.

Figure 1.2 – Plant-level parcel size per worker by industry

Notes: This graph represents the distribution of the parcel sizes per worker across the industries. The industry 312 has

been removed for the sake of legibility. The red line represents the mean value for the whole sample.

Figure 1.2 focuses on parcel size per worker instead of parcel size (see Table 1.9

in Appendix 1.7.6 for the exact figures). Parcel size per worker measures how

densely land is occupied by manufacturing establishments in terms of em-
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ployees. The patterns on Figure 1.2 reveal even more heterogeneity between

and within sectors than for parcel size (coefficient of variation of 430% for the

whole sample, ranging from 130% to 880% across industries). In addition, the

industry-level rank correlations between parcel size and parcel size per worker

is not statistically significant: sectors with the highest plant-level parcel size are

not necessarily those the most or the least densely occupied parcels in terms of

workers.

Note that we checked that the ranking of industries in terms of average parcel

size and parcel size per worker does not depend on the sample of establish-

ments we use. We computed the figures for those establishments for which

we observe both the parcel and the building size, for establishments with less

than 50 workers, and for establishments with no identified neighbor on their

parcel or in their building. The ranking of industries is not significantly differ-

ent across samples, so that the patterns we uncover are not driven by specific

sample-selection mechanisms (these figures are available upon request).

1.3.2 Building-to-parcel ratio

Another way to capture how densely occupied a parcel is is to compute the

building-to-parcel ratio: the higher this ratio, the more densely occupied the

parcel in terms of buildings. Figure 1.3 shows a fair amount of heterogeneity in

terms of the building footprint-to-parcel ratio both between and within sectors,

even though this heterogeneity is less important than the one observed for the

parcel measure alone (the coefficient of variation equals 1060% for the whole

sample and ranges from 220 to 1763%). Some sectors, like petroleum and coal,

wood products, or primary metal products exhibit small building footprint-to-

parcel ratios. On the contrary, textile mills, clothing, and printing exhibit high



24

ratios, thus showing that they use relatively less outdoor space.

The heterogeneity we observe across sectors certainly tells something about

the different needs in terms of land across industries. The sectors with the low-

est ratios definitely seem to be sectors that rely either on outdoor resources

(wood, coal, non-metallic mineral products) or for which space for storage

tanks (petrol, beverages) is important. By contrast, the sectors with the high-

est ratios are historically located in denser areas and belong to ‘light manufac-

turing’ (clothing, printing, textiles). Note that plants may react to higher land

prices by reducing either their building footprint, their parcel footprint, or both;

and that the ease with which either type of land (‘indoors’ or ‘outdoors’) can

be adjusted may depend on the use (e.g., parking vs storage) and the industry.

This might have important implications for the spatial sorting of sectors and

their propensity to spatially agglomerate, a point we will return to later.
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Figure 1.3 – Building-to-parcel ratios by NAICS 3-digit industry

Notes: This graph represents the distribution of the building-to-parcel ratios across the industries. The industry 312

has been removed for the sake of legibility. The red line represents the mean value for the whole sample which

includes not only plants in CMA/CA but also those outside the CMA/CA. In addition we’ve constrained the sample

such that the parcel size > building footprint size

1.4 Land occupied by manufacturing establishments: An econometric anal-
ysis

In this section, we provide a detailed analysis of the characteristics of the man-

ufacturing establishments and their environment that determine the amount of

land they occupy. In a context where the footprint of human activity becomes

a first-order environmental issue, we focus on two variables: the surface area

of the parcel occupied by an establishment divided by the number of workers

it employs and the building-to-parcel ratio. The first variable is inversely re-

lated to the density of the parcel in terms of workers using it: the higher it is,
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the lower the number of employees using the parcel. Moreover, as will become

clear in Section 1.5, this variable lends itself well to a structural interpretation

of the regression coefficients. The second variable is related to the density of

the parcel in terms of building: the higher it is, the higher the fraction of the

parcel covered by buildings. We first detail the equation to be estimated, we

then present the benchmark results, and we finally propose some robustness

checks.

1.4.1 Estimated equation

The equation we bring to the data is the following:

yisz = αEnvi +βEstabi + γInfrai +θs +ηz + εisz (1.1)

where i stands for establishment, s for 4-digit NAICS industry code and z for the

zone where the plant is located. yisz denotes parcel size per worker or building-

to-parcel ratio.

Envi is a vector of characteristics related to the environment of establishment i.

It includes the (log) size of the urban area where it is located both in terms

of population and in terms of surface area (as per the 2016 Census), 14 the

weighted distance of the establishment to the city centres of the urban area, 15

fixed effects identifying the type of zoning (commercial/industrial, residential,

14. The urban area corresponds to the Census Metropolitan Area (at least 100,000 of which

50,000 or more must live in the core) or the Census Agglomeration (a core population of at least

10,000).

15. To identify the centers of cities we use a routine that locates clusters of population density.

The details of the procedure as well as the weighting scheme is presented in Appendix 1.7.7
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recreational) that is prevalent at the location of the establishment, as well as a

polynomial function of degree 4 of the number of neighbors falling on the same

parcel. In some specifications, we also control for the (log) population density

in the dissemination areas within a 500m radius around the establishment.

Estabi is a vector of characteristics related to the size and the type activity run

in establishment i. We control in particular for the (log) number of employ-

ees, dummies identifying headquarters and exporting plants, as well as for the

NAICS 4-digit industries, products and broad sectors of activity in which the

plant is involved.

Also, proximity to specific infrastructures might influence the amount of land

per worker occupied by manufacturing establishments and their building-to-

parcel ratio, either due to the size of the parcels available close to these in-

frastructures or to how “packed” establishments accept to be in order to enjoy

proximity to these infrastructures. Infrai is thus a vector containing the (log)

distance between establishment i and the closest major airport, major seaport,

freight station and highway junction.

Finally, θs and ηz stand for sector and economic regions fixed effects. 16 They

account for technological parameters and regional determinants that may drive

how densely manufacturing establishments occupy land.

To account for auto-correlation between observations within urban areas, we

cluster all standard errors at the CMA/CA level (Moulton, 1990). As mentioned

in section 1.2.2, we limit the sample to observations for which the information

on parcel size or building footprint is of the highest quality.

16. There are 76 economic regions in Canada that constitute a partition of the country. They

are much smaller than provinces but, except for the very largest metropolitan areas, much

bigger than cities.
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1.4.2 Benchmark results

Table 1.1 shows estimation results when the parcel size per worker is used as

the dependent variable. All regressions include industry- and economic region-

fixed effects, as well as a polynomial function of degree 4 in the number of

neighbors of the establishment on its parcel.
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Table 1.1 – Determinants of parcel size per worker

ln Parcel size per worker

(1) (2) (3) (4) (5) (6)

Characteristics of the local environment

Ln Population CMA -0.264a -0.242a -0.241a -0.227a -0.125b -0.237a

(0.070) (0.056) (0.055) (0.065) (0.051)

Ln CMA surface area 0.081 0.064 0.068 0.088 0.025 0.047

(0.091) (0.067) (0.067) (0.083) (0.069)

Weighted Distance to city centers 0.040a 0.038a 0.038a 0.033a 0.025a 0.220a

(0.003) (0.004) (0.004) (0.006) (0.004)

1 Residential -0.504a -0.924a -0.918a -0.889a -0.707a -0.289a

(0.080) (0.105) (0.103) (0.104) (0.097)

1 Recreational 0.114 0.084 0.083 0.089 -0.000 0.022

(0.094) (0.107) (0.107) (0.105) (0.091)

Ln Population density 500m -0.148a

(0.012)

Characteristics of the establishment

Ln Employment -0.619a -0.624a -0.626a -0.645a -0.590a

(0.016) (0.016) (0.016) (0.017)

1 Headquarter -0.070b -0.077a -0.058b -0.016a

(0.026) (0.025) (0.023)

1 Exporter 0.114a 0.107a 0.086a 0.036 a

(0.021) (0.021) (0.020)

# functions in the estab. -0.019 -0.019 -0.007 -0.007

(0.039) (0.037) (0.035)

# 4-digit NAICS in the estab. -0.021c -0.020c -0.020c -0.018c

(0.012) (0.012) (0.012)

# products produced in the estab. -0.010b -0.010b -0.009b -0.017b

(0.004) (0.004) (0.004)

Distance to transport infrastructure

Ln Distance to major airport -0.134c -0.009 -0.122c

(0.068) (0.076)

Ln Distance to major seaport 0.129b 0.085b 0.135b

(0.054) (0.041)

Ln Distance to freight station 0.020 0.022 0.016

(0.052) (0.026)

Ln Distance to junction -0.033 -0.007 -0.027

(0.041) (0.041)

Observations 8,707 8,707 8,707 8,707 8,707 8,708

R-squared 0.287 0.561 0.564 0.568 0.588 0.568

Industry (4-digit) fixed effects yes yes yes yes yes yes

Economic region fixed effects yes yes yes yes yes yes

Controls for # neighbors yes yes yes yes yes yes

Notes: All regressions include a polynomial function of degree 4 in the number of neighbors of the establishment

on its parcel. Only observations with the highest reliable information on parcel size are included. 1 denotes {0,1}
dummy variables. Standard errors clustered at the CMA/CA level in parentheses. a p<0.01, b p<0.05, c p<0.1.
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In the first column, the only other covariates are the characteristics of the geo-

graphic environment of the establishment. In column (2), the log employment

of the establishment is added to the set of regressors. Column (3) accounts

for other individual characteristics of the establishment, while we control in

column (4) for the log distance to various transport infrastructure. We retain

this regression as the benchmark specification. Indeed, through the lens of a

theoretical framework proposed in Section 1.5, we can use its coefficients and

others available in the literature to infer the substitution elasticity between land

and labor in the production function of manufacturing plants. In column (5),

we add to the set of environmental characteristics the log population density

in a 500m radius around the establishment. Finally, we present in column (6)

the standardized coefficients of the benchmark specification appearing in col-

umn (4). The regression results exhibit several robust patterns.

First, regarding the characteristics of the local environment, plants in popu-

lated urban areas use fewer land per worker, as well as plants that are located

closer to city centres within urban areas (the coefficient on the weighted dis-

tance to city centres being positive). In our benchmark specification, the elastic-

ity of parcel size per worker to city population is equal to -0.227 and the semi-

elasticity to the weighted distance to city centres is equal to 0.033. Note that

both coefficients decrease in absolute value when we control for the popula-

tion density in the immediate surroundings of the establishment in column (5)

(this latter variable attracting a negative and highly significant coefficient). This

is coherent with the fact that population density is not homogeneous within

cities and decreases on average with distance to the centre. Hence, when lo-

cal population density is accounted for, the effect of the other two variables in

weakened. Land prices are higher in big cities and lower at higher distances

from city centres. We will thus show in the final section of this paper how we
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can use these elasticities to recover values for the substitution elasticity between

land and labor in the production function of establishments. Regarding zoning,

not surprisingly, compared to establishments in commercial and industrial ar-

eas (the reference category), manufacturing plants in residential areas occupy

fewer land per worker. This may be because the use of land is restricted or

parcels are smaller in the residential parts of cities so that they attract establish-

ments with lower land requirements.

Moving to establishment characteristics, as expected, headquarters occupy less

land per worker, while the opposite is true for exporters: “office” functions

require less space than functions related to production and exports for which

factory space and warehousing are required. The results also show that plants

with a broader range of activity in terms of NAICS and products tend to occupy

fewer land per worker, even though the relationship is less statistically signifi-

cant. Finally, the highest correlation is found for establishment size in terms of

employees, with an elasticity comprised between -0.65 and -0.60 depending on

the specification: bigger establishments occupy fewer space per worker. We can

see four explanations to this negative correlation. First, moving, opening, or

closing a facility is costly so that firms adjust the size of the parcel they use less

easily than their workforce; only when shocks are large and permanent enough

do firms adjust their land consumption, most likely by moving or by opening

and closing some establishments (Bergeaud and Ray, 2021). This means that

when firms grow or shrink, they first do so by adjusting their number of em-

ployees only, especially if they face transitory shocks. Then, if big firms are

firms that have grown a lot compared to their initial size, the negative corre-

lation between parcel size per worker and establishment size could be related

to the existence of adjustment cost. However, we ran the results controlling

for plant-level employment growth between 2013 and 2017, and this leaves the
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coefficient on establishment size unaffected. 17 Second, as already mentioned

before, the Scotts data are exhaustive for manufacturing but not for services, so

that we possibly mismeasure the number of neighbors on the parcel. If we do

have a measurement error issue, it is arguably more severe for small firms: they

are more likely to share their location with other businesses, and we may thus

overestimate their parcel size per worker. This could also explain the nega-

tive correlation between parcel size per worker and establishment size we find.

However, as shown on Figure 1.4, when we run the benchmark regression sep-

arately for bins of establishments with different sizes, the correlation between

parcel size per worker and establishment size is close to -1 for establishments

with 1-5 employees, and close to -0.6, the coefficient found for the whole sam-

ple, for establishments with 5-15, 15-50 and 50+ employees. This pattern of

heterogeneity is inconsistent with the idea that the negative correlation esti-

mated on the whole sample mostly reflects an overestimation of parcel size per

worker for smaller plants. In the end, two explanations seem more likely to

explain why parcel size per worker decreases with establishment size. First, it

is suggestive of a fixed cost component in the land input. Indeed, if land is a

variable cost only, under specific functional forms of the production function

(CES for example, see Section 1.5 below), the quantity of land per worker is

independent of the size of the firm in terms of employees. However, part of

the land used by firms has the nature of a fixed cost: corridors, bathrooms, of-

fice spaces, or production spaces have a size that is partly independent of the

number of workers using them. A second possible explanation is that even

though this is not the most frequent situation, some manufacturing firms oc-

cupy multi-floor buildings. In Montreal for example, we know the number of

17. Results available upon request.
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floors of the buildings occupied by establishments, 18 and it appears that 64%

of the manufacturing establishments occupy a one-floor building, 16% a two-

floor building, 5% a 3-floor building and 15% a 4+-floor building. It is likely

that bigger establishments occupy taller buildings but not necessarily much

bigger parcels, which will show up into a lower parcel size per worker.

Finally, among the various types of transport infrastructure we consider, dis-

tance to major seaports is the only one to be robustly correlated with the amount

of land per worker used by manufacturing establishments: plants that are lo-

cated close to major seaports occupy fewer land per worker.

From a quantitative perspective, it is worth noting that the R2 in our model

is fairly large in all specifications, between 0.5 and 0.6, and that it is not en-

tirely driven by the industry and economic region fixed effects. Thus, although

we work with micro data at the establishment level, the model explains a sub-

stantial part of the variation in that data in terms of land per worker occu-

pied by manufacturing plants. Among the regressors we take into account, the

standardized coefficients displayed in column (6) show that four characteris-

tics particularly stand out: the establishment size in terms of employees, being

located in a residential zone, the population of the CMA and the weighted dis-

tance to city centres.

That parcels in big cities, as well as parcels in residential zones and in central

locations within cities, are more densely occupied in terms of employees does

not mean that the manufacturing establishments occupying these parcels use

less floor space per worker: buildings on these parcels could cover a greater

share of the parcel or they could have multiple floors. The data we have do not

18. This information comes from the property assessment roll we could get for Montreal.

Unfortunately, we do not have it for the other cities in our sample.
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allow to recover floor space, but we have the footprint of the building so that we

can compute the building-to-parcel ratio: the higher this ratio, the more densely

built the parcel occupied by an establishment. Note that taller buildings having

a greater footprint, a higher building-to-parcel ratio is consistent with more

floor space in both the “horizontal” and the “vertical” dimensions.

Table 1.2 displays the results when the building-to-parcel ratio is used as a de-

pendent variable.

Figure 1.4 – Parcel size per worker and establishment size across size bins

1-5 emp.

5-15 emp.

15-50 emp.

50+ emp.

-1 -.9 -.8 -.7 -.6 -.5
Coef. Ln Emp.

Notes: This graph represents the coefficient on establishment size when the benchmark regression in column (4) of

Table 1.1 is run separately for each bin.

Two of the four main determinants of the parcel size per worker appear as im-

portant determinants of the building-to-parcel ratio too: the city population

and the weighted distance to city centres, with standardized coefficients well

above 0.2 in absolute value. The building-to-parcel ratio increases with city size

and decreases with the weighted distance to city centres. This likely reflects the

fact that outdoor space is partly used for parking lots or green space, two di-

mensions on which firms can accept restrictions when land prices are high. We

also know that the cost of surface parking increases with the value of land,

which implies that firms and households save on land by investing in under-

ground or structural parking when being closer to the city center (Brueckner
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and Franco, 2017). Indoor space probably exhibits, on the contrary, a stronger

complementarity with the other production factors and can less easily be com-

pressed.

Interestingly, the coefficient on establishment size, which is by far the main de-

terminant of parcel size per worker, is now very close to 0. This suggests that as

for parcel size per worker, building footprint per worker decreases with estab-

lishment size. This is confirmed by the results in Table 1.12 in Appendix 1.7.8

where the dependent variable is the building footprint. Building footprint per

worker decreases strongly with establishment size, with an elasticity which is

very close to the one obtained for parcel size. i.e. -0.65 to -0.60. Interestingly,

we also find that building footprint increases with city size and decreases (even

though the coefficient is not always significant) with the weighted distance to

city centres. This is highly suggestive that manufacturing plants occupy taller

buildings in big cities and in central locations within cities. If it were not the

case, considering that land prices are higher in big cities and in central loca-

tions, we should observe that building footprint decreases with city size and

increases with distance to the centre. These patterns are also consistent with

the observation that multi-floor manufacturing firms are more often found in

large and dense cities.
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Table 1.2 – Determinants of building-to-parcel ratio

ln Building-to-parcel ratio

(1) (2) (3) (4) (5) (6)

Characteristics of the local environment

Ln Population CMA 0.366a 0.367a 0.370a 0.391a 0.321a 0.457a

(0.074) (0.075) (0.074) (0.086) (0.079)

Ln CMA surface area -0.147 -0.147 -0.150 -0.209c -0.164 -0.126c

(0.099) (0.100) (0.099) (0.123) (0.116)

Weighted Distance to city centers -0.045a -0.045a -0.045a -0.040a -0.034a -0.298a

(0.005) (0.005) (0.005) (0.007) (0.006)

1 Residential 0.432a 0.411a 0.413a 0.386a 0.261a 0.142a

(0.073) (0.072) (0.072) (0.085) (0.074)

1 Recreational -0.228b -0.230b -0.226b -0.232b -0.172c -0.062b

(0.090) (0.090) (0.089) (0.095) (0.094)

Ln Population density 500m 0.101a

(0.017)

Characteristics of the establishment

Ln Employment -0.031a -0.028a -0.029a -0.016 -0.031a

(0.008) (0.009) (0.009) (0.010)

1 Headquarter -0.051 -0.041 -0.055 -0.010

(0.038) (0.034) (0.034)

1 Exporter -0.024 -0.019 -0.006 -0.007

(0.020) (0.020) (0.020)

# functions in the estab. -0.035 -0.032 -0.040 -0.014

(0.041) (0.038) (0.037)

# 4-digit NAICS 0.004 0.001 0.000 0.001

(0.016) (0.015) (0.016)

# products 0.009c 0.009b 0.009b 0.019 b

(0.004) (0.004) (0.004)

Distance to transport infrastructure

Ln Distance to major airport 0.211a 0.125 0.216a

(0.074) (0.079)

Ln Distance to major seaport -0.120b -0.090c -0.143b

(0.054) (0.053)

Ln Distance to freight station -0.077 -0.078c -0.068

(0.057) (0.040)

Ln Distance to junction -0.030 -0.048 -0.027

(0.051) (0.049)

Observations 8,513 8,513 8,513 8,513 8,513 8,514

R-squared 0.290 0.291 0.292 0.299 0.311 0.299

Industry (4-digit) fixed effects yes yes yes yes yes yes

Economic region fixed effects yes yes yes yes yes yes

Notes: All regressions include a polynomial function of degree 4 in the number of neighbors of the establishment

on its parcel. Only observations with the highest reliable information on parcel size are included. 1 denotes {0,1}
dummy variables. Standard errors clustered at the CMA/CA level in parentheses. a p<0.01, b p<0.05, c p<0.1.
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1.4.3 Robustness checks

Tables 1.3 provides several robustness checks on the determinants of both the

parcel size per worker and the building-to-parcel ratio. We present the coef-

ficients for three variables of interest only, namely city population, weighted

distance to city centres and establishment size, but all the covariates of the

benchmark specification are included in the regressions.

We propose eight different checks. We replicate in column (1) the benchmark

results. In column (2), we expand the sample to all of the establishments for

which we have information on the dependent variable irrespective of the qual-

ity of the geocoding and polygon assignment process. In column (3), we elimi-

nate the 1% tails of the distribution in terms of the dependent variable. In col-

umn (4), the sample only contains observations for which the information on

both the parcel size and the building footprint is of top quality. In column (5),

we eliminate observations for which parcel size is smaller than building foot-

print (reflecting misidentified polygons or misassignment to parcel and/or build-

ing polygons). In column (6), we restrict the sample to manufacturing establish-

ments with less than 50 employees to address the fact that large establishments

may occupy several distinct adjacent parcels, in which case we under-estimate

the amount of space they use (even though, as mentioned in section 1.2.1, this

case is certainly rare). In column (7), we restrict the sample to those estab-

lishments that have no identified neighbors on the same parcel or in the same

building. Indeed, despite the fact that we control for the number of neighbors

in the benchmark regressions, it is still possible that we mismeasure the actual

amount of land occupied by establishments when several manufacturing firms

occupy the same parcel. In the same vein, in column (8), we replace the number

of neighbors by the mean of the number of neighbors on the parcel and in the
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building when both values are available. Indeed, the spatial junction between

establishments and parcels on the one hand, and establishments and buildings

on the other hand, being done independently, these two figures may not be the

same. Finally, we focus in column (9) on establishments that are located farther

than 5 kilometers from a city centre, to ensure the patterns we uncover are not

driven by what happens in very central locations.

Irrespective of whether we explain the parcel size per worker or the building-

to-parcel ratio, the results for city population and weighted distance to city

centres are remarkably stable, both qualitatively (for all of them) and quantita-

tively (most of the time). The same applies to the relationship between parcel

size per worker and establishment size, while the sign and significance of the

correlation between building-to-parcel ratio and establishment size is less sta-

ble, but always close to zero. We are thus confident in the lessons we learn

from the benchmark econometric analysis: controlling for establishment size,

manufacturing establishments occupy parcels in a denser way in big cities and

in central locations within cities. Moreover, controlling for location, bigger es-

tablishments occupy much fewer land per worker as measured by parcel size

per worker.
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Table 1.3 – Robustness checks

ln PB-measure per worker

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Ln Population CMA -0.227a -0.191a -0.224a -0.221a -0.142a -0.213a -0.222a -0.245a -0.165c

(0.065) (0.055) (0.059) (0.066) (0.049) (0.066) (0.066) (0.067) (0.085)

Weighted Distance to city centers 0.033a 0.027a 0.030a 0.032a 0.021a 0.034a 0.033a 0.036a 0.028a

(0.006) (0.004) (0.005) (0.005) (0.003) (0.007) (0.005) (0.006) (0.007)

Ln Employment -0.626a -0.655a -0.568a -0.625a -0.630a -0.709a -0.542a -0.633a -0.620a

(0.016) (0.017) (0.014) (0.016) (0.019) (0.018) (0.015) (0.019) (0.020)

Observations 8,707 12,138 8,531 8,048 7,254 6,947 5,333 8,707 6,793

R-squared 0.568 0.488 0.549 0.570 0.596 0.547 0.458 0.538 0.579

ln Building-to-parcel ratio

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Ln Population CMA 0.391a 0.358a 0.285a 0.368a 0.252a 0.386a 0.362a 0.379a 0.289a

(0.086) (0.059) (0.072) (0.082) (0.049) (0.095) (0.096) (0.080) (0.097)

Weighted Distance to city centers -0.040a -0.036a -0.032a -0.038a -0.022a -0.043a -0.041a -0.040a -0.031a

(0.007) (0.005) (0.005) (0.006) (0.004) (0.008) (0.006) (0.006) (0.007)

Ln Employment -0.029a -0.012 -0.010 -0.034a 0.018c 0.018 -0.032b -0.016 -0.013

(0.009) (0.012) (0.010) (0.008) (0.010) (0.018) (0.014) (0.010) (0.010)

Observations 8,513 11,793 8,341 8,048 7,254 6,830 5,206 8,513 6,629

R-squared 0.299 0.251 0.285 0.292 0.220 0.312 0.314 0.300 0.283

Industry (4-digit) fixed effects yes yes yes yes yes yes yes yes yes

Economic region fixed effects yes yes yes yes yes yes yes yes yes

Controls for neighbors yes yes yes yes yes yes yes yes yes

Notes: All regressions include a polynomial function of degree 4 in the number of neighbors of the establishment on its parcel. Only observations

with the highest reliable information on parcel size are included. 1 denotes {0,1} dummy variables. Standard errors clustered at the CMA/CA level

in parentheses. a p<0.01, b p<0.05, c p<0.1. See main text for a description of the sample used in each regression.

1.5 Conceptual framework and structural interpretation

We now propose a simple conceptual framework to interpret the empirical reg-

ularities described in the previous section and use it to give a structural inter-

pretation for some of the elasticities we estimated.
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1.5.1 Setup

We assume that input markets are competitive and that firms are price takers

in factor markets. Let i denote firms, s sectors, and z zones. We index firms by

i(s,z), meaning that firm i belongs to sector s and is located in zone z. When

there is no confusion, we use i for short. Firm i produces with the following

modified CES production function: 19

Yi(s,z) = Ai

{
αi(s,z)

[
κi(s,z)(Pi−Ps)

]σs−1
σs +(1−αi(s,z))L

σs−1
σs

i

} σs
σs−1

(1.2)

where Yi, Pi, and Li stand for firm-level output, parcel (land) inputs, and the

number of workers, respectively; Ai is a Hicks-neutral productivity shifter;

αi(s,z) is a technological parameters (with possibly both a sectoral and a firm

component) that influences the intensity of the production function in land and

labor; and κi(s,z), is a land-augmenting productivity parameter specific to firm

i (and/or its industry and zone). Observe that there is a minimum land re-

quirement Ps in sector s, which captures the presence of some fixed costs or

indivisibilities in the consumption of land. Furthermore, σs is the elasticity of

substitution between land and labor. We assume this technological parameter

is industry specific and σs > 0, i.e., land and labor inputs are imperfect substi-

tutes in production. The production function exhibits constant returns to scale

at the firm level in Pi−Ps and Li. 20

19. We can easily add capital as a third production factor. If we consider that its price is

constant across space this does not change the analysis. With different prices across locations,

the analysis becomes more involved. Since we are mostly interested in parcel size per worker,

we do not develop the case with capital in more detail in this paper.

20. We do not rule out the presence of increasing returns to scale external to the firm. This

would, e.g., be the case when Ai = Ai(Ls,z) depends on aggregate employment Ls,z in sector s

and zone z.
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Letting pz and wz denote the unit price for parcels and labor in zone z, respec-

tively, standard unit cost minimization yields:

pz =
αi(s,z)κi(s,z)[κi(s,z)(Pi−Ps)]

− 1
σ Yi(s,z)

αi(s,z)[κi(s,z)(Pi−Ps)]
σs−1

σs +(1−αi(s,z))L
σs−1

σs
i

(1.3)

wz =
(1−αi(s,z))L

− 1
σs

i Yi(s,z)

αi(s,z)[κi(s,z)(Pi−Ps)]
σs−1

σs +(1−αi(s,z))L
σs−1

σs
i

(1.4)

We focus on the ratio Pi/Li as this is the theoretical equivalent of the parcel size

per worker used in our empirical analysis. Since

pz

wz
=

αi(s,z)

1−αi(s,z)
(κi(s,z))

σs−1
σs

(
Li

Pi−Ps

) 1
σs
,

we can express parcel size per unit of labor as follows:

Pi

Li
=

(
αi(s,z)

1−αi(s,z)

)σs

(κi(s,z))
σs−1

(
pz

wz

)−σs

+
Ps

Li
. (1.5)

Observe that the ratio Pi/Li is independent of Li if land has no fixed-cost com-

ponent (i.e., if Ps = 0). We have seen in our empirical analysis that this is not

the case. Since empirically Pi/Li decreases with Li, this suggests that Ps > 0.

1.5.2 Determinants of Pi/Li

Our conceptual framework highlights three main types of determinants of firm-

level parcel size per worker: (i) the relative price of land; (ii) technological/productivity

parameters; and (iii) an additional term that depends on firm size and the im-

portance of land as a fixed factor of production.

Relative price of land. Conditional on technological and productivity pa-

rameters and firm size, the firm-level parcel size per worker is a decreasing



42

function of its relative price, its sensitivity being determined by the elasticity of

substitution σs between production factors.

Technological/productivity parameters. Firm-level parcel size per worker

also depends on technological parameters and due to the spatial sorting of

plants, these are probably correlated in the data with the local relative price of

production factors. For example, the land-intensity of the firm-level production

function, as determined by the technological parameter αi(s,z), matters for the

relative quantity of land used by firms. For a given relative price of land, firms

with low αi(s,z) use relatively less land. We should then observe that firms with

low αi(s,z) sort into places where land is relatively expensive. The discussion is

more involved for the land-augmenting productivity parameter κi(s,z). Whether

high or low κi(s,z) firms sort into zones where land is expensive depends on the

value of σs. Indeed, equation (1.5) above requires us to distinguish three cases:

(i) When σs = 1, any variation in factor-augmenting productivity κi(s,z) leaves

the relative demand Pi/Li unaffected. There is no obvious spatial sorting of

firms based on land-augmenting productivity in this case.

(ii) When σs < 1, firms cannot easily substitute workers for land. For a given

relative price of land, firms with a high κi(s,z) will then use less land per worker.

Put differently, it is optimal for firms with a high land-augmenting productivity

to tilt their demand towards non-land inputs when production factors are not

easily substitutable. In this case, we should observe that firms with a high

land-augmenting productivity sort into places where the relative price of land

is high.

(iii) When σs > 1, firms can easily substitute workers for land. For a given rel-

ative price of land, firms with a high κi(s,z) will then use more land per worker.
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Put differently, it is optimal for firms with a high land-augmenting produc-

tivity to tilt their demand towards the land input when production factors are

easily substitutable. In this case, we should see firms with a relatively low land-

augmenting productivity sort into places where land is relatively expensive.

Before proceeding, it is also worth noting that high-Ai establishments are more

likely to locate in zones with high factor costs (parce prices pz and wages wz)

since only they can afford the high production costs there. We formally show

this in Appendix 1.8. However, as equation (1.5) reveals, the parcel size per

worker Pi/Li used by establishments does not depend on their total factor pro-

ductivity Ai, since the latter is a Hicks-neutral productivity shifter. 21

Fixed land requirements. Last, for a given relative price of land and tech-

nological parameters, firms in sectors with larger fixed requirements mechani-

cally use more land per worker.

1.5.3 Implications for empirical estimation

Because of the presence of the Ps, we cannot readily log-linearize equation (1.5).

However, we can proceed as follows. We first rewrite equation (1.5):

Pi

Li
=

(
αi(s,z)

1−αi(s,z)

)σs

(κi(s,z))
σs−1

(
pz

wz

)−σs

︸ ︷︷ ︸
≡ξi(s,z)

+
Ps

Li

=

(
αi(s,z)

1−αi(s,z)

)σs

(κi(s,z))
σs−1

(
pz

wz

)−σs
(

1+
Ps

ξi(s,z)Li

)
. (1.6)

21. Hence, external returns to scale that may be subsumed in the Hicks-neutral productivity

shifter also do not affect firms’ parcel size per worker. This vindicates the fact that we do not

attempt to control for agglomeration effects in our empirical analysis.
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We then log-linearize equation (1.6), introducing a constant term β0 and a reduced-

form error term ε̃i, and obtain

ln
(

Pi

Li

)
= β0 +β1 ln

(
pz

wz

)
+ εi (1.7)

where

εi = σs ln

(
αi(s,z)

1−αi(s,z)

)
+(σs−1) lnκi(s,z)+ ln

(
1+

Ps

ξi(s,z)Li

)
+ ε̃i (1.8)

is a structural error term.

In the previous section, we have estimated the elasticity of parcel size per

worker to city population and the semi-elasticity of parcel size per worker to

the weighted distance to city centres. Through the lens of the model, β1 =−σs.

It then follows that:

∂ ln
(

Pi
Li

)
∂ lnPopz

=−σs

∂ ln
(

pz
wz

)
∂ lnPopz

and
∂ ln

(
Pi
Li

)
∂Disti

=−σs

∂ ln
(

pz
wz

)
∂Disti

.

From the literature, ∂ ln(pz/wz)/∂ lnPopz > 0 and ∂ ln(pz/wz)/∂Disti < 0, and

our regressions show ∂ ln(Pi/Li)/∂ lnPopz < 0 and ∂ ln(Pi/Li)/∂Disti > 0. Hence,

our estimates imply a positive value for σs, which is reassuring. Quantitatively,

considering for now that the elasticities ∂ ln(pz/wz)/∂ lnPopz and ∂ ln(pz/wz)/∂Disti

are given, we can infer σs as:

σs =−
∂ ln

(
Pi
Li

)
∂ lnPopz

/ ∂ ln
(

pz
wz

)
∂ lnPopz

=−
∂ ln

(
Pi
Li

)
∂Disti

/ ∂ ln
(

pz
wz

)
∂Disti

(1.9)

However, the theoretical discussion in section 1.5.2 shows that before struc-

turally interpreting the elasticities estimated in the previous section, we need

to discuss the endogeneity issues arising from the presence of αi(s,z), κi(s,z), and

ln
(

1+ Ps
ξi(s,z)Li

)
in the structural error term (1.8).
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Spatial sorting of firms and endogeneity. The type of bias arising from

the firm-specific requirements in terms of land and labor is straightforward:

low αi(s,z) firms sort into high pz/wz zones and—in the absence of controls or

valid instruments—the OLS estimate of ∂ ln(Pi/Li)/∂ lnPopz is likely to be bi-

ased downward and the one of ∂ ln(Pi/Li)/∂Disti is likely to be biased upward.

The spatial sorting of firms based on κi(s,z) induces the same type of biases, but

this is less straightforward to establish. Indeed, as discussed before, three cases

need to be distinguished:

(i) When σs = 1, spatial sorting of firms based on land-augmenting productivity

is not an issue and there is no endogeneity bias.

(ii) When σs < 1, firms with a high land-augmenting productivity sort into

places where the relative price of land is high. In this case, the naive estimates

of
∂ ln
(

Pi
Li

)
∂ lnPopz

and
∂ ln
(

Pi
Li

)
∂Disti

suffer from a downward and an upward bias repsectively.

(iii) When σs > 1, firms with a low land-augmenting productivity sort into

places where land is relatively expensive, meaning that again the naive esti-

mates of the coefficients suffer from the same biases.

To summarize, the direction of the bias related to the spatial sorting of firms

based on their technological and productivity parameters is always the same:

in the absence of adequate controls or valid instruments, ∂ ln(Pi/Li)/∂ lnPopz

is likely to be underestimated and ∂ ln(Pi/Li)/∂Disti over-estimated. In both

cases, we obtain an upper bound for σs .

Fixed costs and firm size. The second type of bias arises if land has a fixed-

cost component. More productive and thus larger firms are more likely to
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be found in high pz/wz zones. Since they also have a smaller parcel size per

worker—because the fixed requirements are distributed over a larger workforce—

not controlling for this leads to a downward biased estimate of ∂ ln(Pi/Li)/∂ lnPopz

and an upward biased estimates of ∂ ln(Pi/Li)/∂Disti.

1.5.4 Inferring σs

Following the above discussion, the possible fixed-cost components of land as

well as the technological and productivity parameters need to be controlled for

to infer meaningful values of σs from the estimation of ∂ ln(Pi/Li)/∂ lnPopz and

∂ ln(Pi/Li)/∂Disti. The former is relatively straightforward to do: this is the

reason why we included firm size as an additional explanatory variable into

our econometric analysis. As we have shown before, the elasticity of Pi/Li with

respect to Li is negative, highly significant, and very stable across specifications.

Thus, land has a fixed component and we did control for it.

Let us now discuss the technological and productivity parameters, which are

less straightforward to control for. We do neither directly observe firms’ rel-

ative land requirements αi(s,z) nor their land-augmenting productivity param-

eters κi(s,z). However, the various controls we use in our regressions in Sec-

tion 1.4 are likely correlated with these parameters and thus should be proxies

for them.

Firm-level relative land requirements are certainly partly determined by some

sectoral parameters of the production function. These are accounted for by the

NAICS 4-digit industry fixed effects in our regressions. Still, the part of αi(s,z)

that is specific to establishments and κi(s,z) are not controlled for by such fixed

effects. However, we believe that four sets of our controls deal with this. First,

land requirements vary with the functions that the establishment carries out
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and with its international exposure. We actually showed that headquarters oc-

cupy less land per worker while the opposite is true for exporters. Second,

local governments have various zoning policies that affect the quantity of land

available for production. In particular, zones that are specifically dedicated to

an industrial or commercial use are probably more attractive to firms that oc-

cupy a lot of land per worker, while the opposite should be true for residential

zones where land suitable for production is likely to be scarce. This is why

we also controlled for land-use fixed effects. Third, the proximity of transport

infrastructure could affect the quantity of land available for production or at-

tract firms that are specific in terms of their needs for land (e.g., the exporters

we mentioned above). This is why we control for the distance to the closest

major airport, major seaport, train freight station, and highway junction, even

though these variables do not appear to be major determinants of parcel size

per worker in the end. Finally, establishments involved in high number of ac-

tivities in terms of products or sectors may require different types of facilities

(multi-floor buildings for example to separate the various product lines), which

could imply specific technological and productivity parameters regarding the

land input. This is why we added to our regressions controls for the number of

products, 4-digit NAICS industries and broad sectors covered by its operations.

Using the relationships highlighted in equation (1.9) and the estimation re-

sults in column (4) of Table 1.1, we now gauge the value of σs. We start with

∂ ln(Pi/Li)/∂ lnPopz, which we estimate to be equal to -0.227. To back out σs, we

then need a value for ∂ ln(pz/wz)/∂ lnPopz. Data on (commerical) land prices

are notoriously difficult to find, and we do not have them for Canada. In other

words, we do not observe the relative price pz/wz. We thus rely on estimates

available in the existing literature. Based on French data, Combes et al. (2019)

find that the elasticity of the price of parcels (per square metre) to city popula-
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tion is roughly equal to 0.6, while using French data too, Combes et al. (2008)

find an elasticity of individual wages to population density of 0.03. 22 In France,

the elasticity of relative land prices to city size/city population density is thus

equal to 0.57. Taking this as a reference value for Canada, equation (1.9) implies

a value of σs = 0.227/0.57 = 0.4.

We repeat the same exercise for the estimate of ∂ ln(Pi/Li)/∂Disti, equal to 0.033.

Again, we are not aware of clean estimates of land price gradients for Canadian

cities. However, Albouy et al. (2018) provide estimates of the ratio of land val-

ues per acre in the city centre (0.5 miles from downtown) and 10 miles away

from it for more than 300 urban areas in the US. The weighted average ratio

equals 6.5 (using urban area population as weights). This corresponds to a

semi-log gradient of 0.197. 23 Since urban areas are delineated following com-

muting patterns, the average wage should not vary too much within them.

Then, taking −0.197 as the reference value for ∂ ln(pz/wz)/∂Disti for Canada

and using equation (1.9), it follows that σs = 0.033/0.197 = 0.17.

The two values of σs implied by the quantification exercises we propose, 0.17

and 0.4, are quite far from the ubiquitous Cobb-Douglas specification that has

been used in the existing literature. They that labor and land, as measured by

parcel size, are complements rather than substitutes in the production function

22. These two elasticities are not estimated over the same period of time and at the exact

same spatial scale, but they are cleanly estimated with very detailed data. We are not aware of

better estimates in the literature to obtain a measure of
∂ ln
(

pz
wz

)
∂ lnPopz

. Moreover, the two regressions

from which these estimates derive both contain the surface area of the unit over which popu-

lation and population density are computed. In such an empirical framework, the elasticity to

population and to population density are equivalent.

23. Assuming that the log of land price linearly depends on the distance to the city centre,

and since Albouy et al. (2018) estimate the ratio of land values at 0.5 and 10 mile from down-

town to equal 6.5 on average, the gradient is given by −ln(6.5)/9.5 =−0.197.
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of manufacturing establishments.

In our conceptual framework, we assumed σs is sector specific since there is

no reason a priori to believe that land and labor are equally substitutable in

all sectors. To see whether the average σs masks heterogeneity, we investigate

the cross-sectoral heterogeneity in the two elasticities we can estimate with our

data. Figure 1.5 reports the sectoral estimates for the two covariates of interest,

city population and weighted distance to city centres. In line with the pooled

results, the coefficients we obtain are most of the time negative (but not always

significant due to noisy estimates sometimes) for city population, and they are

always positive (and most of the time significant) for weighted distance to city

centres. However, once standard errors are accounted for, it is hard to see any

significant heterogeneity across sectors. This suggests that σs is low in every

sector, so that most of the heterogeneity across sectors highlighted in Section 1.3

comes from productivity/sectoral parameters.

Figure 1.5 – Heterogeneity of coefficients by sector - Parcel size per worker

Ln Population CMA Weighted dist. to city centre
Agrifood

Textile products, clothing and leather

Wood and paper
Printing

Chemical

Plastics
Non-metallic mineral

Primary metal
Fabricated metal product

Machinary
Computer

Electrical products
Transportation

Furniture

-1 -.5 0 .5 1 1.5
Coef. Ln CMA Pop.

Agrifood
Textile products, clothing and leather

Wood and paper
Printing

Chemical

Plastics
Non-metallic mineral

Primary metal
Fabricated metal product

Machinary
Computer

Electrical products
Transportation

Furniture

-.05 0 .05 .1
Coef. Ln Dist. center

Notes: The graphs shows the point estimate and the 10% confidence interval of the coefficient associated

with the explanatory variable indicated in the heading. Regressions are run separately for the various

sectors using the benchmark specification in column (4) of Table 1.1 .



50

1.6 Conclusion

To the best of our knowledge, we are the first to use data on the quantity of land

used by manufacturing establishments to investigate the role of land as a pro-

duction factor. We uncover several interesting stylized facts. First, there is sub-

stantial between- and within-sectors heterogeneity in establishments’ land con-

sumption per worker. Land per worker is strongly negatively related to estab-

lishment size, showing that land has a strong fixed cost component. Land con-

sumption per worker is not significantly related to city size. This means that,

even tough land prices are on average higher in big cities, there are still parts

of big cities where land is cheap enough so that the consumption of land per

worker does, on average, not depend on city size. Moreover, land consumption

per worker is negatively related to local population density, but that correlation

is small in absolute value. As the relative price of land increases with local pop-

ulation density, firms reduce their consumption of land per worker in denser

places, but the small value of this correlation suggests a strong complementar-

ity between land and other production factors. Finally, land as a production

factor exhibits important adjustment costs: conditional on current size, firms

that grew fast over last four year use fewer space per worker.

The facts we uncover may help explain why the rare attempts at quantifying

the role of land for production of manufacturing firms have concluded to a

limited role for the former. These studies usually rely on the estimation ofa

Cobb-Douglas production function, which can hardly capture the fixed cost

dimension of land. Moreover, these studies ignore adjustment costs for land

inputs. Establishing and estimating a production function framework suited

to the quantification of the contribution of land as a production factor should

have a high priority but is beyond the scope of this paper.
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1.7 Appendix to chapter 1

1.7.1 Geocoding

The geocoding process consists in providing an address to a geocoder—a par-

ticular Application Programming Interface (API) used to recover geographic

coordinates of addresses–which returns the latitude and longitude of the corre-

sponding address. The geocoder provides in addition also the address related

to the coordinates of the points it returns so that we can verify if the input

address and the return address match.

For the sake of precision, we use three different options to perform the geocod-

ing. The first option uses the commercial API of the Google Map server to

geocode each plant based on the address recorded in the Scott’s database. The

second option uses the same API but combines the company’s name with the

address as the input for the geocoder. In doing so, small errors in the address

reported in the Scott’s data can be corrected and the accuracy of the geocoding

improved. The third option uses the point coordinates provided in the DMTI

database, which is an extensive database containing more than 15 million fea-

ture points representing Canadian addresses and their related geographic co-

ordinates with ‘rooftop’ precision. We merge the Scott’s addresses with the

DMTI address using the API of ArcGIS, a commercial Geographic Information

Systems (GIS) software.

Once we have geocoded the addresses, we compare the coordinates (latitude,

longitude) returned by the three options and assign to each plant the coordi-

nates that are most likely the accurate ones. Accuracy is based on two criteria:

(i) the distances between the point coordinates yielded by the three options

(so as to identify probable errors, i.e., points that are very far away from the
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other return values); and (ii) the match between the postal codes recorded in

the Scott’s database and the postal codes returned by the geocoder for each op-

tion (so as to keep only the points for which the postal code corresponds to the

one recorded in the Scott’s database). If several different points are returned for

the same establishment, the coordinates retrieved from Google Maps based on

the company name and the address are preferred to the coordinates obtained

via Google Map using the address only, which are themselves preferred to the

DMTI coordinates.

Finally, we construct a variable with three categories to grade the accuracy of

the geocoding process for each plant based on how convergent the three op-

tions are in terms of establishment location. We retain only observations that

are either ‘rooftop’ (i.e., exactly coded) or ‘range interpolated’ (i.e., interpolated

based on a range of address numbers); we do not consider the rest (e.g., postal-

code level) as being accurate enough to assign plants to polygons.

1.7.2 Data sources and quality

Data sources. We extensively explored existing open-access data sources on

various websites and got in touch with several institutions to obtain informa-

tion on parcel- and buildings polygons and footprints in Canada. The main

relevant data sources for our work are the following:

— Statistics Canada, via the official website of the Canadian Government,

provides several datasets including data on buildings that are open for

public use.

— Some Assessment Rolls of different municipalities—which are in charge

of computing the value of the tenure taxes based on the nature, the loca-

tion, and the scope of the properties—provide open-access data.
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— Cadastral information: Some provinces and cities in Canada do have in-

formation on the parcels where buildings are located.

— GIS databases of cities: The websites of some cities provide GIS data

which record parcels polygons and/or footprints of buildings of their lo-

calities.

— Open Street Map (OSM): An open-source database built by people world-

wide to create free editable geographic data. This data source has in-

formation on building footprints, yet the buildings polygons recorded in

OSM on a voluntary basis are not comprehensive at the country level.

As of March 02, 2019, the total number of Canadian buildings footprints

recorder in OSM amounted to roughly 12.6 million out of a total number

estimated to 15 million. The set of polygons that we manage to collect

has a country-wide coverage and represents roughly 82 % of the sets of

addresses in Canada.

The table below provides the complete list of polygon datasets that we collected

along with the links where they can be accessed.
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Table 1.4 – Overview of datasources

Locality Coverage Last update Polygon type Licence Links

Alberta AB province 2019 province Building footprints OSM/Statcan https://github.com/Microsoft/CanadianBuildingFootprints

Alberta Banff 2017 Banff Parcels open data http://banffmaps.ca/opendata/

Alberta Winnipeg 2017 Winnipeg Parcels open data https://data.winnipeg.ca/Assessment-Taxation-Corporate/Map-of-Assessment-Parcels/rt7t-3m4m

British Columbia CB province 2019 province Building footprints OSM/Statcan https://github.com/Microsoft/CanadianBuildingFootprints

British Columbia CB province 2016 province Parcels Open data https://catalogue.data.gov.bc.ca/dataset/parcelmap-bc-parcel-fabric

Manitoba MB province 2019 province Building footprints OSM/Statcan https://github.com/Microsoft/CanadianBuildingFootprints

Manitoba Brandon 2017 Brandon Parcels open data http://opengov.brandon.ca/OpenDataService/opendata.html

New Brunswick province 2019 province Building footprints OSM/Statcan https://github.com/Microsoft/CanadianBuildingFootprints

New Brunswick province 2019 province Parcels open data https://gnb.socrata.com/api/geospatial/rzzg-85tb?method=export\

Newfoundland and Labrador NL province 2019 province Building footprints OSM/Statcan https://github.com/Microsoft/CanadianBuildingFootprints

Newfoundland and Labrador St john 2019 St John Parcels open data http://catalogue-saintjohn.opendata.arcgis.com/

North-West Territories NT territories 2019 province Building footprints opendata http://opendata.yellowknife.ca

Nova Scotia NS province 2019 province Building footprints open data https://github.com/Microsoft/CanadianBuildingFootprints

Nunavut NU territories 2019 province Building footprints OSM/Statcan https://github.com/Microsoft/CanadianBuildingFootprints

Ontario ON province 2019 province Building footprints OSM/Statcan https://github.com/Microsoft/CanadianBuildingFootprints

Ontario Oshawa 2017 Oshawa Parcels open data https://city-oshawa.opendata.arcgis.com/datasets?t=Durham\%20Housing

Ontario York 2019 York Parcels open data https://insights-york.opendata.arcgis.com/datasets/parcel

Ontario Toronto 2017 Toronto Parcels open data https://www.toronto.ca/city-government/data-research-maps/open-data/open-data-catalogue/

Ontario Windsor 2017 Windsor Parcels open data www.citywindsor.ca/opendata/Lists/OpenData/Attachments/20/Land\%20Parcels.kmz

Prince-Edward Island PE province 2019 province Building footprints OSM/Statcan https://github.com/Microsoft/CanadianBuildingFootprints

Quebec QC province 2019 province Building footprints OSM/Statcan https://github.com/Microsoft/CanadianBuildingFootprints

Quebec QC province 2018 province Parcels InfoLot UQAM data warehouse (https://appli.mern.gouv.qc.ca/infolot

Saskatchewan Regina 2017 Regina Parcels open data http://open.regina.ca/

Saskatchewan SK province 2019 province Building footprints OSM/Statcan https://github.com/Microsoft/CanadianBuildingFootprints

Yukon Territories YT territories 2019 province Building footprints OSM/Statcan https://github.com/Microsoft/CanadianBuildingFootprints

Notes: This table reports list of the open source data that we use to construct our land measure. Most of these sources are open to the public. In addition, we also proprietary data on parcels form the province of Quebec with the

permission of our University for this research purpose.
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Polygon dataset quality. We collected polygon datasets from the above sources.

These datasets come in different data formats (KML, shapefile, geodataset, etc)

and are for different reference years. During their processing, we identified and

solved the following challenges linked to the quality of the data:

— Quality of the collected files: The polygon datasets we collected are not

homogeneous. The formats of the files are not always the same and the

reference units of the polygon datasets are different in some cases (feet,

meters, etc.) and sometimes not indicated at all in the files. To solve this

problem we converted all the files into shapefile format (.shp), harmo-

nized the units to meters, and projected each dataset into a suitable coor-

dinate system according to the position of the locality it refers to. We con-

sider as a suitable coordinate system one which does not alter distances.

In most cases, the ‘Albers conic conformal system’ is used, as generally

recommended for Canada. We also construct for each polygon dataset

the following key variables: a unique identifier, the surface area, and the

number of neighbors of each polygon recorded in the dataset. The latter

variable is useful to check for the quality of the area assignation process

for each plant.

— Matching buildings to parcels: The polygon datasets we collected have

two different features. The first one is the parcel-polygon that represents

the amount of land used by a plant to host its main building and possibly

some other spaces (auxiliary buildings, parking, storage, etc.). The second

polygon type is the building-polygon that represents only the building of

the plant. Theoretically, the building footprint should be included in the

parcel outline. Yet, in some cases the building overlaps with more than

one parcel. As a result, the surface of the building footprint is greater

than the surface of the parcel to which its is related. We solve this issue
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by aggregating up all the parcels that overlap with the building.

1.7.3 Assignment to polygons

We have, on the one hand, a geocoded establishment-level dataset and, on the

other hand, different polygon datasets. To merge them, we use the spatial join

tools available in the open-source software Quantum GIS (QGIS) to map each

plant to a polygon. More precisely, we overlay the polygon datasets (parcels

and buildings) with the coordinate point layers representing the geocoded es-

tablishments. Figure 1.6 shows an example of how the geocoded Scott’s plants

are overlaid on the building polygon layer for the spatial join process.

Figure 1.6 – Example of the polygon layer, overlaid with geocoded establishments
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As is well known, geocoding is a somewhat noisy process. Hence, not all plants

fall exactly onto a polygon (neither parcels nor buildings). For each plant, we

thus perform three assignment options. The first option relates each plant to

the polygon onto which it falls; in that case, the distance between the plant and

the polygon is assumed to be 0. If the plant does not fall exactly onto a poly-

gon, it has no associated polygon. The second option then relates each plant

to the polygon whose centroid is the closest, and we compute the distance be-

tween the plant and that centroid. Finally, the third option relates each plant

to the polygon whose border is the closest; we again compute the distance be-

tween the plant and that border. We then compare the three (or two) distances

obtained in the three option and we take as the final assignment the polygon

corresponding to the shortest distance. Obviously, when the plant falls onto

a polygon, it is that polygon which is assigned to the plant since the distance

is zero. When the shortest distance is greater than 75 meters we consider that

the process is too noisy and we do not assign that polygon to the plant. In

addition, to avoid assigning the surface of corridors to plants, we compute for

each polygon its number of neighbors. If an assigned polygon has more than

10 neighors, we consider that the polygon is a corridor or a common space and

we do not assign that polygon to the plant.

We then construct a variable corresponding to the combination of assignments

pointing in the direction of the polygon the establishment is assigned to. For ex-

ample if the options "Border" and "Center" assign the plant to the same polygon

whereas the "Within” option points to a different polygon for the same plant,

then assignment variable for that plant will be "Center-Border". Thus, the as-

signment variable has the following 7 categories : (1) "Within-Center-Border";

(2) "Within-Center"; (3) "Within-Border"; (4) "Center-Border" (5) "Within"; (6)

"Center"; (7) "Border". Note that this variable is built for each of our three land-
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consumption measures as the results generated by the assignation process is

not systematically the same for each plant across the three measures.

Based on this assignment variable, we construct a quality variable as follows: i)

we cross-tabulate the assignment variable with the dummy we could build for

the observations from Quebec and that identifies those establishments which

are assigned to the right polygon (described in section 1.2.2); ii) for all of our

observations, we define as "Excellent" those observations whose assignment

category has a high probability of being located on their actual polygon as mea-

sured based on observations from Quebec; "Good" is for observations whose

assignment category has an intermediate probability of being located on their

actual polygon; and "Acceptable" is for all the categories with a low probabil-

ity of being located on their actual polygon. Doing so, we implicitly assume

that the mapping between the assignment variable and the dummy identifying

correct observations in Quebec is representative of the entire country.

For the Parcel size, the process leads to grade as "Excellent" the plants whose

assignment category is "Within-Border-Center" or "Within". These plants with

an "Excellent" parcel size measure have a 89% probability of being positioned

on their actual polygon. Plants graded as "Good" are those whose assignment

category is "Within-Border" or "Within-Center". The plants of "Good" quality

have a 60% probability of being positioned on their actual polygon. Finally,

"Acceptable" is the grade for observations whose assignment category is "Bor-

der"; "Center-Border" or "Center"; these observations have a 16% probability of

being located on their actual polygons.
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1.7.4 Quality assessment

Beyond the measurement challenges mentioned in the previous subsection,

geocoding data and assigning them to polygons retrieved from satellite data

inherently bring issues regarding the quality of the data and the methodology

employed to assign plants to polygons.

Errors in the polygon datasets. Representing a parcel or a building by a

polygon is subject to minor errors. For example, the algorithm used to con-

vert satellite building images into polygon building outlines may fail in some

cases to fit exactly the building into its representative polygon. The level of

such errors—known as the matching precision—is estimated at 1.3% by the

data provider. 24 This type of error only affects the building polygons. Parcel

polygons are derived from administrative data and should, therefore, not be

subject to measurement error of the type inherent to satellite data.

Errors in the plant-to-polygon assignments. Geocoding microdata is an in-

herently noisy process. Even minor errors in the geocoding of plants can lead

to their mis-assignment to polygons. To gauge the scope of false assignments

in our dataset, we make use of the subset of data for the province of Quebec

(QC). The reason is that the polygon identifiers in the QC dataset are the same

as the official identifiers of the polygons as recorded on the governmental web-

site of the land register “Infolot”. 25 We can, therefore, randomly draw a set

24. See https://github.com/Microsoft/CanadianBuildingFootprints on the

GitHub website where the data are released.

25. On that website, it is possible to recover the identifier of a parcel by providing the address

of a location. See https://appli.mern.gouv.qc.ca/infolot/.
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of addresses of plants in QC from our dataset and compare the parcel identi-

fiers from “Infolot” to those obtained by our assignment procedure. Using a

sample of 1,667 addresses, we find 1,320 correct assignments. Put differently,

the probability for a plant in QC to be located exactly on its actual polygon is

79.16%.

Table 1.5 – Quality of the assignment of establishments to polygons.

Assignment quality
Parcel (PB) Building (BB)

N % N %

Excellent 8,782 78.83 22,978 96.43

Good 720 6.46 487 2.04

Acceptable 1,639 14.71 363 1.52

Total 11,141 100.0 23,828 100.0

Notes: Distributions of geocoded establishments in 2017 across

quality categories. This classification includes the quality of the

geocoding and the quality of the assignment process. Regarding

the geocoding quality, all observations with a less than excellent

geocoding are removed, and the remaining are used to construct

the three groups: Excellent, good, and acceptable. The final sam-

ple that we use is that of excellent quality where missing values

of covariates used in the regression analysis are removed, that

is a sample of 8,708 parel size. See Appendix 1.7.3 for further

details.

As explained in Appendix 1.7.3, the assignment of plants to polygons is based

on three options that can potentially point to different polygons. Among the

1,667 addresses that we use for validation, if we restrict ourselves to the subset

of observations for which the three options in the assignment procedure point

to the same polygon, the share of correct assignments increases to 91.3%. In

other words, plants for which the three assignment options point to the same

polygons are very likely to be correctly assigned. Making use of that obser-

vation, we finally construct a ‘quality’ variable based on: (i) how accurate the

geocoding of the establishment is; and (ii) how likely a correct assignment to
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a polygon is. This quality variable—which we construct for the whole dataset,

not just Quebec—has three categories: Excellent, good, and acceptable (see Ap-

pendix 1.7.3 for additional details).

1.7.5 Step-by-step explanation of the dataset construction

Figure 1.7 summarizes the steps undertaken for the construction of the dataset.

The color orange refers to steps, the color blue refers to inputs, and the color

green refers to outputs (which in some cases are also inputs for other steps).

Step 1. Appending scotts 2001-2019. The data from the Scott’s for the odd years

form 2001 to 2019 are processed one by one. The variables names are harmo-

nized. Missing primary NAICS codes are replaced by secondary NAICS codes.

Then plants located outside of the Canada are removed. The final dataset con-

tains "scotts_global", the establishments operating in Canada for each of the

recorded years, with almost 95% of the universe of the manufacturing, but less

for others sectors.

Step 2. Creating a unique addresses. From the appended dataset, unique ad-

dresses are identified since many plants can share the same location. We create

an identifier for each address. This step prepares the geocoding process, and

will avoid to geocode several times the same address. A dataset of unique ad-

dresses is then generated (scotts_address) with variables, the detail address and

the address identifier.

Step 3. Geocoding unique addresses. We use the dataset of unique addresses as

input for the geocoding process describe in appendix . The output file con-

tains address_geocoded, in addition to the inputs variables, the geographic cor-

dinates of each addresses, the detailed address as recorded in the database of
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the geocoder (Google or DMTI) as well as a quality variable indicating the de-

gree of accuracy of the returned cordinates.

Step 4. Extracting polygons’ surfaces. Using a Geographic Information System,

the geocoded addresses are overlaid on the polygons featuring parcel or build-

ing footprints. Then spatial join techniques are used to associate parcel and/or

a building areas to addresses. Three different spatial join approaches are used

to associate polygon areas to addresses. The output (address_land), contains

for each address, the associated polygon area from each of the three spatial join

approach, as well as the distance between the each associated polygon and the

geographic coordinates of the address.

Step 5. Extracting location characteristics. Using a Geographic Information Sys-

tem, the geocoded addresses are overlaid on shapefiles of dissemination area,

Census Metropolitan Areas(CMA), zoning restriction, highways, seaport and

airport to compute variation location variables : populations and surfaces of

dissemination areas, and CMA, distances to sea, airport, highways, zoning cat-

egories, distance to the nearest city, number of plants in a given radius (5km,

10km) and their corresponding employment.

Step 6. Creating a Raw land variable. This process compares the results of the

three different spatial join approaches and finally assign to each address the

"best" result and quality variables are constructed.

Step 7. Extracting location characteristics. Using a Geographic Information Sys-

tem, the geocoded addresses are overlaid on shapefiles of zoning restriction

retrieve zoning.

Step 8. Creating the final dataset. The appended Scott’s dataset is merged with

location characteristics, zoning restriction, and land measures to obtain the fi-

nal dataset of land.
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Figure 1.7 – Step-by-step explanation of the dataset construction
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1.7.6 Representativeness of the final dataset

Table 1.6 – Distribution of plants across industries in the final dataset

Parcel (PB) Building (BB) Scott’s data

N % N % N %

311 Food mfg 745 8.6 1,550 7.6 2,875 8.9

312 Beverage and tobacco product mfg 77 0.9 183 0.9 340 1.0

313 Textile mills 32 0.4 58 0.3 96 0.3

314 Textile product mills 227 2.6 496 2.4 743 2.3

315 Clothing mfg 307 3.5 476 2.3 712 2.2

316 Leather, allied product mfg 40 0.5 87 0.4 127 0.4

321 Wood product mfg 353 4.1 858 4.2 1,884 5.8

322 Paper mfg 149 1.7 319 1.6 501 1.5

323 Printing, support activities 726 8.3 1,633 8.0 2,270 7.0

324 Petrol, coal product mfg 20 0.2 48 0.2 134 0.4

325 Chemical mfg 433 5.0 953 4.7 1,539 4.7

326 Plastics, rubber products mfg 545 6.3 1,254 6.1 1,907 5.9

327 Non-metallic mineral product mfg 387 4.4 968 4.7 1,951 6.0

331 Primary metal mfg 125 1.4 344 1.7 537 1.7

332 Fabricated metal product mfg 1,301 14.9 3,521 17.2 5,226 16.1

333 Machinery mfg 1,061 12.2 2,963 14.5 4,542 14.0

334 Computer, electronic product mfg 300 3.4 718 3.5 1,032 3.2

335 Electrical, appliance mfg 256 2.9 543 2.7 784 2.4

336 Transportation equipment mfg 297 3.4 666 3.3 1,099 3.4

337 Furniture, related product mfg 421 4.8 903 4.4 1,392 4.3

339 Miscellaneous manufacturing 906 10.4 1,902 9.3 2,726 8.4

Total 8,708 100.0 20,443 100.0 32,417 100.0

Notes: This table reports the distributions of the Scott’s database along with our final sample for

the three measures in 2017 across the different industries at the NAICS 3-digit level.
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Table 1.7 – Distribution of plants across provinces in the final dataset

Parcel (PB) Building (BB) Scott’s data

N % N % N %

AB 0 0.0 1,696 8.3 2,735 8.4

BC 2,211 25.4 2,513 12.3 3,812 11.8

MB 419 4.8 505 2.5 983 3.0

NB 214 2.5 252 1.2 708 2.2

NL 0 0.0 99 0.5 272 0.8

NS 0 0.0 313 1.5 765 2.4

NT 0 0.0 1 0.0 6 0.0

NU 0 0.0 0 0.0 6 0.0

ON 1,881 21.6 9,549 46.7 13,735 42.4

PE 0 0.0 52 0.3 144 0.4

QC 3,709 42.6 5,076 24.8 8,430 26.0

SK 274 3.1 371 1.8 799 2.5

YT 0 0.0 16 0.1 22 0.1

Total 8,708 100.0 20,443 100.0 32,417 100.0

Notes: This table reports the distributions of the Scotts dataset

along with our final samples for the three measures in 2017

across the Canadian provinces. The three Territories North-

WestTerritories,Yukon,andNunavut have been removed because

they contain few observations.
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Table 1.8 – Plant-level parcel size by industry

Parcel (PB)

N Mean Median CV

311 Food mfg 745 14,906.3 5,711.1 2.6

312 Beverage and tobacco product mfg 77 29,819.0 8,312.4 2.9

313 Textile mills 32 11,587.3 3,524.2 1.9

314 Textile product mills 227 7,509.2 4,045.0 1.4

315 Clothing mfg 307 6,649.3 3,853.6 1.3

316 Leather, allied product mfg 40 6,261.0 2,615.9 1.4

321 Wood product mfg 353 20,172.9 6,918.5 5.0

322 Paper mfg 149 23,797.7 13,359.4 1.9

323 Printing, support activities 726 7,996.7 3,486.8 2.1

324 Petrol, coal product mfg 20 22,928.1 9,315.0 1.5

325 Chemical mfg 433 18,558.6 8,213.5 2.7

326 Plastics, rubber products mfg 545 13,352.8 7,914.5 1.6

327 Non-metallic mineral product mfg 387 16,901.6 8,058.6 2.5

331 Primary metal mfg 125 39,747.3 6,253.9 5.3

332 Fabricated metal product mfg 1,301 11,494.9 5,565.2 3.1

333 Machinery mfg 1,061 12,131.6 6,599.6 2.1

334 Computer, electronic product mfg 300 10,580.8 6,467.8 1.5

335 Electrical, appliance mfg 256 13,318.3 8,416.8 1.4

336 Transportation equipment mfg 297 28,172.2 6,806.6 4.1

337 Furniture, related product mfg 421 9,238.9 4,546.8 2.9

339 Miscellaneous manufacturing 906 8,939.5 2,710.3 3.3

Total 8,708 13,354.2 5,757.6 2.7

Notes: This table reports descriptive statistics for land intensity four our two land measures

across 3-digit industry as well as population density categories, the sample is our final

dataset
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Table 1.9 – Plant-level parcel size per worker by industry

Parcel (PB)

N Mean Median CV

311 Food mfg 745 1,120.9 172.0 7.2

312 Beverage and tobacco product mfg 77 3,598.2 208.4 3.2

313 Textile mills 32 2,602.3 313.3 4.0

314 Textile product mills 227 1,503.2 351.6 2.2

315 Clothing mfg 307 661.5 218.8 1.8

316 Leather, allied product mfg 40 1,109.2 232.7 2.1

321 Wood product mfg 353 1,297.0 387.9 2.4

322 Paper mfg 149 967.9 389.4 2.0

323 Printing, support activities 726 1,512.4 333.2 3.6

324 Petrol, coal product mfg 20 1,249.1 693.3 1.3

325 Chemical mfg 433 1,204.2 368.4 3.3

326 Plastics, rubber products mfg 545 990.3 297.2 4.6

327 Non-metallic mineral product mfg 387 1,951.0 390.4 8.4

331 Primary metal mfg 125 787.7 295.3 2.0

332 Fabricated metal product mfg 1,301 1,134.9 316.7 3.9

333 Machinery mfg 1,061 1,063.1 327.1 2.9

334 Computer, electronic product mfg 300 1,060.5 302.9 3.3

335 Electrical, appliance mfg 256 955.8 297.7 2.2

336 Transportation equipment mfg 297 2,145.5 300.1 8.8

337 Furniture, related product mfg 421 1,564.4 316.4 7.8

339 Miscellaneous manufacturing 906 1,399.3 352.1 3.4

Total 8,708 1,281.0 310.3 4.3

Notes: This table reports descriptive statistics for land intensity four our two land

measures across 3-digit industry as well as population density categories, the sample

is our final dataset
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Table 1.10 – Building to parcel ratio by industry

Building to parcel-ratio

N Mean Median CV

311 Food mfg 572 0.37 0.36 14.29

312 Beverage and tobacco product mfg 50 0.29 0.27 7.93

313 Textile mills 20 0.47 0.47 2.20

314 Textile product mills 168 0.35 0.34 3.38

315 Clothing mfg 205 0.42 0.42 3.08

316 Leather, allied product mfg 33 0.37 0.37 2.45

321 Wood product mfg 302 0.26 0.22 10.55

322 Paper mfg 121 0.37 0.38 12.44

323 Printing, support activities 531 0.39 0.38 7.62

324 Petrol, coal product mfg 14 0.09 0.07 2.40

325 Chemical mfg 370 0.32 0.31 9.52

326 Plastics, rubber products mfg 455 0.35 0.36 10.79

327 Non-metallic mineral product mfg 326 0.27 0.25 10.95

331 Primary metal mfg 97 0.30 0.31 2.39

332 Fabricated metal product mfg 1,093 0.34 0.33 17.63

333 Machinery mfg 921 0.31 0.28 14.72

334 Computer, electronic product mfg 255 0.34 0.31 13.07

335 Electrical, appliance mfg 216 0.33 0.34 2.81

336 Transportation equipment mfg 241 0.31 0.29 5.39

337 Furniture, related product mfg 338 0.37 0.37 3.77

339 Miscellaneous manufacturing 653 0.37 0.34 5.92

Total 6,981 0.34 0.33 10.61

Notes: This table reports descriptive statistics for Floor-to-parcel-ratio and the

Building-to-parcel-ratio across 3-digit industry. For each variable, the sample

corresponds to the subset for which both the numerator and the denominator

are non-missing at the same time. The sample includes not only plants in

CMA/CA but also those outside the CMA/CA. In addition we’ve constrained

the sample such that the parcel size > building footprint size
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Table 1.11 – Testing for selection on observable plant characteristics

Dep. var.: 1 in sample

(1) (2) (3) (4)

Ln Employment -0.009 0.005

(0.014) (0.018)

Headquarter 0.046 -0.014

(0.031) (0.033)

Exporter 0.003 -0.011

(0.053) (0.041)

1 Residential zoning -0.152a -0.156a -0.114a

(0.057) (0.058) (0.042

1 Recreational zoning -0.605a -0.605a -0.329a

(0.091) (0.092) (0.079)

Ln City population 0.253a

(0.058)

Ln Population density 500m 0.085

(0.053)

Ln Distance to closest major airport 0.025

(0.076)

Ln Distance to closest major seaport -0.043

(0.093)

Ln Distance to closest freight station 0.071

(0.058)

Ln Distance to closest highway junction -0.035a

(0.021)

Fixed effects:

4-digit industry Yes Yes Yes Yes

Province No Yes Yes Yes

Observations 24,457 24,457 24,457 24,457

Pseudo R2 0.016 0.272 0.272 0.326

Notes: This table reports the estimates of a probit model where the dependent vari-

able equals 1 if the establishment is in the estimation sample. 1 denotes {0,1}
dummy variables. Standard errors clustered at the city-level in parentheses c

p < 0.10, b p < 0.05, a p < 0.01

1.7.7 Identification of city centers

To locate the centers of cities in Canada, we use a two-step procedure. First,

we use dissemination areas (DA)—i.e., ‘census blocks’ with geographic coor-

dinates and population density—to identify densely populated areas. We fol-
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low the procedure of Behrens et al. (2020), who suggest an algorithm to con-

struct clusters of manufacturing plants based on their spatial concentration. We

apply this procedure to the DAs in the Census Metropolitan Areas (CMA) or

Census Agglomerations (CA) (henceforth we use CMAs to mean either Census

Metropolitan Areas or Census Agglomerations). For each CMA, we separately

construct its centers (there may be several of them) from clusters of dense DAs.

More precisely, we define town centers as the geographic centers of the identi-

fied population density clusters. Formally, we identify the population clusters

as follows:

— we flag all DAs with population density greater than the third quartile of

the population density distribution of the CMA;

— we draw a circle with 500 meters radius around each flagged DA and

compute the hypergeometric probability of having the number of flagged

DAs in that circle, given the overall number of flagged DAs in the CMA.

We also compare the total population of the flagged DAs within the circle

to the total population of the flagged DAs in the CMA;

— A DA is considered a focal point of population concentration if the hy-

pergeometric probability we computed is below 1% and if the ratio of the

total population of the flagged DAs in the circle compared to the total

population of the flagged DAs in the CMA is greater than the median

observed in the CMA;

— we finally construct population clusters by drawing a buffer of 1 kilome-

ter around each DA identified as a focal point and merging together all

the overlapping buffers.

We pinpoint the centers of each disjoint population cluster and consider them

as town centers. There are six centers in the Toronto CMA, three centers in the
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Montreal CMA, and one in the Vancouver CMA.

Using these city centers, we compute two different distances between each

plant and the city centers. The first distance is the distance to the nearest city

center and the second distance (the weighted distance) is the average of the dis-

tance between the plant and the centers of its CMA weighted by the population

in a 500 meters radius around the center.
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1.7.8 Additional empirical results

Table 1.12 – Determinants of building footprint

ln Building footprint

(1) (2) (3) (4) (5) (6)

Characteristics of the local environment

Ln Population CMA 0.050b 0.104a 0.106a 0.116a 0.138a 0.131a

(0.021) (0.025) (0.025) (0.030) (0.034)

Ln CMA surface area 0.016 -0.037 -0.036 -0.053c -0.063c -0.036c

(0.027) (0.029) (0.029) (0.031) (0.032)

Weighted Distance to city centers -0.001 -0.004c -0.004b -0.003 -0.005b -0.023

(0.002) (0.002) (0.002) (0.002) (0.002)

1 Residential -0.227a -0.585a -0.578a -0.557a -0.500a -0.172a

(0.030) (0.036) (0.036) (0.030) (0.028)

1 Recreational -0.210a -0.226a -0.224a -0.216a -0.234a -0.060a

(0.031) (0.042) (0.042) (0.039) (0.037)

Ln Population density 500m -0.041a

(0.011)

Characteristics of the establishment

Ln Employment -0.620a -0.624a -0.630a -0.634a -0.584a

(0.015) (0.014) (0.013) (0.014)

1 Headquarter -0.116a -0.117a -0.111a -0.024a

(0.019) (0.020) (0.020)

1 Exporter 0.090a 0.086a 0.082b 0.029a

(0.034) (0.032) (0.032)

# functions in the estab. -0.020 -0.017 -0.016 -0.007

(0.013) (0.013) (0.013)

# 4-digit NAICS in the estab. -0.004 -0.004 -0.004 -0.004

(0.007) (0.008) (0.008)

# products produced in the estab. -0.001 -0.001 -0.002 -0.003

(0.003) (0.003) (0.003)

Distance to transport infrastructure

Ln Distance to major airport -0.021 0.018 -0.019

(0.024) (0.032)

Ln Distance to major seaport 0.046b 0.033c 0.049b

(0.022) (0.020)

Ln Distance to freight station -0.047a -0.045a -0.039a

(0.018) (0.015)

Ln Distance to junction -0.078a -0.075a -0.065a

(0.013) (0.013)

Observations 20,375 20,375 20,375 20,375 20,375 20,377

R-squared 0.258 0.533 0.534 0.539 0.540 0.539

Industry (4-digit) fixed effects yes yes yes yes yes yes

Economic region fixed effects yes yes yes yes yes yes

Controls for neighbors yes yes yes yes yes yes

Notes: All regressions include a polynomial function of degree 4 in the number of neighbors of the establishment

on its parcel. Only observations with the highest reliable information on parcel size are included. 1 denotes {0,1}
dummy variables. Standard errors clustered at the CMA/CA level in parentheses. a p<0.01, b p<0.05, c p<0.1.
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1.8 Additional theoretical results

Conditions (1.3)–(1.5) in the conceptual framework can be reorganized as fol-

lows: (
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If we assume that the output market is competitive (i.e., pi = ps which is taken

as given by firms), by summing these conditions and using the definition of the

production function, we get

ps =
1
Ai

( pz

κi(s,z)

)1−σs

+w1−σs
z + r1−σs

 1
1−σs

. (1.10)

This equation simply states that unit costs equal the output price which ensures

zero profits at equilibrium.

In the case of imperfect competition on the output market, firm i charges a

price-cost margin µi. Hence, equation (1.10) becomes

pi =
µi

Ai

( pz

κi(s,z)

)1−σs

+w1−σs
z + r1−σs

 1
1−σs

. (1.11)

Most models consider that µi = µ(Ai) is an increasing function of Ai, i.e., more

productive firms (in terms of TFP) charge higher markups. As long as firm-

level prices remain a decreasing function of productivity, i.e. the elasticity of

markups to productivity is smaller than 1 so that there are pro-competitive

effects, equations (1.10) and (1.11) allow us to make predictions that are quali-

tatively similar on how firms select into zones based on TFP.
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When pi = ps, i.e., there is an industry-specific price common to all firms, equa-

tion (1.10) shows that a large Ai allows a firm to absorb higher production costs

wz and pz (we assume that r does not vary between firms). Put differently, high-

productivity firms are likely to sort into places where wages and/or land prices

are high since only they can bear these higher production costs.
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1.8.1 Fixed costs and adjustment costs

So far, we have assumed that land is, as labor and capital, a variable cost that

firms can freely adjust to changes in the relative price of production factors (de-

pending, of course, on their elasticity of substitution). This assumption might

be violated in practice which has implications for the interpretation of our re-

sults.

First, if land is a variable cost only, with the CES production function we have

assumed, the quantity of land per worker is independent of the size of the

firm in terms of employees. However, part of the land used by firms has the

nature of a fixed cost: corridors, bathrooms, office spaces, or production spaces

have a size that is partly independent of the number of workers using them

(there needs to be a bathroom whether there is one or five employees in the

establishment for example). This implies that the amount of land per worker

should be a decreasing function of the firm-level number of employees. Since it

is well known that high-productivity/high-employment firms sort into bigger

cities where the relative price of land is higher, not accounting for the fixed cost

dimension of land will bias the coefficient on city size downward. On the other

hand, if parcel size and building footprints are smaller in denser parts of urban

areas, only smaller establishments in terms of employees will be able to locate

there so that the coefficient on the population density in a 500m radius around

the establishment will be upward biased. This is why we also introduce among

the regressors the size of the firm in terms of employees in our benchmark

regressions.

Moreover, if a firm can (quite) freely adjust its workforce when the relative cost

of labor varies, the same does not apply to land: moving, opening, or closing a

facility is costly. Hence, the location of a firm and the amount of space it uses is
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hard to adjust, at least in the short- or medium-run. Only when shocks are large

and permanent enough do firms adjust their land consumption, most likely by

moving or by opening and closing some establishments. This means that when

firms grow or shrink, they first do so by adjusting their number of employees

only, especially if they face transitory shocks. This in turn affects the amount of

land per worker they use. One way to detect the presence of these adjustment

costs is to control for past employment growth of the firm. We conjecture that

firms that grew more in the past will have a lower land-to-labor ratio, consistent

with the existence of fixed costs and frictions that prohibit a quick adjustment

of that ratio. We will do that in a separate section together with an analysis of

the frequency and determinants of establishments’ relocation decisions.

1.8.2 Evidence of adjustment costs

So far, we have considered that establishments can freely adjust the amount of

land they consume. Obviously, this is unlikely to be the case in reality. To adjust

the amount of land they use, plants have two options. First, on the ‘intensive

margin’, they can stay on their current parcel and build additional buildings

or expand to adjacent buildings or parcels. However, due to constraints on the

amount of available space on the parcel they occupy and on the availability of

adjacent parcels, this option seems often very limited. Second, on the ‘extensive

margin’, firms can adjust the amount of space they consume by moving. How-

ever, moving is costly so that firms will do so only when there are important

and permanent changes in their level of activity.

In our dataset, we consider the establishments that are present in both 2013

and 2017, and we define as ‘movers’ those for which: (i) we have information

on their building footprint in both years; and (ii) whose building footprint has
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changed over the period. Between 2013 and 2017, only 6.9% of the establish-

ments have changed location (1,718 establishments out of 24,861), and the very

vast majority of these relocations occur within the same urban area (1,650 out

of 1,718). Relocations of establishments are thus rare and mostly local, which

is in line with what Bergeaud and Ray (2021) find using French data. Among

these relocations, 54% correspond to establishments moving to larger buildings

(934 out of 1,718). Probit regressions reveal that initially larger establishments

are less likely to move, which means that moving costs are more important

when establishments employ many workers. 26 Several explanations can ratio-

nalize this finding: more people need to be convinced to change their work-

place; the monetary costs related to the moving of the equipment are higher

for larger establishments; there is more flexibility to expand space on site for

bigger establishments that occupy larger parcels than for smaller ones; or there

might be fewer production sites that are suitable for hosting large establish-

ments. Also, quite intuitively, faster employment growth between 2013 and

2017 is positively correlated with the probability to move to a larger building,

and negatively correlated with the probability to move to a smaller building,

conditional on initial size.

As explained above, establishment relocations are rare and do mainly occur in

the wake of large permanent shocks. Yet, firms often face smaller transitory

shocks. In that case, firms will adjust (up to a certain point) their workforce

without adjusting the amount of land they consume. These adjustments should

translate into a negative correlation between land consumption per worker and

the establishment’s past employment growth, conditional on current employ-

ment. This is exactly what we find, as Table 1.13 shows. However, as Figure 1.8

shows, there is substantial heterogeneity in the elasticity of establishments’

26. These results are available upon request.
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land consumption per worker to past employment growth. The coefficient is

equal to -0.21 on average, with standard errors of 0.24. It is significant for half

of the sectors only. While this might be due to a lack of precision of the esti-

mates for some sectors, it also likely reflects heterogeneity in adjustment costs

across sectors.

Table 1.13 – Past employment growth and adjustment costs

VARIABLES Parcel size

Ln City population density -0.008

(0.066)

Ln City surface area 0.020

(0.037)

Ln Population density 500m -0.165a

(0.021)

Ln Employment -0.627a

(0.014)

∆ Ln Employment 2013–2017 -0.153a

(0.035)

Observations 7,314

R2 0.578

Industry (4-digit) fixed effects yes

Economic region fixed effects yes

Notes: ∆ Ln Employment is the establishment’s employment

growth. All other variables are measured in 2017. All regressions

include the same controls as in our baseline regressions in Tables

9 and 10. Only observations with the highest reliable informa-

tion on parcel size are included. Standard errors clustered at the

CMA/CA level in parentheses. a p<0.01, b p<0.05, c p<0.1s
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Figure 1.8 – Adjustment costs by sector
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Note: The graphs display the point estimate and the 10% confidence interval of the coefficient associated to

establishment past employment growth. Regressions are run separately for the various sectors using the benchmark

specification in column (5) of Tables 1.1 augmented with past employment growth.



CHAPTER II

THE CAUSES OF THE AGGLOMERATION OF INNOVATION:

EVIDENCE FROM COAGGLOMERATION PATTERNS

Abstract

We use the continuous measure of Duranton and Overman (2005) to describe

the coagglomeration of innovation in Canada. The observed patterns reveal

that Canadian innovation is concentrated and even more than production. Then,

we analyze the effects of labor pooling, input sharing, and knowledge spillover

on the coagglomeration of innovation. The analysis shows that on top of the

coagglomeration of the production, only the knowledge spillover unambigu-

ously causes the coagglomeration of innovation.

Keywords: (Co)agglomeration; innovation; input sharing; knowledge spillover;

labor pooling; manufacturing; patents.

JEL Classification: R23; R32; O33; L14; L60.
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2.1 Introduction

Innovation has a high tendency to be concentrated. Its central role in foster-

ing long term growth, along with the advantages stemming from agglomera-

tion economies make it important to understand how and why innovation ag-

glomerates. 1 Answering this question is critical for both policy-makers and

researchers. Indeed, the need of promoting innovation has retained the at-

tention of public authorities worldwide these last years. For example, since

2010, the Commission of the European Union has put in place the Innova-

tion Union to boost innovation in Europe. 2 In Canada in particular, the Gov-

ernment has elaborated an "Innovation and Skill plan" to accelerate innovation

through super-clusters. 3 From an academic perspective, there is a mature lit-

erature on the microfoundations of agglomeration economies (Duranton and

Puga, 2004). This literature well establishes that agglomeration externalities are

the results of some mechanisms, such as the three Marshallian forces of input

sharing, labor pooling, and knowledge spillover (Marshall, 1890). Empirically,

some evidence supports the presence of these Marshallian forces in generating

1. On the role of innovation for long term growth see Krugman 1991; Segerstrom 1991;

Aghion and Howitt 2005; Hall 2011; Aghion et al. 2014. In facts more than 50% of the USA

growth since the WWII is attributable to innovation; Between 2000 to 2007 two-thirds of UK

private-sector productivity resulted from innovation. Moreover, the private rate of return from

innovation is estimated at 25 to 30 percent, and the social returns from innovation are typically

2 to 3 times larger than the private returns. See "National Innovation policies: What countries

do best and how they can improve" from the Global Trade and Innovation Policy Alliance

2. The objective of this Innovation Union is to: (i) improve conditions and access to finance

for research and innovation in the EU, (ii) create a genuine single European market for inno-

vation, (iii) stimulate private sector investment and processes, to increase European venture

capital investments

3. For more details see https://www.ic.gc.ca/eic/site/093.nsf/eng/home
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the agglomeration of production (Rosenthal and Strange, 2001, 2004; Ellison

et al., 2010; Faggio et al., 2017, 2020). However, there is no guarantee that this

evidence of the role of the Marshallian forces on the agglomeration of produc-

tion, translate into the agglomeration of innovation in the same way, for at least

two reasons. First, innovation happens to be more concentrated than produc-

tion (Feldman and Kogler, 2010), and second, firms do not locate production

and Research and Development (R&D) at the same place (Kelly and Hageman,

1999; Duranton and Puga, 2001).

The few studies that exist on the determinants of the agglomeration of inno-

vation focus on the effects of industrial characteristics, but hardly any study

has looked at the effects of the micro-founded mechanisms that may explain

the agglomeration of innovation. Some exception include Helsley and Strange

(2002) who discuss the link between innovation and input sharing, Audretsch

and Feldman (1996, 2004) who summarize the role of knowledge spillover for

the agglomeration of innovation; and Gerlach et al. (2009); Simonen and Mc-

Cann (2008) for the role of labor pooling on the agglomeration of innovation.

Yet, there is still room for discussion on how the Marshallian mechanisms em-

pirically operate on the agglomeration of innovation, and this work intends to

contribute to this debate with a unified framework for all the three Marshallian

forces similar to what has been done on the production side by Ellison et al.

(2010).

This paper uses the coagglomeration of industry pairs to document new facts

on the geographic concentration of innovation and tests the effects of the three

Marshallian forces on this phenomenon. The motivation of the use of the colo-

cation of industry pairs is twofold. First, diversity matters for innovation (Car-

lino and Kerr, 2015), and the colocation of industry pairs of innovation may be

well appropriated to analyze the geographic concentration of innovation. Sec-
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ond, previous works suggest that the variation in characteristics of industries

that colocate better helps in understanding the microfoundations of agglomer-

ation economies (Ellison et al., 2010; Faggio et al., 2017).

We use the Canadian patents applications for this empirical analysis and ad-

dress two major challenges during the process. First, locating patents across

space is not a straightforward task. Second, patents are categorized in the

dataset at hand with the technological classification (IPC) whereas we need

the North American Industrial Classification System (NAICS) for our analysis.

We deal with the first challenge by assigning to each patent the geographic lo-

cations of its related innovators, and we address the second challenge by using

a mapping matrix that relates the IPC to the NAICS. We consider many alter-

native ways of locating patents across space and in the NAICS classification for

robustness checks. Then, we use the methodology of Duranton and Overman

(2005) to provide a novel picture of the geographic concentration of the inno-

vation in Canada and compare it to that of production. This primary exercise

reveals that at the NAICS 3-digit, 65% of industry pairs in terms of innovation

are colocated against 58% for production. Moreover, this colocation of industry

pairs of innovation happens essentially at shorter distances.

Next, we estimate the causal effect of the three Marshallian externalities on the

coagglomeration of innovation. More precisely, we regress the measure of co-

agglomeration of innovation at the NAICS 3-digit industry level on measures of

input sharing, labor pooling, and knowledge spillover controlling for the coag-

glomeration of production. Our empirical strategy relies, for the three Marshal-

lian forces, on measures constructed with USA data as proxies for the Canadian

ones to deal with potential endogeneity, as well as the use of an instrumental

variable for the input sharing measure. The results show that the Marshallian

forces do not act on the formation of the coagglomeration of innovation in the
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same way they do for that of production. Indeed, while previous studies have

found that the three Marshallian forces positively cause the coagglomeration of

the production (Ellison et al., 2010; Faggio et al., 2017), our results first suggest

that a non-negligible part of the coagglomeration of innovation is the mere re-

sult of the coagglomeration of production. Second, once the coagglomeration

of production is controlled for, only the knowledge spillover unambiguously

determines the coagglomeration of innovation, and the effects of the two other

forces are not significant. In terms of magnitudes, a one standard deviation of

the coagglomeration of production is translated into a 0.36 standard deviation

of the coagglomeration of innovation, and a one standard deviation of knowl-

edge spillover results in a 0.26 standard deviation of the coagglomeration of

the innovation. These results qualitatively survive a large variety of robustness

checks.

This work is related to the large strand of literature on agglomeration economies

and their determinants. First, the paper adds to previous studies which have

provided valuable and useful insights into the agglomeration economies by

describing the location and the colocation patterns of the production. Some

examples include the description of the spatial patterns of the manufacturing

industries in the USA (Ellison and Glaeser, 1997), the exploration of the location

patterns of manufacturing industries in the UK (Duranton and Overman, 2005),

the detailed analysis of the location patterns of the manufacturing in Canada

(Behrens and Bougna, 2015), the agglomeration and coagglomeration of man-

ufacturing in Russia (Aleksandrova et al., 2020), and the coagglomeration pat-

terns of the manufacturing in Vietnam (Howard et al., 2016). On the innovation

side, some studies have portraited the location pattern of knowledge spillover

in the US (Jaffe et al., 1993; Thompson and Fox-Kean, 2005; Murata et al., 2014;

Ganguli et al., 2020). This paper contributes to this literature by providing new



85

patterns of the coagglomeration of innovation in Canada.

Second, and more importantly, the paper builds on the theoretical and empir-

ical literature of the sources of agglomeration. Theory on the microfounda-

tion of agglomeration economies highlights the role of the three Marshallian

forces in generating agglomeration. The possibility of sharing inputs and pro-

duction facilities, the efficiency of the firm-worker matching, and the ease to

create, accumulate and diffuse knowledge in a cluster are incentives for the

agglomeration of economic activities (Duranton and Puga, 2004). Moreover,

and directly related to the agglomeration of innovation, Helsley and Strange

(2002) use a model to suggest that innovation may have an incentive to cluster

since a dense network of input suppliers may reduce the cost of bringing new

products to the market. Kelly and Hageman (1999) also use a model to show

that knowledge spillover plays a key role in the agglomeration of innovation.

On the empirical side, many studies have tested these agglomeration forces

along with natural advantages and provided convincing evidence on their role

in generating the agglomeration of the production (Ellison and Glaeser, 1999;

Audretsch and Feldman, 1996; Rosenthal and Strange, 2001; Ellison et al., 2010).

This paper contributes to this literature by looking at the effects of these forces

on the coagglomeration of innovation at the industry level, where literature has

focused essentially on the coagglomeration of the production. We use contin-

uous measures that allow for more flexibility in detecting coagglomeration at

various scales and provide new evidence on the role of Marshallian forces on

the coagglomeration of innovation.

The rest of the document is organized as follows. Section 2.2 focuses on the

pattern of the coagglomeration of innovation in Canada. It starts by presenting

the innovation data, the measure used, and some key features of the coagglom-

eration of innovation in Canada. Section 2.3 discusses the rationale of the link
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between the three Marshallian forces and the coagglomeration of innovation,

along with the data and measures used to capture these determinants. Finally,

it presents the empirical strategy and the results of the analysis. The document

ends with some concluding remarks in section 2.5.

2.2 The coagglomeration of innovation in Canada

In this section, we present the dataset, and the methodology used to construct

the coagglomeration measures. Then, we provide the patterns of the coagglom-

eration of innovation in Canada.

2.2.1 Innovation data

The ideal setting for measuring innovation for the purpose of our analysis

should be an accurate location of the position where innovation happens. For

example the actual location of the plant where the innovation is produced. Un-

fortunately, we do not have information on the place of work of innovators re-

lated to each patent. However, to analyze the geographic concentration of the

innovation in Canada, we use the patent database digitized by the CD Howe

institute. 4 This fine-grained level database, records the patent applications of

innovation in Canada, with information on the postal code of the residences

of all the inventors related to each patent (up to 10 inventors per patent), the

International Patent Classification (IPC) code of the patent, the year of applica-

4. The C.D. Howe Institute is a registered charity and an independent not-for-profit research

institute whose mission is to raise living standards by fostering economically sound public

policies. see https://www.cdhowe.org
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tion as well as the latest administrative status of the application. 5 The database

also contains for each patent, a probability that links the IPC code to the North

American Industry Classification System (NAICS) 6. The concordance is based

on the first 3 digits of the IPC codes and the first 3 digits of the NAICS codes

for the manufacturing industries in particular. 7 More specifically, each patent

has a probability to be related to each of the 21 manufacturing 3-digit-NAICS

codes.

From that database, patent applications from Canadian resident inventors are

extracted for the period spanning from 2001 to 2015 (odd years). This repre-

sents a total of 36,137 patents in the IPC classification. For the analysis, the

patents need to be located across the space and related to the NAICS instead of

the IPC. To have such a dataset, a first transformation is realized by assigning

to the address of each inventor, the patent to which he or she is related. The

average number of innovators related to each patent is 2.04. 8 This transforma-

tion allows to geographically locate each patent across the space. The resulting

dataset contains 65,383 patents across the space. Then in a second transfor-

5. All the patent applications are considered irrespective of their descriptive status code

(approved, granted, etc.) given that the mere fact of applying for a patent is enough to reflect

an innovative activity

6. This probability link captures the industries that use or implement technologies rather

than industries that perform research and development activities

7. While applying to protect an idea through a patent, some applications record the NAICS

of the industry that manufactured the innovation to be protected and the NAICS of the industry

of use. Using these cases where a clear correspondence is available, a probabilistic matrix is

then built to match the IPC digit codes to the NAICS code which is the result of a combination

of industry of use and the industry that manufacturer the patent. The NAICS code is therefore

referred to as "NAICS of link". For more details on the methodology used to construct such

concordance, see Evenson et al. (1991); Kortum and Putnam (1997)

8. see Figure 2.6 for the distribution of patents across the number of co-inventors.
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mation, the probability that links IPC to NAICS is used to move from the IPC

classification dataset of patents to the NAICS classification of patents. More

precisely, each line of the dataset of the located patents is duplicated as many

times as there are non-zero probabilities that link a patent of a specific IPC to

the NAICS-3digits. Then, to each duplicated line, a single NAICS code is as-

signed, as well as the value of the corresponding probability that links the IPC

code to the corresponding NAICS. The average number of NAICS with non-

zero probability per patent is 2.96. 9 The final dataset after this second trans-

formation contains 252,573 observations which are patents extended to NAICS

and the addresses of all their related inventors. 10 Once these transformations

are made, two concerns have to be dealt with in the resulting dataset. First, by

locating each patent at all the residences of its related inventors, the number

of patents is artificially inflated. Second, by assigning each patent to all the

NAICS to which it is related, the colocation of industry pairs is also artificially

augmented. To address these issues, alternative samples of patents, as well as

weights are used in the analysis to alleviate the effects of the abovementioned

concerns. In particular, for the first concern, the inverse of the number of inven-

tors related to each patent is used to correct for duplicating each patent across

the addresses of its related inventors. That is to consider only an equal fraction

of the patent at each inventor address. For the second concern, the probability

that links IPC to NAICS is used to correct for duplicating the patents across its

9. see Figure 2.7 for the distribution of patents across the number NAICS with non zero

probability.

10. When all the probability values of a given patent are zeros, this indicates that the patent

is not related to manufacturing at all, and the corresponding patent will be removed from the

dataset. Such cases represent less than 1% of all the NAICS 3-digit innovators recorded. This

value is not huge so that the restricted dataset still reflects the overall patenting activity in

Canada
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related NAICS, while moving from the IPC to the NAICS classification. That is

to assign only a fraction of the patent to each of its related NAICS. In terms of

alternative samples, the first one is created as follows: to move from the IPC to

NAICS classification, instead of duplicating the patents as many times as there

are non-zero probabilities that relate an IPC to a NAICS, the patent is assigned

only to the NAICS with the maximum probability. This first, alternative dataset

contains 71,760 patents. For the second alternative dataset, to move from the

IPC to NAICS classification, instead of duplicating the patents as many times

as there are non-zero probabilities that relate an IPC to a NAICS, the patent is

assigned only to the NAICS with the maximum probability provided that the

probability is greater than 0.5. This second, alternative dataset contains 54,000.

Table 2.1 gives for each manufacturing 3-digit NAICS code, the mean annual

flow of patents applications over the period 2001-2015 for the main, and the

two alternative samples, and more details on these samples are presented in

section 2.6.1 in the appendix.

A step further, the Postal Code Conversion File (PCCF) from Statistics Canada

is used to geocode the resulting dataset. 11 The process consists in assigning

geographic coordinates (longitudes and latitudes) to each located patent by

merging the patents dataset with the PCCF. These geographic coordinates are

key variables to the computation of the coagglomeration measures to be used

in the analysis.

The final dataset is a table with all the patent applications in Canada from 2001

to 2015 (8 odd years), with 252,573 observations. The file is suitable for cap-

turing the innovative activity for which explicit protection has been asked. As

11. The Postal Code Conversion File (PCCF) is a concordance dataset built and maintained

by Statistics Canada. This dataset allows relating each postal code in Canada to its geographic

cordinates



90

such, all the innovation for which there is not an effort of protection through

a patent is not captured in this analysis. However, the dataset remains a good

sample to describe the patterns of coagglomeration and discuss its causes.
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(a) 334 computer and electronic (b) 312 Beverage and tobacco

(c) 315 Clothing (d) 316 Leather

Figure 2.1 – Maps of four illustrative industries
Notes: The median bilateral distance between inventors of the same patent is 14km and the 3rd quartile is 35km indicating at a first glance a somehow spatial concentration

of co-inventors.
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Table 2.1 – Mean annual flow of patents applications

NAICS - 3 digits
Patent extended to inno-

vators’ addresses and all

NAICS with prob.link 6= 0

(Sample 1 : Benchmark)

Patent extended to in-

novators’ addresses and

only the NAICS with max

prob.link (Sample 2)

Patent extended to in-

novators’ addresses and

only one NAICS with

prob.link>0.5 (Sample 3)

counts % counts % counts %

311 Food manufacturing 1,971 6,2% 629 7.0% 66 1.0%

312 Beverage and tobacco product manuf 1,194 3,8% 27 0.3% 27 0.4%

313 Textile mills 56 0,2% 22 0.2% 22 0.3%

314 Textile product mills 2 0,0% - 0.0% - 0.0%

315 Clothing manufacturing 811 2,6% 47 0.5% 47 0.7%

316 Leather, allied product manuf 276 0,9% 80 0.9% 54 0.8%

321 Wood product manufacturing 93 0,3% 77 0.9% 77 1.1%

322 Paper manufacturing 776 2,5% 309 3.4% 61 0,9%

323 Printing, support activities 16 0.1% - 0.0% - 0.0%

324 Petrol, coal product manuf 816 2.6% 88 1.0% 88 1.3%

325 Chemical manufacturing 2,860 9.1% 664 7.4% 242 3,6%

326 Plastics, rubber products manuf 2,685 8.5% 224 2.5% 84 1.2%

327 Non-metallic mineral product manuf 1,352 4.3% 336 3.7% 321 4.8%

331 Primary metal manufacturing 518 1.6% 99 1.1% 99 1.5%

332 Fabricated metal product manuf 2,721 8.6% 245 2.7% 141 2.1%

333 Machinery manufacturing 4,466 14.1% 1,466 16.3% 899 13.3%

334 Computer, electronic product manuf 5,587 17.7% 2,893 32.3% 2 883 42.7%

335 Electrical, appliance manuf 1,501 4.8% 174 1.9% 131 1,9%

336 Transportation equipment manuf 1,122 3.6% 400 4.5% 400 5.9%

337 Furniture, related product manuf 524 1.7% 186 2.1% 186 2.8%

339 Miscellaneous manufacturing 2,226 7.1% 1,004 11.2% 924 13.7%

Total 31,572 100% 8,970 100% 6,750 100%

Notes: The original dataset in the International Patent Classification (IPC) contains 36,137 (Mean annual flow : 4,517)

patents applications over the period 2001-2015 (odd years). When extended to NAICS and all the inventors’ ad-

dresses, the number of patents amounts to 252,576 (Sample 1: Benchmark with a mean annual flow of 31,572 ). When

extended to all the inventors’ addresses and the NAICS with maximum probability, the number of patents amounts

to 71,760 patents (Sample 2 with a mean annual flow of 8,970). When extended to all the inventors’ addresses and

the NAICS with maximum probability provided that the probability >0.5, the number of patents amounts to 54,000

patents (Sample 3 with a mean annual flow of 6,750).

Table 2.1 shows that less than 10% of the NAICS 3-digit manufacturing indus-

tries represent more than 33.3% of the number of patents. Indeed, the 2 indus-

tries "334 computer, electronic product" and "333 Machinery manufacturing"

dominate in terms of patenting activity and represent together 32% of the to-

tal number of patents in the benchmark sample, 48% of the total number of
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patents in sample 2, and 56% of the patents in sample 3. The least innova-

tive sectors are "313 Textile mills", "314 Textile product mills", "315 Clothing",

"316 Leather, allied product", "321 Wood product manufacturing", "323 Print-

ing, support activities" and "331 Primary metal manufacturing". These seven

industries altogether represent 30% of the number of 3-digits manufacturing

industries but account for less than 6% of the total number of patents. For the

rest of the analysis, the industries "314 Textile product mills" and "323 Printing,

support activities" are removed given that they can induce noisy estimates par-

ticularly for the estimation of the coagglomeration of innovation. Thus, out of

the 21 industries registered in the Canadian classification at 3-digit, 19 are left

and represent 171 symmetric industry pairs and 1368 observations across the 8

odd years from 2001 to 2015.

2.2.2 Measuring the coagglomeration of innovation

The literature dedicated to assessing the extent of agglomeration usually uses

two different and complementary approaches. The first approach relies on met-

rics that capture the degree of localization of entities from the same group, and

the second approach uses metrics that measure the degree of co-location of en-

tities from two different groups. While each of these approaches has its speci-

ficities, the advantage of the colocation approach over the location approach is

the possibility to better understand the effects of the interrelatedness of indus-

try pairs. In this analysis, the second approach is used to assess the extent of

the agglomeration of innovation by the colocation patterns of patents from two

different industries. More precisely, the K-density of the bilateral distances of

patents from two different industries is used to measure the coagglomeration

of industry pairs. This metric suggested by Duranton and Overman (2005) also

has the advantage of dealing with the main issues related to studies on spatial
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concentration. 12

To put things in perspective, let consider two industries I and J, with NI and NJ

patents respectively. The observed coagglomeration of the industry pair I and

J at a given distance d is estimated by :

K̂IJ(d) =
1

h
NI
∑

i=1

NJ

∑
j=1

(w(I)+w(J))

NI

∑
i=1

NJ

∑
j=1

(w(I)+w(J)) f (
d−di j

h
) (2.1)

Where di j is the euclidean distance between the location of the patent i and j

from the industries I and J respectively, f is the kernel function with band-

with h, w(I) and w(J) are the weights for industry I and J respectively, used

to account for the transformations made to move from the IPC to the NAICS

classification. These weights are the probabilities that link IPC to NAICS of the

industry I and J respectively.

With this metric, the excess of coagglomeration for a given industry pair (I,J)

is detected by constructing a counterfactual against which the observed coag-

glomeration is compared. More in detail, for the industry pair (I,J), a coun-

terfactual coagglomeration is constructed using for each industry of the pair, a

hypothetical distribution of locations for its patents. This hypothetical distri-

bution of locations is obtained through a random draw of locations across the

union of possible locations of the two industries. More precisely, imagine that

(i1, i2,i3,...,iNI) are the NI locations of patents in industry I and ( j1, j2, j3,..., jNJ)

the NJ locations of patents in industry J. Then (i1, i2,i3,...,iNI , j1, j2, j3,..., jNJ )

will be the universe of the NI +NJ locations from which the random draws of

12. Duranton and Overman (2005) observed that their metric, over the previous ones, has the

advantage to be : (i) comparable across industries, (ii) to control for the overall agglomeration

of manufacturing, (iii) to control for industrial concentration, (iv) to be unbiased with respect

to scales and borders, and (v) to be statistically testable.
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NI hypothetical locations for the patents of the industry I and NJ hypothetical

locations for patents of the industry J will be chosen. With these hypothetical

distributions of locations, the counterfactual coagglomeration measure of the

industry pair (I,J) is then constructed. The exercise consists in repeating 1000

times the draws of hypothetical distributions for I and J respectively and to

estimate for each pair of these distributions, the K-density using the formula

2.1. Then global and local bandwidths are constructed along with the index

of colocalization and that of co-dispersion. The details for the construction of

these bandwidths and the computation of these indices are provided in ap-

pendix 2.6.2.

2.2.3 Key features of the coagglomeration of innovation in Canada

The above-mentioned measure is used, to estimate the coagglomeration for the

171 symmetrical industry pairs obtained by the combination of the 19 indus-

tries of Canadian classification at 3-digit NAICS code. In line with Duranton

and Overman (2005), globally colocalized industry pairs can be graphically

identified as those for which the observed K-density (solid red line) lies above

the upper bound of the global confidence interval (upper dashed line) for at

least one distance. Equivalently, globally codispersed industry pairs are those

for which the observed K-density lies below the lower bound of the global con-

fidence interval (lower dashed line) for at least one distance and is not colocal-

ized at any distance. The graphs on figure 2.2 sum up key specificities observed

in the coagglomeration patterns of innovation in Canada.
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Figure 2.2 – K-density of six illustrative coagglomeration patterns in 2015
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The first four panels are cases of globally colocalized industry pairs. Panel

(a) depicts industry pairs for which there is an overrepresentation of shorter

bilateral distances as well as longer distances equivalent to the distances be-

tween major cities in Canada. This reflects the cases where a given industry

pair is colocated in many cities to generate both within-cities coagglomeration

and between-cities coagglomeration. The localization of innovative industries

generating such patterns includes industry pairs that are simultaneously lo-

cated in major cities. Some examples include the industry-pairs "316 Leather

– 322 Paper"; "335 Electrical appliances – 322 Paper", "316 Leather – 335 Electric

appliance". Panel (b) is representative of features for which the industry pair

is present only in one major city. For example, industry pairs containing the

"325 Chemical" or "321 Wood" industry that happen to be localized in very few

locations across the country. Panel (c) depicts cases where the industries of the

pair never co-locate in the same city so that co-localization only appears across

cities. For example the innovation in the "311 food" industry is rarely local-

ized in the same place with "332 Fabricated metal". Finally, panel (d) represents

special cases of patents in "cross-sectors" industries such as "334 computer and

electronic". Since this industry is likely to be connected to many other indus-

tries, co-location appears here almost at each distance with some peaks at the

scales of the distances between major cities. This feature is also the case for

patents in the industry pair of "331 Primary metal – 335 Electrical appliances" as

well as the industry-pair "316 leather – 331 Primary metal".

Panel (e) is a case of globally dispersed industry pairs. These are industry pairs

that are scattered compared to a random distribution. For example "311 Food –

333 Machinery", "312 Beverage – 324 petrol" as well as "312 Beverage – 337 Furni-

ture".

Finally, panel (f) depicts industry pairs for which innovation is neither coag-
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glomerated nor codispersed, the co-location pattern, in this case, is not signif-

icantly different from one that would be obtained by a random co-location of

innovation. Some examples are "311 Food – 313 Textile", and "311 Food – 322

Paper".

The scale of the coagglomeration patterns of the Canadian innovation
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Figure 2.3 – Number of colocalized industry pairs at each distance in 2015

On the scale of coagglomeration and co-dispersion, the graphs in Figure 2.3

show the number of industry pairs colocated at each distance. It is immediately

apparent on these graphs that colocalization happens essentially at almost all

distances but much more at short distances compared to large distances. On

the contrary, the extent of co-dispersion is much greater at long distances com-

pared to short distances.

Coagglomeration of innovation and production compared

Table 2.2 reports on average over the period 2001 - 2015 (odd years), the num-

bers, and percentage of colocalized, codispersed, or randomly distributed in-

dustry pairs for both innovation and production. The table also provides in-
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dexes that measure the extent of the strength of colocalization/co-dispersion.

Details on the computation of these figures are presented in appendix 2.6.2. 13

Table 2.2 – Localization-Dispersion-Randomness

Innovation Production

Global colocalization

Number of industry pairs 112 100

% of industries pairs 65 58

Index of global colocalization (x 10-4) 253 122

Global codispersion

Number of industry pairs 7 8

% of industries pairs 4 4

Index of global codispersion (x 10-4) 50 51

Random distribution

Number of industry pairs 52 63

% of industries pairs 30 37

Total number of industry pairs 171 171

Notes: The formulas used to compute the Index of global colocalization and the Index

of global co-dispersion are presented in Appendix 2.6.2. The values presented in

this table are averages across the 8 odd years from 2001 to 2015. Table 2.13 in the

appendix gives details of these numbers for each year.

Table 2.2 shows that global colocalization is more common than global co-

dispersion for both innovation and production. On the innovation side, up

to 65% of industry pairs on average are colocalized, compared to 4% of codis-

persed industry pairs, and 30% that are randomly distributed. On the produc-

13. The formula presented in equation 2.1 is used to estimate the coagglomeration of the

production, with data of the manufacturing plants in Canada as recorded in the Scott’s Na-

tional Directories database. The weights are the number of workers of each plant so that the

coagglomeration of production considered in the analysis is the coagglomeration of the em-

ployment.
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tion side, the pattern of coagglomeration is quite similar with 58%, 4%, and

37% respectively for colocalized, codispersed, or randomly distributed indus-

try pairs. However, it appears that the share of colocalized industry pairs, as

well as the strength of colocalization, are larger for innovation. Put differently,

on average colocalization is more frequent and more pronounced for the in-

dustry pairs in terms of innovation rather than in terms of production. This is

in line with the stylized fact stating that innovation is more concentrated than

production (Feldman and Kogler, 2010).

2.3 The causes of the coagglomeration of innovation

It is well established that the formation of agglomeration is attributable to some

locational fundamentals, and some other micro-founded determinants. Mar-

shall (1890) suggests that input-output, labor pooling, and knowledge spillover

may well explain agglomeration. In addition, there is also evidence that nat-

ural advantage, home market effects, consumption opportunities, and rent-

seeking all contribute to agglomeration (Rosenthal and Strange, 2004). In what

follows, the intuition behind these Marshallian forces, as well as some other

non-Marshallian determinants and how they connect to the agglomeration of

innovation is briefly reviewed. Then, the measures used to account for each of

these forces in the empirical analysis are also presented.

2.3.1 Marshallian externalities

In a discussion on innovation and agglomeration, Carlino and Kerr (2015) sug-

gest that the traditional Marshallian externalities, of input sharing, labor pool-

ing, and knowledge spillover are especially important for the spatial concen-

tration of innovation activities. Although these marshallian externalities are
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relevant to act on the coagglomeration of innovation, we discuss in the next

sub-sections how their measures should differ from their equivalent on the

production side. Moreover, in this analysis, the agglomeration of innovation

is measured in terms of the geographic colocation of patents from different in-

dustry pairs. Hence, this measure of the coagglomeration of innovation will

guide the following discussion on how the Marshallian mechanisms may be at

play to induce the coagglomeration of the industry pairs.

Input sharing

At first glance, it could be tricky to figure out how the input sharing may act in

generating the agglomeration of innovation, given that input for innovation is

more likely to be other ideas than material. It may be useful to keep in mind

that in many cases, even conceptual innovations need to be tested through ex-

periences or be transformed into a new product. As such, innovation may gain

from the sharing of common inputs, given that input-output linkages reduce

the costs of outsourcing the inputs needed to implement new ideas (Helsley

and Strange, 2002). Another way through which input sharing could poten-

tially foster the formation of the agglomeration of innovation is through the

buyer-supplier linkages induced by the exchange of inputs. For example, when

a firm buys a piece of equipment for its production process, all the packages

in terms of training, maintenance and customer service that accompany the

equipment are many channels that can induce exchange of knowledge and ul-

timately innovation.

To measure input sharing between a given industry pair, three variables are

constructed. Let define: Inputi← j the share of industry i’s inputs that come

from industry j. Similarly, let Out puti→ j be the share of industry i’s outputs

that are sold to industry j. These shares are computed relative to all industries

including non-manufacturing. The symmetric measures of input sharing are
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then : Inputi j = Max(Inputi→ j, Inputi← j); Out puti j = Max(Out puti→ j,Out puti← j),

and InputOut puti j = Max(Inputi j;Out puti j). 14

The data used to compute these metrics are the symmetric input-output ma-

trices of the USA for the years 1997 and 2002, from the Bureau of Economic

Analysis of the US department of commerce, and the symmetric input-output

matrices of Canada for the years 2001 to 2009 from Statistics Canada. For both

Canada and the USA, the measures are computed as described above at 3-digits

and averaged across the years to have a unique cross-sectional variable. It is

worthwhile noting that even if the material is not an input for the production of

a patent, it remains a good proxy to capture the knowledge generated through

the buyer-supplier connection as well as the role of material in the process of

innovating before the application for the patent happens. We use measures con-

structed with the USA data first as a proxy of the measure for Canada. Then,

we also use the direct measure of input-output constructed with the Canadian

data, using the USA measure as an instrument to deal with potential endogene-

ity. We provide more details in the identification strategy in section 2.4

Labor pooling

The second Marshallian force is labor pooling. What motivates its role in gen-

erating agglomeration is essentially the fact that workers can move across in-

dustries provided that these industries use the same type of labor (Helsley and

Strange, 1990; Combes and Duranton, 2006). The rationale specific to the ag-

glomeration of innovation may be that by moving from one industry to another,

workers bring with them knowledge and experience useful for the creation of

innovation. In addition, the complementarity of knowledge across industries is

also an advantage that fosters innovation. A clear example is "Biotechnology"

14. Alternative measures can be computed using minimums, averages, instead of maximum,

but the underlying intuition remains the same.
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which is an extensive innovative field that combines knowledge from both bi-

ology and technology.

What is common in this field to measure labor pooling is constructing some

measures of labor similarities based on the correlation of the distribution of

the employment of industries across different occupations. In this paper, the

movement of workers across industries is rather used. This choice is moti-

vated by the fact that the movement of laborers seems a more convenient way

to connect labor to innovation creation as argued earlier. Thus, to construct

the labor pooling measure, the labor movement pattern from the Current Pop-

ulation Survey (CPS) of the US Bureau of Labor Statistics is used. The avail-

able data from this source are used to construct the maximum of shares of la-

bor movement across all the pairs, and we only consider the movement of the

skilled workers. The same method used for Input-Output is replicated to con-

struct symmetric measures of labor pooling as follow: Share_goers− comersi j =

Max(share_comersi j,share_goersi j). Since the coagglomeration of innovation of

industry pairs is observed at the 3-NAICS digit, these labor movement shares

are also computed at the NAICS 3-digit level.

Knowledge spillover

On the knowledge spillover, the intuition on how it affects the agglomeration

of innovation seems more direct given that clusters facilitate the creation, ac-

cumulation, and diffusion of knowledge among workers and firms (Duranton

and Puga, 2004). Moreover, given that new knowledge is valuable only for a

short period (Feldman, 1994), combined with the localized nature of the knowl-

edge spillover (Jaffe et al., 1993; Thompson and Fox-Kean, 2005; Murata et al.,

2014), innovative agents will have the incentive to cluster to take advantage of
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the knowledge flow originating from one another. 15

The knowledge spillover is measured using the United States Patent and Trade-

mark Office citing-cited patent pairs. The available dataset records the average

number of citing/cited patents over the period 1976-2006. These numbers are

constructed using a probabilistic mapping of patents between the industrial

sector with two variants. The first one is based on the Industry Of Manufac-

ture (IOM) and the second is the Sector Of Use (SOU). The same method used

for Input-Output is replicated to construct symmetric measures of knowledge

spillover as following Share_Citing−Citedi j = Max(share_Citedi j,share_Citingi j)

for IOM and SOU. Finally, it should be clear that the patents citation cap-

tures more the formal exchange of technology but not all forms of intellectual

spillovers as well observed by Carlino and Kerr (2015). However, this may not

be a concern given that the coagglomeration of innovation is also measured

using patents applications.

2.3.2 Non-Marshallian determinants

In conjunction with the Marshallian forces, some other factors may also be at

play in shaping the location of innovation. On the production side, natural

advantages such as harbors, coal mines, natural resources are those consid-

ered as non-Marshallian determinants (Ellison et al., 2010). For innovation, one

may think of local endowments of places such as universities, local policies,

and the culture that may favor innovation. Indeed, authors have argued for in-

stance that Silicon Valley and Boston became famous innovative places because

15. Kerr and Kominers (2015) argue that interactions occur at shorter distances and form

clusters but eventually overlapping clusters form the agglomeration that is observed at higher

spatial scale.



105

of their proximity to Standford University and MIT Saxenian (1994). Studies

have also consider the role of the local culture on innovation (Chinitz, 1961;

Saxenian, 1994; Landier, 2005). Finally, there are evidence on the role of local

policies on innovation (Fallick et al., 2006). Accounting for these factors in this

setting is quite challenging given that the measures used to assess the degree

of agglomeration are based on pairs of industries. As such, it is not obvious to

imagine a source of variation in some factors that may differently induce co-

location of patents from two different industries. For example, one may think

of some residential amenities that could attract inventors in a particular place

and induce artificial co-location. But it is hard to explain how such residential

amenities may vary across inventors from different industry pairs.

To control for possible non-Marshallian determinants of the coagglomeration of

innovation, a measure of the coagglomeration of production will be used. Con-

trolling for the coagglomeration of production also helps to capture only the

externalities that are specific to innovation. The measure is built from the pro-

prietary Scott’s National All Business Directories database, which draws from

the Business Register records and telephone surveys. This dataset provides

good coverage of the plants operating in Manufacturing industries in Canada.

The variables of the database used for the analysis are the precise postal ad-

dress information of each plant, its industrial classifications (North American

Industry Classification System, NAICS 3-digit level), the number of employees

in the plant, the year of establishment of the plant. The period of observation

spans from 2001 to 2017. 16 With this dataset, the coagglomeration of the pro-

duction is constructed with the same metric used for the coagglomeration of

innovation. Pairs of plants are formed with one plant from each industry of

the pair. Next, bilateral distances are computed and then used to estimate the

16. Scott’s data are not available for the year 2015. Instead, data from 2017 are used.
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Kernel density exactly as presented in the subsection 2.2.2. The employment of

the plant is used as the weights in the formula.

2.4 Empirical strategy and results

In this section, we discuss our empirical strategy, and then we present our main

results followed by tests of robustness.

2.4.1 Specification and identification

An ideal setup for the estimation of the effects of the three Marshallian forces

on the coagglomeration of industry pairs should be a panel specification that

includes time-varying industry pairs specific controls, industry-pairs fixed ef-

fects as well as year fixed effects. In this paper, due to some limitations in the

available data, the main empirical specification builds on Faggio et al. (2017).

It is a pooled cross-section for eight years for each of the coagglomeration mea-

sures, while the Marshallian forces are averaged values across the available

years, as follows:

Coagg.Invi jt(d) = αKnow.Spili j +β InputOutputi j + γLabori j +λ Coagg.Prodi jt(d)+ηt + εi jt

Where Coagg.Inv(d) and Coagg.Prod(d) are the cumulative density function of

the bilateral distances between the patents and plants respectively at a given

distance d; Know.Spil is the knowledge spillover measure, Labor is the labor

pooling measure, InputOutput is the input-output measure, ηt is the time fixed

effect, εi jt is the error term.

The coagglomeration of industry pairs in terms of production is used as a con-

trol in the model to deal with potential spurious correlations which may origi-

nate from natural advantages, unobserved local policies, and other factors that
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could jointly target innovative industries but not related to the coagglomera-

tion of innovation.

One may wonder that in our setting, patens are used to measure co-agglomeration

of innovation and at the same time patents are also used to compute the knowl-

edge spillover measure of industry pairs. This may not be a major issue because

one of the measures is based on the geographical proximity of the industry

pairs, while the other is based on industrial interconnection. And our goal as-

sessing the extent to which geographical proximity would have its origins in

an interconnection in terms of knowledge exchange. Moreover, it is common

in the field of research connected to our analysis to use this kind of measure.

For example, Ellison et al. (2010) do a similar exercise from the point of view of

production. On the one hand their dependent variable is based on plants and

on the other hand the determinant of input-Output is based on the exchange

of goods between industry pairs. Nevertheless, to deal with possible reverse

causality, the Marshallian measures used in this specification are all constructed

using information from the USA. There are good reasons to assume that the pat-

terns of these measures across the manufacturing industries are likely to be the

same in the USA and Canada since these two North American Countries share

common industry standards such as the NAICS classification, the IPC classifi-

cation. Moreover, the geographic proximity of the two countries favors many

similarities in their manufacturing structures. As such, using the data from the

United States as proxies for Canadian measures prevents to some extent the

Marshallian measures to be entailed with endogeneity with the coagglomera-

tion of the Canadian innovation. Thus, the constructed Marshallian measures

can be assumed to be exogenous and well appropriated to capture the causal

effects of these measures on the coagglomeration of innovation in Canada.
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Another potential concern may be, the so-called third industry effect. 17 Some

robustness checks will be carried out with subsamples free from industries that

are more likely to generate the third industry effect.

Finally, the error terms are clustered at industry pair since only the coagglom-

eration measures have the time dimension. In addition, these error terms are

bootstrapped to account for the fact that the Coagglomeration of the produc-

tion on the right-hand side is also estimated.

In what follows the model specified as in equation 2.2 is first estimated and

then some alternative specifications along with several checks for robustness

are also considered. All the variables are normalized to have a zero mean and

a unit standard deviation. This transformation allows for the comparison be-

tween the relative importance of the effects of the determinants. The model is

estimated at a distance of 20 Km which is close to two times the median com-

muting distance in major cities in Canada. 18

2.4.2 Main results

This section presents the estimates of the effects of the Marshallian forces on

the coagglomeration of the production in Canada, followed by the results for

the innovation.

17. To exemplify the third industry effect, let consider three industries A, B, and C are such

that Marshallian mechanisms cause A to colocate with B and B to colocate with C, then A will

be mechanically located near C even if they are no Marshallian mechanisms at play in that third

relation.

18. The median distance to work among Canadian workers who had a usual

workplace was 8.7 kilometers in 2016. See https://www150.statcan.gc.ca/n1/daily-

quotidien/190225/dq190225a-eng.htm .
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Table 2.3 – Regression of the coagglomeration of the production on Marshallian forces

(1) (2) (3) (4)

Co-Agg.Prod Co-Agg.Prod Co-Agg.Prod Co-Agg.Prod

Max input-Output - US 0.219∗∗∗ 0.180∗∗∗

(0.064) (0.068)

Max labor movement of highly educated 0.160∗∗ -0.005

(0.066) (0.072)

Max knowledge spillover - IOM 0.239∗∗∗ 0.212∗∗∗

(0.062) (0.066)

Time FE Yes Yes Yes No

Nb of industry pairs x year 1368 1368 1368 1368

Adj R2 0.04 0.02 0.05 0.08

Notes: The multivariate model is estimated as specified in equation 2.2, where innovation is replaced by produc-

tion. It is a pooled cross-section from 2001 to 2015 for the coagglomeration of the production. The Marshallian

forces are averaged across the years for which data are available. The years 2001, 2005, and 2009 for the Labor

pooling; The odd years from 2001 to 2013 for the input-output; and the years 1976 to 2006 for the knowledge

spillover. For all the specifications, variables are standardized to have zero mean and unit standard deviation.

Standard errors are clustered at the industry pairs level and bootstrapped. Significant at ***1% **5% *10%

The first three columns of Table 2.3 give the estimates for the univariate spec-

ifications for each of the three forces. A one standard deviation increase in

input sharing is associated with a 0.22 standard deviation increase in the ac-

tual coagglomeration of the production. The association is 0.16 for the labor

pooling and 0.24 for the knowledge spillover. The coefficients for the input

sharing and that of knowledge spillover are significant and stronger than the

coefficient for the labor pooling. The specification in column (4) where all three

forces are included yields positive and significant effects of input sharing and

knowledge spillover, but the magnitude of these effects are smaller than those

of the univariate specifications. In addition, the labor movement no longer has

a significant effect.

The message that emerges from these results, is that only the input sharing and
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the knowledge spillover positively and significantly affect the coagglomeration

of the production in Canada. Let’s keep in mind that the Marshallian forces are

measured here in the perspective of the analysis of the coagglomeration of in-

novation. 19

Table 2.4 gives the estimates of the effects of the input-output, the labor move-

ment, the knowledge spillover, and the coagglomeration of the production on

the coagglomeration of innovation.

19. When the measures used to account for the Marshallian forces are the same as in previous

studies on the coagglomeration of the production e.g Ellison et al. 2010; Faggio et al. 2017, that

is using the labor correlation instead of the labor movement, all the three Marshallian forces

have positive and significant effects on the coagglomeration of the production for the Canadian

case. See Table 2.17 in the appendix
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Table 2.4 – Regression of the coagglomeration of innovation on the Marshallian forces

(1) (2) (3) (4) (5)

Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv

Max input-Output - US 0.019 -0.049

(0.051) (0.051)

Max labor movement of highly educated 0.156∗∗ -0.011

(0.064) (0.073)

Max knowledge spillover - IOM 0.358∗∗∗ 0.373∗∗∗

(0.076) (0.098)

co-agglomeration of plants - cdf 0.424∗∗∗

(0.065)

Time FE Yes Yes Yes Yes Yes

Nb of industry pairs x year 1368 1368 1368 1368 1368

Adj R2 -0.01 0.02 0.12 0.17 0.12

Notes: The multivariate model is estimated as specified in equation 2.2. It is a pooled cross-section from 2001 to

2015 for the coagglomeration measures of innovation and production. The Marshallian forces are averaged across

the years for which data are available. The years 2001, 2005, and 2009 for the Labor pooling; The odd years from

2001 to 2013 for the input-output; and the years 1976 to 2006 for the knowledge spillover. For all the specifications,

variables are standardized to have zero mean and unit standard deviation. Standard errors are bootstrapped to

account for the estimated nature of the coagglomeration of the production on the right-hand side. Significant at

***1% **5% *10%

As can be seen, in table 2.4 the input output variable is not correlated to the

coagglomeration of innovation indicating that input-out linkages has no ef-

fect on the spatial concentration of industry pairs as innovation is concerned.

The labor movement has a positive association with the coagglomeration of

innovation. As discussed earlier, the movement of workers from an industry

to another may well stimulate the creation of innovation and thus its spatial

concentration. The knowledge spillover is also positively associated with the

concetration of innovation suggesting that patents citation is a channel of the

coagglomeration of innovation. Finally, the coagglomeration of the production

is positively correlated to the coagglomeration of innovation, this is in line with

evidence of the coagglomeration of innovation and production provided in Lan
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(2019).

Table 2.5 gives the estimates of the effects of the input-output, the labor move-

ment, and the knowledge spillover on the coagglomeration of innovation, con-

trolling for the coagglomeration of the production.

Table 2.5 – Regression of the coagglomeration of innovation on the Marshallian forces

(1) (2) (3) (4)

Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv

Max input-Output - US -0.065 -0.102∗

(0.062) (0.058)

Max labor movement of highly educated 0.087 0.002

(0.058) (0.071)

Max knowledge spillover - IOM 0.248∗∗∗ 0.260∗∗∗

(0.071) (0.092)

co-agglomeration of plants - cdf 0.435∗∗∗ 0.407∗∗∗ 0.344∗∗∗ 0.357∗∗∗

(0.068) (0.065) (0.057) (0.061)

Time FE Yes Yes Yes Yes

Nb of industry pairs x year 1368 1368 1368 1368

Adj R2 0.18 0.18 0.23 0.24

Notes: The multivariate model is estimated as specified in equation 2.2. It is a pooled cross-section from 2001 to

2015 for the coagglomeration measures of innovation and production. The Marshallian forces are averaged across

the years for which data are available. The years 2001, 2005, and 2009 for the Labor pooling; The odd years from

2001 to 2013 for the input-output; and the years 1976 to 2006 for the knowledge spillover. For all the specifications,

variables are standardized to have zero mean and unit standard deviation. Standard errors are bootstrapped to

account for the estimated nature of the coagglomeration of the production on the right-hand side. Significant at

***1% **5% *10%

Columns (1) to (3) present univariate estimates for each of the Marshallian

forces. Not surprisingly, the co-agglomeration of production is positively re-

lated to the co-agglomeration of innovation in line with Lan (2019) who pro-

vided evidence of the colocation of production and innovation. In addition,

the estimates are insignificant and negative for the input-output, positive and
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insignificant effects for the labor movement, but positive and significant effects

for the knowledge spillover. More precisely, a one standard deviation of the

input-output is translated in a -0.065 standard deviation of the coagglomera-

tion of innovation. The association is 0.087 for the labor movement and 0.248

for the knowledge spillover.

Column (4) presents the estimates for the multivariate specification which in-

cludes the three Marshallian forces altogether with the time fixed effect, but no

control. This specification shows no effect for both the input sharing and the

labor pooling measures, but a positive and significant effect of the knowledge

spillover. Column (5) adds the coagglomeration of the production as a control

in the multivariate specification. With this specification, a negative but hardly

significant effect of the input sharing pops up, there is still no effect for the

labor pooling and only the knowledge spillover has a positive and significant

effect, along with the coagglomeration of the production.

These results show that all things else equal, part of the coagglomeration of the

innovation is driven by the coagglomeration of the production. Moreover, in-

put sharing reduces the coagglomeration of innovation, but this negative effect

is hardly significant. In addition, all things else equal, the labor movement of

highly educated workers does not drive the coagglomeration of innovation in

Canada. Finally, all things else equal, knowledge spillover has a positive and

significant effect on the coagglomeration of innovation.

2.4.3 Robustness checks

In this section, checks for robustness are carried out in five directions. First,

the influence of the distance at which the coagglomeration is captured. Second,

different other specifications are discussed. Third, alternative measures of Mar-
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shallian forces are also considered. Fourth, some specific subsets of the dataset

are considered, and fifth, we also rerun the model with the alternative samples

presented in section 2.2.1.

The effect of the distance

For the main specification, we estimate the effects of the Marshallian forces on

the coagglomeration of innovation measured with the cumulative distribution

up to a distance d=20 km. This choice has been guided by the mere fact that

the median commuting distance estimated in 2016 in Canada is 8.7 km, and

we use 20 km which is close to twice the value of that commuting. However,

previous studies have shown that the scale at which agglomeration is affected

is not the same for all the Marshallian forces (Rosenthal and Strange, 2001). We

now check if our results change when we vary the value of this distance rang-

ing from 0 to 999 km.

Figure 2.4 presents for each determinant, the variation of the estimated coeffi-

cients with the distance at which the coagglomeration is considered, along with

their 5% confidence intervals at each distance.
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Figure 2.4 – Marshallian effects at different coagglomeration distances
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(d) Coagglomeration of production

Panel (a) shows a negative effect of the input-output measure, but this effect

is hardly detectable. On Panel (b) the effect for the labor movement is also in-

significant at each distance from 0 to 999 Km. Panel (c) indicates a positive and

significant effect of the knowledge spillover which increases from 0 to about

300 km. Above that distance, the effect of the knowledge spillover is no longer

detectable. Finally, the effect of the coagglomeration of the production –panel

(d)– is also positive and significant at each distance. This check establishes that

the main results found on the three Marshallian forces are stable for any dis-
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tance lower than 300 Km, which is a reasonable upper bound to consider the

effects of the Marshallian forces on the agglomeration of the innovation.

Using differents specifications

Another check is conducted using different specifications of equation 2.2.

First, in the original specification, the available data used are pooled cross-

sections of Marshallian forces when both the coagglomeration of the produc-

tion and the coagglomeration of innovation are panel data from 2001 to 20015

(odd years). This situation may potentially cause erroneous estimated stan-

dard errors and thus spurious significance for some coefficients. We cluster our

errors at the industry pairs level to alleviate the effects of this data limitation.

Now, at the expense of the number of observations, we check the extent of this

situation by using a specification where all the measures including the coag-

glomeration ones are averaged across the years and the model is estimated as

a single cross-section. The results are roughly the same as those of the bench-

mark, the negative but hardly significant effect of the input sharing disappears,

and both the effects of the knowledge spillover and coagglomeration of the pro-

duction increase (see column 2 in table 2.6).

Second, we add industry fixed effects to further try to get rid of all possible con-

founding effects specific to innovation that are not captured by the coagglom-

eration of the production. 20 The results in column (3) remain qualitatively the

same. However, the effect of the input sharing becomes stronger and its mag-

nitude drops. On the contrary, the effect of the knowledge spillover becomes

weaker and its magnitude drops too.

Third, to measure input sharing, we use the variable constructed with data

20. To construct these fixed effects, for each industry a dummy variable equals 1 is generated

when the industry belongs to the industry pair.
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from the USA as a proxy of the Canadian measures. We check what the re-

sults are with the actual variable for Canada. In column 3 -Table 2.6- instead

of the input sharing of the US as a proxy measure of that of Canada, we use

the measure of Canada, that we instrument by the measure of the US to deal

with potential endogeneity. The results are roughly the same as those from the

benchmark both qualitatively and quantitatively, except the input-output effect

which is no longer significant.

Table 2.6 – Estimates of the effects of the Marshallian forces for different specifications

Benchmark Alternative specifications

(1) (2) (3) (4)

OLS OLS OLS IV

Max input-Output - CA -0.123

(0.090)

Max input-Output - US -0.102∗ -0.111 -0.043∗∗

(0.058) (0.077) (0.021)

Max labor movement of highly educated 0.002 -0.012 0.016 0.017

(0.071) (0.077) (0.029) (0.071)

Max knowledge spillover - IOM 0.260∗∗∗ 0.291∗∗∗ 0.062∗∗ 0.252∗∗∗

(0.092) (0.103) (0.027) (0.088)

co-agglomeration of plants - cdf 0.357∗∗∗ 0.383∗∗∗ 0.058 0.361∗∗∗

(0.061) (0.063) (0.043) (0.063)

Industry FE No No Yes No

Time FE Yes No Yes Yes

Nb of industry pairs x year 1368 171 1368 1368

Adj R2 0.24 0.27 0.79 0.24

Kleinbergen-Paap statistic 66.07

Notes: The estimates in column (1) are those from the multivariate model exactly as

specified in equation 2.2. In column (2) all the variables are averaged to have a single

cross-section. In column (3) we add industry fixed effects. Column (4) is an IV regres-

sion where the input sharing measure for Canada is instrumented by that of the US.

Significant at ***1% **5% *10%

This check shows that, once the coagglomeration of the production is controlled
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for, only the knowledge spillover affects significantly the coagglomeration of

innovation. The labor movement of skilled workers consistently has no effect,

and the negative effect of the input sharing which is hardly significant is not

robust across the different specifications.

Using different measures

We now argue that our results do not merely reflect the very nature of the vari-

ables used. To that end, we consider different alternative measures of the Mar-

shallian forces. In particular, the input-output is measured using the average

of the inputs-outputs instead of the maximum of the inputs-outputs, and the

results indicate that variable does not affect the coagglomeration of innovation

(see column 1 in Table 2.7).

Next, labor pooling is measured using the labor movement of all the workers

and not only the highly educated workers, and the effect is still insignificant

for the labor pooling (see column 2 in Table 2.7).

Finally, the - Sector Of Use - version of the Knowledge Spillover is considered

instead of the - Industry Of Manufacturing -(see column 3 in table 2.7). The

estimates show a consistently positive effect of knowledge spillover, the labor

pooling remains insignificant, and the negative but hardly significant effect of

the input sharing becomes a bit stronger.

All in all, with these alternative measures, the knowledge spillover and the co-

agglomeration of the production consistently have a significant and positive

effect on the coagglomeration of innovation, and the two other Marshallian

forces have no robust effects.
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Table 2.7 – Estimates of the effects of the Marshallian forces with alternative measures

(1) (2) (3)

Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv

Max input-Output - US -0.110∗ -0.130∗∗

(0.058) (0.053)

Avg input-Output - US -0.083

(0.066)

Max labor movement of highly educated -0.000 0.031

(0.074) (0.061)

Max labor movement 0.024

(0.074)

Max knowledge spillover - IOM 0.263∗∗∗ 0.250∗∗∗

(0.092) (0.091)

Max knowledge spillover - SOU 0.221∗∗∗

(0.077)

co-agglomeration of plants - cdf 0.353∗∗∗ 0.357∗∗∗ 0.371∗∗∗

(0.060) (0.061) (0.063)

Time FE Yes Yes Yes

Nb of industry pairs x year 1368 1368 1368

Adj R2 0.23 0.24 0.23

Notes: In column (1) the Max of input-output is replaced by the Average of input-output. In column

(2) The labor movement of the highly educated is replaced by the labor movement of all the work-

ers. In column (3) the Sector Of Use -SOU option of the knowledge spillover is considered instead

of the Industry Of Manufacturing-IOM. Significant at ***1% **5% *10%

Using different subsets of data

We discuss now issues related to the third industry effects and some other po-

tential artificial coagglomeration of the innovation, not related to the Marshal-

lian mechanism. The rationale behind the structure of the NAICS industrial

classification may hide some form of connection between industries not related

to the Marshallian mechanisms. To check this, we consider different subsets

that exclude all industry pairs for which the two three-digits industries belong

to the same two-digits groups. This is meant to make sure that the results are
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not driven by some factors related to the classification of the industries. In

addition, this may help to check for the third industry effect by removing in

the estimation these industries which may potentially be geographically close.

Column(1) excludes the pairs for which both industries are from the 2-digit

"31". Column(2) excludes the pairs for which both industries are from the 2-

digit "32", and Column(3) excludes the pairs for which both industries are from

the 2-digit "33". Finally, column(4) excludes pairs for which both of the indus-

tries are from the same 2-digit industry. The results are presented in - Table 2.8-.

Table 2.8 – Estimates of the effects of the Marshallian forces for subsets of industry

pairs

Benchmark Alternative subsets of industry pairs

(1) (2) (3) (4) (5)

Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv

Max input-Output - US -0.102∗ -0.036 -0.143∗ -0.107 -0.078

(0.058) (0.061) (0.082) (0.090) (0.087)

Max labor movement of highly educated 0.002 -0.017 0.023 0.005 0.019

(0.071) (0.053) (0.064) (0.076) (0.097)

Max knowledge spillover - IOM 0.260∗∗∗ 0.229∗∗∗ 0.276∗∗∗ 0.213∗∗ 0.185∗

(0.092) (0.087) (0.105) (0.103) (0.112)

co-agglomeration of plants - cdf 0.357∗∗∗ 0.401∗∗∗ 0.369∗∗∗ 0.345∗∗∗ 0.406∗∗∗

(0.061) (0.062) (0.082) (0.067) (0.075)

Time FE Yes Yes Yes Yes Yes

Nb of industry pairs x year 1368 1288 1248 1144 944

Adj R2 0.24 0.25 0.24 0.20 0.22

Notes: The Benchmark specification is considered. The estimates in column (2) exclude the pairs

for which both of the industries are from the 2-digit "31". The estimates in column (3) exclude the

pairs for which both of the industries are from the 2-digit "32". The estimates in column (4) exclude

the pairs for which both of the industries are from the 2-digit "33". The estimates in column (5)

exclude all the 497 pairs such that 31a−31b;32c−32d;33e−33 f where a,bε{1,2,3,4,5,6} and a 6= b;

c,dε{1,2,3,4,5,6,7} and c 6= d; e, f ε{1,2,3,4,5,6,7,9} and e 6= f . Significant at ***1% **5% *10%

With these different subsets, the results for the knowledge spillover remain

qualitatively the same, with some changes in its magnitudes and its signifi-

cance. The effect of the labor movement is still insignificant and the negative
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and hardly significant effect of the input sharing is not robust across all the

subsets. We are thus, confident that our results are free from artificial effects

which would have originated from the third industry effect and/or the NAICS

structure. 21

Using alternative samples of the patents

As discussed in section 2.2.1, the steps used to shape the initial dataset to the

convenience of our analysis, have induced some concerns. In particular, the

necessity of locating patents across space, and transforming them into NAICS

classification has induced an artificial increase in the number of patents. We

dealt with these issues in the main results by using weights while estimating

the coagglomeration of the innovation. We now use alternative means of ad-

dressing the same issue to discuss the robustness of our main results. First, we

re-estimate the coagglomeration of innovation using the alternative samples (2

and 3) presented in Table 2.1. Second, we consider a different way of com-

puting the cumulative distribution of the Coagglomeration of the innovation

based on the benchmark sample. Third, we consider different weights for the

estimation of the coagglomeration of the innovation.

For Sample 1 (benchmark), each patent is duplicated across the location of all

its related inventors and duplicated across all the manufacturing NAICS with

a non-zero probability used to move from the IPC to the NAICS classification.

The weight used to estimate the coagglomeration of the innovation is the prob-

ability link.

For Sample 2 each patent is duplicated across the location of all its related in-

ventors, and only the NAICS with the maximum probability used to move from

21. A comprehensive check of the incidence of individual industry in the pairs is presented

in the appendix 2.15 and 2.16. The results suggest that the effect of the knowledge spillover on

the industry-pairs including at "324" is important for the coagglomeration of innovation.
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the IPC to the NAICS classification is considered. The weight used to estimate

the K-density is the probability link.

For Sample 3, each patent is duplicated across the location of all its related in-

ventors, and then only the NAICS with the maximum probability used to move

from the IPC to the NAICS classification is considered, provided that the value

of the probability is greater or equal to 0.5. The weight used to estimate the

K-density is the probability link.

Sample 4 is the same as Sample 1, but instead of the cumulative K-density of the

innovation up to the distance d (d=20), the sum is computed without the value

at the distance equal to zero. This is meant to correct for the artificial increase

in zero bilateral distances induced by the transformation of the dataset.

Sample 5 is identical to the benchmark, but the weight used to estimate the

K-density is the probability link times the inverse of the number of inventors

related to each patent.

Sample 6 is Identical to sample 2, but the weight used to estimate the K-density

is the probability link times the inverse of the number of inventors related to

each patent.

Sample 7 is identical to sample 3, but the weight used to estimate the K-density

is the probability link times the inverse of the number of inventors related to

each patent. The results are presented in Table 2.9.
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Table 2.9 – Estimates of the effects of the Marshallian forces for samples of industry

pairs

(1) (2) (3) (4) (5) (6) (7)

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7

Max input-Output - US -0.102∗ -0.033 0.006 -0.102∗ -0.104 -0.054 -0.032

(0.058) (0.049) (0.060) (0.058) (0.065) (0.052) (0.058)

Max labor movement of highly educated 0.002 -0.058 -0.113∗ 0.002 -0.013 -0.081 -0.133∗∗

(0.071) (0.067) (0.061) (0.071) (0.074) (0.072) (0.066)

Max knowledge spillover - IOM 0.260∗∗∗ 0.237∗∗∗ 0.146∗∗ 0.260∗∗∗ 0.221∗∗ 0.218∗∗ 0.144∗∗

(0.092) (0.087) (0.073) (0.092) (0.090) (0.086) (0.073)

co-agglomeration of plants - cdf 0.357∗∗∗ 0.350∗∗∗ 0.333∗∗∗ 0.357∗∗∗ 0.383∗∗∗ 0.339∗∗∗ 0.320∗∗∗

(0.061) (0.063) (0.064) (0.061) (0.066) (0.065) (0.062)

Time FE Yes Yes Yes Yes Yes Yes Yes

Nb of industry pairs x year 1368 1368 1368 1368 1368 1368 1368

Adj R2 0.24 0.20 0.14 0.24 0.23 0.18 0.13

Notes: The multivariate model is estimated as specified in equation 2.2. Significant at ***1% **5% *10%.

Some differences pop up in the results across these samples, but the main con-

clusion remains the same. First, the input sharing has a negative but hardly sig-

nificant effect for samples 1 and 4, but no effect with the other samples. There is

a negative and weak effect of the labor movement for the specifications sample

3 and sample 7. The knowledge spillover has a positive and persistent effect

for all the specifications and so is the coagglomeration of the production. The

conclusion remains the same, the coagglomeration of the production and the

knowledge spillover affect positively the coagglomeration of the innovation

and the two other forces have no significant effects.

2.5 Conluding remarks

The paper uses the continuous metric of Duranton and Overman (2005) to de-

scribe the coagglomeration of innovation in Canada. The observed patterns re-

veal that Canadian innovation is concentrated and even more than production,



124

in line with what has been found in other countries. Then, building on Ellison

et al. (2010); Faggio et al. (2017), the paper analyzes the effects of labor pooling,

input sharing, and knowledge spillover on the coagglomeration of innovation.

The analysis shows that only the knowledge spillover unambiguously causes

the coagglomeration of innovation.

Two main cautions are to be acknowledged in this study. First, the measure

of innovation only captures formal innovation for which protection is explic-

itly applied. As such, the actual pattern of the coagglomeration of innova-

tion in Canada may be different to some extent, but more than likely stronger

than what is uncovered in this paper, given that the actual innovation may be

denser than what we capture here. Second, the Marshallian forces are expected

to influence the coagglomeration of innovation through some form of knowl-

edge diffusion, be it through the input sharing, the labor movement, or the

knowledge spillover so that the results of this paper only inform on the fact

that knowledge that spills formally through patents citations is the main driver

of the coagglomeration of the formal innovation in terms of patents applica-

tions. Yet, the paper remains silent on the part of the effects of the Marshallian

forces channeled through the flow of knowledge that leaves no paper trails.

However, the results remain informative for possible policy issues. The es-

timates of the difference in the effects of the Marshallian forces on the co-

agglomeration of innovation compared to those on the co-agglomeration of the

production are very useful on cost–benefit and cost-effectiveness analyses of

urban and industrial policies. Through its spatial heterogeneity results, the pa-

per also offers avenue to foster and promote regional innovation capacity in

Canada.
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2.6 Appendix to chapter 2

2.6.1 Additional tables on innovation data

Table 2.10 – Counts of patents extended to NAICS and addresses across the years

2001 2003 2005 2007 2009 2011 2013 2015 Average

311 Food manufacturing 1936 2108 2208 2185 1978 1747 1789 1817 1971

312 Beverage and tobacco product manuf. 1215 1294 1308 1417 1251 1031 1063 972 1194

313 Textile mills 50 52 94 55 57 47 39 51 56

314 Textile product mills 0 1 4 1 0 0 1 2 2

315 Clothing manufacturing 773 821 921 878 734 791 726 846 811

316 Leather, allied product manuf. 308 324 297 265 213 268 276 256 276

321 Wood product manufacturing 95 143 106 120 51 73 91 61 93

322 Paper manufacturing 746 831 896 718 819 695 709 796 776

323 Printing, support activities 9 24 33 7 18 15 6 17 16

324 Petrol, coal product manuf. 629 826 953 1058 800 784 857 620 816

325 Chemical manufacturing 2661 2909 3215 3054 2688 2767 2857 2730 2860

326 Plastics, rubber products manuf. 2634 2750 2898 2825 2366 2708 2581 2719 2685

327 Non-metallic mineral product manuf. 1150 1321 1575 1547 1227 1324 1392 1283 1352

331 Primary metal manufacturing 601 559 617 535 392 485 509 448 518

332 Fabricated metal product manuf. 2785 2982 2985 2890 2436 2634 2454 2602 2721

333 Machinery manufacturing 4365 4637 4729 4523 3912 4428 4421 4712 4466

334 Computer, electronic product manuf. 5652 5527 6086 5841 5055 6146 5287 5099 5587

335 Electrical, appliance manuf. 1488 1666 1678 1514 1267 1557 1436 1403 1501

336 Transportation equipment manuf. 1115 1259 1309 1144 965 953 1061 1166 1122

337 Furniture, related product manuf. 519 588 638 681 517 420 409 421 524

339 Miscellaneous manufacturing 2148 2273 2483 2269 2178 2124 2131 2202 2226

Total 30879 32895 35033 33527 28924 30997 30095 30223 31572

Notes: This table reports patents and innovators counts across the years with duplicates innovators to convert the IPC database into a

NAICS database without accounting for the probability link
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Table 2.11 – Counts of patents extended to addresses and one unique NAICS 3-digit

across the year

2001 2003 2005 2007 2009 2011 2013 2015 Average

311 Food manufacturing 752 717 613 618 656 545 563 566 629

312 Beverage and tobacco product manuf. 36 40 38 29 15 19 13 25 27

313 Textile mills 25 17 24 25 29 21 16 19 22

315 Clothing manufacturing 39 53 57 41 45 51 50 40 47

316 Leather, allied product manuf. 76 72 80 84 88 58 99 79 80

321 Wood product manufacturing 80 124 88 89 46 53 82 53 77

322 Paper manufacturing 325 297 310 221 339 329 331 323 309

324 Petrol, coal product manuf. 35 60 48 123 73 169 111 81 88

325 Chemical manufacturing 559 663 828 755 671 601 757 480 664

326 Plastics, rubber products manuf. 195 253 238 265 144 266 157 272 224

327 Non-metallic mineral product manuf. 315 339 399 404 314 286 324 309 336

331 Primary metal manufacturing 219 101 96 82 46 73 102 74 99

332 Fabricated metal product manuf. 272 332 298 247 153 210 207 243 245

333 Machinery manufacturing 1245 1318 1402 1517 1324 1508 1678 1736 1466

334 Computer, electronic product manuf. 3085 2850 3315 3043 2781 3470 2490 2113 2893

335 Electrical, appliance manuf. 129 167 142 156 150 206 219 224 174

336 Transportation equipment manuf. 467 495 437 356 316 343 358 426 400

337 Furniture, related product manuf. 199 203 211 216 200 150 160 152 186

339 Miscellaneous manufacturing 991 1015 1141 1046 906 959 937 1039 1004

Total 9044 9116 9765 9317 8296 9317 8654 8254 8970

Notes: This table reports patents and innovators counts across the years with duplicates innovators to convert the IPC database into a NAICS database

without accounting for the probability link

Table 2.12 – Counts of patent extended to addresses and one unique NAICS 3-digit

with prob. > 0.5 across the years

2001 2003 2005 2007 2009 2011 2013 2015 Average

311 Food manufacturing 103 69 59 48 86 68 55 40 66

312 Beverage and tobacco product manuf. 36 40 38 29 15 19 13 25 27

313 Textile mills 25 17 24 25 29 21 16 19 22

315 Clothing manufacturing 39 53 57 41 45 51 50 40 47

316 Leather, allied product manuf. 48 39 62 48 72 31 74 60 54

321 Wood product manufacturing 80 124 88 89 46 53 82 53 77

322 Paper manufacturing 70 79 87 39 65 53 38 53 61

324 Petrol, coal product manuf. 35 60 48 123 73 169 111 81 88

325 Chemical manufacturing 206 200 231 218 220 259 334 267 242

326 Plastics, rubber products manuf. 74 139 105 117 52 71 43 68 84

327 Non-metallic mineral product manuf. 308 323 381 362 310 281 311 293 321

331 Primary metal manufacturing 219 101 96 82 46 73 102 74 99

332 Fabricated metal product manuf. 123 186 172 116 99 135 137 162 141

333 Machinery manufacturing 767 745 835 958 805 891 1081 1106 899

334 Computer, electronic product manuf. 3075 2843 3294 3035 2761 3468 2481 2108 2883

335 Electrical, appliance manuf. 104 120 95 98 95 172 177 184 131

336 Transportation equipment manuf. 467 495 437 356 316 343 358 426 400

337 Furniture, related product manuf. 199 203 211 216 200 150 160 152 186

339 Miscellaneous manufacturing 918 940 1034 984 837 904 851 923 924

Total 6896 6776 7354 6984 6172 7212 6474 6134 6750

Notes: This table reports patents and innovators counts across the years with duplicates innovators to convert the IPC database into a NAICS database

without accounting for the probability link
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2.6.2 The Duranton and Overman methodology of coagglomeration

Global confidence bandwidths

Let K̂(d) be the estimated K-density of the bilateral distances between inno-

vators of a given industry pairs, and K̄(d) its upper global confidence band.

Following Duranton and Overman (2008), let consider that the upper band is

hit by 5% of the 1000 simulations between 0 and 999 km. When K̂(d) > K̄(d)
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for at least one d ε [0, 999], the innovation industry pair of are said to be colo-

calized (at 5% confidence level). For dispersion, let observe that if patents in

an industry pair are very colocalized at short distances, they will likely show

dispersion at larger distances. Hence, an industry pair will exhibit dispersion

if the lower confidence band of the considered industry pairs K(d), is such that

it is hit by 5% of the randomly generated K-densities that are not colocalized.

Patents in that industry pairs are then said to exhibit dispersion (at 5% con-

fidence level) when K̂(d) < K(d) for at least one d ε [0, 999] and they do not

exhibit localization. Dispersion is thus observed when there are fewer patents

at short distances than what would be expected in a case of randomness.

Indices of localization and dispersion

The index of localization is therefore defined as :

Γ(d) = max(K̂(d) - K̄(d),0) (2.2)

The index of dispersion is defined as :

Ψ(d) =


max(K(d)− K̂(d),0) if

999
∑

d=0
Γ(d) = 0

0 otherwise
(2.3)

Graphically, the localization of patents in an industry pair is detected when the

K-density lies above its upper global confidence bandwidth, and dispersion is

detected when the K-density lies below the lower global confidence band and

never lies above the upper global confidence band.
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Table 2.13 – Coagglomeration patterns : Innovation Versus production across the years

2001 2003 2005 2007 2009 2011 2013 2015 Average

Global colocalization - Innovation
Number of industries pairs 111 93 98 118 112 130 120 114 112
% of industries pairs 65 54 57 69 65 76 70 67 65
Γ_i(x10−4) 202 232 232 194 393 197 277 298 253

Global codispersion - Innovation
Number of industries pairs 4 13 8 7 10 5 1 7 7
% of industries pairs 2 8 5 4 6 3 1 4 4
Ψ_i(x10−4) 67 73 49 24 37 51 66 34 50

Random distribution - Innovation
Number of industries pairs 56 65 65 46 49 36 50 50 52
% of industries pairs 33 38 38 27 29 21 29 29 30

Global colocalization - Production
Number of industries pairs 124 89 101 135 90 81 70 110 100
% of industries pairs 73 52 59 79 53 47 41 64 58
Γ_p(x10−4) 167 143 107 174 89 67 88 143 122

Global codispersion - Production
Number of industries pairs 4 11 8 2 10 3 16 7 8
% of industries pairs 2 6 5 1 6 2 9 4 4
Ψ_p(x10−4) 25 53 75 12 43 115 45 44 51

Random distribution - Production
Number of industries pairs 43 71 62 34 71 87 85 54 63
% of industries pairs 25 42 36 20 42 51 50 32 37

Notes: This table reports statistics related to global localization and dispersion for both innovation and production. The scotts National Directories
database is used to compute the figures for the production. The formula used to compute the indices are presented in appendix. The figures for the
last column are averages across the years. The number of industry pairs for the production is 210 at 3-digit NAICS. For the innovation the number of
industry pairs is 171 given that the industries 314-Textile mills and 323 Printing, support activities are removed
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Table 2.14 – Classification of the NAICS 3-digits industry pairs in terms of innovation in 2015

NAICSCODE NAICS311 NAICS312 NAICS313 NAICS315 NAICS316 NAICS321 NAICS322 NAICS324 NAICS325 NAICS326 NAICS327 NAICS331 NAICS332 NAICS333 NAICS334 NAICS335 NAICS336 NAICS337

NAICS312 Localized

NAICS313 Random Random

NAICS315 Localized Localized Random

NAICS316 Random Localized Localized Dispersed

NAICS321 Random Random Random Random Localized

NAICS322 Localized Localized Localized Random Localized Random

NAICS324 Dispersed Localized Localized Localized Localized Localized Dispersed

NAICS325 Localized Localized Localized Localized Localized Localized Localized Localized

NAICS326 Localized Localized Dispersed Localized Localized Localized Localized Localized Localized

NAICS327 Localized Localized Random Localized Random Localized Localized Localized Localized Localized

NAICS331 Localized Random Random Localized Localized Random Localized Localized Localized Localized Random

NAICS332 Localized Localized Random Localized Localized Random Localized Random Localized Localized Localized Random

NAICS333 Localized Localized Random Localized Localized Localized Localized Localized Localized Localized Localized Localized Localized

NAICS334 Localized Localized Localized Localized Localized Localized Localized Localized Localized Localized Localized Localized Localized Localized

NAICS335 Localized Localized Localized Localized Localized Localized Localized Localized Localized Localized Localized Localized Localized Localized Localized

NAICS336 Localized Localized Random Dispersed Dispersed Random Localized Random Localized Localized Dispersed Random Localized Localized Localized Localized

NAICS337 Localized Localized Random Dispersed Random Random Localized Localized Localized Localized Dispersed Localized Dispersed Localized Localized Localized Dispersed

NAICS339 Localized Localized Dispersed Localized Localized Random Localized Localized Localized Localized Localized Localized Localized Localized Localized Localized Localized Localized

Notes: This matrix reports the pattern of coagglomeration of industry pairs consisting of the industry in the row and in the column. The global indices of localization

and dispersion are used to classify industry pairs as colocalized, Dispersed, or Randon. The pairs 323-314 are note classified since they only have a few observations to

compute the comparison statistics.
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Table 2.15 – Estimation excluding one NAIS-3 at the time, without industry fixed effects

311 312 313 315 316 321 322 324 325 326 327 331 332 333 334 335 336 337 339

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19)

Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv

Max input-Output - US -0.097 -0.109 -0.005 -0.058 -0.098 -0.116 -0.106 -0.113 -0.152 -0.133 -0.103 -0.109 -0.129∗ -0.093 -0.013 -0.109 -0.120 -0.127∗ -0.118

(0.076) (0.067) (0.070) (0.053) (0.076) (0.073) (0.069) (0.069) (0.097) (0.083) (0.070) (0.087) (0.076) (0.082) (0.059) (0.076) (0.074) (0.077) (0.078)

Max labor movement of highly educated -0.001 0.006 -0.045 -0.027 -0.013 0.019 0.009 0.022 0.025 0.019 0.004 0.028 0.168 -0.084 0.046 -0.016 0.025 -0.006 -0.070

(0.091) (0.089) (0.080) (0.076) (0.086) (0.078) (0.077) (0.080) (0.083) (0.082) (0.079) (0.084) (0.127) (0.067) (0.031) (0.060) (0.069) (0.069) (0.076)

Max knowledge spillover - IOM 0.271∗∗ 0.257∗∗ 0.268∗∗∗ 0.241∗∗ 0.263∗∗ 0.256∗∗ 0.233∗∗ 0.272∗∗ 0.283∗∗ 0.270∗∗ 0.255∗∗ 0.220∗∗ 0.208∗∗ 0.388∗∗∗ 0.028 0.252∗∗∗ 0.278∗∗∗ 0.256∗∗∗ 0.392∗∗∗

(0.112) (0.111) (0.102) (0.106) (0.114) (0.114) (0.113) (0.119) (0.122) (0.112) (0.113) (0.112) (0.104) (0.111) (0.033) (0.090) (0.093) (0.096) (0.111)

co-agglomeration of plants - cdf 0.356∗∗∗ 0.349∗∗∗ 0.361∗∗∗ 0.430∗∗∗ 0.363∗∗∗ 0.415∗∗∗ 0.360∗∗∗ 0.345∗∗∗ 0.332∗∗∗ 0.338∗∗∗ 0.366∗∗∗ 0.371∗∗∗ 0.351∗∗∗ 0.317∗∗∗ 0.249∗∗∗ 0.375∗∗∗ 0.351∗∗∗ 0.386∗∗∗ 0.381∗∗∗

(0.066) (0.067) (0.067) (0.069) (0.064) (0.070) (0.065) (0.068) (0.069) (0.066) (0.064) (0.063) (0.058) (0.060) (0.031) (0.073) (0.067) (0.073) (0.068)

Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Nb of industry pairs x year 1224 1224 1224 1224 1224 1224 1224 1224 1224 1224 1224 1224 1224 1224 1224 1224 1224 1224 1224

Adj R2 0.24 0.23 0.24 0.26 0.23 0.24 0.22 0.23 0.24 0.24 0.23 0.23 0.26 0.28 0.19 0.23 0.26 0.25 0.27

Notes: This table reproduces the main estimation. The industry specified in the column is excluded from the estimation and there is no industry fixed effects

Table 2.16 – Estimation excluding one NAIS-3 at the time, with industry fixed effects

311 312 313 315 316 321 322 324 325 326 327 331 332 333 334 335 336 337 339

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19)

Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv Co-Agg.Inv

Max input-Output - US -0.040 -0.044∗ -0.022 -0.029 -0.037 -0.049∗∗ -0.045∗∗ -0.048∗∗ -0.035 -0.033 -0.045∗∗ -0.056∗∗ -0.045∗ -0.040 -0.048∗∗ -0.047∗ -0.044∗ -0.051∗∗∗ -0.044

(0.028) (0.023) (0.034) (0.025) (0.026) (0.019) (0.018) (0.019) (0.032) (0.028) (0.021) (0.022) (0.025) (0.026) (0.021) (0.025) (0.024) (0.018) (0.029)

Max labor movement of highly educated 0.008 0.013 0.015 0.010 0.006 0.002 0.020 0.026 0.013 0.006 0.018 0.024 0.025 0.023 0.031 0.026 0.020 0.001 0.014

(0.028) (0.028) (0.026) (0.026) (0.028) (0.025) (0.030) (0.031) (0.029) (0.032) (0.030) (0.029) (0.048) (0.035) (0.025) (0.031) (0.031) (0.025) (0.028)

Max knowledge spillover - IOM 0.058∗∗ 0.064∗∗ 0.060∗∗ 0.066∗∗ 0.067∗∗ 0.062∗∗ 0.053∗ 0.066∗∗ 0.044 0.064∗∗ 0.061∗ 0.055∗ 0.057∗ 0.046 0.074∗∗∗ 0.069∗∗ 0.064∗∗ 0.067∗∗ 0.078∗∗

(0.027) (0.027) (0.025) (0.029) (0.030) (0.028) (0.030) (0.032) (0.033) (0.029) (0.031) (0.029) (0.034) (0.029) (0.022) (0.027) (0.032) (0.028) (0.032)

co-agglomeration of plants - cdf 0.075∗ 0.033 0.060 0.089∗ 0.071∗ 0.099∗∗∗ 0.057 0.035 0.065 0.058 0.054 0.068 0.050 0.027 0.038 0.053 0.049 0.069∗ 0.057

(0.043) (0.044) (0.052) (0.050) (0.042) (0.037) (0.039) (0.042) (0.043) (0.042) (0.042) (0.042) (0.043) (0.038) (0.035) (0.043) (0.043) (0.041) (0.038)

Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Nb of industry pairs x year 1224 1224 1224 1224 1224 1224 1224 1224 1224 1224 1224 1224 1224 1224 1224 1224 1224 1224 1224

Adj R2 0.78 0.78 0.81 0.80 0.79 0.80 0.78 0.78 0.81 0.80 0.78 0.80 0.79 0.79 0.46 0.79 0.78 0.80 0.79

Notes: This table reproduces the main estimation. The industry specified in the column is excluded from the estimation and we add industry fixed effects
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Table 2.17 – Regression of the coagglomeration of the production on the Marshallian

forces

(1) (2) (3) (4)

Co-Agg.Prod Co-Agg.Prod Co-Agg.Prod Co-Agg.Prod

Max input-Output - US 0.219∗∗∗ 0.145∗∗

(0.064) (0.068)

Labor correlation - aggregated occupations 0.173∗∗ 0.120∗

(0.073) (0.072)

Max knowledge spillover - IOM 0.239∗∗∗ 0.202∗∗∗

(0.062) (0.062)

Time FE Yes Yes Yes Yes

Nb of industry pairs x year 1368 1368 1368 1368

Adj R2 0.04 0.03 0.05 0.09

Notes: The multivariate model is estimated as specified in equation 2.2, where innovation is replaced by produc-

tion. It is a pooled cross-section from 2001 to 2015 for the coagglomeration of the production. The Marshallian

forces are averaged across the years for which data are available. The years 2001, 2005, and 2009 for the Labor

pooling; The odd years from 2001 to 2013 for the input-output; and the years 1976 to 2006 for the knowledge

spillover. For all the specifications, variables are standardized to have zero mean and unit standard deviation.

Standard errors are clustered at the industry pairs level.



CHAPTER III

A COMPLEMENT TO THE TEST OF LOCALIZATION OF DURANTON

AND OVERMAN (2005)

Abstract

We apply the methodology of Duranton and Overman (2005), using a new

counterfactual to study the agglomeration patterns of Canadian manufactur-

ing establishments. The new counterfactual which accounts more precisely

for firms’ possible location choices, better detects the departure from random-

ness, and generates substantial differences between the patterns that we uncov-

ered compared to those obtained with the classical counterfactual. Our results

suggest that localization and dispersion may be stronger than what is usually

thought.

Keywords: Agglomeration, location, kernel density, counterfactual.

JEL Classification: R14, R15, L60
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3.1 Introduction

A common feature of economic landscapes worldwide is geographic concen-

tration, and understanding this tendency is essential in economics. Crucial to

this process is the ability of economists to measure the extent of this concen-

tration. In that wake, various endeavors of researchers to put numbers behind

the degree of concentration have yielded interesting measures, starting from

the simple Gini indices to more elaborated ones, such as the Ripley function

(Marcon and Puech, 2003). One particular characteristic of these measures is

that they do not have a meaning per se. They rather need to be compared to

a benchmark to assess the extent of concentration of the reality that they in-

tend to quantify. For example, the Gini index once computed is compared to

the 45-degree line equivalent to a uniform distribution. The Herfindahl index

is compared in many cases to questionable arbitrary thresholds. By doing so,

these indices assume that an ideal world is one of uniform or arbitrary repar-

tition. As such, many of these measures only capture unevenness. However,

as well observed by Duranton and Overman (2005) unevenness does not nec-

essarily mean concentration. For this reason, the recently proposed measures

of concentration have suggested for comparison, a benchmark that accounts

for what would have been in a total absence of tendency to agglomerate. For

example, Ellison and Glaeser (1997), suggest a benchmark that controls for in-

dustrial concentration.

This paper moves in the same direction and suggests detecting localization on

the basis of a better-informed benchmark. The paper builds on Duranton and

Overman (2005, 2008) who propose an index, to assess the degree of localiza-

tion of manufacturing in the United Kingdom. Their index is based on the

estimation of the kernel density of the bilateral distances of pairs of industries.
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In particular, to control for the overall agglomeration of manufacturing and the

industrial concentration, they propose for each industry under investigation, a

random draw among the possible locations as the hypothetical distribution of

locations that they used to construct a counterfactual measure against which

the observed measure is compared. However, their benchmark which is sim-

ple and straightforward opens new questions since it implies that a plant like

"Bombardier Transport Canada" which enjoys a parcel of roughly "35,000 me-

ters square", and employs more than 700 workers can switch locations with "El

Mio Aliments Inc." a commercial bakery manufacturing of 6 employees located

on a parcel of 250 meters square, in a residential neighborhood. In the real

world, the former company will face space constraints at the location of the lat-

ter. 1 In addition, some zoning restrictions may exclude "Bombardier Transport

Canada" from locating in a residential neighborhood whereas "El Mio Aliments

Inc." may not face such constraint. Duranton and Overman (2008, p.236), them-

selves raised the issue since they acknowledge that this way of constructing the

counterfactual assumes “that the establishments, regardless of their size, face no re-

strictions on their location choice. The fact that large establishments require large sites

to host them is, in practice, a binding constraint that prevents large manufacturing

establishments from locating in many areas such as the central part of most cities, etc.

These constraints may arise as a result of the workings of land markets (i.e., through

prices) or as a result of government policy (e.g., zoning). These constraints could affect

the results above and limit the opportunities for large establishments to cluster. More

generally, the overall location patterns of industries could be affected by the availability

of sites for their larger establishments”. To deal with the problem that many in-

dustries face constraints in their geographic location choice due to sites charac-

teristics and zoning regulations, the authors refined their analysis by allowing

1. In the document, we use interchangeably the terms plant and establishment
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establishments to be reallocated to a site occupied by an establishment in the

same employment size class. They conclude that site size constraints do not

appear to affect the tendency of U.K. manufacturing industries to localize or

disperse.

While their conclusion is a good test of robustness for their results, it does not

eliminate the necessity of accounting for location constraints in defining any

relevant counterfactual, for at least two reasons. First, a plant’s employment

size may not necessarily be a good proxy for all the constraints that an estab-

lishment faces for its location choice. Second, there is substantial heterogene-

ity across industries in terms of plants location determinants. For example,

on the land size, a plant with 250 employees in motor vehicle manufacturing

will require a different square-footage than a plant with 250 employees in cut-

and-sew clothing manufacturing. Finally, since the assessment of the departure

from randomness entirely depends on the counterfactual, its definition is criti-

cal for any exercise of assessing agglomeration and thus deserves more atten-

tion.

We use the same metric than Duranton and Overman (2005) and propose a

new way of constructing the counterfactual agglomeration against which the

observed agglomeration should be compared for the detection of the departure

from randomness. First, we start by selecting a set of variables suggested by the

literature on firms’ locations decisions, and we test their relevance in determin-

ing the locations of plants in Canada. Second, we use these variables as input in

a clustering procedure to construct classes of locations that feature intra-class

homogeneity and inter-class heterogeneity. Third, we use the output classes

to construct the counterfactual agglomeration against which the observed ag-

glomeration is compared. More precisely, while drawing a hypothetical loca-

tion for a plant of a given industry, the process is constrained by the mere fact
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that the new location should be of the same Class as the actual location of the

plant.

Using this approach, we test for the departure from randomness of the geo-

graphic distribution of the manufacturing industries in Canada as recorded in

the Scotts National Directories for the year 2017. We observe that accounting

for firms’ locations choice generates classes of locations that are quite polar-

ized i.e, each Class is either dispersed or localized compared to the distribution

of the universe of locations. 2 One important feature of such polarized classes

is that they yield counterfactuals that are more precise in detecting departure

from randomness. Indeed, on the agglomeration of employment for example,

the approach with the new counterfactual identifies 81% of the industries as

departing from randomness (52.4% of localization and 28.6% of dispersion),

whereas the number is 66.7% for the unconstraint counterfactual (42.9% of lo-

calization and 23.8% of dispersion). Moreover, the new counterfactual suggests

substantial changes in the classification for some industries, as nearly 20% of

industries move from localized (respectively dispersed) with the classical coun-

terfactual to dispersed (respectively localized) with our new counterfactual. Fi-

nally, localization happens with our new counterfactual at shorter distances

compared to the classical counterfactual, while dispersion is more important at

longer distances with the new counterfactual compared to the classical one.

The rest of the document is organized as follows: section 3.2 presents the man-

ufacturing industries in Canada, section 3.3 presents the methodology of de-

tecting agglomeration. Section 3.4 gives the results and section 3.5 concludes

the document.

2. The universe of locations is what is usually used to construct previous counterfactuals.
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3.2 Data

The main data source used in this paper is the Scott’s National All Business

Directories, a proprietary database that draws information on plants operat-

ing in Canada from Business Register records and telephone surveys. This

dataset contains the address of each establishment including the postal code,

the province, and the street number, as well as the year of the survey. It also

contains the industrial classification (North American Industry Classification

System, NAICS 6-digit level), the number of workers at the site, the business

type of the activity of the plant, the headquarters, and the exports’ status. From

that database, we extract observations for manufacturing industries for the year

2017. Then, we use the addresses of establishments to retrieve the geographic

coordinates of the location of each establishment, using a geocoding procedure

(see appendix 1.7.5 for the geocoding). This first process is critical since our

analysis relies on continuous metric constructed with these geographic coordi-

nates. Thus, at the end of the geocoding process, we check for quality and re-

move observations with inaccurate coordinates. Next, we collect from statistics

Canada, open-source data on polygons featuring the footprints of the buildings

where plants produce and we use spatial join techniques to associate each plant

to its building footprint (see appendix 1.7.3 for details on spatial join). These

building footprints are used to proxy the size of the site where the plant is lo-

cated. Finally, we also use other geographic datasets from Statistic Canada and

DMTI that we merge with the Scott’s dataset using Geographic Information

System (GIS) tools to collect and construct for each establishment, the distance

to its nearest junction, the zoning category of the location of the plant, the num-

ber of plants from the same industry in a radius of 10 km around the establish-

ment, the total employment of the same industry in a radius of 10Km around

the establishment, the population density in a radius of 1.5 Km, a dummy in-
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dicating if the plant is located in a CMA or not.

We proceed with additional trimmings by removing observations with missing

information and we also remove the 1% tails of the distribution of employment

for each NAICS 3-digit industry. The reason for this trimming is that the vari-

able is used as weight for the estimation of the agglomeration of employment,

and inaccurate information can be critical in the process. At the end of this pro-

cessing and cleaning stage, we end up with a dataset of 23,388 out of the 32,871

manufacturing plants registered in the Scott’s National All Business Directories

in 2017. More details on the construction of variables and the processing steps

are presented in appendix 3.6.1.

Figure 3.1 (a)-(d) maps four selected NAICS 3-digit industries in the locality

of Windsor. On the map, the industries "332 Fabricated metal product", and

"333 Machinery manufacturing" look very localized and this is not surprising

since Windsor is known for being the location of motor vehicle industries. On

the contrary, the industries "311 Food manufacturing" and "321 Wood product

manufacturing" are typical cases of dispersed industries.
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332 Fabricated metal pdt 333 Machinery mfg

311 Food mfg 321 Wood pdt mfg

Figure 3.1 – Maps of four illustrative NAICS 3-digit industries in Windsor

3.3 Methodology

In this section, we present the methodology used, which builds on the approach

of Duranton and Overman (2005, 2008). In this approach, the bilateral distances
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observed for each pair of establishments in an industry are computed, and the

“concentration” designates the density distribution of the observed bilateral

distances. The exercise then consists in comparing the observed concentration

of an industry to a counterfactual representing what we should observe follow-

ing a random allocation of the plants across all the possible sites. To construct

the counterfactual for a given industry, a random draw of sites is made and

assigned to each establishment of the industry. Then, the process is repeated

numerous times and confidence intervals are built. These confidence bands

which feature the patterns of random allocations among the locations in the

universe of possible sites are then used to test whether the observed distribu-

tion is significantly more or less concentrated.

In the original work by Duranton and Overman (2005) and subsequent works

(e.g., Behrens and Bougna 2015), the set of locations that constitute the universe

of possible sites for each plant is usually assumed to be the set of all locations

with manufacturing plants, or a subset of those (e.g., all locations with plants

in some industry; all locations with exporting plants, etc). Here, we include

constraints on the universe of possible locations based on the determinants of

plants’ locations. For example, firms specialized in chemicals will not locate

their productive plants in downtown Toronto because of some environmental

and/or safety regulations. However, such firms may be allowed to locate their

headquarters in a dense area without any restriction. Many other factors may

constraint plants to locate or not in some places. As such, the construction of

the counterfactual must account for these possible constraints.

In what follows, we present the approach that we suggest to detect localiza-

tion. We start with the metric used to compute a measure of agglomeration,

then we elaborate on the novel approach suggested for the construction of the

counterfactuals.
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3.3.1 Constructing the observed agglomeration

To measure the level of agglomeration of a given industry I , the bilateral dis-

tances between all the pairs of plants of the industry are first computed. Then,

the kernel density of these bilateral distances is estimated using the following

formula :

K̂(d) =
1

h
N−1
∑

i=1

N
∑

j=i+1
e(i)e( j)

N−1

∑
i=1

N

∑
j=i+1

e(i)e( j) f (
d−di j

h
) (3.1)

Where di j is the euclidean distance between the plants i and j, f is the kernel

function with bandwith h, e(i) and e( j) are the weights used for the estima-

tion. When the weights are equal to the number of workers of the plant i and

j respectively, the estimated K-density is a measure of the concentration of the

employment. When the weights are equal to one, the estimated K-density is a

measure of the concentration of the establishments. In the rest of the document,

this K-density of observed bilateral distance will be referred to as the "observed

agglomeration".

3.3.2 Constructing counterfactuals

As mentioned earlier, while measuring concentration, the definition of the coun-

terfactual is critical. Indeed, whether an industry is significantly concentrated

or not is likely to hinge on the universe of possible sites we choose. Assume, for

example, that we wish to measure the geographic concentration of industry I .

Denote by S the set of locations for which we observe plants in industry I . The

observed concentration is K̂S(d) which is a function of the distance d. The theo-

retical reference distribution against which we want to judge that concentration
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is the one observed if plants locate randomly across the set S of all sites that

could be chosen. Consider a random draw of S j ⊂S sites, i.e., everything works

as if all plants in the industry I make ‘random’ location choices within S . We

obtain a measured counterfactual concentration K̂S j(d). Repeating that process

numerous times, e.g., j = 1,2, . . . ,500 draws, we can then judge how strongly

the observed concentration K̂S(d) deviates from that predicted by a random lo-

cation process. More precisely, if we call KS(d) the upper global confidence

band and KS(d) the lower confidence band. Following Duranton and Overman

(2008), the upper band is such that it is hit by 5% of the 500 simulations between

0 and 999km, and the lower band is such that it is hit by 5% of the randomly

generated K-densities that are not localized. Thus, when KS(d) > KS(d) for at

least one d ε [0, 999], the industry under investigation is said to localized (at

5% confidence level). For dispersion, let observe that if an industry is localized

at short distances, we should expect dispersion at larger distances. Hence, an

industry will exhibit dispersion if when KS(d) < KS(d) for at least one d ε [0,

999] and they do not exhibit localization. Dispersion is thus observed when

there are fewer establishments at short distances than what would be expected

in a case of randomness.

The key problem with this approach is that we only observe the set S ⊂ S

of actual choices but do not observe the set S = S \S of other possible choices.

Hence, we need to determine the unobserved alternatives S. 3 The results of the

analysis will only tell us something interesting about the extent of geographic

concentration of industry I if the set of unobserved potential sites, S, is a plau-

sible one. The initial idea in Duranton and Overman (2005) is to consider that

S is the distribution of all sites with manufacturing plants. In subsequent

work, they construct bins of employment and allow establishments to be re-

3. The set S always belongs to S by construction.
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allocated only to sites occupied by an establishment in the same employment

bins. By doing so, they intend to constraint each plant to switch only in the set

of possible sites, assuming that the size of the site helps to identify these possible

sites.

We extend and improve the work of Duranton and Overman (2008) in two

ways. First, by accounting not only for the number of workers but also for

many other factors that determine the location of plants. Second, by using a

better-informed way of constructing clusters that allows building optimal bins

based on one or many variables. The idea is to construct, bins that are heteroge-

neous across one another, but contain each, homogenous sites that are similar

along the chosen variables. The procedure is realized in two major steps : the

construction of the classes of locations, then the estimation of the counterfac-

tual and the detection of localization. In what follows, unless explicitly stated,

we use indifferently the words bins, categories, groups, or clusters to refer to

the classes of locations, and the process of constructing the classes will be re-

ferred to as classification or clustering.

Constructing the classes of locations

To construct the classes of locations, the first step is to choose the variables that

are relevant for plants’ location. With these variables at hand, a procedure of

classification is used to form the classes of locations.

i. Choosing the discriminant variables for the clustering

The relevant variables to use for the classification of locations are those that de-

termine the choice of locations by plants. While choosing their locations, firms

are more responsive to costs that they will be facing, as well as advantages that

some places may offer. The theory has suggested that the location decision of

individual firms is determined by factors such as market access and production

costs (Fujita et al., 1999; Neary, 2001; Fujita and Thisse, 2002) Closely related to



145

these factors are the locations’ characteristics, as well as plants’ characteristics.

On location characteristics, places, where agglomeration economies are at play,

will attract more plants than others areas. In fact, agglomerated locations are

places with higher production costs – land, labor, etc.-, but the gains stemming

from the increasing returns outweigh these costs to generate more profitability

for firms that locate in such places. Moreover, the type of agglomeration that

is locally active will differently attract plants from different industries. In par-

ticular, localization economies will attract more plants from mature industries

(Carlton, 1983; Autant-Bernard, 2006; Mota and Brandão, 2013) whereas mod-

ern and high tech firms will tend to locate where urbanization economies dom-

inate (Henderson et al., 1995; Figueiredo et al., 2002; Head et al., 1995; Hansen,

1987). Besides these agglomerative forces which remain the main drivers of

firm location decision, local policies may also influence the location decision

of firms. The literature has shown that a high level of taxes is not attrac-

tive to firms (Coughlin and Segev, 2000; Basile et al., 2008; Head et al., 1999;

McConnell and Schwab, 1990). However when local authorities spend high

amounts on public goods and services, firms are willing to come even when

these public expenditures are financed by an increase in local taxes (Gabe and

Bell, 2004). Moreover, the quality of local institutions (Disdier and Mayer, 2004;

Barrios et al., 2006), some promotional subsidies (Friedman et al., 1992), and

the right to work (Schmenner et al., 1987; Klier and McMillen, 2008), also have

an influence on the location decision of firms. In addition, firm characteristics

may also interact with the characteristics of the location to increase or reduce

the expected profitability of the firms (Schmenner et al., 1987; Blackley, 1985).

These firms’ characteristics include the establishment size (Arauzo Carod et al.,

2010), the type of product, and the vocation of the establishment (Schmenner

et al., 1987). Finally, local endowment such as the presence of highways is also

important determinants of location choice (Klier and McMillen, 2008).
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For the empirical part of this analysis, we use the population density around

1.5km of the location, as well as the size of the site measured by the footprint

of the building where the plant is located as a proxy for land cost, the num-

ber of workers of the same industry around a 10 km radius of the location of

the site as a measure of the local workforce. 4 The count of plants of the same

industry is used as a measure of the localization economies. A dummy indicat-

ing whether or not a plant is located in a CMA will account for urbanization

economies. The province and the zoning class of the site will capture the local

policies, and the distance to the junction captures the locational fundamentals

of the site. Finally, the exports status, the head-office status, the business type

of the plant, as well as the NAICS industrial classification of the plant located

on the site, will be the plants’ characteristics.

To test whether or not these variables are relevant to construct the locations

classes, their ability to predict the observed locations of the plants of a given

industry is assessed in the spirit of Klier and McMillen (2008). But, instead of a

conditional logit model as they did, we use a probit model. More precisely, let

consider an industry I , whose plants occupy NI locations amount the N over-

all locations. A location dummy for the industry I is generated, with value 1

if the location hosts a plant belonging to the industry I , and 0 if not. Then a

probit model is estimated to explain the probability for a given location to host

a plant from industry I by the location determinants suggested in the litera-

ture. Next, for the industry under scrutiny, the predicted probabilities across

4. Commuting distances can be quite dispersed across the country. According to statcan ,

"In 2016, Toronto had the greatest median distance at 10.5 km, followed by Ottawa?Gatineau

at 9.2 km. The CMAs with the smallest median distance were Winnipeg (6.6 km) followed

by Quc (7.5 km). For all eight CMAs, the highest proportions of commuters were travelling

between 5 km and 14.9 km to get to work." see https://www150.statcan.gc.ca/n1/pub/75-

006-x/2019001/article/00008-eng.htm
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all the locations are estimated, and the locations with the NI highest values are

considered as the predicted locations for the industry I among the overall N

locations.

The specification of the probit model is the following:

Prob(Site k hosts a plant i ε I) = α1EmploySameNaics10kmk +α2NbPlantsSameNaics10kmk

+ α3Densityk +α4LandSizek +α5DistJunctionk +CMAk

+ Provincek +Zoningk +BusinessTypeki +Employeeski

+ Exportski +Headquarterki + εki (3.3)

Where EmploySameNaics10kmk is the total employment of the same industry

10km around site k, NbPlantsSameNaics10kmk is the number of plants of the

same industry 10km around the site k, Densityk is the population density 1.5km

around site k, LandSizek is the footprint size of the building grounded on site

k, DistJunctionk is the distance from the site k to the nearest junction, CMAk is

a dummy indicating whether or not site k is located in a Census Metropolitan

area, Provincek is the province where site k is located, Zoningk is the zoning type

of the location of site k, BusinessTypeki is the type of business conducted by the

plant i which is actually on the site k, Employeeski is the number of workers

of the plants i located on site k , Exportski, and Headquarterki are respectively

the headquarter and the export status of plant i actually located on site k. The

model is estimated for each industry.

Table 3.1 presents the estimates of the marginal effects on the probability for a

site to host a plant from a given industry. We illustrate the results with four

industries and relegate the estimates for the other industries in appendix 3.7

and 3.8. As can be seen, variables do not affect the probabilities in the same

way. For example, dense places have a higher probability to host plants from

the "311 food manufacturing" whereas, they have a lower probability to host
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plants from the "321 Wood manufacturing", "332 Fabricated metal manufactur-

ing" or "333 Machinery manufacturing". On the footprint measure, locations

with large footprints are more likely to host plants from the "311 Food" which

usually uses indoor space, and having a large footprint affects negatively the

probability of a location to host a plant from the "333 Machinery manufactur-

ing". For the number of workers, the results indicate that a site where we ob-

serve a plant with a large number of workers has a higher probability to host

a plant from the "311 Food manufacturing" or "321 Wood manufacturing", but

a lower probability to host a plant from "333 Machinery" but these effects are

hardly significant.
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Table 3.1 – Marginal effects on the probability of location choice : four selected indus-

tries

311 Food 321 Wood 332 Fabr metal 333 Machinery

main

Density 1.5 km around 0.0000861∗∗∗ -0.0000425∗∗∗ -0.0000604∗∗∗ -0.0000917∗∗∗

(0.00000746) (0.0000117) (0.00000712) (0.00000828)

Building footprint size 0.0000243∗∗∗ -0.0000187∗∗∗ -0.00000742∗ -0.0000327∗∗∗

(0.00000396) (0.00000639) (0.00000382) (0.00000462)

Nb of workers of the plant 0.000168∗ 0.000110∗ -0.000205 -0.000191∗

(0.0000864) (0.0000657) (0.000165) (0.000108)

Employment, 10km around same naics 0.000961∗∗∗ -0.0000245 -0.0000919∗∗∗ 0.0000116

(0.0000362) (0.0000279) (0.0000148) (0.0000154)

Nb plants, 10km around same naics -0.0637∗∗∗ -0.00338∗∗∗ -0.0000705 0.00699∗∗∗

(0.00238) (0.000968) (0.000551) (0.000582)

Distance to nearest junction 0.00499∗∗∗ 0.00135 -0.00394∗∗∗ 0.000906

(0.00113) (0.00128) (0.00141) (0.00122)

Business type, Distributor 0.184∗∗ -0.250∗∗∗ -0.302∗∗∗ 0.367∗∗∗

(0.0747) (0.0823) (0.0506) (0.0503)

Business type, Manufacturer 0.296∗∗∗ 0.0391 -0.129∗∗∗ -0.143∗∗∗

(0.0601) (0.0590) (0.0382) (0.0424)

Industrial, commercial, institutional 0.00524 -0.179∗∗∗ 0.0711∗∗∗ -0.174∗∗∗

(0.0345) (0.0372) (0.0266) (0.0289)

Residential -0.0493 -0.204∗∗∗ -0.0755∗∗ -0.0764∗∗

(0.0359) (0.0405) (0.0302) (0.0333)

Exporter -0.338∗∗∗ -0.0753∗∗ -0.0785∗∗∗ 0.527∗∗∗

(0.0282) (0.0310) (0.0210) (0.0231)

Headquarter 0.0213 -0.000764 -0.134∗∗∗ 0.0316

(0.0446) (0.0503) (0.0362) (0.0359)

Prince Edward Islands 0.580∗∗∗ -0.345∗ -0.565∗∗∗ -0.141

(0.156) (0.200) (0.208) (0.199)

New Scotia 0.303∗∗∗ -0.262∗∗∗ -0.178∗∗ -0.296∗∗∗

(0.0785) (0.0900) (0.0766) (0.0906)

New Brunswick 0.0229 -0.106 -0.228∗∗ -0.0663

(0.0972) (0.0976) (0.0894) (0.0935)

Quebec -0.0478 -0.288∗∗∗ 0.0595∗ 0.0101

(0.0453) (0.0451) (0.0355) (0.0392)

Ontario -0.00633 -0.372∗∗∗ 0.0969∗∗∗ -0.0774∗∗

(0.0435) (0.0430) (0.0333) (0.0369)

Manitoba 0.0745 -0.402∗∗∗ -0.0278 0.138∗

(0.0843) (0.106) (0.0722) (0.0730)

Saskatchewan 0.0326 -0.546∗∗∗ -0.0340 0.136∗

(0.0912) (0.120) (0.0798) (0.0818)

Alberta -0.0512 -0.342∗∗∗ 0.0800∗ 0.209∗∗∗

(0.0601) (0.0626) (0.0446) (0.0468)

Census Metropolitan Area -0.179∗∗∗ -0.276∗∗∗ 0.162∗∗∗ 0.0551

(0.0412) (0.0458) (0.0384) (0.0432)

Observations 23388 23388 23388 23388

Pseudo R2 0.139 0.057 0.022 0.114

Notes: This table reports the estimates of the marginal effects at the means on the probability for a site to

host a plant from each of these industries from a probit regression. The three territories and the Newfound-

land are removed due to very few observations and poor data quality. The reference categories are the

following : Zoning(Industrial/commercial/institutional; Residential; ref=others), Business type=others,

province(ref=British columbia). The Significance levels 0.10 * 0.05 ** 0.01 ***.
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We now assess the goodness of the fit of our model to predict the locations of

each industry. To that end, we first use the fitted model to predict the proba-

bilities that each location hosts a plant of a given industry. Then, the highest

predicted probabilities values, up to the total number of plants of the industry

under investigation, are kept as the predicted locations for that industry. The

observed locations are then compared to the predicted locations and the share

of locations predicted as hosts of the plants from the industry, and which are

actually hosts of plants from that industry is computed (henceforth Well pre-

dicted locations). Table 3.2 summarises these shares for each NAICS 3-digit

industry.

Table 3.2 – Shares of well predicted location across the NAICS 3-digit industries

Well predicted locations

311 Food manufacturing 25.7

312 Beverage and tobacco product manuf. 8.3

313 Textile mills 5.6

314 Textile product mills 5.7

315 Clothing manufacturing 11.2

316 Leather, allied product manuf. 10.5

321 Wood product manufacturing 14.5

322 Paper manufacturing 12.1

323 Printing, support activities 46.3

324 Petrol, coal product manuf. 3.6

325 Chemical manufacturing 15.7

326 Plastics, rubber products manuf. 32.5

327 Non-metallic mineral product manuf. 13.0

331 Primary metal manufacturing 6.2

332 Fabricated metal product manuf. 22.7

333 Machinery manufacturing 37.2

334 Computer, electronic product manuf. 12.6

335 Electrical, appliance manuf. 7.0

336 Transportation equipment manuf. 17.1

337 Furniture, related product manuf. 9.6

339 Miscellaneous manufacturing 29.7

Notes: This table reports for each industry, the shares of sites hosting plants

from that industry, and for which the model specified by equation 3.2 has

predicted that there is a plant of that industry.
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The results indicate that on the one hand, some industries have particularly

good shares of well-predicted location. These industries are "323 Printing, sup-

port activities" (46.3%), "333 Machinery manufacturing" (37.2%), "332 Fabri-

cated metal manufacturing" (22.7%), "311 Food manufacturing" (25.7%), and

"326 Plastics, rubber product manufacturing" (32.5%). On the other hand, other

industries exhibit low values of the shares of well-predicted location. These in-

dustries are "313 Textile mills" (5.6%), "314 Textile product mills" (5.7%), "312

Beverage and tobacco product manufacturing" (8.3%), "324 petrol, coal product

manufacturing" (3.6%), "335 Electrical appliance manufacturing" (7.0%), and

"331 Primary metal manufacturing" (6.2%).

A step further we compare the K-density estimated from the observed loca-

tions to that of the predicted location. We compute and plot the differences

between the K-density of the observed distribution and the predicted one. We

exemplify the results with three industries : "324 Petrol, coal product manufac-

turing", "334 Computer, electronic product manufacturing", and "323 Printing,

support activities manufacturing" which are the three industries at the bottom,

the median and the top of the shares of well-predicted locations in Table 3.2.
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Figure 3.2 – K-Densities of employment, predicted versus observed distributions
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Figure 3.3 – K-Densities of establishment, predicted versus observed distributions

The graphs on Figure 3.2 are for the employment, and those on Figure 3.3 are

for the plants. The solid black line is the difference between the K-density of

the observed distribution and the predicted one. The red dashed lines are band-

widths representing +/−0.5% of the maximum values of K-density of the ob-

served distribution. Numbers in parenthesis with the labels are the shares of

Well predicted locations for the considered industry.

Wrapping up, the above results validate the choice of some location character-

istics (localization economies, local workforce, the density, the size of the site,

the minimal distance to a junction, the CMA status of the location, the province,

and the zoning categories), some plants characteristics (NAICS, the number of

workers, the business Type of the plant, the export and the headquarter sta-

tus) as relevant variables to use for the classification of the locations. These

variables yield acceptable predictions of the locations of industries and do not

affect the probability of location in the same way across the industries.

ii. Constructing the classes of locations

With these determinants of locations choice, we now move to the construc-

tion of the classes of locations using the Hierarchical Ascendant Classification

(HAC) procedure. The exercise consists in organizing a set of N points into
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groups such that, each group contains homogenous elements, but the groups

are heterogeneous from one to another. We present here the procedure in sim-

ple terms and we relegate the details to appendix 3.6.6. The general scheme of

this clustering procedure is as follows:

— Step 1: We start with N points representing all the locations of the plants.

These initial N points are considered as original nodes.

— Step 2: We compute a pairwise dissimilarity measure between all the

nodes. To compute the dissimilarity measure, all the variables should be

numeric. So, categorical variables are transformed into dummies. Then,

euclidean distance is used to compute the pairwise dissimilarity 5

— Step 3: We identify the pair of nodes with minimal distances among all

pairwise distances.

— Step 4: We join the two nodes with minimal distance into a new unique

node and remove the two old nodes. The new nodes are labeled consec-

utively N, N + 1, . . . and constitute the first level of aggregation

— Step 5: We then, repeat N - 1 times the process from step 2, until there is

one big node, which contains all the N original input points.

The output of this process can be represented as a tree that gives at each step the

loss of information that occurs during the aggregation process. Figure 3.4 gives

an illustrative classification tree generated by the process presented above with

only 20 randomly selected plants to exemplify the results of the procedure. The

numbers at the end of the branches are the plants’ identifiers as recorded in the

dataset. The actual trees for the construction of classes are presented in the

appendix 3.6.3.

5. Various other metrics can be used to compute the dissimilarity measure between vari-

ables
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Figure 3.4 – Illustrative tree from a Hierarchical Ascendant Classification (HAC)

iii. Chosing the optimal number of classes

With this procedure, it is theoretically possible to classify the locations into 1,

2, 3,..., N classes. The choice of an optimal number of classes is based on a

tradeoff between a parsimonious number of classes and a loss of information.

At each stage of the clustering process, while aggregating the points, there is a

loss of information that differentiates the locations. In simple words, the bot-

tom of the tree corresponds to 20 individual classes with 0% of the discriminant

power lost, and the top of the tree corresponds to one unique class with 100% of

the discriminant power lost. An intermediate case is for example a horizontal

line at a height of about 18 which indicates a choice of 3 classes as represented

in Figure 3.4. The rectangles on the figure show the locations contained in each

class. The optimal choice is therefore few classes with the maximum discrimi-

nant power.

In connection to our analysis, the extreme case with one class is the case of max-

imum within-class heterogeneity where all the locations are considered alike.



155

The opposite extreme case is the case with N classes where all the discriminant

information is accounted for and no plant is allowed to switch from its original

location because it is different from the other locations. In practice, to choose

an optimal number of classes to consider, one way is to observe the classifica-

tion tree from the top to the bottom. While moving from the top (One unique

class) to the bottom (N distinct classes), the discriminant information increases

(Or the loss of discriminant information decreases) and so does the number

of classes. An optimal cutoff is a place where the increase in the number of

classes is not worth the increase in the information. Some statistics also help to

obtain the optimal number of classes to consider. These statistics are based on

the within-class sum of squares. The optimal number of classes is obtained at a

cutoff such that, increasing the number of classes does not decrease the within-

class sum of squares.

We conduct the classification procedure for the 23,388 plants recorded in our

dataset, using as discriminant variables the same as in model 3.2 and we also

add the NAICS 3-digit code of the plant. Figure 3.5 represents the graph of the

value of the gap of the within-class sum of squares, which guides the choice of

an optimal number of classes. Only the variation of the gap statistic up to the

first 25 classes is represented for visibility. Details on the computation of the

within-class sum of squares are presented in Appendix 3.6.6. The curve sug-

gests considering 6 classes. Hence, we chose 6 classes for the main results and

we also provide results for four alternative options (4, 5, 7 and 8 classes) for

robustness checks. The trees generated by the process for the entire dataset of

23,388 plants are presented in appendix 3.6.3.
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Figure 3.5 – Gap statistics curve

Table 3.3 gives descriptive statistics for some variables used in the clustering

process, and the distributions of the numbers of plants, and the number of

workers across the 6 Classes are provided in Table 3.9 in appendix. We use

these statistics to characterize the six Classes generated by the clustering pro-

cedure.

iv. Characterizing the classes of locations- 3 digit

Table 3.3 – Characteristics of the classes of locations

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Mean sd Mean sd Mean sd Mean sd Mean sd Mean sd

Nb employees 37.2 86.1 67.1 323.0 41.6 79.1 24.3 39.7 16.7 34.0 17.6 42.3
Pop. density, 1.5km 1,271.1 1,897.3 1,135.2 1,571.2 1,403.8 1,821.0 1,273.5 1,608.4 2,873.5 3,640.4 2,074.7 2,366.8
Site’s size(m2) 1,739.4 2,770.1 2,588.9 3,877.1 2,011.3 2,826.6 1,807.4 2,151.1 1,324.1 1,793.3 1,365.3 1,777.6
Nb workers, same naics, 10km 334.5 631.1 2,003.9 2,519.7 453.4 706.2 750.9 945.4 1,145.1 1,307.6 1,153.9 1,138.6
Nb plants, same naics, 10km 8.5 16.2 49.5 63.8 10.0 14.7 22.5 26.8 44.6 43.4 52.4 47.3
Dist.to junction 7.1 16.6 2.6 4.0 3.6 6.0 2.6 3.7 2.8 3.6 3.0 4.3
Share commercial sites 0.4 0.5 0.6 0.5 0.5 0.5 0.5 0.5 0.4 0.5 0.5 0.5
Share residential sites 0.3 0.5 0.2 0.4 0.3 0.4 0.2 0.4 0.5 0.5 0.4 0.5
Share in CMA 0.7 0.4 1.0 0.2 0.9 0.3 1.0 0.1 1.0 0.2 0.9 0.2

Notes: The number of locations are as follows, Class 1: 5,322 ; Class 2: 6,293 ; Class 3: 7,052 locations, Class 4: 3,139 ; Class 5: 1,595
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It appears that the locations from Class 1, that we label "Sites in less agglom-

erated and moderately dense locations" host plants that are surrounded by a few

other plants from the same industry and a few workers from the same industry.

These locations enjoy very few localization economies.

The locations from Class 2, that we label "Sites in highly agglomerated and mod-

erately dense locations" are moderately dense places, which benefit from a high

level of localization, and are essentially hosts of three industries: "326 Plastics,

rubber products manufacturing", "332 Fabricated metal product manufactur-

ing", and "333 Machinery manufacturing".

The locations from Class 3, and Class 4 share similar features. They can be

labeled "Sites in less agglomerated and moderately dense locations, near main junc-

tions". They differ in the nature of the industries that they host. Class 3 hosts six

industries "311 food manufacturing", "321 Wood product manufacturing", "325

Chemical manufacturing", "327 Non-metallic mineral product manufacturing",

"334 Computer and electronic" and "337 Furniture, related product manufac-

turing", whereas Class 4 hosts the majority of plants from "332 Fabricated metal

product manufacturing".

The locations from Class 5, that we label "Sites of Miscellaneous manufacturing, in

moderately agglomerated, and highly dense locations" are places of high density in

their neighborhood, they benefit from moderate localization economies. These

locations are typically hosts for "339 "Miscellaneous manufacturing".

Finally, Class 6, that we label "Sites of printing industries, in moderately agglomer-

ated and highly dense locations" hosts almost all the printing industries. They are

dense locations with moderate agglomeration.

The characteristics of the classes in terms of the number of workers are a bit

different for the employment. Classes 3, 4, 5, and 6 look specific to some in-
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dustries whereas Classes 1 and 2 encompass a large variety of industries. In

addition, Class 2 appears to have more employees per plant compared to Class

1. All these differences will show up in the counterfactuals of the employment,

compared to those of the establishments.

We compare the distributions of the locations of each of these classes to the dis-

tribution of the universe of locations. For each of these six classes, we estimate

the K-densities of their distributions for both employment and establishment.

We also estimate the distribution of the locations universe for both the distribu-

tions of establishments and employment. The graphs are presented in Figure

3.6.
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Figure 3.6 – K-densities of the locations of the 6 Classes and the universe

As can be observed, the K-densities of the locations of the six classes generated

by the clustering procedure are quite "polarized", (ie. above the K-density of the

universe of locations at each distance or below it at each distance). Indeed, the

K-density of the distribution of the locations of Class 1 is below the K-density of

the distribution of the location universe at almost all the distances. Conversely,

the K-density of the distribution of the locations of the other five Classes 2, 3,

4, 5, and 6 are above the K-density of the distribution of the location universe

at almost all the distances. This polarized feature holds for the distributions of

both employment and establishments.

Furthermore, we proceed with a test of localization for each of the 6 classes
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to assess whether their distributions of the locations depart from randomness

compared to the distribution of the universe of the locations. The graphs of

these tests provided in the appendix (see Figures 3.16 and 3.17) indicate that,

compared to the distribution of the universe of the locations, the distribution of

the locations in Class 1 is dispersed and those in the others classes are localized.

Intuitively, a counterfactual based on a more dispersed distribution of locations

should generate a more agglomerated pattern and the other way round. As

such, an industry with a large share of plants/employees belonging to classes

of dispersed (respectively localized) locations, is likely to be more agglomer-

ated (respectively dispersed) with a test of localization based on a multivariate

counterfactual, compared to a test based on an unconstrained counterfactual.

For example, we should expect the industry "323 Printing, support activities"

whose plants/employees are almost entirely in Class 5 to be less localized with

the multivariate counterfactual compared to the unconstraint counterfactual.

Conversely, we should expect an industry such as "335 Electric, appliance man-

ufacturing" which is essentially in Class 1 - in terms of the number of plants and

number of workers-, to be more localized compared to its test with an uncon-

straint counterfactual.

Globally, more than 50% of the industries have plants belonging almost en-

tirely to Class 1, and the remaining industries have different distributions of

plants/workers across the 5 other classes. Thus, the global picture with the

new counterfactual is likely to be more localized and more dispersed than the

picture with an unconstraint counterfactual. From an employment perspective,

the feature is the same and we should also expect more localization and more

dispersion for employment.
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Estimating counterfactuals and detecting localization

With these classes of locations, we now construct for each industry a coun-

terfactual agglomeration as follows: The plants of the industry are randomly

reallocated across all the universe of locations and each plant is constrained to

be relocated only on a site of the same Class. 6 This means that plants are to

be assigned only on sites similar to their original location. Then, the bilateral

distances of all the pairs of these hypothetical locations of the industry under

scrutiny are computed anew, and the k-density of these distances are estimated

with the metric specified by the formula 3.1. By repeating the process 500 times

we can build local and global confidence bands used to detect localization, dis-

persion, or randomness. An industry is said to be globally localized if its "ob-

served agglomeration" is above the upper bound of the global bandwidth for at

least one distance. On the contrary, an industry is said to be globally dispersed

if its "observed agglomeration" is below the lower bound of the global band-

width for at least one distance and never above the upper bound of the global

bandwidth for any distance. Finally, an industry is considered as not departing

from randomness if it lays between the upper bound and the lower bound of

the global bandwidth for all the distances.

3.4 The patterns of the agglomeration of industries

This section presents and compares the results for different approaches of con-

structing the counterfactuals used to detect the departure from randomness.

The first approach uses as counterfactual the case with no constraint while

6. We do no constraint the locations where plants are randomly reallocated to be equal to

the number of plants of the industry under scrutiny as we did for the assessment exercice with

the probit model
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reshuffling the plants across the universe of all the locations (henceforth "un-

constrained counterfactual" or "benchmark" for short). The second approach

uses for comparison, the counterfactual built by constraining the reshuffling

of plants in five employment size classes as in Duranton and Overman (2008).

These classes are explicitly 1-4, 5-19, 20-49, 50-250, 250+ (henceforth "Job coun-

terfactual DO"). The third approach uses a counterfactual built by constraining

the reshuffling of plants in classes obtained by the clustering procedure pre-

sented above, with employment as the only discriminant variable (henceforth

"Job counterfactual HAC"). This third approach will help inform the extent

to which the choice of bins for employment may change or not the final clas-

sification. Finally, the fourth approach uses classes constructed using all the

determinants of plants location presented and discussed in the section 3.3.2

(henceforth "Multivariate counterfactual HAC").

3.4.1 Departure from randomness

For the NAICS 3-digit manufacturing industries, the clustering procedure has

suggested 6 classes as observed above. For the "Job counterfactual HAC" where

only the number of workers is the unique variable used for the classification,

the optimal number of classes suggested by the procedure is 5. We first estimate

the observed K-density, then we estimate the counterfactual represented by the

confidence intervals for each of the four approaches: benchmark, "Job counter-

factual DO", "Job counterfactual HAC", and "Multivariate counterfactual". The

results are presented for both the concentration of establishments and that of

employment. In what follows, we use the term "identification" to refer to the

process of categorizing an industry as "localized", "dispersed" or "random".
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Table 3.4 – Localization, dispersion and randomness, NAICS 3-digit industries

Localized Dispersed random

Panel a : establishments nb % Γ nb % Ψ nb %

Benchmark, unconstrained 16 76.2 0.0253 2 9.5 0.0107 3 14.3
Job counterfactual, DO 16 76.2 0.0236 2 9.5 0.0083 3 14.3
Job counterfactual, HAC 16 76.2 0.0232 3 14.3 0.0044 2 9.5
Multivariate counterfactual 19 90.5 0.0594 1 4.8 0.0010 1 4.8

Panel b : employment nb % Γ nb % Ψ nb %

Benchmark, unconstrained 10 47.6 0.0210 4 19.0 0.0089 7 33.3
Job counterfactual, DO 9 42.9 0.0187 4 19.0 0.0127 8 38.1
Job counterfactual, HAC 9 42.9 0.0191 5 23.8 0.0106 7 33.3
Multivariate counterfactual 12 57.1 0.0702 6 28.6 0.0127 3 14.3

Notes: This table presents summary statistics on the test of localization resulting from different approaches of con-

structing counterfactual. Γ represents the average across the industries, of the Global index of localization, and Ψ is

the average across the industries, of the Global index of dispersion. See appendix 2.6.2 for their computation. The

total number of industries at 3 digit is 21.

Table 3.4-Panel (a)- gives for the establishments, the shares of localized, dis-

persed, and random industries for each of the four approaches used to con-

struct the counterfactual. We also provide, two measures of the magnitudes of

the degree of localization and dispersion : the global index of localization Γ and

the global index of dispersion Ψ. The formulas for the computations of these

indexes are provided in appendix 2.6.2. The figures in the table indicate that

localization is the most important pattern for all four approaches.

We first discuss whether the clustering procedure adds some value to the test-

ing process. To that end, we only compare the results of the "Job counterfac-

tual DO" to those of the "Job counterfactual HAC". As can be observed, when

the classes are generated from the Clustering procedure ("Job counterfactual

HAC"), there is less randomness for both the agglomeration of the establish-

ments (9.5% against 14.3% for the "Job counterfactual DO"), than for the ag-

glomeration of employment (33.3% against 38.1% for the "Job counterfactual
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DO"). This suggests that the way of constructing the classes of locations may

have an incidence on the test of localization.

We turn now to the discussion on the differences between the benchmark and

the multivariate counterfactual. Compare to the benchmark, it appears that the

multivariate counterfactual generates more departure from randomness than

all the three other approaches. Only 4.8% of industries on the establishment

viewpoint exhibits randomness, and the number is 14.3% on the employment

perspective. This may indicate that using the determinants of firms’ locations

choice to construct the counterfactual may be more efficient in detecting depar-

ture from randomness when testing for localization.

On the magnitudes, the constraint imposed by the classes while accounting

for location choice yields narrower confidence bands that help to detect de-

parture from randomness (see graphs in appendix 2.1). As a result, the excess

of localization or dispersion will tend to be more important in magnitude com-

pared to the benchmark. Indeed, for the establishments (see Table 3.4-Panel (a))

the average index of global localization Γ is much higher for the multivariate

counterfactual (0.0594) than for the benchmark (0.0253). For the average index

of global dispersion Ψ, the value is 0.001 for the multivariate counterfactual

against 0.0107 for the benchmark. 7 For the employment, (see Table 3.4-Panel

(b)) the two indices are higher for the multivariate counterfactual. The average

index of global localization is 0.0702 against 0.0210 for the benchmark, and the

average index of global dispersion Ψ is 0.0127 against 0.0089 for the benchmark.

7. This value is an average across all the dispersed industries. The average here for the mul-

tivariate may be lower than the average for the benchmark due to the number of observations

involved in the computation of these averages for the dispersed industries
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Table 3.5 – Switches from the benchmark to other approaches, NAICS 3-digit indus-

tries

Switches from the Benchmark to other counterfactuals

Panel b: Agglomeration of establishments

One step up One step down Two steps up Two steps down Unchanged

Benchmark to Job DO 0.0% 0.0% 0.0% 0.0% 100.0%

Benchmark to Job HAC 0.0% 4.8% 0.0% 0.0% 95.2%

Benchmark to Multivariate 9.5% 0.0% 9.5% 4.8% 76.2%

Panel a : Agglomeration of employment

One step up One step down Two steps up Two steps down Unchanged

Benchmark to Job DO 4.8% 9.5% 0.0% 0.0% 85.7%

Benchmark to Job HAC 0.0% 9.5% 0.0% 0.0% 90.5%

Benchmark to Multivariate 14.3% 14.3% 4.8% 4.8% 61.9%

Notes: This table presents the shares of changes of categorization from the benchmark to another approach.

Table 3.5- Panel a- gives statistics on the switches that occur from the bench-

mark counterfactual to other approaches of constructing the counterfactual for

the agglomeration of the employment. In the table, "One step up" indicates

that an industry identified as Dispersed with benchmark will turn to Random

with another counterfactual, or an industry identified as Random will become

Localized with another counterfactual. "One step down" indicates that an in-

dustry identified as Localized with benchmark will turn to random with another

counterfactual, or an industry identified as Random will become Dispersed with

another counterfactual. "Two steps up" indicates that an industry identified as

Dispersed with benchmark will turn to Localized with another counterfactual.

Finally, "Two steps down" means that an industry identified as Localized with

benchmark will turn to Dispersed with another counterfactual.

For the agglomeration of establishments, the benchmark and the "Job coun-

terfactuals, DO" are identical. From the benchmark to the "Job counterfactual,

HAC", there are 4.8% of changes all in terms of "One step down". For the ag-
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glomeration of the employment, there are 9.5% changes in terms of "One step

down" for both "Job counterfactual, DO" and "Job counterfactual, HAC" and

4.8% additional "One step up" for the "Job counterfactual, DO".

The switches of identification from the benchmark to the multivariate counter-

factual are more abundant and more pronounced. For the agglomeration on

establishments (Table 3.5-Panel-a-), there are 23.8% of overall changes. These

changes encompass 9.5% "One step up " and as many "Two steps up". These "up

switch" originate from industries such as "312 Beverage and Tobacco product

manufacturing" and "331 Primary metal manufacturing" which have all their

plants in locations of Class 1, that exhibits dispersion compared to the universe

of locations. The rest of the changes are entirely in terms of "Two steps down"

and this is due to the industry "311 Food manufacturing" which has 73% of its

plants on locations from Class 3, that exhibits "localization compared to the uni-

verse of locations.

For the agglomeration of employment (Table 3.5-Panel-b-), switches are much

more important with 38.1% of changes in identifications from the benchmark

to the multivariate counterfactual. These changes are split out in 19% of "up

switches" originating from industries such as "335 Electrical, appliance man-

ufacturing" and "322 paper manufacturing" which have respectively 90% and

70% of their employment on locations of Class 1 that exhibits dispersion com-

pared to the universe of locations. The remaining changes in terms of "down

switches" are the result of industries such as "323 Printing manufacturing" with

91% of employment in Class 6, and "333 Machinery manufacturing" with 90%

of employment in Class 2. These two classes have locations that are localized

compared to the universe of locations.

The takeaway from these descriptives statistics is that, accounting for the deter-

minants of locations choice yields a higher level of departure from randomness



167

compared to the case with counterfactuals without constraints. We check for

robustness with different values for the optimal number of classes (4, 5, 7 and

8) and we find that the results are qualitatively the same, with more depar-

ture from randomness when accounting for the determinants of firms locations

choice compared to an unconstrained counterfactual.

Additional results for the NAICS 4-digit industries provided in appendix 3.6.5

show that the global pattern of the differences between the benchmark and the

multivariate counterfactuals are similar to that of the NAICS 3-digit industries.

However, there are less drastic changes of the nature of "Two steps up" or "Two

steps down" at four-digit than it appears at the NAICS 3-digit industries when

moving from the benchmark to the multivariate counterfactuals.

In the rest of the analysis, we only consider the benchmark and the multivariate

counterfactual.

3.4.2 Most localized and most dispersed industries

The previous description has already shown that the new counterfactual glob-

ally increases the mean value of the index of global localization as well as that

of global dispersion. We now assess in more detail, the extent to which the

counterfactual based on the location determinants changes the identification

of industries in terms of the magnitude of their localization or dispersion. In

other words, does the new counterfactual homogeneously increase the excess

of agglomeration?

Table 3.6-panel a- presents, for the agglomeration of establishments, the most

localized, and the most dispersed industries as generated by the multivariate

counterfactual that we compare to the identification generated by the bench-

mark. For the 5 most localized industries 3 out of 5 appear in the order, in
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the ranking of both approaches. These industries are "313 Textile mills", "322

Paper manufacturing", and "315 Clothing manufacturing". However, the two

approaches differ for the identification of the two most dispersed industries.

On the agglomeration of employment, the 5 most localized industries show

a similar picture. Three out of five industries appear in the ranking of both

approaches. These industries are "313 Textile mills", "315 Clothing" and "316

Leather", but in a different order. For the most dispersed industries, 2 appear in

the ranking of both approaches, these are "311 Food manufacturing", and "321

Wood manufacturing" but still not in the same order. Strikingly, "335 Electrical,

appliance manufacturing" appears among the 4 most dispersed industries for

the benchmark whereas it is among the 5 most localized industries for the mul-

tivariate counterfactual.
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Table 3.6 – Most localized/dispersed, NAICS 3-digit industries

Benchmark counterfactual Multivariate counterfactual

NAICS Industry Γ or Ψ naics Industry Γ or Ψ

Panel a : Establishments

Most localized

313 Textile mills 0.0885 313 Textile mills 0.251

322 Paper manufacturing 0.0804 322 Paper manufacturing 0.221

315 Clothing manufacturing 0.0682 315 Clothing manufacturing 0.203

326 Plastics, rubber products manuf. 0.0560 335 Electrical, appliance manuf. 0.133

325 Chemical manufacturing 0.0349 331 Primary metal manufacturing 0.0800

Most dispersed

314 Textile product mills 0.0133 311 Food manufacturing 0.00104

312 Beverage product manuf. 0.00823

Panel b : Employment

Most localized

326 Plastics, rubber products manuf. 0.0651 313 Textile mills 0.230

325 Chemical manufacturing 0.0440 315 Clothing manufacturing 0.181

315 Clothing manufacturing 0.0358 316 Leather, allied product manuf. 0.145

313 Textile mills 0.0327 335 Electrical, appliance manuf. 0.0924

316 Leather, allied product manuf. 0.0251 322 Paper manufacturing 0.0811

Most dispersed

321 Wood product manufacturing 0,0302 321 Wood product manufacturing 0.0461

311 Food manufacturing 0,00333 333 Machinery manufacturing 0,0177

334 Computer, electronic product manuf. 0,00133 311 Food manufacturing 0,00627

335 Electrical, appliance manuf. 0,000681 332 Fabricated metal product manuf. 0.00405

327 Non-metallic mineral product manuf. 0.00221

Notes: Only the five most localized or the five most dispersed industries are presented. For Panel a, the number

of dispersed industries at the NAICS 3-digit is 2 for the benchmark and 1 for the multivariate counterfactual. For

Panel b, only 4 industries are dispersed with the benchmark. procedure.

More generally, we perform a Spearman rank correlation test between the rank-

ing generated by the two approaches. More precisely, industries are ranked

based on their localization and dispersion index values. The ranking starts

with the industry with the highest value of the index of localization Γ, then the

industries which are identified as random are ranked in between with ex-aequo

ranks. The ranking continues with the least dispersed industry and ends with

the industry with the highest value of the index of dispersion. This ranking
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is performed for both the benchmark and the multivariate counterfactuals and

a spearman rank test is run. The result rejects the independence of the two

rankings. Put differently, the global picture from the two approaches does not

significantly differ in terms of the identification of industries. However, a test

of difference of the mean values of the indexes indicates a significant difference

of the localization and dispersion indexes. 8

3.4.3 Scale of localization and dispersion

We now discuss the scale at which localization and dispersion occur. In Fig-

ure 3.7, we represent the number of the localized and dispersed at the NAICS

3-digit industries at each distance. The solid red line is for the multivariate

counterfactual and the blue dashed line is for the benchmark.

For the localization of establishments -panel (a)-, the curve of each approach ex-

hibits a multimodal shape. The number of localized industries is high at short

distances and distances between big cities. As uncovered previously, the num-

ber of localized industries is higher with the multivariate counterfactual than

with the benchmark at all distances. However, the multivariate counterfactual

generates more concentration at shorter distances than the benchmark. For the

dispersion of establishments-panel (b)-, the number of dispersed industries at

short distance is slightly higher with the benchmark, and the majority of the

dispersion in the industries happens at long distances with the multivariate

counterfactual.

8. For the agglomeration of employment, the Rank correlation test of spearman rejects the

independence of the two ranking with a p-value threshold of 0.0094. The t-test rejects the equal-

ity of the mean of the two distributions of indexes with a p-value threshold of 0.0297. These

values are respectively, 0.0606 and 0.0068 for ranking from the agglomeration of establishments
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Figure 3.7 – Number of Localized / Dispersed 3 digit industries

For the scale of localization and dispersion of employment –panels c and d, the

overall picture is similar to that of establishments and the distinction is even

more clear. The multivariate counterfactual generates more localized indus-

tries at shorter distances compared to the benchmark. Concerning dispersion,

the benchmark shows three peaks, with high dispersion at short, and medium

distances whereas the multivariate approach yields a pattern with much more

peaks, with a similar number of dispersed industries at short, and medium
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distances and a higher number at long distances. Globally, the number of dis-

persion at shorter distances is higher for the benchmark compared to that of

the multivariate counterfactual. Conversely, the highest peak of dispersion for

the multivariate counterfactual is observed at long distances.

3.5 Concluding remarks

To study the location patterns of industries, we build on Duranton and Over-

man (2005, 2008) and suggest a new counterfactual to detect the departure

from randomness. The construction of the counterfactual against which the

observed concentration is to be compared is critical for the detection of local-

ization and dispersion. Indeed, while testing for localization, any flaw entailed

in the counterfactual will be reflected in the resulting classification of industries

as localized, dispersed, or random.

We start by observing that the commonly used counterfactuals successfully

capture what would be if the industries were randomly assigned across the

actual locations. While these counterfactuals are relevant for controlling for the

overall distribution of the industries, and possibly the distribution of some spe-

cific industries, they fail to account for the constraint that plants may face for

reasons related to plants and locations characteristics. We propose a new coun-

terfactual by constructing classes of locations, using a Hierarchical Ascendant

Clustering, with inputs for the procedure, the key determinants of the choice

of locations by firms suggested by the literature. Then, for each industry, we

construct its counterfactual by reallocating each entity of that industry across

the possible locations provided that the location belongs to the same class as

that of the observed location of the entity. By doing so, we minimize the risk

for a plant to switch on locations that are somehow impossible due to site size
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constraints, potential regulatory constraints, or some others.

The approach with the new counterfactual is then used to assess the agglom-

eration of the manufacturing industries in Canada in 2017, and the results are

compared to those obtained with the unconstraint counterfactual. We find for

the concentration of the establishment that 90.5% (against 76.2% for the un-

constraint counterfactual) of the industries are localized, 4.8% (against 9.5%

for the unconstraint counterfactual) are dispersed, and 4.8% (against 14.3% for

the unconstraint counterfactual) do not significantly depart from randomness.

The concentration of employment exhibits similar patterns as 57.1% (against

47.6% for the unconstraint counterfactual) of industries are localized, 28.6%

(against 19.0% for the unconstraint counterfactual) are dispersed and 14.3%

(against 33.3% for the unconstraint counterfactual) do not depart significantly

from randomness. Moreover, the degrees of concentration generated by the

two approaches are quite different both qualitatively and quantitatively. In-

deed, a large fraction of reclassification of industries as localized, dispersed,

or random are observed across the two approaches (23.8% for the concentra-

tion of establishment, and 38.1% for the concentration of employment), and

the new counterfactual yields, in general, higher magnitudes for localization

and dispersions. Finally, the localization is more important at shorter distances

with the new counterfactual compared to the classic counterfactual, while dis-

persion is more important at longer distances for the new counterfactual com-

pared to the classic counterfactual. All these results also hold qualitatively at

four-digit industries level for the concentration of both employment and estab-

lishments.
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3.6 Appendix to chapter 3

3.6.1 Data

The main dataset use for the empirical part of this analysis is the Scott’s Na-

tional All Business Directories, a proprietary dataset that draws information on

plants operating in Canada from Business Register records and telephone sur-

veys. We start by geocoding the dataset to have the geographic coordinates of

each plant. After this first step, we remove inaccurate geographic coordinates.

Then we assign building footprint to establishments using the Geographic In-

formation Systems tools. We clean the dataset again to remove observations

for which there were no building polygons and those with inaccurate associ-

ations. To account for potential misreport of the number of workers of firms

to their recorded plant and not only the part of the workers of each recorded

establishment, we trim employment by removing the 1% upper and lower tails

of employment across each industry. This last process also generates a loss of

4,438 observations. This cleaning process is important since the estimation of

the agglomeration measures uses the geographic coordinates to compute bilat-

eral distances and the number of workers of the establishment as weights to

estimate the agglomeration of the employment. Finally, we remove the three

territories of Nunavut, Yukon, and North Territories which only have very few

observations, and we end up with a final dataset of 23,388 observations.

The second dataset is from the DMTI which records the zoning restrictions

in Canada, i.e., the main type of activity allowed on each portion of space,

namely, commercial, Government and Institutional, Open Area, Parks, and

Recreational, Residential, Resource, and Industrial; and Waterboy, Not assigned.

We aggregate these categories into three: The first group consists of commer-

cial, Government, and Institutional, Resource, and Industrial; the second group
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consists of: Residential, and the third group contains the remaining categories.

The third dataset is the Dissemination Area Boundary from Statistics Canada

in 2016. This dataset contains information on the population at the level at

the finest level at which Census data are disseminated. According to Statistic

Canada, a dissemination area is a small area composed of one or more neigh-

boring dissemination blocks and is the smallest standard geographic area for

which all census data are disseminated. The files contain the boundaries of all

dissemination areas which combine to cover all of Canada. We merge this file

with the geocoded Scotts Dataset, then we use GIS tools to construct the pop-

ulation density at 1.5 km around each establishment. More precisely, we draw

a circular buffer around each plant and aggregate all the dissemination areas

whose centroids fall into the circle of 1.5km. Then we construct the population

density of each of these aggregated entities. Next, we construct another buffer

of 10km around each plant and count the number of plants from the same in-

dustry, as well as the total employment from the same industry.

The fourth dataset is the 2016 Census Road Network File from Statistics Canada

that we use to compute for each plant the distance to its nearest junction.

3.6.2 Choice of discriminant variables

Probit estimation of location choice, NAICS 3-digit industries
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Table 3.7 – Marginal effects on the probability of location choice, NAICS 3-digit industries (1/2)

311 312 313 314 315 316 321 322 323 324 325

main

Desnity 1.5 km around 0.0000861∗∗∗ 0.0000796∗∗∗ 0.0000999∗∗∗ 0.0000342∗∗∗ 0.000111∗∗∗ 0.000115∗∗∗ -0.0000425∗∗∗ 0.0000244 -0.0000768∗∗∗ -0.0000595 0.0000368∗∗∗

(0.00000746) (0.0000131) (0.0000153) (0.00000848) (0.00000661) (0.0000144) (0.0000117) (0.0000168) (0.00000861) (0.0000452) (0.00000934)

Building footprint size 0.0000243∗∗∗ 0.0000329∗∗∗ 0.0000416∗∗∗ 0.00000199 -0.00000828 0.0000160 -0.0000187∗∗∗ 0.0000496∗∗∗ -0.0000188∗∗ -0.0000280 -0.00000286

(0.00000396) (0.00000661) (0.00000991) (0.00000998) (0.00000692) (0.0000117) (0.00000639) (0.00000490) (0.00000809) (0.0000255) (0.00000498)

Nb of workers of the plant 0.000168∗ -0.000238 -0.00191∗ -0.00412∗∗∗ -0.000195 -0.00170 0.000110∗ -0.00000531 -0.00114∗∗ 0.000198∗∗ -0.000283

(0.0000864) (0.000191) (0.000980) (0.00103) (0.000186) (0.00109) (0.0000657) (0.000140) (0.000483) (0.0000892) (0.000185)

Employment, 10km around same naics 0.000961∗∗∗ -0.0000390 -0.000543∗∗∗ -0.000715∗∗∗ -0.0000600∗∗ -0.000593∗∗ -0.0000245 0.000454∗∗∗ -0.00153∗∗∗ 0.00107∗∗∗ 0.000165∗∗∗

(0.0000362) (0.000118) (0.000144) (0.0000622) (0.0000238) (0.000235) (0.0000279) (0.0000338) (0.0000442) (0.000194) (0.0000461)

Nb plants, 10km around same naics -0.0637∗∗∗ -0.0309∗∗∗ -0.0436∗∗∗ 0.0110∗∗∗ -0.00102 -0.0805∗∗∗ -0.00338∗∗∗ -0.0278∗∗∗ 0.0517∗∗∗ -0.198∗∗∗ -0.0337∗∗∗

(0.00238) (0.00594) (0.00962) (0.00119) (0.000829) (0.0142) (0.000968) (0.00216) (0.00134) (0.0279) (0.00246)

Distance to nearest junction 0.00499∗∗∗ -0.00163 -0.00911 -0.00141 -0.00177 -0.00123 0.00135 -0.00807 -0.00227 -0.0235 -0.00250

(0.00113) (0.00231) (0.00780) (0.00256) (0.00227) (0.00302) (0.00128) (0.00639) (0.00169) (0.0160) (0.00296)

Business type, Distributor 0.184∗∗ 0.102 0.244∗∗ 0.100 -0.276∗ -0.250∗∗∗ 0.0614 -0.645∗∗∗ -0.0201 0.336∗∗∗

(0.0747) (0.291) (0.0993) (0.112) (0.156) (0.0823) (0.104) (0.103) (0.222) (0.0765)

Business type, Manufacturer 0.296∗∗∗ -0.0276 0.273 0.103 0.198∗∗ -0.417∗∗∗ 0.0391 -0.140 0.109∗ -0.157 0.00275

(0.0601) (0.0974) (0.237) (0.0830) (0.0911) (0.111) (0.0590) (0.0869) (0.0589) (0.173) (0.0663)

Industrial, commercial, institutional 0.00524 -0.308∗∗∗ 0.247∗∗ 0.185∗∗∗ 0.235∗∗∗ 0.116 -0.179∗∗∗ 0.290∗∗∗ 0.211∗∗∗ 0.167 0.228∗∗∗

(0.0345) (0.0697) (0.116) (0.0541) (0.0579) (0.108) (0.0372) (0.0645) (0.0447) (0.120) (0.0418)

Residential -0.0493 -0.273∗∗∗ 0.177 0.147∗∗∗ 0.147∗∗ 0.147 -0.204∗∗∗ -0.00522 0.453∗∗∗ -0.187 -0.0634

(0.0359) (0.0741) (0.121) (0.0554) (0.0619) (0.104) (0.0405) (0.0751) (0.0447) (0.147) (0.0473)

Exporter -0.338∗∗∗ -0.303∗∗∗ 0.301∗∗∗ -0.0648 0.119∗∗∗ -0.00293 -0.0753∗∗ 0.252∗∗∗ -0.471∗∗∗ -0.271∗∗ 0.278∗∗∗

(0.0282) (0.0616) (0.0942) (0.0409) (0.0406) (0.0824) (0.0310) (0.0493) (0.0331) (0.107) (0.0331)

Headquarter 0.0213 0.109 -0.141 0.0414 -0.0245 -0.0712 -0.000764 -0.0237 -0.122∗ 0.113 0.312∗∗∗

(0.0446) (0.0864) (0.170) (0.0719) (0.0674) (0.147) (0.0503) (0.0699) (0.0632) (0.157) (0.0454)

Prince Edward Islands 0.580∗∗∗ -0.433 -0.0782 0.440 -0.345∗ 0.320 0.220 0.453∗∗

(0.156) (0.391) (0.300) (0.409) (0.200) (0.308) (0.202) (0.206)

New Scotia 0.303∗∗∗ -0.0336 0.121 0.116 0.316 -0.262∗∗∗ 0.174 0.102 -0.0504 -0.00668

(0.0785) (0.141) (0.119) (0.157) (0.250) (0.0900) (0.158) (0.0952) (0.286) (0.123)

New Brunswick 0.0229 -0.552∗∗ 0.265 0.135 0.268 -0.0772 -0.106 0.216 0.0696 -0.0329 -0.187

(0.0972) (0.229) (0.380) (0.145) (0.169) (0.343) (0.0976) (0.170) (0.113) (0.281) (0.159)

Quebec -0.0478 -0.387∗∗∗ 0.579∗∗∗ 0.0364 0.365∗∗∗ 0.477∗∗∗ -0.288∗∗∗ 0.134∗ -0.118∗∗ -0.277 0.269∗∗∗

(0.0453) (0.0864) (0.184) (0.0625) (0.0691) (0.149) (0.0451) (0.0807) (0.0498) (0.174) (0.0560)

Ontario -0.00633 -0.214∗∗∗ 0.356∗ 0.0244 0.127∗ 0.297∗ -0.372∗∗∗ 0.117 -0.0140 0.0510 0.217∗∗∗

(0.0435) (0.0755) (0.190) (0.0611) (0.0722) (0.154) (0.0430) (0.0764) (0.0473) (0.156) (0.0537)

Manitoba 0.0745 -0.499∗∗ 0.0154 0.0320 0.167 -0.402∗∗∗ -0.125 0.369∗∗∗ 0.122 0.271∗∗∗

(0.0843) (0.220) (0.130) (0.148) (0.290) (0.106) (0.178) (0.0814) (0.300) (0.101)

Saskatchewan 0.0326 -0.355∗ 0.204 -0.118 0.350∗∗ -0.546∗∗∗ -0.207 0.0720 0.0505 0.151

(0.0912) (0.206) (0.374) (0.145) (0.142) (0.120) (0.244) (0.100) (0.297) (0.118)

Alberta -0.0512 -0.273∗∗ 0.0898 0.150∗ 0.00916 0.389∗∗ -0.342∗∗∗ -0.303∗∗ 0.153∗∗ -0.0408 0.192∗∗∗

(0.0601) (0.119) (0.287) (0.0795) (0.104) (0.185) (0.0626) (0.129) (0.0599) (0.222) (0.0719)

Census Metropolitan Area -0.179∗∗∗ 0.00486 0.0389 0.0829 -0.0999 0.216∗∗ -0.276∗∗∗ -0.0339 -0.0280 0.282∗∗ 0.331∗∗∗

(0.0412) (0.0841) (0.117) (0.0701) (0.0713) (0.106) (0.0458) (0.0892) (0.0570) (0.139) (0.0634)

Observations 23388 21200 22194 23388 23298 22946 23388 23388 23388 23298 23388

Pseudo R2 0.139 0.114 0.168 0.068 0.074 0.170 0.057 0.123 0.275 0.186 0.109
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Table 3.8 – Marginal effects on the probability of location choice, NAICS 3-digit industries (2/2)

326 327 331 332 333 334 335 336 337 339

main

Desnity 1.5 km around -0.00000989 -0.00000822 0.0000174 -0.0000604∗∗∗ -0.0000917∗∗∗ 0.0000298∗∗∗ -0.0000179 -0.00000356 -0.0000188∗∗ 0.0000176∗∗∗

(0.00000858) (0.0000101) (0.0000159) (0.00000712) (0.00000828) (0.00000928) (0.0000124) (0.0000111) (0.00000820) (0.00000555)

Building footprint size 0.0000308∗∗∗ -0.0000145∗∗ 0.0000181∗∗∗ -0.00000742∗ -0.0000327∗∗∗ -0.0000576∗∗∗ -0.00000719 0.0000155∗∗∗ 0.0000217∗∗∗ -0.0000510∗∗∗

(0.00000476) (0.00000622) (0.00000587) (0.00000382) (0.00000462) (0.00000823) (0.00000597) (0.00000475) (0.00000545) (0.00000786)

Nb of workers of the plant -0.000723∗∗∗ 0.0000168 0.000137 -0.000205 -0.000191∗ 0.000122 0.00000373 0.000344∗∗∗ -0.000687 -0.000335

(0.000243) (0.0000713) (0.0000847) (0.000165) (0.000108) (0.0000836) (0.0000852) (0.0000953) (0.000418) (0.000261)

Employment, 10km around same naics 0.000852∗∗∗ -0.0000642∗ 0.000216∗∗∗ -0.0000919∗∗∗ 0.0000116 0.000336∗∗∗ 0.000217∗∗∗ 0.000837∗∗∗ -0.0000384∗∗ -0.000526∗∗∗

(0.0000229) (0.0000385) (0.0000775) (0.0000148) (0.0000154) (0.0000463) (0.0000347) (0.0000546) (0.0000190) (0.0000289)

Nb plants, 10km around same naics -0.0288∗∗∗ -0.0191∗∗∗ -0.0858∗∗∗ -0.0000705 0.00699∗∗∗ -0.0461∗∗∗ -0.0235∗∗∗ -0.0647∗∗∗ 0.000315 0.0225∗∗∗

(0.000837) (0.00186) (0.00614) (0.000551) (0.000582) (0.00261) (0.00198) (0.00442) (0.000716) (0.000910)

Distance to nearest junction 0.0000137 0.000177 -0.00968∗∗ -0.00394∗∗∗ 0.000906 -0.00385 -0.0159∗∗∗ -0.00101 -0.00456∗∗∗ -0.000408

(0.00167) (0.00156) (0.00381) (0.00141) (0.00122) (0.00322) (0.00426) (0.00184) (0.00163) (0.00170)

Business type, Distributor -0.172∗∗ 0.0359 0.207 -0.302∗∗∗ 0.367∗∗∗ -0.443∗∗∗ 0.120 0.196∗ 0.243∗∗ -0.255∗∗∗

(0.0725) (0.0699) (0.127) (0.0506) (0.0503) (0.0909) (0.0878) (0.105) (0.104) (0.0621)

Business type, Manufacturer -0.112∗∗ -0.149∗∗∗ 0.144 -0.129∗∗∗ -0.143∗∗∗ -0.198∗∗∗ -0.106 0.267∗∗∗ 0.549∗∗∗ -0.165∗∗∗

(0.0559) (0.0560) (0.107) (0.0382) (0.0424) (0.0637) (0.0737) (0.0881) (0.0857) (0.0463)

Industrial, commercial, institutional -0.0578 0.0337 0.141∗∗ 0.0711∗∗∗ -0.174∗∗∗ 0.311∗∗∗ 0.156∗∗∗ 0.0209 0.0709∗ 0.0139

(0.0393) (0.0383) (0.0582) (0.0266) (0.0289) (0.0488) (0.0501) (0.0449) (0.0393) (0.0365)

Residential -0.0537 -0.125∗∗∗ -0.211∗∗∗ -0.0755∗∗ -0.0764∗∗ 0.200∗∗∗ -0.0223 -0.0288 -0.0207 0.347∗∗∗

(0.0453) (0.0411) (0.0655) (0.0302) (0.0333) (0.0532) (0.0582) (0.0485) (0.0437) (0.0371)

Exporter 0.250∗∗∗ -0.275∗∗∗ 0.0366 -0.0785∗∗∗ 0.527∗∗∗ 0.508∗∗∗ 0.387∗∗∗ 0.0202 -0.298∗∗∗ -0.152∗∗∗

(0.0308) (0.0317) (0.0461) (0.0210) (0.0231) (0.0387) (0.0400) (0.0359) (0.0319) (0.0274)

Headquarter 0.00794 0.114∗∗ -0.0255 -0.134∗∗∗ 0.0316 0.0351 0.148∗∗∗ -0.0669 -0.0626 0.0178

(0.0488) (0.0483) (0.0732) (0.0362) (0.0359) (0.0571) (0.0542) (0.0595) (0.0558) (0.0462)

Prince Edward Islands -0.272 -0.291 -0.565∗∗∗ -0.141 0.348 -0.261 0.146 -0.0628

(0.301) (0.218) (0.208) (0.199) (0.251) (0.263) (0.212) (0.225)

New Scotia -0.00374 -0.0995 -0.376∗ -0.178∗∗ -0.296∗∗∗ 0.0874 -0.454∗∗ -0.108 -0.156 0.264∗∗∗

(0.108) (0.0927) (0.196) (0.0766) (0.0906) (0.119) (0.195) (0.114) (0.116) (0.0838)

New Brunswick -0.185 0.00955 -0.0594 -0.228∗∗ -0.0663 -0.284∗ -0.0609 -0.188 -0.0656 0.298∗∗∗

(0.138) (0.0998) (0.170) (0.0894) (0.0935) (0.164) (0.171) (0.129) (0.126) (0.0959)

Quebec 0.0984∗∗ -0.134∗∗∗ 0.0687 0.0595∗ 0.0101 -0.0922 0.0835 -0.259∗∗∗ 0.165∗∗∗ -0.0816∗

(0.0500) (0.0497) (0.0783) (0.0355) (0.0392) (0.0618) (0.0634) (0.0581) (0.0499) (0.0436)

Ontario -0.113∗∗ -0.0526 0.132∗ 0.0969∗∗∗ -0.0774∗∗ 0.137∗∗ 0.0491 -0.101∗ 0.000858 0.0287

(0.0499) (0.0466) (0.0743) (0.0333) (0.0369) (0.0557) (0.0595) (0.0531) (0.0495) (0.0418)

Manitoba 0.114 -0.211∗ -0.0290 -0.0278 0.138∗ -0.0873 -0.0134 -0.0573 -0.264∗ 0.121

(0.0960) (0.116) (0.164) (0.0722) (0.0730) (0.131) (0.130) (0.106) (0.137) (0.0915)

Saskatchewan -0.0379 0.0274 -0.187 -0.0340 0.136∗ -0.287∗ -0.0875 -0.300∗∗ -0.0415 0.192∗∗

(0.126) (0.101) (0.189) (0.0798) (0.0818) (0.158) (0.152) (0.135) (0.116) (0.0871)

Alberta -0.161∗∗ 0.0297 0.204∗∗ 0.0800∗ 0.209∗∗∗ 0.182∗∗ -0.0800 -0.303∗∗∗ -0.239∗∗∗ 0.0924∗

(0.0692) (0.0624) (0.0992) (0.0446) (0.0468) (0.0747) (0.0871) (0.0814) (0.0734) (0.0553)

Census Metropolitan Area -0.0321 -0.00861 0.357∗∗∗ 0.162∗∗∗ 0.0551 0.553∗∗∗ 0.464∗∗∗ 0.161∗∗∗ -0.104∗∗ 0.0920∗

(0.0568) (0.0474) (0.0766) (0.0384) (0.0432) (0.0744) (0.0900) (0.0582) (0.0523) (0.0526)

Observations 23388 23388 23298 23388 23388 23298 23388 23388 23388 23388

Pseudo R2 0.183 0.079 0.145 0.022 0.114 0.138 0.087 0.115 0.035 0.122
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3.6.3 Classification trees, Gap statistics curves, distribution of classes

Figure 3.8 – Classification tree, worker HAC at 3 digit

Figure 3.9 – Gap statistics curve, worker HAC at 3 digit
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Figure 3.10 – Classification tree, multivariate HAC at 3 digit

Figure 3.11 – Gap statistics curve, multivariate HAC at 3 digit
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Figure 3.12 – Classification tree, worker HAC at 4 digit

Figure 3.13 – Gap statistics curve, worker HAC at 4 digit
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Notes: The gap statistics for the HAC procedure performed with workers suggests 6 bins. But we use 5 bins

for the main results at the NAICS 4-digit for comparison to the 5 bins of Duranton and Overman (2008).

This may not really alter results since the gap statistics between 5 and 6 classes is not very huge.
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Figure 3.14 – Classification tree, multivariate HAC at 4 digit

Figure 3.15 – Gap statistics curve, multivariate HAC at 4 digit
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Table 3.9 – Distribution of the industries across the locations classes

Classes of locations

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Total
Panel a : Establishment

311 Food manufacturing 517 8 1,436 0 12 0 1,973
312 Beverage product manuf. 230 0 0 0 0 0 230
313 Textile mills 72 0 0 0 0 0 72
314 Textile product mills 558 0 0 0 0 0 558
315 Clothing manufacturing 535 2 0 0 0 0 537
316 Leather, allied product manuf. 105 0 0 0 0 0 105
321 Wood product manufacturing 136 4 1,028 0 3 0 1,171
322 Paper manufacturing 338 14 0 0 4 0 356
323 Printing, support activities 179 0 0 0 11 1,597 1,787
324 Petrol, coal product manuf. 55 0 0 0 0 0 55
325 Chemical manufacturing 89 5 946 0 4 0 1,044
326 Plastics, rubber products manuf. 91 1,332 0 0 4 0 1,427
327 Non-metallic mineral product manuf. 172 1 1,021 0 0 0 1,194
331 Primary metal manufacturing 386 2 0 0 0 0 388
332 Fabricated metal product manuf. 539 592 0 2,802 10 0 3,943
333 Machinery manufacturing 447 2,883 0 0 8 0 3,338
334 Computer, electronic product manuf. 49 3 704 0 0 0 756
335 Electrical, appliance manuf. 585 1 0 0 0 0 586
336 Transportation equipment manuf. 714 56 0 0 0 0 770
337 Furniture, related product manuf. 70 36 970 0 0 0 1,076
339 Miscellaneous manufacturing 211 66 0 0 1,745 0 2,022
Total 6,078 5,005 6,105 2,802 1,801 1,597 23,388

Panel b : Employment

311 Food manufacturing 23,205 9,900 80,960 0 429 0 114,494
312 Beverage product manuf. 9,437 0 0 0 0 0 9,437
313 Textile mills 2,680 0 0 0 0 0 2,680
314 Textile product mills 8,919 0 0 0 0 0 8,919
315 Clothing manufacturing 17,242 2,900 0 0 0 0 20,142
316 Leather, allied product manuf. 2,408 0 0 0 0 0 2,408
321 Wood product manufacturing 4,905 6,425 39,901 0 82 0 51,313
322 Paper manufacturing 20,655 8,454 0 0 63 0 29,172
323 Printing, support activities 2,529 0 0 0 98 28,173 30,800
324 Petrol, coal product manuf. 7,130 0 0 0 0 0 7,130
325 Chemical manufacturing 3,199 7,200 38,374 0 53 0 48,826
326 Plastics, rubber products manuf. 3,020 64,282 0 0 20 0 67,322
327 Non-metallic mineral product manuf. 4,671 3,000 35,717 0 0 0 43,388
331 Primary metal manufacturing 22,735 5,500 0 0 0 0 28,235
332 Fabricated metal product manuf. 15,334 46,951 0 68,051 711 0 131,047
333 Machinery manufacturing 13,214 114,813 0 0 157 0 128,184
334 Computer, electronic product manuf. 1,978 8,800 32,746 0 0 0 43,524
335 Electrical, appliance manuf. 28,647 3,500 0 0 0 0 32,147
336 Transportation equipment manuf. 29,417 40,740 0 0 0 0 70,157
337 Furniture, related product manuf. 1,218 3,043 26,543 0 0 0 30,804
339 Miscellaneous manufacturing 3,635 10,347 0 0 28,439 0 42,421
Total 226,178 335,855 254,241 68,051 30,052 28,173 942,550
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Figure 3.16 – K-densities of the distribution of locations of the classes - 3 digit, em-

ployment
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Figure 3.17 – K-densities of the distribution of locations of the classes - 3 digit, estab-

lishments
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3.6.4 Detailed results for the NAICS 3-digit industries

Table 3.10 – Detailed classfication of the NAICS 3-digit industries, Establishments

Counterfactuals

NAICS3 NAMES Benchmark(B) Job(DO5) Job(J5) Deter(D4) Deter(D5) Deter(D6) Deter(D7) Deter(D8)

311 Food manufacturing agglo agglo agglo agglo agglo disp agglo disp

312 Beverage product manuf. disp disp disp disp disp agglo agglo agglo

313 Textile mills agglo agglo agglo agglo agglo agglo agglo agglo

314 Textile product mills disp disp disp random random agglo agglo agglo

315 Clothing manufacturing agglo agglo agglo agglo agglo agglo agglo agglo

316 Leather, allied product manuf. agglo agglo agglo agglo agglo agglo agglo agglo

321 Wood product manufacturing agglo agglo agglo agglo agglo agglo agglo agglo

322 Paper manufacturing agglo agglo agglo agglo agglo agglo agglo agglo

323 Printing, support activities agglo agglo agglo agglo agglo agglo agglo agglo

324 Petrol, coal product manuf. random random random random random random random random

325 Chemical manufacturing agglo agglo agglo agglo agglo agglo agglo agglo

326 Plastics, rubber products manuf. agglo agglo agglo agglo agglo agglo agglo agglo

327 Non-metallic mineral product manuf. agglo agglo agglo disp disp agglo agglo agglo

331 Primary metal manufacturing random random random agglo agglo agglo agglo agglo

332 Fabricated metal product manuf. agglo agglo agglo agglo agglo agglo agglo agglo

333 Machinery manufacturing agglo agglo agglo agglo agglo agglo agglo agglo

334 Computer, electronic product manuf. agglo agglo agglo agglo agglo agglo agglo agglo

335 Electrical, appliance manuf. agglo agglo agglo agglo agglo agglo agglo agglo

336 Transportation equipment manuf. random random disp agglo agglo agglo agglo agglo

337 Furniture, related product manuf. agglo agglo agglo agglo agglo agglo agglo agglo

339 Miscellaneous manufacturing agglo agglo agglo agglo agglo agglo agglo agglo

Share agglomerated 76,2% 76,2% 76,2% 81,0% 81,0% 90,5% 95,2% 90,5%

Share random 14,3% 14,3% 9,5% 9,5% 9,5% 4,8% 4,8% 4,8%

Share dispersed 9,5% 9,5% 14,3% 9,5% 9,5% 4,8% 0,0% 4,8%

Percent switches between counterfactual

Notes: This table reports the test for localization with different counterfactuals. Benchmark(B) uses the unconstrained

counterfactual. Job(DO5) uses a counterfactual based on bins of number of workers as defined in Duranton and

Overman (2008), Job(J5) uses a counterfactual based on 5 bins of workers as suggested by the HAC procedure.

Deter(Dx) uses a counterfactual based on x bins as suggested by the HAC procedure performed with firms’ location

determinants. x=4, 5, 6, 7, and 8.
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Table 3.11 – Changes of classification from the benchmark to other counterfatcuals,

NAICS 3-digit: Establishments

NAICS3 NAMES
Switching

B - DO5 B - J5 B - D4 B - D5 B - D6 B - D7 B - D8

311 Food manufacturing 2 steps down 2 steps down

312 Beverage product manuf. 2 steps up 2 steps up 2 steps up

313 Textile mills

314 Textile product mills 1 step up 1 step up 2 steps up 2 steps up 2 steps up

315 Clothing manufacturing

316 Leather, allied product manuf.

321 Wood product manufacturing

322 Paper manufacturing

323 Printing, support activities

324 Petrol, coal product manuf.

325 Chemical manufacturing

326 Plastics, rubber products manuf.

327 Non-metallic mineral product manuf. 2 steps down 2 steps down

331 Primary metal manufacturing 1 step up 1 step up 1 step up 1 step up 1 step up

332 Fabricated metal product manuf.

333 Machinery manufacturing

334 Computer, electronic product manuf.

335 Electrical, appliance manuf.

336 Transportation equipment manuf. 1 step down 1 step up 1 step up 1 step up 1 step up 1 step up

337 Furniture, related product manuf.

339 Miscellaneous manufacturing

Percentage 0,0% 4,8% 19,0% 19,0% 23,8% 19,0% 23,8%

Notes: This table reports the changes in classification when comparing the test for localization from the benchmark

counterfactuals to alternative counterfactual. B-A refers to the comaprison between Benchmark(B) counterfactual

and the alternative A. A being one of the following : (i) DO5 : The counterfactual based on 5 bins of number of

workers as defined in Duranton and Overman (2008), (ii) J5 : The counterfactual based on 5 bins of workers as

suggested by the HAC procedure, (iii) Dx : The counterfactual based on x bins as suggested by the HAC procedure

performed with firms’ location determinants. x=4, 5, 6, 7, and 8.
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Table 3.12 – Detailed classfication of the NAICS 3-digit industries, Employment

Counterfactuals

NAICS3 NAMES Benchmark(B) Job(DO5) Job(J5) Deter(D4) Deter(D5) Deter(D6) Deter(D7) Deter(D8)

311 Food manufacturing disp disp disp agglo agglo disp agglo agglo

312 Beverage product manuf. random random random random random agglo agglo agglo

313 Textile mills agglo agglo agglo agglo agglo agglo agglo agglo

314 Textile product mills agglo agglo agglo agglo agglo agglo agglo agglo

315 Clothing manufacturing agglo agglo agglo agglo agglo agglo agglo agglo

316 Leather, allied product manuf. agglo agglo agglo agglo agglo agglo agglo agglo

321 Wood product manufacturing disp disp disp disp disp disp disp disp

322 Paper manufacturing random random random agglo agglo agglo agglo agglo

323 Printing, support activities agglo random random random random random random random

324 Petrol, coal product manuf. random random random random random random random random

325 Chemical manufacturing agglo agglo agglo agglo agglo agglo agglo disp

326 Plastics, rubber products manuf. agglo agglo agglo agglo agglo agglo agglo agglo

327 Non-metallic mineral product manuf. random disp disp random random disp random random

331 Primary metal manufacturing random random random random random agglo agglo agglo

332 Fabricated metal product manuf. random random random disp disp disp disp disp

333 Machinery manufacturing agglo agglo agglo disp disp disp agglo agglo

334 Computer, electronic product manuf. disp disp disp disp agglo disp disp disp

335 Electrical, appliance manuf. disp random disp agglo agglo agglo agglo agglo

336 Transportation equipment manuf. agglo agglo agglo agglo agglo agglo agglo agglo

337 Furniture, related product manuf. agglo agglo agglo agglo agglo agglo disp disp

339 Miscellaneous manufacturing random random random random random random random random

Share agglomerated 47,6% 42,9% 42,9% 52,4% 57,1% 57,1% 61,9% 57,1%

Share random 33,3% 38,1% 33,3% 28,6% 28,6% 14,3% 19,0% 19,0%

Share dispersed 19,0% 19,0% 23,8% 19,0% 14,3% 28,6% 19,0% 23,8%

Percent switches between counterfactual

Notes: This table reports the test for localization for with different counterfactuals. Benchmark(B) uses the uncon-

strained counterfactual. Job(DO5) uses a counterfactual based on bins of number of workers as defined in Duranton

and Overman (2008), Job(J5) uses a counterfactual based on 5 bins of workers as suggested by the HAC procedure.

Deter(Dx) uses a counterfactual based on x bins as suggested by the HAC procedure performed with firms’ location

determinants. x=4, 5, 6, 7, and 8.
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Table 3.13 – Changes of classification from the benchmark to other counterfatcuals,

NAICS 3-digit: Employment

NAICS3 NAMES
Switching

B - DO5 B - J5 B - D4 B - D5 B - D6 B - D7 B - D8

311 Food manufacturing 2 steps up 2 steps up 2 steps up 2 steps up

312 Beverage product manuf. 1 step up 1 step up 1 step up

313 Textile mills

314 Textile product mills

315 Clothing manufacturing

316 Leather, allied product manuf.

321 Wood product manufacturing

322 Paper manufacturing 1 step up 1 step up 1 step up 1 step up 1 step up

323 Printing, support activities 1 step down 1 step down 1 step down 1 step down 1 step down 1 step down 1 step down

324 Petrol, coal product manuf.

325 Chemical manufacturing 2 steps down

326 Plastics, rubber products manuf.

327 Non-metallic mineral product manuf. 1 step down 1 step down 1 step down

331 Primary metal manufacturing 1 step up 1 step up 1 step up

332 Fabricated metal product manuf. 1 step down 1 step down 1 step down 1 step down 1 step down

333 Machinery manufacturing 2 steps down 2 steps down 2 steps down

334 Computer, electronic product manuf. 2 steps up

335 Electrical, appliance manuf. 1 step up 2 steps up 2 steps up 2 steps up 2 steps up 2 steps up

336 Transportation equipment manuf.

337 Furniture, related product manuf. 2 steps down 2 steps down

339 Miscellaneous manufacturing

Percentage 14,3% 9,5% 28,6% 33,3% 38,1% 38,1% 42,9%

Notes: This table reports the changes in classification when comparing the test for localization from the benchmark

counterfactuals to alternative counterfactual. B-A refers to the comaprison between Benchmark(B) counterfactual

and the alternative A. A being one of the following : (i) DO5 : The counterfactual based on 5 bins of number of

workers as defined in Duranton and Overman (2008), (ii) J5 : The counterfactual based on 5 bins of workers as

suggested by the HAC procedure, (iii) Dx : The counterfactual based on x bins as suggested by the HAC procedure

performed with firms’ location determinants. x=4, 5, 6, 7, and 8.



189

3.6.5 Key results for the NAICS 4-digit industries

Table 3.14 – Summary statistics : Localization, dispersion and randomness, NAICS

4-digit industries

Localized Dispersed random

Panel a : establishments nb % Γ nb % Ψ nb %

Benchmark, unconstrained 41 47.7 0.0242 12 14.0 0.0130 32 38.4
Job counterfactual, DO 2008 38 44.2 0.0265 17 19.8 0.0122 30 36.0
Job counterfactual, HAC 40 46.5 0.0249 1 17.4 0.0110 30 36.0
Multivariate counterfactual 41 47.7 0.0550 19 22.1 0.0049 25 30.2

Panel b : employment nb % Γ nb % Ψ nb %

Benchmark, unconstrained 26 30.2 0.0355 13 15.1 0.0069 46 54.7
Job counterfactual, DO 2008 27 31.4 0.0375 15 17.4 0.0065 43 51.2
Job counterfactual, HAC 24 27.9 0.0381 16 18.6 0.0074 45 53.5
Multivariate counterfactual 21 24.4 0.0975 15 17.4 0.0036 49 58.1

Notes:

Table 3.15 – Summary statistics : Changes from the benchmark to other counterfactu-

als, NAICS 4-digit industries

Switches from the Benchmark to other counterfactuals

Panel a : establishments

One step up One step down Two steps up Two steps down Unchanged

Benchmark to Job DO 1.2% 3.5% 1.2% 4.7% 89.5%

Benchmark to Job HAC 4.8% 3.5% 2.3% 3.5% 85.9%

Benchmark to Multivariate 11.6% 17.4% 5.8% 7.0% 58.1%

Panel b : employment

One step up One step down Two steps up Two steps down Unchanged

Benchmark to Job DO 3.5% 4.7% 0.0% 0.0% 91.9%

Benchmark to Job HAC 4.8% 7.0% 0.0% 0.0% 88.3%

Benchmark to Multivariate 14.0% 19.8% 3.5% 4.7% 58.1%
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Table 3.16 – Most localized and most dispersed, NAICS 4-digit industries

Benchmark counterfactual Multivariate counterfactual

naics-4 Industry Index naics-3 Industry Index

Panel a : Establishments

Most localized

3335 Metalworking machinery manufacturing 0.191 3133 Textile and fabric finishing and fabric coating 0.272

3222 Converted paper product manufacturing 0.112 3132 Fabric mills 0.233

3255 Paint coating and adhesive manufacturing 0.111 3152 Cut and sew clothing manufacturing 0.213

3117 Seafood product preparation and packaging 0.0592 3113 Sugar & confectionery product manuf. 0.186

3261 Plastic product manufacturing 0.0557 3151 Clothing knitting mills 0.166

3152 Cut and sew clothing manufacturing 0.0557 3117 Seafood product preparation and packaging 0.154

3372 Office furniture (including fixtures) manuf. 0.0504 3119 Other food manufacturing 0.135

3312 Steel product manuf. from purchased steel 0.0478 3159 Clothing accessories and other clothing manufacturing 0.135

3364 Aerospace product & parts manufacturing 0.0470 3162 Footwear manufacturing 0.128

3344 Semiconductor & other electronic component manuf. 0.0373 3159 Clothing accessories and other clothing manufacturing 0.119

Most dispersed

3212 Veneer plywood and engineered wood product manuf. 0.0377 3329 Other fabricated metal product manufacturing 0.0152

3366 Ship and boat building 0.0305 3161 Leather and hide tanning and finishing 0.0117

3342 Communications equipment manufacturing 0.0235 3391 Medical equipment & supplies manuf. 0.0105

3279 Other non metallic mineral product manuf. 0.0152 3342 Communications equipment manufacturing 0.00756

3272 Glass and glass product manufacturing 0.0149 3311 Iron, steel mills & ferro alloy manuf. 0.00746

3121 Beverage manufacturing 0.0133 3272 Glass and glass product manufacturing 0.00698

3345 Navigational measuring 0.0117 3323 Architectural & structural metals manuf. 0.00680

3211 Sawmills and wood preservation 0.00635 3255 Paint coating and adhesive manufacturing 0.00560

3351 Electric lighting equipment manufacturing 0.00175 3361 Motor vehicle manufacturing 0.00463

3391 Medical equipment & supplies manuf. 0.000969 3322 Cutlery & hand tool manufacturing 0.00381

Panel b : Employment

Most localized

3335 Metalworking machinery manufacturing 0.202 3151 Clothing knitting mills 0.265

3363 Motor vehicle parts manufacturing 0.121 3133 Textile and fabric finishing and fabric coating 0.228

3255 Paint coating and adhesive manufacturing 0.115 3132 Fabric mills 0.227

3344 Semiconductor & other electronic component manuf. 0.0711 3162 Footwear manufacturing 0.195

3261 Plastic product manufacturing 0.0574 3152 Cut and sew clothing manufacturing 0.181

3325 Hardware manufacturing 0.0423 3113 Sugar & confectionery product manuf. 0.167

3252 Resin synthetic rubber 0.0392 3117 Seafood product preparation and packaging 0.160

3372 Office furniture (including fixtures) manuf. 0.0368 3115 Dairy product manufacturing 0.134

3117 Seafood product preparation and packaging 0.0329 3119 Other food manufacturing 0.115

3113 Sugar & confectionery product manuf. 0.0289 3118 Bakeries and tortilla manufacturing 0.106

Most dispersed

3253 Pesticide fertilizer & other agricultural chemical manuf. 0.0325 3219 Other wood product manufacturing 0.0163

3331 Agricultural construction & mining machinery manuf. 0.0225 3211 Sawmills and wood preservation 0.00940

3219 Other wood product manufacturing 0.0145 3339 Other general purpose machinery manufacturing 0.00486

3211 Sawmills and wood preservation 0.00677 3273 Cement and concrete product manufacturing 0.00454

3324 Boiler tank & shipping container manuf. 0.00483 3121 Beverage manufacturing 0.00420

3251 Basic chemical manufacturing 0.00402 3253 Pesticide fertilizer & other agricultural chemical manuf. 0.00354

3341 Computer and peripheral equipment manufacturing 0.00163 3231 Printing and related support activities 0.00289

3161 Leather and hide tanning and finishing 0.000802 3372 Office furniture (including fixtures) manuf. 0.00286

3314 Non ferrous metal production & processing 0.000709 3255 Paint coating and adhesive manufacturing 0.00232

3391 Medical equipment & supplies manuf. 0.000528 3327 0.00174
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Figure 3.18 – Number of Localized / Dispersed, 4 digit industries
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Table 3.17 – Detailed classfication of industries, NAICS 4-digit: Establishments (1/2)

Counterfactuals

NAICS3 NAMES Benchmark(B) Job(DO5) Job(J5) Deter(D4) Deter(D5) Deter(D6) Deter(D7) Deter(D8)

3111 Animal food manufacturing agglo disp disp agglo agglo agglo random random

3112 Grain & oilseed milling random random random disp disp disp disp random

3113 Sugar & confectionery product manuf. agglo agglo agglo agglo agglo agglo agglo agglo

3114 Fruit, vegetable preserving & specialty food manuf. random random random agglo agglo agglo random agglo

3115 Dairy product manufacturing agglo agglo agglo agglo agglo agglo agglo agglo

3116 Meat product manufacturing random random random agglo agglo agglo agglo agglo

3117 Seafood product preparation and packaging agglo agglo agglo agglo agglo agglo agglo agglo

3118 Bakeries and tortilla manufacturing random random random agglo agglo agglo agglo agglo

3119 Other food manufacturing agglo agglo agglo agglo agglo agglo agglo agglo

3121 Beverage manufacturing disp disp disp agglo agglo agglo disp disp

3122 Tobacco manufacturing random random random agglo agglo agglo random agglo

3131 Fibre yarn and thread mills random random random random random random random random

3132 Fabric mills agglo agglo agglo agglo agglo agglo agglo agglo

3133 Textile and fabric finishing and fabric coating agglo agglo agglo agglo agglo agglo agglo agglo

3141 Textile furnishings mills random random random agglo agglo agglo disp disp

3149 Other textile product mills agglo agglo agglo agglo agglo agglo agglo agglo

3151 Clothing knitting mills random agglo random agglo agglo agglo agglo agglo

3152 Cut and sew clothing manufacturing agglo agglo agglo agglo agglo agglo agglo agglo

3159 Clothing accessories and other clothing manuf. random random random agglo agglo agglo agglo agglo

3161 Leather and hide tanning and finishing random random random disp random disp random random

3162 Footwear manufacturing agglo agglo agglo agglo agglo agglo agglo agglo

3169 Other leather and allied product manufacturing random random random random random random random random

3211 Sawmills and wood preservation disp disp agglo agglo agglo agglo agglo agglo

3212 Veneer plywood and engineered wood product manuf. disp disp disp agglo agglo agglo agglo agglo

3219 Other wood product manufacturing agglo agglo agglo agglo agglo agglo agglo agglo

3221 Pulp paper and paperboard mills random random disp disp random random random disp

3222 Converted paper product manufacturing agglo agglo agglo agglo agglo agglo disp agglo

3231 Printing and related support activities agglo agglo agglo disp agglo agglo disp disp

3241 Petroleum & coal product manufacturing random random random random disp disp disp random

3251 Basic chemical manufacturing disp agglo agglo agglo random random random random

3252 Resin synthetic rubber random random agglo random random random random random

3253 Pesticide fertilizer & other agricultural chemical manuf. agglo disp agglo agglo agglo agglo disp disp

3254 Pharmaceutical and medicine manufacturing random disp random disp disp disp disp disp

3255 Paint coating and adhesive manufacturing agglo agglo agglo agglo disp disp agglo disp

3256 Soap cleaning compound and toilet preparation manuf. agglo disp disp disp disp disp disp disp

3259 Other chemical product manufacturing random random random random random random random random

3261 Plastic product manufacturing agglo agglo agglo agglo agglo agglo agglo agglo

3262 Rubber product manufacturing agglo agglo agglo agglo agglo agglo agglo agglo

3271 Clay product and refractory manufacturing agglo agglo agglo agglo agglo agglo agglo agglo

3272 Glass and glass product manufacturing disp disp disp disp disp disp disp disp

3273 Cement and concrete product manufacturing agglo disp agglo agglo agglo agglo agglo agglo

3274 Lime and gypsum product manufacturing random random random random random random random random

Notes: This table reports the test for localization for with different counterfactuals. Benchmark(B) uses the unconstrained counter-

factual. Job(DO5) uses a counterfactual based on bins of number of workers as defined in Duranton and Overman (2008), Job(J5)

uses a counterfactual based on 5 bins of workers as suggested by the HAC procedure. Deter(Dx) uses a counterfactual based on

x bins as suggested by the HAC procedure performed with firms’ location determinants. x=4, 5, 6, 7, and 8.
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Table 3.18 – Detailed classfication of industries, NAICS 4-digit: Establishments (2/2)

Counterfactuals

NAICS3 NAMES Benchmark(B) Job(DO5) Job(J5) Deter(D4) Deter(D5) Deter(D6) Deter(D7) Deter(D8)

3279 Other non metallic mineral product manuf. disp disp disp agglo agglo agglo agglo agglo

3311 Iron, steel mills & ferro alloy manuf. disp disp disp disp disp disp disp agglo

3312 Steel product manuf. from purchased steel agglo agglo agglo random agglo random disp random

3313 Alumina, aluminum production & processing agglo random random random random random random random

3314 Non ferrous metal production & processing random random random random random random random random

3315 Foundries agglo agglo agglo agglo agglo agglo agglo agglo

3321 Forging and stamping random random random random random random random random

3322 Cutlery & hand tool manufacturing random random random random disp disp random random

3323 Architectural & structural metals manuf. random disp disp disp disp disp disp disp

3324 Boiler tank & shipping container manuf. random random random random random random random random

3325 Hardware manufacturing agglo agglo agglo agglo random random disp random

3326 Spring & wire product manufacturing random random random random random random random random

3327 Machine shops turned product agglo agglo agglo agglo agglo agglo agglo agglo

3328 Coating engraving agglo agglo agglo random random random random random

3329 Other fabricated metal product manufacturing agglo agglo agglo disp disp disp disp disp

3331 Agricultural construction & mining machinery manuf. agglo agglo agglo agglo agglo agglo agglo agglo

3332 Industrial machinery manufacturing agglo agglo agglo agglo random random random random

3333 Commercial & service industry machinery manuf. random random random disp random random random random

3334 Ventilation heating random random random random random random random random

3335 Metalworking machinery manufacturing agglo agglo agglo agglo agglo agglo agglo agglo

3336 Engine turbine & power transmission equipment manuf. random random random disp random random random random

3339 Other general purpose machinery manufacturing agglo agglo agglo agglo agglo agglo agglo agglo

3341 Computer and peripheral equipment manufacturing agglo agglo agglo disp disp agglo agglo agglo

3342 Communications equipment manufacturing disp disp disp disp disp disp disp disp

3343 Audio and video equipment manufacturing agglo agglo agglo random random random random random

3344 Semiconductor & other electronic component manuf. agglo agglo agglo random disp disp disp random

3345 Navigational measuring disp disp disp disp disp disp disp disp

3346 Manufacturing, reproducing magnetic & optical media random random random random random agglo random random

3351 Electric lighting equipment manufacturing disp disp disp random random random random random

3352 Household appliance manufacturing random random random random random random random random

3353 Electrical equipment manufacturing random random random random random random random random

3359 Other electrical equipment & component manuf. agglo agglo disp random random random random random

3361 Motor vehicle manufacturing agglo agglo agglo agglo random disp disp disp

3362 Motor vehicle body & trailer manuf. random random random random random disp random disp

3363 Motor vehicle parts manufacturing agglo agglo agglo agglo agglo agglo agglo agglo

3364 Aerospace product & parts manufacturing agglo agglo agglo disp disp disp disp disp

3365 Railroad rolling stock manufacturing random random random random random random random random

3366 Ship and boat building disp disp disp disp disp agglo agglo agglo

3369 Other transportation equipment manufacturing random random random random random random random random

3371 Household, institutional furniture & kitchen cabinet manuf. agglo agglo agglo agglo agglo agglo agglo agglo

3372 Office furniture (including fixtures) manuf. agglo agglo agglo agglo agglo agglo agglo disp

3379 Other furniture related product manuf. random random random random disp disp disp disp

3391 Medical equipment & supplies manuf. disp disp disp disp disp disp disp disp

3399 Other miscellaneous manuf. agglo agglo agglo agglo agglo agglo agglo agglo

Share agglomerated 47,7% 44,2% 46,5% 48,8% 45,3% 47,7% 38,4% 40,7%

Share random 38,4% 36,0% 36,0% 30,2% 33,7% 30,2% 36,0% 37,2%

Share dispersed 14,0% 19,8% 17,4% 20,9% 20,9% 22,1% 25,6% 22,1%

Percent switches between counterfactual

Notes: This table reports the test for localization for with different counterfactuals. Benchmark(B) uses the unconstrained counter-

factual. Job(DO5) uses a counterfactual based on bins of number of workers as defined in Duranton and Overman (2008), Job(J5)

uses a counterfactual based on 5 bins of workers as suggested by the HAC procedure. Deter(Dx) uses a counterfactual based on

x bins as suggested by the HAC procedure performed with firms’ location determinants. x=4, 5, 6, 7, and 8.
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Table 3.19 – Changes of classification from the benchmark to other counterfatcuals,

NAICS 4-digit: Establishments (1/2)

Switching

NAICS3 NAMES B - DO5 B - J5 B - D4 B - D5 B - D6 B - D7 B - D8

3111 Animal food manufacturing 2 steps down 2 steps down 1 step down 1 step down

3112 Grain & oilseed milling 1 step down 1 step down 1 step down 1 step down

3113 Sugar & confectionery product manuf.

3114 Fruit, vegetable preserving & specialty food manuf. 1 step up 1 step up 1 step up 1 step up

3115 Dairy product manufacturing

3116 Meat product manufacturing 1 step up 1 step up 1 step up 1 step up 1 step up

3117 Seafood product preparation and packaging

3118 Bakeries and tortilla manufacturing 1 step up 1 step up 1 step up 1 step up 1 step up

3119 Other food manufacturing

3121 Beverage manufacturing 2 steps up 2 steps up 2 steps up

3122 Tobacco manufacturing 1 step up 1 step up 1 step up 1 step up

3131 Fibre yarn and thread mills

3132 Fabric mills

3133 Textile and fabric finishing and fabric coating

3141 Textile furnishings mills 1 step up 1 step up 1 step up 1 step down 1 step down

3149 Other textile product mills

3151 Clothing knitting mills 1 step up 1 step up 1 step up 1 step up 1 step up 1 step up

3152 Cut and sew clothing manufacturing

3159 Clothing accessories and other clothing manuf. 1 step up 1 step up 1 step up 1 step up 1 step up

3161 Leather and hide tanning and finishing 1 step down 1 step down

3162 Footwear manufacturing

3169 Other leather and allied product manufacturing

3211 Sawmills and wood preservation 2 steps up 2 steps up 2 steps up 2 steps up 2 steps up 2 steps up

3212 Veneer plywood and engineered wood product manuf. 2 steps up 2 steps up 2 steps up 2 steps up 2 steps up

3219 Other wood product manufacturing

3221 Pulp paper and paperboard mills 1 step down 1 step down 1 step down

3222 Converted paper product manufacturing 2 steps down

3231 Printing and related support activities 2 steps down 2 steps down 2 steps down

3241 Petroleum & coal product manufacturing 1 step down 1 step down 1 step down

3251 Basic chemical manufacturing 2 steps up 2 steps up 2 steps up 1 step up 1 step up 1 step up 1 step up

3252 Resin synthetic rubber 1 step up

3253 Pesticide fertilizer & other agricultural chemical manuf. 2 steps down 2 steps down 2 steps down

3254 Pharmaceutical and medicine manufacturing 1 step down 1 step down 1 step down 1 step down 1 step down 1 step down

3255 Paint coating and adhesive manufacturing 2 steps down 2 steps down 2 steps down

3256 Soap cleaning compound and toilet preparation manuf. 2 steps down 2 steps down 2 steps down 2 steps down 2 steps down 2 steps down 2 steps down

3259 Other chemical product manufacturing

3261 Plastic product manufacturing

3262 Rubber product manufacturing

3271 Clay product and refractory manufacturing

3272 Glass and glass product manufacturing

3273 Cement and concrete product manufacturing 2 steps down

3274 Lime and gypsum product manufacturing

Notes: This table reports the changes in classification when comparing the test for localization from the benchmark counterfactuals

to alternative counterfactual. B-A refers to the comaprison between Benchmark(B) counterfactual and the alternative A. A being

one of the following : (i) DO5 : The counterfactual based on 5 bins of number of workers as defined in Duranton and Overman

(2008), (ii) J5 : The counterfactual based on 5 bins of workers as suggested by the HAC procedure, (iii) Dx : The counterfactual

based on x bins as suggested by the HAC procedure performed with firms’ location determinants. x=4, 5, 6, 7, and 8.
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Table 3.20 – Changes of classification from the benchmark to other counterfatcuals,

NAICS 4-digit: Establishments (2/2)

Switching

NAICS3 NAMES B - DO5 B - J5 B - D4 B - D5 B - D6 B - D7 B - D8

3279 Other non metallic mineral product manuf. 2 steps up 2 steps up 2 steps up 2 steps up 2 steps up

3311 Iron, steel mills & ferro alloy manuf. 2 steps up

3312 Steel product manuf. from purchased steel 1 step down 1 step down 2 steps down 1 step down

3313 Alumina, aluminum production & processing 1 step down 1 step down 1 step down 1 step down 1 step down 1 step down 1 step down

3314 Non ferrous metal production & processing

3315 Foundries

3321 Forging and stamping

3322 Cutlery & hand tool manufacturing 1 step down 1 step down

3323 Architectural & structural metals manuf. 1 step down 1 step down 1 step down 1 step down 1 step down 1 step down 1 step down

3324 Boiler tank & shipping container manuf.

3325 Hardware manufacturing 1 step down 1 step down 2 steps down 1 step down

3326 Spring & wire product manufacturing

3327 Machine shops turned product

3328 Coating engraving 1 step down 1 step down 1 step down 1 step down 1 step down

3329 Other fabricated metal product manufacturing 2 steps down 2 steps down 2 steps down 2 steps down 2 steps down

3331 Agricultural construction & mining machinery manuf.

3332 Industrial machinery manufacturing 1 step down 1 step down 1 step down 1 step down

3333 Commercial & service industry machinery manuf. 1 step down

3334 Ventilation heating

3335 Metalworking machinery manufacturing

3336 Engine turbine & power transmission equipment manuf. 1 step down

3339 Other general purpose machinery manufacturing

3341 Computer and peripheral equipment manufacturing 2 steps down 2 steps down

3342 Communications equipment manufacturing

3343 Audio and video equipment manufacturing 1 step down 1 step down 1 step down 1 step down 1 step down

3344 Semiconductor & other electronic component manuf. 1 step down 2 steps down 2 steps down 2 steps down 1 step down

3345 Navigational measuring

3346 Manufacturing, reproducing magnetic & optical media 1 step up

3351 Electric lighting equipment manufacturing 1 step up 1 step up 1 step up 1 step up 1 step up

3352 Household appliance manufacturing

3353 Electrical equipment manufacturing

3359 Other electrical equipment & component manuf. 2 steps down 1 step down 1 step down 1 step down 1 step down 1 step down

3361 Motor vehicle manufacturing 1 step down 2 steps down 2 steps down 2 steps down

3362 Motor vehicle body & trailer manuf. 1 step down 1 step down

3363 Motor vehicle parts manufacturing

3364 Aerospace product & parts manufacturing 2 steps down 2 steps down 2 steps down 2 steps down 2 steps down

3365 Railroad rolling stock manufacturing

3366 Ship and boat building 2 steps up 2 steps up 2 steps up

3369 Other transportation equipment manufacturing

3371 Household, institutional furniture & kitchen cabinet manuf.

3372 Office furniture (including fixtures) manuf. 2 steps down

3379 Other furniture related product manuf. 1 step down 1 step down 1 step down 1 step down

3391 Medical equipment & supplies manuf.

3399 Other miscellaneous manuf.

Percentage 10,5% 10,5% 36,0% 37,2% 41,9% 37,2% 41,9%

Notes: This table reports the changes in classification when comparing the test for localization from the benchmark counterfactuals

to alternative counterfactual. B-A refers to the comaprison between Benchmark(B) counterfactual and the alternative A. A being

one of the following : (i) DO5 : The counterfactual based on 5 bins of number of workers as defined in Duranton and Overman

(2008), (ii) J5 : The counterfactual based on 5 bins of workers as suggested by the HAC procedure, (iii) Dx : The counterfactual

based on x bins as suggested by the HAC procedure performed with firms’ location determinants. x=4, 5, 6, 7, and 8.
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Table 3.21 – Detailed classfication of industries, NAICS 4-digit: Employment (1/2)

Counterfactuals

NAICS3 NAMES Benchmark(B) Job(DO5) Job(J5) Deter(D4) Deter(D5) Deter(D6) Deter(D7) Deter(D8)

3111 Animal food manufacturing random random random agglo agglo agglo random random

3112 Grain & oilseed milling random random random disp disp disp random random

3113 Sugar & confectionery product manuf. agglo agglo agglo agglo agglo agglo agglo agglo

3114 Fruit, vegetable preserving & specialty food manuf. random random random agglo agglo agglo disp disp

3115 Dairy product manufacturing random random random agglo agglo agglo agglo agglo

3116 Meat product manufacturing random random random agglo agglo agglo agglo agglo

3117 Seafood product preparation and packaging agglo agglo agglo agglo agglo agglo agglo agglo

3118 Bakeries and tortilla manufacturing random random random agglo agglo agglo agglo agglo

3119 Other food manufacturing disp disp disp agglo agglo agglo agglo agglo

3121 Beverage manufacturing random disp disp agglo agglo disp disp disp

3122 Tobacco manufacturing random random random random random random random random

3131 Fibre yarn and thread mills random random random random random random random random

3132 Fabric mills agglo agglo agglo agglo agglo agglo agglo agglo

3133 Textile and fabric finishing and fabric coating agglo agglo agglo agglo agglo agglo agglo agglo

3141 Textile furnishings mills random random random agglo agglo agglo random random

3149 Other textile product mills agglo agglo agglo agglo agglo agglo agglo agglo

3151 Clothing knitting mills agglo agglo random agglo agglo agglo agglo agglo

3152 Cut and sew clothing manufacturing agglo agglo agglo agglo agglo agglo agglo agglo

3159 Clothing accessories and other clothing manuf. random random random agglo agglo agglo random random

3161 Leather and hide tanning and finishing disp disp disp random random random disp disp

3162 Footwear manufacturing agglo agglo agglo agglo agglo agglo agglo agglo

3169 Other leather and allied product manufacturing random random random random random random random random

3211 Sawmills and wood preservation disp disp disp agglo disp disp agglo disp

3212 Veneer plywood and engineered wood product manuf. random random random random random random random random

3219 Other wood product manufacturing disp disp disp disp disp disp disp disp

3221 Pulp paper and paperboard mills random random random random random random random random

3222 Converted paper product manufacturing agglo agglo agglo agglo random random random random

3231 Printing and related support activities disp random random disp disp disp disp disp

3241 Petroleum & coal product manufacturing random random random random random random random random

3251 Basic chemical manufacturing disp disp disp disp disp disp disp disp

3252 Resin synthetic rubber agglo agglo agglo random random random random random

3253 Pesticide fertilizer & other agricultural chemical manuf. disp disp disp disp disp disp disp disp

3254 Pharmaceutical and medicine manufacturing agglo agglo random agglo random random random random

3255 Paint coating and adhesive manufacturing agglo agglo agglo agglo disp disp disp disp

3256 Soap cleaning compound and toilet preparation manuf. agglo agglo agglo disp random random random random

3259 Other chemical product manufacturing random random random random random random random random

3261 Plastic product manufacturing agglo agglo agglo agglo agglo agglo agglo agglo

3262 Rubber product manufacturing agglo agglo agglo agglo agglo random random disp

3271 Clay product and refractory manufacturing random random random random random random random random

3272 Glass and glass product manufacturing random random random random random random random random

3273 Cement and concrete product manufacturing random disp disp disp disp disp disp disp

3274 Lime and gypsum product manufacturing random random random random random random random random

Notes: This table reports the test for localization for with different counterfactuals. Benchmark(B) uses the unconstrained counter-

factual. Job(DO5) uses a counterfactual based on bins of number of workers as defined in Duranton and Overman (2008), Job(J5)

uses a counterfactual based on 5 bins of workers as suggested by the HAC procedure. Deter(Dx) uses a counterfactual based on

x bins as suggested by the HAC procedure performed with firms’ location determinants. x=4, 5, 6, 7, and 8.
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Table 3.22 – Detailed classfication of industries, NAICS 4-digit: Employment (2/2)

Counterfactuals

NAICS3 NAMES Benchmark(B) Job(DO5) Job(J5) Deter(D4) Deter(D5) Deter(D6) Deter(D7) Deter(D8)

3279 Other non metallic mineral product manuf. random random random random random disp random random

3311 Iron, steel mills & ferro alloy manuf. random random random random random random random random

3312 Steel product manuf. from purchased steel agglo agglo agglo agglo random random random agglo

3313 Alumina, aluminum production & processing agglo agglo agglo random random random random random

3314 Non ferrous metal production & processing disp disp disp random disp random disp disp

3315 Foundries random random random random random random random random

3321 Forging and stamping random random random random random random random random

3322 Cutlery & hand tool manufacturing agglo agglo agglo agglo random random random random

3323 Architectural & structural metals manuf. random random random random random random random random

3324 Boiler tank & shipping container manuf. disp disp disp disp agglo agglo random agglo

3325 Hardware manufacturing agglo agglo agglo agglo random random random random

3326 Spring & wire product manufacturing random random random random random random random random

3327 Machine shops turned product random random random random random disp disp random

3328 Coating engraving random random random random random random random random

3329 Other fabricated metal product manufacturing random random random random random random random random

3331 Agricultural construction & mining machinery manuf. disp disp disp disp agglo agglo disp agglo

3332 Industrial machinery manufacturing random random random random random random random random

3333 Commercial & service industry machinery manuf. random agglo random agglo random random random random

3334 Ventilation heating disp disp disp random random random random random

3335 Metalworking machinery manufacturing agglo agglo agglo agglo agglo agglo agglo agglo

3336 Engine turbine & power transmission equipment manuf. random random random random random random random random

3339 Other general purpose machinery manufacturing agglo agglo agglo agglo disp disp agglo agglo

3341 Computer and peripheral equipment manufacturing disp disp disp random random random random random

3342 Communications equipment manufacturing random random random random random random random random

3343 Audio and video equipment manufacturing agglo agglo agglo agglo random random random random

3344 Semiconductor & other electronic component manuf. agglo agglo agglo random random disp random random

3345 Navigational measuring random disp disp disp disp disp random random

3346 Manufacturing, reproducing magnetic & optical media random random random random random random random random

3351 Electric lighting equipment manufacturing random random random random random random random random

3352 Household appliance manufacturing random random random random random random random random

3353 Electrical equipment manufacturing random random random random random random random random

3359 Other electrical equipment & component manuf. random random random random random random random random

3361 Motor vehicle manufacturing agglo agglo agglo random random random random random

3362 Motor vehicle body & trailer manuf. random random random random random random random random

3363 Motor vehicle parts manufacturing agglo agglo agglo agglo agglo agglo agglo agglo

3364 Aerospace product & parts manufacturing random disp random random random random random random

3365 Railroad rolling stock manufacturing random random random random random random random random

3366 Ship and boat building random random disp random random random random random

3369 Other transportation equipment manufacturing random random random random random random random random

3371 Household, institutional furniture & kitchen cabinet manuf. random random random random random random random random

3372 Office furniture (including fixtures) manuf. agglo agglo agglo agglo random disp disp disp

3379 Other furniture related product manuf. random random random random random random random random

3391 Medical equipment & supplies manuf. disp random disp random random random random random

3399 Other miscellaneous manuf. random random random random random random random random

Share agglomerated 30,2% 31,4% 27,9% 37,2% 26,7% 24,4% 19,8% 22,1%

Share random 54,7% 51,2% 53,5% 51,2% 60,5% 58,1% 65,1% 62,8%

Share dispersed 15,1% 17,4% 18,6% 11,6% 12,8% 17,4% 15,1% 15,1%

Percent switches between counterfactual

Notes: This table reports the test for localization for with different counterfactuals. Benchmark(B) uses the unconstrained counter-

factual. Job(DO5) uses a counterfactual based on bins of number of workers as defined in Duranton and Overman (2008), Job(J5)

uses a counterfactual based on 5 bins of workers as suggested by the HAC procedure. Deter(Dx) uses a counterfactual based on

x bins as suggested by the HAC procedure performed with firms’ location determinants. x=4, 5, 6, 7, and 8.
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Table 3.23 – Changes of classification from the benchmark to other counterfatcuals,

NAICS 3-digit: Employment (1/2)

Switching

NAICS3 NAMES B - DO5 B - J5 B - D4 B - D5 B - D6 B - D7 B - D8

3111 Animal food manufacturing 1 step up 1 step up 1 step up

3112 Grain & oilseed milling 1 step down 1 step down 1 step down

3113 Sugar & confectionery product manuf.

3114 Fruit, vegetable preserving & specialty food manuf. 1 step up 1 step up 1 step up 1 step down 1 step down

3115 Dairy product manufacturing 1 step up 1 step up 1 step up 1 step up 1 step up

3116 Meat product manufacturing 1 step up 1 step up 1 step up 1 step up 1 step up

3117 Seafood product preparation and packaging

3118 Bakeries and tortilla manufacturing 1 step up 1 step up 1 step up 1 step up 1 step up

3119 Other food manufacturing 2 steps up 2 steps up 2 steps up 2 steps up 2 steps up

3121 Beverage manufacturing 1 step down 1 step down 1 step up 1 step up 1 step down 1 step down 1 step down

3122 Tobacco manufacturing

3131 Fibre yarn and thread mills

3132 Fabric mills

3133 Textile and fabric finishing and fabric coating

3141 Textile furnishings mills 1 step up 1 step up 1 step up

3149 Other textile product mills

3151 Clothing knitting mills 1 step down

3152 Cut and sew clothing manufacturing

3159 Clothing accessories and other clothing manuf. 1 step up 1 step up 1 step up

3161 Leather and hide tanning and finishing 1 step up 1 step up 1 step up

3162 Footwear manufacturing

3169 Other leather and allied product manufacturing

3211 Sawmills and wood preservation 2 steps up 2 steps up

3212 Veneer plywood and engineered wood product manuf.

3219 Other wood product manufacturing

3221 Pulp paper and paperboard mills

3222 Converted paper product manufacturing 1 step down 1 step down 1 step down 1 step down

3231 Printing and related support activities 1 step up 1 step up

3241 Petroleum & coal product manufacturing

3251 Basic chemical manufacturing

3252 Resin synthetic rubber 1 step down 1 step down 1 step down 1 step down 1 step down

3253 Pesticide fertilizer & other agricultural chemical manuf.

3254 Pharmaceutical and medicine manufacturing 1 step down 1 step down 1 step down 1 step down 1 step down

3255 Paint coating and adhesive manufacturing 2 steps down 2 steps down 2 steps down 2 steps down

3256 Soap cleaning compound and toilet preparation manuf. 2 steps down 1 step down 1 step down 1 step down 1 step down

3259 Other chemical product manufacturing

3261 Plastic product manufacturing

3262 Rubber product manufacturing 1 step down 1 step down 2 steps down

3271 Clay product and refractory manufacturing

3272 Glass and glass product manufacturing

3273 Cement and concrete product manufacturing 1 step down 1 step down 1 step down 1 step down 1 step down 1 step down 1 step down

3274 Lime and gypsum product manufacturing

Notes: This table reports the changes in classification when comparing the test for localization from the benchmark counterfactuals

to alternative counterfactual. B-A refers to the comaprison between Benchmark(B) counterfactual and the alternative A. A being

one of the following : (i) DO5 : The counterfactual based on 5 bins of number of workers as defined in Duranton and Overman

(2008), (ii) J5 : The counterfactual based on 5 bins of workers as suggested by the HAC procedure, (iii) Dx : The counterfactual

based on x bins as suggested by the HAC procedure performed with firms’ location determinants. x=4, 5, 6, 7, and 8.
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Table 3.24 – Changes of classification from the benchmark to other counterfatcuals,

NAICS 3-digit: Employment (2/2)

Switching

NAICS3 NAMES B - DO5 B - J5 B - D4 B - D5 B - D6 B - D7 B - D8

3279 Other non metallic mineral product manuf. 1 step down

3311 Iron, steel mills & ferro alloy manuf.

3312 Steel product manuf. from purchased steel 1 step down 1 step down 1 step down

3313 Alumina, aluminum production & processing 1 step down 1 step down 1 step down 1 step down 1 step down

3314 Non ferrous metal production & processing 1 step up 1 step up

3315 Foundries

3321 Forging and stamping

3322 Cutlery & hand tool manufacturing 1 step down 1 step down 1 step down 1 step down

3323 Architectural & structural metals manuf.

3324 Boiler tank & shipping container manuf. 2 steps up 2 steps up 1 step up 2 steps up

3325 Hardware manufacturing 1 step down 1 step down 1 step down 1 step down

3326 Spring & wire product manufacturing

3327 Machine shops turned product 1 step down 1 step down

3328 Coating engraving

3329 Other fabricated metal product manufacturing

3331 Agricultural construction & mining machinery manuf. 2 steps up 2 steps up 2 steps up

3332 Industrial machinery manufacturing

3333 Commercial & service industry machinery manuf. 1 step up 1 step up

3334 Ventilation heating 1 step up 1 step up 1 step up 1 step up 1 step up

3335 Metalworking machinery manufacturing

3336 Engine turbine & power transmission equipment manuf.

3339 Other general purpose machinery manufacturing 2 steps down 2 steps down

3341 Computer and peripheral equipment manufacturing 1 step up 1 step up 1 step up 1 step up 1 step up

3342 Communications equipment manufacturing

3343 Audio and video equipment manufacturing 1 step down 1 step down 1 step down 1 step down

3344 Semiconductor & other electronic component manuf. 1 step down 1 step down 2 steps down 1 step down 1 step down

3345 Navigational measuring 1 step down 1 step down 1 step down 1 step down 1 step down

3346 Manufacturing, reproducing magnetic & optical media

3351 Electric lighting equipment manufacturing

3352 Household appliance manufacturing

3353 Electrical equipment manufacturing

3359 Other electrical equipment & component manuf.

3361 Motor vehicle manufacturing 1 step down 1 step down 1 step down 1 step down 1 step down

3362 Motor vehicle body & trailer manuf.

3363 Motor vehicle parts manufacturing

3364 Aerospace product & parts manufacturing 1 step down

3365 Railroad rolling stock manufacturing

3366 Ship and boat building 1 step down

3369 Other transportation equipment manufacturing

3371 Household, institutional furniture & kitchen cabinet manuf.

3372 Office furniture (including fixtures) manuf. 1 step down 2 steps down 2 steps down 2 steps down

3379 Other furniture related product manuf.

3391 Medical equipment & supplies manuf. 1 step up 1 step up 1 step up 1 step up 1 step up 1 step up

3399 Other miscellaneous manuf.

Percentage 8,1% 8,1% 27,9% 37,2% 41,9% 31,4% 29,1%

Notes: This table reports the changes in classification when comparing the test for localization from the benchmark counterfactuals

to alternative counterfactual. B-A refers to the comaprison between Benchmark(B) counterfactual and the alternative A. A being

one of the following : (i) DO5 : The counterfactual based on 5 bins of number of workers as defined in Duranton and Overman

(2008), (ii) J5 : The counterfactual based on 5 bins of workers as suggested by the HAC procedure, (iii) Dx : The counterfactual

based on x bins as suggested by the HAC procedure performed with firms’ location determinants. x=4, 5, 6, 7, and 8.
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3.6.6 Hierarchical Ascendant Classification

Procedure

We present here step by step the procedure of Hierarchical Ascendant Classi-

fication based on the technical package of the "Fastcluster" that we use on the

statistical open-source software r (see Mullner 2021).

The starting point is the dataset of 23,388 Canadian establishments with infor-

mation on the number of workers of the establishment, the employment from

the same industry in 10km around the plant’s location, the number of plants

from the same industry in 10km around the plant’s location, the population

density in 1.5km around the plant, the building footprint of the site location,

the distance to the nearest junction, a dummy indicating if the plant is located

in a Census Metropolitan Area, the province of the site location, the zoning type

of the location, the Business type of the plant, the export and the headquarter

status of the plant.

We look now at each of the 23,388 observations as locations and the variables

as their characteristics. Then the exercise is to construct classes of locations

based on their characteristics. We use the Hierarchical Ascendant Classification

which consists in aggregating progressively, the observations that are similar

with respect to their characteristics, starting from individual observations up

to a unique group. The process is the following: we represent our dataset of lo-

cations as a data frame with locations in rows and characteristics Xi ε {Number

of workers of the plant, Employment from the same industry in 10km around

the plant’s location, Number of plants from the same industry in 10km around

the plant’s location, Population density in 1.5km around the plant, Building

footprint of the site location, Distance to the nearest junction, Dummy indicat-

ing if the plant is located in a Census Metropolitan Area, Province of the site

location, Zoning type of the location, Business type of the plant, Dummy indi-
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cating if the plant exports, Dummy indicating if the plant is the headquarter}

in columns.

— We transform all non-numeric variables into dummies. For any given

non-numeric variable, each of its categories becomes a dummy. The non-

numeric variables concerned by this transformation are: Province; Zon-

ing categories(industrial/commercial, residential, others); Business type

of the plant(distribution, manufacturer, others). The other non-numeric

variables are already dummies: Exporter, Headquarter, CMA. This gives

a total of 45 variables

— We scale all the variables by standardizing each variables, obtain the fol-

lowing standardized dataset where x̃i =
Xi−X̄i

σX
. So that the table becomes

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

id x̃1 x̃2 ... x̃i ... ˜x44 ˜x45

1 ˜x11 ˜x12 ... . ... .

. . . ... . ... . .

. . . ... . ... . .

. . . ... . ... . .

k ˜xk1 . ... x̃ki ... ˜xk44 ˜xk45

. . . ... . ... . .

. . . ... . ... . .

. . . ... . ... . .

23388 ˜x233881 . ... ˜x23388i ... ˜x23388.44 ˜x23388.45

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

— We then compute the dissimilarity between sites as the euclidean dis-

tances between sites. For any given pair of sites (j,k). The dissimilarity

distance between site j and site k is :
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d jk =

√√√√ 45

∑
j=1

(x̃ ji− x̃ki)2

This gives us a symmetric matrix of 273,487,580 pairwise distances be-

tween all the pairs of site (j, k) ε 1, 2, .., 23388.

— The pair of sites with the minimal similarity distance are aggregated as

one unique point in the dataset. The new dataset now has 23405 points

and the two points that were aggregated constitute now a single point

with characteristics.

— To move to the next level of aggregation, we need to define how to merge

two nodes since from the 2 levels of aggregation and onward, a node can

well be a cluster of many single sites. We chose the Ward method defined

as follows: Let d be the dissimilarity distance, I and J the nodes (which

may contain many sites) to be joined, and K the resulting node of the

aggregation of I and J and L any other node. Let call |I| the size of node

I for example. With the Ward method, the distance between K and L is

given by :

d(K,L) = (|I|+|L|).d(I,L)+(|J|+|L|).d(J,L)−|L|.d(I,J)
|I|+|J|+|L|

and the global cluster dissimilarity can be express as :

d(A,B) = 2|A||B|
|A|+|B| .||

−→
CA +

−→
CB||2

where
−→
CA denotes the centroid of the points in cluster A.

— We continu the process of aggregating nodes up to the final aggregation

into one unique group
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The Gap statistics method for choosing the optimal number of clusters

The presentation of this section is inspired from Tibshirani et al. (2001) Sup-

pose that we have p classes C1, C2, ..Cr, ....Cp, and let nr = |Cr| be the number

of observations in cluster r. We define :

Dr = ∑ j, j′εCr d j j′,

the sum of the pairwise distances for all points in cluster r, and

Wk = ∑
k
r=1

1
2nr

Dr

Since d j j′ is the Euclidean distance between sites j and k, Wk is the pooled within

sum of squares around the clusters means.

Tibshirani et al. (2001) suggest, standardizing the graph of log(Wk)by compar-

ing it with its expectation under an appropriate null reference distribution of

the data. Then, the optimal number of clusters will be the value of k for which

log(Wk) farthest away from the curve derived from the null reference distribu-

tion.

In other words, if

Gapn(k) = E∗n log(Wk)− log(Wk)

is the value of the difference between the log(Wk) and its expected value under

the null null reference distribution of the data, then k is the value that maxi-

mizes the value of Gapn(k). The reference distribution of the data used to solve

this maximization problem is the uniform distribution.
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3.6.7 Adjusted procedures of R packages to estimate the constrained coun-
terfactuals

We use the package dbmss from the open-source software r to estimate the K-

density (see Marcon et al. 2015). For the estimation of the new counterfactual,

we modify some sections of the original code obtained online from the R pack-

age documentation (see https://rdrr.io/cran/dbmss/src/R/KdEnvelope.R). We

present hereafter the adjustment that we made original and the adjusted codes.

We start by modifying the original code for the creation of objects of Class

"Dtable" which are input for the K-density code in R. This code combines al-

together three elements : (i) the symmetric bilateral distances Matrix, (ii) the

type of the observations (here the NAICS of industries) and (iii) the weight to be

used (here the employment). Then it converts all these elements into an object

of Class "Dtable" usable in the procedure "KdEnvelop" that we present here be-

low. We modified the code to obtain another one which includes the Categories

of the observations (here the classes of locations obtained from the HAC proce-

dure) in addition to the three previous elements.

We also modify the original code for the random selection of locations across

the locations universe that generates the unconstraint counterfactual (Our bench-

mark). The original code yields a random draw of points across a given set of

points. We modify it and obtain a new version of code which is such that, for

each point of a given Class, the code realizes a random draw of points in the

same Class.

Finally, we use the code that estimates the K-densities of bilateral distances,

along with the confidence intervals. We turn it into a new code by adjusting

the parameters and the procedures so as to include, the point categories and

the modified version of the random draws of locations for counterfactual.

The original and the modified codes are available upon request.



CONCLUSION

Ce travail de recherche avait pour objectif, de contribuer à la compréhension

des mécanismes sous-jacents à la concentration spatiale de l’activité économique.

Nous nous sommes alors intéressés à trois aspects de ce phénomène : la mesure

de la concentration, ses causes et ses conséquences.

Au sujet de la mesure de la concentration, des contributions récentes, notam-

ment celles de Ellison and Glaeser (1997); Duranton and Overman (2005, 2008)

ont ouvert la voie à une nouvelle génération de mesures de la concentration

spatiale de l’activité industrielle. La pertinence de ces mesures tient essentielle-

ment du fait qu’elles sont comparables à travers les industries, permettent de

détecter la concentration au-delà de la simple inégalité spatiale, ne se sont pas

sensibles au découpage spatial et sont statistiquement testables. Dans le cadre

de cette thèse, nous avons raffiné le test statistique proposé par Duranton and

Overman (2008) en proposant une méthode plus éclairée de séparer la concen-

tration réelle de la simple inégalité spatiale.

Au sujet des causes de la concentration industrielle, nous nous sommes in-

spirés du travail de Ellison et al. (2010) sur les déterminants de la colocation

des pairs d’industries du point de vue de la production, pour discuter de l’effet

de l’échange des intrants, du partage d’un bassin commun de travailleurs et

de la diffusion des connaissances sur la co-localisation de l’innovation. Ceci

nous a permis de mettre en évidence des différences dans les déterminants de

la concentration de l’innovation et celle de la production : une part non nég-

ligeable de la concentration de l’innovation est le fruit de la concentration de la

production. Une fois la concentration de la production prise en compte, seule
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la diffusion des connaissances a un effet positif et significatif sur la concentra-

tion de l’innovation. S’agissant des causes de la concentration de l’innovation,

une avenue pour des travaux futurs serait de discuter l’hétérogénéité de l’effet

des déterminants de l’innovation mis en évidence dans ce travail. Un tel tra-

vail pourrait s’inspirer d’un cadre conceptuel similaire à celui de Faggio et al.

(2017, 2020) qui a discuté des effets hétérogènes des forces Marshalliennes sur

le production.

Enfin, nous avons exploré les effets de la concentration industrielle sur l’activité

productive des entreprises manufacturières au Canada. Nous avons proposé

une méthode pour construire des données inexistantes sur le foncier utilisé

par les entreprises manufacturières canadiennes pour leur besoin de produc-

tion. Ensuite nous avons utilisé la mesure construite pour documenter des faits

stylisés nouveaux sur l’utilisation du foncier par les firmes manufacturières.

Nos résultats indiquent qu’il existe un coût fixe et un coût variable dans l’utilisation

du foncier par les entreprises, et ces dernières n’ajustent pas facilement la quan-

tité d’espace qu’elles utilisent pour produire. Une étape future serait d’utiliser

la mesure de foncier utilisées dans ce travail pour estimer une fonction de pro-

duction où le foncier est un facteur de production distinct du capital. Mais ceci

nécessiterait de relever plusieurs défis économétriques et de collecte de don-

nées, notamment celles sur le capital des entreprises.
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