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Abstract

The occurrence of a claim often impacts not one but multiple insurance
coverages provided in the contract. To account for this multivariate feature,
we propose a new individual claims reserving model built around the acti-
vation of the different coverages to predict the reserve amounts. Using the
framework of multinomial logistic regression, we model the activation of the
different insurance coverages for each claim and their development in the fol-
lowing years, i.e. the activation of other coverages in the later years and all
the possible payments that might result from them. As such, the model allows
us to complete the individual development of the open claims in the portfolio.
Using a recent automobile dataset from a major Canadian insurance company,
we demonstrate that this approach generates accurate predictions of the total
reserves as well as of the reserves per insurance coverage. This allows the
insurer to get better insights in the dynamics of his claims reserves.

1 Introduction

Claims reserving is known to be one of the most crucial tasks performed by actuar-
ies in insurance companies all over the world. Insurers must accurately predict the
liabilities that will arise from open and future claims. This allows them to answer
the reporting standards that they are subject to and to preserve a sufficient amount
of capital with which they can set aside adequate reserves to fulfill their obligations
to the policyholders and avoid financial ruin.

In the actuarial practice, claims data is commonly aggregated on an occurrence
year and development year basis in run-off triangles. These then help actuaries to
evaluate the reserves for the portfolio as a whole. One very common method that
uses such triangles is the Chain Ladder model introduced by Mack [1993] and fur-
ther discussed in Mack [1994], Mack [1999] or Mack and Venter [2000].

Over the years, several authors have challenged the robustness of this model. In
particular, the recent increase in the quantity and availability of data has contributed
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to questioning the use of such aggregate methods. The early work of Buhlmann
et al. [1980], Hachemeister [1980] and Norberg [1986] attempted to benefit from
these larger quantities of data. A few more years were however necessary to obtain
the necessary computing resources to move from the classical run-off triangles to
the so-called micro-level claims reserving models. Antonio and Plat [2014] were the
first to truly incorporate information related to the policyholder or even the claim
itself into their model by building on the aforementioned work as well as on prior
work performed by Norberg [1993], Norberg [1999] and Haastrup and Arjas [1996].
They demonstrate that using the detailed information available to the insurer at the
claim level allows to obtain more accurate predictions for the reserves.

Micro-level models now abound in the actuarial literature thanks to the contri-
butions of several authors. For example, Pigeon et al. [2013] propose a discrete time
model for the payments and then extend their work in Pigeon et al. [2014] to include
incurred losses as well. Other authors have also opened the way to non-parametric
approaches to claims reserving. Wüthrich [2018] was the first to introduce the use
of Breiman et al. [1984]’s Classification and Regression Tree (CART) algorithm in
a micro-level reserving model. Building on this work, Lopez [2019] and Lopez et al.
[2016] apply the CART algorithm with censored data using, respectively, survival
analysis and copulas to account for the possible dependence between the develop-
ment time of the claim and its ultimate amount.

In addition to the constant increase in the quantity of data, the growing di-
versification of the products offered by insurers contributes to further complexify
the work of actuaries. Evolving in a very competitive world and taking advantage
of the rise of new technologies, insurers must remain constantly aware of changes
and evolutions in their clients’ needs. To answer them, they often diversify their
offer, resulting in the multiplication of coverages provided within a policy. Actuar-
ies must thereby refine their models to keep up with this diverseness in the portfolios.

In this paper, we propose a model that not only makes use of the large quantity
of data available to an insurer in a micro-level model but also takes into account
the different coverages that a policy offers and their dynamics within the portfolio.
We show that allowing dependence between coverages increases prediction accuracy
of both the total portfolio reserves and the reserves per coverage. This in turn
allows the insurer to gain further insights into the dynamics of his portfolio. To
the best of our knowledge, such form of dependence between coverages has not yet
been modelled in a granular reserving framework. Zhou and Zhao [2010] and Lopez
[2019] both used copulas in such a context to model the dependence between the
event times and delay in the development of a claim or the development time and
the final amount of the claim. Pešta and Okhrin [2014] use time series and copulas
to take into account the dependence between payment amounts made at different
stages in the development of a claim. It is rather in the actuarial pricing literature
that we find examples of dependency modelling between insurance coverages. Frees
and Valdez [2008] and together with Frees et al. [2009] used copulas to model the
dependence between different claim types. They begin by identifying the coverage(s)
impacted by a claim, then those for which a payment is made before predicting the
associated severity. More recently, Côté et al. [2022] extend their work by intro-
ducing a Bayesian model for multivariate and multilevel claim amounts, therefore
facilitating the treatment of open claims which are of crucial importance in insurers’
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datasets.

We propose a micro-level reserving model that builds upon the work of Frees
and Valdez [2008] and Frees et al. [2009] to include the dependence between mul-
tiple insurance coverages. Section 2 presents the statistical model that is based on
activation patterns and illustrates how claims are handled at different stages of their
development. In Section 3, we apply the model to a Canadian automobile insurance
dataset with four different coverages. We begin by presenting the data, the process
of model fitting and finally the results obtained. Section 4 draws the conclusion of
our work.

2 An activation pattern model for claims reserv-

ing

This section introduces the model. We present the model components and the way
they evolve as the claim develops. We use an example to illustrate the model and
discuss the treatment of claims at various stages of their development.

Figure 1 shows the typical development process for a single claim. When a claim
occurs, the policyholder reports it to the insurance company. This can take place
either as soon as the claim occurs or with a certain reporting delay. Once reported,
the insurer records the claim and opens a new file in his claims management sys-
tem. Since insurance companies typically provide their policyholders with multiple
coverages under a single insurance policy, the reporting of the claim activates at
least one of these coverages. The insurer can then start making payments towards
the policyholder. During its development, new information related to the claim can
be brought to the insurer that can result in the activation of one or more addi-
tional coverages included in the insurance policy. Payments will then continue until
settlement of the claim.

Figure 1: Development process of a claim

We seek to model the way in which a claim can activate multiple coverages either
upon reporting or later, and the underlying dependence between them. Note that in
the remainder of this paper, we work in discrete time and group the data per year.
We could however have chosen any other time unit.

Although automobile claims often display shorter lifetimes than in other branches
of insurance, it is still fairly common to observe claims that remain open for more
than one year. We thereby structure our model based on the development years. In
Section 2.1, we present the model for a given development year 𝑗 before moving on
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to the year 𝑗 + 1 in Section 2.2 and to any additional development years in Section
2.3.

2.1 Development year 𝑗

Let 𝑐 = 1, ..., 𝐶 denote a coverage provided by an insurer. Each policy in force can
incur a claim that will impact one or more of the 𝐶 insurance coverages that the
policyholder benefits from. For each claim 𝑖 with 𝑖 = 1, ..., 𝑛 and a given development
year 𝑗 with 𝑗 = 1, ..., 𝐽, we define the random vector 𝑨𝑖, 𝑗 of dimension 1 × 𝐶. This
vector indicates the pattern in which claim 𝑖 activates the different coverages during
year 𝑗 .

With 𝐶 insurance coverages and assuming that at least one must be activated
when claim 𝑖 is reported, there are 𝑉 = 2𝐶 − 1 different activation pattern vectors
possible in year 𝑗 . LetV be the ensemble of the 𝑉 possible activation pattern vectors
in year 𝑗 . We then define the 𝑣th possible pattern, a realisation of the random vector
𝑨𝑖, 𝑗 , as 𝒂𝑣

𝑖, 𝑗
∈ V, with 𝑣 = 1, ..., 𝑉 such that:

𝒂𝑣𝑖, 𝑗 =
[
𝑎𝑣
𝑖, 𝑗 ,1 𝑎𝑣

𝑖, 𝑗 ,2 ... 𝑎𝑣
𝑖, 𝑗 ,𝐶

]
,

where

𝑎𝑣𝑖, 𝑗 ,𝑐 =

{
1, if coverage 𝑐 is activated in the 𝑣th pattern for claim 𝑖 in year 𝑗

0, otherwise.

We use a multinomial logistic regression to model 𝑨𝑖, 𝑗 :

P[𝑨𝑖, 𝑗 = 𝒂𝑣𝑖, 𝑗 |𝒙𝑖, 𝜷] =
exp (𝒙′

𝑖
𝜷 𝑗 ,𝑣)∑𝑉

𝑘=1 exp (𝒙′
𝑖
𝜷 𝑗 ,𝑘 )

, (1)

where 𝒙′
𝑖
is a 1 × 𝑚 vector of covariates for claim 𝑖 that does not depend on the

development year nor on the insurance coverage and 𝜷 𝑗 ,𝑣 is the 1 × 𝑚 vector of

parameters that can vary with the different coverages and thus depends on the 𝑣𝑡ℎ

pattern.

Knowing which coverages claim 𝑖 activates in year 𝑗 thanks to 𝑨𝑖, 𝑗 , the insurer
can move on to the next step of the claim development process depicted in Figure 1
and determine which of the active coverages will incur a payment within the year.
We define 𝑷𝑖, 𝑗 , a 1 ×𝐶 vector in which each entry indicates whether a payment has
been made for the corresponding active coverage or not:

𝑃𝑖, 𝑗 ,𝑐 | (𝐴𝑖, 𝑗 ,𝑐 = 1) =


1, if a payment has been made for claim 𝑖

and coverage 𝑐 in year 𝑗 given 𝐴𝑖, 𝑗 ,𝑐 = 1,

0, otherwise.

For each insurance coverage 𝑐, we assume that

𝑃𝑖, 𝑗 ,𝑐 | (𝐴𝑖, 𝑗 ,𝑐 = 1) ∼ Bernoulli
(
𝜋 𝑗 ,𝑐 (𝒙′𝑖𝜸 𝑗 ,𝑐)

)
. (2)

For development year 𝑗 , the probability 𝜋 𝑗 ,𝑐 (𝒙′𝑖𝜸 𝑗 ,𝑐) is given by

𝜋 𝑗 ,𝑐 (𝒙′𝑖𝜸 𝑗 ,𝑐) =
exp (𝒙′

𝑖
𝜸 𝑗 ,𝑐)

1 + exp (𝒙′
𝑖
𝜸 𝑗 ,𝑐)

.
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The vector of covariates 𝒙′
𝑖
is the same as the one used for the activation patterns

in Equation 1 and 𝜸 𝑗 ,𝑐 is the 1×𝑚 vector of coefficients varying with each coverage
𝑐 and development year 𝑗 .

Once we know which coverages are active in year 𝑗 and which of these have
incurred a payment, we can calculate the corresponding severity per coverage for
claim 𝑖. The actuarial literature contains many examples of the use of Generalized
Additive Models for the Location, Scale and Shape (GAMLSS) for this purpose,
thanks to the level of flexibility that these models provide (see Stasinopoulos et al.
[2017] for more details on the use of the GAMLSS). We use them to predict the
expected severity incurred by claim 𝑖:

E[𝑌𝑖, 𝑗 ,𝑐 |𝑃𝑖, 𝑗 ,𝑐 = 1, 𝐴𝑖, 𝑗 ,𝑐 = 1] = 𝑔−1(𝒙′𝑖𝜶 𝒋,𝒄 + 𝛼∗
𝑗 ,𝑐 𝑗). (3)

Here, 𝑌𝑖, 𝑗 ,𝑐 represents the severity associated to claim 𝑖 in year 𝑗 for insurance cover-
age 𝑐, 𝑔(.) is the link function, 𝜶 𝑗 ,𝑐 are the coefficients that depend on the insurance
coverages and 𝛼∗

𝑗 ,𝑐
measures the effect of development year 𝑗 for coverage 𝑐.

With the activation patterns, payment vectors and corresponding severities, we
know precisely which coverages claim 𝑖 activated in year 𝑗 and the severity associated
to each of these coverages.

2.2 Development year 𝑗 + 1

Knowing 𝑨𝑖, 𝑗 , we are aware of the coverages that claim 𝑖 has activated at the start
of year 𝑗 +1. We assume that once an insurance coverage is active, it remains active
until the settlement of the claim. For claim 𝑖 and coverage 𝑐 in development year 𝑗 ,
we have

𝐴𝑖, 𝑗+𝑘,𝑐 | (𝐴𝑖, 𝑗 ,𝑐 = 1) = 1, for all 𝑘 ≥ 1. (4)

As such, we now depict the set of possible patterns for 𝑨𝑖, 𝑗+1 as V∗ ⊂ V. More
generally, we write

P[𝑨𝑖, 𝑗+1 = 𝒂𝑣∗𝑖, 𝑗 |𝑨𝑖, 𝑗 , 𝒙𝑖, 𝜷] =


P[𝑨𝑖, 𝑗+1=𝒂𝑣∗𝑖, 𝑗 |𝒙
′
𝑖 ,𝜷 𝑗+1]∑

𝒂𝑣∗
𝑖, 𝑗

∈V∗ P[𝑨𝑖, 𝑗+1=𝒂𝑣∗𝑖, 𝑗 |𝒙
′
𝑖 ,𝜷 𝑗+1]

, if 𝒂𝑣∗
𝑖, 𝑗

∈ V∗

0, otherwise,
(5)

where we further assume a Markovian property for the activation pattern vectors
and build them using only the information available in the previous year. The vector
of risk factors 𝒙′𝑖 remains unchanged during the development of the claim and is
thus the same as in year 𝑗 . The vector of parameters 𝜷 𝑗+1, that we can write 𝜷 𝑗+1,𝑣∗
is still specific to the current development year, i.e. 𝑗 + 1 and the new activation
pattern observed.

Also assuming the Markovian property for the payment vectors, we then have:

𝑃𝑖, 𝑗+1,𝑐 | (𝐴𝑖, 𝑗+1,𝑐 = 1), 𝑨𝑖, 𝑗 ∼ Bernoulli
(
𝜋 𝑗+1,𝑐 (𝒙′𝑖𝜸 𝑗+1,𝑐)

)
, (6)

where

𝜋 𝑗+1,𝑐 (𝒙′𝑖𝜸 𝑗+1,𝑐) =
exp (𝒙′

𝑖
𝜸 𝑗+1,𝑐)

1 + exp (𝒙′
𝑖
𝜸 𝑗+1,𝑐)

,
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with the parameter vectors 𝜸 𝑗+1,𝑐 depending once again on the specific insurance
coverage 𝑐.

Knowing which coverages are active in year 𝑗 + 1 and which of them incurred a
payment, we can finally determine the severity of these payments. As in development
year 𝑗 , we suggest the use of the GAMLSS to model the severity per coverage using
the resulting vectors of activation and payment patterns:

E[𝑌𝑖, 𝑗+1,𝑐 |𝑃𝑖, 𝑗+1,𝑐 = 1, 𝐴𝑖, 𝑗+1,𝑐 = 1, 𝑨𝑖, 𝑗 ] = 𝑔−1(𝒙′𝑖𝜶 𝑗+1,𝑐 + 𝛼∗
𝑗+1,𝑐 ( 𝑗 + 1)). (7)

2.3 Development years 𝑗 + 𝑘, for 𝑘 ≥ 2

If enough data is available and if the insurer deems it appropriate, he can repeat the
model described in Sections 2.1 and 2.2 in years 𝑗 + 𝑘, for 𝑘 ≥ 2 until development
year 𝑗∗. In year 𝑗∗, we assume that even if the claim is still open, its development
stabilizes, i.e. it does not activate any additional coverage. Additional payments can
however still incur and although claims with such long settlement delays are rarer in
automobile insurance, we should not disregard them. A longest lifetime often indi-
cates a larger severity. If the claim is still open in development year 𝑗∗, we write its
remaining severity starting from that year as 𝒀 𝑖, 𝑗∗ |𝑷𝑖, 𝑗+𝑘 , 𝑨𝑖, 𝑗+𝑘 , 𝑨𝑖, 𝑗+𝑘−1,𝒀 𝑖, 𝑗∗ ≥ 𝒀 𝑖, 𝑗+𝑘
where we note the term 𝒀 𝑖, 𝑗∗ ≥ 𝒀 𝑖, 𝑗+𝑘 in the condition. 𝒀 𝑖, 𝑗∗ represents the severity of
claim 𝑖 for the development years starting from year 𝑗∗ and encapsulates the possible
remaining amounts that might be paid at later dates for claims with longer lifetimes.

We schematize the model described in Sections 2.1, 2.2 and 2.3 in Figure 2. We
see how the different components interact and the dependence on the activation
pattern vector for year 𝑗 , meaning 𝑨𝑖, 𝑗 . As shown in Figure 2, we assume that
a claim can activate a coverage at any time in a given development year 𝑗 until
the 30th of December. The insurer then records any payment made for the active
coverages on the 31st of December.

Figure 2: Summary of the activation patterns model

Example 1. To illustrate the model described in the previous sections, we consider in
Figure 3 a simple example. Assume that an insurer offers 𝐶 = 2 different insurance
coverages. The set of initial activation patterns of dimension 𝑉 = 3 is given by V =

{(0 1) (1 0) (1 1)}. We take a closer look at the development of claim 𝑖 from development
year 𝑗 = 1 onwards.

• Year 𝑗 = 1
Suppose that in development year 𝑗 = 1, we observe, for claim 𝑖, the activation pat-
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Figure 3: Illustration of the activation patterns model

tern 𝑨𝑖,1 = 𝒗1
𝑖,1 = (0 1), i.e. claim 𝑖 activates the second coverage but not the first one.

Knowing 𝑨𝑖,1, the possible payment pattern vectors are 𝑷𝑖,1 |𝑨𝑖,1 = {(0 0) (0 1)}.
If we assume that the resulting pattern for the payments is (0 1), then we have every-
thing required to compute the severity for claim 𝑖 in year 1. In this case, the severity
for the first coverage, i.e. 𝑌𝑖,1,1, will be equal to 0 since claim 𝑖 did not activate it
and hence, no payment incurred. The severity for the second coverage, i.e. 𝑌𝑖,1,2
can be estimated using simulations drawn from an appropriate distribution. Let’s
say we obtain 𝒀 𝑖, 𝑗 = (0 ; 1,000), then the total severity for claim 𝑖 in year 1 is equal
to 1,000.

• Year 𝑗 + 1 = 2
In the following year, the second coverage will remain active and the new set of
possible activation patterns V∗ ⊂ V is given by V∗ = {(0 1) (1 1)}.
Suppose that we obtain 𝑨𝑖,2 |𝑨𝑖,1 = (1 1). The possible payment patterns are then
𝑷𝑖,2 |𝑨𝑖,2, 𝑨𝑖,1 ∈ {(0 0) (0 1) (1 0) (1 1)} and we find, for example, that 𝑷𝑖,2 |𝑨𝑖,2, 𝑨𝑖,1 =

(1 1), i.e. the insurer recorded payments for both coverages.

We can finally compute the severity for both coverages for year 2 using the appro-
priate models. We find for example that 𝒀 𝑖, 𝑗+1 |𝑷𝑖,2, 𝑨𝑖,2, 𝑨𝑖,1 = (500 ; 100), which
gives a total severity for year 2 of 600.

The resulting total severity for claim 𝑖 is equal to 𝑌𝑖 = 1,600.

2.4 IBNR, RBNS and RBNP claims

This section describes how the model handles claims at different stages of their de-
velopment. We first provide an illustration of two claims with varying evaluation
dates of the reserves and then describe the simulation routine that we use to predict
the reserves.

Example 2. We consider in Figures 4, 5 and 6 three different evaluation dates of the
reserves. In Figure 4, we evaluate the reserves in development year 𝑗 = 1 at time 𝑡1, be-
fore the 31st of December. At this time, claim 1 occurred and is reported since we observe
its activation pattern 𝑨1,1. However, the insurer has not recorded any payment yet, mak-
ing it a reported but not paid claim (RNBP). We have to estimate its payment pattern 𝑷1,1

and corresponding severity for year 𝑗 (which corresponds to the first year of development
for this specific claim), 𝒀1,1. Then we will also be able to simulate the necessary compo-
nents for year 𝑗 + 1, i.e. 𝑨1,2, 𝑷1,2 and 𝒀1,2. Claim 2 has not occurred yet and therefore,
does not appear in the analysis.

7



Figure 5 illustrates the case where we choose to evaluate the reserves at time 𝑡2, a few
months after 𝑡1 during the year 𝑗 = 2, for example on the 1st of January. This time, the
insurer already recorded a payment for claim 1 but it is not settled yet. It is thus now a
reported but not settled (RBNS) claim. Knowing 𝑨1,1, we are able to predict 𝑨1,2, 𝑷1,2

and 𝒀1,2. Claim 2 has occurred but has not been reported yet and is thus an incurred but
not reported (IBNR) claim. We will have to predict its first activation pattern 𝑨2,1 and
all subsequent components required for the evaluation of the reserves.

Finally, we choose in Figure 6 𝑡3 as evaluation date. In this case, both claims 1 and 2
have been reported although they are not settled yet and a payment already took place for
claim 1. Claim 1 is a RBNS claim while claim 2 is still a RBNP claim. For claim 1, we
need to estimate the payment pattern and severity for development year 2, i.e. 𝑷1,2 and
𝒀1,2. For claim 2 which is in its first year of developement, we have observed 𝑨2,1 but will
still need to simulate 𝑷2,1,𝒀2,1, 𝑨2,2, 𝑷2,2 and 𝒀2,2.

If the claims are still open after two development years, their final severity will be given
by, respectively, 𝒀1,2+𝑘 |𝒀1,2+𝑘 ≥ 𝒀1,2 and 𝒀2,2+𝑘 |𝒀2,2+𝑘 ≥ 𝒀2,2, as discussed in Section 2.3.

Figure 4: Illustration of evaluation date 𝑡1

Figure 5: Illustration of evaluation date 𝑡2

2.4.1 Simulation routine

To properly consider all open claims in a given dataset, we create a simulation routine
that we can tailor to the specific development stage of different types of claims. We
present the routine for the IBNR claims and the RBNS claims, including those
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Figure 6: Illustration of evaluation date 𝑡3

with longer development times for which we assume that they will not activate any
additional coverages.

IBNR claims

1. For development year 𝑗 = 1:

(a) For each IBNR claim 𝑖IBNR, with 𝑖IBNR = 1, ..., 𝑛IBNR, simulate the first
activation pattern vectors 𝑨𝑖IBNR, 𝑗 using the parameters estimated for the
multinomial logit model from in Section 2.1.

(b) For the inactive coverages, i.e. 𝐴𝑖IBNR, 𝑗 ,𝑐 = 0, then the corresponding
𝑃𝑖IBNR, 𝑗 ,𝑐 is automatically generated as 0. For the active coverages only,
simulate the payment patterns using the Bernoulli models with parame-
ters 𝜋 𝑗 ,𝑐.

(c) If the payment indicator 𝑃𝑖IBNR, 𝑗 ,𝑐 = 0, either because the corresponding
coverage is not active or because we simulated it as such in the previous
step, then automatically set the corresponding severity for IBNR claim
𝑖IBNR related to that coverage to 0, i.e. 𝑌𝑖IBNR, 𝑗 ,𝑐 = 0. If 𝑃𝑖IBNR, 𝑗 ,𝑐 = 1
from the previous step, we simulate the severity from the distribution
selected for the specific coverage.

2. For development years 𝑗 > 1:

(a) Knowing the activation pattern 𝑨𝑖IBNR, 𝑗−1 for the previous development
year, only keep the activation patterns that are now still possible. Re-
normalize the probabilities for the remaining activation patterns and
simulate them using the multinomial logit model to obtain the vector
𝑨𝑖IBNR, 𝑗 .

(b) If 𝐴𝑖IBNR, 𝑗 ,𝑐 = 0, 𝑃𝑖IBNR, 𝑗 ,𝑐 = 0. For the active coverages only, simulate the
payment patterns using the Bernoulli models with parameters 𝜋 𝑗 ,𝑐.

(c) If the payment indicator 𝑃𝑖IBNR, 𝑗 ,𝑐 = 0, generate𝑌𝑖IBNR, 𝑗 ,𝑐 = 0. If 𝑃𝑖IBNR, 𝑗 ,𝑐 =

1 from the previous step, simulate the severity from the distribution se-
lected for the specific coverage. The total severity simulated for the IBNR
claims is given by 𝒀 𝐼𝐵𝑁𝑅 =

∑𝑛IBNR
𝑖IBNR=1

∑𝐽
𝑗=1

∑𝐶
𝑐=1𝑌𝑖IBNR, 𝑗 ,𝑐.

RBNS claims At the time of evaluation, these claims are already in their 𝑗 th

development year. We already know the activation patterns, payment patterns and
severities for year 𝑗 − 1 and the simulation routine is:
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1. For development year 𝑗 > 1:

(a) Knowing 𝑨𝑖𝑅𝐵𝑁𝑆 , 𝑗−1, with 𝑖𝑅𝐵𝑁𝑆 = 1, ..., 𝑛𝑅𝐵𝑁𝑆, re-normalize the proba-
bilities for the remaining possible activation patterns and simulate them
using the multinomial logit model from Section 2.2 to obtain the vector
𝑨𝑖𝑅𝐵𝑁𝑆 , 𝑗 .

(b) If 𝐴𝑖𝑅𝐵𝑁𝑆 , 𝑗 ,𝑐 = 0, 𝑃𝑖𝑅𝐵𝑁𝑆 , 𝑗 ,𝑐 = 0. For the active coverages only, simulate the
payment patterns using the Bernoulli models with parameters 𝜋 𝑗 ,𝑐.

(c) If 𝑃𝑖𝑅𝐵𝑁𝑆 , 𝑗 ,𝑐 = 0, 𝑌𝑖𝑅𝐵𝑁𝑆 , 𝑗 ,𝑐 = 0. If 𝑃𝑖𝑅𝐵𝑁𝑆 , 𝑗 ,𝑐 = 1 from the previous
step, simulate the severity from the distribution selected for the spe-
cific coverage. The total severity simulated for these claims is given by
𝒀RBNS =

∑𝑛𝑅𝐵𝑁𝑆

𝑖𝑅𝐵𝑁𝑆=1

∑𝐽
𝑗>1

∑𝐶
𝑐=1𝑌𝑖𝑅𝐵𝑁𝑆 , 𝑗 ,𝑐.

RBNS claims with longer development times To remain thorough in our
analysis, we must also consider the longer RBNS claims that we previously men-
tioned in Section 2.3. After a certain development year 𝑗∗, we assume that the
activation pattern for claim 𝑖𝑅𝐵𝑁𝑆+, with 𝑖𝑅𝐵𝑁𝑆+ = 1, ..., 𝑛𝑅𝐵𝑁𝑆+, 𝑨𝑖𝑅𝐵𝑁𝑆+, 𝑗∗ remains
unchanged. We therefore simulate the additional severity that this claim can incur
using the same severity distribution as the one we selected for year 𝑗 + 𝑘 < 𝑗∗, where
𝑗 + 𝑘 denotes the last development year in which the activation patterns might have
changed. Note that 𝑌𝑖𝑅𝐵𝑁𝑆+, 𝑗∗,𝑐 must be at least equal to 𝑌𝑖𝑅𝐵𝑁𝑆+, 𝑗+𝑘,𝑐. In what follows,
we detail our method for coverage 𝑐. For claim 𝑖𝑅𝐵𝑁𝑆+, we work with the distribu-
tion of the random variable 𝑍𝑖𝑅𝐵𝑁𝑆+,𝑐 = max(𝑌𝑖𝑅𝐵𝑁𝑆+, 𝑗+𝑘,𝑐, 𝑌𝑖𝑅𝐵𝑁𝑆+, 𝑗∗,𝑐). Its cumulative
distribution function is given by

𝐹𝑍𝑖𝑅𝐵𝑁𝑆+ ,𝑐
(𝑧) = P[𝑍𝑖𝑅𝐵𝑁𝑆+,𝑐 ≤ 𝑧] = P[max(𝑌𝑖𝑅𝐵𝑁𝑆+, 𝑗+𝑘,𝑐, 𝑌𝑖𝑅𝐵𝑁𝑆+, 𝑗∗,𝑐) ≤ 𝑧] .

We can rewrite this as

𝐹𝑍𝑖𝑅𝐵𝑁𝑆+ ,𝑐
(𝑧) =

{
0, 𝑧 ≤ 𝑌𝑖𝑅𝐵𝑁𝑆+, 𝑗∗,𝑐

𝐹𝒀 𝑗+𝑘,𝑐 (𝑧), 𝑧 > 𝑌𝑖𝑅𝐵𝑁𝑆+, 𝑗∗,𝑐 .

The inverse cumulative distribution function of 𝑍 is then given by

𝐹−1
𝑍𝑖𝑅𝐵𝑁𝑆+ ,𝑐

(𝑢) =
{
𝑌𝑖𝑅𝐵𝑁𝑆+, 𝑗∗,𝑐, 0 ≤ 𝑢 ≤ 𝐹−1

𝒀 𝑗+𝑘,𝑐
(𝑌𝑖𝑅𝐵𝑁𝑆+, 𝑗∗,𝑐)

𝐹−1
𝒀 𝑗+𝑘,𝑐

(𝑢), 𝑢 > 𝐹−1
𝒀 𝑗+𝑘,𝑐

(𝑌𝑖𝑅𝐵𝑁𝑆+, 𝑗∗,𝑐).
(8)

3 Numerical Application

We dedicate this section to the application of the model described in Section 2 to
an automobile dataset from a Canadian insurance company. We first provide an
overview and some exploratory analysis of the dataset before detailing the results
obtained from the estimation of the different parameters of our model. We finally
present the results obtained by simulations for the final reserves and compare them
with those obtained using three other models that we describe in greater details
below.

3.1 Data exploration

Our dataset contains 656,153 claims which have occurred between the 1st of January
2015 and the 30th of June 2021. Each of these claims comes with information related
either to the insured, the car driven or the claim itself, and impacts at least one of
four possible insurance coverages provided by the insurer.
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3.1.1 Risk factors

Table 1 presents the risk factors that we will use in our analysis to build the different
models. We provide further insights in Figure 7. Note that the risk factors GENDER
and YOB contained a significant proportion of missing values. We used the R package
mice to fill them in. This package uses Fully Conditional Specification (FCS) where
binary data (GENDER) is imputed via logistic regression while unordered categorical
data (YOB) is imputed with polytomous logistic regression. More details can be
found in van Buuren and Groothuis-Oudshoorn [2011]. Note that this data filling
procedure did not cause any significant changes in the results that we will discuss
later on.

Table 1: Description of the risk factors provided for each claim in the dataset

Risk factors

GENDER Gender of the insured.
YOB Year of birth: decade during which the insured was born.
VU Use of the vehicle made by the insured.
AM Annual distance driven by the insured (in km).
PROV Place of occurrence of the claim: one of the Canadian provinces or the

USA.
FR Fault rating: evaluation of the insured’s level of responsability in the

accident.

Our dataset includes around 60% of male against 40% of female insureds, more than
half of them being born between 1960 and 1989. Around half of the insureds use
their vehicle for commuting purposes while an additional 37% use it for pleasure.
The remaining 13% use their vehicle for commercial or business reasons, or did not
disclose that information to the insurer. 76% of the insureds drive between 10,000
and 20,000 kilometers per year according to the annual mileage risk factor which
is the only continuous one in our dataset. A bit more than 50% of the claims
occur in Ontario, 20% in Alberta and the remaining 30% take place in the other
Canadian provinces or in the United States of America. Finally, the insurance
company assesses the insured’s level of responsibility in an accident and issues a
fault rating. In 37% of the claims, the insured was not considered to be at fault.
The rating could not be applied for 32% of the claims and in 27% of the cases,
the insured was deemed at fault. In very few cases could the company determine a
partial level of responsibility or conclude that no fault was committed by neither of
the parties involved in the claim.

3.1.2 Insurance coverages

As previously mentioned, each of the 656,153 claims in our dataset must impact at
least one of four coverages offered to the policyholders to be activated in the systems
of the insurer. We provide a brief definition of these four coverages in Table 2. To
better understand the dynamics of our portfolio, Table 3 shows the importance of
each coverage in terms of the proportion of claims and proportion of the total cost.
Unsurprisingly, the Vehicle Damage coverage is the one that most often comes into
play with 96.39% of the 656,153 claims activating it. A bit more than half of the
claims impact the Loss of Use coverage. Only 5.70% of the claims in the portfolio
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Figure 7: Risk factors.

activate the Bodily Injury coverage. Similarly and as expected, less than 10% of the
total claims impact the Accident Benefits coverage.

The proportions are slightly different when we look at the repartition of the to-
tal portfolio cost over the four coverages. In particular, Loss of Use is the coverage
that weights the less in terms of cost, representing less than 4% of the total cost
of the portfolio. Despite being activated by less than 6% of all claims, the Bod-
ily Injury coverage still represents around 13% of the total portfolio cost. Table 4
shows some descriptive statistics for each of the four coverages. Bodily Injury claims
are those for which the average payments are the biggest, followed by the Accident
Benefits coverage. The Loss of Use coverage presents by far the lowest payments
as was already hinted by Table 3. We also notice that the payments for the Acci-
dent Benefits, Bodily Injury and Vehicle Damage coverages present large values in
the higher quantiles, indicating that their corresponding distributions are probably
heavy-tailed.
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Table 2: Description of the four insurance coverages provided within the policy

Insurance coverages

Accident Benefits Compensation for loss of revenue, funeral expenses, medical
expenses, death,...

Bodily Injury Compensation for medical expenses or loss of revenue of a
third party.

Vehicle Damage Compensation for the damages incurred to the insured or an-
other party’s vehicle.

Loss of Use Compensation of costs in case of the temporary replacement of
a vehicle or any other alternative transportation means used
during vehicle repairs.

Table 3: Weight of each coverage in the portfolio

Coverage % of claims % of the total cost

Accident Benefits 9.42 12.82
Bodily Injury 5.70 13.13
Vehicle Damage 96.39 70.44
Loss of Use 51.89 3.61

3.1.3 Activation and payment delays

In Table 5, we take a look at the average activation delays per coverage, i.e. the
average delays between the reporting of a claim and the activation of the coverages
in the insurer’s systems.

The Accident Benefits, Vehicle Damage and Loss of Use coverages are typically
activated without delay for the vast majority of the claims. For the Bodily Injury
coverage however, around 10% of the claims only activate it with a delay of at least
one year after the reporting date.

Example 3. To illustrate this, consider the case where a policyholder is at fault in an acci-
dent with a third party. The policyholder reports the claim to the insurer who, considering
the reparations needed to the vehicle, records it as a Vehicle Damage claim. The follow-
ing year, the third party realises that he has been injured in the accident and demands a
compensation. The insurer thereby needs to record the claim as a Bodily Injury as well as
Vehicle Damage claim. This illustrates how in some cases, some coverages become active
at a later time during the development of the claim rather than directly upon its reporting
to the insurance company.

Appendix 4 further illustrates the dynamics between the different coverages by pre-
senting the activation patterns observed in the dataset for the first development year
of the claims.

Once a claim activates a coverage, we are interested in knowing when the first
payment will take place. The payment delays refer to the time elapsed between the
reporting date of a claim and the date at which the insurer records a first payment
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Table 4: Descriptive statistics for the four insurance coverages

Coverage Mean Std. dev.
Quantiles

Max.
0.5 0.75 0.95 0.99

Accident Benefits 12,386 53,561 3,215 6,909 47,757 127,896 2,435,334
Bodily Injury 23,271 76,027 4,000 15,150 98,449 322,612 2,039,570
Vehicle Damage 5,040 8,121 2,605 5,830 17,984 40,611 149,399
Loss of Use 545 620 419 714 1,000 2,336 52,777

Table 5: Percentage of claims with different activa-
tion delays for the four coverages

Activation delays

Coverage No delay 1 year ≥2 years

Accident Benefits 96.65 3.18 0.11
Bodily Injury 89.89 7.70 2.11
Vehicle Damage 98.20 1.73 0.07
Loss of Use 97.80 2.17 0.03

for the coverage(s) that the claim activated. Thereby, we do not assume that the
payments directly follow the activation of the coverages. This is clearly shown in our
data and illustrated in Figure 8. The Vehicle Damage coverage is the one for which
payments happen the fastest with a payment taking place in the same year as the
reporting year for 77% of the claims that activate that coverage. Payments come
directly in the first development year for 66% of the claims that activate the Loss
of Use coverage but only for 50% of the claims that activate the Accident Benefits
coverage and 27% of the claims for the Bodily Injury coverage. For the rest of the
claims, almost all remaining payments take place in the second year following the
reporting date for the Vehicle Damage and Loss of Use coverages, such that when we
reach the third development year, these coverages practically never incur additional
payments. For the other two coverages however, the claimant might have to wait
a bit longer to receive his payments. When we reach the fourth development year,
only 63% of the claims have received their first payment for the Accident Benefits
coverage against only 46% for the Bodily Injury coverage. It is only starting from
the fifth development year that almost all claims have received their first payment
regardless of the coverage impacted.

Example 3 (continued). Consider again our earlier example. Even though claim acti-
vated the Bodily Injury coverage in the second year after reporting, the third party that
was injured might still wait a little to receive his payment while the insurance company
consults with medical or legal experts to determine the final amount that the claimant is
owed.

3.2 Estimation

We apply our model to the data introduced in Section 3.1. We present the results of
the model fitting performed for the three components of the model, namely the acti-
vation patterns, payment patterns and severities. Since with work with automobile
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Figure 8: Payment delays per coverage

claims and given the limited number of development years available in our dataset,
we work with the activation patterns and payment vectors for development years
𝑗 = 1 and 𝑗 = 2. For the claims that are already in at least their third development
year at the evaluation of the reserves, we apply the methodology laid out in Section
2.3.

3.2.1 Activation patterns

Using the same notation as in Section 2, we have 𝐶 = 4 insurance coverages, leading
to 𝑉 = 15 possible activation patterns. We fit the multinomial logit model for
the activation patterns using maximum likelihood estimation with the likelihood
function given by

L(𝑨𝑖, 𝑗 |𝒙𝑖𝜷) =
𝑛∏
𝑖=1

exp (𝒙′
𝑖
𝜷 𝑗 ,𝑣)∑𝑉

𝑘=1 exp (𝒙′
𝑖
𝜷 𝑗 ,𝑘 )

. (9)

In Appendix 4, we provide the full list of parameters estimated by maximum likeli-
hood for each of the 𝑉 = 15 possible activation patterns.

We observe that the impact of some risk factors becomes very important for the
5th pattern, i.e. the one in which a claim simultaneously activates the Bodily Injury
and Loss of Use coverages. In particular, the probability of observing that specific
activation pattern increases quite substantially if the claim occurred in the USA.
However, if the claim occurred in Quebec or in Saskatchewan, the probability of acti-
vating both the Bodily Injury and the Loss of Use coverages greatly decreases. This
does not come as a surprise due to the legislation regarding automobile insurance in
these two states. In Quebec, the Bodily Injury coverage does not exist: if an indi-
vidual is injured in a car accident, he is covered by the public automobile insurance
plan provided by the Société de l’assurance automobile du Quebec (SAAQ) rather
than by a private insurance company. In Saskatchewan, the insured must choose
between a “no fault” and a “tort” auto injury insurance coverage offered by the
Saskatchewan driver’s licensing and vehicle registration. Almost all residents choose
the “tort” coverage under which they are insured regardless of whether they are at
fault or not. As such, the Bodily Injury coverage very rarely appears for claims
that occur in that province. Consequently, we see that the parameter estimates for
Quebec and Saskatchewan are always quite negative for all the activation patterns
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that include the Bodily Injury coverage.

Moreover, when the fault rating is either not available or not applicable or when
the degree of fault of the insured is evaluated at 25%, the probability of the claim
activating both the Bodily Injury and Loss of Use coverages decreases. Once again,
since the provincial legislation often impacts the way Bodily Injury claims are han-
dled, we know that for many of those claims, insurers will not record a fault rating
or deem it inapplicable to the specific situation. We can thus expect for example
that when the fault rating is not applicable for a claim, this claim has occurred in
Quebec where the Bodily Injury coverage does not apply and hence, the probability
of activating it decreases.

Finally, the year of birth ia also a big driver for this particular pattern with the
probability of observing it increasing for the younger insured individuals born in the
1990s and after 2000. It is commonly observed in automobile insurance data that
younger drivers tend to cause more frequent and serious accidents. As a consequence,
we can expect to observe more accidents with injuries or even casualties and loss of
use of a vehicle in the younger population. Appendix 4 illustrates this well, with
the insureds born after 2000 being the only cohort that always has an increasing
impact on the probability of observing each activation pattern, even though they
only represent 1.52% of all the insureds.

3.2.2 Payment patterns

As described in Section 2, the payment patterns help actuaries determine whether
or not a payment took place for an active coverage 𝑐 of claim 𝑖 in development year
𝑗 i.e. in the case where 𝐴𝑖, 𝑗 ,𝑐 = 1. We fit in total eight Bernoulli regressions: one
for each of the four coverages in years 𝑗 = 1 and 𝑗 = 2+ and use again maximum
likelihood optimization to obtain the parameter estimates for each of the models.
Table 6 displays the results of these estimations. When comparing them with the
payment delays observed in Figure 8, we see that the models provide overall a good
fit. The Vehicle Damage coverage is the one for which payments come the fastest
with around 80% of the claims receiving a payment in their reporting year, i.e. in
development year 𝑗 = 1. The Loss of Use coverage comes in second place with an
estimated 70% of claims receiving a payment in the first year against around 65%
of claims in the observed data. The estimated percentage 𝜋 𝑗 ,AB for the Accident
Benefits is very similar to the observed value with a payment happening in 𝑗 = 1
for almost half of the claims. Finally, while we observe that a bit less than 30% of
the claims receive a payment in the first year for the Bodily Injury coverage, the
estimation obtained from our model is around 35%.

Table 6: Fitted average probabilities of observing a payment

Probability 𝑗 = 1 𝑗 = 2+
𝜋 𝑗 ,AB 0.5155 0.3578
𝜋 𝑗 ,BI 0.3484 0.2812
𝜋 𝑗 ,VD 0.8203 0.1138
𝜋 𝑗 ,LoU 0.7070 0.0720
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3.2.3 Payment severities

From the observations in Table 4, we note the importance of considering long-tailed
distributions to model the severity of payments, as is usually done in the actuarial
literature. Among others, Frees et al. [2009] opt for the Generalized Beta of the
second kind distribution to accommodate the long-tail nature of claims. Figure 9
shows the histogram of the payments made for the four coverages. Note that for
the Accident Benefits and Bodily Injury coverages, we cut out most of the tail of
the histograms in the right part of the graph to ease the readability. These graphs
further illustrate the need on the one hand to consider long-tailed distributions for
the coverages and on the other hand the benefits that we can earn from selecting
different distributions for the coverages rather than a single distribution common to
all. We are thereby able to tailor the model to the specific distribution profiles of
the different types of claims.

For each coverage, we consider five distributions commonly used. We fit the
following severity models for both years 𝑗 = 1 and 𝑗 = 2+: Log-Normal, Gamma,
Pareto, Generalized Beta of the second kind and Weibull distributions. Appendix 4
presents the Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC) for all the models for both time periods considered and all four insurance
coverages. For the first development year, the Generalized Beta of the second kind
seems to be the most appropriate distributional choice for Accident Benefits, Vehicle
Damage and Loss of Use while the Pareto distribution is more suited to model the
payments incurred in the Bodily Injury coverage. For the other development years,
the Generalized Beta of the second kind is again the distribution that presents
the lowest AIC for Accident Benefits, Vehicle Damage and Loss of Use while we
prefer the Weibull distribution to model Bodily Injury claims. This illustrates the
advantages of separating the severity modelling of the different coverages. From the
model fitting, we see that the distribution profile of the Bodily Injury coverage is
different than that of the others and varies with the development periods.

Figure 9: Histograms of the observed payments per coverage
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3.3 Predictive distributions and model comparisons

With the data presented in Section 3.1 and the models fitted in Section 3.2, we can
now focus in this section on presenting the results obtained after performing the
evaluation of the reserves for our portfolio of automobile insurance claims, choosing
the 1st of January 2019 as our evaluation date. We present the predictive distribu-
tions for the reserve of the whole portfolio and the four coverages separately. We
compare these results to the true reserve and to that obtained from fitting some
more classical and commonly used reserving models.

For all the models that we will consider in this section, we perform 5,000 simula-
tions using the simulation routine described in Section 2.4.1. As shown in Appendix
4, this is a sufficiently large number to bring stability to our results. We first present
the estimations from the activation patterns model before comparing them to other
reserving models.

Figure 10 displays the predictive distribution for the total reserves in our port-
folio, i.e. for both the IBNR and RBNS claims on the left and the total reserves
only for the RBNS claims on the right. In both cases and in all graphs that will
follow, the red line marks the true reserve, the blue dotted line shows the average
value of the predictions and the continuous blue line depicts the 95th quantile of
the distribution. For all claims, the true reserve amounts to 542.55M CAD, whereas
our model produces an average predicted amount of 561.62M CAD. For the RBNS
claims only, the true reserve is equal to 524.91M CAD and the simulations give
536.86M CAD. Note that the true reserve amounts that we provide here are min-
imum amounts since at the evaluation date, a bit more than 3% of the claims are
still open in the portfolio. To handle them, we chose to consider the date of the last
observed payment as the settlement date. Thereby, we must be aware that the true
severity of these claims will in all likelihood be greater than the one observed.

Figure 10: Simulated reserves as of the 1st of January 2019. The red line, dashed
blue line and continuous blue lines depict, respectively, the true reserve amount, the
average and the 95th quantile of the simulations

With the IBNR claims representing only 3.25% of the total final cost in our eval-
uation dataset, we choose to focus on the results of the RBNS claims only. Figure
11 presents the predictive distributions obtained for the reserves of the four insur-
ance coverages. As in Figure 10, the red lines show the true reserve amounts while
the dotted and continuous blue lines represent, respectively, the mean and the 95th

quantile of the distributions. In Table 7, we provide further details on these results.
Since financial legislation around the world typically require insurers to set aside an

18



amount based on a high quantile of the predictive distribution of their reserves, we
provide the 95% Value-at-Risk (VaR) in addition to the mean for each of the four
coverages and for the portfolio as a whole.

Figure 11: Simulated reserves per insurance coverage (RBNS). The red lines, dashed
blue lines and continuous blue lines depict, respectively, the true reserve amounts,
the average and the 95th quantiles of the simulations

Table 7: Simulated RBNS reserves (in M CAD).

Coverage True reserves
Activation Patterns
Mean VaR0.95

Accident Benefits >158.90 162.15 196.64
Bodily Injury >288.17 300.02 312.58
Vehicle Damage >73.63 70.80 72.95
Loss of Use >4.20 3.91 4.01

Total >524.91 536.86 574.58

For the full portfolio, the activation patterns model overestimates the true reserves,
providing rather conservative estimates. This is also the case for the Accident Ben-
efits and Bodily Injury coverages. For the Vehicle Damage and Loss of Use cover-
ages that represent together around 15% of the total RBNS reserve, the predictions
slightly underestimate the true amounts.

In Sections 3.3.1, 3.3.2 and 3.3.3, we pursue the analysis of our results by com-
paring them to those obtained using, respectively, an aggregate model, a replica of
the activation patterns model but without taking dependence into account and the
individual reserving model proposed by Antonio and Plat [2014].
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3.3.1 Activation patterns model vs Aggregate models

Table 8 compares the reserve estimates obtained with the proposed model based on
the activation patterns to those of the classical Overdispersed Poisson (ODP) Chain
Ladder and to the true reserves, both for the portfolio as a whole and for the four
insurance coverages taken separately.

On average, the aggregate model underestimates the true reserves in each case.
We need to take the 95% VaR to obtain an estimate of the whole RBNS reserve
that is above the minimum observed value of 524.91M CAD. Considering that we
expect this amount to be higher due to the open claims, our model gives a more
conservative estimate of the total RBNS reserve with an average simulated amount
of 536,86M CAD. Most importantly, the aggregate model does not perform well at
the coverage level. In each case and particularly for the Accident Benefits and Bod-
ily Injury coverages, the predictions underestimate the true reserve amounts. Using
such a model, the insurer is thus blind to the dynamics of his portfolio and can only
get an idea of what his total reserve amounts to.

In addition, since our data spans from 2015 to mid-2021, we only have a limited
number of development years and thereby rather small claim triangles to perform
the analysis with aggregate models. To obtain more appropriate estimates in this
specific case, the insurer should consider making use of tail factors.

Table 8: Comparison between the activation patterns model and the Overdis-
persed Poisson Chain Ladder (in M CAD)

Coverage True reserve
Activation patterns ODP
Mean VaR0.95 Mean VaR0.95

Accident Benefits >158.90 162.15 196.64 71.01 81.66
Bodily Injury >288.17 300.02 312.58 177.64 204.63
Vehicle Damage >73.63 70.80 72.95 40.87 48.43
Loss of Use >4.20 3.91 4.01 3.02 3.88

Total >524.91 536.86 574.58 493.14 537.16

3.3.2 Activation patterns model vs independence model

To strengthen our argument in favour of a model that takes into account the possible
dependence between the insurance coverages, we perform a series of independence
tests on our data. First, we test for independence between each possible pair of in-
surance coverages using the chi-squared goodness of fit test. Each of these two-way
interaction tests clearly rejects the hypothesis of independence. We also perform
likelihood ratio tests where we compare models with no interaction, two, three and
four-way interactions. Once again, the tests clearly show the presence of dependence
between the coverages and reject the simpler models in favour of the more complex
ones in each scenario.

To assess the impact of modelling this dependence on the reserve estimates, we
build an independence model. We reproduce the activation patterns model but
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rather than modelling the activation patterns 𝑨𝒊, 𝒋 and 𝑨𝒊, 𝒋+1 with the multinomial
logit model described in Section 2, we model the activation of the coverages using
four separate and independent Bernoulli regressions for development periods 𝑗 = 1
and 𝑗 = 2+. We present the results obtained with this model in Table 9 and com-
pare them to the true reserves and the estimates from our activation patterns model.

With an average estimated amount and average 95% VaR of, respectively, 495.32M
CAD and 526.93M CAD, the independence model clearly underestimates the true
reserves. The predictions are also less accurate for each of the four coverages and
the activation patterns model outperforms the independence model in each case.
Leaving the dependence between the coverages out of the modelling process can
thereby lead to underestimated reserves which can put the insurer at risk of finan-
cial sanctions.

Table 9: Comparison between the activation patterns model and the indepen-
dence model (in M CAD)

Coverage True reserve
Activation patterns Independence
Mean VaR0.95 Mean VaR0.95

Accident Benefits >158.90 162.15 196.64 143.41 173.50
Bodily Injury >288.17 300.02 312.58 278.18 290.31
Vehicle Damage >73.63 70.80 72.95 69.94 72.07
Loss of Use >4.20 3.41 4.01 3.78 3.89

Total >524.91 536.86 574.58 495.32 526.93

3.3.3 Activation patterns model vs another individual model

Next to the aggregate and independence models, we compare the model based on the
activation patterns to the individual reserving model first introduced by K. Antonio
and R. Plat in 2014. Working in continuous time, the authors use a hierarchical
process to estimate the reserves for the RBNS claims. The interested reader can
find more details on their model in Antonio and Plat [2014].

We focus here solely on the Accident Benefits coverage. Figure 12 shows the
predictive distributions for the RBNS reserves of this coverage obtained with the
activation patterns model (in blue) and Antonio and Plat [2014]’s individual model
(in grey). As before, the red line shows the true amount of the reserves equal to
158,90M CAD while the dotted and continuous lines represent, respectively, the
average reserve estimates and 95% VaR obtained with each model. For the activa-
tion patterns model and Antonio and Plat [2014]’s model, the average predictions
are, respectively, 162,15M CAD and 143,46M CAD while the 95% VaR amount to
196,64M CAD and 168,30M CAD. The predictive distribution of the activation pat-
terns model is thereby closer on average to the true reserve. However, Antonio and
Plat [2014]’s model gets a closer estimate in terms of the VaR whereas in this case,
our model overestimates the reserve.
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Figure 12: Predictive distributions of the RBNS reserves obtained with the activa-
tion patterns model and the model of Antonio and Plat Antonio and Plat [2014].
The red line shows the true reserve amount and the blue and grey dotted and contin-
uous lines depict the average predictions and 95% VaR obtained with, respectively,
Antonio and Plat Antonio and Plat [2014]’s model and the model based on the ac-
tivation patterns

3.3.4 Results summary

Table 10 summarizes the results discussed in Sections 3.3.1 and 3.3.2. Of the four
different models, the independence model is the one that underestimates the total
reserve the most in terms of the Value-at-Risk.

The aggregate model presents the lowest average estimates but its predictive
distribution is more heavy-tailed than that of the independence model and the 95%
VaR of 537,16M CAD seems to be a more appropriate estimate. However, this model
performs very poorly when we take the coverages separately and consistently under-
estimates the true reserves. It is thereby not fitted to gain a better understanding
of the dynamics of the portfolio. In addition and as mentioned in Section 3.3.1, the
limited amount of development years available forces the insurer to use tail factors,
making the model less reliable or apt for predictions.

The model based on the activation patterns provides a greater level of accuracy
in the estimation of the total reserves both on average and in the higher quantiles
of the predictive distributions. Even though it is the model that overestimates the
true reserve the most, especially in terms of the VaRwhere we could prefer the total
estimate of the aggregate model, it provides more accurate predictive distributions
at the level of the different insurance coverages.

4 Conclusion

In this paper, we introduce a model based on activation patterns for the insurance
coverages to estimate the claims reserves on an individual basis while taking into
account the dependence between the different coverages provided by an insurer.
More specifically, we analyze the way in which a single claim can simultaneously
activate multiple coverages. Based on the predictions of the so-called activation
patterns of the coverages in year 𝑗 , we then predict whether an active coverage
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Table 10: Model comparison - summary (in M CAD)

Coverage Observed Simul. Act. pat. ODP Ind. [1]

Accident Benefits >158.90
Mean 162.15 71.01 143.41 143.46
VaR0.95% 196.64 81.66 173.50 169.30

Bodily Injury >288.17
Mean 300.02 177.64 278.18 -
VaR0.95% 312.58 204.63 290.31 -

Vehicle Damage >73.63
Mean 70.80 40.87 69.94 -
VaR0.95% 72.95 48.43 72.07 -

Loss of Use >4.20
Mean 3.91 3.02 3.78 -
VaR0.95% 4.01 3.88 3.89 -

Total >524.91
Mean 536.86 493.14 495.32 -
VaR0.95% 574.58 537.16 526.93 -

will incur a payment and its corresponding amount. Using a Canadian automobile
dataset, we apply the model and compare the results obtained to those of three
additional models: the classical Overdispersed Poisson Chain Ladder, a replica of
the activation patterns models that does not take the dependence into account
and Antonio and Plat [2014]’s individual reserving model. We observe that when
taking the dependence between the coverages into account, we reach on average more
accurate estimates of the reserves than the other models. The predictive distribution
that we obtain is however more heavy-tailed than the others, leading to larger Value-
at-Risk. We can however consider these as more conservative compared to other
models for which the estimates are sometimes too close to the observed amount.
The main contribution of our model resides in its capacity to predict the specific
reserve estimates for each insurance coverages more accurately, thereby allowing
the insurer to better understand the dynamics of his portfolio. This is particularly
interesting considering some regulatory frameworks such as Solvency II that requires
a detailed analysis of the reserves on a line of business basis and that consistently
advocates for the use of more prudent and conservative modelling techniques.
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Appendix A: Observed activation patterns

Table 11 presents the activation patterns 𝑨𝑖,1 observed in the dataset for the first
development year of the claims. The value 1 stands for the activation of the cov-
erage. 85.67% of all claims activate the Vehicle Damage coverage either alone or
simultaneously with the Loss of Use coverage. The Accident Benefits coverage is
most often activated together with the Vehicle Damage coverage or on its own. We
also observe that around 1% of all claims simultaneously activate all four coverages
upon their reporting.

Table 11: Frequency of the activation patterns observed in the first development
year

Accident Benefits Bodily Injury Vehicle Damage Loss of Use % of claims

0 0 1 0 42.95
0 0 1 1 42.72
1 0 1 0 4.98
0 1 1 1 1.99
1 0 0 0 1.44
0 1 1 0 1.24
1 0 1 0 1.07
0 0 0 1 1.04
1 1 1 1 1.01
0 1 0 0 0.61
1 1 1 0 0.43
1 1 0 0 0.38
1 0 0 1 0.10
0 1 0 1 0.04
1 1 0 1 0.01

Appendix B: Multinomial logit model
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Appendix C: Choice of the severity models

Table 13: Choice of the distributions for the severity of the payments

Coverage Model
𝑗 = 1 𝑗 = 2+

AIC BIC AIC BIC

Accident Benefits

Log-Normal 266,408 266,651 181,577 181,827
Gamma 264,411 264,654 183,670 183,921
Pareto 262,903 263,146 181,281 181,532
Generalized Beta II 261,110 261,368 181,222 181,487
Weibull 264,101 264,344 182,545 182,796

Bodily Injury

Log-Normal 100,523 100,735 106,985 107,214
Gamma 99,675 99,887 107,096 107,325
Pareto 98,971 99,183 106,691 106,919
Generalized Beta II 99,966 100,185 106,884 107,119
Weibull 99,187 99,400 106,673 106,902

Vehicle Damage

Log-Normal 5,375,907 5,376,246 620,136 620,431
Gamma 5,385,180 5,385,519 619,456 619,751
Pareto 5,342,022 5,342,361 617,247 617,542
Generalized Beta II 5,330,989 5,331,349 617,245 617,557
Weibull 5,371,787 5,372,126 618,531 618,827

Loss of Use

Log-Normal 1,874,185 1,874,498 193,705 193,967
Gamma 1,868,867 1,869,180 192,929 193,191
Pareto 1,894,927 1,895,241 194,376 194,638
Generalized Beta II 1,861,585 1,861,918 192,212 192,489
Weibull 1,877,508 1,877,821 193,459 193,721
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Appendix D: Results stability

Figure 13: Results of the RBNS reserves (95% VaR) based on the number of simu-
lations performed
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