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ABSTRACT The study of radio signal propagation path loss (PL) is important for planning, designing
and evaluating the performance of radio communication networks. However, the state-of-the-art in PL
modelling for fixed wireless networks in rural environments is still ill-equipped for making accurate
predictions. This paper explores the application of the log distance PL. model to heterogeneous fixed wireless
networks in harsh rural propagation conditions. This model is then extended and optimized to improve its
accuracy. In particular, the dataset is classified according to many criteria, radio links are split into many
intervals according to their distances, antenna heights and elevations are integrated into its formula and
long-term extreme seasonal variations are considered. Our study uses a wide set of measurements from the
fixed wireless networks of a wireless internet service provider in rural regions of Canada. The proposed
modifications improve the accuracy by 7 to 15 dB in terms of the root mean squared error.

INDEX TERMS Radio signal propagation, propagation empirical models, path loss, seasonal effects, log

distance model.

I. INTRODUCTION

Wireless communication systems have been developed
recently to become the cornerstone of modern society. These
ubiquitous and pervasive technologies are facilitating a range
of activities by providing permanent access to services, infor-
mation and commodities. Wireless systems are an access
solution for deployment in difficult conditions often found
in rural environments, since they offer a fair compromise
between performance and cost. New applications’ require-
ments are sometimes hard to satisfy, especially in difficult
environmental conditions of rural areas, where it is hard to
accurately estimate the radio signal attenuation due to the ran-
dom nature of the density and seasonal growth of vegetation.
This attenuation causes radio signal path loss (PL) and limits
its coverage range and quality of service (QoS). To take up
this challenge, PL. models are developed and tuned according
to the investigated environment for planning, designing and
evaluating the performance of wireless systems.

The associate editor coordinating the review of this manuscript and

approving it for publication was Oussama Habachi

52020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Many PL models are available in the literature, such as the
free space and log distance (LD) models [1], [2]. This study
examines the application of the LD model to heterogeneous
wireless-to-the-home (WTTH) networks, as this model is
widely and easily used with less resources and complex-
ity [3]. The data for the model are from the fixed wireless
networks (FWNs) of an internet service provider (ISP) in
two rural regions of Canada. Two obstruction profiles are
available, namely direct line of sight (LOS) and non-LOS
(NLOS) links, along with many frequency bands: 915 MHz,
as well as 2.4, 3.65 and 5.8 GHz. Furthermore, we propose
two modifications to the LD model in order to consider
antenna heights and elevations.

The contributions of this research are:
o The accuracy of the LD model is investigated for hetero-

geneous FWN.

e The LD model is modified to improve its preci-
sion by splitting the signal path into many inter-
vals, and by considering antennas’ heights and
elevations.

« We extend the improved LD model according to the
seasonal variation in the radio signal propagation PL.

VOLUME 10, 2022


https://orcid.org/0000-0002-8857-2577
https://orcid.org/0000-0003-4409-9447
https://orcid.org/0000-0002-2589-8609
https://orcid.org/0000-0001-7121-5760

Z. El Khaled et al.: Log Distance PL Model: Application and Improvement

IEEE Access

AP Pcre, G Pl
ANTENNA "9 G SR AN%EENA
(QISt=g=d=d=0—g WL
WIRELESS O
LINK (2)
2D Ej
COMMUNICATION D -
TOWER WIRELESS Personal
DEVICE Computer

FIGURE 1. Example of the deployment of FWN.

FIGURE 2. Radio links of SLS) region.

o We extract its optimal parameters according to frequen-
cies in the range of 900 MHz to 5.8 GHz, line of sight
obstruction (LOS or NLOS) and seasons.

This paper is organized as follows: Section 2 discusses the
related technical background, while Section 3 introduces the
state-of-the-art. Next, Section 4 discusses the accuracy of
the LD model as well as the proposed modifications, and
Section 5 considers seasonal PL variation effects. Finally,
conclusions are drawn in Section 6.

Il. TECHNICAL BACKGROUND

A. NETWORK MODEL

The network model is shown in Fig. 1, where access points
(APs) are connected via long-range Wi-Fi [4] or Long-Term
Evolution (LTE) [5]. Each AP is connecting many Customer
Premise Equipment (CPE) units to the Internet. A CPE can
be installed on any high place such as roofs or trees. Then,
it is wired to the users’ indoor equipment. Many frequency
bands are used for diverse radio signal penetration. Higher
frequencies are mostly used for LOS links, whereas lower
ones are used for NLOS links, as they have better penetration.
The use of many AP and CPE antenna gains and radiated
power diversifies the configurations of radio links. AP and
CPE antenna heights depend on where they are installed, be it
on towers, roofs or trees. The radio link distance d can be as
great as 18 Km. More details are provided by [5] and [6].

B. MEASUREMENTS

The measurements are provided from a wide commer-
cial FWNs of a wireless ISP for two different rural
regions in Canada: Saguenay Lac Saint Jean (SLSJ) and
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FIGURE 3. Radio links of OUT region.

TABLE 1. Path loss exponent values [12].

Environment Path loss exponent (n)
Free space 2
Urban area cellular radio 2.7t03.5
Shadowed urban cellular radio 3to5
Inside a building - line-of-sight 1.6to 1.8
Obstructed in building 4t06
Obstructed in factory 2to3

Outaouais (OUT). Fig. 2 and 3 show the wireless links in
these two locations, respectively. NLOS links principally
encounter trees and perhaps some buildings, and the terrain is
covered by hills, lakes and plains. Environmental conditions
vary between two extremes: snowy, cold weather with ever-
green trees in the winter and rainy, hot weather with leaves
growth in the summer. Measurements are taken throughout
the year in order to consider the seasonal long-term PL vari-
ation. Rain, snow falling and wind are not considered in this
research since they are time-limited events. The measure-
ments are collected periodically, then they are averaged to
remove the fast fading effect. They include pertinent infor-
mation for QoS characterization, such as data rates, signal-
to-noise ratios, and so on.

Other pertinent information is collected, such as antenna
heights and gains, GPS coordinates, distances, elevations,
seasons, and obstruction levels. Since CPE nodes and APs are
installed in high places, the moving targets and the ground
reflection effects are neglected. All models are fitted with
SLSJ measurements, then tested with OUT measurements to
verify their generalizability.

The collected data are used to compute the measured PL
via the Friis formula [2]:

P.=P +G +G,—L (1)

where Pt and Pr are the transmitted and received power
signals, respectively; and Gr and Gt are the receiver and
transmitter antenna gains, respectively. L is the total PL
and internal devices’ (Ljy) losses asgleaned from their data
sheets. The PL is then given by:

PL=P;+G;+ Gy, — Pr—Lip (2)
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C. PATH LOSS MODELS

Empirical models provide a fair trade-off between process-
ing efficiency, accuracy and complexity [7]. The free-space
model [8] is the simplest PL. model. It is given by:

4md
PLps= 20log - 3

where d is the link distance, and A is the wavelength.
It assumes that the signal attenuation is due to free space only.

Other PL models consider LOS obstruction, such as
vegetation and buildings. The most well-known ones are:
Cost231, Stanford University Interim, Ericson, Hata and
Hata-Okumura [9]. Unfortunately, each model has its own
boundaries and does not perfectly fit the measurements [10]
and [11]. The LD model compute the PL of NLOS links.
If PL 4o is the PL at distance dp, then the PL at an arbitrary
distance d > dj can be given by [12]:

d
PLyp = PLgo + 10nlog,, (d—> )
0

where n is the PL exponent, its values are given in Table 1.
This model is called log normal shadowing when considering
the shadowing effects x due to obstructions [13]. The random
variable x follows a Gaussian distribution with a zero-mean
and a standard deviation o between 8.2 and 10.6 dB [14].

lll. STATE-OF-THE-ART OF LOG DISTANCE PATH LOSS
MODEL
The LD PL model is used in numerous applications, such as
on-body PL modelling for ultra-wideband communications
[15], drone aerial communications [16], mobile communica-
tion [17], [18], wireless sensor networks [13], [19], PL esti-
mation in forested environments [20], and FWN [21], [22].
Many researchers have studied the existing PL mod-
els. The authors of [9] surveyed 60 years of continuous
research. Other research focused on PL for fixed wireless
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communications. In [22], we compared ten PL models to the
measurements taken on many thousands of fixed radio links
and established a framework to derive and test a convenient
PL model for FWNSs in rural areas with an RMSE between
9 and 10 dB. In [23], the authors concluded that there is
no ultimate PL model for all cases by analysing more than
30 models and by collecting data from a wide FWN in
unlicensed bands. Phillips et al. analysed the performance
of 28 PL models using the dataset of a rural wireless network
in New Zealand [24]. They proved that available PL models
are less accurate in rural environments with 12 dB RMSE of
accuracy at best. In [3], the authors confirmed that PL models
provide an accuracy of 8 to 9 dB RMSE, at best, in urban
environments and almost 15 dB in rural ones. Milanovié et al.
compared the accuracy of the most widely used PL models in
WiMAX applications at 3.5 GHz [25].

Existing studies have compared the accuracy of existing
PL models, including the LD model, in various applica-
tions. Elechi et al. proved that LD performance is close to
that of the Okumura model in 900 MHz applications [26].
Sharma et al. compared the LD model with other models
in three different environments (urban, suburban and rural),
and it had the best performance in rural areas [1]. In the
experiment of Chebil et al., the log normal shadowing model
was the closest to measurements [17]. Also, the authors of
[21] compared several PL models using 3.5 GHz FWN appli-
cations. They showed that LD was not the most accurate
model but that it performed reasonably.Due to its perfor-
mance, there have been many extensions of the LD model.
Fendji et al. compared many modifications including the dual
slop, log normal shadowing, partitioned and Liechty models
for 2.4 GHz 802.11n wireless networks in rural areas [27].
They demonstrated that the Liechty model provides better
precision and combined it with the dual slop model. Their
measurements were taken from a USB wireless adapter, and
the maximum distance was 600 m, with around twenty points
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TABLE 2. PL exponents according to classification criteria.

Region  Obstruction Frequency (GHz)
PL models All SIS} OUT LOS NLOS 0915 24 365 5.8
LD 2735 282 25.6 16.9 33.3 40.72 28.58 21.64 22.30

LD data splitting 11.00 11.7 9.7 124 11.1 7.91 13.39 9.45 12.36
Okumura Hata 17.4 187 148 195 152 141 165 20.2 189
Cost231_hata 18.1 195 15.0 20.5 154 145 165 213 20.6

Sul 193 199 179 205 18.0 16.8 19.0 20.9 19.8
Ericson 23.8 266 173 282 188 203 224 30.1 249
free_space 51.0 49.1 545 46.4 55.0 48.6 523 473 50.0
ECC33 154.6 158.8 146.3 164.5 144.7 119.5 145.7 167.5 174.5

3GPP_TR_38.901 158.7 190.6 64.3 149.3 166.9 133.1 194.7 82.3 75.7

of measurement. Kelner et al. considered the antenna gains
and directions [28]. The maximum distance did not exceed
400 m, and the PL was compared with other models for many
gains and directions. Jeong et al. studied PL variations in
the industrial, scientific and medical (ISM) bands for drone
applications and they extended the LD model for aerial com-
munications [16]. The horizontal distance range was between
10 and 70 m, and the altitude was between 1.5 and 101.5 m.
Fernandez et al. divided the radio link into two intervals, and
each one had its own propagation exponent [29]. The LD
model was fitted for digital TV applications in Lima, Peru
and provided the best accuracy.

In conclusion, even if many researchers have studied the
PL models for FWN, the LD model was not always included
[23], [24], [25]. The few researchers who considered this
model did not do so for FWN applications [1], [17] and they
used limited coverage ranges [16], [27], [28].

IV. LOG DISTANCE MODEL MODIFICATIONS

A. LD MODEL APPLICATION

The accuracy of the LD model is based on the root-mean-
square error (RMSE):

2
Zi_\/:l (PL:-"MS _ PLfV€d>
N

RMSE =

&)

where N is the number of measurements, and PL‘; red and
PL"“ are the predicted and measured PLs, respectively.
Table 2 presents the RMSE comparison of the LD model with
the most well-known PL models by considering its standard
configuration and its data-splitting optimization. Its RMSE
varies between 17 and 40 dB, which is almost poor compared
to the signal sensibility [6]. However, its data-splitting appli-
cation is promising, as it improves the RMSE to 11 dB for the
aggregated data.

B. LD OPTIMIZATION WITH DATA SPLITTING

To optimize the model parameters (#, dyp and PL ;40), the mea-
surements have been classified according to the following cri-
teria: region, LOS and frequency bands. Table 2 outlines the
accuracy comparison between the standard LD model and its
optimization according to data splitting for all data, regions,
obstruction levels and frequencies. Its accuracy is improved
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TABLE 3. Accuracy of data splitting optimization, the RMSE is computed
for all data aggregated.

ClaSS}ﬁcgtlon Path loss exponent
criteria
All data 0.133
Region 0.143
LOS 0.093
NLOS 1.915
915 MHz 1.309
2.4 GHz 2.197
3.65 GHz 1.173
5.8 GHz 0.255

TABLE 4. RMSE comparison among the standard LD model and the
models with the proposed modifications.

Splitting criteria RMSE
Classical application 27.35
All data 11
Region 11.007
Obstruction 11.78
Frequency band 12.63

considerably with data splitting, and the RMSE does not
exceed 13 dB. Fig. 4 compares the PL measurements with the
standard LD model and its optimization according to various
data-splitting criteria. Table 3 summarizes the PL exponents,
n, extracted with the least squares algorithm implemented via
the curve fit function in the optimization module of SciPy
[30]. The value extracted for Region is close to the one
extracted for all data, which proves the generalizability of this
model. Note that n increases with the obstruction level, and
its low value for higher frequencies is justified by their use
for LOS links. Table 4 summarizes the data splitting accuracy
with an improvement of 16.35 dB RMSE.

C. MULTI-INTERVAL LOG DISTANCE (MILD) MODEL

As long-range Wi-Fi links are longer than 18 Km and the PL
strongly depends on the distance of radio links, the dataset
is divided according to the ascending link distances, into
several intervals, to increase the accuracy. Then, each interval
is independently optimized and has its own parameters by
using the least squares algorithm implemented via the curve
fit function in the optimization module of SciPy [30]. The
total intervals’ number is dynamically optimized to reduce
the global RMSE. Hence, to assess the PL for a new radio
link, the parameters of the interval including its distance are
selected. The MILD expression is given by:

d
PLyip = PLyo,; + 10n;log; (5) (6)
N

where do ;, PL4o,; and n; are the i interval’s parameters, and
the it" interval includes the distance of the new radio link to
be predicted.

Fig. 5 shows the optimization of the number of intervals.
The optimal number is 10, and its RMSE is 10.1 dB, which
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FIGURE 5. The figure on the left depicts the extraction of the optimal number of intervals that corresponds to
the minimal RMSE. The figure on the right shows the PL of the MILD model.

TABLE 5. Comparison of the LDHE model by splitting the dataset
acording to the obstruction.

LD model configuration Path loss RMSE
exponent

LOS,n=2

Standard model NLOS, 7= 5 27.35

Optimized exponent n n=0.133 11.006
no=0.318

LDH n; =-0.559 10.871
n, =0.533
no =0.975

LDHE n; =-0.267 9.811
ny =-0.653

provides an improvement of 1 dB compared to the data
classification optimization in Table 4. The overfitting of this
model occurs if the number of intervals is increased above its
optimum. Even if the RMSE continues to decrease, there are
not enough samples to generalize for new links.

D. ANTENNA HEIGHT EFFECT: LOG DISTANCE HEIGHT
(LDH)
The proposed modification integrates antenna height in
order to consider implicitly the obstruction level for
the radio links. Therefore, in addition to the refer-
ence distance dp,two reference parameters are added for
the AP and CPE antenna heights, namely h_APy and
h_CPE(. Hence, two exponent values n; and ny are opti-
mized, as in [30], for the AP and CPE antenna heights,
respectively.

The new LD height (LDH) PL expression is given by:

h_AP
h_APy
h_C‘i) (7
h_CPE
where h_AP and h_CPE are the AP and CPE antenna
heights, respectively, for the new radio link to be
predicted.

d
PL;py = PLg4o + 10nglog, (%) + 10n1 log ( )

+10n2 10g10 (
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FIGURE 7. Comparison of the LDHE with the measurements done by
splitting the dataset into LOS and NLOS links.

E. ANTENNA HEIGHT ELEVATION: LD HEIGHT ELEVATION
(LDHE)

This new modification of the LD model considers antenna
heights and elevations together to integrate the geograph-
ical relief into the PL estimation, since higher elevations
have an important impact on the LOS. The LD height
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FIGURE 8. Comparison of LD model to measurements in the OUT region according to obstruction, frequency and season.

TABLE 6. Optimal PL exponents n extracted acording to obstruction,
frequency and season for the LD model.

LDHE model Pathloss | oy rop
exponent
no = 0.808
LOS n; =-0.432 11.21
ny = 0.460
Nno = 0.525
NLOS n; =0.207 9.2
ny =-0.518
LOS and'NLOS data ) 10.23
aggregation
elevation (LDHE) formula is then given by:
d
PL;pue = PL4o + 10ng loglo (%)
10 1 (h_AP + elev_AP
np lo _
110810 h_AP,
h_CPE + elev_CPE
10n; 1 = = 8
+10n; logq ( h_CPE, ) (8)

where elev_AP and elev_CPE are the AP and CPE antenna
elevations, respectively, and ng, n; and ny are optimized as
in previous sections [30]. Comparison between the LDH and
LDHE models

VOLUME 10, 2022

Table 5 compares the RMSEs of the two proposed LD
model modifications and their corresponding PL exponents.
It shows that the RMSE of the LDHE model is 1 dB better
than that of the LDH model, 1.2 dB better than that of
the data classification application model and 17.5 dB better
than that of the standard LD model. The PL exponents of
the standard LD are set according to state-of-the-art rec-
ommendations, whereas they are optimized freely for the
other modifications via the least squares algorithm imple-
mented with the curve fit function in the optimization module
of SciPy [30].

Fig. 6 shows the PL comparison among the LD models.
As the LDHE is the closest to the measurements, its accuracy
is explored by splitting the dataset into LOS and NLOS links,
as shown in Fig. 7. Note that the PL of the NLOS LDHE
model is higher than that of the LOS one, which was antic-
ipated since the radio signal is highly attenuated for NLOS
links.

The RMSE and PL exponents (ng, n; and ny) of the LDHE
model obtained by splitting the data according to obstruction
level are illustrated in Table 6. The RMSEs for LOS and
NLOS links are 11.21 and 9.2 dB, respectively. When the data
is aggregated, the RMSE is 10.23, which is 1.5 dB better than
the 11.78 RMSE for the LOS-NLOS exponent n optimization
of the classical LD mode recorded in Table 4.

52025



IEEE Access

Z. El Khaled et al.: Log Distance PL Model: Application and Improvement

140

130

B
S

Path loss

1)

mesure_OUT_NLOS_summer_5G
predic_model_OUT_NLOS_summer_5G
mesure_OUT_NLOS_summer_3G
predic_model_OUT_NLOS_summer_3G
mesure_OUT_NLOS_summer_2G
predic_model_OUT_NLOS_summer_2G

° mesure_OUT_NLOS_summer_900M
predic_model_OUT_NLOS_summer_900M

100

o X ®Xxex

L
L]

Path loss

130

R
X
X

120

1)

mesure_OUT_LOS_summer_5G
predic_model_OUT_LOS_summer_5G
mesure_OUT_LOS_summer_3G
predic_model_OUT_LOS_summer_3G
mesure_OUT_LOS_summer_2G
predic_model_OUT_LOS_summer_2G

100

mesure_OUT_LOS_summer_900M
® predic_model_OUT_LOS_summer_900M

[ 2 4 6 8 10

c
v L0
TS

%
x
® X ® X 0 X

2 4 6 8 10

140

Path loss

I~

S

XX
% ¢

# )
x
.

-«

X% #°

X ®XxXex

mesure_OUT_NLOS_winter_SG
predic_model_OUT_NLOS_winter_5G
mesure_OUT_NLOS_winter_3G

Path loss

x

130 <X

X

X

X
20

% o
.
Xx
B
o
xe

120

o

10

100

X

LY

XIave
’g’
x

X

X XX
X

X

Xg®0 ®

F R

>

.
xe

mesure_OUT_LOS_winter_5G
predic_model_OUT_LOS_winter_5G

x
*« X x x o
* predic_model_OUT_NLOS_winter_3G X mesure_OUT_LOS_winter_3G
550 o mesure_OUT_NLOS_winter_2G % ® predic_model_OUT_LOS winter_3G
predic_model_OUT_NLOS_winter_2G X mesure_OUT_LOS_winter_2G
mesure_OUT_NLOS_winter_900M ®  [predic_model_OUT_LOS_winter_2G
x ® predic_model_OUT_NLOS_winter_900M o % mesure_OUT_LOS_winter_900M
0 2 4 6 8 10 12 0 2 a 6 8

FIGURE 9. Comparison of LDH model with measurement in the OUT region according to obstruction,

frequency and season.

TABLE 7. RMSE comparison of PL models (dB).

NLOS NLOS LOS LOS

summer winter summer | winter
5 GHz 2.152 1.482 0.349 0.477
3.65GHz 1.019 0.795 0.598 1.079
2.4 GHz 2.055 0.916 1.962 1.160
900 MHz  3.115 0.485 1.178 NaN

V. SEASONAL EFFECTS
Previous researchers modelled the environmental effects on
microwave propagation separately, including the effects of
rain [31], [32], snow [33], [34] and vegetation [35], [36],
[37]. These models were developed using data in controlled
environments where the signal path is in the order of several
hundred meters and all parameters are known. Yet, in a real
environment, the vegetation density and type and the portions
of the path where the radio signal propagates through foliage
or through free space are difficult to assess accurately, espe-
cially in wide deployment networks or hard-to-access areas
or when the link range extends many kilometres. The effects
of weather are also difficult to assess, as they depend on the
rain or snow rate, the type of dust particles, the composition
of the snow, and so on. Furthermore, for wide range links, the
rain or snow rate is not uniform along the pathway.
Therefore, there is a need to create an easy, fast and com-
prehensive PL. empirical model for seasonal environmental
effects that last for many months. To our knowledge these
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effects have not been explored for the LD PL model. Conse-
quently, the model is tuned and extended according to two
groups of measurements: measurements taken in the sum-
mer, when the weather is warm and rainy and vegetation is
growing, and measurements taken in the winter, when the
weather is cold and leaves are falling. Other environmental
effects, such as rain, snow and wind, are not considered since
they are time-limited events, and their effects on the PL can
be neglected for frequencies below 5.8 GHz [22]. Seasonal
effects in the LD model.

The seasonal PL variations can be included in the LD
model by splitting the winter and summer measurements into
two groups, for the LOS and NLOS links. Next, each group is
optimized according to the frequency band. Table 7 presents
the extracted PL exponents. Note that they are higher during
the summer due to the vegetation’s effect. Furthermore, they
are greater for the NLOS links than they are for the LOS links.

Fig. 8 compares the PL. measurements with the LD model
for the OUT region according to obstruction and frequency
for the summer and winter seasons, respectively. The pre-
viously optimized model parameters for SLSJ are applied
directly to the OUT region. The prediction curves still fit the
measurements, and the model generalizes well.

A. SEASONAL EFFECT FOR THE LDH MODEL
The LDH model is optimized in the same manner used pre-
viously. Fig. 9 compares the predicted PL and measurements
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FIGURE 10. Comparison of LDHE with measurements in the OUT region according to obstruction, frequency and season.

for the OUT region. Note that the model is still accurate even
though it has been optimized for a different region.

B. SEASONAL EFFECT IN LDHE MODEL

The LDHE model is optimized in the same manner that the
LD and LDH models were. Fig. 10 presents the comparison
between the predicted PL and measurements for OUT region.
The model is still accurate when used in the OUT region.

Vi. COMPARISON OF THE LD MODEL MODIFICATIONS
Table 8 summarizes the RMSEs of the various configura-
tions of the LD model and its suggested modifications. First,
the classical LD model is presented for the SLSJ and OUT
regions, then the data is classified according to the LOS
and NLOS links as the result of its state-of-the-art recom-
mendations. Later, its exponents are optimized for each data
classification and for its suggested modifications by consid-
ering antenna heights and elevations for the SLSJ and OUT
regions. There was an important improvement, and modifi-
cation had a good generalization capability compared to the
classical LD.

VOLUME 10, 2022

VIl. CONCLUSION

Fixed wireless networks provide easy connectivity to the
internet in rural areas. Path loss models are essential for
efficient planning, optimization and predicting their quality
of service. Despite the diversity of existing path loss models,
many reviews have confirmed the lack of accurate predic-
tions, and their landscape is still precarious. Furthermore,
research activities are focused on urban areas and mobile
technologies. This paper examines the accuracy of the log
distance path loss model and its possible extensions since it
is quite simple to use. The target is to improve its accuracy
for fixed wireless networks in the harsh propagation environ-
ments found in rural areas. For this aim, the measurements of
the wide FWN of an internet service provider from two dif-
ferent rural regions of Canada are used. The measurements of
the first region are used for design and optimization, then the
second set of measurements is used for testing and validation.

The RMSE of the LD model is 27.35 dB over the whole
dataset. After splitting the measurements according to the
LOS and NLOS links, the RMSEs for the LD model are
16.88 and 33.24, respectively. After optimizing the path loss
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TABLE 8. RMSE comparison for the various configurations of the LD model and its sugested modifications.

LD LD L OSLNDL 0S) LD optimal| LD optimal | LDH | LDH | LDHE | LDHE
SLSJ | OUT ] . n SLSJ n OUT SLSJ | OUT | SLSJ | OUT
classification
NLOS_summer 5G 11.47 20.30 11.13 22.06 1575 14.64
NLOS summer 3G 3304 17.07 8.71 14.63 22.65 158 17.93
NLOS_summer 2G ' 12.82 10.27 12.75 1041 9.6 8.03
NLOS_summer_900M 9.78 11.37 803 1759 64 7.29
LOS_summer 5G 12.19 8.18 12.10 9.20 11.05 10.22
LOS_summer 3G 16.88 8.16 11.63 7.89 12.07 7.77 14.41
LOS_summer 2G ' 9.08 14.44 8.86 13.74 792 10.51
LOS_summer 900M 2823 25.61 6.19 10.45 6.19 1045 6.19 10.45
NLOS_winter_5G ) ’ 9.35 11.11 9.25 1092 9.19 12.43
NLOS_winter 3G 33.24 9.36 7.84 829 9.61 10.39  34.75
NLOS_winter 2G ' 9.27 8.89 9.11 931 10.19 10.16
NLOS_ winter 900M 8.31 4.88 746  7.22 8.02 8.86
LOS_winter 5G 11.73 11.55 1148 12.58 8.24 12.56
LOS_winter 3G 16.88 7.15 11.77 7.08 11.88 6.97 11.5
LOS_winter 2G ' 8.65 9.77 847 1041 8.64 13.21
LOS_winter 900M N/A N/A N/A  N/A N/A N/A

exponent and splitting the data according to region, line of
sight and frequency bands, the RMSE improves considerably,
as its worst value is 12.43 dB. Next, the dataset is split into
many intervals according to the ascending radio signal paths.
The optimal number of intervals is 10 and the correspond-
ing RMSE is 10.1 dB. Two modifications are instituted by
considering antenna heights and elevations (LDH and LDHE
models). The resulting RMSEs are 10.8 and 9.8 dB, respec-
tively. Finally, we consider seasonal variation, and the RMSE
reaches 6 dB for many cases.
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