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Abstract 

Recent years have seen a steep rise in the number of skin cancer detection applications. While modern advances 

in deep learning made possible reaching new heights in terms of classification accuracy, no publicly available skin 

cancer detection software provide confidence estimates for these predictions. We present DUNEScan (Deep 

Uncertainty Estimation for Skin Cancer), a web server that performs an intuitive in-depth analysis of uncertainty in 

commonly used skin cancer classification models based on convolutional neural networks (CNNs). DUNEScan 

allows users to upload a skin lesion image, and quickly compares the mean and the variance estimates provided 

by a number of new and traditional CNN models. Moreover, our web server uses the Grad-CAM and UMAP 

algorithms to visualize the classification manifold for the user’s input, hence providing crucial information about its 

closeness to skin lesion images  from the popular ISIC database. DUNEScan is freely available at: 

https://www.dunescan.org. 
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Introduction 

Skin cancer is among the most dangerous and frequent diseases around the world. For example, in the 

United States alone, up to 9,500 people are being diagnosed with it daily [1]. Naturally, the demand for 

an accurate diagnosis of skin cancer has risen through the past years, and dermatologists are facing 

increasingly high number of diagnostic challenges. As a result, an important number of skin cancer 

detection applications have been developed over the past few years [2-4]. Many of them leverage recent 

breakthroughs in deep learning architectures to achieve cutting-edge performance, often surpassing 

expert-level diagnosis accuracy not only in skin cancer [5-8] but also in other pathologies [9-10]. For 

instance, convolutional neural networks have been able to match dermatologist-level classification 

accuracy only after the appearance of important computer vision breakthroughs, such as residual 

connections [11] and the availability of large amounts of labeled skin lesion data. However, an increasing 

number of studies suggest that many popular skin cancer detection applications feature proprietary 

models, making it hard to assess their true performance on external datasets. Moreover, to the best of our 

knowledge, no publicly available skin cancer detection applications provide confidence estimates for 

predicted outcomes. Finally, models such as those used in [11] have been trained on skin lesion images 

originating from multiple datasets, a practice known to increase the predictions’ variance due to non-

standardized data pre-processing [12]. Here, we present a novel web server, called DUNEScan (Deep 

Uncertainty Estimation for Skin Cancer), which addresses the aforementioned lack of uncertainty 

estimates in skin cancer classification models. DUNEScan can be used by the domain experts (i.e. 

dermatologists and health practitioners), who can combine the confidence estimates of the classifier with 

their own observations to provide a more grounded diagnosis. The confidence interval estimates of the 

classifiers provided by DUNEScan reflect the approximate Bayesian posterior of the skin lesion being 

either malignant or benign. If the confidence interval for a certain classifier is large, then the prediction of 

this classifier cannot be trusted, and hence the domain expert should rely on traditional diagnostic 

methods. If the confidence interval is small, then the prediction of the classifier should be taken into 

account and compared in detail with the diagnostic obtained using traditional methods (see the practical 

examples in the Results section). Our novel server can be used to assess the confidence level of state-of-

the-art skin cancer detection models and to visualize the related results. 

 

DUNEScan features six state-of-the-art convolutional neural network models, which are used to form a 

consensus prediction for a given skin lesion image. What distinguishes it from existing skin cancer 

classification tools is that DUNEScan approximates the confidence (or uncertainty) of each model’s 

prediction for a given skin lesion image. As we show further in the paper, high-probability predictions do 



not necessarily imply high confidence, and therefore the model’s average prediction cannot be directly 

used to get an accurate diagnostic without first examining the approximate predictive posterior. 

The main contributions of our work are as follows: 

- We present a novel web server for accurate image-based skin cancer detection; 

- Our server features six state-of-the-art convolutional neural network models, which have been 

successfully used for medical predictions in the past; 

- We trained our models on a complete set of skin lesion images from the popular ISIC database; 

- We provide multiple ways to analyze uncertainty of CNN models predictions, including 

GradCAM, UMAP and Binary Dropout techniques; 

- In contrast to existing software, our web server allows one to compare the average model 

prediction with the approximate posterior obtained with binary dropout – this comparison is critical 

for providing precise skin cancer diagnostics. 

 

Results 

Deep learning-based computer vision has recently experienced immense breakthroughs. This has had a 

great impact on all related application domains including medical imaging. Keeping up with the latest 

state-of-the-art algorithms can often be challenging and time-consuming, which is why DUNEScan 

includes the most recent and best performing supervised and self-supervised methods. Moreover, since 

the user’s privacy and data security are especially important in digital healthcare, all web connections are 

performed over secured protocols. 

Available deep learning models 

Our web server features six efficient CNN models, including the winners of the dermatological Kaggle 

competition, which are based on MobileNetv2 and EfficientNet (2019-2020). They are as follows: 

Inceptionv3 [13], ResNet50 [14], MobileNetv2 [3], EfficientNet [15], BYOL [16] and SwAV [17]. The 

model repository features both supervised and self-supervised models.  

Inceptionv3 features a combination of small asymmetric convolutions, which results in computationally 

efficient operations in terms of the number of parameters, as well as memory footprint. ResNet50 uses a 

mechanism known as residual connections to mitigate the issue of vanishing gradients, therefore allowing 

one to train increasingly deeper models. Thanks to those residual connections, the ResNet50 model has 

become very popular in most computer vision domains, e.g. medical imaging, text-to-image translation 

and pixel-based reinforcement learning. MobileNetv2 greatly reduces the size and the inference time of 

Inceptionv3 by replacing the standard convolutional layer by depth wise convolutions, which operate on 

a single channel at a time. The small parameter count of MobileNetv2 allows for fast image classification, 



which makes it the model of choice for web-based applications and mobile devices. The EfficientNet 

family of models (B0 through B7) includes a set of network architectures which can be progressively 

combined to obtain models of higher performance, at the cost of computational complexity. Bootstrap 

Your Own Latent (BYOL) relies on fully unsupervised training of a ResNet network by predicting 

exponentially weighted averages of data augmented copies of a given image directly from the latent 

representation, nearly matching the performance of a fully supervised ResNet model. Swapping 

Assignments between multiple Views (SwAV) relies on clustering to first map the input image into one 

of the possible image prototypes, and then enforces predictivity of labels from clusters. Both BYOL and 

SwAV models are pre-trained with large amounts of unlabeled data, which makes them an excellent choice 

in healthcare areas, where annotating images is a costly process. 

Although recent self-supervised learning models can match the performance of supervised learning 

models, no skin cancer detection applications have integrated self-supervised models in their pipelines so 

far. The major advantage of self-supervised methods is the ability to leverage large amounts of unlabeled 

data to pretrain the latent representation, which can then be used to train a simple classifier, matching the 

accuracy of fully supervised methods [16]. 

Comparative analysis of the models 

The performance of convolutional models aiming at skin cancer detection depends on multiple important 

factors such as structure of the dataset, structure of the model, and training procedure [11]. In particular, 

the nature of the training dataset implicitly advantages certain types of CNN architectures over others 

(e.g., overwhelming presence of artifacts such as body hairs in skin lesions advantages models with 

residual connections, which process such fine-grained features better than the Inception-like models) as 

pointed out in [18]. For instance, in their study, [18] found that the ResNet models had a higher specificity 

than the Inception-based architectures. Lightweight CNN models, such as MobileNetv2 [3] and 

EfficientNet-B0 [15], prioritize fast inference time and low memory complexity over performance by 

simplifying large architectures. Moreover, the depth and width of a CNN model, as well as the presence 

of residual connections has been shown to affect the approximate predictive posterior distribution, for 

uncertainty estimation methods such as MC dropout, input bootstrapping, and Gaussian mixture models 

[19]. The uncertainty of the approximate Bayesian posterior can be estimated using the dropout technique 

for any deep neural networks. DUNEScan features six state-of-the-art CNN models used for supervised 

and self-supervised image classification. However, even these models should be used with care since their 

average prediction cannot be trusted in all cases. 

 



Comparison with traditional ML models 

In this work, we discuss how DUNEScan provides access to large CNN models, which themselves belong 

to the wider family of deep learning models, trained via stochastic gradient descent. However, traditional 

machine learning models for classification such as decision trees or support vector machines [20] can also 

accomplish the task. Multiple previous studies have provided thorough performance comparisons between 

CNN and traditional ML models (e.g., see [21]), and highlighted that, under extensive hyperparameter 

tuning, both families of methods achieve similar performance. However, the CNN models do not require 

handcrafted features, and can be trained in a distributed manner, which makes them more suitable 

candidates in the absence of expert-level data annotations. 

Uncertainty estimation 

In risk-sensitive fields such as medical imaging, where a false negative prediction can make a difference 

between life and death, it is crucial to quantify the confidence level of a given model. DUNEScan uses the 

technique proposed by [22], randomly disabling parameters of the classifier in an independent set of 

replicates, and thus achieving an approximate Bayesian posterior over the possible estimates of the model 

for a given skin lesion image. 

The DUNEScan user can select the number of random replicates to be used for a given model. DUNEScan 

provides uncertainty estimates for each classifier through a boxplot (see Fig. 1b). If the prediction 

probabilities with the replicates are tightly concentrated around the mean, this implies that the classifier 

is confident in its class prediction for the input image and the prediction is trustworthy. In contrast, if the 

prediction probabilities for the benign and malignant image classes are dispersed and their confidence 

intervals overlap, this implies that the classifier is not confident and hence, the prediction is not 

trustworthy. 

In addition to the boxplots described above, a classification manifold is also produced with the trained 

MobileNetv2 model, the fastest of the six available models (see Fig. 1d). This plot provides an alternative 

illustration of the confidence of the MobileNetv2 classifier obtained for the input image class prediction.  

In the classification manifold graph, each green dot represents a benign skin lesion image used for training, 

and each red dot represents a malignant one (see Fig. 1d). If the input image, represented by a blue dot, is 

located close to the middle of the benign (green) cluster - then the MobileNetv2 model is confident that 

the lesion is benign, but if it is located close to the middle of the malignant (red) cluster - then the 

MobileNetv2 model is confident that the lesion is malignant. However, if the blue dot is located close to 

the boundary of the green and red clusters, then the model exhibits uncertainty in the prediction. 

 



Description of DUNEScan’s output 

DUNEScan first produces and presents the output plot of Grad-CAM [23] that highlights the regions of 

high importance on the input image detected by the MobileNetv2 model (see Fig. 1c). The above de-

scribed MobileNetv2 classification manifold is then presented, followed by the uncertainty estimate 

boxplot for each model selected to analyze the input image (see Fig. 1b). 

Moreover, the output contains a bar-graph showing the average prediction probabilities of both classes 

obtained with each model used (see Fig. 1a). By providing the classification probabilities together with 

means to assess the confidence of these predictions, the DUNEScan server allows practitioners to quickly 

evaluate the probability that a given skin lesion is benign or malignant. This probability is computed by 

passing a given skin lesion image through one of the six available models, which outputs a vector of 2 real 

values (i.e. logits). These values are passed through the softmax function, which maps them onto the 

probability simplex. Hence, all probabilities computed in the paper are of the form: 

𝑃[𝑚𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡|𝑠𝑘𝑖𝑛 𝑙𝑒𝑠𝑖𝑜𝑛 𝑖𝑚𝑎𝑔𝑒]. 

Testing the application 

Our application was tested by using images from the HAM10000 dataset [24]. This dataset was used as 

source data for the International Skin Imaging Collaboration (ISIC) 2018 challenge [25] and includes 

images of skin lesions corresponding to seven different classes: actinic keratosis (akiec), basal cell 

carcinoma (bcc), benign keratosis (bkl), dermatofibroma (df), melanocytic nevi (nv), melanoma (mel) and 

vascular lesions (vasc).  

Amongst these, melanoma and basal cell carcinoma are considered to be malignant skin diseases, whereas 

the other lesion types are considered as benign. The class labels assigned for more than 50% of the images 

were confirmed by histopathology, while for the others the labels were derived from expert consensus or 

confirmed by in-vivo confocal microscopy. Selected images were analyzed using 50 replicates with all 

six CNN models available in DUNEScan to give an overall classification prediction. 

Melanoma and melanocytic nevi images, the most common malignant and benign classes of lesions in the 

dataset, representing ~11% and ~67% of the dataset, respectively, were used to assess the performance of 

the application. In general, the prediction average and the confidence in the prediction vary between the 

different algorithms. However, in most cases they broadly tend to agree on the prediction with some 

exceptions.  

For example, for the melanoma image Mel1 (ISIC_24482) presented in Figure 2a, all the algorithms, 

except BYOL, give a malignant prediction with a probability greater than 0.80 (Table 1; for improved 

readability, it is expressed in percentages in Figs. 1-4). As also illustrated in Figures 2-4, half of the 

algorithms (ResNet50, EfficientNet and SwAV) are highly confident in their predictions as they all output 



low-variance probability distributions. The MobileNetv2 and InceptionV3 models also yield reliable 

predictions, but the spread of their approximate posterior distribution is noticeably larger. However, the 

BYOL model generally provided low-confidence predictions for these images, and thus should be used 

with caution. 

In the case of the melanoma image Mel2 (ISIC_24751), most algorithms yield a high probability of 

malignancy (above 0.90) with the exception of InceptionV3 and BYOL, which suggest that the lesion is 

benign with a probability of 0.74 and 0.93, respectively (see Table 1 and Fig. 2b). Although the confidence 

intervals produced by InceptionV3 do not overlap, they are considerably larger than those produced by 

the other models. Therefore, the results produced by InceptionV3 and BYOL are less reliable than the 

consensus prediction obtained with the rest of the models for the Mel2 image. 

Interestingly, the InceptionV3 model again produces an outlier result with the melanocytic nevus image 

Nv2 (ISIC_24334, see Fig. 3b). In this case, all other algorithms predict that the lesion is likely benign 

(all producing a probability of malignancy below 0.36), whereas InceptionV3 predicts that the lesion is 

malignant with a probability of 0.66 (see Table 1). In this case, the two models predicting the lesion to be 

benign with the highest probabilities, ResNet50 (0.98) and SwAV (0.97), have the tightest prediction 

distribution, whereas those of both InceptionV3 and MobileNetv2 are broad and overlapping (see Fig. 3b). 

The distributions of the prediction probabilities obtained with EfficientNet are intermediate in size, but do 

not overlap. Based on these results, by relying on the models producing predictions with higher confidence 

(ResNet50, SwAV and EfficientNet), one could conclude that the image is indeed benign. 

From the sample of melanocytic nevi images tested, it seems that the models have a difficulty producing 

a consensus benign prediction with high probability and confidence. Nevertheless, for most nevi images, 

such as Nv1 (ISIC_24320), an overall convincing set of benign prediction probabilities (all 0.52 or greater) 

are obtained from all models (see Table 1). The EfficientNet which produces the 0.52 probability is clearly 

unable to assign the lesion image to one class over the other. This is clearly illustrated by the fact that all 

replicate prediction probabilities for both benign and malignant classes overlap with a mean near 0.50 (see 

Fig. 3a). All other models, which give higher benign prediction probabilities have varying levels of 

confidence based on the corresponding boxplots (see Fig. 3a). 

Since melanoma and nevi lesions often appear to be visually similar, this may explain why in some cases 

most of the models have a difficulty in favoring one class over the other. For example, with the Nv3 image 

(ISIC_24307, Fig. 4a) most models output predictions close to 0.50 for both classes (see Table 1). 

Interestingly, with this image, only SwAV classifies the lesion as benign with a high probability (0.97) 

and confidence (see Table 1 and Fig. 4a).  



Finally, we present the results obtained with a benign keratosis (BKL) image Bkl1 (ISIC_24337, Fig. 4b), 

which has a clearly different appearance to those of nevi and melanoma lesions. In this case, all models 

except BYOL predict the lesion to be benign with a probability of 0.70 or greater (Table 1). We obtain 

dispersed (but non-overlapping) replicate prediction probability distributions with the InceptionV3 and 

MobileNetv2 models (see Fig. 4b), suggesting that the overall predictions that the lesion is benign (0.84 

and 0.88, respectively, see Table 1), may not be highly accurate. However, based on Figure 4b, the 

predictions from all other models, except BYOL, appear to be trustworthy. The results presented in Table 

1 provide a representative sample for a handful of malignant and benign skin lesions. The confusion 

matrices for all six models computed for the entire test set can be found in Fig. 1. 

 

Table 1: Class prediction probabilities obtained for various images by the different CNN models available 

in DUNEScan. The predictions are represented as probability of malignancy, p(malignancy). The 

probability of benignancy can be obtained by 1-p(malignancy). 

Image 
Name1 

Image 
Identifier2 

ResNet50 EfficientNet InceptionV3 MobileNetv2 SwAV BYOL 

Mel1 ISIC_0024482 0.95 0.81 0.81 0.81 0.96 0.01 

Mel2 ISIC_0024751 1.00 0.91 0.26 0.95 0.96 0.07 

Nv1 ISIC_0024320 0.00 0.48 0.27 0.12 0.36 0.03 

Nv2 ISIC_0024334 0.02 0.27 0.66 0.36 0.03 0.06 

Nv3 ISIC_0024307 0.45 0.43 0.53 0.58 0.03 0.1 

Bkl1 ISIC_0024337 0.30 0.09 0.16 0.12 0.05 0.47 

1: Arbitrary name used as a reference in this publication. 

2: ISIC image identifier. 

 

Discussion 

Our novel web server includes six popular and well-performing CNN classification models: Inceptionv3 

[13], ResNet50 [14], MobileNetv2 [3], EfficientNet [15], BYOL [16] and SwAV [17]. While the predic-

tions obtained by some of these classification models disagree on a handful of outlier images (e.g., Mel2 

and Nv2 in Table 1), most of them agree on prototypical images (e.g., Mel1 and Bkl1 in Table 1) of both 

benign and malignant skin lesion samples (i.e., lesions which lie far from the classification boundary). 

DUNEScan computes the approximate predictive posterior via dropout, which allows one to estimate 

this uncertainty for each model. Since dropout is applied to the latent representation, the predictive pos-

terior’s mean can differ from the average prediction obtained without dropout. This discrepancy appears, 

for instance, on Figure 1a-b, where bar plots (which represent average model prediction) do not exactly 

correspond to the average of the predictive posterior, even though they are very close. 



An important detail which is worth mentioning is that the training set composition has a large impact on 

the model performance. We have constructed the training set from all labeled images of benign and ma-

lignant skin lesions available in the International Skin Imaging Collaboration (ISIC) archive [25] – 

these images originate from various datasets and hence have different camera resolutions, angles and 

lighting. These transformations are natural data augmentations, which have been shown to drastically 

improve performance on image classification benchmarks [16, 26]. This partially explains a good per-

formance of the CNN models on the test set. 

While, on average, most of the six classification models have similar levels of accuracy, SwAV should 

be highlighted as a particularly accurate model. A striking difference in performance between BYOL 

and SwAV on sample images presented in Table 1 can be explained as follows: BYOL optimizes predic-

tivity of exponentially smoothed copies of the CNN encoder, which can nevertheless collapse to the triv-

ial representation if the smoothing parameter is too high. The advantage of the SWaV model is that it 

uses an equipartitioned clustering algorithm, which explicitly prevents representation collapse by requir-

ing all clusters to have the same size. Based on this observation, we hypothesize that other clustering-

based approaches can also perform well on this classification task. 

One of the main limitations of our work is the size of the dataset used for training. While classical deep 

learning datasets tend to be fairly large (e.g. 14 million images in the ImageNet dataset, [26]), medical 

images and skin lesion datasets, in particular, tend to be much smaller, due to their cost of collection and 

labelling, and medical privacy legislations. Moreover, the images contained in skin lesion datasets are 

usually less standardized than those in classical deep learning datasets, since these pictures are taken by 

different doctors, using different photographic equipment and under drastically different lighting condi-

tions [27-28]. 

 

Conclusion 

We have developed DUNEScan - a novel web server for assessing uncertainty of deep learning models in 

skin cancer detection [29]. The main feature of DUNEScan is an intuitive estimation and visualization of 

uncertainty for the selected state-of-the-art skin cancer classifier. Uncertainty estimates are reported via 

boxplots of dropout replicates, Grad-CAM highlighting of “regions of interest” on the input image, as well 

as the projection of the input image onto the MobileNetv2 classification manifold. Thus, DUNEScan 

provides crucial information for bioinformaticians, dermatologists and health practitioners, looking for an 

accurate skin cancer diagnosis. 

Methods 



Train-test split procedure 

We created our training dataset using publicly available data from the International Skin Imaging Col-

laboration (ISIC) archive. The archive contains 23,900 skin lesion images. Among them, 2,287 corre-

spond to malignant lesions and 21,613 correspond to benign lesions. To mitigate drastic class imbalance, 

we combined 10,000 randomly sampled benign lesion images with all available malignant lesion im-

ages, to form a meta dataset. This meta dataset was then randomly split using a standard 80/20 train-test 

split from the sklearn Python package, under the condition that the test set had a 50-50 balance between 

benign and malignant cases. The validation procedure was carried out using a 5-fold split of the training 

set. Specifically, for every training epoch, we separated the entire training set into 5 disjoint groups. 

Then, we trained all algorithms on 4 randomly picked groups and used the fifth one as a validation set. 

This validation set was used to assess the loss and the accuracy of each CNN model, in particular, to de-

cide when to stop the training process.  

Table 2: Average confusion metrics obtained by six CNN models included in DUNEScan. 

 

Thus, our train-test split satisfies two requirements to ensure that first, the training and test sets are inde-

pendent and do not have identical images, and second, that the similarity between the training and test 

sets is high enough so that similar patterns are included in both sets. All confusion matrices and perfor-

mance metrics reported on the DUNEScan website were computed over this independent test set. The 

training procedure for both supervised and self-supervised consisted of performing a complete pass on 

the training set (i.e. epoch) with a mini-batch size of 16, applying stochastic data augmentation tech-

niques such as random crops, Gaussian blurs, color jitter and rescales on every mini-batch inde-

pendently. Training was performed on an NVIDIA P40 GPU with 4 CPUs, for reading the dataset in 

parallel. An important distinction regarding the self-supervised models (SwAV and BYOL) training pro-

cedure consisted in learning the (unsupervised) latent representation of the encoder in a first gradient 

step and learning the downstream binary classifier in a second step. For stability reasons, we have also 

used cosine learning rate annealing [30] and Layer-wise Adaptive Rate Scaling [31], as suggested by the 

 True negative False negative False positive True positive 

ResNet50 78.83 % 21.16 % 13.08 % 86.91 % 

EfficientNet 79.27 % 20.72 % 13.67 % 86.32 % 

Inceptionv3 74.29 % 25.7 % 7.47 % 92.52 % 

MobileNetv2 75.31 % 24.68 % 13.51 % 86.48 % 

BYOL 69.53 % 30.46 % 11.18 % 88.81 % 

SwAV 70.7 % 29.29 % 11.52 % 88.47 % 



SwAV and BYOL papers. Table 2 presents final average confusion metrics provided for the test set by 

the six CNN models available in DUNEScan. 

Data pre-processing procedure 

For all supervised models (Inceptionv3, ResNet50, MobileNetv2 and EfficientNet), we first normalized 

the input image data using the traditional Z-score method with the mean value vector = [0.485, 0.456, 

0.406] and the standard deviation vector = [0.229, 0.224, 0.225] taken from the ImageNet database 

(http://www.image-net.org/). We then applied the following data augmentation techniques from the Kor-

nia library (https://github.com/kornia/kornia) : random flip, crops, Gaussian blurs, color jitter and re-

scales for all input images in order to obtain a more balanced training set. The self-supervised models 

(BYOL and SwAV) were trained using the exact pre-processing described in the respective papers (see 

[16-17]). 

Classification manifold 

The contour plot (see Fig. 1d) is obtained by extracting features of 2,000 random malignant and benign 

skin lesions from the ISIC databank using the MobileNetv2 network. MobileNetv2 is by far the smallest 

model (least memory required) among those available in DUNEScan, and hence its forward pass is 

much faster. Its output features are subsequently reduced to a 2-dimensional manifold using UMAP 

[32]. The hyperparameters of UMAP are those suggested by the authors of the UMAP paper [32]. They 

produce a clear separation between the malignant and benign classes. To remove all stochasticity from 

the procedure, the random seed was fixed to an arbitrary value, and the 2-dimensional point coordinates 

were pre-computed offline. Then, the image submitted for analysis undergoes the same normalization 

and feature extraction process as during training, and is finally projected on the plot as a blue dot. In our 

case, UMAP takes as input the pre-trained (i.e. frozen) lower-dimensional representations from the Mo-

bileNetv2 model. They are obtained by considering the before last (i.e. pre-logits) layer of MobileNetv2. 

We chose to use MobileNetv2 since it is the fastest of all the six available models which reduces the in-

ference latency on the web server. 

Software used 

All figures in this work were generated by the authors of this paper using the Matplotlib package [33]. 
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Figure 1 
 
 

 
 
Fig. 1: Screenshots of the main features of our DUNEScan web server. (a) Average model predictions for a given skin lesion image (malignant 

or benign) provided by the six available CNN models, (b) boxplots showing uncertainty of model predictions, (c) Grad-CAM gradient saliency plot 

of most important lesion features, (d) classification manifold from the MobileNetv2 features, (e) confusion matrices computed over the test set for all 

six CNN models. 

 



Figure 2 
 

 
 
Fig. 2: Boxplots representing uncertainty estimates provided by the six CNN models available  

on DUNEScan for the following skin lesion images: ISIC_0024482 (a) and ISIC_0024751 (b).  

  



Figure 3 
 

 
 
Fig. 3: Boxplots representing uncertainty estimates provided by the six CNN models available  

on DUNEScan for the following skin lesion images: ISIC_0024320 (a) and ISIC_0024334 (b).  

 
  



Figure 4 
 

 
 
Fig. 4: Boxplots representing uncertainty estimates provided by the six CNN models available  

on DUNEScan for the following skin lesion images: ISIC_0024307 (a) and ISIC_0024337 (b).  

 


