Contributions à l'analyse de figures discrètes en dimension quelconque

Lacasse, Annie (2008). « Contributions à l'analyse de figures discrètes en dimension quelconque » Thèse. Montréal (Québec, Canada), Université du Québec à Montréal, Doctorat en mathématiques.

Fichier(s) associé(s) à ce document :
[img]
Prévisualisation
PDF
Télécharger (5MB)

Résumé

Les polyominos sont souvent représentés par des mots de quatre lettres ou des mots de changements de direction décrivant leur contour. La combinatoire des mots classique y joue donc un rôle descriptif important, particulièrement dans le choix d'un représentant canonique. Les mots de Lyndon fournissent, de façon naturelle, un tel représentant. Une approche systématique pour le calcul de propriétés des polyominos, basée sur une version originale d'une discrétisation du théorème de Green classique en calcul bivarié, est élaborée. Ceci nous a naturellement amené à analyser les propriétés géométriques d'ensembles du réseau discret de rondeur maximale. Pour une taille donnée, ces ensembles minimisent le moment d'inertie par rapport à un axe passant par leur centre de gravité. Nous introduisons la notion de quasi-disque et montrons entre autres que ces ensembles minimaux sont des poIyominos fortement-convexes. Nous développons également un algorithme permettant de les engendrer systématiquement. Un autre aspect concerne des propriétés sur les contours d'ensembles discrets donnant lieu à une nouvelle démonstration d'un résultat de Daurat et Nivat sur les points dits saillants et rentrants d'un polyomino. Nous présentons également une généralisation de ce résultat aux réseaux hexagonaux et montrons que le résultat est faux pour les autres réseaux semi-réguliers. Nous poursuivons par l'introduction d'opérations de mélange spéciaux sur des mots décrivant des chemins discrets selon la suite de leurs changements de direction. Ces opérations de mélange permettent d'engendrer des courbes fractales du type courbe de dragon et d'analyser certains de leurs invariants. Finalement, une généralisation aux dimensions supérieures des algorithmes précédents basés sur le théorème de Green discret, est présentée. Plus particulièrement, nous développons une version discrète du théorème de Stokes basée sur des familles de poids sur les hypercubes de dimension k dans l'espace discret Zn, k ≤ n. Quelques applications sont également décrites. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Géométrie discrète, Combinatoire des mots, Ensembles discrets, Polyominos, Quasi-disques, Chemins polygonaux, Courbes de dragon, Théorème de Green discret, Théorème de Stokes discret, Algorithmes.

Type: Thèse ou essai doctoral accepté ()
Informations complémentaires: La thèse a été numérisée telle que transmise par l'auteur.
Directeur de thèse: Brlek, Srecko
Mots-clés ou Sujets: Géométrie discrète, Combinatoire des mots, Théorème de Green, Ensemble discret, Polyomino, Algorithme
Unité d'appartenance: Faculté des sciences > Département de mathématiques
Déposé par: RB Service des bibliothèques
Date de dépôt: 05 déc. 2008
Dernière modification: 01 nov. 2014 02:07
Adresse URL : http://archipel.uqam.ca/id/eprint/1463

Statistiques

Voir les statistiques sur cinq ans...