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RÉSUMÉ 

On propose une méthode stochastique qui s'applique à des systèmes non linéaires 

d'équations différentielles qui modélisent l'interaction de deux espèces; le but est d'établir 

si un système déterministe particulier peut s'ajuster à des données qui présentent un 

comportement oscillatoire. L'existence d'un cycle limite est essentielle pour l'implantation 

de notre méthode. Cette procédure se base sur l'estimation des isoclines du système, en 

utilisant le fait que les isoclines traversent les solutions du système à des points maxi­

mum et minimum. Ensuite, nous proposons des tests qui permettent de comparer trois 

modèles: Holling (1959), Hanski et al. (1991), and Arditi et al. (2004). Finalement, on 

utilise des données simulées pour illustrer et étudier les propriétés de notre méthode, et 

nouS appliquons la procédure à un ensemble de données bien connu. 

Mots-clés: systèmes prédateur-proie, équations différentielles ordinaires, plan des phases, 

isoclines, modèle stochastique, régression linéaire, estimation par moindres carrés, test 

de t, test de Wilcoxon. 



ABSTRACT 

We propose a stochastic method applicable to two species nonlinear systems of 
differential equations; the purpose is to determine whether a particular deterministic 
model can be fitted to a given data set that exhibits oscillatory behavior. Existence of 
a limit cycle solution is crucial for implementing our method. This method is based on 
estimating the coefficients of the isoclines of the given system, based on the fact that the 
isoclines intercept the solutions of the system at their local minima and maxima. Next, 
we introduce several testing methods which allow to compare three models: Holling 
(1959), Hanski et al. (1991), and Arditi et al. (2004). Finally, we use simulated data 
to illustrate and study the properties of our method, and we apply the procedure to a 
well-known data set. 

Key words: predator-prey systems, ordinary differential equations, phase plane, null­
isoclines, stochastic model, linear regression, least squares estimation, t-test, Wilcoxon 
test. 



INTRODUCTION 

In the 1920s, Lotka (1925) and Volterra (1926) introduced a two dimensional non­

linear system of differential equations as a continuous-time model which could explain 

the behavior of a two-species population of predator and prey. Since then, the construc­

tion and study of deterministic models for general population dynamics of predator-prey 

systems has become a central subject in mathematical ecology. Besides Lotka-Volterra, 

other classical approaches use what is known as Holling type l, II and III functionals 

for modeling the interaction. For the classical references in this area we refer to Kot 

(2001). 

Animal populations change by migration, birth and death. As seen in nature, either the 

predator or prey population, or bath, can become extinct or coexist in a state of equilib­

rium. Moreover, extinction or equilibrium can be reached by oscillations. Furthermore, 

classical prey-predator models such as Lotka-Volterra, or Holling (1959) cannot express 

coexistence of the prey with its predator at a population level much lower than the 

maximum possible population size. This is known as the paradox of biological control. 

Indeed, the original models were mainly aiming to determine the effect of the prey 

population on the number of prey consumed by each predator over time. These models 

hardly discussed the effect of the predator population on the predator-prey interactions. 

Arditi et al. (2004) were those who first recognized that adding the effect of the preda­

tor population on the predator-prey interaction can solve the problem of coexistence at 

lower population levels. They proposed several such predator-dependent models. 

In this thesis we introduce sorne of these models, namely those which had a major im­

pact on the development of the mathematical theory of predator-prey interactions. We 

review the ecology of these models and we explain the interpretation of their parameters. 

We present sorne elements of the theory of dynamical systems in non-technical terms, 

as well as their links to mathematical ecology of predator-prey interactions. We point 
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out how the qualitative analysis of dynamical systems helps us explain the behavior of 

the solutions to the predator-prey population systems of ordinary differential equations 

(ODEs). 

Further, at the core of this work, we introduce a new stochastic model, which adds 

observational error to the solutions of the ODEs. An important part of the thesis deals 

specifically with statistical inference, namely estimating the parameters, as weB as a 

comparison of models based on simple tests. In the end, we conduct simulation studies 

. to illustrate our method, and check empirically the properties of our estimators and 

tests. We also apply the testing and estimation procedure to a real data set. 

The thesis is organized as follows. In Chapter 1, we introduce the Lotka-Volterra, the 

Holling, the Hanski and the Arditi models, and explain their specifie contribution to 

ecological modeling of predator-prey interactions. Chapter 2 is devoted to the deter­

ministic analysis, where we study the four mentioned models separately. In Chapter 3, 

we propose and study our stochastic models. Moreover, we develop the estimation and 

testing procedures specifie to our models. Finally, we devote Chapter 4 to simulation, 

in order to perform an empirical study of our inference methodology, as well as a short 

data analysis. 



CHAPTER 1 

MOTIVATION FROM ECOLOGY 

1.1 Mathematical Ecology 

In ecology, there is a long tradition of modeling population sizes of interacting 

species by functions which are the solutions to a deterministic system of ordinary dif­

ferential equations (ODE). Such functions are positive and often are either periodic or 

quasi-periodic; see Froda and Colavita (2005). Depending on the coefficients of a given 

ODE, the solution can carry on different behaviors such as admitting a limit cycle, stable 

node, etc. Due to the natural behavior of the predator and the prey, these systems of­

ten bear oscillatory behavior. Despite the abundance of such deterministic models, they 

are rarely used in quantitative studies, but appear mainly in the qualitative analysis. 

Time series models or stochastic differential equations, for discrete and continuous time 

models, respectively, are commonly used in order to assess the quantitative behavior. 

For more comments see Froda and Nkurunziza (2007). 

As far as the historical background goes the story is as follows: During the First World 

War, there was an increase in the predatory fish population and a decrease in the prey 

fish population in the aftermath of a complete cease on fishery in the Adriatic sea, which 

led Volterra (1926) to formulate a mathematical model to describe the predator-prey 

population dynamics (Kot, 2001). In order to explain a mechanism by which predators 

regulate their prey, Volterra constructed a mathematical model that describes temporal 

changes in prey and predator abundances. He made several restrictive assumptions such 

as: (i) the predator-prey population levels are large enough to be considered as contin­
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uous rather than discrete variables; (ii) the prey and the predator are both well-mixed 

in the environment; (iii) the populations are closed in the sense that there is no im­

migration or emigration; (iv) the population dynamics is completely deterministic, i.e. 

no random events are considered; (v) the prey population grows exponentially in the 

absence of predator; (vi) the predator rate consumption of prey is a linear function of 

prey and vice versa; (vii) the predator population declines exponentially in the absence 

of prey. Furthermore, Volterra (1926) introduced a two dimensional first order system 

of ordinary differential equations where solutions represent the prey and the predator 

population sizes, respectively. 

Due to the simplicity of this model, sorne of the major basic facts in ecology were ig­

nored in the system. For instance, the proposed parametrization supposes that the 

population of the prey will grow exponentially in the absence of predator. This model 

is also present in the Lotka (1925) work and therefore, is referred to the Lotka-Volterra 

model. 

Later on, other researchers partially recovered this problem of the classical Lotka­

Volterra model by introducing new terms to the system. One of the major contributions 

was made by Holling (1959). For our presentation we retain Holling's approach as well 

as the models proposed by Hanski et al. (1991) and Arditi et al. (2004). 

In short, all these authors propose adding new parameters in order for avoiding expo­

nential growth of the prey population in the absence of predator. In the new cases, the 

population of prey increases asymptotically instead of exponentially. They also pro­

posed modified equations describing the growth of the predator population by including 

nonlinear terms in order to get around certain problems. 

In this chapter, we describe each of these models in terms of their ecological interpre­

tation. 

1.2 Models 

In this section, we introduce three systems of differential equations for the predator­

prey interactions known as Holling (Holling, 1959), Hanski (Hanski et al., 1991) and 



5 

Arditi (Arditi et al., 2004), along with the classical Lotka-Volterra model as presented 

in Hirsch and Smale (1974). Our main emphasis is on the proposed parameterizations 

and their ecological meaning. 

In what fol1ows, let x == Xt denote the size of the prey population, and y == Yt denote 

the size of the predator population at time t. Sorne authors refer to Xt and Yt as the 

prey and predator density, respectively. 

1.2.1 Lotka-Volterra System 

As stated before, one of the original two-species biological models is called Lotka­

Volterra (Hirsch and Smale, 1974). The model includes two equations, one which de­

scribes how the size of the prey population changes over time and the second one which 

describes how the predator population size changes over time. This model is often 

described by 

{ 1~ : (a - (3y)x, 

Iljf - hx - 8)y. 
(1.1 ) 

The parameters appearing in system (1.1) are defined as follows: 

a : the natural growth (birth) rate of prey in the absence of the predator per capita, 

(3 : the death rate per encounter of prey due to predation or predation rate coefficient, 

1 : the reproduction rate of predators per one prey eaten, 

8 : the natural death (decline) rate of the predator in the absence of prey.
 

Let us look more closely at each equation of system (1.1).
 

The prey equation is defined by
 

dx 
dt = ax - {3xy. (1.2) 

Thus, by letting {3 = 0 i.e. when there is no predation, we can see that the prey is 

assumed to have an unlimited food supply to reproduce exponentially; this exponential 

growth is represented in equation (1.2) by the term ax. The rate of decrease due to 

predation is assumed to be proportional to the rate at which the predators and the prey 

meet; this is represented in equation (1.2) by -{3xy. If either x or y is zero then there 

can be no predation. Finally, equation (1.2) can be interpreted as follows: the change 
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in the prey population size is due to its own growth minus the rate at which it is preyed 

upon. 

Further, the predator equation is given by 

dy
dt = "(xy - oy. (1.3) 

By letting "( = 0 in equation (1.3), oy represents the natural death of the predators 

which is an exponential decay as opposed to the exponential growth of prey. On the 

other hand, in this equation, "(xy represents the growth of the predator population and 

is due to predation. (Note the similarity to the predation rate in equation (1.2); how­

ever, a different constant is used as the rate at which the predator population grows 

is not necessarily equal to the rate at which the predator consumes the prey). Hence, 

equation (1.3) represents the change in the predator population size as the growth of 

the predator population due to predation, minus natural death. 

The system of equations (1.1) admits periodic solutions which do not have a simple, 

analytic expression in terms of the usual trigonometric functions (Hirsch and Smale, 

1974). However, later on we will see that an approximate linearized solution yields a 

simple harmonie motion with the population of predators following that of prey by 90°. 

In the Lotka-Volterra system, the predator population grows when there are plenty of 

prey but, ultimately surpass their food supply and decline. As the predator population 

reaches a lower level, the prey population can increase again. These dynamics continue 

in a growth-decline cycle (Kot, 2001). 

The prey average population size over one period is oh. Therefore, it depends only on 

the parameters which describe population growth and death of predatorj at the same 

time, the predator average size over one period is 0:/ (3 and therefore, depends only on 

the prey growth and death population parameters (Kot, 2001). Moreover, increasing 

the prey growth per capita rate 0:, which is sometimes called enrichment in the eco­

logical literature, does not change the prey average size, but it increases the predator 

average size (Kot, 2001). 

Can this model explain the question about the observed changes in predator and prey 

fish abundances during the First World War mentioned before? 
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Volterra (1926) hypothesized that fishery reduces the prey per capita growth rate a 

and increases the predator mortality rate 8, while the interaction rates {3 and 'Y do 

not change (Volterra, 1926). Thus, ceasing fishery should lead to an increase in a and 

decrease in 8 and thus induce a decrease in the average prey fish population 8l'Y and 

to an increase in the average predator fish population al{3, which is exactly what was 

observed during the First World War. 

1.2.2 Holling System 

Holling system was introduced in Holling (1959). Before presenting it, we explain 

a modification of the Lotka-Volterra model known as the competitive Lotka-Volterra 

system (Hirsch, 1990). The competitive Lotka-Volterra equations are a simple model of 
, 

the population dynamics of species competing for some common resource. The form is
 

similar to the classical Lotka-Volterra equations (1.1).
 

Before introducing this new type of model, let us introduce the logistic population model
 

for one species which is common in ecology,
 

dx x 
dt = ax(1 - K)' 

where x is the size of the population at a given time, a is inherent per-capita growth 

rate, and K is the carrying capacity (Kot, 2001). 

Definition 1.2.1 The equilibrium maximum of the population of an organism is known 

as the ecosystem 's carrying capacity for that organism. 

In non technical terms, the carrying capacity is the asymptotic limit for the population 

size of an organism. Moreover, as population size increases, birth rates often decrease 

and death rates typically increase. The difference between the birth rate and the death 

rate is called natural increase. The carrying capaci ty could support a positive natural 

increase, or could require a negative natural increase. Carrying capacity is thus the 
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number of individuaIs an environment can support without significant negative impacts 

to the given organism and its environment. A factor that keeps population size at an 

equilibrium is known as a regulating factor. 

In the logistic model 
dx x 
dt = e:tx(l - K)' 

below carrying capacity K, populations asymptotically increase until they reach their 

asymptote, which is the horizontalline at height K in this case. The carrying capacity 

of an environment may vary for different species and may change over time due to a 

variety of factors including food availability, water supply, environmental conditions, 

and living space (Kot, 2001). 

Holling (1959) studied predation of small mammals on pine sawflies, and found that 

predation rates increased with increasing prey population size. This was resulted from 

two effects: 

(i) each predator increased its consumption rate when exposed to a higher prey popu­

lation, and 

(ii) predator population increases with the increasing prey population. So he proposed 

what is known as the Holling system. 

Holling system is very similar to the competitive Lotka-Volterra model. Given two 

populations, x and y, with logistic dynamics, the Lotka-Volterra formulation adds an 

additional term to account for the species' interactions. Thus the competitive Lotka-

Volterra equations are 

~~ = e:tx(l - K) - {3xy, 
(1.4)

{ ~ = ,xy - 8y - 8y2. 

In the Lotka-Volterra model (1.1), the prey population can increase indefinitely in the 

absence of predator, i. e. if {3 = O. Moreover, if the initial value slightly changes the 

trajectory (Xt, Yt) in the plane will dramatically change i.e. the amplitudes of Xt and 

Yt are very different. So this system is unstable in a certain sense (Hirsch and Smale, 

1974). To correct these problems, introducing additional terms to the model (1.1) 

seems necessary. Holling (1959) proposed adding a nonlinear term to the original Lotka­

Volterra prey equation and set logistic growth for prey in the absence of predator, as in 
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system (1.4). His next major contribution to the theory of predator-prey interactions
 

was to replace j3xy by f(x)y, i.e. to add different predator functional responses f(x)
 

to the prey equation. There are three major types of functional responses proposed by
 

Holling (Kot, 2001):
 

A type 1 functional response is a linear relationship between the number of prey eaten
 

by the predator pel' unit time and the prey population size, i. e.
 

f(x) = j3x, 

as it appears in (1.4).
 

The resulting curve may increase up to sorne fixed maximum or it may increase indefi­

nitely (Figure 1.1).
 

0 

~ 

0., 

g
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"" 
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0
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Figure 1.1 Type 1 functional response 

A Type II functional response remains most popular among ecologists. A type II func­

tional response is often called a disc equation because Holling used paper discs to simu­

late the area examined by predators. It assumes that a predator spends its time on two 

kinds of activities: (i) searching for prey and (ii) prey handling which includes: chasing, 

killing, eating and digesting. Consumption rate of a predator is limited in this model 
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because even if prey are sa abundant that no time is needed for search, a predator still 

needs ta spend time on prey handling. The type II functional response is 

f(x) =~, w > O. 
w+x 

One can see that for x approaching to 00, f(x) tends to {3. This means that a type 

II functional response remains bounded unlike a type 1 functional response, {3x. Since 

f(w) = ~, w is referred to as half-capturing saturation constant. 

This function indicates the number of prey killed by one predator at various prey pop­

ulation sizes and is a typical shape of functional response for many predator species. 

At low prey population sizes, predators spend most of their time on search, whereas at 

high prey population sizes, predators spend most of their time on prey handling (Figure 

1.2). 

~ 
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Figure 1.2 Type II functional response 

A type III functional response occurs in predators which increase their search activity 

with increasing prey population size. For example, many predators respond to chem­

icals emitted by prey and increase their activity. Predator mortality increases first as 
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prey population size increases, and then declines (Figure 1.3). 

A type III functional response is the only type of functional response that allows prey 

mortality to increase with increasing prey population size. In this thesis, we only review 

0
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Figure 1.3 Type III functional response 

a Holling model where the functional response is of type II. Holling (1959) explained 

the following disc equation for the functional response term, 

f(x) =~, 
x+w 

where {3 is the maximum predator attack rate and w is the prey population size where 

the attack is half-saturated. Therefore, Holling suggested the ODE system (1959) 

dx - (1 _ ~) _ J1EL
dt - (Xx K x + w' (1.5)

{ ~ = 2~~ -oy, 

where x and y are the prey and predator population sizes, respectively. 

In the equations (1.5) the parameters are defined as follows: 

K: carrying capacity of the prey population; 

{3: capturing rate, or search rate for predators, i. e. how effective the predators are; 

w: half-capturing saturation constant; 
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T conservation rate (predator birth rate); 

8: predators rate of death.
 

Further, we look at each equation separately. The prey equation is given by
 

dx x f3xy 
- = ax(l- -) - --. (1.6)
dt K x+w 

The prey is assumed to have an unlimited food supply, and to reproduce asymptotically 

unless subject to predation, i. e. in the absence of predation, f3 = O. This asymptotic 

growth is represented by ax(1 - K) in equation (1.6). The rate of predation upon prey 

is assumed to be proportional to the rate at which predator and prey meet. This is 

represented by !!~t. If either x or y is zero then there can be no predation. 

With these two terms, equation (1.6) can be interpreted as the change in the size of 

the prey population given by its own asymptotic growth minus the rate at which it 

is preyed upon. Finally, note that for very large carrying capacity, K ----t 00, the first 

term in equation (1.6) is identical to the first term in the classical Lotka-Volterra prey 

equation (1.1). 

Further, consider the predator equation 

dy = ,xy _ 8y. (1.7)
dt x+w 

In this equation, ,xy represents the growth of the predator population due to pre­
x+w 

dation. (Note that the coefficient, is not necessarily equal to the coefficient f3.) In 

equation (1.7), 8y represents the natural death of the predators which is an exponential 

decay as in the classical Lotka-Volterra system (1.1). Renee, equation (1.7) represents 

the change in the predator population as the growth of the predator population, minus 

natural death. 

Depending on the domain of the parameters, the system of equations (1.5) admits pe­

riodic solutions in the limit, i.e. for t 00, which do not have a simple, analytic ----t 

expression (Kot, 2001). One such solution is given in figure 2.2. 



13 

1.2.3 Hanski System 

There are several regional behavior and geographic variations which cannat be 

explained by the Holling system. Hanski et al. (1991) originally introduced a new model 

which tries ta take into account these regional differences. In particular, Hanski model 

was meant ta explain the interaction between microtine l'adents and their predators in 

northern Europe (Hanski et al. 1991). 

The system which is regarded as Hanski has several versions (Hanski et al. 1995). A 

class of models introduced in May (1973) by combining Leslie (1948) and Holling (1959) 

(see also Tanner 1975) was extensively studied by Hanski et al. (1991, 1995, 2001). In 

this thesis, we consider the following version 

dx _ (1 X)' JÈJLaI - ax - K - x + w 
(1.8)

{ 1lf = "fY( 1 - I!l-) 
In equations (1.8) the parameters are defined as follows: 

K: carrying capacity of the prey population; 

(3: capturing rate, or search rate for predators, i.e. how effective the predators are; 

w: half-capturing saturation constant; 

T conservation rate (predator birth rate); 

0: predators rate of death. 

a: natural growth rate of prey in the absence of predator; 

J.L: reproduction rate per one prey eaten.
 

One can easily see that the prey equation given by
 

dx x (3xy 
dt = ax(l - K) - x + w) 

is identical to the one of the Holling model. Therefore, the same description presented 

for the Holling model is also valid here. 

Further, the predator equation is described by 

dy y2 
- = "fY - "flt-· (1.9)
dt x 

Mortality in the predator population is evidently related ta the prey population size 

and is inversely proportional to it. 
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For specifie types of predators, this model seems more appropriate than standard models 

such as Lotka-Volterra (Hanski 1999). However, this model holds a major shortcoming: 

the system is not well-defined when the environment does not contain any prey since 

the denominator of the predator equation (1.9) becomes zero, whereas in other models 

this problem does not occur. In other words, there is no way to quantify the behavior 

of the predator population in the absence of prey. One such solution is given in figure 

2.3. 

1.2.4 Arditi System 

Although the inclusion of a more complex functional response f(x) in the Holling 

and Hanski predator equation is intuitively appealing, there are sorne notable problems 

with this approach (Arditi and Ginzburg 1989). To overcome the problems, it was 

suggested that the functional response should be expressed in terms of the ratio of 

prey to predators (Jost and Arditi, 2001). Therefore, they defined the model as follows 

(Arditi et al. 2004) 

dx _ (1 _ -L) _ {3xyaI - ax K x + wy , 
(1.10)

{ 1JJ. - 'FY _
dt - x + wy r5y. 

or equivalently, 

dx = ax(l _ X) _ {3(xjy)y
aI K (x/y)+w' 

{ 1JJ. = '"'f(x/y)y - r5y
dt (x/y)+w . 

We can note immediately the similarity with the Holling system where f(x) = x %w is 

replaced by f(x, y) = (jx)y) and depends on the ratio x/y. Otherwise, the equations
x y +w . 

can be interpreted in a similar fashion. 

Namely, the prey equation is defined as 

dx x f3xy 
- = ax(l - K) - , (1.11)
dt x + wy 

where the production of prey in the absence of predators is described by ax(l - K)' 
whereas x ~Xwy is the functional response (number of prey eaten per predator unit per 

unit time.) 
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Besides, the predator equation becomes 

dy '"'jxy ~ Jy. (1.12) 
dt x+ wy 

Natural mortality of prey is considered to be negligible compared to mortality due to 

predation. The constant '"'j is the trophic efficiency, i. e. the ratio of predator population 

size level to the prey population size level, and predators are assumed to die with a 

constant death rate J. 

1.3 Concluding Remarks 

In this chapter, four general predator-prey mathematical models, classical Lotka­

Volterra, Holling, Hanski, and Arditi were briefly introduced. The Lotka-Volterra model 

assumes that the prey consumption rate of the predator is directly proportional to the 

prey abundance. This means that predator feeding is limited only by the amount of 

prey in the environment. While this may be realistic at low levels of prey population 

sizes, it is certainly an unrealistic assumption at high level of prey population sizes 

where predators are limited e.g. by time and digestive constraints. The need for a more 

realistic description of predator feeding came from an experimental work performed 

by Gause on predator-prey interactions (Kot, 2001). It was observed that to explain 

his experimental observations, the linear functional dependencies of the Lotka-Volterra 

model must be replaced by nonlinear functions. 

Further, we introduced one of the original nonlinear models known as Holling. It in­

corporates the l'ole of carrying capacity as an asymptote to the prey population size, 

which controls its maximum in the absence of predator. Moreover, a more complex 

functional response in the predator-prey interaction was introduced as a key step in 

improving the classical Lotka-Volterra model. Many questions in predator-prey theory 

revolve around the functional response. ln the classical Lotka-Volterra model, the func­

tional response is reduced to the form f3x, while in the Holling model, the functional 

response becomes x ~w' Neither of these models explains searching for food efficiency 

since they do not actually depend on the predator population; they are of the form 
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f = f(x). However, it was observed (Arditi et al. 2004) that changing the functional 

response to f(x y) = fJ(x/y) explains the searching efficiency more accurately. , (x/y) +w 
Moreover, a model by Hanski was introduced where the prey equation is identical to 

the one of Holling. Therefore, the same problem related ta the functional response 

which appearing in the Holling model exists here as weIl. We also explained, another 

disadvantage in the Hanski predator equation regarding the situation where there is no 

prey in the environment. 

In the next chapter, we proceed to performing an analysis of the dynamics on these four 

models. 



CHAPTER II 

DETERMINISTIC ANALYSIS 

We start this chapter by studying the dynamical systems corresponding to equa­

tions (1.1), (1.5), (1.8), and (1.10). We introduce the concepts of equilibria and study 

their stability. This is motivated by the usual assumption that sorne equilibria indicate 

population extinction, while others correspond the averages of population sizes. Later 

in this chapter, we review the qualitative analysis of the aforementioned models with 

respect to their solution behavior. This includes identifying the equilibrium points and 

their stability. 

We keep the technicalities to a minimum as we want to introduce only the elements of 

the qualitative analysis which are useful in the statistical development of Chapters 3 and 

4. It should be mentioned that the concepts introduced in this chapter are presented 

mainly informally. We simply give the main ideas behind this type of analysis. For an 

extensive work on this issue one can refer to Hirsch and Smale (1974), Hirsch, Smale 

and Devaney (2004) and Kot (2001). 

2.1 Dynamical systems 

In this section, we introduce sorne key topics in dynamical systems, which are 

essential in the study of the behavior of the solutions of systems of ordinary differential 

equations (ODE) and, in particular, the predator-prey popul~l.tion models. We limit 

ourselves to planar systems only. (See figure 2.1 for the linear case.) 

Let F(x,y) and G(x,y) be continuous real functions 'with continuous derivatives. An 
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autonomous planar system is given by 

~f = F(x, y), 
(2.1 ) { 011- ( )dt - G x,y , 

with the initial value (xa, Ya). From now on, we limit ourselves tü two dimensional 

systems of equations which represent a predator-prey system as a special case. A planar 

system can be either linear or nonlinear. An autonomous linear planar system is a 

system where F and Gare linear functions, i. e. 

F(x,y)=ax+b, 

{ G(x,y) = ex + d. 

In this chapter, we look at the long term behavior of certain collection of solutions, 

i. e. namely for t ----t 00, and compare these behaviors via the qualitative analysis of the 

systems. This collection of representative solution curves (Xt, Yt) of the system (2.1) in 

JR2 is called a phase plane (Hirsch, Smale and Devaney, 2004, p. 41). 

Definition 2.1.1 Equlibrium (Hirsch and Smale 1914) p. 22)
 

Population equilibrium is an event when neither of the prey or predator population levels
 

is changing. For the planar system (2.1) this occurs when both F(x*,y*) = G(x*,y*) =
 

o. 

In this case, a solution reaching to (x*,y*) stays forever at (x*,y*). 

The equilibrium point (x*,y*) is called non-trivial if (x*,y*) of. (0,0). 

We are interested in studying the behavior of the solution around the equilibria of the 

planar system since equilibria play an important role in the theory of ODEs. There are 

different types of equilibria. However, we mention only those which play a role in our 

case. For an extensive study of equilibria, one can refer to Hirsch, Smale and Devaney 

(2004) p. 174. 

An equilibrium is called stable if close by solutions stay close by for ail future times. 

Stable focus is an example of a stable equilibrium where the solution stays near by the 

equilibrium if it is already near by (Figures 1.1 and 2.4). Moreover, a stable equilibrium 
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is asymptoticaUy stable if the solution approaches the equilibrium in the long term. 

A classical example of an asymptoticaUy stable equilibrium is a sink (or stable node) , 

where the solution tends to the equilibrium in aU directions and stays at the equilibrium 

for aU times. An equilibrium that is not stable is caUed unstable. A common example 

of an unstable equilibrium is a source (or an unstable node) where the solution tends 

away from the equilibrium in aH directions. A center is an unstable equilibrium where 

with a smaH perturbation it can either turn into a sink or a source. Another example 

of an unstable equilibrium is a saddle. Depending what direction the solution takes it 

could either converge to the saddle or diverge from it. Figure 2.1 indicates the six types 

of equilibrium points which occur in planar linear system. 

Stability, limit sets and limit cycles (Kot, 2001 and Hirsch, Smale and Devaney, 

2004 p. 227) 

Consider the planar system of differential equations (2.1). A limit set is the set of 

points (x,y) where the solution curve (Xt,Yt) through sorne (xo,Yo) accumulates on the 

point (x, y). If the solution (Xt, Yt) converges to a limit set and remains on that set, 

then we say that the solution of the system converges to a limit cycle (Figure 2.2). Note 

that limit cycles can be stable or unstable. For an unstable limit cycle, the periodic 

closed orbit can be lost if the initial value of the solution is perturbed even slightly. 

Therefore, it is essential to determine aH possible limiting behaviors of solutions in the 

phase plane. Recall that we consider autonomous planar systems only. So, in this case, 

there is a classical result which settles the problem of the limiting behaviors. 

Theorem 2.1.1 Poincaré-Bendixon (Hirsch and Smale, 1914 p. 225)
 

A nonempty, closed bounded limit set of the planar system of differential equations (2.1)
 

that contains no equilibrium, is a closed orbit.
 

In other words, the Poincaré-Bendixon theorems states that the fate of any bounded 

solution of a differential equation is to converge to either an equilibrium point or to a 
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Figure 2.1 Classification of equilibria, linear systems - p: trace, q: determinant (figure 

courtesy of Kot, 2001) 

limit cycle. Limit cycles can be interpreted as closed orbit attractors: there is an open 

set 0 of initial values (xo, Yo) such that ail solution starting in 0 will eventually lie on 

the limit cycle. 

Consider the planar system of differential equations (2.1). As we said earlier, this sys­
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Figure 2.2 Example of limit cycle 

tem can represent a predator-prey population dynamical system. Given the fact that 

in ail discussed models the solutions stay in bounded regions, we can conclude that the 

solutions to Lotka-Volterra, Holling, Hanski, and Arditi systems ail converge tO.either 

equilibrium points or to limit cycles. 

Limit cycles may, in practice, lead to extinction due ta environmental impacts (Hanski 

et al. 1995). A large limit cycle that periodically brings either population close to zero 

implies high probability of its extinction, if we consider possible external impacts that 

are not taken into account by the model (Berezovskaya et al. 2001). The importance of 

the existence of a limit cycle solution is in its periodic behavior. 

Limit cycles can either consist of one or several periodic clQsed orbits (Figure 2.3). 

For example, in the Hanski Model, seasonal behaviors lead the population of prey and 

predators to converge to the summer and winter cycles. A more detailed description is 

given in Hanski and Kropimaki (1995). 

Isocline (Hanski, 1999 and Hirsch, Smale and Devaney, 2004 p. 190) 
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One of the most useful tools for analyzing nonlinear systems of differential equations 

(especially planaI' systems) are the isoclines. In population dynamics an isocline refers 

to the set of population sizes at which the rate of change, or derivative with respect to 

time, for one population in a pair of interacting populations is zero. 

Isoclines can be used to find the equilibria of a system of differential equations. Since 

we are only discussing systems that include prey and predator interactions, i. e. two di­

mensional (two species) systems of differential equations, there are two isoclines for each 

model, which are called the prey isocline and the predator isocline. The prey isocline is 

defl:ned where the rate of change for the prey population is zero. The predator isocline 

is instead satisfied when the rate of change for the predator population is zero. 

The prey isocline is the non-trivial solution to the equation dx/dt = 0, whereas the 

predator isocline stands for the non-trivial solution to the equation dy/dt = O. 

It can be easily seen that the prey and predator isoclines for the Lotka-Volterra system 
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are respectively the horizontal, the vertical lines, given by 

o 
x ==-. 

"'( 

The prey isoclines for the Holling and Hanski systems are identical to each other, since 

the prey equations for both models are identical. We can see that the prey isocline has 

the quadratic form 
CI' 

Y= Kj3(K-x)(x+w). 

The Holling predator isocline is a vertical line 

wo 
x = "'(-0' 

whereas the Hanski predator isocline is a line passing through the origin 

1 
y= -x. 

f.k 

The prey isocline for Arditi model is given by 

Cl'x(l ­ K) 
y = j3 (1 x ) , 

-CI'W - K 

while the Arditi predator isocline is a line passing through the origin given by 

("'( - 0) 
y = wo x .. 

In order to study the stability of equilibria and eventually find the limit cycles, we start 

by considering the linearized systems. 

Linearization (Hirsch and Smale, 1974) 

1inearization makes it possible to use tools for studying linear systems in order to
 

analyze the behavior of a nonlinear function near a given point, which in our case is an
 

equilibrium point. The stability of an equilibrium point can be determined by perform­


ing a linearization using partial derivatives about that equilibrium point.
 

Consider the system introduced in (2.1) and let (xt, Yt) denote a solution. The lin­


earization of a function is the first order term of its Taylor expansion around the point
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of interest e.g. the equilibrium point (x*, y*). The corresponding linearized system can 

be written as 

du = BF (x* y*)u + BF (x* y*)v
dt au' av"
 

{ dv = Be (x* y*)u + Be (x* y*)v

dt au' av" 

where (u, v) is the new coordinate and F (x* ,y*) = e(x* ,y*) = O. The above linear 

system of differential equations can be rewritten in the following matrix form 

( 
~~) (9j;(x*) *(y*)) (u) 
~~ ~(x*) 9f/;(y*) v 

Finding a detailed behavior of a nonlinear system is a case by case study. Still, the 

study of the linearization of a nonlinear system can give us ideas about the behavior of 

the nonlinear system. 

In stability analysis, one can use the eigenvalues of the Jacobian matrix evaluated at 

an equilibrium point to de termine the nature of that equilibrium. We can obtain the 

eigenvalues of the Jacobian matrix by solving the characteristic equation. 

det(J - M) = 0, 

where J is 2 x 2 Jacobian matrix. Therefore, the characteristic equation is a polynomial 

equation of degree 2 which therefore has the roots À! and À 2 given by 

À _ T± VT2 - 4D 
1,2 - 2 ' 

where D and T are the determinant and the trace of Jacobian matrix J evaluated at 

the equilibrium point (x*, y*). 

We say that an equilibrium point (x*, y*) of a nonlinear system is hyperbolic if all of 

the eigenvalues of the Jacobian matrix J evaluated at (x*, y*) have nonzero real parts. 

Such equilibria are either stable or unstable (Hirsch and Smale, 1974 p. 187). Moreover, 

in a neighborhood of such equilibria, the nonlinear system has a similar behavior to the 

linearized one (Hirsch, Smale and Devaney, 2004 p. 168). 

For non hyperbolic equilibria, not much can be derived from the linearized system, but 

there are other criteria for stability. For an extensive presentation of this issue, one can 
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refer to Hirsch, Smale and Devaney (2004) p. 194.
 

Clearly, we are in the non-hyperbolic case if and only if one of the following conditions
 

is s satisfied: (i) T = 0 and D > 0; (ii) D = O. In case (i) the equilibrium is a center
 

(for a linearized system) if D > O. The nonlinear system may have or may not have a
 

center in this case.
 

In what follows we check the signs of D and T in the hyperbolic case. Based on the
 

Routh-Hurwitz stability criterion (Kot, 2001 p. 90 and Hirsch and Smale, 1974 p. 190),
 

we have the following classification for the stability of hyperbolic equilibria:
 

(i) D > 0 and T < 0, i. e. both real parts of the eigenvalues of the characteristic equation 

are negative. We then have a sink which, as mentioned before, is an asymptotically sta­

ble equilibrium. Therefore, the solutions starting nearby the equilibrium tend towards 

it. 

(ii) D > 0 and T > 0, i. e. both real parts of the eigenvalues of the characteristic 

equation are positive. In this case, the equilibrium is a source, which is an unstable 

equilibrium and the solutions tend away from it; therefore, this leaves open the possi­

bility that there are solutions which spiral to a limit cycle; necessarily, as a corollary to 

the Poincaré-Bendixon theorem, this limit cycle must surround the equilibrium (Hirsch, 

Smale and Devaney, 2004 p. 229). 

(iii) D < 0, i. e. the real part of one of the eigenvalues of the characteristic equation is 

positive and the other eigenvalue has a negative real part. We then have a saddle. In 

this case, the solutions tend toward the equilibrium along sorne curves of initial values, 

while along sorne other curves of initial values, the solutions tend away from the equi­

librium, so a saddle is a highly unstable equilibrium. 

In this thesis we are interested in systems of differential equations which admit limit 

cycles. However, there is no general criterion for the existence of a limit cycle for aH 

cases. According to Hirsch, Smale and Devaney (2004) p. 217, one can summarize 

the behavior of planar systems as follows: a closed and bounded limit set other than 

a closed orbit is made up of equilibria and solutions joining them. A consequence of 

the Poincaré-Bendixon theorem is that if a closed and bounded limit set in the plane 

contains no equilibria, then it must be a closed orbit. 
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Figure 2.4 Stable equilibrium 

2.2 Analysis of the Equilibria in Each Model 

In this section, we use the dynamical systems and the theory stated in the previous 

section, to analyze the behavior of the equilibria of each predator-prey model introduced 

earlier. The goal is to identify sufficient conditions for the stability of the equilibria. 

Each model is discussed separately. It is important to note that any time we talk about 

stability, we mean stability of the equilibria, and therefore, the Routh-Hurwitz criterion 

is an appropriate tool to apply. 

Let us note that our purpose is to give sorne elementary proofs. Otherwise, qualitative 

analyses exist in the literature, but they are very involved. Indeed, even for older models, 

full proofs were developed quite recently, with sophisticated mathematical tools For 

example, the model of Lotka and Volterra was fully studied in Hirsch and Smale (1974), 

and a brief qualitative analysis of Holling's model can be found in Kot (2001). Hanski's 

model is studied numerically in Wollkind (1988) and Hanski et al. (1991), and a detailed 

phase portrait is done in Gasull et al. (1997) and Saez and Gonzales-Olivares (1999). 
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Qualitative analyses of Arditi's model are given in Jost et al. (1999) and Berezovskaya 

et al. (2001). 

2.2.1 Lotka-Volterra Madel 

Recall that the classical Lotka-Volterra model is 

~~ = (a - {Jy)x, 

{ 1t = bx - 8)y. 

We now analyze the model starting with computing the equilibrium points. Lotka­

Volterra predator-prey system of equations give 

~~ = 0 {:} (a - {Jy)x = 0, 

~ = 0 {:} bx - 8)y = O. 

The population level at this equilibrium depends on the values of the parameters a, {J, 

8, and "f. 

It can be seen that (x*, y*) = (0,0) is an equilibrium point. The other equilibrium can 

be determined by 

* 8 * a)(x=1;y=~· 

The Jacobian matrix of t.he predator-prey model can then be obtained by 

a-{Jy -(Jx)
J(x,y) = 

( "fY "fX - 8 

Evaluated at the trivial equilibrium (0,0) the Jacobian matrix becomes 

J(O,O) = ao
( 

We can see that the determinant of the Jacobian matrix evaluated at the trivial equi­

librium is given by 

det(J(o,O)) = -a8, 

which is always negative since, as mentioned before, aU the coefficients are assumed to 

be positive. 
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Moreover, the trace of the Jacobian matrix evaluated at the equilibrium (0,0) is 

1r( J(O,O)) = a - 6. 

Note that according to the Routh-Hurwitz criterion, since det J(O,O) < 0, no matter 

what the sign of the trace of the Jacobian is, the trivial equilibrium is a saddle point. 

This means that if both population levels are at zero, then they will continue to be so, 

indefinitely. For more details refer to Kot (2001). However, the trivial equilibrium does 

not interest us. Therefore, we now study the stability of the non-trivial equilibrium 

point. 

Evaluated at the non-trivial equilibrium (x*, y*), the Jacobian matrix J becomes 

0 -~) 
( W- 0 

The determinant of the Jacobian matrix evaluated at the non-trivial equilibrium (x*, y*) 

is given by 

which is always positive. 

Moreover, the trace of the Jacobian matrix evaluated at the non-trivial equilibrium 

(x*, y*) is 

Therefore, according to the Routh-Hurwitz criterion, the non-trivial equilibrium is a 

center for the linearized system. Moreover, Hirsch and Smale (1974) show that it is 

also a center for the non-linear system. Thus, this second equilibrium point represents 

a fixed point at which both populations sustain their current behavior, indefinitely. In 

other words, the solutions are periodic and cycle around this equilibrium point. 

The equilibrium point at the origin is a saddle point, and hence unstable, but we will 

find that the extinction of both species simultaneously is difficult to happen in the 

Lotka-Volterra model. In fact, this can only occur if the prey is artificially completely 

eradicated, causing the predator to die out of starvation. If the predator is eliminated, 

the prey population grows without bound in this simple model. 
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The Lotka-Volterra model shows that: (i) predators can control exponentially growing 

prey populations; (ii) both prey and predators can coexist indefinitely; (iii) the indef­

inite coexistence does not occur at equilibrium population, but along a population cycle. 

2.2.2 Holling Model 

Recall the Holling model 

dx _ (1 _ X) _ JÈJL 
dt - ax K x +W' 

{ 1:1L-~_>:
dt - x+w uy. 

To perform its analysis, let us define 

_ (Jx
()fx -x+w' 

(2.2)
{ g(x) = K(3(K - x)(x + 'W), 

and rewrite the Holling system as 

~~ = f(x)[g(x) - y], 

{ 1t = A[j(x) - rJy, 

where A = ~ and r = ~<5. 

The Jacobian matrix is given by 

l' (x ) [g (x) - y] + f (x )gl (X ) - f (x) ) 

J(x,y) = ( Ay1'(x) A[j(x) - r] 

One can easily find the equilibrium points by solving the following equations 

~~. = 0 <=} ax(l - K) - !~~ = 0 <=} f(x)[g(x) - y] = 0, 

1t = 0 <=} 2~~ - <5y = 0 <=} A[j(x) - fly = O. 

One of the equilibrium points is (0,0), which implies f(O) = O. Then, the Jacobian 

matrix evaluated at the equilibrium point (0,0) is given by 

J(O,O) = (~ 0)o -<5 . 
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Since det J(O,O) < 0, no matter what the sign of the trace would be, according to the 

Routh-Hurwitz criterion, this trivial equilibrium point is a saddle point. 

Other equilibria can be determined by solving the system 

x* f3 * 0(1 - X) - ---{Z1l- = 0 
x +w ' (2.3)]x* __ 

x * + w 0 - 0, 

which gives one point of coordinates 

o"(w(K"( - Ko - ow)
x* =~. y* (2.4)

"( - 0' Kf3h - 0)2 

Moreover, it can be easily seen that 

j(x*) = ~x* = of3 = f. (2.5) 
x +w "( 

Note that j(x*) and x* cannot be O. On the other hand, equations (2.2) and (2.3) imply 

that 

j(x*)(g(x*) - y*) = O. 

Therefore, we must have 

g(x*) = y*. (2.6) 

The Jacobian matrix J evaluated at the equilibrium (2.4) is obtained by 

J x' • = ( j'(x*)[g(x*) - y*] + j(x*)g'(x*) - j(x*) ). 
( ,y) Ay* j'(x*) A(J(x*) _ r) (2.7) 

Therefore, from (2.5), (2.6) and (2.7) it follows that the Jacobian matrix J evaluated 

at the second equilibrium point (x*, y*) is 

J x' * = (j(x*)g,(x*) -Of) (2.8) 
( ,y) Ay* j'(x*) 

Further, we apply the Routh-Hurwitz criterion, i.e. we study the signs of det(J(x*,y*))
 

and Tr(J(x',y*)) to discuss the stability of this equilibrium, (x*, y*).
 

From (2.8) we see that
 

Tr(J(x*,y*)) = j(x*)g'(x*), 
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and 

det(J(x',y')) = Ary* j'(x*). 

In order to obtain the sign of the determinant of the Jacobian matrix evaluated at this 

equilibrium (x*, y*) we determine the derivative of j from (2.2) and we ob tain 

'( ) (3wj x = 2 > O. 
(x + w) 

Moreover, note that rA> O. Therefore, det(J(x*,y')) > 0 if and only if g(x*) = y* > O. 

Let us assume that 

"f - 0 > O. 

Therefore, equation (2.4) gives the following inequality as a sufficient condition for 

y* = g(x*) > 0, 

K h - 0) - OW > 0, 

or equivalently, 

K 0 
->-- (2.9) 
w "f - 0' 

which is, consequently, a necessary and sufficient condition for the determinant of the
 

Jacobian matrix evaluated at the second equilibrium to be positive.
 

Moreover, from (2.2),
 

g(x) = :(3[-x2 +(K-w)X+KW], 

which implies that 

Rence, it can be seen that at the equilibrium point (2.4) 

'( *) a [-20w W ]
9 x = 73 K ("f - 0) - K + 1 . 

Note that Tr(J(x',y')) > 0 if and only if g'(x*) > 0, since j(x*) > O. 

A simple calculation shows that g'(x*) > 0 if and only if 

K("( - 0) - wh +0) > O. 
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Since we assume that 

"( - fJ > O. 

We obtain 
K "( fJ 
->--+--. 
w "(-fJ "(-fJ 

Renee, a sufficient condition for the existence of an unstable equilibrium is 

and 
K "( fJ 
->--+--. 
w "(-fJ "(-fJ 

Moreover, Tr(J(x*,y*)) < 0 if and only if g/(x*) < 0 or equivalently, 

and 
K "( fJ
-<--+--. 
w "(-fJ "(-fJ 

This condition, along with inequality (2.9) de termines the following sufficient condition 

for the stability of the solution. 

fJ K "( fJ 
--<-<--+-­
"(-fJ w "(-fJ "(-fJ' 

when 

Additionally, if 
K fJ 
-<-­
w "(-fJ 

then J(x* ,y*) < O. 

This indicates that (x*, y*) is a saddle point. Finally, 

K fJ "(
-=--+-­
w "(-fJ "(-fJ 

given that "( > fJ implies that J(x*,y*) > 0 and Tr(J(x*,y*)) = 0, which indicates that 

the equilibrium (x*, y*) is a center for the linearized system. To conclude, we found 

a sufficient condition for existence of an unstable equilibrium, which is not a saddle. 

Therefore, by theorem 2.1.1, the limit sets could be limit cycles around the equilibrium 

(x*, y*) when the parameters satisfy the above condition. 
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Figure 2.5 A stable solution for Holling Madel: The model parameters are a = 0.1; 

K = 250; f3 = 0.05; w = 40; 'Y := 0.7; 0 = 0.5. 

2.2.3 Hanski Model 

Recall that the Hanski model was defined by
 

dx _ (1 _ .L.) _ PEL

dt - ax K x+w' 

{ éL - (_ l!:Jl.)dt - 'YY 1 X' 

The equilibrium points can be obtained by solving 

dx - 0 (1 x ) PEL - 0dt - Ç::} ax - K - x + w - , 
(2.10) 

1;}f = 0 Ç::} 'Yy(l -l!j) = o. 

It can be seen that (0,0) is an equilibrium point for the Hanski model. However, like 

in the Holling case, we are only interested in the non-trivial equilibria. The equation 

corresponding ta the prey in (2.10) implies that such an equilibrium satisfies 

* 
y* = ~(1- ~)(x* +w), (2.11) 
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whilst the predator equation in (2.10) can be reduced to 

1
y* = -x*	 (2.12)

fJ, 

Therefore, one can determine the non-trivial equilibrium points by intersecting the two 

isoclines, and obtain 

and 

Note that the term inside the square root is always non-negative. Rence, aU the equi­

librium points are real-valued. Moreover, we are only interested in the equilibrium in 

the first quadrant of the phase place, i.e. we look for (x*, y*) > (0,0). Therefore, the 

only admissible solution is 

* _ (KafJ, -'- afJ,w - K,B) + J(KafJ, - afJ,w - K (3)2 + 4œ2fJ,2 Kw. 
x - 2ag , 

(2.13)
y* _ (KafJ, - afJ,W - K(3) + J(KafJ, - afJ,w - K(3)2 + 4œ2fJ,2Kw 

- 2afJ,2 

Further, define the function 

g(x) =	 _{3_. (2.14)
x+w 

The derivative of 9 with respect to x is given by 

1 {3 1 2 
(2.15)9 (x) = - (x+w)2 = -~g (x). 

Therefore, it can be seen that at the non-trivial equilibrium (x*, y*) 

I( *) (3 1 2( *)9 X = - = --g x .	 (2.16)
(x+w)2 {3 

According to the Routh-Rurwitz criterion, an unstable equilibrium (x*, y*) occurs when 

both the determinant and the trace of the Jacobian matrix J evaluated at the equilib­

rium (x*, y*) are positive. Moreover, the equilibrium point is asymptoticaUy stable if 
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the Jacobian matrix J evaluated at the equilibrium (x*, y*) is positive and the trace of 

J evaluated at (x*, y*) is negative. The Jacobiau matrix is given by 

_ ( a - 2ax/ K - yg(x) - xyg'(x) -xg(x) ) 
~~- . 

1.1/'I y2/x2 "1 - 2"1J.1-Y/x 

The Jacobian J evaluated at (x*, y*) using (2.11) is given by 

a - 2ax* / K - x*g(x*)/ J.1- - (x*)2 g'(x*)/ J.1- -x*g(x*)) 
J(x*,y*) = (2.17)

( "I/J.1- -"1 

From(2.17), the determinant of J evaluated at (x*, y*), by using (2.17), is determined 

by 

det(J(x*,y*)) = -a"l + 2~ x* + 2~X*9(X*) - 13: (x*)2 g2(x*). (2.18) 

On the other hand, by inserting y. obtained from (2.12) into (2.11) we can write 

* 
x*g(x*) = aJ.1-(1- ~). (2.19) 

Further, insert (2.19) into equation (2.18). We obtain 

Finally, after reducing the terms we can see that 

(2.20) 

It remains to check the sign of det (J(x* ,y*))' First, we prove that x* < K. Indeed we 

can see that 

(aJ.1-K - aJ.1-w - f3K)2 + 4a2J.1-2 wK < (aJ.1-K + aJ.1-w + ,6K)2 {::> 

(aJ.1-K - aJ.1-w - f3K) + -J(aJ.1-K - aJ.1-wf3K)2 + 4a2J.1-2 wK < 2aJ.1-K , 

which is valid if and only if 

x· < K. 

Therefore, we have 
x· 

D < (1 - _)2 < 1K . 
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Now we return to signs of the determinant. The determinant of the Jacobian matrix 

evaluated at the non-trivial equilibrium (2.13) is positive if 

O'.IJ­1- - >0{3 , 

according to (2.20). Therefore, a sufficient condition for the determinant to be positive 

is given by 

{3 > O'.IJ-. (2.21 ) 

We now evaluate the trace of the Jacobian (2.17). 

x' y' 20'. * 1 * ( *) 1 ( *) 2 *)1 (Tr(J) = 0'. - -x - -x 9 x - - x 9 x - "(. (2.22) ,. K IJ- IJ-

We can simplify the above equation by using (2.16) and (2.19). It can be then seen that 

2 * O'.IJ- x 2 0'.*
Tr(Jx',y') = T(l- K) - K X - "(. 

We previously showed that 
X* 2

(1 - -) < 1K . 

Therefore, the following inequality satisfies 

0'.2IJ- 0'.
Tr(J • •) < - - -x* - "V

X ,y (3 K /. 

If we assume that equation (2.21) is satisfied, then not only, as shown before, is the 

determinant positive but also 

0'. x*
Tr(J • • ) < 0'. - -x* - {::> Tr(J • •) < 0'.(1 - -) - "V"VX ,y K / X ,y K / , 

which implies that 

Therefore, the trace of the Jacobian matrix evaluated at the non-trivial equilibrium 

(2.13)	 is negative if 

O'.IJ- < {3 and 0'. < "(. (2.23) 

Condition (2.23) is sufficient for the asymptotic stability of the equilibrium point (2.13), 

since the first condition in (2.23) guarantees that the determinant is posit.ive. In other 

cases, e.g. when either O'.IJ- > {3 or 0'. > "(, and the equilibrium is unstable, limit cycles 

can occur. 
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Figure 2.6 Limit cycle for the Hanski Model: the model parameters are a 5.4; 

K = 50; (3 = 600; w = 5; 1 = 2.8; J-L = 100. 

2.2.4 Arditi Model 

Recall that the Arditi model was introduced as 

dx _ (1 _ ~) _ j3xy
dt - ax k x + wy' 

{ 1:JL _ ]xy r 
dt - x + wy - uy. 

In this model, the equilibrium points (x*, y*) can be obtained by 

dx - 0 (1 - 2;.) _ (3xy - 0
dt - {:} ax k x + wy - , 

(2.24)
dx _ 0 ]xy _ r - 0
dt - {:} x +wy uy - . 

It can be seen that (0,0) is an equilibrium point. However, just like in the Hanski 

model, Arditi predator-prey population system does not hoId 0 as population size for 

either the prey or the predator since the denominator of bath the prey and the predator 

equations become O. 

The non-trivial equilibrium points occur when 

x* (3y*
a(1- -) - = 0 (2.25)

K x* + wy* 
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and 
,x*

----8=0. 
x* + wy* 

The later equality implies that 

(2.26) 

The non-trivial equilibrium points can be derived by solving (2.25) and(2.26). For 

example, we insert first y* from (2.26) into (2.25) and solve for X*. The values are given 

by 

x* = K[l- tw(1- 4)], 
(2.27)

{ y* = !SG -1)[1- !(1- 4)]· 

Define the ratio 

R = h - 8) = 1- ~ , (2.28), ,
 
and note that 

1 , 

1- R J' 
Moreover, one can easily see that 

R 
--,--------,--=

(1- R) 
,-8, y* 
-­ x - =w-. 

8 8 x* 

Additionally, we define 

g(x,y) = 
xy 

. , 
x+wy 

(2.29) 

and we rewrite (2.24) as 

ax(l ­ k) ­ {Jg(x, y) = 0, 

{ ,g(x,y) ­ 8y = O. 

The first partial derivatives of g(x 1 y) with respect to x and y are 

w 
gx(x, y) 

(x/y + w)2' 
1 

(1 + wY/X)2' 

Using equation (2.26) and (2.28) we can evaluate the above derivatives at the equilibrium 

point (2.27) and obtain 

gx(x*,y*) = ~2 
(2.30)

{ gy(x*,y*) = (1- R)2. 
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Therefore, we can see that the Jacobian matrix of the system is
 

. J = ( 0: - 20:x/K - ;3gx(x, y) -;3gy(x, y) ).
 

19x(X,y) 19y(X,y) - 0 

The determinant of the J acobian matrix evaluated at the equilibrium point (x', y') is 

given by 

Let now define 
1 

Z = "6 det(J(x*,y*»)· 

Then by using (2.27) and (2.28),	 we can see that 

;3R] 20:1 [ ;3R]. ;3'	 0:1.Z = -0: + 20: [1 - - - - 1 - - 9 + 9 + -g ,yo:w 0 o:w x	 oy 

where g; = g(x',y') and g; = g(x·,y·). Finally, by substituting 9; and g; from (2.30) 

we can write 
;3

Z = (0: - -R)R.	 (2.31) 
W 

Note that sign(det(J(x*,y*»)) = sign(Z), since 0 > O.
 

Moreover, the trace of the Jacobian matrix evaluated at the non-trivial equilibrium
 

(2.28)	 is 

) 20:';3 • • J:Tr (J(x* ,y*) = 0: - K x - gx + 19y - u. 

Then we can use (2.27) and (2.30) to obtain 

Tr(J(x* *») = 0: - 20:(1 -l..-R) - ~R2 + 0[1(1- R)2 - 1].
,y	 o:w W 0 

Therefore, 
2;3 ;3 2

Tr(l(x* *») = -0: + -R- -R	 - oR. (2.32)
,y W W 

We study the stability of the equilibrium (x', y') by discussing all possible cases for the 

signs of the determinant (2.31) and the trace (2.32). 

Suppose first that 1 < 0, or equivalently, R < O. Hence, equation (2.31) imp!ies that 
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det(J(x*,y*)) < O. Therefore, no matter what the sign of Tr(J(x*,y*)) would be, the equi­

librium (x*, y*) is a saddle. 

, Alternatively, suppose that "1 > 0, or equivalently, R> O. Then, there are two possibil­

ities: the first case is 
f3 f3 h - 0)

a--R<OÇ::}a--. 0 <O. 
w w 

In this case, equation (2.31) implies that det(J(x*,y*)) < 0, which means that the equi­


librium (x*, y*) is a saddle point.
 

We can therefore conclude that the equilibrium is a saddle point if
 

a f3
either "1 < 0 or 0 < < - (2.33)

1-(0/"1) w' 

since a > 0 and 1 - ~ > O.
 

The other case is when
 

a - ~R > 0,
 
w 

or equivalently, 

f30< -R < a, (2.34) 
w 

which implies that det(J(x*,y*)) > O.
 

Suppose (2.34) holds. From (2.32) we can obtain the inequality
 

Tr(J(x* 1*)) < ~R(I- R - OW) = ~oR(~ - ~). 
,y w f3 w "1 f3 

Therefore, Tr(J(x*,y*)) < 0 if (~ - ~) < 0 since we assumed that R > O. Hence, a 

sufficient condition for the asymptotical stability of the equilibrium is 

f3o< "1 and - < "1, 
w 

or equivalently, by (2.33) 
f3 a 

o< "1 and ~ < 1 - (0/"1) 

Finally, given that 0 < "1 and (2.34) are satisfied, we propose looking for a sufficient 

condition for the equilibrium to be unstable. 

Since R < 1, we have 

2f3 f3 2 l:R2Tr(J(x* *) ) > -a + -R - -R - u , 
~ w w 
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Then after reducing the terms, we have 

(3 
Tr(J(x*,y*)) > -a - 0 + ~R(2 - R), 

In arder to have an unstable equilibrium, according to the Routh-Hurwitz criterion, we 

must have Tr(J(x*,y*)) > 0 and det(1(x*,y*)) > O. We have shown that for 

{3R
0< - < a, 

w 

and 

Î - 0> 0, 

the determinant of the Jacobian matrix evaluated at the equilibrium (x', y*) is positive. 

In order tohave Tr(J(x* ,y*)) > 0 it suffices to require that 

(3 
-a - 0 + - R(2 - R) > 0, 

w 

or equivalently, 

~R> a+o. 
w 2-R 

Further, replace R from (2.28) and use (2.34) to reduce the above relations. 

a+o <!l< a <=} 

(1 + oh)(1 - oh) W 1 - oh 

2~f < gT<a. 

In other words, 
a+o {3 a+et.oh 

-,---::-;--:-:---=-:-:- < - < -:---::-;-.,...-;--'---'-~-:-
(1 + Oh)(l - oh) W (1 - Oh)(l + oh)' 

is a sufficient condition for the equilibrium point (x*, y*) to be unstable. Note that this 

condition cannot be satisfied if a < Î. 

The complete analysis of this system is done in Berezovskaya et al. (2001). In fact, 

these authors find a domain in (a,{3,o'Î,w,K) where the system admits a limit cycle. 

2.3 Final Comments 

In this chapter, the dynamical systems of four general predator-prey mathematical 

models known as classical Lotka-Volterra, Holling, Hanski, and Arditi were studied. 
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Figure 2.7 A stable solution for Arditi Model: The model parameters are ex = 0.065; 

K = 150; (3 = 0.12; w = 1.3; 'Y = 0.060; 15 = 0.024. 

According to the Poincaré-Bendixon theorem we know that each system solution can 

possibly converge to a limit cycle or an equilibrium. 

The complete analysis of these systems goes beyond the scope of this thesis. What we 

can provide here are the equations of the isoclines and of the non-trivial equilibria which 

are at the core of our inference method. Moreover, the linearized analysis allows us to 

point out subdomains of the parameters where limit cycles can accur. These are the 

subdomains that mainly interest us. A final issue concerns the following concept. 

Definition 2.3.1 Suppose (xt,Yt) is a periodic solution to a dynamical system (2.1).
 

The prey extremum is the set of all points (x, fi) where (x, fi) E {(Xt, Yt)} and x is the
 

maximum or minimum value of Xt in some period.
 

The predator extremum is the set of all points (x, fi) where (x, fi) E {(Xt, Yt)} and fi is
 

the maximum or minimum value of Yt in some period.
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Since the prey extremum takes place if dx/dt = 0, one can conclude that the prey isocline 

lies on the prey extremum. Moreover, since the predator extremum occurs if dy/dt = 0, 

it can be seen that the predator isocline lies on the predator extremum. Furthermore, for 

ail four models discussed in this thesis, the prey and predator extremum sets exist and 

are non-empty. Furthermore, suppose that for a fixed s, (x s,Ys) belongs to the prey 

extremum set of the periodic solution (Xt, Yt) with period T. Then (xs+T> YS+T) also 

belongs to the prey extremum. The same argument is also valid for any point belonging 

to the predator extremum set. Therefore, knowing only one point of the predator­

prey extremum sets and the period of a given solution, one can obtain the predator­

prey extremum sets. In the next chapter, we will show how to use the predator-prey 

extremum sets to estimate the predator-prey isoclines. 



CHAPTER III 

STüCHASTIC MüDELS AND STATISTICAL INFERENCE 

In the previous chapter we showed that the prey and the predator isoclines lie 

on the prey and the predator extremum sets, respectively. Therefore, if we consider to 

have a model with its respective extremum sets, we can use linear model techniques 

such as Ordinary Least Squares (OLS) to estimate the coefficients of the corresponding 

isoclines. On the other hand, by using different fittlng tests such as the F-test, the 

t-test or the Wilcoxon test, one can compare the models through their isoclines. The 

key point in this comparison is that the prey and the predator isoclines of the four dis­

cussed models are different from each other: the predator-prey isoclines of the classical 

Lotka-Volterra model are a vertical line and a horizontal line, respectivelYi as for the 

Holling model, the predator-prey isoclines pair is a vertical line and a quadratic curve, 

respectively; whereas the Hanski predator-prey isolines are a straight line with a posi­

tive slope and a quadratic curve, respectivelYi and finally, the predator-prey isoclines of 

the Arditi model are different from the others. These differences couId help us identify 

the model which can be fitted to a given pair of extremum sets, and further, predict a 

solution that corresponds to a given data set. 

We start this chapter by proposing and studying the properties of four discussed stochas­

tic models. Further on, we demonstrate how to estimate the coefficients of the isoclines. 

In the end, by using various types of testing techniques, we suggest a procedure for 

choosing a specific model. 
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3.1 Stochastic Models 

Suppose 2! is the set of pairs of the predator-prey population sizes observed at 

time t, t > O. Furthermore, suppose that Xt and Yt represent the maximum and the 

minimum prey and predator population sizes at each period. It turns out that we can 

estimate the parameters fairly easily if we consider the model 

log X t = log Xt + EX,t, 
(3.1 ) 

{ log Yt = log Yt + EY,t, 

where X t and Yt are the observed prey and predator population sizes in 2!, respectively. 

The measurement errors EX,t and EY,t are assumed to be independent standard normal 

random variables that are symmetrically distributed around zero, i.e. EX,t '" N(O, al) 

and EY,t '" N(O, a~). The assumption that the errors with expectation zero act additively 

on the logarithm of the population sizes conceptually makes sense since Xt and Yt are 

both intrinsically positive. Therelore, logxt and logYt which appeared in (3.1) are in 

fact deterministic functions which correspond to the expectations of the observations 

logXt and logYt , respectively. Moreover, from (3.1) one obtains 

E[Xt] = xtE[exp(EX,t)], 
(3.2)

{ E[yt] = YtE[exp(EY,t)]. 

Let Xt == x, Yt == y, X t == X and Yt == Y. Note that E[exp(Ex)] and E[exp(EY)] are the 

respective moment generating functions of EX and Ey evaluated at k = 1. It is known 

that 

100 1 (x f-L)2
yI2; exp( - 2) exp(x)dx 

-00 ax	 21T 2aX 
2a

exp(f-L + ;). 

Given that f-L = 0 one can conclude that 

E[exp(EX,t)] = exp(al/2).	 (3.3) 

Similarly we have 

E[exp(EY,t)] = exp(a~/2).	 (3.4) 
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We also need to evaluate 

E[exp(2Ex,t)] = exp(2o}), (3.5) 

Therefore, the equations in (3.2) can be rewritten as 

E[Xtl = Xt exp (a;"/2) , 
(3.6)

{ E[yt] = Ytexp(a~/2). 

We now use model (3.1) to study the four stochastic models we proposed earlier. 

In what follows, let 

Ix = {t dx/dt = O},1 

(3.7)
{ Iy = {t 1 dy/dt = O}. 

Therefore, the pairs (Xt, Yt), t E Ix correspond to the prey extremum set and (Xt, Yt), 

t E I y correspond to the predator extremum set. 

3.1.1 Lotka-Volterra Model 

Recall that the periodic two species classical Lotka-Volterra system is given by 

with the respective prey and predator isoclines as follows 

6 
X -- .-

"( 

or equivalently, 
6 

logx = log( -). (3.8) 
"( 

We propose using ordinary least squares (OLS) to fit the appropriate equations to the 

data set and estimate the parameters. Because OLS cannot fit a vertical line, we use 

a change of coordinat~s for the predator isoclines to transform it to a horizontal line. 

On the other hand, since we are ultimately going to compare ail four models, we use 

this change of coordinates for the predator isoclines in ail four models regardless of their 

slopes for consistency. Besides, since none of the prey isoclines is a verticalline, we limit 

this change of coordinates only to the predator isoclines and we leave the coordinates 
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of the prey isoclines unchanged. 

Let (x, i)) = (y, x). By rewriting the predator isocline in (3.8) in the new coordinates 

(x, i)), we obtain 

log i) = log( ~ ). 
'Y 

Consider now the random counterparts of the linear functions in (3.8) and the above 

equation 

log(~) -logyt, tE Ix, 

- 8logyt -log(;y), tE ly, 

where Ix and ly were defined in (3.7). 

The expected values of these variations can be obtained by 

log( ~) - E[log yt], t E Ix, 

E[logYtJ -log(~), tE ly. 

Then under model (3.1) we have 

{ 

E[log~] = no, 

E[logyt] = Ao, 

tE Ix, 

tE ly, 
(3.9) 

where, by using equations (3.8), we obtain 

(3.10) 

and 
8

Ao = log( -). (3.11) 
'Y 

The above equations are satisfied since 

tE Ix, 
(3.12) 

tE ly. 

3.1.2 Holling Model 

Recall the periodic two species Holling system 

dx _ (1 _ X) _ JÈJL
dt - cxx K x + w' 

{ 1JL-~-8dt - x +w y, 
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with the respective prey and predator isoclines as follows 

ex 2 K7J (K - w ) - exw - 0,- Ct xy + K73 x 7J ­
(3.13) 

{ x - I5w = O. 
~ 

Let (x,ij) = (y, x). By rewriting the predator isocline in (3.13) in the new coordinates, 

we obtain 
_ wl5 

logy - log(--,) = O. (3.14)
'Y-v 

Therefore, consider the random counterparts of the functions in (3.13) and (3.14) 

yt + K(3Xl- K(3(K - w)Xt -~, tE Ix, 

log Yi -log~, tE ly,
'Y-v 

where Ix and ly are defined in (3.7). The expected values of these random perturbations 

are given by 

E[ytJ + K(3E[X1J - K(3(K - w)E[Xtl-7' tE Ix, 

E[log Yi] -log /r:: 8' tE ly. 

Then, under model (3.1), there exist new parameters Do, Dl, D2 and Ao such that 

E[ytJ ~ D2 E[Xl] +DlE[Xtl + Do, tE Ix, 
(3.15)

{ E[log yt] = Ao, tE Iy . 

In fact, (3.3), (3.4) and (3.5) along with (3.13) and (3.14) imply that in order to obtain 

(3,15), one needs to set 

D2 = -K!3exp((-4a~ +a~)/2),
 

Dl = K(3 (K - cu) exp((a~ - a~ )/2), (3.16)
 

Do = 7T exp(a} /2),
 

and 

I5w
Ao = log(--,). (3.17)

'Y-v 
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3.1.3 Hanski Model 

Recall the two species Hanski system 

dx _ (1 _ X) _ Jh:JL 
([[ - CiX K x + w' 

{ ~ = 'Yy(l - Hj), 

with the respective prey and predator isoclines as follows 

y + !(3x2 
- ~(K - w)x - ~ = 0, 

(3.18)
{ y - /ix = O. 

Let (x,i)) = (y,x). By rewriting the predator isocline in (3.18) in the new coordinate, 

we obtain 

log i) - log x + log IL = O. (3.19) 

Now consider the random counterparts of the functions in the left hand side of (3.18) 

and (3.19) 

yt + K(3Xl- K(3(K - w)Xt -~, tE Ix, 

log ft -logXt -logIL, tE Iy, 

where Ix and Iy are defined in (3.7). The expected values ofthese random perturbations 

are 

E[yt] + K(3E[X[] - K(3(K -w)E[Xt ] -~, tE Ix, 

E[log ft] - E[log Xt ] - log IL, tEly. 

Then, under model (3.1), there exist new parameters no, nI, n 2 and Ao such that 

E[yt] ~ n 2E[xlJ + njE[Xt ] + no, tE Ix, 
_ _ (3.20)

{ E[logyt] = AlE[logXt ] + Ao, tE I y . 

By using (3.3), (3.4) and (3.5) along with (3.23), we see that (3.20) is satisfied when 

n 2 = - K(3 exp( (-4al + a~ )/2),
 

nI = K(3(K - w) exp((a~ - al )/2), (3.21)
 

no = ~ exp(a~/2),
 

and 

(3.22) 
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3.1.4 Arditi Model 

Recall the two species Ardi ti system 

dx _ (1 x ) (3xyaI - QX - K - x + wy , 

{ 1!Y.. - "(xy - b
dt - x + wy y, 

with the respective prey and predator isoclines as follows 

Qx(l - ~) 
y - K x = 0, 

(3 - Qw(l - K) (3.23) 

1 "(:;/y =x - O. 

Let (x, y) = (y, x). By rewriting the predator isocline in (3.23) in the new coordinate 

we obtain 

log y - log x+ log( wb ,) = O. 
'Y-u 

We rewrite the prey isocline obtained in (3.23) as 

Q 2 QW 
y + x -

Q 

x + xy = O.
K((3 - QW) (3 - QW K((3 - QW) 

Now consider the random counterparts of the functions in the last two equations 

yt + K((3 ~ QW)X;- (3 -QQW Xt + K((3Q:: QW)Xtyt, tE Ix, 
- - wblogyt -logXt -log( ~), tE Iy.

'Y- u 

Since we assumed that X t and yt are independent random variables, the expected values 

of the random perturbations appearing above are given by 

E[yt] + K((3 ~ QW) E[X;] - (3 _QQwE[Xtl + K((3Q:: QW) E[Xt]E[yt], tE Ix, 

E[logYt] - E[logXtl-log('YW!(5)' tE Iy. 

Then, under model (3.1), there exist new parameters no, nl , n2 and Aosuch that 

E[yt] ~ n 2 E[X;] - ~lE[Xt] + noE[Xt]E[yt] = 0, tE Ix, 
{ E[logyt] - A1E[10gXt] - Ao = 0, tE Iy , 

or equivalently, 

{
 tE Ix,
 
(3.24) 

tE Iy. 



52 

By using (3.3), (3.4) and (3.5) along with (3.18) and (3.19), we see that (3.24) is satisfied 

when 

n2 = - K(f3 ~ ŒW) exp(( -4a} + a~ )/2),
 

ni = (3 _ŒŒW exp((a~ - a} )/2), (3.25)
 

no = K(f3Œ::: ŒW) exp(a~/2),
 

and 

(3.26) 

3.2 Estimation and Testing 

3.2.1 General Algorithm 

As we mentioned previously, the prey and the predator extremum sets exist and 

are non-empty. Moreover, it is known that there exist periodic solutions in the limit 

to the Lotka-Volterra, Holling, Hanski, and Arditi models for sorne parameter domain. 

Therefore, approximately, the prey isocline intersects the solution to the ordinary dif­

ferential equations (ODE) at the maximum and the minimum prey population sizes in 

each period. Similarly, the predator isocline intersects the ODE solution at the points 

where the predator population obtains its maximum and minimum values. This prop­

erty is fundamental in our proposai for estimating the parameters of the models, and 

consequently, for predicting the population sizes of the prey and the predator at future 

times. 

In ail four discussed models, we propose the following step-wise algorithm: 

Step 1: Estimate a2 = a~ = a~. 

Step 2: Estimate the coefficients of equations (3.9), (3.15) and (3.24). 

Step 3: Estimate separate ratios ~, t as weil as K and w. 

The idea behind the proposai is the following: let y = u(x) and y = v(x) be the prey 

and the predator isoclines for a given system of differential equations, respectively. We 

denote the prey and the predator extremum sets by P and Q, respectively. Note that 

y = u(x) and y = v(x) intersect at an equilibrium point (x*, y*). Therefore, the first 
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two equations which could be used to estimate the parameters are 

Y* = u(x*); Y* = v(x*). 

Moreover by fitting the prey isocline equation to the set of the prey extremum, P, 

one can derive the third equation to estimate the parameters. The fourth parameter 

estimate equation can be obtained by fitting the predator isocline equation to the set 

of the predator extremum, Q. In this chapter, we apply this method to each of the 

models, separately. 

3.2.2 Estimation of (J2 

Before we proceed with the model inferences, we show how to use the periodic 

property of the predator-prey solution in order to estimate the variance and the coeffi­

cients of the predator and the prey isoclines. 

Let assume that the observed data is close to a limit cycle solution. Therefore, the 

solution is periodic. Now consider 

P min = {logxt 1 Xt EPand Xt is the local minimum in each period},
 

Pmax = {log Xt Xt EPand Xt is the local maximum in each period}.
 1 

and 

Qmin = {logYt Yt E Q and Yt is the local minimum in each period}, 1 

Qmax = {log Yt 1 Yt E Q and Xt is the local maximum in each period}. 

Therefore, we have 

E[logXtJ = logxt == logxt,min, where Xt,min E P min , 

E[log Xt] = log Xt == log Xt,max, where Xt,max E Pmax . 

and 

E[logYiJ = logYt == logYt,min, where Yt,min E Qmin, 

E[log Yi] = log Yt == log Yt,max, where Yt,max E Qmax. 

Moreover, the variables logXt, where logxt E Pmin or logxt E Pmax and logYi, where 

Yt E Qmin or Yt E Qmax are i.i.d and of the same variance (J2. 
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We now define F and Qas the sets of the estimated prey and predator extremum for a 

given set of observations Qi. The estimated variance can obtained by 

lÎ'maxl (1 X -1X)2 lÎ'minl ( --)2
&2 = ~{'"' og i - og i '"' log Xi -logXi 

4 L.." ~ + L.." ~ 
i=l IPmaxl - 1 i=l IPminl- 1 

I~xl (log Yi -log Yi)2 I~I (log Yi -log y i )2} 
+ L.." ~ +L.." ~ , (3.27) 

i=l IQmaxl - 1 i=l IQminl- 1 

where 1Fmax1and \Fminl denote the cardinality of Fmax and Fmin , respectively obtained 

from the data set Qi. We assume that \Fmaxl > 1 and IFminl > 1. Additionally, log Xi 

and log Yi are the average of the prey and the predator population sizes on the set of 

observed extrema Qi. Another possibility is to use a pooled estimator of variance. 

We now return to the model estimates using the estimated variance obtained in this 

section. 

3.2.3 Estimates for each model 

Lotka-Volterra 

In order to estimate the parameters of the Lotka-Volterra model, we consider the 

prey and the predator extremum sets F and Q obtained from the data set Qi which 

admits the Lotka-Volterra system. Then, according to the previous arguments, the 

Lotka-Volterra prey isocline must be fitted in F. Suppose the first equation in (3.9), 

which corresponds to the prey isocline, is fitted to the set F. We have the relation 

E[log Yi] = Do, tE Ix· (3.28) 

Then equation (3.10) implies the following relation among the estimates 

(3.29) 

Additionally, the Lotka-Volterra predator isocline must be fitted in set Q. Therefore, 

the second relation among the estimates can be obtained by (3.11). 

~ cS 
Ao = log (-), (3.30) 

"( 
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assuming that the second equation (3.9), which corresponds to the predator isocline, is 

given by 

E[Yi] = Ao, tE ly. (3.31) 

Therefore one can estimate the parameters ~ and 4by 

(3.32) 

A complete solution to estimating a, (3, 'Y and fJ cannot be obtained at this stage, but a 

different perspective is given in Froda and Colavita (2005) and Froda and Nkurunziza 

(2007) where all the parameters are estimated. 

Holling Model 

To estimate the parameters of the Holling model, we consider the prey and the 

predator extremum sets ft and Qobtained from a data set Q( which admits the Holling 

system. Then, according to arguments similar to the ones of the previous case, the prey 

isocline of the Holling system must be fitted in ft. Suppose the first equation in (3.15), 

which corresponds to the prey isocline, is fitted to the set ft. We have a relation among 

the parameters. 

(3.33) 

Then by (3.16) the following relations must be satisfied for the parameter estimates. 

D2 = (~) exp(( -4ô"~ + ô"~ )/2), 
, ---­
Dl = (K/3(K -(J))exp((ô"~ - ô"~)/2), (3.34) 

Do = (Qj) exp(â~/2), 

where Do, nI and D2 are obtained by minimizing in Do, Dl and D2 the distance 

I)yt - D2 X( - DIXt - DO)2. 

P 
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Additionally, the Holling predator isocline must be fitted in Q. Therefore, the second 

set of relations among the estimates can be determined from 

-----. 
, wO --::y W 
Ao = log(--.\) {:} h-) = 1 + " (3.35)

'Y - u u exp(Ao) 

given that the second equation in (3.15), which corresponds to the predator isocline, is 

given by 

E[!og Yi] = Ao, tE I y . (3.36) 

Equations (3.34) suggest the following relations among the parameter estimates. 

However, only those are admissible where both k and ware positive, simultaneously. 

Since D2 < 0, Dl > 0 and Do > 0, we set 

Such estimates are biased. Moreover, to find the values of &, {3, i, and <5 more informa­

tion is required. Therefore, the parameters are not identifiable individually and we may 

have to use other properties of the original system, but this work is still in progress. 

Hanski Model 

In order to estimate the parameters of the Hanski model, we consider the prey 

and the predator extremum sets ft and Qobtained from the data set 21. which admits 

the Hanski system. Then by similar arguments to the ones mentioned before, the prey 
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isocline of the Hanski model must be fitted in? Suppose the first equation (3.20), 

which corresponds to the prey isocline, is fitted to the S€t ? The equation among the 

parameters is given by 

(3.38) 

By using (3.21) the following set of relations must be satisfied by the parameter esti­

mates. 

n 2 = (~) exp(( -4ô} + â~ )/2), 

nI = (K$(l{:.w))exP((â~ -â~)/2), (3.39) 

no = ~ exp(â~/2), 

where no, nI and n2 are obtained by minimizing in no, nI and n 2 the distance 

'l)yt - n2xl- nlxt - nof 
p 

Additionally, the Hanski predator isocline must be fitted in Q. Therefore, the second 

set of relations among the original parameters (3.22) suggest to set 

1\1 = 1, 
(3.40)

{ 1\0 = log /-l, 

which corresponds to the predator isocline. 

(3.41) 

We get the estimate Âo by minimizing in 1\0 the distance 

L(log Yi -log Xt - 1\of 
Q 

Therefore, one could estimate the original parameters by using (3.39) and (3.40) . 

• nl-Jni-4non2exp(âk) ~2 
w= • exp(-3ax/2),

2n2 

(3.42) 

a nI + Jni - 4nOn2exp(â~) ~2 ,2
($)= 2 exp((ax- ay)/2), 

il = exp(Âo). 
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Such estimates are biased. Moreover, to find the values of â: and ~ more information is 

required. Therefore, the parameters are not identifiable individually and we may have 

to use other properties of the original system, but this work is still in progress. 

Arditi Model 

To estimate the parameters of the Arditi model, we consider the prey and the 

predator extremum sets P and Qobtained from the data set 2! which admits the Arditi 

system. Then, similar to the previous arguments, the prey isocline of the Arditi model 

must be fitted in P. Suppose that the first equation (3.24), which corresponds to the 

prey isocline, is fitted to the set p.' 

E[yt] = D2E[Xi] + DIE[Xtl. (3.43)
1 + DoE[Xt ] 

In view of (3.25), the following set of relations must be satisfied by the parameter 

estimates. 

(3.44) 

where no, nI and n 2 are obtained by minimizing in Do, Dl and !l2 the distance 

Additionally, the Arditi predator isocline must be fitted in Q. Therefore, the set of 

relations among the original parameters in (3.26) suggest the second set of relations 

among the estimates 

A w8 
Ao = log((-.\)), (3.45)

'Y - u 

given that the second equation in (3.24), which corresponds to the predator isocline, is 

given by 

(3.46)
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To obtain Âo it suffices to minimize in /\.0 the distance 

2:(logYt -logXt - /\.0)2. 

Q 

Finally, one could estimate the parameters by using (3.44) and (3.45) which gives 

w= -D-o- exp( -2â~), n2 

k = _~I exp(-3â~/2), 
n2 (3.47) 

~ = -D-o- exp( -2â~) + -J- exp((â~ - â~ )/2),
n2 nI m= 1 - D. D.O(Â) exp( -2ô"~), 

2 exp 0 

Such estimates are biased. Moreover, to find the values of &, 4, i, and 3more informa­

tion is required. Therefore, the parameters are not identifiable individually and we may 

have to use other properties of the original system, but this work is still in progress. 

3.2.4 Testing and Comparison of Models 

Conversely, we would like to find out which model can be best fitted to a given 

data set 0.. We first construct the predator extremum Q. After change of coordinates on 

the predator isoclines and applying the logarithmic transformations, the Lotka-Volterra, 

Holling, Hanski, and Arditi predator isoclines are respectively 

logy = log 4, 
logy = log /~(5' 

(3.48) 
log y = log J.L + logx, 

logy = log ~ + log X.
'Y- o 

Since the original variables are all positive, the above equations are well-defined. 

Considering the stochastic model (3.1) one obtains 

log X t = log Yt + éY,t, 

{ log Yt = log Xt + éX,t. 
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Therefore, if t E I y the following relations among the expected values of (log Xt, log Yi) = 
(log Yi, log Xt) are satisfied. 

E[logytl = log 4, 
E[logytl = log~,

'Y-a (3.49) 
E[log Yi] = E[log Xtl + log IL, 

E[logYiJ = E[logXtl +log~.'Y-a 

Note that aU four isoclines are straight lines. The first two equations in (3.49) are 

horizontallines while the last two ones have slopes equal to 1. Therefore, a straight line 

y = 1\1x + 1\0 (3.50) 

is fitted to the predator extremum Q.
 

It must be noted that the usual linear models tests are conditional on the observed
 

explanatory variables.
 

Further, we propose to apply a step-wise procedure to find out which model can be
 

fitted.
 

Consider the following hypothesis testing problem:
 

Ho : 1\1 = 0 against Hl : 1\1 i- O. (3.51) 

If the null hypothesis in (3.51) is not rejected, we can accept the Holling model as an 

appropriate model to fit the population sizes of the predator and prey. On the other 

hand, if the nuU hypothesis (3.51) is rejected, we could proceed to testing 

Ho : 1\1 = 1 against Hl : 1\1 i- 1. (3.52) 

If the nuU hypothesis in (3.52) is not rejected, we could resort to the prey isoclines to 

discriminate between the Hanski and the Arditi models. RecaU that the Hanski prey 

isocline is a quadratic curve. Therefore a quadratic curve 

(3.53) 

is fitted to the prey extremum P. We apply the hypothesis testing 

Ho : D2 = 0 against Hl : D2 i- O. (3.54) 
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on the quadratic slope in (3.54). If the null hypothesis in (3.52) is rejected, we could 

accept the Hanski model. However, not rejecting the null hypothesis (3.54) does not 

imply that the Arditi model can be fitted and therefore, further analysis is required. 

Since the Holling model is one the most fundamental two species predator-prey sys­

tem, the emphasize is on this model. Besides, other models are also tested against it. 

However, in this thesis, we only apply the testing method to find out wether or not the 

Holling model could explain the data set. This will be shown in the next chapter. 



CHAPTERIV 

APPLICATIONS: SIMULATIONS AND DATA ANALYSIS 

In the previous chapter we showed how to estimate the coefficients of the predator 

and the prey isoclines in order to achieve parameter estimates for the four discussed 

models. We applied ordinary least squares (OLS) to estimate the variance and the 

coefficients of the isoclines by fitting them to the prey and the predator extremum sets. 

We then came up with a proposaI for testing hypotheses to check whether a given data 

set can be fitted to the Holling or Hanski models. There are several ways to conduct 

the testing such as a test based on a regression model, a t-test, or a Wilcoxon test. 

In this chapter we apply our method to simulated data and to a data set. In simulation 

experiments, we perform two analyses: parameter estimates, including estimating the 

variance, and further, the testing. 

4.1 Description of the Simulation Study 

We conducted the simulation only on the Holling model. We used Maple 9.5 and 

applied a Runge-Kutta type method to solve the ODE system (1.5) to retain equally 

spaced pairs (xt, Yt), where t can indicate any time scale, such as years. We then created 

a set of numerical solutions with a prey and a predator initial population values equal 

to (200,50). Given the fact that we are interested in a limit cycle solution because of 

their periodicity property, we choose the parameters so that the solution asymptotically 

converges to a limit cycle. It can be seen empirically that the parameters ex = 0.10, 

f3 = 0.05, (j = 0.50, 'Y = 0.70 and K = 250 provide a limit cycle solution. AIso, they 
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satisfy our sufficient condition for the existence an of unstable equilibrium and therefore, 

the solution does not tend to the non-trivial point which is 

* ow * cY."{w(K"{ - Ko - ow)
x =--' 

"( - 0' y = K{3b - 0)2 

Unfortunately, a too small data set cannot provide us with good estimates and testing 

results; the larger the data set is the more precise the results are. However, since the 

data sets used for simulation should refiect real data sets, we have no choice but to cre­

ate a data set with a reasonable size in order to conduct our simulation studies. Most 

real data sets collected in nature show an approximate 10-year cycle in the predator­

prey population interactions (Froda and Colavita, 2005). This means that each prey 

and predator local minimum (maximum) observations appear after almost 10 yearly 

observations following the previous prey and predator local minimum (maximum) ob­

servations. In fact, our method for finding the local extrema is independent on the 

cycle length of the solutions. Therefore, we are not concerned if there are too many or 

too little observation pairs in each period. On the other hand, the number of cycles 

that the data set contains has to be realistic. For instance, in the Mink-Muskrat data 

set, which we will introduce in the next section, there are about 12 extrema points for 

each species since there a:'e 64 couples of observations. Given that the period is about 

10 years, the number of extrema for each species is roughly 12. This results in having 

about 24 observation pairs in both prey and predator extremum sets (Figure 4.2). We 

created a data set that contains approximately 25 observation pairs in each prey and 

predator extremum sets. The number of deterministic pairs created is 2000 (Figure 4.1). 

All 2000 deterministic pairs are perturbed by adding random errors, EX and Ey, and 

each simulation is repeated 5000 times. The extrema obtained from the first 1000 pairs 

are chosen to estimate the parameters, where the extrema obtained from the last 1000 

pairs are chosen to estimate the variance and for the testing procedure. The reason we 

choose two separate sets of observation pairs will be explained shortly after this. Note 

that taking a large number of deterministic pairs, e.g. 1000 is useful only for getting 

more precise choice of extremum sets. 

As we discussed in Chapter 3, EX and Ey are assumed to be independent. For simplic­
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Figure 4.1 Holling Model: Logarithm of (a) the predator and (b) the prey population 

sizes when (J2 = 0.01. The model parameters are ex = 0.1; K = 250; /3 = 0.05; w = 40; 

1 := 0.7; cl = 0.5. 

ity, we took the variances of both random errors equal, i.e. we set EX N(O, (J2) andrv 

€y rv N(O, 0-
2 ). 

As mentioned in the previous chapter, the core tool to estimate the parameters of the 

model is to identify the predator and the prey isoclines through the predator and the 

prey extremum sets. Identifying the coefficients of the isoclines help us determine either 

the iIl;dividual parameters of the original model or ratios of sorne of the parameters. 

In order to evaluate the isoclines, one needs to obtain the predator and the prey ex­

tremum sets, which in fact consist of the predator local minimum-maximum values, and 

the prey local minimum-maximum values, respectively. Because of the perturbation 

due to the random error effect, it is not guaranteed to find the perturbation of the 

true minimum-maximum value at each period. In order to retain the local minimum­

maximum observation pairs we proceed as follows. For illustration consider the prey: 

an observation is selected as prey local maximum if it is greater than: (a) the mean 
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value of all population sizes of observed preys and (b) the population sizes of the seven 

preceding and the seven succeeding prey observations. Moreover, an observation is se­

lected as prey local minimum if it is smaller than: (a) the mean value of all population 

sizes of observed preys and (b) the population sizes of the seven preceding and the seven 

succeeding preys. Number seven is chosen because there is an approximate 20-year 

cycle (if t indicates years) in the prey and the predator populations. The same proce­

dure applies to the perturbation of predators. Note that in practice, one could rely on 

visual interpretation or other empirical methods and does not necessarily need to use 

'an algorithm' for choosing the elements of extremum sets. The algorithm was needed 

because we repeated the simulation a great number of times. 

Figure 4.1 illustrates a numerical solution to the Holling model corresponding to the 

given parameters. We chose 1/10 of the points on the numerical solutions from each 

cycle in order to avoid having cluttered graphs. 

4.1.1 Estimation 

Suppose P and Q denote the prey and the predator extremum sets, respectively. 

Since the inference is done on a logarithmic scale, we use relatively small values for 

the variance of the random errors. The following four variances were chosen to run the 

simulations: (J2 = 0.01, (J2 = 0.005, (J2 = 0.001 and (J2 = 0.0005. As we mentioned 

earlier in this section, in order to estimate the variances, observations must be taken 

from a closed loop. That is because periodicity property of a closed loop is crucial 

to estimate the variance (see section 3.2.2). That is why we choose the extrema of 

the last 1000 observation pairs to estimate the variance. Since the chosen parameters 

create a numerical solution which asymptotically converges to a limit cycle, we can take 

the observations that are on the closed loop. We use equation (3.27) to estimate the 

variance from the extremum sets. 

Unlike the variance, the parameters are better estimated if the observations are not on 

the closed loop part of the numerical solution. This is because the further the elements 

of the prey (and the predator) extremum sets are from each other in the phase plane the 
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less the random error affects the shape of the isocline curves. That is why the extrema 

of the first 1000 observations pairs are chosen to estimate the parameters. We apply 

ordinary least squares (OLS) to fit a verticalline to Q and a quadratic curve to P since 

according to equations (3.33) and (3.36), a verticalline and a quadratic curve must be 

fitted to the predator extremum and the prey extremum sets, respectively. Then, at 

each simulation, we estimate the coefficients Ao, Al, Do, Dl, D2 , and further, evaluate 

w, K, ®and mby using (3.37). The results are given in tables 4.1 and 4.2 and are 

discussed in section 4.1.3. 

4.1.2 Testing 

Finally, the last part of the simulation is devoted to testing. We apply the 2­

sided regression slope test, the 2-sided t-test and the 2-sided Wilcoxon test to find out 

whether or not a verticalline can be fitted to Q. Since yt is not normally distributed, 

these tests do not work on a quadratic equation. The regression slope test was described 

in Chapter 3. The t-test and the Wilcoxon test are applied when we compare 2-samples 

and further we explain why these tests could work in our case. 

If we want to use the fact that both Xt and Yt are periodic with the same period T, 

the observations must be taken from the closed loop. Therefore, the same pairs of 

observations used to estimate the variance can be used, i.e. the extrema of the last 1000 

observation pairs. 

For simplicity let Ut = log X t and lit = log yt. We use the change of coordinate defined 

in Chapter 3 and we obtain Ût = log Xt and Vi = ft. We obtain 

~t = ~t + Eu,t, 

{ lit = Vt + Ev,t, 

where in our models, at times t where the deterministic Ut has a maximum or minimum 

value. We have the relation 

lit = a + bUt + Ev,t· 

Since Ut is periodic, the deterministic values Ut take only two values at the times we 

consider (maximum and minimum); the values of the corresponding Vt also repeat them­
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selves. So we actually confront two hypotheses: 

b= 0: E[Vt] are the same for aIl t > 0 versus b= 1: E[iltl are different for maxima and 

minima of Ut. By using (4.1), we can write 

b = 0 => vt = a + Et, 

{ b = 1 => vt = a + Üt + Ev,t. 

Since E[Ütl lies on the extrema ü max and Ümin, under the b = 1 hypothesis, Vt is from 

two populations of different means, a +umax and a + Umin' Then we can simply perform 

a 2-sample t-test which should accept the null-hypothesis of i.i.d data sets which give 

an almost 0 estimated slope. 

Another case of 2-sample testing is the Wilcoxon-Mann-Whitney test which does not 

assume normality for the errors. 

The results of the tests are shown in table 4.3. 

4.1.3 Results 

In this section we provide the results obtained from simulation. Tables 4.1 and 

4.2 are devoted to parameter estimates; we can see how the parameter estimates change 

with an increase in &2. The estimates of 0-
2 , Ao and Al are excellent for the whole range 

2of 0- values. The estimates of Do, Dl and D2 are generally good but maybe less 50 for 

0-
2 = 0.01. On the other hand, the estimates of the individual parameters w, K, ~ and 

'if are greatly affected by the small bias in the coefficients Do, Dl, D2 and Ao. Therefore, 

even if the isoclines coefficient estimates have small relative bias, the estimates of the 

parameters of the system can have large relative bias. 

It can be observed that the tests performed with the 2-sided regression slope test are 

excellent. However, we can see that the Wilcoxon test overestimates acceptance error, 

while the t-test underestimates. The somewhat surprising results on the t-test may 

be artifacts of the automatic procedure for choosing extrema in the simulation loops. 

Small experiments where the data were obtained by perturbing the numerical solution 

at exact times of maximum-minimum values gave very good results, i.e. very close to 

the nominal Cl: values. 
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Table 4.1 Estimates of the parameters for (J2 = 0.0005 and (J2 = 0.001 

Parameter Real value Mean QI Median Q3 Relative Bias 

(J2 0.0005 0.0004 0.0004 0.0004 0.0005 0.2 

[b -0.008 -0.0066 -0.0084 -0.0062 -0.0044 0.175 

Dl 1.68 1.4097 0.8961 1.3159 1.8228 0.1609 

Do 80.02 70.6486 45.9361 75.0602 100.1619 0.1171 

Al 0 0.0001 0 a 0 N.A. 

Ao 4.6052 4.6059 4.5968 4.6062 4.6155 -0.0001 

w 40 68.5987 22.9157 46.7337 79.6355 -0.715 

K 250 275.7349 239.3305 259.0887 285.2832 -0.1029 

ex 
73 2 1.654 1.246 1.6113 2.0189 0.173 

t 1.4 1.6851 1.2273 1.4664 1.7979 -0.2036 

(J2 0.001 0.0008 0.0007 0.0008 0.001 0.2 

D2 -0.008 -0.006 -0.0077 -0.0056 -0.0036 0.25 

Dl 1.68 1.28 0.7342 1.1895 1.6995 0.2342 

Do 80.04 77.1728 52.3258 82.1294 109.0825 0.0358 

Al 0 0.0001 0 0 0 N.A. 

Ao 4.6052 6.606 4.5951 4.6061 4.6171 0.0004 

w 40 169.3726 27.2548 54.9277 99.6829 -3.2343 

K 250 295.0879 246.4028 269.112 304.0179 -0.1804 

ex 
73 2 1.5378 1.0918 1.4949 1.9084 0.2311 

t 1.4 2.688 1.271 1.5473 1.9991 -0.92 
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Table 4.2 Estimates of the parameters for (J"2 = 0.005 and (J"2 = 0.01 

Parameter Real value Mean QI Median Q3 Relative Bias 

(J"2 0.005 0.0041 0.0032 0.0039 0.0048 0.18 

D2 -0.0079 -0.0043 -0.0059 -0.0036 -0.0019 0.4557 

Dl 1.68 0.9692 0.3731 0.797 1.363 0.4231 

Do 80.2003 94.3709 69.2848 103.9421 129.6153 -0.1767 

Al 0 -0.0003 0 0 0 N.A. 

Ao 4.6052 4.6105 4.5928 4.6094 4.6262 0.0011 

w 40 164.0656 42.4329 91.1289 180.4262 -3.1016 

K 250 354.7479 271.155 311.4028 382.1624 -0.419 

Cl: 

-:B 
2 1.2281 0.7141 1.1285 1.6278 0.386 

t 1.4 2.638 1.4187 1.9073 2.7762 -0.8843 

(J"2 0.01 0.0104 0.0074 0.0092 0.0115 -0.04 

D2 -0.0079 -0.0036 -0.0049 -0.0029 -0.0014 0.5443 

Dl 1.68 0.8362 0.3023 0.6628 1.1806 0.5023 

Do 80.401 101.1914 78.8744 110.1739 132.0744 -0.2586 

Al 0 0 0 0 0 N.A. 

Ao 4.6052 4.6139 4.5944 4.6138 4.6336 -0.0019 

w 40 169.0691 54.0566 110.9176 217.5539 -3.2267 

K 250 412.8353 289.6489 341.5827 435.4674 -0.6513 

Cl: 

-:B 
2 1.0934 0.5993 0.9969 1.4541 0.4533 

* 
1.4 2.6656 1.5381 2.095 3.1609 -0.904 
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Table 4.3 Testing: How often the predator isocline is accepted as a vertical line 

Type of Testing Percentage of Acceptance 

a 2 = 0.0005 

2-sided Regression 0.9484 

2-sided t-test 0.8209 

2-sided Wilcoxon 1 

a 2 = 0.001 

2-sided Regression 0.9507 

2-sided t-test 0.8588 

2-sided Wilcoxon 1 

a 2 = 0.005 

2-sided Regression 0.9602 

2-sided t-test 0.8914 

2-sided Wilcoxon 1 

2a = 0.01 

2-sided Regression 0.9704 

2-sided t-test 0.8884 

2-sided Wilcoxon 1 
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4.2 Data Analysis 

In this section we apply our method to the Canadian mink-muskrat data, the 

Hudson's Bay Company Records of fur-sales and trappings collected between 1850 and 

1911 (Figure 4.2). The data set we are using here is reported in Brockwell and Davis 

(1991) pp. 557-558. There are several comments on the predator-prey relationship 

between the species listed in the Husdon-Bay data set (Bulmer, 1974). It appears that 

the muskrat cycle is due to predation by mink (Bulmer, 1974). As such, a mink-muskrat 

couple is a predator-prey pair which seems to satisfy the requirement that the prey 

muskrat is the main source of food for the predator mink. There exists an approximate 

10-year cycle of the prey and the predator population (see Froda and Colavita, 2005). 

The results of testing on the mink-muskrat data set are given in table 4.4. The p-value 
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Figure 4.2 Observed population sizes: (a) Mink (b) Muskrat 

corresponding to the predator isocline slope is greater that 0.873. Therefore, we do 

not reject the hypothesis test that the slope is O. In other words, the Holling model 

could be fitted to the mink-muskrat data set. The result is also in agreement with a 
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Table 4.4 Results of testing on the mink-muskrat data set 

Parameter Estimate Std. Error t-value Pr(> Itl) 

Al 1.3303 8.0469 0.165 0.873 

Ao 1.0932 0.7432 1.471 0.180 

Lotka-Volterra model as used in Froda and Colavita (2005) and Froda and Nkurunziza 

(2007). 

4.3 Discussion 

In this chapter, we applied the method of isoclines, introduced in Chapter 3, 

to simulated data and to the Canadian mink-muskrat data set. In simulation, we 

considered various levels of stochastic error. 

Our best results were in testing, especially when comparing regression slopes. In this 

case, even for the largest stochastic error taken, under Ho we were very close to the 

nominal acceptance level for the slope. The other testing methods had a tendency to 

overestimate the acceptance level (Wilcoxon, not powerful enough) or underestimate it 

(t-test) . 

As far as estimation goes, the coefficients no, ni and n2 were well estimated, even 

with relatively large error. But recovering the original parameters did not give good 

results, which is not so surprising because of the transformations we used to estimate 

them. Indeed, it appears that even a slight bias in the estimates of the coefficients of 

the isoclines has a noticeable impact on the parameter estimates of the model; as had 

to be expected, the larger the variance the larger the bias becomes. 

Besides, we showed that it makes sense to base the variance estimates as well as the 2­

group testing on observations coming from a closed loop, while the isoclines' coefficients 

seem to be better estimated if the observations are picked up from that part of a solution 

which has not yet reached the limiting closed loop. We could separate our simulated 

data in two subsets (closer to and further away from a closed loop) but in practice this 
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may be a problem because of scarcity of available data; this is another question that 

should be addressed in the future. 

FinaUy, as seen earlier, we are not yet able to estimate aU the parameters of the model 

individually, and we limited ourselves to estimate the ratios ®and m. These ratios 

are important in themselves, since they express in a certain way how birth and death 

rates compare for each species. By emulating Froda and Colavita (2005) and Froda and 

Nkurunziza (2007), we expect that by relying on periodicity properties of the solution 

we should be able to develop a method which could estimate the four parameters a, (3, 

oand r individuaUy, and eventuaUy make predictions based on these models. 



CONCLUSION 

In this thesis we describe sorne important deterministic models for predator-prey 

interactions, namely Lotka-Volterra, Holling (1959), Hanski (1991) and Arditi (2004). 

We explain the interpretation of their parameters, and present a brief analysis of their 

qualitative properties, from the dynamical systems point of view. Further, at the core 

of this work, we introduce a new stochastic model, which adds observational error to 

the solutions of the ODEs. 

An important part of the thesis deals specifically with statistical inference, namely es­

timating the parameters, as well as a comparison of models based on simple tests. In 

the end, we conduct simulation studies to illustrate our method, and check empirically 

the properties of our estimators and tests (we compute relative bias and quartiles). We 

also apply the testing and estimation procedure to a real data set. These results are 

presented in Chapter 4. 

The main idea behind our method is to estimate or to test the coefficients of the model 

isoclines. F\lfther, the original parameters can be estimated from the estimated coeffi­

cients. For now, we proposed a simple method to achieve this final estimation, but we 

consider perfecting it in future. Indeed, while our results in testing seem good, espe­

cially when comparing regression slopes, the estimation needs more refinement. 

Although the isoclines' coefficients Do, Dl and D2 were well estimated, even with rel­

atively large errors, transforming them to recover the original parameters did not give 

us good results. This is not so surprising, given that the transformations we used are 

not so-called invariant. Therefore, we may consider a maximum likelihood approach, or 

resorting to periodicity properties of the solution to be able to develop a method which 

could improve present estimates, and also allow us to estimate the four parameters· (x, 

{J, 6, 'Y individually. Estimating the individual parameters is crucial in order to predict 

the population sizes of the species in future time. Other famous authors, like Froda 
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and Colavita (2005) and Froda and Nkurunziza (2007), have relied on periodicity to 

estimate the Lotka-Volterra parameters from its Hamiltonian. 

Another possibility is to try to make use of two more equations III order to find a 

unique set of solutions for the system of equations (3.37) and (3.47), corresponding to 

the Holling and the Arditi models, respectively. Note that we work in the phase plane. 

Therefore, one might be able to obtain an extra equation among the parameters of the 

model from a relation between the center of mass of the system and the equilibrium 

point of the solution. The mass center, as well as the asymptotically stable equilibrium 

of a limit cycle solution always lie inside the closed loop. We know that the location of 

an equilibrium point is where the isoclines intersect. But, detecting the location of the 

mass center without knowing the values of all the individual parameters is a challenge. 

Sorne nonparametric procedure may prove of help. On the other hand, when it cornes 

to the Hanski model, only one extra equation is needed to enable us to find a unique 

solution for the equation (3.42). The periodicity property still seems a valid method to 

implement in this case. 

To conclude: we feel that the proposed testing procedure is very promising, but the 

estimation method needs to be further developed. 



BIBLIOGRAPHY
 

Abrams, P. A. and Ginzburg, 1. 2000. The nature of predation: prey dependent, ratio 
dependent or neither? TREE, 15, 337-341. 

Akçakaya, R., Arditi, Rand Ginzburg, L. 1995. Ratio-dependent predation: an ab­
straction that works. Ecology, 76, 995-1004. 

Albrecht, F., Gatzke, H., Haddad A. and Wax, N. 1974. The dynamics of two interacting 
populations. J. Math. Anal. Appl., 46, 658-670. 

Arditi, R, Callios, J., Tyutyunov, Y. and Jost, C. 2004. Does mutual interference always 
stabilize predator-prey dynamics? A comparison of models. C.R. Biologies, 327, 
1037-1057. 

Arditi, Rand Ginzbrug, 1.R 1989. Coupling in predator-prey dynamics: ratio­
dependence. Journal of Theoretical Biology, 139, 311-326. 

Berezovskaya, F., Karev, G. and Ardi ti, R 2001. Parametric analysis of the ratio­
dependent predator-prey mode!. Journal of Mathematical Biology, 43, 221-246. 

Brockwell, P.J. and Davis, RA. 1991. Time Series: Theory and Methods. 2nd edition, 
Springer-Verlag, New York. 

Bulmer, M.G. 1974. A statistical analysis of the 10-year cycle in Canada. The Journal 
of Animal Ecology, 43,701-718. 

Froda, S. and Colavita, G. 2005. Estimating predator-prey systems via ordinary dif­
ferential equations with closed orbits. Australian and New Zealand Journal of 
Statistics, 42, 235-254. 

Froda S. and Nkurunziza S. 2007. Prediction of predator-prey populations modeled by 
perturbed ODEs. Journal of Mathematical Biology, 54, 407-451. 

Fuller, W. 1987. Measurement error models. John Wiley, New York. 

Gasull, A., Kooij, RE., and Torregrosa, J. 1997. Limit cycles in the Holling-Tanner 
mode!. Publicacions Matemàtiques, 41, 149-167. 

Getz, W.M. 1984. Population dynamics: a unified approach. 1. Theor. Biol., IDS, 623­
643. 

Ginzburg, L. 1998. Assuming reproduction to be a function of consumption raises sorne 
doubts about sorne popular predator-prey models. Ecology, 67, 325-327. 



78 

Hanski, 1. 1999. Metapopulation Ecology. Oxford University Press, New York. 

Hanski, 1., Hansson, 1., and Henttonen, H. 1991. Specialist predators, generalist preda­
tors, and the microtine rodent cycle. The Journal of Animal Ecology, 60, 353-367. 

Hanski, 1., and Korpimaki, E. 1995. Mi'crotine rodent dynamics in northern Europe: 
parameterized models for the predator-prey interaction. Ecology (JSTOR), 76, 
840-850. 

Hanski, 1., Henttonen, H., Korpimaki, E., Oksanen, 1. and Turchin, P. 2001. Small­
rodent dynamics and predation. Ecology, 82, 1505-1520. 

Hirsch, M. W. 1990. Systems of differential equations which are competitive or Coop­
erative: IV. Structural stability in three dimensional systems. SIAM Journal of 
M athematical A nalysis, 21, 1225-1234. 

Hirsch, M. W. and Smale, S. 1974. Differential Equations, Dynamical Systems, and 
Linear Algebra. Elsevier Science (Academic Press), The United States of America. 

Hirsch, M. W., Smale, S., Devaney, R. 1. 2004. Differential Equations, Dynamical Sys­
tems, and An Inroduction to Chaos. Elsevier Science (Academic Press), The 
United States of America. 

Holling, C. S. 1959. The components of predation as revealed by study of small mammal 
predation of the European pine swafly. Canadian Entomologist, 91, 293-320. 

Holling, C. S. 1965. The functional response of predators to prey density and its role 
in mimicry and population regulation. Memoirs of the Entomological Society of 
Canada, 45, 1-60. 

Jost, C., Arino, O. and Arditi, R. 1999. About deterministic extinction III ratio­
dependent predator-prey models. Bull. Math. Biol., 61, 19-32. 

Jost, C. and Ellner, S.P. 2000. Testing for predator dependence in predator-prey dy­
namics: a non-parametric approach. Proc. R. Soc. Lond. B, 267, 1611-1620. 

Jost, C. and Arditi, R. 2001. From pattern to process: identifying predator-prey inter­
actions. Population Ecology, 43, 229-243. 

Kolmogorov, A.N. 1936. Sulla teoria di Volterra della lotta per l'esistenza. G. dell'Inst. 
Italiano per l'Attuari, 7, 74-80. 

Kot, M. 2001. Elements of Mathematical Ecology. Cambridge University Press, The 
United Kingdom. 

Lehmann, E.1. 1975. Nonparametrics: statistical methods based on ranks. Holden Day, 
San Francisco. 

Leslie, P.H. 1948. Sorne further notes on the use of matrices in population mathematics. 



79 

Biometrika, 35, 213-245. 

Lotka, A. J. 1925. Elements of Physical Biology. Baltimore: Williams and Wilkins. 

May, R.M. 1973. Stability and complexity in model ecosystems. Princeton University 
Press, Princeton, New Jersey. 

O'Donoghue, M., Boutin, S., Krebs, C.T., Zuleta, G., Murray, D.L. and Hofer, E.J. 
1998. Functional responses of coyotes and lynx to the snowshoe hare cycle. Pop. 
Ecology, 43, 229-243. 

Renshaw, E. 1991. Modeling Biological Populations in Space and Time. Cambridge Uni­
versity Press, The United Kingdom. 

Rosenzweig, M.L. and MacArthur, R.H. 1963. Graphical representation and stability 
conditions of predator-prey interactions. Am. Nat., 97, 29-223. 

Saez, E. and Gonzales-Oliveres, E. 1999. Dynamics of a predator-prey mode!. SIAM J. 
Appl. Math., 59, 1867-1878. 

Skalski, G.T. and Gilliam, J.F. 2001. Functional responses with predator interference: 
viable alternatives to the Holling type II mode!. Ecology, 82, 3083-3092. 

Tanner, J.T. 1975. The stability and the intrinsic growth rates of prey and predator 
populations. Ecology, 56, 855-867. 

Volterra, V. 1926. Fluctuations in the abundance of a species considered mathematically. 
Nature, 118, 558-560. 


