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RÉSUMÉ

La régression linéaire, qui a comme objectif la modelisation de la moyenne con-
ditionnelle, est une méthode standard pour étudier la relation entre une variable
réponse et un ensemble de prédicteurs. Elle explique principalement la relation
linéaire entre les variables au milieu de la distribution conditionnelle de la variable
réponse et, généralement, la méthode nécessite plusieurs hypothèses principales
à satisfaire en pratique. En plus, cette méthode est sensible aux observations
aberrantes.
En utilisant les fonctions quantiles conditionnels proposées par Koenker et Bassett
(1978), on peut expliquer la relation entre la variable réponse et les prédicteurs
dans des quantiles souhaités afin de capturer une image globale de l’effet des
covariables sur la distribution de la variable réponse. La régression quantile né-
cessite aucune pré-hypothèse et c’est un outil robuste pour analyser les données
influencées par des valeurs aberrantes; cette technique performe bien également
en présence de données hétérogènes. Cependant, la méthode décrit une relation
linéaire entre les quantiles de la variable réponse et les prédicteurs.
Ainsi, l’étude de la structure de dépendance non linéaire entre la variable réponse
et les prédicteurs lorsque la variable réponse suit une distribution asymétrique ou
à queue lourde est un grand défi pour les modèles existants.
Les copules sont des modèles appropriés pour décrire l’association entre des vari-
ables aléatoires. Elles permettent de modéliser séparément la dépendance et les
distributions marginales. D’autre part, le modèle d’association basé sur les cop-
ules peut être vu comme une régression quantile. Cette méthode permet d’étudier
l’association non linéaire entre variables aléatoires et expliquer ainsi la structure
de dépendance entre les variables dans les queues de la distribution jointe. Ainsi
la régression quantile basée sur des copules est une alternative utile aux méthodes
existantes telles que les moindres carrés ordinaires et la régression quantile.
Dans ce mémoire nous faisons une investigation globale de la méthode de ré-
gression quantile basée sur les copules et nous comparons cette méthode avec les
approches existantes.

Mots-clés: régression, régression quantile, fonctions quantiles conditionnelles, cop-
ules, dépendance non linéaire.



ABSTRACT

The linear regression framework, which is based on conditional mean, is a stan-
dard method for investigating the relationship between a response variable and a
set of predictors. It mainly explains the linear relationship between variables in
the middle of the distribution of the outcome and, generally, the method requires
principal assumptions and is sensitive to outliers.
By employing conditional quantile functions presented by Koenker and Bassett
(1978), one can explain the relationship between the response variable and pre-
dictors in desired quantiles, and thus, one can capture an overall picture of the
predictors’ effects on the response variable distribution. The quantile regression
does not require any pre-assumption, and it is a robust tool for analyzing data
influenced by outliers. The method also has acceptable performance in heteroge-
neous situations. However, this method explains the linear relationship between
the response quantiles and the predictors.
Thus, the investigation of nonlinear dependence structure between the response
variable and the predictors, when the response follows an asymmetric or heavy-
tailed distribution, is a big challenge for existing models, including both linear
and quantile regression methods.
Copula functions are suitable models for describing the association between ran-
dom variables. They allow modeling of dependence and the marginal distributions
separately. On the other hand, the copula-based quantile regression is a quantile
regression model based on copulas. This method provides a flexible way to in-
vestigate the nonlinear association between random variables and enables us to
explain the dependence structure of variables in the tails of their joint distribution.
Consequently, copula-based quantile regression is a useful alternative to existing
methods such as the ordinary least squares and quantile regression.
This thesis provides a global investigation of the quantile regression method based
on copulas, and we compare this method with existing approaches.

Key-words: Regression, Quantile regression, Conditional quantile functions, Cop-
ulas, non-linear dependence.
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INTRODUCTION

Several relational approaches are available in the literature to examine the associa-

tion between variables. The linear regression is one of the existing methods which

studies the linear relationship between a response variable and a set of predictors.

It estimates the mean of the response variable using these predictors (conditional

mean). The underlying optimization problem of linear regression is to minimize

the sum of squared errors, and it is thus labeled as ordinary least squares (OLS)

regression.

OLS regression, generally, requires some principal assumptions such as outcome

normality, homogeneity of variance, and independence of the errors. Violation of

these primary assumptions has a substantial impact on model estimation. Also,

it is notable that the method is sensitive to outliers.

The quantile regressions (QR) can be considered as an alternative approach to

OLS regression. The method models the conditional quantile function instead of

the outcome conditional mean. Koenker and Bassett Jr (1978) introduced the

method to estimate linear models based on conditional quantile functions. These

models are able to investigate the association between random variables, not only

in the middle of the response conditional distribution but also in the tails of the

distribution. Consequently, they can provide a comprehensive picture of the pre-

dictors’ effects on the distribution of the response variable. An appealing feature

of QR that has been frequently highlighted is that it describes the conditional

distribution of the response variable while it does not require global distributional

assumptions (Koenker, 2005). Moreover, QR is a robust tool for analyzing data

influenced by outliers since the corresponding model reduces the influence of out-
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liers (Koenker & Bassett Jr, 1982). Also, the method is known to have acceptable

performance in heterogeneous situations.

A common limitation of OLS and QR techniques is that both methods are less

convenient for describing nonlinear dependence structure between the response

and the predictors. Moreover, capturing the association between these variables

at a given quantile in the upper-right quadrant and lower-left quadrant, when the

distribution of the response variable is asymmetric or a heavy-tailed distribution,

is a big challenge for both methods.

Copula-based quantile regression (CBQR) models are flexible alternative approaches

to existing techniques such as OLS and QR; they are quantile regression modeling

approaches based on copula functions to study both linear and nonlinear associa-

tions between random variables (Briollais & Durrieu, 2014). Copulas have recently

seen growing attention in the literature; this is mainly due to Sklar’s Theorem,

which states that a copula is a function that couples a multivariate distribution

function to its one-dimensional marginal distributions (Nelsen, 2006). Thus, joint

modeling of random variables can be achieved using a copula model and marginal

distributions. Several classes of copulas exist; this allows for flexible modeling of

random variables joint distribution.

In this thesis, we are interested in investigating CBQR models because they do

not require strong pre-assumptions such as normality or homogeneity of variance,

and they are robust to outlies.

A summary of the upcoming chapters is given as follows: in Chapter 1, we present

a brief history of copula theory, provide definitions and essential properties of

copulas, describe various methods of constructing copulas and introduce some

prominent families of copulas. In Chapter 2, we describe quantiles and quantile

check/loss function, introduce QR, and explain the basic properties of QR. Chap-

ter 3 investigates the copula-based quantile models for Elliptical and Archimedean

copulas; CBQR parameter estimation is also the focus of this chapter. In Chapter



3

4, we evaluate the performance of CBQR with respect to existing methods using

simulated data generated from different models. Through these simulation stud-

ies, we compare the performance of OLS, QR, and CBQR techniques. We end

this chapter with copula misspecification sensitivity analysis. Finally, the thesis

terminates with some conclusions and a discussion.



CHAPTER I

BASICS OF COPULAS

The concept of copulas was first introduced in mathematical and statistical litera-

ture by Sklar (1959), who described a copula as a function that joins (or "couples")

a multivariate distribution function to its one-dimensional margins which are uni-

form on the interval [0,1] (Nelsen, 2006).

As Fisher (1997) mentioned in the Encyclopedia of Statistical Sciences, "Copulas

[are] of interest to statisticians for two main reasons: firstly, as a way of studying

scale-free measures of dependence, and secondly, as a starting point for construct-

ing families of bivariate distributions (Nelsen, 2003)." Thus, copulas allow us to

study the dependence structure of the marginal distributions.

Some of a copulas’ utilities are 1) a capability to investigate the nonlinear depen-

dence, 2) an ability to measure dependencies for heavy-tailed distributions, and

3) flexibility to fit parametric, semi-parametric, and non-parametric models.

In this chapter, we will present some important theorems, definitions, and prop-

erties necessary to understand copulas’ concept. A summary of this chapter is

as follows. Section 1.1 provides definitions and important properties of copulas.

Section 1.2 describes various methods of constructing copulas and Section 1.4

introduces some important families of copulas.
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1.1 Definitions and basic properties of copulas

In this section, firstly, we introduce some new notation, definitions, theorems,

properties, and concepts, based on Nelsen (2006).

Let R, R̄ and R̄2 denote the common real line (−∞,+∞), extended real line

[−∞,+∞], and extended real plane R̄ × R̄, respectively. The Cartesian prod-

uct of two closed intervals ([x1, x2] × [y1, y2]) is a rectangle, B, with the vertices

(x1, y1), (x1, y2), (x2, y1), and (x2, y2) in R̄2. Finally, define the unit square I2 as

the product I× I where I = [0, 1].

Consider two random variables X and Y with distribution functions F (x) and

G(y), respectively. Let the joint distribution function of these two random vari-

ables be H(x, y). For each point (x, y), we have three numbers: F (x), G(y) and

H(x, y). According to Nelsen (2006), a function like H such that whose domain,

DomH, is a subset of R̄2 and whose range, RanH, is a subset of R, is called a

2-place real function.

Definition 1.1. H-volume of rectangle B = [x1, x2]× [y1, y2] is given by

VH(B) = H(x2, y2)−H(x2, y1)−H(x1, y2) +H(x1, y1),

where H is a 2-place real function such that DomH = S1 × S2 and S1, S2 are

nonempty subsets of R̄ and the vertices of the rectangle B are in DomH.

Definition 1.2. Consider a 2-place real function H with DomH. For all rectan-

gles B whose vertices fall in DomH, we say that H is 2-increasing if VH(B) ≥ 0.

Assume that H is a nondecreasing function of x and y. The following example

shows that each nondecreasing function, such as H, is not 2-increasing in its

domain.
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Example 1.1. Let H(x, y) = max(x, y) be a function on I2, where I = [0, 1]. H

is a nondecreasing function of x and of y. By definition 1.2, we have

VH(I2) = 1− 1− 1 + 0 = −1.

Thus, H is not a 2-increasing function. It should be noted that if H is a 2-

increasing function, it does not imply that H is nondecreasing in each argument.

The following definition is an additional hypothesis that shows a 2-increasing

function is nondecreasing with respect to each argument.

Definition 1.3. Let S1 and S2 be nonempty subsets of R, and a1 and a2 are

minimum elements of S1 and S2, respectively. The function H is grounded if

H(x, a2) = 0 = H(a1, y) for all (x, y) ∈ S1 × S2.

Example 1.2. Let H(x, y) = (x+1)(ey−1)
x+2ey−1

be a function with domain [−1, 1] ×

[0,∞]. The minimum values of [−1, 1] and [0,∞] are -1 and 0 respectively, so

that H(x, 0) = 0 = H(−1, y) ∀(x, y) ∈ [−1, 1]× [0,∞]. Thus, H is grounded.

Definition 1.2 and 1.3 lead to the following Proposition proved in Nelsen (2006,

p.9):

Proposition 1.1. Let S1 and S2 be nonempty subsets of R̄. If H is a grounded

and 2-increasing function with domain S1 × S2, then it is nondecreasing for each

argument.

1.1.1 The definition of a copula

Definition 1.4. A subcopula C ′ is a function with the following properties:

1. The domain of C ′ is S1×S2, where S1 and S2 are subsets of I including 0 and

1;
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2. C ′ is grounded and 2-increasing function;

3. ∀(u, v) ∈ S1 × S2, C ′(u, 1) = u and C ′(1, v) = v.

Note that because C ′ is grounded, its minimum values in its domain equals zero.

According to Property 3 of Definition 1.4, the maximum value of a subcopula C ′

for every (u, v), in DomC ′ is equal to one. Hence, 0 ≤ C ′(u, v) ≤ 1.

We can now present a copula function definition, which is a subcopula with domain

[0, 1]2.

Definition 1.5. A (two-dimensional) copula is a subcopula function C : [0, 1]2 →

[0, 1] with the following properties:

1. For all u, v ∈ I, C is grounded, that is, C(u, 0) = 0 = C(0, v);

2. For all u, v ∈ I, C is such that C(u, 1) = u and C(1, v) = v;

3. For every u1, u2, v1, v2 ∈ I such that u1 ≤ u2 and v1 ≤ v2, C is 2-increasing,

that is, VC([u1, u2]× [v1, v2]) = C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

Example 1.3. Let M be the function defined on [0, 1]2 by M(u, v) = min(u, v),

known as the "Fréchet-Hoeffding upper bound". We show that M is a copula

function. That is, we have

1. For all u, v ∈ I, M is grounded because, min(u, 0) = 0 = min(0, v).

2. For all u, v ∈ I, min(u, 1) = u and min(1, v) = v.

3. In this step, we are going to demonstrate M is a 2-increasing function. To

do so, for every u1, u2, v1, v2 in I, we consider four different cases. First, u1 < v1

and u2 < v2; second, u1 < v1 and u2 > v2; third, u1 > v1 and u2 < v2; fourth,

u1 > v1 and u2 > v2. We consider the first case (u1 < v1 and u2 < v2). For every

u1, u2, v1, v2 ∈ I such that u1 ≤ u2 and v1 ≤ v2, one can write u1 < v1 < v2. In



8

this case, M is a 2-increasing function because

VM([u1, u2]× [v1, v2]) = min(u2, v2)−min(u2, v1)−min(u1, v2) +min(u1, v1)

= u2 −min(u2, v1)− u1 + u1

= u2 −min(u2, v1) ≥ 0.

Similarly, for the other cases, it can be proved that M is a 2-increasing function.

So, from 1, 2, and 3 above, we conclude that M is a copula. In a similar manner,

one can show that,W , the "Fréchet-Hoeffding lower bound" defined byW (u, v) =

max(u+ v − 1, 0) with domain [0, 1]2, is also a copula function.

Example 1.4. The function, Π(u, v) = uv, is called the product copula. In what

follows, we demonstrate that Π is indeed a copula in [0, 1]2.

1. For all u, v in I, Π(u, v) is grounded because the least value for u and v in I is

zero. So, Π(u, 0) = 0 = Π(0, v).

2. For all u, v in I, Π(u, 1) = u and Π(1, v) = v.

3. For every u1, u2, v1, v2 in I such that u1 ≤ u2 and v1 ≤ v2, Π(u, v) is a 2-

increasing functon because

VΠ([u1, u2]× [v1, v2]) = Π(u2, v2)− Π(u2, v1)− Π(u1, v2) + Π(u1, v1)

= u2v2 − u2v1 − u1v2 + u1v1

= (v2 − v1)(u2 − u1) ≥ 0.

So, Π is a copula function.

As follows, we introduce an essential theorem about copulas, which is presented

by Sklar in 1959. Sklar’s theorem connects the joint distribution functions and

their marginal distributions via copulas.

Theorem 1.1. (Sklar’s theorem): Let X and Y be random variables with distri-

bution functions F and G, respectively, and joint distribution function H. Then
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there exists a copula C such that,

H(x, y) = C(F (x), G(y)). (1.1)

If F and G are continuous, then C is unique. Conversely, the function H in (1.1)

is a joint distribution function with margins F and G if C is a copula and F and

G are two distribution functions (Nelsen 2006, p.18). Next is the multivariate

case of Sklar’s theorem.

Theorem 1.2. (Multivariate case) Let X = (X1, X2, ..., Xd) be a multivariate

random vector with d-dimensional joint distribution function H and continuous

marginal distribution functions F1, F2, ..., Fd, respectively. There exists a d-copula

C such that,

H(x1, x2, ..., xd) = C(F1(x1), F2(x2), ..., Fd(xd)). (1.2)

Conversely, if C is a d-copula and F1, F2, ..., Fd are distribution functions, then

the function H in (1.2) is a d-dimensional joint distribution function with margins

F1, F2, · · · , Fd (Cherubini et al., 2004).

1.1.2 Basic properties of copulas

Consider two random variables, X and Y , with continuous distribution functions

F (x) = P (X ≤ x) and G(y) = P (Y ≤ y), respectively, and a joint distribution

function H(x, y) = P (X ≤ x, Y ≤ y). Let U = F (X) and V = G(Y ), then

according to Probability Integral Transformation, the random variables U and V

have a uniform distribution on the interval [0, 1].

Property 1.1. A copula is uniformly continuous

Let C be a copula. Then for every (u1, u2) and (v1, v2) in domain of C, we have

|C(u2, v2)− C(u1, v1)| ≤ |u2 − u1|+ |v2 − v1|.
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Thus, C satisfies a Lipschitz condition in [0, 1]2. Thus, it is uniformly continious

(Nelsen, 2003).

u

v

W
(u,v)
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Figure 1.1: Three-dimensional graphs and contour diagrams for Fréchet-

Hoeffding lower bound copula.

Property 1.2. A copula is between the Fréchet-Hoeffding bounds.

Let C be a copula. For an arbitrary point (u, v) in DomC, we can show that

W (u, v) ≤ C(u, v) ≤M(u, v),



11

where W (u, v) = max(u + v − 1, 0) is the Fréchet-Hoeffding lower bound and

M(u, v) = min(u, v) is the Fréchet-Hoeffding upper bound.
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Figure 1.2: Three-dimensional graphs and contour diagrams for Fréchet-

Hoeffding upper bound copula.

Definition 1.5 implies that C(u, v) ≤ C(u, 1) = u and C(u, v) ≤ C(1, v) = v.

Thus, C(u, v) ≤ min(u, v). Also, the copula C is a 2-increasing function, and
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VC([u, 1]× [v, 1]) ≥ 0 implies

VC([u, 1]× [v, 1]) = C(u, v) + C(1, 1)− C(u, 1)− C(1, v)

= C(u, v) + 1− u− v ≥ 0.

So, C(u, v) ≥ u+v−1, and by considering C(u, v) ≥ 0 yields C(u, v) ≥ max(u+v−

1, 0). Therefore, for every copula C and every (u, v) in I2, a copula is between the

Fréchet-Hoeffding bounds. On the other hand, any copula is a continuous surface

situated between Fréchet-Hoeffding lower and upper bounds (Nelsen 2006, p.12).

Proposition 1.2. Let C be the copula of the continuous random variables X and

Y . Let Π be the product copula. Then X and Y are independent if and only if

C = Π (Nelsen, 2006).

Proof. C is a copula. So, for the random variables X and Y with distribution

functions u = F (x) and v = G(y), there exists a joint distribution function H

such that, H(x, y) = C(F (x), F (y)). By considering C(F (x), F (y)) = Π = uv, we

have H(x, y) = uv = F (x)G(y). That is, X and Y are independent. On the other

hand, if X and Y are independent, we conclude that H(x, y) = F (x)G(y) = uv.

Also, we know that H(x, y) = C(F (x), F (y)), thus, C(F (x), F (y)) = uv and

C = Π.

In Figure 1.1, Figure 1.2, and Figure 1.3, we illustrate the Fréchet-Hoeffding

bounds and the product copula by three-dimensional graphs and contour dia-

grams. A contour diagram is a way to show the specific three-dimensional graph

in a two-dimensional plate: i.e.: C(u, v) = cte.
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Figure 1.3: Three-dimensional graphs and contour diagrams for the product

copula.

Proposition 1.3. The partial derivatives of the copula C, with respect to vari-

ables, U = F (X) or V = G(Y ), exist and are defined as

0 ≤ ∂

∂u
C(u, v) = P (V ≤ v|U = u) ≤ 1,

0 ≤ ∂

∂v
C(u, v) = P (U ≤ u|V = v) ≤ 1.

In addition, the functions u 7→ ∂C(u, v)/∂v and v 7→ ∂C(u, v)/∂u are well-defined
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and nondecreasing almost everywhere on [0, 1], see page 13 of Nelsen (2006) for

proof. We can use the partial derivatives of the copula for determining conditional

distribution functions. See Chapter 3 to explain how the conditional copula quan-

tiles arise.

Property 1.3. The copula density

The copula density, c(., .), exists everywhere in I2 and is defined as

c(u, v) =
∂2C(u, v)

∂u∂v
.

Proof (Nelsen 2006, p.14).

Let X and Y be two continuous random variables with joint density function h,

marginal distributions F and G, and density functions f and g, respectively, then,

we have

h(x, y) = c(FX(x), GY (y))f(x)g(y)

1.2 Methods of constructing copulas

There are several methods for creating copula. In this section, we introduce some

techniques to generate bivariate and multivariate copulas. We access a bivariate

or multivariate distribution function and its corresponding marginal distribution

functions by defining a copula. It is useful for both simulation and modeling.

1.2.1 The inversion method

Let X and Y be random variables with joint distribution function, H, and known

continuous marginal distributions u = F (x) and v = G(y). Their inverses exist

and are F−1 and G−1, respectively. When F and G are continuous, then for any
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(u, v) in the domain of C, we can find a unique copula defined as

C(u, v) = H(F−1(u), G−1(v))

= P (X ≤ F−1(u), Y ≤ G−1(v)). (1.3)

The above result provides a method of constructing copulas from joint distribution

functions. Similar to the two-dimensional case, we present the result in the case

of a random vector. Thus, for (u1, u2, . . . , ud)
> ∈ Rd, one can write

C(u1, u2, . . . , ud) = H(F−1
1 (u1), F−1

2 (u2), . . . F−1
d (ud))

= P (X1 ≤ F−1
1 (u1), X2 ≤ F−1

2 (u2), . . . , Xn ≤ F−1
d (ud)).

Example 1.5. Let X and Y be random variables with Gumbel bivariate joint

distribution function defined by

H(x, y) = [1 + exp(−x) + exp(−y)]−1, x, y ∈ [−∞,∞].

The marginal distributions of X and Y are

F (x) = [1 + exp(−x)]−1 and F (y) = [1 + exp(−y)]−1.

Hence,

F−1(u) = − ln

(
1− u
u

)
and F−1(v) = − ln

(
1− v
v

)
.

Then, according to relationship (1.3), we have

C(u, v) = H

(
− ln

(
1− u
u

)
,− ln

(
1− v
v

))
=

[
1 + exp

(
−
(
− ln

(
1− u
u

)))
+ exp

(
−
(
− ln

(
1− v
v

)))]−1

=
uv

u+ v − uv
, u, v ∈ [0, 1].
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1.2.2 Generator function method

In this method, we use a specific function called the "Generator" function to

construct a copula. It is denoted by ϕ and has the following properties:

1. ϕ is a continuous and strictly decreasing function with domain [0, 1] and range

[0,∞];

2. ϕ is such that ϕ(1) = 0;

3. The pseudo-inverse (see Appendix A) of ϕ exist (ϕ−1) and is a function from

[0,∞] to [0, 1] (Cherubini et al., 2004).

Theorem 1.3. Let ϕ be a generator function and ϕ−1 be its pseudo-inverse. Then,

the function C from I2 to I given by

C(u, v) = ϕ−1 (ϕ(u) + ϕ(v)) , (1.4)

is a copula if and only if ϕ is convex.

Proof (Nelsen 2006, p.111).

Example 1.6. (Clayton copula) suppose the generator ϕ is given by

ϕδ(t) = 1
δ
(t−δ− 1), δ ∈ [−1,∞) \ {0}. Then, its inverse is ϕ−1

δ (t) = (δt+ 1)
−1
δ . By

consideration of ϕ, ϕ−1 and relationship (1.4), the Clayton copula is defined as

C(u, v) = ϕ−1(ϕ(u) + ϕ(v))

= [δ(
1

δ
(u−δ − 1)) + δ(

1

δ
(v−δ − 1)) + 1]

−1
δ

= [(u−δ + v−δ − 1)]
−1
δ .

Table 1.1 lists the generator function for well-known copulas of the Archimedean

family. A complete list of these generator functions is presented in Nelsen (2006),

page 116.
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Name Cδ(u, v) δ ∈ Generator ϕδ(t)

Gumbel exp(−[(− lnu)δ + [(− ln v)δ]
1
δ ) [1,∞) (− ln(t))δ

Clayton [max(u−δ + v−δ − 1, 0)]−
1
δ [−1,∞) \ {0} 1

δ (t
−δ − 1)

Frank −1
δ ln(1 +

(e−δu−1)(e−δv−1)
e−δ−1

) (−∞,+∞) \ {0} − ln( e
−δt−1
e−δ−1

)

Joe 1− [(1− u)δ + (1− v)δ − (1− u)δ(1− v)δ]
1
δ [1,∞) − ln(1− (1− t)δ)

Table 1.1 The list of well-known Archimedean copulas with their generator func-

tions.

1.3 Dependence measures

This thesis introduced dependence modeling between X and Y via copulas, which

are so far, parametric models. In mathematical statistics, there are several non-

parametric association measures. Kendall’s tau and Spearman’s rho are two ex-

amples used to measure the strength of dependence implied by copulas (Mai &

Scherer 2014, p.44).

In this section, we describe Kendall’s tau as a concordance-based dependence

measure.

Let (X, Y ) be an independent and identically bivariate random vector with a con-

tinuous joint distribution function H. Also, let (x1, y1) and (x2, y2) be two pair

observations of this vector. If (x1 − x2)(y1 − y2) > 0, these pair observations

are concordant and if (x1 − x2)(y1 − y2) < 0, they are disconcordant. In fact,

the Kendall’s tau refers to differences between the concordant probability and the

disconcordant probability (Mai & Scherer 2014, p.41).

More precisely, the Kendall’s tau for two random copies of (X, Y ), (X1, Y1) and
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(X2, Y2), is defined as

τX,Y = P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0] .

Let U = F(X) and V = G(Y) be two random variables with uniform distribution

function on [0, 1]. The link between Kendall’s tau and the copula C of the two

random variables X and Y is given as

τX,Y =

∫∫
I2

C(u, v)dC(u, v)− 1. (1.5)

Demonstration of (1.5) is given in details in Nelsen (2006), page 159.

Table 1.2 demonstrates the relationship between Kendall’s tau and some well-

known copulas. Note that there is no closed-form to reach the τX,Y for the Frank

copula, and it is computed by statistical software such as R.

Measure
Gaussian

−1 < δ < 1

Gumbel

(δ ≥ 1)

Clayton

(δ > 0)
Frank (δ > 0)

τX,Y
2
π arcsin(δ) 1− 1

δ
δ
δ+2 1 + 4(D1(δ)−1)

δ

Table 1.2 Relationship between Kendall’s tau and copula parameter for different

copulas. Note that, D1(δ) = 1
δ

∫ δ
0

t
1−et

dt.

1.4 Families of copulas

In this section, we introduce the two most important families of copulas: Elliptical

and Archimedean copulas.

1.4.1 Elliptical copulas

Two important Elliptical copulas are the Gaussian and the Student-t copulas.

Gaussian copula: Let Φ2(x, y; ρ) be a bivariate standard normal distribution
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function with correlation coefficient ρ and let Φ(x) and Φ(y) be univariate stan-

dard normal margin. Then, according to the inversion method, the general form

of the Gaussian (Normal) copula is introduced as follows (Briollais & Durrieu,

2014):

C(u, v) = Φ2(Φ−1(u),Φ−1(v)), (u, v) ∈ [0, 1]2.

## Warning in library(package, lib.loc = lib.loc, character.only =

TRUE, logical.return = TRUE, : there is no package called ’copula’

## Error in ellipCopula("normal", param = 0.8, dim = 2, dispstr =

"un"): could not find function "ellipCopula"

## Error in persp(normal, pCopula, theta = 30, phi = 30, expand =

0.8, col = "yellow", : object ’normal’ not found

## Error in persp(normal, dCopula, theta = 65, phi = 30, expand =

0.8, col = "yellow", : object ’normal’ not found

## Error in contour(normal, dCopula, col = "red", main = "Contour

diagram for Gaussian’s density"): object ’normal’ not found

## Error in rCopula(2000, normal): could not find function

"rCopula"

Figure 1.4: The Gaussian copula and its density function for ρ = 0.8. The

corresponding Kendall’s tau is τX,Y = 0.59.

Remember that if X and Y have a bivariate normal distribution function, we can

also conclude that their marginal distribution functions are normal distributions.

The inverse of this property is not true. So, if the marginal distribution function of

X and Y are normally distributed, we cannot conclude that the joint distribution

function of X and Y is bivariate normal distribution (Casella & Berger, 2002).
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## Warning in library(package, lib.loc = lib.loc, character.only =

TRUE, logical.return = TRUE, : there is no package called ’copula’

## Warning in library(package, lib.loc = lib.loc, character.only =

TRUE, logical.return = TRUE, : there is no package called ’gumbel’

## Error in ellipCopula("t", param = 0.8, dim = 2, df = 2, dispstr

= "un"): could not find function "ellipCopula"

## Error in diff(y): object ’pCopula’ not found

## Error in diff(y): object ’dCopula’ not found

## Error in diff(y): object ’dCopula’ not found

## Error in rCopula(2000, t): could not find function "rCopula"

Figure 1.5: The Student-t copula with 2 degrees of freedom and its density

function for ρ = 0.8. The corresponding Kendall’s tau is τX,Y = 0.59.

For example, let Fx = Φ(x) and Gy = Φ(y) be standard normal distribution

functions. So, any joint distribution function H, which is equal to a copula

C(Φ(x),Φ(y)), is not a Gaussian copula. It can be used to illustrate that H

is not bivariate Gaussian distribution but F and G are univariate normal distri-

butions.

Figure 1.4 shows the Gaussian copula and its density for ρ = 0.8. Also, we have

presented a complete picture of this copula by contour diagram and scatter plot.

Note that ρ measure dependency between the random variables.

Student-t copula: Student-t copula is defined as

C(u, v; ρ, ν) = tρ,ν(t
−1
ν (u), t−1

ν (v)), (u, v) ∈ [0, 1]2,

where tν is the distribution function of Student with ν degree of freedom, ρ is

correlation coefficient and tρ,ν is bivariate Student-t function (Mai & Scherer 2014,

p56). If ρ and ν are close to 0 then we fall back in the independence case.
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In Figure 1.5 the Student-t copula with 2 degrees of freedom and its density for

ρ = 0.8 are presented by contour diagram and scatter plot.

1.4.2 Archimedean copula

In this section, we discuss Archimedean copulas. As earlier explained, generally,

an Archimedean copula is defined by the following relationship:

C(u, v) = ϕ−1(ϕ(u) + ϕ(v)),

where ϕ is generator function. The well-known Archimedean copulas are the

Gumbel, Clayton, Frank, and Joe copulas.

Gumbel copula: the Gumbel copula is generated using the generator function,

ϕδ(t) = (− ln t)
1
δ and its corresponding inverse function, ϕ−1

δ (t) = exp(−(t))
1
δ .

Thus, the Gumbel copula is derived as follows:

Cδ(u, v) = exp(−[(− ln u)δ + (− ln v)δ]
1
δ ), δ ∈ [1,∞).

The Gumbel copula’s measure of dependence depends only on the parameter delta

δ ∈ [1,∞). If δ is equal to 1, then we have the independence case (Bernard

& Czado, 2015). The Gumbel copula is useful for modeling strong upper and

weak lower tail dependence. The notion of tail dependence relates to the study

of the association between random variables X and Y at extreme values in the

upper-right and lower-left quadrants, which are known as upper and lower tail

dependence, respectively. In Figure 1.6 the Gumbel copula with δ = 2 and its

density function presented with the 3D plot, contour diagram, and scatter plot.

These figures are generated by the "copula" package in R.

Clayton copula: the Clayton generator function is ϕδ(t) = 1
δ
(t−δ − 1). The

domain of the Clayton copula’s parameter is δ ∈ [−1,∞) \ {0}. By using this

generator function, the Clayton copula can be given as

Cδ(u, v) = [max(u−δ + v−δ − 1, 0)]−
1
δ .
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Small values of δ imply the independence case. The Clayton copula is suitable for

modeling lower tail dependence. Figure 1.7 illustrates the Clayton copula and its

density for δ = 2.

Frank copula: The Frank copula’s generator function is −ln
(
e−δt−1
e−δ−1

)
, where

δ ∈ (−∞,+∞) \ {0}. It follows that the Frank copula is defined as

Cδ(u, v) = −1

δ
ln

(
1 +

(e−δu − 1)(e−δv − 1)

e−δ − 1

)
.

## Error in archmCopula("gumbel", 2): could not find function

"archmCopula"

## Error in persp(gumbel, pCopula, theta = 30, phi = 30, expand =

0.8, col = "yellow", : object ’gumbel’ not found

## Error in persp(gumbel, dCopula, theta = 30, phi = 30, expand =

0.8, col = "yellow", : object ’gumbel’ not found

## Error in contour(gumbel, dCopula, col = "red", main = "Contour

diagram for Gumbel’s density"): object ’gumbel’ not found

## Error in rCopula(2000, gumbel): could not find function

"rCopula"

Figure 1.6: The Gumbel copula and its density function for δ = 2. As scatter

plot shows it is useful to model strong upper and weak lower tail dependence. The

corresponding Kendall’s tau is τX,Y = 0.5.

Figure 1.8 presents the Frank copula for δ = 2. This copula can model lower

and upper tail independence. Of note, Clayton and Gumbel copula allow only for

positive modeling association. On the other hand, Frank copula can model both

positive and negative associations, and this is a valuable property of the Frank

copula.
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In the next chapter, we give definitions, crucial properties, and some brief quantile

regression concepts.

## Warning in library(package, lib.loc = lib.loc, character.only =

TRUE, logical.return = TRUE, : there is no package called ’copula’

## Warning in library(package, lib.loc = lib.loc, character.only =

TRUE, logical.return = TRUE, : there is no package called ’gumbel’

## Error in archmCopula("clayton", 2): could not find function

"archmCopula"

## Error in persp(clayton, pCopula, theta = 30, phi = 30, expand =

0.8, col = "yellow", : object ’clayton’ not found

## Error in persp(clayton, dCopula, theta = 50, phi = 30, expand =

0.8, col = "yellow", : object ’clayton’ not found

## Error in contour(clayton, dCopula, col = "red", main = "Contour

diagram for Clayton’s density"): object ’clayton’ not found

## Error in rCopula(2000, clayton): could not find function

"rCopula"

Figure 1.7: The Clayton copula and its density function for δ = 2. The Clayton

copula is adequate for modeling strong lower tail dependence. The corresponding

Kendall’s tau is τX,Y = 0.5.
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## Warning in library(package, lib.loc = lib.loc, character.only =

TRUE, logical.return = TRUE, : there is no package called ’copula’

## Warning in library(package, lib.loc = lib.loc, character.only =

TRUE, logical.return = TRUE, : there is no package called ’gumbel’

## Error in archmCopula("frank", 2): could not find function

"archmCopula"

## Error in persp(frank, pCopula, theta = 30, phi = 30, expand =

0.8, col = "yellow", : object ’frank’ not found

## Error in persp(frank, dCopula, theta = 130, phi = 30, expand =

0.8, col = "yellow", : object ’frank’ not found

## Error in contour(frank, dCopula, col = "red", main = "Contour

diagram for Frank’s density"): object ’frank’ not found

## Error in rCopula(2000, frank): could not find function

"rCopula"

Figure 1.8: The Frank copula and its density function for δ = 2. The corre-

sponding Kendall’s tau is τX,Y = 0.21.



CHAPTER II

QUANTILE REGRESSION

Quantile regression is a statistical approach capable to estimate conditional quan-

tile functions (Koenker, 2012). The method is based on minimizing a hinge loss

function to estimate the conditional quantile function at different locations, which

provides a global overview of the distribution of a dependent variable.

Robustness to outliers, handling heteroskedasticity, flexible distribution assump-

tions, capturing a complete picture of the relationship between a response variable

and predictors are essential characteristics of the quantile regression.

In this chapter, firstly, we describe a basic concept of quantile regression in Ex-

ample 2.1. Then, quantile function, check function, multiple quantile regression,

basic properties, and quantile regression application are also discussed in the up-

coming sections.

Example 2.1. The information of 60 Households in 1995 has been collected.

The data consist of weekly household’s consumption and their weekly incomes

disposable (Gujarati, 1995). Suppose that we want to investigate the relationship

between weekly household’s consumption and their weekly income. We consider

weekly consumption as the dependent variable (Y) and weekly income as an inde-

pendent variable (X). In other words, we are going to predict householder weekly

consumption by knowing their weekly incomes.
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Warning: Computation failed in ‘stat_quantile()‘:

Package ‘quantreg‘ required for ‘stat_quantile‘.

Please install and try again.

Warning: Computation failed in ‘stat_quantile()‘:

Package ‘quantreg‘ required for ‘stat_quantile‘.

Please install and try again.

Warning: Computation failed in ‘stat_quantile()‘:

Package ‘quantreg‘ required for ‘stat_quantile‘.

Please install and try again.

50

100

150

100 150 200 250
income

co
ns

um
pt

io
n

Figure 2.1: This Figure illustrates the ordinary least-squares (OLS) regression

and three quantile regression lines in 20% (solid blue line), 50% (dashed line), 90%

(dotted line). The strong green line (OLS) is conditional means of Y at different

level of x.

Figure 2.1 provides the ordinary least-squares (OLS) regression line (the strong

green line) and three quantile regression lines at 20% (solid blue line), 50% (dashed
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line), and 90% (dotted line). The OLS regression line tends to explain the middle

of data and it also passes through (x̄, β̂0 + β̂1x̄). It is the conditional mean of Y

in different levels of x. The quantile regression lines explain how the 20 percent

(50 and 90) of the consumption (dependent variable) increases with income (in-

dependent variable). The dashed line is the conditional median of Y . Moreover,

the three quantile lines can explain the behavior of the data in the lower, center,

and upper locations of the dependent variable.

In Example 2.1, the residuals are normally distributed. Thus, as Figure 2.1 shows,

there are striking resemblances between median quantile or OLS regression line.

In fact, when X and Y follow a bivariate normal distribution, the conditional

distribution of Y |X = x is normal with constant variance; also, the conditional

mean function E(Y |X = x) is linear in the conditioning variable X. If we intend

to investigate relationship between Y and X and the distribution of the depen-

dent variable is not normal or there are outliers in the data, the conditional mean

cannot provide an optimal model. In such situations, the conditional median, or

in general, the conditional quantiles can be appropriate choices.

2.1 Quantile function

The empirical θth quantile for a continuous distribution function is the nθ order

statistic of the sample Y1, Y2, · · · , Yn. In other words, θth quantile divides the data

set into two parts such that 100× θ percent of values lies below and 100× (1− θ)

percent of values lies above it.

In mathematical statistics, any real-valued random variable Y can be defined by

its cumulative distribution function F (y) = P (Y ≤ y) = θ. The quantile function

returns the value y such that F (y) = θ. Additional definition of quantile function
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(θth quantile of Y ), which is based on the generalized inverse of F , is defined as

QY (θ) := F−1(θ) = inf{y : F (y) ≥ θ}, 0 < θ < 1. (2.1)

An important characteristic of the quantile is equivariance to monotone transfor-

mations. Formally, let h(.) be a nondecreasing function on R and Y be a random

variable with quantile function QY (θ). Then, we have

Qh(Y )(θ) = h(QY (θ)).

2.2 Check function and optimization

Let Y be a random variable with cumulative distribution function F . The θth

quantile is the solution to the following optimization problem

arg min
m∈R

{
E(ρθ(Y −m)) =

∫
ρθ(y −m)dF (y)

}
, (2.2)

where ρθ(.) is the check function defined as follows

ρθ(u) = u(θ − I(u < 0)) =

θu, if u ≥ 0,

(θ − 1)u, if u < 0,

with θ ∈ (0, 1), I(u < 0) is 1 for u < 0 and 0 otherwise.

The function ρθ(u) is described as a two-piecewise linear function and is illustrated

in Figure 2.2 for θ = 0.3, 0.6, 0.9. We can demonstrate that the expected loss in

(2.2) attains its minimum at m̂, such that F (m̂) = θ. To do so, we can write

E(ρθ(Y −m)) = (θ − 1)

∫ m

−∞
(y −m)dF (y) + θ

∫ ∞
m

(y −m)dF (y)

= (θ − 1)

∫ m

−∞
(y −m)f(y)dy + θ

∫ ∞
m

(y −m)f(y)dy. (2.3)
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By differentiating (2.3) with respect to m and setting it equals to zero, we have

d E(ρθ(Y −m))

dm
= (θ − 1)

d

dm

∫ m

−∞
(y −m)f(y)dy + θ

d

dm

∫ ∞
m

(y −m)f(y)dy

= (θ − 1)

∫ m

−∞

d

dm
(y −m)f(y)dy + θ

∫ ∞
m

d

dm
(y −m)f(y)dy

= (1− θ)
∫ m

−∞
f(y)dy − θ

∫ ∞
m

f(y)dy

= (1− θ)
∫ m

−∞
dF (y)− θ

∫ ∞
m

dF (y)

= F (m)− θ.

Thus, F (m̂) = θ. Consequently, the quantiles are the result of a simple optimiza-

tion problem.

As F is monotone, each element of {y : F (y) = θ} minimizes the expected loss

(Koenker 2005, p.6). When F is a continuous and strictly increasing function, it

is an one-to-one function and the solution of (2.2) is unique and m̂ = F−1(θ).

0

1

2

3

4

−5.0 −2.5 0.0 2.5 5.0
u

p(
u)

Thetas: theta = 0.3 theta = 0.5 theta = 0.9

Figure 2.2: Check function for θ = 0.3 (red line), θ = 0.5 (green line line) and

θ = 0.9 (blue line).



30

Given a sample y1, y2, . . . , yn, the empirical version of the optimization problem

(2.2) is

m̂ = arg min
m∈R

∫
ρθ(y −m)dFn(y),

where Fn(y) is empirical cdf of Y . It is equivalent to

m̂ = arg min
m∈R

n∑
i

ρθ(yi −m). (2.4)

For instance, the sample median solves the optimization problem

Q̂Y (0.5) = arg min
m∈R

n∑
i

|yi −m|.

The sample mean solves the optimization problem

µ̂ = ȳ = arg min
µ∈R

n∑
i

(yi − µ)2.

Example 2.2. Let Y be a discrete random variable with support S = {1, 2, 3, 4, 5, 6, 7}

and equal probability. We are going to find m̂ = Q̂Y (0.6) by using the loss function

defined in (2.4). To do so, we have

m̂ = arg min
m∈S

{[
R(m) :=

(θ − 1)

7

∑
yi<m

(yi −m) +
θ

7

∑
yi≥m

(yi −m)

]}
.

By considering θ = 0.6, if we let m = 5, for instance, we have

R(5) =
6

70

7∑
i=5

(yi − 5)− 4

70

4∑
i=1

(yi − 5)

=
6

70
[(0 + 1 + 2)]− 4

70
[(−1− 2− 3− 4)] = 0.83

Table 2.1 shows calculated values of R(m) for all elements of Y .
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m 1 2 3 4 5 6 7

R(m) 1.8 1.34 1.03 0.85 0.83 0.94 1.2

Table 2.1 Calculated values of the loss function R(m) for all elements of Y .

So, the minimum value of R(m) occurs when m = 5. Thus, Q̂Y (0.6) = 5.

2.3 Quantile regression

Consider a simple regression model with response variable Y and explanatory

variable X. Assume that errors are independent and identically distributed (iid)

and Fε is the distribution function of these errors. We can write

Yi = β0 + β1Xi + εi. (2.5)

According to equivariance to monotone transformation property of the quantiles,

the conditional quantile function of the variable Y given X is often denoted as

QY (θ|X = x) and given by

QY (θ|X = x) = β0 + β1x+Qε(θ) (2.6)

= β0 + β1x+ F−1
ε (θ).

Equation (2.6), for 0 < θ < 1, constructs several lines with the same slope and

different intercepts. When the errors are iid, the conditional quantile functions

build a family of parallel lines (Koenker & Bassett Jr, 1982). The vector β(θ) =

(β0 +F−1(θ), β1)> is the lines’ vector parameters and their estimates are β̂0(θ) and

β̂1(θ). The parameters’ estimation procedure for the vector of parameters β(θ),

is given next.

Simple quantile regression: The relationship QY (θ|X = x) = β̂0(θ) + β̂1(θ)x
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is defined as the θth quantile model, where

β̂(θ) = arg min
β(θ)∈R2

E[ρθ(Y − β0(θ)− β1(θ)x)|X = x].

Similarly, given (xi, yi), i = 1, . . . , n, the vector of quantile regression coefficients,

β(θ), can be estimated empirically by solving

β̂(θ) = arg min
β(θ)∈R2

n∑
i=1

ρθ(yi − β0(θ)− β1(θ)xi). (2.7)

This optimization problem can be solved using linear programming techniques

such as simplex algorithms (Koenker 2005, p.173).

Multiple quantile regression: An extended form of the relationship (2.7) to

multiple quantile regression is given as follows

β̂(θ) = arg min
β∈Rp

{
∑

ρθ(yi − x>i β)},

= arg min
β∈Rp

{
∑

i∈yi≥x>i β

θ|yi − x>i β|+
∑

i∈yi<x>i β

(1− θ)|yi − x>i β|}. (2.8)

Equation (2.8) consists of two terms, the first one is the penalized positive absolute

error with penalty rate θ and the second one is the penalized negative absolute

error with penalty rate 1 − θ. Note that for θ = 0.5 the penalty rate of absolute

errors are the same and is equal to 0.5.
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Warning: Computation failed in ‘stat_quantile()‘:

Package ‘quantreg‘ required for ‘stat_quantile‘.

Please install and try again.
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Figure 2.3: Quantile regression lines in θ = 0.05, 0.25, 0.75, 0.95 for 60 House-

holds (Example 2.1). The data consist of weekly household consumption and their

weekly disposable income. The dependent variable (Y) is weekly consumptions

and independent variable (X) is weekly incomes.

2.4 Basic properties

In the following, we describe the noticeable properties of quantile regression.

These properties explicitly demonstrate the usefulness of quantile regression. Ro-

bustness to outliers, flexible distribution assumptions, handling heteroskedasticity,

and capturing a complete view of the distribution are objectives of this section.

Property 2.1. Robustness to outliers

Quantile Regression is more accurate than OLS regression when there are extreme

values of the data set. Its performance is better than the OLS in presence of heavy-
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tailed distribution (Briollais & Durrieu, 2014). In fact, since it is based on the

absolute deviation loss function, extreme values may not affect the model param-

eter estimates. Moreover, the OLS regression estimates the response variable’s

conditional mean, which characterizes the data’s central tendency.

Property 2.2. Flexible distribution assumption

An appealing feature of quantile regression that has been frequently highlighted

is its ability to provide an opportunity to describe part of the conditional distri-

bution without requiring global distributional assumptions (Koenker 2005, p.55).

In fact, distribution assumption refers to homogeneity of the residuals’ variances

in the regression framework. Violation of homogeneity of variances leads to in-

appropriate estimated models. However, quantile regression has been shown to

perform well in heteroskedastic situations.

Property 2.3. Capability of detecting heteroskedasticity

Quantile regression is an effective way to detect heteroskedasticity. Consider, for

instance, the location-scale shift model described as

Yi = β0 + β1Xi + (γ0 + γ1Xi)εi,

= β0 + β1Xi + ε̃i,

where γ0 and γ1 are scale parameters and the errors εi has distribution function

Fε. When γ0 = 0 and γ1 > 0, the errors ε̃i are correlated with the explanatory

variable. In this case, the variances of the errors are not homogeneous and the

slopes are different from one quantile to another. The true quantile regression

lines Q(θ|Xi = xi) = β0 + (β1 + γ1F
−1(θ))xi, for different θs are not parallel and

pass through the point (0, β̂0). Testing for presence of heteroskedasticity can be

formally established by testing for slopes equality at different quantiles (parallel

lines). More details of such hypotheses testing are given in Koenker and Bassett

(1978).
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2.5 Application of quantile regression

Let us show the utility of the method with an example presented by Koenker

(2012). Figure 2.4 illustrates the scatter plot of the Engel data on food expendi-

ture (Y) vs. household income (X) for a sample of 335 nineteenth century working

class Belgian households. As Figure 2.4 shows, the variation in food expenditure

increases with increasing the value of income. This dispersion violates homo-

geneity of variance. In this situation, two outlier observations have significantly

influenced the ordinary least squares regression estimator.

Table 2.2 shows the fit of OLS model and different quantile regression models for

Engel data. As the Table 2.2 shows, the estimated coefficient by OLS method is

larger than the estimated coefficients by the quantile regression method in lower

quantiles; conversely, the estimated coefficient by OLS method is smaller than the

estimated coefficients by quantile regression method at upper quantiles.

Coeffcient OLS Q0.1 Q0.2 Q0.4 Q0.5 Q0.75 Q0.9

Intercept 147.5 110 102 101 81.5 62 69

Incomes 0.5 0.4 .45 0.5 0.56 .56 0.68

Table 2.2 Quantile regression and OLS coefficient estimation.

Generally, when the estimated coefficients in lower quantiles are different to those

upper quantiles, the quantile regression method is preferred to the OLS method.

The coefficients’ plots are useful tools to choose the regression method (Figure

2.5). Figure 2.5 illustrates the estimated parameters of the quantile regression

models versus the quantiles (θs) for the Engel data.
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Warning: Computation failed in ‘stat_quantile()‘:

Package ‘quantreg‘ required for ‘stat_quantile‘.

Please install and try again.

Warning: Computation failed in ‘stat_quantile()‘:

Package ‘quantreg‘ required for ‘stat_quantile‘.

Please install and try again.
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Figure 2.4: Food expenditure scatter plot with OLS regression line (dashed

green) and quantile regression lines for θ = 0.05, 0.25, 0.5, 0.75, 0.95. Y and X are

annual Household Food Expenditure and annual Household Income in Belgian

Francs, respectively. As one can see, the median quantile (dotted blue line) does

not fit the OLS regression line. The figure depicted with our R code; it is similar to

Figure 1 in the vignette of the quantile regression R package, "quantile regression

in R: A vignette" Koenker (2012).

The red horizontal line shows the OLS regression coefficient, and red dashed lines
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show its confidence interval. The dark line shows the quantiles regression co-

efficient, and the area around shows its confidence interval. These confidence

intervals are calculated by the rank inversion method described in Koenker(2005,

p.91). As the right panel of Figure 2.5 shows, the lower quantiles for Incomes

variable are under the red line, and the upper quantiles are above the red line. In

this case, due to heteroskedasticity using the quantile regression is suggested for

data analysis. One can interpret that since the estimated parameters of quantile

regression models are between the red dashed lines, the quantile regression and

OLS performance are the same.

## Error in rq(foodexp ~ income, data = engel, tau = 1:99/100):

could not find function "rq"

## Error in plot(fit1, mfrow = c(1, 2), pin = c(2, 2)): object

’fit1’ not found

Figure 2.5: The red horizontal line indicates the OLS regression coefficient, the

red dashed lines show the confidence interval for the coefficient estimates, the dark

points show the quantile regression coefficients estimates and the shaded grey area

shows the corresponding confidence intervals.

The next chapter introduces copula-based quantiles which consists of conditional

Elliptical and Archimedean copula quantiles.



CHAPTER III

COPULA-BASED QUANTILE

In this chapter, we outline mathematical details of the relationship between cop-

ulas and quantile functions. To do so, we demonstrate first that for a copula

C(., .; ρ), which links the joint distribution H of (X, Y ) to its marginals F and G,

the following relationship

θ =
∂C(F (x), G(y); ρ)

∂F (x)
, θ ∈ (0, 1), (3.1)

connects the copula function to the θth conditional quantile function QY |X=x(θ).

To prove this fact, we follow Sklar’s theorem results in equation (1.1), which leads

to

C(F (x), G(y)) = H(x, y)

= P (X ≤ x, Y ≤ y)

=

∫
t∈(−∞,x)

P (t, Y ≤ y)dt

=

∫ x

−∞
P (Y ≤ y|t)f(t)dt. (3.2)
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Using chain-rule for the partial derivative of equation (3.2) with respect to F (x),

one has

∂

∂F (x)
C(F (x), G(y)) =

∂x

∂F (x)

∂

∂x

∫ x

−∞
P (Y ≤ y|t)f(t)dt

=
1

∂F (x)
∂x

∂

∂x

∫ x

−∞
P (Y ≤ y|t)f(t)dt

=
1

f(x)
f(x)P (Y ≤ y|X = x)

= GY |X=x(y|x). (3.3)

Now, if we assume that y is the θth conditional quantile of Y |X = x, then from

(3.3), y satisfies

∂C(F (x), G(y))

∂F (x)
= θ. (3.4)

Thus, solving for y in (3.4) leads to

y = G−1(D−1(θ; δ, u)),

where u = F (x), and D−1 is the inverse of the function v 7→ D(θ; δ, u) =

∂C(u,v)
∂u |u=F (x)

. In some references the partial derivative ∂C(u,v)
∂u

is denoted as

C2|1(v|u) and is called an h-function (Bernard & Czado, 2015).

3.1 Conditional Gaussian-copula quantiles

In this section, we give an explicit form of the θth conditional copula quantile in

the case of Gaussian copula model. Consider two random variables X and Y with

marginal distribution functions F and G, respectively. Assume that (X, Y ) are

distributed following the bivariate Gaussian copula given by

H(x, y) = C(F (x), G(y))

= Φ2(Φ−1(u),Φ−1(v)|Γ), u = F (x), v = G(y)

=

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

(1− ρ2)
exp{−t

2 − 2ρtr + r2

2(1− ρ2)
}dtdr, (3.5)
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where Φ2 and Φ are bivariate and univariate standard normal distribution func-

tion, respectively, and Γ is 2×2 correlation matrix, with off-diagonal element ρ.

Assume that h(t, r) = 1

2π
√

(1−ρ2)
exp{− t2−2ρtr+r2

2(1−ρ2)
}, a = Φ−1(v) and b = Φ−1(u). It

can be showed that (Kjersti et al., 2015)

C2|1(u, v) =
∂

∂u
C(u, v)

=
∂

∂u

∫ a

−∞

∫ b

−∞
h(t, r)dtdr

=
∂b

∂u

∂

∂b

∫ a

−∞

∫ b

−∞
h(t, r)dtdr

=
1

φ(b)

∂

∂b

∫ a

−∞

∫ b

−∞
h(t, r)dtdr

=
1

φ(b)

∫ a

−∞

[
∂

∂b

∫ b

−∞
h(t, r)dt

]
dr

=
1

φ(b)

∫ a

−∞
h(t, b)dt

=
1

φ(b)

∫ a

−∞

1

2π
√

(1− ρ2)
exp{−t

2 − 2ρtb+ b2

2(1− ρ2)
}dt

=
1

φ(b)

∫ a

−∞

1

2π
√

(1− ρ2)
exp{−(t− ρb)2 + (b2 − ρ2b2)

2(1− ρ2)
}dt

=
1

φ(b)

1√
2π

exp

(
−b2

2

)∫ a

−∞

1√
2π(1− ρ2)

exp

(
− (t− ρb)2

2(1− ρ2)

)
dt

=
1

φ(b)

φ(b)

1
Φ

(
a− ρb√
1− ρ2

)

= Φ

(
a− ρb√
1− ρ2

)
.

Then, the link between x and y is defined by the following relationship

θ = Φ

(
Φ−1(v)− ρΦ−1(u)√

(1− ρ2)

)
. (3.6)

Thus, one has

Φ−1(θ) =
Φ−1(v)− ρΦ−1(u)√

1− ρ2
,
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which leads to √
1− ρ2Φ−1(θ) = Φ−1(v)− ρΦ−1(u)

⇔ Φ−1(v) = ρΦ−1(u) +
√

1− ρ2Φ−1(θ)

⇔ v = Φ
(
ρΦ−1(u) +

√
1− ρ2Φ−1(θ)

)
⇔ G(y) = Φ

(
ρΦ−1(F (x)) +

√
1− ρ2Φ−1(θ)

)
⇔ y = G−1

(
Φ
(
ρΦ−1(F (x)) +

√
1− ρ2Φ−1(θ)

))
. (3.7)

The relationship between x and y in (3.7) can be denoted by y = q(x, θ; ρ), which

is the θth conditional of Y |X = x. Equation (3.7) can be expressed as a linear

model ifX and Y have marginal standard normal distributions (Bernard & Czado,

2015). That is, assuming F = G = Φ, we have

y = G−1
(

Φ
(
ρΦ−1(F (x)) +

√
1− ρ2Φ−1(θ)

))
= G−1

(
Φ
(
ρx+

√
1− ρ2Φ−1(θ)

))
= ρx+

√
1− ρ2Φ−1(θ).

Moreover, if X and Y have non-standard normal marginal distributions F (x) and

G(y), with µx = E(X), µy = E(Y), σ2
x = var(X), σ2

y = var(Y) and ρ, then the

relationship between X and Y in (3.7) can be again reduced to the following linear

model

y = q(x, θ; ρ) = b0 + b1x, (3.8)

where b0 = (µy − ρσyσxµx) + σy
√

(1− ρ2)Φ−1(θ) and b1 = ρσy
σx
.

In conclusion, if (X, Y ) are normally distributed, the θth conditional quantile of

Y |X = x is reduced to a line with only the intercept that depends on θ. In

other words, the quantile functions at different locations are parallel lines. This

is equivalent to the standard quantile regression model given in (2.6).
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Figure 3.1 shows the true 1st (red), 2nd (green) and 3rd (blue) quartiles; also,

5th (black) and 95th (cadet blue) percentiles for the conditional Gaussian-copula

quantile model; these lines are parallel.

Now, if one considers chi-square marginal distribution functions with 5 and 9

degrees of freedom for X and Y , respectively, then the conditional Gaussian-

copula quantile with ρ = 0.8 is not a line anymore. This fact is presented in

Figure 3.2.
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Figure 3.1: Conditional Gaussian-copula quantile curves (lines) for 1st (red), 2nd

(green) and 3rd (blue) quartiles; also, 5th (black) and 95th (cadet blue) percentiles.

The data points in gray (n = 500), are generated from Gaussian copula model

with ρ = 0.8. X and Y have bivariate Normal distribution function with normal

margins as well.
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Figure 3.2: True conditional Gaussian-copula quantile curves for 1st (red), 2nd

(green) and 3rd (blue) quartiles; also, 5th (black) and 95th (cadet blue) percentiles.

The data points in gray (n = 500), are generated from Gaussian copula model

with ρ = 0.8. X and Y have Chi-Square marginal distribution functions with 5

and 9 degrees of freedom, respectively.
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Figure 3.3: True conditional Student-t-copula quantile curves (with 10 df) for 1st

(red), 2nd (green) and 3rd (blue) quartiles; also, 5th (black) and 95th (cadet blue)

percentiles. The data points in gray (n = 500), are generated from relationship

(3.9) for ρ = 0.8. X and Y have standard normal marginal distribution functions.

3.1.1 Conditional Student-t-copula quantiles

For two random variablesX and Y with marginal distribution functions u = F (x),

v = G(y), the student-t copula is defined as

C(u, v) = tρ,ν
(
t−1
ν (u), t−1

ν (v)
)
, (3.9)

where tν is the cumulative distribution function of the Student-t with ν degree

of freedom, tρ,ν is the cumulative distribution function of the bivariate Student-t

and ρ ∈ [−1, 1] is the correlation coefficient between X and Y . The conditional

Student-t-copula quantiles is introduced as (Mai & Scherer, 2014)

θ = tν+1

 t−1
ν (v)− ρt−1

ν (u)√
( (ν+(t−1

ν (u))2)(1−ρ2)
ν+1

)

 . (3.10)
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By transforming the relationship (3.10) with respect to v, the link between x and

y is given as follows

θ = tν+1

 t−1
ν (v)− ρt−1

ν (u)√
( (ν+(t−1

ν (u))2)(1−ρ2)
ν+1

)


⇔ t−1

ν (v) = t−1
ν+1(θ)

√
(
(ν + (t−1

ν (u))2)(1− ρ2)

ν + 1
) + ρt−1

ν (u)

⇔ v = tν

(
t−1
ν+1(θ)

√
(
(ν + (t−1

ν (u))2)(1− ρ2)

ν + 1
) + ρt−1

ν (u)

)

⇔ y = G−1

[
tν

(
t−1
ν+1(θ)

√
(
(ν + (t−1

ν (F (x)))2)(1− ρ2)

ν + 1
) + ρt−1

ν (F (x))

)]
.

Illustration of conditional Student-t-copula quantile for ρ = 0.8 is given in Figure

3.3.

3.2 Conditional Archimedean-copula quantiles

Earlier, we explained that when the marginal distributions are not normal, the

conditional Gaussian-copula quantiles are not parallel lines anymore. This fact

leads us to copula-based quantile regression, which is a class of nonlinear quantile

regression. Here, we continue the investigation of copula-based quantile regression

for Archimedean copulas.

Referring to Chapter 1, an Archimedean copula is generally defined by

C(u, v) = ϕ−1(ϕ(u) + ϕ(v)), (3.11)

where ϕ is the generator function of this copula, presented in Table 1.1. The

Gumbel, Clayton, Frank and Joe copulas are well-known Archimedean copulas.

These copulas are the focus of this section. Equation (3.11) can be rewritten as

C(u, v) = ϕ−1(ϕ(u) + ϕ(v))

⇔ ϕ(C(u, v)) = ϕ(u) + ϕ(v). (3.12)
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Therefore, by differentiating (3.12) with respect to u, we have

∂ [ϕ(C(u, v))]

∂u
=
∂ [ϕ(u) + ϕ(v)]

∂u

⇔ ϕ′(C(u, v))
∂C(u, v)

∂u
= ϕ′(u)

⇔ ∂C(u, v)

∂u
=

ϕ′(u)

ϕ′(C(u, v))
.

Considering θ = ∂C(u,v)
∂u

and solving for v leads to

v = ϕ−1

[
ϕ

(
ϕ′−1

(
1

θ
ϕ′(u)

))
− ϕ(u)

]
. (3.13)

Equation (3.13) is generally introduced as the conditional copula quantile curves

for Archimedean copulas. By replacing u = F (x) and v = G(y), next equation

gives the link between x and the θth conditional quantile y = q(x, θ; δ)

q(x, θ; δ) = y = G−1

[
ϕ−1

{
ϕ

(
ϕ′−1(

1

θ
ϕ′(F (x)))− ϕ(F (x))

)}]
. (3.14)

Next sections illustrate (3.14) for Frank, Clayton, Gumbel and Joe copula models.

3.2.1 Conditional Frank-copula quantiles

Consider (X, Y ) distributed following Frank copula with margins F and G re-

spectively. The Frank copula with parameter δ, given by Table 1.1, is defined as

follows

C(u, v : δ) = −1

δ
ln

(
1 +

(e−δu − 1)(e−δv − 1)

e−δ − 1

)
, δ ∈ R \ {0}. (3.15)

Frank’s generator function is defined as ϕδ(t) = −ln( e
−δt−1
e−δ−1

). Using (3.14), the

conditional Frank-copula quantiles are defined as

y = G−1

(
−1

δ
ln(1 +

e−δ − 1

1 + e−δF (x)(θ−1 − 1)
)

)
. (3.16)

For a specific δ, the model (3.16) can provide a family of conditional Frank-copula

quantile curves, depending on different θ ∈ (0, 1).
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Figure 3.4: True conditional Frank-copula quantile curves for δ = 8 when X

and Y have Student-t marginal distributions with 8 degrees of freedom. The data

point in gray (n = 500), are generated from model (3.15). The curves are shown

for different θ =0.05 (black), 0.25 (red), 0.50 (green), 0.75 (blue), 0.95 (cadet

blue).

Figure 3.4 illustrates the true conditional Frank-copula quantiles with δ = 8 for

1st, 2nd and 3rd quartiles; also, 5th and 95th percentiles are illustrated. X and Y

follow the Student-t marginal distributions with 8 degrees of freedom. Figure 3.4

shows also 500 pairs of observations coming from the Frank copula model (3.15).

As one can see again, the quantile curves are not lines.
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3.2.2 Conditional Clayton-copula quantiles

Now, let (X, Y ) distributed following Clayton copula with margins F and G,

respectively. The Clayton copula and its generator function are defined as follows

C(u, v : δ) = [max{(u−δ + v−δ − 1), 0}]−
1
δ δ ∈ [−1,∞) \ {0}, (3.17)

and

ϕδ(t) =
1

δ
(t−δ − 1).

Using the generator function and equation (3.14), the conditional Clayton-copula

quantiles are presented as

y = G−1

[{
(θ
−δ
1+δ − 1)F (x)−δ + 1

}−1
δ

]
, (3.18)

where δ is the copula parameter and θ ∈ (0, 1).

Figure 3.5 illustrates conditional Clayton-copula quantile curves with δ = 2 for

1st, 2nd and 3rd quartiles; 5th and 95th percentiles are also plotted. These curves

are the true conditional Clayton-copula quantiles when X and Y have standard

Normal marginal distributions. Figure 3.5 Plotted also 500 pairs observations

generated from (3.17). Again, the curves are not linear lines.

3.2.3 Conditional Gumbel and Joe-copula quantiles

Let (X, Y ) distributed following Gumbel and Joe copula with margins F and

G, respectively. Although the first partial derivative of the Gumbel and Joe

copulas C2|1(v|u) has an explicit form, it is hard to compute analytically its inverse

function C−1
2|1(θ|u) with respect to v. Therefore, in equation (3.14), (ϕ′)−1 does

not have closed form and we have to use numerical programming for computing

the conditional Gumbel and Joe-copula quantiles.
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Figure 3.5: True conditional Clayton-copula quantile curves for δ = 2 when X

and Y have standard Normal marginal distributions. The data (n = 500) are

generated from relationship (3.17). These curves are illustrating for θ = 0.05

(black), 0.25 (red), 0.50 (green), 0.75 (blue), 0.95 (cadet blue).

The Gumbel copula: C(u, v) introduced in Table 1.1 has generator function

ϕδ(t) = (−ln t) 1
δ . The first partial derivative of C(u, v), with respect to u, is

defined as the conditional Gumbel-copula quantile:

θ =
1

u

(
− ln(u))δ−1((− ln(u)δ + (− ln(v))δ

) 1−δ
δ C(u, v), δ ≥ 1. (3.19)

By solving numerically equation (3.19) with respect to v the conditional Gumbel-

copula quantile curves for θ = 0.05, 0.25, 0.50, 0.75 and 0.95 are calculated and

presented in Figure 3.6. X and Y are distributed following standard normal

distribution functions.
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Error in library(VineCopula): there is no package called

’VineCopula’

Error in BiCop(4, 2): could not find function "BiCop"

Error in BiCopHinv1(u[i], t[i], gu.cop): could not find function

"BiCopHinv1"

Error in data.frame(x, y): arguments imply differing number of

rows: 500, 0

Error in library(VineCopula): there is no package called

’VineCopula’

Error in BiCop(4, 2): could not find function "BiCop"

Error in BiCopHinv1(u[i], tau, gu.cop): could not find function

"BiCopHinv1"
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Figure 3.6: True conditional Gumbel-copula quantile curves are illustrated for

δ = 2 when X and Y have standard Normal distribution functions. These curves

calculated for 1st (red), 2nd (green) and 3rd (blue) quartiles; also, 5th (black) and

95th (cadet blue) percentiles. The data points in gray (n = 500), are generated

from Gumbel copula model.
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The Joe copula: Considering the Joe copula defined in Table 1.1 and its first

partial derivative with respect to u, the conditional Joe-copula quantiles are spec-

ified as

θ = (1− C(u, v))1−δ(1− u)δ−1(1− (1− v)δ), δ ≥ 1. (3.20)

Figure 3.7 shows conditional Joe copula quantile curves for different θ =0.05

(black), 0.25 (red), 0.50 (green), 0.75 (blue), 0.95 (cadet blue). δ = 2.8 and X

and Y have standard Normal marginal distributions. To draw this Figure, we

have used an algorithm similar to the one used for the Gumbel copula.
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Error in library(VineCopula): there is no package called

’VineCopula’

Error in BiCop(6, theta): could not find function "BiCop"

Error in BiCopHinv1(u[i], t[i], gu.cop): could not find function

"BiCopHinv1"

Error in data.frame(x, y): arguments imply differing number of

rows: 500, 0
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Figure 3.7: True conditional Joe-copula quantile curves are presented for δ =

2.8 when X and Y have standard Normal distribution functions. These curves

calculated for 1st (red), 2nd (green) and 3rd (blue) quartiles; also, 5th (black) and

95th (cadet blue) percentiles. The data points in gray (n = 500), are generated

from Joe copula model.
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3.3 Model parameters estimation

In quantile regression, we minimize the loss function to estimate the vector of

parameters β(θ). In nonlinear quantile regression, analogously we are willing to

estimate the dependence parameter δ by minimizing the following loss function.

δ̂(θ) = arg min{
∑

ρθ(yi − fδ(xi))}, (3.21)

where ρθ is the check function given in (2.2) and fθ is an unknown function.



54

Figure 3.8: The true (solid) and estimated (dashed) conditional quantile curves

for θ = 0.05 (black), 0.25 (red), 0.50 (green), 0.75 (blue), 0.95 (cadet blue) based

on one replication. The marginal distributions X and Y , for the Clayton, Gumbel,

and Joe copulas follow standard normal and the marginal distributions X and Y

for the Frank copula are Student-t distribution with 8 degrees of freedom.

By considering fδ(x) as one of the conditional copula quantile functions described

in the previous section, and minimizing (3.21), we are able to estimate the copula
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parameter. In fact, one can solve the following optimization problem for δ

δ̂(θ) = arg min
δ
{
∑

ρθ(yi − q(xi, θ; δ))}

= arg min
δ
{

∑
{i:yi≥q(xi,θ;δ)}

θ|yi − q(xi, θ; δ)|+
∑

{i:yi<q(xi,θ;δ)}

(1− θ)|yi − q(xi, θ; δ)|},

(3.22)

where q(xi, θ; δ) = G−1(C−1
2|1(θ|ui)) and C−1

2|1(θ|ui) is the inverse of the first partial

derivative of the copula function with respect to its second argument, ui = F (xi)

(Briollais & Durrieu, 2014). The solution of (3.22) can be obtained by the "nlrq"

function of the R package software "quantreg".

Figure 3.8 shows the true (solid curves) and estimated (dashed curves) copula

quantile curves for 200 observations simulated from the bivariate copulas Frank,

Clayton, Gumbel and Joe. These curves depicted for 1st (red), 2nd (green) and

3rd (blue) quartiles; also, 5th (black) and 95th (cadet blue) percentiles. As Figure

3.8 shows, the estimated quantile curves are similar to the true copula curves at

the middle quantiles for all copulas. However, there are differences in lower and

upper quantiles, which may be due to few observations in the tails.

The next chapter compares the copula-based quantile regression models with the

standard quantile and OLS regression models via simulations.



CHAPTER IV

SIMULATION STUDIES

This chapter aims to demonstrate the performance of the copula-based quantile

regression approach in terms of prediction. The model performance is compared

to standard OLS and quantile regression methods. To this aim, three simulation

settings are investigated. That is, data are generated based on the location shift,

location-scale shift and copula models. This chapter ends with a copula misspec-

ification analysis.

In all simulation settings, firstly, we describe the data generation settings. Sec-

ondly, we present the evaluation criterion which are used for the methods com-

parison. Finally, we conclude based on the simulation results that are presented

in Tables and Figures.

4.1 Data generation

The simple location-scale shift model is defined as

Yi = β0 + β1Xi + (γ0 + γ1Xi)εi. (4.1)

In equation (4.1), when γ0 > 0 and γ1 = 0, the model (4.1) is a location shift

model, and when γ0 ≥ 0 and γ1 > 0, model (4.1) becomes a location-scale shift

model. The procedure of data simulation for the different settings is given as

follows:
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Setting 1-Location shift:

To generate data form location shift model, in equation (4.1), we set γ0 = 1,

γ1 = 0, β0 = −0.17, β1 = −0.56,

εi ∼ Fε,

Xi ∼ N(0, 1),

Yi = −0.17− 0.56Xi + εi,

ρ = −0.49.

In this setting, εi is assumed to follow three different distributions such as Normal,

Student-t and Chi-square. Thus, three scenarios are considered in this setting

corresponding to three error distributions. For each scenario, ρ is the true value

of the population correlation coefficient between X and Y which is calculated

by ρ = β1
σx
σy

where σy is the standard deviation of the variable Y and varies in

deferent scenarios and depends on the distribution of εi. It should be noted that

in the asymmetric scenario (the errors follow the skewed Student-t distribution)

the variance is calculated by the formula presented in Appendix B.

Setting 2-Location-scale shift:

To generate data from the location-scale shift setting, we set γ0 = 1, γ1 = 1,

β0 = −0.17, β1 = −0.56 and

εi ∼ N(0, 1),

Xi ∼ N(0, 1),

Yi = −0.17− 0.56Xi + (1 +Xi)εi,

ρ = −0.37.

As the previous setting, ρ is the true value of the population correlation coefficient

between X and Y which is equal to ρ = β1
σx
σy
. For this setting, σ2

y is calculated as



58

follows

σ2
y = var(−0.17− 0.56Xi + (1 +Xi)εi)

= (−0.56)2var(Xi) + var(εi) + var(εiXi)

= (−0.56)2var(Xi) + var(εi) + var(εi)var(Xi),

since εi ⊥ Xi and εi, Xi continued, σ2
y = 0.3136 + 1 + 1 = 2.3136.

Setting 3-Copula-based quantile models:

Scenario 1: the conditional Clayton-copula quantile model introduced in equation

(3.18) is used to the data simulation with standard normal margins. Data gener-

ating is described as follows:

we set

θi ∼ unif(0, 1),

Xi ∼ N(0, 1),

Yi = Φ−1(
[
(θ
−2
3
i − 1)F (xi)

−2 + 1
]−1

2

),

δ = 2.

Scenario 2: the conditional Gaussian-copula quantile model (3.7) with chi-square

margins is used for data generation in this scenario. That is, in equation (3.7),

we set

θi ∼ unif(0, 1),

Xi ∼ χ2
5,

Yi = G−1
y

(
(−0.57)Φ−1(F (xi)) + Φ−1(θi)

√
1− (−0.57)2

)
,

ρ = −0.57,

where G(y) follows Chi-square distribution with 9 degrees of freedom.
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Setting 4-Copula misspecification:

To evaluate the sensitivity of the copula-based quantile regression models and

demonstrate the copula misspecification impact, we generate the data from the

conditional Clayton-copula quantile model with standard normal margins as in

Scenario 1 of Setting 3, however, we fit Frank and Student copula quantile models

for these data. More precisely, the dependence between Y andX is generated from

Clayton copula but we fit Frank and Student copulas to model (Y ,X) dependence.

In all settings, we set N = 1000 observations as the sample size of each data

replication.

4.2 Evaluation criterion

To evaluate models’ accuracy, the predicted values of different regression tech-

niques (ŷi) are compared to the observed values yi. Also, evaluation of Bias of

parameters is reported. Thus, the evaluation criterions employed are given as

MSE =
1

N

N∑
i=1

(yi − ŷi)2,

Bias = (δ̂ − δ),

where the errors are (yi − ŷi), δ is the true parameter of the models and δ̂ is

parameter estimate. It should be noted that, the true parameter of interest in

quantile and OLS regression is β1, and for copula-based quantile regression the true

parameter of interest is the copula parameter. Based on B = 1000 replications,

average of MSE, standard deviation of MSE and the average of Bias are reported

for comparison.

Throughout this chapter, “MSE” and “SD” indicate the average and standard

deviation of MSE statistic, respectively. The “BIAS” indicates the average of the

Bias of parameters over 1000 replications.

For all scenarios, the standard quantile and copula-based quantile regression are
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implemented for the following quantiles θ = 0.25, 0.50, 0.75.

4.3 Results

The simulation results are presented in the upcoming sections.

4.3.1 Setting 1: Location shift

Scenario 1: Table 4.1 provides the MSE, SD and the BIAS (for β̂1 and ρ̂) based on

1000 replications. Estimation is done by the standard quantile regression (SQR),

the Gaussian copula-based quantile regression (GCBQR) with standard normal

marginal distributions and OLS regression. As the results of Table 4.1 show, the

MSE, SD and BIAS values of SQR and OLS models are smaller than GCBQR at

the lower, middle and upper quantiles (θ = 0.25, 0.50, 0.75). The boxplot of MSE

values for OLS, SQR and GCBQR in θ = 0.25, 0.50, 0.75 is presented in Figure

4.1.

θ 0.25 0.50 0.75 -

Methods SQR GCBQR SQR GCBQR SQR GCBQR OLS

MSE 0.003 0.072 0.003 0.031 0.004 0.004 0.002

SD 0.003 0.004 0.002 0.003 0.003 0.004 0.002

BIAS 0.001 -0.016 0.002 0.071 0.001 0.089 0.002

Table 4.1 Setting 1 (Scenario 1)-Location shift: MSE, SD and BIAS of the

parameters’ estimates (β̂1 and ρ̂) based on 1000 replications. The fitted models

are standard quantile regression (SQR), Gaussian copula-based quantile regression

(GCBQR) with standard normal marginal distributions (for θ = 0.25, 0.50, 0.75),

and OLS regression when εi ∼ N(0, 1) and ρ = −0.49.
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Figure 4.1: Setting 1 (Scenario 1)-Location shift: the boxplot of MSE values

for OLS, SQR and GCBQR with standard normal margins in θ = 0.25, 0.50, 0.75,

when εi ∼ N(0, 1).

θ 0.25 0.50 0.75 -

Methods SQR GCBQR SQR GCBQR SQR GCBQR OLS

MSE 0.471 0.093 0.013 0.036 0.469 0.041 0.010

SD 0.125 0.016 0.013 0.002 0.112 0.022 0.008

BIAS 0.001 -0.009 0.002 0.010 0.001 0.019 0.001

Table 4.2 Setting 1 (Scenario 1)-Location shift: MSE, SD and BIAS based on

1000 replications. Data are generated from location shift setting, when εi ∼

N(0, 4) and ρ = −0.27. The fitted models are OLS, SQR and GCBQR regression.

Also, Table 4.2 shows the results with εi ∼ N(0, 4) and ρ = −0.27. As one can see,

by increasing the errors’ variance, GCBQR models have acceptable performance

in lower and upper quantiles since the copula are less sensitive to scale changes

in data. However, OLS and SQR have appropriate performance at the middle



62

quantiles. The boxplot of MSE values for these models is provided in Figure 4.2.
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Figure 4.2: Setting 1 (Scenario 1)-Location shift: the boxplot of MSE values for

OLS, SQR and GCBQR in θ = 0.25, 0.50, 0.75, when εi ∼ N(0, 4).
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Error in library(quantreg): there is no package called ’quantreg’

Error in nlrq(df$y ~ q_normal(df$x, rho, tau), data = df, tau =

tau, start = list(rho = 0.1), : could not find function "nlrq"

Warning: Computation failed in ‘stat_quantile()‘:

Package ‘quantreg‘ required for ‘stat_quantile‘.

Please install and try again.
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Figure 4.3: Setting 1 (Scenario 1)-Location shift: the fitted GCBQR with stan-

dard normal margins (black dotted lines), the fitted SQR (red dashed lines) and

the true quantiles (solid blue lines) in θ = 0.25, 0.50, 0.75, OLS regression (green

dashed line) with εi ∼ N(0, 1).
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θ 0.25 0.50 0.75 -

Methods SQR GCBQR SQR GCBQR SQR GCBQR OLS

MSE 0.063 0.073 0.004 0.031 0.056 0.054 0.007

SD 0.005 0.003 0.004 0.003 0.006 0.004 0.006

BIAS -0.047 -0.071 0.001 0.091 -0.016 -0.049 0.003

Table 4.3 Setting 1 (Scenario 2)-Location shift: MSE, SD and Bias based on 1000

replications generated from location shift model described in Setting 1; the errors

follow a Student-t distribution with 3 degrees of freedom and ρ = −0.31. The fit-

ted models are SQR, GCBQR with Student-t margin for Y for θ = 0.25, 0.50, 0.75,

and OLS regression.

Scenario 2: In this section, we assume that the errors follow the heavy-tails

Student-t distribution function with 3 degrees of freedoms. As Table 4.3 shows,

SQR models have better performance in lower and middle quantiles. However,

GCBQR models have adequate performance at the upper quantiles. OLS perfor-

mance seems to be not affected by heavy-tailed distribution.

Scenario 3: When the errors come from an asymmetric distribution such as skewed

Student-t or Chi-square (see Tables 4.4 and 4.5), SQR method has acceptable per-

formance in lower, middle and upper quantiles. However, the OLS regression is

clearly inefficient when the errors follow an asymmetric distribution.

As earlier explained, the OLS regression is sensitive to errors’ variance and it does

not have appropriate performance in presence of both asymmetric and heavy-

tailed situations. Also, the median quantile regression is the appropriate substi-

tute for OLS in the middle of the data in such situations. Thus, in the upcoming

sections, only standard quantile and copula-based quantile regression will be the

focus of comparison.
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θ 0.25 0.50 0.75 -

Methods SQR GCBQR SQR GCBQR SQR GCBQR OLS

MSE 0.005 0.098 0.008 0.056 0.021 0.044 0.339

SD 0.004 0.005 0.008 0.007 0.020 0.018 0.125

BIAS 0.012 0.138 -0.039 0.065 -0.032 -0.016 0.009

Table 4.4 Setting 1 (Scenario 3)-Location shift: MSE, SD and BIAS based on

1000 replications generated from location shift model described in Setting 1; the

errors follow a skewed Student-t with 3 degrees of freedom and skewed parameter

2 and ρ = −0.20. The fitted models are SQR, GCBQR with skewed Student-t

marginal distribution of Y , for θ = 0.25, 0.50, 0.75, and OLS regression.

θ 0.25 0.50 0.75 -

Methods SQR GCBQR SQR GCBQR SQR GCBQR OLS

MSE 0.012 0.043 0.002 0.125 0.011 0.051 0.303

SD 0.0002 0.008 0.002 0.0008 0.013 0.069 0.050

BIAS 0.001 0.045 0.002 0.025 -0.018 -0.076 0.003

Table 4.5 Setting 1 (Scenario 3)-Location shift: MSE, SD and BIAS based on

1000 replications generated from location shift model described in Setting 1. The

errors follow a chi-square distribution with 1 degree of freedom and ρ = −0.37.

The fitted models are SQR, GCBQR with Chi-square marginal distribution for Y

and normal marginal distribution for X for θ = 0.25, 0.50, 0.75, and OLS regres-

sion.
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4.3.2 Setting 2: Location-scale shift

Results of Table 4.6 and 4.7 refer to estimated models by SQR, GCBQR with

standard normal margins (for θ = 0.25, 0.50, 0.75) base on 1000 replications, when

εi ∼ N(0, 1) and εi ∼ N(0, 4), respectively.

As Table 4.6 shows, the MSE values for SQR are smaller than the MSE values

for GCBQR in the lower, middle and upper quantiles. Therefore, SQR method

performs better in the location-scale shift situation. Figure 4.4 illustrates the

MSE values of these two methods in θ = 0.25, 0.50, 0.75 by boxplot. Furthermore,

Table 4.7 shows the same results when εi ∼ N(0, 4).

As one can see, by increasing the errors’ variance, GCBQR models are less sen-

sitive to scale change compared to SQR models (based on MSE) in the upper

quantiles (see Figure 4.5). Also, SQR provides good models in lower and mid-

dle quantiles. However, GCBQR models have acceptable performance in lower

and middle quantiles as well. Figure 4.6 illustrates the fitted lines for these two

methods.

θ 0.25 0.50 0.75

Methods SQR GCBQR SQR GCBQR SQR GCBQR

MSE 0.006 0.068 0.005 0.047 0.066 0.070

SD 0.008 0.005 0.007 0.006 0.030 0.020

BIAS 0.091 0.138 -0.003 0.062 -0.430 -0.281

Table 4.6 Setting 2-Location-scale shift: MSE, SD and BIAS based on 1000

replications generated from location-scale shift model described in Setting 2; the

errors follow standard normal distribution and ρ = −0.37. The fitted models are

SQR and GCBQR with standard normal margins for θ = 0.25, 0.50, 0.75.
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θ 0.25 0.50 0.75

Methods SQR GCBQR SQR GCBQR SQR GCBQR

MSE 0.018 0.029 0.011 0.031 0.289 0.042

SD 0.020 0.007 0.014 0.008 0.111 0.012

BIAS 0.185 0.064 -0.002 0.023 -0.721 -0.132

Table 4.7 Setting 2-Location-scale shift: MSE, SD and BIAS based on 1000 repli-

cations. Data are generated from location-scale shift model described in Setting

2, when εi ∼ N(0, 4) and ρ = −0.24. The fitted models are SQR and GCBQR

with standard normal margins for θ = 0.25, 0.50, 0.75.
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Figure 4.4: Setting 2-Location-scale shift: the boxplot of MSE values for the

standard quantile, the Gaussian copula-based quantile regression with standard

normal margins for θ = 0.25, 0.50, 0.75, when εi ∼ N(0, 1).
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Figure 4.5: Setting 2-Location-scale shift: the boxplot of MSE values for SQR,

GCBQR with standard normal margins for θ = 0.25, 0.50, 0.75, when εi ∼ N(0, 4).

We know that, for the location-scale shift models, the errors are correlated with

the explanatory variables. In this case, the variance of the errors is heterogeneous.

As Figure 4.6 shows, in the middle of the data, these two models are similar. At

the lower and upper margins, there are differences between true quantile lines,

quantile regression and copula-based quantile regression lines.

4.3.3 Setting 3: Copula-based quantile models

Scenario 1 (Clayton copula-based quantile regression): The results of models

estimated by the standard quantile regression (SQR) and the Clayton copula-

based quantile regression (CCBQR) with standard normal margins, based on 1000

replications are presented in Table 4.8. According to these results, at the lower,

middle and upper quantiles, there are remarkable differences between the MSE and

SD estimated by CCBQR and SQR. Thus, SQR has no appropriate performance
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in this scenario.

Error in library(quantreg): there is no package called ’quantreg’

Error in nlrq(df$y ~ q_normal(df$x, rho, tau), data = df, tau =

tau, start = list(rho = -0.1), : could not find function "nlrq"

Warning: Computation failed in ‘stat_quantile()‘:

Package ‘quantreg‘ required for ‘stat_quantile‘.

Please install and try again.
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Figure 4.6: Setting 2-Location-scale shift: the fitted GCBQR with standard

normal margins (black dotted lines), the fitted SQR (red dashed lines) and the

true quantiles (solid blue lines) in θ = 0.25, 0.50, 0.75.

Figure 4.7 depicts the MSE of these models by boxplot. As one can see, CCBQR

models have the minimum values of MSE in θ = 0.25, 0.50, 0.75. Also, Figure

4.8 shows the true and the estimated curves based on conditional Clayton-copula

quantile functions.

Scenario 2 (Gaussian copula-based quantile regression with chi-square margins):

Results in Table 4.9 includes the MSE, SD and BIAS of the models estimated by
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the standard quantile regression (SQR) and the Gaussian copula-based quantile

regression (GCBQR) with chi-square margins, based on 1000 replications. As

Table 4.9 shows, when the margins are assumed to be a chi-square distribution

functions, the performance of models estimated by GCBQR is substantially better

than the performance of models estimated by SQR, in lower, middle and upper

quantiles (based on MSE and SD). Figure 4.9 shows that the minimum values

of MSE belongs to GCBQR in all three percentiles 25th, 50th, and 75th. Also,

the estimated and true curves of GCBQR with chi-square margins along with the

standard quantile regression are illustrated in Figure 4.10.

θ 0.25 0.50 0.75

Methods SQR CCBQR SQR CCBQR SQR CCBQR

MSE 0.037 0.001 0.053 0.001 0.111 0.004

SD 0.005 0.002 0.005 0.001 0.013 0.006

BIAS - -0.002 - -0.006 - 0.004

Table 4.8 Setting 3 (Scenario 1)-Clayton copula-based quantile regression: MSE,

SD and BIAS based on 1000 replications generated from conditional Clayton-

copula quantile function described in Setting 3. The fitted models are stan-

dard quantile (SQR) and Clayton copula-based quantile regression (CCBQR) with

standard normal margins for θ = 0.25, 0.50, 0.75. "-" means there is no explicit

form of the true slope parameter of SQR based on copula.
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θ 0.25 0.50 0.75

Methods SQR GCBQR SQR GCBQR SQR GCBQR

MSE 0.721 0.021 0.974 0.022 1.314 0.026

SD 0.092 0.030 0.120 0.031 0.163 0.038

BIAS - -0.004 - -0.001 - -0.002

Table 4.9 Setting 3 (Scenario 2)-Gaussian copula-based quantile regression:

MSE, SD and BIAS based on 1000 replications generated from conditional

Gaussian-copula quantile function described in Setting 3. The fitted models are

SQR and GCBQR with chi-square margins for θ = 0.25, 0.50, 0.75. "-" means

there is no explicit form of the true slope parameter of SQR based on copula.
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Figure 4.7: Setting 3 (Scenario 1)-Clayton copula-based quantile regression: the

boxplot of MSE values of the standard quantile and the Clayton copula-based

quantile regression in θ = 0.25, 0.50, 0.75.
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Error in library(quantreg): there is no package called ’quantreg’

Error in nlrq(y ~ q_clayton(x, t, tau), data = df, tau = tau, start

= list(t = 2), : could not find function "nlrq"

Warning: Computation failed in ‘stat_quantile()‘:

Package ‘quantreg‘ required for ‘stat_quantile‘.

Please install and try again.
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Figure 4.8: Setting 3 (Scenario 1)-Clayton copula-based quantile regression with

standard normal margins: the fitted CCBQR (black dotted curves), the fitted

SQR (red dashed lines) and true conditional Clayton-copula quantiles (solid blue

curves) for θ = 0.25, 0.50 and 0.75.
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Figure 4.9: Setting 3 (Scenario 2)-Gaussian copula-based quantile regression

with chi-square margins: boxplot of MSE values for SQR and GCBQR in θ =

0.25, 0.50, 0.75.
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Error in library(quantreg): there is no package called ’quantreg’

Error in nlrq(df$y ~ q_normal(df$x, rho, tau, df1, df2), data = df,

tau = tau, : could not find function "nlrq"

Warning: Computation failed in ‘stat_quantile()‘:

Package ‘quantreg‘ required for ‘stat_quantile‘.

Please install and try again.
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Figure 4.10: Setting 3 (Scenario 2)-Gaussian copula-based quantile regres-

sion with chi-square margins: the estimated curves of GCBQR with chi-square

marginals distributions (dotted black), SQR (dashed red) lines and the true curves

of conditional Gaussian-copula quantile with chi-square margins (solid blue) in

θ = 0.25, 0.50, 0.75.

4.3.4 Setting 4: Copula misspecification

In this section, the Frank and Student copula-based quantile regressions are em-

ployed to fit the models. These two models are compared to the Clayton copula-

based quantile regression, from which the data are generated. The results of the

analysis based on 1000 replications for Clayton (C), Frank (F) and Student-t (S)
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copula-based quantile regression models for θ = 0.25, 0.50, 0.75, are presented in

Table 4.10.

Error in library(quantreg): there is no package called ’quantreg’

Error in nlrq(y ~ q_frank(x, p, tau), data = df, tau = tau, start =

list(p = 1), : could not find function "nlrq"

−2

0

2

−2 0 2
x

y

Figure 4.11: Setting 4-Copula misspecification: the estimated curves of FCBQR

with standard normal margins (dotted black), the estimated curves of CCBQR

with standard normal margins (dashed red) and the true curves of conditional

Clayton-copula quantiles (solid blue) for θ = 0.25, 0.50, 0.75.

For all models, standard normal distributions are used as marginal distribution

of both X and Y . As one can see from this table, the MSE and SD for the Frank

and Student-t copula-based quantile regression are larger than MSE and SD of

the Clayton copula-based quantile regression model, for θ = 0.25, 0.50, 0.75.
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θ 0.25 0.50 0.75

Methods C F S C F S C F S

MSE 0.001 0.047 0.068 0.002 0.063 0.060 0.001 0.097 0.117

SD 0.001 0.006 0.003 0.001 0.007 0.007 0.001 0.010 0.011

BIAS 0.001 -0.029 -0.079 0.002 0.075 0.031 0.001 0.021 0.121

Table 4.10 Setting 4-Copula misspecification: MSE, SD and BIAS based on

1000 replications. The data generated from conditional Clayton-copula quantile

described in Setting 4. The fitted models are Clayton (C), Frank (F) and Student-

t (S) copula-based quantile regression models, with standard normal margins, for

θ = 0.25, 0.50, 0.75 quantiles.
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Figure 4.12: Setting 4-Copula misspecification: the boxplot of MSE values for

the fitted Clayton copula-based quantile, the fitted Frank copula-based quantile

and Student-t copula-based quantile regression with standard normal margins in

θ = 0.25, 0.50, 0.75
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Furthermore, there are differences between the BIAS of the Frank, Student-t, and

Clayton copula-based quantile regression in lower, middle and upper quantiles.

Figure 4.12 shows the boxplot of the MSE values for these three models. As

one can see, again the evidence of copula misspecification impact for Frank and

Student-t copula-based quantile regression is clear (see also Figures 4.11 and 4.13).

Error in library(quantreg): there is no package called ’quantreg’

Error in nlrq(y ~ q_student(x, rho, tau), data = df, tau = tau,

start = list(rho = 0.2), : could not find function "nlrq"
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Figure 4.13: Setting 4-Copula misspecification: the estimated curves of SCBQR

with standard normal margins (dotted black), the estimated curves of CCBQR

with standard normal margins (dashed red) and the true curves of conditional

Clayton-copula quantiles (solid blue) for θ = 0.25, 0.50, 0.75.

4.4 Results summary

In the location shift setting, there are no significant differences between the per-

formance of the models estimated by the standard quantile, copula-based quantile

and OLS regression methods (refer again to Figure 4.1). By increasing the errors’
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variance, the copula-based quantile regression (CBQR) models are better than the

standard quantile regression (see Figure 4.2). Also, SQR and OLS have appropri-

ate performance in the middle quantiles. When the errors follow a heavy-tailed

distribution, the SQR models show appropriate performance in the lower, middle

and upper quantiles, however, the CBQR models perform better in upper quan-

tiles. As Tables 4.4 and 4.5 show, when the errors are asymmetrically distributed,

SQR and OLS have poor performance.

In the location-scale shift setting (heterogeneous), as Figure 4.4 shows, SQR mod-

els have acceptable performance in the lower, middle and upper quantiles. By in-

creasing the errors’ variance, SQR models have also appropriate performance. On

the other hand, the CBQR models perform better in upper quantiles (see Figure

4.5).

In Setting 3, when the data is generated from conditional copula-based quantile

models, CBQR have adequate performance rather than SQR (Figure 4.7).

4.5 Limitation

There are some restrictions to fit the multivariate copula-based quantile regression

with the "quantreg" R package and "nlrq()" function. For instance, using "nlrq"

to fit the CBQR model in tail of the distribution have shown numerical conver-

gence issues and instability for the model parameters estimation. This might be

due to the absence of observations falling in the extreme tails.

Moreover, fitting the Archimedean copula-based quantile regressions that have no

closed form of the copula quantile function, such as Gumbel and Joe copula, can

be time consuming.



CONCLUSION

This study aimed to investigate flexible modeling of the relationship between a

response variable and a set of predictors. The performance of three modeling tech-

niques, namely OLS, QR and copula-based quantile regression, based on MSE and

BIAS statistics was explored.

We have shown that the copula-based quantile regression is a convenient alter-

native to both OLS and QR frameworks. For heavy-tailed outcome distribution,

although the OLS and QR have shown appropriate performance in the center of

distribution, we have demonstrated that the copula-based quantile regression has

an acceptable performance in the tails. Also, in heteroscedastic situations, we

have shown that the copula-based quantile model performs better than the quan-

tile regression at upper quantiles.

By employing the copula-based quantile regression, there is a possibility to study

linear or nonlinear relationships between a response and predictor variables at

desired quantiles. Finally, it should be noted that choosing the appropriate cop-

ula for modeling the dependence between variables is relatively crucial for the

copula-based quantile regression framework.



APPENDIX A

PSEUDO-INVERS OF GENERATOR FUNCTION

Definition 4.1.1 (Nelsen 2006, p110). Let ϕ be a continuous, strictly de-

creasing function with domain [0, 1] and range [0,∞] such that ϕ(1) = 0. The

pseudo-inverse of ϕ is the function ϕ[−1] with domain [0,∞] and range [0, 1] defined

as

ϕ[−1](t) =

ϕ
−1(t), 0 ≤ t ≤ ϕ(0),

0, ϕ(0) ≤ t ≤ ∞.

Note that ϕ[−1] is continuous and nonincreasing on [0,∞], and strictly decreasing

on [0, ϕ(0)]. Moreover, ϕ[−1](ϕ(u)) = u on [0, 1], and

ϕ
(
ϕ[−1](t)

)
=

t, 0 ≤ t ≤ ϕ(0),

ϕ(0), ϕ(0) ≤ t ≤ ∞,

= min (0, ϕ(0)) .

Finally, if ϕ(0) =∞, then ϕ[−1] = ϕ−1.



APPENDIX B

SKEWED STUDENT-T DISTRIBUTION

For random variable T which follows a Skewed Student-t distribution, the mean

and variance are defined as follows

E(T ) =

µ
√

(ν
2
)Γ((ν−1)/2)

Γ(ν/2)
, if ν > 1,

Does not exist, if ν ≤ 1,

V ar(T ) =


ν(1+µ2)
ν−2

− µ2ν
2

(Γ((ν−1)/2)
Γ(ν/2)

)2, if ν > 2,

Does not exist, if ν ≤ 2,

where ν is degrees of freedom and µ is the skewed parameter of the Student-t

distribution. It should be noted that when µ = 0 the Student-t distribution is

symmetric.
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