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AVANT-PROPOS 

L'idée du projet de recherche présenté dans ce mén1oire a vu le jour lors d 'un stage 

de recherche au sein de Desjardins Assurances Générales achevé à l'été 2017, vers 

le commencement de ma maîtrise en sciences actuarielles. Ce stage a été financé 

à parts égales par Desjardins Assurances Générales et par Mitacs, un organisme 

à but non lucratif visant à stimuler l'innovation et la recherche en établissant 

des partenariats entre le milieu universitaire et l'industrie. Lors de ce stage, le 

mandat de trouver un algorithme pern1ettant de prédire les montants futurs à 

payer pour des réclamations passées m'a été donné. À ce mon1ent, les techniques 

de modélisation des réserves individuelles présentes dans la littérature étaient 

pour la plupart des méthodes paramétriques. Puisque l'apprentissage statistique 

était alors un champ d 'étude qui produisait des résultats proinetteurs dans divers 

domaines, j 'ai développé un algorithme basé sur une méthode non paramétrique 

d'apprentissage automatique appelée gradient boosting, qui a été implanté avec 

succès dans les systèmes de Desjardins Assurances Générales. 

L'algorithme de gradient boosting utile au développement du modèle est une boite 

noire et à l'automne 2017, beaucoup de détails concernant le fonctionnement de 

cet algorithme m'échappaient. Dans le cadre d'un cours de maîtrise, j'ai donc 

décidé d 'apprendre en détaille fonctionnement de cet algorithme, ce qui a abouti 

à un document expliquant le fonctionnement du gradient boosting, de l'algorithme 

random forest ainsi que des arbres de décision , trois techniques connexes appar­

tenant à la famille des algorithmes d'apprentissage machine. Ceci n1'a permis 

d'acquérir une connaissance approfondie du modèle de prédiction des réserves que 

j'ai développé, ce qui m 'a par la suite permis de le perfectionner. 



IV 

L'été dernier, j'ai eu la chance de présenter les résultats partiels de ce projet 

au Joint Statistical Meeting tenu à Vancouver, le plus grand rassemblement de 

statisticiens en Amérique du Nord. Il s'agissait d'une courte présentation de cinq 

minutes suive d'une séance d'affichage d'une durée d'une heure. 

Ce projet a également engendré un article qui a été soumis pour publication au 

moment d'écrire ces lignes. Cet article a été coécrit par 1noi et Mathieu Pigeon, 

mon directeur des travaux de recherche à la maîtrise. 

Finalement, les résultats finaux de mes travaux effectués à la maitrise ont été 

présentés au Congrès annuel 2019 à Calgary de la Société statistique du Canada. 
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RÉSUMÉ 

La modélisation fondée sur des données est l'un des sujets de recherche qui pose 
le plus de défis dans la science actuarielle pour le provisionnement et l'évaluation 
du risque. La plupart des analyses sont basées sur des données agrégées, mais il 
est clair aujourd'hui que cette approche ne dit pas tout sur une réclamation et ne 
décrit pas précisément son évolution. Les approches d'apprentissage statistique en 
général, et les algorithmes de gradient boosting en particulier, offrent un ensem­
ble d'outils qui pourraient aider à évaluer les réserves dans un cadre individuel. 
Dans ce mémoire, nous comparons certaines techniques agrégées traditionnelles 
(au niveau du portefeuille) avec des modèles individuels (au niveau de la récla­
mation) basés à la fois sur des modèles paramétriques et sur des algorithmes de 
gradient boosting. Ces modèles individuels utilisent de l'information sur chacun 
des paiements effectués pour chacune des réclamations du portefeuille, ainsi que 
sur les caractéristiques de l'assuré. Nous fournissons un exe1nple basé sur un en­
semble de données détaillées provenant d'une compagnie d 'assurance non-vie et 
nous discutons de certains points liés aux applications pratiques. 

Mots-clé: dssurance non-vie, provisionnement, modélisation prédictive, modèles 
individuels, gradient boosting 



ABSTRACT 

Modeling based on data information is one of the most challenging research topics 
in actuarial science for loss reserving and risk valuation. Most of the analyzes are 
based on aggregate data but nowadays it is clear that this approach does not tell 
the whole story about a daim and does not describe precisely its development. 
Statistical learning approaches in general, and gradient boosting algorithms in 
particular, offer a set of tools that could help to evalua te loss reserves in an · indi­
vidual framework. In this work, we contrast sorne traditional aggregate techniques 
(portfolio-leve!) with individual models ( claim-level) based on both para1netric 
models and gradient boosting algorithms. These claim-level models use informa­
tion about each of the payments made for each of the daims in the portfolio, as 
well as characteristics of the insured. We provide an explicit example based on a 
detailed dataset from a property and casualty insurance company and we discuss 
sorne points related to practical applications. 

Key words: non-life insurance, loss reserving, predictive modeling, individual mod­
els, gradient boosting 



INTRODUCTION 

In its daily practice, a non-life insurance company is subject to a number of sol­

veney constraints , e.g. , ORSA guidelines in North America and Solvency II in 

Europe. More specifically, an actuary must predict, with the highest accuracy, fu­

ture dailns based on past observations. The difference between the total predicted 

amount and the total of all amounts already paid represents a reserve that the 

company must set aside. A substantial part of the actuarial literature is devoted 

to the modeling, the evaluation and the management of this risk (see [WM08] for 

an overview of existing methods). 

Almost all existing models can be divided into two categories depending on the 

granularity of the underlying .dataset: individual , or micro-level, approaches when 

most information on contracts , daims, payments, etc. has been preserved and 

collective, or macro-level, approaches when an aggregation to sorne extent has 

been made ( often on an annual basis). The latter have been widely developed 

by researchers and successfully applied by practitioners for several decades. The 

former have been studied for few decades but actual use is very rare despite the 

many advantages of these methods. 

The idea of using an individual model - or a structural stochastic description -

for daims dates back to the early 1980's with, among others, [BU80], [HA80] and 

[N086]. The latter has proposed an individual model describing the occurrence, 

the reporting delay and the severity of each accident separately. The idea was 

followed by the work of [AR89], [N093A, N099], [HE94], [JE89] and [HA96]. 

This period was characterized by very limited computing and memory resources 
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as well as by the lack of usable data on individual daims. However, we can 

find sorne applications in [HA96] and in sorne more technical documents such as 

(N093B] and (KI94]. 

Since the beginning of the 2000's, several works have been done - n1ainly in 

the marked (Poisson) process framework- including the modeling of the depen­

dence using copulas [ZZlO], the use of generalized linear mo dels . [LA07], the semi­

parametric modeling of certain components [AP14] and [ZZ09], the use of skew­

symmetric distributions [PA13], the inclusion of additional information [TM08], 

etc. Finally, sorne researchers have focused on the comparisons that can be made 

between individual and collective approaches , often attempting to answer the 

question "What is the best approach?" (see [HU15], [HI16] or [CP16] for sorne 

examples). 

Nowadays, statisticallearning techniques are widely used in the field of data ana­

lytics and may offer non-parametric solutions to daim reserving. These methods 

give more freedom to the model and often outperform the accuracy of their para­

metric counterparts. However, only few non-parametric approaches have been 

developed using 1nicro-level information. One of them is presented in [WU18], 

where the number of payments is modeled using regression trees in a discrete time 

framework. The occurrence of a claim payment is assumed to have a Bernoulli 

distribution, and the probability is then computed using a regression tree as well 

as all available characteristics. Other researchers, see [BR17], have also devel­

oped a non-parametric approach using a machine learning algorithm known as 

Extra- Trees, an ensemble of many unpruned regression trees, for loss reserving. 

In this paper, we propose and analyze an individ ual mo del for loss reserving based 

on an application of a gradient boosting algorithm. Gradient boosting is a machine 

learning technique, which combines sequentially many "simple" models called weak 
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learners to form a stronger predictor by optimizing sorne objective function. We 

apply an algorithm called XGBoost, see [CG16], to learn a function to predict 

the ultimate daim amount of a file using all available information at a given 

time. This information can be about the daimant as well as the daim itself. We 

also present and analyze micro-level models belonging to the dass of generalized 

linear models (GLM). Based on a detailed dataset from a property and casualty 

insurance company, we study sorne properties and we compare results obtained 

from various approaches. More specifically, we show that the approach combining 

the XGBoost algorithm and a dassical collective madel such as the Mack's madel, 

has high predictive power and stability. We also propose a method for dealing 

with censored data and discuss the presence of dynamic covariates. We believe 

that the gradient boosting algorithm could be an interesting addition to the range 

of tools available for actuaries to evaluate the solvency of a portfolio. 

In Chapter I, we introduce sorne notation and we present the context of loss 

reserving from both collective and individual point of view. In this work, our main 

objective is to present and to analyze micro-level approaches for loss modeling. We 

also compare collective and individual approaches. Thus, in Chapter II, we present 

dassical collective models as well as GLM for individual data. In Chapter III, 

we present individual models based on machine learning methods, focusing on 

gradient boosting techniques for regression problems. A case study and sorne 

numerical analyzes on real data are performed in Chapter IV, and finally, we 

condude and present sorne promising generalizations. 



CHAPTER I 

RESERVING PROBLEM SETTING 

In non-life insurance, a claim always starts by an accident experienced by a policy­

holder that may lead to financial damages covered by an insurance contract. We 

call occurrence point (T1 ) the date on which the accident happens. For sorne situa­

tions (bodily injury liability coverage, accident benefits , third party responsibility 

liability, etc.), a reporting delay is observed between the occurrence point and the 

notification to the insurer at the reporting point (T2). From T2 , the insurer could 

observe details about the claim, as well as sorne infonnation about the insured, 

and record a first estimation of the final amount called case estimate. Once the 

accident is reported to the insurance company, the claim is usually not settled im­

mediately: the insurer has to investigate, wait for bills, wait for court judgments, 

etc. At the reporting point T2 , a series of M random payments Pt1 , ••• , PtM > 0 

made respectively at times t 1 < . .. < tM is therefore triggered, until the claim 

is closed at the seUlement point (T3 ). It should be noted that it is possible for 

a claim to close without any payment. All the dates are expressed in number of 

years sin ce an ad hoc starting point noted by T. Finally, we need a unique index k 

to distinguish the claims. For instance, T1(k) is the occurrence date of the claim k , 

and t~) is the date of the mth payrrient of this claim. At Figure 1.0.1, we illustrate 

the development of a claim. 

1 

1 

. 1 
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Occurrence Reporting Payments Settlement 

1 1 pt(k) pt(k ) pt(k) 1 
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'--v--' 

Reporting delay Settlement period 

Figure 1.0.1: Development of the claim k. 

The evaluation ~ate t* is the moment on which the insurance company wants 

to evaluate the solvency and compute reserves. At this point, a claim can be 

classified in three categories: 

1. If T{k) < t* < rJk), the accident has happened but has not yet been reported 

to the insurer. It is therefore called an Incurred But Not Reported, or IBNR, 

accident. For one of those accidents, the insurer does not have specifie 

information about the accident, but can however use claimant and external 

information to estimate the reserve. 

2. If rJk) < t* < Tik), the accident has been reported to the insurer but the 

claim is still not settled, which means the insurer expects to make additional 

payments to the insured. It is therefore called a Reported But Not Settled, 

or RBNS, claim. For one of such daims, the history information as well as 

claimant and external information can be used to estimate the reserve. 

3. If t* > Tik), the claim is classified as Settled, or S, and the insurer does not 

expect n1ore payment to be done. 

Let c?) be a random variable representing the cumulative paid amount at date t 



for daim k and defined by 

C(k)­
t -

6 

{

0, 

I:: pt(k ) ' 

{m:t~ ) ~t} rn 

At any evaluation date T{k) < t* < Tik) and for a daim k, an insurer estimates 

the cumulative payments amount at the settlement C~~), called total paid amount, 

by ê~~) using all useful information available at t* and denoted by vi:). The 

individual reserve for a daim evaluated at t* is thus given by 

R--(k) _ c ....... Ck) _ eCk) 
t* - T3 t * · 

For the whole portfolio, the total reserve is the aggregation of all individual re­

serves and is given by 

K(t*) 
....... ~ --(k) 
ltt* == ~ }tt* ' 

k=l 

w he re K ( t*) == 1 { k T{ k) < t*} 1 is the nun1ber of daims in the portfolio wi th 

evaluation date t*. 

Traditionally, insurance companies aggregate information by accident year and 

by develop1nent year. Claims with accident year i, i == 1, ... , I, correspond to 

all the reported accidents that occurred in the ith year after T, which means all 

daims k for which i- 1 < T{k) < i is verified. For a daim k, a payment made in 

development year j is a payment made in the jth year after the occurrence T1(k), 

namely a payment Pt~) for which j - 1 < t~) - T{k) < j. 

Example 1.0.1 Let T be January 1st 2004. Claims with accident year 1 are all 

the reported accidents th at occurred between t == 0 and t == 1, th at is to say between 

January pt and December 31st 2004, claims with accident year 2 are all reported 

accidents that occurred between January 1 st and December 31st 2005, etc . . 
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For development years j = 1, ... , J, we defi ne 

where 

S~k) = {m · J. - 1 < t(k) - T(k) < J.} 
J · m 1 ' 

as the total paid amount for daim k during year j and we define the corresponding 

cumulative paid amount as 

j 

~ik) = LY}k). 

s=1 

Collective approaches group every daim having the sa1ne accident year together 

to form the aggregate incrementai payment 

y ,(k) 
J ' 

i,j=1, ... ,I. 

kE{k:i-1<TJk) <i} 

Therefore, assuming that I = J = N, at the evaluation date t* = N an insurer 

owns the information, i.e. the run-off triangle 

Y(N-1)1 Y(N-1)2 

YN1 

y1(N-1) Y1N 

y2(N-1) 

(1.0.1) 

where rows represent accident years and columns, development years. It is also 

possible to ·write this information in the cumulative form 

Cn c12 c1(N-1) c1N 

c21 c22 c2(N-1) 

(1.0.2) 

c(N-1)1 c(N-1)2 

CN1 



8 

where Cij = 2::~= 1 Yis· A prediction at time t* = N of the reserve is obtained by 

completing the bottom right part of the triangle in Equation 1.0.1: 

N 

L 
........ 

. Yij, (1.0.3) 
i=2 j=N+2-i 

where the fij are usually predicted (see Section 2) using only the accident year 

and the development year. 

For individual approaches, each cell contains a series of payments, sorne informa­

tion about the daims as well as sorne information about daimants. A prediction 

of the total reserve amount is given by 

N Kfbs. N N 

L L ~.;k)+ L L (1.0.4) 
i=2 j=N+2-i k=l i=2 j=N +2-i k=l 

RBNS reserve IBNR reserve 

where Kfbs. is the observed number of daims with occurrence year i and the ~Jk) 

are now predicted using all available information. 

In this work, we focus on estimating the RBNS reserve, which is the first part on 

the right hand side of Equation 1.0.4, and we forget about the IBNR one. 



CHAPTER II 

CLASSICAL MODELS FOR LOSS RESERVING 

In this section, we briefiy describe key approaches for loss reserving in a collective 

framework. In particular , we introduce the Mack's model (see Subsection 2.1) and 

the generalized linear models for reserves (see Subsection 2.2). The objective here 

is not to address the subject in a comprehensive manner: many references already 

do it perfectly well. We rather want to present the main ideas to allow the reader 

to read more easily the full paper. 

2.1 Chain-ladder Algorithm· and Mack's Madel 

The chain-ladder (CL) algorithm is a n~n-parametric deterministic reserving method 

constructed for a cumulative run-off triangle as given by Equation 1.0.2. It is based 

on two hypotheses: 

1. Cumulative payments belonging to different accident years are independent: 

{Cij}f=1 JL {Ci'j}f=1 for i -=!= i'. 

2. There exist deve.lopment factors À 1 , ... , ÀN-1 such that Àj-1 depicts the 

daim development from the develop1nent year j - 1 to the development year 

J 

1 :::; i :::; N, 2 :::; j :::; N . 
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Development factors are estimated using past observations and are usually given 

by 
N-j-1 

2:= c i (j+1) 
\ i=1 
/\.i = -N---j---1-- j = 1, ... , !V- 1. (2.1.1) 

2:= cij 
i=1 

Based on these estimated development factors, it is possible to predict ultimate 
..-... ..-... 

cumulative payments, nam ely C2N , . .. , C N N, by developing for each accident year 

the most recent cumulative payment 

i = 2, ... ' !V, (2.1.2) 

and the reserve for accident year i can be predicted by 

(2.1.3) 

Since all occurrence years are independent , the total reserve is obtained by simply 

adding reserves for all accident years 

(2.1.4) 
i=2 

Chain-ladder algorithm has a major drawback: it is a deterministic approach and 

it therefore only gives a point estimate for the reserve. Mack's model [MA93] 

is a stochastic version of the chain-ladder algorithm and is aiming at estimating 

prediction error. Mack mo del relies on the two following hypotheses: 

1. Cumulative payments belonging to different accident years are independent 

random vectors: {Ci1}f=1 JL {Ci'j}.f=1 for iii'. 

2. There exist factors À 1 , ... , ÀN _ 1 and variance parameters ai, ... , a'fv _1 > 0 

su ch th at for 1 ::; i ::; !V and for 2 ::; j ::; !V, we have 

IE [ cij ICi(j-1)] = Àj-1 c i (j-1) 

Var [ c i j ICi (j-1)] = a]-1 ci(j-1). 
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Variance parameters are estimated using the unbiased estimator 

N - j -1 

""' C ·. ( ci(J+l) _ :\ ·) 
~ t.J C ij .1 

......... 2 i =1 
aj = ---N---j---1--- j = 1, ... ,N- 2. 

Sin ce the estimation of CJJv _1 using this formula is impossible, it is generally esti­

mated by extrapolating such that 

while making sure that &'ftv_3 > &'ftv_2 . Renee, &'ftv_1 is computed using 

Finally, development factors À1, ... , ÀN_1 are estimated using Equation 2.1.1. As 

with chain-ladder algorithm, êiN and Ri for i = 2, . .. , N can be obtained us­

ing Equation 2.1.2 and Equation 2.1.3 respectively. Since both chain-ladder and 

Mack methods use the same development factors, they lead to the same reserve 

estimates. Mack's model differs fro1n chain-ladder algorithm in that it is possible 

to compute the variance of the reserves. The variance for the reserve of accident 

year i is gi ven by 

i = 2, ... ,N 

and the variance of the total reserve amount is given by 

Proofs of the forn1ulas and more details are given in [MA93), as well as in classic 

textbooks such as [WM08). Since Mack's mo del does not assume any distribution 
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for the payments, the predictive distribution of the total reserve can be estimated 

using a bootstrap approach, su ch as the one described in [EV02]. 

Since its creation in 1993, Mack's model has been extensively studied, and sev­

eral variants and extensions have been developed. Two well known examples 

.are Munich chain-ladder [QM04] and London Chain [BE86] methods. In Munich 

chain-ladder, paid losses Yij of the increment al run-off triangle are replaced by 

quotients of paid and incurred losses Yij / Iij, which allows to take into consid­

eration correlation between paid an incurred losses. In London Chain n1ethod, 

payments are assumed to have not only a multiplicative trend , but also an ad­

ditive trend. Therefore, we assume that there exists multiplicative development 

factors À1 , ... , ÀN _ 1 and additive development factors a 1 , ... , aN _ 1 such that 

1 :::; i :::; N , 2 :::; j :::; N. 

Multiplicative and additive develop111ent factors are estil11ated jointly by least 

square. 

2.2 Generalized Linear Models 

For a response variable for which the distribution is a member of the linear expo­

nential family, a generalized linear model, or GLM [MN89), is built from: 

• a linear predictor x{3, where x is the row vector of predictors and {3 is the 

column vector of parameters; 

• a bijective link function g that describes the relation between the expectation 

of the response variable Y and the linear predictor, i.e., g (JE[Y\x]) = x{3; 

and 

• a variance function V that describes the link between the variance and the 
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expectation of the response variable Y, i.e., Var[Yix] =cp V (IE[Yix]), where 

cp is a dispersion parameter. 

GLM are widely used in many fields including biology and psychology. In actuarial 

science, they are commonly used for pricing. 

In a collective framework, each cell of Triangle 1.0.1 is modeled using 

and 

where ai, i = 2, 3, ... , N is the accident year effect, (3j, j = 2, 3, ... , N the 

development year effect and (30 is the intercept. Finally, all Yi/s are assumed 

to be independent. The prediction for cell in position i, j of the triangle in 

Equation 1.0.1 is given by 

where estima tes of the parameters 7Jo, âi and 7Jj are usually found by maximiz­

ing likelihood. We can therefore obtain an estimate of the reserve using Equa­

tion 1.0.3. Since we assume each cell of the triangle is the realization of a random 

variable following a distribution of the linear exponential family, it is not only 

possible to compute the first and second moments, but also the whole predictive 

distribution of the reserve. 

In the individual framework, in addition to accident and development year, it 

becomes possible to use specifie features of each daim k, and we have 
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where x~~) contains covariates associated to the jth development year of the claim 

k. The prediction of the amount paid in the jth development year for claün k 

having occurrence in year i is obtained with 

An estimation of the reserve can be obtained by summing all individual reserves 

for future development years, given by Equation 1.0.4. Finally, a predictive dis­

tribution for the total reserve can be computed using simulations. 



CHAPTERIII 

STATISTICAL LEARNING AND GRADIENT BOOSTING 

The vast majority of the liter at ure on individualloss reserving is about parametric 

models, which means they assume a fixed and parametric structural form. One 

of the main drawbacks of these methods is the lack of fiexibility of the structure. 

N owadays, statisticallearning techniques are very popular in the field of data ana­

lytics and offer many non-parametric solutions to clain1 reserving. These methods 

give more freedom to the model and often outperform the accuracy of their para­

metric counterparts. However, only few non-parametric approaches have been 

developed using micro-level information. One of them is presented in [WU18], 

where the number of payments is modeled using regression trees in a discrete time 

framework. The occurrence of a daim payment is assumed to have a Bernoulli dis­

tribution, and the probability is then computed using a regression tree as well as 

available characteristics. The author uses regression trees in his article, but many 

other machine learning techniques, such as boosting and random forests, can be 

applied in order to compute the Bernoulli parameter. Other researchers [BR17] 

have also developed a non-parametric approach using a machine learning algo­

rithm known as Extra- Trees , an ense1nble of many unpruned regression trees, for 

loss reserving. 

In this section, the general framework of supervised machine learning is presented 



16 

before introducing the generic gradient boosting algorithm. Then, a gradient 

boosting algorithm based on decision trees is described, and finally, we explain 

how gradient boosting can be used to compute reserves. A brief summary of 

regularization in the gradient boosting setting is also done. 

3.1 Supervised Machine Learning 

Supervised machine (or statistical) learning aims at learning a prediction function 

from labeled examples stored in a training dataset V = {(yi, x i) }7=1 . These ex­

amples are assumed to be representative of a larger population, and are used to 

generalize on new examples, namely to predict the response variable Y on unla­

beled data points. Supervised machine learning is also used for statistical inference 

purposes, nam ely to assess the impact of one variable on another. In the dataset, 

both the response variable (or the dependent variable or the target variable) Yi 

and the characteristics (or predictors, or features, or covariates, or independent 

variables) xi = (xi1 ... Xip) are observed by the analyst. Moreover, they can either 

be quantitative, categorical or ordered categorical variables. When the response 

is categorical, we face a classification problem, as when it is quantitative, we face 

a regression problem. 

Models assume that the relation between the response variable and the predictors 

can be captured by a function f. The main objective is to obtain an approxima­

tion f( x) of the unknown data generating function f (x) mapping the covariates 

x to the response y. In a sünplified way, it is possible to distinguish two types 

of models: parametric and non-parametric. In parametric n1odels, a simple func­

tional form for the function f is assumed, and then parameters of the model are 

estimated. Linear regression and generalized linear mo dels ( GLM) are examples 

of parametric ·models. In non-parametric models , no structure for the function f 
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is predetermined: the algorithm learns, with very few constraints, the function f. 

Neural networks, tree-based models and k-nearest neighbors are examples of non­

parametric models. Both types have their advantages and drawbacks. Parametric 

models are good for interpretation due to the simple form of the link between 

predictors and response. Moreover, they are well suited for prediction problems 

for which the general form of the data generation process is known. Nevertheless, 

they are often less accurate than their non-parametric counterpart when the data 

generation function is unknown or have a complicated form. This is because non­

parainetric algorith1ns offer more fiexibility and can therefore replicate a larger 

range of functions. On the other hand, the large number of parameters required 

to make the estimated function Î flexible enough often makes these models too 

complicated to be understood. 

Example 3.1.1 In a linear regression problem, the relation is given by (we drop 

the reference to the subject i) 

where E is a random noise term, independent of x, with 1E[E]x] = O. Here, the 

unknown function f is assumed to belong to the class of linear functions and is 

characterized by its parameters /30 , ... , /3p· Since IE[Ejx] = 0, the modeZ prediction 

for Y is 

where Î is the estimation of the function f. 

Supervised n1achine learning algorithms form a collection of models used to esti­

mate the function f using the data 7J. Generally, a model is obtained by minin1iz­

ing the expected value of a specified loss function L(y, f(x)), such as the absolute 
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error and the squared error, over the joint distribution of (y, x) 

j = arg min JE[L(y, f(x))]. (3.1.1) 
f 

Since we only have access to a fini te training set D , the estimation j is obtained 

by minimizing the average loss function over all observations of the training set, 

called empirical training risk 

A 1 n 

f = arg min- L L(yi , f(xi)) 
f n i=l 

(3.1.2) 

n 

(3.1.3) 

However, for prediction purpose, we are generally not interested by the perfor­

mance of the model on the training set. We rather want the model to perform 

well on unseen data. Overfitting happens when the model is too complex and fits 

the training set too well. The empirical risk on unseen data therefore starts to 

increase. To avoid overfitting, empirical risk is usually computed on a validation 

set disjoint from the training set or by using cross-validation. 

Models are most of the time not perfect and make errors measured by the loss 

function L. The error made by a model can be broken clown into two parts, namely 

the reducible error and the irreducible error, or the inherent uncertainty. Most 

of the time, j is not a perfect estima te for f, which introduces sorne error in the 

model. This is called the reducible error, since a better model could reduce this 

error by computing a better estimate off. However , a model that could compute 

a perfect estimate of f would still make sorne error due to the random nature of 

the response variable. This is called the irreducible error , since no matter how well 

the mo del estima tes f , it is impossible to reduce it. It also con tains the impact of 

unmeasured or unmeasurable variables that are not included in x. 

In Example 3.1.1 , ifwe assume a quadratic loss function L(y , J(x)) = (f(x) -y)2
, 

we can show that the expected value of the squared error can be broken clown into 



the reducible and irreducible errors: 

m:[ U(x)- yr] = m: [ U(x)- J(x)- Er] 
= (i(x)- f(x) r- 2E[t] U(x)- f(x)) + E[t2

] 

=(/(xl- J(x)r + ~ 
Reducible error 

Irreducible error 

3.2 Gradient Boosting 
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In this paper, we foc us on a specifie class of machine learning mo dels called gradi­

ent boosting algorithms. Gradient boosting is a machine learning technique which 

combines sequentially many weak prediction models called weak learners, or base 

learners, to form a strong predictor by optimizing an objective function. In the 

binary classification framework, weak learners are basic classification models that 

are just a little better than throwing a coin, as simple classification trees. In the 

case of regression, weak learners are typically simple regression trees but they 

could be any simple regression model. Note that the gradient boosting algorithm 

would still work if we were using complex models as weak learners. However, this 

often leads to poor performance. 

Recall that the aim of a machine learning technique is to obtain an approxima­

tion j (x) of the unknown data genera ting function f (x). The gradient boosting 

method atte1npts to approximate f(x) with a weighted sum of weak learners 

h(x;O) 

M 

f(x) = L f3mh (x , Om), (3.2.1) 
i=l 

where ()m is the set of parameters characterizing the function h. Weak learners 

h( x; Om) all belong to the same class of functions H. Consequently, the minimiza-
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tion problem described by Equation 3.1.3 becomes 

(3.2.2) 

However, this is a tremendous optimization problem and in most of the cases, this 

is infeasible computationally, as the next example shows. 

Example 3.2.1 We consider a dataset of size n, a quadratic loss function, a 

weak learner given by 

and M = 2. The global optimization problem defined by Equation 3. 2. 2 becomes 

n 

{,Bm, Om}~=l = arg min L (Yi- ,8~ (exp (B~lXil + e~2Xi2)) 
{,6~ , 8~ }~n=l i=l 

- ,a; (exp ( e;l Xii + e;2Xi2)) )
2 

. 

Even in this simplified situation, the global solution (,81 , ,82 , 811 ,812,821, 822) is quite 

complex to obtain. 

In theses situations, one can try a greedy-stagewise approach called forward stage­

wise modeling in solving, for m = 1, ... , M, 

n 

(,Bm , Om) = arg min L L (yi, fm-I(x i) + ,Bh(xi; 0)) , 
,6,B i=l 

(3.2.3) 

and by updating the model with 

(3.2.4) 

starting with an initial value Jo (x). This approach is greedy because at each 

step, it finds the optimal local solution without worrying about the next steps. 

Stagewise 1neans that the 1nodel is constructed step by step by adding a new 

function at each iteration without modifying previous functions. 
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Example 3.2.2 In Example 3.2.1, the optimization problem becomes a local pro­

cedure: 

n 

n 

and 

n 

n 

which is easier to compute. 

For sorne choices of loss functions and/or weak learners, the solution to Equa­

tion 3.2.3 can be hard to obtain. In those cases, we need another method in order 

to find optimal parameters. 

Based on the steepest-descent minimization method, [FROl] suggests replacing 

Equation 3.2.3 by a two-step approach: 

1. Evaluate the negative gradient of the loss function based on the data 

where 
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It gives the step direction of the steepest descent at the point f(xi) = 

fm-I (xi) of the n-din1ensional data space. This negative gradient is uncon­

strained since no particular structure is assumed for the function f. How­

ever, this gradient is only defined at the data points { xi}~1 , which means 

it can not be generalized to other data points than those of the training set. 

The solution proposed by [FROl] is to approximate the unconstrained nega­

tive gradient by a weak learner h choosen as the closest one to the negative 

gradient in the L2 sense. It is called the constrained negative gradient and 

can be obtained by solving 

n 

Om = arg min 2:( -gm(xi)- f3h(xi; 0)) 2
, 

B,/3 i=l 
(3.2.5) 

which is equivalent to fit a weak learner h by least square on the training 

set with responses { -gm(xi)}i=1 , called pseudo residuals. 

2. The best step size 

n 

Pm= arg min L L(yi, fm-l(xi) + ph(xi; Om)) (3.2.6) 
p i=l 

is computed and the prediction function is updated: 

(3.2.7) 

In sorne rare cases as in the AdaBoost algorithm (see [FS97]), the optimal step 

size has a closed form. However, optimal or sub-optimal step size Pm is most of 

the time found using line search [ST03]. This leads to Algorithm 1, compatible 

with any differentiable loss function L(y, f(x)) and any weak learner h(x; 0). 

Example 3.2.3 Squared-error loss L(y, f(x)) = ~(y- f(x)) 2 is a popular choice 

of loss function for regression. When this particular loss is used, Algorithm 1 
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Algorithm 1 Generic Gradient Boosting 

1. lnitialize fo(x) = arg min 2::~ 1 L(yi, ry). 
'Y 

2. For m = 1, ... , M, do: 

(a) compute pseudo residuals 

( ) [
8L(yi, f(xi)l . 

-gm Xi =- aj( ·) , 't = l, ... ,n; 
x?, f(x)=fm-l(x) 

(b) find the parameters of the weak learner that best fits the pseudo 

residuals 

n 

Om = arg min L(-gm(xi)- f3h(xi)) 2
; 

(),(3 i=l 

( c) find the optünal step size 

n 

Pm= arg 1nin L L(yi, fm-l(xi) + ph(xi; 0~)); 
p i=l 

( d) update prediction function 

3. Final prediction function is fM (x). 
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simplifies a bit. First, we notice that the pseudo residuals { -gm(xi)}i=I become 

simply the residuals {Yi - fm-I(xi)}~1 . Indeed, 

-gm(xi) = _ [oL(yi, f(xi)] · 
a f (xi) J(x)=fm-1 (x) 

[ a~(Yi- f(xi)) 2] 
=- of(xi) J(x)=fm - l(x) 

= [Yi - f(x i)]J(x)=fm-l(x) 

= Yi - f m-1 (Xi). 

Also, the minimization in Equation 3. 2. 6 produces the results Pm = f3m, where 

f3m is the be ta minimizing the expression in Equation 3. 2. 5. The initial guess 

for the prediction function Jo (x) becomes the mean of response variables over the 

n observations. Therefore, with squared-error loss, ·gradient boosting becomes a 

stagewise approach that fits iteratively the residuals of the previous madel using a 

weak learner. Least square gradient boosting is described in Algorithm 2. 

3.2.1 TreeBoost 

A decision tree partitions the predictor space X into J subspaces { Rj }f=1 called 

regions. In the regression context, a prediction constant bj is assigned to each 

region, and the prediction function has an additive form given by 

J 

h(x, 8) = L bj li(x E R.i ), 
j=l 

where (} = {Rj,bj}f= 1 paran1etrizes the tree. Trees are usually fit using a top­

clown greedy approach called CART methodology, described by [BR84]. Gradient 

boosting models are usually fit using decision trees as weak learners since they 

show good performance. In that case, the update in Equation 3.2.4 becomes 

Jm 

fm(x) = fm-I(x) +Pm L bjmli(x E Rjm), 
j=l 

(3.2.8) 
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Algorithm 2 Least Square Gradient Boosting 

1. Initialize Jo (x) = ~ I:~=l Yi. 

2. For m = 1, ... , M, do: 

(a) compute residuals 

(b) find parameters of the weak learner and step size that best fit the 

residuals 

n 

( c) update prediction function 

3. Final prediction function is fM (x). 
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where {Rjm}f:-1 are the regions created by the mth tree to predict pseudo resid­

uals { -gm(xi) }r=1 by least-squares. {bjm}f:-1 are the coefficients 1ninimizing the 

squared prediction error in each of the regions. At the m th iteration, bjm is there­

fore the average pseudo residual value for all observations belonging to the region 

b
. _ Sjrn 
Jm- -----, j = 1, ... ,Jm, 

JSjml 
(3.2.9) 

where Sjm = { i : X i E Rjm} and JSjml are respectively the set of observations 

belonging to the region Rjm and the number of observations in region Rjm· The 

scaling factor Pm is obtained using Equation 3.2.6. For the special case of trees 

as weak learners, [FR01] proposed a modified version of the gradient boosting 

algorithm, called TreeBoost. In fact, it is also possible in Equation 3.2.8 to enter 

the term Pm into the sum, to set "fjm = Pmb.im and to write, in an alternative way, 

lrn 

fm(x) = fm-1(x) + L "fjmli(x E Rjm). (3.2.10) 
j=1 

Instead of adding only one weak learner, Equation 3.2.8 can now be seen as adding 

Jm separate weak learners at each iteration. The optimal coefficients { 'Yjm}f-;;:1 are 

the solution to 

(3.2.11) 

Since the regions produced by decision trees are disjoints, optimal coefficients can 

be found separately, with 

"/jm = arg min L L (yi , fm-1 (xi)+ r)' 
r 

(3.2.12) 

which is the optimal constant value for each leaf of the tree given the predic­

tion function f m-1 (x). This modified version of the gradient boosting algorithm 
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estimates the optilnal coefficient of each separate region of the tree instead of es­

timating one coefficient for the whole tree, which in1proves the quality of the fit. 

Number of regions made by the tree at each iteration is often fixed, so lm = J, 

for m = 1, ... , lvf. TreeBoost algorithm is detailed in Algorithm 3. It should be 

noted that the number of trees M as well as the number of regions in each tree 

J are treated as hyperparameters, and their optimal values are most of the time 

estimated using cross-validation. 

Algorithm 3 TreeBoost 

1. Initialize fo (x) = arg min I::~=l L(yi, T'). 
'Y 

2. For m = 1, ... , M, do: 

(a) compute pseudo residuals 

( ) [
8L(yi, f(xi)] . 

-gm Xi =- aj( ·) , 2 = 1, ... , n; 
xt f(x)=f.m-1 (x) 

(b) fit a tree to the data {(xi, -gm(xi))}~1 , which gives regions 

{Rjm}f=l; 

( c) compute optimal coefficient for each region 

T'.im = arg min L L (yi, fm-l(x i) +T'), j = 1, ... , J; 
'Y 

( d) update prediction function 

J 

fm(x) = fm-l(x) + L T'jm:ll.(x E Rjm)· 
j=l 

3. Final prediction function is fM (x). 
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3.2.2 Regularization 

Regularization refers to methods used to prevent overfitting by constraining the 

fitting procedure, and is a key idea in prediction models. Each new weak learner 

added to the gradient boosting model reduces the average loss function over the 

training data, which is the empirical training risk. Consequently, if M is chosen 

large enough, it is possible to make the training risk arbitrarily small. However, 

fitting the training data too closely degrades the model's generalization ability 

and increases the risk on unseen data points. A way to regularize is therefore to 

control the value of M. The goal is to find the value of lVI that minimizes the risk 

on future predictions, and a way of doing this is by cross-validation [FHOl]. 

Another way to regularize is to slow the rate at which the algorithm is learning 

from the training data at each iteration, called shrinkage. This is clone by in­

troducing a shrinkage parameter v, more commonly called learning rate, and by 

replacing the update in Equation 3.2.4 by 

(3.2.13) 

Therefore, at each iteration, the new weak learner added is simply scaled by the 

learning rate. The s1naller the learning rate, the slower the algorithm learns. 

Thus, decreasing the value of the parameter v increases the optimal value for 

M, which means these two parameters must be optin1ized jointly, for instance 

with cross-validation. It has been found that shrinkage improves dramatically the 

performance of gradient boosting, and yields better results than only restricting 

the number of weak learners (see [C083]). Many other regularization methods 

exist for gradient boosting, but shrinkage is certainly the one that leads to the 

best improvement. 
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3.3 Gradient Boosting for Loss Reserving 

In order to train gradient boosting models, we use an algorithn1 called XGBoost 

developed by [CG16), and regression trees are chosen as weak learners. Moreover, 

loss function used is the squared loss L(y, f(x)) ~ (y- f(x)) 2 but other options 

such as residual deviance for gamma regression were considered without signifi­

cantly altering the conclusions. We postpone to a subsequent case study a more 

detailed analysis of the impact of the choice of this function. Models are imple­

mented in R thanks to caret package. XGBoost is similar to TreeBoost algorithm 

described in Section 3.2.1 and thus follows the principles of boosting. The differ­

ences between the two algorith1ns are mostly in modeling details. Also, XGBoost 

usually yields more accurate predictions, requires less computational resources 

and is faster to fit. For more details about XGBoost, see [CG16]. 

Let us say we have a portfolio of cl aimants S on w hi ch we want to train an 

XGBoost model for loss reserving. In order to predict total paid a1nount for a 

daim k, we use information we have about the case at evaluation date t*, denoted 

by x~~). The XGBoost algorithm therefore learns a prediction function ÎxcB on 

the dataset vi~) = {(x~~)' c~~)) }kES· Then, the predicted total paid amount for 

daim k is gi ven by 

"'(k ) A ( (k)) 
Cr3 = fxcB xt* · 

Reserve for daim k is 

R"'(k ) _ 0-----(k) _ c(k) 
t* - T3 t* ' 

and the RBNS reserve for the whole portfolio is co1nputed with 
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Gradient boosting is a non-parametric algorithm and no distribution is assumed 

for the response variable. Therefore, in order to co1npute the variance of the 

reserve and sorne risk measures, we use a non-parametric bootstrap procedure. 



CHAPTERIV 

ANALYSIS 

In this chapter, we present an extended case study based on a detailed dataset 

from a property and casualty insurance company. In Section 4.1, we describe the 

dataset; in Section 4.2, we present the covariates used in the models; in Section 4.3, 

we explain how we construct our models and how we train them. Finally, in 

Section 4.4, we present our numerical results and our analyzes. 

4.1 Data 

We have at our disposai a database consisting of 67,203 Accident Benefit daims 

involving 82,520 daimants from a North American insurance company, running 

from January pt 2004 to December 3Pt 2016. We therefore let T, the ad hoc start­

ing point, be January pt 2004. The portfolio containing the 82,520 daimants is 

denoted S. Most daims involve one (83%) or two (13%) insured (see Figure 4.1.1), 

and the maximum observed number of daimants for a daim is 9. Consequently, 

there is a possibility of dependence between son1e payments in the database. Nev­

ertheless, we assume in this paper that all clain1ants are independent and we 

postpone the analysis of this dependence. The mean incurred as of December 31st 

2016 is $16,067, and the incurred distribution for each occurrence year is presented 

in Figure 4.1.2. About 40% of the claüns close with a total paid amount of zero. If 
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we exdude daims with an incurred of zero as of December 3Pt 2016, the average 

incurred increases to $24,144. 

The data is longitudinal, and each row of the database corresponds to a snapshot 

of a file. For each element in S, a snapshot is taken at the end of every quarter, and 

we have information fron1 the reporting date until December 31st 2016. Therefore, 

a daünant is represented by a maximu1n of 52 rows, since 52 is the number of 

quarters between January pt 2004 and December 3Pt 2016. A line is added in 

the database even if there is no new information, i.e., it could be possible that two 

consecutive lines provide precisely the same information. This method of storing 

daim data is not unique and varies from insurer to insurer. In Chapter 1, we have 

seen that intrinsically, the loss reserving problem is in continuous time. However, 

since we only have discrete information, we will now consider it a discrete problem, 

which means the constructed models will be discrete. 

Example 4.1.1 All claimants with reporting date on the first quarter of year 

2004 are represented by 52 rows, those with reporting date on the second quarter 

of year 2004 are represented by 51 rows, etc. Finally, all claimants with reporting 

date on the last quarter of year 2016 are represented by only one row. 

The information vector for daim k at time t is given by V~k) = (x~k), c?)). 
Therefore, information matrix about the whole portfolio at time t is given by 

'D~s) = {V~k)}kES· Because the database contains a snapshot for each daimant 

at each quarter, it contains information 'Ds = {'D~5)}{o.25t: tEN, t~52}, where t is 

the number of years since T. Claimant features indu de characteristics of the 

daimant himself, but also those regarding the daim and the policy associated 

with hin1. In order to validate the models, we need to know how n1uch has 

actually been paid for each daim. In portfolio S , total paid amount Cr3 is still 

unknown for 19% of the daimants, because they are related to dain1s that are 
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Figure 4 .1 .1: Number of claimants per claim. 

open on December 3Pt 2016 (see Figure 4.1.3). In Figure 4.1.3, we can see that 

open daims are mostly from recent accident years. To overcome this issue, we 

use a subset S7 = { k E S : T}k) < 7} of S , i.e. , we consider only accident 

years from 2004 to 2010 for both training and validation. This subset contains 

36,843 daimants related to 30,483 daims. That way, only 0.67% of the daimants 

are associated with daims that are still open as of the end of 2016, so we know the 

exact total paid amount for 99.33% of them, assuming no reopening after 2016. 

For the small proportion of open daims, we assume that the incurred amount 

set by experts is the true total paid amount. Renee , the evaluation date is fixed 

to December 3Pt 2010 and we set t * = 7. This is the date at which the RBNS 

reserve must be evaluated for daimants in S 7 . This implies that the mo dels are 

not allowed to use information past this date for their training. Infonnation after 

the evaluation date is only used for validation. A summary about sets S and S7 
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Figure 4.1.2: Distribution of final incurred by accident years {on a base 10 log 

scale). The first quartile is equal to the minimum for all accident years since many 

claims close at zero. The average incurred for each accident year is represented 

by a dot. 

is clone in Table 4.1.1. 

For simplicity and for computational purpose, the quarterly database is summa­

rized to forma yearly database Vs7 = {Vi57)}i!1, where Vi57 ) = {Vik)}kES7· 70% 

of the 36,843 claimants have been sampled randomly to form the training set of in­

dices Tc S7 , and the other 30% forms the validation set of indices V C S7 , which 

gives the training and validation datasets Vr = {Vi7 )}i!1 and Vv = {Div)}i!1 . 

A summary of training and validation datasets is clone in Table 4.1.2. 
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F igure 4 .1 .3: Status of claims on December 31st 2016. 

4.2 Covariates 

In partnership with the insurance company, we have selected 20 covariates in order 

to predict total paid a1nount for each of the claimants, described in Table 4.2 .1. 

Note that sorne variables have been censored due to the confidentiality agreement. 

To make models comparable, we use the same covariates for all of them. Sorne 

covariates are characteristics of the claimant and sorne are about the daim itself, 

as the accident year and the development year. Sorne of the covariates, such as the 

accident year, are static, which means their value do not change over t ime. These 

covariates are quite easy to handle because their final value is known since the 

reporting of the accident. However, sorne part of available information is expected 

to develop between t* and the closure date. More precisely, 8 of the 20 covariates 

are dynamic variables, as the number of healthcare providers. To handle those 
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Table 4.1.1: Comparison of complete set of claimants (S) and set of claimants 

from accident years 2004-2010 (S7 ). % of open claims is on December 3Pt 2016. 

Dataset # claims # clain1ants % of open claims 

s 67,203 82,520 18.87 

s1 30,483 36,843 o.67 

Table 4.1.2: Details about training and validation datasets. 

Dataset # claims # claimants # rows 

VT 22,096 25,790 256,894 

Vv 10,164 11,053 109,918 

dynamic covariates, we have, at least, the following two options: 

• we can assume that they are static, which can lead to a bias in the predictions 

obtained, or; 

• we can, for each of these variables, (1) adjust a dynamic model, (2) obtain a 

prediction of the complete trajectory, and (3) use the algorithm conditionally 

to the realization of this trajectory. Moreover, it is possible that there is sorne 

dependence between these variables and therefore a n1ultivariate approach 

could be necessary. 

In this work, we simply assume that values of dynamic covariates are frozen at 

time t*. Also, notice th at the case reserve set by adj usters is not used as a 

covariate. This information would probably be useful, but would make models 

non self-sufficient. 
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Table 4.2.1: Covariates used in the models. 

Description Type 

Accident year static 

Development year dynamic 

lndicator of the status "settled" of the claim dynamic 

Number of wounded static 

Number of healthcare providers dynamic 

Covariate 6 static 

Covariate 7 static 

Covariate 8 static 

Covariate 9 static 

Covariate 10 dynamic 

Covariate 11 static 

Covariate 12 static 

Covariate 13 static 

Covariate 14 static 

Covariate 15 static 

Covariate 16 static 

Covariate 17 dynamic 

Covariate 18 dynamic 

Covariate 19 dynamic 

Covariate 20 dynamic 

4.3 Training of XGBoost models 

ln Section 3.3, we have seen that in order to fit an XGBoost model, we need the 

training response Cr3 for each daimant in the training set. However, 22% of the 

daimants in S7 , mostly from recent accident years, are associated with daims that 

are still not settled at t* = 7, and their total paid amount Cr3 is still unknown 

(see Figure 4,3.1). We therefore face a censored response variable issue. At this 

stage, several options are available: 

1. The simplest solution is to train the 1nodel on a training set where only 

settled daims (or non censored dain1s) are induded. Renee, the response 



Cil a 
·~ 

ü 
<...., 
0 
1-o 
~ 

.D 
8 ::s z 

38 

0 
0 
0 
00 

0 Open 

• Settled 

0 
0 
0 
\0 

0 
0 
0 
"<:t' 

0 
0 
0 
('1 

0 

2004 2005 2006 2007 2008 2009 2010 

Accident year 

F igure 4 .3 .1 : Status of claims on December 31 st 201 O. 

is known for all claimants. However , this leads to a selection bias because 

claims that are already settled at t * tend to have shorter developments, and 

claims with shorter developments tend to have lower total paid amounts . 

Consequently, the model is almost exclusively trained on simple claims 

with low training responses, and this leads to underestimation of the total 

paid amount for new daims. Furthern1ore, a significant proportion of the 

claimants are removed from the analysis, which causes a loss of information. 

We will further analyze this bias below. 

2. In [LM16], a different and interesting approach is proposed: in order to cor­

rect the selection bias induced by the presence of censored data, a strategy 

called "Inverse Probability of Censoring Weighting" (IPCW) is implemented, 

which involves assigning weights to observations to offset the lack of corn-
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plete observations in the sample. The weights are determined using the 

Kaplan-Meier estimator of the censoring distribution and a modified CART 

algorithm is used to make the predictions. We refer an interested reader to 

the aforementioned paper. 

3. A third approach is to develop open claims at t* using parameters from a 

classical approach such as the Mack's model and GLM. We also discuss in 

more detail this idea below. 

In order to train an XGBoost model, we have at our disposition the training 

dataset DT= { (xt, Ct) }i!1 . All models are adjusted using the same 20 covariates 

described in section 4.2. Because sorne covariates are dynamic, the design. matrix 

Xt changes over time, that is to say Xt -=/: Xt' for t -=/: t'. Unless otherwise stated, 

the mo dels are all trained using x 7 , which is the la test information we have about 

claimants assuming information after t* = 7 is unknown. 

In practice, the evaluation date is always in the present , which means that the 

total paid amount is still unknown for many claims. In that case, a model using 

real responses is not applicable. In this work, we fix the evaluation date in the past 

in order to know the total paid amount for each clain1, which makes possible the 

training of such a model. This Model A acts as a benchmark model in our case 

study because it is fit using C13 as training responses and it is the best model we 

can hope for. Therefore, in or der to train Mo del A, data Dff = { ( x~k), Ci~))} kET 
,..._ 

is inputted into the XGBoost algorithm, that learns the prediction function fA· 

Model B, which is a biased one, is fit using C7 as training responses, but only on 

the set of claimants for which the claim is settled at time t* = 7. Renee, Model B 

is trained using Df = {(x~k)' c+k))}kETs, where TB= {k ET: Tik) < 7}, giving 

the pre~iction function f B. This n1odel allows us to 1neasure the extent of the 

selection bias. 
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In the next models, we develop claims at t*, i.e., we predict pseudo-responses Ôr3 

using training set V 7 , and these pseudo-responses are subsequently used to fit the 

mo del. 

ln Madel Cl, Madel C2 and Madel C3, claims are developed using the chain­

ladder algorithm and the Mack's model with only accident years and development 

years as covariates. In the first case, we use expected values as pseudo-responses 

while in the second case and in the third case, we use a bootstrap procedure in 

order to obtain more conservative pseudo-responses. More specifically, information 

from data {V~T)}i= 1 is aggregated by accident year and by development year to 

form the cumulative run-off triangle 

Cn c12 C13 C14 C1s C16 c11 

c21 c22 C23 C24 C2s C26 

C31 C32 c33 c34 C3s 

C= c41 C42 c43 c44 

Cs1 Cs2 Cs3 

c61 c62 

Cn 

where cij is the cumulative aggregate payment for claüns of accident year i at 

development year j. For the Madel Cl, the chain-ladder algorithm is applied on 

this triangle in order to obtain pseudo-responses { ê~~)} kET 

and 

6 

ê(k) = ~~c(k) where ~J~ = rr ~l 
T3 J 7 ' 

"\"'7-j c 
~ . - Ûi=l i (j+l) 

J - "\"'7-j C ·. ' 
Ûi=l ~] 

l=j 

(4.3.1) 

(4.3.2) 

for j = 1, ... , 6. For closed claims, we sünply set ê~~) = C~k). For the Madel C3 

and the Madel C2, we consider the bootstrap approach described in [EV02) and 
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involving Pearson's residuals to generate B = 1000 bootstrap samples of triangles 

{ C(b)}f=1. On each of those triangles, the chain-ladder algorithm is applied to 

obtain the matr~x of estin1ated development factors 

A (1) 
À1 

A (1) 
À2 

A (1) 
À3 

A (1) 
À4 

A (1) 
Às 

A (1) 
À6 

A (2) A (2) A (2) A (2) A (2) A (2) 

[À1 À2 À3 À4 Às À6] 
À1 À2 À3 À4 Às À6 

A (B) 
À1 

A (B) 
À2 

A (B) 
À3 

A (B) 
À4 

A (B) 
Às 

A (B) 
À6 

In arder to have conservative pseudo-responses, we choose the development factor 

~j to be the soth and go th empirical quantile of vector ~j, j = 1, ... , 6. Cumulative 

development factors can be computed with Equation 4.3.1 and, finally, pseudo­

responses {ê~)}kET are obtained in the same way as in Model Cl. 

Model Dl uses an individual Poisson GLM with predictors to compute pseudo­

responses, described in Section 2.2. GLM is fit on data {(x~7) , ~(T))}J= 1 , where 

x~T) = {x~k)}kET, ~(T) = {y;_(k)}kET and y;_(k) is the yearly aggregate payment 

at year t for claimant k. Logarithm link function is used and coefficients are 

estimated by 1naximizing Poisson log-likelihood. Therefore, the estünation of the 

mean for a new observation is given by 

and prediction is made according to the estimated mean: 

{/-(k) .-..(k) 
I t = Jkt . 

Prediction is clone for all claimants of the training set T for calendar years after 

the evaluation date, namely for t = 8, ... , 13, yielding the predictions f~(k)}i~8 , 

for all k E T. For all files, the pseudo-response is obtained by adding all yearly 

aggregate estimated payments after t* = 7 to the amount already paid at the 
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censoring date. For claimant k, 

13 

ê~~) = c+k) + L ~(k). 
t=8 

In Model Dl, Model D2, Model D3, Model D4 and Model D5, claims are 

projected using an individual quasi-Poisson GLM using all 20 covariates. More 

specifically, Model Dl uses an individual Poisson GLM with all predictors to es­

timate the training dependent variable. The GLM is fit on data { (xfT), ~(/)) }J=1, 

where x~T) = {x~k)}kET, ~(T) = {~(k)}kET and ~(k) is the yearly aggregate pay­

ment at year t for claimant k. A logarithm link function is used and coefficients 

are estimated by maxin1izing the Poisson log-likelihood function. Therefore, the 

estimation o~ the expected value for a new observation is given by 

Ji~k) = exp ( x~k) fi) , 

and a prediction is made according to the estimated mean ~(k) = Ji~k). Prediction 

is done for all claimants of the training set T for calendar years after the evaluation 

date, namely for t = 8, ... , 13, yielding the predictions {~(k) }i28 , for all k E /. 

For all files of the dataset, the pseudo-response is obtained by adding all yearly 

estimated payments after t * = 7 to the amount already paid at the censoring date. 

For claimant k, we have 

13 

ê(k) = c(k) + ""'~(k). 
T3 7 D t 

t=8 

Model D2, Model D3, Model D4 and Model D5 are similar to Model Dl, 

but instead of a Poisson GLM, a quasi-Poisson GLM is used. Moreover, rather 

than using ~(k) = Ji~k) we choose ~(k) = q-y,(k ) (a), where q-y, (k) (a) is the level a 
t t 

empirical quantile of the vector of simulations 
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obtained fron1 a bootstrap procedure. For the claimant k, the pseudo-response is 

13 

ê(k) ~ c(k) + '"""""~(k). 
T3 7 ~ t 

t=8 

For Model D2, Madel D3, Model D4 and Madel D5, we select a= 0.6, 0.7, 

0.8 and 0.9, respectively. 

The Madel E is constructed exactly in the same way as Madel C3 but it uses 

prospective information about the 4 dynamic covariates available in the dataset. 

It is somehow analogous to Madel A in the sense that it is not usable in practice. 

However, fitting this model allows to see if an additional model that would project 

censored dynamic covariates would be useful. In Table 4.3.1, we summarize the 

main specifications of the models. 
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Model Training response vector Covariates Usable in practice? 

ModelA {C13} X7 No 

Model B (k ) (k ) 
{C7 hETa • TB= {k ET: T3 < 7} Xï Y es 

Model Cl closed: { Cr3 } X7 Y es 

open: {êr3 = 5..jC7} X7 

(5.. from Equation 4.3.2) 

Model C2 closed : { Cr3 } X7 Y es 

open: { êr3 = 5..j C7} X7 

(5.. from bootstrap, quantile 0.8) 

Model C3 closed: { Cra} X7 Y es 

open: {êr3 = 5-.jCï} Xï 

(5.. from bootstra p , quantile 0.9) 

Model Dl closed : { Cr3 } X7 Y es 

open: { êr3 = c7 + L:i!8 Yt} X7 

(with Yt =lit) 

Model D2 closed: { Cr3 } X7 Y es 
~ 13 ~ 

open: { Cr3 = c7 + Lt~8 Yt} X7 

(with Yt = qyt (0 .6)) 

Model D3 closed : { Cr3 } Xï Y es 

open: { êr3 = C1 + L:}!8 Yt} X7 

(with Yt = qyt (0.7)) 

Model D4 closed: { Cra } X7 Y es 

open: { êr3 = c1 + L:i!8 Yt} X7 

(with Yt = qyt (0 .8)) 

Model D5 closed: { Cr3 } X7 Y es 

open: { êr.3 = c7 + L:i!8 Yt} X7 

(with Yt = qyt (0 .9)) 

ModelE closed : { Cr3 } X13 No 

open: { êr3 = 5..jC7} X13 

(5.. from bootstrap) 

Table 4.3.1: Main specifications of XGBoost models. Unless otherwise stated) 

we have k ET. 
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4.4 Results 

From {V~T)} J=1 , which is the training dataset bef ore evaluation date, it is possible 

to obtain a training run-off triangle by aggregating payments by accident and by 

development year, presented at Table 4.4.1. 

1 2 3 4 5 6 7 

2004 79 102 66 49 57 48 37 

2005 83 128 84 55 52 41 

2006 91 138 69 49 38 

2007 111 155 98 61 

2008 100 178 99 

2009 137 251 

2010 155 

Table 4.4.1: Training incremental run-off triangle (in $100,000). 

We can apply the same principle for the validation dataset Vv, which yields the 

validation run-off triangle displayed at Table 4.4.2. 
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1 2 3 4 5 6 7 8+ 

2004 34 41 23 13 14 14 9 7 

2005 37 60 36 29 45 21 20 24 

2006 41 64 34 23 21 14 4 21 

2007 46 67 40 37 15 18 3 13 

2008 46 82 39 42 16 11 15 33 

2009 54 109 62 51 31 36 11 2 

2010 66 93 47 45 16 16 9 ? 

Table 4.4.2: Validation incrementa[ run-off triangle (in $100 ,000). 

Based on the training run-off triangle, it is possible to fit many collective dassical 

models (see [WM08] for an extensive overview). Once fitted , collective models 

are scored on the validation triangle. In the latter, data used to score mo dels is 

displayed in black, as aggregate payments observed after the evaluation date are 

displayed in gray. Payments have been observed for 6 years after 2010, but this is 

not long enough for all daims to be settled. In fact, on December 31st 2016, 0.67% 

of daimants are associated with daüns that are still open, mostly frmn accident 

years 2009 and 2010. Therefore , amounts in column "8+" for the most recent 

accident years in Table 4.4.2 are in fact too low. Based on available infonnation, 

the total observed reserve amount is $67,619 ,905 (summing all gray entries), but 

we can reasonably think that this amount would be doser to $70,000,000 if we 

could observe more years. 

Results for collective models are presented following two approaches: 

• the Mack's 1nodel, for which we present results obtained with the bootstrap 

approach developed by [EV02] and based on bath, quasi-Poisson and gamma 
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distributions; 

• generalized linear models for which we present results obtained using a log­

arithmic link function and a variance function V(JL) = <pJLP with p = 1 

(quasi-Poisson), p= 2 (gamma), and 1 <p < 2 (Tweedie). 

For each model and based on the validation set, we present in Table 4.4.3 the 

expected value of the reserve, its standard error, as well as the 95% and the 

99% quantiles of the predictive distribution of the total reserve amount. As it 

is generally the case, the choice of the distribution used to simulate the process 

error in the bootstrap procedure for the Mack's model has no significant impact 

on the results. Reasonable practices, at least in North America, generally require 

a reserve amount given by a high quantile (95%, 99% or even 99.5%) of the 

reserve's predictive distribution. Based on this, the reserve amount obtained by 

bootstrapping Mack's model is too high (between $90,000,000 and $100,000,000) 

compared to the observed value (approximately $70,000,000). Reserve amounts 

obtained with generalized linear models are more reasonable (between $77,000,000 

and $83,000,000), regardless of the choice of the underlying distribution. The 

predictive distribution for all collective models are shown in Figure 4.4.1. 

In Table 4.4.3, we also present in-sample results, i.e., we use the same set of 

claimants to perform both estimation and validation. We note that the results 

are very similar, which tends to indicate son1e stability of the results obtained 

using these collective approaches. 



Bootstrap Quasi-P oisson 

Mack 

Gamma 

GLM Quasi-Poisson 

Gamma 

Tweedie 

(p = 1.01) 

Table 4.4.3: 
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IE[Res.] JVar[Res.] qo.9s qo.99 

out-of-sample 76,795,136 7,080,826 89,086 ,213 95,063,184 

in-sample 75,019,768 8,830,631 90,242 ,398 97,954,554 

out-of-sample 76,803,753 7,170,529 89,133 ,141 95,269,308 

in-sample 75,004,053 8,842,412 90,500 ,323 98,371,607 

out-of-sample 75,706,046 2,969,877 80,655,890 82,696,002 

in-sample 74,778,091 3,084,216 79,922,183 81,996,425 

out-of-sample 73,518,411 2,263,714 77,276,416 78,907,812 

in-sample 71,277,218 3,595,958 77,343,035 80,204,504 

out-of-sample 75,688,916 2,205,003 79,317,520 80,871,729 

in-sample 74,706,050 2,197,659 78,260,722 79,790,056 

Prediction results for collective approaches. 

, . . 
' ,: 

.\ 

Mack bootstrap quasi-Poisson 
Mack bootstrap gamma 
GLM quasi-Poisson 
GLMgamma 
GLM 1\veedie 

60 80 100 

Total reserve amount (in millions) 

Figure 4.4.1: Comparison of predictive distributions for collective models. The 

observed reserve amount is represented by the vertical dashed line . 
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Individual models are trained on training set { v~T)} r=l and scored on validation 

set {D(v) }i!8 . In contrast to collective approaches, individual methods use micro­

covariates and, more specifically, the reporting date. This allows us to distinguish 

between IBNR accidents and RBNS daims and, as previously mentioned, in this 

project we focus on the n1odeling of the RBNS reserve. Nevertheless, in our 

dataset, we observe very few IBNR accidents and therefore, we can reasonably 

compare the results obtained using bath micro- and macro-level models with the 

observed amount ($67,619,905). 

We consider the following approaches: 

• individual generalized linear models, for which we present results obtained 

using a logarithmic link function and three variance functions: V(J.L) = /1 

(Poisson), V(J.L) = <pJ.LP with p = 1 (quasi-Poisson) and V(J.L) = <pJ.LP with 

1 < p < 2 (Tweedie); and 

• XGBoost models (Model A, B, Cl, C2, C3, Dl, D2, D3, D4, D5 and 

E), described in Section 4.3. 

Bath approaches use the same covariates described in Section 4.2, which makes 

them comparable. For many claimants in bath training and validation sets, sorne 

covariates are missing. Because generalized linear models cannat handle 1nissing 

values, medianjn1ode imputation have been performed for both training and val­

idation sets. No imputation have been done for XGBoost models since missing 

values are processed automatically by the algorithm. 

Results for individual GLM are displayed in Table 4.4.4, and predictive distri­

butions for both quasi-Poisson and Tweedie GLM are shown in Figure 4.4.3. 

Predictive distribution for Poisson GLM is omitted since it is the sa1ne as the 

quasi-Poisson madel, but with a much smaller variance. Based on our dataset, we 
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observe that the estimated value of the parameter associated with certain covari­

ates is particularly dependent on the database used to train the model, e.g., in the 

worst case, for the quasi-Poisson model, we observe /3covariate 16 (modality 33) = 0.169 

(0.091) with the out-of-sample approach and 73covariate 16 (modality 33) = -1.009 

(0.154) with the in-sample approach. This can also be observed for many param­

eters of the model as shown in Figure 4.4.2 for the quasi-Poisson model. On this 

graph, we observe that, for most of the parameters, the values estimated on the 

validation set (grey dots) are inaccessible wh en the mo del is adjusted on the train­

ing set. In Table 4.4.4, we display results for both in-sample and out-of-sample 

approaches. As the results shown in Figure 4.4.3 suggest, there are significant dif­

ferences between the two approaches. Particularly, the reserves obtained from the 

out-of-sample approach are too high compared to the observed value. Although 

it is true that in practice, the training/validation set division is less relevant for 

an individual generalized linear model because the risk of overfitting is lower, this 

suggests that sorne caution is required in a context of loss reserving. Given the 

presence of many zeros in the database, the fit of a generalized linear model with 

the Gamma is not good and the results have not been included in Table 4.4.4. 



Accident ycar 12005 
Accident year 2006 
Accident ycar 2007 
Accident year 2008 
Accident year 2009 
Accident year 2010 

g~~~lgg~~~: ~~~~ g 
Dcvelopment year ~4 
Development year 5 
Developmcnt year 6 

Indicator of the statusi:!;6~/gg.~Ï~hl~~~i:, 
Number ofwounded 

Numbcr of hcalthcare providers 
Covariate 6 
Covariate 7 

Covariate 8 (modality 1,! 
Covariate 8 C~g~:~~~1/c) 

Covariatc 1 0 
Covariate Il 
Covariate 12 

Covariate 13 modality 1 
Covariate 13 modality 2 
Covaiiate 14 modality 1 
Covariate 14 modality 2 
Covaiiate 14 modality 3 
Covariate 14 modality 4 
Covariate 14 modality 5 
Covariate 14 modality 6 
Covariate 14 modality 7 
Covariatc 14 modality 8 
Covariate 15 modality 1 
Covariate 15 modality 2 
Covariate 15 moda lity 3 
Covariate 15 modality 4 
Covariate 15 modality 5 
Covariate 15 modality 6 
Covaiiate 15 modality 7 
Covariate 15 modality 8 
Covariate 15 modality 9 

Covariate 15Jmodality 10 
Covariate 15 modality 1 1 
Covariate 15 modality 12 
Covariate 15 modality 13 
Covariate 15 modality 14 
Covariate 15 modali!)' 15 

Covariate 1 modallty 1 
Covaiiate 16 modality 2 
Covariate 16 modality 3 
Covaiiate 16 modality 4 
Covariate 16 modality 5 
Covariate· l6 modality 6 
Covariate 16 modality 7 
Covariate 16 modality 8 
Covariate 16 modality 9 

Covariate 16 modality 10 
Covariatc 16 modality Il 
Covariate 16 modality 12 
Covariate 16 modality 13 
Covariate 16 modality 14 
Covariate 16 modality 15 
Covariate 16 modality 16 
Covariate 16 modality 17 
Covariate 16 modality 18 
Covariate 16 modality 19 
Covariate 16 modality 20 
Covariate 16 modality 21 
Covariate 16 modality 22 
Covariate 16 mndality 23 
Covariate 16 modality 24 
Covariate 16 modality 25 
Covariate 16 modality 26 
Covariate 16 modality 27 
Covariate 16 modality 28 
Covariate 16 modality 29 
Covariate 16 modality 30 
Covariatc 16 modality 31 
Covariate 16 modality 32 
Covariate 16 modality 33 
Covariate 16 modality 34 
Covariate 16 modality 35 

Covariate 1 
Covariate 18 tmodality 1 Covaiiate 18 modality 2 
Covariate 18 modality 3 
Covariate 18 modality 4 
Covariate 18 modality 5 
Covaiiate 18 modality 6 
Covariate 18 modality 7 
Covariate 18 ~~~~~t'l r 

~·················• 

&> ··· • ®··· ..... , . ·-----·· 
~·-···· ............. . 

·--· 

• ···-··@ 
• ········® . ···~ 

*'• · ~ •• 

·~ *"• 

@ ........ 

1$:. 

··-) ~· ... ·-· e ® . .... _'* •.. .... 
G 

it]) 

lW·· ., ... 
~· 

-~·-· ..... . ... * 

• 
....... 
._. 

!~! ..................................... ' • 
®-· .. . . .............. _____ ....... 

• • ... 
Cl< 

. ................ -Q ........... ............ 
t'le . ..... o 

•·<~~~ •• ·--· • .... 
0 

· --·till . ............... ., 
Ci,) 

• 
........ 

;) . ....... . .......... ~ 
. .. (!) 

·---·-· ... ·----... • . ........... 
tl) ...... 

. ................ --e 
1111 ...... - . ... - .... ·-· .. ---------.. -·-"··------·-·• ·--.......... ..... •· .................... . 

• ·<$ . -$ 
. ...................... _. 

· - .... ·-----·@ __ ............... . .... - ............... ~ 
. ............ ç 

. ................. ~ ·-· 

51 

• (!) ...... - .... 

Cova1iate 20 L..__--r--- --.------.------.-----___.:'?------r- ----.-- ----.,---_l 
-2 -1.5 - 1 -0.5 0.5 1. 5 

Parameter value 

Figure 4 .4 .2: Estimated parameters for quasi-Poisson individual GLM. The 

black dots correspond to the out-oj-sample estimates, as the grey dot are the in-

sample estimates. 
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IE[Res.] .JVar[Res.] qo.95 qo .99 

GLM Poisson out-of-sample 86,411,734 9,007 86,426,520 86,431,211 

in-sample 75,611 ,203 8,655 75,625,348 75,631,190 

Quasi-Poisson out-of-sam ple 86,379,296 894,853 87,815,685 88,309,697 

in-sample 75,606 ,230 814,608 76,984,768 77,433,248 

Tweedie out-of-sample 84,693,529 2,119,280 88,135,187 90,011 ,542 

in-sample 70,906 ,225 1,994,004 74,098,686 75,851,991 

Table 4 .4 .4: Prediction results f or individual generalized linear models using 

covariates. 
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Figure 4.4.3: P redictive distributions for in-sample and out-of-sample individual 

GLM with covariates. 

Results for X GBoost models are displayed in Table 4.4.5. For all models, the 

learning rate v in Equation 3.2.13 is around 10 %, which means our models are 

quite robust to overfitting. We use a maximum dep th of 3 for each t ree. A higher 

value would make our model more complex but also less robust to overfitting. All 
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those hyperparameters are obtained by cross-validation. Notice that in this work, 

cross-validation is only used for hyperparameter tuning: model assessment is done 

by separating the database into training and validation sets. 

IE[Res.] JVar[Res.] q0.95 qo.99 

XGBoost ModelA 73,204,228 3,742,810 79 ,329,916 82,453,032 

Model B 14,339,470 6,723,608 25,757,061 30,643,369 

Model Cl 60,953,413 2,379,841 64,946,493 66,890,092 

Model C2 67,655,960 2,411,739 71,708,313 73,762,242 

Model C3 71,104,515 2,410,433 75,069,298 77,144,866 

Model Dl 64,436,000 3,819,808 71 ,030,238 73,873,276 

Model D2 36,605 ,131 3,959,622 45,215,241 43,377,677 

Model D3 47,637,431 4,034,744 54,277,446 57,648,568 

Model D4 68,313,731 4,176,418 75 ,408,868 78,517,966 

Model D5 122,893,765 4,265,776 130,210,785 133,208,866 

ModelE 67,772,822 2,387,476 71,722 ,744 73,540,516 

Table 4.4.5: Prediction results for individual approaches using covariates. 

Not surprisingly, we observe that the Model B is completely off the mark, un­

derestimating the total reserve by a large amount. It confirms that the selection 

bias, at least in this exan1ple, is real and substantial. 

Model Cl , Model C2 and Model C3 considera collective model , i.e. , without 

micro-covariates, to create pseudo-responses and then, use all n1icro-covariates 

available in order to predict final paid amounts. It seems that using the expected 

value as a pseudo-response (Model Cl) is not a conservative approach. With 
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a slightly lower expectation and variance, Madel C2 and Madel C3 are quite 

similar to Model A. Since the latter uses real responses for its training, this 

is an indication that the method used for daim development is reasonable. In 

addition, the ggth percentile of Model C3 's distribution is above the observed 

sum of payments by a fair amount. This is a good thing since it means the 

amount of money reserved by the insurance company will be plenty most of the 

time. We also do not want the ggth percentile to be too high above the observed 

amount, because it would mean a loss of investment incarne. Madel C3 is more 

conservative than Madel C2 since it uses a higher quantile of the distribution of 

the developn1ent factors for daim development. Renee, the choice of the quantile 

for daim development relies on the insurance company, and should be chosen 

for instance with cross-validation. The predictive distributions for Model A, 

Model Cl, Model C2 and Model C3 are displayed in Figure 4.4.4. 
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Figure 4.4.4: Predictive distributions for XGBoost Madel A, Cl, C2, and 

C3. 
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In Figure 4.4.5, we compare the predictive distributions of ModelA, Madel Dl, 

Model D2, Model D3 and Model D4. The predictive distribution of the 

Model Dl is not shown because it is very similar to that of the Model D3. 

All D models use a quasi-Poisson GLM for daim development, but each one 

with a different quantile of the quasi-Poisson distribution. As Madel C2 and 

Model C3, these are almost perfect translations of each other. We note that 

the results obtained are very unstable, ranging from $35,000,000 when a 60th 

percentile is used for pseudo-responses (Model D2) to nearly $100,000 ,000 when 

a 90th percentile is used (Madel D5). The standard deviation is also very high, 

close to $5,000,000 in comparison with that of the C models. On one hand, the 

insurance company must choose a confidence level that does not compromise its 

solvency as do Madel D. On the other hand, the quantile chosen should not be 

too high, at the risk of losing investment incon1e, as does Model D5. Here, the 

best model seelUS to be Model D4, suggesting to choose the soth percentile. 
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Model E is identical to Model C3 with the exception of dynan1ic variables whose 

value at the evaluation date was artificially replaced by the ultünate value. We 

note that, at least in this case study, the impact is negligible (see Figure 4.4.6). 

There would be no real interest in building a hierarchical model that allows, first, 

to develop the dynamic variables and, second, to use an XGBoost model to predict 

final paid amounts. We have not t ested whether the replacement of dynamic 

variables by their ultimate value would make a significant change for other than 

Model C3. However , since the models are sin1ilar, it is assumed that the results 

would be sünilar. 
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Figure 4.4.6: 
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Comparison of predictive distributions for M odel E and 

Madel C3. The observed total paid amount is represented by the vertical dashed 

line. 

Notice that in this paper, we al ways consider predictive distributions to compare 

models. One might wonder why we do not use criteria often used in 1nachine 

learning as the Root Mean Squared Error (RMSE) or the Mean Absolute Error 
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(MAE). The reason lies, at least in part, in the unbalancing of the data. Indeed, 

the database used in this work contains a lot small daims (many of which are 

closed at zero) and very few big daims. Therefore, because they are symmetric 

error functions , RMSE and l\IIAE favor models that predict low reserves. At the 

limit, we could think that a model predicting a RBNS reserve of exactly zero for 

each daim would have a good RMSE or MAE sin ce the o bserved reserve is zero 

for a big proportion of claimants. However, we know that it would be a poor 

model since the sun1 of the predicted reserves would be zero! 



CONCLUSION 

This paper studies the modeling of loss reserves for a property and casualty in­

surance company using micro-level approaches. More specifically, we apply gener­

alized linear models and gradient boosting models designed to take into account 

the characteristics of each individual daimant , as well as individual daim. We 

compare those models to dassical approaches and show their performance on a 

detailed dataset from a Canadian insurance company. The choice of a gradient 

boosted decision trees model is 1notivated by its great perforinance for prediction 

on structured data. Also, this type of algorithm requires very little data prepro­

cessing, which is a great benefit. Among all existing gradient boosting algorithms, 

XGBoost have been chosen, especially for its relatively short calculation time. 

Through a case study, we have mainly shown that 

(1) the use of a micro-level mo del based solely on generalized linear models could 

be unstable for loss reserving and 

(2) an approach combining a macro-level model for the artificial completion of 

open daims and a micro-level gradient-boosting mo del could be an interest­

ing approach for an insurance company. 

In addition, we illustrate that the censored nature of the data could strongly bias 

the results and we propose sorne solutions such as projecting total paid amount 

of non settled daims using different 1nethods such as bootstrap chain-ladder and 

generalized linear models. 
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The gradient boosting models presented in this paper allow to compute a predic­

tion for the total paid amount of each clain1ant. However, an insurer could also 

be interested to madel the payment schedule, namely to predict the date and the 

amount of each individual payment. We know that payments for insured belong­

ing to the same claim aren't independent: it is well known that claim amounts 

for claimants of a same claim are positively correlated. Therefore, one could ex­

tend the madel by adding a dependence structure between claimants. The same 

principle could be applied with the different types of coverage (medical and reha­

bilitation, incon1e replace1nent, etc.). Dynamic covariates can change over time, 

which makes their future value random. In this work, we assumed that their 

value will not change after the evaluation date and we checked that the impact 

is marginal. However, for a different database, this could have a significant im­

pact on the results. A possible refinement would be to build a hierarchical madel 

that first predicts the ultimate values of dynamic covariates before inputting them 

into the gradient boosting algorithm. In the validation part, models were penal­

ized equally regardless of the accident year of the claim. Because it is even more 

crucial to estimate reserves accurately for recent accident years, sorne kind of im­

portance sampling could be used in order to penalize models more severely when 

they are wrong about recent claims. Finally, we could consider another criterion 

to evalua te the performance of mo dels. In this paper, we look at the predictive 

distributions and evaluate by eye if the model is good or not. We said earlier that 

symmetric error functions as the RMSE and the MAE are poor criteria due to 

the unbalanced data. It could therefore be interesting to look for another error 

function that penalizes more errors on big claims compare to small orres. That 

would allow us to evaluate the models in a more objective way. 
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