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RESUME

Cette these introduit une nouvelle méthode pour prouver que le groupe fondamen-
tal du revétement ramifié double d’entrelacs dans la 3-sphere n’est pas ordonnable
a gauche. Gréce & cette méthode, on trouve des familles infinies d’entrelacs non-
alternés pour lesquels le groupe fondamental du revétement ramifié double n’est
pas ordonnable a gauche.

Keywords: ordonnable & gauche, groupe fondamental, revétement double rami-
fié, 3-variété.






ABSTRACT

This thesis introduces a new method to prove that the fundamental group of the
double branched cover of a link in the 3-sphere is not left-orderable and applies it
to find new infinite families of non-alternating links with this property.

Keywords: left-orderable, fundamental group, double branched cover, 3-manifold.






INTRODUCTION

In this thesis, we study the left-orderability of the fundamental group of the double

branched cover of links. Our main motivation is the L-space conjecture:

Conjecture 0.0.1. (Conjecture 1 in (Boyer et al., 2013), Conjecture 5 in (Juhdsz,
2015)). Assume that M is a closed, connected, irreducible, orientable 3-manifold.

Then the following statements are equivalent.

1. M is not a Heegaard Floer L-space,
2. M admits a co-orientable taut foliation,

3. m (M) is left-orderable.

The conjecture is known to be true when M has positive first Betti number
((Gabai, 1984), (Boyer et al., 2005), or is a non-hyperbolic geometric 3-manifold
((Boyer et al., 2013), (Lisca & Stipsicz, 2007), (Boyer et al., 2005)) or is a graph
manifold ((Boyer & Clay, 2017), (Hanselman et al., 2015)).

The double branched covers of links are closed, connected, orientable 3-manifold.
Moreover, double branched covers of prime links are irreducible and generically

hyperbolic.

It is known that the fundamental group of double branched covers of alternat-
ing non-split links are not left-orderable ((Boyer et al., 2013)). Moreover, the
left-orderability of the fundamental group of the double branched covers of Mon-

tesinos links has been determined ((Boyer et al., 2005)) and the same is true



for arborescent knots ((Boyer & Clay, 2017)). Note that Montesinos knots are

arborescent knots.

In this thesis, we determine important families of links, in particular families of
non-alternating and non-arborescent links, for which the fundamental group of

the double branch cover is not left-orderable.

First, we recall the following definition:

Definition 0.0.2. A group G is called left-orderable (LO) if G # {1} and its
elements can be given a (strict) total ordering < which is left invariant, meaning

that ¢ < h implies fg < fhif f,g,h € G.

Our methods build on an argument from a theorem in (Boyer et al., 2013), which

we now state as a proposition.

Proposition 1.0.6. Let D be the diagram of a non-split non-trivial link L. Sup-
pose that the Wada group m(D) is left-orderable. If it implies that (D) is abelian,
then 71 (X(L)) is not left-orderable.

As we will see in section 1, the Wada group is presented by
(D) =< ay,...,a, : a; 'a;a; 'a; >
where the generators correspond to the arcs of D and the relations
o a;0; a (1)

are in one-one correspondence with the crossings of D.

Throughout the thesis, we will find families of links for which, when we suppose

that the Wada group is left-orderable, we obtain that the Wada group is abelian.



To show that the Wada group 7(D) is abelian, we will introduce a subgroup G(D)
called the Graph group of D.

Lemma 2.0.2. Let D be a diagram of a non-split link and G(D) be the Graph
group of D. Suppose that (D) is left-orderable. If the Graph group G(D) is

trivial, then 7(D) is abelian.

To show that the Graph group is trivial, we will simplify its generating set. From
a link diagram D with m rational tangles, we will obtain successively the Wada
graph I'y, the coarse Wada rational graph I and then the Wada rational graph I'.
From the coarse Wada rational graph, we will obtain 4™ sets of generators for the
Graph group. From the Wada rational graph, if we suppose that the Wada group
is left-orderable, we will obtain many Wada rational groups G(I',d) which are
equal to the Graph group. We will suppose that the Wada group is left-orderable.
From a left-order <, we will construct a directed Wada graph (I, <). Finally, from
this directed Wada graph, we will construct a group G(I'(D), <) which is equal
to the Graph group and for which each generator is less than or equal to 1 with
respect to <. Furthermore, we will introduce the family of 2 non-bridge links,
the only links that we will study. Note, that every knot of 10 crossings or less,
except the knot 1041, is a 2 non-bridge knot. There are many possible directed
Wada graphs, but fewer for 2 non-bridge links. To obtain the non left-orderable
property, we will show that it is sufficient that every G(T', <) be trivial.

Lemma 4.0.1. Let D be a maximal two non-bridge diagram of a non-split link
and suppose that m(D) is left-orderable. If for every maximal directed Wada graph
(T, <), the directed Wada group G(T', <) is trivial, then 7(D) is abelian.

Therefore by Proposition 1.0.6

Theorem 4.0.2. Let D be a maximal two non-bridge diagram of a non-split link



L and suppose that m(D) is left-orderable. If for every directed Wada graph (T, <),
the directed Wada group G(T', <) is trivial, then m;(3(L)) is not left orderable.

Moreover, we will give a stronger result for links having a link diagram with only
one maximal directed Wada graph up to reversing edges. These links are called
directed. This is a large family, because the non-alternating knots of 11 crossings
or less, they represent 71% of such knots. Thus, for directed links, using Theorem

4.0.2, we only have to look at the directed Wada graph.

Corollary 4.0.3. Let D be a two non-bridge directed diagram of a non-split
directed link L and suppose that 7(D) is left-orderable. If a directed Wada group
G(T, <) is trivial, then 71(X(L)) is not left orderable.

We will then introduce three important families of directed links: the totally
monopositive links, the (n — 1) totally monopositive links and the steady fluid
(n — 2) totally simple monopositive links. Those families cover 35 of the 40 non-
alternating, non left-orderable and directed links of 10 crossings or less. We will
prove that the directed Wada group of those directed links is trivial and thus we

have, by Corollary 4.0.3, the following results.

Theorem 7.3.6. If L is a totally monopositive, 2-non-bridge and non-split link,

then the fundamental group of the double branched cover of L is not left-orderable.

Theorem 7.4.3. If L is a (n — 1) totally monopositive, 2-non-bridge and non-
split link, then the fundamental group of the double branched cover of L is not
left-orderable.

Theorem 7.5.9. If L is a fluid steady (n — 2) totally simple monopositive link
with n > 3, then the fundamental group of the double branched cover of L is not

left-orderable.



We note that the knot 949 is a non-alternating, non-arborescent and (n—1) totally
monopositive, 2-non-bridge and a non-split link. Thus, the fundamental group
of the double branched cover of 949 is not left-orderable. We find others non-
alternating and non-arborescent knots such that the fundamental group of the

double branched cover is not left-orderable.

Moreover, we will show that starting from a totally monopositive link, a (n — 1)
totally monopositive link, or a steady fluid (n — 2) totally simple monopositive
link, we can obtain an infinite family of links for which the fundamental group of

the double branched cover is not left-orderable.

Theorem 8.3.7. Let L be a totally monopositive link and X; be a g rational
tangle which is not a half-twist. If we change X; to a similar rational tangle, then
the fundamental group of the double branched cover of the new link L’ is not

left-orderable.

Theorem 8.3.8. Let L be a (n — 1) totally monopositive link and X; be a §
rational tangle which is not a half-twist. If we change X; to a similar rational
tangle, then the fundamental group of the double branched cover of the new link

L' is not left-orderable.

Theorem 8.3.9. Let L be a (n — 2) totally monopositive link and X; be a £
rational tangle which is not a half-twist. If we change X, to a rational tangle of
same nature, then the fundamental group of the double branched cover of the link

L’ is not left-orderable.

To deal with links that are not directed, we will introduce the triple hop link
family of links which account for 88% of non-alternating knots of less than 12
crossings. We will split this family of links into the middle triple hop links and
the final triple hop links. For both subfamilies, we will find sufficient conditions

for some directed Wada groups of non-directed link to be trivial.



Theorem 9.1.6. Let (I', <) be a directed Wada graph of a middle triple hop link
diagram. If the left directed condition (resp. right directed condition) and the
left middle hop condition (resp. right middle hop condition) are fulfilled, then
G(T, <) is trivial.

Theorem 9.2.4. Let (I, <) be a trichotomic directed Wada graph of a final triple
hop link diagram. If the left graph is left graph directed (resp. the right graph
is right graph directed) and the left middle hop condition and right middle hop
condition are fulfilled, then G(T', <) is trivial.

Thus, by Proposition 4.0.2 :

Theorem 9.1.7. Let D be a maximal two non-bridge middle triple hop diagram
of a non-split link L. If for every directed Wada graph (I', <), the left directed
condition (or resp. right directed condition) and the left middle hop condition
(or resp. right middle hop condition) are fulfilled, then the 71 (%(L)) is not left-

orderable.

Theorem 9.2.5. Let D be a maximal two non-bridge final triple hop diagram
of a non-split link L. If every directed Wada graph (T, <) is trichotomic and for
every (I', <) the left graph is left graph directed or the right graph is right graph
directed and both the left middle hop condition and right middle hop condition
are fulfilled, then the 71 (X(L)) is not left-orderable.

We call a directed Wada graph of a middle triple hop link diagram that satisfies
the hypothesis of Theorem 9.1.6, a good middle triple hop diagram. Similarly,
from the hypothesis of Theorem 9.2.4, we define good final triple hop diagrams.
We conclude by finding infinite families of good middle triple hop diagrams and
good final triple hop diagrams.



Theorem 9.2.13. Let D be a good middle (resp. final) triple hop diagram of
a link L with X the triple hop rational tangle. If we substitute X by a rational
tangle X' of the same nature, then for the new link L' obtained from the new

rational tangle X', m(X(L')) is not left-orderable.

0.1 Overview

In the first chapter, we will cite and prove the theorem of Boyer, Gordon and
Watson and introduce Proposition 1.0.6. Moreover, we will give another proof of
the theorem of Boyer, Gordon and Watson. To do so, we will introduce and prove

new results on rooms and wnhabitants and on the red and blue link diagram.

In the second chapter, for a link diagram, we will first introduce the Graph group
and prove Theorem 2.0.3. Then, we will construct the Wada graph I'y and the
coarse Wada rational graph IV and show how from these graphs, we can obtain
new sets of generators of the Graph group. Furthermore, we will show that if the
Wada group is left-orderable, then we can construct the directed Wada graphs
(T, <). Moreover, we will prove that the directed Wada groups G(T', <) are equal
to the Graph group.

In chapter three, we will narrow the number of possibilities for the directed Wada
graphs. To do so, we will introduce the semi-directed Wada rational graph and
show how, from the semi-directed Wada rational graph, we can obtain the directed
Wada graphs. Moreover, we will introduce the mazimal Wada directed graphs and

the directed link.

In chapter four, we prove Lemma 4.0.1, Theorem 4.0.2 and Corollary 4.0.3, which

underlines the importance of the directed Wada group.

In chapter five, we introduce the Hybrid Wada diagram and we relabel the vertices



in a Wada directed graph. Both will be very useful in the proofs of the following

chapters.

In chapter six, we prove Theorem 6.7.7, which shows that if one edge is trivial in
a directed Wada graph of a directed link, then the directed Wada group is trivial.
Thus, in combination with Corollary 4.0.3, we obtain Theorem 6.7.8 which plays
a central role in the proofs of chapter 7. To prove Theorem 6.7.7, we will need

many technical results.

In chapter seven, one of the most important chapters of this thesis, we will in-
troduce totally monopositive links, (n — 1) totally monopositive links, and steady
fluid (n—2) totally simple monopositive links. Then, we will prove Theorem 7.3.6,
Theorem 7.4.3 and Theorem 7.5.9. To prove these results, we will introduce some
families of group and prove that these families have a trivial generator. Then, we
will prove that the directed Wada group of the previous families of links have a

trivial generator. Thus, by Theorem 6.7.7, we will obtain the desired results.

In chapter eight, from totally monopositive links, (n — 1) totally monopositive
links, and steady fluid (n — 2) totally simple monopositive links, we will construct
infinite families of links for which the fundamental group of the double branched
cover is not left-orderable. To do so, we will prove Theorem 8.3.7, Theorem 8.3.8

and Theorem &8.3.9.

Finally, in chapter nine, we will introduce the triple hop links to investigate non
directed links. We divide this family into the middle triple hop links and the
final triple hop links. For both families, we will find sufficient conditions for the
directed Wada group to be trivial. Using these conditions, we will prove Theorem
9.1.7 and Theorem 9.2.5. The links in these theorems will be called good middle
triple hop links and good final triple hop links. We will prove that from a good
middle triple hop link, we can obtain an infinite family of good middle triple hop



links and similarly for good final triple hop links.






CHAPTER I

THE ALTERNATING THEOREM

To find families of links for which the fundamental group of the double branched
cover is not left-orderable, we will use an argument from the following theorem of

(Boyer et al., 2013).

Theorem 1.0.1. (Boyer et al., 2018) The fundamental group of the double branched

cover of a non-split alternating link is not left-orderable.

To prove this result we need the following group presentation associated to a link

diagram due to Wada (Wada, 1992).

Let L be a link in S® and D a diagram for L. Label the arcs of the diagram a,
through a,. Define the Wada group

(D) =< ay,...,a, : a; a;a; 'a; >
where the relations
a,;lajai_laj (].].)

are in one to one correspondence with the crossings of D as illustrated in Figure
1. Note that this relation is well-defined, as it is invariant under interchanging

the indices 7 and k.
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Figure 1

Definition 1.0.2. We say that an arc a; is a bridge if a; goes over at least one
other pair of arcs as a; in Figure 1. If it goes over exactly n other pair of arcs, it

is called an n-bridge. If it does not go over any arcs, it is called a non-bridge.

The Wada group will be particularly useful when we suppose that it is left-
orderable. If 7(D) is left-orderable, fix a crossing (a;, a;, ax) where a; is the local
bridge. The Wada relations imply that exactly one of the following three possi-
bilities occurs:

l.a;<aj <ag

2. a < a; < a;

3. a; = a; = ai.

The following result is used in the proof of Theorem 1.0.1.

Theorem 1.0.3. (Wada, 1992) Let D be a link diagram of a link L. Then,
(D) = m(X(L)) * Z where 3(L) is the double branched cover of L.
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The following two lemmas from (Boyer et al., 2013) imply Proposition 1.0.6, which
is instrumental in proving Theorem 1.0.1. Later, we will rely mostly on Proposition

1.0.6 to obtain our results.

Lemma 1.0.4. Let D be a link diagram of a non trivial link L. Then w(D) is

non-abelian.

Proof. The link L is not trivial, therefore ¥(L) is a 3-manifold that isn’t the 3-
sphere. Thus, m1(2X(L)) is not trivial. This implies that 7(D) = m(X(L)) *Z isn’t
abelian by definition of a free product. O

Lemma 1.0.5. Let D be a link diagram of a non-trivial link L. Then, (D) is
left-orderable if and only if m1(X(L)) is left-orderable.

Proof. By a result of Vinogradov (Vinogradov, 1949), the free product of two non-
trivial groups is left-orderable if and only if each group is left-orderable. Therefore,
m(X(L)) is left-orderable if and only if (D) = 7 (X(L)) * Z is left-orderable,

because Z is left-orderable. O

Thus, by the two previous lemmas we prove the following Proposition.

Proposition 1.0.6. Let D be the diagram of a non-split non-trivial link L. Sup-
pose that m(D) is left-orderable. If it implies that w(D) is abelian, then w1 (X(L))

s not left-orderable.

1.1 Result for alternating non-split non-trivial links

In this section, we will prove Proposition 1.2.8, which says that if we have an
alternating non-split link diagram D and we suppose the Wada group 7 (D) to be
left-orderable, then 7(D) is abelian. This result combined with Proposition 1.0.6

proves Theorem 1.0.1.
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1.1.1 Investigation on inhabitants in a room

In this section, we will prove results on so-called inhabitants in a room that we

will use in the proof of Proposition 1.2.8.

The following definitions come from Topics in Knot Theory (Rolfsen, 1993).

Definition 1.1.1. A room R is a region of the plane (the boundary, assumed
polygonal, may be empty or disconnected), together with an even number of

marked points on its boundary.

An inhabitant T of a room R is a diagram in R (part of a link diagram) whose

boundary is precisely the set of marked points.

The following figure is an example of an inhabitant of a room with six marked

points.

Figure 1.1 Example of an inhabitant of a room with six marked points

Remark 1.1.2. We note that an inhabitant of a room with a connected boundary

and 2n marked points is an n-tangle.

Definition 1.1.3. Let R be a room with 2n marked points. Let a be a strand in

an inhabitant T of the room R. We define the height ht(a;T) € N of a as follows.
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We start at a marked point of a and we follow the strand. Every time we go
over an arc of 7" we add one and every time we go under an arc we subtract one.
Similarly, we define the height of a knot k& of T. We start at a point ¢ on the knot
and choose a direction to follow on the knot until we return to c. Every time we
go over an arc of T' we add one and every time we go under an arc we subtract

one. Note that ht(k;T) is similarly defined in a link diagram.

Lemma 1.1.4. Let R be a room with 2n marked points. Let a be a strand or a

knot that doesn’t intersect any other knot or strand in an inhabitant T of the room

R. Then ht(a;T) = 0.

Proof. Suppose a is a strand. Then, for each crossing of a, by following the strand,
we will pass exactly one time over a and one time under a. Thus, each crossing

adds 0 to ht(a; T) and so ht(a;T) = 0.

The proof is similar if a is a knot. a

Remark 1.1.5. Let R be a room with 2n marked points and a be a strand in an
alternating inhabitant 7" of the room R. Then, the strand goes under an arc, over

an arc, under an arc, etc. Thus,

4
1 if it starts and ends over an arc

ht(a;T) = { —1 if it starts and ends under an arc

0 if it starts over and ends under or starts under and ends over
\

Let k be a knot in an alternating inhabitant T of the room R. Since T is alternat-

ing, k must go over an arc the same number of times as under an arc. Therefore,

ht(k;T) = 0.

Let a be a strand or a knot in an inhabitant 7" of the room R. We say that a is

alternating in T if it goes over an arc in 7', under an arc in T', over an arc in T,
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and so on. Thus, if k is a knot that is alternating in T, then ht(k;T) = 0. Note,
that when we say that a knot k is alternating in T, it doesn’t imply that k is an
alternating knot. Moreover, every strand and knot of an inhabitant of the room

R is alternating in T if and only if T is alternating.

Let a and b be strands and/or knots in an inhabitant of the room R. We define
ht(a;b) by the height obtained by following a and only counting the crossings such

that a intersects b.
Thus, from the definition of height and Lemma 1.1.4 we obtain the following.

Lemma 1.1.6. Let R be a room with 2n marked points and a and b be some
arcs or knots in an inhabitant T of the room R. Then ht(a;b) = —ht(b;a) and
ht(a;a) = 0.

From, the previous lemma and the definition of height, we obtain the following.

Lemma 1.1.7. Let R be a room with 2n marked points and ay, ..., a, and ky, ..., kn,

be the arcs and knots of an inhabitant T of the room R . Then

ht(a;; T) = Z ht(a;; a;) + Z ht(a;; k).
j=1 1=1

We now introduce a series of technical lemmas about inhabitants T of a room R

that will play an important role in proving Proposition 1.2.8.

First, knowing the that knots are alternating in T' gives us information about the

height of the strands.

Lemma 1.1.8. Let R be a room with 2n marked points and ay, ..., an and ky, ..., kn,
be the strands and knots of an inhabitant T of the room R. If the knots k; are
alternating in T for every 1 <i < m, then > ht(a;; T) = 0.

i—1

)
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Proof. To simplify the reading, we denote ht(a;;k;) = Eyj, ht(k;; ki) = Fj and
ht(a;; ax) = Dy with E;j, Fjy, Dy, € Z. Furthermore, by Lemma 1.1.6, ht(k;; a;) =
_Eij7 F:'il = —Ej, D,‘k = _Dki7Dii = 0 and E” =0 for all 1 < ’L,k) S n and

1<jl<m.

By Lemma 1.1.7, we then have

n

ht(ki; T) = Zn: ht(k‘i; aj) + in: ht(ki; k‘l) = Z(—Eji) + zm: Fy. (1.2)
j=1 I=1 1=1

=1

However, k; is alternating in T', therefore ht(k;;T) = 0. So, > (—Ej)+> Fu=0.
j=1 1=1
Therefore, we obtain

0= ht(k)=> (> ht(ki;a;) + i ht(k;; ki)

i=1 i=1 j=1 =1

= Z(— ZE]z + ZEI)

=1

i=1 j=1 i=1 I=1

But, Y ) F; = 0, because Fj;; = —F; and F;; = 0 for all 1 < 5,1 < m. This
i=1i=1

implies that 0 =Y >~ Ej;.

i=1j=1
Furthermore, notice that D, = —Dy; and Dy; = 0 for all 1 < 4,k < n implies that

n n
Y. > D;; =0. We can now calculate
i=1j=1
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Z ht(a;; T) = Z(Z ht(a;;a;) + Z ht(as; ki)

i=1 j=1

= Z(Z Dij + Z Ey;)

i=1 j=1
m

30,4335,

n
i=1 j=1 i=1 [=1

i=1 j=1

(1.3)

(1.4)

(1.5)

(1.6)

Let R be a room with 2n marked points. A marked point coming from an arc

that just went under another arc is called an under marked point and a marked

point coming from an arc that just went over another arc is called an over marked

point as is shown in the following figure.

NS
under endpoints

over endpoints

N
X

DA

Figure 1.2 Over marked point and under marked point in an inhabitant of a

room

Note that, by remark 1.1.5, for an alternating inhabitant of a room R, each marked



19

point of a strand a; such that ht(a;;T) = 1 is an over marked point. Moreover,
each marked point of a strand a; such that ht(a;;T) = —1 are under marked
points. Finally, a strand a; such that ht(aj;T) = 0 has one over marked point

and one under marked point.

Lemma 1.1.9. Let R be a room with 2n marked points and T be an alternating
inhabitant of the room R. Then T has n over marked points and n under marked

points.

Proof. Let ay, ...,a, and k;, ..., k,, be the n strands and m knots in 7. By Lemma
1.1.8, we have Xn: ht(a;; T) = 0. Moreover, because T is alternating, by remark
1.1.5, for 1 < lzzlg n, ht(a;T) = —1,1 or 0. Therefore, for each a; such that
ht(a;; T) = 1, there is an a; such that ht(a;;T) = —1. Thus, for each strand q;
with two over marked points, there is a strand a; with two under marked points.
For the strands ag, such that ht(ax;T) = 0, then ax add one over marked point
and one under marked point. Thus, there are as many over marked points as

under marked points. O

We now show how we can relate information about the number of i bridge arcs

and non-bridge arcs on a knot to the height of this knot.

Lemma 1.1.10. Let R be a room with 2n marked points and T an inhabitant of
the room R. If k is a knot in T such that there is at least one arc of T \ k that
l
goes over k, then ht(k) = > (i — 1)p; where p; is the number of © bridge arcs on
=0

k, po ts the number of non-bridge arcs on k and l is the mazimum of the i for the

1 bridge arcs in T.

Proof. By hypothesis, there is at least one arc that goes over k. Without loss of

generality, we start counting the height at a point ¢ just after ¥ went under an
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arc but before k goes over or under another arc. Then, we follow &k until just after
the next arc over k. If we have just followed a non-bridge arc, then we went over
no arc and under an arc. So, we've added -1 to ht(k;T). If we have just followed
an i-bridge arc, then we went over ¢ arcs and under an arc. So, we’ve added 7 — 1

to ht(k;T). We repeat this action until we come back to ¢. Thus, we have

l

ht(k;T) =Y (i = 1)p;

=0

Remark 1.1.11. Note that if [ is the maximum of the i for the ¢ bridge arcs in

! q
D, then > (i — 1)p; = > (i — 1)p; for ¢ > [, because p, = 0 for every | < r < q.
=0 =0

We can obtain a similar result for the height of the strands in an inhabitant of a
room R, when we know the number of non-bridge arcs and 7 bridges arcs on the

knots.

Lemma 1.1.12. Let R be a room with 2n marked points and a,, ..., a, and ky, ..., kn,
be the strands and knots of an inhabitant T of the room R such that for every knot
k; there is at least one arc of T\ k; that goes over k;. Suppose there are a total of po
non-bridge and p, r-bridge arcs on the knots. Then E ht(a;T) = — Z (7 —Dp;

i=1 7=0
where | is the number of crossings in T'.

Proof. To simplify the reading, we denote ht(a;; k;) = Eyj, ht(kj; k) = Fj and
ht(a;; ax) = Dy with Ey;, F, Dy € Z. Furthermore, by Lemma 1.1.6, ht(k;;a;) =

—Ei;, Fu —Fy, Dix = —Dy;,Diy = 0 and Fj; = 0 foralll < ¢k < n and
1< 7,1 <m. By Lemma 1.1.7,
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ht(k:i; T) = th ki a;) +th ks k) = Z ~Ej;) + lim,. (1.7)
=1

j=1

l n
If k; is alternating in 7', then ht(k;; T) = > (j — 1)p;, = Op1, = 0. So, Y (—Ej)+
7=0 j=1
Y. Fui=0.
i=1

Suppose k; has pj, j-bridge arcs and po, non-bridge arcs. Therefore, ht(k; T) =
!

>-(j — 1)pj, by the previous lemma and remark. Therefore,
=0

Jj=1

ht(ks; T) = Z Ey) + szz Z 7= 1)p;,-

m
Moreover, p; = > p;, is the number of j- bridge arcs on the knots k; and py =
i=1

m

Z Po, is the number of non- bridge arcs on the knots k;. Therefore, > ht(k;;T) =
1

)

i=1

i(] - 1)p;, = i(j — 1)p;. Thus,

j=0 7=0

™3

il
—_

i

l

> G—1p; = Z

3=0

n

(" ht(ki;a5) + Z ht(ki; k)

j=1 =1

pnqs

I
_

7

2 Bt 2 B

n

B
=1

=1 j=1 =1 I=1

IIPHﬂS

But, Z Z a = 0, because Fj; = —F}; and Fj; = 0 for all 1 < 5,1 < m. This
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1
implies that — > (j — 1)p; =
j=0 i

2 By

Jj=1

Ms

i
MR

Furthermore, remark that D;z; = —Dy; and D; = 0 for all 1 < ¢,k < n implies

i=1j=1

We can now calculate

th a; T) = Z th a;; a;) + th a;; ki) (1.8)

Z—l]l

_Z ZDUJFZE” (1.9)

1131

e SIS 35 D) (1.10)

i=1 j=1 i=1 1=1

n n l
:ZZDU_ZJ_I Z]—l (1.11)

i=1 j=1 j=0 J=0

Similarly to knots, we can know the height of a strand by knowing the number of

i-bridge arcs and non-bridge arcs on it.

Lemma 1.1.13. Let R be a room with 2n marked points, T be an inhabitant of
the room R and let a be a strand in T'. If by following a we have p; i-bridge arcs
l
and po non-bridge arcs, then ht(a;T) =1+ > (j — 1)p; where | is the number of
j=0

crossings in T'.

Proof. 1f the strand a doesn’t go under any arc in T, then a is an i-bridge. Thus,

I
ht(a;T)=i=1+(i—1) =14 > (j — 1)p; and the proof is over.
7=0

Now, suppose that a does go under an arc in 7. We start to calculate the height
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at a marked point until just after the strand went under an arc. If there was an
i-bridge arc before the first under arc, for the height until just after the first under
arc, we add ¢ — 1. Then, we go until just after the next under arc. Again, if there
was an ¢-bridge arc before the under arc we add i — 1. Similarly, for the path until
just after the next under arc we add ¢ — 1 for each i-bridge. After the last under
bridge, for the remainder of a, we add ¢ if we finish with an i-bridge and so we

!
add (i —1) +1 for the last i-bridge. Thus, we have ht(a;T) =1+ > (j—1)p;. O
7=0

We can now give an equation between non-bridge arcs and i-bridge arcs in an

inhabitant of a room R.

Lemma 1.1.14. Let R be a room with 2n marked points and T be an inhabitant

of the room R such that for each knot k; of T there is at least one arc of T \ k;

that goes over k;. If there are p; i-bridge arcs in T and py non-bridge arcs in T,
l

then po =n+ Y (j — 1)p; wherel is the number of crossings in T
j=1

Proof. Suppose there are a total of g; i-bridge arcs on the knots k;. Thus, by
Lemma 1.1.12, Z ht(a; T) = — Z(] — 1)g;. Also, suppose there are ¢;, j-bridge

j=
arcs on the strands a; for a total of r; i-bridge on the strands.
!
Therefore, by Lemma 1.1.13, ht(a;T) =1+ (5 — 1)¢5,.
7=0

n n 1 l

This implies that ) ht(a; T) =n+ > > (j—1)t;, =n+ >, (j — 1)r;. Moreover,
i=1 i=1j=0 7=0
! !

i:lht(ai;T) =—20-1)g So, =3 (G-lg=n+ Xl:(i — L)r; and

5=0 j=0 Jj=0

l l

0=n+ Z(J—l)(qg+n)—n+zﬂ*1)PJ

7=0 =0
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1 l
Thus, 0 =n+ > (j — 1)p; — po- Therefore, po = n+ Y (j — 1)p;. O
j=1 J=1

Suppose that T is an inhabitant of a room R and that 7 is a subdiagram of a
link diagram D. Then, the non-bridge arcs in 7' can be bridge arcs in D if the
prolongation of these arcs in D are bridge arcs. Moreover, if D is a non-split link
diagram, then T is an inhabitant of the room R such that for every knot k; there

is at least an arc not of k; that goes over k;.

1.2 The red and blue link diagram

We are now going to introduce a construction which, combined with Lemma 1.1.9,
will enable us to show Theorem 1.2.8. The result says that for an alternating non-
split diagram D of a non-trivial link L, if we suppose 7(D) is left-orderable, then

m(D) is abelian.

Let D be a link diagram. Suppose that 7(D) is left-orderable. Moreover, suppose
that a is a maximum between the arcs of D. Then, we color a in red. From the
Wada relations, if a is a bridge over a; and a;, then we have one of the Wada

inequalities :

1. a;<a<a

2. a;<a<a

3. a; =a = aj.
However, a is a maximum, therefore a; = a = a;. Thus, every arc that goes under
a is a maximum. We color in red these arcs. Moreover, we color in red, every arc

that goes under a red arc. Therefore, every red arc is a maximum. Also, if an

arc ay goes over two red arcs, then we color a; in red. Note that from the Wada
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inequalities, every arc that goes over two maximum arcs is a maximum. Hence,
by construction, every red arc is a maximum. We define the set of red arcs that
comes from a, R(D,a) and call it the red diagram of D from a. Note that by

construction, R(D, a) is connected.

Furthermore, we color every non red arc in blue and define B(D, a) the set of blue
arcs and call it the blue diagram of D from a. Notice that if b is a blue arc, then

both ends of b must go under blue arcs.

We now project this colored link diagram in the plane to obtain the blue and red
graph G(D, a) where the vertices in G(D,a) come from the crossings in D and
the edges in G(D,a) come from the arcs between crossings in D. Also, an edge
is blue or red depending on whether it comes from a blue or red arc. Moreover,
at each crossing, if the over arc is red, we draw a red vertex and if the over arc is
blue we draw a blue vertex. The subgraph with the blue edges and blue vertices
is defined as the blue subgraph BG(D,a) of G(D,a). While the subset with the
red edges and red vertices is defined as the red subset RG(D,a) of G(D,a). Note
that G(D, a) is the disjoint union of RG(D, a) and BG(D, a).

In what follows, we are going to give a series of properties for G(D,a), RG(D,a)
and BG(D, a). We will eventually show that for an alternating non-split diagram
D of a link L, for every a, then G(D,a) = RG(D,a). Thus, every arc in D is a

maximum and so 7(D) is abelian.

Remark 1.2.1. Let D be a link diagram, a an arc in D and G(D, a) the blue
and red graph of a. By construction, R(D, a) is connected, therefore RG(D, a) is

connected.

Lemma 1.2.2. Let D be a link diagram, a an arc in D and G(D,a) the blue
and red graph of a. Then a blue vertex in G(D,a) has three or four incident blue

edges, while a red vertex has exactly four red incident edges.
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Proof. The vertices of G(D, a) are the crossings of the link diagram. Clearly, each

vertex has a valency of 4.

Let ¢ be a red vertex in G(D, a). Then ¢ corresponds to a crossing with a red over
arc. Therefore, by definition, all the under arcs are also red. Thus, the four edges

are red.

Let ¢ be a blue vertex in G(D,a). Then ¢ corresponds to a crossing with a blue
over arc. Therefore, ¢ has at least two incident blue edges. If each other incident
edges are red, then this mean that the over arc is red, which is a contradiction.
Thus, at most one of the other incident edge is red. So, ¢ has three or four incident

blue edges. O

We look at the complement BG(D,a)¢ of BG(D,a) in the plane. We obtain
BG(D,a)¢ = U}, U,; where each U, is an open connected component of BG(D, a)°.
By the previous lemma, RG(D,a) is included in a single connected component
U;. We will study this connected region U;. Moreover, we define the closure U, of
U; and the frontier fr(U;) = U;\ U; of U;. Note also, that fr(U;) = U;NBG(D, a)
and therefore fr(U;) is included in BG(D,a) and so is composed of blue edges

and blue vertices.

Every red edge that is incident to one of the vertices of fr(U;) will be called an
end red edge.

Now, we look at the corresponding link subdiagram R(D,a) of the red subset
RG(D,a). Each red arc that had a corresponding end red edge is called an end
red arc in R(D,a).

Remark 1.2.3. Note that every end red arc goes under a blue arc. Therefore,
if an end red arc doesn’t go over an arc in R(D,a), then it is a non-bridge arc.

Thus, if an end red arc is a non-bridge in R(D,a) C U;, then it is a non-bridge
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arc in D.

We now look at the closed set U in the plane. Clearly, fr(U;) is included in Uf.

Also, let Uf = U;?:le where F; are the connected components of Uf.

Lemma 1.2.4. Let D be a link diagram, a an arc in D, G(D,a) the blue and red
graph of a and F; a connected component of Uf. If there are no red edges incident

to the vertices on F}, then G(D, a) is disconnected. Thus, D is a split diagram.

Proof. First, suppose Uf is connected. Then, Uf = F. Let v be a vertex in
RG(D,a) C U; and w a vertex in F. There are no red incident edges to vertices
on I, thus, there are no paths between v and w. This implies that G(D, a) is a

disconnected graph.

Suppose that Uf is disconnected and let F; be a connected component of Uf. Let
v be a vertex in RG(D,a) C U; and w a vertex in F;. By hypothesis, there is
no path in RG(D, a) U F; between v and w. Moreover, because F} is a connected
component of U and BG(D,a) is included in Uf, then F; N BG(D,a) is a con-
nected component of BG(D,a) and there is no blue path between w and any
vertex in BG(D, a) \ F;. Thus, there is no path between w and v and so G(D, a)

is disconnected. d

In a non-split link diagram, by the previous lemma, there is at least one red

incident edge to a vertex in Fj.
Note that 0F; C OU;. Moreover, 0U; C BG(D, a). Hence, 0F; C BG(D,a).

Let C; be a closed curve in U; that intersects transversely every red incident edge
to a vertex in F}; but that intersects no other edges in G(D,a) and such that one

side of C; contains Fj. (This curve exists because 0F; C BG(D,a) and BG(D,a)
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is a finite graph.) Let V; be this side of C;. Note that the red edges in Vj

correspond to non-bridge arcs in V.

Lemma 1.2.5. Let D be a non-split link diagram, a an arc in D, G(D,a) the
blue and red graph of a and F; a connected component of U:. Then C; intersects

a non-zero even number of end red edges.

Proof. By Lemma 1.2.4, C; intersects at least one end red edge. Thus, in the
corresponding link diagram D, C; intersects at least one end red arc. Moreover,
each strand entering V; must go out of V; at some points, therefore C; intersects

an even number of end red arcs. O

Suppose C; and so V; intersects 2k end red edges. We will be interested in the
k-tangle T; given by the intersection between V; and the link diagram D.

Lemma 1.2.6. Let D be a non-split link diagram, a an arc in D, G(D, a) the blue
l

and red graph of a and F; a connected component of Uf. Then, k+py = Y (j—1)p;

j=1
where p; is the number of j bridge arcs in T}, p;, is the number of non-bridge arcs

in F; and | is the number of crossings in T;. So, there is at least an m-bridge arc

with m > 2 in the k-tangle T;.

Proof. The k-tangle T; has the marked points given by the end red arcs. By
construction, these end red arcs are non-bridge arcs in 7; . Thus, there are at
least 2k non-bridge arcs in T;. Moreover, if there are other non-bridge arcs in
1}, tllley must be blue arcs and so in F};. Therefore, by Lemma 1.1.14, 2k + pj =

k+ 3 (j—1)p; where p; is the number of j bridge arcs in T}, pj is the number of
j=1
l
non-bridge arcs in Fj and [ is the number of crossings in Tj. So, k+pj = > (j—1)p;
j=1
and there is at least an m-bridge arc with m > 2 in Tj. O
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We obtain the following important result directly from the previous lemma.

Lemma 1.2.7. Let D be an alternating non-split link diagram, a an arc in D and

G(D, a) the blue and red graph of a. Then, BG(D,a) is empty.

Proof. By Lemma 1.2.6, for each connected component of Uf there is at least an
m-bridge arc with m > 2 in the k-tangle given by V,. This is a contradiction
because D is alternating. Therefore, there are no connected components for Uf.
Which implies that Uf is empty. So Uj; is the plane and thus BG(D, a) is empty
because U; is included in BG(D, a)®. O

We can now prove the desired result.

Proposition 1.2.8. Let D be an alternating non-split diagram of a non-trivial

link L. If we suppose w(D) is left-orderable, then m(D) is abelian.

Proof. Let < be an order on 7(D). We have a finite number of a;, thus there is a
maximum a;. But D is alternating, therefore a; is a bridge over some arcs a; and
am. Therefore it satisfies one of the Wada inequalities a; < a; < @, a < a; < @;
Or a; = a; = Gp. But a; is a maximum, thus we get a; = a; = a,,. This implies
that, a; and a,, are maxima. Thus, every arc that goes under a maximum arc,
becomes a maximum arc. Moreover, if two maximum arcs a; and a,, go under an
arc ag, then they satisfy one of the Wada inequalities a; < ar < am, am < ai < a;
or a; = ay = a,,. But a; and a,, are maxima, thus we get a; = ay = a,,. Therefore,

every arc that goes over two maxima arcs becomes a maximum.

So we can construct the blue and red graph of a; G(D,a;). By Lemma 1.2.7,
BG(D, a;) is empty. Thus, RG(D, a;) = G(D,a;) and every arc in D is red and
thus a maximum. This implies that a; = ... = a,. So 7(D) =< a; > and thus

(D) is abelian.



30

O

If L is the trivial knot, then its double branched cover is the 3-sphere and the

fundamental group of the 3-sphere is trivial, thus not left-orderable by convention.

Hence, by combining Propositions 1.2.8 and 1.0.6, we get a new proof of Theorem

1.0.1.

In the following chapters, we will show how, for some family of links, supposing
that the Wada group is left-orderable will implies that it is also abelian and thus
get the desired result.



CHAPTER II

THE IMPORTANCE OF THE GRAPH GROUP AND CONSTRUCTION OF
DIRECTED WADA GRAPHS

Let L be a link in S® and D a diagram for L. Label the arcs of the diagram a;
through a,,. We recall that the Wada group is

(D) :==< ay,...,an : a; ‘a;ja; 'a; >

where the relations

a;'aja;ta; (2.1)

are in one to one correspondence with the crossings of D. In this chapter, we will

be interested in the following subgroup of the Wada group.

Definition 2.0.1. We define G(D), the graph group of D, as the subgroup of
m(D) generated by the a; 'a; where the arc a; goes over the arc a; or the arc a;

goes over the arc a;.

The following results motivate the interest in this group when studying the fun-

damental group of double branched covers of links.

Lemma 2.0.2. Let D be a diagram of a non-split link and G(D) be the graph
group of D. Suppose that w(D) is left-orderable. If the graph group G(D) is

trivial, then 7(D) is abelian.
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Proof. Because the graph group is trivial, for every arc a; that goes over another

lg; = 1. Thus, a; = a;. Let ay and a; be two arcs in D. For

arc a;, we have a;
every pair of arcs ag, a;, because D is non-split, we can follow a path of arcs of D
from ay to a;. Hence, ax = q;. Therefore, all the generators a; of 7(D) are equal

and (D) =< a; >. So, (D) is abelian. O

Therefore, by Proposition 1.0.6 and the previous lemma.

Theorem 2.0.3. Let D be a diagram of a non-split link L and G(D) be the graph
group of D. Suppose that w(D) is left-orderable. If the graph group G(D) is trivial,
then w1 (X(L)) is not left-orderable.

In this chapter, we will simplify the generating set of the Graph group. We will
find a generating set of this group such that when we suppose that 7 (D) is left-
orderable, all the generators of G(D) are less than or equal to 1 in m(D). It will
then be easier in the following chapters to find links for which the graph group is
trivial and therefore links for which the fundamental group of the double branched

cover is not left-orderable.

To simplify the generating set of the Graph group, we will show how from a
diagram D of a link we construct the Wada graph I'y(D), the coarse Wada ratio-
nal graph I';(D), the Wada rational graph I'(D) and the Wada directed graphs
(T'(D), <). Moreover, we will show how from these graphs, we find a simplified

generating set of the Graph group.

2.1 From a link diagram to the Wada Graph

Starting from a link diagram D, we will construct a graph that will eventually

enable us to simplify the generating set of the Graph group. We will call this
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graph the Wada graph I'o(D). This graph will be mostly useful in constructing a

more important graph, the Wada rational graph.

Twist tangles will play a central role in the construction of the Wada graph. We
depict a half-twist in Figure 2.1. We won’t differentiate positive half-twists from

negative half-twists.

Xm

Figure 2.1 half-twist

We now depict a %—twist in the following figure. Again, we won’t differentiate the

positive %—twist from the negative %-twist.

> as a4 ry
y N

X

Figure 2.2 3-twist

Similarly, we define g-twist tangles. We say that a %—twist tangle is a mazimal
twist tangle if we can’t find a £-twist tangle from the same tangle. Let X be a
maximal twist tangle. We define the non-bridge arcs of X, as the arcs of X that

do not go over any arcs in X.
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From now on, let D be a link diagram of a non-split link L with the arcs labelled
from a; to a,. Moreover, the maximal twist tangles of D will be labelled from X;

to X, as in the following figure.

.......

Figure 2.3 Labeling of maximal twist tangles

The vertices of the Wada graph I'o(D) will be the arcs a;’s of D. For the edges,
we will look at the maximal twist tangles of D. Let X; be a maximal twist tangle.
Then, we will draw edges labelled X; between each vertices coming from arcs
of the twist tangle X such that one arc is going over the other. Moreover, the
non-bridge arcs of X; will be called the non-bridge vertices of X;. For example,

for the half-twist tangle as in Figure 2.1, we obtain the following graph.
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: < ) "
@7 M U/ XM

Figure 2.4 Wada graph of a half-twist

(aK)

We note that there is a Wada relation a,;laj = aj_lai and a Wada relation a; lay =

a; laj. Moreover, a; and ay are called the non-bridge vertices of X,,.

Consider the case where we have a full twist :

A\

Figure 2.5 Full twist

Then, we get the following graph.

J

o

Figure 2.6 Wada graph of a full twist

@)

We note that the Wada relations give us a;'a; = a;'ay = ay'as and a5 'a; =

a;laz =ag Ya4. Moreover, a; and ag are the non-bridge vertices of X.

Next consider the %—twist

Figure 2.7 %—twist
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Then, we obtain

x
®

Figure 2.8 Wada graph of the %-twist

Again, we note that the Wada relations give us a7 ay = a;'as = a5 'as = a;'as
and a; Lo, = aglag = azlag, = az Loy . Moreover, a; and agz are the non-bridge

vertices of X.

Similarly, if we have an 3-twist, we obtain the following Wada graph

K

)X

Figure 2.9 Wada graph of the Z-twist,

®)

We note that the Wada relations give us (11_1(12 =a, Loy = aglag = ag lag = ... =

1 . S | R | -1 -1 -1 _ —1 . _
a; Giy1 = ... = A, 0044 = a4 a3 and a; a1 = a5 Gy = Qg G5 = A7 Qg = ... =
a;, +11ai =..= a;lam.g = ag Ya4. Moreover, a; and as are the non-bridge vertices
of X.

From the diagram of Figure 2.3, we obtain the following Wada graph.



a10 al a2 a4 as

Figure 2.10 Wada graph of Figure 2.3

We are now going to give another example with the knot 8,;.

37
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Figure 2.11 Knot diagram of the knot 85

We thus obtain the following Wada graph I'y.
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aj

AN (

Figure 2.12 A Wada graph I'g of the knot 8;.

From the definition of the Wada graph and the graph group G(D), we obtain the
following result that correlates the Wada graph and the Wada relations.

Remark 2.1.1. Let X1, ..., X,, be the maximal twist tangles of a link diagram D,

I'o(D) be the Wada graph and a; and a; be arcs in D. Then, there is an edge X}

1

between a; and a; in I'g(D) if and only if there is a Wada relation a; ‘a; = aj_lal

or a Wada relation a;'a; = a;'a; for some arc q; in D.
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Now, we will show how from a Wada graph I'o(D), we can obtain some simplified
generating sets S(I'o(D), d) of the Graph group G(D) where d represents a choice
between one of the possible generating sets. Recall that the Graph group is the
subgroup of the Wada group generated by the a; la,j where @; is an arc that goes

over a; or a; is an arc that goes over a,.

Let X, ..., X,, be the maximal twist tangles of a link diagram D. Let X} be a

maximal twist tangle as in the following figure.

«—0—0—@—&@ Xx @)

Figure 2.13 Wada graph of the Z-twist,

Then, a; and a3 are the non-bridge vertices and the Wada relations give us a7 ay =

-1 -1 -1 -1 -1 -1 -1,
ay a5 = a5 Qg = Qg A7 = ... = Q; Qip1 = ... = G, 204 = 0y a3 and a, a; =
aglaz = ag1a5 = a;las = .. = a;rllai = .= a;lan“ = ag1a4. We choose
ith d eith -1 _ -1 — 1 — 1 _ _ -1 _
either a; or az and either a; ay = ay as = a5°asg = ag a7 = ... = a; ;41 =

-1 -1 -1, _ -1 _ -1 _ -1 -1 _
.= QuieQ4 = A4 Q3 O Qg A1 = A5 Ay = Qg A5 = Q7 Ag = ... = A 10; =

. = ag'anis = a3'ay. Therefore, there are four possibilities. If we choose a;
and al_lag = a§1a5 = aglaﬁ = agla7 = .. = a;laiﬂ = .= a;i2a4 = a;lag,
then, we define X, = al_lag. So, we have either X, = al_lag, X, = a;lal,
X, = a§1a4 or Xi = (1210,3. Note that from the Wada relations, al_lag = a§1a4

! = g;'a; and (a3'ay)™! = ajlas. We

and ay'a; = aj'az. Moreover, (a;'as)”
do similarly for every maximal twist tangles. Then, we define S(I'o(D),d) as a
Wada graph set of generators where d represents one of the 4™ possible choice of
set of generators. Moreover, we define a Wada graph group of D as the subgroup

G(I'o(D),d) of m(D) generated by the set of generators S(I'o(D),d).

Lemma 2.1.2. Let D be a link diagram. Then, a Wada graph set of generators
S(T'o(D),d) is a generating set of the Graph group G(D).
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Proof. Let S(I'y(D), d) be a Wada graph set of generators of D and a; and a; be
some arcs in D such that a; goes over a;. Then, a;'a; is a generator of G(D) and
a; and a; are in the same maximal twist tangle X;. Moreover, in S(I'g(D),d),
without loss of generality, Xy = a;'a, where a, and a, are arcs in Xy such that
at least one goes over the other in Xj. Therefore, by the Wada relations, we

1

. - S | I L |
have one the following possibilities: Xy = a,'a, = a; "a; or Xy = a,'aq = a; a;

1

or X' = (a;'a)™! = aj'a; or X' = (a;'ay)”' = a;'a;. This implies that

S(Lo(D),d) is a generating set of the Graph group G(D). O
Therefore, by the previous lemma and the definition of the Graph group and the
Wada graph groups, we obtain the following result.

Proposition 2.1.3. Let D be a link diagram. Then, a Wada graph group of D
G(To(D),d) is equal to the Graph group G(D).

Thus, the 4™ groups G(I'¢(D), d) are equal to the Graph group G(D).

We conclude this section by a useful property of the Wada graph.

Proposition 2.1.4. If D is a connected diagram, then the Wada graph is con-

nected.

Proof. Let a; and a; be arcs of D. Since D is connected, we can follow a path of
arcs from a; to a;, and this path determines a path in the Wada graph. Thus, the
graph is connected. O

2.2 From the Wada graph to the coarse Wada rational graph

From the Wada graph 'y, we will define the coarse Wada rational graph I'; which
will enable us to define the coarse Wada groups G(I'7).
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In a link diagram D, as shown in the article (Conway, 1970), we can isotope
every rational tangle to obtain an [mnp...st] rational tangle where ¢ > 1 and
m,n,p,...s > 0. This rational tangle is constructed from 7, 7, ..., % half-twists
regions where each twist region is represented by an X;. The twist region ¢ rep-
resented by X; is called the leading twist region of the rational tangle. We label

each rational tangle region by the leading twist region X;.

For Figure 2.3, we obtain

Figure 2.14 Labeling of the rational tangle of Figure 2.3

and for the knot 89;
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Figure 2.15 Labeling of the rational tangles for the knot 8,;

The [n] rational tangle is the same as an Z-twist region. Thus, as seen in the

previous section, we obtain

fH—O—@%F@

Figure 2.16 Wada graph of an 3-twist

®

X

We embed this graph in the link diagram as follows
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Figure 2.17 The embedding of the Wada graph of an Z-twist in the link diagram

Only the four end strands aq, as, as, as will connect with other rational tangles.
We call these vertices, open vertices. The other arcs a; of the rational tangle will
not be in contact with other rational tangles. We call these vertices closed vertices.
Thus, for a closed vertex a;, there is no arc a; from another rational tangle such

that there is a Wada relation a;*

a; = aj_lak or aj_la,- = ai_lak for an arc ag. For
every rational tangle which is not a half-twist there are exactly four open vertices.
Because rational tangles are alternating, a; and a3 are non-bridge in X and as
and a4 are 1-bridge in X. In the coarse Wada rational graph, we keep only the

open vertices.

Moreover for the tangle of Figure 2.17, suppose that X = aJ'a;. Note that
(a5'as)(ag'as)(ag ar)...(a 12a4) = a3'as. Hence, because aj'az = ay'as =
azlas = ag'ar = ... = aj}l,a4, we have a;'ay = (a;'ap)"! = X"1. We can

generalize the previous example to obtain the following lemma.

Lemma 2.2.1. The coarse Wada rational graph I' of the [n] rational tangle is as

follows.

@ 3¢ @ 01 @ 3¢ @

Proof. We will prove the lemma by induction on n. By definition of the Wada
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graph, the lemma is true for n = 1. We now suppose that for an [n] rational

tangle, we obtain the following coarse Wada rational graph

@D———® el —(g) *——®)

Now, to obtain an [n + 1] rational tangle, we only need to add one arc to the
rational tangle [n] and this arc corresponds to a closed vertex between a, and ay.

Thus we obtain the following coarse Wada rational graph

®

’

More generally we have the following proposition.

Proposition 2.2.2. If we have an [ng N, 1..n1] = £ tangle, then we have the

following coarse Wada rational graph

Proof. We will prove this result by induction on m. When m = 1, the result is
true by the previous lemma. We suppose it is true for m > 1. We will show the
result holds for [in,nm,_1...n;1] for every i € N by induction on i. For i = 1, we

obtain the following coarse Wada rational graph

xRd (24) %4
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By substituting Y to XP~9X% = X? and noting that a1, a4, as, as are now the open

vertices we obtain the following coarse Wada rational graph

Moreover, [1n,Nm—1...n1] =1+ ;—i = —:—q and thus the result is true when ¢ = 1.

Now, we suppose it is true for i = k. Thus, [kn,nm_1..n1] = k + % = % and

we have

@ 3P @ X( k-Dptg @ 3 @

When we add a twist to get the [(k + 1)nm,nm_1...n1] tangle, we obtain

@ 3P @ sek-Np+q

and thus by substituting ¥ = X? and noting that a;, a9, a3, a5 are now the open

vertices we obtain the following coarse Wada rational graph

(k+1)p+q

and [(k + D)npnm—1..m] =k + 1+ % = and we have the desired result.

d

We are now going to continue the example of the knot 8.
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The rational tangle X; is a [2] rational tangle, the rational tangle X, is a [3]
rational tangle and the rational tangle X3 is a [1,2] = % rational tangle. Hence,
by the previous proposition, we obtain the following coarse Wada rational graph

for each rational tangle X;, X, and X3

@ X7 @ 1 @ X1 @
@———9 ) ——®
@ ) @ X @ 362 @

We thus obtain the following coarse Wada rational graph I'; for the previous

diagram of the knot 89;.
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The coarse Wada rational graph I';(D) of the knot 8s;.

Moreover, figure 2.3 is a [2,3,3] = f—g rational tangle. Thus, the coarse Wada

rational graph of 2.3 is

Figure 2.18 The coarse Wada rational graph of a [2,3,3] = f—g rational tangle.
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By a similar argument as in the proof of Proposition 2.2.2, we can show the

following lemma.

Lemma 2.2.3. Let D be a link diagram and X, ..., X,, be the mazimal twist
tangles of a rational tangle [n,,...nan1| with leading twist region X,. Then, in the
coarse Wada rational graph X; = X {“ where k is the numerator of the continuous

fraction [n;_1ni_s...nony] for 1 < i < m.

Now, we will show how from a coarse Wada rational graph I';(D), we can obtain
some simplified generating sets S(I'1(D),d) of the Graph group G(D) where d

represents a choice between one of the possible generating sets.

Let X1, ..., X, be the rational tangles of a link diagram D. Let X} be the leading
maximal twist tangle of the rational tangle Xi. Then, similarly as for the Wada
graph set of generators, with the non-bridge arcs a; and q; of the leading maximal
twist tangle X, and the Wada relations, we choose one of the four possibilities:
X = ai_laj or X; = aj_lai or Xy = al”las or Xy = a;'a, where a; and a, are arcs
in X}, that goes over a; and q; respectively. Then, we define S(I';(D), d) as a coarse
Wada rational set of generators where d represents one of the 4™ possible choice
of set of generators. Moreover, we define a coarse Wada rational group of D as

the subgroup G(I'1(D), d) of 7(D) generated by the set of generators S(I'; (D), d).

Lemma 2.2.4. Let D be a link diagram. Then, a coarse Wada rational set of

generators S(I'1(D),d) is a generating set of the Graph group G(D).

Proof. Let S(I'1(D),d) be a coarse Wada rational set of generators. Then, for
every rational tangle X, we have Xy = a;'a;. There is at least one Wada graph
set of generators S(To(D), dy) such that we also have X = a; 'a; for every leading

maximal twist Xj.
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If every rational tangle is a maximal twist, then S(I'1(D),d) = S(T'o(D),dpo).
Thus, because S(I'g(D),dy) is a generating set of the Graph group by Lemma
2.1.2, S(I'1(D),d) is a generating set of the Graph group.

If there are rational tangles that are not maximal twists, then S(I'1(D),d) is a

subset of S(Iy(D),dp).

Let X; = a,'a, be a generator of S(T'o(D), do) that is not a leading maximal twist
of a rational tangle. Then X is a maximal twist in a rational tangle X, and X is
a generator of S(I'1(D),d). By Lemma 2.2.3, in the coarse Wada rational graph
X, = X* where k € Z. Hence, in the Wada group depending on the choices made
for X; and X, X; = X! where t = k or t = —k. Thus, S(I';(D),d) is a generating
set of G(Ty(D),dy). However, G(T'o(D), dp) is equal to the Graph group G(D)
by Lemma 2.1.2. This implies that S(I';(D), d) is a generating set of the Graph
group G(D). O

Therefore, by the previous lemma and the definition of the Graph group and the

coarse Wada rational groups, we obtain the following result.

Proposition 2.2.5. Let D be a link diagram. Then, a coarse Wada rational group

of D G(I'1(D), d) is equal to the Graph group G(D).

Thus, the 4™ groups G(I';(D), d) are equal to the Graph group G(D). Note that
here the m represents the number of rational tangles, while in the previous section,

m was representing the number of maximal twist tangles.

Remark 2.2.6. The Wada graph is connected if and only if the coarse Wada
rational graph is connected. Thus, from proposition 2.1.4, we obtain that if D is

a connected diagram, then the coarse Wada rational graph I'; will be connected.

We finish this section with a useful lemma for which the proof is similar to the
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proof of Proposition 2.2.2.

Figure 2.19 Rational tangle X;

Lemma 2.2.7. Let D be a link diagram, G(I'1(D),d) be a coarse Wada rational
group and X; a rational tangle as in Figure 2.19. Then, ai_laj = X/, aj_lak =

X and atay = X7 or ajta; = X7, ap'a; = X7 and o] ax = XT.
2.3 From the coarse Wada rational Graph to the Wada rational graph

In this section, we start with the coarse Wada rational graph and we will simplify
it to obtain the Wada rational graph. To find families of links for which the
fundamental group of the double branched cover is not left-orderable, we will use
Theorem 2.0.3. To do so, for a link diagram D, we will suppose that =(D) is
left-orderable and then, we will show that 7(D) is abelian. The Wada rational
graph will give us a simplified generating set of the Graph group when we suppose

that 7(D) is left-orderable.

Let D be a link diagram and I';(D) the coarse Wada rational graph. If there is
no l-tangle 7" with only one non-bridge arc in D and such that neither marked

point goes over some arcs in D \ T, then we define I'; (D) = T'(D).

Suppose there is a 1-tangle 7" with only one non-bridge arc a; in D and such
that neither marked point goes over some arcs in D \ 7. Then, in the Wada
rational graph, we define ay = a; for every ax € T. Let G(I'1(D),d) be a coarse
Wada rational group. If there is no 1-tangle 7' with only one non-bridge arc
in D and such that neither marked point goes over some arcs in D \ T, then

G('(D),d) = G(I'1(D),d) is defined as a Wada rational group and by Lemma
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2.2.5, it is equal to the Graph group.

Suppose there is a 1-tangle T' with only one non-bridge arc in D and such that nei-
ther marked point goes over some arcs in D\T'. Then a Wada rational set of gener-
ators S(I'(D), d) is defined as the set that contains every generator of S(I'1(D), d)
except for the rational tangle X; included in T'. Moreover, a Wada rational group

G(I'(D), d) is defined as the subgroup of w(D) generated by S(I'(D),d).

In Lemma 2.3.9, at the end of this section, we will show that if 7(D) is left-
orderable, then G(I'(D), d) is equal to G(D).

2.3.1 An important result on the possible left-orders of the Wada group

In this subsection, we will prove Lemma 2.3.7, that gives us information about
the possible extrema among the generator of w(D) if we suppose that 7(D) is

left-orderable. To do so, we will need the following definition and results.

Definition 2.3.1. If D has exactly n non-bridge arcs, then D is an n non-bridge
diagram. We define a link to be n non-bridge, if it has an n non-bridge diagram

and if all other diagrams are m non-bridge diagram with m > n.

We will principally investigate 2-non-bridge links. It is worth noting, that of the
238 non-alternating knots of 11 crossings or less, 229 are 2-non-bridge knots and

9 are 3-non-bridge knots.

We give an interesting property of 2-non-bridge diagram.

Lemma 2.3.2. Let D be a 2-non-bridge link diagram with n crossings. Then,
there are either ezactly two 2-bridge arcs and (n—4) 1-bridge arcs or there is one

3-bridge arc and (n — 3) I1-bridge arcs.

Proof. Let a; be a non-bridge arc in D. Then, we cut a; into two arcs to obtain a
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1-tangle T with these arcs as marked points. Both marked points are non-bridge
arcs in T. Thus, by Lemma 1.1.14, py = n + zl:(j — 1)p; where pg is the number
of non-bridge arcs in T and [ is the number]zlf crossings in 7. Because D is a
2-non-bridge diagram, there is another non-bridge arc in D. Thus, with both
marked points being non-bridge arcs in T', there are three non-bridge arcs in 7T'.
This implies that 3 = 1 + i(] —1)p; and so 2 = i(] — 1)p;. Therefore, either
there is exactly two 2—brid]gzlarcs or one 3-bridge ajri O

We recall that from section 1.2, we can construct the red and blue graph G(D, a).
We look at the complement of the blue sugbraph BG(D,a) to get the connected
open region U; that contains RG(D,a). Then we study the connected components
F, ..., Fy, of the complement of U;. We also define the disjoint closed curve C; such
that one side of it, the region V; contains F; and C} only intersects end red edges.

Moreover, we define T} the k-tangle given by V;.

The previous lemma and Lemma 1.2.6 give us a maximal number of connected

components.

Lemma 2.3.3. Let D be a non-split 2-non-bridge link diagram, a an arc in D
and G(D,a) the blue and red graph of a. Then, there are at most two connected

components F; in Uy.

Proof. Suppose there are k connected components in Uf with £ > 3. By Lemma
1.2.6 there are k m-bridge arcs with m > 2. But, by Lemma 2.3.2, there are at
most two m-bridge arc with m > 2. Thus, we have a contradiction and we have

at most two connected components in Uy. O

We now introduce the important region W = U; \ (Uf=1V;) Note that R? =
-k -k - k -k
U; uU; = U; U (Uj:le)’ Moreover, U; U (Uj:le) \ (Uj:lv.;) = Ui\ (Uj:lv})
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because F; C V;. Thus, W = U; \ (szl‘/;) =R?\ (szll/}) and we can view W
has a room as defined in section 1.1. Let T}, be the inhabitant of W given by the
intersection of W and the link diagram D.

Lemma 2.3.4. Let D be a non-split 2-non-bridge link diagram, a an arc in D and
G(D,a) the blue and red graph of a. Then, either there is at most one connected
components in U or the two non-bridge arcs of D are in W and both V; adds

exactly two marked points on W.

Proof. Suppose there are two connected components F; and Fj in Uf. Then, we
observe the region W = U; \ {VjUV,}. Let a4, ..., a, and ky, ..., k;, be the strands
and knots of the inhabitant T;, of W. By Lemma 1.1.14, if there are p; i-bridge
arcs in T,, and pg non-bridge arcs in T, then pg = n + Xl: (7 — 1)p; where [ is the
number of crossings in T,,. Moreover, by Lemma 1.2.5,Jgeich V; adds at least two

marked points on W.

Suppose that one of the V; adds at least four marked points on W. Then, there
are at least six marked points on W and so T, has at least three strands. This
implies that n > 3 and there are at least three non-bridge arcs in T,,. If the
non-bridge arcs end at marked points of W, then they are end red arcs. Thus,
they are non-bridge arcs in D by remark 1.2.3. Therefore, there are 3 non-bridge
arcs in D. This is a contradiction and therefore each V; adds exactly two marked

points.

Suppose that both of the V; adds exactly two marked points on W. Then, there
are four marked points on W and so T, has two strands. This implies that n = 2
and there are two non-bridge arcs in W. If the non-bridge arcs end at marked
points of W, then they are end red arcs. Thus, they are non-bridge arcs in D by
remark 1.2.3. O
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In the next lemma, we show that if there is one connected component F, then

there is either one or two non-bridge arc in T,.

Lemma 2.3.5. Let D be a non-split 2-non-bridge link diagram, a an arc in D
and G(D,a) the blue and red graph of a. Suppose there is ezactly one connected
component F' in US. Then, there are two possibilities for the number of non-
bridge arcs of D in W. First, there is one non-bridge arc of D in W, if V adds
two marked points on W and there is no m-bridge arc withm > 2 in W. Secondly,
there are two non-bridge arcs of D in W, if V adds four marked points on W or

V' adds two marked points on W and there is a two-bridge arcs in W.

Proof. By Lemma 1.2.5, V adds at least 2 marked points to W. Suppose it adds
2k marked points to W. Then, T, has k strands. This implies by Lemma 1.1.14,
that if there are p; i-bridge arcs in T, and py non-bridge arcs in T,,, then there is
po=k-+ ZI:( J — 1)p; non-bridge arcs in T,,, where [ is the number of crossings in
W. By Lglllma 1.2.6, there is at least one m-bridge arc with m > 2 in V. So, by

Lemma 2.3.2, either there is a two-bridge arc in T,,, or there is no m-bridge arc

with m > 2 in T,,.

Suppose there are no two-bridge arcs in W. Then, there are k non-bridge arcs
in W. If the non-bridge arcs ends at marked points of W, then they are end red
arcs. Thus, by remark 1.2.3 every non-bridge arc in W is a non-bridge arcs in
D. Moreover, because there are no two-bridge arcs in W, there are either two
two-bridge arcs in V' or one three bridge arc in V. Thus, by Lemma 1.2.6, we
have k + p = 2 where pj is the number of non-bridge arcs in F. So, there are
Py = 2 — k non-bridge arc in F. Hence, if k = 1, there is one non-bridge arc of D
in I and so also one non-bridge arc of D in W. If k = 2, then both non-bridge

arcs of D are in W.

Suppose there is a two-bridge arcs in W. Then, there are k¥ + 1 non bridge arcs
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in W. Because we have a 2-non-bridge diagram, k¥ = 1 and both non bridge arcs

of D are in W. |

Therefore, by the previous two lemmas we have the following.

Lemma 2.3.6. Let D be a non-split 2-non-bridge link diagram, a an arc in D
and G(D,a) the blue and red graph of a. Suppose there is at least one connected
component F; in US. Then, there is at least one non-bridge arc of D in U;. Hence,

there is at least one non-bridge arc of D that is red.

Proof. By the previous two lemmas, there is at least one non-bridge arc of D in
W . However, by definition of W, if an arc is in W, it will also be in U;. Thus, there
is at least one non-bridge arc of D in U;. Hence, there is at least one non-bridge

arc of D that is red. O

The following lemma shows the importance of the non-bridge arcs and will also

be key in the construction of the Wada semi-directed graph.

Lemma 2.3.7. Let D be a 2-non-bridge non-split link diagram. If n(D) is left-
orderable, then the two mon-bridge arcs a; and a; are the extrema among the

generators of m(D) with respect to any left order on w(D).

Proof. Let < be a left order on n(D). If all a;’s are equals, then a; and a; are

extrema. We now look at the case where not all a;’s are equal.

Suppose that neither a; nor a; are extrema. We have a finite number of a;, thus
there is a maximum a;. But a; is not a non-bridge by hypothesis, therefore a; is
at least a bridge over some arcs a; and a,,. Therefore it satisfies one of the Wada
inequalities a; < a; < @, am < a; < a; OT @; = a; = ap,. But a; is a maximum,

thus we obtain a; = a; = a,,. This implies that a; and a,, are maxima. Thus,
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every arc that goes under a maximum arc, becomes a maximum arc. Moreover,
if two maximum arcs a; and a,, go under an arc a,, then it satisfies one of the
Wada inequalities a; < ap < am, @m < ap < a; O a; = ap = ap,. But @; and a,
are maxima, thus we obtain a; = a, = a,,. Therefore, every arc that goes over

two maxima becomes a maximum.

So, we can construct the blue and red graph of a;, G(D,a;). By Lemma 2.3.3,

there are at most two connected components (Fj,a;) in (Uf, a;).

Suppose there is no connected component (Fj,a;) in (Uf, a;). Then, every arc is

red and so every arc is a maximum and the proof is over.

Now, suppose there is at least one connected component. By Lemma 2.3.6, there
is at least one non-bridge arc in U; and so at least one red non-bridge arc. So,

there is at least one non-bridge arc that is a maximum.

We now suppose that at least one of a; or a; is an extremum. without loss of
generality suppose that aj is a minimum. We have a finite number of a;, thus
there is a maximum a;. If a; = a;, then the proof is over. If a; = ay, then a is a

maximum and a minimum and so all the a;’s are equals and the proof is done.

Now suppose a; is not a non-bridge. Therefore a; is at least a bridge over some
arcs a; and a,,. So, we can construct the blue and red graph of a;, G(D, a;). By

Lemma 2.3.3, there are at most two connected components F; in Uf.

Suppose there is no connected components (F},a;) in (Uf,a;). Then, all the arcs

are red and so all arcs are maxima and the proof is complete.

Now suppose, there is at least one connected component. By Lemma 2.3.6, there
is at least one non-bridge arc in U; and so at least one red non-bridge arc. So,

there is at least one non-bridge arc that is a maximum. If ay is also the maximum,
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then all the a; are equals and the proof is over. If q; is the maximum, then the

proof is finished.

The following result illustrates the reason why we’ve constructed the Wada ratio-

nal graph from the coarse Wada rational graph.

Lemma 2.3.8. Let D be a 2-non-bridge non-split diagram with a 1-tangle T with
only one non-bridge arc a; in D and such that neither marked point goes over

some arcs in D\ T. If n(D) is left-orderable, then a; = ay, for every a; € T.

Proof. The arc a; is a non-bridge arc in D by hypothesis. Thus, by Lemma 2.3.7,
without loss of generality, we can suppose that a; is a maximum of D. There must
be an a; which is the minimum in T. We construct the red and blue graph of
G(D,a;). The connected region RG(D, a;) must be included in T because neither

marked point goes over some arcs in D\ T.

If there is no connected component F', then a; is a maximum and a minimum and

so a; = ay, for every arc in D.

Suppose there is at least one connected component F'. By Lemmas 2.3.4 and 2.3.5,
there is a least one non-bridge arc in U; and so at least one red non-bridge arc in
U; N RG(D,a;). But, RG(D,a,) is included in T and the only non-bridge arc in

T is a;. Thus, a; is a minimum in 7" and so a; = ay, for every ax € T
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2.3.2 Wada rational groups and the Graph group

Let G(I'1(D), d) be a coarse Wada rational group. We recall, that if there is no
1-tangle T with only one non-bridge arc in D and such that neither marked point
goes over some arcs in D\ T, then G(I'(D), d) = G(I'1(D), d) is defined as a Wada
rational group and by Lemma 2.2.5, it is equal to the Graph group.

Suppose there is a 1-tangle 7" with only one non-bridge arc in D and such that nei-
ther marked point goes over some arcs in D\T. Then a Wada rational set of gener-
ators S(I'(D), d) is defined as the set that contains every generator of S(I'1(D), d)
except for the rational tangle X; included in T'. Moreover, a Wada rational group

G(T'(D), d) is defined as the subgroup of 7(D) generated by S(I'(D), d).

We can now prove Lemma 2.3.9.

Lemma 2.3.9. Let D be a 2-non-bridge non-split link diagram. Suppose that
m(D) is left-orderable. Then, the Wada rational group G(I'(D),d) is equal to the
Graph group G(D).

Proof. If there is no 1-tangle T with only one non-bridge arc a; in D and such that
neither marked point goes over some arcs in D\ T, then G(I'(D), d) = G(T'1(D), d)
and by Lemma 2.2.5, G(I'(D), d) is equal to the Graph group.

Suppose there is a 1-tangle T with only one non-bridge arc a; in D and such that
neither marked point goes over some arcs in D\ 7. Let S(I'(D), d) be the set of
generators obtained from S(I'y(D),d). By Lemma 2.3.8, a; = a; for every a; and
a; in T. Thus, for every a; that goes over a; in T, we have a;'a; = 1. Therefore,
X; = 1 for every rational tangle X, in T'. Thus, G(I'(D),d) = G(I'1(D), d). Hence,
by Proposition 2.2.5, G(I'(D), d) is equal to the graph group G(D). O
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24 From the Wada rational Graph to the directed Wada graphs and directed
Wada group

Let D be a non-split link diagram with m rational tangles. From the coarse Wada
rational graph, we have 4™ groups that are equal to the Graph group. By the
end of this chapter, we will find group such that all the generators are less than
or equal to 1 when we suppose 7(D) left-orderable. To do so, we will construct

directed Wada graphs.

24.1 From the Wada rational Graph to the directed Wada graphs

We now give a few lemmas linking left-orders and rational tangles. First, we need
a result on twist tangles. Let X be an F-twist tangle, we recall that we obtain

the following Wada graph.

Figure 2.20 Wada graph of the Z-twist

We note that the Wada relations give us 0,1_102 = a;lag = .. = a;laiﬂ =..=

a,, ilan%. Moreover, a; and a,,2 are the non-bridge vertices of X.

Lemma 2.4.1. Let X be an %-twist tangle as in Figure 2.20 in a link diagram D.
Suppose there is a left-order < on w(D), then either a; < a; for1 <i<j<n+2

ora;<a; for1<i<j<n+2.

Proof. Because we have a left-order on (D), either a;'a; <1 or aj'ay > 1.

If al_lag < 1, then by the Wada equation a{laiH <lforl<i¢<n+2 Thus,

again because of the left-order, a;;1 < a; for 1 <i<n+ 2.
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If a7'ay > 1, then by the Wada equation a;ta;y > 1for 1 <i<n+2 Thus,

again because of the left-order, a;;1 > a; for 1 <i<n+ 2. O

Let X be a rational tangle with X;, Xs,..., X,, as maximal twists tangles as in

the following figure.

::. anl .'.+am -"-
000 an t.. el ) an +. fra 2
“'.'. + .“."

Figure 2.21 Rational tangle diagram

Lemma 2.4.2. Let X = [ny,...,n1] be a rational tangle as in Figure 2.21 in a
link diagran D. Suppose there is a left-order < on 7(D), then either a; < a; for

1<i<j<(iim)+2ora;<a;for1<i<j<3$0 mg.
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Proof. Let X, be the leading maximal twist tangle of X. Then, by Lemma 2.4.1,
either a; <ajfor 1 <i<j<ni+2ora; <a;forl <i<j<n+ 2 Without
loss of generality, suppose that a; < a; for 1 <1¢ < j < n;+2. Thus, in the second
maximal twist tangle X5 of X, ay < a,2. Therefore, a;i2a2 < 1 and by a similar

argument as in Lemma 2.4.1, a; < aj for 1 <i<j <ny +ng+ 2.

Suppose that the result is true for the first £ maximal twist tangles X of X.

Then, we have Any+...4ng_o+1 S Apy+.. A ng_g+ng_1+2- SO,
( )t <1
Any4..4ng_o4ng_142) Ani+. 4ng_o+1 =

and by Lemma 2.4.1, a; < a; for 1 <i<j < (31, ne) + 2. O

Suppose 7(D) is left orderable and < is the left-order on #(D). Let X; be an

undirected rational tangle § with open vertices a;, a;, ax, a; as in figure 2.22.

Figure 2.22 Undirected rational tangle X;

By Lemma 2.4.2, we have the following result.

Lemma 2.4.3. Let D be a 2-non-bridge diagram and X; be an undirected rational
tangle % as in Figure 2.22. Suppose (D) is left orderable and < is the left-order on
m(D). Then, for the order between the vertices, we either have a; < a; < ax < @

ora; 2 aj 2 ag = q.

Suppose that the left order gives us a; < a; < ax < a;. Then, we orient the edges

as follows.
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Figure 2.23 Directed rational tangle X;

While for the left order a; > a; > ax > a;, we orient the edges as follows.

@ NI AN @ X;P- \@ NCEAN

X7 aj

Figure 2.24 Directed rational tangle X;

We orient every rational tangle this way following the left-order < and we obtain a
directed Wada graph (I'(D), <). Thus, for every left-order < we obtain a directed
Wada graph (I'(D), <).

24.2 From a directed Wada graph to the directed Wada group

We will now show how from (I'(D), <), a directed Wada graph from <, we can
obtain a group equal to the Graph group for which each generator is less than or
equal to 1 with respect to <. Let D be a link diagram with m rational tangles,
I'(D) the Wada rational graph and (I'(D), <) a directed Wada graph. Recall that
there are 4™~* Wada rational groups G(T',d) where i is the number of rational
tangle in 1-tangle 7' with only one non-bridge arc in D and such that neither
marked point goes over some arcs in D \ T. A directed Wada group G(I'(D), <)
will be one of the Wada rational group G(I',d) such that all the generators are

less than or equal to 1.

We will first construct the directed Wada set of generators S(I'(D), <). If X; is
in a 1-tangle T with only one non-bridge arc in D and such that neither marked

point goes over some arcs in D \ T', then X is not included in S(I'(D), <). Let
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X; be a rational tangle that is not in a 1-tangle 7" with only one non-bridge arc
in D and such that neither marked point goes over some arcs in D\ T. Then, we
recall that we have four possibilities for the generator X; in a Wada rational set
of generators. From the order <, we will choose only one. Let X/ be the leading
maximal twist tangle of X; and a; and a; be the non-bridge vertices of X. Then,
in a Wada rational set of generators, either X; = a,:las, X, = as‘lak, X, = al_lat
or X; =a; g, for the arcs a; and a; that goes over the arcs ax and q; respectively
in X;. Because X] is a leading maximal twist tangle of X, at least one of ax and

a; is also a non-bridge of the rational tangle X;.

Suppose there is only one of a; or a; that is a non-bridge of the rational tangle
X;. Without loss of generality, suppose that ax is a non-bridge of X;. Then,
ar < ak, < ag, < A, O ag > Ak, > Ak, > Gk, Where ag,, ak,, ax, are the other
open vertices of X;. If ap < ax, < ag, < ag,, then, by Lemma 2.4.2, a5 < a;
for every arc a; in the rational tangle X;. So, in particular, ay < a,. Hence,
a;tar < 1. Thus, we define X; = a;lay < 1. If ay > ax, > ax, > ai,, then we

define X; = a;las <1

If both ax and a; are non-bridge of X;, then look at the greater one with respect

to <. For example, if ar > a;, then a; > a, and we define X; = a,:las < 1.

Hence, S(I', <) = S(I', d) for one of the possible choice d. We define the directed
Wada group G(I',<) as the subgroup of n(D) generated by S(I',<). Hence,
G, <) = G(T,d). So, by Lemma 2.3.9, G(I'(D), <) is equal to the group G(D).
Moreover, by the previous construction, the generators of G(I'(D), <) are less

than or equal to 1 with respect to <. Therefore, we have the following result.

Lemma 2.4.4. Let D be a link diagram and T'(D) be the Wada rational graph.
Suppose that < is a left order on the Wada group w(D). Then, the directed
Wada group G(I'(D),<) is a group equal to the Graph group G(D) such that



65

each generator is less than or equal to 1 with respect to <.

Two different left-orders can give us the same directed Wada graph.

Definition 2.4.5. Let D be a link diagram and I'(D) be the Wada rational
graph. Suppose that <4 and <p are two left-orders on the Wada group n(D). If
(I(D),<a) = (I'(D), <g), then we say that the left-order <4 and <p are Wada

equivalent.

Two different left-orders that give the same directed Wada graph, will give the
same directed Wada group, because the directed Wada group is defined from the
directed Wada graph.

Lemma 2.4.6. Let D be a link diagram and I'(D) be the Wada rational graph.
Suppose that <4 and <p are two left-orders on the Wada group w(D). If <4 and
<p are Wada equivalent, then G(I'(D), <4) = G(I'(D), <p).






CHAPTER III

NARROWING THE NUMBER OF POSSIBILITIES FOR THE DIRECTED
WADA GRAPHS

In this chapter, we will narrow down the number of directed Wada graphs and
thus the number of possible left-orders on 7(D) that are not Wada equivalent. To

do so, we will define the semi-directed Wada rational graph.

3.0.1 From the Wada rational graph to the semi-directed Wada rational graph

The semi-directed Wada rational graph will only be defined for the 2-non-bridge
diagrams D. We recall that by Lemma 2.3.7, in a 2-non-bridge diagram D, if
7(D) is left-orderable, then the two non-bridge arcs a; and a; are extrema among
the generators of m(D). Suppose that the a; are not all equal. Without loss of
generality we suppose that ay is a minimum and q; is a maximum in the left-order
<. The non-bridge arc a; is an open vertex of two different rational tangles X,
and X, where X, is a § rational tangle and X, is a § rational tangle. Thus, we

have a Wada rational graph of the non-bridge arc q; as in the following figure.
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Figure 3.1 Wada rational graph of the non-bridge arc g,

Because q; is a maximum, from Lemma 2.4.3 and the way we orient edges, we

have the following directed Wada rational graph of the non-bridge arc a;.
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Figure 3.2 Directed Wada rational graph of the non-bridge arc q,

Similarly for the minimum ay, an open vertex of the two rational tangles X, and
X, where X, is a ? rational tangle and X is a % rational tangle. We obtain the

following directed Wada graph.
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Figure 3.3 Directed Wada rational graph of the non-bridge arc ay

When only the rational tangles of the non-bridge arcs are oriented in the Wada
rational graph, we call this graph a semi-directed Wada rational graph. Hence,
for a 2-non-bridge link diagram, there are exactly two semi-directed Wada ratio-
nal graphs. Moreover, in 2-non-bridge link diagrams, left-orders that have the
same maximum among the generators of 7(D) give the same semi-directed Wada

rational graph. This motivates the following definition.

Definition 3.0.1. Let D be a non-split 2-non-bridge link diagram. Suppose that
<; and <3 are two left-orders on 7(D). If <; and <, have the same maximum

among the generators of w(D), then <; and <, are Wada semi equivalent.

We continue the example of the knot 8,;.

Firstly, the diagram of 8,, is a two non-bridge. We suppose that the non-bridge
a4 is the maximum and the non-bridge a, is the minimum. Thus, from the Wada

rational graph we obtain the following semi-directed Wada graph of the knot 8,;.
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Figure 3.4 Semi-directed Wada rational graph of the knot 8,

For this knot, the Wada semi-directed graph gives the direction for each edge.
Thus, a directed Wada graph. Therefore, every left-order with a4 as maximum
on the Wada group of this link diagram of 8, gives us this directed Wada graph.
Hence, every left-order with a4 as maximum are Wada equivalent and give a group
equal to the Graph group. Thus, every Wada semi equivalent left-orders are Wada

equivalent left-orders. Moreover, by Lemma 2.3.7, all the other left-orders have



72

as as maximum and a4 as minimum. However, all these orders can be obtained

by reversing the order with a4 as maximum.

We now introduce the following knot diagram of the knot 949. Note that this knot

is not an arborescent knot (Caudron, 1987).

Figure 3.5 Knot diagram of the knot 94g.

We give a Wada semi-directed graph of the knot 949 previous knot diagram.
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Figure 3.6 A Wada semi-directed graph of the knot 949.

For this Wada rational graph, there are some choices of orientations to make for

some edges to obtain a directed graph.

3.0.2 From the Wada semi-directed graph to directed Wada graphs

From a 2-non-bridge link diagram D, we have shown how to obtain the two Wada

semi-directed graphs I". We now recall some definitions in graph theory. Let F
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be a directed graph. We label each of the m edges from E; to E,,.

Definition 3.0.2. In a graph, two edges are connected if they share a common
vertex. Two vertices are consecutive if there is an edge joining them. A cycle is
a sequence of connected edges whose first and last vertices are the same and with
no repeated edges or vertices (except the first and last vertices). We will either

refer to a cycle by listing its edges or by listing its vertices.

Definition 3.0.3. In a directed graph, two edges are consecutive if the starting
vertex of one is the end vertex of the other. A directed path in a directed graph is
a sequence of consecutive directed edges. We will refer a directed path by either

its edges or by its vertices.

Definition 3.0.4. A directed cycle is a directed path whose first and last vertices
are the same and with no repeated edges or vertices (except the first and last

vertices).

The next lemma shows the impact on the generators of the Graph group, of a

directed cycle in a directed Wada graph.

Lemma 3.0.5. Let D be a non-split link diagram. Suppose there is a left-order
< on w(D) such that there is a directed cycle X{“Xé‘z...X;cj in a directed Wada
graph. Then, X; = X, = ... = X; =1 1in G(T', <).

Proof. Without loss of generality, let Xfi = a, 1ai2 and a;, = a4y, for 1 <@ <
7—1. Moreover, because it is a directed cycle, X]]-cj = aj_llail. By definition, Xiki =
a;laiz <1and X]’.cj = a;lail <1lfor1<i<j—1. Therefore, a;; < a;; <a;_, <
. L ay < ayy. Thus, a;; = a;, = ... = a;;. This implies that Xfi = a;laiz =1
and X]].cj = a{jlail =1for 1 <i<j—1. Hence, Xfl = ng =..= X]].cj =1 and

SOX1:X2:..‘:X]‘:1‘ ]
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We now introduce an important family of left-orders on 7(D).

Definition 3.0.6. Let D be a non-split link diagram. Suppose that < is a left
order on the Wada group n(D). If (T', <), the directed Wada graph with respect
to <, has no directed cycle, then < is a Wada mazimal left-order on (D) and

(T, <) is a mazimal Wada directed graph.

Moreover, if there is a maximal left-order on 7(D), then we say that D is a Wada

mazximal link diagram.

If a link L has a maximal link diagram, then we say that L is a Wada mazimal

link.

Note that no alternating link is Wada maximal, while every non-alternating link
of 11 crossings or less is Wada maximal. Moreover, every non-alternating link we

have studied is Wada maximal.

Definition 3.0.7. Let D be a non-split two-non-bridge maximal link diagram.
Suppose that <; is a left-order on 7(D) such that (I',<;) has a directed cycle
Xhxk x Jk 7. Let < be a Wada semi equivalent maximal order such that (T, <;)
can be obtained from (I, <) by reversing the order of some edges included in the
directed cycle Xleé“z...X;j. By Lemma 3.0.5,in GI', <), X1 = Xo = ... = X; =
1. Thus, G(T, <;) is a subgroup of G(I', <) with X; = X, = ... = X; = 1. We
define <; has a Wada suborder of <. Also, we define (I', <;) as a Wada subgraph
of (T, <).

If we prove that G(I', <) is trivial, then G(T', <;) is trivial for every suborder <;

of <.

We now return to the semi-directed graphs of 949.
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Figure 3.7 A Wada semi-directed graph of the knot 9.

Suppose that < is a left-order of (D) with ag as maximum of the generators
of m(D) and such that in the directed Wada graph the edge X3 goes from a, to
a7. Then, we also have the direction from a; to ag. Thus, we have the directed
cycle X2X,X? and so X3 = X, = X5 = 1. Moreover, X;X3X,"' is a cycle. But
X3 = X; =1, therefore X is a directed cycle and so X; = 1. Also, X3 = X, =1
and so X4 = 1, by the cycle passing by a7, ag and a4. Finally, X4, = X5 =1 and
so Xg = 1, by the cycle passing by a3z, a5 and a4. Thus, X; = Xy = X3 = Xy =
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X5 = Xg =1 and this implies that a; = ay = a3 = a4 = a5 = ag = a7 = ag = ay.

Thus, for this left order of (D), (D) is abelian.

However, there is a Wada maximal left-order for this link diagram. Suppose that
< is a left-order of 7(D) with ag as maximum of the generators of 7(D) and such
that in the directed Wada graph, the edge X3 goes from a7 to a, and so from ag
to a7. Thus, because ag goes to a; and a; goes to ag, then ag goes to ag and we
have a direction for the edge Xg. This implies that ag goes to as and as to as.
Moreover, a7 goes to ag that goes to as. Therefore, a7 goes to a4 and a4 to as. So,
the only Wada directed graph of 949 with no directed cycle up to reversing every
edges is the following graph.
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Figure 3.8 The only Wada directed graph of 949 with ag as maximum

3.0.3 Directed link diagrams

In this thesis, we will suppose that there is a left-order on 7(D) and find the
maximal Wada directed graphs. The information from the maximal Wada directed
graphs on the left-order will often be enough to prove the desired results.

We now introduce an important family of link diagrams.

Definition 3.0.8. Let D be a Wada maximal 2-non-bridge link diagram. If every
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semi-equivalent Wada maximal left-orders are Wada equivalent, then D is directed.

In other words, let < be a Wada maximal left-order with a; as maximum be-
tween the generator of m(D). If for every Wada maximal left-order <; with a; as
maximum between the generator of 7(D), we have (I, <) = (T, <;), then D is

directed.

We will call a Wada maximal 2-non-bridge link diagram that is directed, a directed

link diagram.

Remark 3.0.9. Thus, a directed link diagram has only one directed Wada graph

without directed cycles up to reversing the direction of every edges.

Note, that the choice of the maximum between the non-bridge arcs of the link
diagram in the definition does not matter. We can take the reverse order and

obtain the same result with the other arc as maximum.

Definition 3.0.10. Let L be a link. If L has a directed link diagram, then L is
directed.

Thus, the knot 857 and 949 are directed knot.

Remark 3.0.11. It is interesting to note that on the 220 non-alternating 2-non-

bridge knots of 11 or less crossings, 158 are directed.






CHAPTER IV

DIRECTED WADA GRAPHS AND NON-LEFT-ORDERABILITY OF THE
FUNDAMENTAL GROUP OF THE DOUBLE BRANCHED COVERS OF
SOME LINKS

At the beginning of chapter 2, in Theorem 2.0.3, we have proved that if we suppose
that the Wada group is left orderable and if we find that the Graph group is trivial,
then the fundamental group of the double branched cover is not left-orderable.
However, in most cases it is difficult to show that the Graph group is trivial. In
this short section, we will prove that it is enough to show that for every directed
Wada graph of a link diagram, the directed Wada group is trivial. In the following
chapters, we will find links that satisfy this condition.

To get this result, we need the following lemma.

Lemma 4.0.1. Let D be a mazimal 2-non-bridge diagram of a non-split link and
suppose that (D) is left-orderable. If for every mazimal directed Wada graph
(T, <), the directed Wada group G(T', <) is trivial, then n(D) is abelian.

Proof. Let <y be a left-order on 7(D) that is not maximal. Therefore, (', <;) is
the subgroup of (', <) for < a maximal left-order. By hypothesis, (T, <) is trivial,

thus (I, <;) is trivial. So, for every left-order <, (T, <) is trivial.

Let < be a left-order on 7(D). Then G(I', <) is trivial. So, by Lemma, 2.4.4, the



82

Graph group G(D) is trivial with respect to the left-order <. Thus, by Lemma
2.0.2, (D) is abelian. O

Therefore, by Proposition 1.0.6 and the previous lemma, we have

Theorem 4.0.2. Let D be a mazimal 2-non-bridge diagram of a non-split link L
and suppose that (D) is left-orderable. If for every directed Wada graph (T, <),
the directed Wada group G(I', <) is trivial, then m(23(L)) is not left orderable.

For directed link diagram, there is only one directed Wada graph up to reversing
every edges. Moreover, directed link diagram are maximal link diagram, thus we

have the following result.

Corollary 4.0.3. Let D be a 2-non-bridge directed diagram of a non-split directed
link L and suppose that m(D) is left-orderable. If a directed Wada group G(T', <)
is trivial, then m (X(L)) is not left orderable.



CHAPTER V

HYBRID WADA DIAGRAMS AND RELABELING OF THE VERTICES IN A
DIRECTED WADA GRAPH

In this chapter, we will combine the Wada rational graph and the link diagram
to obtain the hybrid Wada diagram. Moreover, we will relabel the vertices of
the directed Wada graph. Both constructions will help us for the proofs in the

following chapters.

5.1 The Hybrid Wada diagram

The hybrid Wada diagram H(I') is obtained by combining the Wada rational
graph I' of a link diagram with the link diagram. Let D be a connected diagram
of a link and I' a Wada rational graph. To construct the hybrid Wada diagram
H(T'), we replace each rational tangle in the link diagram by the Wada rational
graph of the tangle. For example for the knot 8, diagram
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Figure 5.1 Knot diagra.n.l. of 821
and the Wada rational graph of the rational tangles
@) 32— @)
(aa) Xr—(a5) X3 D )

we obtain the following hybrid Wada diagram where the white dots represent non-
bridge arcs in the rational tangle and the black dots represent 1-bridge arcs in the

rational tangle.
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Figure 5.2 Hybrid Wada diagram of 8

Moreover, from a directed Wada graph (I, <), we can obtain a directed Hybrid
Wada diagram H(I', <). For the direction of the rational tangles in H(T', <), we
choose the direction of each rational tangle in the directed Wada graph (T, <).
We continue the example of the knot diagram 85;. Thus from the directed Wada
graph (T, <)
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Figure 5.3 directed Wada graph of the knot 85,

we obtain the following directed Hybrid Wada diagram
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Figure 5.4 Directed Hybrid Wada diagram of 8y;

Also, inspired by Lemma 2.3.8, we replace every 1-tangle T' with only one non-
bridge arc in D such that neither marked point goes over some arcs in D \ T by
a single non-bridge arc as in the following diagram. As shown in Lemma 2.3.8,
all the arcs in 7" are equal, therefore for the new non-bridge arc we choose an

arbitrary arc in T'.

to

Figure 5.5 From a 1-tangle T with only one non-bridge arc in D such that neither
marked point goes over some arc in D \ T to a single non-bridge arc
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5.2 Relabeling of the vertices in a directed Wada graph

In this short section, we will relabel the arcs of the link diagram to facilitate the

writing of proofs in the following chapters.

First, we need to introduce the “simplest” directed path in a directed Wada graph.

Recall, that two vertices are consecutive if there is an edge joining them.

Definition 5.2.1. Let (I', <) be a directed Wada graph of a link diagram D. If
a; < a; are consecutive and there is no ax in (I', <) such that there is a directed
path from a; to a; passing by ay, then a; and a; are Wada consecutive. Moreover,
the edge joining a; and a; is called a flat edge. Let P = {a;, ...,a;} be a directed
path from a; to a;. If every consecutive vertices in P are Wada consecutive, then
P is a directed Wada path. Equivalently, if every edge in a directed path P is a
flat edge, then P is a directed Wada path.

Let (T, <) be a directed Wada graph of a 2-non-bridge link diagram D with n
vertices. There is a partial order <(r .y on the vertices induced by the directed
Wada graph. A vertex a; is greater than a; with respect to <(r <), if there is a
directed Wada path from a; to a;. If <; is Wada equivalent to <, then (I', <;) =
(T, <). Thus, if a; <(r <) a;, then a; <; a; for every left-order <; Wada equivalent
to <. If there is no order between a; and a; with respect to <(r «), then the order

between a; and a; can vary from different Wada equivalent left-orders.

With this in mind, we will relabel the vertices a; so that the indices of the vertices
will give us the partial order <(r «y. In other words, if j > 4, then a; > ) a;.

From now on, we will use < for <(r o).

Recall from Lemma 2.3.7, that the two non-bridge arcs are the maximum and the

minimum between the generator of the Wada group. So, we first relabel the two
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non-bridge arcs a; and a,, where a,, is the maximum and a; is the minimum.

Let @ be the set of directed Wada paths from a, to a; in (I',<). We will be

interested in the paths with the maximum number of edges.

Suppose there is a directed Wada path P with more edges than any other paths in
Q. If there is more than one, choose one of the maximum ones. We call the vertices
on P the principal vertices and the vertices not on P the secondary vertices. A
secondary path is a directed Wada path that starts and ends on principal vertices,
but for which all other vertices are secondary vertices. We relabel the principal
vertices by recursion as follows. Let a,, still be a,,. Let a; be a relabelled principal
vertex. Then, the following Wada consecutive vertex on P will be relabelled a;_
where k is the number of secondary vertices included in any secondary path that

end at a;_g.

For example, the knot diagram 8-; has no secondary vertices. Therefore, we relabel

the vertices in the directed Wada graph of the knot 8,; as follows.
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Figure 5.6 Directed Wada graph of 81 with the vertices relabelled

Once we have relabelled the vertices in the directed Wada graph, we relabel the

correspondant arcs in the Hybrid Wada diagram and the link diagram.
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Figure 5.7 Hybrid directed Wada diagram of 85, with the arcs relabelled

We will now relabel the secondary vertices for a directed Wada graph with sec-
ondary vertices. The indices of the secondary vertices will have two components
(A, B). Let ai, be a secondary vertex. If ay, is such that there are no greater Wada
consecutive secondary vertices, then A = ¢ where a; is the smallest principal ver-
tex whose greater than ax. Similarly, if ax is such that there are no smaller Wada
consecutive secondary vertices, then B = j where a; is the greatest principal ver-
tex whose smaller than ax. Let a; be a secondary vertex not already relabelled
and with a greater Wada consecutive secondary vertex a4 py already labelled.
Then A for a; is equal to (A, B)i where a; is the smallest consecutive principal
vertex whose greater than a; and B = [ where where q; is the greatest consecutive

principal vertex whose smaller than a;. Thus, a; is relabelled a4,y -

The diagram of the knot 949 has a secondary vertex. We relabel the vertices in

the directed Wada graph of the knot 949 as follows.
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Figure 5.8 Directed Wada graph of 8;; with the vertices relabelled

Note that the relabeling of the vertices is not unique when there is at least one
secondary vertex. We relabel the vertices this way in the directed Wada graph,
because we want from the label of the vertices to know which one is greater in
the order given by (I', <). Thus, if we have a; and a; and j > 4, then a; > q;. If
we have agx) and a; with 7 > 4, then agx) < a;. If we have a k), as and a;
where [ > s and t > k, then a; > a( k) > as. However, if we have a((; ;) and

as where s > [ and k > s, then there is no order between a((; ;&) and as.
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Thus, only by the labels of two vertices a; and a;, we can know which one is
greater than the other or if we do not have an order between them. If we do not

have an order between them, we will say that a; and a; are parallel vertices.

Remark 5.2.2. From now on, we will allow a slight abuse of notation. When we
will say that we have a; and a; with j > 4, we will mean that a; > a; but not

necessary that a; and a; are principal vertices.






CHAPTER VI

THE IMPACT OF A TRIVIAL EDGE IN A DIRECTED WADA GRAPH

For the remainder of the thesis, we suppose that the links are 2-non-bridge links.
In this section, we will prove Theorem 6.7.7 which states that if an edge is trivial
in a directed Wada graph (I', <) of a directed link diagram, then G(T', <) is trivial.
Thus, combining this result with Corollary 4.0.3, we will obtain Theorem 6.7.8,
which plays a central role in proving that the fundamental group of the double

branched cover of certain family of links is not left-orderable.

6.1 Wada natural paths and Wada directed cycles

Let D be a link diagram and I'(D) the Wada rational graph. In the hybrid Wada
diagram H(T'), if there is a continuous path from an arc to another arc without
passing twice over the same arc, we say that there is a Wada path between the
two arcs. In a Wada path, if the continuous path passes from an arc a; to an arc
a;j, then we say that a; and a; are consecutive. Consecutive arcs are joined by an
edge in the Wada rational graph. If there is a non-trivial Wada path from an arc

a; to itself, then we define this path to be a Wada cycle.

We now fix a directed Wada graph (', <) for the link diagram D. We will say
that the Wada path P = {a, .., ai, ..., an } is @ Wada directed path if it satisfies the

following two conditions. First,a; < ... < g < .. <apora; > ..>q > ... > a,,.
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Secondly, for every pair of consecutive arcs a; and a; in P such that a; < a;, there
is no arc ax in H(I', <) such that there is a directed path from a; to a; passing
through ax. We call a, and a; Wada consecutive arcs. Also, we call the edge

joining a; and a; in the directed Wada graph a flat edge.

Remark 6.1.1. Note that a path P in an hybrid Wada directed diagram is a
Wada directed path if and only if it is a Wada directed path in the directed Wada

graph as defined in Definition 5.2.1.

For example, in the Hybrid Wada directed diagram of the knot 851, P = {as, a4, a5}
is a Wada directed path.

Figure 6.1 A Wada directed path in the knot 8;;

Definition 6.1.2. Let a rational tangle give us the following Wada rational graph
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We define X to be the edge of the rational tangle, a; and a3 to be the final vertices
of the rational tangle X and ay and a4 to be middle vertices of the rational tangle
X. Moreover, we define the final order of X to be g, the middle order of X to be
p — q, the compose order of X to be g+ p — g = p and the total order of X to be

2q+p—qg=p+q.

A word w(Yy, ..., Y,) is defined as

k,xe.,‘,
w(Yy, ..., Vo) = LY, 0™

where 1 < 4; < n, k;; > 0 and ¢; = £1. We will say a word w(Y7,...,Y,) is

positive if €;; = 1 for every i;.

Definition 6.1.3. We use the notation w* (X, ..., X,,) to signify a positive word.

Let (I, <) be a directed Wada graph. If we have a Wada directed path P =
{ai,..,ai, ..., am }, where a,, is an arc of a rational tangle containing a;, then P’ =
(@3, .., Q1 .oy G, 0;) s called a Wada directed cycle. Moreover, every Wada directed
cycle C = (a;,...,am,q;) in H(I', <) gives a relation X;* = wt(X;,...,X,) in
G(T', <) where X;** is the edge or edges from the rational tangle containing a,,
and a; and wt (X7, ..., X,,) is a positive word coming from the Wada directed path.
We say that X is the cover edge of C. Moreover, for w* (X, ..., X,,) = H;T‘ZOX:”,
X, is defined as the right edge of C and X, is defined as the left edge of C.
Furthermore, X; . is defined as the (j + 1)-right edge of C' and X;; is defined as
the (j + 1)-left edge of C.

Definition 6.1.4. We say that a cover edge X is a minimal cover edge if my is
of minimal order, X is a mazimal cover edge if my is of maximal order, X} is a

total cover edge if my is of total order and X} is a compose cover edge if my, is of
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compose order. Moreover, we say that X is a simple cover edge, if it is either a

minimal or maximal cover edge.

In the example of figure 6.1, a3 and as are in the same rational tangle X;, therefore

P’ = (a3, a4,as,a3) is a Wada directed cycles.

Figure 6.2 A Wada directed cycle in the knot 85;

From this Wada directed cycle, we obtain the relation X; = X2XZ? where X, is

the minimal cover edge of P'.

Lemma 6.1.5. Let (I', <) be a directed Wada graph of a 2-non-bridge link dia-
gram. Then, for every verter a;, there is a Wada directed path from a; to a; and

from a,, to a;.

Proof. 1t a; is a principal vertex, then by definition of principal vertices, there is

a Wada directed path from a, to a;.
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If a; is a secondary vertex, then there is a secondary path from a principal vertex
a; to a;. Thus, there is a Wada directed path from a; to a;. Also, because a; is
a principal vertex, there is a Wada directed path from a, to a;. Therefore, by

joining these Wada directed paths, there is a Wada directed path from a, to a;.

Similarly, we can find a Wada directed path from a; to a;. O

6.2 Results obtained from the Wada directed cycles

We will show that Wada directed cycles give us important information about the

directed Wada graph.

Let C = (a4, ..., a1, ..., am, a;) be a Wada cycle. First, note as in Figure 6.2 that C
is a closed curve homeomorphic to S in R?. We say that a; is on C if a; € C.
We will say that a; is inside C, if a; is inside C in R?. Similarly, we will say that

a; is outside C, if a; is outside C in R2.

Lemma 6.2.1. Let (T, <) be a directed Wada graph of a 2-non-bridge link diagram
and C = (ai, ..., a;,a;) be a Wada directed cycle with i < j. If ay is inside C' and
k < i( resp. k> j), then there is no Wada directed path from ax to any arc an,

with m < i (resp. m > j) outside of C.

Proof. Suppose k < i. Suppose there is a Wada directed path P from ax to a,,.
Because ay, is inside C' and a,, is outside C', P must pass by C. So, there must
be an arc a; of the cycle C withl >4 > kand [ > ¢ > m in P. Thus, we have

P = (ag,...,qa, ..., ap). This is not a Wada directed path, because ax < a; > a,.

Similarly for k& > 1. O

There is an important family of Wada directed cycles.



100

Definition 6.2.2. Let C' be a Wada cycle in a directed Wada graph. If there is
a maximum arc (resp. a minimum arc) in C, then we say that C is a maz (resp.

min) primary cycle.

If there is no maximum arc and no minimum arc inside C, then we call C a

secondary cycle.

If there is a maximum arc (resp. minimum arc) outside of C, then we say that C

is an outside max (resp. min) primary cycle.

If C is max (resp. min) primary and outside min (resp. max) primary, then C is

called a dichotomic cycle.

Dichotomic Wada directed cycles will be instrumental in showing that the directed

Wada group is trivial if a generator is trivial.

Using Lemma 6.2.1, we get the following useful results about Wada directed cycles.

Corollary 6.2.3. Let (I',<) be a directed Wada graph of a 2-non-bridge link
diagram and C = (ai,...,a;j,a;) be a Wada directed cycle with i < j. If ay is
an arc inside C' such that k < i, then a; is inside C and so C is min primary.
Similarly, if ay is an arc inside C such that k > j, then a, € C and so C is maz

PTIMATyY.

Proof. By Lemma 6.1.5, there is a Wada directed path from a; to a;. Thus, by
Lemma 6.2.1, a; can’t be outside C. Moreover, a; < a; < a;, so a; is not on C.

Therefore, a; is inside C.

The proof is similar for the max primary case. U

Similarly,
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Corollary 6.2.4. Let (I',<) be a directed Wada graph of a 2-non-bridge link
diagram and C = (aj,...,a;,a;) be a Wada directed cycle with 1 < j. If ay is
an arc outside C' such that k < i, then a, is outside C and so C is outside min
primary. Stmilarly, if ax is an arc outside C such that k > j, then a, is outside

C and so C is outside mazx primary.

With the previous results we can obtain information about cycles in the directed

Wada graph.

Definition 6.2.5. Let (I', <) be a directed Wada graph of a 2-non-bridge link
diagram and C = (ag, ..., a;,ax) be a Wada directed cycle with k > i that gives
the relation X = X{™ .. X™. If X, is a rational tangle that also has an edge

from a; to ax with [ > k, then C is a high tail Wada directed cycle.

Similarly, if X is a rational tangle, that also has an edge from q; to a; with [ < 1,

then C is a low tail Wada directed cycle.

We now show that a high and low tail Wada directed cycle is dichotomic.

Lemma 6.2.6. Let (I', <) be a directed Wada graph of a 2-non-bridge link diagram
D. If C = (a,q, ..., ak—s,a) with k > j > k — i is a high and low tail Wada
directed cycle with X the cover edge from the rational tangle with the vertices

g, Qg—;, ax and a;. Then, C is a dichotomic Wada directed cycle.

Proof. 1f C is a high and low tail Wada directed cycle, then we have the following
subgraph in the directed Wada graph,
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a]

ak

ak-i

ag

and thus the following two possible subdiagrams in the hybrid Wada diagram

or

In the left case, a; < ax_; and qa, is inside C'. Therefore, by Corollary 6.2.3, C is
min primary. Moreover, a; is outside C' and a; > a,. Thus, by Corollary 6.2.4, C

is max outside primary. So, C' is a dichotomic Wada directed cycle.

The proof is similar for the right case. O
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6.3 From Rational tangles in the Wada rational graph to Rational tangles in
the Hybrid Wada diagram and the introduction of Thorns

This is a technical section. We will differentiate the different part of arcs that go
inside or outside a Wada cycle. Let C be a Wada cycle and X a rational tangle
on C. If there is an arc a; that is a bridge in X and that goes inside C, then
the part of a; in X is an inside principal thorn. Suppose there is an arc a; that
is not a bridge in X and that goes inside C. Then, if there is an inside principal
thorn from X in C, then a; is an inside secondary thorn. Moreover, if there is no
inside principal thorn from X in C, then a; is a inside tertiary thorn. We define

similarly outside principal, secondary and tertiary thorns.

We will now look at all possibilities for rational tangles in a Wada cycle. First,
we look at half-twist crossings. In a cycle of the Wada rational graph we can have

the two following possibilities. First completely included in the cycle.

a]

Figure 6.3 Half-twist crossing completely included in the Wada cycle in the Wada
rational graph
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Secondly, half included in the cycle.

aj

al

am

Figure 6.4 Half-twist crossing half included in the Wada cycle in the Wada
rational graph

The first case will look as follows in the Hybrid Wada diagram. We define this

part of a; to be a principal inside thorn.

A
N

Figure 6.5 Half-twist crossing completely included in the Wada cycle in the
Hybrid Wada diagram

For the second case, we have two possibilities in the Hybrid Wada diagram. The
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inside case where we define this part of a; to be a principal inside thorn and this

part of a,, to be a secondary inside thorn.

Figure 6.6 The inside case of a half-twist crossing half included in the Wada
cycle in the Hybrid Wada diagram

The second possibility is the outside case where we define the following part of
a; to be a principal outside thorn and the following part of a,, to be a secondary

outside thorn.

i

Figure 6.7 The outside case of an half-twist crossing half included in the Wada
cycle in the Hybrid Wada diagram

Finally, there is the half-twist case, where no edges are on the cycle C, but a
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vertex is on the cycle:

aj

4

® a

Figure 6.8 Half-twist with only a vertex included in the Wada cycle in the Wada
rational graph

which gives the following Hybrid Wada diagrams

Figure 6.9 Half-twist with only a vertex included in the Wada cycle in the Hybrid
Wada diagram
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In the case on the left, we define this part of a; to be a tertiary inside thorn and
this part of a; to be a tertiary outside thorn. In the other case, we define this
part of a; to be a tertiary outside thorn and this part of a; to be a tertiary inside

thorn.

We now look at rational tangles. There are three possibilities. First completely

included in the cycle:

aj

3

ak

|

Figure 6.10 Rational tangle completely included in the Wada cycle in the Wada,
rational graph

which gives two possibilities for the Hybrid Wada diagram. In the case on the
left, we define this part of a; to be a principal inside thorn and this part of a; to
be a principal outside thorn. In the other case, we define this part of a; to be a

principal inside thorn and this part of ay to be a principal outside thorn.
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or

Figure 6.11 Rational tangle completely included in the Wada cycle in the Hybrid
Wada diagram

Secondly, two consecutive edges included in the cycle:

Figure 6.12 Rational tangle with two consecutive edges included in the Wada
cycle in the Wada rational graph
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which gives two possibilities for the Hybrid Wada diagram; the outside case to the
left and the inside case to the right. In the case on the left, we define this part
of a; to be a principal outside thorn and this part of a; to be a secondary outside
thorn. In the other case, we define this part of a; to be a principal inside thorn

and this part of a; to be a secondary inside thorn.

or

Figure 6.13 Rational tangle with two consecutive edges included in the Wada
cycle in the Hybrid Wada diagram

Thirdly, there are two cases for only one edge in the Hybrid Wada diagram. First,

an end edge is in the cycle:
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Figure 6.14 Rational tangle with only an end edge included in the Wada cycle
in the Wada rational graph

which gives the following Hybrid Wada diagrams. In the case on the left, we define
this part of ax to be a principal inside thorn and this part of a; to be a secondary
instde thorn. In the other case, we define this part of ax to be a principal outside

thorn and this part of a; to be a secondary outside thorn.

Figure 6.15 Rational tangle with only an end edge included in the Wada cycle
in the Hybrid Wada diagram
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Then, the second case is when it is the middle edge that is in the cycle:

Figure 6.16 Rational tangle with only the middle edge included in the Wada
cycle in the Wada rational graph

which gives the following Hybrid Wada diagrams. In the case on the left, we define
this part of a; to be a tertiary inside thorn and this part of a; to be a tertiary
outside thorn. In the other case, we define this part of a; to be a tertiary outside

thorn and this part of a; to be a tertiary inside thorn.
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or

Figure 6.17 Rational tangle with only the middle edge included in the Wada
cycle in the Hybrid Wada diagram

Remark 6.3.1. Note that every time we have at least one edge in the Wada cycle
and the other edges not on the Wada cycle, except for the middle edge case, we
have either an inside or outside case format. Every inside case format adds two
arcs inside the Wada cycle in the Hybrid Wada diagram, a secondary inside thorn
and a principal inside thorn, while none outside the cycle and inversely for the

outside case format.

Moreover, for the rational tangles completely included in the Wada cycle, there
is one arc inside the cycle, a principal inside thorn and one arc outside the cycle
a principal outside thorn. We will define the family of complementary thorns
as the family that includes the secondary and tertiary thorns. Every principal
thorns comes from at least a bridge arc, while complementary thorns come from

a non-bridge part of an arc.
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6.4 Results on Wada cycles from thorns and tertiary tangle

Let C' be a Wada cycle in a Wada rational graph. We will look at all inside thorns.
They will be the marked points of an n-tangle which we will call the inside n-
tangle of C. Similarly, we take the outside thorns of C' and form the outside
n-tangle of C. Recall from chapter 1, that a marked point coming from an arc
that just went under another arc is called an under marked point and a marked
point coming from an arc that just went over another arc is called an over marked
point. Remark, that if a complementary thorn has an under marked point, then
it is a non-bridge arc. Moreover, if a principal thorn has an over marked point,

then it is at least a two-bridge arc.

We now give a series of technical results about thorns in Wada cycles.

Lemma 6.4.1. Let D be a link diagram and C a Wada cycle in the hybrid Wada
diagram. Then, the number of inside and the number of outside thorns of C must

be even.

Proof. The inside thorns form the marked points of the inside n-tangle of C.
Therefore, there are 2n marked points. Thus, there are 2n inside thorns and so

an even number of inside thorns.

The proof is similar for outside thorns. O

Lemma 6.4.2. Let D be a link diagram and C' a Wada cycle in the hybrid Wada
diagram. If there are more inside complementary thorns than principal inside

thorns in C, then there is a non-bridge arc of D inside C.

Proof. Suppose there are 2n inside thorns. Thus, we have an inside n-tangle T

of C. There are more inside complementary thorns than principal inside thorns,
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so there are n — ¢ principal inside thorns and n + ¢ complementary inside thorns
for ¢ > 1. If a complementary inside thorns is an under marked point, then it is

a non-bridge arc.

Suppose there is no non-bridge arc of D inside C. This implies that every non-
bridge arc in 7" is at least a bridge arc in D. Thus, every non-bridge arc in 7" is an
inside principal thorn. By Lemma 1.1.14, there are at least n non-bridge arcs in
T'. But there are only n —¢ principal inside thorns. Therefore, there is at least one
non-bridge arc in T' that is a complementary inside thorns. So, this non-bridge

arc in T' is a non-bridge arc in D. O

Similarly, we can obtain the following result.

Lemma 6.4.3. Let D be a link diagram and C' a Wada cycle in the hybrid Wada
diagram. If there are more outside complementary thorns than principal outside

thorns in C, then there is a non-bridge outside C'.

Cycles that contains tertiary thorns will be important enough that we name this

family of cycles.

Definition 6.4.4. Let D be a link diagram and C' a Wada cycle in the hybrid
Wada diagram. If there is a tertiary thorn inside (resp. outside) C, then we say
that C is inside (resp. outside) tertiary. Note that all tertiary inside thorn comes
from tertiary tangle and tertiary tangle also gives a tertiary outside thorn. Thus,

we define a Wada cycle C to be a tertiary cycle, if there is a tertiary tangle on C.

Now, let (I', <) be a directed Wada graph of a 2-non-bridge link diagram D.
Recall that a flat edge from a; to a; with a; < a; is an edge such that there is
no ax € (I', <) such that q; <(r<) @ <(r,<) aj. The rational tangles that only
have flat edges will add some difficulty in proving that the directed Wada group

is trivial.
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Definition 6.4.5. Let (I', <) be a directed Wada graph of a 2-non-bridge link
diagram D. If we have a half-crossing such that both edges are flat, then this
crossing is a flat crossing. Similarly, for a rational tangle if every edge is flat, then

we say that the rational tangle is a flat rational tangle.

Many proofs in this chapter will be obtained by finding non-bridge arcs in Wada
directed cycle. By Lemma 6.4.2; if there are more complementary thorns than
principal thorns inside a Wada directed cycle C, then there is a non-bridge arc
inside C. Thus, principal thorns will often be obstacles in proofs. We now link

principal thorns and flat rational tangles.

Lemma 6.4.6. Let (I, <) be a directed Wada graph of a 2-non-bridge link diagram
D and C be a Wada directed cycle in (I',<). If X is a rational tangle that adds
ezactly one principal inside (resp. outside) thorn in C, then X is a flat rational

tangle completely included on C.

Proof. Because X adds exactly one principal inside thorn, X is completely in-
cluded on C. Moreover, if X is not a flat rational tangle, then C is not a Wada

directed cycle. O

The next result shows the importance of tertiary tangle and flat rational tangle.

Lemma 6.4.7. Let (T, <) be a directed Wada graph of a 2-non-bridge link diagram
D and C a Wada directed cycle in (T, <). Suppose that C is inside (resp. outside)
tertiary. If there is no non-bridge arc inside (resp. outside) C, then there is a flat

rational tangle completely included on C.

Proof. The Wada directed cycle C is inside tertiary, therefore there is a rational
tangle that only adds one complementary thorn inside C. Every rational tangle on

a Wada cycle adds either one principal and one complementary inside thorns, no
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inside thorns, one complementary thorns or one principal thorn. Moreover, by the
previous lemma, a rational tangle adds exactly one principal thorn if and only if it
is a flat rational tangle completely included on the Wada directed cycle. Thus, if
there is no flat rational tangle completely on C, then there is more complementary
inside thorns than principal inside thorns. This implies, by Lemma 6.4.2, that if
there is no flat rational tangle completely included on C, then there is a non-bridge

arc inside C. O

With a similar proof, we can generalize the previous result.

Lemma 6.4.8. Let (I', <) be a directed Wada graph of a 2-non-bridge link diagram
D and C a Wada directed cycle in (T, <). Suppose there are more tertiary tangle
on C than flat rational tangle completely included on C. Then, there is a non-

bridge arc inside C' and a non-bridge arc outside C'.

Proof. By hypothesis, there are more complementary inside thorns than principal
inside thorns. This implies, by Lemma 6.4.2, that there is a non-bridge arc inside

C, because there is no more flat rational tangle completely included on C.

The proof for the non-bridge arc outside of C' is similar. O

6.5 Supporting cycle of flat rational tangles

As already mentioned, flat rational tangles are the principal obstacles in proving
that directed Wada group is trivial when a generator is trivial. In this section, we

will define supporting cycle which are associated to flat rational tangles.

Lemma 6.5.1. Let (I', <) be the directed Wada graph of a 2-non-bridge directed
link diagram D. If there is a flat rational tangle X; in (I, <), then there is at

least one Wada directed cycle C with X; as cover edge.
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Proof. Suppose there is no such cycle C. If we change the direction of X;, we won’t
have a directed cycle. Thus, we have a contradiction because D is a directed link

diagram. This implies, that there is such a cycle C. O

We call such a cycle C a supporting cycle of X;. We recall from Definition 6.1.2,
that the compose order is the addition of the final order and the middle order,
while the total order is the addition of the order of every edges. Note that because
X, is a flat rational tangle, X; is either a total cover edge or a compose cover edge.
Moreover, if X; is an half-twist, then the total order and the compose order are
the same. Also, X; must be a total cover edge and not a simple cover edge for it

to be flat.

Lemma 6.5.2. Let (I, <) be a directed Wada graph of a 2-non-bridge directed
link diagram D and X; a flat rational tangle in (I',<). Then, either there is a
supporting cycle C' with X; as a compose cover edge or there is a supporting cycle
C that is dichotomic. Moreover, if X; is an half-twist, then there is a supporting

cycle C that is dichotomic.

Proof. We will show the result for rational tangle as the result for half-twist is
similar. By the previous lemma, there is a supporting cycle C with X; either as a
total cover edge or as a compose cover edge. If X; is a compose cover edge of C,
then the proof is over. Suppose that X; is a total cover edge. Then, in (I', <) we

have the following subgraph.
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Figure 6.18 directed Wada graph of a supporting cycle C' with X; as a total
cover edge

Moreover, in the hybrid Wada diagram we have the following diagram

e

Figure 6.19 Hybrid Wada diagram of a supporting cycle C' with X; as a total
cover edge

Suppose apy; Or ap,s are consecutive to any arc of C. Then we have a new

supporting cycle B of X; with compose cover edge X; as shown in the following



119

graph.

N
ak ‘L——

Figure 6.20 New supporting cycle B of X; with compose cover edge

Note, that because X; is a flat rational tangle, the edge X; can’t be in the other
direction. Thus, this completes the proof if ax;; or ax,o are consecutive to any

arcs of C.

Now, suppose that ay; is consecutive to an arc parallel to C. Let a,, be the arc

parallel to C' and consecutive to ax;; and X; the edge joining a,, and ax;.

First, suppose that X; goes from a,, to ax;;. By Lemma 6.1.5, there is a Wada
directed path P from a, to a,. If one of the arcs of P is in C, then we obtain
a directed Wada graph similar to Figure 6.20 and the proof is complete. If there

are no arcs of P in C, then a, must be in C. Thus, C is max primary.

Now, suppose that X; goes from a;y; to a,. There is a Wada directed path @
from a,, to a;. If one of the arcs of @) is in C, then we get the following directed

Wada graph:
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N
P S

Figure 6.21 New supporting cycle B of X; with simple cover edge

bu we can’t have this case, because X; is a flat rational tangle. Thus, there is no

arcs of C in @ and so a; is in C, and so C is min primary.

Similarly, if a4 is consecutive to an arc parallel to C, then either we have a new
supporting cycle B of X; with compose cover edge X; or C is either outside min

primary or outside max primary.

Suppose, that both ax,1 and ax,o are consecutive to an arc parallel to C. Because
a non-bridge can’t be in and out of a Wada directed cycle, either there is a new

supporting cycle B of X; with compose cover edge X; or C is dichotomic.

Suppose that ag;; is not consecutive to any arc of C' or any arc parallel to C.
Then, ax,; must be consecutive to a a; such that l < korl > k+3. If | < k,
from Figure 6.19 and Corollary 6.2.3, C is min primary. If [ > k + 3, then C is

max primary.

Similarly, suppose that ax,2 is not consecutive to any arc of C or any arc parallel
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to C. Then, C is outside max primary or outside min primary.

Therefore, if ar+1 and ax4o are not consecutive to C, then because a non-bridge
can’'t be in and out of a Wada directed cycle, either there is a new supporting

cycle B of X; with compose cover edge X; or C is dichotomic.

O

6.6 Result on the triviality of the directed Wada group when a bridge arc is
an extremum

We now need a lemma that shows that if a bridge arc is an extremum, then all

arcs are equal.

Lemma 6.6.1. Let (I', <) be a directed Wada graph of a 2-non-bridge link diagram
D with a; and a, having non-bridge arc and let w(D) be left-orderable. If there is

a verter a; € (I', <) with j # n such that a; = a,, then a; = a3 = ... = a,.

Proof. Let < be a left order on n(D). By Lemma 2.3.7, a; and a,, are extrema.
Without loss of generality, suppose that a; is the minimum and a,, is the maximum.
Therefore, because a; is equal to an, a; is a maximum. But a; is not a non-
bridge by hypothesis, therefore a; is at least a bridge over some arcs a; and a,,.
Therefore it satisfies one of the Wada inequalities a; < aj < apm, am < a; < a; or
a; = aj = @r,- But a; is a maximum, thus we obtain a; = a; = a,,. This implies
that, a; and a,, are maxima. Thus, every arc that goes under a maximum arc,
becomes a maximum arc. Moreover, if two maximum arcs a; and a,, go under an
arc ap, then it satisfies one of the Wada inequalities a; < ap, < @, 0 < @, < @
or a; = @, = an. But a; and a,, are maxima, thus we obtain a; = a, = an.

Therefore, every arc that goes over two maxima arcs becomes a maximum.

So we can construct the blue and red graph G(D, a;) where the property P is the
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maximum property. By Lemma 2.3.3, there are at most two connected components

F; in Uf.

Suppose there is no connected component F; in Uf. Then, every arc is red and so

every arc is maximum and the proof is over.

Suppose there are two connected components F; and F; in Uf. Then, by Lemma
2.3.4, both non-bridge arcs are in W and so both are red. Thus, a; = a,. So the

minimum is a maximum and the proof is over.

Suppose there is exactly one connected component F in Uf. Then, by Lemma

2.3.5, there is either one or two non-bridge arcs in W.

Suppose that both non-bridge arcs are in W. This implies that a; = a,. So the

minimum is a maximum and the proof is over.

Suppose there is exactly one non-bridge arc in W. If a; is in W, then a; is a
maximum and the proof is over. Therefore, we suppose a, is the non-bridge in
W. Moreover, suppose W has 2m marked point with m > 1. Then, by Lemma
1.1.14, there are at least m non-bridge arcs in W. Thus, by remark 1.2.3, there
are at least m non-bridge arcs of D in W, which is a contradiction. Therefore,
there are two marked points in W. By construction of W, both arcs of the marked
points do not go over some arcs in D \ W. Moreover, by hypothesis there is only
one non-bridge arc of D in W. Also, by hypothesis, there is only one connected
component F. Thus, W can be viewed as a 1-tangle. So, T, is a 1-tangle with
only one non-bridge arc a; in D such that neither marked point goes over some
arcs in D \ T,,. But, this is impossible by the construction of the Wada rational

graph from the coarse Wada rational graph in section 2.3.
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Similarly, we can prove

Lemma 6.6.2. Let (I', <) be a directed Wada graph of a 2-non-bridge link diagram
D with a; and a, has non-bridge arc and w(D) be left-orderable. If there is a vertex

a; € (I', <) with i # 1 such that a; = ay, then a; = as = ... = a,.
6.7 The Impact of a Trivial Edge in a directed Wada graph

In this section, we will prove Proposition 6.7.7 which says that if (T',<) is a
directed Wada graph of a directed link diagram D and there is a X; such that
X; = 1, then a; = ... = a,, and so the directed Wada group of (I, <) is trivial.

To do so, we will need a series of technical lemmas.

Lemma 6.7.1. Let (', <) be a directed Wada graph of a 2-non-bridge link diagram
D and C = (ak,ak-1,---, ki, ax) be a Wada directed cycle that gives the relation
X™ = X7 X™ and such that there is an arc a; with j > k inside C and an arc

aq with g < k—1i outside of C. If X; =1, thena; = ... = ag—; = Qp_i31 = ... = Q.

Proof. First note that by Corollary 6.2.3, C' is max primary and outside min
primary. Moreover, by Lemma 6.2.1, if we have an arc a; such that ¢ > k, then a;

is inside C' and if we have an arc a, such that s < k — 4, then a; is outside C.
If X;=1,then X" =1. Hence, X;=...=X;=1land ay = a4_1 = ... = a5_;.

Recall that every rational tangle which is a cover edge of a Wada cycle is either an
high tail rational tangle, a low tail rational tangle or an high and low tail rational
tangle. Note that an high and low tail rational tangle is an high tail rational

tangle and a low tail rational tangle.

Now, without loss of generality, we can suppose that X; is a high tail rational

tangle. Thus, we have Xf" =a, 'ay with p > k. Hence, a, is inside C. Moreover,
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1= Xf" = a;lak, so ap, = ai. If ap is a non-bridge arc, then by Lemma 6.6.1 or
Lemma 6.6.2, the proof is over. Thus, we suppose that a, is a bridge. Therefore,
there is a rational tangle Xik;'l = a,'a, = a,'apm with py > p > m. So, q,, is

inside C.

-1

L 1
If ar, € {ak, ..., @k—1, ., a4}, then am = a = ap. Thus, a;

ap = a, an =1 and

this implies that a,, = a, = ax.

Now suppose a,, ¢ {ak, ..., ak—1, ..., ak—;}. Hence a,, is not on C. But a,, and a,
are inside C and not on C, thus a,, is also inside C. There is a Wada directed
path from a,, to a;. However, a; is outside of C. This implies that there is a
Wada directed path from a,, to as such that as € {ak, ax_1, ..., ak—;} and a5 < a,.
Because a; € C, we have a, = a; = ap, thus a, = a; < ap, < a,p. S0 ap = a5 = ap,.

1

This implies that a;'a, = a;'a, = 1 and therefore a,, = a, = ax.

If ap, is a non-bridge arc, then by Lemma 6.6.1 or Lemma 6.6.2, the proof is
complete. Now, suppose that a,, is a bridge. Therefore, there is a rational tangle
XZ 2 a,, a,, = a;llal with po > p; > [. By the same argument as in the previous

paragraph, we get a,, = a,, = ;. We continue this process ¢ times until a,, is a

non-bridge arc.

Similarly, we have

Lemma 6.7.2. Let (', <) be a directed Wada graph of a 2-non-bridge link diagram
D and C = (ax, ax-1, .., ax_i, ax) be a Wada directed cycle that gives the relation
XM = X;’lj...X,Z"’“ and such that there is an arc a; with j > k outside C' and an arc

)

aq withqg <k —iinside of C. If X; =1, then ay = ... = Qp—j = Qg—iy1 = ... = Qn.

Thus, directly by the definition of a dichotomic Wada directed cycle we get the
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following result.

Corollary 6.7.3. Let (I', <) be a directed Wada graph of a 2-non-bridge link
diagram D and C = (ak, ak_1, ..., ak—, ax) be a dichotomic Wada directed cycle

with cover edge X; = 1. Then, a1 = ... = a,.

Moreover, by Lemma 6.2.6 we have

Lemma 6.7.4. Let (T, <) be a directed Wada graph of a 2-non-bridge link diagram
D. If C is a low and high tail Wada directed cycle with cover edge X; = 1. Then,

a; = ... = Qp.

We now introduce an hybrid Wada directed diagram that will play a major role in
proving Theorem 6.7.7. The following diagram will be called a tertiary flat Wada

directed cycle.

Figure 6.22 Tertiary flat Wada directed cycle

Lemma 6.7.5. Let (I',<) be a directed Wada graph of a 2-non-bridge directed

link diagram and a tertiary flat Wada directed cycle C without non-bridge arc.
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Then, either we have a supporting dichotomic cycle D of the flat rational tangle

X; or we have one of the cases A, B, D or E as defined in the proof.

Proof. Because X; is a flat rational tangle, by Lemma 6.5.2, either there is a
dichotomic cycle D for X; or there is a supporting cycle D with compose cover

edge X;. If D is dichotomic, then the proof is over by Corollary 6.7.3.

Suppose that there is a supporting cycle D with compose cover edge X;. Thus,
we have one of the following hybrid Wada directed diagram.

Figure 6.23 Possible supporting cycle D with compose cover edge X;

We will give the proof for the case on the left. The proof for the case on the right

is similar. We have the following possibilities.
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Figure 6.24 Case A for Tertiary flat Wada directed cycle

Figure 6.25 Case B for Tertiary flat Wada directed cycle
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Figure 6.26 Case C for Tertiary flat Wada directed cycle

Figure 6.27 Case D for Tertiary flat Wada directed cycle
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Figure 6.28 Case E for Tertiary flat Wada directed cycle

Figure 6.29 Case F for Tertiary flat Wada directed cycle
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Figure 6.30 Case G for Tertiary flat Wada directed cycle

The cases C, F' and G are not allowed because they give rise to directed cycle.

g

We give a final lemma before proving the desired result. First, we recall from

definition 2.4.3 that for the following Wada rational graph of the rational tangle

@D *x——(@) X4 (g)— x4 O)

a, and ag are the final vertices of the rational tangle X and ay and a4 are the

miaddle vertices. Moreover, for the following half-twist

5

a; and ay, are the final vertices and a; is the middle vertex.



131

Furthermore, let D be a link diagram and a; be a vertex not in a 1-tangle T with
only one non-bridge arc in D such that neither marked point goes over some arcs
in D\ T. Then, a; represents an arc in D. If a; is a final or middle vertex of a
rational tangle X, then one end of the arc a; goes under an arc in the rational
tangle X. Similarly, if a; is a final vertex of the half-twist X, then one end of the
arc a; goes under an arc of the half-twist X. Thus, a vertex of a tangle goes under
an arc of the tangle except for a middle vertex of an half-twist. Thus, because
every arc goes exactly two times under some arcs and by the definition of the

Wada rational graph we have established the following result.

Lemma 6.7.6. LetI" be a Wada rational graph of a link diagram and a; a vertex
in I'. Then, except for the middle vertex of an half-twist tangle, a; is the vertex

of exactly two rational tangle.

Theorem 6.7.7. Let (I', <) be a directed Wada graph of a 2-non-bridge directed
link diagram. If there is an X such that X; =1, then a; = ... = ay,.

Proof. If a1 or a, is a vertex of one of the edges X, then by Lemma 6.6.1 or
Lemma 6.6.2 the proof is complete. If X, has a cover edge that gives a high and
low tail cycle, then by Lemma 6.7.4 the result is obtained.

The cover edge X]’-cj = wh(Xy, ..., X;n) is equal to one, thus wt(Xy,...,X,n) = 1
and every edges in wt(Xj, ..., X,,) is equal to one. If one of these edges gives a
high and low tail cycle, then by Lemma 6.7.4 the result is obtained. If the right
edge X; of wt(X;, ..., X,,) is the flat edge of a high tail cycle, then we will look at
this last high tail cycle. Again, we will look at the right flat edge of the new cycle
and if it is a high tail cycle, we will look at this cycle. We continue this process

until there is a high tail cycle, with the right flat edge not from a high tail cycle.

Thus, without loss of generality, we can suppose that X; is an high tail cycle such

that the right edge is not a flat edge of an high tail cycle. Suppose, without loss
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of generality, that the edges X; come from a rational tangle (ax, a4, ap, a;) where

k<p<gqg<t.

Suppose there is a flat rational tangle included at the end of C. If it is an half-
twist, then, by Lemma 6.5.2, it has a dichotomic supporting cycle. Moreover,
because it is included at the end of C, the cover edge is equal to one. Hence,
by Lemma 6.7.3, the result is obtained. Again by Lemma 6.5.2, it has either a
compose supporting cycle or a dichotomic supporting cycle. If it has a dichotomic

supporting cycle, by Lemma 6.7.3, the result is obtained.

So, we suppose the flat rational tangle included at the end of C'is not an half-twist
and it has a compose supporting cycle. Therefore, we get the following directed

Wada graph for C

) ) or

For the left case, we now look at the high tail Wada directed cycle D. For the
right case, the vertex ay is already in the rational tangles X; and Xj. Therefore,
because of Lemma 6.7.6, the rational tangle at the end of D can’t end at a; and

must be an half-twist. This implies that we have the following directed Wada
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graph.

The crossing X is a tertiary crossing and so add a tertiary thorn inside C.

Hence, if there is a flat rational tangle included at the end of C, then either the
result is obtained, we have another high tail Wada directed cycle D or we have a

tertiary thorn inside C.

Suppose there is no flat rational tangle included at the end of C. Then, because
ar is at least a bridge and the right edge of C is not the flat edge of a high tail
cycle, we get the following directed Wada graph for C :
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For the right case, we get the following hybrid Wada diagrams :

For the left case, we get the following hybrid Wada diagrams :



For every possibility, we get a tertiary thorn inside C.

Thus, either the proof is over or we get a tertiary thorn inside C. Suppose C is
inside tertiary and by Lemma 6.4.7, either there is a non-bridge arc inside C or

there is a flat rational tangle completely included on C.

Suppose there is a non-bridge arc a; inside C, then by Lemma 6.2.1 because a; is
outside C with t > ¢, a; is not a maximum. Therefore, a; is a minimum and C is
min primary. Moreover, because a; is outside C', by Corollary 6.2.4, C is outside

max primary and so C' is dichotomic. Thus, by Lemma 6.7.3, a; = ... = a,,.

Suppose there is no non-bridge arc inside C' and so there is a flat rational tangle
X; completely included on C. Therefore, we have a tertiary flat Wada directed
cycle C with X; as flat rational tangle. Thus, by Lemma 6.7.5, either we have a
supporting dichotomic cycle D of the flat rational tangle X; or we have one of the

cases A, B, D or F as in the lemma.

Suppose we have a supporting dichotomic cycle D with X; as compose cover edge.

Because X; is on C, X; = 1. Thus, by Lemma 6.7.3 a; = ... = a,.

Suppose we are in case A:
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Then, we get a new tertiary flat Wada directed cycle with cover edge equal to one:

Suppose we are in case B:
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By Lemma 6.4.7, either there is a non-bridge arc inside the cycle D or there is a

flat rational tangle completely included on D.

Suppose there is a non-bridge arc a; inside D, then by Lemma 6.2.1, because a3
is outside with a,, 43 > ami2, and a;q2 is on D, a; is not a maximum. Therefore,
a; is a minimum and D is min primary. Moreover, because a,,,3 is outside D,
by Corollary 6.2.4, D is outside max primary and so D is dichotomic. Thus, by

Lemma 6.7.3, a; = ... = a,.

Now suppose there is a flat rational tangle completely included on the cycle D.
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Then, D is a new tertiary flat Wada directed cycle with cover edge equal to one.

Suppose we are in case D:

Suppose we are in case E.
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Then, we get a Wada directed cycle C with two tertiary thorns and one completely
included flat rational tangle. Thus, by Lemma 6.4.8, either there is another flat
rational tangle completely included on C or there is a non-bridge arc of the link
diagram inside C'. If there is a non-bridge arc of the link diagram inside C, then
with a similar argument as case B, we get a; = ... = a,. If there is another
flat rational tangle completely included on C, we obtain a new tertiary flat Wada
directed cycle with cover edge equal to one. Hence, either there is a new tertiary

flat Wada directed cycle with cover edge equal to one or a; = ... = a,.

Thus, for all cases, either a; = ... = a, or we have a new tertiary flat Wada
directed cycle with cover edge equal to one. If we have a new tertiary flat Wada
directed cycle with cover edge equal to one, by Lemma 6.7.5, either we have a
supporting dichotomic cycle E of the flat rational tangle X; or we have one of the
cases A, B, D or E as in the lemma. If we have a dichotomic cycle E of the flat
rational tangle X;, then by a previous argument a; = ... = a,. If we have one

of the cases A,B,D or E as in the lemma, then by a previous argument either
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a; = ... = a, or we have a new tertiary flat Wada directed cycle with cover edge
equal to one. But, there are only finitely many flat rational tangles, thus at some

point we get a; = ... = a,.

Therefore, by Corollary 4.0.3

Theorem 6.7.8. Let D be a two non-bridge directed diagram of a non-split di-
rected link L, (I',<) be a directed Wada graph and suppose that w(D) is left-
orderable. If there is an edge X; in G(I', <) such that X; = 1, then m1(X(L)) 1s
not left orderable.



CHAPTER VII

FAMILIES OF DIRECTED LINKS FOR WHICH THERE IS A TRIVIAL
DIRECTED WADA GROUP

We recall from Corollary 4.0.3 that if a directed Wada group of a directed link
diagram is trivial, then the fundamental group of the double branched of the link
is not left-orderable. In this chapter, we will prove that the directed Wada group
for totally monopositive, (n — 1) totally monopositive and fluid (n — 2) totally

simple monopositive link diagrams are trivial.

The following table should motivate the importance of these families. The good
middle triple hop links will be defined at the end of the chapter 9. We notice that
the good middle triple hop links in the table below are not directed. For knots
of 10 crossings or less, there are 53 non-alternating knots. Of that number, 45
are directed. Moreover, 5 are left-orderable, thus 40 are not left-orderable. Of
the 40 non-alternating, directed and not left-orderable knots, 35 are either totally
monopositive, (n — 1) totally monopositive or steady fluid (n — 2) totally simple

monopositive.
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knots

8 crossings

9 crossings

10 crossings

totally monopositive

821

945

10127, 10131, 10;35, 10138,10144,10149

(n — 1) totally monopositive | 8 943, 944, 949 | 10125, 10126, 10129, 10130, 10133, 10134,
10137, 10141, 10143, 10146, 10147,1014s,
10150, 10151, 10157, 10158, 10162

steady fluid (n — 2) 819 942, 946, 948 | 10128, 10136, 10142

totally simple monopositive

good middle triple hop 947 10159, 10163, 10164, 10165

Left-orderable

10139, 10145, 10152, 10153, 10154

Not left-orderable 10124, 10132, 10140, 10156

and directed

Not left-orderable 10155, 10160

and non-directed

unknown and 3-non-bridge 10161

7.1 Totally monopositive links, (n — 1) Totally Monopositive links and (n — 2)

Totally Simple Monopositive links

In this section, we will first introduce the totally simple positive property of
links. This larger family includes the totally monopositive links, the (n — 1)
totally monopositive links and the fluid (n — 2) totally simple monopositive links.
But before, we recall the following definitions. Let (I', <) be a directed Wada
graph. Every Wada directed cycle C = (a;, ..., am, a;) in H(I', <) gives a relation
X = wh(Xy,..,X,) in G(I', <) where X, is the edge or edges from the ra-
tional tangle containing a,, and a; and w*(Xj, ..., X,,) is a positive word coming
from the Wada directed path. We say that X is the cover edge of C. Moreover,
for wt (X1, ..., Xa) = I X, 7, X, is defined as the right edge of C and X;, is

defined as the left edge of C. Furthermore, X; . is defined as the (j + 1)-right
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edge of C and Xj; is defined as the (j + 1)-left edge of C. Also, for every X
in w*(Xy, ..., Xn), we define k;, the order of X; . Note that because the relation
comes from a Wada directed cycle, every order of an edge is equal to the final

order, the middle order, the compose order or the total order of the edge.

Definition 7.1.1. Let (', <) be a directed Wada graph of a link diagram D and
let a relation in G(T", <) that comes from a Wada directed cycle, be of the type

~

XF = wt(Xy, ..., Xi, ..., Xn), where k; > 0 and there are at least two different

7

A~

edges X; in wt(Xy, ..., X;, ..., Xn). Then this relation is called positive. An edge

X; for which there exists a positive relation is called a positive edge.

Let Xiki = w (X1, ..., Xi, ..., X5,) be a positive relation. If k; is the final order or
the middle order of X;, then this relation is called simple positive. An edge X;
for which there exists a simple positive relation in X; is called a simple positive
edge. Moreover, if k; is the minimum between the final order and the middle
order, then this relation is called monopositive. An edge X; for which there exists
a monopositive relation in X; is called a monopositive edge. A rational tangle that
has a monopositive edge is called a monopositive rational tangle. Also, if k; is not
the minimum between the final order and the middle order, then this relation is
called pluripositive. An edge X; for which there exists a pluripositive relation in
X is called a pluripositive edge. A rational tangle that has a pluripositive edge is

called a pluripositive rational tangle.

Let Xf" = w] (X, ...,Xi, ..., Xn) be a positive relation. If the middle edge and
the final edge of this relation are not simple positive relation and k; is the sum of
the final and the middle order of X; , then this relation is called compose positive

and X; is a compose positive edge.

It is useful to include them in a same family of relations.

Definition 7.1.2. Let (I', <) be a directed Wada graph of a link L. If a rational
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tangle X is either pluripositive or compose positive, then X is called multipositive.

Definition 7.1.3. Let (I', <) be a directed Wada graph of a link diagram D. If
all the edges are positive in G(I', <), then (I', <) and G(T', <) are called totally
positive. If all the directed Wada graphs of D are totally positive, then D is totally

positive.

Also, if all the edges are simple positive, then (I', <) and G(T', <) are called totally
simple positive. If all the directed Wada graphs of D are totally simple positive,
then D is totally simple positive.

Moreover, if all the edges are monopositive, then (I', <) and G(T', <) are called to-
tally monopositive. If all the directed Wada graphs of D are totally monopositive,

then D s totally monopositive.

We will show that the totally positive property of a directed Wada graph in fact
gives the link diagram a property.

Proposition 7.1.4. Let (T', <) be a totally positive directed Wada graph of a link
diagram D. Then D 1is directed.

Proof. Because (T, <) is totally positive, every edge has a simple positive relation
or is a compose positive relation in G(I',<). If we change the orientation of
an edge X, then the positive relation X = w}(Xy,..., X,) becomes X;* =
w] (X1, ..., X,)). Thus, we obtain the directed cycle X w; (X1, ..., X,,). Therefore,
(T, <) is the only directed Wada graph without directed cycle. This implies that
D is directed by Remark 3.0.9. 0

Definition 7.1.5. Let (', <) be a totally positive directed Wada graph with n
rational tangles of a link diagram D. If i edges for ¢ < n are multipositive and n—i

are monopositive edges, then (I', <), G(I', <) and D are (n-i)totally monopositive.



145

We define a smaller family that will give us stronger results.

Definition 7.1.6. Let (I', <) be a totally simple positive directed Wada graph
with n rational tangle of a link diagram D. If i edges for ¢ < n are pluripositive
and n — 7 are monopositive edges, then (I', <), G(I', <) and D are called (n — 1)

totally simple monopositive.
The monopositive relations will be the key instrument in proving that the graph
group is trivial.

We will now continue our example of the knot diagram 8,; of Figure 2.11. This
knot diagram is totally monopositive. Indeed, by looking at the cycles in the
directed Wada graph of 85; we can find the following relations which are all

monopositive relations

X1 =X2IX3 Xo = X1 X2, X3 = X2X;.

Moreover, we can define totally positive links.

Definition 7.1.7. Let L be a link. If L has a totally positive link diagram D,
then L is called a totally positive link.

If L has a totally simple positive link diagram D, then L is called a totally simple

positive link.

If L has a totally (n — ) positive link diagram D, then L is called a totally (n —1)

positive link.

Finally, if L has a totally (n — ¢) simple positive link diagram D, then L is called

a totally (n — i) simple positive link.

Thus, by Theorem 6.7.8, we have:
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Theorem 7.1.8. Let D be a totally positive link diagram of the non-split link L
and (T, <) a directed Wada graph. Suppose that w(D) is left-orderable. If there is
a generator X; in G(T', <) such that X; = 1, then m1(3(L)) is not left orderable.

7.2 Totally positive groups

We will define families of groups for which left-orderability will imply that they
have a trivial generator. Then we will show that directed Wada groups of totally
monopositive, totally (n — 1) positive and totally (n — 2) simple positive fluid link
diagram are elements of these families. Thus, by Theorem 7.1.8, we will have the

result on the non-left-orderability.

Inspired by the definition in the directed Wada group, we introduce the following

definition for groups.

Definition 7.2.1. Let G be a group with generators Xi, ..., X,,. For a relation
wh(Xy,..., Xn) = H"LOX ', X, is defined as the right generator of w*(Xy, ..., Xy)

with order k;, and X, is defined as the left generator of w* (X1, ..., X,,) with order
ki, . Furthermore, X; . is defined as the (j+1)-right generator of w* (X, ..., X,)
with order k;,,_; and Xj; is defined as the (j + 1)-left generator of w*(Xy, ..., X»)

with order k;; .

Definition 7.2.2. Let G be a group generated by Xj,..., X,. A relation X;“ =
wi (Xi, ..., X,,) is called a positive relation of X; if h; > 0 and the positive word
u/:' (Xi,...,Xn) has at least two different generators and Xj is neither the right nor
the left generator of w; (X, ..., X,). Suppose G has a positive relation for every

X, then G is called a totally positive group.

Let X; i — w (X, ..., X,) for 1 < i < n be positive relations in a totally positive

group. We look at the order r;, of the left generator X, of every positive word
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wi (X1,...,X,). If hy < rj, for every j; = i, then we say that the relation Xih” =

wi (X, ..., Xy,) is a left positive relation.

Let Xz-’“ = wf(Xy,...,X,) for 1 < i < n be left positive relations in a totally
positive group. We look at the order s;, of the 2-left generator X, of every
positive word w; (X1, ..., X,). If X} = wf(Xy, ..., X,) is a left positive relation
and h; < s, for every j; = 4, then we say that the relation Xihi =w] (X1, ..., Xn)

is a 2 left positive relation.

Similarly, we define right positive relation, 2 right positive relation.

Definition 7.2.3. Let G a group generated by Xi,..., X, be a totally positive
group. If every positive relation is a left positive relation, then G is called a

totally left positive group.

If every positive relation is a 2 left positive relation, then G is called a totally 2

left positive group.
Similarly, we define totally right positive group and totally 2 right positive group.

Definition 7.2.4. Let G a group generated by Xi,..., X,, be a totally positive
group. If all but ¢ positive relations are left positive relation, then G is called a

totally (n — i) left positive group.

If all but ¢ positive relations are 2 left positive relation, then G is called a totally

(n —1) 2 left positive group.
Similarly, we define totally (n — i) right positive group and totally (n — 1) 2 right

positive group.

The preceding families are important, because the directed Wada group of to-

tally positive, totally monopositive and totally (n — 7) monopositive link diagram
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will belong to these families. By the definition of positive relation, we have the

following result.

Lemma 7.2.5. Let D be a totally positive link diagram and (', <) a totally pos-
itive directed Wada graph. Then G(T', <) is a totally positive group.

Moreover,

Lemma 7.2.6. Let D be a totally monopositive positive link diagram and (T, <)
be a totally positive directed Wada graph. Then G(T', <) is a totally 2 left positive
group and a totally 2 right positive group.

Proof. Let X!* = w}(Xy,...,X,) be a monopositive relation from G(T',<). By
definition, there are at least two different generators in w; (X1, ..., X,,). Moreover,
r; is the smallest order of the edge X;. Thus, X[ = wl(Xi,...,X,) is a 2 left

positive relation. Therefore, G(I', <) is a totally 2 left positive group.

Similarly, we prove that G(I", <) is a totally 2 right positive group. 0

Similarly,

Lemma 7.2.7. Let D be a totally (n — i) monopositive positive link diagram.
Then G(I', <) is a totally (n — 1) 2 left positive group and a totally (n —1) 2 right

positive group.

7.3 Totally Monopositive links and non Left-Orderability

The totally monopositive links are an important class of links, because the fun-
damental group of their double branched cover is not left-orderable. First, we
recall that totally monopositive links are directed links. Thus, to prove the non-

left-orderability, by Theorem 6.7.8 we only have to obtain a trivial generator in
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the Wada directed group. By Lemma 7.2.6, the Wada directed group of totally
monopositive links are totally 2 left positive group. In this section, we will prove

that a left-orderable totally 2 left positive group has a trivial generator.

We already know that a link with only one rational tangle is alternating. It is also

known that a link with exactly two rational tangles is alternating.

Proposition 7.3.1. (Ernst & Summers, 1990) Let L be a link with a link diagram

with two rational tangles. Then, L is alternating.

Hence, by Theorem 1.0.1, one has have the following result.

Proposition 7.3.2. Let L be a link with a non-split link diagram with one or two
rational tangles. Then, the fundamental group of the double branched cover of L

is not left-orderable.

Thus, only links with 3 or more rational tangles will be interesting to study. So
for the remainder of this thesis, we will suppose that links have 3 or more rational

tangles.

We now prove a lemma providing that will be used often in the following results.

Lemma 7.3.3. Let G be a totally positive group gemerated by Xi,...,X,. Let
(G, <) be a left order on G such that X; < 1 for every 1 <1i < n. If we can obtain
a relation XF = w (X, ..., Xp) with k < 0 from G, then X; = w*(X1,..,X,) =1

and thus for every generator X; in wt (X, ..., X,), we conclude X; = 1.

Proof. Because X; < 1, we have X* > 1. Moreover, because every edge X; <1,
it implies that w* (X7, ..., X,,) < 1. Therefore, X; = w* (X3, ..., X,,) = 1 and thus
for every edge X; in w(Xy, ..., X,,), we have X; = L. O
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Proposition 7.3.4. Let G be a totally positive group generated by X1, ..., X, where
n >3 and (G, <) be a left order on G such that X; <1 for every1 <i<n. IfG
is a totally left (resp. right) positive group, then at least one X; = 1.

Proof. Without loss of generality, we will prove the result for a totally left positive

group. The proof is similar for totally right positive group.

Let n > 3 be the number of generators. We will show that if we have m left positive
relations X* = X,]:f"wf(Xl, oy Xn) where 1 < i <m <nand1 <k <m, then
X; = 1 for at least one 1 < i < m. We will complete the proof of this result by

induction on the number m. Let m = 3 and

X7 = XPut (X, ..., Xn) (7.1)
X5 = XVt (X1, ey Xn) (7.2)
X5 = XPwt (X, ., X,,) (7.3)

be left positive relations.

If i =1, then X7"™™ =™ (Xy,..., X,). But r; —p; <0, because it comes from a
left positive relation. Thus, by Lemma 7.3.3, X; = u™(Xj, ..., X;,) = 1. The proof

is similar, if j =2 or k = 3.

Suppose without loss of generality that ¢ = 2. Then by equations 7.1 and 7.2 ,
X7t = X;’%*(Xl, oy X)) XP Ut (X, o, X))

Moreover, suppose j = 1, then X' = v (X, ..., X)X ut (X1, ..., Xp,)-

However 1 — p; < 0 and py — o > 0, thus by Lemma 7.3.3, X; = 1 and



151
'U+(X1, . Xn)sz_”u*(Xl, ceny Xn) = 1.
Now, suppose j = 3. Then by equations 7.1 and 7.3

X7 = XPot(Xy, ., X)) XP 20t (X, ., X
= XPwH (X, oo, X)) X0 (X, Xn) XPT7 0 (X o, X)),

If k=1, then
X{l = Xf1w+(X1, ceey Xn)Xga_TSU+(X1, ceey Xn)Xg2_r2U+(X1, ceey Xn)

Thus, X' ™" = wh (X, ..., Xp) X5 ot (X, ..., Xn) X3 ut (X1, ..., X,,) and by
Lemma 7.3.3 X1 = wH (X, ..., Xn) X5 ot (Xy, ..., Xn) X5 2wt (X, ..., Xp) = L.

If k£ = 2, then by equations 7.2 and 7.3

X3 = XPuh (X, ., Xn)
= XPwt(Xy, ..., Xp) X2 0 (XY, ., X)

and so X3* 7 = wt(Xq,..., X,) X3* vt (X, ..., X,,) and again by Lemma 7.3.3
X2 = ].

This completes the proof for m = 3.

Now suppose the result is true for m = n — 1 left positive relations X[* =
X,ffiw;*(Xl,...,Xn) where 1 < i<m=n-1landl1 <k <m=mn-1.
We investigate the case where there are m = n left positive relations X' =
X,z;’c"w;“(Xl, v Xy) where 1 <i<n=mand 1<k <n=m. We have the left
positive relation XI» = X wt(Xy, ..., X,). If X[» = XPrwt (X, ..., X,), then

XpPr = wi(Xy,..., Xy) with 7, — p, < 0 because it comes from a left positive
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relation. Thus, by Lemma 7.3.3, X,, = 1 = w/ (X1, ..., X,).

Suppose Xp** # XPr. Recall that X7» = X" wl (X, ..., X,,). For every X[* =
Xertw (X1, ..., Xp) such that k; = n, since X2 = Xpw (X, ..., Xp) X2,
we obtain X" = X w? (X, ..., Xp) XPr " wf (X, ..., X,). Also, pp — 1, > 0
because XI» = X*"w} (X1, ..., X,) is a left positive relation. Thus, now we have
n — 1 left positive relations X" = X,f:"w;"(Xl, iy X)) where 1 < ¢ < n—1 and
1 < k; < n—1. Moreover, none of the X:fi is equal to XP~. This implies by

induction that thereisan X; =1for1 <:i<n-—1.

The result is obtained similarly for totally right positive group. O

By construction of the Wada directed group of a directed link diagram, Lemma
7.2.6 and because totally 2 left positive group are totally left positive group, we

obtain the following result:

Lemma 7.3.5. Let D be a directed (n—2) of L with at least three rational tangle
and I'(D) be the Wada rational graph. Suppose w(D) is left-orderable. If (T, <)
is a totally monopositive directed Wada graph, then G(I',<) is a left-orderable
totally positive group generated by X, ..., X, where n > 3 such that X; < 1 for
every 1 <1 < n.

Thus, combining the previous lemma, Proposition 7.3.2, Proposition 7.3.4 and
Theorem 7.1.8 we have the following result.

Theorem 7.3.6. If L is a totally monopositive, 2-non-bridge and non-split link,

then the fundamental group of the double branched cover of L is not left-orderable.

We recall that the knot 85 is totally monopositive, therefore the fundamental

group of the double branched cover of the knot 8,; is not left-orderable.
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7.4 (n — 1) Totally monopositive links and non Left Orderability

In this section, we will prove that the directed Wada group of (n — 1) totally
monopositive links is trivial and thus that the fundamental group of the double
branched cover of (n — 1) totally monopositive links is not left orderable. To
prove this, we will first prove that the directed Wada group of (n — 1) totally
monopositive links are (n — 1) totally 2 left positive group. Then, we will prove
that a left-orderable (n — 1) totally 2 left positive group has at least one trivial

generator.

Proposition 7.4.1. Let G be a totally positive group generated by X1, ..., X,, where
n >3 and (G, <) be a left order on G such that X; <1 for every 1 <i<n. IfG
is a (n — 1) totally 2 left (resp. right) positive group, then at least one X; = 1.

Proof. We will prove the result for (n — 1) totally 2 left positive group. The proof
for (n — 1) right 2 totally positive directed Wada graph is similar.

Let n > 3 be the number of generators. We will show that if we have m — 1
2 left positive relations X' = X,f:iXZ”w;r(Xl,...,Xn) where 1 < i < m < n,
1<k; <mand1<I[; <m and one positive relation ij = X::jwf(Xl, ey Xn)
where 1 <j<m <mnand1<k; <m, then X; =1 for at least one 1 <7 < m.
We will complete the proof of this result by induction on the number m. Let

m = 3 and

X7 = XPu+ (X1, ..., Xon) (7.4)

X5 = XPut(Xy, ..., Xn) (7.5)
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be 2 left positive relation and

XP = XPeyt (X, ., X,) (7.6)

be a positive relation.

Suppose that i = 1. Then, because Equation 7.4 is a 2 left positive relation, we

obtain r; — p; < 0 and by Lemma 7.3.3, we get X; =1 =u"(X71,..., Xy).
Similarly, the result is obtained if j = 2.

If we have X]' = X2*uf (X1, ..., X,,) and X352 = XP'ud (X3, ..., X,,), then
X77P = ud (X, o, X)) XB2T2 0l (X, 0, X))

Thus, because uj (X1, ..., X,,) and uj (X1, ..., X,,) are positive words and r; —p; < 0
and ps —ry > 0 because both come from a 2 left positive relation, by Lemma 7.3.3,

we have X; = X, = 1.

Therefore, we only have to look at the following cases:

A X7 = XPuH (X, o Xa), X5 = XPud (X, ..., X,) and XP* = XPud (X4, ., X,);

B: X7 = XPuf (X, .., Xn) , X2 = XPPud (X1, ..., Xp) and X2 = XP2ud (Xy, ..., X,);

C: X' = XPul(Xy, ..., X)), X532 = XPuy (Xq,..., X,) and X5? = XP'uf (X4, ..., X,);

D: X7 = XPuf (X, .., Xn) , X322 = XPud (X3, .., Xp) and X2 = XP2ud (X1, ..., X,);

E: X7 = XBuf (X, o, X)), X5? = X1 (Xq, ..., X,) and XE® = XP2ud (Xy, ..., X)),

F: XT' = XPuf (X, .., Xn), X532 = XT'ug (X1, ., Xn) and X5° = XD (X, ..., Xo);
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The proof of E is similar to the proof of A, the one for F' is similar to the one for
B and the proof of D is similar to the proof of C. Therefore, we will only give the
proofs for the cases A, B and C

A) Let

X7 = XPuH(Xy, .0 X)) = XPXPUT (X, 0, X)) (7.7)

X;Z = ng’u,;_(Xl, ,Xn) = XgaX;jU£)+(Xl> [RED) Xn) (78)

be 2 left positive relations and

X0 = X (X, .., X,) (7.9)

be a positive relation.

Then by the previous equations,

XPT = XPl (X, e, X)) XE2 20 (X o, Xn) X200 (X o X)) (7.10)

Suppose j = 1. Then by equation 7.7 and the previous equation,

XPT = XPuf (X, oy Xo) XD (X ooy X ) XE2 208 (X, ey X)) XP 0 (X oy Xo).
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Moreover, by equation 7.8

X§73—7‘3 :X§3u;‘(X1’ ceey Xn)ng_rg’U,ii_(Xl, ceny Xn)X{)l—rlu/2+(Xl7 (RS Xn)
ng—TZU-li‘(Xh ...,Xn)Xfl_”u;(Xl, ,Xn)

Therefore,

XPE =X (X, Xa) XE 20 (X, o Xo) XD (X, o, X
X§2_T2UT(X1, ceey Xn)Xfl—nug_(Xla tery Xn)

There exists a k € N such that p3 < krs. By the same argument done & times, we
obtain

XEPRs — 0k (X, Xn)w'T (XY, 0 X))

where w't (X, ..., X,,) is a positive word. Thus, ps — krs < 0 and so by Lemma

733 X3 =1=uf(Xy,..., X;) =w*(Xq, ..., Xp).

Now suppose j = 2. Then by equations 7.8 and 7.10
X0 = XPugt (X, e, X)) X520 (X, oy X)) XPT M (X, e X))
Moreover, by equation 7.7
XBT = XPugd ( Xy, o, X)) X220 (X0, o, X ) XB2 20 (X, o, X)) XD g (X, o, X))
Therefore,
X728 = g (X1, ooy X)) X520 (X1 oy X)) XB2 720 (X1 vy X)) XD (X s X

There exists a k € N such that p; < krs. By the same argument done k times, we
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obtain

ng—kra = U:’{(Xl, ) Xn)w,+(X17 T X")

where v/t (X3, ..., X,) is a positive word. Thus, p3 — kr3 < 0 and so by Lemma

733 X3 =1=uf (X, ..., Xn) = wH(X1, ..., Xp).

B) Let

X7 = XPf (X, X)) = XPRXP (X, X (7.11)

X5 = XPuF (X1, oy Xn) = XPXPusH (X1, 0y Xo) (7.12)

be 2 left positive relations and

XP = XPud (X, ..., Xn) (7.13)

be a 2 left positive relation.

Then, by the previous equations

X7 = X;’ju’;(Xl, o X ) XETT (X, X, (7.14)

Suppose j = 1. Then, by equations 7.11 and 7.14,

ng—rg _ nguii-(Xh ...,Xn)Xfl‘”u’;(Xh . Xn)Xé’z‘mugL(Xl, ceey Xn)
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Moreover by equation 7.12,

X = XPud (X, ., X)) X520 (X0, o, X)) XTT s (X o, X)) XBP 2 ud (X, o, X)),
Therefore,

XP7H = XP (X1 ey Xo) X520 (X ooy X)) X0 (X, oy X)) X227 0d (X, s X)),

There exists a k € N such that p3 < kr3. By the same argument done k times, we
obtain

X:Z;B—k’f's - U;(Xla ceny Xn)UH— (Xl’ e Xn)

where v'*(X4, ..., X,,) is a positive word. Thus, p3 — kr3 < 0 and so by Lemma

733, X3 =1= U-{(Xl, ,Xn) = U/+(X1, ,Xn)

Suppose j = 2. Then by equations 7.12 and 7.14,
X5 = XPPugt (X, ., X)) X522 ud (X, ., X)),
Moreover, again by equation 7.12,
X7 = XPud (X1, oy Xn) X525 (X, o, X)) X222 0d (X, o X))
Therefore,
XP7H = XPPubH (X1, oy Xo) XB2 20 (X, oy X XB2 20 (X, ooy X).

There exists a k € N such that p; < kr3. By the same argument done k times, we



159

obtain

X — o (X, ., Xn)g T (X0, o, Xn)
where ¢ (X1, ..., X,,) is a positive word. Thus, p3 — kr3 < 0 and so by Lemma

733, X3 =1= u;'(Xl, ,Xn) = q+(X1, ,Xn)

C) Let

XTI = XPf (X, X)) = XPXPUH (XY, . X) (7.15)

X5 = Xpoug (X3, oy Xn) = XP XD (X1, - Xo) (7.16)

be 2 left positive relations and

XP3 = XPPud (X, ..., X») (7.17)

be a 2 left positive relation. Then,

XP = XDt (X, o, Xn) X5 ud (X, oy Xo). (7.18)

1) Suppose j = 1. Then, by equations 7.15 and 7.18,

XP72 = XPt (X, e, X)) XD (X, o, X)) XD 20 (X, ., X)), (7.19)
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a) Now suppose ¢ = 1. Then,

X8 = XEBuH (X, Xo) XPUTUSE (X, o X)) XE Tl (X X))
Thus,

XE8 = XPWT (X, e X)) XD (X e X)) XE Tl (X e, X

There exists a k € N such that p3 < kr3. By the same argument done k times, we
obtain

XPRe = XPwt (X, ., Xo)

where wt (X1, ..., X,,) is a positive word. Thus, p;3 — krs < 0 and so by Lemma

733, X1 = X3 =1= ’U)+(X1, ‘..,Xn).

b) Now suppose ¢ = 2. Then by equation 7.19,

XE728 —XPO (X X)) XETR (X, X)) X T (X, X)) X (X, e X

and so

X = XP XP (X, o, Xo) XD (X -, X)X (X, X)) XD
uF (X1, ooy Xn) X527 20f (X4, .., X))
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which implies that

X5 = XP2u (X, o, X)) XT T (X e, X)) X520 (X ey X)) XPVTT
ug (X1, . Xn) X2 ud (X1, oy Xin)

There exists a k € N such that p; < krs. By the same argument done k times, we
obtain

XPTR — (X, Xn)

where wt(Xy, ..., X,,) is a positive word. Thus, p3 — kr3 < 0 and so by Lemma

733, X3 =1=w"(X1, ..., Xn).

2) Now suppose that j = 2. Then by equations 7.16 and 7.18,

XD = XP2ut (X, X)) XB 2 (X, ooy X ) X220 (X, oy Xn). (7.20)

There exists a k € N such that p3 < kr3. By the same argument done k times, we
obtain

XPT = XP (X, e Xa)wt (X, o, Xn)

where w* (X7, ..., X,) is a positive word. Thus, ps — kr3 < 0 and so by Lemma

733, X2 = X3 =1= u'2+(X1, ,Xn) = ’UJ+(X1, >Xn)

Thus, the result is true for m = 3.

Now suppose the result is true for m = n—1. Thus, if we have (n—2) 2 left positive

relations X[ = XffiXZ”er(Xl, vy Xn) where 1 <i<n-—-21<k;<n-—1and

%
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1 <l; < n—1 and one positive relation X?*7' = X::’:lw:[_l(Xl, ...y Xn) where

1< ko1 <n-—2,then X; =1 for at least one 1 < i < n — 1. We will look
at the case with m = n. Therefore, without loss of generality we have (n — 2)
2 left positive relations X} = X, X"w} (X1, ..., X,) where 1 < i < n — 1,
1 <k; <nand1<I; <n and one positive relation X» = X" wl (Xq, ..., Xy)
where 1 < k, < n and r, > p,. Thus, for the generator X, there is a 2 left

positive relation X7* = X" X" wi (X1, ..., Xn).

A) If ky = 1, then X7 = qul“wf(Xl,...,Xn) with r; — p; < 0 because it
comes from a 2 left positive relation. This implies by Lemma 7.3.3 that X; = 1 =

ut (X1, Xs, ..., X,) and thus the proof is over.

B) Suppose that k; # 1. If [y # 1, then X7* = XZlelqll‘wf(Xl, vy X)) with &

and l; not equal to one.

If {; = 1, then we have

X7 = X0 X Pl (X0, ey Xn) (7.21)
= X Xpt X P wf (X, o Xo) XT 0 (X1, oy Xa). (7.22)

a) If k; = n, then
XIl = Xﬁp"Xfl'LUT(Xl, ...,Xn)Xfl_nw?_(Xla >XTL)

There exists a s € N such that r, < sp,. By the same argument done s times, we
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obtain

X7 = X X 0wt (X, .oy X)) XE 0w (X, oy X) (7.23)
= XD (X, ooy X) XSP2 0 X0 (X1, oy X)X w0 (X1 oony Xon)-
(7.24)

i) If k, = 1, then

X7 = XPwt (X, o, X)) X2~ X 8w (X7, o, X)) XE T 0 (X, oy Xn).
Thus,

XTP = (X e, X ) XS X (X, oy X ) X O w0} (X1, ooy X

with r; — p; < 0 because it comes from a 2 left positive relation. This implies by

Lemma 7.3.3 that X; = 1 and thus the proof is over.

i) If k,, # 1, then
X[ =X, X A

with k; and k, not equal to one and where

A=wh(Xy,..., X)X X wl (X, ooy Xn) X
’LU1+(X1, ceey Xn)X{“_”wf(Xl, caey Xn)

b) We recall that X7* = X,ffl XPwf(Xy,..., Xy). If 1 < ky < n, then there is a 2
q
Mt (X1, e Xi).

left positive relation X, = X::fl Xy,

ay,

X

Py,
1 Uy

So, XT' = X, wi (X1, ooy Xn) Xt T X P wf (X, 0, X)

k
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i) If ky, = 1, then

@y,

XP = XP X, Ml (X, Xa) Xt T X Pl (X -, X)

Uiy

and so

Xlrl - qukl

Ik,

Wi (X1, ooy Xo) X T X Pt (X, Xin)

with 7, — p; < 0 because it comes from a 2 left positive relation. This implies by

Lemma 7.3.3 that X; = 1 and thus the proof is over.

ii) If kg, # 1, then we have

Dk pkk qlk
X=X X, XM
k1

1 Uiy

Wi (X1, oo X)Xt ™ M wf (X1, Xa)
with k; and kg, not equal to one. We rewrite the last equation

r Pky vPhey 4+
Xll =Xk11ka11’U, (Xl,...,Xn>

r

where ut (X7, ..., X)) = X

= Ap,

wh (X1, o0 Xo) Xt wf (X1, ., Xa).

Thus, either the proof is over or we have the relation X]* = X7* Xg'v* (X, ..., Xy,)

where k and g are not equal to one.

Suppose that we have the relation X7* = XP* X770 (Xj,..., X,,) where k and ¢

are not equal to one. Then in every other 2 left positive relations
X[ = X0 X (X, e X
if k; or I; is equal to one, we replace X7' by

XPEXPrut (X, ooy Xp) XTT
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Similarly, for the positive relation X/» = X,f:" wr(Xy,..., Xn), if k, = 1, we replace
X by XPXP0H(Xy, ..., Xp) XP' ™. Thus, we now have (n — 2) 2 left positive
relations X|* = X:f"XZ”wj'(Xl,...,Xn) where 1 < i <n—1,1<k; <n and
1 < I; < n and one positive relation X2 = X *wl (X, ..., X,) where k, # 1.

Therefore, by the induction hypothesis, X; = 1 for some 1 < i < n.

By construction of the Wada directed group of a directed link diagram and Lemma,

7.2.7 we obtain the following result.

Lemma 7.4.2. Let D be a directed (n —2) of L with at least three rational tangle
and I'(D) be the Wada rational graph. Suppose (D) is left-orderable. If (T, <) is
a (n—1) totally monopositive directed Wada graph, then G(T', <) is a left-orderable
(n — 1) totally 2-left positive group generated by X1, ..., X, where n > 3 such that

X; <1 for every1 <i <n.

Thus, combining the previous lemma, Proposition 7.3.2, Proposition 7.4.1 and

Theorem 7.1.8 we have the following result.

Theorem 7.4.3. If L is a (n — 1) totally monopositive, 2-non-bridge and non-
split link, then the fundamental group of the double branched cover of L is not
left-orderable.

It is interesting to recall that 949 is a non-alternating and non-arborescent knot.
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The only Wada directed graph of 949 with ag as maximum

From this Wada directed graph, we have the following positive relation.

X1 = X0 X3
Xy = X3X4
X3 = X, X2

X5 == X4X6
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Xs = X3X;
X? = X1 Xg

Thus, 949 is (n — 1) totally monopositive. Hence, the fundamental group of the

double branched cover of 949 is not left-orderable.

7.5 (n—2) fluid Totally Simple Monopositive Links and non Left-Orderability

In this section, we will prove that for a fluid steady n — 2 totally simple monopos-
itive directed Wada graph, the directed Wada group is trivial. To do so, we will
show that left-orderable fluid steady n — 2 left and n — 2 right totally positive
group have a trivial generator. Moreover, the directed Wada group of fluid steady
n — 2 totally simple monopositive directed Wada graph are fluid steady n — 2 left
and n — 2 right totally positive group. Therefore by Theorem 4.0.3, the funda-
mental group of the double branched cover of fluid steady n — 2 totally simple

monopositive links is not left-orderable.

We start by giving the definition of fluid totally positive group and steady totally

positive group.

Remember that for a g tangle we obtain final edges of order ¢ and middle edge
of order p — q. For edges that are not monopositive, the property we will want
the tangle to have is that the order of the final edge is not more than twice the
order of the middle edge and the order of the middle edge is not more than twice
the order of the final edge. Large rational tangles will fail to satisfy this property.
Note that for a rational tangle, we always have § >1.1If ’E’ = 1, then we have the
half-twist. Moreover, we either have p — ¢ > g or p — ¢ < p. Firstly, p—q¢ > ¢
implies that % > 2. We want that 2¢ > p — ¢, thus s < 3. If we had p—¢q < p,

then this implies that § < 2. In this case, we want that 2(p — q¢) > ¢, thus g > %
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However, if the edge is monopositive, we will want that the order of the final edge
is more than twice the order of the middle edge or the order of the middle edge is

not more than twice the order of the final edge.

Definition 7.5.1. Let X be a § rational tangle. If ’—; > 3 or % < %, then we say

that X is a large rational tangle.

Monopositive relations from large rational tangles will be helpful. However, if
we have either a pluripositive relation or a compose positive relation, it will be
extremely difficult to transform it into a monopositive relation. That is why we
consider it as an obstacle. With this in mind we define a new family of directed

graphs for which large rational tangles won’t be an obstacle.

Definition 7.5.2. Let D be a link diagram and (T, <) be a totally simple positive
directed Wada graph of D. If D contains no large pluripositive rational tangles
and every monopositive rational tangle is a half-twist, full twist or large rational

tangle, then we say that (T, <) is fluid.

Moreover, if D is directed and has a fluid directed Wada graph, then we say that
D is fluid.

Let D be a fluid link diagram and (T, <) be a fluid directed Wada graph of D. Let
X,’:k = w} (X1, ..., X,) be a pluripositive relation in G(T', <). Then, by definition
of fluidity, X is a rational tangle Z—}’: that is not large. Thus, g < 2’—: < 3. So,
3% < pr < 3gx. This implies that gx < 2(px — gx) and px — ¢ < 2qx. The
middle order is px — gx and the final order is gx. Because X is pluripositive, hy
is equal to the maximum between pr — qx and qx. Suppose hy = pr — qx. Then,

(P — @) — & < qr and (pr — gx) — 2qx < 0. Suppose that hy = qr. Then,

G — (e — @) < (pk — qk) and gx — 2(px — qx) < 0.
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Let X* = w}(Xy,..., X,) be a monopositive relation in G(I", <). Then, by def-
inition of fluidity, X} is either a large rational tangle ’—';f, an half-twist or a full
twist. Suppose it is a large rational tangle. Then, either % > z—: or ’;—: > 3. So,
%’i > p or pr > 3qk. This implies that g > 2(px — gx) or pr — gx > 2qx. The
middle order is py — qx and the final order is gx. Because X, is monopositive, hy is
equal to the minimum between py — gx and gx. Suppose hy = pr — ¢x < gx. Then,
Pr < 2gx < 3q and so § > 2. Thus, g > 2(px — gx) and g — 2(pr — qi) > 0.
Suppose that hy = g < pr — qx. Then, py > 2qx > %qk and so %f > 3. There-
fore, pr — qx > 2qr and pr — qx — 2gx > 0. Suppose that X} is a half twist or

a full twist. Then, Ay = 1 and the order of X; in any monopositive relation

XM =wi (X, ..., X,) is one.

Inspired by the previous comments, we will define fluidity for groups. But before,

we need the following definitions.

Definition 7.5.3. Let G be a totally positive group. Let X,’:" = wi (X1, ..., X,)
be the positive relations for 1 < k < n of the group and let X; be a generator for
1 <% < n. If every time that X; is a left or right generator of a positive relation
it has the same order, then X; is I-steady. If every generator is 1-steady, then G

is 1-steady.

Similarly, if every time that X, is a j-left or j-right generator for 1 < j < m of
a positive relation, it has the same order, then X; is m-steady. If every generator
is m-steady, then G is m-steady. Moreover, if a generator has the same order in
every positive relation, then X; is steady. If every generator is steady, then G is

steady.

Let D be a directed link diagram and (I', <) be a directed Wada graph of D. If
G(I', <) is steady, then we say that (I', <) and D are steady.

Definition 7.5.4. Let G be a steady totally positive group and X,’c”“ =w (X1, ..., X»)
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be the positive relations for 1 < k < n of the group. Let Xihi = wl (X1, ..., Xn)
be a positive relation with 1 < ¢ < n and p; be the order of X; in all the positive
relation. If h; < p; and either h; < 2p; or h; = p;, then X; is called ultra positive.
If h; > p; and h; < 2p;, then X; is called small.

Definition 7.5.5. Let G a group generated by Xj,..., X, be a steady totally

positive group. If every generator is either small or ultra positive, then G is fluid.

By construction of the Wada directed group, and of the fluid and steady diagram

and Lemma 7.2.7, we obtain the following result.

Lemma 7.5.6. Let D be a directed (n—2) of L with at least three rational tangle
and I'(D) be the Wada rational graph. Suppose w(D) is left-orderable. If (T, <)
is a fluid steady (n — 1) totally simple monopositive directed Wada graph, then
G(T, <) is a left-orderable fluid steady (n — 1) totally 2-left and 2-right positive
group generated by X, ..., X, where n > 3 such that X; <1 for every 1 <i < n.

Before we prove the desired result, we need the following lemma.

Lemma 7.5.7. Let G be a fluid steady (n — 2) totally 2-left and 2-right posi-
tive group generated by Xi,..., X, where n > 3 and (G,<) be a left order on
G such that X; < 1 for every 1 < 1 < n. Let X; be a 2-left and 2-right
positive generator. Then, either we can simplify its relation to obtain either
X[ = X0 Xk ur (X, o, Xa) XEF X0k, XTI = X XEF X% or X[t = X% X7
where ji, li, ik, Sk are not 2-left and 2-right positive or we obtain a trivial generator.
Moreover, let X; not be a 2-left and 2-right positive generator. Then, either we
can simplify its relation to obtain either X' = Xf:’“ X;f’“ ut (X, ...,Xn)Xf:“XlIZ"
or Xt = XZ" Xf,f’“ XZ;" where Jk, Ik, ik, Sk are not 2-left and 2-right positive or we

obtain a trivial generator.
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Proof. Without loss of generality, we suppose that X are 2-left and 2-right pos-
itive for 1 < j < n — 2 and not 2-left and 2-right positive forn — 1 < j < n.
Because there is 2-left and 2-right positive, all the relations are of one of the fol-
lowing form X;* = Xf:’“X;’f’“u,:’(Xl,...,Xn)Xf,f"XlIZ" or Xk = Xf::"Xj:"XfZ" or

X7k = X" X" We will do the proof for Xtk = X7k X7
k Je e k

i X", because for the other

cases the proof is similar and even simpler.

Without loss of generality, we will prove the result for X;. We have X' =
X7 X", Without loss of generality, let X, = X272 X/,

First, we suppose that j; <n — 2. Hence, X{* = ijzXﬁlzX;jl—thﬁ“.
If jo > n — 2, then we will continue this case later.

Suppose that jo < n — 2. Then, without loss of generality let X;;z = X;;”Xl}; s
Thus,
X[ =X XX X X T X

We continue this process until there is a £ and an m both in N such either ji,; >
n—2forl <i<mor jrgrm = jr < n — 2. We must have one of these two cases

because there are only finitely many generators.
If jyys >n —2 for 1 <i < m, then we will continue this case later.

If jk4m = jk < n — 2 with m € N, then, without loss of generality, X;f" =
prk+1 lek+1

iers Kipar - Moreover,

T P pL Piksrme1 et —1) <L
X k= X Jktm Xk X Tkbmel kdm -1 Xz ktm v*(Xl,...,Xm)

Jk Jk4+m lk+m Jk+m—1 k+m—1

where v*(X7,..., X,) is a positive word, because we have p;, — r;, > 0 since
Ji<n—2forl <i<k+4+m andso X, is 2 left positive. But jxym = Jk, so

X;’Zk = Xf:"w“L(Xl, .y Xp,) and X;’fk*p”" = wt (X, ..., Xn). However, r;, —pj, <0
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because jp < n — 2 and so X}, is 2 left positive. This implies by Lemma 7.3.3,
that wt(Xi,...,X,) = 1 and X; = 1 for every X; in wt(Xy,...,X,). Because

wt (X1, ..., X,) is not empty, this completes the proof.

We now come back to the case where there exists an m € N such that j,, > n—2.

Let k be the smallest natural number such that j;, > n — 2. Then, we have
o -
X7t = XX R ot (X, o, X)) X2 X0 T X

where vt (X7, ..., X,,) is a positive word, because we have p;, — rj; > 0, since

(3

Ji <n—2and so Xj, is 2 left positive.
We will now look at X;,. If [, > n — 2, then the proof is over for the left case.

If I, <n —2, then by a similar argument as for j, either there is a X; =1 or

r1 __ vPik vPim,. + Diy yPj1 ~Ti1 3Pl
X[ = X XPr (X, Xo) XD X2 T T

l2

with {,, > n — 1.
We now return to Xi* = XZZXZQX;” 7”1Xﬁll and look at Xﬁ“.

A)If l; > n—1, then we look at X;“_r“. Because G is fluid and we have already

supposed that X is 2 left and 2 right positive, either p;, —r;, = O or p;, —r;, > r;,.

a) If pj, —r;, =0, then

r1 _ vPik yPim, + Py Py
X7 = XPE Xm0t (X0, o Xa) X020 X))

l2

and we look at Xj,.

i) If Iy > n — 1, then the proof is over.
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ii) If Iy < n — 1, then by a similar argument as before, we obtain
X7t = X7 X R0 (X, o, Xa) X2 2wt (X, e, X) XD X

with I > n — 1. So the proof is over.

b) If p;, —r;, > r},, then by a similar argument as before, we obtain

Lo ik vPlk, + Ply v Piy 2751 + DL DLy
X = XD X0t (X, oy X)) XE2 XA (X X)) X XD

l2

with [; > n — 1. So the proof is over.

B) If l; < n — 2, then by a similar argument as before done twice, we obtain
X[ = XX ot (X, o, Xn) X2 X0 wt (X, e, X)) XD X

with [, > n —1and [; > n — 1. So the proof is over.

. o Piy, Pig . + Psy, Py, ro__ Piy, Psy, Py,
Therefore, either X;™ = X; * X *u™(Xy, .., Xn) Xo* X 5, XT' = X * Xk X,

Di Dj . . . ..
or X;' = Xik”‘Xj:k where jg, lx, ik, Sg > n — 1 or there is a trivial generator.

Moreover, let X, not be a 2 left and 2 right positive edge. Then, as a relation
of the group of G, the left edge and the right edge of X,, can’t be X,,. Thus,
we can’t have X" = Xg:"X;Z" where ji, i > n — 1 with jp # 4x. Hence, for
X, either X7 = X{% X7k ut (X1, ..., Xo) Xk X% or Xin = X[ X% X[ where

Jks Ik, ik, Sk > n — 1 or there is a trivial generator. O

We now prove the main result of this section.

Proposition 7.5.8. Let G be a totally positive group generated by X1, ..., X,, where
n >3 and (G, <) be a left order on G such that X; <1 for every 1 <i<n. IfG
is a fluid steady (n — 2) totally 2 left and 2 right positive group, then at least one
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generator X; is trivial.

Proof. Let n > 3 be the number of generators. Without loss of generality, let X;
with 1 <7 < n — 2 be the generators with a 2 left and 2 right positive relations
and X, _; and X, be the generators that are not 2 left and 2 right positive. We
first investigate X,,. By Lemma 7.5.7, then, either we can simplify its relation
to obtain either X» = Xf:"ij"u*(Xl, ...,Xn)Xﬁ'j"len’" or X;» = Xf:"ij"Xl’;’"
where j,, ln, in, Sn, are equal to n — 1 or n or we obtain a trivial generator. If we
obtain a trivial generator, then the proof is over. We will prove the case when

X = Xf:f" XPEen lenl" as the other cases are similar and even easier to prove.
Suppose X" = ani” XPen len’” where l,,1, and s, are equal to n — 1 or n.

a) Suppose that i, and [, are equal to n. Then, X~ = XPrXP"XPr  So,
Xrm=2n = X% Because X, is fluid, r, — 2p, < 0 and by Lemma 7.3.3,

Xs, = X, = 1 and the proof is over.

b) Suppose that either i, or [, is equal to n and that s, = n. Then, either
Xpn=%n = X" or X;»%r = X[ Because X, is fluid, r, — 2p, < 0 and by

Lemma 7.3.3, X;, = X,, = 1 or X; = X,, =1 and the proof is over.

¢) Suppose that either i, or [, is equal to n and that s, =n —1. Then, X» P =

Xffi "7'. We will complete this case later.

d) Suppose that I, = i, = s, = n — 1. Then, X/» = X3n=1 We will complete

n—1

this case later.

e) Suppose that i, and I, is equal to n — 1 and that s, = n. Then, X/» =

XPrt XPn XPr - We will complete this case later.

Similarly, for X,_;, by Lemma 7.5.7, then, either we can simplify its relation

. . _ i Pip_ Dsp P, _
to obtain either X;"7' = X; ™ "X Tut(Xy, ..., Xp) X5, "0 X, " or XM =

n—1
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Pin_1 yPsn_1 yPin_ . ,
X" Xen1P X, "7 where 1,401, 5,1 are equal to n — 1 or n or we obtain a
trivial generator. If we obtain a trivial generator, then the proof is over. We will
_ in_1 vPon1 yPlo_ .
prove the case when X' = X, ' X,,"1'X, "' as the other cases are similar

and even easier to prove.

By a similar argument as for X, either the proof is over, or we have the following

possibilities:

1) Xrn—l—Pn—l — XTQLpn;

n—1

2) X;10t = X

3) Xo7' = Xp X1y XE

We must deal with all the possible combinations for X,, and X,_;. The proof
of combination ¢)2) is similar to d)1), combination ¢)3) is similar to e)1) and
combination d)3) is similar to €)2). Therefore, we will only prove the cases c)1),

¢)2), ¢)3), d)2), d)3 and e3).

Suppose we have the cases ¢) and 1). Then, by substituting 1) in ¢), X! Pr =
X2 X3Pn=17Tn1 Hence, XTn3Pn = X3Pt Because X, and X,_ are fluid,

Tn —3pn < 0and 3p,_; — 7,1 > 0. Thus, by Lemma 7.3.3, X,,_; = X,, =1 and

the proof is over.

Suppose we have the cases c¢) and 2). Then, by substituting 2) in c), X/ 7Pr =
X3 X 2Pl Hence, Xrrm4Pn = X P11 Because X, and X,_1 are fluid,

Tn —4pn, < 0 and 2p,_1 —7,—1 > 0. Thus, by Lemma 7.3.3, X,,_; = X,, = 1 and

the proof is over.

Suppose we have the cases c¢) and 3). Then, by substituting 3) in ¢), X' P =
XPn XPrt XPe X 2P TT0L Hence, XTnm2Pn = XPr' XPa X2Pno1TTnol - Because X,

and X,_; are fluid, r, — 2p, < 0 and 2p,_; — 7,—; > 0. Thus, by Lemma 7.3.3,
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X,_1 =X, =1 and the proof is over.

Suppose we have the cases d) and 2). Then, by substituting 2) in d), X'~ =

3pn—1—Tn_ _ 3pn_1—Tn_ :
X3pn X P17 Qo XT3 = X PRt Because X, and X, are fluid,

rmn — 3pn < 0 and 3p, 1 —rp—1 > 0. Thus, by Lemma 7.3.3, X,,_; = X,, =1 and

the proof is over.

Suppose we have the cases d) and 3). Then, by substituting 3) in d), X!~ =
Xﬁ"X,I;Z_IIXp"Xgpn_I_T"_I. SO,

n n—1
X Pn = XProt P xOPno1Tnot (7.25)

By substituting the last equation in 3) from the left, we obtain

Xt = Xﬁi’llXﬁ"Xﬁ"fl—T"'lXﬁp”_T"XﬁTllXﬁ”.
This implies that
XTI = XX I X X
We substitute the last equation in Equation 7.25 and obtain
Xy = g X X X X X2 X X3
So,

Tn—2pn __ 31717.—1'7'77.—1 2pn—7‘n DPn—-1 Pn 2Pn_1—Tn-1 Dn 31)71.—1*""11—1
Xn - XnAl Xn Xn—l Xn Xn‘l Xn Xn—l :

Because X, and X,,_; are fluid, r, — 2p, <0, 3pn_1 — Tn_1 = 2p, — 7 = 0. Thus,

by Lemma 7.3.3, X,,_; = X,, = 1 and the proof is over.
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Suppose we have the cases €¢) and 3). We substitute €) in 3) to obtain
X = X Xom X Xam T X Xy

So,
Xprope = XEng X P XEry T X XE (7.26)

Note that p,_1 — r,—; < 0. By 3), X;"7' = XPrXP1'XP». This implies that

Pn—-1—Tn-1 yvT'n—1 Y —pn — YPr—-1"Tn-1 yp Pn—1
X" X, X = X XPr X, "' Therefore,
Pn—1 —Pn __ Pn—1—"Tn—1 P Pn—1
Xn——l Xn - Xn—l Xnan—l '

_ Pn—1 —Pn Pn—1—Tn—1 D Pn—1
We define C = X"" X7 = X, "] X X,

i) If C < 1, then we obtain from Equation 7.26 X7~ = X' XP~(C. So, because
X, is fluid, we obtain a 2 left positive relation for X,,. Thus, we have an (n — 1)
totally 2 left positive group. Thus, by Proposition 7.4.1, there is an X; such that
X =1

ii) If C > 1, then XP*7'X P~ > 1. Thus, XP»X,”7™* < 1. Recall that by
3), Xpmit = XErXPriXEe So, X, r7UPTt = XEeXPrUXPrXPi7' Because
XPX Pt < 1 and X,_; is fluid, we obtain a 2 left positive relation for X,,_;.
Thus, we have a (n — 1) totally 2 left positive group. Thus, by Proposition 7.4.1,

there is an X; such that X; = 1.

(n-2) 2

Thus, by Theorem 7.1.8, the previous proposition and Lemma 7.5.6 we have the

following important result.
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Theorem 7.5.9. If L is a fluid steady (n — 2) totally simple monopositive link
with n > 3, then the fundamental group of the double branched cover of L is not
left-orderable.

For example, the knot 11n,59 is a non-alternating and non-arborescent knot (Cau-

O

Figure 7.1 A knot 11n199 diagram

From this knot diagram, we obtain the following directed Wada graph.



179

Figure 7.2 A directed Wada graph of the knot 11n;49

From this Wada directed graph, we have the following positive relation.

X1 = X3X;,
Xy = X5 X3
X2 = X;Xq
X, = X3X1

X5 - X6X1
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X62 = X1X4

Thus, 11n49g is steady fluid (n — 2) totally monopositive. Hence, the fundamental

group of the double branched cover of 11n;49 is not left-orderable.



CHAPTER VIII

INFINITE FAMILIES OF LINKS FOR WHICH THE FUNDAMENTAL
GROUP OF THE DOUBLE BRANCHED COVER IS NOT
LEFT-ORDERABLE

In this section, we will find infinite families of links for which the fundamental
group of the double branched cover is not left-orderable. To do so, we will start
from a “good” link diagram and substitute a rational tangle by another rational
tangle without losing the desired property. In other words, we start with a link for
which the fundamental group of the double branched cover is not left-orderable
and by replacing a rational tangle by others rational tangles, we will find an infinite
family of links for which the fundamental group of the double branched cover is
not left-orderable. First, we will look at the hybrid Wada diagram and investigate
how a change of rational tangle affects the directed Wada graph. The building
blocks will be the totally monopositive, the (n — 1) totally monopositive and the

steady fluid (n — 2) simple monopositive links.

8.1 Properties of rational tangles in a hybrid Wada diagram

Let D be a link diagram and H(I') be the hybrid Wada diagram. Let X be a
rational tangle that is not an half-twist in the hybrid Wada diagram. Without

loss of generality, suppose that a; and a3 are the non-bridge arcs in X. Then, we
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have the two following possibilities for the non-bridge arcs in X, that we define
as the negative diagonal non-bridge and positive diagonal non-bridge. Recall that

the non-bridge arcs of X are the white dots.

Figure 8.2 A positive diagonal non-bridge

If two rational tangles are negative diagonal non-bridge or the two are positive
diagonal non-bridge, then we say that the two rational tangles are diagonal equiv-

alent.

Let X be a negative diagonal non-bridge rational tangle. Then, the hybrid Wada
diagram of X can be of two type. Firstly,
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a] aj

a4 a3

Figure 8.3 A negative diagonal non-bridge horizontal rational tangle

We call these rational tangles in the link diagram horizontal rational tangle. We

can also have the following rational tangle in the link diagram:

Figure 8.4 A negative diagonal non-bridge vertical rational tangle

We call these rational tangles in the link diagram wvertical rational tangle. We
define similarly, horizontal and vertical rational tangles with positive diagonal
non-bridge. If we have two diagonal equivalent rational tangles that are both
horizontal or both vertical, then we say they have the same direction or the two

rational tangles are direction equivalent.

Moreover, to differentiate the [np,nm—1...n1] = g rational tangles, we can look at

the last half-twist region. Then, n,, + % = % with £ > 1 and £ € R because k is
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a continuous fraction. If n,, = 1, then 1 + % == with £ > 1. This implies that
% = ¢ < 1, thus p — ¢ < q and the middle order of X is smaller than the final

order of X. We call these final rational tangles.

If n,, > 1, then n,, > 2 because n,, € N. Hence, 1<nm—1+%:§—1:”—;—‘1,
thus p — ¢ > ¢q and the middle order of X is greater than the final order of X. We
call these middle rational tangles. If both rational tangles are final or both are

middle, then we say they have the same shape or they are shape equivalent.

Finally, if two rational tangles are large or if both are not large, then we say that

they have the same strength or they are strength equivalent.

Definition 8.1.1. If two rational tangles are diagonal equivalent and they have
the same direction, the same shape and the same strength, then we say that the

two rational tangles are of the same nature.

Definition 8.1.2. If two rational tangles are diagonal equivalent and they have
the same direction and the same shape, then we say that the two rational tangles

are similar.

Remark 8.1.3. Thus, if we substitute a rational tangle X for a similar rational
tangle, we will get the same Hybrid Wada diagram except for the middle and the
final order of X. Thus, we will have the same Wada rational graph at the except
for the middle and the final order of X. However, if we change a rational tangle
X for a rational tangle of the same nature, we will get the same Hybrid Wada
diagram at the except for the middle and the final order of X. Hence, we will get
the same Wada rational graph at the except for the middle and the final order of
X, but the new tangle will have the same shape and strength property.
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8.2 Impact of Changing a Rational Tangle on the directed Wada Group

Let D be a link diagram, H(I') be the hybrid Wada diagram, (T', <) be a directed
Wada graph and G(T', <) the directed Wada group of (I', <). Recall from chapter
5 that a Wada directed cycle C in the directed Hybrid Wada diagram gives a
relation 7 in the directed Wada group. If the change of a rational tangle in the
link diagram changes the Hybrid Wada diagram in a way that C' is unchanged,
then the relation r will stay unchanged in the directed Wada group of the new
directed Wada graph. If the change of a rational tangle in the link diagram changes
the directed hybrid Wada diagram in a way that C is changed into C’, then we
will obtain the relation 7’ in the directed Wada group of the new directed Wada

graph of the new link, where 7’ is the relation obtained from the cycle C’.

We will first give a series of technical lemmas that come directly from the Remark

8.1.3 and the previous comment.

Lemma 8.2.1. Let (I', <) be a directed Wada graph of a link diagram D, C be
a Wada directed cycle in the directed hybrid Wada diagram and X; be a rational
tangle which is not a half-twist. If there is no X; edges in C and we replace X;
by a similar rational tangle which is not a half-twist, then the cycle C' will stay

unchanged in the new directed hybrid Wada diagram.

Lemma 8.2.2. Let (T', <) be a directed Wada graph of a link diagram D, C be
a Wada directed cycle in the directed hybrid Wada diagram, X; be a ’5’ rational
tangle which is not a half-twist and XP~? be an edge in C. If we change X; to
a similar £ rational tangle, then the cycle C' will change into C' where XF™? will
become X' where s — t is the middle order of the new X; in the new directed

hybrid Wada diagram.

Lemma 8.2.3. Let (', <) be a directed Wada graph of a link diagram D, C be a
Wada directed cycle in the directed hybrid Wada diagram, X; be a ‘E’ rational tangle
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which is not a half-twist and X! be an edge in C. If we change X; to a similar

s

2 rational tangle, then the cycle C' will change into C' where X will become X!

where t is the final order of the new X; in the new directed hybrid Wada diagram.

Lemma 8.2.4. Let (I', <) be a directed Wada graph of a link diagram D, C be
a Wada directed cycle in the directed hybrid Wada diagram, X; be a %’ rational
tangle which is not a half-twist and X7 (resp. XP'™?) be an edge in C. If we
change X; to a similar  rational tangle with different strength, then the cycle C
will change into C' where X (resp. XP™7) will become X! (resp. X;™*) where
t (resp. s —t) is the final order (resp. middle order) of the new X; in the new
directed hybrid Wada diagram.

8.3 Infinite Families of Totally Simple Positive Links

Recall that the fundamental group of the double branched cover of a totally
monopositive link, a (n-1) totally monopositive and a steady fluid (n-2) simple
monopositive link is not left-orderable. From the lemmas 8.2.1, 8.2.2 and 8.2.3,

we get the following results on relation in the directed Wada group.

Proposition 8.3.1. Let (I', <) be a directed Wada graph of a link diagram D,
X; be a rational tangle which is not a half-twist and which is monopositive. If we
change X; to a similar rational tangle X!, then X| will still be monopositive in the

new directed Wada group of the new directed Wada graph.

Proposition 8.3.2. Let (I', <) be a directed Wada graph of a link diagram D, X;
be a rational tangle which is not a half-twist and X; a monopositive rational tangle.
If we change X; to a similar rational tangle X, then X; will still be monopositive

in the new directed Wada group of the new directed Wada graph.

Thus, we get
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Proposition 8.3.3. Let (I',<) be a steady fluid directed Wada graph of a link
diagram D and X; be a rational tangle which is not a half-twist. If we change X;
to a rational tangle of the same nature, then the new directed Wada group of the

new directed Wada graph will still be steady and fluid.

Moreover,

Theorem 8.3.4. Let (I', <) be a totally monopositive directed Wada graph of a
link L and X; be a rational tangle which is not a half-twist. If we change X; to
a similar rational tangle, then the new directed Wada graph will still be totally

monopositive.

Theorem 8.3.5. Let (I', <) be a (n—1) totally monopositive directed Wada graph
and X; be a rational tangle which is not a half-twist. If we change X; to a similar
rational tangle, then the new directed Wada graph will still be (n — 1) totally

monopositive.

Theorem 8.3.6. Let (I', <) be a steady fluid (n — 2) totally monopositive directed
Wada graph and X; be a rational tangle which is not a half-twist. If we change
X; to a rational tangle of the same nature, then the new directed Wada graph will

still be steady fluid (n — 2) totally simple monopositive.

Therefore, by the Theorem 7.3.6, Theorem 7.4.3 and Theorem 7.5.9 we get the

following results

Theorem 8.3.7. Let L be a totally monopositive link and X; be a rational tangle
which is not a half-twist. If we change X; to a similar rational tangle, then the
fundamental group of the double branched cover of the new link L' is not left-

orderable.

Theorem 8.3.8. Let L be a (n— 1) totally monopositive link and X; be a rational

tangle which is not a half-twist. If we change X; to a similar rational tangle,
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then the fundamental group of the double branched cover of the new link L' is not

left-orderable.

Theorem 8.3.9. Let L be a fluid steady (n — 2) totally monopositive link and X
be a rational tangle which is not a half-twist. If we change X; to a rational tangle
of same nature, then the fundamental group of the double branched cover of the

new link L' is not left-orderable.

The knot 8,; is a totally monopositive link.

Figure 8.5 A knot diagram of the knot 89,

By Theorem 8.3.7, if we replace the rational tangles X;, X, or X3 by similar
rational tangles, then the fundamental group of the double branched cover of the

new link is not left-orderable.

The knot 949 is a (n — 1) totally monopositive link.
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Figure 8.6 A knot diagram of the knot 949

By Theorem 8.3.8, if we replace the rational tangles X, X5 or X4 by similar
rational tangles, then the fundamental group of the double branched cover of the

new link is not left-orderable.

The knot 11n;59 is a fluid steady (n — 2) totally monopositive.
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Figure 8.7 A knot diagram of the knot 11m499

By Theorem 8.3.9, if we replace the rational tangles X;, X, or X3 by similar
rational tangles, then the fundamental group of the double branched cover of the

new link is not left-orderable.



CHAPTER IX

TRIPLE HOP LINKS

In the previous sections, we have looked mostly at directed links. In this section,
we will introduce a different method to show that the directed Wada group pre-
sentation of some directed Wada graph is trivial. We will use this method for

links that are not directed.

In this section, we will study a particular type of links called the Triple Hop links.
It is worth noting that, for non-alternating knot of 10 or less crossing, every knot
that is not a three non-bridge knot, is a triple hop knot. We will show that
some subfamilies of triple hop links have non-left orderable fundamental group.
To do so, for middle triple hop links, we will introduce two sufficient conditions
for the directed Wada group presentation to be trivial, the left and right directed
condition and the left and right middle hop condition. For final triple hop links, we
will introduce the left graph directed and right graph directed conditions. On the
7 non-alternating, non-directed and not left orderable knots of 10 or less crossing,
the theorems in this section will cover 5 of them. It is also worth noting that the

triple hop links argument works for a lot of the directed links.

Definition 9.0.1. A link L is called a Triple Hop link if it has a minimal diagram
with exactly two non-brige arcs which moreover are the final vertices of the same

rational tangle. We call this rational tangle the triple hop tangle
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The knot 947 is a triple hop knot. Note that the knot 947 is not a directed knot

and not an arborescent knot (Caudron, 1987).

X7
5
X4 X5
/63/_\ Xe
__a.é/
X8 X3 X2
8 9
a7
X1

at

Figure 9.1 The knot 947 is a triple hop knot with X, as triple hop tangle. The
non-bridge arcs ag and a; are final vertices of Xj.

We will give some definitions about rational tangle that will help us study the
triple hop links. Before, we recall that for two vertices a; and a; in a directed
Wada graph (I', <), we say that a; <(r «) a; if there is a directed Wada path from

Qaj to a;.

Definition 9.0.2. Let (I', <) be a directed Wada graph of a link diagram D and
X an edge from a; to a; in (I', <) with a; <(r,<) a;. If there is a vertex a; such
that a; <(r <) ax <(,<) a;, then we say that X is a cover edge. If there are m

vertices ay,, such that a; < <) ar, <(r,«) a; but no other vertices satisfy this
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condition, then we say that X is an m-cover edge. If there is no such a, then we
say that X is a flat edge. Recall that such vertices are called Wada consecutive.
For a crossing a; >(r,«<) ax >(r,<) a; >(r,<) @, We say the left edge is the edge from
a; to ag, the middle edge is the edge from ay to a; and the right edge is the edge
from a; to a;. We define a rational tangle as a C — F' — F rational tangle if the
left edge is a cover edge and the middle and right edges are flat edges. If we want
to specify that we have an m cover edge, we write mC — F'— F'. Similarly, for the

other rational tangles.

Thus a flat crossing will be a F' — F' crossing and a flat rational tangle will be a
F' — F — F rational tangle. Note that each cover edge X gives a simple positive
relation. If this simple positive relation is pluripositive, then we say that X is a
pluripositive cover edge. Moreover, we add an apostrophe after the C from this
edge X in the naming of the rational tangle. For example, for a C' — F' — F rational
tangle with the cover edge giving a pluripositive relation, we write C' — F — F
rational tangle. Note that the orders of the final edges are the same, thus if both
of them are cover edges, they will be both pluripositive or both monopositive.
Moreover, a C'— C — F' rational tangle will be either a C' — C — F rational tangle,
a C — C'" — F rational tangle or a C — C — F rational tangle, because either the
order of the finals edges is minimal, the order of the middle edge is minimal or we
have a full twist and both are minimal. Similarly, for the other edges with more

than one cover edge.

When we look at a directed Wada graph, we say that a directed path go right
when we go from a vertex a; to a vertex a; such that a; > a; and left when the
path go from a; to a;. We now define important rational tangle defined from there

cover edges.

Definition 9.0.3. A ' — C or F — F — (C rational tangle will be called a left
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rational tangle and a C' — F or C' — F — F rational tangle will be called an right
rational tangle. Moreover a F' — C' — F rational tangle will be called a middle
rational tangle. Note that we want the cover edge to be a monopositive edge. We
recall that C” in the labeling of the rational tangle means that C' is a pluripositive
edge. For rational tangles with two cover edges, C' — C' — F rational tangle will
be called double right rational tangle and C — C’ — F rational tangle will be called
pluripositive double Tight rational tangle. Similarly, F' — C' — C will be called
pluripositive double left rational tangle, F — C — C' double left rational tangle,
C — F —C double end rational tangle, C' — F — C’ pluripositive double end rational
tangle and C — C' double rational tangle and finally C' —C —C" or C - C' - C

triple rational tangle.

9.1 Results on left-orderability for middle triple hop links

Recall that a rational tangle is a middle rational tangle, if the order of the final
edges is less than or equal than the order of the middle edge. We say that a triple
hop link is a middle triple hop links, if the triple hop rational tangle is a middle
rational tangle. In this section, we will find two sufficient conditions to prove
that middle triple hop links have a non left-orderable fundamental group of their
double branched cover. For example, the knot 947, introduced at the beginning of

the chapter, is a middle rational tangle.

The next definition will be used in the definition of one of the most important

properties of triple hop links.

Definition 9.1.1. Let P be a directed path in a directed Wada graph. Let C be
the set of directed paths that includes P. Then, the prolongement of P, is the set

of edges and vertices included in C.

We will now prove a lemma that will enable us to introduce the first important
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property of directed Wada graph in triple hop links.

Lemma 9.1.2. Let (I', <) be a directed Wada graph of a triple hop link diagram,
C be a Wada directed path in (I',<) and X; be the left edge of C. If all the
edges of C come from a left, double left or double end rational tangles for which
the monopositive left cover edge ends on the prolongement of the path C, then

XP= X;"Aj for every flat edge X; in C where A; is a positive word of edges.

Proof. Without loss of generality we suppose that C = { X, X%, .| XFkmY where
X; is the i-left edge of C. We will prove the result by induction on the number
k of flat edges in C. If k = 2, then C = {X{*, X2?}. Moreover, by hypothesis,
X1 comes from a left, double left or double end rational tangles for which the
monopositive left cover edge end on the prolongement of C. Because X is a left,
double left or double end rational tangle, there is a cover edge X; that starts
at the beginning of X, and that ends on the prolongement of C. Therefore,
XP = XFPt(Xy, ..., X,). Thus, the proof is over for k = 2.

Let the result be true for m — 1 flat edges in C. This implies that X' = X ]k TA;
for every flat edge X; in C' where A, is a positive word of edges. We will
now prove the case when £k = m and so for the Wada directed path C =
{X5, X5, .., Xk}, To do so, we will first look at Oy = {XF X} | Xkm-1},
Hence, X' = X]]-Cj Aj; for every flat edge X in C; where A; is a positive word
of edges. Moreover, X,,_; comes from a left, double left or double end rational
tangles for which the monopositive left cover edge end on the prolongement of C.
Because X,,,_; is a left, double left or double end rational tangle, there is a cover
edge X,,—1 that starts at the beginning of X,, and that ends on the prolonge-
ment of C. Therefore, X?™7' = XFmwt (X, ..., X,,). Furthermore, we already
have X' = X,’:l"fllAm_l. So, because the cover edge X,,-1 is monopositive, we

have XP' = Xkmut (X, .. X)) X5 07Prt A where k-1 — pm_y > 0. Thus,

m—1
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X7t = Xkm A where A, = w+(X1,...,Xn)Xk’"‘l_pm_lAm_l is a positive word

m—1

and the proof is over. ]

Similarly,

Lemma 9.1.3. Let (T, <) be a directed Wada graph of a triple hop link diagram,
C be a Wada directed path in (T', <) and X; be the right edge of C. If all the edges
of C' comes from a right, double right or double end rational tangles for which
the monopositive right cover edge end on the prolongement of the path C, then

XP = AjX;-Cj for every flat edge X; in C where A; is a positive word of edges.

Definition 9.1.4. Let C = {X[ XX . Xk=} be a directed path of flat edges
in a directed Wada graph and let each flat edge comes from a left, double left or
double end rational tangles that end on the prolongement of the path C. Thus,
by Lemma 9.1.2, X = Xf”Ai for 2 < ¢ < m where A; is a positive word of edges.
We say that X; is left included in X; for 2 < i < m. We call this path a left
directed path.

We define similarly with Lemma 9.1.3 a right directed path with right, double right

and double end rational tangles.

We will now introduce two conditions that will be sufficient to show that for a

directed Wada graph the directed Wada group presentation is trivial.

Definition 9.1.5. Let (T, <) be a directed Wada graph with triple hop (X*, X?, X*)
and let the left edge of X be a cover edge. Then X* = w* (X, ..., X,,).

If there is a left directed path from the left edge of w*(X),..., X,) to the right
edge of wt (X1, ..., X,,), we call this condition, the left directed condition.

Let sz be the right edge of w* (X}, ..., X,) and X?* be the consecutive edge to
the right of Xfi. Then, either X?* is also a left edge of the middle edge of X or it
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is not a left edge of the middle edge of X.

Let X be also a left edge of the middle edge of X. If XP? is left included in
X “*Pi where m; -+ p; is the compose order of X; , then we say that the left middle

hop condition is satisfied.

Let X not be a left edge of the middle edge X. If X7 is left included in X7,
then we say that the left middle hop condition is satisfied.

We define similarly, the right directed condition and the right middle hop condition.

Theorem 9.1.6. Let (I', <) be a directed Wada graph of a middle triple hop link
diagram. If the left directed condition (resp. right directed condition) and the
left middle hop condition (resp. right middle hop condition) are respected, then
G(T, <) is trivial.

Proof. Suppose that the left directed condition and the left middle hop condition
are satisfied. Let X = (X*, X?, X*) be the edge of the triple hop rational tangle
(@n, am, ak, a1) and without loss of generality X{“, Xk Xlk’ be the edges of the
left directed path from a, to a,,. This left directed path exists because of the left
directed condition. Thus, by Lemma 9.1.2, X = XfiA,- for 2 < ¢ <[ where A, is
a positive word of edges. In particular, X' = X, lk’ A; where A, is a positive word

of edges. Moreover,

Xk=XxkhA (9.1)

where A is a positive word of edges, because X{“l is the left edge of X* =
wt (X, ..., Xn). Hence,
Xk =XIAXPTA (9.2)

where k; — p; > 0, because X fl is in a left directed path.

Suppose that X; is not a left edge of the middle edge X. Then, X? is left included
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in X' by the left middle hop condition. So,
XP = XPB (9.3)

where B is a positive word of edges. Thus, by the previous equation and equation
9.2, X* = XpBXlkl_’"Alel_plA where k; —p; > 0 because Xlk’ is in a left directed
path. This implies that X*? = BXlk'_’"Alel_mA where k£ — p < 0, because X

is a middle rational tangle.

If £ # p, then by Lemma 7.3.3, X = 1 and so a, = a;. This implies that G(T', <)

1s trivial.

If k=p, then 1 = BXP P AXP A So,1=B=X""=4A =X -4
If k; # py, then X; = 1. Therefore, by Equation 9.3, X =1 and so a, = a;. Thus,
G(T, <) is trivial. If k; = p; and k; # p;, then X; = 1. From Equation 9.1, this
implies that X = 1. So, a, = a; and G(I', <) is trivial.

Suppose that k; = p; and k; = p; and recall Equation 9.1. Because X* is a cover
edge, A is not empty. Moreover, since Xfl,sz, e Xlk’ are the edges of the left
directed path from a, to am,, A = X A’. Thus, because A = 1, X, = 1. From the
left directed condition, X* = X3 A3, so X3 = 1. By a similar argument, X; =1
for 2 < ¢ <. Therefore, X; = 1 and by Equation 9.3, X = 1. This implies that

a, = a1 and G(T', <) is trivial.

Now, suppose that X; is a left edge of the middle edge X. Then, X7 is left included
in XP** by the left middle hop condition. So,

XPth— xPD (9.4)

where D is a positive word of edges. Moreover, because a,, is in X and in X,
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and both rational tangles are not half-twist, by Lemma 6.7.6, a,, is in no other
rational tangle. Also, because X is a left edge of the middle edge X and the right
edge of the left edge X, then X' = X" A, = X["*”' A]. Therefore,

Xk — Xlk’+plA;Xf1_plA (9.5)

and by a similar argument as the previous case, G(I', <) is trivial.

The proof is similar when the right directed condition and the right middle hop

condition are satisfied. O

By Theorem 9.1.6 and Lemma 4.0.2, we have

Theorem 9.1.7. Let D be a mazimal two non-bridge middle triple hop diagram
of a non-split link L. If for every directed Wada graph (', <), the left directed
condition (or resp. right directed condition) and the left middle hop condition
(or resp. right middle hop condition) are respected, then the m(X(L)) is not
left-orderable.

The knot diagram 947 of figure 9.1 has the two following directed Wada graph.
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Figure 9.2 The two directed Wada graphs of the knot diagram 9,7 of figure 9.1

For both directed Wada graphs, the left directed condition, the right directed
condition, the left middle hop condition and the right middle hop condition are
respected. Thus, the fundamental group of the double branched cover of the knot

947 is not left-orderable.
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9.2 Results on left-orderability for final triple hop links

Recall that a rational tangle is a final rational tangle, if the order of the final edges
is greater than the order of the middle edge. We say that a triple hop link is a
final triple hop links, if the triple hop rational tangle is a final rational tangle. In
this section, we will find three sufficient conditions to prove that final triple hop

links have a non left-orderable fundamental group of their double branched cover.

The non-alternating knot 11n47 is a final triple hop knot. The final triple hop
links are more complicated to deal with than middle triple hop links. We will

need more definitions.

For some triple hop link diagrams, we will be able to split the triple hop link

diagram into three parts.

Definition 9.2.1. Let (T', <) be a directed Wada graph of a triple hop diagram
of a link L and X = (a,,a, ax, a;) be the triple hop rational tangle. All the a;
such that a, > <) a; >(r <) a; form the vertices of the left graph of (I, <). All
edges between vertices of the left part form the edges of the left graph.

All the a; such that a; >r <y a; >(r <) ax forms the vertices of the middle graph
of (T', <). All edges between vertices of the middle graph form the edges of the
middle graph.

All the a; such that ax >(r <y a; >(r <) a1 forms the vertices of the right graph of
(I, <). All edges between vertices of the lower graph form the edges of the right
graph.

If every vertex is at least in one of the left, middle or right graph, then we say

that (I', <) is trichotomic.

We now define a property of left and right graph that will be useful for the final
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triple hop links.

Definition 9.2.2. Let (I', <) be a directed Wada graph of a trichotomic triple

hop diagram.

If every directed path in the left graph is left directed, then we say that the left
graph is left graph directed.

If every directed path in the right graph is right directed, then we say that the
right graph is right graph directed.

Remark 9.2.3. Clearly, if the left graph is left graph directed, then the left
directed condition is satisfied. Similarly, if the right graph is right graph directed,
then the right directed condition is satisfied.

We can now prove a result for final triple hop links.

Theorem 9.2.4. Let (I', <) be a trichotomic directed Wada graph of a final triple
hop link diagram. If the left graph is left graph directed (resp. the right graph
is right graph directed) and the left middle hop condition and right middle hop

condition are respected, then G(I', <) is trivial.

Proof. Without loss of generality suppose that the left graph is left graph di-
rected. Then, the left directed condition and the left middle hop condition are
satisfied. Let X = (X%, XP X*) be the triple hop rational tangle with vertices
(Gn, Gm, ax, a1) and without loss of generality let X, X252, ..., Xlk’ be the edges of
a left directed path from a, to a,,. This left directed path exists because of the
left graph directed condition. Thus, by Lemma 9.1.2, X' = XfiAi for2 <4<l
where A; is a positive word of edges. In particular, X' = XlklAl where A4; is a

positive word of edges. However,

Xk=XPA (9.6)
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where A is a positive word of edges, because Xfl is the left edge of X* =
wt (X, ..., X,,). Hence,
Xk =XPAXPPA (9.7)

where k; — p; > 0, because X fl is in a left directed path.

Suppose that X; is not a left edge of the middle edge X. Then, X7 is left included
in X7 by the left middle hop condition. So,

XM = X*B (9.8)

where B is a positive word of edges. Thus, by the previous equation and equation
9.6, X* = XPBXlk’_p’AlX{“"’”A where k; —p; > 0 because Xlk’ is in a left directed
path. This implies that X* P = BXlk'*plAlel_plA where kK — p > 0, because X

is a final rational tangle.

We now investigate B = X*s B’ where X*: is a flat edge and B’ is a positive word.
We know that X' = XPB = XPX* B, but X? goes from a,, to ax, so X*s goes
from a; to a; such that ¢t < k. So, a; <(r«) ax and a; is in the right graph.
Because of the right middle hop condition, X?* = CX? where C = ¢t(X}, ..., X,,).
However, X? goes from a,, to ax, so the edges in C are in the left graph. This
implies that C = X*C’ where X* is a flat edge in the left graph and C' =
d*(X1,...,X,). There is a directed Wada path from X, to X% where X% is
consecutive to X?. Thus, by the left graph directed condition XP+ = X*« D where
D = d*(X,,...,X,). Moreover, by the left middle hop condition XP- = XPE

where E = e* (X}, ..., X,,). So, combining the previous equations we obtain

C=XMC' = XkDXE PO = XPEXFemPe D XFumPu .
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This implies that
XPs — XPEX(I;Q ~Pa ) X ku=pPu (Y XP

Therefore,

B = XPEXt P DX PO/ XP X B

So, because X*P = BXlkl“p’Alel_plA, we get
xk-p — BXlkt—pz AZX{‘?I—PIA _ XpEX:a._paDX:u—puC/XpX;cs"ps B/Xlkz—pz AIX{CI_PIA

Thus,
XF7% = EXfePe DX kv PO XP X P B XA X TPA

We repeat a similar argument v time until £ — vp < 0 and so by Lemma 7.3.3 the

proof is over.
The proof when X; is a left edge of the middle edge X is similar.

The proof is similar when the right graph is right graph directed and the right
and left middle hop condition are satisfied. O

By Theorem 9.2.4 and Lemma 4.0.2, we have

Theorem 9.2.5. Let D be a mazimal two non-bridge final triple hop diagram of
a non-split link L. If every directed Wada graph (', <) is trichotomic and for
every (I', <) the left graph is left graph directed or the right graph is right graph
directed and both the left middle hop condition and right middle hop condition are
respected, then the m (X(L)) is not left-orderable.

For the knot 11n47 both directed Wada graph (I", <) are trichotomic and for both
(", <) the left graph is left graph directed and both the left middle hop condition
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and right middle hop condition are respected. Thus, the fundamental group of

the double branched cover of 11ny47 is not left-orderable.

9.2.1 Infinite families of good middle triple hop link and good final middle
triple hop link

To simplify the classification of links, we will define families of links that satisfies

the hypothesis of the two theorems of the previous sections.

Definition 9.2.6. Let D be a maximal two non-bridge middle triple hop diagram
of a non-split link L. If for every directed Wada graph (I, <), the left directed
condition (or resp. right directed condition) and the left middle hop condition (or
resp. right middle hop condition) are respected, then D is a good middle triple
hop link diagram and L is a good middle triple hop link.

Definition 9.2.7. Let D be a maximal two non-bridge final triple hop diagram
of a non-split link L. If every directed Wada graph (T, <) is trichotomic and for
every (I', <) the left graph is left graph directed or the right graph is right graph
directed and both the left middle hop condition and right middle hop condition
are respected, then D is a good final triple hop link diagram and L is a good final
triple hop link.

From a good middle triple hop link diagram, we can obtain an infinite family
of good middle triple hop link diagrams. Similarly, from a good middle triple
hop link diagram, we can obtain an infinite family of good middle triple hop link
diagrams. In both cases, we will obtain the infinite family by substituting the

triple hop rational by a rational tangle of the same nature.

By definition of rational tangles of same nature and of triple hop link diagram,

we have the following result.
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Lemma 9.2.8. Let D be a middle (resp. final) triple hop diagram with X the
triple hop rational tangle. If we substitute X by a rational tangle X' of the same
nature, then the new link diagram D' is a middle (resp. final) triple hop diagram

with X' the triple hop rational tangle.

Furthermore, by Propositions 8.3.1 and 8.3.2, we obtain the following series of

lemmas.

Lemma 9.2.9. Let (I'(D), <) be a directed Wada graph of a triple hop link di-
agram D with triple hop X such that the left directed condition (or resp. right
directed condition) is respected. If we substitute X by a rational tangle X' of same
nature, then the new directed Wada graph (I'(D'), <) of the new triple hop link
diagram D' with triple hop X' satisfies the left directed condition (or resp. right

directed condition) .

Lemma 9.2.10. Let (I'(D), <) be a directed Wada graph of a triple hop link
diagram D with triple hop X such that the the left middle hop condition (or resp.
right middle hop condition) is respected. If we substitute X by a rational tangle
X' of same nature, then the new directed Wada graph (I'(D'), <) of the new triple
hop link diagram D" with triple hop X' satisfies the left middle hop condition (or
resp. right middle hop condition).

Lemma 9.2.11. Let (I'(D), <) be a trichotomic directed Wada graph of a triple
hop link diagram D with triple hop X such that the left graph is left graph directed
(or resp. the right graph is right directed). If we substitute X by a rational tangle
X' of same nature, then the new directed Wada graph (I'(D'), <) of the new triple
hop link diagram D' with triple hop X' is trichotomic and the left graph is left
graph directed (or resp. the right graph is right directed).

Thus, directly by the previous lemmas, a good triple hop link stays a good triple
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hop link, if we change the triple hop rational tangle by a rational tangle of the

same nature.

Proposition 9.2.12. Let D be a good middle (resp. final) triple hop diagram
with X the triple hop rational tangle. If we substitute X by a rational tangle X'
of the same nature, then the new link diagram D' is a good middle (resp. final)

triple hop diagram with X' the triple hop rational tangle.

Hence, by Theorems 9.1.7 and 9.2.5 we have the final result of this chapter.

Theorem 9.2.13. Let D be a good middle (resp. final) triple hop diagram of a
link L with X the triple hop rational tangle. If we substitute X by a rational tangle
X' of the same nature, then for the new link L' obtained from the new rational

tangle X', m(2(L')) is not left-orderable.

The knot 947 is a good middle triple hop diagram.
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Figure 9.3 A knot diagram of the knot 947.

By Theorem 9.2.13, if we replace the rational tangle X; by a similar rational
tangle, then the fundamental group of the double branched cover of the new link

is not left-orderable.



CONCLUSION

We have obtained results about the non-left-orderability of directed and non-
directed 2-non-bridge links. In further work, more results could be obtained for
the non-left-orderability of directed links, non-directed 2-non-bridge links and non-
directed k-non-bridge links with £ > 3. Moreover, with the machinery developed

in this thesis we should be able to obtain results on the left-orderability of links.

For directed links, we have shown that the totally monopositive, (n — 1) totally
monopositive and (n — 2) steady fluid totally monopositive links have double
branched covers with non-left-orderable fundamental groups. We are confident
that we could either enlarge these family or find new ones. For example, the
knots 10;56 is almost an (n — 2) steady fluid totally monopositive knots but not
quite. However, we can easily prove by hand that it was not left-orderable. We
should be able to define a family that includes 10;5¢ and prove non-left-orderability

for this family of links.

For non-directed links, we have used the triple hop machinery. However, the left
or right directed conditions can be blocked by pluripositive rational tangles. For
example, the middle triple hop knot 10;55 is not a good middle triple hop knot
because it is not left directed. However, we can prove the non-left-orderability
by hand using an argument similar to the (n — 1) totally monopositive argument
so it becomes a good middle triple hop knot. We could generalize this kind of
argument to obtain (n — 1) good middle triple hop links and (n — 1) good final
triple hop links.

More investigations could be done for k-non-bridge links with & > 3. For example,
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the 3-non-bridge knot 10,6; is more difficult to study, a priori because we have
three possibilities for the maximum and after two possibilities for the minimum.
Therefore, there are many different directed Wada graphs and different directed
Wada group to study. For now, we do not even know if the fundamental group of

the double branched cover of 1044; is left-orderable or not.

In this thesis, we didn’t find results for left-orderability, however we think that the
machinery developed could also be useful to obtain results in this direction. In
fact, empirically, the Graph group is the fundamental group of the double branched
cover. It would be interesting to prove this result. Moreover, empirically, we can
find a group presentation of the Graph group. If both results are true, then for
every directed link, we obtain a possible group presentation for the fundamental
group of the double branched cover. Therefore, if it is left-orderable, we have a
presentation of the left-orderable group. Furthermore, we have a presentation of

the left-orderable group, such that each generator is less than or equal to 1.

If the Graph group is the fundamental group of the double branched cover, then it
would also be useful in the study of quasi-alternating links. We recall the definition

of quasi-alternating links.

Definition 9.2.14. A link is called quasi-alternating if it belongs to the set Q

that is the smallest set of links characterized by the following two properties:

1. The unknot is in Q.

2. If L has a diagram D with a crossing ¢ such that

(a) the two smoothings Dy and D, at ¢ represent links Lg, Lo both of
which belong to Q,

(b)det(Lo)+det( Lo, )=det(L),

then L belongs to Q.
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Such a crossing c is called a quasi-alternating crossing.

If the Graph group is the fundamental group of the double branched cover, then
we can find the determinant of the link from the abelianization of the fundamental
group. From the machinery of Wada rational graphs, we know relatively well the
effects of changing a rational tangle, in the link diagram, on the directed Wada
group, and therefore on the Graph group. Thus, we could know the effect of
changing a rational tangle in the link diagram on the determinant of the link.

This knowledge would prove very useful for the property 2 b) of quasi-alternating

links.
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