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RÉSUMÉ 

Cette thèse introduit une nouvelle méthode pour prouver que le groupe fondamen­
tal du revêtement ramifié double d'entrelacs dans la 3-sphère n'est pas ordonnable 
à gauche. Grâce à cette méthode, on trouve des familles infinies d'entrelacs non­
alternés pour lesquels le groupe fondamental du revêtement ramifié double n'est 
pas ordonnable à gauche. 

Keywords: ordonnable à gauche, groupe fondamental, revêtement double rami­
fié, 3-variété. 





ABSTRACT 

This thesis introduces a new method to prove that the fundamental group of the 
double branched cover of a link in the 3-sphere is not left-orderable and applies it 
to find new infinite families of non-alternating links with this property. 

Keywords: left-orderable, fundamental group, double branched cover, 3-manifold. 





INTRODUCTION 

In this thesis, we study the left-orderability of the fundamental group of the double 

branched cover of links. Our main motivation is the L-space conjecture: 

Conjecture 0.0.1. (Conjecture 1 in (Boyer et al., 2013}, Conjecture 5 in (Juhasz, 

2015)). Assume that M is a closed, connected, irreducible, orientable 3-manifold. 

Then the following statements are equivalent. 

1. M is not a H eegaard Floer L-space, 

2. M admits a co-orientable taut foliation, 

3. 1r1 ( M) is lejt-orderable. 

The conjecture is known to be true when M has positive first Betti number 

((Gabai, 1984), (Boyer et al., 2005), or is a non-hyperbolic geometrie 3-manifold 

((Boyer et al., 2013), (Lisca & Stipsicz, 2007), (Boyer et al., 2005)) oris a graph 

manifold ((Boyer & Clay, 2017), (Hanselman et al., 2015)). 

The double branched covers of links are closed, connected, orientable 3-manifold. 

Moreover, double branched covers of prime links are irreducible and generically 

hyperbolic. 

It is known that the fundamental group of double branched covers of alternat­

ing non-split links are not left-orderable ((Boyer et al., 2013)). Moreover, the 

left-orderability of the fundamental group of the double branched covers of Mon­

tesinos links has been determined ((Boyer et al., 2005)) and the same is true 
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for arborescent knots ((Boyer & Clay, 2017) ). Note that Montesinos knots are 

arborescent knots. 

In this thesis, we determine important families of links, in particular families of 

non-alternating and non-arborescent links, for which the fundamental group of 

the double branch caver is not left-orderable. 

First, we recall the following definition: 

Definition 0.0.2. A group G is called left-orderable (Lü) if G -=1 {1} and its 

elements can be given a (strict) total ordering < which is left invariant, meaning 

that g < h implies fg < fh if f, g, hE G. 

Our methods build on an argument from a theorem in (Boyer et al., 2013), which 

we now state as a proposition. 

Proposition 1.0.6. Let D be the diagram of a non-split non-triviallink L. Sup­

pose that the Wada group 1r(D) is left-orderable. If it implies that 1r(D) is abelian, 

then 1r1 (I:( L)) is not left-orderable. 

As we will see in section 1, the W ad a group is presented by 

where the generators correspond to the arcs of D and the relations 

(1) 

are in one-one correspondence with the crossings of D. 

Throughout the thesis, we will find families of links for which, when we suppose 

that the Wada group is left-orderable, we obtain that the Wada group is abelian. 
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To show that the Wada group 1r(D) is abelian, we will introduce a subgroup G(D) 

called the Graph group of D. 

Lemma 2.0.2. Let D be a diagram of a non-split link and G(D) be the Graph 

group of D. Suppose that 1r(D) is left-orderable. If the Graph group G(D) is 

trivial, then 1r(D) is abelian. 

To show that the Graph group is trivial, we will simplify its generating set. From 

a link diagram D with m rational tangles, we will obtain successively the Wada 

graph r 0 , the coarse Wada rational graph r' and then the Wada rational graph r. 

From the coarse Wada rational graph, we will obtain 4m sets of generators for the 

Graph group. From the Wada rational graph, if we suppose that the Wada group 

is left-orderable, we will obtain many Wada rational groups G(r, d) which are 

equal to the Graph group. We will suppose that the Wada group is left-orderable. 

From a left-order <, we will construct a directed Wada graph (r, <). Finally, from 

this directed Wada graph, we will construct a group G(r(D), <) which is equal 

to the Graph group and for which each generator is less than or equal to 1 with 

respect to <. Furthermore, we will introduce the family of 2 non-bridge links, 

the only links that we will study. Note, that every knot of 10 crossings or less, 

except the knot 10161 , is a 2 non-bridge knot. There are many possible directed 

Wada graphs, but fewer for 2 non-bridge links. To obtain the non left-orderable 

property, we will show that it is sufficient that every G(r, <) be trivial. 

Lemma 4.0.1. Let D be a maximal two non-bridge diagram of a non-split link 

and suppose that 1r(D) is left-orderable. If for every maximal directed Wada graph 

(r, <), the directed Wada group G(r, <) is trivial, then 1r(D) is abelian. 

Therefore by Proposition 1.0.6 

Theorem 4.0.2. Let D be a maximal two non-bridge diagram of a non-split link 
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Land suppose that 1r(D) is left-orderable. If for every directed Wada graph (r, <), 

the directed Wada group G(r, <) is trivial, then 1r 1 (~(L)) is not left orderable. 

Moreover, we will give a stronger result for links having a link diagram with only 

one maximal directed Wada graph up to reversing edges. These links are called 

directed. This is a large family, because the non-alternating knots of 11 crossings 

or less, they represent 71% of such knots. Thus, for directed links, using Theorem 

4.0.2, we only have to look at the directed Wada graph. 

Corollary 4.0.3. Let D be a two non-bridge directed diagram of a non-split 

directed link Land suppose that 1r(D) is left-orderable. If a directed Wada group 

G(r, <) is trivial, then 1r1 (~(L)) is not left orderable. 

We will then introduce three important families of directed links: the totally 

monopositive links, the ( n - 1) totally monopositive links and the steady fluid 

( n - 2) totally simple monopositive links. Those families cover 35 of the 40 non­

alternating, non left-orderable and directed links of 10 crossings or less. We will 

prove that the directed \Vada group of those directed links is trivial and thus we 

have, by Corollary 4.0.3, the following results. 

Theorem 7.3.6. If L is a totally monopositive, 2-non-bridge and non-split link, 

then the fundamental group of the double branched cover of L is not left-orderable. 

Theorem 7.4.3. If L is a (n- 1) totally monopositive, 2-non-bridge and non­

split link, then the fundamental group of the double branched cover of L is not 

left-orderable. 

Theorem 7.5.9. If L is a fluid steady (n- 2) totally simple monopositive link 

with n 2 3, then the fundamental group of the double branched cover of Lis not 

left-orderable. 
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We note that the knot 949 is a non-alternating, non-arborescent and ( n -1) totally 

monopositive, 2-non-bridge and a non-split link. Thus, the fundamental group 

of the double branched caver of 949 is not left-orderable. We find others non­

alternating and non-arborescent knots such that the fundamental group of the 

double branched cover is not left-orderable. 

Moreover, we will show that starting from a tot ally monopositive link, a ( n - 1) 

totally monopositive link, or a steady fluid (n- 2) totally simple monopositive 

link, we can obtain an infinite family of links for which the fundamental group of 

the double branched caver is not left-orderable. 

Theorem 8.3. 7. Let L be a totally monopositive link and Xi be a E rational 
q 

tangle which is not a half-twist. If we change Xi to a similar rational tangle, then 

the fundamental group of the double branched caver of the new link L' is not 

left-orderable. 

Theorem 8.3.8. Let L be a ( n - 1) totally monopositive link and Xi be a E 
q 

rational tangle which is not a half-twist. If we change Xi to a similar rational 

tangle, then the fundamental group of the double branched caver of the new link 

L' is not left-orderable. 

Theorem 8.3.9. Let L be a (n- 2) totally monopositive link and Xi be a E 
q 

rational tangle which is not a half-twist. If we change Xi to a rational tangle of 

same nature, then the fundamental group of the double branched caver of the link 

L' is not left-orderable. 

To deal with links that are not directed, we will introduce the triple hop link 

family of links which account for 88% of non-alternating knots of less than 12 

crossings. We will split this family of links into the middle triple hop links and 

the final triple hop links. For both subfamilies, we will find sufficient conditions 

for sorne directed Wada groups of non-directed link to be trivial. 
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Theorem 9.1.6. Let (r, <)be a directed Wada graph of a middle triple hop link 

diagram. If the left directed condition (resp. right directed condition) and the 

left middle hop condition (resp. right middle hop condition) are fulfilled, then 

G (r, <) is trivial. 

Theorem 9.2.4. Let (r, <)be a trichotomic directed Wada graph of a final triple 

hop link diagram. If the left graph is left graph directed (resp. the right graph 

is right graph directed) and the left middle hop condition and right middle hop 

condition are fulfilled, th en G (r, <) is trivial. 

Thus, by Proposition 4.0.2 : 

Theorem 9.1.7. Let D be a maximal two non-bridge middle triple hop diagram 

of a non-split link L. If for every directed Wada graph (r, <), the left directed 

condition (or resp. right directed condition) and the left middle hop condition 

(or resp. right middle hop condition) are fulfilled, then the 1r1 (L::(L)) is not left­

orderable. 

Theorem 9.2.5. Let D be a maximal two non-bridge final triple hop diagram 

of a non-split link L. If every directed Wada graph (f, <) is trichotomic and for 

every (r, <) the left gr a ph is left gr a ph directed or the right gr a ph is right gr a ph 

directed and both the left middle hop condition and right middle hop condition 

are fulfilled, then the 1r1 (L::( L)) is not left-orderable. 

We call a directed Wada graph of a middle triple hop link diagram that satisfies 

the hypothesis of Theorem 9.1.6, a good middle triple hop diagram. Similarly, 

from the hypothesis of Theorem 9.2.4, we define good final triple hop diagrams. 

We conclude by finding infinite families of good middle triple hop diagrams and 

good final triple hop diagrams. 
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Theorem 9.2.13. Let D be a good middle (resp. final) triple hop diagram of 

a link L with X the triple hop rational tangle. If we substitute X by a rational 

tangle X' of the same nature, then for the new link L' obtained from the new 

rational tangle X', 1r1 (~(L')) is not left-orderable. 

0.1 Overview 

ln the first chapter, we will cite and prove the theorem of Boyer, Gordon and 

Watson and introduce Proposition 1.0.6. Moreover, we will give another proof of 

the theorem of Boyer, Gordon and Watson. To do so, we will introduce and prove 

new results on rooms and inhabitants and on the red and blue link diagram. 

In the second chapter, for a link diagram, we will first introduce the Graph group 

and prove Theorem 2.0.3. Then, we will construct the Wada graph f 0 and the 

coarse Wada rational graph r' and show how from these graphs, we can obtain 

new sets of generators of the Graph group. Furthermore, we will show that if the 

Wada group is left-orderable, then we can construct the directed Wada graphs 

(r, <). Moreover, we will prove that the directed Wada groups G(r, <) are equal 

to the Graph group. 

In chapter three, we will narrow the number of possibilities for the directed Wada 

graphs. To do so, we will introduce the semi-directed Wada rational graph and 

show how, from the semi-directed Wada rational graph, we can obtain the directed 

Wada graphs. Moreover, we will introduce the maximal Wada directed graphs and 

the directed link. 

In chapter four, we prove Lemma 4.0.1, Theorem 4.0.2 and Corollary 4.0.3, which 

underlines the importance of the directed Wada group. 

ln chapter five, we introduce the Hybrid Wada diagram and we relabel the vertices 
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in a Wada directed graph. Bath will be very useful in the proofs of the following 

chapters. 

In chapter six, we prove Theorem 6.7.7, which shows that if one edge is trivial in 

a directed Wada graph of a directed link, then the directed Wada group is trivial. 

Thus, in combination with Corollary 4.0.3, we obtain Theorem 6. 7.8 which plays 

a central role in the proofs of chapter 7. To prove Theorem 6.7.7, we will need 

many technical results. 

In chapter seven, one of the most important chapters of this thesis, we will in­

troduce totally monopositive links, ( n - 1) totally monopositive links, and steady 

fiuid (n-2) totally simple monopositive links. Then, we will prove Theorem 7.3.6, 

Theorem 7.4.3 and Theorem 7.5.9. To prove these results, we will introduce sorne 

families of group and prove that these families have a trivial generator. Then, we 

will prove that the directed Wada group of the previous families of links have a 

trivial genera tor. Thus, by Theorem 6. 7. 7, we will obtain the desired results. 

In chapter eight, from totally monopositive links, (n- 1) totally monopositive 

links, and steady fiuid ( n- 2) totally simple monopositive links, we will construct 

infinite families of links for which the fundamental group of the double branched 

caver is not left-orderable. To do so, we will prove Theorem 8.3.7, Theorem 8.3.8 

and Theorem 8.3.9. 

Finally, in chapter nine, we will introduce the triple hop links to investigate non 

directed links. We divide this family into the middle triple hop links and the 

final triple hop links. For bath families, we will find sufficient conditions for the 

directed Wada group to be trivial. Using these conditions, we will prove Theorem 

9.1.7 and Theorem 9.2.5. The links in these theorems will be called good middle 

triple hop links and good final triple hop links. We will prove that from a good 

middle triple hop link, we can obtain an infinite family of good middle triple hop 



9 

links and similarly for good final triple hop links. 





CHAPTER I 

THE ALTERNATING THEOREM 

To find families of links for which the fundamental group of the double branched 

cover is not left-orderable, we will use an argument from the following theorem of 

(Boyer et al., 2013). 

Theorem 1.0.1. (Boyer et al., 2013) Thefundamental group of the double branched 

caver of a non-split alternating link is not left-orderable. 

To prove this result we need the following group presentation associated to a link 

diagram due to Wada (Wada, 1992). 

Let L be a link in 8 3 and D a diagram for L. Label the arcs of the diagram a1 

through an. Define the W a da group 

where the relations 

(1.1) 

are in one to one correspondence with the crossings of D as illustrated in Figure 

1. Note that this relation is well-defined, as it is invariant under interchanging 

the indices i and k. 
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/ 
Figure 1 

Definition 1.0.2. We say that an arc aj is a bridge if aj goes over at least one 

other pair of arcs as aj in Figure 1. If it goes over exactly n other pair of arcs, it 

is called an n-bridge. If it does not go over any arcs, it is called a non-bridge. 

The Wada group will be particularly useful when we suppose that it is left­

orderable. If 1r(D) is left-orderable, fix a crossing (ai, aj, ak) where aj is the local 

bridge. The Wada relations imply that exactly one of the following three possi­

bilities occurs: 

The following result is used in the proof of Theorem 1.0.1. 

Theorem 1.0.3. (Wada, 1992) Let D be a link diagram of a link L. Then, 

1r(D) ~ 1r1 (~(L)) * Z where ~(L) is the double branched caver of L. 
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The following two lemmas from (Boyer et al., 2013) imply Proposition 1.0.6, which 

is instrumental in proving Theorem 1.0.1. Later, we will rely mostly on Proposition 

1.0.6 to obtain our results. 

Lemma 1.0.4. Let D be a link diagram of a non trivial link L. Then w(D) zs 

non-abelian. 

Proof. The link L is not trivial, therefore 'E(L) is a 3-manifold that isn't the 3-

sphere. Thus, w1('E(L)) is not trivial. This implies that w(D) ~ w1 ('E(L)) *Z isn't 

abelian by definition of a free product. D 

Lemma 1.0.5. Let D be a link diagram of a non-trivial link L. Then, w(D) is 

lejt-orderable if and only if w1 ('E(L)) is left-orderable. 

Proof. By a result of Vinogradov (Vinogradov, 1949), the free product of two non­

trivial groups is left-orderable if and only if each group is left-orderable. Therefore, 

w1 ('E(L)) is left-orderable if and only if 1r(D) ~ w1 ('E(L)) * Z is left-orderable, 

because Z is left-orderable. D 

Thus, by the two previous lemmas we prove the following Proposition. 

Proposition 1.0.6. Let D be the diagram of a non-split non-triviallink L. Sup­

pose that w(D) is left-orderable. If it implies that w(D) is abelian, then w1 ('E(L)) 

is not left-orderable. 

1.1 Result for alternating non-split non-trivial links 

In this section, we will prove Proposition 1.2.8, which says that if we have an 

alternating non-split link diagram D and we suppose the Wada group w(D) to be 

left-orderable, then w(D) is abelian. This result combined with Proposition 1.0.6 

proves Theo rem 1. 0 .1. 
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1.1.1 Investigation on inhabitants in a room 

In this section, we will prove results on so-called inhabitants in a room that we 

will use in the proof of Proposition 1.2.8. 

The following definitions come from Tapies in Knot Theory (Rolfsen, 1993). 

Definition 1.1.1. A room R is a region of the plane (the boundary, assumed 

polygonal, may be empty or disconnected), together with an even number of 

marked points on its boundary. 

An inhabitant T of a room Ris a diagram in R (part of a link diagram) whose 

boundary is precisely the set of marked points. 

The following figure is an example of an inhabitant of a room with six marked 

points. 

Figure 1.1 Example of an inhabitant of a room with six marked points 

Remark 1.1.2. We note that an inhabitant of a room with a connected boundary 

and 2n marked points is an n-tangle. 

Definition 1.1.3. Let R be a room with 2n marked points. Let a be a strand in 

an inhabitant T of the room R. We define the height ht(a; T) EN of a as follows. 
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We start at a marked point of a and we follow the strand. Every time we go 

over an arc of T we add one and every time we go under an arc we subtract one. 

Similarly, we define the height of a knot k of T. We start at a point con the knot 

and choose a direction to follow on the knot until we return to c. Every time we 

go over an arc of T we add one and every time we go under an arc we subtract 

one. Note that ht(k; T) is similarly defined in a link diagram. 

Lemma 1.1.4. Let R be a room with 2n marked points. Let a be a strand or a 

knot that doesn't intersect any other knot or strand in an inhabitant T of the room 

R. Then ht( a; T) = O. 

Proof. Suppose ais a strand. Then, for each crossing of a, by following the strand, 

we will pass exactly one time over a and one time under a. Thus, each crossing 

adds 0 to ht(a; T) and so ht(a; T) =O. 

The pro of is similar if a is a knot. D 

Remark 1.1.5. Let R be a room with 2n marked points and a be a strand in an 

alternating inhabitant T of the room R. Then, the strand goes under an arc, over 

an arc, under an arc, etc. Thus, 

1 if it starts and ends over an arc 

ht( a; T) = -1 if it starts and ends under an arc 

0 if it starts over and ends under or starts under and ends over 

Let k be a knot in an alternating inhabitant T of the room R. Since T is alternat­

ing, k must go over an arc the same number of times as under an arc. Therefore, 

ht(k; T) =O. 

Let a be a strand or a knot in an inhabitant T of the room R. We say that a is 

alternating in T if it goes over an arc in T, under an arc in T, over an arc in T, 
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and so on. Thus, if k is a knot that is alternating in T, then ht(k; T) =O. Note, 

that when we say that a knot k is alternating in T, it doesn't imply that k is an 

alterna ting knot. 11oreover, every strand and knot of an inhabitant of the roon1 

R is alternating in T if and only if T is alternating. 

Let a and b be strands and/ or knots in an inhabitant of the room R. We define 

ht( a; b) by the height obtained by following a and only counting the crossings such 

that a intersects b. 

Thus, from the definition of height and Lemma 1.1.4 we obtain the following. 

Lemma 1.1.6. Let R be a room with 2n marked points and a and b be some 

arcs or knots in an inhabitant T of the room R. Then ht(a; b) = -ht(b; a) and 

ht(a; a) =O. 

From, the previous lemma and the definition of height, we obtain the following. 

Lemma 1.1. 7. Let R be a room with 2n marked points and a1 , ... , an and k1 , ... , km 

be the arcs and knots of an inhabitant T of the room R . Then 

n m 

j=l l=l 

We now introduce a series of technicallemmas about inhabitants T of a room R 

that will play an important role in proving Proposition 1.2.8. 

First, knowing the that knots are alternating in T gives us information about the 

height of the strands. 

Lemma 1.1.8. Let R be a room with 2n marked points and a 1 , ... , an and k1 , ... , km 

be the strands and knots of an inhabitant T of the room R. If the knots ki are 
n 

alternating in T for every 1 :::; i :::; m, then :L ht(ai; T) =O. 
i=l 
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Proof. To simplify the reading, we denote ht(ai; kj) = Eij, ht(kj; kl) = Fjl and 

ht(ai; ak) = Dik with Eij, Fjl, Dik E Z. Furthermore, by Lemma 1.1.6, ht(kj; ai) = 

-Eij, Fjl = -Fzj, Dik = -Dki, Dii = 0 and Fjj = 0 for all 1 ::; i, k :::; n and 

1 :::; j, l :::; m. 

By Lemma 1.1. 7, we th en have 

n m n m 

j=l l=l j=l l=l 

n m 

However, ki is alternating in T, therefore ht(ki; T) =O. So, L ( -Eji) + L Fil =O. 
j=l l=l 

Therefore, we obtain 

m m n m 

i=l i=l j=l l=l 

m n m 

i=l j=l l=l 

m n m m 

i=l j=l i=l l=l 

mm 

But, L L Fil = 0, because Fjl = -Fzj and Fjj = 0 for all 1 :::; j, l :::; m. This 
i=ll=l 

m n 

implies that 0 = L L Eji· 
i=l j=l 

Furthermore, notice that Dik = - Dki and Dii = 0 for all 1 :::; i, k :::; n implies that 
n n 

L L Dij =O. We can now calculate 
i=l j=l 
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n n n m 

(1.3) 
i=l i=l j=l l=l 

n n m 

= L(LDij + LEij) (1.4) 
i=l j=l l=l 

n n n m 

(1.5) 
i=l j=l i=l l=l 

n n 

= LLDij =o. (1.6) 
i=l j=l 

D 

Let R be a room with 2n marked points. A marked point coming from an arc 

that just went under another arc is called an under marked point and a marked 

point coming from an arc that just went over another arcis called an over marked 

point as is shown in the following figure. 

Figure 1.2 Over marked point and under marked point in an inhabitant of a 
room 

Note that, by remark 1.1.5, for an alternating inhabitant of a room R, each marked 
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point of a strand ai such that ht(ai; T) = 1 is an over marked point. Moreover, 

each marked point of a strand aj such that ht( aj; T) = -1 are under marked 

points. Finally, a strand aj such that ht( aj; T) = 0 has one over marked point 

and one un der mar ked point. 

Lemma 1.1.9. Let R be a room with 2n marked points and T be an alternating 

inhabitant of the room R. Then T has n over marked points and n under marked 

points. 

Proof. Let a 1 , ... , an and k1 , ... , km be the n strands and m knots in T. By Lemma 
n 

1.1.8, we have L.: ht(ai; T) = O. Moreover, because T is alternating, by remark 
i=l 

1.1.5, for 1 :::; i :::; n, ht(ai; T) = -1,1 or O. Therefore, for each ai such that 

ht(ai; T) = 1, there is an aj such that ht(aJ; T) = -1. Thus, for each strand ai 

with two over marked points, there is a strand aj with two under marked points. 

For the strands ak, such that ht(ak; T) = 0, then ak add one over marked point 

and one under marked point. Thus, there are as many over marked points as 

under marked points. D 

We now show how we can relate information about the number of i bridge arcs 

and non-bridge arcs on a knot to the height of this knot. 

Lemma 1.1.10. Let R be a room with 2n marked points and T an inhabitant of 

the room R. If k is a knot in T such that there is at least one arc of T \ k that 
l 

goes over k, then ht( k) = L.: ( i - 1 )Pi where Pi is the number of i bridge arcs on 
i=O 

k, Po is the number of non-bridge arcs onk and l is the maximum of the i for the 

i bridge arcs in T. 

Proof. By hypothesis, there is at least one arc that goes over k. Without loss of 

generality, we start counting the height at a point c just after k went under an 
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arc but before k goes over or under another arc. Then, we follow k until just after 

the next arc over k. If we have just followed a non-bridge arc, then we went over 

no arc and under an arc. So, we've added -1 to ht(k; T). If we have just followed 

ani-bridge arc, then we went over i arcs and under an arc. So, we've added i- 1 

to ht(k; T). We repeat this action until we come back toc. Thus, we have 

l 

ht(k; T) = L(i- 1)Pi· 
i=O 

D 

Remark 1.1.11. Note that if l is the maximum of the i for the i bridge arcs in 
l q 

D, then l:(i- 1)pi = l:(i- 1)pi for q 2: l, because Pr = 0 for every l < r:::; q. 
i=Ü i=Ü 

We can obtain a similar result for the height of the strands in an inhabitant of a 

room R, when we know the number of non-bridge arcs and i bridges arcs on the 

knots. 

Lem ma 1.1.12. Let R be a room with 2n marked points and a1 , ... , an and k1 , ... , km 

be the strands and knots of an inhabitant T of the room R such that for every knot 

ki the re is at least one arc of T \ki th at goes over ki. Suppose the re are a total of p0 
n l 

non-bridge and Pr r-bridge arcs on the knots. Then 2::: ht(ai; T) = - 2::: (j- 1)pj 
i=l j=O 

where l is the number of crossings in T. 

Proof. To simplify the reading, we denote ht(ai; kj) = Eij, ht(kj; kz) = Fjz and 

ht(ai; ak) = Dik with Eij, Fjz, Dik E Z. Furthermore, by Lemma 1.1.6, ht(kj; ai) = 

-Eij, Fjz = -Fzj, Dik = -Dki, Dii = 0 and Fjj = 0 for all 1 :::; i, k :::; n and 

1 :::; j, l :::; m. By Lemma 1.1.7, 
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n m n m 

ht(ki; T) = L ht(ki; ai)+ L ht(ki; kl) = L( -Eji) + L Fil· (1.7) 
j=l l=l j=l l=l 

l n 

If ki is alternating in T, then ht(ki; T) = I: U -1)pii = Op1j =O. So, I: ( -Eji) + 
m 

I: Fil= O. 
l=l 

j=O j=l 

Suppose ki has Pii j-bridge arcs and p0i non-bridge arcs. Therefore, ht(ki; T) = 
l 

I: U- 1)pii by the previous lemma and remark. Therefore, 
j=O 

n m l 

ht(ki; T) = L( -Eji) + L Fil= LU- 1)pji· 
j=l l=l j=O 

m 

Moreover, PJ = I: Pii is the number of j- bridge arcs on the knots ki and p0 = 
i=l 

m m 

I: Poi is the number of non- bridge arcs on the knots ki. Therefore, I: ht(ki; T) = 
i=l i=l 
m l l 

I: I: U- l)pii = I: U- 1)PJ· Thus, 
i=lj=O j=O 

l m m n m 

LU- 1)pj = L ht(ki) = L(L ht(ki; ai)+ L ht(ki; kl)) 
j=O i=l i=l j=l l=l 

m n m 

= 2::::(- LEJi+ LFil) 
i=l j=l l=l 

m n m m 

i=l j=l i=l l=l 

mm 

But, I: I: Fil = 0, because Fil = - FlJ and Fjj = 0 for all 1 ::; j, l ::; m. This 
i=ll=l 
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l m n 

implies that -LU- l)pj = L L Eji· 
j=O i=lj=l 

Furthermore, remark that Dik = - Dki and Dii = 0 for all 1 ~ i, k ~ n implies 
n n 

that L L Dij = O. 
i=l j=l 

We can now calculate 

n 

i=l 

n n m 

i=l j=l l=l 

n n m 

i=l j=l l=l 

n n n m 

i=l j=l i=l l=l 

n n l l 

= LLDij- LU -l)pj =-LU -l)Pj· 
i=l j=l j=O j=O 

(1.8) 

(1.9) 

(LlO) 

(1.11) 

D 

Similarly to knots, we can know the height of a strand by knowing the number of 

i-bridge arcs and non-bridge arcs on it. 

Lemma 1.1.13. Let R be a room with 2n marked points7 T be an inhabitant of 

the room R and let a be a strand in T. If by following a we have Pi i-bridge arcs 
l 

and Po non-bridge arcs7 then ht( a; T) = 1 + '2: (j - 1 )pj where l is the number of 
j=O 

crossings in T. 

Proof. If the strand a doesn't go under any arc in T, then a is ani-bridge. Thus, 
l 

ht(a; T) = i = 1 + (i- 1) = 1 + L (j- l)pj and the proof is over. 
j=O 

Now, suppose that a does go under an arc in T. We start to calculate the height 
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at a marked point until just after the strand went under an arc. If there was an 

i-bridge arc before the first under arc, for the height until just after the first under 

arc, we add i- 1. Then, we go until just after the next under arc. Again, if there 

was an i-bridge arc before the un der arc we add i - 1. Similar ly, for the pa th un til 

just after the next under arc we add i- 1 for each i-bridge. After the last under 

bridge, for the remainder of a, we add i if we finish with an i-bridge and so we 
l 

add (i -1) + 1 for the last i-bridge. Thus, we have ht(a; T) = 1 + L.: (j -1)Pi· 0 
j=O 

We can now give an equation between non-bridge arcs and i-bridge arcs in an 

inhabitant of a room R. 

Lemma 1.1.14. Let R be a room with 2n marked points and T be an inhabitant 

of the room R such that for each knot ki of T there is at least one arc of T \ki 

that goes over ki. If there are Pi i-bridge arcs in T and p0 non-bridge arcs in T, 
l 

then Po= n + L.: (j- 1)pj where l is the number of crossings in T. 
j=l 

Proof. Suppose there are a total of qi i-bridge arcs on the knots ki. Thus, by 
n l 

Lemma 1.1.12, L.: ht(ai; T) = - L.: (j- 1)qj. Also, suppose there are tii j-bridge 
i=l j=O 

arcs on the strands ai for a total of ri i-bridge on the strands. 

l 

Therefore, by Lemma 1.1.13, ht(ai;T) = 1 + L.:U -1)tii· 
j=O 

n n l l 

This implies that L.: ht(ai; T) = n + L.: L.: (j -1)tii = n + L.: (j -1)rj. Moreover, 
i=l i=lj=O j=O 

n l l l 

L.: ht(ai; T) =- L".:(j- 1)qj. So,- L".:(j- 1)qj = n + L".:(j- 1)rj and 
i=l j=O j=O j=O 

l l 

0 = n + L (j - 1) ( qj + r j) = n + L (j - 1 )Pi. 
j=O j=O 
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l l 

Thus, 0 = n + 2:::: (j- l)pj- p0 . Therefore, Po= n + 2:::: (j- l)Pj· D 
j=l j=l 

Suppose that T is an inhabitant of a room R and that T is a subdiagram of a 

link diagram D. Th en, the non-bridge arcs in T can be bridge arcs in D if the 

prolongation of these arcs in D are bridge arcs. Moreover, if D is a non-split link 

diagram, then T is an inhabitant of the room R such that for every knot ki there 

is at least an arc not of ki that goes over ki. 

1.2 The red and blue link diagram 

We are now going to introduce a construction which, combined with Lemma 1.1.9, 

will enable us to show Theorem 1.2.8. The result says that for an alternating non­

split diagram D of a non-triviallink L, if we suppose 1r(D) is left-orderable, then 

1r(D) is abelian. 

Let D be a link diagram. Suppose that 1r(D) is left-orderable. Moreover, suppose 

that a is a maximum between the arcs of D. Th en, we col or a in red. From the 

Wada relations, if a is a bridge over ai and aj, then we have one of the Wada 

inequalities : 

However, ais a maximum, therefore ai= a= aj. Thus, every arc that goes under 

ais a maximum. We color in red these arcs. Moreover, we color in red, every arc 

that goes under a red arc. Therefore, every red arc is a maximum. Also, if an 

arc ak goes over two red arcs, then we color ak in red. Note that from the Wada 
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inequalities, every arc that goes over two maximum arcs is a maximum. Renee, 

by construction, every red arc is a maximum. We define the set of red arcs that 

cornes from a, R(D, a) and call it the red diagram of D from a. Note that by 

construction, R( D, a) is connected. 

Furthermore, we co lor every non red arc in blue and define B ( D, a) the set of blue 

arcs and call it the blue diagram of D from a. Notice that if b is a blue arc, then 

both ends of b must go under blue arcs. 

We now project this colored link diagram in the plane to obtain the blue and red 

graph G(D, a) where the vertices in G(D, a) come from the crossings in D and 

the edges in G(D, a) come from the arcs between crossings in D. Also, an edge 

is blue or red depending on whether it cornes from a blue or red arc. Moreover, 

at each crossing, if the over arcis red, we draw a red vertex and if the over arcis 

blue we draw a blue vertex. The subgraph with the blue edges and blue vertices 

is defined as the blue subgraph BG(D, a) of G(D, a). While the subset with the 

red edges and red vertices is defined as the red subset RG ( D, a) of G ( D, a). Note 

that G(D, a) is the disjoint union of RG(D, a) and BG(D, a). 

In what follows, we are going to give a series of properties for G(D, a), RG(D, a) 

and BG ( D, a). We will eventually show that for an alterna ting non-split diagram 

D of a link L, for every a, then G(D, a) = RG(D, a). Thus, every arc in D is a 

maximum and so 1r(D) is abelian. 

Remark 1.2.1. Let D be a link diagram, a an arc in D and G(D, a) the blue 

and red graph of a. By construction, R(D, a) is connected, therefore RG(D, a) is 

connected. 

Lemma 1.2.2. Let D be a link diagram, a an arc in D and G(D, a) the blue 

and red graph of a. Then a blue vertex in G(D, a) has three or four incident blue 

edges, while a red vertex has exactly four red incident edges. 
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Proof. The vertices of G(D, a) are the crossings of the link diagram. Clearly, each 

vertex has a valency of 4. 

Let c be a red vertex in G(D, a). Then c corresponds to a crossing with a red over 

arc. Therefore, by definition, all the under arcs are also red. Thus, the four edges 

are red. 

Let c be a blue vertex in G(D, a). Then c corresponds to a crossing with a blue 

over arc. Therefore, c has at least two incident blue edges. If each other incident 

edges are red, then this mean that the over arc is red, which is a contradiction. 

Thus, at most one of the other incident edge is red. So, chas three or four incident 

blue edges. D 

We look at the complement BG(D, a)c of BG(D, a) in the plane. We obtain 

BG(D, a)c = Ui=1 Ui where each Ui is an open connected component of BG(D, a)c. 

By the previous lemma, RG ( D, a) is included in a single connected component 

Ui. We will study this connected region Ui. Moreover, we define the closure Ui of 

Ui and the frontier fr(Ui) = Ui \ Ui of Ui. Note also, that fr(Ui) = Ui n BG(D, a) 

and therefore fr(Ui) is included in BG(D, a) and so is composed of blue edges 

and blue vertices. 

Every red edge that is incident to one of the vertices of fr ( Ui) will be called an 

end red edge. 

Now, we look at the corresponding link subdiagram R(D, a) of the red subset 

RG ( D, a). Each red arc that had a corresponding end red edge is called an end 

red arc in R(D, a). 

Remark 1.2.3. Note that every end red arc goes under a blue arc. Therefore, 

if an end red arc doesn't go over an arc in R(D, a), then it is a non-bridge arc. 

Thus, if an end red arc is a non-bridge in R(D, a) c Ui, then it is a non-bridge 
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arc in D. 

We now look at the closed set uic in the plane. Clearly, fr(Ui) is included in ur 

Also, let uic = uj=1 Fj where Fj are the connected components of ur 

Lemma 1.2.4. Let D be a link diagram, a an arc in D, G(D, a) the blue and red 

graph of a and Fj a connected component of ur If there are no red edges incident 

to the vertices on Fj, then G(D, a) is disconnected. Thus, D is a split diagram. 

Proof. First, suppose U? is connected. Then, uic = F. Let v be a vertex in 

RG ( D, a) C Ui and w a vertex in F. There are no red incident edges to vertices 

on F, th us, there are no paths between v and w. This implies that G ( D, a) is a 

disconnected graph. 

Suppose that Uic is disconnected and let Fj be a connected component of uic. Let 

v be a vertex in RG ( D, a) C Ui and w a vertex in Fj. By hypothesis, there is 

no pa th in RG ( D, a) U Fj between v and w. Moreover, because Fj is a connected 

component of U? and BG(D, a) is included in uic, then Fj n BG(D, a) is a con­

nected component of BG(D, a) and there is no blue path between w and any 

vertex in BG(D, a)\ Fj. Thus, there is no path between w and v and so G(D, a) 

is disconnected. D 

In a non-split link diagram, by the previous lemma, there 1s at least one red 

incident edge to a vertex in Fj. 

Note that 8Fj c 8Ui. Moreover, oUi c BG(D, a). Renee, 8Fj c BG(D, a). 

Let Cj be a closed curve in Ui that intersects transversely every red incident edge 

to a vertex in Fj but that intersects no other edges in G(D, a) and such that one 

side of Cj contains Fj. (This curve exists because 8Fj c BG(D, a) and BG(D, a) 
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is a fini te graph.) Let "\;j be this si de of Cj. Note that the red edges in "\;j 

correspond to non-bridge arcs in "\;j. 

Lemma 1.2.5. Let D be a non-split link diagram, a an arc in D, G(D, a) the 

blue and red graph of a and Fj a connected component of uic· Then Cj intersects 

a non-zero even number of end red edges. 

Proof. By Lemma 1.2.4, Cj intersects at least one end red edge. Thus, in the 

corresponding link diagram D, Cj intersects at least one end red arc. Moreover, 

each strand entering "\;j must go out of "\;j at sorne points, therefore Cj intersects 

an even number of end red arcs. D 

Suppose Cj and so "\;j intersects 2k end red edges. We will be interested in the 

k-tangle Tj given by the intersection between "\;j and the link diagram D. 

Lemma 1.2.6. Let D be a non-split link diagram, a an arc in D, G(D, a) the blue 
l 

and red graph of a and Fj a connected component of uic. Th en, k+p~ = L: (j -1 )pj 
j=l 

where P] is the number of j bridge arcs in Tj, p~ is the number of non-bridge arcs 

in Fj and l is the number of crossings in Tj. So, there is at least an rn-bridge arc 

with rn 2:: 2 in the k-tangle Tj. 

Proof. The k-tangle Tj has the marked points given by the end red arcs. By 

construction, these end red arcs are non-bridge arcs in Tj . Th us, there are at 

least 2k non-bridge arcs in Tj. Moreover, if there are other non-bridge arcs in 

Tj, they must be blue arcs and soin Fj· Therefore, by Lemma 1.1.14, 2k + p~ = 
l 

k + L: (j - 1 )pj where P] is the number of j bridge arcs in Tj, p~ is the number of 
j=l 

l 

non-bridge arcs in Fj and l is the number of crossings in Tj. So, k+p~ = L: (j -1 )pj 
j=l 

and there is at least an rn-bridge arc with rn 2:: 2 in Tj. D 
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We obtain the following important result directly from the previous lemma. 

Lemma 1.2. 7. Let D be an alternating non-split link diagram, a an arc in D and 

G(D, a) the blue and red graph of a. Then, BG(D, a) is empty. 

Proof. By Lemma 1.2.6, for each connected component of uic there is at least an 

m-bridge arc with m ~ 2 in the k-tangle given by Vj. This is a contradiction 

because D is alterna ting. Therefore, there are no connected components for uic. 

Which implies that U? is empty. So Ui is the plane and thus BG(D, a) is empty 

because Ui is included in BG(D, a)c. D 

We can now prove the desired result. 

Proposition 1.2.8. Let D be an alternating non-split diagram of a non-trivial 

link L. If we suppose 1r(D) is left-orderable, then 1r(D) is abelian. 

Proof. Let < be an order on 1r(D). We have a finite number of ai, thus there is a 

maximum aj. But Dis alternating, therefore aj is a bridge over sorne arcs ai and 

am. Therefore it satisfies one of the Wada inequalities ai < aj < am, am < aj <ai 

or ai = aj = am. But aj is a maximum, thus we get ai = aj = am. This implies 

that, ai and am are maxima. Thus, every arc that goes under a maximum arc, 

becomes a maximum arc. Moreover, if two maximum arcs ai and am go un der an 

arc a~c., then they satisfy one of the Wada inequalities ai < ak < am, am < ak < ai 

or ai = ak = am. But ai and am are maxima, thus we get ai = ak = am. Therefore, 

every arc that goes over two maxima arcs becomes a maximum. 

So we can construct the blue and red graph of aj G(D, aj)· By Lemma 1.2.7, 

BG(D, aj) is empty. Thus, RG(D, aj) = G(D, aj) and every arc in Dis red and 

thus a maximum. This implies that a 1 = ... = an. So 1r(D) =< a1 > and thus 

1r(D) is abelian. 
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D 

If L is the trivial knot, then its double branched cover is the 3-sphere and the 

fundamental group of the 3-sphere is trivial, thus not left-orderable by convention. 

Renee, by combining Propositions 1.2.8 and 1.0.6, we geta new proof of Theorem 

1.0.1. 

In the following chapters, we will show how, for sorne family of links, supposing 

that the Wada group is left-orderable will implies that it is also abelian and thus 

get the desired result. 



CHAPTER II 

THE IMPORTANCE OF THE GRAPH GROUP AND CONSTRUCTION OF 

DIRECTED WADA GRAPHS 

Let L be a link in S 3 and D a diagram for L. Label the arcs of the diagram a 1 

through an. We recall that the Wada group is 

where the relations 

(2.1) 

are in one to one correspondence with the crossings of D. In this chapt er, we will 

be interested in the following subgroup of the Wada group. 

Definition 2.0.1. We define G(D), the graph group of D, as the subgroup of 

1r(D) generated by the a;1aj where the arc ai goes over the arc ai or the arc ai 

goes over the arc ai. 

The following results motivate the interest in this group when studying the fun­

damental group of double branched covers of links. 

Lemma 2.0.2. Let D be a diagram of a non-split link and G(D) be the graph 

group of D. Suppose that 1r(D) is left-orderable. If the graph group G(D) is 

trivial, then 1r(D) is abelian. 
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Proof. Because the graph group is trivial, for every arc aj that goes over another 

arc ai, we have aj 1ai = 1. Thus, aj = ai. Let ak and az be two arcs in D. For 

every pair of arcs ak, az, because D is non-split, we can follow a path of arcs of D 

from ak to az. Renee, ak = az. Therefore, all the generators ai of 1r(D) are equal 

and 1r(D) =< ai >. So, 1r(D) is abelian. D 

Therefore, by Proposition 1.0.6 and the previous lemma. 

Theorem 2.0.3. Let D be a diagram of a non-split link L and G(D) be the graph 

group of D. Suppose that 1r(D) is left-orderable. If the graph group G(D) is trivial, 

then 1r1(E(L)) is not left-orderable. 

In this chapter, we will simplify the genera ting set of the Graph group. We will 

find a generating set of this group such that when we suppose that 1r(D) is left­

orderable, all the generators of G(D) are less than or equal to 1 in 1r(D). It will 

then be easier in the following chapters to find links for which the graph group is 

trivial and therefore links for which the fundamental group of the double branched 

cover is not left-orderable. 

To simplify the generating set of the Graph group, we will show how from a 

diagram D of a link we construct the Wada graph r 0 (D), the coarse Wada ratio­

nal graph r 1(D), the Wada rational graph r(D) and the Wada directed graphs 

(r(D), <). Moreover, we will show how from these graphs, we find a simplified 

generating set of the Graph group. 

2.1 From a link diagram to the Wada Graph 

Starting from a link diagram D, we will construct a gr a ph that will eventually 

enable us to simplify the generating set of the Graph group. We will call this 
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gr a ph the W ad a graph r 0 ( D). This gr a ph will be mostly useful in constructing a 

more important graph, the Wada rational graph. 

Twist tangles will play a central role in the construction of the Wada graph. We 

depict a half-twist in Figure 2.1. We won't differentiate positive half-twists from 

negative half-twists. 

/ X rn 

Figure 2.1 half-twist 

We now depict a ~-twist in the following figure. Again, we won't differentiate the 

positive ~-twist from the negative ~-twist. 

Figure 2.2 ~-twist 

Similarly, we define ~-twist tangles. We say that a ~-twist tangle is a maximal 

twist tangle if we can't find a k!1-twist tangle from the same tangle. Let X be a 

maximal twist tangle. We define the non-bridge arcs of X, as the arcs of X that 

do not go over any arcs in X. 
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From now on, let D be a link diagram of a non-split link L with the arcs labelled 

from a 1 to an. Moreover, the maximal twist tangles of D will be labelled from X 1 

to Xm, as in the following figure. 

Xl 
······················· .... . ... ... . .. ·· . 

..·················f·a·7. . . . . . . . . 
.. ····· 

·. ··. 

X2: 

..... 

Figure 2.3 Labeling of maximal twist tangles 

The vertices of the Wada graph f 0 (D) will be the arcs a/s of D. For the edges, 

we will look at the maximal twist tangles of D. Let Xj be a maximal twist tangle. 

Then, we will draw edges labelled Xj between each vertices coming from arcs 

of the twist tangle Xj su ch that one arc is going over the other. Moreover, the 

non-bridge arcs of Xj will be called the non-bridge vertices of Xj. For example, 

for the half-twist tangle as in Figure 2.1, we obtain the following graph. 
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(30~----------J~E=m~----------~~~----------~X~mw.------------~~ 

Figure 2.4 Wada graph of a half-twist 

We note that there is a Wada relation a-,;1aj = aj1ai and a Wada relation aj1ak = 

a:;1aj. Moreover, ai and ak are called the non-bridge vertices of Xm. 

Consider the case where we have a full twist : 

Figure 2. 5 Full twist 

Then, we get the following graph. 

Figure 2.6 Wada graph of a full twist 

We note that the Wada relations give us a11a 2 = a;-1a4 = a41a3 and a;-1a 1 

a41
a2 = a3 1a4 . Moreover, a 1 and a3 are the non-bridge vertices of X. 

N ext consider the ~-twist 

Figure 2. 7 ~-twist 
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Then, we obtain 

~----~J~c----~~~----x~----~~~-----J*c----~~~----~xr-----~~ 

Figure 2.8 Wada graph of the ~-twist 

Again, we note that the Wada relations give us a;:-1a 2 = a;-1a5 = a51a4 = a41a 3 

d -1 -1 -1 -1 M d h b .d an a 2 a 1 = a5 a2 = a4 a5 = a 3 a4 . oreover, a 1 an a3 are t e non- n ge 

vertices of X. 

Similarly, if we have an ~-twist, we obtain the following Wada graph 

... 9 x ~~---~x:-----~ 

Figure 2.9 Wada graph of the ~-twist, 

- 1 - 1 -l M d th b .d t. ai+l ai = ... = a4 an+2 = a 3 a4. oreover, a1 an a3 are e non- n ge ver 1ces 

of X. 

From the diagram of Figure 2.3, we obtain the following Wada graph. 
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ato at as 

Figure 2.10 Wada graph of Figure 2.3 

We are now going to give another example with the knot 821 . 
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Figure 2.11 Knot diagram of the knot 821 

We thus obtain the following Wada graph f 0 . 



39 

Figure 2.12 A Wada graph ro of the knot 821 . 

From the definition of the Wada graph and the graph group G(D), we obtain the 

following result that correlates the Wada graph and the Wada relations. 

Remark 2.1.1. Let X 1 , ... , Xm be the maximal twist tangles of a link diagram D, 

ro(D) be the Wada graph and ai and aj be arcs in D. Then, there is an edge Xk 

between ai and aj in r 0 (D) if and only if there is a Wada relation a;1aj = aj1az 

or a Wada relation aj1ai = a; 1az for sorne arc az in D. 
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Now, we will show how from a Wada graph f 0 (D), we can obtain sorne simplified 

generating sets S(f0 (D), d) of the Graph group G(D) where d represents a choice 

between one of the possible generating sets. Recall that the Graph group is the 

subgroup of the Wada group generated by the a; 1ai where ai is an arc that goes 

over ai or ai is an arc that goes over ai. 

Let X 1 , ... , Xm be the maximal twist tangles of a link diagram D. Let Xk be a 

maximal twist tangle as in the following figure. 

• • e g Xk @~----~JC,-t,.R:--___,0) 

Figure 2.13 Wada graph of the ~-twist, 

Then, a1 and a3 are the non-bridge vertices and the Wada relations give us a;:- 1a2 = 

-1 -1 -1 -1 -1 -1 d -1 a2 as = as a6 = a6 a7 = ... = ai ai+l = ... = an+2a4 = a4 a3 an a2 a1 = 

= a41an+2 = a31a4. Therefore, there are four possibilities. If we choose a1 

d -1 -1 -1 -1 -1 -1 -1 an a1 a2 = a2 as = as a6 = a6 a7 = ... = ai ai+l = ... = an+2a4 = a4 a3, 

then, we define Xk = a;:- 1a2. So, we have either Xk = a;:-1a2, Xk = a;-1a1 , 

Xk = a31a4 or Xk = a41a3. Note that from the Wada relations, a;:- 1a2 = a31a4 

and a;-1a1 = a41a3. Moreover, (a;:-1a2)-1 = a;-1a 1 and (a31a4)-
1 = a41a3. We 

do similarly for every maximal twist tangles. Then, we define S(f0 (D), d) as a 

Wada graph set of generators where d represents one of the 4m possible choice of 

set of genera tors. Moreover, we define a Wada graph group of D as the subgroup 

G(f0 (D), d) of n(D) generated by the set of generators S(f0 (D), d). 

Lemma 2.1.2. Let D be a link diagram. Then, a Wada graph set of generators 

S(f0 (D), d) is a generating set of the Graph group G(D). 
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Proof. Let S(f0 (D), d) be a Wada graph set of generators of D and ai and ai be 

sorne arcs in D such that ai goes over ai. Then, a;1aj is a generator of G(D) and 

ai and ai are in the same maximal twist tangle Xk. Moreover, in S(f0 (D), d), 

without loss of generality, Xk = a; 1aq where aP and aq are arcs in Xk such that 

at least one goes over the other in Xk. Therefore, by the Wada relations, we 

have one the following possibilities: xk = a;1aq = a;1aj or xk = a;1aq = a;1aj 

X -1 ( -1 )-1 -1 x-1 ( -1 )-1 -1 Th. . 1. th t or k = aP aq = ai ai or k = aP aq = ai ai. 1s 1mp 1es a 

S(f0 (D), d) is a generating set of the Graph group G(D). D 

Therefore, by the previous lemma and the definition of the Graph group and the 

Wada graph groups, we obtain the following result. 

Proposition 2.1.3. Let D be a link diagram. Then, a Wada graph group of D 

G(f0 (D), d) is equal to the Graph group G(D). 

Thus, the 4m groups G(f0 (D), d) are equal to the Graph group G(D). 

We conclude this section by a useful property of the Wada graph. 

Proposition 2.1.4. If D is a connected diagram, then the Wada graph is con­

nected. 

Proof. Let ai and ai be arcs of D. Since Dis connected, we can follow a path of 

arcs from ai to ai, and this pa th determines a pa th in the Wada graph. Th us, the 

graph is connected. D 

2.2 From the Wada graph to the coarse Wada rational graph 

From the Wada graph f 0 , we will define the coarse Wada rational graph f 1 which 

will enable us to define the coarse Wada groups G(f1). 
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In a link diagram D, as shown in the article (Conway, 1970), we can isotope 

every rational tangle to obtain an [mnp ... st] rational tangle where t > 1 and 

m, n,p, ... s > O. This rational tangle is constructed from '9-, ~' ... , ~ half-twists 

regions where each twist region is represented by an Xi. The twist region t rep­

resented by Xi is called the leading twist region of the rational tangle. We label 

each rational tangle region by the leading twist region Xi. 

For Figure 2.3, we obtain 

.· 

\ X>[ ?-59 . 
···········Xt··········· 

Figure 2.14 Labeling of the rational tangle of Figure 2.3 

and for the knot 821 
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~3 

..... 

Figure 2.15 Labeling of the rational tangles for the knot 821 

The [n] rational tangle is the same as an i-twist region. Thus, as seen in the 

previous section, we obtain 

• • • 9 x @)---~x;,.__,--@ 

Figure 2.16 Wada graph of an i-twist 

We embed this graph in the link diagram as follows 
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Figure 2.17 The embedding of the Wada graph of an ~-twist in the link diagram 

Only the four end strands a 1 , a2, a3 , a4 will connect with other rational tangles. 

We call these vertices, open vertices. The other arcs ai of the rational tangle will 

not be in contact with other rational tangles. We call these vertices closed vertices. 

Th us, for a closed vertex ai, there is no arc aj from another rational tangle su ch 

that there is a Wada relation a:; 1aj = aj1ak or aj1ai = a:; 1ak for an arc ak. For 

every rational tangle which is not a half-twist there are exactly four open vertices. 

Because rational tangles are alterna ting, a 1 and a3 are non-bridge in X and a2 

and a4 are 1-bridge in X. In the coarse Wada rational graph, we keep only the 

open vertices. 

Moreover for the tangle of Figure 2.17, suppose that X = a!1a2 . Note that 

(a21as)(a51a6)(a(31a7 ) ... (a~!2a4) = a21a4. Hence, because a11a2 = a21a 5 

We can 

generalize the previous example to obtain the following lemma. 

Lemma 2.2.1. The coarse Wada rational graph r of the [n] rational tangle is as 

follows. 

~~--~){r----4~r------~x~n~-1----~~r------~x~-----~ 

Proof. We will prove the lemma by induction on n. By definition of the Wada 
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graph, the lemma is true for n = 1. We now suppose that for an [n] rational 

tangle, we obtain the following coarse Wada rational graph 

Now, to obtain an [n + 1] rational tangle, we only need to add one arc to the 

rational tangle [n] and this arc corresponds to a closed vertex between a2 and a4 . 

Thus we obtain the following coarse Wada rational graph 

~~--~J{~--~~r------~x~"----~~~------~x~-----~ 

More generally we have the following proposition. 

Proposition 2.2.2. If we have an [nmnm-l···nl] 

following coarse W a da rational graph 

D 

~ tangle, then we have the 

Proof. We will prove this result by induction on m. When m = 1, the result is 

true by the previous lemma. We suppose it is true for m > 1. We will show the 

result holds for [inmnm-l···n1] for every i E N by induction on i. For i = 1, we 

obtain the following coarse Wada rational graph 
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By substituting Y to xp-q Xq = XP and no ting that a 1 , a4 , a3 , as are now the open 

vertices we obtain the following coarse Wada rational graph 

Moreover, [1nmnm_1 ... n 1] = 1 + !1. = p+q and thus the result is true when i = 1. 
p p 

Now, we suppose it is true for i = k. Thus, [knmnm-l···nl] = k + ~ = kp:q and 

we have 

x(k-1 )p+q @1-------'X*-PI-I------1@ 

When we adda twist to get the [(k + 1)nmnm_1 ... n 1] tangle, we obtain 

and thus by substituting Y = XP and noting that a1 , a 2 , a3 , as are now the open 

vertices we obtain the following coarse Wada rational graph 

and [(k + 1)nmnm_1 ... n 1] = k + 1 + 1 = (k+l)p+q and we have the desired result. 
p p 

D 

We are now going to continue the example of the knot 821 . 
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The rational tangle X 1 is a [2] rational tangle, the rational tangle X 2 is a [3] 

rational tangle and the rational tangle X 3 is a [1, 2] = ~ rational tangle. Renee, 

by the previous proposition, we obtain the following coarse Wada rational graph 

for each rational tang le X 1 , X 2 and X 3 

~~---*Jc~1 --~~~------~x~1----~~~--------x~1 -----~ 

~~--~JChJ_z __ ~~~------~x~3----~~~------~x~J~z~---~ 

We th us ob tain the following coarse Wada rational gr a ph r 1 for the previous 

diagram of the knot 821 . 
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The coarse Wada rational graph f 1 (D) of the knot 821 . 

Moreover, figure 2.3 is a [2, 3, 3] 

rational graph of 2.3 is 

Î~ rational tangle. Thus, the coarse Wada 

~~---J~c~Io~~~r----~x~J~3----~~~------~x~I~o--~~ 

Figure 2.18 The coarse Wada rational graph of a [2, 3, 3] = Î~ rational tangle. 
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By a similar argument as in the proof of Proposition 2.2.2, we can show the 

following lemma. 

Lemma 2.2.3. Let D be a link diagram and X 1 , ... , Xm be the maximal twist 

tangles of a rational tangle [nm ... n2n 1] with leading twist region X 1 . Then, in the 

coarse Wada rational graph Xi = Xf where k is the numerator of the continuous 

fraction [ni-lni-2···n2nl] for 1 < i :::; m. 

Now, we will show how from a coarse Wada rational graph r 1 (D), we can obtain 

sorne simplified generating sets S(r1 (D), d) of the Graph group G(D) where d 

represents a choice between one of the possible generating sets. 

Let X1, ... , Xm be the rational tangles of a link diagram D. Let Xk be the leading 

maximal twist tangle of the rational tangle Xk. Then, similarly as for the Wada 

graph set of generators, with the non-bridge arcs ai and az of the leading maximal 

twist tangle Xk and the Wada relations, we choose one of the four possibilities: 

X -1 x -1 x -1 x -1 h d k = ai aj or k = aj ai or k = az as or k = as as w ere aj an as are arcs 

in Xk that goes over ai and az respectively. Then, we define S(r1 (D), d) as a coarse 

Wada rational set of generators where d represents one of the 4m possible choice 

of set of generators. Moreover, we define a coarse Wada rational group of D as 

the subgroup G(r1 (D), d) of 1r(D) generated by the set of generators S(r1 (D), d). 

Lemma 2.2.4. Let D be a link diagram. Then, a coarse Wada rational set of 

generators S(r1(D), d) is a generating set of the Graph group G(D). 

Proof. Let S(r1 (D), d) be a coarse Wada rational set of generators. Then, for 

every rational tangle Xk, we have Xk = a-;1ai. There is at least one Wada graph 

set of generators S(r0 (D), d0 ) such that we also have Xk = a-; 1ai for every leading 

maximal twist X k. 
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If every rational tangle is a maximal twist, then S(f1(D), d) = S(f0 (D), d0 ). 

Thus, because S(f0 (D), d0 ) is a generating set of the Graph group by Lemma 

2.1.2, S(f1 (D), d) is a generating set of the Graph group. 

If there are rational tangles that are not maximal twists, then S(r 1 (D), d) is a 

subset of S(f0 (D), do). 

Let Xl = a; 1aq be a generator of S(f0 (D), d0 ) that is not a leading maximal twist 

of a rational tangle. Then Xl is a maximal twist in a rational tangle Xs and Xs is 

a generator of S(f1 (D), d). By Lemma 2.2.3, in the coarse Wada rational graph 

Xl= x: where k E Z. Renee, in the Wada group depending on the choices made 

for Xl and Xs, Xl= X! where t = k or t =-k. Thus, S(f1 (D),d) is a generating 

set of G(f0 (D), d0 ). However, G(f0 (D), d0 ) is equal to the Graph group G(D) 

by Lemma 2.1.2. This implies that S(f1 (D), d) is a generating set of the Graph 

group G(D). D 

Therefore, by the previous lemma and the definition of the Graph group and the 

coarse Wada rational groups, we obtain the following result. 

Proposition 2.2.5. Let D be a link diagram. Then, a coarse Wada rational group 

of D G(f1 (D),d) is equal to the Graph group G(D). 

Thus, the 4m groups G(f1(D), d) are equal to the Graph group G(D). Note that 

here them represents the number of rational tangles, while in the previous section, 

m was representing the number of maximal twist tangles. 

Remark 2.2.6. The Wada graph is connected if and only if the coarse Wada 

rational graph is connected. Thus, from proposition 2.1.4, we obtain that if D is 

a connected diagram, then the coarse Wada rational graph r 1 will be connected. 

We finish this section with a useful lemma for which the proof is similar to the 
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proof of Proposition 2.2.2. 

Figure 2.19 Rational tangle Xi 

Lemma 2.2.7. Let D be a link diagram, G(f1(D), d) be a coarse Wada rational 

group and Xi a rational tangle as in Figure 2.19. Then, a:; 1ai = XJ, aj1ak = 

X p-q d - 1 - xq - 1 - xq - 1 - xp-q d - 1 - xq 
i an ak az - i or ai ai - i , ak ai - i an az ak - i . 

2.3 From the coarse Wada rational Graph to the Wada rational graph 

In this section, we start with the coarse Wada rational graph and we will simplify 

it to obtain the Wada rational graph. To find families of links for which the 

fundamental group of the double branched caver is not left-orderable, we will use 

Theorem 2.0.3. To do so, for a link diagram D, we will suppose that 1r(D) is 

left-orderable and then, we will show that 1r(D) is abelian. The Wada rational 

graph will give us a simplified generating set of the Graph group when we suppose 

that 1r(D) is left-orderable. 

Let D be a link diagram and r 1 (D) the coarse Wada rational graph. If there is 

no 1-tangle T with only one non-bridge arc in D and such that neither marked 

point goes over sorne arcs in D \ T , th en we de fine r 1 ( D) = r ( D). 

Suppose there is a 1-tangle T with only one non-bridge arc ai in D and such 

that neither marked point goes over sorne arcs in D \ T. Then, in the Wada 

rational graph, we define ak = ai for every ak E T. Let G (r 1 ( D), d) be a coarse 

Wada rational group. If there is no 1-tangle T with only one non-bridge arc 

in D and such that neither marked point goes over sorne arcs in D \ T, then 

G(f(D), d) = G(f1 (D), d) is defined as a Wada rational group and by Lemma 
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2.2.5, it is equal to the Graph group. 

Suppose there is a 1-tangle T with only one non-bridge arc in D and such that nei­

ther marked point goes over sorne arcs in D\T. Then a Wada rational set of gener­

ators S(f(D), d) is defined as the set that contains every generator of S(f1 (D), d) 

except for the rational tangle Xi included in T. Moreover, a Wada rational group 

G(f(D), d) is defined as the subgroup of w(D) generated by S(f(D), d). 

In Lemma 2.3.9, at the end of this section, we will show that if w(D) is left­

orderable, th en G (r ( D), d) is equal to G ( D). 

2.3.1 An important result on the possible left-orders of the Wada group 

In this subsection, we will prove Lemma 2.3.7, that gives us information about 

the possible extrema among the generator of w(D) if we suppose that w(D) is 

left-orderable. To do so, we will need the following definition and results. 

Definition 2.3.1. If D has exactly n non-bridge arcs, then Dis an n non-bridge 

diagram. We define a link to be n non-bridge, if it has an n non-bridge diagram 

and if all other diagrams are m non-bridge diagram with m 2::: n. 

We will principally investigate 2-non-bridge links. It is worth noting, that of the 

238 non-alternating knots of 11 crossings or less, 229 are 2-non-bridge knots and 

9 are 3-non-bridge knots. 

We give an interesting property of 2-non-bridge diagram. 

Lemma 2.3.2. Let D be a 2-non-bridge link diagram with n crosszngs. Then, 

there are either exactly two 2-bridge arcs and (n- 4) 1-bridge arcs or there is one 

3-bridge arc and (n- 3) 1-bridge arcs. 

Proof. Let ai be a non-bridge arc in D. Then, we eut ai into two arcs to obtain a 
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1-tangle T with these arcs as marked points. Bath marked points are non-bridge 
l 

arcs in T. Thus, by Lemma 1.1.14, p0 = n + L (j- 1)pj where p0 is the number 
j=l 

of non-bridge arcs in T and l is the number of crossings in T. Because D is a 

2-non-bridge diagram, there is another non-bridge arc in D. Thus, with bath 

marked points being non-bridge arcs in T, there are three non-bridge arcs in T. 
l l 

This implies that 3 = 1 + L (j- 1)pj and so 2 = L (j- 1)Pi· Therefore, either 
j=l j=l 

there is exactly two 2-bridge arcs or one 3-bridge arc. 0 

We recall that from section 1.2, we can construct the red and blue graph G(D, a). 

We look at the complement of the blue sugbraph BG(D, a) to get the connected 

open region Ui that con tains RG ( D, a). Th en we study the connected components 

F1 , ... , Fk of the complement of Ui. We also define the disjoint closed curve Ci such 

that one side of it, the region Yj contains Fi and Cj only intersects end red edges. 

Moreover, we define Ti the k-tangle given by Yj. 

The previous lemma and Lemma 1.2.6 give us a maximal number of connected 

components. 

Lemma 2.3.3. Let D be a non-split 2-non-bridge link diagram, a an arc in D 

and G(D, a) the blue and red graph of a. Then, there are at most two connected 

components Fi in Uic. 

Proof. Suppose there are k connected components in uic with k :2: 3. By Lemma 

1.2.6 there are k rn-bridge arcs with rn :2: 2. But, by Lemma 2.3.2, there are at 

most two rn-bridge arc with rn :2: 2. Thus, we have a contradiction and we have 

at most two connected components in uic. 0 

·k 
We now introduce the important region w = ui \ (Uj=l Vj). Note that 1R.2 = 

. k . k . k . k 

ui u uic = ui u (Uj=lFj)· Moreover, ui u (Uj=lFj) \ (Uj=l Vj) = ui \ (Uj=l Vj) 
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. k . k 

because Fj c Y}. Thus, w = ui \ (Uj=l Y}) = IR.2 
\ (Uj=l Y}) and we can view w 

has a room as defined in section 1.1. Let Tw be the inhabitant of W given by the 

intersection of W and the link diagram D. 

Lemma 2.3.4. Let D be a non-split 2-non-bridge link diagram, a an arc in D and 

G(D, a) the blue and red graph of a. Then, either there is at most one connected 

components in uic or the two non-bridge arcs of D are in W and both Yj adds 

exactly two marked points on W. 

Proof. Suppose there are two connected components F1 and F2 in ur Then, we 

observe the region W = Ui \ {Vi(JV2}. Let a1 , ... , an and k1 , ... ,km be the strands 

and knots of the inhabitant Tw of W. By Lemma 1.1.14, if there are Pi i-bridge 
l 

arcs in Tw and p0 non-bridge arcs in Tw, then p0 = n + 2: (j- l)pj where l is the 
j=l 

number of crossings in Tw. Moreover, by Lemma 1.2.5, each Y} adds at least two 

marked points on W. 

Suppose that one of the Yj adds at least four marked points on W. Then, there 

are at least six marked points on W and so Tw has at least three strands. This 

implies that n ~ 3 and there are at least three non-bridge arcs in Tw. If the 

non-bridge arcs end at marked points of W, then they are end red arcs. Thus, 

they are non-bridge arcs in D by remark 1:2.3. Therefore, there are 3 non-bridge 

arcs in D. This is a contradiction and therefore each Yj adds exactly two marked 

points. 

Suppose that both of the Vj adds exactly two marked points on W. Th en, there 

are four marked points on W and so Tw has two strands. This implies that n = 2 

and there are two non-bridge arcs in W. If the non-bridge arcs end at marked 

points of W, then they are end red arcs. Thus, they are non-bridge arcs in D by 

remark 1.2.3. D 
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In the next lemma, we show that if there is one connected component F, th en 

there is either one or two non-bridge arc in Tw. 

Lemma 2.3.5. Let D be a non-split 2-non-bridge link diagram, a an arc in D 

and G(D, a) the blue and red graph of a. Suppose there is exactly one connected 

component F in ur Then, there are two possibilities for the number of non­

bridge arcs of D in W. First, there is one non-bridge arc of D in W, if V adds 

two marked points on W and there is no rn-bridge arc with rn 2:: 2 in W. Secondly, 

there are two non-bridge arcs of D in W, if V adds four marked points on W or 

V adds two marked points on W and there is a two-bridge arcs in W. 

Proof. By Lemma 1.2.5, V adds at least 2 marked points to W. Suppose it adds 

2k marked points to W. Then, Tw has k strands. This implies by Lemma 1.1.14, 

that if there are Pi i-bridge arcs in Tw and Po non-bridge arcs in Tw, then there is 
l 

Po = k + ~ (j- 1)pj non-bridge arcs in Tw, where lis the number of crossings in 
j=l 

W. By Lemma 1.2.6, there is at least one rn-bridge arc with m 2:: 2 in V. So, by 

Lemma 2.3.2, either there is a two-bridge arc in Tw, or there is no rn-bridge arc 

with rn 2:: 2 in Tw. 

Suppose there are no two-bridge arcs in W. Then, there are k non-bridge arcs 

in W. If the non-bridge arcs ends at marked points of W, then they are end red 

arcs. Thus, by remark 1.2.3 every non-bridge arc in W is a non-bridge arcs in 

D. Moreover, because there are no two-bridge arcs in W, there are either two 

two-bridge arcs in V or one three bridge arc in V. Thus, by Lemma 1.2.6, we 

have k + p~ = 2 where p~ is the number of non-bridge arcs in F. So, there are 

p~ = 2- k non-bridge arc in F. Renee, if k = 1, there is one non-bridge arc of D 

in F and so also one non-bridge arc of D in W. If k = 2, then both non-bridge 

arcs of D are in W. 

Suppose there is a two-bridge arcs in W. Th en, there are k + 1 non bridge arcs 
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in W. Because we have a 2-non-bridge diagram, k = 1 and both non bridge arcs 

of D are in W. D 

Therefore, by the previous two lemmas we have the following. 

Lemma 2.3.6. Let D be a non-split 2-non-bridge link diagram, a an arc in D 

and G(D, a) the blue and red graph of a. Suppose there is at least one connected 

component FJ in ur Then, there is at least one non-bridge arc of D in Ui. Hence, 

there is at least one non-bridge arc of D that is red. 

Proof. By the previous two lemmas, there is at least one non-bridge arc of D in 

W. However, by definition of W, if an arcis in W, it will also be in Ui. Thus, there 

is at least one non-bridge arc of D in Ui· Renee, there is at least one non-bridge 

arc of D that is red. D 

The following lemma shows the importance of the non-bridge arcs and will also 

be key in the construction of the Wada semi-directed graph. 

Lemma 2.3. 7. Let D be a 2-non-bridge non-split link diagram. If n(D) is left­

orderable, th en the two non- bridge arcs ak and az are the extrema among the 

generators of n(D) with respect to any left arder on n(D). 

Proof. Let < be a left order on n(D). If all a/s are equals, then ak and az are 

extrema. We now look at the case where not alla/sare equal. 

Suppose that neither ak nor az are extrema. We have a finite number of ai, thus 

there is a maximum aJ. But aJ is not a non-bridge by hypothesis, therefore aJ is 

at least a bridge over sorne arcs ai and am. Therefore it satisfies one of the Wada 

inequalities ai < aJ < am, am < aJ < ai or ai = aJ = am. But aJ is a maximum, 

thus we obtain ai = aJ = am. This implies that ai and am are maxima. Thus, 
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every arc that goes un der a maximum arc, becomes a maximum arc. Moreover, 

if two maximum arcs ai and am go under an arc ap, then it satisfies one of the 

Wada inequalities ai < ap < am, am < aP < ai or ai = ap = am. But ai and am 

are maxima, thus we obtain ai = aP = am. Therefore, every arc that goes over 

two maxima becomes a maximum. 

So, we can construct the blue and red graph of a1, G(D, a1). By Lemma 2.3.3, 

there are at most two connected components ( F1, a1) in ( uic, a1). 

Suppose there is no connected component (F1, a1) in (Uic, a1). Then, every arcis 

red and so every arc is a maximum and the proof is over. 

Now, suppose there is at least one connected component. By Lemma 2.3.6, there 

is at least one non-bridge arc in Ui and so at least one red non-bridge arc. So, 

there is at least one non-bridge arc that is a maximum. 

We now suppose that at least one of ak or az is an extremum. without loss of 

generality suppose that ak is a minimum. We have a fini te number of ai, th us 

there is a maximum a1. If a1 = az, th en the proof is over. If a1 = ak, th en ak is a 

maximum and a minimum and so all the ai's are equals and the proof is done. 

Now suppose a1 is not a non-bridge. Therefore a1 is at least a bridge over sorne 

arcs ai and am. So, we can construct the blue and red graph of a1, G(D, a1). By 

Lemma 2.3.3, there are at most two connected components F1 in uic. 

Suppose there is no connected components ( F1, a1) in ( uic, a1). Th en, all the arcs 

are red and so all arcs are maxima and the proof is complete. 

Now suppose, there is at least one connected component. By Lemma 2.3.6, there 

is at least one non-bridge arc in Ui and so at least one red non-bridge arc. So, 

there is at least one non-bridge arc that is a maximum. If ak is also the maximum, 
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th en all the ai are equals and the proof is over. If a1 is the maximum, th en the 

proof is finished. 

D 

The following result illustrates the reason why we've constructed the Wada ratio­

nal graph from the coarse Wada rational graph. 

Lemma 2.3.8. Let D be a 2-non-bridge non-split diagram with a 1-tangle T with 

only one non-bridge arc ai in D and such that neither marked point goes over 

some arcs in D \ T. If w(D) is left-orderable, then ai = ak for every ak ET. 

Proof. The arc ai is a non-bridge arc in D by hypothesis. Th us, by Lemma 2.3. 7, 

without loss of generality, we can suppose that ai is a maximum of D. There must 

be an aj which is the minimum in T. We construct the red and blue graph of 

G(D, aj)· The connected region RG(D, aj) must be included in T because neither 

marked point goes over sorne arcs in D \ T. 

If there is no connected component F, th en ai is a maximum and a minimum and 

so ai = ak for every arc in D. 

Suppose there is at least one connected component F. By Lenunas 2.3.4 and 2.3.5, 

there is a least one non-bridge arc in Ui and so at least one red non-bridge arc in 

Ui n RG(D, aj)· But, RG(D, aj) is included in T and the only non-bridge arc in 

Tisai. Thus, ai is a minimum in T and so ai = ak for every ak ET. 

D 
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2.3.2 Wada rational groups and the Graph group 

Let G(r1(D),d) be a coarse Wada rational group. We recall, that if there is no 

1-tangle T with only one non-bridge arc in D and such that neither marked point 

goes over sorne arcs in D \ T, th en G (r ( D), d) = G (r 1 ( D), d) is defined as a W a da 

rational group and by Lemma 2.2.5, it is equal to the Graph group. 

Suppose there is a 1-tangle T with only one non-bridge arc in D and such that nei­

ther marked point goes over sorne arcs in D\T. Then a Wada rational set of gener­

ators S (r ( D), d) is defined as the set that con tains every genera tor of S (r 1 ( D), d) 

except for the rational tangle Xi included in T. Moreover, a Wada rational group 

G(r(D), d) is defined as the subgroup of n(D) generated by S(r(D), d). 

We can now prove Lemma 2.3.9. 

Lemma 2.3.9. Let D be a 2-non-bridge non-split link diagram. Suppose that 

n(D) is left-orderable. Then, the Wada rational group G(r(D), d) is equal to the 

Graph group G(D). 

Proof. If there is no 1-tangle T with only one non-bridge arc ai in D and such that 

neither marked point goes over sorne arcs in D\T, then G(r(D), d) = G(r1 (D), d) 

and by Lemma 2.2.5, G(r(D), d) is equal to the Graph group. 

Suppose there is a 1-tangle T with only one non-bridge arc ai in D and such that 

neither marked point goes over sorne arcs in D \ T. Let S(r(D), d) be the set of 

generators obtained from S(r1 (D),d). By Lemma 2.3.8, ai= aj for every ai and 

aj in T. Thus, for every ai that goes over aj in T, we have a-; 1aj = 1. Therefore, 

Xi = 1 for every rational tangle Xi in T. Th us, G (r ( D), d) = G (r 1 ( D), d). Renee, 

by Proposition 2.2.5, G(r(D), d) is equal to the graph group G(D). D 
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2.4 From the Wada rational Graph to the directed Wada graphs and directed 
Wada group 

Let D be a non-split link diagram with m rational tangles. From the coarse Wada 

rational graph, we have 4m groups that are equal to the Graph group. By the 

end of this chapter, we will find group su ch that all the genera tors are less than 

or equal to 1 when we suppose 1r(D) left-orderable. To do so, we will construct 

directed Wada graphs. 

2.4.1 From the Wada rational Graph to the directed Wada graphs 

We now give a few lemmas linking left-orders and rational tangles. First, we need 

a result on twist tangles. Let X be an ~-twist tangle, we recall that we obtain 

the following Wada graph. 

• • • ~ X ~r----~x~--~~ 

Figure 2.20 Wada graph of the ~-twist 

We note that the Wada relations give us a11a2 = a2 1a3 = ... = a;1ai+I = ... = 

a~~ 1 an+2· Moreover, a1 and an+2 are the non-bridge vertices of X. 

Lemma 2.4.1. Let X be an ~-twist tang le as in Figure 2. 20 in a link diagram D. 

Suppose there is a left-order < on 1r(D), then either ai ::::; ai for 1 :::; i ::::; j ::::; n + 2 

or ai ::::; ai for 1 ::::; i :::; j :::; n + 2. 

Proof. Because we have a left-order on 1r(D), either a11a 2 ::::; 1 or a1 1a2 2: 1. 

If a11a2 ::::; 1, then by the Wada equation a;1ai+l ::::; 1 for 1 ::::; i < n + 2. Thus, 

again because of the left-order, ai+l ::::; ai for 1 ::::; i < n + 2. 
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If a11a 2 2: 1, then by the Wada equation a;1ai+l 2: 1 for 1 ~ i < n + 2. Thus, 

again because of the left-order, ai+l 2: ai for 1 ~ i < n + 2. D 

Let X be a rational tangle with X 1 , X 2 , ... , Xm as maximal twists tangles as in 

the following figure. 

x 

- - - - - - - - - - - -

::x=%~~·~ 
- - - - - - - - - -

...... ···· 
········· .. · 

.. ... 

... ... .. ·· 

• •• 

Figure 2.21 Rational tangle diagram 

········································ .... 

············ ... ·Xiii··· ······· ... 

.. ·········· ·········· ... 

Lemma 2.4.2. Let X = [nm, ... , n 1] be a rational tangle as in Figure 2.21 in a 

link diagran D. Suppose there is a left-order < on n(D), then either ai ~ a1 for 

1 ~ i ~ j ~ (I:;:=l nk) + 2 or aj ~ai for 1 ~ i ~ j ~ L~1 nk. 
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Proof. Let X 1 be the leading maximal twist tangle of X. Then, by Lemma 2.4.1, 

either ai :s; aJ for 1 :s; i :s; j :s; n 1 + 2 or aJ :s; ai for 1 :s; i :s; j :s; n 1 + 2. Without 

loss of generality, suppose that ai :s; aJ for 1 :s; i :s; j :s; n 1 + 2. Thus, in the second 

maximal twist tangle X 2 of X, a2 :s; an+2 . Therefore, a~~2a2 :s; 1 and by a similar 

argument as in Lemma 2.4.1, ai :s; aJ for 1 :s; i :s; j :s; n 1 + n 2 + 2. 

Suppose that the result is true for the first k maximal twist tangles Xk of X. 

D 

Suppose 1r(D) is left orderable and < is the left-order on 1r(D). Let Xi be an 

undirected rational tangle ~ with open vertices ai, a1, ak, az as in figure 2.22. 

Figure 2.22 Undirected rational tangle Xi 

By Lemma 2.4.2, we have the following result. 

Lemma 2.4.3. Let D be a 2-non-bridge diagram and Xi be an undirected rational 

tangle P. as in Figure 2.22. Suppose 1r(D) is lejt orderable and< is the left-order on 
q 

1r(D). Then, for the order between the vertices, we either have ai :s; a1 :s; ak :s; az 

Suppose that the left order gives us ai :s; a1 :s; ak :s; az. Then, we orient the edges 

as follows. 



63 

G) ( x;>-q 

Figure 2.23 Directed rational tangle Xi 

While for the left order ai 2:: aj 2:: ak 2:: az, we orient the edges as follows. 

x;>-9) @ 
Figure 2.24 Directed rational tangle Xi 

We orient every rational tangle this way following the left-order <and we obtain a 

directed Wada graph (r(D), <). Thus, for every left-order < we obtain a directed 

Wada graph (r(D), <). 

2.4.2 From a directed Wada graph to the directed Wada group 

We will now show how from (r(D), <), a directed Wada graph from <, we can 

obtain a group equal to the Graph group for which each generator is less than or 

equal to 1 with respect to <. Let D be a link diagram with m rational tangles, 

r(D) the Wada rational graph and (r(D), <) a directed Wada graph. Recall that 

there are 4m-i Wada rational groups G(r, d) where i is the number of rational 

tangle in 1-tangle T with only one non-bridge arc in D and such that neither 

marked point goes over sorne arcs in D \ T. A directed Wada group G(r(D), <) 

will be one of the Wada rational group G(r, d) such that all the generators are 

less than or equal to 1. 

We will first construct the directed Wada set of generators S(r(D), <). If Xi is 

in a 1-tangle T with only one non-bridge arc in D and such that neither marked 

point goes over sorne arcs in D \ T, then Xi is not included in S(r(D), <). Let 
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Xi be a rational tangle that is not in a 1-tangle T with only one non-bridge arc 

in D and such that neither marked point goes over sorne arcs in D \ T. Then, we 

recall that we have four possibilities for the generator Xi in a \Vada rational set 

of genera tors. From the order <, we will choose only one. Let Xi be the leading 

maximal twist tangle of Xi and ak and az be the non-bridge vertices of Xi. Th en, 

in a Wada rational set of generators, either Xi = a;1as, Xi = a-;1ak, Xi = a[1at 

or Xi = af:1az for the arcs as and at that goes over the arcs ak and az respectively 

in Xi. Because Xi is a leading maximal twist tangle of Xi, at least one of ak and 

az is also a non-bridge of the rational tangle Xi· 

Suppose there is only one of ak or az that is a non-bridge of the rational tangle 

Xi. Without loss of generality, suppose that ak is a non-bridge of Xi· Then, 

ak :s; ak1 :s; ak2 ::; ak3 or ak 2::: ak1 2::: ak2 2::: ak3 where ah, ak2 , ak3 are the other 

open vertices of Xi. If ak :s; ak1 ::; ak2 :s; ak3 , then, by Lemma 2.4.2, ak :s; aj 

for every arc aj in the rational tangle Xi. So, in particular, ak :s; as. Renee, 

a-;1ak :s; 1. Thus, we define Xi = a-;1ak :s; 1. If ak 2::: ak1 2::: ak2 2::: ak3 , then we 

define xi = a;1as :s; 1. 

If both ak and az are non-bridge of Xi, th en look at the great er one with respect 

to <. For example, if ak 2::: az, then ak 2::: as and we define Xi = a; 1as ::; 1. 

Renee, S (r, <) = S (r, d) for one of the possible choice d. We define the directed 

Wada group G(r, <) as the subgroup of 1r(D) generated by S(r, <). Renee, 

G(r, <) = G(r, d). So, by Lemma 2.3.9, G(r(D), <) is equal to the group G(D). 

Moreover, by the previous construction, the generators of G(r(D), <) are less 

than or equal to 1 with respect to <. Therefore, we have the following result. 

Lemma 2.4.4. Let D be a link diagram and r(D) be the Wada rational graph. 

Suppose that < is a le ft order on the Wada group 1r( D). Then, the directed 

Wada group G(r(D), <) is a group equal to the Graph group G(D) such that 

1 

1 
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each genera tor is less than or equal to 1 with respect to <. 

Two different left-orders can give us the same directed Wada graph. 

Definition 2.4.5. Let D be a link diagram and f(D) be the Wada rational 

graph. Suppose that <A and <B are two left-orders on the Wada group 1r(D). If 

(f(D), <A) = (f(D), <B), then we say that the left-order <A and <B are Wada 

equivalent. 

Two different left-orders that give the same directed Wada graph, will give the 

same directed Wada group, because the directed Wada group is defined from the 

directed Wada graph. 

Lemma 2.4.6. Let D be a link diagram and f(D) be the Wada rational graph. 

Suppose that <A and <B are iwo left-orders on the Wada group 1r(D). If <A and 

<B are Wada equivalent, then G(f(D), <A)= G(f(D), <B)· 





CHAPTER III 

NARROWING THE NUMBER OF POSSIBILITIES FOR THE DIRECTED 

WADA GRAPHS 

In this chapter, we will narrow down the number of directed Wada graphs and 

thus the number of possible left-orders on 1r(D) that are not Wada equivalent. To 

do so, we will define the semi-directed Wada rational graph. 

3.0.1 From the Wada rational graph to the semi-directed Wada rational graph 

The semi-directed Wada rational graph will only be defined for the 2-non-bridge 

diagrams D. We recall that by Lemma 2.3.7, in a 2-non-bridge diagram D, if 

1r(D) is left-orderable, then the two non-bridge arcs ak and az are extrema among 

the generators of 1r(D). Suppose that the ai are not all equal. Without loss of 

generality we suppose that ak is a minimum and az is a maximum in the left-order 

<. The non-bridge arc az is an open vertex of two different rational tangles XP 

and Xq where Xp is a % rational tangle and Xq is a J rational tangle. Thus, we 

have a Wada rational graph of the non-bridge arc az as in the following figure. 
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Figure 3.1 Wada rational graph of the non-bridge arc az 

Because az is a maximum, from Lemma 2.4.3 and the way we orient edges, we 

have the following directed Wada rational graph of the non-bridge arc az. 
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Figure 3.2 Directed Wada rational graph of the non-bridge arc az 

Similarly for the minimum ak, an open vertex of the two rational tangles Xr and 

Xs where Xr is a y rational tangle and Xs is a * rational tangle. We obtain the 

following directed Wada graph. 
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Figure 3.3 Directed Wada rational graph of the non-bridge arc ak 

When only the rational tangles of the non-bridge arcs are oriented in the Wada 

rational graph, we call this graph a semi-directed Wada rational graph. Renee, 

for a 2-non-bridge link diagram, there are exactly two semi-directed Wada ratio­

nal graphs. Moreover, in 2-non-bridge link diagrams, left-orders that have the 

same maximum among the generators of n(D) give the same semi-directed Wada 

rational graph. This motivates the following definition. 

Definition 3.0.1. Let D be a non-split 2-non-bridge link diagram. Suppose that 

< 1 and <2 are two left-orders on n(D). If < 1 and <2 have the same maximum 

among the generators of n(D), then < 1 and <2 are Wada semi equivalent. 

We continue the example of the knot 821 . 

Firstly, the diagram of 821 is a two non-bridge. We suppose that the non-bridge 

a4 is the maximum and the non-bridge a2 is the minimum. Thus, from the Wada 

rational graph we obtain the following semi-directed Wada graph of the knot 821 . 
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Figure 3.4 Semi-directed Wada rational graph of the knot 821 

For this knot, the Wada semi-directed graph gives the direction for each edge. 

Thus, a directed Wada graph. Therefore, every left-order with a4 as maximum 

on the Wada group of this link diagram of 821 gives us this directed Wada graph. 

Renee, every left-order with a4 as maximum are Wada equivalent and give a group 

equal to the Graph group. Thus, every Wada semi equivalent left-orders are Wada 

equivalent left-orders. Moreover, by Lemma 2.3. 7, all the other left-orders have 
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a2 as maximum and a4 as minimum. However, all these orders can be obtained 

by reversing the order with a4 as maximum. 

We now introduce the following knot diagram of the knot 949 . Note that this knot 

is not an arborescent knot (Caudron, 1987). 

Figure 3.5 Knot diagram of the knot 949 . 

We give a Wada semi-directed graph of the knot 949 previous knot diagram. 
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Figure 3.6 A Wada semi-directed graph of the knot 949 . 

For this Wada rational graph, there are sorne choices of orientations to make for 

sorne edges to obtain a directed graph. 

3.0.2 From the Wada semi-directed graph to directed Wada graphs 

From a 2-non-bridge link diagram D, we have shawn how to obtain the two Wada 

semi-directed graphs r'. We now recall sorne definitions in graph theory. Let F 



74 

be a directed graph. We label each of them edges from E 1 to Em. 

Definition 3.0.2. In a graph, two edges are connected if they share a common 

vertex. Two vertices are consecutive if there is an edge joining them. A cycle is 

a sequence of connected edges whose first and last vertices are the same and with 

no repeated edges or vertices ( except the first and last vertices). We will either 

refer to a cycle by listing its edges or by listing its vertices. 

Definition 3.0.3. In a directed graph, two edges are consecutive if the starting 

vertex of one is the end vertex of the other. A directed pa th in a directed gr a ph is 

a sequence of consecutive directed edges. We will refer a directed path by either 

its edges or by its vertices. 

Definition 3.0.4. A directed cycle is a directed path whose first and last vertices 

are the same and with no repeated edges or vertices ( except the first and last 

vertices). 

The next lemma shows the impact on the generators of the Graph group, of a 

directed cycle in a directed Wada graph. 

Lemma 3.0.5. Let D be a non-split link diagram. Suppose there is a left-order 

< on 1r(D) such that there is a directed cycle X~1 x;2 
••• XJj in a directed Wada 

graph. Then, X1 = X2 = ... =Xi= 1 in G(r, <). 

Proof. Without loss of generality, let x;i = a~ 1 ai2 and ai2 = a(i+lh for 1 :::; i :::; 

j -1. Moreover, because it is a directed cycle, xJj = ah1ai1 • By definition, Xiki = 

a~1 ai2 :::; 1 and xJj = a~ 1 ai 1 :::; 1 for 1 :::; i :=:; j- 1. Therefore, ai 1 :=:; aij :=:; aij-l :::; 

... :::; ai2 :::; ai1 • Thus, ah = ai2 = ... = air This implies that x;i = a~ 1 ai2 = 1 

d X kj - -l - 1 .c 1 < · < · 1 H Xk 1 - Xk2 - - xkj 1 d an i - aij ai 1 - 10r _ z _ J - . erree, 1 - 2 - ... - i = an 

D 
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We now introduce an important family of left-orders on 1r(D). 

Definition 3.0.6. Let D be a non-split link diagram. Suppose that < is a left 

order on the Wada group 1r(D). If (r, <), the directed Wada graph with respect 

to <, has no directed cycle, then < is a Wada maximal left-order on 1r(D) and 

(r, <) is a maximal W a da directed graph. 

Moreover, if there is a maximal left-order on 1r ( D), th en we say that D is a W a da 

maximal link diagram. 

If a link L has a maximal link diagram, th en we say that L is a W ad a maximal 

link. 

Note that no alternating link is Wada maximal, while every non-alternating link 

of 11 crossings or less is Wada maximal. Moreover, every non-alternating link we 

have studied is Wada maximal. 

Definition 3.0. 7. Let D be a non-split two-non-bridge maximal link diagram. 

Suppose that < 1 is a left-order on 1r(D) such that (r, < 1) has a directed cycle 

X~1 x;2 
••• x;j. Let< be a Wada semi equivalent maximal order such that (r, < 1) 

can be obtained from (r, <) by reversing the order of sorne edges included in the 

directed cycle X~1 x;2 
••• x;j. By Lemma 3.0.5, in G(r, <I), X1 = X 2 = ... =Xi = 

1. Thus, G(f, <1) is a subgroup of G(r, <) with X1 = X 2 = ... = Xi = 1. We 

define < 1 has a Wada suborder of<. Also, we define (r, < 1) as a Wada subgraph 

of (r, <). 

If we prove that G(r, <) is trivial, then G(r, < 1) is trivial for every suborder < 1 

of<. 

We now return to the semi-directed graphs of 949 . 
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Figure 3.7 A Wada semi-directed graph of the knot 949 . 

Suppose that < is a left-order of w(D) with a9 as maximum of the generators 

of 1r(D) and such that in the directed Wada graph the edge X 3 goes from a2 to 

a7. Then, we also have the direction from a7 to as. Thus, we have the directed 

cycle XjX2Xg and so X3 = X2 = X 5 = 1. Moreover, X1X3X21 is a cycle. But 

X3 = X1 = 1, therefore X1 is a directed cycle and so X1 = 1. Also, X3 = X2 = 1 

and so X 4 = 1, by the cycle passing by a7, as and a4. Finally, X4 = X 5 = 1 and 

so X6 = 1, by the cycle passing by a3, as and a4. Thus, X1 = X2 = X3 = X4 = 
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Xs = X 6 = 1 and this implies that a1 = a2 = a3 = a4 =as = a6 = a7 =as= ag. 

Th us, for this left order of 1r( D), 1r( D) is abelian. 

However, there is a Wada maximalleft-order for this link diagram. Suppose that 

< is a left-order of 1r(D) with ag as maximum of the generators of 1r(D) and such 

that in the directed Wada graph, the edge X 3 goes from a7 to a2 and so from as 

to a7 . Th us, because as goes to a7 and a7 goes to a6 , th en as goes to a6 and we 

have a direction for the edge X 6 . This implies that a6 goes to as and as to a3 . 

Moreover, a7 goes to a6 that goes to as. Therefore, a7 goes to a4 and a4 to as. So, 

the only Wada directed graph of 94g with no directed cycle up to reversing every 

edges is the following graph. 
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Figure 3.8 The only Wada directed graph of 949 with a9 as maximum 

3.0.3 Directed link diagrams 

In this thesis, we will suppose that there is a left-order on 1r(D) and find the 

maximal Wada directed graphs. The information from the maximal Wada directed 

graphs on the left-order will often be enough to prove the desired results. 

We now introduce an important family of link diagrams. 

Definition 3.0.8. Let D be a Wada maximal 2-non-bridge link diagram. If every 
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semi-equivalent Wada maximalleft-orders are Wada equivalent, then Dis directed. 

ln other words, let < be a Wada maximal left-order with ai as maximum be­

tween the generator of n(D). If for every Wada maximalleft-order <j with ai as 

maximum between the generator of n(D), we have (r, <) = (r, <j), then D is 

directed. 

We will call a Wada maximal2-non-bridge link diagram that is directed, a directed 

link diagram. 

Remark 3.0.9. Thus, a directed link diagram has only one directed Wada graph 

without directed cycles up to reversing the direction of every edges. 

Note, that the choice of the maximum between the non-bridge arcs of the link 

diagram in the definition do es not matter. We can take the reverse or der and 

obtain the same result with the other arc as maximum. 

Definition 3.0.10. Let L be a link. If L has a directed link diagram, then L is 

directed. 

Thus, the knot 821 and 949 are directed knot. 

Remark 3.0.11. It is interesting to note that on the 220 non-alternating 2-non­

bridge knots of 11 or less crossings, 158 are directed. 





CHAPTERIV 

DIRECTED WADA GRAPHS AND NON-LEFT-ORDERABILITY OF THE 

FUNDAMENTAL GROUP OF THE DOUBLE BRANCHED COVERS OF 

SOME LINKS 

At the beginning of chapter 2, in Theorem 2.0.3, we have proved that if we suppose 

that the Wada group is left orderable and if we find that the Graph group is trivial, 

then the fundamental group of the double branched cover is not left-orderable. 

However, in most cases it is difficult to show that the Graph group is trivial. In 

this short section, we will prove that it is enough to show that for every directed 

Wada graph of a link diagram, the directed Wada group is trivial. In the following 

chapters, we will find links that satisfy this condition. 

To get this result, we need the following lemma. 

Lemma 4.0.1. Let D be a maximal 2-non-bridge diagram of a non-split link and 

suppose that 1r(D) is left-orderable. If for every maximal directed Wada graph 

(r, <), the directed Wada group G(r, <) is trivial, then 1r(D) is abelian. 

Proof. Let <1 be a left-order on 1r(D) that is not maximal. Therefore, (r, < 1 ) is 

the subgroup of (r, <) for < a maximalleft-order. By hypothesis, (r, <) is trivial, 

thus (r, <1) is trivial. So, for every left-order <, (r, <) is trivial. 

Let < be a left-order on 1r(D). Then G(r, <) is trivial. So, by Lemma 2.4.4, the 
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Graph group G(D) is trivial with respect to the left-order <. Thus, by Lemma 

2.0.2, 1r(D) is abelian. D 

Therefore, by Proposition 1.0.6 and the previous lemma, we have 

Theorem 4.0.2. Let D be a maximal 2-non-bridge diagram of a non-split link L 

and suppose that w(D) is left-orderable. If for every directed Wada graph (r, <), 

the directed W a da group G (r, <) is trivial, th en 1r 1 ( ~ ( L)) is not le ft orderable. 

For directed link diagram, there is only one directed Wada graph up to reversing 

every edges. Moreover, directed link diagram are maximallink diagram, thus we 

have the following result. 

Corollary 4.0.3. Let D be a 2-non-bridge directed diagram of a non-split directed 

link L and suppose that 1r(D) is left-orderable. If a directed Wada group G(r, <) 

is trivial, then 1r1 (~(L)) is not left orderable. 



CHAPTER V 

HYBRID WADA DIAGRAMS AND RELABELING OF THE VERTICES IN A 

DIRECTED WADA GRAPH 

In this chapter, we will combine the Wada rational graph and the link diagram 

to obtain the hybrid Wada diagram. Moreover, we will relabel the vertices of 

the directed Wada graph. Both constructions will help us for the proofs in the 

following chapters. 

5.1 The Hybrid Wada diagram 

The hybrid Wada diagram H(r) is obtained by combining the Wada rational 

graph r of a link diagram with the link diagram. Let D be a connected diagram 

of a link and r a Wada rational graph. To construct the hybrid Wada diagram 

H(r), we replace each rational tangle in the link diagram by the Wada rational 

graph of the tangle. For example for the knot 821 diagram 
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~3 

..... 

Figure 5.1 Knot diagram of 821 

and the Wada rational graph of the rational tangles 

~----~Jf~1----,~r------~xT1----~~~-------x~1 ----~~ 

~~--~xM3_2 __ ~~~------~x~3----~~~-------x~3~2~--~~ 

we obtain the following hybrid Wada diagram where the white dots represent non­

bridge arcs in the rational tangle and the black dots re present 1-bridge arcs in the 

rational tangle. 
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Figure 5.2 Hybrid Wada diagram of 821 

Moreover, from a directed Wada graph (r, <), we can obtain a directed Hybrid 

Wada diagram H(r, <). For the direction of the rational tangles in H(r, <), we 

choose the direction of each rational tangle in the directed Wada graph (r, <). 

We continue the example of the knot diagram 821 . Thus from the directed Wada 

graph (r, <) 
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Figure 5.3 directed Wada graph of the knot 821 

we obtain the following directed Hybrid Wada diagram 
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Figure 5.4 Directed Hybrid Wada diagram of 821 

Also, inspired by Lemma 2.3.8, we replace every 1-tangle T with only one non­

bridge arc in D such that neither marked point goes over sorne arcs in D \ T by 

a single non-bridge arc as in the following diagram. As shown in Lemma 2.3.8, 

all the arcs in T are equal, therefore for the new non-bridge arc we choose an 

arbitrary arc in T. 

T 

to 
a. 

1 

Figure 5.5 From a 1-tangle T with only one non-bridge arc in D such that neither 
marked point goes over sorne arc in D \ T to a single non-bridge arc 
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5.2 Relabeling of the vertices in a directed Wada graph 

In this short section, we will relabel the arcs of the link diagram to facilitate the 

writing of proofs in the following chapters. 

First, we need to introduce the "simplest" directed path in a directed Wada graph. 

Recall, that two vertices are consecutive if there is an edge joining them. 

Definition 5.2.1. Let (r, <) be a directed Wada graph of a link diagram D. If 

ai :::; aj are consecutive and there is no ak in (r, <) su ch that there is a directed 

pa th from aj to ai passing by ak, th en ai and aj are W a da consecutive. Moreover, 

the edge joining ai and aj is called a fiat edge. Let P = {aj, ... , ai} be a directed 

path from aj to ai. If every consecutive vertices in P are Wada consecutive, then 

P is a directed W a da pa th. Equivalently, if every edge in a directed pa th P is a 

fiat edge, then P is a directed Wada path. 

Let (r, <) be a directed Wada graph of a 2-non-bridge link diagram D with n 

vertices. There is a partial order <cr,<) on the vertices induced by the directed 

Wada graph. A vertex ai is grea ter than aj with respect to <cr,<), if there is a 

directed Wada path from ai to aj. If < 1 is Wada equivalent to <, then (r, < 1) = 

(r, <). Thus, if ai <cr,<) aj, then ai < 1 aj for every left-order < 1 Wada equivalent 

to <. If there is no order between ai and aj with respect to <cr,<), then the order 

between ai and aj can vary from different Wada equivalent left-orders. 

\Vith this in mind, we will relabel the vertices ai so that the indices of the vertices 

will give us the partial order <cr,<)· In other words, if j 2::: i, then aj >cr,<) ai. 

From now on, we will use < for <cr,<)· 

Recall from Lemma 2.3.7, that the two non-bridge arcs are the maximum and the 

minimum between the generator of the Wada group. So, we first relabel the two 
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non-bridge arcs a1 and an where anis the maximum and a1 is the minimum. 

Let Q be the set of directed Wada paths from an to a 1 in (r, <). We will be 

interested in the paths with the maximum number of edges. 

Suppose there is a directed Wada path P with more edges than any other paths in 

Q. If there is more than one, choose one of the maximum orres. We call the vertices 

on P the principal vertices and the vertices not on P the secondary vertices. A 

secondary path is a directed Wada path that starts and ends on principal vertices, 

but for which all other vertices are secondary vertices. We relabel the principal 

vertices by recursion as follows. Let an still be an. Let ai be a relabelled principal 

vertex. Then, the following Wada consecutive vertex on P will be relabelled ai-k 

where k is the number of secondary vertices included in any secondary path that 

end at ai-k· 

For example, the knot diagram 821 has no secondary vertices. Therefore, we relabel 

the vertices in the directed Wada graph of the knot 821 as follows. 
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Figure 5.6 Directed Wada graph of 821 with the vertices relabelled 

Once we have relabelled the vertices in the directed Wada graph, we relabel the 

correspondant arcs in the Hybrid Wada diagram and the link diagram. 
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Figure 5. 7 Hybrid directed Wada diagram of 821 with the arcs relabelled 

We will now relabel the secondary vertices for a directed Wada graph with sec­

ondary vertices. The indices of the secondary vertices will have two components 

(A, B). Let ak be a secondary vertex. If ak is such that there are no greater Wada 

consecutive secondary vertices, then A= i where ai is the smallest principal ver­

tex whose greater than ak. Similarly, if ak is such that there are no smaller Wada 

consecutive secondary vertices, then B = j where ai is the greatest principal ver­

tex wh ose smaller than ak. Let ai be a secondary vertex not already relabelled 

and with a greater Wada consecutive secondary vertex a(A,B) already labelled. 

Then A for ai is equal to (A, B)i where ai is the smallest consecutive principal 

vertex whose greater than ai and B = l where where at is the greatest consecutive 

principal vertex whose smaller than ai. Thus, ai is relabelled a((A,B)i,j). 

The diagram of the knot 949 has a secondary vertex. We relabel the vertices in 

the directed Wada graph of the knot 949 as follows. 
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Figure 5.8 Directed Wada graph of 821 with the vertices relabelled 

Note that the relabeling of the vertices is not unique when there is at least one 

secondary vertex. We relabel the vertices this way in the directed Wada graph, 

because we want from the label of the vertices to know which one is greater in 

the order given by (r, <). Thus, if we have ai and aj and j 2: i, then aj 2: ai. If 

we have a(i,k) and aj with j 2: i, then a(i,k) :::; aj. If we have a((i,j)k,l), as and at 

where l 2: s and t 2: k, then at 2: a((i,j)k,l) 2: as. However, if we have a((i,j)k,l) and 

as where s 2: l and k 2: s, then there is no order between a((i,j)k,l) and as. 
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Th us, only by the labels of two vertices ai and aj, we can know which one is 

greater than the other or if we do not have an order between them. If we do not 

have an order between them, we will say that ai and aj are parallel vertices. 

Remark 5.2.2. From now on, we will allow a slight abuse of notation. When we 

will say that we have aj and ai with j 2 i, we will mean that aj 2 ai but not 

necessary that ai and aj are principal vertices. 





CHAPTER VI 

THE IMPACT OF A TRIVIAL EDGE IN A DIRECTED WADA GRAPH 

For the remainder of the thesis, we suppose that the links are 2-non-bridge links. 

In this section, we will prove Theorem 6. 7. 7 which states that if an edge is trivial 

in a directed Wada graph (r, <) of a directed link diagram, then G(r, <) is trivial. 

Thus, combining this result with Corollary 4.0.3, we will obtain Theorem 6. 7.8, 

which plays a central role in proving that the fundamental group of the double 

branched cover of certain family of links is not left-orderable. 

6.1 Wada natural paths and Wada directed cycles 

Let D be a link diagram and f(D) the Wada rational graph. In the hybrid Wada 

diagram H(r), if there is a continuous path from an arc to another arc without 

passing twice over the same arc, we say that there is a W a da pa th between the 

two arcs. In a Wada path, if the continuous path passes from an arc ai to an arc 

a1, then we say that ai and a1 are consecutive. Consecutive arcs are joined by an 

edge in the Wada rational graph. If there is a non-trivial Wada path from an arc 

ai to itself, th en we define this pa th to be a W a da cycle. 

We now fix a directed Wada graph (r, <) for the link diagram D. We will say 

that the Wada path P = {ai, .. , az, ... ,am} is a Wada directed path if it satisfies the 

following two conditions. First, ai :S ... :S az :S ... :S am or ai ~ ... ~ az ~ ... ~ am. 
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Secondly, for every pair of consecutive arcs ai and aj in P su ch that ai :::; aj, there 

is no arc ak in H(f, <) such that there is a directed path from aj to ai passing 

through ak. \Ve call ai and aj W a da consecutive arcs. Also, we call the edge 

joining ai and aj in the directed Wada graph a fiat edge. 

Remark 6.1.1. Note that a path P in an hybrid Wada directed diagram is a 

Wada directed path if and only if it is a Wada directed path in the directed Wada 

graph as defined in Definition 5.2.1. 

For example, in the Hybrid Wada directed diagram of the knot 821 , P = {a3 , a4 , a5 } 

is a Wada directed path. 

Figure 6.1 A Wada directed path in the knot 821 

Definition 6.1.2. Let a rational tangle give us the following Wada rational graph 
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We define X to be the edge of the rational tangle, a 1 and a3 to be the final vertices 

of the rational tangle X and a2 and a4 to be middle vertices of the rational tangle 

X. Moreover, we define the final arder of X to be q, the middle arder of X to be 

p - q, the compose arder of X to be q + p - q = p and the total arder of X to be 

2q + p- q = p + q. 

A word w (Y1 , ... , Yn) is defined as 

where 1 ::; ij ::; n, kij 2 0 and Eij = ±1. We will say a word w(Y1 , ... , Yn) is 

positive if Eij = 1 for every ij. 

Definition 6.1.3. We use the notation w+(X1 , ... , Xn) to signify a positive ward. 

Let (r, <) be a directed Wada graph. If we have a Wada directed path P = 

{ai, .. , al, ... , am}, where am is an arc of a rational tangle containing ai, then P' = 

(ai, .. , al, ... , am, ai) is called a Wada directed cycle. Moreover, every Wada directed 

cycle C = (ai, ... , am, ai) in H(r, <) gives a relation X!;k = w+(X1 , ... , Xn) in 

G (r, <) where x;;k is the edge or edges from the rational tangle containing am 

and ai and w+(X1 , ... , Xn) is a positive word coming from the Wada directed path. 
k· 

We say that Xk is the caver edge of C. Moreover, for w+(X1 , ... , Xn) = II.f=oxi;j, 

Xim is defined as the right edge of C and Xia is defined as the lejt edge of C. 

Furthermore, Xim-j is defined as the (j + 1) -right edge of C and Xij is defined as 

the (j + 1)-left edge ofC. 

Definition 6.1.4. We say that a cover edge Xk is a minimal caver edge if mk is 

of minimal or der, X k is a maximal co ver edge if mk is of maximal or der, X k is a 

total caver edge if mk is of total order and Xk is a compose caver edge if mk is of 
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compose order. Moreover, we say that Xk is a simple caver edge, if it is either a 

minimal or maximal cover edge. 

In the example of figure 6.1, a3 and a5 are in the same rational tangle X 1 , therefore 

P' = ( a3, a4, a5 , a3) is a Wada directed cycles. 

Figure 6.2 A Wada directed cycle in the knot 821 

From this Wada directed cycle, we obtain the relation X 1 = XjX? where X 1 is 

the minimal cover edge of P'. 

Lemma 6.1.5. Let (r, <) be a directed Wada graph of a 2-non-bridge link dia­

gram. Then, for every vertex ai, there is a Wada directed path from ai to a1 and 

from an to ai. 

Proof. If ai is a principal vertex, then by definition of principal vertices, there is 

a Wada directed path from an to ai. 
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If ai is a secondary vertex, then there is a secondary path from a principal vertex 

ai to ai. Thus, there is a Wada directed path from ai to ai. Also, because ai is 

a principal vertex, there is a Wada directed path from an to aj. Therefore, by 

joining these Wada directed paths, there is a Wada directed path from an to ai. 

Similarly, we can find a Wada directed path from ai to a1 . 0 

6.2 Results obtained from the Wada directed cycles 

We will show that Wada directed cycles give us important information about the 

directed Wada graph. 

Let C = (ai, ... , az, ... ,am, ai) be a Wada cycle. First, note as in Figure 6.2 that C 

is a closed curve homeomorphic to 5 1 in JR2 . We say that ai is on C if ai E C. 

We will say that ai is inside C, if ai is inside C in 1R2
. Similarly, we will say that 

ai is outside C, if ai is outside C in JR2
. 

Lemma 6.2.1. Let (r, <) be a directed Wada graph of a 2-non-bridge link diagram 

and C = (ai, ... , ai, ai) be a W a da directed cycle with i < j. If ak is inside C and 

k < i ( resp. k > j), th en the re is no W a da directed pa th from ak to any arc am 

with m < i ( resp. m > j) outside of C. 

Proof. Suppose k < i. Suppose there is a Wada directed path P from ak to am. 

Because ak is inside C and am is outside C, P must pass by C. So, there must 

be an arc az of the cycle C with l ~ i > k and l ~ i > min P. Thus, we have 

P = (ak, ... , az, ... ,am)· This is not a Wada directed path, because ak ~ az ~am. 

Similarly for k > i. 0 

There is an important family of Wada directed cycles. 
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Definition 6.2.2. Let C be a Wada cycle in a directed Wada graph. If there is 

a maximum arc (resp. a minimum arc) in C, then we say that C is a max (resp. 

min) primary cycle. 

If there is no maximum arc and no minimum arc inside C, th en we call C a 

secondary cycle. 

If there is a maximum arc (resp. minimum arc) outside of C, then we say that C 

is an outside max {resp. min) primary cycle. 

If C is max (resp. min) primary and outside min (resp. max) primary, then C is 

called a dichotomie cycle. 

Dichotomie Wada directed cycles will be instrumental in showing that the directed 

Wada group is trivial if a generator is trivial. 

Using Lemma 6.2.1, we get the following useful results about Wada directed cycles. 

Corollary 6.2.3. Let (r, <) be a directed Wada graph of a 2-non-bridge link 

diagram and C = (ai, ... , aj, ai) be a W a da directed cycle with i < j. If ak is 

an arc inside C such that k < i, then a1 is inside C and so C is min primary. 

Similarly, if ak is an arc inside C such that k > j, then an E C and so C is max 

przmary. 

Proof. By Lemma 6.1.5, there is a Wada directed path from ak to a 1 . Thus, by 

Lemma 6.2.1, a1 can't be outside C. 1v1oreover, a1 ::; ak ::; ai, so a1 is not on C. 

Therefore, a 1 is inside C. 

The proof is similar for the max primary case. D 

Similarly, 
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Corollary 6.2.4. Let (r, <) be a directed Wada graph of a 2-non-bridge link 

diagram and C = (ai, ... , aj, ai) be a W a da directed cycle with i < j. If ak is 

an arc outside C such that k < i, then a1 is outside C and so C is outside min 

primary. Similarly, if ak is an arc outside C such that k > j, then an is outside 

C and so C is outside max primary. 

With the previous results we can obtain information about cycles in the directed 

Wada graph. 

Definition 6.2.5. Let (r, <) be a directed Wada graph of a 2-non-bridge link 

diagram and C = (ak, ... ,ai, ak) be a Wada directed cycle with k > i that gives 

the relation X":s = x;nt ... X;_;-u. If Xs is a rational tangle that also has an edge 

from az to ak with l > k, then C is a high tail Wada directed cycle. 

Similarly, if Xs is a rational tangle, that also hasan edge from az to ai with l < i, 

th en C is a low ta il W a da directed cycle. 

We now show that a high and law tail Wada directed cycle is dichotomie. 

Lemma 6.2.6. Let (r, <) be a directed Wada graph of a 2-non-bridge link diagram 

D. If C = (ak, aj, ... , ak-i, ak) with k > j > k-i is a high and low tail Wada 

directed cycle with X the caver edge from the rational tangle with the vertices 

a9 , a k-i, ak and az. Th en, C is a dichotomie W a da directed cycle. 

Proof. If C is a high and law tail Wada directed cycle, then we have the following 

subgraph in the directed Wada graph, 
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a} 

a k-i 

ag 

and thus the following two possible subdiagrams in the hybrid Wada diagram 

or 

In the left case, ag :=:; ak-i and ag is inside C. Therefore, by Corollary 6.2.3, C is 

min primary. Moreover, az is outside C and az 2: ak. Thus, by Corollary 6.2.4, C 

is max outside primary. So, C is a dichotomie Wada directed cycle. 

The proof is similar for the right case. D 
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6.3 From Rational tangles in the Wada rational graph to Rational tangles in 
the Hybrid Wada diagram and the introduction of Thorns 

This is a technical section. We will differentiate the different part of arcs that go 

inside or outside a Wada cycle. Let C be a Wada cycle and X a rational tangle 

on C. If there is an arc ai that is a bridge in X and that goes inside C, th en 

the part of ai in X is an inside principal thorn. Suppose there is an arc aj that 

is not a bridge in X and that goes inside C. Then, if there is an inside principal 

thorn from X in C, th en aj is an inside secondary thorn. Moreover, if there is no 

inside principal thorn from X in C, th en aj is a inside tertiary thorn. We define 

similarly outside principal, secondary and tertiary thorns. 

We will now look at all possibilities for rational tangles in a Wada cycle. First, 

we look at half-twist crossings. In a cycle of the Wada rational graph we can have 

the two following possibilities. First completely included in the cycle. 

Figure 6.3 Ralf-twist crossing completely included in the Wada cycle in the Wada 
rational graph 

1 

1 

____ _j 
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Secondly, half included in the cycle. 

Figure 6.4 Ralf-twist crossing half included in the Wada cycle in the Wada 
rational graph 

The first case will look as follows in the Rybrid Wada diagram. We define this 

part of az to be a principal inside thorn. 

Figure 6.5 Ralf-twist crossing completely included in the Wada cycle in the 
Rybrid Wada diagram 

For the second case, we have two possibilities in the Rybrid Wada diagram. The 
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inside case where we define this part of al to be a principal inside thorn and this 

part of am to be a secondary inside thorn. 

Figure 6.6 The inside case of a half-twist crossing half included in the Wada 
cycle in the Hybrid Wada diagram 

The second possibility is the outside case where we define the following part of 

al to be a principal outside thorn and the following part of am to be a secondary 

outside thorn. 

Figure 6. 7 The outside case of an half-twist crossing half included in the Wada 
cycle in the Hybrid Wada diagram 

Finally, there is the half-twist case, where no edges are on the cycle C, but a 
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vertex is on the cycle: 

Figure 6.8 Ralf-twist with only a vertex included in the Wada cycle in the Wada 
rational graph 

which gives the following Rybrid Wada diagrams 

a 

t 
ai ak or aj at<: 

Figure 6.9 Ralf-twist with only a vertex included in the Wada cycle in the Rybrid 
Wada diagram 

c 
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In the case on the left, we define this part of ai to be a tertiary inside thorn and 

this part of ak to be a tertiary outside thorn. In the other case, we define this 

part of ai to be a tertiary outside thorn and this part of ak to be a tertiary inside 

thorn. 

We now look at rational tangles. There are three possibilities. First completely 

included in the cycle: 

Figure 6.10 Rational tangle completely included in the Wada cycle in the Wada 
rational graph 

which gives two possibilities for the Hybrid Wada diagram. In the case on the 

left, we define this part of ak to be a principal inside thorn and this part of aj to 

be a principal outside thorn. In the other case, we define this part of aj to be a 

principal inside thorn and this part of ak to be a principal outside thorn. 
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or 

Figure 6.11 Rational tangle completely included in the Wada cycle in the Hybrid 
Wada diagram 

Secondly, two consecutive edges included in the cycle: 

Figure 6.12 Rational tangle with two consecutive edges included in the Wada 
cycle in the Wada rational graph 
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which gives two possibilities for the Hybrid Wada diagram; the outside case to the 

left and the inside case to the right. In the case on the left, we define this part 

of aj to be a principal outside thorn and this part of al to be a secondary outside 

thorn. In the other case, we define this part of aj to be a principal inside thorn 

and this part of al to be a secondary inside thorn. 

or 

Figure 6.13 Rational tangle with two consecutive edges included in the Wada 
cycle in the Hybrid Wada diagram 

Thirdly, there are two cases for only one edge in the Hybrid Wada diagram. First, 

an end edge is in the cycle: 
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a} 

Figure 6.14 Rational tangle with only an end edge included in the Wada cycle 
in the Wada rational graph 

which gives the following Hybrid Wada diagrams. In the case on the left, we define 

this part of ak to be a principal inside thorn and this part of az to be a secondary 

inside thorn. In the other case, we define this part of ak to be a principal outside 

thorn and this part of az to be a secondary outside thorn. 

or 
r 

Figure 6.15 Rational tangle with only an end edge included in the Wada cycle 
in the Hybrid Wada diagram 
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Then, the second case is when it is the middle edge that is in the cycle: 

Figure 6.16 Rational tangle with only the middle edge included in the Wada 
cycle in the Wada rational graph 

which gives the following Hybrid Wada diagrams. ln the case on the left, we define 

this part of ai to be a tertiary inside thorn and this part of az to be a tertiary 

outside thorn. In the other case, we define this part of ai to be a tertiary outside 

thorn and this part of az to be a tertiary inside thorn. 
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or 

Figure 6.17 Rational tangle with only the middle edge included in the Wada 
cycle in the Hybrid Wada diagram 

Remark 6.3.1. Note that every time we have at least one edge in the Wada cycle 

and the other edges not on the Wada cycle, except for the middle edge case, we 

have either an inside or outside case format. Every inside case format adds two 

arcs inside the Wada cycle in the Hybrid Wada diagram, a secondary inside thorn 

and a principal inside thorn, while none outside the cycle and inversely for the 

outside case format. 

Moreover, for the rational tangles completely included in the Wada cycle, there 

is one arc inside the cycle, a principal inside thorn and one arc outside the cycle 

a principal outside thorn. We will define the family of complementary thorns 

as the family that includes the secondary and tertiary thorns. Every principal 

thorns cornes from at least a bridge arc, while complementary thorns come from 

a non-bridge part of an arc. 
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6.4 Results on Wada cycles from thorns and tertiary tangle 

Let C be a Wada cycle in a Wada rational graph. We will look at all inside thorns. 

They will be the marked points of an n-tangle which we will call the inside n­

tangle of C. Similarly, we take the outside thorns of C and form the outside 

n-tangle of C. Recall from chapter 1, that a marked point coming from an arc 

that just went under another arcis called an under marked point and a marked 

point coming from an arc that just went over another arc is called an over marked 

point. Remark, that if a complementary thorn has an under marked point, then 

it is a non-bridge arc. Moreover, if a principal thorn has an over marked point, 

then it is at least a two-bridge arc. 

We now give a series of technical results about thorns in Wada cycles. 

Lemma 6.4.1. Let D be a link diagram and C a Wada cycle in the hybrid Wada 

diagram. Then, the number of inside and the number of outside thorns of C must 

be even. 

Proof. The inside thorns form the marked points of the inside n-tangle of C. 

Therefore, there are 2n marked points. Thus, there are 2n inside thorns and so 

an even number of inside thorns. 

The proof is similar for outside thorns. 0 

Lemma 6.4.2. Let D be a link diagram and C a Wada cycle in the hybrid Wada 

diagram. If there are more inside complementary thorns than principal inside 

thorns in C, then there is a non-bridge arc of D inside C. 

Proof. Suppose there are 2n inside thorns. Thus, we have an inside n-tangle T 

of C. There are more inside complementary thorns than principal inside thorns, 
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so there are n-i principal inside thorns and n + i complementary inside thorns 

for i 2: 1. If a complementary inside thorns is an under marked point, then it is 

a non-bridge arc. 

Suppose there is no non-bridge arc of D inside C. This implies that every non­

bridge arc in T is at least a bridge arc in D. Thus, every non-bridge arc in T is an 

inside principal thorn. By Lemma 1.1.14, there are at least n non-bridge arcs in 

T. But there are only n-i principal inside thorns. Therefore, there is at least one 

non-bridge arc in T that is a complementary inside thorns. So, this non-bridge 

arc in T is a non-bridge arc in D. D 

Similarly, we can obtain the following result. 

Lemma 6.4.3. Let D be a link diagram and C a Wada cycle in the hybrid Wada 

diagram. If there are more outside complementary thorns than principal outside 

thorns in C, then there is a non-bridge outside C. 

Cycles that contains tertiary thorns will be important enough that we name this 

family of cycles. 

Definition 6.4.4. Let D be a link diagram and C a Wada cycle in the hybrid 

Wada diagram. If there is a tertiary thorn inside (resp. outside) C, then we say 

that C is inside (resp. outside) tertiary. Note that all tertiary inside thorn cornes 

from tertiary tangle and tertiary tangle also gives a tertiary outside thorn. Thus, 

we define a Wada cycle C to be a tertiary cycle, if there is a tertiary tangle on C. 

Now, let (r, <) be a directed Wada graph of a 2-non-bridge link diagram D. 

Recall that a flat edge from ai to aj with ai :::; aj is an edge such that there is 

no ak E (r, <) such that ai :::;(r,<) ak :::;(r,<) aj. The rational tangles that only 

have flat edges will add sorne difficulty in proving that the directed Wada group 

is trivial. 
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Definition 6.4.5. Let (r, <) be a directed Wada graph of a 2-non-bridge link 

diagram D. If we have a half-crossing such that both edges are flat, then this 

crossing is a fiat crossing. Similarly, for a rational tangle if every edge is flat, th en 

we say that the rational tangle is a fiat rational tangle. 

Many proofs in this chapter will be obtained by finding non-bridge arcs in Wada 

directed cycle. By Lemma 6.4.2, if there are more complementary thorns than 

principal thorns inside a Wada directed cycle C, then there is a non-bridge arc 

inside C. Thus, principal thorns will often be obstacles in proofs. We now link 

principal thorns and flat rational tangles. 

Lemma 6.4.6. Let (r, <) be a directed Wada graph of a 2-non-bridge link diagram 

D and C be a W a da directed cycle in (r, <). If X is a rational tang le th at adds 

exactly one principal inside (res p. outside) thorn in C, th en X is a fiat rational 

tang le completely included on C. 

Proof. Because X adds exactly one principal inside thorn, X is completely in­

cluded on C. Moreover, if X is not a flat rational tangle, then C is not a Wada 

directed cycle. D 

The next result shows the importance of tertiary tangle and flat rational tangle. 

Lemma 6.4. 7. Let (r, <) be a directed Wada graph of a 2-non-bridge link diagram 

D and Ca Wada directed cycle in (r, <). Suppose that C is inside (resp. outside) 

tertiary. If there is no non-bridge arc inside (resp. outside) C, then there is a fiat 

rational tang le completely included on C. 

Proof. The Wada directed cycle C is inside tertiary, therefore there is a rational 

tangle that only adds one complementary thorn inside C. Every rational tangle on 

a Wada cycle adds either one principal and one complementary inside thorns, no 



116 

inside thorns, one complementary thorns or one principal thorn. Moreover, by the 

previous lemma, a rational tangle adds exactly one principal thorn if and only if it 

is a flat rational tangle completely included on the Wada directed cycle. Thus, if 

there is no flat rational tangle completely on C, th en there is more complementary 

inside thorns than principal inside thorns. This implies, by Lemma 6.4.2, that if 

there is no flat rational tangle completely included on C, then there is a non-bridge 

arc inside C. D 

With a similar proof, we can generalize the previous result. 

Lemma 6.4.8. Let (r, <) be a directed Wada graph of a 2-non-bridge link diagram 

D and C a W a da directed cycle in (r, <). Suppose the re are more tertiary tang le 

on C th an fiat rational tang le completely included on C. Th en, there is a non­

bridge arc inside C and a non-bridge arc outside C. 

Proof. By hypothesis, there are more complementary inside thorns than principal 

inside thorns. This implies, by Lemma 6.4.2, that there is a non-bridge arc inside 

C, because there is no more flat rational tangle completely included on C. 

The proof for the non-bridge arc outside of C is similar. D 

6.5 Supporting cycle of flat rational tangles 

As already mentioned, flat rational tangles are the principal obstacles in proving 

that directed \Vada group is trivial when a generator is trivial. In this section, we 

will define supporting cycle which are associated to flat rational tangles. 

Lemma 6.5.1. Let (r, <) be the directed Wada graph of a 2-non-bridge directed 

link dia gram D. If the re is a fiat rational tang le Xi in (r, <), th en there is at 

least one W a da directed cycle C with Xi as co ver edge. 
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Proof. Suppose there is no such cycle C. If we change the direction of Xi, we won't 

have a directed cycle. Thus, we have a contradiction because D is a directed link 

diagram. This implies, that there is su ch a cycle C. D 

We call such a cycle Ca supporting cycle of Xi. We recall from Definition 6.1.2, 

that the compose order is the addition of the final order and the middle or der, 

while the total order is the addition of the order of every edges. Note that because 

Xi is a flat rational tangle, Xi is either a total cover edge or a compose cover edge. 

Moreover, if Xi is an half-twist, th en the total or der and the compose or der are 

the same. Also, Xi must be a total cover edge and not a simple cover edge for it 

to be flat. 

Lemma 6.5.2. Let (r, <) be a directed Wada graph of a 2-non-bridge directed 

link diagram D and Xi a fiat rational tang le in (r, <). Th en, either there is a 

supporting cycle C with Xi as a compose caver edge or there is a supporting cycle 

C that is dichotomie. Moreover, if Xi is an half-twist, then there is a supporting 

cycle C that is dichotomie. 

Proof. We will show the result for rational tangle as the result for half-twist is 

similar. By the previous lemma, there is a supporting cycle C with Xi either as a 

total cover edge or as a compose cover edge. If Xi is a compose cover edge of C, 

th en the pro of is over. Suppose that Xi is a total cover edge. Th en, in (r, <) we 

have the following subgraph. 
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.. L· 

Figure 6.18 directed Wada graph of a supporting cycle C with Xi as a total 
caver edge 

Moreover, in the hybrid Wada diagram we have the following diagram 

. ·C ... 

Figure 6.19 Hybrid Wada diagram of a supporting cycle C with Xi as a total 
caver edge 

Suppose ak+l or ak+2 are consecutive to any arc of C. Then we have a new 

supporting cycle B of Xi with compose caver edge Xi as shawn in the following 
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graph. 

Figure 6.20 New supporting cycle Bof Xi with compose caver edge 

Note, that because Xi is a fiat rational tangle, the edge X1 can't be in the other 

direction. Thus, this completes the proof if ak+l or ak+2 are consecutive to any 

arcs of C. 

Now, suppose that ak+I is consecutive to an arc parallel toC. Let am be the arc 

parallel to C and consecutive to ak+l and X1 the edge joining am and ak+I· 

First, suppose that X1 goes from am to ak+l· By Lemma 6.1.5, there is a Wada 

directed path P from an to am. If one of the arcs of P is in C, then we obtain 

a directed Wada graph similar to Figure 6.20 and the proof is complete. If there 

are no arcs of Pin C, then an must be in C. Thus, C is max primary. 

Now, suppose that X1 goes from ak+l to am. There is a Wada directed path Q 

from am to a1 . If one of the arcs of Q is in C, th en we get the following directed 

Wada graph: 
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~-

B 

.. L· 

Figure 6.21 New supporting cycle B of Xi with simple cover edge 

bu we can't have this case, because Xi is a fiat rational tangle. Thus, there is no 

arcs of C in Q and so a 1 is in C, and so C is min primary. 

Similarly, if ak+2 is consecutive to an arc parallel to C, then either we have a new 

supporting cycle B of Xi with compose cover edge Xi or C is either outside n1in 

primary or outside max primary. 

Suppose, that both ak+I and ak+2 are consecutive to an arc parallel toC. Because 

a non-bridge can't be in and out of a Wada directed cycle, either there is a new 

supporting cycle B of Xi with compose cover edge Xi or C is dichotomie. 

Suppose that ak+I is not consecutive to any arc of C or any arc parallel to C. 

Then, ak+I must be consecutive to a az such that l < k or l > k + 3. If l < k, 

from Figure 6.19 and Corollary 6.2.3, C is min primary. If l > k + 3, then C is 

max primary. 

Similarly, suppose that ak+2 is not consecutive to any arc of C or any arc parallel 
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toC. Then, C is outside max primary or outside min primary. 

Therefore, if ak+l and ak+2 are not consecutive to C, then because a non-bridge 

can't be in and out of a Wada directed cycle, either there is a new supporting 

cycle B of Xi with compose cover edge Xi or C is dichotomie. 

D 

6.6 Result on the triviality of the directed Wada group when a bridge arc is 
an extremum 

We now need a lemma that shows that if a bridge arcis an extremum, then all 

arcs are equal. 

Lemma 6.6.1. Let (r, <) be a directed Wada graph of a 2-non-bridge link diagram 

D with a1 and an having non-bridge arc and let n(D) be left-orderable. If there is 

a vertex aj E (r, <) with ji= n such that aj =an, then a1 = a2 = ... =an. 

Proof. Let < be a left order on n(D). By Lemma 2.3.7, a1 and an are extrema. 

Without loss of generality, suppose that a1 is the minimum and an is the maximum. 

Therefore, because aj is equal to an, aj is a maximum. But aj is not a non­

bridge by hypothesis, therefore aj is at least a bridge over sorne arcs ai and am. 

Therefore it satisfies one of the Wada inequalities ai < aj < am, am < aj < ai or 

ai = aj = am. But aj is a maximum, thus we obtain ai = aj = am. This implies 

that, ai and am are maxima. Thus, every arc that goes under a maximum arc, 

becomes a maximum arc. Moreover, if two maximum arcs ai and am go un der an 

arc ap, then it satisfies one of the Wada inequalities ai < aP < am, am < ap < ai 

or ai = ap = am. But ai and am are maxima, thus we obtain ai = aP = am. 

Therefore, every arc that goes over two maxima arcs becomes a maximum. 

So we can construct the blue and red graph G(D, aj) where the property Pis the 
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maximum property. By Lemma 2.3.3, there are at most two connected components 

Fj in Uic· 

Suppose there is no connected component Fj in uic. Then, every arc is red and so 

every arc is maximum and the pro of is over. 

Suppose there are two connected components F1 and F2 in uic. Th en, by Lemma 

2.3.4, both non-bridge arcs are in W and so both are red. Thus, a1 = an. So the 

minimum is a maximum and the proof is over. 

Suppose there is exactly one connected component F in U?. Th en, by Lemma 

2.3.5, there is either one or two non-bridge arcs in W. 

Suppose that both non-bridge arcs are in W. This implies that a1 = an. So the 

minimum is a maximum and the proof is over. 

Suppose there is exactly one non-bridge arc in W. If a 1 is in W, th en a1 is a 

maximum and the proof is over. Therefore, we suppose an is the non-bridge in 

W. Moreover, suppose W has 2m marked point with m > 1. Then, by Lemma 

1.1.14, there are at least m non-bridge arcs in W. Thus, by remark 1.2.3, there 

are at least m non-bridge arcs of D in W, which is a contradiction. Therefore, 

there are two marked points in W. By construction of W, both arcs of the marked 

points do not go over sorne arcs in D \ W. Moreover, by hypothesis there is only 

one non-bridge arc of D in W. Also, by hypothesis, there is only one connected 

component F. Thus, W can be viewed as a 1-tangle. So, Tw is a 1-tangle with 

only one non-bridge arc ai in D such that neither marked point goes over sorne 

arcs in D \ Tw. But, this is impossible by the construction of the Wada rational 

graph from the coarse Wada rational graph in section 2.3. 

D 
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Similarly, we can prove 

Lemma 6.6.2. Let (r, <) be a directed Wada graph of a 2-non-bridge link diagram 

D with a1 and an hasnon-bridge arc and 1r(D) be left-orderable. If there is a vertex 

ai E (r, <) with i =!= 1 such that ai = a 1, then a 1 = a2 = ... =an. 

6. 7 The Impact of a Trivial Edge in a directed Wada graph 

In this section, we will prove Proposition 6.7.7 which says that if (r, <) is a 

directed Wada graph of a directed link diagram D and there is a Xi such that 

Xi = 1, then a 1 = ... = an, and so the directed Wada group of (r, <) is trivial. 

To do so, we will need a series of technical lemmas. 

Lemma 6. 7.1. Let (r, <) be a directed Wada graph of a 2-non-bridge link diagram 

D and C = (ak, ak-1, ... , ak-i, ak) be a Wada directed cycle that gives the relation 

x ;ni = X";j ... xrnz and su ch th at there is an arc aj with j > k inside C and an arc 

aq with q < k-i outside of C. If Xi= 1, then a1 = ... = ak-i = ak-i+l = ... =an. 

Proof. First note that by Corollary 6.2.3, C is max primary and outside min 

primary. Moreover, by Lemma 6.2.1, if we have an arc at such that t > k, then at 

is inside C and if we have an arc as such that s < k - i, then as is outside C. 

If Xi= 1, then x;ni = 1. Renee, Xj = ... = Xz = 1 and ak = ak-l = ... = ak-i· 

Recall that every rational tangle which is a caver edge of a Wada cycle is either an 

high tail rational tangle, a low tail rational tangle or an high and low tail rational 

tangle. Note that an high and low tail rational tangle is an high tail rational 

tangle and a low tail rational tangle. 

Now, without loss of generality, we can suppose that Xi is a high tail rational 

tangle. Thus, we have x:i = a;1ak with p 2:: k. Renee, aP is inside C. Moreover, 



124 

1 = Xiki = a;1ak, so ap = ak. If aP is a non-bridge arc, then by Lemma 6.6.1 or 

Lemma 6.6.2, the proof is over. Thus, we suppose that aP is a bridge. Therefore, 

there is a rational tangle X~i1 = a;
1

1ap = a;1am with p1 2:: p 2:: m. So, ap1 is 

inside C. 

If amE {ak, ... ,ak-1, ... ,ak-i}, then am= ak = aP. Thus, a;
1

1ap = a;1am = 1 and 

this implies that ap1 = aP = ak. 

N ow suppose am ~ { ak, ... , ak-1, ... , a k-i}. Renee am is not on C. But ap1 and ap 

are inside C and not on C, thus am is also inside C. There is a Wada directed 

path from am to a1. However, a 1 is outside of C. This implies that there is a 

Wada directed path from am to as such that as E {ak, ak-l, ... , ak-i} and as:::; am. 

Because as E c, we have as= ak = ap, thus ap =as:::; am:::; ap. So ap =as= am. 

This implies that a;
1

1ap = a;1am = 1 and therefore ap1 = aP = ak. 

If ap1 is a non-bridge arc, then by Lemma 6.6.1 or Lemma 6.6.2, the proof is 

complete. Now, suppose that ap1 is a bridge. Therefore, there is a rational tangle 

xi:i2 = a;
2
1ap1 = a;/az with p2 2:: p1 2:: l. By the same argument as in the previous 

paragraph, we get ap2 = ap1 = az. \Ve continue this process t times until aPt is a 

non-bridge arc. 

0 

Similarly, we have 

Lemma 6. 7.2. Let (r, <) be a directed Wada graph of a 2-non-bridge link diagram 

D and C = (ak, ak-l, ... , ak-i, ak) be a Wada directed cycle that gives the relation 

x ;ni = x;j ... x;;k and su ch th at there is an arc aj with j 2:: k outside C and an arc 

aq with q:::; k-i inside of C. If Xi= 1, then a1 = ... = ak-i = ak-i+l = ... =an. 

Thus, directly by the definition of a dichotomie Wada directed cycle we get the 
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following result. 

Corollary 6. 7.3. Let (r, <) be a directed Wada graph of a 2-non-bridge link 

diagram D and C = (ak, ak-1, ... , ak-i, ak) be a dichotomie Wada directed cycle 

with co ver edge Xi = 1. Th en, a 1 = ... = an. 

Moreover, by Lemma 6.2.6 we have 

Lemma 6. 7.4. Let (r, <) be a directed Wada graph of a 2-non-bridge link diagram 

D. If C is a low and high ta il W ada directed cycle with co ver edge Xi = 1. Th en, 

We now introduce an hybrid Wada directed diagram that will play a major role in 

proving Theorem 6.7.7. The following diagram will be called a tertiary fiat Wada 

directed cycle. 

~- . . . / 

Figure 6.22 Tertiary fiat Wada directed cycle 

Lemma 6. 7.5. Let (r, <) be a directed Wada graph of a 2-non-bridge directed 

link diagram and a tertiary fiat W a da directed cycle C without non-bridge arc. 
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Then, either we have a supporting dichotomie cycle D of the fiat rational tangle 

Xi or we have one of the cases A, B, D or E as defined in the proof. 

Proof. Because Xi is a fiat rational tangle, by Lemma 6.5.2, either there is a 

dichotomie cycle D for Xi or there is a supporting cycle D with compose cover 

edge Xi. If Dis dichotomie, then the proof is over by Corollary 6.7.3. 

Suppose that there is a supporting cycle D with compose cover edge Xi. Thus, 

we have one of the following hybrid Wada directed diagram. 

.. ·)· 

c 
.··>·~· +2 ... c .· . 

:n 
v 1 . 

. . . . +1 

or 

.L 

Figure 6.23 Possible supporting cycle D with compose cover edge Xi 

We will give the proof for the case on the left. The proof for the case on the right 

is similar. We have the following possibilities. 

.L 
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c DV 

/ .. · 
· .... ··~ 

Figure 6.24 Case A for Tertiary flat Wada directed cycle 

D :_j 

./ 

Figure 6.25 Case B for Tertiary flat Wada directed cycle 
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D. 

······ ........ (··············· 

Figure 6.26 Case C for Tertiary flat Wada directed cycle 

I)· .. 

.. L···· 

Figure 6.27 Case D for Tertiary flat Wada directed cycle 
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1)· .. 

···< .·· ............ 

Figure 6.28 CaseE for Tertiary flat Wada directed cycle 

D c 

.... ······ 

\ 
·········· .. ( ....................... ··· 

Figure 6.29 Case F for Tertiary flat Wada directed cycle 
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D 

...... ···· 

········ .. ( ...................... ·· 

Figure 6.30 Case G for Tertiary fiat Wada directed cycle 

The cases C, F and G are not allowed because they give rise to directed cycle. 

D 

We give a final lemma before proving the desired result. First, we recall from 

definition 2.4.3 that for the following Wada rational graph of the rational tangle 

~~--~x~qr---~~r------~x~P-~Q~--~~r--------x~q~--~~ 

a 1 and a3 are the final vertices of the rational tangle X and a2 and a4 are the 

middle vertices. Moreover, for the following half-twist 

C3V------------J~C~m~----------~~~----------~x~m~------------~~ 

ai and ak are the final vertices and aj is the middle vertex. 
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Furthermore, let D be a link diagram and ai be a vertex not in a 1-tangle T with 

only one non-bridge arc in D su ch that neither marked point goes over sorne arcs 

in D \ T. Th en, ai represents an arc in D. If ai is a final or middle vertex of a 

rational tangle X, th en one end of the arc ai goes un der an arc in the rational 

tangle X. Similarly, if ai is a final vertex of the half-twist X, th en one end of the 

arc ai goes under an arc of the half-twist X. Thus, a vertex of a tangle goes under 

an arc of the tangle except for a middle vertex of an half-twist. Thus, because 

every arc goes exactly two times under sorne arcs and by the definition of the 

Wada rational graph we have established the following result. 

Lemma 6. 7 .6. Let r be a Wada rational graph of a link diagram and ai a vertex 

in r. Then, except for the middle vertex of an half-twist tang le, ai is the vertex 

of exactly two rational tangle. 

Theorem 6. 7. 7. Let (r, <) be a directed Wada graph of a 2-non-bridge directed 

link diagram. If there is an Xi su ch th at Xi = 1, th en a1 = ... = an. 

Proof. If a1 or an is a vertex of one of the edges Xj, then by Lemma 6.6.1 or 

Lemma 6.6.2 the proof is complete. If Xi has a cover edge that gives a high and 

low tail cycle, then by Lemma 6. 7.4 the result is obtained. 

The cover edge xJj = w+(X1 , ... , Xm) is equal to one, thus w+(X1 , ... , Xm) = 1 

and every edges in w+(X1 , ... , Xm) is equal to one. If one of these edges gives a 

high and low tail cycle, then by Lemma 6. 7.4 the result is obtained. If the right 

edge Xi of w+(xl, ... , Xm) is the flat edge of a high tail cycle, then we will look at 

this last high tail cycle. Again, we will look at the right flat edge of the new cycle 

and if it is a high tail cycle, we will look at this cycle. We continue this process 

until there is a high tail cycle, with the right flat edge not from a high tail cycle. 

Thus, without loss of generality, we can suppose that Xi is an high tail cycle such 

that the right edge is not a flat edge of an high tail cycle. Suppose, without loss 
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of generality, that the edges Xj come from a rational tangle (ak, aq, aP, at) where 

k < p < q < t. 

Suppose there is a fiat rational tangle included at the end of C. If it is an half­

twist, then, by Lemma 6.5.2, it has a dichotomie supporting cycle. Moreover, 

because it is included at the end of C, the caver edge is equal to one. Renee, 

by Lemma 6. 7.3, the result is obtained. Again by Lemma 6.5.2, it has either a 

compose supporting cycle or a dichotomie supporting cycle. If it has a dichotomie 

supporting cycle, by Lemma 6. 7.3, the result is obtained. 

So, we suppose the fiat rational tangle included at the end of C is not an half-twist 

and it has a compose supporting cycle. Therefore, we get the following directed 

Wada graph for C 

D 

\;-

or .':lk+2 

D 

L 

For the left case, we now look at the high tail Wada directed cycle D. For the 

right case, the vertex ak is already in the rational tangles Xj and Xk. Therefore, 

because of Lemma 6. 7.6, the rational tangle at the end of D can't end at ak and 

must be an half-twist. This implies that we have the following directed Wada 
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graph. 

The crossing Xz is a tertiary crossing and so add a tertiary thorn inside C. 

Renee, if there is a flat rational tangle included at the end of C, th en either the 

result is obtained, we have another high tail Wada directed cycle D or we have a 

tertiary thorn inside C. 

Suppose there is no flat rational tangle included at the end of C. Th en, because 

ak is at least a bridge and the right edge of C is not the flat edge of a high tail 

cycle, we get the following directed Wada graph for C : 
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or k 

k 

For the right case, we get the following hybrid Wada diagrams : 

or 

For the left case, we get the following hybrid Wada diagrams : 
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or 

For every possibility, we get a tertiary thorn inside C. 

Thus, either the proof is over or we get a tertiary thorn inside C. Suppose C is 

inside tertiary and by Lemma 6.4. 7, either there is a non-bridge arc inside C or 

there is a fiat rational tangle completely included on C. 

Suppose there is a non-bridge arc ai inside C, then by Lemma 6.2.1 because at is 

outside C with t > q, ai is not a maximum. Therefore, ai is a minimum and C is 

min primary. Moreover, because at is outside C, by Corollary 6.2.4, C is outside 

max primary and so C is dichotomie. Th us, by Lemma 6. 7.3, a 1 = ... = an. 

Suppose there is no non-bridge arc inside C and so there is a flat rational tangle 

Xi completely included on C. Therefore, we have a tertiary flat Wada directed 

cycle C with Xi as fiat rational tangle. Thus, by Lemma 6. 7.5, either we have a 

supporting dichotomie cycle D of the fiat rational tangle Xi or we have one of the 

cases A, B, D or E as in the lemma. 

Suppose we have a supporting dichotomie cycle D with Xi as compose cover edge. 

Because Xi is on C, Xi= 1. Thus, by Lemma 6.7.3 a1 = ... =an. 

Suppose we are in case A: 
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... 

c DV 

<. ... ··· . · ...... . 

Then, we geta new tertiary flat Wada directed cycle with cover edge equal to one: 

Suppose we are in case B: 

/ ... ··· 
· ... ···~ 
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... ·>. 
D :_j 

c 

. . . /. ... 
. . . . "' 

Then, we get a new tertiary Wada directed cycle with cover edge equal to one: 

D :_j 

By Lemma 6.4. 7, either there is a non-bridge arc inside the cycle D or there is a 

fiat rational tangle completely included on D. 

Suppose there is a non-bridge arc ai inside D, then by Lemma 6.2.1, because am+3 

is outside with am+3 ~ am+2, and am+2 is on D, ai is not a maximum. Therefore, 

ai is a minimum and D is min primary. Moreover, because am+3 is outside D, 

by Corollary 6.2.4, D is outside max primary and so D is dichotomie. Thus, by 

Lemma 6.7.3, a1 = ... =an. 

N ow suppose there is a fiat rational tangle completely included on the cycle D. 
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Then, Dis a new tertiary fiat Wada directed cycle with cover edge equal to one. 

Suppose we are in case D: 

Jj· .. 

.. L···· 

Then, we get a new tertiary Wada directed cycle with cover edge equal to one: 

.···>·~2 

.. :s:······ 
.. L···· 

Suppose we are in case E. 
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I)· .. 

···< .·· ............ 

Then, we geta Wada directed cycle C with two tertiary thorns and one completely 

included flat rational tangle. Thus, by Lemma 6.4.8, either there is another flat 

rational tangle completely included on C or there is a non-bridge arc of the link 

diagram inside C. If there is a non-bridge arc of the link diagram inside C, th en 

with a similar argument as case B, we get a 1 = ... = an. If there is another 

flat rational tangle completely included on C, we obtain a new tertiary flat Wada 

directed cycle with cover edge equal to one. Renee, either there is a new tertiary 

flat Wada directed cycle with cover edge equal to one or a1 = ... =an. 

Thus, for all cases, either a 1 = ... = an or we have a new tertiary flat Wada 

directed cycle with cover edge equal to one. If we have a new tertiary flat Wada 

directed cycle with cover edge equal to one, by Lemma 6.7.5, either we have a 

supporting dichotomie cycle E of the flat rational tangle Xi or we have one of the 

cases A, B, D or E as in the lemma. If we have a dichotomie cycle E of the flat 

rational tangle xi' th en by a previous argument al = . . . = an. If we have one 

of the cases A, B, D or E as in the lemma, then by a previous argument either 
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a1 = ... =an or we have a new tertiary fiat Wada directed cycle with cover edge 

equal to one. But, there are only finitely many fiat rational tangles, thus at sorne 

point we get a1 = ... =an. 

D 

Therefore, by Corollary 4.0.3 

Theorem 6. 7.8. Let D be a two non-bridge directed diagram of a non-split di­

rected link L, (r, <) be a directed Wada graph and suppose that n(D) is left­

orderable. If there is an edge Xi in G(r, <) such that Xi = 1, then n1 (~(L)) is 

not left orderable. 



CHAPTER VII 

FAMILlES OF DIRECTED LINKS FOR WHICH THERE IS A TRIVIAL 

DIRECTED WADA GROUP 

We recall from Corollary 4.0.3 that if a directed Wada group of a directed link 

diagram is trivial, then the fundamental group of the double branched of the link 

is not left-orderable. In this chapter, we will prove that the directed Wada group 

for totally monopositive, (n- 1) totally monopositive and fiuid (n- 2) totally 

simple monopositive link diagrams are trivial. 

The following table should motivate the importance of these families. The good 

middle triple hop links will be defined at the end of the chapter 9. We notice that 

the good middle triple hop links in the table below are not directed. For knots 

of 10 crossings or less, there are 53 non-alternating knots. Of that number, 45 

are directed. Moreover, 5 are left-orderable, th us 40 are not left-orderable. Of 

the 40 non-alternating, directed and not left-orderable knots, 35 are either totally 

monopositive, (n- 1) totally monopositive or steady fiuid (n- 2) totally simple 

monopositive. 
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knots 8 crossings 9 crossings 10 crossings 

totally monopositive 821 945 10127, 10131, 10135, 10138,10144,10149 

( n - 1) totally monopositive 820 943, 944, 949 10125, 10126, 10129, 10130, 10133, 10134, 

10137, 10141' 10143, 10146, 10147,10148, 

10150' 10151' 10157' 10158' 10162 

steady fiuid ( n - 2) 819 942, 946, 948 10128, 10136, 10142 

totally simple monopositive 

good middle triple hop 947 10159, 10163, 10164, 10165 

Left-orderable 10139, 10145, 10152, 10153, 10154 

Not left-orderable 10124, 10132' 10140, 10156 

and directed 

Not left-orderable 10155, 10160 

and non-directed 

unknown and 3-non-bridge 10161 

7.1 Totally monopositive links, (n -1) Totally Monopositive links and (n- 2) 
Totally Simple Monopositive links 

In this section, we will first introduce the totally simple positive property of 

links. This larger family includes the totally mono positive links, the ( n - 1) 

totally monopositive links and the fiuid ( n- 2) totally simple monopositive links. 

But before, we recall the following definitions. Let (r, <) be a directed Wada 

graph. Every Wada directed cycle C = (ai, ... , am, ai) in H(r, <) gives a relation 

XF;k = w+(X1, ... , Xn) in G(r, <) where XF;k is the edge or edges from the ra­

tional tangle containing am and ai and w+(X1, ... , Xn) is a positive word coming 

from the Wada directed path. We say that Xk is the caver edge of C. Moreover, 
k 

for w+(X1, ... , Xn) = IIj=0 Xijtj, Xim is defined as the right edge of C and Xio is 

defined as the lejt edge of C. Furthermore, Xim-j is defined as the (j + 1)-right 
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edge of C and Xij is defined as the (j + 1)-lejt edge of C. Also, for every Xij 

in w+(xl, ... , Xn), we define kij the arder of Xij. Note that because the relation 

cornes from a Wada directed cycle, every arder of an edge is equal to the final 

or der, the middle or der, the compose or der or the total or der of the edge. 

Definition 7.1.1. Let (r, <) be a directed Wada graph of a link diagram D and 

let a relation in G(r, <) that cornes from a Wada directed cycle, be of the type 

x:i = w+(xb ... , Xi, ... , Xn), where ki 2:: 0 and there are at least two different 

edges Xj in w+(X1 , ... , Xi, ... , Xn)· Then this relation is called positive. An edge 

Xi for which there exists a positive relation is called a positive edge. 

Let Xiki = wi(Xb ... , Xi, ... , Xn) be a positive relation. If ki is the final arder or 

the middle arder of Xi, th en this relation is called simple positive. An edge Xi 

for which there exists a simple positive relation in Xi is called a simple positive 

edge. Moreover, if ki is the minimum between the final or der and the middle 

arder, then this relation is called monopositive. An edge Xi for which there exists 

a monopositive relation in Xi is called a monopositive edge. A rational tangle that 

has a monopositive edge is called a monopositive rational tangle. Also, if ki is not 

the minimum between the final or der and the middle or der, th en this relation is 

called pluripositive. An edge Xi for which there exists a pluripositive relation in 

Xi is called a pluripositive edge. A rational tangle that has a pluripositive edge is 

called a pluripositive rational tangle. 

Let x:i = wi(X1 , ... , Xi, ... , Xn) be a positive relation. If the middle edge and 

the final edge of this relation are not simple positive relation and ki is the sum of 

the final and the middle arder of Xi , then this relation is called compose positive 

and Xi is a compose positive edge. 

It is useful to include them in a same family of relations. 

Definition 7.1.2. Let (r, <) be a directed Wada graph of a link L. If a rational 
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tangle X is either pluripositive or compose positive, then X is called multipositive. 

Definition 7.1.3. Let (r, <) be a directed Wada graph of a link diagram D. If 

all the edges are positive in G (r, <), th en (r, <) and G (r, <) are called totally 

positive. If all the directed Wada graphs of D are totally positive, then D is totally 

positive. 

Also, if all the edges are simple positive, th en (r, <) and G (r, <) are called totally 

simple positive. If all the directed Wada graphs of D are totally simple positive, 

then D is totally simple positive. 

Moreover, if all the edges are monopositive, then (r, <) and G(r, <) are called to­

tally monopositive. If all the directed Wada graphs of D are totally monopositive, 

then D is totally monopositive. 

We will show that the totally positive property of a directed Wada graph in fact 

gives the link diagram a property. 

Proposition 7.1.4. Let (r, <) be a totally positive directed Wada graph of a link 

diagram D. Then D is directed. 

Proof. Because (r, <) is totally positive, every edge has a simple positive relation 

or is a compose positive relation in G(r, <). If we change the orientation of 

an edge Xi, then the positive relation Xti = wt(XI, ... , Xn) becomes Xi-ki = 

wi(XI, ... , Xn)· Thus, we obtain the directed cycle Xikiwi(XI, ... , Xn)· Therefore, 

(r, <) is the only directed \Vada gr a ph without directed cycle. This irnplies that 

Dis directed by Remark 3.0.9. D 

Definition 7.1.5. Let (r, <) be a totally positive directed Wada graph with n 

rational tangles of a link diagram D. If i edges for i :::; n are multipositive and n-i 

are monopositive edges, then (r, <), G(r, <)and D are (n-i)totally monopositive. 
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We define a smaller family that will give us stronger results. 

Definition 7.1.6. Let (r, <) be a totally simple positive directed Wada graph 

with n rational tangle of a link diagram D. If i edges for i :::; n are pl uri positive 

and n-i are monopositive edges, then (r, <), G(r, <) and D are called (n-i) 

totally simple monopositive. 

The monopositive relations will be the key instrument in proving that the graph 

group is trivial. 

We will now continue our example of the knot diagram 821 of Figure 2.11. This 

knot diagram is totally monopositive. Indeed, by looking at the cycles in the 

directed Wada graph of 821 we can find the following relations which are all 

monopositive relations 

Moreover, we can define totally positive links. 

Definition 7.1.7. Let L be a link. If Lhasa totally positive link diagram D, 

then L is called a totally positive link. 

If L has a tot ally simple positive link diagram D, then L is called a totally simple 

positive link. 

If L has a totally ( n- i) positive link diagram D, then L is called a totally (n-i) 

positive link. 

Finally, if L has a tot ally ( n - i) simple positive link diagram D, th en L is called 

a totally ( n - i) simple positive link. 

Thus, by Theorem 6. 7.8, we have: 
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Theorem 7.1.8. Let D be a totally positive link diagram of the non-split link L 

and (r, <) a directed Wada graph. Suppose that 1r(D) is left-orderable. If there is 

a generator Xi in G(r, <) such that Xi= 1, then 1r1 (~(L)) is not left orderable. 

7.2 Totally positive groups 

We will define families of groups for which left-orderability will imply that they 

have a trivial generator. Then we will show that directed Wada groups of totally 

monopositive, totally (n -1) positive and totally (n- 2) simple positive fluid link 

diagram are elements of these families. Thus, by Theorem 7.1.8, we will have the 

result on the non-left-orderability. 

Inspired by the definition in the directed Wada group, we introduce the following 

definition for groups. 

Definition 7.2.1. Let G be a group with generators X 1 , ... , Xn. For a relation 
k· 

w+(xl, ... , Xn) = IT~0Xijtj, Xim is defined as the right generator ofw+(xl, ... , Xn) 

with arder kim and Xia is defined as the left generator ofw+(X1 , •.. , Xn) with arder 

kio. Furthermore, Xim-j is defined as the (j+1)-right generator ofw+(X1 , ... ,Xn) 

with arder kim-J and XiJ is defined as the (j + 1)-left generator of w+(X1 , ... , Xn) 

with arder kiJ . 

Definition 7.2.2. Let G be a group generated by X 1 , ... , Xn· A relation Xihi = 

wi(X1 , ... , Xn) is called a positive relation of Xi if hi 2:: 0 and the positive word 

wi(X1 , ... , Xn) has at least two different generators and Xi is neither the right nor 

the left generator of wi(X1 , ... , Xn)· Suppose G has a positive relation for every 

Xi, th en G is called a totally positive group. 

Let Xihi = wi(X1 , ... , Xn) for 1 :::; i :::; n be positive relations in a totally positive 

group. We look at the order rJi of the left generator XJi of every positive word 
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wi(Xl, ... , Xn)· If hi ::; rJi for every ji = i, then we say that the relation x:i = 

wi(Xl, ... , Xn) is a left positive relation. 

Let Xihi = wt(X1 , ... , Xn) for 1 ::; i ::; n be left positive relations in a totally 

positive group. We look at the order s)i of the 2-left generator XJi of every 

positive word wi(Xl, ... , Xn)· If x:i = wi(X1 , ... , Xn) is a left positive relation 

and hi S Sji for every ji = i, then we say that the relation Xihi = wi(X1 , ... , Xn) 

is a 2 left positive relation. 

Similarly, we define right positive relation, 2 right positive relation. 

Definition 7.2.3. Let G a group generated by X 1 , ... , Xn be a totally positive 

group. If every positive relation is a left positive relation, then G is called a 

totally left positive group. 

If every positive relation is a 2 left positive relation, then G is called a totally 2 

left positive group. 

Similarly, we define totally right positive group and totally 2 right positive group. 

Definition 7.2.4. Let G a group generated by X 1 , ... , Xn be a totally positive 

group. If all but i positive relations are left positive relation, then G is called a 

totally ( n - i) le ft positive group. 

If all but i positive relations are 2 left positive relation, then G is called a totally 

( n - i) 2 le ft positive group. 

Similarly, we define totally ( n - i) right positive group and totally ( n - i) 2 right 

positive group. 

The preceding families are important, because the directed Wada group of to­

tally positive, totally monopositive and tot ally (n-i) monopositive link diagram 
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will belong to these families. By the definition of positive relation, we have the 

following result. 

Lemma 7.2.5. Let D be a totally positive link diagram and (r, <) a totally pos­

itive directed Wada graph. Then G(r, <) is a totally positive group. 

Moreover, 

Lemma 7.2.6. Let D be a totally monopositive positive link diagram and (r, <) 

be a totally positive directed W a da graph. Th en G (r, <) is a totally 2 le ft positive 

group and a totally 2 right positive group. 

Proof. Let x;i = wi(X1 , ... , Xn) be a monopositive relation from G(r, <). By 

definition, there are at least two different generators in w{(X1 , ... , Xn)· Moreover, 

ri is the smallest order of the edge Xi· Thus, x;i = wt(X1 , ... , Xn) is a 2 left 

positive relation. Therefore, G(r, <) is a totally 2 left positive group. 

Similarly, we prove that G(r, <) is a totally 2 right positive group. D 

Similarly, 

Lemma 7.2. 7. Let D be a totally (n - i) monopositive positive link diagram. 

Th en G (r, <) is a totally ( n - i) 2 le ft positive group and a totally ( n - i) 2 right 

positive group. 

7.3 Totally Monopositive links and non Left-Orderability 

The totally monopositive links are an important class of links, because the fun­

damental group of their double branched cover is not left-orderable. First, we 

recall that totally monopositive links are directed links. Thus, to prove the non­

left-orderability, by Theorem 6. 7.8 we only have to obtain a trivial generator in 
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the Wada directed group. By Lemma 7.2.6, the Wada directed group of totally 

monopositive links are totally 2 left positive group. In this section, we will prove 

that a left-orderable totally 2 left positive group has a trivial genera tor. 

We already know that a link with only one rational tangle is alternating. It is also 

known that a link with exactly two rational tangles is alternating. 

Proposition 7.3.1. (Ernst €3 Summers, 1990) Let L be a link with a link diagram 

with two rational tangles. Then, L is alternating. 

Renee, by Theorem 1.0.1, one has have the following result. 

Proposition 7.3.2. Let L be a link with a non-split link diagram with one or two 

rational tangles. Then, the fundamental group of the double branched caver of L 

is not left-orderable. 

Thus, only links with 3 or more rational tangles will be interesting to study. So 

for the remainder of this thesis, we will suppose that links have 3 or more rational 

tangles. 

We now prove a lemma providing that will be used often in the following results. 

Lemma 7.3.3. Let G be a totally positive group generated by X 1 , ... , Xn. Let 

( G, <) be a le ft arder on G such th at Xi ~ 1 for every 1 ~ i ~ n. If we can obtain 

a relation Xf = w+(X1 , ... , Xn) with k ~ 0 from G, then Xi= w+(X1 , ... , Xn) = 1 

and thus for every generator Xj in w+(X1 , ... , Xn), we conclude Xj = 1. 

Proof. Because Xi ~ 1, we have Xf 2: 1. Moreover, because every edge Xj ~ 1, 

it implies that w+(X1 , ... , Xn) ~ 1. Therefore, Xi = w+(X1 , ... , Xn) = 1 and thus 

for every edge Xj in w+(X1 , ... , Xn), we have Xj = 1. D 
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Proposition 7.3.4. Let G be a totally positive group generated by X 1 , ... , Xn where 

n 2: 3 and (G, <) be a left arder on G such that Xi~ 1 for every 1 ~ i ~ n. If G 

is a totally left (resp. right) positive group, then at least one xi = 1. 

Proof. Without loss of generality, we will prove the result for a totally left positive 

group. The proof is similar for totally right positive group. 

Let n 2: 3 be the number of genera tors. We will show that if we have m left positive 

relations X? = x~:iwi(X1 , ... , Xn) where 1 ~ i ~ m ~ n and 1 ~ ki ~ m, then 

Xi = 1 for at least one 1 ~ i ~ m. We will complete the proof of this result by 

induction on the number m. Let m = 3 and 

X rl - XPi +(X X ) 1 - i U 1, ... , n (7.1) 

X T2 - XPj +(X x ) 2 - j V 1, ... , n (7.2) 

X T3 - XPk +(X x ) 3 - k W 1, ... , n (7.3) 

be left positive relations. 

If i = 1, then X~1 -p1 = u+(X1 , ... , Xn)· But r 1 - p1 ~ 0, because it cornes from a 

left positive relation. Thus, by Lemma 7.3.3, X 1 = u+(X1, ... , Xn) = 1. The proof 

is similar, if j = 2 or k = 3. 

Suppose without loss of generality that i = 2. Then by equations 7.1 and 7.2 , 

X rl - XPj +(x x )XP2-T2 +(x x ) 1 - j V 1, ... , n 2 U 1, ... , n · 

M . - 1 h xrl-Pl - +(X X )XP2-r2 +(X X ) oreover, suppose J - , t en 1 - v 1, ... , n 2 u 1, ... , n . 

However r1 - p1 ~ 0 and p2 - r 2 2: 0, thus by Lemma 7.3.3, X 1 = 1 and 
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Now, suppose j = 3. Then by equations 7.1 and 7.3 

X rl - XP3 +(x x )XP2-T2 +(x x ) 1 - 3 V 1, ... , n 2 U 1, ... , n 

If k = 1, then 

X rl XPl +(x x )XP3-T3 +(x x )XP2-T2 +(x x ) 1 = 1 W 1, ... , n 3 V 1, ... , n 2 U 1, ... , n · 

Thus, xrl-Pl = w+(xl, ... , Xn)Xf3-r3v+(xl, ... , Xn)X~2 -r2 u+(xl, ... , Xn) and by 

Lemma 7.3.3 xl = w+(xl, ... , Xn)Xf3-r3v+(xl, ... , Xn)X~2 -r2 u+(xl, ... , Xn) = 1. 

If k = 2, then by equations 7.2 and 7.3 

X;2 = Xf3v+(xl, ... , Xn) 

= X~2 w+(xl, ... , Xn)Xf3-r3v+(xl, ... , Xn) 

and so x;2
-p

2 = w+(xl, ... , Xn)Xf3-r3v+(xl, ... , Xn) and again by Lemma 7.3.3 

x2 = 1. 

This completes the proof for m = 3. 

Now suppose the result is true for m = n - 1 left positive relations X? = 

x:ikiw{(X1 , .•• ,Xn) where 1 ~ i ~ m = n-1 and 1 ~ki~ m = n-1. 

We investigate the case where there are m = n left positive relations X[i = 

x:ikiw{(X1 , ... , Xn) where 1 ~ i ~ n = m and 1 ~ki~ n =m. We have the left 

positive relation X~n = Xk~nw~(X1 , ... , Xn)· If X~n = X~nw~(X1 , ... , Xn), then 

X~n-Pn = w~(X1 , ... , Xn) with rn- Pn ~ 0 because it cornes from a left positive 
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relation. Thus, by Lemma 7.3.3, Xn = 1 = w;i(X1 , ... , Xn)· 

Suppose xf:n # X~n. Recall that X~n = xf:nw;i(X1 , ... , Xn)· For every x;i = 

X Pki +(X X ) h th t k· - · XPn - XPkn +(X X )XPn-rn ki Wi 1, ... , n SUC a 2 - n, Slnce n - kn Wn 1, ... , n n , 

we obtain X? = xf:nw;i(Xl, ... , Xn)X~n-rnwt(Xl, ... , Xn)· Also, Pn- rn ~ 0 

because X~n = xf:nw;i(X1 , ... , Xn) is a left positive relation. Thus, now we have 

n- 1 left positive relations x;i = x:ikiwt(X1 , ... , Xn) where 1 ~ i ~ n- 1 and 

1 ~ ki ~ n - 1. Moreover, none of the x:iki is equal to X~n. This implies by 

induction that there is an xi= 1 for 1 ~ i ~ n- 1. 

The result is obtained similarly for totally right positive group. D 

By construction of the Wada directed group of a directed link diagram, Lemma 

7.2.6 and because totally 2 left positive group are totally left positive group, we 

obtain the following result: 

Lemma 7.3.5. Let D be a directed (n- 2) of L with at least three rational tangle 

and r(D) be the Wada rational graph. Suppose 1r(D) is lejt-orderable. If (r, <) 

is a totally monopositive directed Wada graph, then G(r, <) is a left-orderable 

totally positive group generated by X 1 , ... , Xn where n ~ 3 such that Xi ~ 1 for 

every 1 ~ i ~ n. 

Thus, combining the previous lemma, Proposition 7.3.2, Proposition 7.3.4 and 

Theorem 7.1.8 we have the following result. 

Theorem 7.3.6. If L is a totally monopositive, 2-non-bridge and non-split link, 

then the fundamental group of the double branched caver of L is not left-orderable. 

We recall that the knot 821 is totally monopositive, therefore the fundamental 

group of the double branched cover of the knot 821 is not left-orderable. 
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7.4 ( n - 1) Totally mono positive links and non Left Orderability 

ln this section, we will prove that the directed Wada group of ( n - 1) totally 

monopositive links is trivial and thus that the fundamental group of the double 

branched cover of ( n - 1) tot ally monopositive links is not left orderable. To 

prove this, we will first prove that the directed Wada group of ( n - 1) totally 

monopositive links are ( n - 1) totally 2 left positive group. Then, we will prove 

that a left-orderable ( n - 1) tot ally 2 left positive group has at least one trivial 

generator. 

Proposition 7.4.1. Let G be a totally positive group generated by X 1 , ... , Xn where 

n ~ 3 and ( G, <) be a left arder on G such that Xi :::::; 1 for every 1 :::::; i:::::; n. If G 

is a ( n- 1) totally 2 left (resp. right) positive group, then at least one xi = 1. 

Proof. We will prove the result for ( n- 1) totally 2 left positive group. The proof 

for (n- 1) right 2 totally positive directed Wada graph is similar. 

Let n ~ 3 be the number of generators. We will show that if we have m - 1 

2 left positive relations X? = Xkiki Xz~liwi(X1 , ... , Xn) where 1 :::::; i :::::; m :::::; n, 

1 :::::; ki :::::; m and 1 :::::; li :::::; m and one positive relation X? = x:;i wi(XI, ... , Xn) 

where 1 :::::; j :::::; m :::::; n and 1 :::::; kj :::::; m , then Xi = 1 for at least one 1 :::::; i :::::; m. 

We will complete the proof of this result by induction on the number m. Let 

m = 3 and 

(7.4) 

X rz - XPi +(X X ) 2 - j V 1, ... , n (7.5) 
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be 2 left positive relation and 

(7.6) 

be a positive relation. 

Suppose that i = 1. Then, because Equation 7.4 is a 2 left positive relation, we 

obtain r 1 - p1 ::; 0 and by Lemma 7.3.3, we get X1 = 1 = u+(xl, ... , Xn)· 

Similarly, the result is obtained if j = 2. 

X rl-Pl _ +(X X )Xp2-r2 +(X X ) 1 - u2 1 ' ... ' n 2 ul 1' ... ' n . 

Thus, because ut(X1 , ... , Xn) and ui(X1 , ... , Xn) are positive words and r1 -pl ::; 0 

and p2 - r 2 ~ 0 because both come from a 2 left positive relation, by Lemma 7.3.3, 

we have xl= x2 = 1. 

Therefore, we only have to look at the following cases: 
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The proof of E is similar to the proof of A, the one for Fis similar to the one for 

B and the pro of of D is similar to the proof of C. Therefore, we will only give the 

proofs for the cases A, B and C 

A) Let 

X rl- XP2 +(x x ) - XP2XPi '+(x x ) 1 - 2 u1 1 ' ... ' n - 2 i u1 1 ' ... ' n (7.7) 

X r2- xr3 +(x X ) - xr3XPi '+(x X ) 2 - 3 u2 1 ' ... ' n - 3 j u2 1' ... ' n (7.8) 

be 2 left positive relations and 

(7.9) 

be a positive relation. 

Then by the previous equations, 

X P3-r3 _ XPi t+ (X X )Xp2-r2 +(X X )XPl -r1 +(X X ) 
3 - j u2 1' ... ' n 2 u1 1' ... ' n 1 u3 1 ' ... ' n . (7.10) 

Suppose j = 1. Then by equation 7. 7 and the previous equation, 

X P3-T3 _ xP2 +(x x )XPl-Tl '+(x x )Xp2-r2 +(x x )XPl-Tl +(x x ) 
3 - 2 u1 1' ... ' n 1 u2 1 ' ... ' n 2 u1 1' ... ' n 1 u3 1 ' ... ' n . 
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Moreover, by equation 7.8 

X P3-r3 -xr3 +(x X )Xp2-r2 +(x X )Xp1-r1 t+(x X ) 3 - 3 u2 1 ' ... ' n 2 u1 1 ' ... ' n 1 u2 1 ' ... ' n 

X P2-r2 +(x X )Xp1-r1 +(x X ) 2 u1 1' ... ' n 1 u3 1' ... ' n . 

Therefore, 

X P3-2r3 -XPl t+(X X )Xp2-r2 +(X X )Xp1-r1 t+(X X ) 3 - 1 u2 1, ... , n 2 u1 1, ... , n 1 u2 1, ... , n 

X P2-r2 +(x X )Xp1-r1 +(x X ) 2 u1 1 ' ... ' n 1 u3 1' ... ' n . 

There exists a kEN such that p3 ::; kr3 . By the same argument done k times, we 

ob tain 

X P3-kT3 - +(x x ) '+(x x ) 
3 - u2 1 ' ... ' n w 1 ' ... ' n 

where w'+(X1, ... , Xn) is a positive word. Thus, p3 - kr3 ::; 0 and so by Lemma 

7.3.3 X3 = 1 = u!(X1, ... , Xn) = w'+(x1, ... , Xn)· 

Now suppose j = 2. Then by equations 7.8 and 7.10 

X P3-T3 xP2 '+(x x )Xp2-r2 +(x x )Xp1-r1 +(x x ) 3 = 2 u2 1' ... ' n 2 u1 1' ... ' n 1 u3 1' ... ' n . 

Moreover, by equation 7. 7 

X P3-r3 _ Xr3 +(X X )Xp2-r2 t+(X X )Xp2-r2 +(X X )Xp1-r1 +(X X ) 3 - 3 u2 1' ... ' n 2 u2 1' ... ' n 2 ul 1' ... ' n 1 u3 1' ... ' n . 

Therefore, 

X P3-2r3 _ +(X X )Xp2-r2 t+(X X )Xp2-r2 +(X X )Xp1-r1 +(X X ) 3 - u2 1' ... ' n 2 u2 1' ... ' n 2 u1 1' ... ' n 1 u3 1' ... ' n . 

There exists a kEN such that p3 ::; kr3 . By the same argument done k times, we 
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ob tain 

X P3-kr3 - +(x X ) '+(x X ) 3 - u2 1' ... ' n w 1' ... ' n 

where u'+(X1 , ... , Xn) is a positive word. Thus, p3 - kr3 :::; 0 and so by Lemma 

7.3.3 X3 = 1 = ut(X1, ... , Xn) = w'+(x1, ... , Xn)· 

B) Let 

X Tl _ xP2 +(x x ) _ xP2xPi '+(x x ) 1 - 2 u1 1' ... ' n - 2 i ul 1' ... ' n (7.11) 

X T2- xr3 +(x x ) - xr3xPj t+(x x ) 2 - 3 u2 1 ' ... ' n - 3 j u2 1 ' ... ' n (7.12) 

be 2 left positive relations and 

(7.13) 

be a 2 left positive relation. 

Then, by the previous equations 

X P3-T3 _ xPj '+(x x )Xp2-r2 +(x x ) 
3 - j u2 1 ' ... ' n 2 u3 1 ' ... ' n . (7.14) 

Suppose j = 1. Then, by equations 7.11 and 7.14, 

X P3-T3 _ xP2 +(x x )XPl-Tl '+(x x )Xp2-r2 +(x x ) 3 - 2 ul 1' ... ' n 1 u2 1 ' ... ' n 2 u3 1 ' ... ' n . 
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Moreover by equation 7.12, 

X P3-r3 _ Xr3 +(X X )Xp2-r2 +(X X )Xp1-r1 '+(X X )Xp2-r2 +(X X ) 3 - 3 u2 1' ... ' n 2 u1 1' ... i n 1 712 1 ' ... ' n 2 u3 1' ... ' n . 

Therefore, 

X PJ-2TJ _ xPl '+(x x )Xp2-r2 +(x x )Xp1-r1 '+(x x )Xp2-r2 +(x x ) 3 - 1 u2 1, ... ' n 2 u1 1 ' ... ' n 1 u2 1' ... ' n 2 u3 1 ' ... ' n . 

There exists a k E N su ch that p3 :::; kr3 • By the same argument do ne k times, we 

ob tain 

X P3-kTJ - +(x x ) '+(x x ) 
3 - u2 1' ... ' n v 1 ' ... ' n 

where v'+(X1, ... , Xn) is a positive word. Thus, p3 - kr3 :::; 0 and so by Lemma 

7.3.3, X3 = 1 = u!(X1, ... , Xn) = v'+(x1, ... , Xn)· 

Suppose j = 2. Then by equations 7.12 and 7.14, 

X P3-T3 _ xP2 '+(x x )Xp2-r2 +(x x ) 
3 - 2 u2 1' ... ' n 2 u3 1 ' ... ' n . 

Moreover, again by equation 7.12, 

X P3-r3 _ xr3 +(x X )Xp2-r2 '+(x X )Xp2-r2 +(x X ) 3 - 3 u2 1 ' ... ' n 2 u2 1' ... ' n 2 u3 1' ... ' n . 

Therefore, 

X P3-2T3 _ xP2 '+(x x )Xp2-r2 '+(x x )Xp2-r2 +(x x ) 3 - 2 u2 1 ' ... ' n 2 u2 1 ' ... ' n 2 u3 1 ' ... ' n . 

There exists a k EN such that p3 :::; kr3 . By the same argument clone k times, we 
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ob tain 

where q+(X1, ... , Xn) is a positive word. Thus, p3 - kr3 :::; 0 and so by Lemma 

7.3.3, X3 = 1 = ut(X1, ... , Xn) = q+(x1, ... , Xn)· 

C) Let 

X rl- XP3 +(x x ) - XP3XPi '+(x x ) 1 - 3 u1 1 ' ... ' n - 3 i u1 1 ' ... ' n (7.15) 

X T2- xr3 +(x x ) - xr3xPj '+(x x ) 2 - 3 u2 1 ' ... ' n - 3 j u2 1 ' ... ' n (7.16) 

be 2 left positive relations and 

(7.17) 

be a 2 left positive relation. Then, 

X P3-T3 _ xPj '+(x x )Xp2-r2 +(x x ) 3 - j u2 1 ' ... ' n 2 u3 1 ' ... ' n . (7.18) 

1) Suppose j = 1. Then, by equations 7.15 and 7.18, 

X P3-2T3 - xPi '+(x x )XPl-Tl +(x x )XP2-T2 +(x x ) (7 19) 3 - i u1 1' ... ' n 1 u2 1' ... ' n 2 u3 1' ... ' n . . 
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a) Now suppose i = 1. Then, 

X P3-2r3 _ XP3 '+(x x )XP1-r1 '+(x x )XP2-r2 +(x x) 
3 - 3 ul 1' ... ' n 1 u2 1' ... ' n 2 71,3 1' ... ' n . 

Th us, 

X P3-3r3 _ XP1 '+(x x )XP1-r1 '+(x x )XP2-r2 +(x x) 
3 - 1 ul 1' ... ' n 1 u2 1' ... ' n 2 u3 1' ... ' n . 

There exists a k E N su ch that p3 ::::; kr3 . By the same argument do ne k times, we 

ob tain 

X P3-kr3 _ XP1 +(x X ) 
3 - 1 W 1, ... , n 

where w+(X1 , ... , Xn) is a positive word. Thus, p3 - kr3 ::::; 0 and so by Lemma 

7.3.3, X1 = X3 = 1 = w+(xl, ... , Xn)· 

b) Now suppose i = 2. Then by equation 7.19, 

X P3-2r3 -XP1 '+(X X )Xp2-r2 '+(X X )Xp1-r1 +(X X )Xp2-r2 +(X X ) 
3 - 1 u2 1' ... ' n 2 ul 1' ... ' n 1 u2 1 ' ... ' n 2 u3 1 ' ... ' n 

and so 
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which implies that 

X P3 -4r3 -XP2 t+ (X X ) XPl -r1 t+ (X X ) XP2 -r2 t+ (X X ) XPl -r1 3 - 2 u1 1' ... ' n 1 u2 1' ... ' n 2 u1 1' ... ' n 1 

There exists a kEN such that p3 :::; kr3 . By the same argument done k times, we 

ob tain 

X P3-kr3 _ +(x x ) 3 - W 1, ... , n 

where w+(X1, ... , Xn) is a positive word. Thus, p3 - kr3 :::; 0 and so by Lemma 

7.3.3, X3 = 1 = w+(x1, ... , Xn)· 

2) Now suppose that j = 2. Then by equations 7.16 and 7.18, 

X P3-2T3 xP2 '+(x x )XP2-T2 +(x x )XP2-T2 +(x x ) (7 20) 3 = 2 u2 1 ' ... ' n 2 u2 1 ' ... ' n 2 u3 1 ' ... ' n . . 

There exists a k E N su ch that p3 :::; kr3 . By the same argument do ne k times, we 

ob tain 

X P3-kT3 xP2 '+(x x ) +(x x ) 
3 = 2 u2 1 ' ... ' n w 1 ' ... ' n 

where w+(X1, ... , Xn) is a positive word. Thus, p3 - kr3 :::; 0 and so by Lemma 

7.3.3, X2 = X3 = 1 = u;+(x1, ... , Xn) = w+(x1, ... , Xn)· 

Thus, the result is true for m = 3. 

Now suppose the result is true for m = n-1. Thus, ifwe have (n-2) 2left positive 

relations X? = x:iki Xz~1iwi(X1 , ... , Xn) where 1 :::; i:::; n- 2, 1 :::; ki:::; n- 1 and 
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1::;; li::;; n- 1 and one positive relation X~:_11 = x:=:~ 1 w;_ 1 (XI, ... ,Xn) where 

1 ::;; kn-I ::;; n - 2, then Xi = 1 for at least one 1 ::;; i ::;; n - 1. We will look 

at the case with m = n. Therefore, without loss of generality we have (n - 2) 

2 left positive relations X? = X~iki Xz~1iwi(X1 , ... , Xn) where 1 ::;; i ::;; n - 1, 

1 ::;; ki ::;; n and 1 :=; li :=; n and one positive relation X~n = Xf~nw;i(X1 , ... , Xn) 

where 1 ::;; kn < n and Tn > Pn· Thus, for the generator xl, there is a 2 left 

•t• l t• xrl XPkl Xq11 +(X x ) pos1 Ive re a Ion 1 = k
1 

Zr W1 1, ... , n . 

A) If kl = 1, then xrl-Pl = Xz~11 wi(XI,···,Xn) with rl- PI::;; 0 because it 

cornes from a 2 left positive relation. This implies by Lemma 7.3.3 that X 1 = 1 = 

u+(X1, X 2 , ... , Xn) and thus the proof is over. 

B) Suppose that k1 =/:- 1. If l1 =/:- 1, then xr1 = x~;1 Xz~ 1 wi(X1 , ... , Xn) with k1 

and h not equal to one. 

If l1 = 1, then we have 

a) If k1 = n, then 

(7.21) 

(7.22) 

There exists as EN such that rn ::;; SPn· By the same argument done s times, we 
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ob tain 

X rl - XSPnXql +(x x )Xql-Tl +(x x ) 
1 - n 1 wl 1' ... ' n 1 wl 1' ... ' n (7.23) 

- XPkn +(X X )XSPn -rnXql +(X X )Xql -rl +(X X ) - kn Wn 1, ... , n n 1 W1 1, ... , n 1 Wl 1, ... , n · 

(7.24) 

i) If kn = 1, then 

X rl - XPl +(x x )XSPn-rnxql +(x x )Xql-Tl +(x x ) 
1 - 1 wn I, ... ' n n 1 wl 1' ... ' n 1 wl 1' ... ' n . 

Th us, 

X rl-Pl _ +(X X )Xspn-rnXql +(X X )Xq1-r1 +(X X ) 1 - Wn 1, ... , n n 1 Wl b ... , n 1 W1 1, ... , n 

with r 1 - p1 :::; 0 because it cornes from a 2 left positive relation. This implies by 

Lemma 7.3.3 that X 1 = 1 and thus the proof is over. 

ii) If kn =1- 1, then 

with k1 and kn not equal to one and where 

A _ +(X X )XsPn -rnXq1 +(X X )Xq1 -r1 -Wn 1, ... , n n 1 Wl 1, ... , n 1 
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i) If kk1 = 1, then 

and so 

with r 1 - p1 ~ 0 because it cornes from a 2 left positive relation. This implies by 

Lemma 7.3.3 that X 1 = 1 and thus the proof is over. 

ii) If kk1 -=/- 1, th en we have 

with k1 and kk1 not equal to one. We rewrite the last equation 

X r1 _ XPk1 XPkk1 +(X X ) 
1 - k k U 1, ... , n 1 kt 

Thus, either the proof is over or we have the relation xr1 = Xkk X~qv+(X1 , ... , Xn) 

where k and q are not equal to one. 

Suppose that we have the relation xr1 = Xkk X~qv+(X1 , ... , Xn) where k and q 

are not equal to one. Then in every other 2 left positive relations 

vr· vPk· vqz. +(X v ) 
.. /\. i t = ... /\.k. t .. /\.[. t W i 1 ' ... ' -"î. n 

t t 

if ki or li is equal to one, we replace Xf1 by 

X PkXPq +(x X )XP1-r1 
k q V 1, ... , n 1 · 
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Similarly, for the positive relation X~n = Xf~nw;t;(X1 , ... , Xn), if kn = 1, we replace 

Xf1 by Xkk X~qv+(XI, ... , Xn)Xf1-r1
• Thus, we now have (n- 2) 2 left positive 

relations XIi = x~;i Xz:1iw{(XI, ... , Xn) where 1 < i :::; n- 1, 1 < ki :::; n and 

1 < li :::; n and one positive relation X~n = Xf~nw;t;(XI, ... , Xn) where kn -=/=- 1. 

Therefore, by the induction hypothesis, Xi = 1 for sorne 1 < i:::; n. 

D 

By construction of the Wada directed group of a directed link diagram and Lemma 

7.2. 7 we ob tain the following result. 

Lemma 7.4.2. Let D be a directed (n- 2) of L with at least three rational tangle 

and f(D) be the Wada rational graph. Suppose n(D) is left-orderable. If (r, <) is 

a ( n -1) tot ally monopositive directed W a da graph, th en G (r, <) is a left-orderable 

(n- 1) totally 2-left positive group generated by X1 , ... , Xn where n ~ 3 such that 

xi :::; 1 for every 1 :::; i :::; n. 

Thus, combining the previous lemma, Proposition 7.3.2, Proposition 7.4.1 and 

Theorem 7.1.8 we have the following result. 

Theorem 7.4.3. If L is a (n- 1) totally monopositive, 2-non-bridge and non­

split link, then the fundamental group of the double branched caver of L is not 

le ft- orderab le. 

It is interesting to recall that 949 is a non-alternating and non-arborescent knot. 
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The only Wada directed graph of 949 with a9 as maximum 

From this Wada directed graph, we have the following positive relation. 

x1 = X2X3 

X2 = x3x4 

X3 = X4Xg 

Xs = x4x6 
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Th us, 949 is ( n - 1) tot ally monopositive. Renee, the fundamental group of the 

double branched cover of 949 is not left-orderable. 

7.5 (n-2) fluid Totally Simple Monopositive Links and non Left-Orderability 

In this section, \Ve will prove that for a fluid steady n - 2 totally simple monopos­

itive directed Wada graph, the directed Wada group is trivial. To do so, we will 

show that left-orderable fluid steady n - 2 left and n - 2 right totally positive 

group have a trivial generator. Moreover, the directed Wada group of fluid steady 

n- 2 totally simple monopositive directed Wada graph are fluid steady n- 2 left 

and n- 2 right totally positive group. Therefore by Theorem 4.0.3, the funda­

mental group of the double branched cover of fluid steady n- 2 totally simple 

monopositive links is not left-orderable. 

We start by giving the definition of fluid totally positive group and steady totally 

positive group. 

Remember that for a E. tangle we obtain final edges of order q and middle edge q 

of order p- q. For edges that are not monopositive, the property we will want 

the tangle to have is that the order of the final edge is not more than twice the 

order of the middle edge and the order of the middle edge is not more than twice 

the order of the final edge. Large rational tangles will fail to satisfy this property. 

Note that for a rational tangle, we always have ~ 2: 1. If~ = 1, then we have the 

half-twist. Moreover, we either have p- q 2: q or p- q ::; p. Firstly, p- q 2: q 

implies that ~ 2: 2. We want that 2q 2: p- q, thus ~ ::; 3. If we had p- q ::; p, 

then this implies that ~ ::; 2. In this case, we want that 2(p- q) 2: q, thus ~ 2: ~-
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However, if the edge is monopositive, we will want that the order of the final edge 

is more than twice the order of the middle edge or the order of the middle edge is 

not more than twice the order of the final edge. 

Definition 7.5.1. Let X be a P. rational tangle. If P. > 3 or P. < ~2 , then we say 
q q q 

that X is a large rational tangle. 

Monopositive relations from large rational tangles will be helpful. However, if 

we have either a pluripositive relation or a compose positive relation, it will be 

extremely difficult to transform it into a monopositive relation. That is why we 

consider it as an obstacle. With this in mind we define a new family of directed 

graphs for which large rational tangles won't be an obstacle. 

Definition 7.5.2. Let D be a link diagram and (r, <)be a totally simple positive 

directed Wada gr a ph of D. If D con tains no large pluripositive rational tangles 

and every monopositive rational tangle is a half-twist, full twist or large rational 

tangle, th en we say that (r, <) is fiuid. 

Moreover, if Dis directed and has a fluid directed Wada graph, then we say that 

D is fiuid. 

Let D be a fluid link diagram and (r, <)be a fluid directed Wada graph of D. Let 

X~k = wt(X1 , ... , Xn) be a pluripositive relation in G(r, <). Then, by definition 

of fluidity, Xk is a rational tangle ~~ that is not large. Thus, ~ :::; ~~ :::; 3. So, 
3~k :::; Pk :::; 3qk. This implies that qk :::; 2(pk - qk) and Pk - qk :::; 2qk. The 

middle order is Pk - qk and the final order is qk. Because Xk is pluripositive, hk 

is equal to the maximum between Pk - qk and qk. Suppose hk = Pk - qk. Then, 

(Pk - qk) - qk :::; qk and (Pk - qk) - 2qk :::; O. Suppose that hk = qk. Then, 

qk - (Pk - qk) :::; (Pk - qk) and qk - 2(pk - qk) :::; O. 
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Let x;k = wt(X1 , ... , Xn) be a monopositive relation in G(r, <). Then, by def­

inition of fl.uidity, Xk is either a large rational tangle Pk, an half-twist or a full 
Qk 

twist. Suppose it is a large rational tangle. Then, either ~2 > Pk or Pk > 3. So, 
Qk Qk 

3~k > Pk or Pk > 3qk. This implies that qk > 2(pk - qk) or Pk- qk > 2qk. The 

middle arder is Pk- qk and the final arder is qk. Because Xk is monopositive, hk is 

equal to the minimum between Pk - qk and qk. Suppose hk = Pk - qk ::; qk. Th en, 

Pk ::; 2qk ::; 3qk and so ~ > ~:. Thus, qk > 2(pk - qk) and qk - 2(pk - qk) > O. 

Suppose that hk = qk ::; Pk - qk. Then, Pk 2:: 2qk 2:: ~qk and so ~: > 3. There­

fore, Pk - qk > 2qk and Pk - qk - 2qk > O. Suppose that Xk is a half twist or 

a full twist. Then, hk = 1 and the arder of Xk in any monopositive relation 

Xihi = wt(X1 , ... , Xn) is one. 

Inspired by the previous comments, we will define fl.uidity for groups. But before, 

we need the following definitions. 

Definition 7.5.3. Let G be a totally positive group. Let x;k = wt(X1 , ••• , Xn) 

be the positive relations for 1 ::; k ::; n of the group and let xi be a generator for 

1 ::; i ::; n. If every time that Xi is a left or right generator of a positive relation 

it has the same or der, th en Xi is 1-steady. If every genera tor is 1-steady, th en G 

is 1-steady. 

Similarly, if every time that Xi is a j-left or j-right generator for 1 ::; j ::; m of 

a positive relation, it has the same or der, th en Xi is m-steady. If every genera tor 

is m-steady, then G is m-steady. Moreover, if a generator has the same arder in 

every positive relation, then Xi is steady. If every generator is steady, then G is 

steady. 

Let D be a directed link diagram and (r, <) be a directed Wada graph of D. If 

G (r, <) is steady, th en we say that (r, <) and D are steady. 

Definition 7.5.4. Let G be a steady totally positive group and x;k = wt(X1 , ... , Xn) 
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be the positive relations for 1 ~ k ~ n of the group. Let Xihi = wt(X1, ... , Xn) 

be a positive relation with 1 ~ i ~ n and Pi be the order of Xi in all the positive 

relation. If hi ~Pi and either hi ~ 2pi or hi =Pi, then Xi is called ultra positive. 

If hi 2: Pi and hi ~ 2pi, th en Xi is called small. 

Definition 7.5.5. Let G a group generated by X 1 , ... , Xn be a steady totally 

positive group. If every generator is either small or ultra positive, then G is fiuid. 

By construction of the Wada directed group, and of the fiuid and steady diagram 

and Lemma 7.2.7, we obtain the following result. 

Lemma 7.5.6. Let D be a directed (n- 2) of L with at least three rational tangle 

and f(D) be the Wada rational graph. Suppose 1r(D) is left-orderable. If (r, <) 

is a fiuid steady ( n - i) totally simple monopositive directed ~Va da graph, th en 

G(r, <) is a left-orderable fiuid steady (n-i) totally 2-left and 2-right positive 

group generated by X 1 , ... , Xn where n 2: 3 such that Xi ~ 1 for every 1 ~ i ~ n. 

Before we prove the desired result, we need the following lemma. 

Lemma 7.5. 7. Let G be a fiuid steady (n - 2) totally 2-left and 2-right posi­

tive group generated by X1 , ... , Xn where n 2: 3 and (G, <) be a left arder on 

G such that Xi ~ 1 for every 1 ~ i ~ n. Let Xi be a 2-left and 2-right 

positive generator. Then, either we can simplify its relation to obtain either 

X :i = x~ikx~jk +(x x )XPskxpzk x:i = x~ikxPskxpzk x:i = x~ikx~jk 
z Zk Jk U 1 l ... l n Sk [k ) z Zk Sk [k QT z Zk Jk 

where Jb lk, ik, sk are not 2-left and 2-right positive or we obtain a trivial generator. 

M oreover, let Xi not be a 2-left and 2-right positive generator. Th en, either we 

. lf: "t l t" t bt . "th xr· XPikxPjk +(x x )XPskxPlk can szmp z y z s re a wn o o azn ez er i t = ik Jk u 1, ... , n sk zk 

X ri XPikxPskxPlk h . l . t 2 l ft d 2 . ht •t• or i = ik sk zk w ere ]k, k, Zk, sk are no - e an -rzg posz we or we 

obtain a trivial generator. 
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Proof. Without loss of generality, we suppose that Xi are 2-left and 2-right pos­

itive for 1 :::; j :::; n - 2 and not 2-left and 2-right positive for n - 1 :::; j :::; n. 

Because there is 2-left and 2-right positive, all the relations are of one of the fol-

lowl.ng .corm xkrk - XPikxPjk +(x x )XPskxPlk or xrk - XPikxPjkxPlk 0 
l' - Ïk jk Uk 1' ... ' n 8 k lk k - Ïk jk lk f 

X? = x;:k X~k. We will do the proof for X? = x;:k X~k, because for the other 

cases the proof is similar and even simpler. 

Without loss of generality, we will prove the result for X 1 . We have xr1 

p· Pl r· p· Pl 
X- 31 X 1

. Without loss of generality let X- 31 = X- 12 X 2
• 

]1 h ' Jl ]2 l2 

F. t th t . < 2 H xrl- XPhxPl2XPh -rhxPll 1rs , we suppose a J 1 _ n- . erree, 1 - i2 z
2 

j
1 

h · 

If j 2 > n- 2, then we will continue this case later. 

Suppose that j 2 :::; n - 2. Then, without loss of generality let x;;2 = x;:3 X~13 • 

Th us, 

We continue this process until there isak and an m both inN such either Jk+i > 

n- 2 for 1 :::; i:::; mor Jk+m = Jk :::; n- 2. We must have one of these two cases 

because there are only finitely many generators. 

If Jk+i > n- 2 for 1 :::; i :::; m, then we will continue this case later. 

If Jk+m = Jk :::; n - 2 with m E N, then, without loss of generality, x;:k 

X~1k+l Xz1k+l Moreover, 
]k+l lk+l . 

where v+(X1 , ... , Xn) is a positive word, because we have Pii - rii ;:::: 0 since 

Ji :::; n - 2 for 1 :::; i :::; k + m and so Xii is 2 left positive. But Jk+m = Jk, so 

X Tjk - xPjk +(x x ) d xTjk-plk - +(x x ) H < o ik - ik w 1, ... , n an ik - w 1, ... , n . owever, rik -pik _ 
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because jk ~ n - 2 and so Xjk is 2 left positive. This implies by Lemma 7.3.3, 

that w+(X1 , ... , Xn) = 1 and Xi = 1 for every Xi in w+(X1 , ... , Xn)· Because 

w+( ... Y1 , ... , Xn) is not empty, this completes the proof. 

We now come back to the case where there exists an mEN such that Jm > n- 2. 

Let k be the smallest natural number such that jk > n- 2. Then, we have 

where v+(X1 , ... , Xn) is a positive word, because we have Pji - rji > 0, since 

ji ~ n - 2 and so xji is 2 left positive. 

We will now look at Xzk. If lk > n- 2, then the proof is over for the left case. 

If lk ~ n- 2, then by a similar argument as for jk, either there is a Xi = 1 or 

with lm ~ n - 1. 

p· -r· 
A) If h ~ n- 1, then we look at xj;1 

Jt. Because Gis fluid and we have already 

supposed that Xj1 is 2left and 2 right positive, either pj1 -rj1 = 0 or pj1 -rh ~ rj1 . 

and we look at Xz 2 • 

i) If l2 ~ n- 1, then the proof is over. 
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ii) If l2 < n - 1, then by a similar argument as before, we obtain 

with ls 2:: n- 1. So the proof is over. 

b) If Pi! - Tj1 2:: rj 1 , then by a similar argument as before, we obtain 

with ls 2:: n- 1. So the proof is over. 

B) If h :::; n- 2, then by a similar argument as before done twice, we obtain 

with ls 2:: n- 1 and lt 2:: n- 1. So the proof is over. 

Th c •th x rl XPikxPjk +(x x )XPskxPlk xrl XPikxPskxPlk ere1ore, e1 er 1 = ik Jk u 1, ... , n sk zk, 1 = ik sk zk 

or X? = x::k x;:k where jk, lk, ik, Sk 2:: n- 1 or there is a trivial generator. 

Moreover, let Xn not be a 2 left and 2 right positive edge. Th en, as a relation 

of the group of G, the left edge and the right edge of Xn can't be Xn. Thus, 

we can't have X~n = x::k x;:k where jk, ik 2:: n - 1 with jk # ik. Renee, for 

X •th xrn - XPikxPjk +(x x )XPskxPlk xrn - XPikxPskxPlk h n) el er n - ik Jk U 1, ... , n Sk lk Or n - ik Sk lk W ere 

jk, lk, ik, sk 2:: n- 1 or there is a trivial generator. D 

We now prove the main result of this section. 

Proposition 7.5.8. Let G be a totally positive group generated by X 1 , ... , Xn where 

n 2:: 3 and (G, <) be a left arder on G such that Xi:::; 1 for every 1:::; i:::; n. If G 

is a fiuid steady ( n - 2) totally 2 left and 2 right positive group, then at least one 
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generator xi is trivial. 

Proof. Let n 2:: 3 be the number of generators. \Vithout loss of generality, let Xi 

with 1 ::; i ::; n - 2 be the generators with a 2 left and 2 right positive relations 

and Xn_ 1 and Xn be the generators that are not 2 left and 2 right positive. We 

first investigate Xn. By Lemma 7.5.7, then, either we can simplify its relation 

to obtain either xrn = x~in xf!Jnu+(x x )XPsn XPln or xrn = x~in xPsn XPln n ~n )n 1 ) ... ) n Sn ln n ~n Sn ln 

where )n, ln, in, sn are equal to n - 1 or n or we obtain a trivial generator. If we 

obtain a trivial generator, then the proof is over. We will prove the case when 

X~n = Xf~n Xf~n X~n as the other cases are similar and even easier to prove. 

Suppose xrn = x~in xPsn XPln where l i and s are equal to n - 1 or n n ~n Sn ln n' n n · 

a) Suppose that in and ln are equal to n. Then X rn = XPn xPsn XPn So ' n n Sn n · ' 

X~n-2Pn = Xf~n. Because Xn is fluid, rn - 2pn ::; 0 and by Lemma 7.3.3, 

Xsn = Xn = 1 and the proof is over. 

b) Suppose that either in or ln is equal to n and that sn = n. Then, either 

xrn-2Pn = xPn or xrn-2Pn = x~in. Because x is fluid. r - 2p <_ 0 and by n ln n ~n n , n n 

Lemma 7.3.3, Xln = Xn = 1 or Xin = Xn = 1 and the proof is over. 

c) Suppose that either in or ln is equal to n and that Sn = n - 1. Th en, X~n -Pn = 

X~~n1- 1 • We will complete this case later. 

d) Suppose that ln = in = Sn = n - 1. Then, X~n = x~~Ï- 1 . We will complete 

this case later. 

e) Suppose that Zn and ln is equal to n - 1 and that Sn 

x~:_]_ 1 XKn x~:_]_ 1 • We will complete this case later. 

n. Then, X~n 

Similarly, for Xn_ 1 , by Lemma 7.5.7, then, either we can simplify its relation 

t bt . •th xrn-1 - XPin-1xPJn-1 +(x x )XPsn-1xPln-1 xrn-1 -
0 0 a1n el er n-1 - in-1 Jn- 1 U 1? ... , n Sn-1 ln-1 Or n-1 -
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X Pin-1 )(Psn-1 )(Pln-1 h l · 1 t 1 bt · 
in_ 1 sn-1 ln_

1 
w ere n-1, 2n-1, Sn-1 are equa o n - or n or we o a1n a 

trivial generator. If we obtain a trivial generator, then the proof is over. We will 

prove the case when x~~11 
= x;~:~ 1 x:~:-.~ 1 x~:~ 1 as the other cases are similar 

and even easier to prove. 

By a similar argument as for Xn, either the proof is over, or we have the following 

possibilities: 

2) )(Tn-1 = )(3Pn· 
n-1 n ' 

3) )(Tn-1 = )(Pn )(Pn-1 )(Pn. n-1 n n-1 n 

We must deal with all the possible combinations for )(n and )(n_1 . The proof 

of combination c)2) is similar to d)1), combination c)3) is similar to e)1) and 

combination d)3) is similar to e)2). Therefore, we will only prove the cases c)1), 

c )2), c )3), d)2), d)3 and e3). 

Suppose we have the cases c) and 1). Th en, by substituting 1) in c), )(~n -Pn 

)(~Pn )(~~n1- 1 -Tn- 1 . Renee, )(~n-3Pn = )(~~n1- 1 -Tn- 1 . Because )(n and )(n-1 are fiuid, 

rn- 3pn :S 0 and 3Pn-1- rn-1 ~O. Thus, by Lemma 7.3.3, )(n-1 = )(n = 1 and 

the proof is over. 

Suppose we have the cases c) and 2). Then, by substituting 2) in c), )(~n-Pn = 

)(~Pn )(~~n1- 1 -Tn- 1 . Renee, )(~n - 4Pn = )(~~n1- 1 -Tn- 1 . Because )(n and )(n-1 are fiuid, 

rn - 4pn :S 0 and 2Pn-1 - r n-1 ~ O. Thus, by Lemma 7.3.3, Xn-1 = )(n = 1 and 

the proof is over. 

Suppose we have the cases c) and 3). Then, by substituting 3) in c), )(~n-Pn 

)(Pn xPn-1 )(Pn )(2Pn-1-Tn-1. Renee )(Tn-2Pn = )(Pn-1 )(Pn )(2Pn-1-Tn-1. Because )( 
n n-1 n n-1 ' n n-1 n n-1 n 

and )(n-1 are fiuid, rn - 2pn :::; 0 and 2Pn-1 - r n-1 ~ O. Thus, by Lemma 7.3.3, 
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Xn-1 = Xn = 1 and the proof is over. 

Suppose we have the cases d) and 2). Then, by substituting 2) in d), X~n = 

X~Pn x~~n1- 1 -rn- 1 . So, X~n-3Pn = x~~]_- 1 -rn- 1 . Because Xn and Xn-1 are fluid, 

rn- 3pn :=:; 0 and 3Pn-1- rn-1 ~O. Thus, by Lemma 7.3.3, Xn-1 = Xn = 1 and 

the pro of is over. 

Suppose we have the cases d) and 3). Then, by substituting 3) in d), X~n 

XPn xPn-1 XPn x3Pn-1 -rn-1 So 
n n-1 n n-1 · ' 

(7.25) 

By substituting the last equation in 3) from the left, we obtain 

This implies that 

We substitute the last equation in Equation 7.25 and obtain 

So, 

Because Xn and Xn-1 are fluid, rn- 2pn ~ 0, 3Pn-1 - r n-1 ~ 2pn- rn ~ O. Th us, 

by Lemma 7.3.3, Xn_ 1 = Xn = 1 and the proof is over. 
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Suppose we have the cases e) and 3). We substitute e) in 3) to obtain 

So, 

(7.26) 

Note that Pn-1 - r n-1 :s; O. By 3), X~~]_1 = X~n X~~]_ 1 X~n. This implies that 

X Pn-1-Tn-1xTn-lx-Pn - xPn-1-Tn-1XPnXPn-1 Th .c 
n-1 n-1 n - n-1 n n-1 . €f€10fe, 

xPn-1 x-Pn = xPn-1-Tn-1 XPn xPn-1 
n-1 n n-1 n n-1 · 

We define c = xPn-1 x-Pn = xPn-1 -Tn-1 XPn xPn-1. 
n-1 n n-1 n n-1 

i) If C :s; 1, then we obtain from Equation 7.26 X~n-Pn = X~'::_]_ 1 X~nC. So, because 

Xn is fluid, we obtain a 2 left positive relation for Xn. Thus, we have an (n- 1) 

totally 2 left positive group. Thus, by Proposition 7.4.1, there is an Xi such that 

xi= 1. 

3) xrn-1 = XPn xPn-1 XPn. So xrn-1-Pn-1 = XPn xPn-1 XPn x-Pn-1. Because 
' n-1 n n-1 n ' n-1 n n-1 n n-1 

X~n x;:~Ï- 1 :s; 1 and Xn_ 1 is fluid, we obtain a 2 left positive relation for Xn_ 1 . 

Thus, we have a (n- 1) totally 2 left positive group. Thus, by Proposition 7.4.1, 

there is an xi such that xi = 1. 

(n-2) 2 

D 

Thus, by Theorem 7.1.8, the previous proposition and Lemma 7.5.6 we have the 

following important result. 
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Theorem 7.5.9. If L is a fiuid steady (n- 2) totally simple monopositive link 

with n 2:: 3, then the fundamental group of the double branched caver of L is not 

left-orderable. 

For example, the knot 11n129 is a non-alternating and non-arborescent knot (Cau­

dron, 1987). 

Figure 7.1 A knot 11 n 129 diagram 

From this knot diagram, we obtain the following directed Wada graph. 



Figure 7.2 A directed Wada graph of the knot lln129 

From this Wada directed graph, we have the following positive relation. 

x1 = x~x3 

X2 = XsX3 

Xj = XsX6 

x4 = X3X1 

Xs = X6X1 

179 
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Thus, lln129 is steady fiuid (n- 2) totally monopositive. Renee, the fundamental 

group of the double branched cover of lln129 is not left-orderable. 



CHAPTER VIII 

INFINITE FAMILlES OF LINKS FOR WHICH THE FUNDAMENTAL 

GROUP OF THE DOUBLE BRANCHED COYER IS NOT 

LEFT-ORDERABLE 

In this section, we will find infinite families of links for which the fundamental 

group of the double branched cover is not left-orderable. To do so, we will start 

from a "good" link diagram and substitute a rational tangle by another rational 

tangle without losing the desired property. In other words, we start with a link for 

which the fundamental group of the double branched cover is not left-orderable 

and by replacing a rational tangle by others rational tangles, we will find an infinite 

family of links for which the fundamental group of the double branched cover is 

not left-orderable. First, we will look at the hybrid Wada diagram and investigate 

how a change of rational tangle affects the directed Wada graph. The building 

blacks will be the tot ally monopositive, the ( n - 1) tot ally monopositive and the 

steady fiuid ( n - 2) simple monopositive links. 

8.1 Properties of rational tangles in a hybrid Wada diagram 

Let D be a link diagram and H(r) be the hybrid Wada diagram. Let X be a 

rational tangle that is not an half-twist in the hybrid Wada diagram. Without 

loss of generality, suppose that a 1 and a3 are the non-bridge arcs in X. Th en, we 
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have the two following possibilities for the non-bridge arcs in X, that we define 

as the negative diagonal non-bridge and positive diagonal non-bridge. Recall that 

the non-bridge arcs of X are the white dots. 

Figure 8.1 A negative diagonal non-bridge 

Figure 8.2 A positive diagonal non-bridge 

If two rational tangles are negative diagonal non-bridge or the two are positive 

diagonal non-bridge, then we say that the two rational tangles are diagonal equiv­

alent. 

Let X be a negative diagonal non-bridge rational tangle. Then, the hybrid Wada 

diagram of X can be of two type. Firstly, 
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Figure 8.3 A negative diagonal non-bridge horizontal rational tangle 

We call these rational tangles in the link diagram horizontal rational tangle. We 

can also have the following rational tangle in the link diagram: 

Figure 8.4 A negative diagonal non-bridge vertical rational tangle 

We call these rational tangles in the link diagram vertical rational tangle. We 

define similarly, horizontal and vertical rational tangles with positive diagonal 

non-bridge. If we have two diagonal equivalent rational tangles that are both 

horizontal or both vertical, then we say they have the same direction or the two 

rational tangles are direction equivalent. 

Moreover, to differentiate the [nmnm_1 ... n 1] = P. rational tangles, we can look at 
q 

the last half-twist region. Then, nm + fë = ~ with k > 1 and k E lR because k is 
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a continuous fraction. If nm = 1, then 1 + t = ~ with k > 1. This implies that 

p~q = t < 1, th us p - q < q and the middle or der of X is smaller than the final 

order of X. We call these final rational tang les. 

If nm > 1, then nm ~ 2 because nm EN. Renee, 1 < nm- 1 + t = ~- 1 = p~q, 

th us p - q > q and the middle order of X is grea ter than the final or der of X. We 

call these middle rational tangles. If both rational tangles are final or both are 

middle, then we say they have the same shape or they are shape equivalent. 

Finally, if two rational tangles are large or if both are not large, then we say that 

they have the same strength or they are strength equivalent. 

Definition 8.1.1. If two rational tangles are diagonal equivalent and they have 

the same direction, the same shape and the same strength, then we say that the 

two rational tangles are of the same nature. 

Definition 8.1.2. If two rational tangles are diagonal equivalent and they have 

the same direction and the san1e shape, then we say that the two rational tangles 

are similar. 

Remark 8.1.3. Thus, if we substitute a rational tangle X for a similar rational 

tangle, we will get the same Rybrid Wada diagram except for the middle and the 

final order of X. Thus, we will have the same Wada rational graph at the except 

for the middle and the final or der of X. Rowever, if we change a rational tangle 

X for a rational tangle of the same nature, we will get the same Rybrid Wada 

diagram at the except for the middle and the final order of X. Renee, we will get 

the same Wada rational graph at the except for the middle and the final order of 

X, but the new tangle will have the same shape and strength property. 
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8.2 Impact of Changing a Rational Tangle on the directed Wada Group 

Let D be a link diagram, H(r) be the hybrid Wada diagram, (r, <)be a directed 

Wada graph and G(r, <)the directed Wada group of (r, <). Recall from chapter 

5 that a Wada directed cycle C in the directed Hybrid Wada diagram gives a 

relation r in the directed Wada group. If the change of a rational tangle in the 

link diagram changes the Hybrid Wada diagram in a way that C is unchanged, 

then the relation r will stay unchanged in the directed Wada group of the new 

directed Wada graph. If the change of a rational tangle in the link diagram changes 

the directed hybrid Wada diagram in a way that C is changed into C', then we 

will obtain the relation r' in the directed Wada group of the new directed Wada 

graph of the new link, where r' is the relation obtained from the cycle C'. 

We will first give a series of technicallemmas that come directly from the Remark 

8.1.3 and the previous comment. 

Lemma 8.2.1. Let (r, <) be a directed Wada graph of a link diagram D, C be 

a Wada directed cycle in the directed hybrid Wada diagram and Xi be a rational 

tangle which is not a half-twist. If there is no Xi edges in C and we replace Xi 

by a similar rational tangle which is not a half-twist, then the cycle C will stay 

unchanged in the new directed hybrid Wada diagram. 

Lemma 8.2.2. Let (r, <) be a directed Wada graph of a link diagram D, C be 

a Wada directed cycle in the directed hybrid Wada diagram, Xi be a P. rational 
q 

tangle which is not a half-twist and Xf-q be an edge in C. If we change Xi to 

a similar % rational tangle, then the cycle C will change into C' where Xf-q will 

become x:-t where s - t is the middle arder of the new xi in the new directed 

hybrid W ad a diagram. 

Lemma 8.2.3. Let (r, <) be a directed Wada graph of a link diagram D, C be a 

Wada directed cycle in the directed hybrid Wada diagram, Xi be a P. rational tangle 
q 
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which is not a half-twist and X{ be an edge in C. If we change Xi to a similar 

~ rational tangle, then the cycle C will change into C' where X{ will become Xf 

where t is the final arder of the new Xi in the new directed hybrid Wada diagram. 

Lemma 8.2.4. Let (r, <) be a directed Wada graph of a link diagram D, C be 

a Wada directed cycle in the directed hybrid Wada diagram, Xi be a l!. rational 
q 

tangle which is not a half-twist and X{ (resp. Xf-q) be an edge in C. If we 

change Xi to a similar ~ rational tangle with different strength, then the cycle C 

will change into C' where X{ (resp. Xf-q) will become Xf (resp. xz-t) where 

t (resp. s- t) is the final arder (resp. middle arder) of the new Xi in the new 

directed hybrid W a da diagram. 

8.3 Infinite Families of Totally Simple Positive Links 

Recall that the fundamental group of the double branched cover of a totally 

monopositive link, a (n-1) totally monopositive and a steady fluid (n-2) simple 

monopositive link is not left-orderable. From the lemmas 8.2.1, 8.2.2 and 8.2.3, 

we get the following results on relation in the directed Wada group. 

Proposition 8.3.1. Let (r, <) be a directed Wada graph of a link dia gram D, 

Xi be a rational tangle which is not a half-twist and which is monopositive. If we 

change xi to a similar rational tang le x~' then x~ will still be monopositive in the 

new directed Wada group of the new directed Wada graph. 

Proposition 8.3.2. Let (r, <) be a directed Wada graph of a link diagram D, Xi 

be a rational tangle which is not a half-twist and Xj a monopositive rational tangle. 

If we change Xi to a similar rational tang le X~, th en Xj will still be monopositive 

in the new directed Wada group of the new directed Wada graph. 

Thus, we get 
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Proposition 8.3.3. Let (r, <) be a steady fiuid directed Wada graph of a link 

diagram D and Xi be a rational tangle which is not a half-twist. If we change Xi 

to a rational tangle of the same nature, then the new directed Wada group of the 

new directed W ada graph will still be steady and fiuid. 

Moreover, 

Theorem 8.3.4. Let (r, <) be a totally monopositive directed Wada graph of a 

link L and Xi be a rational tangle which is not a half-twist. If we change Xi to 

a similar rational tang le, th en the new directed W a da graph will still be totally 

monopositive. 

Theorem 8.3.5. Let (r, <) be a (n-1) totally monopositive directed Wada graph 

and Xi be a rational tangle which is not a half-twist. If we change Xi to a similar 

rational tang le, th en the new directed W a da graph will still be ( n - 1) totally 

monopositive. 

Theorem 8.3.6. Let (r, <) be a steady fiuid (n- 2) totally monopositive directed 

Wada graph and Xi be a rational tangle which is not a half-twist. If we change 

Xi to a rational tangle of the same nature, then the new directed Wada graph will 

still be steady fiuid ( n - 2) totally simple monopositive. 

Therefore, by the Theorem 7.3.6, Theorem 7.4.3 and Theorem 7.5.9 we get the 

following results 

Theo rem 8.3. 7. Let L be a totally monopositive link and Xi be a rational tang le 

which is not a half-twist. If we change Xi to a similar rational tangle, then the 

fundamental group of the double branched caver of the new link L' is not left­

orderable. 

Theorem 8.3.8. Let L be a ( n- 1) totally monopositive link and Xi be a rational 

tangle which is not a half-twist. If we change Xi to a similar rational tangle, 
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then the fundamental group of the double branched caver of the new link L' is not 

left-orderable. 

Theorem 8.3.9. Let L be a fiuid steady (n- 2) totally monopositive link and Xi 

be a rational tangle which is not a half-twist. If we change Xi to a rational tangle 

of same nature, then the fundamental group of the double branched caver of the 

new link L' is not left-orderable. 

The knot 821 is a totally monopositive link. 

~3 

Figure 8.5 A knot diagram of the knot 821 

By Theorem 8.3.7, if we replace the rational tangles X 1 , X 2 or X 3 by similar 

rational tangles, then the fundamental group of the double branched cover of the 

new link is not left-orderable. 

The knot 949 is a ( n - 1) tot ally monopositive link. 
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······· 
.. ····· 

............. 

······ 

Figure 8.6 A knot diagram of the knot 949 

By Theorem 8.3.8, if we replace the rational tangles X 1 , X 5 or X 6 by similar 

rational tangles, then the fundamental group of the double branched cover of the 

new link is not left-orderable. 

The knot lln129 is a fluid steady (n- 2) totally monopositive. 
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.. ···· 

X) 

... 
.. ··· 

Figure 8.7 A knot diagram of the knot lln129 

By Theorem 8.3.9, if we replace the rational tangles X 1 , X 2 or X 3 by similar 

rational tangles, then the fundamental group of the double branched cover of the 

new link is not left-orderable. 



CHAPTERIX 

TRIPLE HOP LINKS 

In the previous sections, we have looked mostly at directed links. In this section, 

we will introduce a different method to show that the directed Wada group pre­

sentation of sorne directed Wada graph is trivial. We will use this method for 

links that are not directed. 

In this section, we will study a particular type of links called the Triple Hop links. 

It is worth noting that, for non-alternating knot of 10 or less crossing, every knot 

that is not a three non-bridge knot, is a triple hop knot. We will show that 

sorne subfamilies of triple hop links have non-left orderable fundamental group. 

To do so, for middle triple hop links, we will introduce two sufficient conditions 

for the directed Wada group presentation to be trivial, the left and right directed 

condition and the left and right middle hop condition. For final triple hop links, we 

will introduce the left graph directed and right graph directed conditions. On the 

7 non-alternating, non-directed and not left orderable knots of 10 or less crossing, 

the theorems in this section will cover 5 of them. It is also worth noting that the 

triple hop links argument works for a lot of the directed links. 

Definition 9.0.1. A link Lis called a Triple Hop link if it has a minimal diagram 

with exactly two non-brige arcs which moreover are the final vertices of the same 

rational tangle. We call this rational tangle the triple hop tangle 
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The knot 947 is a triple hop knot. Note that the knot 947 is not a directed knot 

and not an arborescent knot (Caudron, 1987). 

Figure 9.1 The knot 947 is a triple hop knot with X 1 as triple hop tangle. The 
non-bridge arcs a9 and a1 are final vertices of X 1 . 

We will give sorne definitions about rational tangle that will help us study the 

triple hop links. Before, we recall that for two vertices ai and ai in a directed 

Wada graph (r, <), we say that ai <(r,<) ai if there is a directed Wada path from 

Definition 9.0.2. Let (r, <) be a directed Wada graph of a link diagram D and 

X an edge from ai to ai in (r, <) with ai <(r,<) ai. If there is a vertex ak such 

that ai <(r,<) ak <(r,<) ai, then we say that X is a caver edge. If there are m 

vertices akm such that ai <(r,<) akm <(r,<) aj but no other vertices satisfy this 
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condition, then we say that X is an m-cover edge. If there is no such ak, then we 

say that X is a fiat edge. Recall that such vertices are called Wada consecutive. 

For a crossing al >(r,<) ak >(r,<) aj >(r,<) ai, we say the lejt edge is the edge from 

al to ak, the middle edge is the edge from ak to aj and the right edge is the edge 

from aj to ai. We define a rational tangle as a C - F - F rational tangle if the 

left edge is a caver edge and the middle and right edges are flat edges. If we want 

to specify that we have an m cover edge, we write mC- F- F. Similarly, for the 

other rational tangles. 

Thus a flat crossing will be a F - F crossing and a flat rational tangle will be a 

F - F - F rational tangle. Note that each caver edge X gives a simple positive 

relation. If this simple positive relation is pluripositive, then we say that X is a 

pluripositive co ver edge. Moreover, we add an apostrophe after the C from this 

edge X in the naming of the rational tangle. For example, for a C-F-F rational 

tangle with the cover edge giving a pluripositive relation, we write C'- F- F 

rational tangle. Note that the orders of the final edges are the same, thus if both 

of them are cover edges, they will be both pluripositive or both monopositive. 

Moreover, a C- C - F rational tangle will be either a C' - C - F rational tangle, 

a C - C' - F rational tangle or a C - C - F rational tangle, because either the 

order of the finals edges is minimal, the order of the middle edge is minimal or we 

have a full twist and both are minimal. Similarly, for the other edges with more 

than one caver edge. 

When we look at a directed Wada graph, we say that a directed path go right 

when we go from a vertex aJ to a vertex ai such that aj > ai and lejt when the 

pa th go from ai to aj. We now define important rational tangle defined from there 

co ver edges. 

Definition 9.0.3. A F - C or F - F - C rational tangle will be called a lejt 
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rational tangle and a C - F or C - F - F rational tangle will be called an right 

rational tangle. Moreover a F- C- F rational tangle will be called a middle 

rational tangle. Note that we want the cover edge to be a monopositive edge. We 

recall that C' in the labeling of the rational tangle means that C is a pluripositive 

edge. For rational tangles with two cover edges, C'- C-F rational tangle will 

be called double right rational tangle and C- C' - F rational tangle will be called 

pluripositive double right rational tangle. Similarly, F - C' - C will be called 

pluripositive double lejt rational tangle, F - C - C' double left rational tangle, 

C-F- C double end rational tangle, C'- F- C' pluripositive double end rational 

tangle and C - C double rational tangle and finally C' - C - C' or C - C' - C 

triple rational tangle. 

9.1 Results on left-orderability for middle triple hop links 

Recall that a rational tangle is a middle rational tangle, if the order of the final 

edges is less than or equal than the order of the middle edge. We say that a triple 

hop link is a middle triple hop links, if the triple hop rational tangle is a middle 

rational tangle. In this section, we will find two sufficient conditions to prove 

that middle triple hop links have a non left-orderable fundamental group of their 

double branched cover. For example, the knot 947 , introduced at the beginning of 

the chapt er, is a middle rational tangle. 

The next definition will be used in the definition of one of the most important 

properties of triple hop links. 

Definition 9.1.1. Let P be a directed path in a directed Wada graph. Let C be 

the set of directed paths that includes P. Th en, the prolongement of P, is the set 

of edges and vertices included in C. 

We will now prove a lemma that will enable us to introduce the first important 
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property of directed Wada graph in triple hop links. 

Lemma 9.1.2. Let (r, <) be a directed Wada graph of a triple hop link diagram, 

C be a Wada directed path in (r, <) and Xi be the le ft edge of C. If all the 

edges of C come from a lejt, double lejt or double end rational tangles for which 

the monopositive lejt caver edge ends on the prolongement of the path C, then 

Xfi = x;j Aj for every fiat edge Xj in C where Aj is a positive ward of edges. 

Proof. Without loss of generality we suppose that C = { Xft, x;\ ... , X~m} where 

Xi is the i-left edge of C. We will prove the result by induction on the number 

k of flat edges in C. If k = 2, then C = {Xft, x;2
}. Moreover, by hypothesis, 

X 1 cornes from a left, double left or double end rational tangles for which the 

monopositive left cover edge end on the prolongement of C. Because X 1 is a left, 

double left or double end rational tangle, there is a cover edge X 1 that starts 

at the beginning of X 2 and that ends on the prolongement of C. Therefore, 

Xfk = x;2 w+(Xb ... , Xn)· Thus, the proof is over for k = 2. 

Let the result be true for m - 1 fiat edges in C. This implies that Xf1 = x;j Aj 

for every flat edge Xj in C where Aj is a positive word of edges. We will 

now prove the case when k = m and so for the Wada directed path C = 

{Xft, x;\ ... , X~m }. To do so, we will first look at C1 = {Xft, x;\ ... , X~m-l }. 

Renee, Xf1 = x;j Aj for every fiat edge Xj in C1 where Aj is a positive word 

of edges. Moreover, Xm-l cornes from a left, double left or double end rational 

tangles for which the monopositive left cover edge end on the prolongement of C. 

Because Xm-l is a left, double left or double end rational tangle, there is a cover 

edge Xm-l that starts at the beginning of Xm and that ends on the prolonge­

ment of C. Therefore, X~r:_]_1 = X~mw+(X1 , ... , Xn)· Furthermore, we already 

have Xf1 
= x!r:_11 Am-l· So, because the cover edge Xm-l is monopositive, we 

have Xf1 = X~mw+(Xl, ... , Xn)X!r:_1I-Pm-I Am-1 where km-1- Pm-1 2: O. Thus, 
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X p 1 Xk A h A - +(X X )Xkm- 1 -Pm- 1 A . •t• d 1 = mm m W ere m - W 1, ... , n m-1 m-1 lS a pOSl IVe WOr 

and the proof is over. 0 

Similarly, 

Lemma 9.1.3. Let (f, <) be a directed Wada graph of a triple hop link diagram, 

C be a Wada directed path in (r, <) and Xi be the right edge of C. If all the edges 

of C cames from a right, double right or double end rational tangles for which 

the monopositive right caver edge end on the prolongement of the path C, then 

Xfi = Ajx:j for every fiat edge Xj in C where Aj is a positive word of edges. 

Definition 9.1.4. Let C = {Xf\ x;2
, ••. , X!m} be a directed path of flat edges 

in a directed Wada graph and let each flat edge cornes from a left, double left or 

double end rational tangles that end on the prolongement of the path C. Thus, 

by Lemma 9.1.2, Xf1 = x;i Ai for 2 :::; i :::; m where Ai is a positive word of edges. 

We say that Xi is lejt included in X 1 for 2 :::; i :::; m. We call this path a lejt 

directed path. 

We define similarly with Lemma 9.1.3 a right directed path with right, double right 

and double end rational tangles. 

We will now introduce two conditions that will be sufficient to show that for a 

directed Wada graph the directed Wada group presentation is trivial. 

Definition 9.1.5. Let (f, <)be a directed Wada graph with triple hop (Xk, XP, Xk) 

and let the left edge of X be a cover edge. Then Xk = w+(X1 , ... , Xn)· 

If there is a left directed path from the left edge of w+(X1, ... , Xn) to the right 

edge of w+(X1 , ... , Xn), we call this condition, the left directed condition. 

Let Xiki be the right edge of w+(X1 , ... , Xn) and Xfi be the consecutive edge to 

the right of x:i. Then, either Xfi is also a left edge of the middle edge of X or it 
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is not a left edge of the middle edge of X. 

Let X fi be also a le ft edge of the middle edge of X. If XP is le ft incl uded in 

x;ni+Pi where mi+ Pi is the compose order of xi ' then we say that the left middle 

hop condition is satisfied. 

Let Xfi not be a left edge of the middle edge X. If XP is left included in Xfi, 
then we say that the left middle hop condition is satisfied. 

We define similarly, the right directed condition and the right middle hop condition. 

Theorem 9.1.6. Let (r, <) be a directed Wada graph of a middle triple hop link 

diagram. If the left directed condition {resp. right directed condition) and the 

left middle hop condition (resp. right middle hop condition) are respected, then 

G(r, <) is trivial. 

Proof. Suppose that the left directed condition and the left middle hop condition 

are satisfied. Let X = (Xk, XP, Xk) be the edge of the triple hop rational tangle 

(an, am, ak, al) and without loss of generality xtl' x;2' ... , xtl be the edges of the 

left directed path from an to am. This left directed path exists because of the left 

directed condition. Thus, by Lemma 9.1.2, Xf1 = x:i Ai for 2 ::; i ::; l where Ai is 

a positive word of edges. In particular, Xf1 = Xzk1 Az where Az is a positive word 

of edges. Moreover, 

(9.1) 

where A is a positive word of edges, because Xt1 is the left edge of Xk = 

w+(X1 , ... , Xn)· Renee, 

(9.2) 

where k1 - P1 2:: 0, because Xt1 is in a left directed path. 

Suppose that Xi is not a left edge of the middle edge X. Then, XP is left included 
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in Xjt by the left middle hop condition. So, 

(9.3) 

where Bis a positive word of edges. Thus, by the previous equation and equation 

9.2, xk = XP BXzkz-pz Azx;l -pl A where kz- Pz 2:: 0 because xtz is in a left directed 

path. This implies that xk-p = Bxtz-pz AzX;1 -p1 A where k - p :s; 0, because X 

is a middle rational tangle. 

If k # p, then by Lemma 7.3.3, X= 1 and so an = a 1. This implies that G(r, <) 

is trivial. 

If k = p, then 1 = BXzkz-pz AzX;1 -p1 A. So, 1 = B = Xzkz-pz = Az = x;1 -p1 = A. 

If kz #pz, then Xz = 1. Therefore, by Equation 9.3, X= 1 and so an= a 1 . Thus, 

G (r, <) is trivial. If kz = pz and k1 # p1 , th en X 1 = 1. From Equation 9.1, this 

implies that X = 1. So, an = a 1 and G (r, <) is trivial. 

Suppose that kz =pz and k1 = p1 and recall Equation 9.1. Because Xk is a cover 

edge, A is not empty. Moreover, sin ce X~1 , x;2
, ••• , Xzkz are the edges of the le ft 

directed path from an to am, A= x;2 A'. Thus, because A= 1, X 2 = 1. From the 

left directed condition, X~2 = x;3 A3 , so X 3 = 1. By a similar argument, Xi = 1 

for 2 :s; i :s; l. Therefore, Xz = 1 and by Equation 9.3, X = 1. This implies that 

an = a1 and G(r, <) is trivial. 

N ow, suppose that Xi is a left edge of the middle edge X. Th en, XP is left incl uded 

in )(fz+kz by the left middle hop condition. So, 

(9.4) 

where D is a positive word of edges. Moreover, because am is in X and in Xz 
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and both rational tangles are not half-twist, by Lemma 6.7.6, am is in no other 

rational tangle. Also, because Xz is a left edge of the middle edge X and the right 

edge of the left edge X, then Xf1 = xtz Az = xtz+Pz Af. Therefore, 

(9.5) 

and by a similar argument as the previous case, G (r, <) is trivial. 

The proof is similar when the right directed condition and the right middle hop 

condition are satisfied. D 

By Theorem 9.1.6 and Lemma 4.0.2, we have 

Theorem 9.1.7. Let D be a maximal two non-bridge middle triple hop diagram 

of a non-split link L. If for every directed W a da graph (r, <), the le ft directed 

condition (or resp. right directed condition) and the le ft middle hop condition 

(or resp. right middle hop condition) are respected, then the 1r1 (~(L)) is not 

left-orderable. 

The knot diagrarn 947 of figure 9.1 has the two following directed Wada graph. 
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Figure 9.2 The two directed Wada graphs of the knot diagram 947 of figure 9.1 

For both directed Wada graphs, the left directed condition, the right directed 

condition, the left middle hop condition and the right middle hop condition are 

respected. Thus, the fundamental group of the double branched cover of the knot 

947 is not left-orderable. 
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9.2 Results on left-orderability for final triple hop links 

Recall that a rational tangle is a final rational tang le, if the order of the final edges 

is greater than the order of the middle edge. We say that a triple hop link is a 

final triple hop links, if the triple hop rational tangle is a final rational tangle. In 

this section, we will find three sufficient conditions to prove that final triple hop 

links have a non left-orderable fundamental group of their double branched cover. 

The non-alternating knot lln47 is a final triple hop knot. The final triple hop 

links are more complicated to deal with than middle triple hop links. We will 

need more definitions. 

For sorne triple hop link diagrams, we will be able to split the triple hop link 

diagram into three parts. 

Definition 9.2.1. Let (r, <) be a directed Wada gr a ph of a triple hop diagram 

of a link L and X = (an, az, ak, a1 ) be the triple hop rational tangle. All the ai 

such that an 2:(r,<) ai 2:(r,<) az form the vertices of the le ft graph of (r, <). All 

edges between vertices of the left part form the edges of the left graph. 

All the ai such that az 2:(r,<) ai 2:(r,<) ak forms the vertices of the middle graph 

of (r, <). All edges between vertices of the middle gr a ph form the edges of the 

middle graph. 

All the ai such that ak 2:(r,<) ai 2:(r,<) a1 forms the vertices of the right graph of 

(r, <). All edges between vertices of the lower gr a ph form the edges of the right 

graph. 

If every vertex is at least in one of the left, middle or right graph, then we say 

that (r, <) is trichotomic. 

We now define a property of left and right graph that will be useful for the final 



202 

triple hop links. 

Definition 9.2.2. Let (r, <) be a directed Wada graph of a trichotomic triple 

hop diagram. 

If every directed path in the left graph is left directed, then we say that the left 

graph is lejt graph directed. 

If every directed path in the right graph is right directed, then we say that the 

right graph is right graph directed. 

Remark 9.2.3. Clearly, if the left graph is left graph directed, then the left 

directed condition is satisfied. Similarly, if the right graph is right graph directed, 

then the right directed condition is satisfied. 

We can now prove a result for final triple hop links. 

Theo rem 9.2.4. Let (r, <) be a trichotomic directed Wada graph of a final triple 

hop link diagram. If the left graph is left graph directed (resp. the right graph 

is right graph directed) and the lejt middle hop condition and right middle hop 

condition are respected, th en G (r, <) is trivial. 

Proof. Without loss of generality suppose that the left graph is left graph di­

rected. Then, the left directed condition and the left middle hop condition are 

satisfied. Let X = (Xk, XP, Xk) be the triple hop rational tangle with vertices 

(an, am, ak, ai) and without loss of generality let X~1 , x;2
, ••• , Xt1 be the edges of 

a left directed pa th from an to am. This left directed pa th exists because of the 

left graph directed condition. Thus, by Lemma 9.1.2, Xf1 = Xiki Ai for 2 ::; i ::; l 

where Ai is a positive word of edges. In particular, Xf1 = Xzkz Az where Az is a 

positive word of edges. However, 

(9.6) 



where A is a positive word of edges, because X~1 is the left edge of Xk 

w+(XI, ... , Xn)· Renee, 
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(9.7) 

where kl -PI 2:: 0, because X~1 is in a left directed path. 

Suppose that Xi is not a left edge of the middle edge X. Th en, XP is left included 

in Xf1 by the left middle hop condition. So, 

(9.8) 

where B is a positive word of edges. Thus, by the previous equation and equation 

9.6, xk = XP BXzkl-Pl AzX~l-Pl A where kz- pz 2:: 0 because Xzkl is in a left directed 

path. This implies that xk-p = Bxtl-Pl AzX~l-Pl A where k - p 2:: 0, because x 

is a final rational tangle. 

We now investigate B = x:s B' where x:s is a fiat edge and B' is a positive word. 

We know that Xf1 = XP B = XP x:s B', but XP goes from am to ak, so x:s goes 

from ak to at such thàt t :::; k. So, at ::;(r,<) ak and at is in the right graph. 

Because of the right middle hop condition, Xfs = CXP where C = c+(X1 , ... , Xn)· 

However, XP goes from am to ak? so the edges in C are in the left graph. This 

implies that C = X~u C' where X~u is a fiat edge in the left gr a ph and C' = 

c'+(X1 , ... , Xn)· There is a directed Wada path from Xu to X!a where X!a is 

consecutive to XP. Th us, by the left graph directed condition X~u = X!a D where 

D = d+(xi, ... , Xn)· Moreover, by the left middle hop condition x~a = XP E 

where E = e+(X1 , ... , Xn)· So, combining the previous equations we obtain 
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This implies that 

Therefore, 

Th us, 

We repeat a similar argument v time until k- vp::; 0 and so by Lemma 7.3.3 the 

proof is over. 

The proof when Xi is a left edge of the middle edge X is similar. 

The proof is similar when the right graph is right graph directed and the right 

and left middle hop condition are satisfied. D 

By Theorem 9.2.4 and Lemma 4.0.2, we have 

Theorem 9.2.5. Let D be a maximal two non-bridge final triple hop diagram of 

a non-split link L. If every directed Wada graph (r, <) is trichotomic and for 

every (r, <) the le ft graph is le ft graph directed or the right graph is right graph 

directed and bath the left middle hop condition and right middle hop condition are 

respected, then the 1r1 (~(L)) is not left-orderable. 

For the knot lln47 both directed Wada graph (r, <) are trichotomic and for both 

(r, <) the left graph is left graph directed and both the left middle hop condition 
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and right middle hop condition are respected. Thus, the fundamental group of 

the double branched cover of lln47 is not left-orderable. 

9.2.1 Infinite families of good middle triple hop link and good final middle 
triple hop link 

To simplify the classification of links, we will define families of links that satisfies 

the hypothesis of the two theorems of the previous sections. 

Definition 9.2.6. Let D be a maximal two non-bridge middle triple hop diagram 

of a non-split link L. If for every directed Wada graph (r, <), the left directed 

condition (or resp. right directed condition) and the left middle hop condition (or 

resp. right middle hop condition) are respected, then D is a good middle triple 

hop link diagram and L is a good middle triple hop link. 

Definition 9.2. 7. Let D be a maximal two non-bridge final triple hop diagram 

of a non-split link L. If every directed Wada graph (r, <) is trichotomic and for 

every (r, <) the left gr a ph is left gr a ph directed or the right gr a ph is right gr a ph 

directed and both the left middle hop condition and right middle hop condition 

are respected, then D is a good final triple hop link diagram and L is a good final 

triple hop link. 

From a good middle triple hop link diagram, we can obtain an infinite family 

of good middle triple hop link diagrams. Similarly, from a good middle triple 

hop link diagram, we can obtain an infinite family of good middle triple hop link 

diagrams. In both cases, we will obtain the infinite family by substituting the 

triple hop rational by a rational tangle of the same nature. 

By definition of rational tangles of same nature and of triple hop link diagram, 

we have the following result. 
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Lemma 9.2.8. Let D be a middle (resp. final) triple hop diagram with X the 

triple hop rational tangle. If we substitute X by a rational tangle X' of the same 

nature, then the new link diagram D' is a middle (resp. final) triple hop diagram 

with X' the triple hop rational tangle. 

Furthermore, by Propositions 8.3.1 and 8.3.2, we obtain the following series of 

lemmas. 

Lemma 9.2.9. Let (r(D), <) be a directed Wada graph of a triple hop link di­

agram D with triple hop X such that the le ft directed condition (or resp. right 

directed condition) is respected. If we substitute X by a rational tangle X' of same 

nature, th en the new directed Wada graph (r( D'), <) of the new triple hop link 

diagram D' with triple hop X' satisfies the le ft directed condition (or resp. right 

directed condition) . 

Lemma 9.2.10. Let (r(D), <) be a directed Wada graph of a triple hop link 

diagram D with triple hop X such that the the le ft middle hop condition (or resp. 

right middle hop condition) is respected. If we substitute X by a rational tangle 

X' of same nature, then the new directed Wada graph (r(D'), <) of the new triple 

hop link diagram D' with triple hop X' satisfies the le ft middle hop condition (or 

resp. right middle hop condition). 

Lemma 9.2.11. Let (r(D), <) be a trichotomic directed Wada graph of a triple 

hop link diagram D with triple hop X such that the left graph is left graph directed 

(or resp. the right graph is right directed). If we substitute X by a rational tang le 

X' of same nature, then the new directed Wada graph (r(D'), <) of the new triple 

hop link diagram D' with triple hop X' is trichotomic and the left graph is left 

graph directed (or resp. the right graph is right directed). 

Thus, directly by the previous lemmas, a good triple hop link stays a good triple 
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hop link, if we change the triple hop rational tangle by a rational tangle of the 

same nature. 

Proposition 9.2.12. Let D be a good middle (resp. final) triple hop diagram 

with X the triple hop rational tangle. If we substitute X by a rational tangle X' 

of the same nature, then the new link diagram D' is a good middle (resp. final) 

triple hop diagram with X' the triple hop rational tangle. 

Renee, by Theorems 9.1.7 and 9.2.5 we have the final result of this chapter. 

Theorem 9.2.13. Let D be a good middle (resp. final) triple hop diagram of a 

link L with X the triple hop rational tangle. If we substitute X by a rational tangle 

X' of the same nature, then for the new link L' obtained from the new rational 

tangle X', 1r1 (~(L')) is not left-orderable. 

The knot 947 is a good middle triple hop diagram. 
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Figure 9.3 A knot diagram of the knot 947 . 

By Theorem 9.2.13, if we replace the rational tangle X 1 by a similar rational 

tangle, then the fundamental group of the double branched cover of the new link 

is not left-orderable. 



CONCLUSION 

We have obtained results about the non-left-orderability of directed and non­

directed 2-non-bridge links. In further work, more results could be obtained for 

the non-left-orderability of directed links, non-directed 2-non-bridge links and non­

directed k-non-bridge links with k 2: 3. Moreover, with the machinery developed 

in this thesis we should be able to obtain results on the left-orderability of links. 

For directed links, we have shown that the totally monopositive, ( n - 1) tot ally 

monopositive and (n - 2) steady fl.uid totally monopositive links have double 

branched covers with non-left-orderable fundamental groups. We are confident 

that we could either enlarge these family or find new orres. For example, the 

knots 10156 is almost an ( n - 2) steady fl.uid totally monopositive knots but not 

quite. However, we can easily prove by hand that it was not left-orderable. We 

should be able to define a family that includes 10156 and prove non-left-orderability 

for this family of links. 

For non-directed links, we have used the triple hop machinery. However, the left 

or right directed conditions can be blocked by pluripositive rational tangles. For 

example, the middle triple hop knot 10155 is not a good middle triple hop knot 

because it is not left directed. However, we can prove the non-left-orderability 

by hand using an argument similar to the ( n - 1) tot ally monopositive argument 

so it becomes a good middle triple hop knot. We could generalize this kind of 

argument to obtain ( n - 1) good middle triple hop links and ( n - 1) good final 

triple hop links. 

More investigations could be clone for k-non-bridge links with k 2: 3. For example, 
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the 3-non-bridge knot 10161 is more difficult to study, a priori because we have 

three possibilities for the maximum and after two possibilities for the minimum. 

Therefore, there are many different directed Wada graphs and different directed 

Wada group to study. For now, we do not even know if the fundamental group of 

the double branched cover of 10161 is left-orderable or not. 

In this thesis, we didn't find results for left-orderability, however we think that the 

machinery developed could also be useful to obtain results in this direction. In 

fact, empirically, the Graph group is the fundamental group of the double branched 

cover. It would be interesting to prove this result. Moreover, empirically, we can 

find a group presentation of the Graph group. If both results are true, then for 

every directed link, we obtain a possible group presentation for the fundamental 

group of the double branched cover. Therefore, if it is left-orderable, we have a 

presentation of the left-orderable group. Furthermore, we have a presentation of 

the left-orderable group, such that each generator is less than or equal to 1. 

If the Graph group is the fundamental group of the double branched cover, then it 

would also be useful in the study of quasi-alternating links. We recall the definition 

of quasi-alternating links. 

Definition 9.2.14. A link is called quasi-alternating if it belongs to the set Q 

that is the smallest set of links characterized by the following two properties: 

1. The unknot is in Q. 

2. If Lhasa diagram D with a crossing c such that 

(a) the two smoothings D0 and Doo at c represent links L0 , Loo both of 

which belong to Q, 

(b )det(Lo)+det(Loo)=det(L), 

then L belongs to Q. 
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Such a crossing c is called a quasi-alternating crossing. 

If the Graph group is the fundamental group of the double branched cover, then 

we can find the determinant of the link from the abelianization of the fundamental 

group. From the machinery of Wada rational graphs, we know relatively well the 

effects of changing a rational tangle, in the link diagram, on the directed Wada 

group, and therefore on the Graph group. Thus, we could know the effect of 

changing a rational tangle in the link diagram on the determinant of the link. 

This knowledge would prove very useful for the property 2 b) of quasi-alternating 

links. 
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