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Les numéraux avant les nombres ? 
Les limites des modèles externalistes de l'origine des nombres 

RÉSUMÉ 

Propulsée par le développement de nouvelles technologies et méthodes d'investigation 
dans divers domaines de recherche, l'étude de la cognition numérique progresse à un 
rythme fulgurant depuis quelques années. Des domaines aussi variés que la 
psychologie développementale, l'anthropologie, la linguistique, la neuropsychologie, 
l' éthologie, et la philosophie contribuent tous à une explosion de données qui nous 
permettent de croire que l'on pourrait bientôt percer le mystère de comment notre 
système nerveux pourrait nous permettre de représenter des entités objectives comme 
les nombres naturels. Une des plus importantes découvertes tirées de ce progrès est 
celle de ce q11:'il est maintenant coutume d'appeler le« Approximate Number System» 
(ANS), un ensemble de neurones qui nous permet de déterminer la quantité 
approximative d'objets dans des collections auxquelles nous portons notre attention. 
Un autre système, le« Object-File System» (OFS), serait quant à lui dédié à garder en 
tête les propriétés spatiotemporelles d'un nombre restreint d'objets. Malheureusement, 
les limitations évidentes de ces systèmes indiquent qu'ils ne peuvent à eux seuls 
expliquer l'émergence de nos ·capacités arithmétiques : tandis que le ANS est 
sévèrement limité dans sa précision, la portée du OFS est limitée à un maximum de 4 
objets. Considérant ces limitations, nous sommes donc encore loin de savoir comment 
nous obtenons des représentations avec la précision et l'objectivité des concepts de 
nombres utilisés dans les mathématiques à partir de systèmes comme le ANS et le OFS. 

Pour expliquer comment nous arrivons à traverser le fossé conceptuel entre le contenu 
quantitatif produit par nos cerveaux et celui qui nous permet de pratiquer l'arithmétique 
formel, plusieurs modèles de l'origine de nos concepts de nombres ont été offerts 
récemment. Dans ma thèse de doctorat, je propose une analyse critique des modèles 
dominants du développement historique et ontogénétique des concepts de nombre. 
Après un survol des principales données empiriques dans les deux premiers chapitres, . 
je présente un résumé des grandes lignes de deux théories souvent citées dans la 
littérature sur la cognition numérique, soit celle du sens des nombres de Stanislas 
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Dehaene (2011) dans le chapitre trois et celle de la cognition de base de Susan Carey 
(2009) dans le chapitre quatre. Bien qu'elles fassent appel à des processus bien 
distincts, ces théories se fient à l'existence de symboles numériques dans 
l'environnement pour expliquer le développement de nos concepts de nombre. L'idée 
ici serait que notre esprit et les symboles numériques forment un seul système cognitif 
dans lequel tant notre cerveau que les symboles jouent un rôle actif dans le 
développement des concepts de nombre, en conformité avec l' externalisme actif 
proposé par Andy Clark et David Chalmers dans leur théorie de l'esprit étendu (1998). 
Or, selon l'argument principal de ma thèse, l'existence de ces symboles numériques 
présuppose la présence des mêmes concepts de nombre dont on tente d'expliquer 
l'origine. En se fiant à une interaction entre des symboles numériques et notre esprit 
pour expliquer l'origine de nos concepts de nombre, on place donc la charrue devant 
les bœufs. 

Pour démontrer que cette position est problématique, j'analyse l'approche externaliste 
à la cognition numérique de Catarina Dutilh Novaes (2013) et de Lambros Malafouris 
(2010) dans le chapitre cinq pour déterminer à quel point ces théories sont en mesure 
d'expliquer le développement de contenu conceptuel numérique dans un 
environnement qui ne contient pas de symboles pour des nombres. Je prétends que ces 
théories sont incapables de préciser ce qui différencie un individu ayant développé des 
concepts de nombre d'un individu sans concepts de nombre quand ces individus ont 
tous les deux accès au même environnement. Par la suite, j'évalue à quel point 
l'évolution culturelle ou l'extension de la cognition pour inclure notre environnement 
culturel peuvent aider l'approche externaliste dans le chapitre six. Je présente des 
arguments selon lesquels ces options ne peuvent aider l'externaliste, puisqu'ils font 
appel à des mécanismes actifs à l'échelle d'une population, tandis que la cognition 
numérique a lieu au niveau de l'individu. Si mes arguments tiennent la route, 
l'externalisme dans l'étude des fondements de la cognition numérique ne permet pas 
d'expliquer le développement de concepts de nombre dans un environnement sans 
soutien externe à cette cognition. L'approche externaliste à la cognition numérique 
devrait donc être limitée aux cas qui requièrent des soutiens externes au-delà d'un 
segment initial des nombres naturels, dont l'origine doit être expliquée en faisant appel 
à des modèles internalistes. 

MOTS-CLÉS : cognition numérique; esprit étendu; sens des nombres; fondements 
des mathématiques ; évolution culturelle ; cognition de base 



ABSTRACT 

The study of the cognitive and perceptual systems underlying our numerical abilities 
has progressed tremendously in the past few decades, yielding scores of data on the 
potential role played by the so-called Approximate Number System (ANS) and the 
Object-File System (OFS) in the development of natural number concepts (Dehaene 
1997/2011 ). While there is still disagreement on the relationship between these systems 
and on the extent to which they produce representations with numerical content, there 
is overwhelming consensus that, on their own, neither of these systems produces 
representations with sufficient precision and numerical range to account for the 
development of natural number concepts. 

The question I am interested in in my doctoral thesis is, given these systems' 
limitations, how do we manage to build representations with mathematically-viable 
numerical content? That is, how do we bridge the gap between the quantity-related 
content produced by our evolutionarily ancient brains and the mathematically-viable 
numerical content associated with numeration systems like Indo-Arabic or Roman 
numerals? This is what I refer to as the gap problem. It is the main problem that 
concems us in this thesis. While many answers have been proposed to this question 
over the years, virtually all of them rely on culturally-inherited symbols and extemal 
artefacts to bridge the gap between natural numbers and the output of our innate 
cognitive machinery. And yet, as I argue in my thesis, if we want to bridge the gap 
between natural number concepts and the content produced by systems like the ANS 
and the OFS, such extemalist approaches to cognition are limited in their explanatory 
power. The main problem with extemalist accounts is what I call the origins problem: 
how can we explain the origins of numerical cognition by appealing to extemal 
symbols for numbers, when these symbols in tum depend for internai representations 
of number for their origins? 

To support my daim that extemalism is unable to answer this problem, the first two 
chapters start by summarizing data conceming the main cognitive systems involved in 
numerical cognition. Then I present the main· lines of two of the most influential 
extemalist accounts, Stanislas Dehaene's Number Sense (chapter 3) and Susan Carey's 
Quinian Bootstrap ( chapter 4 ), in order to illustrate extemalist approaches to the gap 
problem. I show that despite their differences, both accounts attribute a central role to 
extemal representations of numbers like number words in explaining how we bridge 
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the gap, and that this seems problematic given that there are historical cases of 
development of numerical content without such extemal support. In chapter 5, I take a 
doser look at the philosophical motivations behind this extemalism in Clark & 
Chalmer' s classic 1998 paper on the extended mind before exploring the constitutivity 
of extemal supports for cognition, as framed by Catarina Dutilh Novaes (2013). This 
leads me to discuss the relationship between extemal and intemal representations for 
numbers at both ontogenetic and historical timescales. To ground this discussion, I then 
discuss data conceming possible origins of the first abstract symbols for numbers in 
Sumeria (Malafouris 2010) and then explore the limits of anumerate cultures like the 
Pirahà and the Mundurucu in order to determine whether there is evidence that we can 
explain the origins of the concept of precise quantity by appealing to the ability to put 
objects into one-to-one correspondence. I argue that the data do not support this 
conclusion, and thus that extemalists do not have an account of how the first numerical 
content emerged in a numeral-free environment. In chapter 6, I explore two potential 
extemalist replies to my gap problem based on the potential constructive role of culture. 
The first is to try to explain the emergence of novel numerical content by appealing to 
mechanisms of cultural evolution, as described by Helen De Cruz (2007). I argue that 
this doesn't help, since such mechanisms are population-level, while the generation of 
novel content occurs at the level of the individual. I then consider Richard Menary's 
(20 l 5a) enculturated approach to numerical cognition to see if extending cognition to 
include our cultural niche can help the extemalist, and find this option wanting as well. 
Here, I argue that innovation matters in how we want to answer the gap problem and 
that enculturation is not well equipped to describe the individual-level construction of 
novel content, due to its focus on population-level processes of innovation. The upshot 
is that extemalist approaches need to be restricted in order to make room for intemalist 
theories of the development of numerical content for an initial segment of the natural 
numbers. 

KEYWORDS: Numerical cognition; Extended Mind; Approximate Number Sense; 
Object-File System; Cultural Evolution; Foundations ofMathematics 



INTRODUCTION 

1 Why foundations of mathematics needs psychology 

While the study of numerical cognition was limited to a few brave psychologists until 

the end of the 20th century, the last twenty years have witnessed a complete reversai 

ofthis trend. Nowadays, fields as diverse as developmental psychology, neuroscience, 

ethology, anthropology, archeology, and philosophy have all contributed to a recent 

surge of interest into the cognitive foundations of our ability to think about - and with 

- numbers. While the opening of these experimental floodgates is certainly a step 

forward into our understanding of the cognitive and neural systems involved in 

representing numbers, it also poses difficult questions concerning the relation between 

psychology and mathematics. After all, empirical research into numerical cognition 

does more than welcome psychological description of mathematical entities: by its very 

nature, it tries to ground the concept of number in broadly psychological facts. 

For a while, identifying or reducing logical and mathematical concepts to the mental 

processes or representations responsible for them was an acceptable, if not 'prevalent' 

(Dummett 2001: xxi) approach to logic. Mill, for example, wrote that logic is "not a 

Science distinct from, and co-ordinate with Psychology. So far as it is a science at all, 

it is a part, or branch, of Psychology" (Mill 1979, 359). Mill was far from being alone 

in espousing a form of psychologism with respect to logic and mathematics:1 in the 

1 Though there is debate as to whether Mill's philosophy of mathematics was in fact a psychologistic, it 
is clear that some of his writings are sympathetic to this view. See Godden 2005 for a discussion. 
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years following Hegel's death, many German philosophers (e.g. Wundt, Erdmann, 

Lipps, Sigwart, Jerusalem, and others)2 took a naturalist turn in which mathematics and 

logic were founded in psychology. 

However, in addition to this naturalist tum, the 19th century also witnessed the birth of 

a number of revolutionary developments in mathematics, including group theory, real 

analysis, as well as non-Euclidean and projective geometries, to name a few. With these 

new mathematical practices came increasingly abstract concepts, which spurred the 

need to secure solid conceptual foundations for mathematics, to ensure that such 

innovations were free from paradox, contradiction, and. the subjectivity of human 

intuition. It is of little surprise, then, that these innovations in mathematical practice 

generally steered clear of the relationship between mind and mathematics. After all, if 

one of the main foundationalist goals is to guarantee the generality and objectivity of 

mathematics, then accepting concerns related to how our subjective mind interacts with 

mathematical entities might seem counterproductive. At best, such empirical concems 

would be irrelevant. Arguably, these foundational efforts- and the accompanying anti-

psychologism - reached their apex with Frege's definition of number in his 

Grundlagen (1884). There, Frege defined number using only logical tools, thus laying 

the conceptual groundwork needed to found mathematics on the apparently objective 

and paradox-free edifice of logic. 

Frege's anti-psychologistic comments in his Grundlagen and, to a lesser extent, in the 

foreword to his Grundgesetze (1893) contained many of the same arguments that would 

be developed in a more detailed and systematic attack in Husserl's Logical 

investigations (1900).3 Though discussing these arguments and their similarities is not 

2 See Kusch 1995 for a more exhaustive list. 
3 It is worth mentioning that a likely (though contested) reason Husserl renounced the psychologism of 
his Philosophy of Arithmetic (1891) was Frege's (1894) 'savage' critique ofthis work (Dummett 2001, 
xxi). See also Mohanti 1982 and Drummond 1985 for more on the relationship between their views. 
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necessary here, it is worth observing that both Frege and Husserl held that any appeal 

to psychological notions in explaining the validity of logical or mathematical laws led 

. to some form of relativism, subjectivism, or idealism - all of which run counter to the 

objectivity, precision, and universality of mathematical truth.4 On their view, 

mathematical facts concem etemal and objective platonic entities, whereas 

psychological facts are about subjective, relative, and temporal things. 

Thus, in stark contrast to Mill, Frege wrote that "number is no whit more an object of 

psychology or the product of mental operations than, let us say, the North Sea is" (Frege. 

1884/1960, 34). Further, were we to accept the relevance of the psychological origins 

of an idea when defining or proving it, Frege daims we would be forced to include 

psychological facts in mathematical proofs: "in proving Pythagoras' theorem we 

should be reduced to allowing for the phosphorous content of the human brain" (Frege 

1884/1960, xviii). As Frege saw things, not only would allowing psychological 

concems in foundationalist efforts be counter-productive, it would undermine the 

objectivity and certainty of mathematics. After all, while ideas about what words like 

'tree' and 'number' mean may vary from person to person, the meanings themselves 

are supposed to be objective: regardless of what we think, 2 plus 2 equals 4. It is no 

surprise, then, that Frege' s review of Mill' s mathematical empiricism was particularly 

scathing, including a passage where Frege describes Mill's views as an 'apocalypse' 

(Frege 1884/1960, 9). For Frege, numbers are as mind-independent as the water in the 

North Sea is. If this is the case, then how can psychology teach us anything about them? 

In short, the success of Frege and Husserl's anti-psychologistic crusade at the tum of 

the 20th century did not bode well for naturalistically-inclined philosophers of 

mathematics - including those interested in Mill and the empirical study of number 

concepts. In a sense, this dismissal of empirical and psychological matters has been 

4 See Kusch 1995, chapter 3, for a detailed presentation. 
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vindicated: despite the foundational crisis of the early 1900s, mathematics has grown 

by leaps and bounds and its effectiveness in describing and modelling reality has 

reached unimaginable heights. Most mathematicians don't care about the foundations 

of their discipline, since most don't ever encounter problems of the sort identified by 

Russell and Godel, for example. Those few who do bother to think about foundational 

issues are generally platonists on weekdays and formalists on Sundays, as Davis & 

Hersh ( 1981) famously put it. From a mathematician' s point of view, th en, foundational 

issues that concem the ontological status of mathematical objects is of no consequence, 

as elegantly illustrated by Morris Kline: 

The developments in this [twentieth] century bearing on the foundations of 
mathematics are best summarized in a story. On the banks of the Rhine, a 
beautiful castle has been standing for centuries. In the cellar of the castle, an 
intricate network of webbing had been constructed by industrious spiders who 
lived there. One day a strong wind sprang up and destroyed the web. Frantically 
the spiders worked to repair the damage. They thought it was their webbing that 
was holding up the castle. (Kline 1980, 277) 

There is then a sense in which we can accept that foundational issues haven't been 

resolved, since this lacuna has had little effect on actual mathematical practice. 

And yet there is also a sense in which, from a philosophical point of view, the situation 

is unacceptable. For while it could be argued that concepts like SET,5 SUCCESSOR 

and NUMBER have given mathematics solid conceptual footing, the ontological status 

of these foundational notions remains completely mysterious, as does our epistemic 

access to these. To provide a true foundations of mathematics, then, foundations of 

mathematics must widen its area of enquiry to include the practices of real-life 

mathematicians (cf. Wang 1974, 242-243). This is especially true if we wish to think 

of mathematics from a naturalist perspective, and thus conceive of it as a (uniquely) 

5 Names of concepts and their content are expressed in capital letters throughout the text. 



5 

human enterprise with roots in evolution. 

So while their carnpaign was largely successful in eliminating psychologistic 

tendencies from foundations of mathematics, there are reasons to doubt that the 

alternatives proposed by Frege and Husserl represent an improvement. Not only did 

few aspects of their anti-psychologism survive unscathed,6 their attempts to free 

mathematics and logic from the limitations of the human mind have been accused of 

closet psychologism.7 But more importantly, from a naturalistic point of view, what is 

especially problematic is that both Frege and Husserl rely on mysterious, platonic 

entities to replace the more familiar psychological notions they reject. 

Of course, a well-known problem with banishing nurnbers to an abstract platonic realm 

is that we have no idea how subjective, temporal beings like humans can grasp 

objective, ideal propositions, since these are independent from time, space, and mind 

(e.g. Benacerraf 1973). By its very nature, the anti-psychologistic picture seems 

incomplete with respect to the epistemological question of how we could interact with 

the objects of mathematical practices. Worse, there is something essentially 

mysterious, if not esoteric, in postulating the existence of a separate, abstract world 

outside of space and time. 8 In short, by replacing psychologism with platonism, it looks 

like Frege was providing "an explanation of the obscure by the more obscure" (Philipse 

6 See Kusch 1995 for a review of contemporary (ch.4) and modern (appendix II) criticism oftheir anti-
psychologism. See also Aach 1990. 
7 For example, while Frege talks of primitive and self-evident truths (e.g. Frege 1884/1960, 4) and 
objective meanings, Husserl speaks ofideal thought content and atemporal propositions. Frege's reliance 
on self-evident truths seems to involve the difficult notion of a self that is neither subjective nor 
psychological. Similarly, Husserl's ideal laws are 'intuited a priori'. But what are such intuitions if not 
psychological processes? Kusch 1995 lists authors who argued Husserl was a closet psychologicist (see 
also Baker & Hacker 1989, 81-2; Tieszen 1990). · 
8 Rav (2007, 87) expresses his views on Platonism thus: '"How is it that the Platonistic conception of 
mathematical objects can be so convincing, so fruitful and yet so clearly false?' writes Paul Ernest in a 
review ... I disagree with Ernest on only one point: 1 do not think that Platonism is fruitful. As a matter 
of fact, Platonism has negative effects on research by blocking a dynamical and dialectic outlook." 
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1989, 67). 

Considering the mysterious nature of platonic entities, it may be wise to give 

mathematical psychologism another chance. After all, the witch-hunt for psychologism 

took place at a time when psychology was still in its infancy. As Sober put it: "It is no 

wonder that Frege conceived of psychological phenomena as variable and erratic, given 

the way psychology was done at the time" (Sober 1978, 169).9 Nowadays, given the 

advances made in various branches of cognitive sciences, the claim that psychological 

facts are necessarily subjective and mind-dependent seems false. Facts about how 

brains and minds work seem more and more akin to facts about, say, the water of the 

North Sea. As neurologist Stanislas Dehaene put it, "With such bridging laws from 

neurons to behavior, psychology cornes increasingly close to being an exact science" 

(Dehaene 2011, 250). 10 

It could be argued that some attempts at providing. purely logical foundatio,ns to 

arithmetic include some form of implicit reliance on properties of real-life 

mathematicians. Dedekind, who was criticised by Russell and Dummett for importing 

non-mathematical notions in the foundationalist enterprise is one possible example, 

while widespread reliance on the axiom of choice could similarly be interpreted along 

subjectivist lines. But even in these cases, we have no idea how foundational notions 

like numbers and sets fit into a world in which atoms, brains, hamburgers, and colors 

9 Frege himself seemed to be aware of the embryonic state of psychology at the time, writing that "It 
would be strange if the most exact of all the sciences had to seek support from psychology, which is still 
feeling its way none too surely." (Frege 1884/1960, 38). Schlick also seemed aware of these growing 
pains, but argued that this should not affect the principles behind psychologism: "all processes in nature 
and mind occur according to laws, and these laws are without exceptions, just like the rules of format 
logic. The laws are not inexact, our knowledge of them is insufficient-this is a huge 
difference" (Schlick 1918, 128). 
10 As Luc Faucher pointed out tome, it is worth mentioning that Dehaene's claim here should be taken 
with a grain of salt: while it is undeniable that psychology has grown by leaps and bounds, it is still far 
away from being anywhere as exact as physics, say. Perhaps more importantly, we are also far from 
having general bridge laws that fit Dehaene's description here. 
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also figure. By focusing on securing solid concepts on which to base mathematical 

practice, classical foundationalism has voluntarily kept as far away as possible from 

such empirical matters. 

Thus, while it is true that mathematical practice does not need to address empirical and 

foundational issues in order to proceed, philosophy of mathematics certainly does. This 

is especially true for naturalistically inclined philosophers, pace Quine. Indeed, for 

philosophers, the 'unreasonable effectiveness' of mathematics only adds to the 

mystery: for not only must we try to understand how abstract and objective 

mathematical concepts are related to our subjective minds, we must also explain how 

they are so perfectly suited and effective in describing and predicting events in the 

material world. 

2 New wave foundationalism: the rise of numerical cognition studies 

Of course, the fact that mathematical objects have puzzling properties is not new: the 

ontological status of mathematical entities is one of the oldest questions in the 

documented history of western philosophy, and platonism towards mathematical 

entities has long been considered problematic ( e.g. see Benacerraf 1965, 1973; Bemays 

1935). What is new, however, is the emerging body of empirical research into the 

cognitive foundations of numbers. While research in this field was not widespread until 

late in the second half of the 20th century (Piaget being a notable, if flawed, exception), 

things started to change around the time Gelman & Gallistel published their landmark 

book The Child's Understanding of Number (1978). At around the same time, in the 

six:ties in seventies, Lakatos (1976) wrote a series of articles that eventually laid the 

groundwork for the study of mathematical practice, describing the historical 

development of mathematics as a dialectic process of proofs followed by refutations. 

Bringing the discussion to the broader implications of mathematical practice, Kitcher 
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(1984) and, more recently, Ferreiros (2015), have embraced an interdisciplinary 

approach to the study of mathematics, framing it as a human activity .11 So while talking 

about the relationship between mind and number is still anathema in many 

philosophical circles, there is hope for the naturalistically-inclined philosopher of 

mathematics. 

This multi-faceted research has led to numerous findings, including the discovery of 

evolutionarily shared representational systems that could be the source of adult 

humans' developed arithmetical abilities. When Dehaene (1997) published his classic 

monograph, The Number Sense, interest in the relationship between mind and math 

was rejuvenated to the point where the cognitive bases of our ability to represent 

numbers are now the focus of studies in a wide variety of domains of research. Many 

competing accounts of the relationship between brain and number have tried to make 

sense of all this data, sparking a new and fascinating debate surrounding the empirical 

status and developmental bases of numbers. After thousands of years of being in the 

dark, it looks like science is beginning to shed light on the relationship between world 

and mathematics. 

3 The gap problem 

Unfortunately, with the opening of these experimental floodgates cornes new questions 

about the concept NUMBER. The problem, in a nutshell, is this: how do we combine 

data from developmental psychology, ethnology, linguistics, evolutionary biology, 

cognitive psychology, neuropsychology, and anthropology to forma mathematically-

viable number concept? For example, while the evidence supporting the existence of 

innate neuronal systems capable of producing imprecise representations of the quantity 

11 See also Van Kerkhove et al. 2006, 2010; Maddy 1996, 1997, 1998. 
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of objects to which we are paying attention is well established, how this and other 

systems housed inside brains can be responsible for the objectivity, generality, and 

efficiency of concepts like NUMBER is still very much an open question. 

Putting aside questions conceming whether such results could even meet Benacerraf s 

(1973) challenge and take us to the promised land of naturalized numbers, a less 

metaphysi_cally-motivated difficulty we face in answering how such findings relate to 

abstract objects like numbers is that, in the state they arrive following their long 

evolutionary joumey into our inherited neurological makeup, the psychological 

systems that figure in most explanations of the material implementation of 

representations of numbers, including the Approximate Number System (hereafter, 

ANS) and the Object-File System (hereafter, OFS), are in no shape to produce content 

with the scope and precision of natural numbers. As I explore in detail in the first two 

chapters of this the sis, the ANS produces representations that grow increasingly fuzzy 

as the numerosity it responds to increases (Dehaene 1997/2011), while the OFS likely 

does not produce any explicit numerical content, and if it did, it would be limited to 

trackin.g about four objects (Carey 2009; Kahneman et al.1992). In short, with the 

discovery of these systems cornes the responsibility of explaining what happens to 

them in order for representations of precise quantities of discrete objects of the sort 

used in the practice of arithmetic to emerge. 

Thus, despite the tremendous progress made by research into the origins of numerical 

cognition since the late 20th century, an important question remains unanswered: given 

the limitations of our innate cognitive machinery, how do we manage to build 

representations with mathematically-viaple numerical content? That is, how do we 

bridge this gap between the quantity-related content produced by our evolutionarily 

ancient brains and the mathematically-viable numerical content associated with 

numeration systems like Indo-Arabic or Roman numerals? This is what I will refer to 

as the gap problem. It is the main problem that will concem us in this thesis. 
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While many have addressed this issue, 12 most proposed solutions rely on the presence 

of numerical representations in the environment, often in linguistic format, to bridge 

the gap between the output of our innate representational systems and the content of 

our advanced number concepts. In this th~sis, I argue that this extemalist approach 

needs to be restricted to allow room for one that focuses more on internai cognitive 

processes, since any appeal to external symbols for numbers must corne after we have 

explained the emergence of numerical cognition internally, given that extemal symbols 

for numbers depend on the construction of intemal representations with numerical 

content for their existence. 

The main contribution I wish to make with my thesis is methodological: I want to 

highlight the limitations of extemalist approaches to numerical cognition in order to· 

motivate adopting intemalist solutions to the gap problem. To do this, I will argue that 

relying on extemal representations of numbers in explaining what makes advanced 

numerical cognition possible leads us to an incomplete - or, worse, circular- account 

of the origins of our advanced numerical abilities, since extemalist accounts have 

difficulty explaining how numerical content can originate in cultures and environments 

where there are no extemal representations for numbers. This is what I will call the 

origins problem. It will orient most of my criticism of extemalist approaches. I daim 

that extemalist approaches to numerical cognition cannot explain how we first came 

up with representations with numerical content - both in our heads and in the world -

because they take for granted the very thing we are trying to explain. I will argue that 

the solution to my origins problèm is to restrict the scope of extemalism and adopt an 

intemalist approach for an initial segment of the natural numbers. 

12 For example, Gelman & Gallistel 1978; Gallistel et al. 2006; Hurford 1987; Dehaene 1997/2011; 
Butterworth 1999; Lakoff & Nunez 2000; Wiese 2004; De Cruz 2007, 2008; Rips et al. 2008a; Carey 
2009; Coolidge & Overmann 2012; Menary 2015a; Malafouris 2010. 
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4 Thesis outline 

In addition to this introduction and the conclusion, my thesis can be usefully divided 

into three main sections, each containing two chapters. In the first section of the thesis, 

which includes the first two chapters, I summarize data conceming cognitive systems 

that are often considered to be the building blocks of numerical cognition - the OFS, 

explored in detail in chapter 1, and the ANS, in chapter 2 - and describe how their 

limitations prevent them from providing the full story of the origin of the content our 

advanced number concepts. This will involve taking a look at ,data from a wide variety 

of domains of empirical research as well as their methods. Of course, given the 

incredible variety of studies that have tackled the empirical foundations of our 

arithmetical abilities, I cannot list every potentially relevant experiment done in this 

field. Rather, I will try to limit my treatment to studies suggesting that the ANS and the 

OFS are present in human adults and preverbal infants as well as in the animal 

kingdom. If we eventually wish to explain where our numerical abilities corne from 

and how we can represent abstract objects like numbers, it is important to show that 

the systems that appear recruited in these abilities have evolutionary origins, since this 

can help explain the origins of numerical content by appealing to Darwinian principles 

of evolution through natural selection. 

The purpose of these initial chapters is twofold: first, in order to set the stage for the 

gap problem it is important to be clear on what sort of content we can expect to get 

from our innate cognitive machinery. As will become clear in the first two chapters, 

there are many complications that arise from the empirical study of numbers, due to 

their abstract nature. The first two chapters will allow me to set up the gap problem by 

presenting and evaluating the empirical support for the existence of cognitive systems 

whose properties make them likely cognitive foundations for our ability to practice 

arithmetic. By identifying the evolutionarily-inherited cognitive systems that appear 

recruited in numerical cognition, as well as their limitations, it will become clear that 
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we need an explanation of what happens to these systems in order to explain their use 

in numerical cognition. The data summarized in the first two chapters will then be used 

as empirical constraints any account of numerical cognition must satisfy in order to 

bridge the gap between what these systems allow us to do and what we actually do in 

the practice of arithmetic. 

Such accounts of how we bridge the gap will be presented in the second section of my 

thesis, which includes chapters 3 and 4. Here, I summarize the main lines oftwo of the 

most influential accounts of how we can use the data presented in chapters 1 and 2 to 

explain the emergence of numerical content. These are Stanislas Dehaene's 

(1997/2011) number sense, presented in chapter 3, and Susan Carey's (2009) Quinian 

[sic] Bootstrapping account, which I develop in chapter 4. The main objective ofthese 

chapters is to illustrate what sort of strategies have been proposed to explain the precise 

role of the systems pr~sented in the first two chapters in representing natural numbers, 

and what sort of transformation on these can explain the development of numerical 

cognition. These chapters will also highlight the extemalist commitments of these 

àccounts of the origins of numerical cognition by identifying the precise role played by 

objects and symbols outside our heads in the development and practice of numerical 

cognition. 

There are, of course, other proposais on offer. I chose these specific accounts for two 

main reasons. First, both of these are easily among the most influential in the literature, 

each author almost invariably popping up in the references section of works dealing 

with numerical cognition. Second, both these authors offer incredibly detailed and 

varied empirical support for their accounts, covering data from a wide range of 

domains. Given the broad range of disciplines that can inform the nature of our 

arithmetical abilities, this makes them ideal candidates for a philosophical treatment of 

answers to the gap problem, which requires covering data from many disciplines. While 

Dehaene's work could arguably be described as focusing more on the neurological 
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aspects of our arithmetical abilities, Carey's can be described as focusing on the 

developmental side of this topic, including critical data obtained by Karen Wynn (1990, 

1992) on the stages children go through when leaming the meaning of number words. 

In this sense, although both accounts cover data from a wide range of domains, they 

are complementary approaches. 

These models are also opposites, in a sense, given that Dehaene attributes a central role 

to the ANS in his account, while Carey argues that the ANS only cornes into the picture 

once the OFS has done the hard work, along with other systems that I discuss in chapter 

4. As will become clear, despite the differences in Dehaene and Carey's approaches, 

both crucially rely on the presence of extemal symbols and artefacts with numerical 

content to explain both the historical and developmental origins of our ability to 

practice arithmetic. The fact that both can be considered extemalists about the 

development of numerical cognition despite considerable differences in their 

approaches illustrates the variety of extemalist answers to the gap problem and their 

shared commitments. At the end of chapter 4, I discuss my main issue with extemalism 

(i.e. the origins problem described above) and show that it applies to both accounts. 

This sets up the last section of the thesis, which comprises chapters 5 and 6. 

In these last two chapters, I explore potential extemalist replies to my origins problem. 

These rely on considerations related to attributing a constitutive role to extemal 

artefacts in numerical cognition, explored in chapter 5, and explaining the development 

of numerical content by appealing to cultural evolution and the constructive power of 

our cultural environment, discussed in chapter 6. The first reply to my origins problem 

involves setting up the motivation for adopting an extemalist framework. I do this in 

chapter 5 by sketching the main lines of Andy Clark and David Chalmer' s classic 1998 

article, 'The Extended Mind', easily considered the locus classicus of active 

extemalism. This is followed by a brief summary of Clark' s (1998) explanatory criteria 

for extended cognitive systems, which I will use to evaluate to which extent adopting 
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an extemalist approach to numerical cognition can bridge the gap. I then illustrate how 

this extemalist framework has been applied to numerical cognition by summarizing 

Catarina Dutilh Novaes' (2013) analysis of three levels of constitutivity of extemal 

representations of numbers and the as~ociated daim that numerical content does not 

emerge in our head. In my criticism of this account, I take a look at the fascinating case 

of anumerate cultures like the Pirahâ (Frank et al. 2008) and the Mundurucu (Pica et 

al. 2004) as well as data conceming the development of extemal representations for 

numbers in Sumeria around 5000 years ago (Malafouris 2010; Schmandt-Besserat 

2010), in order to characterize the conditions in which numerical content can emerge. 

My main contention in this chapter is that extemalist accounts fail to explain what 

makes the difference between an individual that has bridged the gap and one who has 

not in situations where both have access to the same extemal support for cognition, 

since the difference in these cases lies squarely in our head. 

Last, in chapter 6, I consider replies to this intemalist criticism by exploring the 

potential contribution of culture to the gap problem. In the first section of this chapter, 

I take a look at Helen De Cruz' (2007) Darwinian approach to numerical cognition, 

which applies elements of cultural evolution to the historical development of 

mathematics, in order to determine to which extent appealing to mechanisms of cultural 

evolution can help the externalist bridge the gap. I argue that the problem with 

appealing to mechanisms of cultural evolution to explain the development of novel 

content is that these mechanisms operate at the level of populations, while the novel 

content emerges inside individuals' heads. 

This is followed in the second section of chapter 6 by a presentation of Richard 

Menary's (2015a) enculturated approach to numerical cognition, according to which 

cognition extends into our cultural niche. Here, I argue that while Menary's 

enculturated framework can help explain what makes the difference between numerate 

and anumerate cultures, it cannot help specify what makes the difference between 
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numerate and anumerate individuals. I argue that enculturation does not have an 

account of innovation capable of explaining how individuals manage to improve and 

modify the practices of their cultural niche. This is because enculturation focuses 

mostly on the inheritance and transmission of practices, not on their origins, which 

involve individual-level understanding, rather than population-level practices and 

social pressures. The upshot is that culture provides the necessary background 

conditions against which individuals can innovate. This role is crucial in the 

development of numerical abilities - crucial, but explanatorily limited. 

5 Terminological digression 

Before starting with chapter 1, it may be useful to clear up potential terminological 

issues that could arise given the multidisciplinary nature of the topic covered in this 

thesis. After all, the abstract nature of numbers means that one must tread particularly 

carefully when trying to determine their relationship with material things like human 

brains. This is because numbers are a unique object of study, in that they appear to be 

as mind-independent as it gets, and yet, unlike rocks and other mind-independent 

things, they also appear to be a human creation. De Cruz et al. (2010) describe this 

. peculiar aspect of numbers well: 

numbers . are not just abstract entities that are subject to mathematical 
ruminations-they are represented, used, embodied, and manipulated in order 
to achieve many different goals, e.g., to count or denote the size of a collection 
of objects, to trade goods, to balance bank accounts, or to play the lottery. 
Consequently, numbers are both abstract and intimately connected to language 
and to our interactions with the world. (De Cruz et al. 2010, 59) 

Given that the philosophical study of numerical cognition lies at the intersection of so 

many disciplines, it is important to attempt to clarify, as much as possible, what it is 

we are talking about, and which aspects ofnumbers and cognition we wish to describe. 
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For while it may be acceptable in certain disciplines to talk of animais having number 

concepts and preverbal infants doing arithmetic, such loose usage of central terms can 

lead to confusion when trying to pinpoint exactly what sort of properties · we can 

attribute to human and animal behavior that seems to result from variations of discrete 

quantities of objects in the environment. 13 While efforts will certainly be made in the 

following text to introduce any technical terms as they corne up, a few central one are 

worth discussing at the outset. 

First, given that a central topic here is the origins of numerical cognition, it is important 

to qualify what is meant by this expression. After all, as Nunez (2017) has argued, the 

literature on numerical cognition is polluted by loose and inaccurate use of important 

terms, especially all things 'numerical'. In an attempt to limit my contribution to this 

unfortunate trend, throughout this text, I will strive to use the general expression 

'numerical cognition' to describe only the type of cognition observed in the practice of 

formai arithmetic, as done by people who have mastered numeration systems like the 

Indo-Arabic numerals and the physical manipulation of abacuses. Numeration systems 

will be considered systems containing rules for the manipulation of external 

representations for numbers. Here, the term 'symbol' will be used as a synonym for 

representation. So, on this reading, there can be symbols and representations for 

numbers in the world, for example, in the form of written numerals or spoken number 

words, and there can ~e internai representations and symbols for numbers, in the form 

of patterns of brain activity. While I will allow myself the luxury of using the term 

'numeral' to describe any external representation of number for stylistic simplification, 

there will be cases where it will be relevant to distinguish these from number words, 

tallies, and other external symbols for numbers. In such cases, the term 'numeral' will 

be restricted to written symbols for numbers, as implemented by Indo-Arabic or Roman 

13 See Nufiez 2017. 
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numerals. The context should make it clear whether or not the term is being used in 

this restricted sense. 

The difficulty of knowing where to draw the line between those that understand what 

numbers are and those that do not is well known ( e.g. Rips et al. 2008a; see also 

Relaford-Doyle & Nufiez 2018, Nufiez 2017). I will often talk about levels of 

arithmetical abilities to describe levels of mastery of formai rules of arithmetic. 

'Numerical abilities' is a more general expression here, and can refer both to the ability 

to respond to variations of numbers of obj~cts in our environment, which is shared by 

infants and animais, as well as to a variety of levels of mastery of numeration systems. 

On the other hand, 'numeration skills' will be used to describe the human ability to 

enumerate collections of objects. Thus, numeration skills are a type of numerical ability 

here. 

Strictly speaking, then, numerical cognition is only something educated adults can do. 

However, to reflect different stages of mastery of numeration systems - or lack thereof 

- I will often qualify the expression 'numerical' to emphasize to which extent an 

individual can be described as being proficient in the practice offormal arithmetic. For 

example, 'formai numerical cognition' and 'formai numerical practices' will be used 

to highlight mastery of the practice of formai arithmetic using numeration systems like 

the Indo-Arabic numerals, while 'rudimentary' numerical cognition will describe 

individuals who are in possession of the building blocks of formai numerical cognition, 

including the ANS and the OFS, but who are not capable of distinguishing between 

collections of arbitrary sizes based on the number of items they contain. In this sense, 

animais and preverbal infants can be considered as having the rudiments of numerical 

cognition, or as being able to perform rudimentary numerical cognition, since they 

possess cognitive systems that react to variations of numerical information in their 

environment. but they have not developed the ability to distinguish between 
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collections14 of arbitrary sizes based on the number of items they contain. However, 

they do not possess what 1 will often call 'proto-numerical abilities' nor formal 

numerical abilities. 

Rather, 1 will reserve the term 'proto-numerical' to refer to what could be considered 

an intermediate stage in the development of numerical cognition. At this stage of 

development of numerical cognition, individuals have the ability to accurately count 

beyond the subitizing range (i.e. 'beyond four objects), but their ability to label the 

numerosity of collections does not include mastery of the generative syntax of a formai 

numeration system capable of labelling the numerosity of reasonably large collections 

(see Schlimm 2018 for why it would be inaccurate to speak of 'arbitrarily' large 

collections here). For example, as I detail in chapter 5, neither the Mundurucu (Pica et 

al. 2008) nor the Piraha (Gordon 2004; Frank et al. 2008) would be considered as 

having proto-numerical skills here, since it is debatable whether the Piraha have labels 

for numbers at all (Frank et al. 2008) while the Mundurucu lexicon only contains words 

for the first five numbers, and these are not used consistently (Pica et al. 2008). 

Individuals from cultures like the Oksapmin, whose body-part-based numeration 

system stops at 27 (Saxe 1981 ), could be considered as having proto-numerical 

abilities, as do children who have mastered the ability to use number words to 

accurately label the number of objects in collections containing more than four objects. 

Individuals from cultures like ours that master numeration systems that can be extended 

indefinitely will be described as having advanced, fully-fledged, or developed 

numeration skills or abilities. 15 

14 To avoid confusion with the technical notion ofa set as used in set theory, I will try to avoid speaking 
of groups of material objects using this term, and will instead follow De Cruz et. al (2010) as well as 
Schlimm (2018) in adopting the more neutral term 'collection'. 

15 Both advanced and proto-numerical skills could further be distinguished from the non-numerical skills 
of individuals and cultures like the Piraha (Gordon 2004; Frank et al. 2008) that seem to entirely lack 
any form of explicit representation of discrete quantities. For those cultures like the Mundurucu (Izard 
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While there is good reason to think that there have been. many degrees of complexity 

and expressive power of systems of representations of discrete quantities throughout 

history ( e.g. Ifrah 1998; Chrisomalis 201 O; Menninger 1969), it would appear pointless 

to distinguish numeration systems based on the exact number of items they have 

developed symbols for. For example, it would seem useless to distinguish between 

systems that have symbols for up to 27 items, and systems that have symbols for up to 

29 items, say. To describe the expressive power of such relatively limited systems, 1 

will use the same term as 1 use to describe the skills of those individuals that master 

them, i.e., 'proto-numerical'. 

As for motivation behind drawing the lines as 1 have here, the idea here is to reflect 

different stages of understanding of what numbers are. These distinctions need not be 

considered as being set in stone but can hopefully facilitate the discussion. As is usually 

the case, the context in which terms are used should clarify in which sense they are 

being used. 

One arguably important aspect of numbers that will corne up here is that they are 

representations of quantities of discrete objects, as opposed to quantities of continuous 

magnitudes like size or luminosity, as will become clear in chapter 2. While it may be 

argued that understanding that numbers can be extended indefinitely is a key aspect of 

numerical abilities, 1 tend to favor the opposite view, according to which what matters 

in attributing numerical abilities is the extent to which an individual can distinguish 

collections based on the number of discrete objects they contain, not their 

understanding of the infinite nature of the natural numbers. The main explanatory 

challenge 1 want to tackle here is that of explaining the ability to distinguish collections 

containing sufficiently large numbers of objects based on the precise number ofdiscrete 

et al. 2008; Pica & Lecomte 2008)) who have words for discrete quantities, but not beyond the subitizing 
range (up to four objects), we could reserve the term pre-numerical, though this level of distinction will 
not be required here. 
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objects they contain, given that no innate cognitive system allows this. In this sense, 

once we have bridged the gap, the ability to extend our numeration abilities seems like 

a separate, though clearly related matter. A similar thought could be behind Crossley's 

comment that "once the idea of counting has emerged, then the idea to go on counting 

·does not seem to lie far below the surface" (Crossley 1987, 13). 

As 1 see it, the transition from rudimentary to proto-numerical cognition is the most 

important developmental step, since it is this step that allows individuals to determine 

the precise number of items in collections beyond the subitizing range, even if this 

ability does not extend indefinitely, as it might for people who have mastered formal 

numeration systems like the Indo-Arabic numerals. The bottom line for me here is that 

if individuals can count, calculate, and trade using their symbols for discrete quantities, 

they should be considered as having some form of understanding of what numbers are 

- or at least, more so than individuals who cannot count or calculate at all - even if 

they can't easily tell the difference between 1000 and 1001, for example. The gap 

problem 1 want to talk about in this thesis is how individuals get from this absence of 

an ability to precisely quantify to such proto-numerical skills. For this purpose, 

knowing how we manage to extend our understanding of what numbers are into the 

realm of the infini te seems like a separate · matter from how we manage to build 

re.presentations of precise quantities in the first place. 17 To understand what sort of tools 

we are equipped with to deal with this problem, 1 now turn to the literature on 

representational systems that appear to underlie our ability to represent quantities of 

discrete objects. 

17 Indeed, there is evidence that it takes roughly two years for children to learn that all numbers have a 
successor once they can use number words accurately (Cheung et al. 2017), while understanding the 
infinite divisibility of the number line seems related to mastery of notation for fractions (Smith et al. 
2005). 



CHAPTERI 

THE OBJECT-FILE SYSTEM 

1 Introduction 

For the naturalistically-oriented philosopher, this is a great time to be interested in the 

foundations of mathematics. Contrary to the foundationalist approaches of the early 

twentieth century, whose focus was exclusively on providing formal tools capable of 

serving as secure, contradiction-fre-e conceptual foundatioris for mathematics, it is now 

acceptable to inquire into the epistemological question of how material beings like 

humans can corne to know anything about abstract objects like numbers. In direct 

opposition to the rampant ànti-psychologism of traditional approaches to foundations 

of mathematics, numerical cognition is now a thriving field of scientific enquiry. By 

looking for behavioral and activation patterns associated with tasks that require 

processing information about discrete objects in our environment- i.e. numerical tasks 

- in both symbolic and non-symbolic format, researchers from a wide variety of fields 

are starting to uncover the distinguishing properties of the representational systems 

underlying behavior in such tasks, thereby shining light on the possible origins of our 

advanced numerical abilities. This is good news for the naturalist, since it finally opens 

the door for a ~oncentrated, well-supported alternative account of how numbers could 

be the product of human minds that does not share the mysticism and disregard for 

actual psychological processes that plagued intuitionism. In short, there has never been 



22 

a better time to be interested in the way our brain constructs our advanced numerical 

abilities. 

Of course, it would be folly to claim that there is a straight road from numerical 

cognition data to psychologism in mathematics. For while this road is certainly a 

tempting one for man y - especially, perhaps, those coming from the scientific si de of 

the debate - there is still considerable philosophical work to do before cognitive 

scientists can even start a discussion with philosophers of mathematics to offer them a 

viable alternative to platonism and the anti-psychologism that cornes with it. In fact, 

some philosophers have even gone the opposite route, using numerical cognition data 

to prove that platonism in mathematics is alive and well (De Cruz 2016). 

In this chapter, I take the first steps on the road towards providing a naturalistic account 

of the psychological origins of mathematically viable number concepts by 

summarizing findings concerning one of the two main candidate cognitive systems 

underlying our basic numerical abilities, so that I can then sketch how these systems 

could produce representations with the abstract character of numbers in later chapters. 

In section 1.2, I survey findings supporting the existence of two distinct systems 

underlying our ability to enumerate, including serial counting and subitizing, and I 

argue that the best way to explain subitizing is via Trick and Pylyshyn's (1994) visual 

indexing model. Then, in section 1.3 I describe the relationship between these visual 

indexes and object files, summarizing evidence for the existence of an object file 

system in infants and anim.als. I close the chapter by discussing to which extent the 

evidence supports attributing numerical content to this system. 
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1.2 Evidence for two Systems 

1.2.1 Subitizing 

While numerical cognition has only grown into a coherent and widespread area of 

research in the past thirty years or so, at least one aspect of our :11umerical abilities has 

been studied for more than one hundred years. In the late 19th century, Jevons (1871) 

and Cattell (1886) observed that adult humans' ability to accurately label the number 

of objects perceptually presented in a visual array-its numerosity18 
- dropped sharply 

when this number rose above 3. Starting at 4 stimuli, enumeration errors started 

creeping in, confidence in answers dropped and reaction time increased linearly in 

relation to the number of objects displayed thereafter. This ability to quickly and 

accurately apprehend the numerosity of small collections of less than four objects was 

eventually dubbed subitizing (Kaufman et al. 1949). 

In typical distractor-free subitizing experimental paradigms, each stimulus within the 

subitizing range (1-4 stimuli) increases response time by 40-1 OO milliseconds, while 

outside of this range, each adds an extra 250-350 milliseconds to the response time 

(Trick & Pylyshyn 1994, 80). Enumeration is fast, effortless, and accurate, when the 

number of objects is kept below 4. 19 Confidence in numerosity judgements in the 

18 The terrn 'nurnerosity' has unfortunately corne to rnean different things to different people in recent 
years, sorne authors (Malafouris 201 O; Coolidge & Overrnann 2012) having taken the surprising decision 
to use it to describe the cognitive system that detects quantities of discrete objects in collections instead 
of these collections thernselves, in opposition to what was cornrnon practice in the nurnerical cognition 
literature (see Schlirnrn 2018, 197). In what follows, 1 will use the terrn 'nurnerosity' to describe the 
nurnber of objects an observer perceives a collection as having. This perceiver-relativity of nurnerosity 
ernphasizes that nurnerosities are not nurnbers, since they are physically-detectable collections of 
discrete objects, not abstract entities of arbitrary size. 

19 Sorne have reported individuals whose range goes as high as 7. See Trick and Pylyshyn (1994) for 
why such individual differences need not matter for identification of the underlying cognitive systems. 
Methods requiring participants to enumerate via pointing rnay increase the subitizing range to 6 
(Haladjian & Pylyshyn 2011). There is also evidence that it is possible to increase one's subitizing range, 
e.g. by playing lots of video games (Green & Bavelier 2003, 2006), though there is reason to doubt to 



24 

subitizing range is also higher than that of the counting range. On the other band, when 

enumerating objects outside this range, the process is slower, error-prone, and requires 

conscious effort, either in the form of counting the objects serially one-by-one, or 

grouping them together into small sets and then adding the total number of clusters to 

form an approximate estimation of their number. Even when experimental 

manipulations of stimuli slow down enumeration, they generally affect processing both 

inside and outside the subitizing range, so that the effect remains visible, as evidenced 

by the tell-tale elbow-shaped slope discontinuity in graphs plotting response times 

versus number of items in subitizing studies (see Figure 1).20 
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Figure 1.1 The subitizing elbow. (From Trick & Pylyshyn 1994) 

which extent the evidence is strong here (Guha et al. 2014). 

20 Reaction tirnes actually rnay not follow such straight slopes in the subitizing range, since the reaction 
tirne difference between 1and2, 2 and 3, and 3 and 4, can all differ (Dehaene & Cohen, 1994). This led 
sorne to deny the existence of a distinct status for enurneration in the subitizing range (Balakrishnan & 
Ashby 1991 ). 
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The evidence for this behavioral discontinuity in enumeration tasks is robust. The 

question is, how do we explain it? Following Jevon's and Cattell's groundbreaking 

work, researchers have been trying to figure out how subitizing works, why it is limited 

to such a small numerical range, and whether or not it recruits the same cognitive 

system involved in enumerating larger quantities of objects. While many questions 

remain, considerable progress has been made, as I hope to show in the · next few 

sections. First, I take a look at evidence supporting the existence oftwo distinct systems 

for subitizing and enumeration of larger quantities of objects (section 1.2.2). Then, I 

discuss some of the most promising explanations of how subitizing works, in order to 

identify the cognitive system that underlies this ability (1.2.3, 1.2.4). I then take a doser 

look at how this system relates to other systems involved in the process of enumeration 

in the subitizing range(l.3), to find out what sort of numerical content, if any, is 

associated with it (1.4). 

1.2.2 Two paths to enumeration 

There has been considerable debate over the years regarding whether the behavioral 

discontinuity in enumeration processes is mirrored at the cognitive level, or if a single 

system underlies behavior inside and outside the subitizing range.21 The issue here is 

whether the cognitive systems underlying subitizing are distinct from those that allow 

estimation of larger collections of abjects. On the single-system side, while some ( e.g. 

Gallistel & Gelman 1991, 1992, 2000; Cordes et al. 2001) proposed that subitizing is a 

form of rapid counting, others ( e.g. Dehaene & Changeux 1993; Dehaene 1997/2011; 

van Oeffelen & Vos 1982; Vetter et al. 2008) argued that it is a form of rapid estimation. 

21 For a short, fair summary ofboth sides, see Chesney & Haladjian 2011. See also Trick & Pylyshyn 
1993, Gallistel 1990, Balakrishnan & Ashby 1991, Dehaene 1997/2011, Piazza et al. 2003, 2011, 
Feigenson et al. 2004, Ansari et al. 2007, Deymeyre et al. 2010, 2012. 
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There is behavioral and brain evidence to support this claim. For example, imaging 

data obtained from Positron Emission Tomography (PET hereafter) readings of adults 

were taken as they identified the number of dots on a screen both within (1-4) and 

above (6-9) the subitizing range, and found that a common network was activated in 

both ranges, although this network is more active in the counting range. They 

interpreted this as indicating that "Subitizing does not seem to rely on a separate 

dedicated neural mechanism that is not also involved in counting" (Piazza et al. 2002, 

442).22 

However, while the question ofwhether a single cognitive system can explain behavior 

both in the subitizing range and for larger numerosities is still open, single-system 

theories have now fallen out of favor (Dehaene 1997/2011; Feigenson et al. 2004; 

Vetter et al. 2008) in the face of mounting behavioral and neuroimaging evidence of 

differences in behavioral signatures between the subitizing and counting range. 

Nowadays, a majority of authors adopta two-systems approach to numerical cognition. 

In a testament to just how fast numerical cognition studies are developing, a number of 

authors who once advocated the single-system approach have switched sides. For 

example, in the second edition of his 1997 classic, The number sense, Stanislas 

Dehaene explicitly recants the one-system position adopted in the first edition, 

following a study in which reaction times for quantity estimation tasks were compared 

in relation to the ratio of the quantities displayed (Revkin et al. 2008).23 The idea here 

22 See also Cordes et al. (2001) who found similar behavioral signatures (scalar variability) inside and 
outside the subitizing range when participants were prevented from counting verbally while tapping a 
key a specific number of times. Arp et al. (2006) conducted experiments with children affected by 
cerebral palsy and found that subitizing performance correlates with enumeration performance. See 
Demeyre et al. 2010 for a balanced discussion of support from lesion studies. 

23 Similarly, while Piazza and colleagues found evidence ofa shared network for subitizing and counting, 
two of the authors involved in this publication (Manuella Piazza and Brian Butterworth) later published 
evidence supporting a two-systems approach (Piazza et al. 2003, 2011; Agrillo et al. 2012). 
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is that if only one system were responsible for our performance in both the subitizing 

and the counting range, we would expect behavior to follow the same performance 

signature, regardless ofhow many objects needed to be enumerated. For example, if a 

single system were involved, the difference intime between identifying four objects 

and one object should be proportional to the difference in the time it takes to identify 

40 objects compared to 10 objects, given the same ratio in both cases. This does not 

appear to be the case. 

Rather, the speed with which we identify numbers of objects within the subitizing range 

is consistently faster than any other range, even when matching for ratios between 

quantities of objects. Adults asked to identify the number of dots presented on a screen 

are markedly faster when the number is kept below 4-5, even when taking into 

consideration these ratios. According to Dehaene, these results "leave no doubt that a 

distinct process deals with the subitizing range of numbers-a conclusion that has also 

been supported by brain imaging research" (Dehaene 2011, 257). 

Evidence from neuroimaging studies does indeed appear to favor the two-systems 

approach, even though some data is consistent with single-systems interpretations, as 

mentioned above. Consider the neuronal resources required for transitive counting (i.e. 

counting objects, as opposed to reciting a numeral list). This task requires orienting 

attention to each object in order. Such serial orienting of attention recruits posterior 

parietal networks, so if these networks are recruited in counting, but not in subitizing, 

this counts as evidence that the two processes are separate. To test this, Piazza et al. 

(2003) took functional Magnetic Resonance Imaging (fMRI hereafter) readings during 

both quantity identification and color naming tasks to determine whether separate 

networks were activated by subitizing and counting. They found that posterior parietal 

activation was much more active during counting when compared to subitizing, 

suggesting a separation of parallel preattentive processing in subitizing, and a serial 

attentional processing for counting. 
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As a sign that neuroimaging data on this are still inconsistent and in need of further 

confirmation, Ansari and colleagues (2007) found opposite dissociation patterns: they 

found increased activation in the right temporo-parietal junction for magnitude 

comparisons of non-symbolic stimuli in the subitizing range, while activation of this 

area was suppressed outside the subitizing range. This area is associatéd with stimulus-

driven attention (Corbetta & Shulman 2002), suggesting that attention is involved in 

processing of small numerosities in the subitizing range, but not in the counting range.24 

Piazza and colleagues later found evidence that individual differences in subitizing 

reflected individual differences in working memory, while this did not hold true for 

estimation abilities, furthe.r supporting the two-systems approach, and indicating that 

subitizing may recruit a domain-general mechanism (Piazza et al. 2011; see also 

Ashkenazi et al. 2013). 

Further, Hyde & Spelke (2011) took Event-Related Potential (ERP hereafter) readings 

from the scalp of young infants ( aged 6-7 months) while they were exposed to displays 

on which groups of objects within and beyond the subitizing range were presented. 

Replicating results obtained in adults using the same method (Hyde & Spelke 2009), 

they found evidence that processing of numerical stimuli is separate for the subitizing 

range from a very young age, suggesting that this dissociation is innate, rather than 

being the result of culture or leaming. There is also evidence of dissociations in 

subitizing and counting in subjects suffering from brain lesions (Demeyere et al. 2010, 

2012; see also Cipolotti et al. 1991). In short, the list of behavioral and brain studies 

that support the existence of different cognitive mechanisms for subitizing and 

counting is very long, so while the matter has not been settled definitely, there is at this 

point considerably more support for the two-systems model.25 

24 This result was later confirmed and expanded upon by Burret al. (2010). As 1 discuss below in section 
1.2.6, there is disagreement concerning the role of attention in subitizing. 

25 For example, Watson et al. (2007) show that there is a sharp increase in eye saccade frequency above 
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Thus, considerable evidence mitigates against one-system explanations of the 

performance discontinuities in numerosity-estimation tasks. Rather, the speed and 

accuracy with which quantities are identified26 and the effortlessness of this process 

when compared to enumeration outside the subitizing range appear to depend on two 

distinct cognitive systems. Importantly, this two-systems approach means that 

numerical cognition recruits a patchwork of cognitive systems rather than relying on a 

single number-dedicated system. 

To get an idea of where numerical abilities corne from, then, we must consider what 

sort of cognitive systems are behind both subitizing and quantifying objects outside the 

subitizing range, and how these systems allow the development of advanced numerical 

cognition. This will involve finding out why the subitizing range is so restricted and 

why we treat small and large numbers differently: what is special about the number 

four, and why are there behavioral differences between enumerating small and large 

numbers of objects? In the remainder of this chapter, I sketch the most widespread 

explanation for subitizing and review evidence supporting its existence in adults, 

infants, and animais. Then, in chapter 2, I summarize the main characteristics of the 

system underlying basic numerical abilities outside the subitizing range in humans and 

animals. 

the subitizing range and that subitizing performance remains fast and accurate despite restrained eye 
movement. Researchers have also found that anxiety affects counting but not subitizing (Maloney et al. 
2010). For more recent neurological evidence of divorced processing, see Fornaciai & Park 2017, who 
develop a three-system model to account for reduced enumeration performance when displays contain 
so many dots they appear cluttered. See also Simon 1997; Trick & Pylyshyn 1994; Ansari et al. 2007; 
Agrillo et al. 2012; Lipton & Spelke 2003; Cutini et al. 2013; Burret al. 2010; Pagano et al. 2014; 
Sathian et al. 1999 for more evidence supporting the two-systems approach. 

26 As Trick and Pylyshyn (1994) show, subitizing is not always fast, since some enumeration tasks 
require inore time to regi~ter and group perceptual features. It is however generally faster than 
enumeration outside the subitizing range. 
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1.2.3 Subitizing as pattern recognition 

A number of explanations have been proposed to explain enumeration abilities in the 

subitizing range over the last one hundred years.27 A frequently cited model of the 

nature of subitizing is Mandler & Shebo's pattern recognition account (1982).28 To 

explain the speed and accuracy of subitizing, Mandler & Shebo rely on the fact that 

one dot makes a point, two dots make a line, and three non-aligned dots draw a triangle. 

On this model, we would easily identify a dot array as containing three items because 

of our ability to recognize triangular arrangements of objects, regardless of their 

configuration. Our ability to quickly and effortlessly identify the number of objects 

when it is kept low is explained by the fact that we are familiar with the patterns that 

the arrangements of dots make up, which makes it easy for us to identify the number 

of objects they comprise. 

Mandler & Shebo explain the sudden drop in reaction time after four by noting that 

there are few canonicat patterns of stimulus combinations formed of more than three 

objects. For example, all triangles have three points, but four points can make up a 

rectangle, a losange, a square, a trapezoid, etc. One source of support for this view is 

the fact that Mandler and Shebo (1982) have shown that performance speeds up outside 

the subitizing range when objects in displays are arranged in familiar patterns, like the 

sides of a die. Further support for this approach cornes from the finding that children 

suff ering from developmental dyscalculia present deficits in both subitizing and 

counting ranges and do not display increased reaction times when dot arrays are 

27 See Trick and Pylyshyn 1994 for a critical review of many proposais. 

28 See also Kaufmann & Nuerk 2008; Ashkenazi et al. 2013; Gliksman et al. 2016, for more recent 
discussions of pattern recognition and subitizing. 
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presented in canonical fonn (As~lœnazi et al., 2013), suggesting that pattem-

recognition and subitizing may recruit the same resources. Further support cornes from 

Gliksman et al. (2016), who showed that enhancing attention ( e.g. via cuing or alerting) 

produces subitizing-like behavior outside the subitizing range, by enhancing pattem-

recognizing global processing. 

Despite this support, an important problem with this view is that patterns do not always 

co-vary with number. For example, it is possible to arrange any number of objects on 

a line, which should imply that any display containing objects on a line would be slower 

to process, or inaccurate, due to the interference of the pattern associated with two 

stimuli. Similarly, it is possible to arrange multiple objects in quasi-triangular fashion, 

by placing ~ots close to angles, which should elicit the response "three". Appeal for 

this model is also undennined by the fact that some research has found activation of 

object recognition areas irrespective of pattern of presentation, and no evidence of 

differences in neuronal networks activated by stimuli presented in canonical fonn vs 

random arrangements (Piazza et al. 2002).29 

1.2.4 Trick and Pylyshyn's visual indexes 

Taking their eue from Zenon Pylyshyn's (1989, 2001) work on visual indexing, Trick 

and Pylyshyn (1994) have proposed another well-received model according to which 

subitizing occurs as a by-product of the way in which visual objects are individuated. 

According to this visual indexing theory, subitizing rests on a limited capacity 

cognitive system that automatically creates a small number of indexes ofvisual feature 

clusters based on their spatiotemporal continuity, allowing us to keep track of what 

29 For more on the limitations ofthis view, see Trick and Pylyshyn (1994). 
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went where in our visual field. While these indexes themselves do not encode the 

properties of the objects being tracked, they do pave the way for further processing in 

line with the demands of the task at hand by selecting some features out of the visual 

field. 

The main purpose of this indexing system is to tag a small number of perceptual 

features so as to give them higher processing priority for attention. Visual indexing 

"provides a means of setting attentional priorities when multiple stimuli compete for 

attention, as indexed objects can be accessed and attended before other objects in the 

visual field" (Sears & Pylyshyn 2000, 2). It is important to note that this indexing 

system displays the same capacity limits as subitizing: only a limited number of visual 

indexes can be individuated simultaneously.30 

Pylyshyn devised many Multiple Object Tracking (MOT hereafter) paradigms to 

confirm the existence of such an individuating mechanism and show that its capacity 

limits corr~spond to those of the subitizing range.31 In a typical MOT trial, visual 

stimuli (e.g. geometrical shapes) are presented on a screen and participants' attention 

is directed towards a particular group of objects (e.g. by having them flicker on the 

screen) to mark them as targets that they will have to track. Then, the stimuli move 

around the screen in random motion and the subjects are tasked with correctly 

identifying them once they stop moving at the end of the trial. Typically, the target 

stimuli move among other identical non-targeted objects that actas distractors to the 

task (see Figure 1.2). 

In MOT, changing features of target stimuli (e.g. color, shape, size) or even their kind 

30 Y antis proposed a similar system in charge of assigning tags for processing priority, based on findings 
indicating that the number of stimuli that can capture attention simultaneously is limited to four objects 
( e.g. Yantis & Johnson 1990). 

31 See for example Pylyshyn 1989, 2003; for a Multiple Object Tracking review see Scholl 2009. 
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( e.g. a frog changing to a prince) does not limit our ability to track them, which suggests 

that individual features of objects are not required for tracking. Rather, what is 

important is spatiotemporal continuity of feature clusters. Evidence for this cornes from 

the fact that if objects change features during motion (e.g. constant change of color), 

when the motion stops, if an object disappears from the display, subjects can identify 

its last location, but not the relevant feature (Scholl et al. 1999). This indicates that 

spatiotemporal continuity is processed at a higher priority level than individual 

features. Moreover, if objects adopt strange trajectories that take them in and out of 

existence in ways that do not correspond to passing behind an occlusion ( e.g. by 

shrinking to nothing on one side of the occlusion and reappearing on the other side ), 

tracking fails (Scholl & Pylyshyn 1999). This suggests that the system allowing us to 

track multiple objects distinguishes occlusion from non-existence . 
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Figure 1.2 Multiple-Object Tracking. (From Pylyshyn 2003) 

The important point to note about behavior in MOT is that it often displays high success 

rates for tasks involving less than 5 objects, thus displaying the same capacity limits 

observed in subitizing. While the precise reason for this capacity limit is not known, it 

is often associated with limits to working memory (see Pagano et al. 2014) or object-

- - ---
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directed attention ( e.g. Mandler & Shebo 1982; Scholl 2001).32 

Such capacity limits in parallel individuation of visual indexes can explain why 

subitizing is limited to a few objects: since the construction of object indexes occurs in 

parallel, we can easily identify the number of objects in the subitizing range, given that 

this does not require any serial attentive processes like those involved in counting, such 

as marking, indexing, and remembering which objects have already been counted. 

However, once the number of abjects exceeds the subitizing range, attentional 

· resources must be used to count the objects serially, which requires more time and 

processing. On this model, then, difference in response time between subitizing and 

counting is attributable to the taxing effect of serial attention in counting. 

According to Trick and Pylyshyn, subitizing occurs in two stages. In the first, 

'prenumeric' stage, visual indexes are assigned in parallel to each stimulus in the 

display. It is only in the second stage, dubbed 'number recognition', that numerical 

content cornes in, when subjects choose a response from their numerical lexicon. This 

second part of the process does not occur in parallel, since words for numbers must be 

retrieved from memory, where, according to Trick and Pylyshyn, they are stored in 

order. Following the work of Klahr (1973), they daim that numerical recognition 

32 The fact that visual indexes share features of both attentive and preattentive processing can provide 
some insight into why this limit would be at four objects. Like many preattentive processes, visual 
indexes are individuated in parallel. Unlike other preattentive processes, in some circumstances, they 
are sensitive to goal-directedness: subject's intentions can modify the way in which objects are 
individuated (Trick & Pylyshyn 1994). On the other band, like attention, the individuation of visual 
indexes is capacity limited. Such attention-constrained capacity limits ofreference tokens pre-attentively 
is to be expected, since there would be no benefit in selecting more objects pre-attentively than can be 
handled by attention. And yet, there is also a reason why a small number of objects must be individuated 
in parallel, since this is the only way for attention to be able to orient itself spatially through the visual 
landscape. Otherwise, if only one object were individuated, attention could not orient itself towards the 
next object to be counted. On the other band, if too many objects are individuated, the processing costs 
become high. Thus, having a small number of objects individuated in parallel is a good way to balance 
being able to compute spatial relations between these and orient attention accordingly without creating 
too large of a cognitive load. 
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involves "matching each individuated item with a number name, in the order of the 

number name" (Trick & Pylyshyn 1994, 88). This is what explains the slight slope in 

response time for the subitizing range: word retrieval takes a little longer for each 

successive number word, since the matching from index to number word starts at 1. 

1.2.5 Support for parallel visual indexing 

Support for such an object-individuating explanation of subitizing cornes from many 

experimental sources. One particularly compelling source of behavioral evidence for 

this explanation involves presenting visual stimuli in the form of retinal afterimages 

produced by flashguns. 33 Since the perceived dots are not actual physical objects but 

retinal afterimages, serial visual tagging of these is prevented, as the eyes cannot move 

from one object to the next to individuate them in a serial counting routine.34 When 

stimuli are presented in this manner, there are high error rates in quantity identification 

tasks outside of the subitizing range, even when afterimages persist for up to a minute, 

suggesting that failure to individuate objects serially prevents precise enumeration of 

quantities outside the subitizing range. As predicted, accurate enumeration is preserved 

for small numerosities, since no such serial processes are required in the subitizing 

range, given that we can individuate a limited number of objects in parallel and simply 

read off their number without having to attend to each serially. 

Further support cornes from a study where participants were asked to simultaneously 

33 See Atkinson et al. 1976, replicated and expanded in Simon & Vaishnavi 1996. 

34 In typical subitizing studies, subjects are prevented from counting by restricting the time during which 
stimuli are exposed. This method however leaves open a single-mechanism explanation -of subitizing 
according to which subitizing is a form of very fast counting that can occur in short temporal windows. 
Using afterimages prevents such counting to be considered a possible alternative explanation. 
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track multiple objects and subitize (Chesney & Haladjian 2011). If, as Trick and 

Pylyshyn proposed, subitizing recruits individuation mechanisms that allow MOT, then 

interference between these two tasks should be evident. As predicted, results showed 

that the number of objects in participants' subitizing range decreased in direct relation 

· to the number of objects they were asked to track, confirming that parallel individuation 

of visual objects is a limited resource shared by both MOT and subitizing. 

Trick and Pylyshyn also confirmed that subitizing depends on individuation processes 

via a series of behavioral studies that tested the effects of feature arrangements on 

subitizing performance. The idea here is that if subitizing depends on automatic 

individuation, when such individuation is blocked, subitizing shouldn't occur. One way 

to prevent such individuation from happening is to confound object boundaries, making 

it difficult to create visual indexes for these. Thus, paradigms in which the stimuli are 

arranged in a way that leads to grouping together features from different objects should 

affect subitizing, since the underlying feature grouping that accounts for the rapid 

response in subitizing would be countered by the location and feature confounds. As 

predicted, subitizing does not occur when displays involve concentric circles (or 

squares) as stimuli: concentric circles share a center area as well as a center point, 

which means visual indexing mechanisms struggle to individuate them as distinct 

objects, and serial attention is required to individuate these (Trick & Pylyshyn 1994, 

97). Similarly, when attempting to quantify Os in a sea of Qs, subitizing fails because 

the target stimuli (the Os) and the distractors (the Qs) share too many features for the 

targets to be individuated in a way that pop-out perceptually. 

To sum up, Pylyshyn's visual indexing theory (Pylyshyn, 1989, 2001, 2007) offers a 

compelling explanation of how subitizing works that is well supported by behavioral 

data and consistent with neuroimaging data supporting the two-systems approach. It is 

important to emphasize that there is no numerical content generated by the visual 

indexing system responsible for subitizing on this account: 
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[Visual Indexing Theory] proposes a limited set of indexes that automatically 
pick out individual visual objects. The indexing mechanism does not itself 
encode object properties nor does it provide a numerical code for the 
cardinality of the set of indexed items. It merely provides an indexical reference 
to the individual objects so that subsequent processes can operate on them. 
Thus, to derive the cardinality of the set of indexed objects, a subsequent stage 
of enumeration is required. (Haladjan & Pylyshyn 2010, 308, emphasis mine) 

Given that visual indexes have no numerical content, and that my aim is to identify the 

cognitive systems that allow numerical cognition, 1 need to discuss how visual indexes 

figure in a more general enumeration process. Before 1 can do this, 1 have to clear up 

Trick and Pylyshyn's claim that subitizing relies on a preattentive process, given that 

this claim has corne under fire in recent publications that question the validity of this 

model based on findings that suggest attention is necessary for subitizing. 

1.2.6 Attention and subitizing 

If Pylyshyn's explanation of subitizing in terms of visual indexing theory is correct, 

subitizing results from pre-attentive indexing mechanisms, which would seem to imply 

that variation in attentional load should not affect it. A potential problem with visual 

indexing as an explanation for subitizing is that several recent behavioral studies appear 

to have established that, on the contrary, variations in attentional load can significantly 

compromise subitizing. These findings have been confirmed by brain studies showing 

that subitizing recruits areas often associated with attention (Burr et al. 201 O; Ansari et 

al. 2007). Studies varying attentional load using dual task procedu,res (Vetter et al. 

2008), the attentional blink (Egeth et al. 2008; Olivers & Watson 2008) and 

inattentional blindness paradigms (Railo et al. 2008) have all shown that subitizing is 

compromised when another task recruits too many attentional resources. To see 

whether or not this affects the worth of Trick and Pylyshyn's account of subitizing, in 

this section 1 take a look at some of the studies exploring the relationship between 
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subitizing and attention. 

The first study to test preattentive vs attentive models of subitizing used an inattentional 

blindness paradigm (Mack & Rock 1998) to determine whether variation in attentional 

resources available for enumeration would have an effect on subitizing (Railo et al. 

2008). Inattentional blindness paradigms exploit the fact that we are often blind to 

stimuli that are not relevant to the task we are trying to complete. In this case, the idea 

is that if subitizing recruits pre-attentional resources, as Trick and Pylyshyn daim, then 

it should not be affected even if our attention is focused on another task. 

Here, the primary task was to determine which arm of a cross was longer. As a 

secondary task, subjects were asked to enumerate 1-6 dots that briefly (200ms) 

appeared outside the area of the target stimulus in non-canonical arrangements. To vary 

attentional load, three conditions were used. In the inattentional condition, dots were 

presented without waming after a few trials, at the same time as the primary display. If . 

participants noticed these, they were asked to say how many there were, and to rate 

confidence in their response on a scale of 1 to 5. In this inattention condition, 

attentional resources are dedicated to the primary task of comparing line lengths on the 

cross. 35 In a divided-attention condition, dots would appear only on certain trials, but 

participants knew this could happen, unlike in the inattention condition. Finally, in the 

full-attention condition, participants' primary task was to enumerate the dots, even 

though they were asked to focus gaze on the cross while enumerating. 

The underlying rationale here is that if subitizing does not require attentional resources, 

then determining the quantity of dots should not be affected if their number is in the 

subitizing range, while performance should be affected outside the subitizing range, 

35 Of course, as Railo and colleagues admit, if participants noticed the dots, some attentional resources 
must still have been taken up by these. 
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given its reliance on serial attention. Taking three different attention conditions allows 

researchers to determine whether or not attentional manipulations affect subitizing. 

According to the authors, 

the preattentive model predicts that enumeration within the subitizing range 
should already be accurate in the inattention condition and performance within 
the subitizing range should not be affected by the manipulation of attention, 
whereas the attentive model predicts that the accuracies should decrease as the 
number of the objects increases and attention would have an effect even within 
the subitizing range. (Railo et al. 2008, 87) 

Contrary to the preattentive model's predictions, Railo and colleagues found that 

enumeration performance was affected in both the inattentional and divided-attention 

conditions, while performance matched that found in regular subitizing studies in the 

full attention condition. In the inattention condition, accuracy was high only for 1 and 

2 dots. Given that this is well below the regular subitizing range of 3-4 objects, the 

authors conclude that "subitizing cannot be explained by purely preattentive 

mechanisms" (Railo et al. 2008, 1 OO), since below-par performance was achieved by 

modifying attentional resources available for enumeration. 

While this is certainly plausible, another explanation appears equally possible that does 

not invalidate the role of preattentive individuation in subitizing. Rather, in line with 

the tinding mentioned above according to which MOT and subitizing compete for 

indexes (Chesney & Haljian 2011), the reduced subitizing range in this study could 

reflect the fact that some individuation indexes were taken up by the primary task, 

meaning that less of these remained to be exploited for fast enumeration. The same 

interpretation of these tindings based on the individuation-hungry demands of attention 

to a main task could also apply to other recent studies questioning the fact that 

subitizing relies on preattentive parallel processing. 

For example, consider the dual-task procedure employed by Vetter et al. (2008). 
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Adopting the framework of Load Theory of Attention, 36 according to which attentional 

demands of a primary task affect processing of a secondary task, they varied the 

difficulty of a primary task - in this case, color identification - to determine whether 

variation in attentional load would affect enumeration performance when it is a 

secondary task. The idea is that if there is a performance difference in the secondary 

task between low-load and high-load conditions, then that means that attentional 

resources are shared between the primary and secondary tasks, and thus that these tasks 

depend on attention. Here, in the low load condition, subjects merely had to determine 

whether or not a color was present, while in the high load condition, they had to detect 

two specific color-orientation conjunctions. In both load conditions, the secondary task 

was to identify the number of targets from a circular arrangement of high-contrast 

gabor patches ranging from 1 to 8 (see Figure 1.3). 

Data obtained show that both load conditions affected subitizing accuracy, with more 

pronounced effects in the high-load condition. Here too the authors conclude that their 

results challenge both "the traditionally held notion of subitizing as a pre-attentive, 

capacity-independent process", and "the proposai that small numerosities are 

enumerated by a mechanism separate from large numerosities", instead supporting "the 

idea of a single, attention-demanding enumeration mechanism" (Vetter et al.2008, 1 ). 

However, my reinterpretation ofRailo et al.'s (2008) study applies here too: it appears 

sensible to consider the possibility that the effects on subitizing were due to there being 

less visual indexes remaining for enumeration due to the demands of the main task. 

This interpretation explains different effects between high- and low-load conditions: 

36 According to load theory ofattention (e.g. Lavie & Tsal 1994; Lavie et al. 2004), attentional selection 
depends on task demands. When a task does not take up too much attentional resources, it is possible to 
perform another, secondary task, using the leftovers. But when tasks require high attentional load, 
performance in secondary tasks suffer. There are many ways to vary attentional load. In the present case, 
researchers claim that if subitizing is the result of preattentive processes, then it should not be affected 
by the attentional load of a primary task. 
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the high load condition would recruit more indexes, given that there are more 

perceptual variables to pay attention to, which would leave less resources for subitizing 

than in the low load condition. 

If I am right, such studies showing attentional effects on subitizing by varying 

attentional load are not inconsistent with Trick and Pylyshyn's daim that subitizing 

depends on preattentive individuation mechanisms. The attention required by the 

primary task can direct individuation in a way that affects individuation in the 

secondary task even if such individuation occurs pre-attentively. There is ample 

evidence that the nature of the task can determine at which stage attention is deployed, 

which means that some tasks can compete for the same pre-attentional resources (Wu 

2014, 20). 

Of course, even if my reinterpretation hits the mark, the recently available brain data 

indicating that attentional networks are activated in the subitizing range37 appear to 

constitute rather telling proof that attention does affect subitizing. Happily, there is a 

sense in which it is not debateable that subitizing does require attention: subitizing 

requires a conscious decision, that of enumerating a number of perceptually-presented 

objects. People do not go about subitizing in the same way they go about breathing or 

building red blood cells. Given that enumerating is intentional and goal-driven, chances 

are that subitizing requires attention.38 This is nota problem for Trick and Pylyshyn; 

since they do not daim that subitizing itself is preattentive. Their daim is merely that 

it rests on a parallel individuating mechanism. On the contrary, Trick and Pylyshyn 

37 E.g. Pagano et al. 2014; Piazza et al. 2011; Burret al. 2010; Ansari et al. 2007; Mazza & Caramazza 
2015. 

38 While it could be argued that intentional, goal-dri\,'en action does not imply attention, this appears 
unlikely in the case of subitizing. And besicles, as Wu points out, goals usually do involve attention: "the 
subject's goals pervasively influence attention, so much so that some theorists have questioned whether 
there is attention without the influence of goals" (Wu 2014, 38). 
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investigated the effect of attention on subitizing and found that eues could improve 

enumeration even in the subitizing range (Trick and Pylyshyn 1994).39 

Thus, contrary to the claims of many recent authors discussing the relation between 

attention and subitizing, the fact that it has been shown that subitizing requires attention 

is not altogether much of a surprise, nor need it undermine the validity of Trick and 

Pylyshyn's account, as long as it is possible to explain attentional effects by appealing 

to preattentive interactions, as 1 have proposed. So while there is evidence that attention 

is necessary for subitizing, it seems easy to accept this as confirmation that attentional 

processing relies on pre-attentional selection, and that tasks compete both for the 

attentional resources and the pre-attentional selecting and indexes that must accompany 
. 1 . 40 any attent10na processmg. 

The fact that neuroimaging data show some kinds of attention are involved in subitizing 

can actually be cons\dered support for Trick and Pylyshyn's view. For example, as 

mentioned earlier, evidence was found that subitizing recruits brain areas associated 

with stimulus-driven attention (Ansari et al. 2007). This accords well with Pylyshyn's 

visual indexes, which "are assigned primarily in a stimulus-driven manner, so that 

salient feature characteristics or changes are automatically indexed" (Sears & Pylyshyn 

2000, 2). Thus, it is false to talk of challenging "the traditionally held notion of 

subitizing as a pre-attentive, capacity-independent process" (Vetter et al. 2008, 1 ), or 

that "Subitizing was consider [sic] to be a preattentive process for many years" 

(Gliksman et al. 2016, 1), since the claim has never been that subitizing itself is 

· preattentive, but rather that it relies on a particular preattentive visual indexing 

39 More proof that cueing modulates attention in the subitizing range can be found in Gliksman et al. 
2016. 

40 See Dehaene & Cohen 1994, who noted years ago that attentional processing goes band in band with 
pre-attentional processing. · 
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Figure 1.3 Experirnental set-up frorn Vetter et al. 2008. 

Even if rny reinterpretation works, however, the consensus now seerns to be that 

individuation is one of attention's main roles (Cavanaugh 2011). Worse, the very 

notion of a distinction between preattentive and attentive processing has been 

41 The same reasoning applies to the claim that object selection in MOT could be directed by attentional 
processing (Oksama & Hyona 2004): participants in MOT are asked to pay attention to abjects and track 
them, so there is clearly an attentional component here too. But this attentional component's essential 
contribution to these processes must not be overstated: if 1 intend to take a deep breath and then attend 
to my breathing, does that make breathing an attention-dependent process? 
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questioned, as has the possibility of preattentive processing (Joseph et al.1997; Duncan 

et al.1989). This means that it may be impossible for Trick and Pylyshyn's visual 

indexes to be accurately described in terms of preattentive individuation processes, 

since there may be no such thing.42 

At this point, it is evident that the investigation on the nature of subitizing has brought 

us at the heart of a complicated question, that of the relationship between attentive and 

preattentive processes, and how objects are individuated. This topic has important 

implications for a number ofphilosophical issues. For example, as Spelke puts it, "[t]he 

parsing of the world into things may point to the essence of thought and to its essential 

distinction from perception" (Spelke 1988, 229). 

Unfortunately, as has often been remarked, attention is a particularly confused, yet 

important, notion (Mole 2014; Wu 2014), and a number of important questions in 

attention research have not found solutions because "the key concepts (selection, 

automaticity, attention, capacity, etc.) have remained hopelessly ill-defined and/or 

subject to divergent interpretations" (Allport 1993, 188, cited in Wu 2014). Thankfully, 

our purpose in this chapter is not to settle these matters, but 'merely' to identify the 

cognitive systems underlying enumeration, so as to make our way towards the origin 

of numerical cognition. In this context, the precise role of attention in subitizing need 

not be settled immediately. This is because what matters is whether or not Trick and 

Pylyshyn's individuating mechanism allows us to explain behavioral discontinuities in 

42 As Vetter et al. put it: 

the strong notion of pre-attentive/attentive dichotomy has been regarded as an oversimplified 
account in the attention literature ... and particularly the hypothesis of attention-free perceptual 
processing has been questioned. Indeed there is evidence that even the simplest forms of feature 
detection ( e.g. orientation detection), which had previously been thought of as occurring pre-
attentively, depend on the availability of attentional resources in a dual-task situation. (Vetter et 
al. 2008, 1) 
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enumeration tasks, regardless ofwhether or not it takes place pre-attentively.43 

For now, let me simply point out that there are many types and levels of attention (Wu 

2014) so even ifboth counting and subitizing require attention this does not mean they 

recruit the same cognitive systems, since they can have different functions within an 

· attentional processing hierarchy. For example, even if individuation requires attention, 

it can still occur in parallel, while this is not true of counting. So even if it does tum 

out that attention is required for subitizing, the (now-attentive-instead-of-preattentive) 

individuation mechanism plays the same part in subitizing that it does if individuation 

is preattentive - namely, selecting feature clusters in parallel to allow (higher-level) 

attentional processing on these. The important insight that Trick and Pylyshyn offer is 

that subitizing relies on an individuation mechanism that tags a limite~ number of 

objects for further processing: 

A critical aspect of the explanation is the assumption that individuation is a 
distinct (and automatic) stage in early vision and that when the conditions for 
automatic individuation are not met, then a number of other phenomena that 
depend on it, such as subitizing, are not observed. (Pylyshyn 2003, 175) 

In sum, while there remains a number of controversies surrounding our ability to 

enumerate, including the number of cognitive systems involved and the role of 

attention, Trick and Pylyshyn's visual indexing account still affords a plausible and 

well-supported explanation. Having argued for the merits of the visual indexing 

account in this section, in the next section, I explore what role visual indexes could 

possibly play in enumeration. 

43 Illustrating that progress can be made without settling the preattentive-attentive <livide, some authors 
(Pagano et al. 2014; Mazza 2017) simply speak of an attention-based individuation mechanism behind 
subitizing. 
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1.3 The Object-File System 

1.3.1 From visual indexes to object files 

1 have just argued in defense of Trick and Pylyshyn's account of subitizing, according 

to which the difference between enumerating inside and outside the subitizing range 

can be explained by the accelerating effects of a limited-capacity parallel individuation 

system. While 1 have shown that support for their account is strong, important details 

conceming how this system manages to contribute anything abstract enough to figure 

into enumeration processes are lacking. Recall: Trick and Pylyshyn's two-stage 

description of subitizing involves an initial parallel individuation stage with no 

numerical content followed by "matching each individuated item with a number name, 

in the order of the number name" (Trick & Pylyshyn 1994, 88). 

Given that visual indexes are, well, visual, and that numbers are not, we need to know 

more about the way in which information from visual indexes becomes available for 

more general, amodal processes like enumeration. After all, visual indexes are made 

up of clusters of visual features like line orientations and color changes. On the other 

· hand, enumeration involves tagging objects presented in many modalities using 

abstract representations with numerical content. So the question is, if subitizing relies 

on visual indexing, how does visual indexing allow 'matching' indexes to number 

words in enumeration? 

To see how visual indexes can figure into more general processing, it is essential to 

understand what sort of information about the world they carry. First, note that to 

enumerate visually perceived objects - or undertake any other action involving visual 

stimuli, for that matter - these must first be individuated as particular objects, separate 

from the rest of the visual field. There are many levels at which the visual system parses 

incoming sensory information to yield representations of particular objects. For 

example, discontinuities in features of the visual field ( e.g. colors variations, brightness 
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levels, line orientations and curvatures, etc.) can be grouped together to form object 

boundaries. F eatures are detected in parallel throughout the visual field, and then 

grouped together by similarity and proximity to form indexes of feature clusters (Marr 

1982). 

Such indexing cannot be based on individual features of the objects, since these are 

typically in constant flux. For example, imagine watching a car drive by on a partly 

cloudy day. While our experience of the event is of one spatiotemporally identical 

object passing in front of us, in actuality, the car's color and brightness levels vary as 

it passes through different patches of sunlight, and its retinal size fluctuates according 

to its distance from us. Given such variation, it would be impossible to keep track of 

the car based only on its retinal features. To accomplish tasks like enumeration of 

visually presented objects, what we need to keep track of objects is a way to individuate 

objects despite variations in their features and position. Visual indexing mechanisms 

allow such reference tokening to take place by tracking clusters of features as they 

move through the visual field. To highlight the fact that these individuation indexes 

ostensibly point to feature clusters like a finger points to an object, Pylyshyn dubbed 

them FINSTS, for FINgers of INSTantiation. 

Seen this way, visual indexes are referential: they point to things in the world (Pylyshyn 

2007). And yet, as mentioned in the MOT discussion, they are limited to tracking 

spatiotemporal continuity and do not carry feature information along with their 

referent. Thus, visual indexes are limited to the demonstrative content THIS, 

individuated about four times in parallel. Visual indexes, then, are part of a mechanism 

for demonstrative thought that participates in representation, but is not itself 

representational, since visual indexes Iock onto objects, but not their properties. 

So the question is: given their purely demonstrative role, how do finsts allow us to 

represent anything about the world? When a finst is individuated, the properties of the 

objects that triggered this individuation are not encoded along with it. For such 
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properties to be attached to the object that triggered the opening of a visual index, a 

further processing step is required: the opening of an object file (Kahneman et al. 

1992).44 Finsts link objects in the world to object files, which can represent properties 

of objects that trigger individuation of visual indexes and make this information 

available for further computations. Thus, the fonction of visual indexes is to keep track 

of objects and allow us to attribute properties to these via object files. 

A good illustration of what sort of content object files can carry can be found in the 

first study to use the term 'object files' (Kahneman, et al. 1992), which used an object-

reviewing paradigm to study potential facilitation effects of object individuation on 

feature recognition. Here, the setup involved exposing subjects to screens on which 

two identical squares were displayed, one on top of the other. In each square, a letter 

was then briefly presented and hidden from view. The squares then moved to new 

locations, equidistant from their initial position, after which a letter appeared in one of 

them. Subjects were tasked with identifying this second letter as quickly as they could. 

The objective was to determine whether the initial letter, despite being displayed in a 

different location from the second, could prime (i.e. facilitate) semantically-related 

responses in a different location. This was indeed the case, which suggests that content-

based effects like semantic priming follow the same course as the tracked squares, 

despite the fact that the priming letters had been displayed in separate locations. 

Kahneman and colleagues took this as evidence of à mid-level individuating 

mechanism that allows us to track objects' motion as well as some oftheir features and 

stores this information in object files. 

Given that both object files and finsts are limited in number and track individuals, it is 

not surprising to learn that object files and visual indexes share many properties: 

44 See Mitroff et al. 2005 for a discussion of object files and their relation to conscious percepts. 
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Visual indexes point to features or objects, not to the locations that these stimuli 
occupy. Like the object files ofKahneman, Treisman, and Gibbs (1992), visual 
indexes are object-centered and continue to reference objects despite changes 
in their location. (Sears & Pylyshyn 2000, 2) 

In fact, depending on who one reads, the two notions are equivalent, as illustrated by 

some authors having described subitizing as "the rapid enumeration of open object 

files, without counting (verbal or nonverbal)" (Cordes & Gelman 2005, 138). 

While the relationship between finsts and object-files is, to use Pylyshyn's words, "not 

entirely transparent" (2003, 209f), he does mention that Kahneman and colleagues' 

object files and his finst-based theory of visual indexes were developed for different 

purposes: while "object file theory has emphasized memory organization and its 

relation to the objects from which the information originated", his visual index theory 

"emphasizes the mechanism required for establishing and maintaining the connection 

between objects in the visual field and mental constructs (representations) of them" 

(Pylyshyn 2003, 209f). 

We see that visual indexing theory focuses on mechanisms that 'connect' feature 

clusters in the visual field and the objects themselves, while object files are the 

equivalent of memory slots where information about objects is stored (see Figure 1.5). 

Importantly, since object files refer to the world via visual indexes, they share the same 

capacity limits: only a small number of object files can be individuated at once. The 

difference is between recognition and individuation. Only object files can be 

considered as representational. 45 

45 See chapter 4 of Pylyshyn 2003 for more details on this distinction, as well as Pylyshyn 2007, 37-39. 
Further, note that there is some evidence that the ability to index objects may corne before the ability to 
store object properties in objects files (Leslie .et al. 1998; see also Wu 2014). There is also evidence that 
not all features can be clustered at the same stage in development (Kàldy & Leslie 2003) 
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Figure 1.4 Experimental design in Kahnemean et al.1992 

Happily, despite potential ambiguity in separating finsts and object files, what is 

important for us here is that there is ample evidence that a system capable of attaching 

properties to a limited number of objects in parallel can explain enumeration in the 

subitizing range. This section has shown that even though it is the finsts that individuate 

the perceptual data into visual indexes, it is the object files that carry the information 

to other cognitive systems. Since it is the object files that represent properties of the 

world, it is the object-file system that can figure into an enumeration process, where 

number words can be assigned to individuated objects. This means that to find out the 

origin of numerical cognition, we need to know where we get our object files from. In 

the next few sections, I discuss evidence for the existence of an object file system in 

human infants and nonhuman animais, indicating that the object-file system is innate. 
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Along the way I describe some of the research methods used so as to highlight what 

sort of information we can tak:e from data obtained using these methods, and to 

determine how the object-file system could support numerical behavior. 

z 
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Figure 1.5 Relation between object-files and finsts 

1.3 .2 Evidence of innateness and phylogenetic origins 

.. llnk 

I have just discussed how object files allow us to store content and apply it to visual 

indexes. To find the origins of the systems deployed in enumeration tasks - at least, in 

the subitizing range - we need to know where object files corne from. Given that, in 

the visual domain, object files relate to the world via pre-attentive visual indexing 

devices, it is not unreasonable to expect to find evidence of their presence in preverbal 

infants and nonhuman animals. Also, if we accept that object files relate to the world 

via finsts, we can expect them to share many oftheir properties-in particular, capacity 

limits of about 4 objects, primacy of spatio-temporal information, and distinction of 
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occlusion from cessation of existence. In this section, I take a doser look at the object 

file system, its origins, and the methods used to determine these. This will allow me to 

show that it does not have any numerical content, despite being able to support 

operations about such numerical content, in section 1.4. 

Searching for the origins of numerical cognition forces us to consider a number far-

reaching philosophical issues. In the case at hand here, the question we are interested 

in is where our ability to aprse the world into objects cornes from MA YBE THAT 

SPELKE CONTINUOUS TO SPECIFIC QUOTE HERE?. The question ofhow we 

individuate objects as materially extended mind-independent entities that persist 

through time has been around since at least the heyday of British empiricism and its 

reaction to Descartes and other nativists. The empiricists, on the one hand, allowed 

very few items in their inventory of innate faculties, limiting themselves to what the 

senses could give us. This forced empiricist accounts of object individuation to appeal 

to general leaming mechanisms and statistical generalization operating over sensory 

and perceptual representations to explain how concepts such as OBJECT get their 

properties (e.g. solidity, spatiotemporal persistence, impossibility of passing through 

other objects, etc.) In this case, the leaming would be piecemeal and gradual, and 

dependent on the amount of stimulus presented to the leamer. 

If we opt for a nativist explanation of the origin of representational systems, on the 

other hand, we should expect to see the effects of the natural maturation of these, such 

as regular behavioral milestones (think of babies leaming to walk and talk). While 

philosophers could argue all they wanted about where such general concepts came 

from, little data was available to settle the issue. 

In a rare and wonderful example of science coming to settle philosophical matters, data 

collected by recently developed experimental paradigms have allowed researchers to 

probe deeper into the cognitive machinery of neonates, preverbal infants, and 

nonhuman animals. In recent times, experimental methods have been developed that 
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seem to have settled the matter rather conclusively, with nativist accounts of the origin 

of object concepts gaining the upper hand (Carey 2009). In what follows, I discuss the 

main empirical findings supporting the existence of an innate, phylogenetically-

inherited system representing object files. First, I sketch the thinking behind the main 

source of evidence for the presence of this system in infants and animais, Violation-

Of-Expectancy (V 0 E. hereafter ). 

1.3 .3 Violation of Expectancy 

A difficult hurdle when probing infant and animal cognitive systems is that they cannot 

verbally report on the causes of their behavior. Thankfully, in recent years, 

methodological breakthroughs appear to have opened the door into their 

representational repertoire. Techniques such as Violation-of-Expectancy (VOE), 

habituation, and manual search have allowed researchers to detect the presence of 

· representations in subjects that were out of reach when Piaget first started looking into 

the minds of infants. 

Consider the VOE paradigm, which in recent years has become the most widespread 

methodological tool used to investigate the representational repertoire of infants and 

animais (Carey 2009). VOE is a specific application of looking time studies, which 

were initially geared towards detecting perceptual skills in infants ( e.g. whether or not 

they could see colors). In VOE, researchers exploit subjects' tendency to look longer 

at stimuli that presents novel or unexpected scenes. The underlying rationale is that we 

can detect the presence of representational systems geared towards certain aspects of 

the world by observing whether or not violations ofthis aspect of the world incur longer 

looking times in the exposed subjects. In other words, subjects would not stare longer 

at outcomes that violate the way they expect the world to behave unless they have a 

representation of this aspect of the world. 
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Many VOE experiments involve little - if any - training, simply exposing subjects to 

unexpected scenes and reading their reaction. Other VOE paradigms involve repeated 

exposure to perceptually similar scenes. In these habituation paradigms, researchers 

exploit the fact that subjects eventually lose interest (i.e. habituate) when repeatedly 

exposed to stimuli displaying the same properties. Typically, after a series of trials that 

fail to present novel features, subjects' gaze starts to wander away from the stimulus, 

which appears to be presenting the same content over and over again. 

As an indicator of habituation, researchers typically set a value that is proportional to 

the looking time for the first stimulus. For example, if subjects first looked at the 

stimulus for four seconds, when they start to look at stimuli for 2 seconds before 

looking away, it is taken as a sign that the stimuli are no longer presenting anything 

new or interesting to the subject.46 Once subjects have habituated, researchers expose 

them to stimuli that are meant to regain their interest, either by showing them possible 

modifications of previously displayed stimuli, or modifications that, to an adult, would 

be impossible or unexpected. The important behavioral datum here is whether looking 

time varies between habituation stimuli and novel stimuli. 

Here the idea is that if repeated exposure to the same stimulus eventually bores 

subjects, when a change in certain features of the stimulus is able to get looking time 

backup, it is interpreted as a sign that the subjects' reaction is based on a representation 

that is sensitive to those changed features. In particular, stimuli that display impossible 

outcomes would elicit longer looking times given that they violate the expected 

outcome as determined by the constraints on the representational systems responsible 

46 In some experiments, variations in looking tirne are relatively srnall (around two seconds) (e.g. Xu & 
Carey 1996), but in all cases, they are reliable and replicable differences in behavior, and while 
explanations may vary with respect to the richness of the representations used to exp Iain these behavioral 
differences, all seem to force sorne kind of innate representational content. 



55 

for subject's reaction to the stimuli.47 

As an example, consider the pioneering work of Renée Baillargeon and her colleagues 

(Baillargeon et al. 1985), who were the first to test the presence of representations of 

object permanence using a VOE paradigm that involved playing a trick on the infant 

subjects. In this study, four-month old infants were shown a platform that moved back 

and forth 180 degrees, like a drawbridge that falls in two directions. Once habituated 

to the motion of this platform, infants were shown an object introduced directly in the 

path of its downward motion. Normally, this would mean that the platform could not 

complete a full 180-degree rotation, since the object had been placed in a way such as 

to prevent this motion. 

In some trials, infants were shown the expected outcome, and the platform halted when 

it touched the occluding object before going back in the other direction. In other trials, 

an impossible outcome was shown to the infants: without the infants noticing, 

researchers surreptitiously removed the object from where infants had seen it placed. 

Thus, instead of stopping on the object, the platform continued its downward motion 

as it had done when there was no occluding object. Infants looked longer at the 

impossible outcome, thus suggesting that they expect objects to be solid to the extent 

that one cannot pass through the other. lmportantly, the fact that infants looked longer 

at the impossible outcome suggests that the representational system underlying their 

behavior in this setup can keep track of objects even when they are not being directly 

perceived, which suggests that infants are equipped with an innate representation of 

object permanence.48 

47 Experiments such as Wynn's arithmetic tasks described below and its replications depend on the 
violation of expectation paradigm, which assumes that longer looking times indicate an infant's violation 
of expectation. However, some developmental psychologists ( e.g. L. B. Cohen & Marks, 2002; Haith 
1998) challenge this core assumption, and account for the results in purely perceptual terms. 

48 As Carey (2009) convincingly argues, this shows that both Piaget and Quine were wrong in thinking 
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A great advantage of the VOE paradigm is that it allows researchers to probe deep into 

the representational inventory of subjects that cannot produce introspective reports -

especially, preverbal infants and animals - using a non-invasive behavioral reading. If 

subjects react in ways that display the presence of underlying representations with the 

same features as those ofhuman adults, VOE may point to the presence of ontogenetic 

or phylogenetic continuity in underlying representations used for certain cognitive or 

perceptual tasks. We can thus piece together the contents of the representations behind 

infant and animal behavior in various tasks by taking a look at the inferences that 

infants appear to be making concerning possible and impossible outcomes. In the 

following section I review evidence showing the presence of an object file system in 

human infants and animals that shares its three processing signatures mentioned above. 

1.3.4 Three properties of object files in infants and animals 

I showed above that visual indexes prioritized spatiotemporal information over other 

features, had a limited capacity of about 4 objects, and distinguished between cessation 

of existence and occlusion. I also mentioned that the OFS shared these characteristics. 

In this section, I show that these three characteristics also appear to underlie infant and 

animal object representations, thereby showing that our object file system is ~oth innate 

and phylogenetically inherited. I start with occlusion versus cessation of existence. 

In the first experiment to use habituations methods (Kellman & Spelke 1983), infants 

were exposed to a screen showing a moving partially occluded rod. Then, the occlusion 

was removed to reveal either a solid moving rod ( expected) or two moving rods which 

lined up with each other but had a gap where the occluder had been, thereby creating 

that infants had to leam about abject permanence. 
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the illusion of a single moving rod (unexpected) (see figure 1.6). Infants looked longer 

at the unexpected outcome, and this was interpreted as a sign that infant perception 

displays certain gestalt principles, including amodal completion of partially occluded 

objects. Replications of this behavior are taken as evidence that infants represent 

objects existence as persisting despite the fact that they are not being perceived, either 

due to partial or total occlusion.49 

A 

1 . 

c 

Figure 1.6 Schematic depiction of occluded rods in Kellman & Spelke 1983. 

49 See Valenza et al. 2006, who used stroboscopie presentation ofsirnilar stimuli to probe the existence 
ofarnodal cornpletion ofobject contours in neonates. See also Johnson 2010. 

--- ·---·- - - -------------
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Given the widespread use of MOT to study object individuation in adults, it is not 

surprising that the same methods were used to study object files in infants. For example, 

Cheries et al. (2005) habituated infants to displays showing disks moving randomly, 

sometimes running into occluders (bars). As in adult studies, the disks then either 

appeared to pass behind the occluder, or to disappear on one side before reappearing 

on the other. Then, in target trials, the number of moving disks changed. Only those 

infants who had been shown movement consistent with real-life object occlusion 

dishabituated to the novel number. This suggests that those shown objects disappearing 

and reappearing lost the ability to track their number. Such findings appear to confirm 

the same distinction in infants between objects' ceasing to exist and objects being 

occluded from sight seen in adults. 

Similar experiments with newly hatched chicks show that these group together around 

a fully formed triangular-shaped object after exposure to a partially occluded triangle, 

which suggests the presence of an innate system that, when confronted with partially 

occluded objects, individuates these by filling in the occluded contours (Regolin & 

Vollortigara 1995). Similarly, chicks will search for objects on which they have 

imprinted when these are hidden from view despite no previous exposure to any objects 

whatsoever, given that they were just hatched. This suggests that instead of computing 

object permanence from statistical leaming over sense data, chicks are equipped with 

perceptual input analysers sensitive to the spatio-temporal continuity of object 

permanence. Such results suggest that chicks are equipped with an innate capacity to 

represent the spatio-temporal continuity of object permanence despite the fact that 

objects are not directly being perceived.50 

50 Representational systems displaying object persistence despite occlusion have also been demonstrated 
in chimpanzees (Beran 2004 ), rhesus macaques (Hauser & Carey 2003 ), and tamarins (Uller et al. 2001 ). 



59 

1.3 .5 Capacity limits 

Many experiments with infants and animals have displayed the capacity limits of MOT. 

Among the earliest to show such capacity limits in infants are Starkey & Cooper 

(1980), who habituated 4-to 7-month-old infants to displays oftwo dots. Their looking 

time increased when they were shown displays ofthree dots. Symmetrical results were 

obtained for infants habituated to 3 dots. However, when the variations involved 4 vs 

6 dots, infants failed to dishabituate. The fact that infants failed to discriminate between 

displays of 4 vs 6 dots but not 2 vs 3 dots despite the same ratio is evidence that the 

system underlying their abilities here is limited to about 4 objects, thus mirroring 

capacity limits in adult object files. 

One animal species that does display the same capacity limits to their object 

representations are rhesus macaques. Hauser and colleagues ( e.g., Hauser & Carey 

1998, 2003; Hauser et al. 2000) were the first to apply VOE and manual search 

paradigms to both free ranging and laboratory-housed primates to probe their object 

representations and find data that converges with that obtained in infant studies. 

Adopting Wynn's (1992a) VOE paradigm (see below) to free-ranging rhesus 

macaques, Hauser and colleagues used disappearing tricks to expose ·primates to 

stimuli that violated object permanence in order to test their capacity to perform basic 

numerical operations like addition and subtraction. Here, in impossible displays, 

subjects were shown two eggplants placed in a display box behind a small screen. 

When the screen went up, they could only see one eggplant, the other having been 

secretly hidden in a pouch. Converging with infant studies, the results showed that 

subjects looked reliably longer at impossible outcomes than at possible outcomes. 

Similar methods were used to show that macaques look reliably longer when shown 

impossible outcomes of tasks that some authors describe as instances of subtraction. 

Here, two eggplants are inserted on a display, a screen goes in front of them, they can 

see two eggplants being removed, and then when the screen is lowered they find the 
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impossible outcome that there is still an eggplant on the display. Importantly, later 

experiments showed that these abilities break down when tasks involve four objects, 

since they fail to look longer at impossible outcomes such as 2+2 = 3, despite looking 

longer at tasks displaying 2+ 1 = 2. In another paradigm, macaques were shown apple 

slices inserted into a bucket, followed by another number of apple slices into another 

bucket. They were then allowed to choose one of the buckets. They reliably chose the 

larger number of apple slices when buckets contained 1 vs 2, 2 vs 3 and 3 vs 4 slices, 

but could not perform well with 2 vs 5, 4 vs 8, and even 3 vs 8 slices, despite the large 

discrepancy. This suggests that the same capacity limits on the underlying 

representational system as present in human object files (Hauser & Carey 2003). 

1.3.6 Primacy of spatio-temporal information in object files 

As for the primacy of spatio-temporal information in object files, Richardson & 

Kirkham (2004) adapted paradigm used by Kahneman and colleagues in their study of 

object files (described above in section 1.3.1) and exposed 7-month old infants to the 

same visual presentation of boxes arranged vertically. Infants then saw objects appear 

and disappear in the boxes. For example, in the top box, a duck would appear, and a 

quack noise was played before the duck disappeared from the box. In the bottom box, 

a bell appeared and a ringing sound was played before the box disappeared. Then, the 

empty boxes moved to a new location, each equidistant from each other and from their 

previous location, and a sound was played. The question was: where would the child 

look? 

If infants individuate objects according to spatio-temporal continuity, then they should 

look to the box where the object associated with the sound was initially displayed, since 

that box would have the sound as part of its attached features. This is indeed what 

researchers found, suggesting that infants' object files, like those of adults, individuate 
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objects based on the spatio-temporal continuity of feature clusters.51 

As for animals, in a clever experimental setup, researchers found a way to determine 

whether primates could also individuate objects by prioritizing spatiotemporal 

information (Flombaum et al. 2004). Rhesus macaques observed as experimenters 

rolled lemons down a ramp until they stopped behind an occluding tunnel. Out of the 

tunnel came a kiwi, which was then hidden from view behind a second occluder. If the 

motion of the kiwi was continuous with that of the lemon as it passed through the 

tunnel, the macaques only searched for food in the second occluder, which suggests 

that they individuated the food not on its individual features, but on its spatiotemporal 

features. On the other hand, if the lemon stopped long enough for the motion of the 

kiwi to appear discontinuous, the animals searched for two morcels of food. This 

behavior suggests that these monkeys prioritize spatiotemporal eues when tracking 

moving objects, rather than features (e.g. those that distinguish lemons from kiwis), 

like human infants and adults have been shown to do. 

1.4 Does the Object-File System have numerical content? 

1 have just presented evidence showing that the three signature properties of the object-

file system (OFS) - a capacity limit of about four objects, priority of spatio-temporal 

information, and distinction of occlusion from cessation of existence - have been found 

in human infants, adults, and nonhuman animals. Given that the limits on the number 

of objects we can enumerate quickly and effortlessly is the same as the limit to the 

number of objects that infants and animals can simultaneously track, it looks like the 

51There are certain conflicting results in the literature concerning when infant behavior displays the use 
of spatio-temporally continuous features to individuate objects, rather than, say, kind information, but 
converging evidence from manual search studies confirms that infants below 12 months are more 
sensitive fo the former (see Xu & Carey 2000; Carey 2009: chapter three). 
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system responsible for our ability to subitize is also present in infant and animals. 

However, so far none of these features appear to be related to numerical abilities. On 

the contrary, the fact that we can only open about four object files at the same time 

would appear to make it an unlikely candidate for the origins of numerical cognition, 

given that there is no such limit to numbers. And yet, the reason we are currently 

investigating the object file system is that we are trying to track down the system that 

explains behavioral discontinuities in the subitizing range, and understand how it could 

be involved in subitizing. Now that we know more about the OFS, it's time to ask: does 

.it have any numerical content? 

Recall that I mentioned above that Pylyshyn claims that performance in the subitizing 

range can be explained by the properties of a parallel individuation system that does 

not have any numerical content, since visual indexes to not attach any features to the 

objects they track. Rather, the visual indexing system's job is merely to provide 

demonstrative tags for further processing, so .that their content would be limited to 

something like THIS, THIS, THIS, for three objects. I also mentioned that, on 

Pylyshyn's account, the numerical aspect of subitizing cornes in after visual indexes 

have been attributed to objects, when the output of a visual indexing system is matched 

to a memory slot for number words. In subitizing, then, the visual indexes are limited 

to individuating objects, while a separate process reads numerical content from the 

individuated objects and matches it to a numerical representation. But, given that object 

files, unlike visual indexes, can encode properties of objects, it is not unreasonable to 

wonder whether the OFS can represent numerical information about the world on the 

basis of relations between the indexes it operates over. 

Support for this possibility cornes from infant and animal behavior in the subitizing 

range that is often taken as evidence of elementary arithmetical skills (Dehaene 

1997/2011; Wynn 1992a; Carey 2009). Scores of studies in the past few decades have 

found that infants can discriminate between small numbers of objects based on their 
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numerosity and appear have expectations about the arithmetical relations between these 

objects. The question is whether the OFS, which allows features to be bound to objects, 

is responsible for this behavior, and whether or not this means that this system 

computes numerical content. 

Consider for example the most famous study of infant numerical skills. Here, Karen 

Wynn (1992a) used a VOE paradigm to test the number ofhidden objects infants (aged 

5 months in some trials) could keep track of. To do this, Wynn set up a small stage on 

which one or two objects ( depending on the trial) were introduced in sight of the 

infants. Then a screen went up, and infants saw a hand place another object behind the 

screen (in the 'addition' condition), or take away an object from behind the screen (in 

the 'subtraction' condition). The screen then came down to reveal either the right 

number of objects (possible outcome) or, when experimenters played tricks on them, 

the wrong number of objects (impossible outcome ). 

The question was whether infants would expect the right number of objects to be 

revealed when the screen came down. Wynn's results show that infants look longer at 

unexpected outcomes. For example, they show no signs of surprise for the correct 

outcome of simple addition and subtraction tasks like 1+1 = 2, or 2 - 1 = 1, but they 

stare longer when an object has been surreptitiously added or removed from behind the 

display, instantiating 1+1 = 1 or 2 - 1 = 2, or 1 + 1 = 3. Showing the capacity limits of 

the object file system, infants did not show preferential looking times when exposed to 

3 vs 4 objects, nor 3 vs 8 objects, suggesting that they lose track when too many objects 

are presented. Wynn's (1992a, 1998) interpretation of her findings is that infants' 

reactions are based on rudimentary arithmetical skills, since they react to violations of 

expectancy that can be described in arithmetical terms. She takes this as evidence that 

the OFS is capable of supporting rudimentary arithmetical operations, which would 

support attributing some form of numerical content to this system. 

While common, such a rich interpretation of these findings remains controversial. 
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Instead of attributing rudimentary arithmetical abilities to infants based on their 

reaction to these impossible events; it would appear more parsimonious to explain their 

behavior in terms of non-numerical content. There are at least two other plausible 

interpretations of these findings that do not appeal to any numerical content to explain 

infant behavior. On the one hand, infants' reactions could be due to violations of their 

representation of continuous magnitudes.that co-vary with numerosity, such as total 

surface area, contour length, convex hull, qr average size. On the other, infants could 

be reacting to a mismatch between states of the OFS without explicitly representing the 

reason for this mismatch. I explore these possibilities in turn. 

To test for this, a number of follow-up studies varied non-numerical eues in similar 

transformation paradigms to determine whether infant behavior resulted from a 

representation of numerical content rather than other perceptual eues. While Simon's 

(1995) study replicated Wynn's findings and showed that infants are not reacting to 

variations in object identity, other subsequent studies found that when non-discrete 

magnitudes like total surface area or total contour length (i.e., the sum of the contours 

of individual objects) in an array were controlled for, infants reacted to changes in 

these, and did not react to numerosity changes (Clearfield & Mix 1999; Feigenson et 

1 52 a. 2002). 

While these findings invalidate Wynn' s arithmetical interpretation of her data, other 

experiments involving cross-modal matching tasks appear more congenial to a 

numerical interpretation ofinfant behavior. Unlike Wynn's VOE transformation study, 

where stimuli were presented in a single modality, Starkey et al. (1990) tested whether 

52 See also Uller et al. (1999) for an excellent summary of the pros and cons of the object file model vs 
Wynn's arithmetical explanation. Note that while Feigenson and colleagues questi9n the fact that infants 
react to variation in numerical content in the subitizing range, they do consider some studies ( e.g. Xu & 
Spelke 2000; Xu 2000, discussed below) as providing "unequivocal evidence for sensitivity to number" 
(Feigenson et al. 2002, 36) above the subitizing range. 
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infants can represent numerical correspondences between displays of objects presented 

visually and sequences of sounds, using an auditory-visual preference procedure 

(Spelke 1976). They presented 6- to 8-month old infants displays containing 2 or 3 

objects of various types, meanwhile playing sound sequences of either two or three 

drumbeats. They found that infants looked longer at displays that were numerically 

equivalent to auditory sequences, even when duration was equal for both auditory 

sequences, suggesting a preference for intermodal correspondence based on their 

numerosity, even in the subitizing range. 

Behavior in this experiment cannot be explained by non-numerical eues in a single 

modality, as was done for Wynn' s studies, since behavioral discontinuities are between 

two cross-modal conditions, which suggests that the underlying representation must 

not be modality specific, as is the case for total contour length, for example. Thus, this 

experiment appears to provide evidence for a modality-independent, amodal 

representation that is sensitive to numerical correspondence between stimuli across 

modalities. 53 

And yet, despite the fact that these findings appear to eliminate the influence of non-

numerical perceptual magnitudes on behavior, this does not mean that infants reactions 

are based on numerical content. While this type of study is often considered strong 

evidence for the presence of numerical content in the subitizing range, it is important 

to consider that infant reaction here can simply be a matter of establishing one-to-one 

correspondence betwe.en object files in both modalities, and finding a mismatch. On 

this alternative interpretation, infants are reacting to violations of discrete quantities of 

objects, not to any explicit representations of numbers. Consider how this might apply 

53 It is worth mentioning that some experiments failed to replicate these findings (Mix et al. 1997), 
though later experiments using similar methods appear to show preferences for cross-modal matching 
in 7-month olds, using more natural stimuli: faces and voices (Jordan & Brannon 2006). See also Izard 
et al. 2009. 
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to Wynn's experiment above: here the OFS would produce outputs like OBJECTa and 

OBJECTb when two objects are shown on a stage. Then, when a screen hides these 

objects and a third object is added to the stage, another object file, OBJECTc would 

have tracked it as it was placed behind the screen. Thus, when the screen is removed 

to reveal the objects it was hiding, infants would expect OBJECTa OBJECTb 

OBJECTc, say. Due to the experimenter's tricks, however, they perceive OBJECTa 

OBJECTb only, and this does not match the output of the OFS. On this model, the OFS 

could allow computations based on a SAME/DIFFERENT distinction, without there 

representing any explicit numerical content. 

A similar interpretation could also explain behavior in Starkey et al.' s (1990) study. 

Here, infants could open object files in which visual and audio information are stored. 

Given that matching displays and sounds are easier to track than combinations of 3 

visual stimuli and 2 audio stimuli, which involves a missing audio stimulus, infants 

could prefer the simpler stimuli with matching numerosities, without necessarily 

representing their numerosity. 

At issue here is a crucial question in the investigation of the origins of numerical 

cognition, that of the numerical content of the OFS. As I have shown, for now, there is 

no conclusive evidence that this system provides us with anything like the content 

NUMBER. More parsimonious, non-numerical explanations can account for all the 

data giving the appearance of numerical abilities in the subitizing range by appealing 

to objects files, whose existence is well supported. On these non-numerical 

explanations, the OFS can only be described as supporting one-to-one correspondence 

between individuated object files, which can lead to representations with the content 

SAME or DIFFERENT. The underlying reason for this difference or sameness, 

numerical inequality, does not need to be explicitly represented by infants and animals 

in this range. In sum, while there is evidence that some behavior in infants in the 

subitizing range is based on numerical matching between senses, this does not mean 



67 

that the OFS provides numerical content.54 

Of course, while subitizing may be an important phenomenon to study the origins of 

our numerical abilities, the range in which it operates is nothing to write home about: 

at around 4 objects, the OFS, on its own, can only account for numerical abilities in a 

very restricted range. W e are then left to wonder what system underlies numerical 

abilities beyond the subitizing range. In the next chapter I present data supporting a 

representational system with content that can be described as numerical, though even 

here there are limitations that prevent us from attributing the content NUMBER to this 

system. 

54 Cheung & LeCorre (2018) pro vide evidence that children as young as two years of age can use the 
OFS to compare collections based on their numerosity in some cases, but this does not mean that younger 
infants have this ability, nor that the conditions used in their study single out numerosity as the sole basis 
for behavior, as discussed below in section 2.5. 



CHAPTERII 

THE APPROXIMATE NUMBER SYSTEM 

2.1 Introduction 

We just saw that our ability to subitize is restricted to very small quantities of objects. 

Of course, the subitizing range' s limited domain does not prevent us from representing 

large quantities of objects in our environrnent. Most adults regularly and effortlessly 

represent the number of objects in an attended perceptual space-its numerosity- even 

though this space contains much more than three or four objects. Since the end of the 

201
h century, hundreds of studies targeting numerical skills in adult humans and infants, 

as well as many animal species, have gathered mountains of evidence supporting the 

existence of a representational system that allows individuals to represent quantities of 

objects in their environrnent, with decreasing precision as quantities increase. This so-

called 'approximate number sense' (hereafter, ANS) plays a central explanatory role in 

most recent accounts of the origins of numerical cognition. 55 

For many, this numerosity-dedicated system contains an amodal representation of 

55 Dehaene 1997/2011; Feigenson et al. 2004; Gallistel & Gelman 1992, De Cruz 2008; Menary 2015a; 
though see Ge buis et al. 2016 for a critical review, and see Leibovich et al. 2017 and Lourenko 2015 for · 
alternative accounts of the system underlying numerical abilities outside the subitizing range, discussed 
below in section 2.5. 
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numerical quantity that serves as the foundation to our arithmetic and mathematical 

abilities (Butterworth, 2005; Dehaene, 2009; Piazza, 2010). Given its central role in 

the development of our arithmetical skills, it is crucial to understand the methods used 

to establish the existence of such a system as well as the evidence suggesting that its 

content is numerical. In this section I summarize a few key studies in the short history 

of the ANS that are taken as support for the existence of such a numerical system in 

adult humans (2.2), infants (2.3), and animals (2.4). I then briefly summarize the main 

lines of a recent alternative model of the ANS, the Analog Magnitude System (AMS 

hereafter), explain the critical motivations for this view, and what this means for my 

quest for the origins of advanced numerical cognition (2.5). 

2.2 Support for the ANS in adult humans 

2.2.1 Studying numerical abilities with symbols 

As was the case for subitizing and abject-file studies, studies probing the.ANS proceed 

by having subjects perform numerical tasks and then looking for performance 

signatures in the behavioral data obtained. Such performance signatures can reveal the 

distinguishing properties of the representational system underlying behavior in 

numerical tasks, thereby shining light on the origins of our numerical abilities. The 

main experimental paradigms used in the study of numerical skills outside the 

subitizing range in adults involve numerical identification, estimation and comparison 

tasks using non-symbolic ( e.g. dot arrays, sequences of tones ), as well as symbolic ( e.g. 

Indo-Arabic numerals and number words) stimuli, in various modalities. 

Perhaps the most famous study of numerical skills outside the subitizing range is also 

the one that is considered the starting point for the modem study of numerical 

cognition. This is Moyer and Landauer' s (1967) study, which was the first to measure 
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reaction times for a numerical comparison task. Here, participants were presented with 

pairs oflndo-Arabic numerals ranging from 1 to 9 and were asked to identify the largest 

one by pressing a switch. The most interesting finding here is that both accuracy and 

reaction time varied in relation to the numerical distance between the displayed digits: 

the more numerical distance there was, the less time it took for subjects to tell which 

was the largest number. 

For example, participants took more time to determine that 5 is larger than 4 than to 

say that 8 is larger than 1. In other words, when comparing numbers with respect to 

their size, performance increased with increasing numerical distance between two 

stimuli. This is known as the distance ejfect. Another important finding in this study 

was that reaction time was also influenced by the absolute magnitude represented by 

the integers: the smaller the numbers, the less distance was required to tell them apart. 

For example, response time was faster when comparing 2 vs 3 than when comparing 8 

vs 9, despite the same numerical distance between the stimuli in both cases. This is 

known as the size ejfect. Together, distance and size effects are considered the 

behavioral signature of the system underlying numerical abilities beyond the subitizing 

range. 

Such effects are not limited to Indo-Arabic numerals: distance and size effects also 

affect performance in comparison tasks involving number words.56 For example, in 

Dehaene's (1996) study, subjects performed a comparison to standard task, which 

requires them to determine whether stimuli are smaller or larger than a standard (in this 

study, as is often the case, the standard was 5). To determine whether symbolic format 

has an influence on behavior, subjects had to complete the task using both Indo-Arabic 

numerals and number words for the numbers 1, 4, 6, and 9. Response times and 

56 Dehaene 1996; Ischebeck 2003; Lukas et al. 2014; though see Cohen Kadosh 2009 on how language-
specific effects can modify the distance effect. 
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accuracy showed identical distance effects in both formats. 

These performance effects are also visible in many other numerical tasks and formats. 

For example, subjects are quicker to reject false answers to arithmetic problems when 

the false answers are further apart from the true answer. Thus, when asked "7 + 5 = ?", 

subjects are quicker to reject 19 than to reject 13 (Ashcraft 1992). 

Of course, most of the numerical stimuli we are exposed to in our daily lives go well 

beyond the numbers 1 to 9, so if distance and size effects are supposed to underlie 

numerical abilities beyond the subitizing range, there should be evidence of these 

effects in a much larger numerical domain. There is ample confirmation that this is the 

case. Distance effects have been found in numerical tasks using two-digit numerals, 57 

fractions (Ischebeck et al. 2009; Jacob & Nieder 2009) as well as number words for 

two-digit numbers (Macizo & Herrera 2010). 

2.2.2 Perceptual effects? 

This being said, it should be noted that there is still some controversy about the 

influence of symbol organization, shape, and size for number words and unit-decade 

compatibility effects on performance in tasks involving complex numerical symbols. 

For example, while Dehaene and colleagues found "little or no discontinuity at decade 

boundaries" (Dehaene et al. 1992) for distance effects on two-digit comparison tasks, 

as Nuerk and colleagues (2015) report, processing is slower when c.omparing two-digit 

numerals in which symbols for units and decades are inversely related ( e.g. comparing 

4 7 and 62, where the decade relation, 4 < 6, is opposite that of the units, where 7 is 

57 Hinrichs et al. 1981; Dehaene 1989; Dehaene et al. 1990; for an excellent review see Nuerk et al. 2015. 
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larger than 2). 

Early studies of two-digit numerals had minimized the importance of decade effects 

and concluded that two-digit numerals are processed by mapping the represented 

number onto an analog representation of discrete quantity (Hinrichs et al. 1981; 

Dehaene 1996). For example, Dehaene concludes that "our brain apprehends a two-

digit numeral as a whole, and transforms it mentally into an internal quantity or 

magnitude." (Dehaene 2011, 64) In direct opposition to this interpretation, Nuerk and 

colleagues (2015; see also Nuerk et al. 2011) found many effects similar to decade-

compatibility effects that they interpret as evidence for separate processing for decades 

and units. Such divorced processing suggests that we cannot simply extend findings 

from single-digit tasks to two-digit tasks and that we may have to amend the hypothesis 

according to which a single holistic analog representation underlies behavior in these 

tasks. 

However, despite these notational effects, distance effects for multiple-digit numerals 

are still best explained as a combination of the combined distance effects of decades 

and units (Nuerk et al. 2015). Further, considering that distance effects were observed 

in congenially blind people performing a variety of numerical tasks ( comparison, 

comparison to standard, parity judgment) using auditory symbolic stimuli for numbers 

1-9 (Szucs & Csépe 2005) and for two-digit numbers (Castronovo & Seron 2007; 

Castronovo & Crollen 2011), the influence of format-specific visual effects on 

performance should not be overstated. 58 

58 See Nuerk et al. 2011 for more a detailed presentation ofvarious multi-digit presentation effects. Note 
that Nuerk et al. (2015) found that language influences the effect of decade-unit compatibility, with 
overall distance still being the most important predictor of behavior for German speakers, but not English 
speakers. According to Prior et al. (2015), "the lexical representation in a language influences magnitude 
comparison even when numbers are presented in a non-linguistic format." (85), though these effects may 
be due to phonological and graphical similarities of number words in certain languages (Lukas et al. 
2014). Authors like Cohen Kadosh & Walsh (2009) and Campbell (2015) take such notation-specific 
effects as a sign that our representation of number is not abstract, as discussed below (Section 3.2) in 
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While overall distance does not account for all performance variation, it still accounts 

for much of it, which indicates that these findings do not undermine the existence of a 

format-independent representation ofnumerical magnitude displaying distance effects. 

As for number words, Macizo & Herrera (2010) found the same decade-unit 

compatibility effects in two-digit numbers presented in number word format. 

Interestingly, the same authors found facilitation effects for color naming tasks when 

objects depicted in stimuli shared phonological properties of the colors named (Macizo 

& Herrera 2014). Cohen Kadosh (2008) found that distance effects were different for 

number words presented in English and Hebrew, which Lukas and colleagues (2014) 

then showed could be explained by potential priming effects of graphical properties of 

number words: because some words share letters or morphemes, they are easier and 

faster to process than those that do not. Thus while these linguistic factors do affect 

performance, they do not negate the presence of a modality independent representation 

of discrete quantity with distance and size effects. This seems to support the existence 

of a modality-independent, shared internai representation for all extemal 

representations of numbers. 

2.2.3 Distance and size: What do these effects mean? 

Assuming we accept the data indicating that performance in numerical tasks is affected 

by numerical distance and size, the question is: why would there be any differences in 

reaction times and accuracy for numerical comparison tasks at all? Such performance 

effects in tasks involving symbolic stimuli is unexpected, given that symbols -

especially numerical symbols - are associated with distinct representations that are 

easily distinguished from each other. For example, both 5 and 9 are larger than 4. On 

relation to Dehaene's triple-code model. 
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the face of it, there doesn't appear to be any reason why it would require more time to 

determine this relation for 5 than for 9. And yet, controls requiring participants to press 

buttons to identify numerals shows that stimulus shape and identification cannot 

explain these effects, since the purely perceptual aspects of the numerals do not display 

any perceptual eues that the symbols co-vary with physical magnitudes (Buckley & 

Gilman 1974; Dehaene 1992). 

This cornes as no surprise: in terms of physical appearance, 5 is no more similar to 4 

than 9 is, and none of these symbols has a shape that poses any particular processing 

hurdles for our visual system. Thus, there appears to be no evidence that the shape of 

the numeral influences response time, which suggests that distance and size effects here 

are not based on purely perceptual effects, but rather on the content associated with the 

numerical symbols. So while such performance effects may be surprising, given the 

precise semantic distinctions between numbers, the facts speak for themselves. These 

effects have been found over and over again in a wide variety or'numerical tasks since 

Moyer and Landauer's seminal study.59 

Given the limited influence of perceptual features, the most widespread explanation for 

distance and size effects in such tasks is that numerical symbols, regardless of their 

format, recruit the same analog representation of numerical magnitude, which shares 

many of the properties that characterize representations of physical magnitudes like 
. d 1 . . 60 s1ze an ummos1ty. 

According to Moyer and Landauer, their results "strongly suggest that the process used 

in judgments of differences in magnitudes between numerals is the same as, · or 

59 E.g. Forciciai & Park 2017; Lipton & Spelke 2003; Brysbaert, 1995; Dehaene & Akhavein 1995; 
Dehaene et al. 1990. 

60 E.g. Libertus et al. 2007; Moyer & Landauer 1967; Buckley & Gilman 1974; Dehaene 1992, 
1997/2011; Gebuis et al. 2016; Lourenko 2015. 
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analogous to, the process of judgments of inequality for physical continua" (Moyer & 

Landauer 1967, 1520). The idea is that since performance effects on reaction time in 

the numerical tasks discussed above are not related to stimulus shape or other 

perceptual attributes, participants must be mobilizing an analog representation of 

numerical quantity when comparing symbol meanings. As Dehaene puts it, 

As far as physical appearance is concerned, digits 4 and 5 are no more similar 
than digits 1 and 5. Hence, the difficulty in deciding whether 4 is smaller or 
larger than 5 has nothing to do with a putative difficulty in recognizing the 
shapes of digits. Obviously, the brain does not stop at recognizing digit shapes. 
It rapidly recognizes that at the level of their quantitative meaning, digit 4 is 
indeed closer to 5 than 1 is. An analogical representation of the quantitative 
properties of Arabie numerals, which preserves the proximity relations between 
them, is hidden somewhere in Our cerebral sulci and gyri. Whenever we see a 
digit, its quantitative representation is immediately retrieved, and leads to 
greater confusion over nearby numbers. (Dehaene 1997/2011, 63) 

Since the same effects found in numerical comparison tasks are also present when 

comparing physical magnitudes, we can find out more about the representational 

system recruited in numerical tasks by looking at other systems that share its 

performance signature (i.e. distance and size effects ). 

2.2.4 The Weber ratio: a representational system with limited accuracy 

It has been known for a long time that stimulus discrimination of many continuous 

magnitudes like weight, duration, length, loudness, total surface area, brightness, and 

pitch is impossible when stimulus variation remains below certain sensory thresholds. 

The first person to systematically study sensory thresholds was Ernst Weber, whose 

pioneering work in the 1830s led him to hypothesize that the change in intensity 

required to allow perceptual discrimination is proportional to the stimulus magnitude. 

Tough Weber's finding was based on his work on the ability to tell two weights apart, 
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this fin ding was later extended and formalized by Gustav Fechner into a 

psychophysical law which he called Weber's law,61 according to which the minimum 

amount of variation required to produce a just noticeable diff erence between two 

perceptual stimuli can be expressed by a constant ratio.62 Weber ratios are used to 

describe the discriminability relations between stimuli in many sensory modalities, 

representing a variety of physical magnitudes. 

It is easy to see that distance and size effects are corollaries of Weber's law. Since the 

variation in intensity required to produce a just noticeable difference is proportional to 

stimulus intensity, smaller intensities require less variation to allow discrimination. 

This means that the same perceptual variation will have more chances of being detected 

if applied to smaller stimulus intensities -'-the size effect. On the other hand, the larger 

the stimulus intensity, the bigger the difference must be in order to tell them apart, 

given that sensory thresholds are proportional to. stimulus magnitude. This is the 

distance effect. Both these effects mean that, in many perceptual discrimination tasks, 

accuracy decreases in proportion to stimulus intensity, a property known as scalar 

variability (e.g., Cordes et al. 2001; van Oeffelen & Vos 1982; Mechner 1958). 

Behavioral and neural data indicates that the underlying representation of stimulus 

magnitude in perceptual discrimination tasks is scaled non-linearly: as stimulus 

intensity increases, the representations become less distinct and there is increasing 

61 Since Fechner came up wfrh this law, it is also commonly known as the 'Weber-Fechner law', though 
it was initially labelled Weber's law by Fechner, in honor of his mentor's work. Fechner went on to 
develop the field of psychophysics, which offers descriptions of the relationships between physical 
magnitudes and the perception of such physical magnitudes. He famously developed a law expressing 
the relation between stimulus intensity and sensation intensity, where sensation intensity is a logarithmic 
fonction of stimulus intensity, which is now known as Fechner's law. See Heidelberger 2004 for more 
on Fechner; see Ross & Murray 1996 for more on Weber. 

62 This ratio can be expressed as Mii, where Af is the difference in stimulus intensity required to produce 
ajust noticeable difference,(e.g. a difference in loudness), while 1 is the intensity of the target stimulus 
( e.g. a certain decibel value). 
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overlap between these, thus making it more difficult to tell stimuli apart (Nieder & 

Miller 2003).63 

2.2.5 Modeling distance and size effects 

To account for distance and size effects in numerical abilities, two models have been 

particularly influential. One, the accumulator model (Meck & Church 1983; Gallistel 

& Gelman 1992), is an example of a mechanism that could count without words. 

Comparable to a car's odometer, the accumulator would be a cognitive structure made 

up of a mechanism that sends a constant signal, a gate that opens and closes for a fixed 

amount of time, and a recipient that holds all the signals that passed through the gate 

in a cumulative fashion. Thus, when presented with numerical stimuli, the accumulator 

would open the gate for each element of the perceived numerosity, allowing a fixed 

amount of signal to pass through for each, thus accumulating an analog representation 

of the perceived quantity. The final level would represent a quantity, though no 

counting routine was employed in the process. Here, numbers are represented by the 

continuous state of the accumulator. Each number would be an accumulated amount of 

signal having passed through the gate that corresponds with the perceived numerosity. 

W e can think of this like a small dam that lets out fixed quantities of water into a bucket: 

for each perceived element of a numerosity, the dam opens and closes, always the same 

amount of time, releasing water into the bucket. The total amount of water in the bucket 

63 Though there is disagreementon how to best formalize this compression of representations of stimulus 
magnitudes as they increase, this is a debate_ which, thankfully, lies well beyond the interests of the 
current review. What matters for us is that there is ample evidence that representations recruited in 
numerical tasks follow Weber's law, with representations of numerical magnitudes becoming 
increasingly noisy as magnitude increases, and thus that numerical representations are likely a form of 
magnitude representations with scalar variability. 
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represents the perceived quantity, though there was no counting involved. How such 

an accumulator would be implemented in a physical brain is still a completely open 

question (Dehaene 1997/2011, 19). 64 While this proposa! has gained traction, 

"considerable evidence militates against the accumulator modèl" (Carey 2009, 132). In 

particular, an accumulator would predict that larger numerosities would take more time 

to be processed, since these would take more time to fill up. So far, there is no evidence 

that this is the case. 

Another well-received metaphor for these effects is that our representation of quantities 

rests on an interna! analog continuum on which numerosities and meanings of number 

symbols are mapped. 65 Each location on this so-called 'mental number line' corresponds 

to a specific discrete quantity. Importantly, the mental number line îs not evenly split 

up. Rather, its structure is logarithmically compressed, so that the space between 1 and 

2 is the same as that between 2 and 4, which means that larger numbers will be 

represented closer together, thus making our access to these fuzzier than for small 

numbers. 

Support for the mental number line model cornes from many sources.66 One ofthese is 

what is called operational momentum, which refers to the fact that people tend to 

64 See Williamson et al. 2008, an article in which mice on speed (meth) seem to have faster internat 
clocks. The result is that, given a stimulus with numerosity of four, the rats' accelerated accumulator 
seems to allow more signal to corne in, processing the input as having a higher numerosity of 6. See also 
Dehaene 2007. 

65 Galton (1880) was the first to describe human numerical representations as being ordered on a left-
right line, while Restle (1970) was the first to explicitly tie in Moyer & Landauer's (1967) work to an 
analog line. See also Gallistel & Gelman 1992, 2000; Dehaene 2003; Cantlon et al. 2009; van Dijk et al. 
2015) . 

· 
66 E.g. Priftis et al. 2006; Kaan 2005; Longo & Lourenko 2007; Cohen Kadosh et al. 2008, with a 
response from Verguts & Van Opstal 2008. See also Cordes & Meck 2013; Rugani et al. 2015; though 
see Nufiez 2011 and Nufiez et al. 2012 who have challenged the universality of this number line and its 
logarithmic format. 
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overestimate the results of addition while underestimating the results of subtraction, 

suggesting that these tasks involve moving along a mental number line in the direction 

of the relevant operation (Knops et al. 2009, 2013). Perhaps the most striking evidence 

is what is known as the SNARC effect, or Spatial-Numerical Association ofResponse 

Codes.67 The SNARC was accidentally discovered by Dehaene and colleagues in a 

study where participants were tasked with determining whether numbers were odd or 

even using a button in each hand. Irrespective of which button was in which hand, 

responses for smaller numbers were always faster using the left button, while responses 

for larger numbers were always faster for the right hand.68 

Since the initial parity-related experiment that led to the discovery of the SNARC, it 

has become an extremely active area of research, given the opportunity it affords of 

studying the association of number and space. In many paradigms probing the SN ARC, 

magnitude information is irrelevant to task performance ( e.g. determining parity, 

physical size or color of a numerical symbol, whether a number word starts with a 

vowel or a consonant, or even the presence of a phoneme in a digit' s name ). This has 

often been interpreted as a sign that numerical symbols automatically link to numerical 

magnitude representations that are spatially arranged along a mental number line. 69 

Among the many fascinating discoveries made in relation to the SNARC, one worth 

mentioning here is that the direction of the SNARC appears to be culturally-

determined, to the extent that it follows the direction in which one leams to write, 70 

67 The original discovery is in Dehaene et al. 1993. Sin ce th en, the SN ARC has been extensively studied. 
For reviews, see Wood et al. 2008; Hubbard et al. 2005, 2009; See also Viarouge et al. 2014. 

68 Note that the SN ARC effect is related. to the size of numbers used in the experiment. Thus if an 
experiment is only using numbers from 0 to 5, five will be processed faster when using the right band. 

69 However, Cohen Kadosh & Walsh 2009 question whether automatic tasks recruit abstract 
representations on a mental number line. 

70 Dehaene 2011, 71. For more direct proof, see lto & Hatta 2004; Zebian 2005; Shaki et al. 2012, though 
see Pitt & Casasanto 2014 who claim that SN ARC direction can be modulated with finger counting. 
Gëbel et al. 2011 has a useful review of the influence of culture and finger counting on the mental 
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though task demands may also influence this direction (Gobelet al. 2011). Because the 

SNARC provides direct evidence of an association between numerical quantities and 

spatial configuration, it is often interpreted as reifying the metaphor of the mental 

number line. 

2.2.6 Non-symbolic tasks: an amodal representation of numerosity 

I just showed how we can explain the presence of distance and size effects in symbolic 

number comparison tasks by appealing to the fact that the underlying representation 

follows Weber' s law, which describes the psychophysical relation between perceptual 

representations and the stimuli that elicit them. As for non-symbolic numerical stimuli, 

the weber ratio should describe the relation between two stimuli such that we are just 

able to tell the difference between them based solely on the discrete quantity of objects 

perceived within each stimulus.71 For example, if it a subject is able to tell the 

difference between a group of 8 dots and a group of 12 dots, but not 8 vs 11, 8 vs 10, 

or 8 vs 9, then the ratio of 12:8 (3:2) predicts that, when presented with a stimulus made 

up of 30 dots, the same person will have to be exposed to a stimulus of at least 45 dots 

to tell the stimuli apart. 

One important prediction that follows from postulating an amodal representation of 

numerical magnitude underlying symbolic numerical skills is that all numerical 

comparison tasks, both symbolic and non-symbolic, should rely on this 

representational system, regardless of how the stimuli are presented. After all, if the 

underlying representation of numerical quantity is the same for both presentation 

number line. 

71 Xu & Spelke 2000; Feigenson 2007; Nieder & Miller 2003; Izard et al 2008; Feigenson et al. 2004; 
Piazza et al. 2010. 
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formats, then similar performance effects should affect both symbolic and non-

symbolic tasks, since the task requires processing numerical information in both cases, 

and our representation of numerical magnitude follows Weber' s law. Thus, even 

though we do not process symbols for numerical quantities in the same way that we 

process non-symbolic numerical stimuli (see Buckley & Gillian 1974), if their use in 

numerical tasks recruits the same underlying representation of numerical quantity, the 

same performance effects should be observed. A further prediction from the hypothesis 

according to which the same representational system underlies performance in both 

symbolic and non-symbolic numerical tasks is that this representation is abstract, in the 

sense of being amodal: given that numbers are not modality-specific, unlike colors, 

say, the system responsible for numerical behavior should also be amodal. 

As 1 discuss in this section, the general consensus is that both these predictions have 

been confirmed, over and over again, in many numerical formats and sensory 

modalities. Indeed, following Moyer and Landauer' s pioneering work and the many 

studies replicating72 their results, dozens of variations of their design have been used 

to probe the representational system underlying our numerical abilities, amassing more 

and more proof that numerical cognition is based on an analog representation of 

numerical magnitude with scalar variability. I limit my discussion to showing that 

distance and size effects have been found in visual and auditory modalities involving 

non-symbolic numerical tasks. 

In the visual domain, many experiments have detected the presence of distance and 

size effects when subjects are asked to perform numerical tasks on dot arrays. For 

example, Buckley & Gillman (1974) first replicated Moyer and Landauer's findings 

for non-symbolic stimuli by exposing participants to stimuli that were composed of 

either Indo-Arabic numerals or dot arrays, organized in either familiar, regular, or 

72 See Buckley & Gillman 1974 for early replication sources. 
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irregular patterns. Like Moyer and Landauer, they found that reaction thne was 

inversely proportional to numerical distance in both modes of presentation. Over the 

years, these distance effects have been found in tasks involving stimuli containing 

larger collections of dots.73 

The same effects are observable when participants are asked to complete a precise 

number of actions without being allowed to count. Whalen et al. (1999) adapted 

methods used in research on numerical cognition in animals and asked subjects to press 

keys a specific number of times (between 7 and 25) or to identify the number of stimuli 

in random sequences of flashes ( containing between 7 and 25 elements). By presenting 

stimuli too rapidly to allow counting, they found the same psychophysical signatures 

(i.e. distance and size effects) that had been found using the same methods in animals 

(Meck & Church 1983, discussed below). 

Barth et al. (2003) further extended and solidified the hypothesis according to which 

the underlying representation of numerical quantity is amodal by comparing 

performance in crossmodal numerical tasks with intramodal numerical tasks. They 

asked subjects to determine whether the numerosities of sequences of flashes were the 

same as those of sequences of tones, with numerosities in each modality ranging from 

10-30 items. Interestingly, performance was not significantly affected in such 

crossmodal numerical comparison tasks when compared to intramodal versions, 

suggesting that tasks in both modalities recruit the same amodal representation of 

numerical quantity. Barth and colleagues also asked subjects to determine whether 

numerosities presented in temporal format (i.e. sequences of flashes) were the same as 

73 Up to 30 dots: Libertus et al. 2007; up to 32 dots: Fornaciai et al. 2016; 10-50 dots: Barth et al. 2003; 
100-400 dots: Fornaciai & Park 2017. Interestingly, Fornaciai and Park (2017) found that when dot 
arrays contain so many items that they become too dense to allow for individuation of each stimulus, 
Weber's law no longer applies. In this high-numerosity range (e.g., 400 tightly packed dots), they claim 
that "texture-density mechanisms might drive numerosity perception when the items become too 
cluttered to be individually recognized" (Fornaciai & Park 2017, 2). 
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nmnerosities presented simultaneously in a spatial format (i.e. dot arrays). No 

performance deficits were found when comparing crossformat to intraformat 

performance, once again suggesting that a unique, amodal representation of numerical 

magnitude was recruited in these tasks, rather than modality- and format-specific 

representations. 

To sum up, the fact that performance in symbolic and non-symbolic numerical tasks 

· across sensory modalities displays the same size and distance effects observed in 

perceptual discrimination strongly suggests that symbolic and non-symbolic numerical 

stimuli recruit the same analog representation of numerical content. The 

representational system recruited in such numerical tasks shares the same 

characteristics of the systems involved in inequality judgments of continuous physical 

magnitudes like luminosity and weight - namely, it follows Weber's law. Taken 

together, then, studies showing the same performance signatures within and across 

modalities when adults are prevented from counting suggests that our numerical 

· abilities are grounded in a non-linguistic, modality-independent analog representation 

of numerical magnitude with scalar variability. This is the Approximate Number 

System. The question is: how do we acquire this representational system? Are we bom 

with it, or do we need to learn it from others? In the next two sections 1 review evidence 

for the existence of this representational system in human infants and animals, thereby 

showing that it is both innate and evolutionarily ancient. 

2.3 The approximate number system in preverbal infants 

2.3 .1 Empirical support 

We have just seen that adults rely on an abstract analog magnitude representation of 

numerical quantity when performing numerical tasks. Given that the representational 



84 

system · recruited in adults shares characteristics of perceptual magnitude 

representations, it is not unreasonable to expect to find evidence that this 

representational system, like the ones involved in representing other magnitudes, is 

innate. Studies of pre-verbal infants allow us to test this hypothesis since they can probe 

the nature of number representations be fore teaching and enculturation set in. As I show 

in this section, evidence from numerical studies in infants suggests that the ANS is 

indeed innate. 

While animal numerical abilities have been investigated in rnany species, research into 

infant numerical skills has been comparably sparse, with only few studies recently 

probing infant performance in numerical tasks outside the subitizing range. Despite the 

scarcity of research, four main sources of evidence for nurnerical abilities in infants 

(habituation, VOE, cracker choice, and manual search) all support the presence of the 

ANS in infants (Feigenson et al. 2004; Izard et al. 2008; Carey 2009). 

Fei Xu and Liz Spelke (2000) provided the first solid evidence that preverbal infants 

are equipped with analog representations of numerical quantities. They used a VOE 

habituation paradigm to determine whether infant's numerical discrimination abilities 

are limited by the magnitude ratio signatures found in adults and animais. In this study, 

6-month-old infants that were habituated to 8-dot displays dishabituated to 16-dot 

displays, while those habituated to 16-dot displays dishabituated when shown 8-dot 

displays, suggesting that they could distinguish between stimuli based on their 

numerosity outside the subitizing range. Note that infants habituated to 8 dots did not 

dishabituate to 12-dot displays, indicating that, at that age, the ANS' discriminability 

ratio is set somewhere between 1 :2 and 2:3. 

These results were then extended to larger numerosities, where 6-month-olds were 

successful at discriminating 16 vs 32 dots (Xu et al. 2003), but not 16 vs 24, again 

showing a discriminability ratio of at least 1 :2, but less than 2:3. Sensitivity to 

numerosity change detection appears to develop with age: while 6-month-olds did not 
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discriminate between 8-dot and 12-dot displays, 9- and 10-month-olds did, though they 

failed when numerosity ratio was 3 :4, or 4:5 (Xu & Arriaga 2007). 

Even newboms only a few hours old appear to have some form of numerical 

representations. In a variation of Starkey et al.'s (1990) crossmodal matching 

experiment ( described above ), Izard and colleagues (2009) familiarized newboms. to 

auditory sequences made up of specific numbers of repetitions of syllables ( e.g. 

"tututututu" or "rarararara") and then exposed them to visual displays that either 

matched or did not match the numerosity of the auditory stimuli. Neonates looked 

longer at displays with matching numbers of objects when the ratio was 1 :3 (i.e. 4 vs 

12, or 6 vs 18 stimuli), but not 1 :2, leading the authors to claim that their results 

"provide evidence for abstract numerical representations at the start of human life." 

(Izard et al. 2009, 10384). These cross-modality matching studies have been called the 

smoking gun of the ANS (Hyde & Mou 2017), given that non-numerical interpretations 

of the data in terms of perceptual confounds like total area and average size appear out 

of bounds to skeptics, since behavior here is based on representations integrating 

information from more than one modality. 

Although the characteristic precision limitations of the ANS appear to be present very 

early in human development, the system undergoes a great deal of change over the 

lifespan. While newboms require a 1 :3 ratio to detect a change in numerosity (Izard et 

al. 2009), by six months of age infants are capable of differentiating a 1 :2 ratio change, 

and by nine months they dishabituate with a 2:3 ratio change (Xu & Spelke 2000; 

Lipton & Spelke 2004), as we just saw. Behavioral data from numerical comparison 

tasks involving non-symbolic stimuli indicate that precision in numerosity 

discrimination continues to improve from three years to thirty years of age (Halberda 

& Feigenson 2008; Halberda et al. 2012).74 Studies of auditory numerical 

74 Interestingly, numerosity estimates are context sensitive: to calibrate our ability to estimate quantities, 
ail it takes is exposure to a few numerical facts. For example, Dehaene (1997/2011) claims that ifwe are 
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discrimination skills confirm that ANS acuity improves over time, since 9-month-old 

succeed - that is, dishabituate - at discriminating 12 from 8 tones, but not 8 vs 10, 

while 6 month-olds failed at both (Lipton & Spelke 2003, 2004). 

Similar ratio signatures as those found using visual stimuli were obtained involving 

auditory stimuli. Using the head turn procedure, an auditory variant of looking time 

procedures, 75 researchers habituated infants to sequences of tones and then exposed 

them to novel auditory numerosities. Controlling for non-numerical auditory eues such 

as tone duration, sequence duration, acoustic energy, and between-tone interval, they 

found that 6-month-old infants were able to discriminate 8 tones from 16, but not 8 vs 

12 and 4 vs 6 tones (Lipton & Spelke 2003, 2004), displaying the presence of a weber 

fraction between 1 :2 and 3 :4 - the same found in studies involving visual stimuli for 

this age. This provides evidence that the same magnitude ratio limits performance in 

discrimination of both auditory and visual stimuli, and thus that the same 

representational system underlies performance in both modalities. Evidence gathered 

using similar methods with stimuli consisting of events ( e.g. a puppet jumping) has 

revealed similar limitations, with 6-month-olds showing an ability to discriminate 

between 4- and 8-jump sequences, but not 4- from 6-jump sequences (Wood & Spelke 

2005). 

As I mentioned above; there is considerable evidence that the numerical representations 

shown a display of dots and told (veridically) that it contains 200 dots, this will improve our ability to 
estimate quantities between 10 and 400 dots. Cappelletti et al. 2013 found that improvement in ANS 
acuity following training in one modality generalizes to other modalities, again painting towards a single, 
modality-independent representation for discrete quantity. 

75 The alert reader might wonder how one does a looking-time study when the stimuli are a stream of 
tones. Basically, the sequences oftones are played from one oftwo speakers, each to a different side of 
the infant, and if the infants are interested in what is being played, they look to that speaker, continuing 
to attend to it even after the sequence is completed. Thus, looking times can reflect interest in this 
paradigm, and if infants notice a difference in the number oftones coming from a speaker, their attention 
is drawn to it. (Carey 2009, 126) 
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of the ANS are ordered in terms of numerical size on a mental number line. 

Confirmation that numerical representations are already in this format from a very early 

age cornes from the fact that infants appear to be equipped with innate ordering skills. 

After habituation to sequences of images of dot arrays presented in increasing order, 

infants dishabituated to decreasing sequences (Brannon 2002), mirroring the data 

obtained using similar methods with rhesus macaques. Also mirroring macaque skills 

(Flombaum et al. 2005, discussed below) is evidence that some interpret as a sign that 

infants represent arithmetical operations on analog magnitudes. In a follow up study to 

Wynn's (1992a) probe into the arithmetical abilities of infants, McCrink & Wynn 

(2004) exposed infants to collections of objects being placed behind a screen (in 

addition tasks) and being removed from behind a screen (in subtraction tasks) - but this 

time, using numerosities outside the subitizing range ( e.g. 5 + 5 = ? and 10 - 5 = ?). 

The key variable here was infants' looking time towards the screen when it was lowered 

to reveal possible or impossible outcomes. Infants look longer at impossible outcomes 

than possible outcomes, which can be interpreted as a sign that they can represent 

operations on numerosities (Carey 2009), even outside the subitizing range. 

2.3 .2 Continuity in development 

This brief review of infant numerical abilities shows that preverbal infants react to 

numerosity variations outside the subitizing range, and that their discrimination 

abilities display the same limitations, regardless of modality of presentation. This 

provides considerable support for the existence of an innate amodal representational 

system of numerical magnitude with scalar variability, the ANS, suggesting that 

sensitivity to quantity is part of the human conceptual repertoire right from the start. 

Given that there is evidence that the same system underlies numerical abilities in 

infants and adults, the question may be asked of whether or not this is the same system 
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that is recruited in precise arithmetical skills. I have discussed evidence showing that 

symbolic and non-symbolic stimuli recruit the same system in adults WHERE. This, 

combined with the infant data.r just summarized, builds a strong case that the numerical 

magnitude system we are born with is the one that is recruited later in life when we 

learn formal arithmetical skills. There is indeed considerable evidence that this is the 

case. 

While the details of which brain regions are involved in which systems lie at a different, 

implementation level from the one 1 am interested in, which is more at the cognitive 

level, it is worth mentioning that a wealth of neuroimaging research "consistently point 

to regions in the mid intraparietal sulcus as the source of approximate number 

representations in both adults and infants" (Piazza2010). This part of the brain displays 

increased activation when subjects perform tasks such as comparison of numerical 

magnitude and passive exposure to numerical stimuli in both symbolic and non-

syinbolic format (Piazza et al.2007; Piazza 2010). There is also considerable evidence 

that the ANS underlies more advanced arithmetical and mathematical skills. For 

example, Amalric & Dehaene (2016) found increased activation of the same language-

independent intraparietal areas recruited when subjects are asked to complete simple 

numerosity-detecting tasks in expert mathematicians exposed to sentences from many 

fields ofmathematics (geometry, analysis, topology, algebra, etc.), suggesting that the 

ANS serves as a building block for more advanced numerical skills. There is also 

evidence that individual differences in ANS acuity reflect mathematical skills, since 

performing well in estimating numerosities is a predictor of performance in 

mathematics classes, and that training in non-symbolic approximate number tasks like 

adding and comparing groups of dots improves performance in exact arithmetic.76 

76 For a review, see De Smedt et al. 2013. For more on the role of the ANS in predicting mathematical 
performance, see Hyde et al. 2014; Park & Brannon 2013; Halberda et al. 2008; Bugden & Ansari 2011, 
2016. For a dissenting view, see Leibovich et al 20XX, discussed below IN SECtION BLAH, as well as 
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In short, there is converging evidence from behavioral and neurological studies that the 

ANS is involved in the development of advanced numerical skills, and that it is active 

from a very young age. Having briefly mentioned evidence for ontogenetic continuity 

of the role of the ANS in human numerical skills, I now review evidence for 

phylogenetic continuity by looking at a few studies showing the existence of analogue 

representation of discrete quantity in the animal kingdom. 

2.4 Numerical skills in animals? 

Studying animal cognition can yield important insight into the origins of our conceptual 

repertoire. For example, animal cognition research can help determine which cognitive 

abilities are evolutionarily shared and which are the products of culture. When people 

talk about possible arithmetical abilities in animals, the infamous case of clever Hans, 

a horse who was mistakenly thought to express correct addition results by tapping his 

hoof the appropriate number of times, never fails to corne up. It serves as a cautionary 

tale in the literature on animal numeracy, waming researchers not to anthropomorphize 

the behavior of animals despite apparent homologies with human behavior, and to 

make sure that competing interpretations must be ruled out in order to allow us to 

attribute numerical abilities to animals. Despite this historical blunder, research into 

possible animal numerical skills has flourished, accumulating data on a wide variety of 

cognitive tasks in an even wider variety of organisms. 

In the domain of numerical cognition, the number of studies that have found behavior 

indicating that animal are equipped with innate systems that allow them to react to 

variations in discrete quantities in their environment has grown to the point where 

the commentary by Inglis et al. 2017. 
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numerical cognition is now one of the most studied higher cognitive fonctions in 

animals (De Cruz 2016:1).77 This should not corne as a surprise, since representing 

quantities of objects in their environment helps animals survive, say, by allowing 

animals to keep track of the number of predators (or prey) they are running from (or 

to ). Recently, techniques used in the study of infant cognition ( e.g. looking time 

procedure, habituation, VOE, and search tasks) have been applied to the study of 

animal cognition and this has yielded strong evidence that animals have rudimentary 

representations of quantity that display the same limitations as the systems found in 

human adults and infants. In this section 1 review some representative experiments, in 

in order to determine to which extent looking into our species' phylogenetic history 

can shed some light on the origins of our numerical abilities. To anticipate: 1 will show 

that the ANS is evolutionarily ancient. 

Given that rodents are by far the most experimentally studied animals, it is not 

surprising to learn that one of the most important findings in the study of numerical 

abilities in animals came from observing rat behavior. While Porter (1904) and Koehler 

(1951) both conducted experiments geared at testing the numerical abilities ofbirds in 

relatively controlled environments, Mechiier's (1958) experiments with rats were the 

first to probe animal numerical abilities in a proper laboratory setting. Here, rats were 

starved and put into confined spaces containing two levers. While lever B could release 

food when pressed, it would only release its treasure if lever A had been pressed a 

specific number of times. After trial and error learning, rat behavior eventually settled 

on pressing on lever A the required nurnber of times before pressing on lever B, 

regardless of whether the, number of required presses on lever A was 4, 8, 12, or 16. 

However, it is important to note that rats do not always settle on pressing the lever 

77 As testament to the incredible body of data amassed surrounding numerical abilities in animais, Agrillo 
(2015) catalogs a whopping 19 species offish whose ability to discriminate discrete quantity has been 
experimentally studied. · 
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exactly the right number of titnes. Rather, the accuracy of their pressing behavior 

diminishes as the cardinality of the number of required presses increases. In other 

words, rat behavior suggests they can respond to numerical information, but only 

approximately, since the range of number of presses associated with a target number -

i.e. the incorrect number of presses for a target number - expands as the target number 

increases. For example, if the target number is four, rats can press the lever between 3 

and 7 times, but if the target number is 16, then can press it anywhere from 12 to 24 

times - clear signs of scalar variability, a telltale signature of the ANS. 

Of course, when interpreting behavioral data from subjects that cannot report on the 

causes of their behavior, it is important to take into consideration competing 

explanations for behavior. In particular, when studying numerical abilities in animals 

and preverbal infants, it is crucial that experimenters try to control for the influence of 

non-numerical magnitude information on behavior.78 For example, could we explain 

rat behavior here by appealing to the duration of the pressing behavior, assuming that 

the pressing rate is constant? 

One way to control for such non-numerical magnitudes in this case is to vary the degree 

to which rats are deprived of water: the thirstier the rat, the faster it will press on the 

· levers. Therefore, if the rat is responding to duration instead of numerosity, it would 

end up pressing more times on the lever if it was hungrier. Mechner & Guevrekian 

(1962) showed that such variations in starvation did affect the rate at which levers were 

pressed - but not the number of presses. This suggests that the rats are responding to 

numerical information in their environment. Rats often pressed the lever one more 

time than required. This can ·be explained by the fact that if the rat stopped pressing 

before the target value, no food would corne out, so it was more prudent to add an extra 

78 Unfortunately, as 1 discuss below in section 2.5, there is a sense in which it is theoretically impossible 
to control for non-numerical confounds in numerical tasks, since number naturally co-varies with at least 
one ofthese, no matter how many controls are applied. 
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press and make sure they didn't under-count. However, if the rat presses too often, it 

wastes energy getting the food. Thus, the rats had good motivation to keep track of 

numerical information. 

Meck and Church' s (1983) study further tested whether rats were responding to 

temporal or numerical eues by training them to respond to sequences of two or eight 

tones in which number and duration were confounded, and subsequently varying the 

duration or the numerosity of these sequences. If rats were responding to temporal 

stimuli they would change the number of presses when duration was varied, while if 

they are responding to numerical stimuli they would change duration if the required 

number of presses were varied. Results of these experiments show that rats can 

generalize to both duration and discrete quantity, since they responded to variation in 

number when duration was kept constant, and they reacted to duration when number 

of tones was kept constant. Here too, rat behavior displayed scalar variability, 

confirming data obtained from Platt & Johnson (1971), who used slightly different 

methods and showed that rat responses displayed scalar variability for target numbers 

up to 24. 

Of course, although it is difficult to ignore the evidence that rats represent numerosities, 

this ability does not guarantee mastery of an abstract concept of approximate quantity. 

To test this, Church & Meck (1984) used the same lever-pressing paradigm described 

above, but with a multimodal twist. Here, rats were first trained to press lever A if they 

heard two tones, and lever B if they heard four. After this auditory training, the same 

training method was applied, but this time with visual stimuli. After separate training 

in both modalities, the rats were exposed to novel stimuli in which both auditory and 

visual stimuli were mixed. The rats were immediately able to generalize their training 

to respond to stimuli with the same numerosity as the single-modality stimuli ( e.g. two 

tones and two flashes). A few years later, Capaldi & Miller (1988) also obtained results 

that suggest that rats have amodal representations of discrete quantity, since they can 
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keep track of total amounts of food received, even if that food takes different forms 

( e.g. 2 raisins, 2 corn). This data suggests that the system in charge of detecting 

numerosities can process information from many modalities to form one abstract, 

amodal representation of discrete quantity. 

Cross-matching paradigms similar to the ones mentioned above in the infant section 

were applied to monkeys, obtaining similar results confirming the existence of a 

modality-independent representation of discrete quantity (Jordan et al. 2008). Here, 

monkeys were exposed to sequences of sounds on some trials, while on other trials they 

saw sequences of squares. These sequentially presented stimuli were followed by" a 

screen in which two stimuli were displayed sicle by sicle, one containing a number of 

objects that matched the number of sequentially presented stimuli, another with a 

different number of objects. Monkeys had to press on the matching number across 

presentation format and modality to get a treat. Their performance was above chance, 

and they could generalize it to novel numbers of stimuli. Since these animais can match 

auditory numerosities to visual ones, it strongly hints to an amodal representation of 

numerosity with the same precision limitations found in humans. 

In another seminal study, Brannon & Terrace (1998) trained rhesus macaques to 

respond to visual stimuli based on the number of items ( e.g. dots, animal shapes, 

geometrical shapes) on a display. Researchers varied the size, shape, and color of the 

stimuli in order to control for non-numerical confounds (see figure 2.1). In the first 

phase, the monkeys were trained to order stimuli based on the number of objects 

displayed using images that contained at most four discriminable objects. Then, 

researchers tested monkey's ability to generalize their ordering behavior to displays 

containing up to eight stimuli. Success rates were well above chance, even when asked 

to order pairs of novel stimuli, suggesting that monkeys can represent numerosities and 

that they can leam ordinal rules on these numerosity representations. Brannon and 

Terrace interpret this behavior as a sign that monkeys "represent the numerosities 1 to 
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9 on an ordinal scale" (Brannon & Terrace 1998, 746). In other words, such data 

suggest that monkey's numerical representations are ordered on a mental number line, 

and thus that such animals have representations of relatiüns between numerosities. 79 

Importantly, monkey performance in these tasks also displayed scalar variability, with 

accuracy decreasing in relation to increase in numerosity. Similar distance effects were 

replicated in later experiments involving displays containing up to 30 distinct stimuli 

(Cantlon & Brannon 2006). According to Brannon and Terrace, the fact that accuracy 

of performance in these tasks is a fonction of numerical size - a sign of scalar variability 

- means that the system underlying mollkey behavior shows the same distance effects 

as those found in human adults and infants. Like most, they interpret the presence of 

such effects as a sign that numerosities are represented in an analog manner. 

Despite the fact that, for the most part, I will not focus neuroimaging data, it should be 

noted that further evidence for the existence of an analog representation of numerosity 

in animais cornes from the recent discovery of neurons tuned to individual numerosities 

in parietal lobes of monkey brains that are homologous to the horizontal Intra Parietal 

Sulcus (hIPS), which is largely considered to be the place where human brains process 

numerosity (Nieder 2005; Nieder & Dehaene 2009). This work shows that there are 

areas of animal brains that encode numerosity. Another interesting consequence to the 

discovery of single neurons tuned to specific numerosities is that we could possibly 

explain part of the increasing fuzziness of numerosity representations in terms of 

increasingly wide tuning curves for individual neurons. Given that tuning curves for 

numerosity-tuned neurons appear to widen with numerosity, we could explain part of 

the increasing imprecision of ANS representations by the fact that larger numerosities 

invoke wider activation patterns for neurons, which means that our representation of 

79 Brannon and Terrace point out that the mechanics underlying the monkey's ordering abilities is not 
yet known, but that one-to-one correspondence or counting could be candidates, depending on the 
'operational' definition of counting used. 
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larger numerosities will involve a more confused activation pattern composed of the 

activation of many overlapping numerosity-tuned neurons. 
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Figure 2.1 Variations in stimulus presentation from Brannon and Terrace (1998) 

Finally, as was the case for infants, there is also evidence that many interpret as signs 

that animais can react to arithmetical operations on analog magnitudes. For example, 

when researchers exposed Rhesus macaques to four abjects being placed behind a 

screen, followed by another four objects, looking time was longer if the screen was 

removed to reveal four abjects than when the lowered screen revealed the expected 

eight (Flombaum et al. 2005). However, as discussed above, similar results obtained in 
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infants can be reinterpreted as being caused not by variations in numerosity, but by 

changes in non-numerical magnitudes such as total surface area. For those weary of 

repeating the errors of the past and falling prey to what could be described as the Clever 

Hans effect, the same skepticism towards the methods used in infant studies can easily 

be applied to animal studies. To determine to which extent skepticism towards the 

methods used · in studying numerical abilities in infants, animais, and adults can 

undermine evidence for the existence of an approximate number system, the next 

section summarizes concerns raised by those who doubt that it is possible to eliminate 

non-numerical explanations of behavior in such studies. 

2.5 Approximate representations of numbers and analog magnitudes 

In this chapter and chapter 1, I summarized data supporting the existence of two 

separate cognitive systems that underlie numerical abilities in human adults, infants, as 

well as in animais. Even if there are many outstanding issues concerning the systems 

involved in numerical cognition - e.g. how many systems there are, the role of 

attention, as discussed above, and which system plays what part in the development of 

mathematically-viable number concepts, as discussed in chapters 3 and 4 -the received 

view in the study ofnumerical cognition relies on both the OFS and the ANS to explain 

the development of number concepts. And yet, despite major progress in this field, a 

voice of dissent has been growing. 

Given that numbers are generally considered to be as abstract and amodal as it gets, it 

is not always easy to isolate numerosity, described as the number of perceived objects, 

as the only potential cause of behavior, and it is usually not difficult to find a non-

numerical explanation of behavior in many experiments. Such methodological 



97 

skepticism has been around for a while, 80 as hinted at earlier in the discussion 

surrounding Karen Wynn's famous VOE experiment and its ability to establish 

numerical content in the ANS (section 1.4). 

However, despite the methodological headaches that go hand in hand with numerical 

cognition studies, the consensus has generally been that researchers manage to find 

ways of controlling for non-numerical confounds in their experiments, and that results 

obtained from those who fail to do so will eventually fail to be replicated. So while. 

there has been some skepticism about numerical interpretations of behavioral and 

' neuroimaging data for a long time, it has not prevented ANS-based approaches to 

numerical cognition from becoming the most widespread interpretation of the data 

(Gebuis et al. 2016; Leibovich et al.2017). 

Despite the widespread acceptance of the ANS as a legitimate explanandum of 

numerical behavior, a handful of authors have recently taken this skepticism to a higher 

level, questioning to which degree it is possible to create experimental conditions that 

can only be interpreted as evidence of the presence of innate cognitive systems with 

numerical content.81 For example, in a statement that sums up the concems flagged by 

this recent wave of ANS skepticism, Leibovich and colleagues have argued that 

the natural correlation between numerosities and continuous magnitudes makes 
it nearly impossible to study non-symbolic numerosity processing in isolation 
from continuous magnitudes, and therefore, the results of behavioral and 
imaging studies with infants, adults, and animals can be explained, at least in 
part, by relying on continuous magnitudes. (Leibovich et al. 2017, 1) 

Typically, an ANS-skeptical argument goes like this: since it is impossible to control 

80 E.g. Simon 1997, Feigenson et al. 2002 Clearfield & Mix 1999; Uller et al. 1999. 

81 E.g. Leibovich et al. 2017; Gebuis et al. 2016; Lourenko 2015; Gebuis & Reynvoet 2012a; 2012b; 
Gebuis et al. 2014; Leibovich & Ansari 2016; Leibovich & Henik 2013; Soltész & Szücs 2014. For an 
early review, see Mix & Sandhofer 2007. See also Rips et al. 2008a. 
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for non-numerical eues in explanations of behavior in non-symbolic numerical tasks, 

the evidence for the ANS is dubious, and should be abandoned in favor of a more 

general Analog Magnitude System (AMS hereafter) whose domain is not specific to 

numerosity. 

Thus, while there is no doubt that adult humans can produce estimates of the number 

of items they are paying attention to, there is controversy around the identity of the 

cognitive system responsible for this ability. Much of this controversy concems 

whether the data surveyed in the previous section are best explained by appealing to a 

system specifically tuned to detecting quantities of discrete items (the ANS), or 

whether it is more prudent to appeal to a general sense of magnitude that is capable of 

responding to numerosity variations due to the fact that number co-varies with other 

magnitudes, in which case the system would be a more general analog magnitude 

system (the AMS). 

Considering that data supporting the existence of the ANS and the OFS in infants and 

animals are based on using non-symbolic stimuli, this ANS skepticism threatens to 

undermine the enormous body of evidence supporting the ontogenetic and 

phy logenetic origins of the approximate number sense. To determine to what extent 

this criticism affects the strength of the dual-systems approach I have described above, 

in this section I sketch some of the main arguments levied against ANS-based theories. 

To simplify the discussion, I focus for the most part on a recent critical review 

representative of this new wave of revisionist skepticism (Leibovich et al. 2017).82 In 

this section I briefly review some of the reasons offered to deny that experiments 

studying our numerical abilities reveal the presence of a system dedicated to 

82 While the details of the positive proposai offered by this review differ from some of the other voices 
associated with this skeptical approach, the criticism ofmainstream numerical cognition methods offered 
here is shared by virtually all of these revisionist accounts. 
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representing quantities of discrete abjects. 

Nonplussed by the colossal progress made in the field of numerical cogni~ion under an 

ANS-based framework, Leibovich et al. (2017) advocate overthrowing the dominant 

ANS-based theory and replacing it by an Analog Magnitude System (AMS), where 

numerosities and other continuous magnitudes are processed holistically. Their 

argument mainly turns on the impossibility of controlling for every non-numerical 

magnitude in non-symbolic numerical tasks, because number necessarily co-varies 

with one of these. To support this claim, they <livide the methods used to control for 

non-numerical magnitudes in non-symbolic numerical tasks, and show that none of 

them can eliminate non-numerical interpretations of the behavior. 

The first method is to manipulate a single continuous magnitude ( e.g. by keeping it 

constant) while varying numerosity throughout the experiment. This way, since only 

numerosity varies, behavioral change should be due to numerosity alone, rather than to 

the magnitude that was kept constant. The problem with this approach is that there is 

no way to manipulate one continuous magnitude without affecting others. For example, 

in experiments that change numerosities while controlling for reaction to total surface 

area of the display by keeping it constant, numerosity variation necessarily incurs 

average size variation in objects. 

A second method is to vary many continuous magnitudes throughout the experiment, 

though for each trial only one magnitude is manipulated. The same problem applies 

here, since for each trial, participants coulq be responding to different non-numerical 

eues, so that their performance can be explained by a variety of non-numerical 

strategies throughout the experiment. 

A third method is to create congruency conditions between numerical and non-

numerical magnitudes, in a Stroop-like paradigm adapted to numerosity. The idea here 

is to see if manipulating numerosity and an associated continuous magnitude have 



100 

cumulative effects on performance. If there are no behavioral differences between 

congruent and incongruent trials, then the manipulated magnitudes do not interact with 

each other. For example, when asking participants to compare numerosity or area of 

dot arrays, congruent displays would be those where both size of dots and their 

numerosity are larger in one display than another. For example, in a study using such 

congruency manipulations (Nys & Content 2012), congruency effects were more 

marked for a size comparison task than a numerosity comparison task, which was 

interpreted by the authors as indicating that numerosity affected size comparison more 

than vice versa, and thus that numerosity is more salient in such tasks. The problem 

here, according to Leibovich et al., is that such results are difficult to replicate, and 

similar methods often support contradictory conclusions. In this case, a number of 

studies found, on the contrary, that numerosity was less salient than size (Leibovich et 

al. 2017, 5), which skeptics take as a sign of the task-dependence of many results of 

numerical cognition, thus indicating their unreliability. In short, the claim is that it is 

'virtually impossible' to control for non-numerical explanations of behavior, since 

there is always a continuous magnitude that co-varies with numerosity in non-symbolic 

numerical tasks (see figure 2.2). 

While the methodological humility advocated by many of these ANS skeptics is 

certainly warranted, especially considering the unfortunately liberal use of numerical 

terminology that permeates the study of numerical cognition, its limitations become 

apparent when confronted with stronger evidence for numerosity. For example, as 

mentioned earlier, a particularly strong line of evidence for the existence of the ANS 

is the cross-modal matching studies involving infants ( e.g. Starkey et al. 1990; Izard et 

al. 2009; F eigenson 2011; Jordan & Brannon 2006) and animais (Meck & Church 1983; 

Jordan et al. 2008). As mentioned above, in such cases, it is difficult to explain behavior 

without appealing to an abstract, amodal representation of discrete quantity, since any 

modality-specific confounds like average abject size or total surface area could not 

transfer across modalities, suggesting that amodal numerosity underlies behavior in 
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these tasks. This would seem to nullify the numerosity skeptic's weapon of choice, 

perceptual confounds. 

According to Leibovich et al., "Such evidence, however, should be taken with a grain 

of salt" (Leibovich et al. 2017, 5), since these findings have been very difficult to 

replicate, with only 2 of 6 studies managing to find evidence of cross-modal matching 

in infants. The problem here is supposed to be that since the findings are hard to 

replicate, they are worthless. And yet, while the small number of studies that managed 

to find evidence of cross-modal matching does highlight the difficulty oftesting for the 

presence of numerical representations in infants, simply negating the original finding 

because it has not been easy to replicate appears unjustified. The same authors similarly 

question the validity of these studies by appealing to perceptual limitations in infants. 

For example, they daim that in many cases (e.g. Izard et al. 2009, mentioned above), 

the fact that infants have poorly developed visual acuity means that "they are unlikely 

to be able to see objects that are placed relatively close to one another as being separate 

from one another, and they lack the ability to separate between object and background 

or between one object and another" (Leibovich et al. 2017, 6). If this is true, infants in 

cross-modal matching tasks could be reacting to MORE/LESS cross-modal matches: 

hearing more syllables, the infant expects to see more dots, and thus stares longer at 

the matching stimuli. 

However, according to a number of commentators, this is not true. For example, Hyde 

& Mou comment that "The claim that infants cannot perceptually individuate objects 

until 5 months is simply false" (Hyde & Mou 2017, 26). On the contrary, data suggest 

that while infant vision is poorly developed, it does not prevent them from 

individuating objects: "studies investigating newborns' visual perception have 

demonstrated that they are able to represent individual objects, at the same age as in 

the numerosity study" (De Hevia et al. 2017, 21). 
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Figure 2.2 Correlation between numerosity and continuous magnitudes 
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There are many other problems facing such extreme skepticism with respect to what is 

now an incredibly diversified and well-documented body of research backing up the 

existence of the ANS. For example, given that the ANS skeptic's bread and butter is to 

appeal to the fact that number co-varies with continuous magnitudes to explain 

behavior, the same method might as well be used to deny the existence of any of these 

other magnitudes as well: why would numerosity be the odd man out, instead of convex 

hull? Worse, while it may appear plausible to deny that participants react to numerosity 

in many studies, one could be forgiven for being skeptical about the motley crew of 

magnitudes that has been recruited to replace it: how plausible is it that for the same 

numerical task (e.g. comparing dot arrays with respect to their numerosity), a variety 

of continuous magnitudes are recruited, depending on which one co-varies with 

number? 

Also, given that which member of this motley crew of magnitude representations is 

recruited depends on the potential confounds with numerosity, wouldn't there be a 

system required to determine which magnitude should be recruited in each case to give 

the appearance of numerosity-based responses, and if so, wouldn' t this system basically 
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be the ANS? Last, consider that in a number of infant studies, infants are shown two 

stimuli and then allowed to reach for the one they want. Given that infants in such tasks 

are reaching using their hands to grab an individual object, it is difficult to understand 

how continuous magnitudes can underlie their behavior, given that hands do not grab 

convex hulls nor average luminosities, nor any other continuous magnitudes. Rather, 

given that hands are made to reach for things that can be grabbed in such manual search 

paradigms, there must be a discrete magnitude underlying behavior, and the only 

discrete magnitude that can account for behavior is numerosity. Thus, while it is 

important not to underestimate the potential influence of continuous magnitudes in 

numerical cognition studies, it is equally important not to overstate it, lest we only see 

the continuous forest and forget about the discrete trees. 

A detailed discussion of the problems associated with such revisionist skepticism 

would take too much space here (for an overview, the commentaries on Leibovich et 

al.' s (2017) critical review provide a representative sample ). Thankfully, there is reason 

to think that these skeptical concems have minimal impact on the main topic of interest 

here: considering that this chapter is aimed at identifying and characterizing the 

representations that underlie numerical cognition, the question of whether the system 

that allows us to represent numerosity is dedicated to numerosity alone or to both 

numerosity and continuous magnitudes is of secondary importance. Despite the 

concerns raised by ANS skeptics, the behavior of the system in charge of processing 

numerosity - in particular, its precision limitations due to the fact that it follows 

Weber's law - is not put into question, regardless of whether it takes the form of an 

ANS or an AMS. Similarly, given that my interest here is to understand how our 

developed number concepts grow out of our innate cognitive machinery, the precise 

neural instantiation of the system is of secondary importance. 

The important point is that, on its own, the system involved in numerosity processing 

cannot explain the emergence of mathematically-viable number concepts. The same 
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can be said for the system responsible for numerical skills inside the subitizing range, 

covered in the previous chapter. The question that interests me is how these limited 

systems are involved in the formation of more precise representations of numbers. On 

the issue of how limited systems like the ANS/ AMS and object files allow the 

construction of natural number concepts, the ANS and AMS approaches need not 

disagree. So while it may indeed turn out that numerosity is extracted from 

generalization on other magnitudes rather than being the output of an innate 

representational system that encodes numerosity, the important point is that there are 

systems that allow us to respond to numerosity, and that the limitations of these systems 

prevent them from giving us the whole story on where precise number concepts corne 

from. Now that we have a good idea of what these systems look like, we can take a 

look at how they can be used to construct mathematically-viable number 

representations. This is the aim of the next two chapters. 

2.6 The Gap Problem in numerical cognition 

The empirical data reviewed here and in the previous chapter established that animals, 

infants, and adult humans share some cognitive systems that allow them to represent 

quantities of discrete objects in the environment. While there no conclusive evidence 

that the OFS has any representations with numerical content, it may still underlie 

behavior based on numerical properties of stimuli via one-to-one correspondence 

between individuated object files. Importantly, its range is severely limited. On the 

other hand, the ANS' s range shows no such limitations, but the fact that its precision 

decreases in relation to increasing numerosity in conformity with Weber' s law means 

that, on its own, it does not generate representations with sufficiently precise content 

to be described as numbers. Despite their limitations, however, the evidence considered 

from behavioral and developmental studies as well as neural imagery all display the 

signatures of these systems, which suggests that they continue to operate throughout 
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our arithmetical lives and underlie our basic numerical abilities to count and perform 

basic arithmetical operations. 

Considering the severe limitations of these systems compared to the precise character 

of the objects of mathematical practice, there is a lot ofwork to do before we understand · 

how humans acquired precise representations of numbers. In particular, how these 

systems internet with each other, with other systems, and with the environment, both 

in ontogeny and phylogeny, remains unclear. While both the ANS and the OFS are 

involved in representing information about quantities of things in our environment, 

their obvious size and precision limitations suggest that a major change must occur in 

order to allow us to develop the fully-fledged number concepts used in arithmetic, 

whose precision and infinite extension cannot be accommodated by either innate 

system. Without such a major change, it is mysterious how we could even corne to 

think about the number six, say, given that neither system can explicitly represent 

precise numbers larger than four. There is thus a significant gap between the content 

generated by the neural systems we are born with, and the content we use in precise 

arithmetical thinking. 

This is what 1 will refer to as the gap problem: how do we bridge the gap between the 

limited numerical content produced by our evolutionarily ancient brains and the 

properly numerical content associated with numeration systems like Indo-Arabic or 

Roman numerals? There are many different accounts of how we managed to sharpen 

the approximate representations inherited from our evolutionary lineage. ln the next 

two chapters, 1 discuss some of the most prominent accounts ofhow we bridge the gap 

between our limited innate cognitive machinery and the number concepts we use in 

mathematical practice. 



CHAPTERIII 

DEHAENE'S NUMBER SENSE 

3 .1 Introduction 

The empirical data r~viewed in chapters one and two conclusively established that 

animais, infants, and adult humans share some cognitive systems that can represent 

collections of discrete objects in the environment. Considering the severe limitations 

of these systems and how this contrasts with the precise character of the objects of 

mathematical practice, there is a lot of explanatory work to do before we understand 

how humans acquired number concepts. In particular, how these systems internet with 

each other, with other systems, and with . the environment, both in ontogeny and 

phylogeny, for them to be recruited in arithmetical tasks, remains unclear. There are 

two main questions concerning the relation between systems like the ANS and the OFS 

and our advanced numerical abilities: what sort of cognitive architecture allows the 

processing of numerical information, and what sort of process allows this architecture 

to develop from our evolutionarily-inherited systems? There are many competing 

accounts of how we managed to sharpen the approximate representations inherited 

from our evolutionary lineage. This being said, despite the tremendous variety of such 

accounts of how numbers could corne from processes in our heads, the most pro minent 

account of the development of numerical cognition must be Stanlislas Dehaene' s 

number sense. 
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No single researcher is more associated with the field of numerical cognition than 

Dehaene, a mathematician-turned-neuroscientist. Prior to the first publication of his 

popular science book, The Number Sense (1997/2011 ), organized research into the 

cognitive roots of our mathematical skills had barely taken off, with only a few labs 

starting to exploit the then-new methods and technologies ofvarious fields of cognitive 

science to probe the neural underpinnings of numerical abilities in humans and animals 

(Dehaene 1997/2011, ix-x). Since then, numerical cognition research has grown by 

leaps and bounds, to the point where it is now an important domain of research in its 

own right. Dehaene is easily one of the most important figures in this field. His name 

almost inevitably shows up in the reference list of any philosophical work dealing with 

numerical cognition, as well as most articles dealing with the relation between our brain 

and various aspects of arithmetical practices. 

As a testament to Dehaene's lasting influence, consider the fact that his triple-code 

model of how our brain represents numbers, first explicitly formulated in 1992, is still 

considered "the currently most influential model in numerical cognition research" 

(Link et al. 2014, 1),83 more than twenty years later - centuries in the fast-developing 

field of numerical cognition. In this chapter, I summarize the main lines of Dehaene' s 

account of the historical and ontogenetic origins of numerical cognition. Along with 

Susan Carey's bootstrapping account, discussed in the next chapter, Dehaene's account 

is one of the most detailed explanations of how the systems discussed in the first 

83 Similarly, Siemann & Petermann (2018) describe the long lasting influence ofDehaene's Triple Code 
Model (which they abbreviate here as 'TCM') as follows: 

Since TCM was first outlined in the late 1990's, there has been major progress in terms of 
methodology (e.g. brain imaging), developmental studies (cross-sectional; longitudinal) as well 
as diagnostics. Therefore, some of the initial statements were elaborated on, others revised and 
some rejected. Nevertheless, the main scaffold of this multiroute model still shapes the majority 
of arithmetic theories, and findings in various fields of arithmetic research today are frequently 
integrated into the framework ofTCM. ( Siemann & Petermann 2018, 114) 

For an recent fMRI analysis of the triple-code model, see Skagenholt et al. 2018. 
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chapters are modified in order to allow the development of representations with what 

could be described as proper numerical content (in opposition to the quantity 

representations of the unadulterated ANS). Thus, Dehaene is the ideal starting place 

for a discussion ofhow natural numbers could be the product of cognitive systems like 

the ANS and the OFS. 

In the first part of this chapter, I summarize the main lines of Dehaene's model of the 

cognitive architecture responsible for our numerical abilities. I then tum to his account 

of the culturally-induced neuronal recycling that maps number words and numerals to 

representations of the ANS which he claims explains how we develop advanced 

numerical skills, before presenting Susan Carey's (2009) criticism of this mapping in 

the final sections of the chapter. 

3 .2 Modelling the cognitive architecture for number 

3 .2.1 Abstract numbers and numerical format 

The question of how the brain cornes to represent number poses a unique challenge for 

researchers, given the abstract properties of numbers and the material and fleeting 

aspect of brain activation that is often appealed to when attempting to ground abstract 

objects in material reality. As Dehaene put it, "Research in this area tends to cross the 

traditional boundaries of cognitive science" (1992, 2). Given that we can apply number 

concepts to any discrete object of thought, they look like the perfect candidates to 

support the existence of abstract, amodal representations. And yet, despite their abstract 

nature, numbers take a variety of forms in our lives: we read and write numerals and 

number words in a variety of formats, we hear names of numbers, and we see and hear 

non-symbolic numerical information ( e.g. we see a number of spoons to set the table, 

or hear beeps before the start of a race). Numbers present themselves tous in many 

forms. This includes representations of numbers in linguistic format, as is spoken and 
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written number words, in non-linguistic symbolic format, like the Indo-Arabic and 

Roman numerals, and non-symbolic format, as in the case of collections of dots or 

sounds. Despite this variety of modes of presentation, there is something common to 

the various ways in which numbers are represented in the practice of arithmetic -

namely, they are representations of numbers. 

A question that paturally surfaces when considering the variety of forms in which 

numerical information is presented to us is whether or not the various formats in which 

we represent numbers share neural resources. Of course, as Campbell (2015) remarks, 

the content of a representation need not be reflected in its cognitive implementation: 

"number and arithmetic are abstract when viewed as formal mathematical concepts, 

but does this extend to the cognitive domain?" (Campbell 2015, 140) The issue ofhow 

the brain encodes numerical stimuli has implications for the extent to · which 

representations ofnumbers can be considered to be amodal: ifthe brain were to encode 

numbers via an abstract code shared by every one of its formats, then this could count 

as support for seeing numbers as abstract84 entities. If different formats and modalities 

recroit entirely different parts of the brain, this would support seeing number as a 

patchwork of representational content. 

If the brain has a single, amodal representation of numbers, this could explain why it 

· is possible to assign a number to any discrete amount of things we can think about, 

whether it be sounds, images, touches, or any other modality. If, on the other hand, 

numbers are encoded in format-specific neural code, then we might expect to have 

84 While the notion of abstractness is important for this discussion, it is not necessary to get a detailed 
account of what it means here, given that our interests lie far from such metaphysical matters at this 
point. For present purposes, we may characterize the use of the word 'abstract' as applying to 
content/representations that is not domain-specific, that we can process identically independently of 
format or modality of presentation. See Campbell 2015 for an empirically-oriented discussion of 
abstractness in arithmetic. See also Cohen Kadosh & Walsh 2009. 
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more difficulty processing numerical information in some modalities when compared 

to others. This would be due to the fact that there would be more translation required 

to get from one format to the other, given that a hypothetical 'core' format of numerical 

representation would be more easy to access for some modalities than others. 

Consider what happens when we are presented with a multi-modal numerical task -

say, hearing someone ask us to calculate something, and writing down the answer to 

the verbal query on a piece ofpaper. For this to happen, the verbal command must be 

encoded in a specific format, and·then we must either calculate the answer or recall it 

from memory (for simpler calculations) before accessing the code responsible for 

producing written symbols. If the neural code for number is amodal, then the 

calculation will take place in the shared neural code before being translated into the 

output modality. If, on the other hand, neural code is a patchwork, then there can be 

modality- and format-specific processing that does not require an amodal middleman 

for such translation. One question that relates to this is the extent to which numerical 

processing stages are interactive or.additive: ifthey are interactive, then we can expect 

there to be a relation between the format in which a task is presented and the resources 

recruited by that task, and the total processing for the task will be a fonction of the level 

of interaction between the recruited formats or modalities. If they are additive, then 

every format and modality processes number independently of other encodings, and 

tasks that require multiple formats or modalities will recruit each in turn, with total 

processing for the task being the sum of each individual processing stage. 

Three main models85 have been proposed to describe the cognitive architecture 

underlying the processing of the various ways numerical information is presented to 

us, and the extent to which numerical processing relies on an abstract representation of 

number: Dehaene's (1992) triple-code model, McCloskey's (1992) abstract code 

85 See Cohen Kadosh & Walsh 2009 for references to less discussed models, including their own dual-
code model. 
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model, and Campbell and colleagues' (2004, 1988) Encoding Complex Hypothesis. 

Each model differs from the others in terms of the extent tO which the representations 

that underlie our responses to variations in presentational format and modality are 

abstract. To understand Dehaene's answer to how we build number representations out 

of the systems explored in chapters 1and2, it is important to familiarize ourselves with 

the main lines of his triple-code model and how it differs from the other two main 

models. Familiarizing ourselves with the triple-code model allows us to see how data 

at the implementation level constrains possible cognition-level descriptions of which 

architectures could implement numerical computations in human brains. Such models 

of cognitive architectures can then help identify what sort of leaming processes allow 

the development of numerical cognition. 

3.2.2 McCloskey's abstract code model 

McCloskey and colleagues' abstract code model could perhaps be qualified as the most 

intuitive, given that the basic idea here reflects the commonly-held view that numbers 

are abstract entities, and that this means there should be an abstract representation of 

numbers somewhere in the brain. On this model, every numerical task taps into an 

abstract number representation via a modality-specific translation process. Numerical 

inputs from different modalities and formats are converted to an abstract semantic 

representation (McCloskey& Macaruso 1995) of numerical magnitude which then 

serves as the basic form of the output, be it in the production oflndo-Arabic, verbal, or 

non-symbolic numerical representations. Notation-specific comprehension and 

production modules mediate the input and output between the symbols and the amodal 

representation of number. On this account, calculations take place in the amodal 

representation, which means that any task involving more than one format involves 

'asemantic transcoding', to use McCloskey's terms, between the two formats in the 

central abstract representation. Processes that require input from one format and output 



112 

via another must then pass via this central abstract representation of number, with the 

output being the result of an additive process of perception, translation, central 

processing, and further translation to the output modality (See figure 3 .1 ). Here, the 

fact that processing time can vary between modes of presentation of numerical 

information is interpreted as a sign that some translation and production processes take 

more time than others. 

Figure 3.1 
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Abstract Code Model (From McCloskey & Macaruso 1995) 

The main support here cornes from lesion studies that show that some arithmetical 

processes can be impaired while others spared, which suggests that no format has 

privileged access to numerical content (McCloskey & Macaruso 1995). If we recruit 

different neural resources for different tasks and these internet in additive ways, this 

can explain why lesion studies selectively impair tasks, since a lesion can occur in a 

sub-component whose processing does not affect other tasks. For a long time now, 
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lesion studies have shown that arithmetical abilities are doubly dissociated from each 

other, in that it is possible to be proficient in processing numerical information in one 

format ( say, spoken number words) while being unable to process numerical 

information in another format (say, Indo-Arabic numerals).86 There can also be intra-

format disabilities. For example, some patients display production errors in parts of 

their mental lexicon for specific quantities ( e.g. hundreds, tens, units, etc.), which 

suggests that the linguistic organization of number representations can be selectively 

impaired. Others suffer from problems with number syntax, as evidenced by certain 

aphasie patient's inability to properly code verbal numerals into their corresponding 

Indo-Arabic notation. Similar syntax- and lexicon-based errors are also observed in 

children learning number words (Dehaene 1992). 

Further support cornes from patients who are unable to produce the correct answer to 

arithmetical problems, but can nevertheless recognize the answer from a visually-

presented list, and patients with the opposite ability (i.e. can produce an answer but 

cannot recognize it) (McCloskey & Caramazza 1985). This suggests a dissociation 

between number production and comprehension abilities. Also consistent with this 

model are data described in chapters 1 and 2 which find the presence of similar size 

and distance effects in all modes of presentation of numerical stimuli, as well as the 

fact that the Space-Number-Association-Response-Code (SNARC; see section 2.2.5) 

applies to verbal and non-verbal numerical stimuli, which suggests that these effects 

are due to the presence of the same underlying representation for all formats and 

modalities. 

The main problem with this view is that there is evidence going against it. For example, 

consider the size congruity effect, according to which numerals whose physical size is 

congruent with their relative size in numerical magnitude comparison tasks will be 

86 See Dehaene 1992 for a review. See also part VI of Cohen Kadosh & Dowker 2015. 
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easier to process than when physical size and relative magnitude are incongruent. 87 

Like the SNARC, the size congruity effect is generally taken as evidence that some 

aspects of numerical representations are processed automatically, since we cannot help 

but process numerical magnitude information despite the fact that it is irrelevant to the 

task. 88 However, Ito & Hatta (2003) found that such effects are absent from Kana verbal 

scripts for numbers, but not Kanji script, which is ideographic, not verbal. Cohen 

Kadosh & Walsh (2009) interpret this as evidence that format of presentation 

influences processing and automaticity, and thus that number is not encoded in an 

abstract, amodal format. 89 Further evidence against the abstract code model is the 

evidence favoring the encoding complex model, which I summarize in the next sub-

section. 

3.2.3 Campbell's Encoding Complex Hypothesis 

In contrast with McCloskey's amodal representation ofnumber, Campbell (2016) and 

colleagues (1988, 2004) have proposed the encoding complex hypothesis, according to 

which numerical stimuli activate a network composed of many different format- and 

modality-specific encodings. Here, there is no central representation common to all 

87 This effect is present in stroop-like conflict paradigms in which the physical size ofnumerals is varied 
as subjects perform tasks on these. For example, subjects can be asked to report on the comparative 
physical size of numerals and to ignore th_e magnitude they represent, or vice versa. Symbol size can be 
congruent with its relative size, as in (5 2 ), neutral, or incongruent, as in (5 2 ). 

88 Adopting a definition of automaticity from Tselgov et al. 1996, Cohen Kadosh & Walsh (2009) 
describe a process as automatic "if it does not need monitoring to be executed" (317). See also Macleod 
& Dunbar 1989, who propose a continuum of automaticity. 

89 See Cohen Kadosh & Walsh 2009 for more detailed criticism based on automatic processing of 
numerals, as seen in size congruity paradigms. Myers & Szücz (2015) showed that reaction time for 
some calculation tasks varies depending on format of presentation. See also Campbell 2015 for evidence 
against interpreting differences in processing times between lndo-Arabic numerals and number words 
as being attributable purely to modality-specific translation differences, as McCloskey proposes. 
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formats of presentation of number. Rather, each format is represented with its own 

specific code and interacts with other codes directly (see Figure 3.2). Numerical 

representations here are not amodal, but multi-modal. Because there is no central 

representation of number on this model, each task will recruit relevant and irrelevant 

neuronal resources, given that any encoding is part of an intertwined complex of 

format-specific encodings that cannot be completely dissociated from one another. 

Different presentation formats display differences in performances. For example, 

comparing the relative size of numbers presented in verbal format is slower than in 

symbolic format (Ischebeck 2003), while calculation with number words can be up to 

30% slower than with Indo-Arabic numerals (Campbell 2015). Such effects of 

notational differences in simple arithmetic tasks (e.g. 4 + 5 vs "four plus five") are one 

reason behind Campbell's modality-dependent account of numerical cognition, 

although, as mentioned above, the abstract code model can account for such eff ects by 

appealing to format-specific differences in translation processes. 

Figure 3.2 
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90 Note that in this schema, "Darker arrows correspond to greater encoding-retrieval integration, which 
means more automaticity and a stronger capacity to coordinate task-specific processing associated with 
each code." (Campbell 2016, 144) 
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Perhaps stronger support cornes from the fact that numerical tasks often recruit more 

than one format automatically, despite the irrelevance of the information contained in 

the secondary format. Evidence for this cornes from the above-mentioned cases of size 

congruity effect as well as apparent interaction-based errors in calculations. For 

example, it takes more time to say that 6 + 4 = 24 is false than 6 + 5 = ·15, since the 

first result would be true if it were a multiplication task, which suggests that the 

multiplication result was recruited involuntarily. This automatic and involuntary 

retrieval of irrelevant information is iriterpreted as evidence that there is interaction 

between the different resources responsible for processing format-specific numerical · 

content: "In the encoding-complex view, communication between representational 

systems often involves interactive, rather than strictly additive processes" (Campbell 

2015, 144). This goes against the abstract-code model, which predicts additive 

interaction between different processes that operate independently from each other. 

Preaching for his choir, Campbell writes 

The evidence runs contrary to the view that arithmetic is essentially an abstract 
process that operates independently of encoding context or response output 
conditions. Instead, the evidence points to a cognitive architecture in which 
problem encoding and calculation processes are highly interactive and where 
linguistic codes provide an important, but not exclusive medium for arithmetic. 
(Campbell 2015, 140) 

Unsurprisingly, however, this model does not fare as well with the main data 

supporting the abstract code model, including distance and size effects as well as the 

SNARC. Also unsurprisingly, there are ways of re-interpreting all this data that make 

room for the abstract code model.91 This being said, both models have support going 

for them, and the matter of how the brain encodes numerical information is not settled 

(Myers & Szücz 2015), with evidence favoring and going against the amodal and the 

multi-modal option. The purpose here is simply to illustrate the commitments of each 

91 See the commentary section on Cohen Kadosh & Walsh 2009. 
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model and what sort of data can be used to support each, in order to highlight the 

sources of Dehaene' s triple code model, to which I now turn my attention. 

3.2.4 Dehaene's triple-code model 

Building on elements of both the encoding complex hypothesis and the abstract code 

model, Dehaene's triple-code model includes both modality-specific processes and an 

abstract, amodal representation of numerical magnitude. This model relies on two main 

premises: 1) numbers can be represented in three separate neural codes, and 2) each 

numerical task has its own distinct input-output encoding. Dehaene's triple-code · 

model, as its name suggests, <livides the way in which the brain encodes number 

representations into three main categories: a visual code for Indo-Arabic symbols, an 

auditory verbal code for number words, and an analog magnitude code that contains 

what both Dehaene and McCloskey label a semantic representation of number, to 

describe the fact that this encoding processes information about the magnitude of a 

numerical representation. As in Campbell's model, each format here recruits its own 

specific code. However, as in McCloskey's model, there is a central, amodal 

representation that can be accessed by all modalities for tasks that do require 

understanding the magnitude associated with a symbol. Thus the visual code will 

process Indo-Arabic numerals (e.g. parity evaluation, symbolic calculation), the verbal 

code will process number words ( e.g. arithmetical facts stored in verbal format, such 

as addition and multiplication tables), and the analog code will process magnitude 

information required for comparison and approximate calculation, which can take input 

from many modalities and formats (see Figure 3.3). 

The reader familiar with chapter 2 will remember that the analog magnitude code is 

housed in the neural architecture of the ANS in the parietal lobes. Imaging studies are 

"consistent with the hypothesis that the hIPS codes the abstract quantity meaning of 

numbers rather than the numerical symbols themselves" (Dehaene et al. 2003, 492). 
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Surprisingly, although the ANS pro vides semantic representation of number, on 

Dehaene's model, it is not necessary to recruit this representation for all tasks. Rather, 

only those tasks that require such a semantic representation for their completion will 

involve the ANS. Purely syntactic tasks, such as calculation and retrieval of arithmetic 

facts, need not involve the ANS. 
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Figure 3.3 Dehaene's Triple-Code Model (From Dehaene 1992)92 

One advantage of this model over its alternatives is that other models focus mainly on 

calculation tasks, leaving behind comparison, estimation, and quantification tasks, 

92 Note that Dehaene changed his mind, as mentioned in chapter 1, and that he no longer takes subitizing 
to be based on the semantic representation in the ANS. 
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which recruit different, evolutionarily ancient systems. According to Dehaene, this 

means that competing models are better suited for describing the syntax, but not the 

semantics of numerical cognition, given that he, like many ( e.g. Menary 2015 and 

Dutilh Novaes 2013, discussed in chapter 6 and chapter 5, respectively) daims it is 

possible to carry on calculations without having an understanding of the meaning of 

the symbols we are manipulating. 

On Dehaene' s model, calculation recruits separate resources from arithmetical fact 

retrieval. This means that tasks involving both formats will require some form of format 

switching or re-coding. This should increase performance time, and does indeed appear 

to be the case in parity evaluation tasks when the numbers are presented in verbal 

format (Dehaene et al. 1993). 

Out of the three representational systems responsible for the encoding in Dehaene's 

model, only one is language-based. It underlies numerical tasks that are presented in 

linguistic format, such as verbal counting and accessing arithmetical facts stored in 

verbal format in memory. According to Dehaene, the system responsible for behavior 

in such tasks is not specific to numbers. For example, while retrieving facts leamed 

from memorized multiplication tables requires general memory skills involving verbal 

associations, verbal counting depends on the ability to leam lists of symbols by heart, 

which infants can also do with the alphabet, nursery rhymes, and other memorized 

sequences of symbols. W e see then that for Dehaene, language plays a part in the 

development of more advanced number concepts, with the ANS and other such systems 

serving as the underlying representation of quantity. 

According to Dehaene, a separate system is dedicated to completing tasks involving 

the symbolic representation of numbers, including Indo-Arabic numerals and other 

non-linguistic systems of numerical !iotation. This includes tasks like "multi-digit 

calculation or parity judgment which require the mastery of a dedicated positional 

notation system" (Dehaene 1992, 34). 
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Finally, for tasks like numerical comparison and approximation tasks, Dehaene 

describes the underlying representational system as being dedicated to number, in that 

it responds to information about numbers of objects in the world, and allows us to 

compare numerical magnitudes. These tasks can be performed by preverbal human 

infants and animals, which strongly counts against a linguistic origin to the associated 

abilities. As Dehaene sees it, the system that allows us to perform such tasks may 

embody "the main, and perhaps the only, 'semantic' representation of numbers." 

(Dehaene 1992, 3 5) 

If the triple-code model is right, there is a sense in which there is no such thing as a 

single, unified, amodal representation that underlies our performance in ail numeri~al 

abilities. Rather, different numerical tasks will recruit different neural assemblies: 

According to the proposed model, the ideal of a unique "number concept", 
which· motivated Piaget' s ( 1952) or Frege' s (1950) reflections, must give way 
to a fractionated set of numerical abilities, among which faculties such as 
quantification, number transcoding, calculation or approximation may be 
isolated. (Dehaene 1992, 34) 

According to Dehaene's triple-cpde model, our numerical abilities are spread into 

separate modules dedicated to processing specific format of numerical content. This 

model groups numerical tasks according to the format in which the tasks are taking 

place. 

The fact that some forms of numerical representations are encoded by modality-

specific systems means that some of our understanding of number is not purely abstract, 

since some tasks can only be completed by recruiting language and vision-based neural 

code, on this account. This being said, since this model also appeals to a modality-

independent representation of numerical magnitude to ground these components, there 

is a sense in which some numerical content is modality-independent. Note that the 

presence of an amodal encoding in this model supports an additive interpretation of the 

interaction between its components, since once the stimulus is transcoded into the 
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appropriate format, processing is format-specific and independent of other formats. 

This sets it apart from the encoding complex hypothesis. 

This section has motivated Dehaene's triple code model by contrasting it with 

competing models and highlighting its similarities and differences with each. Whether 

or not Dehaene's triple-code model is right is an empirical matter that will hopefully 

be resolved in due time. For current purposes, what is important to get from this 

discussion is how data can constrain models of the architecture behind numerical 

cognition, and what sort of components play which part in the processing of numerical 

information. The triple-code model takes into consideration considerable data and 

builds with these a patchwork of neural systems that seem to underlie our ability to 

process numerical information in symbolic format. 

While knowledge of what sort of system might be responsible for which arithmetical 

tasks is certainly an important piece of the puzzle of where our number concepts corne 

from, there is ~ important piece missing from the puzzle here: how does our brain 

manage to link up the semantic representations of the ANS with other encodings for 

numbers? After all, even if the triple-code model is the right one, this fact alone does 

not tell us how the ANS or the OFS are modified or associated with non-semantic 

encodings of the triple code model. To answer this question, I turn now to Dehaene & 

Cohen's neuronal recycling hypothesis. 

3.3 Neuronal Recycling 

3 .3 .1 Introduction to neuronal recycling 

The triple code model gives us an idea of how representations of number might be 

spread out according to the tasks they are required to perform, but it doesn't tell us how 

the symbolic and linguistic codes manage to link up to the abstract code and allow us 
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to access magnitude information in a way that is precise and allows comparing and 

understanding numbers of arbitrary size. This job is left for Dehaene & Cohen' s (2007) 

neuronal recycling theory. 

For Dehaene, the answer to how we bridge the gap from the content of our evolved 

cognitive systems to the content of number concepts lies in culture: "Cultural 

inventions, such as the abacus or Arabie numerals ... transformed [the intuition of 

number] into our fully-fledged capacity for symbolic mathematics" (Dehaene 

1997/2011, x). There is a seemingly paradoxical aspect to the importance of culture in 

the development of numerical cognition. While the fact that innate capabilities like 

vision and hearing recruit the same cerebral circuitry across cultures and individuals 

can be explained by the effects of biological selecti0n throughout generations, this do es 

not apply to cultural competences, since these depend on culture-specific learning for 

their acquisition, and they are too recent to be the result of biological selection 

pressures,93 So the question here is, how can we reconcile cultural variability with 

cqrtical stability? The answer lies in cultural recycling of evolutionarily-inherited 

systems: 

To explain this paradoxical cerebral invariance of cultural maps, we propose a 
neuronal recycling hypothesis, according to which cultural inventions invade 
evolutionarily . older brain circuits and inherit many of their structural 
constraints. (Dehaene & Cohen 2007, 384) 

It could appear reasonable to expect cultural variation to be mirrored at the cortical 

level. For many, the best way to explain how culture invades parts of our brain is to 

appeal to a domain-general leaming capacity afforded by our brain's unusual plasticity. 

On this view, the cortex is something like a blank slate on which cultural 

93 For example, Dehaene & Cohen point out that writing systems first emerged around 5400 years ago 
and until very recently only a tiny portion ofhumanity was able to read. This implies that "it is logically 
impossible that human brain regions evolved specifically for the purpose of reading" (Dehaene & Cohen 
2007, 386). 
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representations get free reign to reassemble and recruit cortical structures according to 

their needs.94 However, such unbridled plasticity fails to explain why the same brain 

regions would be recruited for specific culturally learned skills like reading and 

arithmetic: if generalized plasticity were true, then there would seem to be no reason 

for specific cortical regions to house the variations on cultural invasions, instead of 

these showing up anywhere within the plastic regions of the brain. Against this general 

plasticity, Dehaene and Cohen (2007) propose that cultural variability is "tightly 

constrained by our prior evolution and brain organization" (Dehaene & Cohen 2007, 

384). To explain this apparent contradiction in biological stability and cultural 

variations, Dehaene and Cohen (2007) deploy their neuronal recycling hypothesis, 

according to which culture makes small modifications to pre-existing parts of our 

brain's architecture whose specific structures makes them ideal candidates for cultural 

representations like those required to learn reading and arithmetic. In support of this 

theory, Dehaene and Cohen (2007) present data showing that despite tremendous 

cultural variation in how members of different cultures read or practice arithmetic, 

these abilities recroit the same brain regions across cultures - i.e. the hIPS associated 

with the ANS, for arithmetic, and the left occipito-temporal junction for reading. 

The neural recycling hypothesis relies on the following three main postulates: 

1) Evolutionarily-driven cortical organization: the main structural divisions and 

anatomical connections in our brain are drawn by our evolutionary history. These 

'neliral maps' take shape early on in ontogeny and impose constraints on further 

learning. 

2) Neural niches for cultural features: culturally-transmitted abilities like reading 

and arithmetic must re-organize parts of our brains. For this to happen, these parts 

94 Menary (2015a) often expresses ideas sympathetic to such strong plasticity, as 1 discuss in chapter 6. 
Dehaene (2014) disagrees. 
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of our brain must be sufficiently plastic to allow cultural tweaking, but also already 

contain relevant structural properties required for specific culturally-inherited 

abilities. In other words, reading and arithmetic can't recruit any part of our brain, 

but must recruit on those parts whose architecture can support the development of 

additional structures required by these tasks. 

3) Continuity throughout our lifespan: despite cultural conquering of neural 

landscapes, the brain' s pre-existing structure is not completely erased, and continues 

to impose constraints on culturally leamed skills. 

The main predictions made by this model are: 

1) Limited cortical variability: cultural abilities should map to the same brain 

regions across cultures and individuals. 

2) Limited cultural variability: there should be invariants across cultures (think 

Chomsky's minimal project) whose existence can be traced to the neuronal 

constraints imposed by the cortical areas under cultural invasion. 

3) Leaming speed should reflect complexity of cultural leaming domains: the 

more distant a cultural representation is from the cortical region it is recruiting, the 

longer it should take to learn: "Prior cortical constraints should ultimately explain 

both the ease with which children acquire certain cultural tools and the specific 

difficulties that they occasionally meet" (2007:385). An example they give is that 

children have difficulty with letters that are mirror images of each other like 'p' and 

'q' because our visual system has a tendency to neglect such differences, since few 

objects in nature change identity as a result of inverting left-right visual features. 

4) Cultural reorganization can incur decrease in certain cognitive abilities: when 

culture re-wires a brain region, it can make it less efficient at the tasks it had evolved 
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for. Again, as an example, Dehaene and Cohen mention that reading can decrease 

symmetry perception. 95 

3.3.2 Support for Neuronal Recycling 

Support for the neuronal recycling model of development of numerical abilities cornes 

from brain imaging evidence at different levels of cortical architecture,96 as well as 

evidence for evolutionary precursors to culturally-recycled areas, and developmental 

data conceming the brain areas recruited by cultural practices. 

First, imaging studies show variations on cultural practices like reading and arithmetic 

are associated with cortical invariance at different levels or cortical organisation - or, 

for those levels where such resolution is not yet possible, the evidence is at least 

consistent with such invariance. 

For example, in the case of reading, the cortical region that Dehaene and Cohen identify 

as being recycled for reading is a section of the left occipito-temporal sulcus that 

appears to react preferentially to visually presented letters, eaming it the title ofVisual 

Word Form Area (VWFA). This area is recruited across subjects and cultures, despite 

the incredible variation in how reading symbols present themselves to our visual 

system (e.g. comparing the alphabet to mandarin or tagalog characters): "Word-

95 For more detail on how this model applies to the case of reading, see Dehaene 2009. Given that our 
interests lie with arithmetic, we will mostly focus our attention on how neuronal recycling can describe 
the development of numerical abilities, using the case .of reading as an illustration of the way in which 
pre-existing brain architecture structures cultural invasions. 

96 When they speak of cortical maps, Dehaene and Cohen are describing "a lawful relation between the 
surface of cortex and a relevant aspect of the representational structure" (Dehaene & Cohen 2007, 385). 
They describe three possible size scales for these maps: macromaps, which refers to the geometrical 
relations between brain areas that can span several centimeters; mesomaps, which describes structures 
within brain areas spanning at most a few centimeters ( e.g. mapping from the retina to visual areas ); and, 
more speculatively, micromaps, which are structures typically responsible for individual features ( e.g. 
line orientation in vision) organized at scales of a few hundred microns. 



126 

induced activation is found at or around the VWF A site in all good readers, regardless 

of the writing system they master" (Dehaene aµd Cohen 2007, 386).97 

Similarly, despite the ubiquity of Indo-Arabic notation across cultures, there has been 

tremendous cultural variation in how mathematics and arithmetic have been practiced 

over the centuries. For example, many south American cultures like the Mayans and 

others used complex systems of knots to represent and operate over numerical 

quantities (Ifrah 1998). 

As is the case for reading, given that arithmetic is a recent cultural invention, it may be 

surprising to leam that it reliably recruits the same brain regions across individuals and 

cultures, despite the variety of cultural practices used to process numerical quantities. 

It shouldn't corne as a surprise that comparing, adding, multiplying, and subtracting 

with Indo-Arabic numerals reliably recruits the same bilateral parietal areas, given that 

these tasks ail concem the same input format. As mentioned in section 2.3.2, this region 

appears recruited by any numerical task, irrespective of whether numerical content is 

presented symbolically or in the form of groups of objects, and irrespective of the 

modality in which this content is presented (Castelli et al., 2006; Piazza et al., 2004, 

2006, 2007; Andres et al. 2012). This same region shows increased activation in mere 

detection tasks, when compared to the visual and auditory detection of numbers, but 

not letters and colors (Eger et al., 2003), suggesting that linguistic and non-linguisitc 

symbols for numbers automatically recruit the magnitude representation of the hIPS, 

97This area does more than merely recognize general visual features like intersecting lines, as evidenced 
by the fact that its activation is increased for familiar letters when compared with letters from languages 
unknown to the subject, and from the fact that even within the subject's native tongue, this area responds 
more to orthographica:lly valid letter strings than random letter strings. Further evidence for this area's 

· specialization can be seen from the fact that it does not respond to upper versus lower case presentation 
of letter strings. Thus, there is considerable evidence that "the VWF A develops an elaborate functional 
specialization during reading acquisition - yet this acquisition seems to be remarkably constrained 
within cortical space" (Dehaene & Cohen 2007:387), despite minor cultural differences in cortical 
localization or reading areas. 
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thus confirming the existence of a central, modality-independent semantic 

representation of number, as predicted by the triple-code model. 

As an extreme illustration of the importance of this semantic representation despite 

cultural variation, there is evidence that even for those cultures where arithmetical 

practices require motor skills, the hIPS is recruited in calculation. For example, Tang 

et al. (2006) found bilateral IPS activation in both Chinese and English speakers during 

calculation and comparison tasks. This study also found cultural variation was reflected 

in other areas of the brain, with increased activation in the left premotor cortex for 

Chinese speakers and increased activation of left perisylvian areas for English 

speakers. These data suggest that mental calculation recruits different networks in 

subjects from communities whose writing involves more elaborate hand movements or 

where individuals learn to calculate using an abacus when compared to subjects from 

communities that leamed how to calculate using multiplication tables. The difference 

in activation patterns likely reflects the difference in extemal artefacts used when 

leaming how to calculate, showing that our brain has integrated extemal object 

manipulation in its circuitry. 

These data are consistent with Dehaene's triple-code model, in that the cultural 

invariance of the bilateral IPS activation reflects the central importance of the abstract 

representation of numerical quantity recruited in all tasks, while the cultural variability 

in how this representation is recruited in specific tasks like calculation is reflected in 

thè cerebral variability observed here (see Dehaene and Cohen, 1995). Sorne cultures 

rely on language and writing to leam and transmit arithmetical operations, which means 

that arithmetical facts like addition results and multiplication tables are eventually 

stored in linguistic format. In contrast, those cultures where writing is more elaborate 

or where calculation involves manipulating an abacus will recruit motor circuits and 

arithmetical operations will show increased activation in these areas (see Bamer et al. 

2016). 
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A second source of evidence for neuronal recycling is that neuroimaging has identified 

the structure of evolutionary precursors for culturally novel functions in primate brains, 

thus showing that the cultural variant recruits a specific, evolutionarily-ancient system 

due to the fonction it plays in primate behavior. Cortical invariance in the face of 

cultural variation poses the question of why a specific brain region is recruited for a 

specific cultural task. For example, why is the VWFA consistently recruited for 

reading, rather than other parts of the brain? Neuroimaging of animal brains allows us. 

to answer this question by allowing us to identify what sort of fonction a brain region 

area performs in primates. Knowing a brain regions' evolutionary history allows us to 

identify what role this fonction plays in cognition in other species, which in tum 

constrains the possible cultural recycling of its biological fonction for cultural purposes 

inhumans. 

The case of reading illustrates this aspect of neuronal recycling particularly well. There 

is evidence that an area of macaque brains is hierarchically organized to encode 

increasingly complex visual feature combinations. The same hierarchical organization 

appears present in homologous areas of the human brain, in regions that are 

preferentially activated during reading and letter-recognition tasks (Dehaene 2009). 

This suggests that the parts of primate brains that have evolved to be good at 

recognizing and processing specific shapes can be recycled for reading in human 

brains, since reading requires efficient processing of visual shapes. 

While the requirements of reading, including letter recognition, constrain which parts 

of the brain could be rewired to suit this purpose, the way our brains are organized 

before culture starts to rewire it constrain possible cultural variations. In other words 

(pun intended), it looks like written symbols have mimicked shapes characteristically 

found in nature, thus making them easier to leam and represent, given that parts of our 

brain have already evolved to specialize in recognizing and processing specific shapes. 

Cultural invasions of cortical networks only goes well when these networks were 

already used to process stimuli similar to those that make up the cultural practice. In 



129 

the case of reading, the finicky demands of the brain's evolutionarily-shaped 

architecture - including the anterior-posterior hierarchical organization of the left 

occipito-temporal sulcus, the left hemisphere's superior ability to process fine-grained 

stimuli, and the proximity of the VWF A to language centers - constrains the shapes 

letters can have across languages.98 Thus, according to Dehaene (2009) letter shapes 

are not arbitrary, but result from constraints imposed by the brains on what sort of 

shapes can be efficiently processed. This means that even though we were not bom to 

read, we were bom to process stimuli that share sufficient structural similarities with 

reading-relevant stimuli. 

Similarly, while we weren't bom to process Indo-Arabic numerals, our brains have 

evolved to process information about discrete quantities of objects in our environment. 

Evidence for the evolutionary precursors for arithmetic was presented in chapters one 

and two, where I summarized findings that strongly suggest that many animal brains 

are equipped with an ANS, and that there is evidence that it is located in homologous 

areas in primate brains (section 2.4). The fact that macaque brains show similar 

structural organization of activation for attention, eye saccades, and hand-related 

actions like grabbing to the layout found in humans by Simon et al. (2002) suggests 

that there would be precursors to numerical abilities in macaque IPS. This finding has 

been confirmed by Nieder and colleagues (e.g. Nieder & Miller 2004), who found 

individual neurons that displayed preferential activation for specific numerosities going 

beyond 30 (Nieder & Merten 2007), as mentioned in chapter 2. This offers evidence 

98 Dehaene and Cohen offer three main lines of evidence to explain that the VWF A is constrained to the 
same cortical location across cultures. First, the posterior-anterior organization of increasingly complex 
feature combinations has precursors in primate brains (Rolls 2000) and has been found in human image 
recognition using fMRI (Lerner et al., 2001). Second, its lateralized location can be due to the fact that 
this location typically represents foveal stimuli, whose informationally loaded details requires fine-
grained high-fidelity processing to capture. Third, its location in the left hemisphere could be explained 
by the fact that this offers shorter connections to language areas than a right lateralization, or by the fact 
that the left hemisphere is typically superior for fine-grained processing required for fast letter 
recognition (Kitterle and Selig, 1991 ). 
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that the functional localization ofhuman numerical abilities observed i_n cortical maps 

was constrained by pre-existing structures containing neurons that code for numerosity. 

The data showing the presence of an ANS in areas of primate brains homologous with 

the hIPS in human brains explains why the hIPS is recruited for arithmetical tasks, 

instead of other parts of the brain: given that the role of the ANS is to track quantities 

of discrete objects, it is particularly well suited for numerical cognition, which involves 

a more precise treatment of precise quantities. As 1 discuss in more detail in chapter 6, 

those cultural practices that mark a better fit with the ANS will have greater chance of 

surviving, given that they require less effort to master: "the human brain is endowed 

with an innate mechanism for apprehending numerical quantities, one that is inherited 

from our evolutionary past and that guides the acquisition of mathematics" (Dehaene 

2011, 30). 

We saw in chapter one that infants and animals are sensitive to changes in numerical 

information both inside and outside the subitizing range, as demonstrated in a variety 

of violation-of-expectancy paradigms (section 1.3 .3 ). We also saw that the same brain 

regions in the bilateral intraparietal sulci are active in numerical tasks in infants and 

adults, and that homologous brain regions in animals are recruited in numerical tasks. 

The data summarized in the first chapters showed that "results suggest that availability 

of a functional parietal quantity system is an essential pre-requisite for arithmetic 

development" (Dehaene & Cohen 2007, 392). 

Strong validation of the neuronal recycling hypothesis would corne from evidence that 

culturally-driven learning changes the structure of the hIPS in order to make 

representations of natural numbers possible for humans. Perhaps due to the resolution 

required to detect such culturally-driven changes, and the ethical and practical 

constraints on methods we canuse to probe human brains, so far, no direct evidence 

has been discovered for or against the claim that cultural practices change the ANS. 

However, some findings nevertheless do provide indirect evidence. For example, the 

intraparietal sulcus appears to be increasingly active in numerical tasks as people age 
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(Ansari and Dhital 2006; Rivera et al. 2005), which hints at increased development of 

this area in relation to advancing arithmetical training. 

Another source of evidence for recycling cornes from the previously mentioned 

correlation between arithmetical skill and ANS acuity: the sharper a child's ability to 

distinguish between stimuli based on their numerosity, the better the odds are that the 

child will perform well in arithmetic (Gilmore et al. 2007). Given that arithmetic 

requires the ability to manipulate symbols for quantities, if an individual' s ANS 

somehow performs better than average, then that person may find it easier to recruit 

the ANS for symbolic use. An extreme illustration of this can be found in children with 

dyscalculia, who often show decreased activity in parietal areas, thus making the 

relation between symbols and the ANS less efficient. 

3 .3 .3 Neuronal Recycling and mapping to the ANS 

Such evidence suggests that advanced arithmetic and its many cultural variations is 

based on a mapping of cultural practices for quantification on the quantity 

representation provided by the ANS. This explains why different cultural practices 

recruit the same brain region: this is where our representation of numerical magnitude 

lies, and this representation is needed in order for the symbols and artefacts used in 

arithmetical practices to be meaningful: 

If we did not already possess some internal nonverbal representation of the 
quantity "eight," we would probably be unable to attribute a meaning to the 
digit 8. We would then be reduced to purely formal manipulations of digital 
symbols, in exactly the same way that a computer follows an algorithm without 
ever understanding its meaning. (Dehaene 2011, 7 5) 

Thus, the hypothesis of neuronal recycling explains how the semantic representation 

of numerical magnitude housed in the hIPS gets exploited by cultural practices by a 

form of mapping from symbols and practices to magnitude representations in the hIPS: 
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"our understanding of the cultural symbols of numbers is grounded in links with 

neurons coding for specific nonsymbolic numerosities in intraparietal cortex" 

(Dehaene & Cohen 2007, 391). 

I have already mentioned the evidence for the fact that there is a mapping between the 

ANS and numerals in chapter 2, where I showed that its signature distance and size 

effects are present in numerical tasks involving numerals and other symbols for 

numbers. The fact that behavior in symbolic tasks displays scalar variability that 

follows from Weber' s law is a clear indicator that numerals are eventually mapped to 

the ANS, which grounds these symbols and gives them numerical content. 

Whether a culture uses words, non-linguistic symbols, abacuses, or tallies made from 

notches on bones to count things, such numeration practices recruit the same semantic 

representation of numerical magnitude to orient behavior. The reason why there is 

cortical stability despite cultural variation in the practice of arithmetic is that the ANS 

has evolved to track quantities, which makes it the perfect - and only - candidate to 

give meaning to the more precise quantification tasks that make up the culturally 

variable practice of arithmetic. On this model, the ANS acts as a general representation 

ofwhat quantities of discrete objects are, and cultural quantificational practices recruit 

this representation and sharpen its approximate output by providing labels for specific 

representations of quantities. 

This means that, according to Dehaene, our more advanced numerical skills require the 

use of extemal symbols for numbers: 

How did Homo sapiens alone ever move beyond approximation? The uniquely 
human ability to devise symbolic numeration systems was probably the most 
crucial factor. Certain structures of the human brain that are still far from 
understood enable us to use any arbitrary symbol, be it a spoken word, a gesture, 
or a shape on paper, as a vehicle for a mental representation. Linguistic symbols 
parse the world into discrete categories. Bence, they allow us to refer to precise 
numbers and to separate them categorically from their closest neighbors. 
Without symbols, we might not discriminate 8 from 9. (Dehaene 2011,79) 
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The basic idea here is that the fact that humans use symbols allows us to have precise 

representations of otherwise entangled stimuli. This idea, according to which moving 

beyond the limitations of our evolutionarily-inherited numerical abilities necessitates 

extemal symbols, is an almost universal posit in the numerical cognition literature. We 

will see another version of it in the next chapter, which summarizes Susan Carey's 

extemalism, as well as in other extemalist accounts presented in later chapters. Before 

getting to these other extemalist accounts, however, it is important to highlight some 

of the shortcomings of Dehaene' s neuronal recycling hypothesis and the associated 

claim that culturally-induced mapping recycles the circuitry of the ANS to allow 

advanced numerical cognition to happen. 

3.4 Problems with Dehaene's mapping 

1 have just summarized Dehaene' s triple-code model of the cognitive architecture 

underlying advanced numerical cognition and some of the reasons motivating its main 

properties. 1 also summarized the main lines of Dehaene and Cohen' s neuronal 

recycling hypothesis and how it describes the development of an understanding of what 

natural numbers are by a mapping from culturally-acquired symbols for numbers to 

representations produced by the ANS, and that this mapping re-wires the ANS and 

sharpens its representations. 

One problem with his account is that it fails to provide an explanation of how the 

mapping occurs: while we can agree that the triple-code model describes the neuronal 

architecture underlying our numerical abilities, this is essentially a description of the 

end result of a leaming process that we need to account for if we want to have an 

understanding of the acquisition of number concepts. To an extent, the neuronal 

recycling hypothesis also seems to take the existence of developed numerical content 

as a fait aceompli, in that it describes a potential change in neurological structure of the 

brain that could allow the development of numerical content, but fails to provide a 
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learning mechanism that initiates or allows this learning to take place. In other words, 

while we can agree with Dehaene that cultural practices like reading and advanced 

arithmetic rewire parts of our brain that are especially suited for these practices, this 

does not help explain how the mapping between culturally-learned symbols and the 

ANS can help learn whatnatural numbers are, given that neither the symbols nor the 

ANS embody some of the main characteristics of natural numbers, such as their 

precision and their infinitely extendable domain. 

As an illustration of the explanatory limits of Dehaene's mapping, consider Susan 

Carey' s criticism of this mapping as a potential learning device capable of explaining 

the development of natural number concepts. Carey's criticism of the mapping-as-

learning mechanism proposed by Dehaene is mainly based on two empirical challenges 

for any theory of the devdopment of natural number concepts. The first challenge 

concerns "how the child creates the initial mappings that get the process started" (Carey 

2009, 313), given data showing that this initial mapping requires a stepwise and 

lengthy learning period. The second challenge is that there is evidence that children 

learn the meaning of many number words before this mapping is complete. 

3 .4 .1 Mapping in stages 

To see what the first problem is, consider Wynn' s (1990, 1992b) experiments using the 

Give-A-Number tasks, where children are asked to give the experimenter a precise 

number of objects. These studies show that children reliably go through the same stages 

in learning the meaning ofnumber words. For English, these stages go as follows: The 

· No-Numeral-Knower stage describes when children are unable to give even one object 

when asked to. Then, between 24 and 30 months of age, they correctly give one object 

when asked to, but fail at any other number, at which point they are One-knowers. 6 to 

9 months later, they become two-knowers, where they can correctly give one object 

when asked to, or two objects when asked for two, but give random numbers of objects 
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for any number word larger than two. Another, distinct three-knower stage follows. 

Carey calls children at these stages 'subset-knowers' to highlight the fact that, for 12 · 

to 18 months, they only know how to correctly apply an initial segment of the count 

list. 

The crucial knowledge stage almost invariably occurs once children have become 

three-knowers (in some rare cases, after being four-knowers): 

around age 3 1/2 on average, English middle-class children become cardinal 
principle knowers-they work out the numerical meaning of the activity of 
counting and can now reliably produce sets with the cardinal value of any 
numeral in their count list. (Carey 2009, 298) 

Once children become Cardinal-Principle-knowers (CP-Knowers hereafter), "they 

have created a representation of some positive integers, a numerical representations 

that transcends core number representations" (Carey 2009, 302). According to Carey, 

considerable developme_ntal evidence shows that these stages occur at roughly the same 

ages and that the qualitative shift between being a subset-knower and being a CP-

knower is found in a number of different tasks that measure numerical abilities, 

suggesting within-child consistency and regular learning milestones. 

As an example of the qualitative behavioral shift between CP-knowers and subset-

knowers, consider that in Give-a-Number studies (Wynn 1990, 1992a), subset-knowers 

do not count items when asked to produce a specific number of these, whereas CP-

knowers do. When asked to count items and then identify their number, subset-knowers 

will correctly apply the counting routine to items, but fail to produce the right number 

word, while CP-knowers can both apply the labels correctly and invariably use the last 

number word named as the number of items to be counted. 99 This suggests that subset-

99 The same distinction was observed in Whats-on-this-Card studies, where children are asked to describe 
the objects shown on cards, including their number ( LeCorre et al. 2006). In other words, subset-
knowers on Give-a-number tasks are also subset-knowers on the What-On-This-Card task, despite the 
considerable differences in processing requirements between these. 
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knowers fail to understand the cardinality principle, according to which the number of 

items in a collection is labelled by the last number word used to count these. The basic 

difference is that subset-knowers' answer to 'how many?' questfons do not match the 

last number in their count list. According to Carey, this shows that "many diff erent 

tasks provide evidence for a qualitative change in understanding counting upon 

becoming a cardinal principle knower" (Carey 2009, 300), since children are subset-

knowers or CP-knowers across many different numerical tasks, and even within the 

subset-knower stages, the limitations associated with each stage are observable in both 

tasks mentioned above. 

According to Carey, there is no reason why a mapping from lists of number words to 

ANS representations like that proposed by Dehaene would go through such a 

protracted, piecemeal learning curve, since the ANS is not structured this way. For 

example, there is no singular-plural distinction in the ANS, and there appears to be no 

important distinction between the ANS representation for '1' and those for the next 

number words in a count list. This then fails to explain why children first learn the 

meaning of'one' and only much later learn the meaning of other number words. Unless 

there is an explanation for these stages of learning, the mapping-based account does 

look less appealing. 

3.4.2 Mapping after understanding 

The second empirical challenge for a mapping-based learning mechanism is that 

subset-knowers must have a partial mapping of number words to the ANS before they 

become CP-knowers, since the transition involves an induction on how the first number 

words are associated with content from the ANS, so that NEXT NUMBER WORD 

cornes to be associated with LARGER ANALOG MAGNITUDE. And yet, according 

to Carey, "Children apparently integrate numerals with analog magnitude 

representations some six months after they have learned how counting represents 
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number" (Carey 2009, 314). Thus, more than being a mere logical possibility, it looks 

like mapping number words to representations of the ANS takes place after children 

have figured out the meaning of the words in their lists of number words. 

As evidence for this daim, consider the fact that no evidence has been found that 

subset-knowers have partial mappings. Researchers have sought to find evidence that 

subset-knowers have partial mappings between counting lists and ANS representations, 

since this would show that such a mapping is involved in the graduai leaming of the 

Iheaning ofnumber words. To do this, they have tried to show that subset-knowers can 

estimate the number of objects in collections with numerosities outside the subitizing 

range, since this would preclude possible influence of natural language quantifier 

representations or parallel individuation. For example, Condry & Spelke (2008) 

showed children at different stages of subset-knowing cards displaying either four or 

eight objects, and found their answers to be at chance levels. According to Carey, this 

means that the number words had not yet been mapped to the ANS, since the ANS can 

distinguish between these quantities. Similarly, LeCorre and Carey (2007) quickly 

flashed cards displaying 1-10 images and asked children of varying subset-knowing 

levels to estimate how many were on the card and found their answers to be at 

chance.100 

According to Carey this shows there is no evidence that subset-knowers have mapped 

any numerals onto representations of the ANS, nor that they tend to use larger number 

words for larger quantities, which suggests that the understanding they have of number 

words isn't based on a mapping, given that their use of number words does not mirror 

the structure of the ANS. Even recently-christened CP-knowers appear to lack this 

mapping, as illustrated by the fact that children can use counting routines to determine 

the number of objects in a collection but still fail to use larger number words for larger 

100 See also Lipton & Spelke 2005. 
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quantities when asked to identify the number of objects on briefly flashed cards 

(LeCorre & Carey 2007). When LeCorre tested 3- to 5- year old children that were CP-

Knowers, he found that younger children (average age 4:1) did not use larger number 

words for larger numerals outside the subitizing range, but that older children (average 

age 4:6) did. 

Carey points out that the fact that we go through levels of subset-knowing one after the 

other in distinct stages before becoming CP-knowers shows that the ANS is not 

involved in the early stages of the learning process, given that the first few numbers 

whose meaning we learn are in the subitizing range, not the ANS' s range. According 

to Carey, "These data absolutely rule out the possibility that mapping numerals in the 

range of 5 to 10 to analog magnitudes plays any role in the construction of the numeral 

list representation ofnatural number." (Carey 2009,316). Rather, "Numerical meanings 

of "one," "two", "three" and "four" and nothing more underlie the construction of the 

counting principles" (Carey 2009, 317). 

Two final empirical problems that are more specific to the ANS mapping theory are 

worth mentioning: one, on this model, "the very striking discontinuity at "four" has no 

ready explanation" (Carey 2009, 318), since there is no marked division at four in the 

ANS, so that there is no reason why partial mappings would go through subset-knower 

stages rather than having mapped up to 'six' or 'ten', for example. 

Last, and perhaps more importantly. Carey points out that children's estimates of 

quantities in the subitizing range do not display scalar variability, while it does outside 

this range. This means that the ANS cannot underlie behavior here since its main 

signature does not · describe behavioral regularities in the range in which the partial 

mapping would take place. Rather, according to Carey, children's estimation abilities 

here suggest that parallel individuation explains behavior in this range. 

As Carey points out, however,. even when children become CP-knowers, their 

representations of numbers usually do not go beyond 20 (Carey 2009, 335), which 
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means that further associations from larger numerals to numerical content need to be 

built. According to Carey, this is where a mapping to the ANS becomes useful - and 

possible. This means that, regardless of whether or not we agree with Carey's 

arguments against an ANS-based · mapping for learning the meaning of the first few 

numerals, such a mapping can play a part later in the development of number concepts. 

In this chapter, we saw that while empirical support for Dehaene's triple-code model 

of numerical cognition is strong, his proposed solution to the gap problem, which is 

based on the neuronal recycling of our brain by a mapping from number words and 

symbols to the representations of the ANS, does not seem to fit well with the available 

developmental data concerning how children learn the meaning of the first few number 

words. 

This discussion of Carey's arguments against Dehaene's proposai that a mapping of 

culturally-acquired symbols onto the representations of the ANS can explain the origins 

of our understanding of natural numbers highlights an important lesson for any 

potential explanation of the origins of numerical cognition: not only should any such 

account pass the empirical tests imposed by data on subset-knowers, but it is important 

not to confuse an description of the cognitive architecture behind our numerical 

abilities for an explanation of how we manage to leam what natural numbers are. Given 

that Dehaene' s mapping seems well supported empirically, that the existence of such a 

mapping seems established beyond doubt, and that there is evidence that there is an 

understanding of what natural numbers are before this mapping - or at least, there is an 

understanding of what an important initial segment of these is - any account of the 

development of advanced numerical cognition owes us an explanation of how we corne 

to realize that the last numeral in a count list labels a precise quantity of discrete objects. 

Dehaene does not appear to have such an explanation. Carey, however, does. In the 

next chapter, I summarize the main lines of Carey's explanation of the leaming device 

she claims is responsible for our understanding of what natural numbers are. 



CHAPTERIV 

CAREY'S BOOTSTRAP 

4.1 Introduction: the problem of learning 

The question of how knowledge is acquired has puzzled philosophers since the pre-

Socratics. The problem can be framed along Fodorian lines as follows: if learning -

involves confirming hypotheses, how can we learn anything, given that in order to 

confirm a hypothesis, one must already know what the hypothesis is about? In other 

words, we can't leam what we can't represent, and we already represent what we know. 

While Socrates' reliance on reincarnation to exp Iain to Meno how the slave managed 

to recognize Pythagoras' theorem finds few adherents these days, the nativist 

explanation of the origin of our knowledge of the world is alive and well, despite the 

association of science with empiricism. 

In her 2009 magnum opus, The Origin of Concepts (TOOC hereafter), Susan Carey 

carves a nativist narrative out of developmental and animal studies to tackle the age old 

question of how leaming is possible. To show that the tools and methods of.modern 

science have allowed us to make ptogress in answering questions concerning innate 

knowledge, Carey has at her disposai the rewards of a lifetime of work dedicated to 

studying the human conceptual apparatus, which she uses to piece together a theory of 

learning that explains how it is possible for people to acquire representations whose 

content is discontinuous with the representations they are built from, as explained 
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below. To make her case, Carey weaves together scores of empirical studies into a 

coherent, philosophically compelling account of what concepts are and how we leam 

them. One of the concepts she discusses is detail is the development of the concept 

NATURAL NUMBER. 

To understand how Carey explains the development of NATURAL NUMBER, it is 

essential to understand her account of the development of the human conceptual 

apparatus. This is because Carey's account, like Dehaene's and many others, relies on 

innate representations with numerical · content to explain where natural number 

representations get their numerical content from. If we want to understand how innate 

representations can have conceptual content of the sort that could serve as the basis for 

advanced numerical cognition, Carey's core cognition framework arguably offers the 

best explanation, since it attributes a special status to representational systems like the 

ANS and the OFS in its taxonomy of cognitive systems. In this chapter, 1 walk us 

through Carey's account of the ontogenetic development ofnumerical content. Section 

4.2 sketches Carey's distinction between perception and conception, in order to set up 

her account of core cognition in section 4.3. 1 then discuss evidence for core cognition 

in humans in section 4.4 before summarizing Carey's evidence for a third 

representational system with numerical content, which Carey calls set-based 

quantification. This notion will then be used to explain how we leam through 

conceptual discontinuities (section 4.6) via Carey's account of leaming in terms of 

what she calls Quinian Bootstfapping (section 4.7). 1 close the chapter by setting up my 

origins problem and applying it to Carey's account in section 4.8. 

4.2 Perception vs conception 

Carey endorses a representational theory of mind in which "representations are states 

of the nervous system that have content, that refer to concrete or abstract entities (or 
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even fictional entities), properties, and events" (Carey 2009, 5). 101 Carey's inventory 

of the contents of our minds includes perceptual/sensory102 representations and 

conceptual representations, as usual. Less common is her inclusion of representations 

that share properties of both conceptual and perceptual representations, which are the 

representations of core cognition. To understand how core concepts differ from other 

representations, we must first understand how Carey distinguishes between concepts 

and percepts. 

On Carey's view, concepts differ from perceptual representations in two important 

ways: first, concepts figure into different computations and inferences than perceptual 

representations; second, the mechanisms that fix conceptual content differ from those 

of other types of representations. Consider perceptual representations first: these 

connect us to the outside world, our senses translating and transducing the way our 

environment interacts with our body into nervous signals that find their way to the 

brain, where they act as sensory and perceptual representations of the parts of the world 

evolution has equipped us to react to. Perceptual representations get their content from 

things in the world, while the mechanism responsible for this causal content-fixing can 

be explained by biological evolution. Representations of round things are about round 

things, because we have evolved to recognize shapes of things in the world. 

Importantly, this means that perceptual representations are largely innate, in that they 

do not require any learning to be acquired. 103 At most, they require a form oftriggering 

101 While Carey does not offer any explicit definition of what mental content is, she treats this notion as 
being equivalent to the domain of a representation, or the set of all things to which it applies. Contrast 
this with Cohen Kadosh & Walsh's definition ofrepresentation, according to which representations are 
"patterns of activation within the brain that correspond to aspects of the external environment" (Cohen 
Kadosh & Walsh 2009, 314). 

102 For the most part, Carey does not bother distinguishing between perceptual and sensory 
representations, since this distinction does not have much impact on her theory of conceptual 
development. I also adopt this practice throughout the text. 

103 It is important to realize here that for Carey, 'innate" simply means 'not learned'. What is innate need 
not be present at birth, nor does it mean that we have innate representations without our environment 
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from the environment. 

Such perceptual representatiohs are limited in their inferential role. For example, on its 

own, the representation of the color, temperature, or shape of an object does not tell us 

much, since the mere presence of a percept does not give us information about the 

identity of the object that bears that percept. In this sense, perceptual representations 

are limited to what is present to our mind at a certain moment. Further limiting their 

informational role is the fact that perceptual representations are often thought to be 

informationally encapsulated, since they are insensitive to information coming from 

other representational systems. 104 

In contrast with these perceptual representations, concepts can take part in much more 

complex and elaborate inferences. Concepts are described as being informationally 

promiscuous, in that they will take input from many different sources and participate 

in domain-general computations involving many modalities. A representation with the 

content RED can only figure into simple modality specific inferences such as NOT 

YELLOW. In contrast, upon hearing a certain sound, my concept WOLF allows me to 

infer that an animal with four legs and fur and teeth is nearby, which means that I might 

want to escape. Thus, perceptual representations have limited and impoverished 

first tokening these via the senses: "clairning that representations of red or round are innate does not 
require that the child have some mental representation of red or round in the absence of experience with 
red or round things" (Carey 2009, 12). There are many reasons to think this is true. For example, as 
Carey points out, while stereoscopic depth perception is not present at birth, it invariably develops at 
around six months of age. 

104 Jerry Fodor (1983) famously came up with a two-part distinction about mental representations based 
on their inferential role. The notion of informational encapsulation is meant to describe the fact that 
some cognitive processes are immune to input from other systems. A classic example used by Fodor is 
that of the Müller-Lyer illusion: despite knowing that the lines are of the same length, our visual system 
will still process the information the same way and thus they will continue to look like one is longer than 
the other. More central representations figure in more inferences and can thus figure into theories made 
up of complex interrelations between conceptual representations. 
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inferential roles when compared to those of concepts. 

Carey also distinguishes concepts from percepts in terms of how each type of 

representation gets their content. Unlike perceptual representations, conceptual content 

is often fixed via social learning and by involvement in inferences that often involve 

other conceptual representations with no direct link with the world outside our head. 

Thus, to understand how concepts get their content, it is not enough to look at the things 

that caused their tokenings, since the mechanisms that fix the content of concepts are 

not limited to causal-determination by external objects. Rather, Carey adopts Block's 

(1986, 1987) two-factor theory of conceptual content, where a concept's content is 

determined by its inferential role and by the objects that caused its tokening (Carey 

2009, 5). Lexical concepts like word meanings are typical exemplars of concepts in 

Carey's way of slicing up our mind. Th~ content associated with a word is determined 

by the objects to which the word applies as well as the inferences warranted by this 

content. Thus, the word 'wolf is associated with wolves, but also with socially and 

culturally acquired content that can vary from person to person, such as FEARED BY 

GRANNY. 

4.3 Core cognition vs other representational systems 

While there is nothing particularly controversial about these distinctions between 

perceptual and conceptual representations, Carey' s representational repertoire also 

includes less common conceptual representations that are the output of innate, modular 

perceptual analyzers: these are the representations of core cognition. Adapting . 

elements of Elizabeth Spelke' s work on core knowledge ( e.g. Spelke 2000), 105 Carey 

105 Carey prefers the label 'core cognition' to Spelke's 'core knowledge' because "the representations in 
core cognition need not be (and often are not) veridical and therefore need not be knowledge." (Carey 
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argues that representations like AGENT, OBJECT, and NUMBER are the output of 

distinct ·cognitive systems that share features of both perception and conception. 

Providing proof of the existence of core cognition is one TOOC's main theses. 

To demonstrate the existence of such innate, domain-specific conceptual 

representations, Carey discusses two beautiful examples taken · from the animal 

kingdom: the representation of the night sky in indigo buntings, and the imprinting 

behavior of newbom chicks. Consider first the buntings. These migratory birds are bom 

with a domain-specific learning device that allows them to compute where north is, 

thereby allowing them to fly in the right direction when seasonally-induced hormonal 

changes signal them that it is time to migrate. By creating artificial night skies in a 

planetarium, researchers showed that these birds would orient their flight patterns 

towards the center of rotation of the sky, irrespective of configuration of the stars or 

any other feature of the sky (Emlen 1975). 

It thus appears that these birds are equipped with an innate perceptual input analyzer 

that takes as input a visual representation of the night sky and from this input computes 

the location of its center of rotation - which is where the north star lies. The reason why 

this illustrates what core cognition is all about is that the representational system in 

charge of producing a representation of the center of rotation of the night sky is neither 

purely perceptual nor completely conceptual. It is perceptually encapsulated and 

domain specific, in that it takes only input from the visual domain. And yet, the content 

produced by this system is not merely perceptual, since the information about the 

azimuth of the night sky does not only present aspects of the world as they are in the 

here and now: no description of the night sky's perceptual attributes, such as the color 

of the sky, of the stars, their location and configuration, would include the content 

NORTH, or IMPORTANT LOCATION. Rather, a representation of the center of 

2009,10) 
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rotation of the night sky takes many perceptual representations and builds a more 

complex one that is not immediately perceivable, and that is available to other systems 

and modalities ( e.g. those in charge of navigation). However, given that this 

representation of north only plays a role in a limited set of further computations, it is 

not fully conceptual. 

Another good illustration of a core conceptual module is observable in the behavior of 

newbom chicks. In famous experiments, Lorenz (1937) showed that these animals are 

equipped with two innate learning devices that evolved to maximize the chick's 

chances of closely following their mother soon after birth. One such 'imprinting' 

module is tasked with detecting certain types of motion and getting close to the thing 

that moves in hen-like fashion. In case this fails, another system of perceptual input 

analyzers is charged with detecting certain shapes in the environment - those that 

somewhat resembles an adult chicken - and again tells the chick to follow the object 

that looks this way (Johnson et al. 1985). 

Both of these cases shows that there appears to be something more than mere sensation 

in the innate representational systems, and yet also something not-quite-conceptual, 

thus strongly supporting Carey's contention that core cognition is a representational 

category of its own, sharing characteristics of both perception and cognition. More 

specifically, Carey lists six features of core cognition, one of which is shared with 

conceptual representations, and five that are of a more perceptual nature. 

Much like conceptual representations, representations in core cognition have rich 

inferential roles: the output of core cognition modules are inferentially promiscuous 

and available for general processing. Also, as illustrated in the cases of the indigo 

buntings and chicks, their content cannot be expressed in purely sensorimotor or 

perceptual terms, which is limited to presenting information about the perceptual here 

and now. While chicks can react to specific shapes and behavior, the mere presence of 

a shape or specific type of motion does not provide any further information, on its own, 
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nor does the presence of stars in certain configurations in the sky. Rather, for these 

arrangements of matter to mean something important for an animal, a specific 

representational system must analyze the perceptual input and produce a representation 

with the content NORTH or HEN. This being said, core concepts do not participate in 

as rich an inferential life as explicit conceptual representations. Also, while the content 

of core cognition is mainly determined by causal interaction between perceptual input 
\ 

analyzers and the environment, the content/extension offully-fledged concepts can also 

be determined by socio-cultural processes. While core cognition is the result of innate 

domain-specific modules, regular concepts need not be. Thus, "core cognition is 

conceptual, but not fully so" (Carey 2009,15). 

Core cognition shares five main characteristics with perception. First, like perceptual 

representations, the representations of core cognition are the output of innate perceptual 

input analyzers. This means that we can explain the origin of the content of core 

cognition modules by appealing to their evolutionary origins: 

Natural selection has constructed these analyzers specifically for the purpose of 
representing certain classes of entities in the world, and this ensures that that 
there are causal connections between these real-world entities and the 
representations of core cognition. (Carey 2009, 67) 

Thus, unlike most concepts, whose origins can be traced to social leaming and complex 

inferences, the content of core cognition modules is determined by the things in the 

world we have evolved to track: 

The requisite causal connection between entities in the world and symbols in 
the head is guaranteed by natural selection. Thus, we have the beginnings of a 
theory ofhow the symbols in core cognition corne to have the content they do. 
(Carey 2009, 116) · 

The evolutionary origins of core cognition explain another characteristic of these, that 

some of our core concepts are shared with other animais. This again does not seem to 

apply to most regular concepts: presumably, no animal has the concept CAR, let alone 
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ELECTRON. 

Third, core cognition modules are in operation throughout our lives. This means that 

even though core cognition representations are leaming devices that serve as the 

foundation for more advanced concepts and theories, the content they provide is not 

replaced by more advanced concepts. This is not true for run-of-the-mill concepts, 

which can be entirely replaced by competing representations. For example, the content 

of theories about what matter is or reality are can be overtumed by scientific leaming 

or religious conversion. This is not true of core cognition. 

Fourth, core cognition modules are domain specific, in that they do not take input from 

any cognitive system or domain. For example, indigo bunting's representation of 

NORTH only takes as input visual information. This is not true for fully-fledged 

conception, since concepts can be the output and input ofmany cognitive domains. For 

example, words can be presented in visual, auditory, and tactile domains. 

Last, and more controversially, Carey claims that the core cognition representations are 

iconic, or analog, which means that their structures somehow mirror those of the things 

they represent. Carey gives the example of a picture of a dog: parts of that picture 

represent parts of the dog. This is not the case for the word 'dog', since a part of that 

word, say 'og', or 'g', does not represent a part of a dog. 106 

In sum, core cognition is somewhere between perception and full-blown conception. 

Given the enormity of the body of ethological literature, there is good reason to believe 

that innate representations with conceptual content in animais are more the norm than 

the exception. This means we can expect to find cases of innate representations with 

106 Whether this distinction between iconic and symbolic format applies to core cognition is controversial 
(see Ball 2016). Thankfully, it is not one of the most distinctive aspects of core cognition, and even if it 
were false that core cognition was iconic in format, this would not mean that there is no core cognition. 
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conceptual content in humans. This is indeed the case. In the next sub-section I show 

that the ANS and OFS meet Carey's criteria for core cognition, and thus that they can 

be considered as sharing properties of both perception and cognition. Framing these 

systems as examples of core cognition is important, since it gives an evolutionary origin 

to our numerical abilities, which in turn allows us to sidestep possible complications 

associated with explaining how children corne to construct representations with 

numerical content from purely perceptual building blocks. 

4.4 Core Cognition in humans 

Like the indigo buntings' innate ability to compute the center of rotation of the night 

sky, the newborn chick's ability to detect bird-shaped objects or bird-like motion, 

humans are also born with many innate perceptual input analyzers. Perhaps one of the 

best known examples of these are human face-detectors, which allow newborns to react 

to visual stimuli with facial characteristics. 

We can easily see why Carey sees the ANS and the OFS as examples of human core 

cognition modules. First, neither of these produces content that can be expressed in 

purely spatiotemporal vocabulary. For example, as I showed in section 1.3.4, object 

files represent objects as being spatiotemporally continuous, despite occlusion. While 

this may seem like a minor point, it does illustrate the limitations of perceptual systems: 

the fact that redness and roundness are represented at one instant and are no longer 

represented at another instant does not, on its own, say anything about the object that 

was red and round. The fact that object files individuate objects as persisting despite 

occlusion shows that their content is above and beyond purely perceptual data. As for 

the ANS, the fact that there are objects in various places in our visual field does not, 

on its own, give us any quantitative information on these objects, which means that the 

representations of the ANS cannot be expressed in purely spatiotemporal terms either. 
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As for how these systems embody the other characteristics of core cognition, both can 

produce content that can figure into more general computations, as seen by the fact that 

they can guide action (e.g. reaching for food) and that both can figure into multimodal 

representations, as illustrated by the work of Meck & Church (1983, section 2.2.5) for 

the ANS and Starkey & Cooper (1980, section 1.3.5) for the OFS. As seen earlier, both 

of these cognitive systems are present in other animal species, which suggests that they 

are evolutionarily ancient. Both also co-vary with the outside world, tracking objects, 

or quantities of discrete objects. Both also have specific domains of objects to which 

they respond: object indexing in MOT privileges spatio-temporal information, which 

means that object files themselves are informationally encapsulated, to an extent, from 

property and kind information. The OFS also fails to individuate continuous substances 

like sand and water, while the ANS fails to respond to non-numerical information. Both 

also stay active throughout our life, as seen by the fact that the subitizing range is the 

same for adults and children, and by the fact that distance and size effects are present 

even when numerical magnitude is presented symbolically. 

As for format, we saw in chapter one that the format of the ANS appears to be akin to 

a mental number line, where quantities of objects are represented as positions on this 

mental number line. If this is true, then the format of the ANS is indeed iconic, since 

the number 8, which could be represented as , does contain the number three, 

which could be represented as _. The same holds regardless of whether the actual 

implementation of this number line is in terms of increased activation by summation 

units, or increase in the number of neurons activated ( see Nieder & Merten 2007; 

Nieder & Dehaene 2009). As for the OFS, each object individuated opens a 

corresponding object file, so the format of its representations is iconic, in the sense that 

each part of the output of the OFS represents a part of the collection of objects it is 

representing. 

In sum, Carey offers compelling evidence that the OFS and ANS display the main 
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characteristics of core cognition. This is important for our purposes because the fact 

· that these systems share properties of perception, on the one band, explains the origins 

of the content they produce. w e· can therefore explain that we have representations of 

objects and of quantities by appealing to the selective pressures that could have forged 

representational systems . with such content in animals by the increased fitness it 

bestows on organisms that have such systems. The fact that core cognition modules are 

evolutionarily ancient means that the origins of some concepts can be explained by the 

selective advantage our ancestors had of tracking certain regularities in the world, as is 

the case for perceptual representations: "the extension of the symbols that articulate 

core cognition is fixed, in part, by evolutionarily underwritten causal relations between 

entities in the world and representations in the mind" (Carey 2009, 11). This means 

we do not need to appeal to a learning mechanisms that would operate over our 

experience of the world, as Piaget and other empiricists would have it, to explain the 

origins of some concepts. 

The fact that these systems share properties of cognition, however, also allows us to 

explain their general applicability and their ability to figure as inputs to cross-modal 
.. 

and general cognitive processes. This is a welcome result since it can help explain the 

generality and abstractness of numbers: if it turns out that we can explain the origins 

of natural numbers by the operation of a kind of learning mechanism over the content 

of core cognition modules, we can appeal to the generality of these modules to explain 

why it is that we can apply numbers to any discrete objects of thought, since it is one 

of the main properties of core cognition modules that they can figure in such domain 

general inferences. Since the output of core cognition modules is available for more 

general processing, they allow us to build up more complex representational content 

using core cognition as its basis. Thus, " The core cognition hypothesis provides part 

of the solution to our quest for the origin of human concepts, for it consists of systems 

of innate conceptual primitives" (Carey 2009, 69). The unique characteristics of the 

representations of core cognition - the fact that these are both innate and yet have 
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conceptual content - means that they can figure into explanations of how it is possible 

to develop conceptual content from innate perceptual analyzers. According to Carey, 

"core cognition is the developmental foundation of human conceptual understanding" 

(Carey 2009, 11). 

Before taking a look at how Carey wishes to exploit the conceptual content of core 

cognition modules to explain how we bridge the gap, however, there is another core 

cognition module that needs to be examined. This is because Carey, unlike Dehaene 

(2011), Wynn (1998) and Gallistel & Gelman (1992), does notthinkthatthe ANS plays 

a major role in bridging the gap. Rather, Carey's account of_how we bridge the gap 

relies on the OFS, as well as our ability to put objects into one-to-one correspondence, 

but also another core cognition module with quantity-related content. In the following 

section, 1 outline the reasons motivating this choice of building blocks for Carey's gap-

bridging story and introduce the properties of the extra core cognition modules that are 

present in Carey's account. This involves taking a closer look at what sort of role 

language plays in this process, if any. 

4.5 Set-Based Quantification 

It would appear natural and intuitive to presume, as many have in the past, that our 

numerical abilities derive from our language faculty. Language seems like the perfect 

candidate to explain the origins of natural numbers, given that it allows endless 

recursive production and recombination of words, and that such recursive construction 

out of previously available representations seems like it could describe how we produce 

new representations of numbers via recursive recombination of previously constructéd 

numbers. And yet, given the evidence presented in chapters 1 and 2, we can easily rule 

out any account of the development of numerical cognition that would base itself solely 

on the resources of natural language, given the central role played by language-
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independent systems like the ANS and the OFS in our numerical abilities. 

This being said, while the evidence of their presence in animals and preverbal infants 

rules out that the ANS and the OFS are based in our language faculty, Carey presents 

compelling evidence suggesting that the quantificational resources used by natural. 

language quantifiers are not the product of these core cognition modules. If this is the 

case, then there could perhaps be a role left for language after all, since our ability to 

think about natural numbers could be constructed from the quantificational resources 

of natural language, in conjunction with the ANS and OFS. However, as I describe in 

this section, Carey offers compelling evidence that natural language quantification 

itself is based on a language-independent core cognition module that processes separate 

quantity-related information from that produced by the ANS and the OFS. To 

anticipate, the reason why this matters for our gap problem is that this third system 

plays a crucial role in Carey's explanation ofhow we bridge the gap, as I detail in the 

next section. 

When speaking of natural language qualifiers, the first distinction that cornes to mind 

is the singular-plural distinction, which highlights the difference between collections 

of objects containing exactly one member and collections that contain any other non-

zero number of objects. Other natural language qualifiers like 'some', 'many' and 

'both', for example, also allow us to track quantities of objects in our environment by 

giving us information about how many objects fall under a predicate. Given the 

important role of the ANS and the OFS in our numerical abilities, a natural question 

here is whether we can explain the quantitative content of natural language quantifiers 

in terms of the output of the ANS and the OFS. Carey provides two sources of evidence 

that this is not the case: 

First, natural languages include explicit symbols for quantifiers that are not 
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represented in the parallel individuation [i.e. OFS] 107 and analog magnitude [i.e. 
ANS] quantificational systems. Second, natural languages deploy concepts for 
individuals other than spatio-temporally defined objects. (Carey 2009, 254) 

The first claim here is that neither the OFS nor the ANS can produce explicit108 

representations whose content could be synonymous with that of natural language 

quantifiers like 'some', 'all', 'none', 'many', or 'a'. This is because the OFS only 

produces explicit representations of objects, while the ANS only produces explicit 

symbols for approximate quantities, whereas natural language quantifiers produce 

explicit symbols for quantity-based selections ofmembers of collections. For example, 

107 Carey uses the label 'parallel individuation system' to describe what I am calling the Object-File 
System. Both these labels, as well as 'Object-Tracking System', are common throughout the numerical 
cognition literature. Importantly, all three labels refer to the same system discussed in chapter 1. Thus, 
Carey explicitly treats these as equivalent, writing "Parallel individuation is indeed the system of 
representation studied by Pylyshyn and others in their work on attentional indices ... and by Kahneman, 
Treisman, Luck and many others in their work on object-based attention and visual short-term memory" 
(LeCorre & Carey 2008, 656). Similarly, Shea (2011) writes that "The starting point for Carey's 
developmental transition is the parallel individuation system ('object files' for short, although the system 
can also individuate events)" (Shea 2011, 6). Carey's use of the label 'Analog Magnitude System' does 
not reflect any important discrepancy with my use of the label 'Approximate Number System', nor does 
it express a commitment to the ANS skepticism described at the end of chapter 2. 

108 In some cases, Carey seems to use the implicit/explicit distinction to refer to whether or not a 
representation is accessible to consciousness. In other cases, a neural symbol or representation is explicit 
in that it is available as input for more central processing. For example, we can see that availability for 
further processing is key to Carey's use of the term 'explicit' in Carey's description of the ANS in the 
following excerpt: 

The evidence points to a system of representation in which number is encoded in the brain by 
some neural quantity that is a linear or logarithmic function ofnumber. lfthis is right, we can say 
more about what is represented explicitly and what implicitly by this system. The symbols 
themselves are explicit. They are the output of the input analyzers and are available to central 
processors for a wide variety of computations. They can be bound to sets of quite different types 
of individuals. And various arithmetical computations are defined over them-numerical 
comparisons, addition, subtraction, and ratio computations. But much of the numerical content 
of this system of representation is implicit. There is no explicit representation of the axioms of 
arithmetic, no representation that 1-1 correspondence guarantees numerical equivalence. These 
principles are implicit in the operation of the input analyzers and in the computations defined 
over analog magnitudes, but they need not be available for the child to base any decisions on. 
(Carey 2009,135) 

For more on the implicit/explicit distinction, see Ball 2016. 
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'a' selects one member from a collection, 'some' selects at least one member from a 

collection, and 'all' selects every member of that collection. The content of these 

quantifiers is thus radically different from what is produced by the OFS and the ANS. 

First, consider the OFS. As I mentioned in section 1.4, while the OFS can support 

computations such as SAME/DIFFERENT, this is not the same as producing 

SOME/ALL/NONE, which, Carey claims, has explicitly quantitative content. Also, the 

OFS can produce symbols for specific individuals and track them, and distinguish 

between collections based on their numbers of individuals, but its range is severely 

limited. Of course, quantifiers like SOME or MANY clearly apply beyond the 

subitizing range. Further, the OFS does not produce content that explicitly 

distinguishes between one object file and many object files. Rather, its job is only to 

produce object files, not to quantify over them. What is more, the singular-plural 

distinction explicitly deals with the distinction between a singular individual and any 

other collection of objects, which suggests that it recruits different quantification 

processes from those that can be used over the representations of the OFS, which does 

not treat any collection containing more than one objectas equivalent. Carey sums it 

up thusly: "the system ofparallel individuation has no symbols for quantifiers, not even 

one versus some, and it has an upper limit of sets of 3" (Carey 2009, 256). 

As for the ANS, while this system does produce explicit representations with 

quantitative content beyond the subitizing range, this content does not seem to apply 

to the same domain as natural language quantifiers. Rather, the ANS could be described 

as producing representations with content like THIS MANY, or THAT MANY. But 

this sort of content does not explicitly distinguish between objects that have a certain 

property and those that do not, like 'some' or 'most' would, for example. Linguistic 

quantifiers draw boundaries in the numerical domain. For example, the singular-plural 

distinction draws a line between one and any number larger than one, treating any 

collection containing more than one object as equivafent instances of plurality. The 
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ANS does not treat collections with different numbers of objects as equivalent. On the 

contrary, one of its main jobs is to detect differences in quantities of objects. The 

representations produced by the ANS make information about the approximate number 

of items in an attended set available to more general processes, but the grouping of 

items that allowed this explicit representation is not itself available for more general 

processing. Thus, the ANS "fails to have to the representational force of set-based 

quantification" (Carey 2009, 255). 

Perhaps the OFS and ANS could team up to allow the quantificational distinctions 

expressed in· natural language quantifiers? There is evidence against this possibility, 

since the OFS and the ANS are not well integrated, at least at first, as demonstrated by 

animal and infant failure to distinguish between quantities that straddle the subitizing 

range. In particular, failure of infants to retrieve 4 vs 1 crackers (F eigenson & Carey, 

2005) is striking evidence that a singular-plural distinction would be used if it were 

possible to do so using the resources of the ANS and/or OFS. The fact that subjects fail 

at this task suggests that neither the OFS nor the ANS can allow infants as old as 20 

months to grasp the difference between 'one' and 'more than one'. Carey sums up the 

situation thus: 

These data are consistent with the possibility that not only are there no explicit 
symbols for plural in the two core cognition systems with numerical content 
discussed in chapter 4, neither are there computations that treat all sets greater 
than 1 as equivalent and different from one. (Carey 2009, 256). 

So, given Carey's evidence that the ANS and the OFS cannot account for the 

quantitative distinctions found in natural languages, a distinct cognitive system is 

needed to account for these. Carey calls this the set-based quantification system. It 

produces "explicit symbols with the content set and individual, plus distributive and 

collective computations over those symbols, to capture the meanings of natural 

language quantifiers, including even the singular/plural distinction" (Carey 2009, 256). 
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In English, the first set-based quantificational distinction children leam is the singular-

plural distinction, as in "are X" vs "is X", or 'are xs' vs 'is anx'(Brown 1973). English-

leaming infants corne to understand the distinction between one and many in searching 

tasks at roughly the same age as they understand the linguistic expression of this 

difference, so the question may be asked whether language is the source of this 

understanding. A good way to test this is to compare languages that mark plurals to 

varying degrees, since if language were the reason why children leam to distinguish 

between one and many, then children leaming languages that do not emphasize this 

difference as much as others could be expected to develop this understanding later in 

life. Experiments comparing children's ability to distinguish one and many objects in 

searching tasks have found that infants begin successfully performing these tasks at 

roughly the same age, even in classifier languages like Chinese and Japanese that lack 

singular determiners and do not mark the plural of verbs and nouns (Li et al. 2009). 

According to Li et al., "experiments suggest that knowledge of singular-plural 

morphology is not necessary for deploying the nonlinguistic distinction between 

singular and plural sets" (Li et al. 2009, 1644). Given that behavior manifesting the 

singular-plural distinction appears to be independent of the language one leams and 

appears to show up at around the same age, regardless of language, Carey concludes 

that "set-based quantification is part of the machinery children bring to the task of 

language leaming, eit,her as part of the language-acquisition device or as part of general 

representational capacities" (Carey 2009, 261). 

Evidence from 15-month old infants (Bamer et al. 2007) and rhesus macaques (Bamer 

et al. 2008) also suggests that, under the right circumstances, these subjects can 

distinguish between collections containing single individuals and groups of up to 5 

individuals in food choice and simple habituation tasks. In such tasks, Carey interprets 

the rèaction as based on a distinction between one and many, since they succeed at 

tasks including 1 vs 2, 1 vs 3, 1 vs 4, and 1 vs 5, but fail at 2 vs 3, 2 vs 4, and 2 vs 5. 

In short, "there is no evidence that leaming explicit linguistic representations for set-
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based quantification underlies the changes observed in English learners" (Carey 2009, 

260). Given that this behavior is present in preverbal infants and animals, this counts 

as further strong evidence that language is not required for the acquisition of set-based 

quantification. Also, none of the· quantity representations of the ANS or the OFS are 

behind this behavior, given that subjects would have succeeded at some ofthese ratios 

if one of these systems had been in charge. 

I have just reviewed Carey's evidence for the existence of a third representational 

system that supports quantity-related processing, which Carey calls set-based 

quantification. While this module may underlie natural language quantification, its 

presence in animals and preverbal infants makes it likely that it is an innate language-

independent representational resource with conceptual content. Unfortunately, the 

mere fact that systems like set-based quantification, the ANS, or the OFS can be 

recruited to process information about quantities of discrete abjects in our environment 

does not allow us to understand how these systems are responsible for our more 

arithmetical abilities. And yet, we also saw in chapters 1 and 2 that both the ANS and 

the OFS do appear to be recruited in numerical cognition, as evidenced by distance 

effects and limits to the subitizing range, to name a few places where their signatures 

are visible in behavioral data. 

This continued presence throughout our lifespan would suggest that these systems inust 

somehow be responsible for our numerical abilities, but that they undergo a profound 

transformation in the ontogeny of numerical content. I presented some of Carey's · 

reasons for doubting that a mapping of the sort proposed by Dehaene can explain this 

transformation in the previous chapter. What is missing is an account ofhow attributing 

the core cognition status to the ANS and the OFS as well as to set-based quantification 

allows Carey to succeed where others have failed, in explaining how we develop 

representations with content that is discontinuous, in important ways, with that of its 

building blocks. 
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Now that we are familiar with the properties of core cognition and how these could 

explain how innate perceptual analyzers could produce content that figures into rich, 

domain general processes, we are in a position to take a doser look at how Carey wishes 

to bridge the gap between the content of core cognition modules and fully-fledged 

concepts of number. 

In so doing, we will be looking to see how Carey both describes actual cases of 

discontinuities and whether she provides a plausible explanation of how such 

discontinuities arise in development. The next section summarizes Carey' s argument 

for the existence of such discontinuities, while section 4. 7 presents her account of 

learning natural numbers from core cognition, which she presents as evidence of the 

important role of core cognition in explaining how discontinuities can be overcome. 

4.6 Learning through discontinuity? 

Many arguments have been proposed by philosophers through the ages that endorse 

what Carey calls the continuity thesis, according to which "all the representational 

structures and inferential capacities that underlie adult belief systems either are present 

throughout development or arise through processes such as maturation" (Carey 2009, 

18). One well-known vocal proponent of the continuity thesis is Jerry Fodor (1983; 

1997), whose views on the matter are well summarized by Carey: "one cannot learn 

what one cannot represent" (Carey 2009, 18). Fodor has argued that despite superficial 

differences, each form oflearning can be described as an instance of hypothesis testing. 

Given that it is impossible to test a hypothesis without first having a representation of 

its content, Fodor concludes that it is impossible to learn new representations, since 

any learned representation was already in our possession in the form of a yet-to-be-

proved hypothesis. This leads Fodor (1998) to endorse a radical concept nativism (and 

atomism). 
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To help frame the plausibility of the continuity thesis, Carey cashes out talk of 

representational systems being discontinuous with one another in terms of their 

respective representational or expressive power: when one system has 

incommensurably more expressive power than the other, it is considered as 

discontinuous with it. One way to show discontinuity between two systems is to show 

that one is "qualitatively more powerful than" (Carey 2009, 288) the other. For 

example, if one system is unable to describe phenomena that can be described in the 

vocabulary of the other, then the more expressive system is discontinuous with the 

other. Examples of such discontinuities inch.ide representations of North in indigo 

buntings and those mentioned in chapter 1 in the discussion of object permanence 

(section 1.3.3). 

Carey argues that the continuity thesis is wrong, since it fails to explain how learned 

concepts could ever acquire content that is incommensurate with that of its building 

blocks. And yet, there are countless examples of such learning through discontinuities. 

For example, as Carey points out, Piaget (1980) already challenged Fodor's denial of 

conceptual development that transcends discontinuity when he argued that advanced 

mathematical notions such as complex or imaginary numbers cannot plausibly be 

considered the outcome of natural maturational development, given that most mature 

adults do not entertain such concepts. Going further than Piaget, Carey daims we need 

not look any further than the natural numbers to prove F odor wrong, since the natural 

numbers, which she (and many others) considers a cultural construction, have more 

expressive power than any of the systems used to construct them. 

One of the major theses ofCarey's 2009 monograph is that it is possible for humans to 

develop representations that are discontinuous with the representations they are built 

from. Carey does not disagree that learning can usually be described as a form of 

hypothesis formation, nor does she deny that learning builds new representations out 

of old ones. For Carey, the main problem with Fodor's view is that it is false: the 
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literature on cognitive development, which Carey deploys masterfully throughout her 

2009 book, is filled with cases of children acquiring novel representational resources 

that she claims are discontinuous with their building blocks, in the sense that it is 

impossible to express the content of the leamed concept using the content of the 

concepts used to learn it. 

According to Carey, the continuity thesis cannot apply to the relation between the 

representations of core cognition and those of natural numbers because no system of 

core cognition represents natural numbers. As Shea puts it, 

On one side of the conceptual discontinuity are various core cognition systems 
with number-related content. On the other side is a system ofrepresentations of 
natural number. (Shea 2011, 6) 

The very fact that we are trying to explain how we can build an understanding of natural 

numbers from the content of core cognition seems to imply that it is possible to learn 

conceptual content that is discontinuous with its building blocks, given that the core 

cognition systems that appear to have numerical content, either explicitly (ANS) or 

implicitly (OFS), cannot produce content with which we could ever represent anything 

as precise as 27, or even 6, no matter how many instantiations of these we are exposed 

to. Worse, these systems cannot account for a successor function outside the subitizing 

range. Similar reasons prevent natural language quantifiers from fitting the bill, given 

that these are, in some sense, more coarse even than the representations of the ANS, 

given that they can only distinguish between singular and plural, and sometimes 

include symbols for pairs and triads, which suggests both limited range and 

precision.109 

109 Of course, as Carey points out, "Numerals, when used in sentences, are quantifiers, so this system is 
clearly implicated in number word meanings" (Carey 2009, 296), but these symbols are not available 
innately, which means we cannot appeal to them as being the source of the representation of natural 
numbers. 
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The gap problem, then, is about discontinuity between the content of representational 

systems and how we develop novel representational resources. In this sense it is more 

complicated than merely mapping a word onto a pre-existing representation: 

Unlike learning the meaning of the plural morpheme, which is a problem of 
finding a mapping between antecedently available nonverbal representation and 
a linguistic expression, learning the meaning of "seven" requires constructing 
a new representational resource. (Carey 2009, 305) 

This explains why Carey thinks developing representations of natural nurnbers should 

be harder than merely learning the meaning of plural morphemes, for example, since 

in the case of plurals, we are bom with the representation to which the linguistic item 

must be mapped, as seen in the previous section. The fact that Wynn' s (1992b) data ort 

children leaming the meaning of number words discussed at the end of chapter 3 

involves such a lengthy, protracted leaming process, as well as the fact that children 

are subset-knowers for such a long time, is taken by Carey as evidence that leaming 

what natural nurnbers are involves building representational resources discontinuous 

with its building blocks. 

An important implication of the continuity thesis for conceptual development is that it 

is impossible to develop representations whose content cannot be described or 

articulated with the same terms used to describe the content of the representations out 

of which it is built. If this is true, then it should be possible to frame the development 

of our understanding of natural numbers in terms of maturational effects on innate 

cognitive systems. Given the limitations of the core cognition systems that appear 

recruited in numerical tasks, there is little reason to think this can be done. 

And yet, as seen in the previous chapter and in chapter 2, the fact remains that extemal 

representations ofnumbers like Indo-Arabic numerals and number words do eventually 

get mapped to the ANS, though Carey has provided convincing evidence that this 

mapping occurs after the crucial gap-bridging leaming mechanism has taken place .. 



163 

This begs the question of how we managed to bridge the gap before mapping extemal 

symbols for numbers onto the ANS. For while it is one thing to show that there exist 

conceptual discontinuities by interpreting developmental data, it is another thing to 

explain how such discontinuities occur. If we are to properly explain how we bridge 

the gap between core cognition and theories of numerical content, we must have a 

leaming device capable of explaining how such discontinuities can arise. This is what 

Carey dubs Quinian bootstrapping. 

4.7 Quinian Bootstrapping 

4.7.1 Meaningless lists of symbols 

In the previous section, I sketched a few reasons explaining why Carey interprets the 

limitations of the output of our core cognition modules as evidence that they are 

discontinuous with the content of representations of natural numbers. To explain how 

core concepts allow us to develop fully fledged theories or leam representations like 

NATURAL NUMBER, it is important to understand how some representations can be 

built out of others in a way such that the more complex representations have content 

that cannot be expressed or understood using representations produced by its building 

blocks. 

To describe such a leaming trajectory, Carey daims we need to characterize the initial 

stock of representations as well as the learning processes that modify these. In the case 

of leaming number concepts, for Carey, the initial state is a motley crew of 

representational systems of core cognition: the OFS, set-based quantification, and the 

ANS, "the three systems of representation with numerical content that are bequeathed 

to human beings by natural selection" (Carey 2009, 304-5). 

As for the leaming mechanism, Carey's account needs a learning mechanism capable 
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of building representations whose content is incommensurate with its building blocks. 

This is what Carey calls Quinian Bootstrapping [sic], 110 which Shea describes as "the 

process whereby a set of uninterpreted symbols interrelated by a network of inferential 

dispositions are connected up to the world so as to acquire a meaning" (Shea 2011, 6). 

For Carey, the problem ofhow children acquire representations ofnatural numbers can 

be decomposed into three sub-problems. The first involves how children leam the list 

itself. The second is how they leam the meaning of each symbol in the list, and the 

third is how they leam that "the list itself represents number, such that the child can 

infer the meaning of a newly mastered numeral symbol ( e.g., "eleven") from its 

position in the numeral list" (Carey 2009, 308). 

The first step in Quinian bootstrapping is the leaming oflists of symbols which, at first, 

are meaningless: 

In Quinian bootstrapping episodes, mental symbols are established that 
correspond to newly coined or newly leamed explicit symbols. These are 
initially placeholders, getting whatever meaning they have from their 
interrelations with other explicit symbols. (Carey 2011, 120) 

In the case ofnumbers, this is the count list (1, 2, 3, 4 ... ), which children leam to recite 

long before they have any developed number concepts. As seen at the end of chapter 

3, it is only many months after they have leamed this list that children start correctly 

applying the word 'one'. Months later, they form the ability to use 'two' and, after 

another while, 'three' (Wynn 1990). 

There is ample evidence that children can leam ordered lists of symbols without 

104Quinian bootstrapping shouldn't be confused with the syntactic and semantic bootstraps often 
discussed in language learning literature, since only Quinian bootstrapping involves discontinuity and 
the construction of novel representational resources, as opposed to linguistic ones. This is not true of 
semantic and syntactic bootsrapping, where infants exploit linguistic categories and distinctions to figure 
out the meaning ofwords using their semantic and syntactic environments. 
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grasping their meaning - assuming there is one. Obvious cases are the alphabet and 

segments of numeral lists, as well as days of the week and months, but other examples 

include nursery rhymes like 'eeny-meeny-miny-moe', which, apart from being sounds 

placed in a certain order, do not seem to have any particular meaning attached to 

them. 111 This illustrates the first stage of Quinian bootstrapping, during which the only 

meaning attached to symbols are their interrelations - in cases like leaming natural 

numbers, the order in which the sounds must corne. The bootstrapping metaphor 

emphasizes the fact that when leaming is due to Quinian Bootstrapping, the structure 

we are building is initially not grounded. At first, all we have is a skeleton that shows 

the relations between the symbols. Once we have the frame of the structure built by the 

relations between its symbols, then we can add semantic meat to it. 

It is in the second stage of Quinian bootstrapping, where the meaningless numeral list 

is gradually interpreted by combining representations of core cognition, that Carey's 

account differs from Dehaene's and others who take the ANS to be the only system 

recruited in the learrting process. W e saw that data concerning the lengthy and gradual 

process during which children become cardinal-principle knowers imposes a 

descriptive constraint that any bootstrap - or other account of the ontogeny of natural 

number concepts - must satisfy, that of explaining how partial meanings for numeral 

lists are constructed out of previously existing representational content in a way that 

accounts for the piecemeal, gradual process of going through stages of subset-knowing. 

W e also saw that accounts like Dehaene that try to explain how we bridge the gap by 

proposing a mapping to the ANS do not fare well when faced with this constraint. These 

details of subset knowers are crucial empirical constraints that guide Carey's 

Bootstrapping account ofhow we bridge the gap. To avoid the pitfalls associated with 

mapping to the ANS, on Carey's account, interpreting numeral lists does not recruit the 

m Shea (2011) observes that the 'elemeno' segment of the alphabet is often interpreted as a single item 
by children learning the alphabet. 
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ANS. Instead, "the resources ofparallel individuation, together with those of set-based 

quantification, underlie the construction of the numeral list representation of number" 

(Carey 2009, 309). 

Wynn's developmental data raise many questions: for each stage of subset-knowing, 

where does the partial knowledge corne from? Why does it take such a long time for 

children to generalize this knowledge to numerals larger than four? Also, why does the 

transition from subset-knower to CP-knower regularly take place after children have 

become three-knowers (or, in rare cases, four-knowers)? 

The fact that the transition from subset-knower to CP-knower occurs after children 

have become three- (or four-) knowers marks a rather elephant-sized hint that parallel 

individuation may be involved in this process. And yet, as seen in chapter 1, parallel 

individuation has no explicit symbols for numbers. While Wynn' s developmental data 

have parallel individuation's fingerprints all over them, there is no obvious route from 

representing individuals to providing numerical content for numerals. How do we 

explain this? The answer, according to Carey, is in set-based quantification and how 

linguistic eues raise the saliency of its representations. Since this system has 

quantitative content in the subitizing range, perhaps, combined with parallel 

individuation, it could supply the meaning for the various stages of subset-knowing. 1 

outline how this could happen, and the evidence supporting this hypothesis, in the next 

section. 

4.7.2 Partial meaning and quantifiers 

Carey daims there is strong evidence that natural language quantifiers and set-based 

quantification play a major part in giving numerical meaning to an initial segment of 

the numerals in the counting routine memorized by the child. Cross-linguistic studies 
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can be used to test this possibility: if natural language quantifiers can ground the 

meaning of numerals in the representations of set-based quantification, then languages 

with more quantificational markers could facilitate this sémantic association by making 

the distinction between 'one' and other numerals more salient, for example. This does 

appear to be the case, since classifier languages like Japanese and Chinese lack 

common singular-plural markings, and so do not highlight this quantitative distinction 

with the same force as does English (nor Russian). This means that if children exploit 

this distinction to bootstrap the meaning of the first few numerals, children leaming 

languages that do not highlight it as much should take more time to leam the meaning 

of the first few numerals. This is exactly what was found: while children growing up 

in Russian, Japanese, and English-speaking communities all learn to recite an initially-

uninterpreted numeral list by the same age, researchers found that Japanese children 

were slower to become one-knowers (Samecka et al. 2007). This is likely due to the 

absence of morphemes with content associated with the singular-plural distinction. 

Similar results were found in Mandarin-leaming children (Li et al. 2003), which 

suggests that the absence of a morphological marking for quantity distinctions retards 

the onset of subset-knowing. 

According to Carey, the hypothesis that numerals are first interpreted as quantifiers is 

further supported by historical linguistic data according to which the first few number 

words have special status across languages throughout history (Hurford 1987). The first 

few numbers are more commonly used and more likely to be involved in noun-phrase 

syntax, as illustrated by the fact that in many languages, dual markers ( e.g. 'bi-', 'both', 

'pair', in English) are less common than single markers, while triple markers ( e.g. "tri') 

are even less common, but still more common than markers for larger quantities. 

This story of how we corne to leam the meaning of the first few words in our count list 

due to the saliency-increasing effects of natural language quantifiers on the 

representations of set-based quantification seems well supported. Iîthe first hypotheses 
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that subset-knowers bring to the problem of figuring out what number words in their 

count list means cornes from the resources of set-based quantification, then languages 

that emphasize the distinctions of set-based quantification should facilitate confirming 

this hypothesis. 

4. 7 .3 Enriched Parallel Individuation 

However, assuming this story works so far, we still have work to do to explain how we 

bridge the gap, since this explanation of partial meanings does not tell us why the 

generalization of CP-knowers occurs at the boundary of the subitizing range. Also, 

what sort of numerical content can we get from plural markers, and why would 

quantifier-based learning display the limits of parallel individuation? To answer these 

questions, Le Corre and Carey (2007) propose enriched parallel individuation (EPI). 

To understand EPI, we must first remember that the OFS supports one-to-one 

correspondence (11 C hereafter) between states of object tracking, which can be 

described in terms of how many object files are open in a given task. Despite the fact 

that the OFS is dedicated to tracking objects, Carey claims that this system nevertheless 

supports comparison between collections of individuals, as evidenced by the many 

studies mentioned in chapter 1, which show that infants and preverbal animais can 

choose between two scenarios based on the number of objects they contain, even when 

the total number of objects in both scenarios exceeds the set-size limit of the OFS: 

evidence that infants can use parallel individuation to choose a set of three 
crackers over a set of two crackers (Feigenson et al., 2002) implies that the 
parallel individuation system somehow keeps track of which set is cracker, 
cracker, cracker and which is cracker, cracker. (Le Corre & Carey 2007, 657)112 

112 Similarly, Le Corre & Carey claim that "preverbal infants can make models of at least t~o sets of 
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Assuming that the OFS can support such computations that compare collections of 

objects, a record of the states of the OFS used in such comparisons must be kept in 

memory in order for comp~risons between states to take place (Shea 2011). However, 

the associations between words and states of the OFS need to be stored in long-term 

memory because the representations of the OFS are generally temporary, given their 

tracking purposes (Le Corre & Carey 2007). The enriched part of this parallel 

individuation thus refers to the fact that object files are boosted with a long-term 

memory model of astate of the OFS. 

This long-term memory record is important because it can be used to build an 

association between the collection of objects being tracked and the quantifier that 

applies to that collection: 

The child makes a working-memory model of a particular set he or she wants 
to quantify ( e.g., { cookie cookie} ). He she then searches the models in long-
term memory to find that which can be put in 1-1 correspondence with this 
working-memory model, retrieving the quantifier that has been mapped to that 
model. (Carey 2009, 324) 

The discussion above of the role of set-based quantification in grounding a partial 

understanding of the list of number words showed that words can become associated 

with representations of set-based quantification due to the saliency-increasing effects 

of repeated exposure to these words while tracking the relevant number of objects. This 

means that representations for single individuals ( e.g. { OBJECT}) can be associated 

with linguistic symbols for individuals (e.g. 'one', 'a') due to repeated exposure to such 

extemal symbols when tokening single object files. Similarly, symbols for two 

individuals, each subject to the set-size limit on parallel individuation, and hold both in working memory 
at once" (2007, 656). According to Gallistel (2007) it is unclear how the OFS can support such a 
computation, since its role is limited to constructing representations of individuals, not sets ofthese. See 
Shea 2011 and Beck 2016 for some clarifications ofthis aspect of EPI. For present purposes, such details 
need not concem us, given that our main problem with Carey's account lies in more general matters, 
discussed below in section 4.8. 
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individuals (e.g.{OBJECT}, {OBJECT}) could be associated with linguistic symbols 

for pairs, and the same sort of association can be applied to the word 'three' and the 

state in which the OFS is when it track three abjects. This way, the numerical content 

of set-based quantification gets associated with a linguistic label for this content, and 

stored in a long-term memory model of the state of the OFS during this association. 

We saw above that English-speaking children first leam the singular-plural distinction, 

which helps them get the content for 'one'. The fact that both 'one' and 'a' map onto 

{OBJECT} in long term memory explains how 'one' gets its meaning: set-based 

quantification supplies the numerical meaning 9f 'a' and 'one' because these terms are 

most often used when the child opens a single abject file. This means that the 

association between the numerical content of set-based quantification - here, the 

distinction between singular and plural - and the number word gets stored in an abject 

file representation for OBJECT. Then, children notice that words like 'some' and 

number words other than 'one' are applied to collections that contain more than one 

object, which allows them to treat number words like quantifiers. This can explain why 

one-knowers will respond to 'how many?' questions using number words instead of,· 

say, color words, even ifthey use number words outside their subset-knowledge range 

randomly: number words make up the initially-meaningless skeleton that now has one 

grounded member, and the child knows that only a word from this list will do. This 

step is followed by one where children leam that 'two' only applies to a subset of 

pluralities, namely, those that contain two individual files. The word 'two' then gets 

mapped to a long-term memory model of pairs of abjects, and the same process allows 

children to map the meaning of 'three' to ·a long-term memory model of three 

individuals. 

The general idea here, then, is that children rely on "models of the sets of individuals 

held in parallel in working memory," (Carey 2009, 327) where each model can be 

thought of like an abstract description of what we do when individuating of up to four 
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objects in parallel. According to Carey, "All of the computational resources required 

for enriched parallel individuation are known to be available to prelinguistic infants" 

(Carey 2009, 324). This includes the ability to put two different collections of objects 

into 11 C, treating collections as objects, and quantifying over collections with natural 

language quantifiers. 

4.7.4 The crucial analogy and CP-knowledge 

Let us assume Carey' s explanation works up to this stage. If so, it looks like we have 

an idea of how content gets attributed to the first few numerals. Children who have 

mapped the meaning of the first few number words are then poised to notice analogies 

· about numeral order and numerical content within the subitizing range, since they have 

leamed to label states of the OFS based on the number of object files being used to 

track objects. They are then in a position to notice that when counting two or three 

objects, the last word used is also the word that describes how many objects were 

counted. At this point, 'all' that is left is for children to do is generalize this counting 

principle to the number words to which they have yet to assign any meaning. 

· Here, the child must notice an analogy between number word order and order in long-

term memory models for individual files: taking one step in the numeral list is 

analogous to "next in the series of models ( { i}, {j k}, { m n o}, { w x y z}) related by 

adding an individual" (Carey 2009, 327), or "next state after additional individual has 

been added to a set" (Carey 2009, 328). While this analogy only applies to numerals 1-

4, it still can serve as the basis for the crucial induction, where the child realizes that " 

if 'x' is followed by 'y' in the counting sequence, adding an individual to a set with 

cardinal value x results in a set with cardinal value y" (Carey 2009, 327). This critical 

analogy, then, allows the child to understand the successor function, with which the 

meaning of any number word in the count list can be interpreted. 
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There are, then, two essential elements to Carey's account of leaming via Quininan 

Boostrapping: first, the elements of the system to be leamed are initially placeholders 

whose meaning is, at best, partially interpreted by previously available resources. 

Second, as for how these symbols become fully interpreted, Carey takes it that the 

process responsible for the full interpretation of symbols is one of noticing an analogy 

and coming to a crucial induction that allows the child to generalize the hard-won 

associations built during the construction of the partial mappings of subset-knowing 

and understand that going one step further in a count list means adding one object to 

the collection being counted. 

4.8 The origins problem 

As Jacob Beck points out, "Carey's account of Quinean bootstrapping has been heavily 

criticized" (Beck 2016, 110). For example, critics have claimed that Carey's 

bootstrapping-based account is circular (Fodor 2010; Rey 2014) and that it 

underspecifies the potential conclusions that children could corne to when making the 

crucial induction (Rips et al. 2008a; Rey 2014). Others have complained that it is 

unclear just what episodes of Quinian bootstrapping are and that the notion of enriched 

parallel individuation is equally confused (Gallistel 2007). Worse, there is evidence 

that some children manage to leam the meaning of 'one' despite applying 'a' to 

collections containing more than one object, which suggests that the presence of 

singular-plural markers may not facilitate acquisition of the meaning of 'one' (Bamer 

et al. 2009), contrary to what Carey daims. While these theory-specific issues may tum 

out to be genuine worries for Carey, 113 they will not concem us here. 

113 While Shea (2011) clarifies certain important aspects of Quinian Bootstrapping, Beck (2016) attempts 
to clarify what bootstrapping is in order to counter the circularity and ambiguity objections. 
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The problem 1 have with Carey's account is one that can also be levied against any 

account that, like Carey's, attributes an essential role in extemal symbols for numbers 

in explaining how we bridge the gap. In Carey's bootstrapping account, lists ofnumber 

words play two crucial roles in explaining how we develop an understanding of natural 

numbers. Carey's solution to the gap problem only goes through by relying on the 

availability of a numeral list, both as the initial placeholder and in the saliency-

increasing effects of structured and ordered number words in associating states of the 

OFS with number words: "At the heart of Carey's theory is the idea ofmemorizing a 

set of relations amongst uninterpreted symbols" (Shea 2011, 7). Without these lists of 

number words, the learning process could not go through: "Quinian bootstrapping 

· processes require explicit symbols, such as those in written and spoken language or 

mathematical notational systems" (Carey 2009, 306). 

The problem 1 want to talk about is this: how can we rely on extemal symbols for 

numbers in our explanation of the development of numerical content when the 

existence of such symbols in tum depends on the existence of numerical content? 

For starters, consider the role played by integer lists in Carey's account. The problem 

here is, how could such lists possibly emerge without someone first having had some 

kind of number concepts? The fact that someone (or, much more likely, many people, 

in a gradual process of personal innovation and cultural transmission) had to corne up 

with this counting routine means that it was possible to think about numbers (or 

perhaps, more basically, about precise quantities) without relying on lists of words. 

This in tum suggests that there can be individual-level development of number 

concepts without such developed extemal support, which would seem to imply that 

some other artifact-free learning processes are involved in the origin of basic number 

concepts. But if we must appeal to such aretefact-free processes to describe the origin 

of number concepts, then how can we consider Carey' s bootstrap to be an explanation 

of the origins of natural number representations, given that this account depends on 
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extemal crutches whose absence did not prevent people from developing an 

understanding of natural numbers in the past? 

My daim is that, if we are trying to explain the ontogeny of number concepts, our 

theory should apply to everyone capable of thinking about numbers. But since some 

people seem to have been able to think about numbers without extemal aids in the 

(distant) past, any account that depends on such support will not apply to every case of 

numerical cognition. At best, such extemalist accounts could describe how numerical 

cognition emerges in a numeral-enriched environment. 

Importantly, while this is a problem for Carey, it generalizes to any explanation that 

relies on the presence in the leamer' s environment of an organized system of symbols 

or practices for precise quantification. Thus, Dehaene's mapping, which relies on 

number words and symbols to explain how we develop an understanding of natural 

numbers, is also a target here. 

This may seem unfair to Carey: after all, her account is meant to explain the ontogeny 

of natural number representations in a numeral-enriched world: 

Like virtually all researchers in this field, we agree with Gallistel and Gelman 
that the verbal numeral list deployed in a count routine is the first explicit 
representation of the natural numbers mastered by children growing up in 
numerate societies. (Le Corre & Carey 2008, 651) 

However, the fact that it is possible to develop some basic number concepts without 

the type of extemal support used in Carey's model seems to suggest that cases that do 

involve external support might somehow appeal to a more fundamental process, which 

Carey's extemalist framework is leaving out. So while it may seem unfair to Carey to 

criticize her for not taking into consideration historical development, given that her 

theory is aimed at the individual, ontogenetic level, there is reason to do so: the 

ontogeny of number concepts in a world where symbols for numbers abound cannot be 

completely separated from past cases of .numeral-free ontogeny, since the former 
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depends on the latter in important ways. 

This line ofthinking was perhaps behind Overmann et al.'s (2011) comment on Carey's 

précis of her 2009 book, where they ask, "In the absence of a numeral list, how could 

a concept of natural number ever have arisen in the first place?" (Overmann et al., 2011, 

142) Carey appeals to extended cognition in a cultural setting to answer this question: 

Understanding the invention oftally systems would involve understanding how 
people came to the insight that beads could serve this symbolic function, rather 
than decorative uses, or as markers of wealth, or myriad others. That is, the 
availability of an artifact that could serve as the medium of a tally .system 
doesn't explain how it came to be one. Now that we are in the realm of 
speculation, I believe, contra Overmann et al., that body counting systems could 
well also play an extended cognition role in the cultural construction of integer 
representations. (Carey, 2011, 159) 

Unfortunately, it is difficult to see how this can tell us the whole story, since this simply · 

raises the question ofhow these body-counting systems emerge, ifnot by some kind of 

purely blood-n-bones intracranial leaming process. Assuming that our first number 

symbols were parts of the body, how did we corne to point to these and intend to 

communicate numerical content without first having developed this numerical content 

by some other cognitive process that did not rely on extemal symbols for number? For 

example, how could a person point to their right knee or left thumb to communicate 

'six' without first having corne to some understanding of SIX? Whatever process 

allowed such symbols to emerge, shouldn't that be where we look to find the key to 

the mystery of the development of numerical content? Carey off ers no reason why the 

crucial analogy and accompanying induction could not occur in different, numeral-

impoverished contexts. 114 

114 While Coolidge & Overmann (2012), Overmann (2015), and Malafouris (2010) offer similar lines of 
reasoning concerning the emergence of numerical cognition in numeral- impoverished environments, 
their criticism is mostly aimed at the role of language in this process. Importantly, their proposed 
accounts also rely on external symbols-either in the form of fingers or clay tokens-to exp Iain how we 
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The success of Carey' s bootstrapping account of how we bridge the gap - as well as 

many other externalist accounts, as discussed in the next chapters - thus hinges on 

whether or not appealing to extended cognition and cultural evolution can explain how 

it would be possible to bridge the gap in a world where no count lists, integers, or 

experts willing to teach us mathematical practices abound. Exploring the role played 

by external objects and cultural evolution in the development of representations of 

natural numbers will occupy the last few chapters of this thesis. The first step is to 

explore and set up what extended cognition is and how it can apply to the development 

of numerical cognition. I do this in the next chapter. 

transcended the limitation of our innate cognitive systems. The point 1 am making here goes further and 
applies to any external representation with numerical content, including numerals and number words, 
but also clay tokens, body parts, and other 'enactive signs' (Malafouris, 2010) .. 1 explore this distinction 
in more detail in the next chapter 



CHAPTER V 

EXTERNALISM AND NUMERlCAL COGNITION 

5 .1 Introduction: external supports for numerical cognition 

In the past two chapters, we have seen two attempts to bridge the gap between our 

representations of natural numbers and the content produced by evolutionarily-

inherited systems like the ANS, the OFS, and, in Carey's case, set-based quantification. 

We saw that Dehaene's triple-code model provided a plausible description of the way 

in which numeration systems like the Indo-Arabic numerals and linguistic symbols for 

numbers corne to in vade diff~rent parts of our brain, but that his description of how we 

learn the meaning of these symbols by a mapping to the representations of the ANS 

does not seem to account for Wynn's (1990, 1992b) and Le Corre & Carey' (2007) 

developmental data. We also saw how Carey's account ofthis learning, whose focus is 

less on the neuronal details and more on the developmental data, offers a plausible 

account of how we can develop representational systems discontinuous with their 

building blocks by an induction over the meaning of the first few number words, which 

is made possible by representations of set-based quantity and object files. 

While Dehaene and Carey disagree on many points - especially the role of the ANS in 

the development of our understanding of what natural numbers are - both their 

accounts heavily rely on the presence of developed numeration systems to bridge the 

gap. Despite their differences, then, both can be considered externalists about 
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numerical cognition, in the sense that their accounts suggest that extemal symbols and 

artefacts are ineliminable constituents of our ability to think about - and with -

numbers. This view, according to which mathematics depends on external objects, is 

not new. For example, there is reason to believe that Kant held that writing was 

constitutive of mathematical practice (Macbeth 2013). However, it is important to be 

clear about just what sort of dependence we are talking about here. After all, most 

people would agree that oxygen is also necessary to practice arithmetic, since 

mathematicians need to breathe, but few would argue that oxygen is a constituent 

component of mathematical practice. Thus, we need to know how externalist accounts 

of numerical cognition frame the dependence of arithmetical practices on external 

symbols and artefacts in order to determine to which extent it is legitimate - necessary, 

even - to adopt an externalist perspective on numerical cognition. 

As I mentioned at the end of chapter 4, externalist accounts of numerical cognition 

share a problem conceming the origins of our numerical abilities, due to their reliance 

on external symbols and artefacts: since it would appear reasonable to think that 

numeration systems are human constructions, it looks like they themselves require an 

ability to think about numbers in order to corne into being, which means that it should 

be possible to think about numbers without external symbols, on pain of regress of 

external supports. There are, of course, many ways to counter this potential problem. 

Carey's response to Overmann et al's (2011) comment, where she claimed that 

"counting systems could well also play an extended cognition role in the cultural 

construction of integer representations" (Carey 2011, 159), displays two important 

externalist options. First, the externalist can deny that the origins of numerical artefacts 

and symbols is in purely-internal representations by adopting an extended approach to 

cognition. This is the focus of the present chapter. Or, alternatively, the externalist 

could appeal to cultural evolution to explain the historical development of numerical 

practices, and thus negate the importance of the origins problem. This possibility is 

explored in chapter 6. 
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In section 2 of this chapter, I discuss the extended approach to cognition, as introduced 

in Andy Clark and David Chalmer's (1998) article, 'The Extended Mind', followed by 

Clark's (1998) views on explanation in extended cognitive systems, which I will use to 

evaluate extemalist approaches to the gap problem. I then move on to extemalist 

approaches to numerical cognition in section 5.3, focusing on Catarina Dutilh Novaes' 

(2013) treatment of constitutivity in extended systems of numerical cognition in section 

5.4, before posing a few challenges to this approach in section 5.5. To help ground this 

discussion, I take a look the historical origins of symbols for precise quantities in 

Sumeria in section 5 .6, while section 5. 7 off ers a perspective on the limited numerical 

abilities of cultures like the Pirahà (Frank et al. 2008) and the Mundurucu (Pic~ et al. 

2004 ). The main claim I make in this chapter is that extemalist accounts fail to explain 

what makes the difference between an individual that has bridged the gap and one who 

has not in situations where both have access to the same extemal support for cognition, 

since the difference in these cases lies in our head. 

5 .2 'The Extended Mind' 

5.2.1 Thinking outside the box 

David Chalmers, in his introduction to Andy Clark's (2008) monograph, Supersizing 

the Mind, writes this about the idea that the mind can extend beyond the brain: "The 

the sis has a long history: I am told that there are hints of it in Dewey, Heidegger, and 

Wittgenstein. But no one has done as much to give life to the idea as Andy Clark" 

(Chalmers 2008, x). This is certainly true. For while the notion of extending cognition 

beyond the brain had received attention prior to Clark's work on the topic (e.g. 

Hutchins 1995; Wilson 1994; Haugeland 1993), it was only following the publication 

of Clark and Chalmers' 1998 article that the possibility of extending the mind beyond 
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the skull truly took off as a major topic in the philosophy of mind. 115 

In this highly influential article, Andy Clark and David Chalmers (ACDC hereafter) 

question the bounds of cognition, asking where the mind stops and the world begins. 116 

Deploying compelling intuition pumps and thought experiments, they argue that, in 

some cases, parts of the mind lie outside our heads - hence, the title of their article, 

'The Extended Mind' (TXM hereafter). Contrary to the traditional skull and bones 

localization of mind, TXM allows a motley crew of extemal objects to be considered 

constitutive elements of cognitive processes. These include cellphones, notebooks, and 

anything else that can reliably be used and accessed to process information. This 

extemalist framework focuses on the dynamic interaction between individual brains 

and the objects in their environment to understand how objects outside our heads, 

including culturally accumulated artefacts, can supplement our cognitive abilities. The 

implication is that the mind can extend beyond the barriers of our skull to include parts 

of our environment. 

In a nutshell, the main motivation behind the extended mind is the realization that parts 

of the world outside our head play an active role in some cognitive processes, and that 

if we are to allow parts of our brain to be parts of our minds because they play such a 

role, then we should allow things outside our heads to be parts of our mind as well, 

115 It is worth mentioning that such extension of the boundaries of the individual had already taken place 
in other domains. For example, Dawkins' (1983) extended phenotype and Oyama's (1985) 
Developmental Systems Theory both questioned the bounds of individuals in biology. 

116 As Pëyhënen (2014) points out, in the fallout following publication of their article, which includes 
the development of many varieties of externalism, the conversation has largely treated the extended mind 
and extended cognition as synonymous. However, given that the mind can include things that aren't 
parts of cognition, this is a problematic equivocation. This being said, while 1 will try to focus on 
extended cognition, this terminological issue does not have significant impact here, given that the focus 
is not on the nature of mind itself, but the degree to which external artefacts can be considered 
constitutive parts of numerical cognition. What minds are is neither here nor there with respect to the 
origins of numerical cognition. 
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when they play such active roles. According to ACDC, failure to include such 

extracranial elements in cognitiye loops on the basis of their geographical properties is 

tantamount to cranial chauvinism. 

ACDC use a few intuition pumps to support the legitimacy oftheir controversial thesis. 

One often-cited source of evidence that some cognition takes place outside the head is 

the classic video game Tetris, in which the player must figure out the best way to place 

four types of geometrically-distinct shapes in order to fill the bottom of a screen. To 

figure out the best position in which to place the shapes, the player can press a button 

and the shape will rotate on the screen, thus making its ideal positioning visually 

salient. Kirsh & Maglio (1994) call the physical rotation of an image on a screen to 

determine if it can fit into a slot an Epistemic Action. Such actions "alter the world so 

as to aid and augment cognitive processes such as recognition and search" (ACDC 

1998, 8). These contrast with Pragmatic Actions, which alter the world because such 

an alteration is desirable for its own sake. 

To illustrate the cognitive benefits of this use of visual eues, consider the fact that 

rotating the image on the screen and pressing the button takes about 300 milliseconds, 

while rotating it in our head takes about 1000 milliseconds. This shows that there are 

some cognitive processes - in this case, figuring out the best way to place a geometric 

shape - that heavily rel y on parts of the environment because they are far more efficient 

ways of getting the information we need. 

Given that the rotation of the image is the result of our pressing of a button, and that 

the change in visual stimulus that results from pressing the button occurs on a screen 

instead of in our brain, there is a sense in which parts of our environment are processing 

information for us. W e are coupled to the video game, in that we are caught in a loop 

of continuous reciprocal causation, 117 where what we do influences the image on the 

117 Clark describes the notion of continuous reciprocal causation as applying to cases where "some 
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screen, which in turn influences what we do next: 

the human organism is linked with an external entity in a two-way interaction, 
creating a coupled system that can be seen as a cognitive system in its own right. 
All the components in the system play an active causal role, and they jointly 
govern behavior in the same sort of way that cognition usually does. If we 
remove the external component the system's behavioral competence will drop, 
just as it would if we removed part of its brain. Our thesis is that this sort nf 
coupled process counts equally well as a cognitive process, whether or not it is 
wholly in the head. (ACDC 1998, 8, italics original) 

ACDC daim that if some actions involve use of external media to augment cognitive 

processes, then, in certain cases, these actions, by induding external media, extend the 

mind into the world: 

Epistemic action, we suggest, demands spread of epistemic credit. If, as we 
. confront some task, a part of the world fonctions as a process which, were it 

done in the head, we would have no hesitation in recognizing as part of the 
cognitive process, then that part of the world is (so we daim) part of the 
cognitive process. (ACDC 1998, 8) 

Other common examples of abjects to which we can get caught in loops of reciprocal 

causation include using pen and paper to run through calculations and physically re-

arranging letters· when playing Scrabble: in both these cases, we are manipulating 

extemal media to complete cognitive tasks instead of doing it in our heads. ACDC 

daim that "In a very real sense, the re-arrangement of tiles on the tray is not part of 

action; it is part of thought" (ACDC 1998, 10, emphasis original). 

ACDC accept that in some cases, like experiences, the mental state can be individuated 

intemally. Other parts of the mind, however, seem like fair game to their externalist 

system S is both continuously affecting and simultaneously being affected by activity in some other 
system O ... we often find processes ofCRC that criss-cross brain, body, and local environment" (Clark 
2008, 24). 
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approach to cognition. ACDC's main case is that ofbelief: 

we will argue that beliefs can be constituted partly by features of the 
environment, when those features play the right sort of role in driving cognitive 
processes. If so, the mind extends into the world. (ACDC 1998, 12, italics 
original) 

Their well-known example to motivate the idea that beliefs can extend into the world 

is the thought experiment involving Otto and Inga. Inga is an example of "a normal 

case of belief embedded in memory" (ACDC 1998, 12). She hears there is an exhibit 

at New York's Museum of Modem Art (also known as 'MoMa'), and decides she 

wants to go see it. After thinking a little, she remembers where MoMa is and goes to 

53rd street to see the exhibit. Here, ACDC rightly point out that there is a commonly 

accepted sense in which Inga believed that the museum was on 53r<l street, despite the 

fact that she was not entertaining thoughts to that effect before hearing that there was 

an exhibit at MoMa: 

It seems clear that Inga believes that the mus'eum is on 53rd Street, and that she 
believed this even before she consulted her memory. It was not previously an 
occurrent belief, but then neither are most of our beliefs. The belief was sitting 
somewhere in memory, waiting to be accessed. (ACDC 1998, 12) 

Things aren't so simple for poor Otto, however, since he suffers from Alzheimer's 

disease. To compensate for the effects of his Alzheimer's, Otto carries around a 

notebook in which he writes down new information that he can then look up when 

required. ACDC claim that Otto's notebook 'plays the role' that Inga's biological 

memory plays in her mental life. Otto also hears about the exhibit at MoMa, but, unlike 

Inga, cannot remember where it is by simply looking in his head. Rather, he looks up 

the address in his notebook and then heads to 53rd street. 

The controversy lies in how to interpret the information in Otto's notebook. According 

toACDC, 

J 
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Clearly, Otto walked to 53rd Street because he wanted to go to the museum and 
he believed the museum was on 53rd Street. And just as Inga had her belief 
even before she consulted her memory, it seems reasonable to say that Otto 
believed the museum was on 53rd Street even before consulting his notebook. 
For in relevant réspects the cases are entirely analogous: the notebook plays for 
Otto the same role that memory plays for Inga. The information in the notebook 
functions just like the information constituting an ordinary non-occurrent 
belief; it just happens that this information lies beyond the skin. (ACDC 1998, 
13) 

In other words, ACDC daim that since Otto's notebook was used in a way that is 

functionally analogous to Inga' s biological memory, in that both contained relevant 

information and were poised to give it to the agent when needèd, it is possible to 

conclude that Otto' s note book contained his non-occurrent ( dispositional) belief 

conceming the whereabouts of Mo Ma. So his belief was outside his head. 

For Otto, information pops up and retreats into his artificial memory, just like it does 

for normal minds: "In both cases the information is reliably there when needed, 

available to consciousness and available to guide action, in just the way that we expect 

a belief to be" (ACDC 1998, 12). The important thing to note here is the fact that it is 

the fonction played by an extemal object in explaining a cognitive loop that warrants 

attributing it membership in a cognitive process: 

insofar as beliefs and desires are characterized by their explanatory roles, 
Otto's and Inga's cases seem to be on a par: the essential causal dynamiès of the 
two cases mirror each other precisely. (ACDC 1998, 13, emphasis mine) 

5.2.2 Support for seeing the mind as extended 

While the bulk of ACDC's original article motivates TXM by analyzing aspects of the 

thought experiment of Otto vs Inga, there is considerable empirical support for TXM 

as well. Perhaps the most illustrative examples of cognitive offloading to our 

environment cornes from inattentional blindness and change blindness paradigms. 
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First, consider Simons & Levin' (1997) studies of change blindness. In a typical trial, 

a stranger engages a test subject in a conversation on the street, when suddenly two 

people carrying a large screen pass between the two interlocutors. Unbeknownst to the 

test subject, during the brief period of time in which the screen blocked the subject' s 

visual access to the stranger, the stranger is actually replaced, mid-conversation, with 

another person. The fact that many subjects fail to notice the fact that they are now 

talking to an entirely different person illustrates how impoverished our representation 

of the visual scene actually is when compared to models that postulate rich inner-maps 

of our environment. Similar cases of change blindness are also strikingly displayed in 

studies where participants are asked to focus on a central point of a visual scene while 

aspects of the scene like colors of abjects and presence of objects vary without the 

participant noticing any change. Surprisingly obvious changes can even be made within 

the focal point without participants noticing. 118 

Similarly striking results corne from the study of inattentional blindness. In a famous 

study (Mack & Rock 1998), researchers asked participants to count the number of times 

a basketball was passed in a group of people. While the participants were busy counting 

passes, a person wearing a full gorilla suit walked among the passers. Surprisingly, a 

large proportion of participants failed to notice the person wearing the gorilla suit. This 

seems to illustrate ACDC's claim that "What really counts is that the information is 

easily available when the subject needs it" (ACDC 1998, 15). 

These studies show that while we may think that vision involves creating a high 

definition representation of our environment, rich in detail and information, in reality 

most of the information is still out there - it' s just that we have instructions on how to 

get it, if needed. This suggests that we do not store such rich m~ps of the outside world. 

Instead, we store just enough information for our current purposes and keep tabs on 

118 See Simons & Rensick 2005 for a discussion of these results. 
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how to get more information when the time cornes. 

Though there are real-world versions of Otto, including Patrick Jones, a chaplain whose 

brain injury has forced him to use his mobile phone even more that Otto relies on his 

notebook, cases of change blindness are less extreme and much more common, so in a 

way they do make a stronger case for adopting an extended approach to cognition. For 

in such cases 

Parts of the external world- the abjects in our environment-play the same 
role in cognitive processing as certain neural states play: both the external 
abjects and the neural states carry information that cognitive processing makes 
use of when needed for reasoning, navigation, and so on. Thus, extended states 
appear in a substantive role in at least one important domain of human 
cognition: visual perception. Taken at face value, this establishes the extended 
view. (Rupert 2009, 4-5) 

The important point here is that whether or not an abject is part of a cognitive loop isn't 

so mucha matter ofwhere it is as what its explanatory fonction is: ifthings in the brain 

play a certain explanatory role in explaining cognition, then if things outside the brain 

can play the same role, ACDC argue, they should also be entitled to membership in 

cognitive processes. 

5.2.3 Extended cognition and explanation 

One of the implications of adopting an extended view of cognition is to accept that 

certain cognitive tasks can be carried out by complex loops of continuous reciprocal 

causation between our heads and parts of their local (and less-local) environment. 

Considering the important role played by extracranial components in these 'twisted 
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tales' 119 of complex causation, it can be tempting to reflect the contribution each 

component. of these causal feedback loops makes in explaining the outcome of the 

process under consideration. However, despite the undeniable importance of extemal 

artefacts, this 'inference to egalitarianism' as Clark puts it, can obscure the fact that 

causal importance need not be reflected in explanatory importance. On the contrary, 

Clark argues that this explanatory egalitarianism is a mistake. 

Given that it is impossible to describe the contribution of genes or neurons to a twisted 

tale of complex causality without a specification of the environment in which they are 

active, there is a sense in which it is redundant to require explanations of phenomena 

to reflect the causal importance of the environment. This is because even though parts 

of the environment may be more causally determinant than the gene or neuron, for 

example, it is the presence of these components of the twisted causal tales that makes · 

the difference between potential outcomes to the processes in which they are involved. 

As Clark puts it, "explanatory priority in a given context thus tums not on what factor, 

if any, does the greatest amount of actual work but on what makes the difference 

between the cases where the outcome obtains and those where it does not" (Clark 1998, 
160).120 

This means that acknowledging the importance of the environment doesn't prevent us 

from usefully describing an outcome as being directed or controlled by genes or 

neurons, since these outcomes must take place relative to a contextual baseline.121 

119 See Clark 1998 for examples ofsuch 'twisted tales'. 

120 Poyhünen (2014) also focuses on the importance of differential influence in relation to explanatory 
relevance and emphasizes that good explanations of extended systems are supposed to draw a line 
between explanatorily relevant factors and background conditions. 

121 For example, in an environment-gene system, the gene is the difference maker: "a gene may be 'for 
x' in the simple sense that it is a feature whose presence or absence is a difference that makes a systematic 
(usually population-level) difference to the presence (or absence) of x." (Clark 1998, 155-6) This 
reasoning applies to programs and neurons as well: "The extension of the line on explanatory priority to 
the case of neural codes and programs is immediate. Here too we should say that a neural structure or 
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Thus, it is acceptable to attribute a central role to certain components of complex causal 

loops in explaining how behavior cornes about, on the assumption that we have a 

reliably available ecological backdrop in which the behavior develops. Sometimes, it 

is OK to privilege certain components in explanations, even when they don't carry the 

bulk of the causal burden: 

The observation that the real workload involved in bringing about some effect 
may be evenly spread between allegedly "privileged" factors (genes and neural 
events) and other influences (environmental, chemical, bodily) cannot, 1 
conclude, in and of itself, constitute a good reason to reject the practice of 
treating certain factors as special: as coding for, programming, or prescribing 
the outcome in question. (Clark 1998,161) 

Importantly for our purposes, in explanations of human behavior this contextual 

baseline can include culture: "our strategies have been learned and tuned against a 

backdrop of culture and physical and social laws and practices" (Clark 1998, 161 ). 122 

Extending these claims about explanatory symmetry and difference-makers to the 

problem ofhow culture can solve the gap problem, 1 want to say that what we need is 

a way of finding a difference-maker capable of explaining the development of proto-

numerical skills from systems like the ANS. Given that this development can be found 

in both the ontogenetic and historical levels, looking for a difference-maker to bridge 

the gap boils down to finding answers to the following two questions: 

Q 1) What makes the difference between an individual that has developed proto-
numerical practices and one that has not? 

Q2) What makes the difference between a culture that has developed proto-
numerical practices and one that has not? 

process x codes for a behavioral outcome y, if against a normal ecological backdrop, it makes the 
difference with respect to the obtaining ofy" (Clark 1998, 160). 

122 This will be especially relevant in chapter 6, which deals with culture and extended numerical 
cognition. 
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Armed with these terminological tools, we are now ready to evaluate whether adapting 

TXM to numerical cognition can help us bridge the gap. 

5.3 Numerical cognition and extemalism 

Given that TXM challenges the traditional boundaries of cognition, its implications are 

far reaching and have potential impact on any discipline in which cognition makes 

extensive use of extemal supports. 123 This, of course, includes numerical cognition. ln 

fact, one of the first examples mentioned by ACDC is that of using pen and paper to 

solve an arithmetical problem, and Clark's (2008) monograph opens with an anecdote 

in which physicist Richard F eynmann describes the paper on which he had done his 

work as more than a mere record of his thought process, but as an integral part of his 

work. 

The fact that the practice of arithmetic seems to rely on mastery of complex numeration 

systems like the Indo-Arabic numerals makes it look like an obvious case of cognition 

necessarily relying on things outside the head. This may explain why among the many 

explanations that have been put forward to bridge the gap between the approximate and 

limited output of evolutionarily-inherited systems for quantification and the precision 

and scope of natural numbers, most adopt an.extended approach to cognition. Implicitly 

or explicitly, answers to the gap problem have generally relied on attributing a 

constitutive, irreplaceable role to extracranial objects, artefacts, or symbols in 

123 For example, ifmy mind includes things outside my head, is it morally objectionable to tamper with 
the objects to which my mind is coupled? Could deleting someone's hard drive be the equivalent of 
removing part of their brain? For a recent discussion of implications of TXM in ethics, see Carter & 
Palermos 2016. 
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explaining how we move beyond the limits of systems like the ANS and the OFS.124 

W e can see how extemalists wish to apply TXM to numerical cognition. Here, the idea 

is that extemal representations of numbers - whether in the form of body parts, tally 

systems, or numerals - are constitutive parts of extended cognition systems in which 

numerical symbols play an essential part. As De Cruz puts it, 

Extemal symbolic representations of natural numbers are not merely converted 
into an inner code; they remain an important and irreducible part of our 
numerical cognition ... During cognitive development, the structure of the brain 
is adapted to the extemal media that represent natural numbers in the culture 
where one is raised. In this way, the interaction between intemal cognitive 
resources and extemal media is not a one-way traffic but an intricate 
bidirectional process: we do not just endow extemal media with numerical 
meaning, without them we would not be able to represent cardinalities exactly. 
(De Cruz 2008, 487) 

As we grow up, our brain adapts to the dependable presence of extemal numerical 

symbols in our environment and forms couplings with these. In a very real sense, then, 

our brains are wired in a way that is reflective of the numeral-enriched environment in 

which we grew up. 

Evidence for the constitutivity of extemal objects and symbols can be seen in the fact 

that cultural variability in extemal artefacts affects individuals' performance in various 

mathematical tasks (De Cruz et al. 2010) as well as which parts of the brain are used 

in certain operations. For example, as mentioned in section 3.3.2, Tang et al. (2006) 

obtained data that seem to indicate t~at how we leam arithmetical practices is reflected 

in which parts of our brain are recruited for these practices, which suggests that the 

manipulation of extemal objects and symbols is an essential aspect of arithmetical 

practices. However, the fact that this study involved participants that had already 

124 E.g. Hurford 1987; Dehaene 2011; Lakoff and Nufiez 2000; Wiese 2004; De Cruz 2008; Carey 2011; 
Coolidge and Overmann 2012; Menary 2015; Malafouris 2010; Ansari 2008. 
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bridged the gap an~ mastered complex numeration systems like the Indo-Arabic 

numerals and the abacus suggests that, at most, it shows that external artefacts are 

necessary to manipulate representations of exact quantities beyond an initial segment 

of the natural numbers, since the participants in these studies had already mastered 

numeration systems capable of representing quantities that dwarf the limits of unaided 

memory. If this is true, then it need not constitute a counterexample to the daim that 

the origins of numerical cognition do not require external support, since these origins 

concern an initial segment of the natural numbers that may not require cognitive 

offloading in order to be cognitively accessible. The idea here is that the use of extemal 

artefacts is only constitutive of numerical cognition beyond an initial segment of the 

natural numbers. 

In order to assess this possibility and determine whether or not adopting a variant of 

active externalism can help accounts like Carey's explain the development of 

numerical cognition in a numeral-free world, it will be useful to characterize in which 

sense external artefacts can be considered constitutive of numerical cognition. To do 

this, I propose taking a doser look the notion of constitutivity as externalists apply to 

the practice of arithmetic. 

5.4 Constitutivity of external objects in ar.ithmetical practices 

5.4.1 The synchronie level mathematical practice 

Catarina Dutilh Novaes (2013) usefully frames her discussion of constitutivity by 

dividing it into three levels of mathematical practice: 125 

125 While the fact that Dutilh Novaes' analysis of constitutivity is meant to apply to mathematics means 
that it goes beyond our interests, which are limited to arithmetic, most of it focuses on arithmetic, and 



192 

the synchronie level of a person 'doing math' at a given point in time; the 
diachronie, developmental level of how an individual leams mathematics; and 
the diachronie, historical level of the development of mathematics as a 
discipline through time. (Dutilh Novaes 2013, 45) 

Starting with the synchronie level, it does indeed seem trivially true that the practice of 

mathematics usually involves some kind of extemal object: when people perform 

arithmetic operations, they typically use calculators, a pen and paper, or an abacus. 

However, as Dutilh Novaes points out, this may simply be due to the fact that this 

activity is much easier when done with a little help from the world. Extemal objects, 

in this sense, could merely be extremely convenient, but not constitutive of the practice 

of arithmetic. But constitutivity seems stronger than this: if extemal artefacts and/or 

symbol systems are constitutive of mathematical practice, then it should be impossible 

for someone to practice mathematics .without these. Thus, echoing the daims made by 

Feynmann mentioned above, Dutilh Novaes writes that 

the daim that writing is constitutive of mathematical reasoning entails that it 
not only records independent processes; writing is in fact viewed as an integral 
part (embodiment) ofthese very cognitive processes. (Dutilh Novaes 2013, 50) 

However, as Dutilh Novaes points out, this would still be a weaker sense of 

constitutivity, since the objects in such cases could merely be constitutive when in use, 

as opposed to the stronger sense of necessary for mathematical reasoning. 

Dutilh Novaes daims that the degree to which we need material support for the 

synchronie practice of mathematics - even when it is done in our head - is an empirical 

matter. On this issue, Dutilh Novaes displays a strong commitment to constitutivity. 

The daim here is that even when we do carry out mathematical operations in our heads, 

these still rely on extemal objects, since the thoughts we have in such cogitations corne 

those parts that do not still have implications for how we see constitutivity of externat support in 
arithmetical practices, as explained below. 
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from internalization of previous manipulation of external objects or symbols: 

even when a given person is apparently not manipulating symbols, such as a 
mental calculator, she in fact typically relies extensively on internalized 
versions of external devices (at least in most cases). (Dutilh Novaes 2013,51, 
emphasis mine) 

To support this claim, Dutilh Novaes cites Tang et al.' s (2006) study, mentioned above, 

which reveals that how we learn calculate will be reflected in which part of our brain 

is activated when we calculate. She also remarks that the system in which a persan was 

trained will influence the mental calculation method they use, as evidenced by the fact 

that notation-specific effects will be seen in their performance of various types of 

calculations. For example, people are typically faster in performing additions where 

one addend is a multiple of ten and the other is a single-digit numeral, since the task in 

such cases is simplified by replacing the zero with the single digit numeral. This is an 

effect of the place-value structure of the Indo-Arabic numeratio~ system. Similarly, 

there is evidence that the practice of mental abacus, with which some people can 

accomplish incredible feats of calculation, is aff ected by motor interference, rather than 

verbal interference, reflecting the learning ,stages in which users were trained using a 

physical abacus (Barner et al. 2016). 

From such data showing different ways in which internalization of various calculation 

styles affects mental reckoning, Dutilh Novaes concludes that "at least in most cases, 

mental calculations, even when performed by calculating prodigies, are essentially 

internai manipulations of previously mastered external symbolic systems" (Dutilh 

Novaes 2013:52, emphasis mine). These data show that the practice of arithmetic 

affects different people in different ways, based on the culture in which their 

mathematical skills develop. Thus, to get a better picture of the extent to which such 

practices rely on things outside our heads, we need to look at the diachronie level of 

ontogeny, given that there is evidence that the constitutivity of external support for the 

synchronie practice of arithmetic depends on the diachronie level of ontogenetic 
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development of mathematical abilities. 

5.4.2 The ontogenetic development of mathematical abilities 

Dutilh N ovaes' discussion of the diachronie, ontogenetic level of mathematical practice 

rightly focuses on the question of how much mathematical content is innate, and how 

much is learned. Dutilh N ovaes points out that the ontogenetic development of 

numerical cognition seems to require some form of counting routine, either in linguistic 

or non-linguistic format, in which labels are attached to exact quantities of objects. 126 

Instead of number words, many cultures used body-part-based numeration systems as 

their extemal support for numerical cognition (Dehaene 1997/2011 ). Also, Dutilh 

Novaes interprets the absence of number words for precise quantities in anumerate 

cultures like the Piraha (Gordon 2004; Frank et al. 2008) and the Mundurucu (Pica et 

al. 2004; Pica & Lecompte 2008; Izard et al. 2008) as evidence that extemal symbols 

for numbers are needed to develop exact numerical cognition. 127 Like most authors 

writing on these and other cultures with limited numerical skills ( e.g. Butterworth et al. 

2008; Butterworth & Reeves 2008), Dutilh Novaes takes this as evidence that although 

language may not be necessary for the ontogenetic development of representations of 

natural numbers, 

exact numerical cognition is external-symbol-dependent; it presupposes the 
very concept of exact quantifies, which may only emerge by means of explicit 
association to extemal symbols and the practice of counting beyond very small 
amounts (arguably, up to three). (Dutilh Novaes 2013, 54, emphasis mine) 

In support ofthis, Dutilh Novaes cites evidence suggesting that children that have yet 

126 De Cruz 2008, among many others, shares this view. 

127 These cultures are discussed in more detail below. 
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to master counting principles and members of anumerate cultures both represent 

numerical distance on the mental number line (section 2.2.5) as compressed, with larger 

numbers increasingly densely packed towards the right. A number of experiments have 

indeed shown that, prior to numerical education, there is a tendency to represent 

numerical distance as being larger for small numerosities and smaller for larger 

quantities - in essence, the evidence shows a logarithmic compression of number 

representations before extensive numerical education (Dehaene 1997/2011 ). Only once 

an individual has mastered some formai arithmetical practices does she then represent 

numerical distance as being equivalent for small and large numbers. This shift in 

numerical distance that accompanies mastery of counting routines is interpreted as 

showing that, without external support and mastery of some form of counting routine, 

our representation of numerical distance remains tied to its innate structure. As seen in 

the previous passage from Dutilh Novaes, this innate structure, at best, only includes 

concepts for exact quantities smaller than four. 128 

We saw above that Dutilh Novaes has made a case that at the synchronie level, most 

cases of practicing mathematics involve internalized external symbols. But even if this 

weren't true of all cases, the available developmental and anthropological data 

concerning the ontogenetic-diachronic level is deemed more decisive: 

from a diachronie, developmental point of view, external symbols appear to be 
a necessary condition for the emergence of mathematical concepts and 
mathematical reasoning. (Dutilh Novaes 2013, 55) 

128 As Dutilh Novaes mentions, this evidence is disputed, since children's increasingly regular division 
of the mental number line could be related to their mastery of one- and two-digit numerals (Moeller et 
al. 2009) or to more general proportional reasoning and spatial reasoning abilities (Mohring et al. 2018). 
See also Nufiez (2011) and Nufiez et al. (2012), who have challenged the universality of this mental 
number line and its initially logarithmic format. 
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5.4.3 The historical development ofmathematics 

Assuming that some kind of extemal support is needed for the practice of mathematics, 

Dutilh N ovaes argues that cases taken from the historical development of mathematical 

practices provide evidence for the claim that some mathematical practices are 

constituted by manipulations of symbols in formai languages. While our concem lies 

with arithmetic, it will be useful to consider her arguments here, as they reflect some 

of the commitments of extemalist accounts of numerical cognition, and how they frame 

the origin of the content associated with extemal symbols. Of particular importance 

here is the claim that extemal notation is in some cases responsible for the development 

of novel practices. 

Dutilh N ovaes illustrates the role played by extemal notation in the historical 

development of mathematical practices with an example taken from Landy & 

Goldstone (2007), who describe Descartes' introduction of the convention that letters 

at the beginning of the alphabet denote constants while letters close to the end denote 

variables. Due to this convention, our memory no longer had to dedicate resources to 

which letter meant what type of object, thus allowing us to invest it in other tasks. 

Dutilh N ovaes is right to point out that the history of mathematics is filled with such 

examples of major breakthroughs being 'accompanied' by improvements in notation 

( e.g. Indo-Arabic numerals, algebraic notations, calculus, etc.). But what form does this 

'accompaniment' take? That is, do the symbols corne first, or is it the mental content? 

It would almost seem to be a platitude to observe that when introducing new words or 

symbols into the world, we introduce these to refer to something that has been 

discovered or observed: words label things. In the case of mathematics, it would also 

appear uncontroversial that introducing mathematical notation happens after the 

content associated with that notation has emerged. As Macbeth put it, 
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The systems of written signs that have been devised for mathematics were 
devised for mathematics that already existed; it would be impossible to design 
a notation for mathematics without knowing at least some of the mathematics 
that the notation was designed to capture. (Macbeth 2013, 29, quoted in Dutilh 
Novaes 2013, 56) 

And yet, Dutilh Novaes argues, there are cases in the history of mathematics where 

notation was introduced whose precise meaning was not established: 

There seem to be a number of examples in the history of mathematics where 
specific notations were adopted even before it became clear which concept( s ), 
if any, they singled out. (Dutilh Novaes 2013, 56) 

If this is true, then this could be evidence against a 'documentist' interpretation of 

mathematical practice, according to which extemal symbols and artefacts corne after 

the internai process that has constructed the content they are associated with. 

Consider the cases considered as counter-examples to 'documentism' by Dutilh 

Novaes, the emergence of zero and the decimal place-value system. The concept of 

zero itself emerged as a result of the way the place value system works, a useful place-

holder to distinguish numbers like 307 from 37 and 30007, for example. The important 

point to consider here is that the exact status of zero as a number was only addressed 

long after its introduction in mathematical practices (Seife 2000). Thus, 

mathematicians were carrying out operations using the symbol for zero without 

knowing its exact status as a number. For Dutilh Novaes, this seems like it could be a 

case of people manipulating symbols within a system without knowing what concept 

that symbol refers to. After all, mathematicians used the symbol for zero for a long 

time before gradually coming to see it as a number: 

until the beginning of modem times in Europe, zero was not viewed as· a number 
on a par with other numbers; instead, it was viewed as a 'gap', but this did not 
prevent mathematicians and users of mathematics to calculate with the symbol 
as if it was a number. (Dutilh Novaes 2013, 57) · 
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The second example Dutilh Novaes wishes to levy against Macbeth's documentism is 

that of the introduction of the notation for calculus. The ontological status of 

infinitesimals was not well established for a long time, as testified by Leibniz' remark 

that "there is no need to let mathematical analysis depend on metaphysical 

controversies" (cited in Dutilh Novaes 2013, 57). According to Dutilh Novaes, the fact 

that people managed to use this notation without knowing exactly what it referred to 

means that "the concepts of infinitely small and infinitely large numbers essentially 

emerged from the very formalism" (Dutilh Novaes 2013, 57). Generalizing this 

thought, De Cruz writes that 

mathematical abjects do not exist prior to the introduction of symbols that 
denote them, but only after notational systems have been developed that enable 
their expression, and that are codified by the mathematical community. (De 
Cruz 2007, 271) 

We have just seen that Dutilh Novaes has argued that many mathematical practices -

including arithmetic - are constituted by the manipulation of external symbols, and 

that, at least for more advanced mathematics, some of these practices require 

specialized notation. Dutilh Novaes wants to use the case studies of zero and the 

development of notation for calcul us to show that there are cases where notation allows 

novel content to develop. This in turn supports an externalist interpretation of the role 

of external artefacts in the ontogenetic development of numerical abilities in both 

children and anumerate cultures. 

Thus, if 1 want to show the limitations of the externalist approach to numerical 

cognition, it is important first that 1 challenge Dutilh N ovaes' externalist interpretation 

ofthese historical cases, given that they are used as evidence for the claim that notation 

can cause the emergence of novel content in ontogeny. ln the next section, 1 tackle this 

historical challenge. 
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5.5 Challenges to constitutivity 

5.5.1 Notation and construction 

The first challenge for Dutilh Novaes' views on the constitutivity of extemal symbols 

cornes from her discussion ofhistorical cases that are meant to show it is false that "the 

development of new notational techniques is the consequence rather than the cause of 

progress in mathematics." (Dutilh Novaes 2013, 56) 

There are a few claims to disentangle here. First is the claim that there are cases of 

purely syntactic, 'de-semanticised' manipulation of symbols.129 This daim seems 

uncontroversial, assuming that understanding the rules of manipulation for these 

symbols does not count as part of their content. Another is the claim that there are cases 

where we manipulate symbols without knowing exactly what they refer to. This again 

seems uncontroversial, given that the meaning of terms often evolves over time as we 

discover more things about their referent. Another daim is that in cases of ambiguous 

or incomplete understanding of the meaning of symbols, like zero and the notation for 

calcul us, the notation allows us to discover things we hadn't already thought about, and 

thus to make progress in mathematics. 

This claim is meant to count as a counter-example to Macbeth's documentism which, 

recall, claims that "The systems of written signs that have been devised for mathematics 

were devised for mathematics that already existed" (Macbeth 2013, 29). There are two 

interpretations .of 'mathematics' here that appear relevant. On one interpretation, 

mathematics is a purely formai manipulation of symbols in which no meaning is 

required. This possibility is accepted by both Macbeth and. Dutilh Novaes's 

129 Macbeth (2013) uses the term 'de-semantification' to describe cases where ifwe are equipped with 
the formai rules for manipulating symbols, we can learn how to follow these rules even if we do not 
know what the symbols refer to. 
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endorsement of the notion of 'de-semantification'. In this sense, however, Dutilh 

N ovaes' s claim that this could be a case of notation being adopted before it became 

clear what the concepts singled out were would be false, since there would be no 

concepts singled out, apart from the forrnal rules themselves, which would be explicitly 

laid out from the get-go. That is, if the development of notation for zero and calculus 

are meant to show that there are cases where "specific notations were adopted even 

be fore it became clear which concept( s ), if any, the y singled out" (Dutilh N ovaes 2013, 

56) then the possibility of de-semantification seems off the mark, given that purely 

syntactic manipulation of symbols need not carry with it any knowledge of what the 

symbols means. 

On a second interpretation of this daim, the idea is that 'mathematics' refers to both 

the formal rules and the meaning of the symbols. It looks like Dutilh Novaes here wants 

to argue that symbols like 'O' and those for the practice of calculus referred to things 

that were either not well understood or whose ontological status was ambiguous, and 

that these concepts were better understood as a result of the change in notation. This is 

considered a case of "mathematical concepts actually emerging from formalisms and 

notational conventions." (Dutilh Novaes 2013, 57-58) But the conclusion does not 

seem to follow, for a few reasons. 

Consider zero first. If what Dutilh N ovaes says is true, then the fact that zero carne to 

be used as a placeholder allowed the development of content that was not available 

prior to this practice. Presurnably, this has something to do with considering zero as a 

number instead of a placeholder in calculation. But what is the novel content associated 

with seeing zero as a nurnber? The notion of absence of quantity, for example, was 

already available. As De Cruz points out, the concept of zero derived from Jaïn 

cosmological ideas of emptiness: "The emergence of zero as nurnerical concept in Jain 

mathematics was possible because it could free-ride on cosmological and philosophical 

concepts" (De Cruz 2007, 221 ). In this sense, the content associated with the symbol 
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was already available elsewhere, and th~ content associated with its status as a number 

need not be seen as a consequence of its use in such formalism. 

Further, it would seem false to daim that its inclusion in mathematical practices 

allowed zero to gain credibility as a number, since the peculiar status of zero as a 

number remains to this day, as evidenced by the fact that it is not leamed in the same 

way as other numbers (De Cruz 2007) nor does it share many of the properties of other 

numbers (Seife 2000). In short, the fact that a symbol came to be used to refer to 

absence of quantity does not seem to justify saying that the concept of absence of 

quantity, or whatever zero actually refers to, was only discovered by manipulating 

symbols for zero. 

Similarly, as Dutilh Novaes herself points out, Leibniz was aware of the ambiguous 

ontological status of the referents of the symbols he proposed. This suggests that the 

concepts that Dutilh Novaes would like us to believe came to light via use of this 

notation were already formed in Leibniz (and Newton's) head before their use started 

to spread, even though their precise referent had not been forged. Dutilh N ovaes' daim 

seems to be that it is only because the use of such notation that their ontological status 

was settled. But there are a few reasons to doubt this. To begin with, it is doubtful that 

the ontological status of infinitesimals or zero is a settled matter. lndeed, we need not 

look further than natural numbers if we wish to speak of symbols whose referents are 

not clearly understood, given that the foundational crisis at the beginning of the 20th 

century revolved around questions like what sort of things numbers are. 

The ontological status of infinitesimals had been problematic long before Leibniz and 

Newton used it in their development of differential calculus, and remained problematic 

after the introduction of their notation. This is testified by that fact that Eudoxus 

banished Democritus' atoms around 350 BC, and, much later, by the fact that 

infinitesimals were abandoned in the 19th century in favor of the cqncept of a limit, 

after having been described as "ghosts of departed quantities" by Berkeley and as 
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"cholera-bacilli" infecting mathematics by Cantor (Bell 2018). This would seem to 

suggest both that the concepts that were behind Leibniz' introduction of his notation 

were already available, along with their imperfections, and that the use of this notation 

did not improve our understanding oftheir ontological status in any significant way. If 

this is true, it is questionable to which extent Dutilh Novaes' daim that the notation 

allowed its users to think of content unattainable without such notation is true, both for 

zero and the infinitesimals. 

Perhaps we can weaken the contribution of symbols and merely say that the notation 

allowed us to make progress towards identifying what sort of things the symbols 

referred to, rather than settling ontological issues. Here too, in order for Dutilh Novaes' 

daim to be true, this would mean that the notation would allow us to think things about 

the content of the symbol that could not have occurred without it. But in the cases 

considered, what evidence do we have for this? The concept of the infinitely small was 

debated for millennia before the invention of the calculus and is still causing headaches 

for mathematicians and philosophers. 

It may be worth mentioning that for this symbols-first approach to be true, we might 

expect the symbols themselves somehow embody the notion of infinitely small in a 

way that allows novel content to emerge from it. But, given the abstract nature of the 

mathematical infinite, it is doubtful that any particular symbol would allow such novel 

content to emerge. Symbols, after ail, are finite. 

To summarize, there is reason to doubt that the use of novel notation like the ones 

discussed above can be considered causes of the development of novel mental content 

that was not previously constructed without the help of such notation, which leaves 

open the possibility that the historical development of mathematics follows a 

documentist progression in which notation labels previously constructed content. 
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5.5.2 Challenges to constitutivity in ontogeny 

Two other problems with Dutilh Novaes' externalism warrant discussion, both of 

which concern the diachronie, ontogenetic level of numerical cognition. We saw that 

Dutilh Novaes claims that the ontogenetic development of exact numerical content for 

quantities larger than three requires external support. The first problem associated with 

relying on external artefacts for the origins of exact numerical content beyond the 

subitizing range is that it does not seem to allow us to explain what happens when 

children learn to master quantification practices like understanding the meaning of the 

terms in their counting routines. In relation to the discussion of difference-makers 

above (section 5.2.3), if we want to explain what sets a subset-knower apart from a 

cardinal principle knower it doesn't look like we can look outside the head, since these 

children ail have access to the same extf'.rnal support from which to learn. If the symbols 

or artefacts are constitutive, then it is difficult to see how we can distinguish between 

those individuals that have been exposed to the symbols and have mastered the novel 

content, and those who have not. After ail, the difference between subset-knowers and 

cardinal-principle knowers is not outside the head, it involves some kind of induction 

or realization on the part of the child, as seen in chapter 4. Ifthis insight is reached with 

the same access to the same external resources, it looks like the important part of this 

developmental puzzle is inside the head, and that external symbols are, at best, 

catalysts. 

This seems to reflect an important aspect of learning to manipulate exact quantities: in 

order to say that a child (or adult) knows how to manipulate quantities, their behavior 

has to be guided by an understanding of general principles that allows them to 

distinguish ~etween collections based on the number of things they contain. This 

understanding seems like it happens inside our head. For example, in a hypothetical 

case in which a person' s numerical abilities were limited to asking someone else to 

calculate the answer to a problem and repeating it back, there would be a sense in which 
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we would not want to attribute them mastery of numeration practices, since their 

behavior does not display any such understanding, even though they can 'produce' the 

right answer to an arithmetical problem. Rather, such a situation displays blind, de-

semanticised formai manipulation of the sort discussed in Searle's Chinese room. If 

this is true, then externalism seems like it might have difficulty accounting for the 

insight that cornes with realizing how counting routines work. 

A separate is~ue concerns the potential origins of numerical content in ontogeny. 1 

mentioned that one of the ways Dutilh Novaes uses developmental datais to justify the 

claim that synchronie mathematical practice involves internalization of the 

manipulation of external symbols learned in ontogeny. The idea is that ifwe have data 

that learning to manipulate precise quantities involves relying on external support, then 

any case of apparent support-free practices should be due to internalization of these 

practices. W e may be tempted to use Carey' s bootstrap as evidence of this externalist 

learning process, given that the first step in such a bootstrap is the memorization of 

meaningless number words. However, this would be leaving aside one of the most 

distinctive elements of Carey's approach, which is that these symbols are mapped to 

the representations of set-based quantification. The content of set-based quantification 

is evolutionarily-inherited and serves to ground the initially meaningless list. This 

means that such content is available to us without any external support. If this is true, 

then, as Dutilh Novaes accepts, there can be some primitive and restricted range in 

which we could manipulate exact quantities - perhaps, for example, ONE versus 

MANY. 

Here, as in other levels of analysis of the origins of mathematical practices, we are 

confronted with a 'chicken-egg' problem, as Dutilh Novaes notes. Take the case of 

anumerate cultures like the Pirahà and the Mundurucu: is the fact that their languages 

do not contain number words the reason for their lack of numerical practices, or is this 

lack of practices the reason that their language lacks number words? The answer to this 
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question has important consequences for extemalism about numerical cognition, given 

that if it were to turn out that the latter option are true, then we could argue that we do 

not need extemal linguistic support to develop representations for exact quantities. The 

case of anumerate cultures is not settled yet, though Dutilh Novaes' remarks that such 

cultures could be considered as having labels for exact quantities up to three implies 

that some restricted numerical content would be available without extemal support. If 

this is the case, then constitutivity. needs to be qualified, since the fact that some 

numerical content doesn't require external support for· its development begs the 

question of how much such content can be reached without attributing a constitutive 

role to external support. To explore this issue, I take a look at the origins of non-

linguistic counting routines in the next section. 

5.5.3 Which came first, the number or the numeral? 

As mentioned above, there is consensus that the ontogeny of representations of exact 

numerical quantities requires a counting routine to go through. When asking where 

such counting routines corne from, Dutilh Novaes seems to think that their origin 

depends on having representations of discrete quantities: 

humans have a long history of developing calculating devices/objects such as 
counting rods and abacuses, and each of them presupposes that quantities be 
represented so that they can be 'operated on' for calculation. (Dutilh Novaes 
2013, 51) 

In order for this to support extemalism, it must be possible to corne up with an 

externalist explanation for the origins of representations of the notion of precise 

quantity, insofar as the development of counting devices is said to depend on such 

representations. However, the origins of a representation of the notion of precise 

quantity itself seems to rely on an important insight of a similar nature to the one that 
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occurs when we bridge the gap, since none of the core cognition modules has explicit 

representations of discrete quantities, let alone of the notion of precise quantity itself. 

The fact that Dutilh N ovaes seems to agree that it is possible to form such a 

representation be/ore we have counting routines suggests that the important notion of 

precise quantity can develop without the benefit of the extemal support used in 

counting routines. If this were true, then there is reason to doubt that we need extemal 

support in the strong, constitutive sense of the term, given that the representation of 

discrete quantity is achievable without such support. While there is no doubt that 

extemal support may facilitate the acquisition of this content and extend its domain of 

application, these would appear to be weaker senses of constitutivity that make room 

for the possibility of intemalist development of exact numerical quantity. 

Perhaps I am misinterpreting Dutilh N ovaes' claim here, but there are good reasons to 

think this misinterpretation happens to be true. Consider the opposite situation, where 

counting requires external artefacts for its acquisition. As Dutilh Novaes observes, at 

least in ontogeny, "Counting is a practice which only emerges upon explicit 

instruction" (Dutilh NQvaes 2013, 54). On pain of a regress of explicit instructors, 

however, it must be possible to corne up with counting routines on one's own, at least, 

in a primitive form, such as having labelled a few precise quantities and understanding 

that they are labels of precise quantities. If this is true, then there is reason to think that 

extemal supports are not required to develop such practices. They are merely extremely 

convenient. And if this is true, then the associated claim that any synchronous case of 

internai computation is an internalized version of external practices is weakened. . 

Even if these three problems turned out not to be a worry for the externalist, Dutilh 

Novaes' argument for the constitutivity of extemal symbols and objects in the 

synchronie practice of arithrnetic is based in large part on models of the ontogeny of 

exact numerical abilities like Dehaene' s and Carey' s that crucially rel y on extemal 

artefacts. However, as I mentioned earlier in the description of my origins problem, the 
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origins ofthese externalized practices may be a problem for the externalist, since these 

models' reliance on external symbols for numbers in ontogeny begs the question of 

where these symbols corne from qua symbols for precise quantifies, given that using 

objects as symbols for precise quantities must have been the creation of human 

individuals. Thus, it seems problematic at this point to consider these as evidence that 

extemal symbols are necessary in ontogeny, given that we still haven't figured out how 

the first external representations of precise quantities emerged in a world where 

numerals and number words were absent. While the precise details of such a story will 

probably always remain a matter of speculation, it would still be useful to get a better 

idea ofhow this could have happened. To this end, in the next section 1 discuss data on 

the development of numeration practices in the N ear-East. 

5.6. A case study of the historical development ofnumerical cognition 

5.6.1 Material Engagement Theory 

For Lambros Malafouris, to explain "the ontogenetic and phylogenetic passage from 

approximate to exact arithmetic" (Malafouris 2010, 35), it is necessary to look beyond 

neurological data conceming current-day arithmetical practices. This is because 

explaining this passage involves explaining how "the sapient mind make that leap 

forward, overcoming the limits of approximate numerical thinking" (Malafouris 2010, 

35), which, at least initially, occurs when "an explicit vocabulary of number words 

does not exist" (Malafouris 2010, 35). Thus, Malafouris expresses doubts conceming 

the ability oflanguage-based accounts of delivering an answer to how we first bridged 

the gap: 

1 do not dispute the fact that it is language competence that enables above all 
the development of the verbal symbolic number system essential for the 
development of exact calculation and higher mathematics. What 1 argue is that 
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although this may well be the case when verbal number exists in the Vygotskian 
developmental 'zone of proximal development', it cannot be used to account 
for the development of numerical thinking in a context where such verbal 
numerical competence does not yet exist. (Malafouris 2010, 38) 

However, while this may make Malafouris look like he. shares the worries expressed 

by my origins problems, and thus that he would be inclined to reject adopting an 

extemalist account of numerical cognition, this is not the case. 

This is because Malafouris' also adopts a brand of extemalism, which he dubs Mate rial 

Engagement Theory (2010, 2013). Material engagement theory can escape some of the 

problems associated with explaining the origins of extracranial objects with numerical 

meaning, because it focuses on the role of the body in shaping the development of our 

numerical abilities. 130 Instead of focusing on neurological data conceming the way 

arithmetic is currently practiced, Malafouris focuses on data from cognitive 

neuroscience that deals with non-linguistic numerical processing, as well as with data 

. pooled from archeological and anthropological research, to tcy to piece together the 

conditions in which the initial origins of numerical practices occurred. 

For example, as evidence of the influence of culture on numerical cognition, Malafouris 

notes the evidence mentioned above (section 2.2.5) that the Space Number Association 

Response Code (SNARC) can be influenced by cultural practices, including the 

direction in which we leam to read (Zebian 2005). This shows that culture has a 

profound effect on how we process numerical information, including the relationship 

between number and space. Malafouris also mentions the importance of counting 

routines for the development of arithmetically-viable numerical content, as mentioned 

by Pica et al. (2004) as a possible reason for why the some anumerate cultures lack 

130 In this sense, Malafouris' brand of externalism can be seen as adopting aspects of both enactivism 
(Varela et al. 1991) and distributed cognition (Hutchins 1995) .. 
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representations of exact quantities beyond the subitizing range. 

Malafouris, like Dutilh N ovaes, argues that counting routines are not necessarily 

verbal, and can include tallying systems and body-part systems: "a system of counting 

words may not necessarily be the only system of counting" (Malafouris 2010, 3 8). For 

Malafouris, such cases of non-verbal counting routines are examples of "an embodied 

sensorimotor association of quantity with the movements of touching various parts of 

the body in a fixed order" (Malafouris 2010, 38). Such cases involve the substitution 

of abstract numbers for "a complex enactive bodily system" (Malafouris 2010, 38), 

where we can express specific dates, for example, in terms of numbers of days 

following a full moon, by painting to parts of our bodies. Thus, in looking for the non-

verbal origins of representations of exact quantities, Malafouris highlights the fact that 

many abjects in our environment can be used to count things, including knotted strings, 

sticks, pebbles, and bones. 

As evidence for the variety of tools that can be used to count things, the archeological 

literature has turned up an impressive number of relies of ancient counting systems, 

including bones with carved notches in them dating back around 30 000 years. For 

example, the notched bones from Abri Cellier in France date back at least 28 000 years 

(Overmann 2014), while Ifrah (1998,123) daims notched sticks were used as tallies at 

least 40 000 years ago. Ifrah also notes that one wolf bone dating back to around 30 

000 years contained 55 markings grouped in series of five, which, he daims, 

"demonstrates that at that time human beings were not only able to conceive of number 

in the abstract sense, but also to represent number with respect to a base." (Ifrah 1998, 

119-120). Knotted string was used in many independent civilizations for accounting 

purposes (Ifrah 1998), while hands also appear to have been used for accounting and 

calculating purposes, as evidenced by 27 000-year-old hand stencils found in caves in 

France (Overmann 2014). 
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5.6.2 Tokens for numbers 

According to Malafouris, the first evidence we have of representations sharing the 

abstract properties of natural numbers is that found in clay tablets dating back around 

5000 years to the Sumerian empire that appear to have been used to keep records of 

commercial transactions (Ifrah 1998; Schmandt-Besserat 2010). The inscriptions on 

these tablets were based on earlier clay tokens used by the same culture around 7500 

years ago. Initially, these tokens took one of six shapes (cones, spheres, cylinders, 

dises, tetrahedrons, and ovoids), each of which represented a particular type of object. 

According to Schmandt-Besserat, these tokens show that counting and accounting 

started when agriculture and commercial trade required better quantification methods. 

Tokens then took on a much larger variety of sizes to represent the increase in variety 

of traded goods. In such accounting systems, quantities of objects were represented by 

the tokens using one-to-one correspondence (hereafter: 11 C) between tokens and 

quantities of traded commodities. 

When the need to keep track of exchanges became more complex, the Sumerians 

invented clay ball-shaped 'envelopes' in which the tokens would be kept as records. 

To mark the content of the envelopes, the tokens were imprinted on its sides, so that 

their contents could be inspected without needing to break the envelope (See Figure 

5.1). This marks a transition from three-dimensional token to two-dimensional tokens. 

These envelopes were eventually replaced with tablets on which the shape of the token 

was impressed, still relying on 11 C . between numbers of goods and (impressed) 

symbols for these. Then, in a later stage, the tokens were drawn or carved in the clay, 

instead of being the result of imprinting. 
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Figure 5.1. Clay envelope with impressed token-shapes. (Schmandt-Besserat 1996) 

The important moment in the development of abstract notation for number came when 

the accounting practice shifted away from 11 C: at some point around 5000 years ago, 

the pictographs representing the tokens were no longer drawn the same number of times 

as the objects represented were counted. Rather, a single pictogram representing the 

object type was drawn, along with notches of different sizes next toit to represent how 

many of the objects were represented. For example, a large wedge represented sixty 

units, a small wedge represented one unit, and a circular imprint represented 10 units 

(see Figure 5.2 for an example of such abstract notation). As Schmandt-Besserat notes, 

the increase in efficiency of such notation is remarkable: for 33 units, 7 inscriptions 

were now needed, instead of the 33 that would be required by l lC. 

l 
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Figure 5.2. Clay tablet with abstract symbols for quantities. This tablet displays 33 
units of oil, as indicated by the 3 round impressions (10 units) and three wedges (units) 
next to the symbol for oil, to their right. (From Schmandt-Besserat 2010) 

According to Schmandt-Besserat, 

Pictography thus marks the extraordinary event when the concept of number 
was abstracted from that of the item counted .. .It was also momentous in 
overcoming one-to-one correspondence, which had govemed counting during 
the entire token era (Schmandt-Besserat 2010, 31) 

It should be noted that while this notation was indeed abstract, in the sense of having a 

symbol for a quantity other than one, symbols were still commodity-relative. For 

example, symbols that could stand for 10 units of animals could refer to 6 units of 
. 131 gram. 

13 1 Beller & Bender (2008) claim that number words are one of the necessary ingredients to the 
development of 'complex numerical cognition', but they also claim that, contrary to popular belief, 
object-based terms can be more useful in calculation, given the size of their counting units, which 
extends the limits of counting. In this sense, the fact that Near-Eastern symbols were still commodity-
relative need not count against their level of complexity or advancement, since there is evidence of some 
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5.6.3 Problems with Material Engagement theory 

According to Malafouris, the historical development of Sumerian accounting 

techniques that led to the abstract representation of precise quantities of objects shows 

that material engagement with cultural artefacts is a necessary precursor to such 

abstract representation of number. Malafouris rightly points out that to answer the gap 

problem we have to identify "the causal role of this form of meaningful material 

engagement" (Malafouris 2010, 39). However, his answer to this question seems to run 

into a few difficulties. For example, in his explanation of how manipulating clay tokens 

allows the development of an abstract conception of numbers, Malafouris claims that 

the use of clay tokens provides the necessary extemal scaffolding, with a 
dynamic and constitutive role, for the emergence of arithrnetic competence ... 
counting with clay tokens should be seen as an integrative projection between 
mental - the basic biological approximate 'number sense' (Dehaene 1997) -
and physical - for instance, fingers or clay tokens - domains of experience. It 
is the resulting structural coupling ... that brings about the possibility of the 
meaningful cognitive operation we know as counting and not some innate 
biological capacity of the human brain. The clay tokens do not stand for 
numbers, as it may seem; the clay tokens bring forth the numbers and make 
visible and tangible the manipulation oftheir properties. (Malafouris 2010, 40) 

One problem here is that, contrary to what would appear to be described by the notion 

of 'integrative projection', the ANS is not equipped to handle either 11 C between 

tokens and physical objects, as the evidence presented in chapter 2 conceming the 

limited precision of this system shows. Not only is it doubtful that the ANS can underlie 

representations of quantities within the confines of the restricted subitizing range, but 

it is also doubtful that a mapping between the ANS and extemal symbols or artefacts 

numeration systems going from more abstract commodity-independent format to object-specific format. 
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underlies the generalization that lead to 'arithmetic competence', as seen in Carey's 

criticism ofDehaene's mapping in chapter 3. 

Moreover, Malfouris' account attributes considerable importance to the fact that we 

are manually manipulating numbers instead of having to think about them and daims 

that grabbing and manipulating tokens reinforces and builds neural connections 

between the ANS and areas of the brain related to manual tasks like grabbing and 

pointing. But while there is indeed strong evidence that hand gestures influence 

numerical processing, 132 the evidence against attributing a necessary role to finger 

counting in the development of our understanding of natural numbers is also quite 

decisive (Crollen et al. 2011), which suggests a similar limitation to manipulating day 

tokens with our hands. 

Also, while there is a sense in which grabbing a day token is a more 'concrete' 

representation of numbers, there is another sense in which the fact that numbers are 

generally considered abstract entities means that there is nothing in the grabbing of a 

day token that somehow makes the representation less abstract, given that there is 

nothing in the material shape of the token that somehow better embodies what numbers 

are, due to their abstract nature. 

Perhaps more importantly, however, despite its focus on non-linguistic development, 

Malafouris' reliance on extemal tokens seems to share some of the same issues at the 

heart of my origins problem. For while we can agree that the tokens themselves can be 

the result ofhands molding clay, the question ofhow these corne to be used as symbols 

for precise quantities is not settled in this account. Malafouris daims that the 

manipulation of clay tokens makes the problem of counting easier to solve by making 

132 The relationship between representations of fingers and represèntations of numbers is receiving 
increasing attention in the numerical cognition literature. See Crollen et al. 2011; Fayol & Seron 2005; 
Moeller et al. 2012; Andres et al. 2012. 
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it a spatiovisual problem instead of a conceptual problem: 

the vague structure of a very difficult and inherently meaningless conceptual 
problem - that is, counting - by being integrated via projection with the stable 
material structure of the clay tokens is transformed into an easier spatiovisual 
problem. However, spatiovisual problems can be directly manipulated and 
manually resolved in real time and space. As Schmandt-Besserat 
observes ... tokens made it possible to visualize and manipulate numerocity 

· [sic]. Thus the problem - that is, counting - becomes meaningful. (Malafouris 
2010, 40) 

While it seems likely that visuospatial problems are indeed easier to salve in many 

cases, as illustrated in the case of Tetris mentioned above, the problem here is that the 

mere fact that counting is considered a problem at all presupposes cognitive resources 

whose origins is left unexplained on this account. As mentioned above, in order to 

count, we have to have a representation of precise quantity. This means we had to have 

the concept of precise quantity in order to use tokens as a solution to a counting 

problem. Representations of precise quantities arguably underlie our basic numerical 

abilities, given that in order to consider any two collections as distinct based on the 

number of items they contain, it is necessary to have the concept PRECISE 

QUANTITY. However, as mentioned above, neither the ANS nor any other core 

cognition module allows such distinctions based on explicit representations of precise 

quantities. While the ability to put items into 11 C could arguably be innate, doing this 

as part of a task of precise quantification is not. To see why, in the next section, I take 

a closer look at the quantificational abilities of anumerate cultures like the Piraha and 

the Mundurucu. 
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5. 7 Quantificational abilities in anumerate cultures 

5.7.1 The Mundurucu 

To clarify the relation between language and arithmetic, Amazonian cultures like the 

Mundurucu and the Piraha , whose languages lack a productive number lexicon, were 

extensively studied in the past fifteen years or so. Consider the Mundurupu first. The 

Mundurucu lack words for numbers larger.than five, and even in this restricted range, 

their use of numerical language is inconsistent, as evidenced by the fact that they can 

alternately describe a collection of three objects with the Mundurucu word 'ebapug', 

which is most frequently used to describe collectfons containing three objects, but also 

can be used for collections of two and four objects (Izard et al. 2008). In other words, 

it looks like they treat even small numbers as approximate quantities. While most 

Mundurucu can now recite a count list of Portuguese counting words, they still use 

these foreign words to refer to approximate quantities, which suggests that, like the 

subset knowers in Wynn's studies, they have yet to corne to an induction that allows 

them to associate the meaning of these words with precise quantities. 

While they do not have a linguistic counting routine, the absence of number words does 

not prevent some Mundurucu from being able to use their hands and toes to match the 

number of dots they see, when prompted to. To determine to which extent their lack of 

a productive system for number words influences their performance in rudimentary 

numerical abilities, Pica and colleagues (2004) asked Mundurucu participants to point 

to the dot array that had the larger number of dots, using dot arrays containing between 

20 and 80 dots. Performance was well above chance, though slightly below that of 

educated westerners. Distance effects were observed, suggesting that their numerical 

abilities are recruiting the same system as educated adults (i.e. the ANS). 

These researchers also tested Mundurucu ability to perform rudimentary arithmetical 

operations by exposing them to images of distinct collections of dots being placed into 
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a container and then asked them to compare its contents to a third collection of dots. 

Again, performance was well above chance and displayed distance effects. In a third 

task, researchers tested whether the Mundurucu could perform operations on exact 

quantities of objects. Participants were asked to use a word to describe how many 

objects were left after a collection of dots was subtracted from another. While the 

number of dots in both collections was out of range for Mundurucu number vocabulary, 

the result of the subtraction was in their number lexicon. Here, their performance was 

much lower than that of educated westerners. The authors speculate that the absence of 

a counting routine may explain the limitations of the Mundurucu numerical abilities, 

since "counting may promote a conceptual integration of approximate number 

representations, discrete object representations, and the verbal code" (Pica et al 2004, 

503). 

The most important result for our purposes is that the Mundurucu and other anumerate 

cultures are.able to put objects into 1 lC. Evidence for this cornes from many sources. 

For example, when asked to match the number of dots presented on a screen using 

seeds, the Mundurucu perform above chance. Similarly, consider the following task 

used by Pica and collaborators: 

participants were presented with an animation which involved sets of red and 
black puzzle pieces and a can. At the beginning of each trial, red and black 
pieces were presented in one-to-one correspondence, and the can was shown to 
be empty. The black pieces stayed in place during the whole trial, while the red 
pieces started to move and disappeared inside the can. At this point, a 
transformation occurred which affected the hidden set of red pieces: some 
pieces were added or subtracted, or pieces were replaced by other ones. A~ the 
end, some of the red pieces came back in front of the black pieces, and 
participants were invited to judge whether the box was empty or not by clicking 
on one of two alternatives. (Izard et al. 2008, 501) 

Performance on this task was also above chance levels. This shows that the absence of 

a counting routine does not prevent the ability to match collections in terms of the 

quantity of objects they contain using 11 C. However, given the variable way in which 
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Mundurucu words are u_sed to denote precise quantities, it looks like their ability to put 

collections into 11 Chas not allowed them to form explicit representations of PRECISE 

QUANTITY. This would appear to be strong evidence that it is possible to use 1 lC 

without having a general representations of PRECISE QUANTITY, thus supporting 

my claim that Malafouris and Dutilh Novaes cannot rely on 1 lC to explain where we 

get representations of precise quantities from. 

I take this as evidence that 11 C is not enough to get the concept of precise quantity, 

since for this concept to be present, there needs to be an insight or understanding that 

what sets the collections apart and what is being matched is explicitly represented in 

terms of the exact number of items they contain, whereas all we have is evidence of 

here is an understanding of SAME or DIFFERENT, not an explicit representation of 

what could explain the difference between these collections. 133 If the notion of 

PRECISE QUANTITY were available to the Mundurucu, even within a restricted 

range, then we would expect them to use the same labels to refer to collections that 

contain the same number of items, just like other words of their language refer to the 

same property of the objects being named. The fact that this is not the case shows that 

their ability to put objects into 11 C is not guided by the task of putting objects in 11 C 

in terms of their precise quantity. Rather, they could simply be guided by the task of 

matching members of collections one by one, until this task is no longer possible, 

without having corne to a realization that this process allows matching of collections 

in terms of quantities. This sets their 11 C skills apart from those of Sumerian 

accountants, whose 11 C was, according to Malafouris, aimed at solving a quantity-

related problem. 

This interpretation seems confirmed by one of the most prominent researchers of 

133 As seen in section 1.4, similar considerations prevent us from attributing numerical content to the 
OFS. 
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Mundurucu numerical abilities, Pierre Pica: 

We would like to suggest that the absence of exact numbers in Mundurucu is 
closely related to the fact that, although Mundurucus recognize sets and 
individuals, they do not make sets. out of individuals through distributive 
quantification (Pica & Lecompte 2008, 511, emphasis mine) 

This seems consistent with interpreting an absence of uriderstanding of the concept of 

precise quantity, since if the Mundurucu did understand the general concept of precise 

quantities, then we might expect them to be able to individuate collections based on 

this understanding of precise quantity. And yet, the evidence seems clear that they can 

perform 11 C, further su~gesting that 11 C does not entail an understanding of what 

precise quantities are. 

In the Mundurucu language, the word often associated with collections of five objects 

means 'a handful' (Pica & Lecompte 2008). My daim is that while such words may 

appear to describe the possibility of putting collections of objects into 11 C with our 

hand, this does not mean that the Mundurucu have an understanding of what the 

referent of this word and the referent of other terms in their restricted numerical lexicon 

have in common, namely, that they refer to the precise quantity of objects in 

collections, as individuated in terms of what these collections can be put into 11 C with 

(e.g. parts oftheir hands). The situation seems analogous to that described by Wynn's 

subset knowers, where children canuse 'three' to describe collections in terms of the 

possibility of putting their elements in 11 C with elements of words in their count list, 

and yet do not have an understanding that these instances of 11 C have in common the 

fact that they are instances of the application of the concept PRECISE QUANTITY. In 

both cases, what is missing is an insight, a realization, that allows using labels for other 

instances of 11 C: 

Around the age of 3, Western children exhibit an abrupt change in number 
processing as they suddenly realize that each count word refers to a precise 
quantity. This "crystallization" of discrete numbers out of an initially 
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approx.imate continuum of numerical magnitudes does not seem to occur in the 
Mundurucu. (Pica et al 2004, 503)134 

5.7.2 The Pirahâ 

Another extensively studied culture with limited numeration skills is the Pirahâ, whose 

number lexicon is arguably worse than the Mundurucu. While. Gordon (2004) 

interpreted Pirahâ language as containing words for 'roughly one', 'roughly two', and 

'many', on Everett's (2005) interpretation, the Pirahâ words for 'one', 'two' and 

'many', are better translated as 'small size/amount', 'a bit bigger size/amount', and 

'cause to corne together/many'. To determine which of these interpretations is better, 

Frank et al. (2008) tested the words used by the Pirahâ to describe collections of spools 

of thread containing from one to ten spools. Importantly, the number of spools was 

presented in ether ascending or descending order (i.e. in some trials, the first stimulus 

contained one spool, and then each successive trial contained one more spool, while in 

other trials, the reverse situation was presented, starting with ten spools and descending 

back to one). 

Unexpectedly, the Pirahâ used different words in ascending and descending trials. For 

example, the word that could be the Pirahâ equivalent of 'one' was used to describe 

the one-spool stimulus on ascending trials. However, on descending trials, this word 

134 Further support for this interpretation ·cornes from the fact that animais are able to put objects into 
1 lC, learn to label collections in terms of the quantities of objects they contain, and even associate 
symbols for these quantities. And yet, they fail to generalize their ability to novel cases. For example, 
Japanese primatologist Tetsuro Matsuzawa (1985, 2009) managed to teach a chimpanzee named Ai to 
associate various symbols with collections of objects. This chimp was taught to associate sets of objects 
with names, colours, and number symbols. Ai eventually managed to successfully associate the first nine 
digits with collections displaying the associated numerosity, and has also learned to order the numerals 
according to their magnitude. Since then, a few other chimps have also learned to use numerical symbols 
correctly. See also Boysen et al. 1996. ' 
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was used to describe collections of up to six spools. This seems to show considérable 

variability in the Pirahâ 's labelling of collections based on their size, prompting 

researchers to conclude that this culture may even fack a word for EXACTL Y ONE. 

Given that their language does not display such variability in other domains - the word 

for water is not used to describe fire, for example - this seems to suggest that they do 

not have the concept of precise quantity - or, if they do, they have no linguistic label 

for it. And yet, as evidenced by their performance in matching tasks, they can perform 

11 Con collections containing numbers of objects that go beyond the subitizing range. 

This again, suggests that 11 C is not enough to get the concept of precise quantity, as 

suggested in the following interpretation of Pirahâ 11 C abilities: 

the one-to-one matching task itself can be completed via a simple algorithm, 
"put one balloon down next to one spool." At no point during the task must 
participants represent the cardinality of the entire set. They need only to 
understand that, in the application of this algorithm it is exactly one balloon that 
must be matched to exactly one spool. (Frank et al. 2008, 823) 

5.8 Limiting the scope of constitutivity 

The previous section showed that there is evidence supporting the claim that the ability 

to put objects into 1 lC does not guarantee possession of the concept PRECISE 

QUANTITY. This, in tum, sugge~ts that the development of counting routines, which 

are considered essential to the emergence of advanced numerical cognition, cannot be 

explained solely by an ability to put objects into 11 C. And yet, as we saw, Malafouris 

seems to frame the solution to the gap problem in terms of solving a counting problem 

by material interaction with clay tokens. But, given that none of.our core conceptual 

modules can represent a counting problem nor the concept of precise quantity on which 

such a problem depends, this account, like other extemalist accounts of numerical 

cognition, seems to take for granted resources whose origins remain unidentified. 
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The problem of the origins of numerical cognition is intimately related to that of the 

origins of representations of precise quantities. Malafouris' account seems to skip this 

crucial explanatory step of how we corne to represent a problem whose solution 

involves precise quantification using llC. For example, how could a person corne to 

think of representing ten jars of oil with a single symbol unless that person had corne 

to a kind of insight that allowed them to think of precise quantities in the first place? 

For this to happen, it would seem that someone has some kind of irisight, of the same 

sort that allows the transition from subset-knowing to CP-knowledge. Sumerians were 

using 11 C for their accounting purposes for a long time before symbols for quantities 

were eventually used. The question here is: how did this transition occur? Given that 

the practice of 11 C was used for so long without there being symbols for precise 

quantities,. this would seem to suggest that the ability to do 11 C isn't sufficient to 

explain the development of abstract representations of precise quantities. Rather, what 

is needed is an explanation of the internai insight that led to the emergence of the 

concept PRECISE QUANTITY. 

Similarly, given that both members of anumerate cultures and brilliant mathematicians 

both use their hands all the time, including to manipulate objects, it would seem 

necessary to identify what is different in the manipulation involved in Sumerian 

accounting that allows their hands, but not those of members of anumerate cultures, to 

lead to the development of abstract representations of precise quantities. But the 

difference between manipulating tokens for accounting and to throw them at an enemy, 

say, presumably has something to do with the task guiding the manipulation. Here, the 

task is one of precise quantification. I thus claim that in order to manipulate tokens with 

the task of precise quantification, we have to have already made significant progress in 

bridging the gap. 

Such considerations, if they ring true, suggest that there is an essential ingredient 

missing from externalist accounts of numerical cognition, even when they do not rely 



223 

on complex numeration systems like Indo-Arabic numerals or number words. This 

missing ingredient is what sort of insight allows both the systematic representation of 

discrete quantities and the possibility of using external symbols for these. Given that 

any external object that we wish to claim was used to develop representations for 

precise quantities - including fingers - seems to depend on the occurrence of an 

important realization or insight of the sort described by Carey in order to figure in a 

numerical or quantificational task, including counting objects or answering a parent's 

how many question, it is likely that the answer to our origins problem lies inside our 

heads. 

Of course, there is a sense in which this origins problem need not affect the 

constitutivity of external support for numerical cognition in general, given that there is 

clear evidence that external symbols and artefacts are necessary to represent numbers 

beyond a rather restricted range. This seems compatible with adopting a weakened 

form of constitutivity, in which extemal artefacts and symbols are necessary for 

numerical cognition in domains that require cognitive offloading and memory aids. 135 

While there is no reason to think that this range can be given a precise limit, the fact 

that extemal artefacts are often described as being useful memory aids and tools for 

cognitive offloading suggests that the upper limit on a potential external-support free 

135 There is evidence that this is the major role played by extracranial parts of extended numerical 
cognition loops. After all, the information in Otto's notebook was in his head before it goton paper, 
assuming he cannot write unconsciously. Similarly; De Cruz writes "External symbols can provide 
anchors for thoughts that are difficult to understand or represent" (De Cruz 2007, 249) and that writing 
down intermediate results in calculations "transforms what would have been a difficult cognitive task 
into an easier perceptual task" (De Cruz 2007, 242). A weak sense of constitutivity, compatible with 
attributing a facilitation role to external artefacts, also seems implied in the following passage: 

We tend to view the role of non-biological extensions to the brain as that of providing more (and 
more durable, shareable and stable) memory. However, external media may also be regarded as 
an extension of cognitive processes. Sorne actions performed by use of external media solve 
problems more easily and reliably than ifthey had been solved in the mind alone. The objects we 
use when making calculations only acquire their meaning once we have corne to understand the 
calculation process and the meaning of the operations that define it. (De Cruz 2007, 241) 
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range of representation of precise quantities would be a fonction of a person' s working 

memory. 

Such a restricted numerical range for the constitutivity of external objects need not be 

considered a major problem for the externalist, however, given that there is already 

evidence of discontinuities in our numerical abilities depending on the external support 

we are using. While we can doubt that cultures witl:i limited explicit symbols for 

numbers like those using body-part numeration systems can distinguish between 

quantities beyond their numeration system' s domain of application or reason about the 

infinity of natural numbers, their ability to represent and label precise quantities as such 

still sets them apart from anumerate cultures. 

As evidence of constitutivity for larger numerical domains, Schlimm (2018) argues that 

which levels of numerical abilities can be reached is related to the expressive power of 

the numeration systems with which we are familiar: "the use of numerals and other 

formai systems of representations is constitutive for the development of an advanced 

conception of numbers" (Schlimm 2018, 213). Among other skills, such an advanced 

conception of numbers involves more than an ability to count the items in a small 

collection, which would appear to be all that we could achieve with any reasonable 

degree of success without the use of memory aids and cognitive offloading. For 

example, the ability to compute arithmetical operations on numbers larger than 1 OO and 

the understanding that there is no greatest natural number both seem to require 

understanding the tools offered by advanced numeration systems like the Indo-Arabic 

numerals. Even number words are limited when compared to such systems, given every 

language has a limit to the quantity it can express with a single lexical item, while the 

recursive construction ofnumerals with Indo-Arabic symbols has no such limitation. 

This constitutivity for larger numerical domains seems to confirm evidence mentioned 

above in relation to the variability of cultural invasion of brain tissue (Tang et al. 2006). 

The effects of the structure of a numeration system are also illustrated by the unit-
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decade compatibility effects, mentioned in section 2.2.2 which shows that the place-

. value structure of the Indo-Arabic system affects processing of multi-digit numerals, 

which would not happen the same way in systems with different bases, since unique 

symbols could represent larger or smaller quantities, depending on the base. This shows 

that what numeration system we use matters in terms of what we can represent and how 

. easy it is to represent it. Such differences in the degree of expressive power of 

numeration systems on which we rely to complete numerical tasks seems consistent 

with my claim that an initial segment of the natural numbers that goes beyond the 

subitizing range can be attained without external support, and that to go beyond this 

restricted numerical range, external supports are necessary to help processing. 

In this chapter, I have argued that the externalist apprqach to numerical cognition 

cannot answer my origins problem because it fails to account for what makes the 

difference between a person that has bridged the gap and one who hasn't, when both 

individuals have access to the same external resources. To account for this difference, 

I claim, we must look inside the head. If what I've argued above concerning the 

importance ofinternal realization for the emergence of PRECISE QUANTITY makes 

sense, embracing an extended cognition framework does not help solve the origins 

problem, since accepting extemal objects as constitutive parts of cognitive systems 

does not tell us where the content associated with these objects cornes from. Coming 

back to Otto, while we may accept that his notebook is indeed a constitutive part ofhis 

cognitive routine, it is important to keep in mind that everything he wrote in his 

notebook got there because it was in his head beforehand. Applying this analogy to the 

case of ( extended) numerical cognition seems to suggest that we must look in our heads 

to find out where numerical symbols and artefacts corne from. 

However, perhaps the extemalist can reply to my origins problem by claiming that we 

can separate artefact-free and artefact-based cases of ontogeny, and that we can explain 

the difference between the se via mechanisms of cultural evolution. This way, the 
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question of the historical origin would be completely separable from the question of 

the ontological development of number concepts, and the constitutivity of extemal 

support would be secure. On this view, how number concepts arose in individuals in 

the past is different from present day ontogenesis. To determine the worth of this 

option, 1 explore the role of culture in the construction of novel numerical content in 

the next chapter. 



CHAPTER VI 

CUL TURE AND NUMERICAL COGNITION 

6.1 Introduction 

In chapter 5, I discussed whether adopting an extemalist approach to numerical 

cognition, in which things outside our head play a constitutive role in arithmetical 

practices, can help us bridge the gap between our evolutionarily-inherited cognitive 

systems and the systems responsible for more advanced numerical abilities. I argued 

that this approach fails to deliver an account of how we bridge the gap in environments 

where no numerical symbols or artefacts are present, and that this means the 

constitutivity of extracranial objects in numerical cognition does not apply to a 

restricted initial segment of the natural numbers. However, the externalist can try to 

appeal to processes of cultural evolution to explain the emergence of novel numerical 

content and its association with extemal artefacts by a graduai accumulation of cultural. 

variation. 

After all, talk of cumulative culture taps into an important intuition concetning how 

number concepts emerged: it is patently false to claim that these appeared fully formed, 

complete with all their formal properties, in a single individual's head. Rather, it seems 

more appropriate to describe the history of mathematics as one of individuals reflecting 

upon historically constructed ideas and adding their bit to an increasingly large body 
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of knowledge. At no point does the emergence of novel mathematical content require 

a person to reinvent the whole body of mathematics, and the same would seem to apply 

to the simpler concepts involved in numerical cognition. 

Given that mechanisms of cultural evolution can explain how content changes and 

evolves over generations, the externalist could appeal to these to explain how number 

concepts evolved, and we could thereby accept two (or more) ontogenetic stories to 

accommodate various levels of mathematical knowledge, thus disarming the bulk of 

my origins problem. Questions about the increasing role of numerical symbols in 

numerical cognition could be answered by mechanisms of cultural evolution, 

transmission, and inheritance (e.g., Dawkins, 1976/2006; Aunger, 2001; Richerson & 

Boyd, 2005; Sperber, 1996). Such mechanisms could perhaps explain how symbols in 

the environment could have acquired novel numerical content. For example, symbols 

for approximate quantities could have gradually spread and evolved due to their 

increasing usefulness in advancing societies. 

To see whether cultural evolution can help the extemalist explain how we bridge the 

gap by providing a means of developing extemal artefacts with numerical content from 

contexts where no such artefacts are found, this chapter explores mechanisms of 

cultural evolution and their relationship with extended cognition. In this chapter, 1 

want to explore two potential replies from the extemalist to my origins problem, both 

of which involve recourse to the role of culture in the development of numerical 

cognition. The first option is to explain the development of objects and symbols with 

numerical content by mechanisms of cultural evolution. To determine to which extent 

cultural evolution can help the extemalist bridge the gap, 1 will follow the main lines 

of Helen De Cruz's (2007) Darwinian approach to mathematics in the first few sections 

of this chapter. The second option is to extend the mind further out of the head and 

include culture itself as part of extended cognition loops. This way, the burden of 

explanation does not fall squarely on an individual's head, but on groups of individuals 
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and population-level processes. To explore this second option, I will focus on a recent 

externalist proposa! that is particularly explicit about what culture brings to the gap 

problem: Richard Menary's (2015a) enculturated approach to mathematical cognition. 

6.2 Helen De Cruz's Darwinian approach to numerical cognition 

6.2.1 Introduction: Darwinism outside of biology 

In The Descent of Man, Charles Darwin noted an analogy between evolution of species 

and the evolution of language: "The formation of different languages and of distinct 

species, and the proofs that both have been developed through a gradual process, are 

curiously parallel" (Darwin 1871/1981, 59). Similarly, Darwin remarked that "The 

survival or preservation of certain favoured words in the struggle for existence is 

natural selection" (Darwin 1871/1981, 61). 

It is in this spirit of applying evolutionary thinking outside of biology that Helen De 

Cruz' s Darwinian approach to mathematics explains the development of mathematical 

ideas by appealing to the effect of cultural selection, variation, and inheritance on the 

output of innate cognitive systems like the ANS. De Cruz expresses our gap problem 

as one of discontinuity between the properties of culturally evolved number concepts 

and those of our innate cognitive machinery: 

How could it be that the cultural construction of mathematics is reliable and 
relatively uninfluenced by circumstances, while the cognitive abilities on which 
it builds are imprecise and noisy? To explain these differences, we need a 
theoretical framework that clarifies .the relationship between cultural and 
evolved modes of mathematical thought. (De Cruz 2007, 206) 

That framework is a Darwinist approach to cultural evolution. 

For De Cruz, adopting a Darwinian approach to the evolution ofmathematics can help 
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us understand how cultural evolution could have molded our genetically-inherited 

cognitive abilities into proper mathematical concepts: "mathematical concepts arise in 

human cultures through the interaction of human minds" (De Cruz 2007, 2). The idea 

here is that we can explain the emergence of mathematical concepts - including 

numbers, of course - by looking at Darwinian mechanisms of cultural evolution: 

[ complex mathematical concepts] are the result of cultural evolution-a gradual 
and long accumulation of knowledge and mathematical skills within specific 
cultures ... mathematical theory arises through an interplay oftwo systems: the 
cognitive system (the human brain) that is capable of entertaining it, and 
culture, a gradually accumulating body of knowledge to which people have 
contributed during many generations. (De Cruz 2007, 205) 

The important question here is what the nature of this interplay is. To understand this 

interplay, we must grasp how De Cruz applies Darwinism to the evolution of 

mathematics, since Darwinism offers a framework capable of describing interactions 

between individuals and their cultural environments. 

De Cruz thinks that adopting a Darwinian framework will allow us to understand the 

relationship between our innate representational repertoire and our culturally-

developed practices. Darwinism allows De Cruz to frame mathematics as a product of 

cultural evolution, and it also allows us to consider some of our evolved cognitive 

modules as products of biological evolution. Darwinism th us allows us to link cognitive 

traits with cultural evolution. The idea is then to see how cultural evolution could have 

modified our innate cognitive modules to allow us to develop number concepts. 

So, how can this framework help us link species-level cultural processes with 

individual brains? To answer this, we must first realize that, despite the fact that no 

individual could ever reinvent all of culture, culture is nevertheless the result of 

successive individual efforts: 

Cultural concepts are clearly more complex than evolved intuitive concepts. 
Y et, culture exists as a product of individual mental representations. It is the 
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sum of all individual representations of a particular concept that together 
constitute the cultural representation of such a concept. This position is the only 
tenable perspective on culture, because it is the only one that allows us to 
examine culture through scientific methods. (De Cruz 2007, 207) 

In other words, De Cruz considers culture to be a set of representations in individual 

brains. 136 However, given that culture is shared and communicated, and that we cannot 

share representations from one brain to the other in a precise and replicable manner, 

we need some way of sharing our internal representations with others. For De Cruz, 

this means accepting material expressions of inner representations as essential parts of 

the material incarnation of culture: 

From a materialist point ·of view, therefore, cultural representations only exist 
as stored information in individual brains ( e.g., the meanings related to 
Guernica by Picasso are stored in our brains ), and as public means of 
communication, which in tum have a material substrate ( e.g., artefacts, patterns 
of sound waves (speech), public performance (drama) or writing). (De Cruz 
2007, 207) 

To understand the interplay between culture and individuals, we must keep in mind 

that neural resources are limited. Over evolutionary time, there is competition over who 

gets to own a piece of our neural real-estate. Our brain cannot simply engulf every 

cultural representation that cornes its way. Rather, those cultural representations that 

accomplish more using less resources will have greater adaptive fit for those who 

possess them, since they free lip additional cognitive resources for other tasks, which 

increased their chances of getting a lease in our heads. In short, some cultural variants 

are a better cognitive fit than others, as seen in the discussion of Dehaene's neuronal 

recycling hypothesis (section 3.3.2). One of the reasons some variants are fitter than 

130Similarly, Richerson & Boyd's (2005) definition of culture also focuses on the individual: "Culture is 
information capable of affecting individuals' behavior that they acquire from other members of their 
species through teaching, imitation, and other forms of social transmission." (Richerson & Boyd 2005, 
5) 
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others is the presence of the original owners of our brain's real-estate: our 

evolutionarily inherited conceptual modules, like the ANS. The fact that we approach 

the world through the lens offered by these modules means that some cultural variants 

will fare better when trying to get in our heads. Those variants that are easy to learn or 

that can be processed by innate cognitive modules will have greater comparative fit 

than those who are too complex or have no psychological appeal. 

6.2.2 Darwinism and the evolution of mathematics 

According to De Cruz, the evolution of mathematics has been shaped by our innate 

cognitive machinery in this manner: evolutionarily-inherited cognitive modules have 

provided content biases137 that have put selective pressures on potential mathematical 

concepts, whose reception 8:nd spread depends on the degree to which they are easily 

represented by cognitive modules. To illustrate this, De Cruz examines the 

transmission of concepts of integers, negative numbers, and zero, and explains their 

relative cultural salience in terms of the way they fit with innate cognitive modules -

more specifically, the ANS: "To explain patterns of cultural transmission of 

mathematical concepts, we need to examine how they interact with intuitions provided 

by the number module" (De Cruz 2007, 212-3). The general idea here is that those 

cultural practices that provide a good fit for the content of our innate cognitive modules 

will be easier to acquire and store, which in tum increases their chances of spreading, 

while those concepts that rub these modules the wrong way will have more difficulty 

spreading, due to the complexity of the cultural institutions needed for their 

transmission. 

137 When a cultural variant's selective fitness is explained purely as a result of how it 'fits' with our 
evolved cognitive architecture, this is described as the result of 'content bias', due to the fact that the 
bias towards selecting the behavior has to do with characteristics of that behavior. 
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Take the natural numbers first. Of all the number concepts, these are easily the most 

widespread. No culture has developed mathematical practices that has not developed 

natural numbers. De Cruz interprets their parallel emergence in many cultures as a sign 

that they can be integrated with the representations of the ANS with relative ease: 

The multiple and frequent cultural invention of positive integers can be 
explained as a result of their close fit with intuitions provided by the number 
module ... The anatomical proximity of this module to other modules involved 
in the counting by sequential tagging procedure further adds to their salience. 
By being rooted in more than one conceptual module, including body part 
recognition and linguistic skills, positive integers are easy to leam and to 
transmit. (De Cruz 2007, 227) 

Importantly, the modifications to the ANS brought upon by counting routines respect 

the format and content of approximate numerical representations, since they are 

compatible with a mental number line dedicated to quantity information that could be 

detected in the environment. In other words, even though they are more precise than 

the representations produced by the ANS, representations of natural numbers do not 

clash significantly with its output, especially when compared with other types of 

numerical representations, like the negative numbers, or zero. 

The ANS evolved to help us keep track of the number of objects we perceive in our 

environment. It did not evolve to help us identify when there àre no objects around us. 

This means that the ANS is not as well equipped to deal with zero qua absence of 

quantities as it is to yield fuzzy representations of the number of objects to which we 

are attending. Given that zero is nota positive quantity, is does not lie within the range 

of stimuli that are processed effortlessly by the ANS. According to De Cruz, this means 

that zero was relatively counterintuitive, and therefore took longer to develop as a 

numerical concept. 

Going further away from our evolved representational systems are the negative 

numbers. While there is a sense in which negative numbers appear easy to process, 
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since they mirror many of the natural numbers' properties, De Cruz claims that these 

"provide many violations which ultimately undermine our intuitions about number" 

(De Cruz 2007, 222). The most obvious such violation is the fact that while it is possible 

for us to experience positive quantities in some sense - say, by seeing four objects -

De Cruz claims we cannot experience negative numerosities. In this sense, the ANS is 

not equipped to represent the content of negative numbers. It was only after hundreds 

of years that negative numbers were considered legitimate mathematical objects. 138 

This is considerably longer than the time it took for zero to become a legitimate, yet 

peculiar, mathematical object. 

In sum, reviewing historical data concerning the speed at which mathematical 

innovations spread shows that some practices take more time than others to spread 

throughout cultures, which De Cruz interprets as a consequence of the degree to which 

a cultural variant fits with our innate cognitive machinery. De Cruz illustrates this well 

with the different levels of intuitive fit provided by the natural numbers, zero, and the 

negative numbers. However, while it is true that variants with better fit will have a 

tendency to spread over populations, all other things being equal, there are many factors 

that can influence the extent to which a cultural variant will spread that have little to 

do with its fit with whether the content it expresses makes for a good fit with our innate 

cognitive systems.139 

For example, De Cruz speculates that a possible explanation of the decline in progress 

of Chinese algebra following the Qing dynasty (1644-1911) is that its development was 

138Greer, 2004, cited in De Cruz 2007, 224. 

139 As Henrich et al. (2008) argue, contrary to a view they ascribe to Sperber (1996), there are many 
factors that can influence the cultural fitness of a practice that have little to do with the actual 
characteristics of the behavior that makes up the practice. For example, whether individuals adopta trait 
can vary depending on the popularity of the person they are learning the trait from, and how common 

. this trait is in the individual' s population. In this latter case of frequency-dependent bias, a conformist 
bias will tend to favor copying the frequent behavior, while a non-conformist bias will force the opposite 
behavior. See Richerson & Boyd 2005 for illuminating examples of a variety transmission biases. 



235. 

hampered by a culturally-based reverence of ancient texts, which was accompanied by 

a reluctance to deviate from common and revered practices. The comparatively faster 

spread and development of algebra in other cultures that did not practice such reverence 

for established practices can be seen as an example where the characteristics of the 

practice and its fit with our cognitive architecture is not the only factor determining its 

cultural fitness. 

The explanation of variations in cultural fitness of mathematical concepts in terms of 

degrees of support from evolved cognitive modules seems to be well supported by the 

comparative spread of natural numbers, zero, and negative numbers. Thus, with her 

Darwinian framework, De Cruz has a plausible description ofhow mathematical ideas 

are selected and go on to spread throughout a population, based on their interaction 

with cognitive biases imposed by innate cognitive structures. 

6.2.3 Extended cognition and cultural evolution: where's the variation? 

We have just seen how evolved modules like the ANS can determine the ease with 

which culturally transmittèd representations like number concepts can spread through 

populations. Granting this, if some mathematical concepts are non-intuitive, it might 

appear mysterious how they can ever end up spreading through populations at all, given 

their lack of intuitive fit with our evolved cognitive modules. According to De Cruz, 

one possible explanation for the eventual spread of concepts like the negative numbers 

is that complex social structures allow the development of symbol systems capable of 

storing information outside individual heads: 

In some cultural domains of expertise, this overlap [between bur brain and the 
content of a cultural variant] is at times so marginal that cultural transmission 
can only take place within a highly institutionalized context, characterized by 
active externalism and dedicated highly trained personnel. Without these, 
humans would perhaps only be able to transmit intuitive and minimally 
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counterintuitive concepts. (De Cruz 2007, 228) 

The idea here is that while attempting to learn non-intuitive concepts on their own may 

prove too costly, given the lack of fit between these and modules like the ANS, the 

prese11ce of mathematical institutions, including trained professionals that 

communicate with culturally evolved symbol systems could facilitate this integration 

by offloading some of the processing into the environment. According to De Cruz, 

those concepts that are less intuitive will require more institutionalized contexts in 

order to spread, given that they benefit most from cognitive tools that reduce processing 

load. For De Cruz, then, adopting an extended approach to · cognition is key to 

explaining how less intuitive mathematical ideas can spread through populations, since 

it is only by adopting this externalism and the associated benefits of cognitive 

offloading in our environment that De Cruz' s Darwinian approach to mathematics 

explains how we overcome the lack of intuitive fit of increasingly complex 

mathematical ideas. 

It is certainly plausible that we can explain the differences in transmission and spread 

of mathematical ideas by appealing to the cognitive benefits brought on by extemal 

artefacts and symbols, due to the fact that extemal supports allow us to perform some 

cognitive tasks much more efficiently. However, we have not yet seen any evidence 

that De Cruz' Darwinian approach can help us understand where cultural variation 

cornes from. While the previous section has shown how the spread of mathematical 

concepts can be influenced by the degree to which cultural variants fit with evolved 

cognitive modules, there was no mention of the reasons or mechanisms responsible for 

the emergence of these variants. 

Instead, the origin of those representations that manage to invade our heads via the 

benefits of extended cognition has been black-boxed. While uses of external objects to 

store previously acquired or developed information in cognition constitute legitimate 

applications of extended cognition to mathematical practice and the evolution of 
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mathematical ideas, so far, it doesn't look like TXM explains the origin of novel 

mathematical content. If this is true, then appealing to extended cognition to help 

explain why some cultural variants manage to spread despite lack of fit with evolved 

cognitive modules will not help us identify how these variants are generated. For 

example, while De Cruz's Darwinian framework might allow us to explain why 

negative numbers could only spread in a symbol-enriched cultural context, it does not 

explain how these could emerge in the first place. In other words, so far, cultural 

evolution has only allowed us to explain how the presence of extemal cognitive support 

can ease cultural transmission, but has nothing to say about mechanisms of cultural 

variation. 

This should not corne as much of a surprise, given that, for the most part, theories of 

cultural evolution focus on mechanisms of transmission and inheritance at the 

population level (Richerson & Boyd, 2005), often neglecting the mental states of the 

individual (Kirkpatrick, 2009; Sperber, 2006) and the mechanisms responsible for the 

generation of novel content (Charbonneau, 2015, 2016). What theories of cultural 

evolution strive for is an explanation of why some practices spread throughout 

populations while others wither and die (Mesoudi 2011 ). And yet, without reference to 

an individual-level psychological process in charge of generating variation, it is 

difficult to see how a purely population-level description of the evolution and spread 

of a practice could explain . the specific details underlying the emergence and 

cumulative change of numerical content. Much like genetic change in a species is 

explained in terms of genetic mutations in individuals, mechanisms of cultural 

evolution rely on individual-level psychological processes in their explanation of 

where cultural innovation and change corne from. One person innovates, and, if others 

understand and value the innovation, it can spread via various mechanisms of cultural 

transmission. The innovation itself, however, originates at the individual, 

psychological level. Soif we want to understand how numerical cognition evolved over 

generations, we must first understand how it could have arisen through psychological 
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processes in individuals. For this, population-level mechanisms of cultural evolution 

do not seem to fit the bill. 

An externalist could try and explain the evolution of numerical content by appealing to 

transmission or imitation errors, or perhaps to cultural mutation, but this would not 

change the fact that these would have taken place in someone's head-initially, at least, 

in a numeral-free environment-and that any change in content must be explained at 

the psychological, individual level rather than in reference to mechanisms of cultural 

evolution. To see why this is true, it is important to note that while some innovations 

can be the result of imitation error, such modification by error does not seem to apply 

to the spread of numerical content. This is because there is good reason to think that 

the spread of conceptual content occurs via intemal reconstruction, not mere imitation: 

While the propagation of word sound may be seen as based on copying, that of 
word meaning cannot: it is re-productive, in the sense that it necessarily 
involves the triggering of constructive processes. (Claidière et al. 2014, 3). 

Similarly, De Cruz, referring to Sperber (1985), writes: 

Cultural transmission, like all types of communication, is under-determined: 
much information is left unspecified and therefore requires a reconstruction in 
the mind of the recipient ... each instance of cultural transmission requires a 
reconstruction of the concept in the individual brain (De Cruz 2011, 210) 

The bottom line here is that cultural evolution begins with modification of mental states 

in individuals' heads (Charbonneau 2015), which, if it is understood and valued by 

other individuals, can then spread via imitation, re-construction and cultural 

inheritance. If this is true, then it is difficult to see how any modification to the content 

of our innate cognitive machinery can be explained by a cultural, population-level 

process, rather than a cognitive process at the individual psychological level. 

Given that cultural evolution relies on cognitive processes at the individual level for 

the generation of novel content, it seems that our attempt to save extemalism via this 
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route have forced us back inside our heads. These considerations show that an appeal 

to cultural evolution cannot help motivate the extemalist' s two-stories answer to the 

origin of numerical content, since it cannot explain the innovation responsible for the 

emergence of numerical content in a world without numerical symbols, nor its spread 

via re-construction at the individual level, thus leaving out important details about the 

origin of numerical cognition. 

In biological evolution, we can attribute variation to the effects of genetic mutation, 

which can occur due to a variety of causes, induding repli cation errors ·or 

environmental effects. lncreases and decreases to an organism's adaptive fitness can 

be explained in terms of the effect of such randomly occurring variations. But in the 

case of mathematics, it seems false to daim that variations occur as the result of 

randomly occurring copying errors: 140 "Clearly, in mathematics as in other complex 

culturally transmitted skills, variation is not generated through copying-errors, às is the 

case with genes" (De Cruz 2007, 267). While there is often an element of accident in 

mathematical discovery, in that the origins of the insight may remain inaccessible to 

the mathematician who innovates, it is important to realize that much of it is the result 

of careful, deliberate analysis on the part of the mathematical community. 

More importantly, even if the construction of variants of mathematical practices were 

purely accidental, it would still be an individual-level phenomenon, just like genetic 

mutation happens in individuals before it can spread through populations. If this is true, 

then in order to use cultural evolution to explain how we bridge the gap, we would need 

an account of how individuals generate variation of numeration practices that involve 

representations of precise quantities and how we build on these to develop 

representations of natural numbers. 

My daim here is that the extemalist attempt to bridge the gap by providing an account 

140 I briefly corne back to this issue of whether or not cultural variation is random below. 
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of the development of representations for exact quantities based on mechanisms of 

cultural evolution fails because cultural evolution is a population-level process, 

whereas generating cultural variation occurs at the level of the individual. However, a 

solution for the externalist here is to deny that innovation is an individual-level process, 

perhaps by arguing that individuals are coupled to their cultural environments, in which 

case cognition can be described as a population-level process. If this is an option, then 

perhaps the fact that there is a population-level account of cognition means we can have 

a population-level account of innovation, and my worry would be unfounded. To 

determine whether this can help the externalist, the next few sections take a doser look 

at Richard Menary's (2007, 2015a) brand of externalism and how it tackles the gap 

problem. 

6.3 What'' s new: Innovation and enculturation of arithmetical practices 

6.3 .1 Innovation and enculturation 

Stretching the mind further away from the head than many variants of 4E Cognition, 141 

Richard Menary's (2007) brand of externalism, which he dubs Cognitive Integration 

(CI hereafter), factors in the transformative effects of culture on our plastic brains in 

its characterization of cognitive systems: 

cognitive integration should be understood as a thesis about the enculturation 
of human cognition. It is a thesis about how phylogenetically earlier forms of 
cognition are built upon by more recent cultural innovations ( e. g., systems of 
symbolic representation). (Menary 2015b, 3) 

141 A label used to refer to approaches to cognition that share a rejection of most aspects of cognitivism 
and its emphasis on the inside of our head to explain how cognition works. The 4E here stands for 
Embodied, Embedded; Extended, and Enactive cognition. See Menary 201 Ob. 
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Reflecting the transformative effect of cultural practices on cognition, CI' s taxonomy 

of cognitive systems includes personal and sub-personal embodied systems as well as 

cognitive systems that extend beyond the body, but also systems made up of the 

individual organism and the experts, teachers, and other aspects of the cultural niche142 

in which we evolve. Like spiders have evolved to the presence of webs, or beavers to 

dams, humans have adapted to an increasingly complex cultural environment, infused 

with practices that enrich their cognitive repertoire. On this version of active 

extemalism, culture is part of cognition. 

In the remainder ofthis chapter, I argue that while Menary's enculturated framework 

can help explain what makes the difference between numerate and anumerate cultures, 

it cannot help specify what makes the difference between numerate and anumerate 

individuals. I argue that enculturation does not have an account of innovation capable 

of explaining how individuals manage to improve and modify the practices of their 

cultural niche. This is because enculturation focuses mostly on the inheritance and 

transmission of practices, not on their origins, which involve individual-level 

understanding, rather than population-level practices and pressures. The upshot is that 

culture provides the necessary background conditions against which individuals can 

innovate. This role is crucial in the development of numerical abilities - crucial, but 

142 The notion of niche here is taken from a growing literature that assigns an important role to an 
individual organism's ability to modify its environment in charting its evolutionary trajectory, to the 
extent that its actions modify selective pressures on its descendants. Niche construction enters organisms 
into feedback cycles with their environment that alter the adaptive landscape for their (and other) species. 
Classical examples of niches are spider webs and beaver dams, and the surprisingly-often-discussed 
bouses of caddys fly larvae. The idea of niche construction goes back to Lewontin (1983), who Laland 
et al. (2014) describe as the father figure of niche construction. For humans, an especially important case 
of niche construction is culture: the fact that humans are able to learn from their environment and 
transmit what they have learned and created - including artefacts that outlast the individuals that have 
crafted them - means that there are selective pressures stemming from the cultural niche constructed by 
our ancestors. Those who adapt to their cultural surroundings will have an advantage over those who do 
not. A well-known example of how cultural practices impose specific selective pressures is that of dairy 
farming, which resulted in increased lactose tolerance in cultures where this practice was common. See 
Laland et al. 2014; Wheeler & Clark 2008; Day et al. 2003. 
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explanatorily limited. 

The rest of this chapter is divided as follows. In the next section I summarize the main 

lines of Menary' s culture-oriented answer to the gap pro blem. I then discuss potential 

difficulties faced by Menary' s enculturated approach to cognition in explaining how 

the first individuals that came up with numeration practices, highlighting the 

limitations of cultural pressures and cognitive niches in explaining individual-level 

differences in numerical abilities in section 6.5, while section 6.6 explores the 

possibility of solving these problems by framing innovation as a cultural-level process. 

I then highlight problems raised by Menary's culture-based approach to practices in 

relation to their origins and to the importance of understanding in innovation in section 

6.7 before closing with a few remarks on the explanatory limits ofMenary's approach. 

6.4 Culture in cog~ition 

Unlike other variants of externalism, Menary not only allows cognition to be 

constituted by loops that include the individual and her cognitive niche. He also allows 

cognition to be controlled by extracranial factors: 

CI has a unique position on the 4 E landscape, · because it is the first framework 
to propose that the co-ordination dynamics of integrated cognitive systems are 
jointly orchestrated by biological and cultural functions. (Menary 2015a, 3) 

This means that some cognitive tasks can be driven by our cultural environment. 

According to Menary, this marks a departure from brain-centered accounts of active 

externalism, where the inclusion of objects outside our heads in cognitive loops with 

the world does not take away the central controlling role of the brain in cognition. There 

are many ways to go about applying externalism' s cranial chauvinism to the 

development of numerical cognition. If all of them rely on throwing out the internalist 

baby with the brain-bound bathwater, in Menary's case, we are throwing out the baby, 
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the bathwater and, to paraphrase Fodor, large parts oflower Manhattan. 

This broad scope plays an important part in Menary' s account of where we get our 

enhanced cognitive abilities from. The idea here is that the fact that our cognitive 

regimes have evolved to rely on our cultural niche to complete cognitive tasks can · 

explain how we manage to develop skills like reading and arithmetic. According to 

Menary' s enculturated view of cognition, these abilities crucially depend on the 

transformative effects of the practices that make up our cognitive niche. Cultural 

practices shape cognitive practices, on this account. They drive the dynamic integration 

of body and environment: 

practices govem how we "deploy tools, writing systems, number systems, and 
other kinds of representational systems to complete cognitive tasks. These are 
not simply static vehicles that have contents; they are active components 
embedded in dynamical patterns of cultural practice. (Menary 2015a, 4) 

It is easy enough to see how Menary wants to apply talk of the transformative effects 

of enculturation to the development of numerical cognition. While other varieties of 

extemalism rely on numeration systems and numerical artefacts to explain how we 

bridge the gap, Menary' s extemalism takes this line of thinking further and includes 

the cultural practices and teachers that make up our cognitive niche as constitutive 

components of numerical cognition. 

The idea is that the artefacts, technologies, cultural practices, and experts that make up 

our cognitive niche transform our evolutionarily-inherited cognitive machinery -

including systems like the ANS - thus allowing us to develop a Discrete Number 

System (DNS hereafter) like the Indo-Arabic numerals. On this way of seeing things, 

our entangled reciprocal interaction with a niche populated by experts and norm-

govemed public practices explains how we bridge the gap because leaming from our 

niche has transformative effects on our brain. Enculturation describes how the 

individual brain' s integration with its cultural surroundings allows it to move beyond 
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its biological limitations. According to Menary, this means that enculturation can 

answer our gap problem: 

One of the puzzles is how it is possible to move from an inherited approximate 
system to an acquired exact system. The process of enculturation provides the 
mechanisms by which such a move takes place, from the ancient capacity for 
numerosity to development in a socio-cultural niche, and the orchestrating role 
of practices in the assembly of the cognitive systems responsible for 
mathematical cognition. (Menary 2015,11, emphasis mine) 

This certainly describes some aspects of how most people acquire arithmetical 

practices in numeral-enriched environments like ours: most people do leam what 

natural numbers are via the sustained influence of teachers that transmit practices that 

are part of their shared cognitive niche. However, in the next section I want to argue 

that there is a sense in which the fact that we leam what numbers are from our cognitive 

niche doesn't explain how we manage to bridge the gap. This is because, given the 

account of explanation in extended cognition outlined in section 5.2.3, explaining how 
. ' 

we bridge the gap means being able to tell what the difference is between cases where 

the ANS is transformed and cases in which it is not. For this, appealing to the 

transformative influence of our cognitive niche may not be as helpful as we would like 

it to be. 

6.5 Enculturation and the origins of the first numerical practices 

If enculturation can bridge the gap, then it should be possible to explain the 

development of novel proto-numerical content by appealing to the effects of 

development in a cognitive niche enriched with cultural practices in a way that allows 

us to identify differences between numerate and anumerate individuals - that is, 

between cases of rudimentary numerical cognition and cases of proto-numerical 

cognition. In this section, I offer reasons to doubt that this avenue will yield the 
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requisite difference-maker to do this. First I want to argue that there are cases where 

the gap is bridged despite the absence of the required niche. I then take a look at the 

limits of pressures and niches in driving innovation. 

6.5.1 Numbers in non-numerical niches 

Perhaps the most important case of bridging the gap in the absence of any cultural 

support is the initial innovation thatled to the first proto-numerical content, mentioned 

in my origins problem. While any story of where and how the first arithmetical 

practices came to be is bound to be incomplete, there are nevertheless a few accounts 

of the conditions in which the first numerically-relevant artefacts capable of outlasting 

the individuals and cultures in which they were created came to be ( e.g. Overmann 

2015; Morley & Renfrew 2010; Ifrah 1998; Malafouris 2010; Everett 2017). 

Thankfully, there is no need here to delve deeply into this territory, since the point I 

am making here only relies on a what might appear to be an uncontroversial statement, 

namely, that someone had to corne up with the first proto-numerical practices. There 

was a world without people thinking about proto-numbers, and then, at some point, 

there was a world with people thinking about and with proto-numbers. As Everett put 

it: 

What we do know is that someone, somewhere, at a particular moment in 
history, was the first person to abstractly recognize the concept of exactly five. 
Y et this recognition, crucial to the invention of number systems, no doubt 
occurred many other times independently and in various cultural lineages. 
(Everett 2017, 247)143 

What is important to note here is the fact that it is possible - even, historically 

143 .Similarly, lfrah talks of "that mind-boggling moment when someone first came up with the idea of 
counting" (lfrah 1998, x). 
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necessary, one might say - that some individuals managed to bridge the gap despite the 

fact that their cognitive niches had neither experts, nor public arithmetical practices, 

nor ready-made numeration systems to leam from. 

Of course, this is not to say that there was a single individual that came up with words 

for the first ten numbers, for example, all at once. On the contrary, linguistic evidence 

tells us that there are many languages that developed words for the first few numbers 

but stopped around the subitizing limit. 144 At first glance, it might seem like this leaves 

open the possibility that proto-numerical cognition could have emerged as a result of a 

prolonged multi-generational process of gradual innovation, without any single 

individual having to corne up with proto-numerical practices on their own, since it 

could all be a matter of incremental steps involving larger and larger names for small 

numerosities. 

However, such an interpretation would go against the well-known discontinuity at the 

edge of the subitizing range that children must go through when leaming the meaning 

of number words, discussed in chapter 4. 145 If children must labor through an Induction 

around the subitizing range even in a numeral-enriched world, there is reason to believe 

that a similar gap must have been bridged by adults living in societies where only labels 

for the first few numbers were available. Further, explaining the origins of proto-

numerical cognition via a graduai, multi-generational process would also not explain 

why so many languages display discontinuities in their numerical lexicon at the 

subitizing range (Hurford 1987). Such discontinuities suggest that in order to go 

144 E.g., the Mundurucu, mentioned above in note 1. See also Hurford 1987. 

145 Recall: once children have leamed to recite number words by heart, there is a prolonged leaming 
period where the meaning of the first few number words is acquired piecemeal, in stages, for 'one', 
'two', and 'three'. In this process, each stage lasts a few months. However, once they learn the meaning 
of 'four', children also grasp the meaning of the remaining words in their counting routine. This sudden 
realization is sometimes called the Induction (Rips et al. 2008b ). 
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beyond the subitizing range and develop proto-numerical cognition, an individual must 

undergo some form of cognitive transformation, and that this transformation does not 

corne easily. 

It is possible that the leaming process behind the Induction that allows children living 

in numeral-enriched environments to know the meaning of number words larger than 

4 is different from the insight that allowed individuals living in numeral-impoverished 

environments to develop proto-numerical cognition. After all, in a sense, children 

leaming in numeral-enriched contexts face a less onerous task, given that the 

environment in which their leaming occurs is filled with practices and individuals 

encouraging them to pay attention to quantity. Granting this possibility, the point here 

is that whatever allowed this insight to happen could not be due to a gradual process of 

cultural accumulation of small increments by members of these innovative individual' s 

niches, given the evidence showing that there' is a barrier at the subitizing range that 

hinders the development of proto-numerical cognition, both historically and in 

ontogeny .146 

If this is true, then even if we grant that the first gap-bridging occurred in cultures that 

146 This discussion relates to Boden's (2004) distinction between P-creativity and H-creativity, where 
the former describes an idea that is new to the individual, while H-creativity refers to ideas that are new 
to humanity as a whole. As Boden points out, H-creativity is simply a special case of P-creativity. This 
leads us to the question of whether two people having the same idea must share all or some of the 
cognitive resources required to entertain that idea. While this is a fascinating question, it need not be 
settled here, since the point I am making does not require the Induction that children undergo to bridge 
the gap be the same process that allowed the initial (H-creative) development of proto-numerical 
cognition. Rather, what is important for me here is that the H-creative development of proto-numerical 
cognition cannot have involved the numeral-and-expert-enriched cognitive niche in which the P-creative 
Induction takes place, since there were no numerals or experts to speak of in the H-creative case. This 
being said, it is worth mentioning that the presence of a discontinuity around the subitizing range in both 
the historical development of numeration systems and the ontogenetic development of proto-numerical 
cognition suggests that it is possible that the same process is responsible for bridging the gap in both the 
H-creative and P-creative case. · 
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had a restricted numerical vocabulary like that of the Mundurucu, individuals who 

managed to corne up with proto-numerical content that went beyond the subitizing 

range did something that many cultures never managed to do, and did so without the 

help of a cultural niche populated by experts in proto-numeration practices. These are 

the individuals that managed to bridge the gap on their own, as the result of persona! 

innovation. While precise stories of just when and where and how the first occurrences 

of gap-bridging behavior took place would involve more speculation than fact, it can 

hardly be doubted that this happened many times throughout history. In some cases, 

these innovations were valued and spread throughout populations, where they were 

improved upon by other innovators in a long process of cultural evolution that, 

eventually, led to the formation of formai numeration systems like the Indo-Arabic 

numerals. 

The fact that such innovative, gap-bridging behavior occurred despite the absence of a 

numeral-ready cognitive niche seems to suggest that enculturation is limited in its 

ability to explain how we bridge the gap, since there have been cases where novel 

proto-numerical content can emerge in cultures that lack any proto-numerical artefacts, 

practices, or experts to learn from. This partially goes against Menary's claim that 

mathematical practices "are part of the niche that we inherit-they are part of our 

cultural inheritance" (2015a, 16), since such practices have not been a part of 

everyone's cultural niche. People nowadays only inherit mathematical practices 

because they were invented (and th us not inherited) by other people in the past. 

There are a few ways Menary can deal with my origins problem. One is to appeal to 

the transformative effects of socio-cultural pressures and cognitive niches. I take a look 

at these possibilities in the next sub-sections. Another is to deny that the development 

of proto-numerical abilities constitutes an example of a discrete number system (DNS), 

a possibility I explore a bit later. 
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6.5.2 The limits of pressures 

Menary could counter that such historically determinant cases as those responsible for 

the first proto-numerical practices could perhaps be explained as the result of 

individuals responding to social pressures for better quantification in a world of 

increasing complexity of commercial trade, for example. This is often cited as the 

reason why precise symbols and artefacts for numbers started appearing in various parts 

of the globe in societies with increasingly complex needs for measurement and 

quantification. As Menary put it, 

The complex social and economic pressures that required tracking exchanges 
involving increasingly large numbers would be the kind of socio-economic 
pressures that produced symbolization of quantity. (Menary 2015a, 10) 

Socio-cultural pressures drive innovation. As evidence for this, we could consider the 

many innovations that have taken place in parallel in cultures whose technological and 

ideological evolution were comparably advanced - or within the same culture, as 

illustrated by Newton and Leibniz's parallel invention of calculus. There is a sense in 

which cultures sometimes arrive at periods where some ideas are in the air, ripe for the 

innovating. For example, many disparate cultures with no possible interaction 

developed the practice of using knotted string to represent numbers and perform 

calculations at roughly the same time (lfrah 1998). Many have been tempted to explain 

the parallel emergence of notation for numbers in many cultures as the result of the 

need for better quantification tools prompted by an increase in the complexity of 

commercial exchanges. 

According to Menary, innovation in such practices is due to the effects of pressures 

associated with changing lifestyles: 

Initially, novelty results from the pressures of increasing social and economic 
complexity. Small roaming bands offoragers do not need to develop symbolic 
number systems; post-agricultural Neolithic societies settled in villages and 



250 

towns do. (Menary 2015a, 15) 

However, while such commercial pressures for better quantification could help orient 

innovation, this fact alone seems to fail to explain what makes the difference between 

those members of these cultures that have managed to bridge the gap and those who 

have not. The problem is that since pressures are at the cultural level, they have no way 

of singling out the individuals that respond to them by innovating, nor can they specify 

mechanisms responsible for such innovations. Of course, not every member of a 

community feels the pressure to innovate in the same way, nor are all innovations the 

result of the same degree of individual ability. For example, only a few select 

individuals living around the same time as Newton and Leibniz could have felt the 

pressures to corne up with a good way of measuring the area under a curve. While the 

degree of technical and creative virtuosity required to bridge the gap in a numeral-

impoverished environment is doubtless of a different order than that required to corne 

up with calculus, the point here is that both innovations highlight a problem for 

attributing explanatory credit to social pressures, in that such individual differences 

between innovators and non-innovators, as well as potential differences between 

degrees of virtuosity required for innovations, are not captured by the effects of social 

pressures. So the absence of specificity of cultural pressures is a problem for Menary, 

since they are meant to be one of the ways in which enculturation can account for the 

generation of novel content: 

The DNS did not spring sui generis into the world. It did so because of a heady 
mixture of socio-cultural pressures, phenotypic and neural plasticity, social 
learning strategies, and cultural inheritance. These are the conditions for the 
scaffolding of the ANS, transforming our basic biological capacities into the 
DNS. (Menary 2015a, 15) 

In this sense, the cultural niche looks like it plays the essential but explanatorily limited 

role of background conditions, analogous to the right chemicaf background that allows 

a particular gene to express itself a certain way, as discussed above. 
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However, pressures can account for differential spread of ideas through a population 

because they are population-level. We can appeal to the presence of such pressures in 

one culture but not another as part of our explanation of what makes the difference 

between cultures. For example, we can explain the fact that anumerate cultures like the 

Pirahâ have not developed arithmetical practices because their culture does not value 

precise quantification, 147 and so there are no pressures for better quantificational 

practices. Similarly, the absence of such pressures, or their removal, can explain why 

certain practices can die off in some cultures and yet thrive in others. 148 This means 

that appealing to pressures for better quantification could explain difference in 

numerical abilities between cultures, thus answering Q2 above (section 5.2.3). 

But the modification of the ANS (or other systems) happens at the individual level. The 

ANS is in human (and many other animais') heads. Ifthis is true, then there is a sense 

in which appealing to the pressures imposed by our cognitive niche to explain how we 

bridge the gap cannot help identify what sets numerate individuals apart from 

anumerate ones. So while it is likely that these innovators developed new 

representational content and precise quantification tools from the effects of cultural 

pressures for better quantification, as Menary and others have suggested, this fact alone 

does not seem to allow us to explain what makes the difference between these 

innovators and those that did not respond to these pressures in the same way. 

Importantly, this specificity problem generalizes to every step that makes up the 

incremental, graduai historical development of the DNS, as 1 discuss below. It also 

147 For example, Gelman & Butterworth speculate that anumerate cultures do not develop words for 
precise quantities because "numbers are not culturally important and receive little attention in everyday 
life" (Gelman & Butterwort~ 2005, 9) in such cultures. 

148 1 once again exploit the relative humility of the footnote to speculate that the disappearance of the 
Yuki octonary system as a result of the serial founder effect could be an instance of lack of pressures 
leading to disappearance of a numerical practice: the fact that Yuki culture spread out meant that changes 
in their lifestyles could go against seeing precise quantification as an important practice. This, combined 
with the decrease in numbers of experts capable of sharing their knowledge of this practice, could have 
led to the disappearance ofthis practice. See Overmann 2015; Foster 1944. 
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seems to apply to any intra-cultural differences including how children corne to leam 

the DNS in ontogeny. 

If this is true, then there is reason to believe that solutions to the gap problem may best 

be explained by accounts of individuai-level processes. As mentioned earlier, there are 

plenty of extemalist ways of doing this, most of which rely on previously-constructed 

artefacts present in a culturally-scaffolded cognitive niche (e.g. Dehaene 2011; Carey 

2009). In such accounts the difference is one that takes place at the level of the 

individual. For example, Dehaene and Cohen's (2007) account of cultural recycling 

relies on the effects of cultural pressures, but their explanation of what makes the 

difference between a case of culturally-recycled individual brains and non-recycled 

ones is fleshed out in neural terms. Similarly, effects like the SNARC (Wood 2008) 

and number-related disorders like those caused by lesions (Butterworth 1999) are 

explainable by features of the individuals and how parts of their brains work (or don't 

work). The difference maker in dyscalculia and other such disorders has nothing to do 

with cultural pressures and can entirely be explained in reference to the individual. If 

this is true, then why should we expect to explain other differences between individuals 

who bridge the gap and those who don't by referring to anything related to development 

in a socio-cultural niche? 

Another problem with this pressures-based account of innovation is that it seems to 

have the implication that we would have developed many things by now if innovation 

were to be explained by pressures. If pressures are the sort of thing that can be 

considered responsible for innovations, then it looks like we can expect things like 

water-condensers, cheap emissions-free cars and x-ray vision, and· even reliable 

printers to be forthcoming given the pressures demanding their existence. 
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6.5.3 Niches are only as strong as their inhabitants 

It seems uncontroversial that the cumulative effect of niche construction on the 

scaffolding of our cognitive system explains how we inherit and transmit content that 

emerges via innovation by other individuals. However, our interest in the gap problem 

concerns the construction of novel content that is incommensurate with its building 

blocks, not its transmission. There is a sense in which we shouldn't expect our cognitive 

niche to be able to explain the generation of novel content, given that niches can be 

thought of as ( extremely generous) communal fridges for cognitive and cultural 

recipes: we can help ourselves to as muchas we want of whatever we find in the fridge, 

but this doesn't mean that we should expect it to invent new dishes nor boil pasta for 

us. Menary seems to agree with this, to an extent, given that much of what he says 

about niches concern transmission and storage of practices, not their construction. For 

example, he describes niche construction as follows: 

we need a model that explains how innovations in our cultural niche are 
inherited and propagated, leading to changes in behavior over time. The niche 
construction model explains how both of these causal factors could corne into 
play. (Menary 2015a, 7, emphasis mine) 

Similarly, he describes culture as a "repository of representational systems that is 

passed on to later generations via learning and development" (Menary 2007,104). It is 

certainly not my intention to question "the importance of the environment in enhancing 

and supporting and amplifying cognitive capacities" (Sterelny 2010, 465). The point 

here is that to find the origins of (proto-) numerical cognition, we need to look for 

processes that generate novel content, not how it is stored and transmitted. Niches don't 

generate innovations, they store them and allow them to spread. Nor do niches have 

the potential to explain the difference between two individuals, since these differences 

are, by definition, at the individual level. 

Menary could be tempted to reply that the focus on innovation isn't warranted. After 
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all, virtually everyone learns arithmetical practices from others, so the focus should 

better be placed on learning and how knowledge is transmitted. However, this need not 

change the fact that the difference-maker is at the level of the individual. First, there is 

good reason to believe that learning conceptual content like the one associated with the 

DNS involves re-construction of the original content in a new individual (Claidière et 

al. 2014), which would suggest thatmany of the same constructive processes would be 

shared. 149 But even if this were not the case, and we found reason to believe that an 

innovator' s path to the DNS can involve recruiting radically different processes from 

the learner's, the process would nevertheless still be an individual-level one, which 

considerations conceming niches seem ill-equipped to deal with. 

These considerations based on-individual differences in proto".'numerical abilities and 

on the creative power of niches over and above the individuals that populate them 

suggest that foregrounding cultural aspects of cognition in trying to explain how we 

bridge the gap takes the focus away from the difference-maker, focusing instead on 

background conditions in which the gap can be bridged. This means that attempting to 

explain how we bridge the gap by appealing to features of enculturated cognition will 

be oflimited use in answering Ql above, since this approach fails to specify individual-

level differences in response to cultural-level pressures. 

6.6 Extending innovation through time 

· I have just argued that social pressures aren't specific enough to identify a difference 

maker between innovators and non-innovators at the individual level, since the same 

149 Similarly, De Cruz, referring to Sperber (1985), writes: "Cultural transmission, Iike all types of 
communication, is under-determined: much information is left unspecified and therefore requires a 
reconstruction in the mind of the recipient...each instance of cultural transmission requires a 
reconstruction of the concept in the individual brain" (De Cruz 2007, 210). 
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pressures can affect individuals in radically different ways. However, Menary can 

perhaps avoid this problem by framing innovation as happening at the social level. 

This could then allow Menary to accommodate the apparent exception provided by the 

development of proto-numerical practices in a non-numerical niche, since such 

innovations in a numeral-free world could fail to be considered as proper examples of 

a DNS, which, it could be argued, results from cognitive processes that take place over 

much longer historical time periods. In this section, I explore this possibility and find 

it wanting, because seeing innovation as a social phenomenon only works by building 

on innovation that occurs at the individual level. 

6.6.1 Is innovation social? 

According to Menary, the previous section has things in reverse: contrary to my claim 

that individuals are responsible for innovations, he argues that innovation occurs at a 

social level. For example, in response to Fabry's (2015) suggestion that predictive 

processing (e.g. Clark 2013) could help ground the enculturated approach at the neural 

level, Menary writes: "the predictive processes at a sub-personal level cannot be 

driving the innovations at a social level that lead to enculturated cognitive systems" 

(Menary 2015b, 1, emphasis mine). Menary worries that the individual-level focus of 

predictive processing clashes with the explanatory emphasis of enculturated cognitive 

integration, which is "the population-level effects of normative pattemed practices 

(henceforth NPP), such as mathematical practices" (Menary 2015b, 1 ). 

According to Menary, the fact that predictive processing aims to describe online 

processing and explain it in terms of error minimization means that it cannot explain 

innovation in normative practices, since the pressures that lead to these operate at the 

social level. If the brain is engaged in predictive error minimization (as sub-personal 
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processing) in the here-and-now, then it cannot be driving the innovation ofnewNPPs 

over many generations, which are found at the social, or populational, level. Given 

Menary's claim that cultural pressures drive innovation, the claim here seems to be that 

whatever drives innovation is at the same level of cognition as innovation itself, and so 

innovation happens at the social level. 

Seeing innovation as a cultural-level process certainly applies to the majority of 

technologies and tools that abound in the world around us: one would be hard-pressed 

to find a cultural product that was the result of a single individual' s work. As Hutchin' s 

(1995) description of the historical development of navigational tools and techniques 

and Richerson & Boyd's (2005) many case studies beautifully illustrate, most tools, 

artefacts, and practices are the result of a process of historical accumulation of small 

improvements on previous design. Henrich et al. (2008) offer a representative quote 

from historian Joseph Needham who summed up the cultural origins of the steam 

engine thus: "No single man was the father of the steam engine; no single civilization 

either" ( quoted in Henrich et al. 2008, 130, from Basalla 1988).150 

The same sort of stepwise process of cumulative improvement to previous innovation 

applies to the historical development of the DNS. For example, Ifrah describes the 

development of the modem Chinese numeration system as the "fruit of a veritable 

cascade of inventions and innovations". He adds, "I t emerged little by little, following 

thousands of years during which an extraordinary profusion of trials and errors, of 

150 Without claiming that the origins of numerical practices are instances of the myth of the heroic 
inventor (see Henrich et al. 2008 for references behind this expression), it should be noted that there are 
some circumstances where inventions have immediate, sudden impact on their societies. Not all 
innovations are created equal, and there are many cases throughout the history of mathematics of such 
individual-led game changers. One could consider Cantor's work on transfinite numbers an example of 
such innovation. In a somewhat less grandiose, more culinary context, Dominique Ansel's invention of 
the cronut - a cross between a croissant and a doughnut - could pe'rhaps also count as such a game-
changer. Both cases seem to illustrate how "major transitions in society need not await a series of 
innovations, each of small effect, but may result instead from key innovations or from coordinated 
flexibility in response to changing conditions" (Laland et al 2014, 12). 
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sudden breakthroughs and of standstills, regressions and revolutions occurred" (Ifrah 

1998, 674). 

This historical, extended timescale on which such cultural processes of innovation take 

place seems to support Menary' s claim that innovation is social. If this is true, then one 

can indeed argue that the first times people thought of something with content like 11, 

or "the quantity that can be put in correspondence with both hands and a finger", they 

weren't in possession of anything like a modern-day DNS like the Indo-Arabic 

numeration system that dominates our arithmetical practices. 

Of course, if there is little reason to think that the practices associated with the Indo-

Arabic numerals could have emerged as the result of a single individual' s eureka 

moment, there certainly is no reason to think this is how it came to be, since the 

. historical records show a graduai, stepwise accumulation of small improvements 

stretching for many generations for the system to arrive at its current form ( e.g. Ifrah 

1998). So if the gap-bridging story is the hist~rical transition starting from the ANS 

and ending with the DNS, then the fact that the first step in this process was the result 

of individual innovation does not count against the enculturated answer, since such 

primitive cases are not true gap bridging stories. So it looks like seeing innovation as a 

cultural-level process takes the bite out of the origins concerns I presented above. 

However, it is important to note that the cumulative construction of numeration systems 

and other artefacts mentioned above is the result of scaffolded steps of individual 

innovations. So while there is a sense in which we can accommodate Menary's claim 

that innovation occurs at a social level, this is only possible insofar as social innovation 

is made up of an accumulation of individual innovation of the sort present in the origins 

of proto-numerical practices. If this is true, then the origins problem generalizes to 

every individual step in the historical development of the DNS, since each step 

represents an individual' s small innovation, for which the enculturated approach seems 

incapable of specifying a difference maker, given its explicitly population-level focus. 
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So even ifwe were to deny that the first cases ofprecise quantificational systems lacked 

sufficient complexity and expressive power to count as proper DNS151 we still need to 

explain what makes the difference between a person that understands what a limited, 

primitive version of numbers are and one who doesn't. Given that, for every step in the 

cumulative historical development of the Indo-Arabic DNS, only a select few 

individuals managed to innova~e their quantificational practices despite sharing a 

cognitive niche with many non-innovators, the cultural setting seems to serve as a 

necessary backdrop for the innovation to happen, but nota difference maker. Rather, it 

is the individual-level process responsible for the innovation that makes the difference 

between a person that understands what (proto-) numbers are, and one who doesn't, at 

each step of the development of the DNS. Of course, this is not to say that each step in 

the historical development of the DNS or any other product of cumulative cultural 

evolution requires the same creative input. The point here is that looking at innovation 

as a social process of cumulative individual contributions obscures the individual-level 

processes behind these contributions, big and small. In a slogan: If individuals don't 

151 Presumably, this denial would require coming up with criteria for when a numeration practice is truly, 
well, numerical. Perhaps we could want to base ourselves on the quantities reached, or the portability, 
ease of use, ease of comprehension, or any combination of these and other factors - nota simple task, to 
say the least. Moreover, this sounds like we would end up excluding some systems and including other 
systems of comparable expressive power, which would make hard lines somewhat arbitrary, as 1 
mentioned in the introduction. It would appear senseless to distinguish systems based on the number of 
items they have developed symbols for. For example, it seems useless to distinguish between systems 
that have symbols for up to 27 items, and systems that have symbols for up to 29 items, say. 
On the other hand, there is a good reason to distinguish between systems whose expressive power is 
limited by the absence of formalized generative syntax, as 1 have proposed here with the term 'proto-
numerical', and systems that require understanding a generative rule for their mastery, rather than rote 
memorization. This relates to Hurford's (1987) talk of numeral lexicons that lack the syntactic resources 
needed to express larger numbers. The mastery of the syntax of a formai system would seem to represent 
a separate step in the development of formai numerical cognition that requires separate cognitive 
processes, such as those associated with multi-digit numeral processing (e.g. Nuerk et al. 2015). 
Similarly, it may be useful to distinguish systems that cannot be extended indefinitely from those that 
can be extended indefinitely, as is the case for the Indo-Arabic numeration system. The reasons for such 
distinctions go beyond our present concerns, however. See Schlimm 2018 for work on these topics, as 
well as Beller & Bender 2008 and Overmann 2015, 2016. 
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innovate, cultures don't innovate. 

6.6.2 Complementary levels of innovation? 

Perhaps denying that innovation occurs at the cultural level is too harsh: why not say 

that innovation happens at both individual and cultural levels? Given Menary's 

inclusive approach to cognition, which accepts that cognition occurs at many levels, 

we could accept that innovation happens at many levels, and that the innovation that 

matters is the one that concerns cumulative historical construction like the one behind 

the DNS. 

While this may be appealing, prioritizing the cultural development of the DNS seems 

to take things the wrong way round, since it is only possible given the individual-level 

process of innovation that makes up each step of the historical development. Moreover, 

and perhaps more importantly, there are reasons to believe that seeing innovation as a 

cultural-level process has unfortunate consequences, including how we frame the 

individual input in the construction of public practices. 

One reason to doubt seeing innovation as primarily social is that this seems to go 

against common practice. While philosophers are unfortunately all-too-comfortable 

with radical reformulations of common notions, the fact remains that we do speak of 

Leibniz and Newton as the individuals that came up with calcul us, rather than 

attributing this to their specific culture. 

Seeing innovation as a public-level processes also seems to clash with the fact that 

innovations often happen as the result of sudden realizations on the part of individuals. 

Of course, there are cases of inventions that take years to take shape, and, as already 

noted, most artefacts and practices that make up our cognitive niche are the result of 

generations of tweaking. But this does not negate the fact that, in many circumstances, 
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individuals happen upon a discovery - more often than not, by accident - and in such 

cases the innovation results from sudden eureka moments, often following incubation 

periods (Chen & Krajbich 2017; Hadamard 1945). 

For example, Poincaré (1910) claimed he came up with a proof for a property of 

Fuchsian fonctions when he put his foot on a bus, after weeks of unsuccessful attempts, 

while Paul McCartney daims he woke up one day and the melody for the classic song 

Yesterday was there in his head. While bridging the gap does not require the same 

creative genius as Poincaré (or, perhaps to a lesser extent, McCartney), a similar 

process of realization following incubation applies to the Induction that leads children 

to proto-numerical cognition. lmportantly, such eureka moments occur at the 

individual level. 

Again, the important point here is that the realization that accompanies eureka 

moments, big and small, happens at the individual level. So even if the overwhelming 

majority of cultural artefacts are the result of cumulative modifications that stretch 

through generations, this does not mean that innovation is best seen as a p_opulation-

level process, since each modification is done by individuals. Much Jike mutation is 

something that can be described at the level ofindividual genes even though the gene's 

environment can play a major causal role in the process, innovation can be described 

at the level of individuals even if Menary is right that cultural pressures drive these. If 

this is the case, then enculturation seems limited in its explanatory power with respect 

to how we bridge the gap, since the role of culture in innovation is to provide a 

backdrop against which individuals innovate. To frame innovation at a social level 

seems to ignore the key contribution of specific individuals in the historical 

accumulation of innovations. 
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6.7 Innovation and Public Practices 

In this section, I want to explore another aspect of enculturation that seems to have 

negative consequences for its ability to explain innovations like the ones responsible 

for the construction of the DNS. More precisely, I want to argue that Menary's focus 

on the active role of our cultural niche in control of cognition and the associated daim 

that practices are cultural-level parts of cognitive systems black-boxes the essential 

transformative effects of individual-level innovation (and re-construction).152 There are 

two related problems with seeing cognitive practices as essentially cultural, both of 

which have to do with the origins of such practices: the first is that seeing practices as 

cultural level obscures their origins, while the second is that seeing them as public 

obscures the role of understanding in innovation. 

As mentioned above, Menary's culture-oriented take on cognition sees public practices 

like those involved in reading and arithmetic as having control over some cognitive 

systems: "In enculturated systems, the really important work is being done by the 

processing governed by normative patterned practices whose properties are understood 

primarily at the social or populational leveP' (Menary 2015b:8). This means practices 

are essentially cultural in nature: "Cognitive practices are culturally endowed (bodily) 

manipulations of informational structures" (Menary 2015a, 4). 

The problem is that framing cognitive practices at the population-level seems to pass 

over the fact that it is individuals who first invent these practices before they spread 

152 This is not to imply that the processes responsible for an innovation are the same ones involved in 
the re-construction of the original content in a learner's head. While 1 think there is a way of reading · 
Sperber (1985) or Claidière et al. (2014) that is consistent with this claim, the point being made here 
does not rely on taking a side on this issue. What must be kept in mind here is that both the innovative 
process and the re-constructive one are black-boxed if we construe practices as essentially cultural, as 
Menary seems to want to do. 
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throughout populations. 153 For example, consider Richerson & Boyd's (2005) 

description ofhow cultural evolution can overpower biological evolution in the case of 

the unpleasant taste of medicine: while our taste buds might have evolved to detect 

bitter, disgusting plants, thus protecting us from potentially poisonous sources of food, 

cultural transmission of the knowledge that some unpleasant tastes can be compensated 

by medicinal benefits has led to the spread of behavior that. goes against our 

biologically-driven aversion to such tastes. While the mechanism of transmission of 

this practice is at the population fovel, this practice, like many others, starts off with a 

single individual' s inquisitive and innovative behavior: 

W e take our medicine in spite of its bitter taste, not because our sensory 
physiology has evolved to make it less bitter, but because the idea that it has 
therapeutic value has spread through the population. In the distant past, some 
inquisitive and observant healer discovered the curative properties of a bitter 
plant. Then a number of processes . . . might cause this belief to increase in 
frequency, despite its horrible taste. (Richerson & Boyd 2005, 11) 

This illustrates the role of individual-level psychological processes in the generation of 

novel cultural practices. Menary seems amenable to the idea that individuals innovate 

novel practices when he writes that "the organism is predisposed to manipulate its 

environmental niche, or in some cases create it'' (Menary 2007, 103; emphasis mine). 

But seeing them as essentially cultural seems to go against the driving role played by 

individuals in the innovations that, in some cases, lead to population-level patterns of 

behavior that Menary considers drivers of some cognitive practices. This seems to 

suggest that framing practices as population-level black-boxes the role of individuals 

153 It is controversial to claim as I do here that individuals invent practices, given that many frame 
practices as being constituted by structures of interactions between individuals, which would seem to 
prevent them from being invented by a single individual. The point I am making here does not rely on 
rejecting this approach to practices, since even if practices are constituted by such social interactions, 
they are still often framed as patterns of individual performances ( e.g. Rouse 2007). Thus, it seems 
acceptable to claim as I do here that such patterns of individual performances have origins, and that these 
origins are performances by individuals. 
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in their origins. 

Perhaps more importantly, taking the view that practices are population-level seems to 

force us into a problematic expert regress if we try to identify their origins. For 

example, if we want to explain the shift from the ANS to the DNS in terms of 

development in a niche where experts abound, we have to be able to explain how these 

experts came to acquire the practices that they teach others. Since it can't be experts all 

the way down, we need to find an explanation of the origins ofthis expertise. For this, 

I suggest, we need to appeal to individual-level innovation strategies. 

Another reason to resist framing the origin of practices at the cultural level is what we 

could call lone wolf innovation, which occurs when an individual innovates a practice 

on their own and then this innovation fails to catch on. In such cases, the behavior 

associated with the practice is manifested, and yet the fact that it has not become a 

public pattern of behavior seems to bar it from being considered a practice. Similarly, 

consider cases where two individuals both invent the same modification to a current 

practice, but only one of these catches on. If the first to invent the practice fails to 

popularize, while a second with the same innovation does, is the less popular variant 

not an innovation because it isn't a crowd-pleaser? 

In addition to the problems related to the origins of practices, a related problem with 

seeing practices as population-level patterns of action is that this seems to ignore the 

essential contribution of individuals and their understanding of these practices in the 

process of innovation: when an individual makes an improvement upon a previously 

learned practice, she is not acting blindly. Even in cases of accidenta! discoveries, the 

individual that happens upon à novel state of affairs is irtterpreting the event according 

to an understanding of the situation. 

For example, Alexander Fleming's accidenta! discovery of penicillin was due to the 

fact that he had left some petri dishes out too long, and mold only grew well on some 
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of them. Though he did not realize the full potential of his discovery, he did grasp 

enough of it to explore novel uses of mold against bacteria. This would not have 

happened to a person without a previous understanding of how these interact. 

Similarly, when individuals corne up with ways of quantifying their environment or 

improving upon quantificational practices they may have learned from others, they are 

not acting blindly, merely imitating the gestures of others. They are acting according 

to an understanding of a task they are trying to accomplish. This understanding seems 

lost when we frame practices as population-level patterns of action, since 

understanding does not occur at the population level. Consider Menary's description 

of long multiplication: 

Practices are patterns of action spread across a population. However, I am 
inclined to think that practices are not simply reducible to the bodily actions of 
individuals. Whilst doing long multiplication requires a bodily action of me, 
what I am doing cannot be described exclusively in terms of those bodily 
actions. The practice is a population, or group level phenomenon, not an 
individual one. (Menary 2015a, 4±) 

Menary here daims descriptions of practices in terms of bodily actions must be framed 

within a group level phenomenon. Going in the opposite direction, I would argue that 

what is missing is an individual-level understanding of the rules that make up long 

multiplication. Bodily actions on their own are not enough to certify mastery of a 

practice - at least, not one like arithmetic. This is because the practice of arithmetic -

even the basic, proto-numerical skills that could have emerged in the absence of a niche 

with proto-numerical practices - requires understanding of rules. Unlike many other 

culturally-inherited practices like driving cars or the Macarena, the practice of 

arithmetic requires more than physical manipulation and copying what others do, since 
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the learning individual must corne to an understanding of a recursive rule. 154 

There is a sense in which anyone can blindly copy the symbol strings and utter the 

sounds associated with the practice of arithmetic. But few would consider this ability 

as a case of mastering arithmetical practices. For example, children learn to blindly 

recite initially-meaningless lists of number words long before they understand what 

numbers are (Carey 2009). However, once they have figured out what the first few 

number words mean - in a slow, piecemeal process (Wynn 1992b) - they soon enough 

generalize to the rest of their count list. Unlike learning how to drive, which doesn't 

require us to know anything about how cars work, the correct practice of arithmetic 

and the right way to apply number words requires understanding what numbers are, 

which is an internal, individual happening. This is might be why learning to count takes 

so long and why no animal has managed to generalize addition using symbols, despite 

a few cases of decades-long training and rote learning of associations between symbols 

and quantities (e.g. Matsuzawa 1985; Pepperbeg & Gordon 2005). 

If a person knows how to do basic formal arithmetic, they understand how to generate 

the right symbols in the right order. They have mastered rules. This is what explains 

that there can be productive use of practices like arithmetic: when individuals corne to 

master arithmetical practices, they can perform instances of such practices that they 

have not been shown. Generalizing this, I want to argue that when they make 

improvements to their repertoire of cognitive practices, in at least some cases, 

individuals are acting out of an understanding of what needs to be improved. If this is 

true, then seeing practices as socially-based seems to obscure the important role of 

individual-level undersfanding that drives innovation. 

Further support cornes from the observation that cultural pressures drive innovation: 

154 See Rouse 2007 for more on the importance ofunderstanding in the transmission of practices. 
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how could cultural pressures drive innovation unless individuals understood the 

improvements that pressures are guiding them towards? Of course pressures do drive 

innovation, in the sense of providing a backdrop against which individual innovation 

can modify current practices. But this suggests that innovation is not accidental, that it 

results from an understanding of what practices are available, of their limitations, and 

of the practices that would best satisfy such pressures. But if we see leaming 

arithmetical practices as being 'on paper' before they get in our head, as Menary does, 

it looks like we aren't taking the understanding required for innovation seriously. 

In summary, the requirements imposed by the important role played by realizing and 

understanding in different stages of the development of numerical cognition seems to 

block seeing numerical practices as population-level, since the understanding that leads 

to mastery and that led to innovation takes place at the individual level. 

6.8 The explanatory limits of cultural evolution and extended cognition 

It is important to note here that I am not denying the importance of enculturation for 

the development of bodies of knowledge like mathematics. Clearly, no single person 

could ever accomplish what we do as a species. But acknowledging the importance of 

enculturation for the development of mathematics and arithmetic does not necessarily 

explain it. The fact that humans gradually accumulate innovations over generations is 

indeed a cultural process, one that is undoubtedly responsible for the incredible 

achievements of mathematics, and science as a whole. But this cultural evolution relies 

on individuals responding to their (cultural) environment and building on it. It is this 

building process, the generation of novel content, innovation, that needs to be explained 

in our case. For this, appealing to the fact that human cognition extends into the 

environment to include cultural processes is limited in its explanatory power. 
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To understand why, it is important to realize that the emergence of the first number 

concepts took place in a world that did not contain any explicit, extemal symbols for 

numbers. And yet, there is no question that numerical content did emerge in an 

enculturated context, probably due to the demands of increasingly complex commercial 

exchanges and practices which benefitted from keeping tallies on precise quantities. 

But the fact that an event or practice takes place within an cultural context does not 

mean that enculturation can meaningfully explain its origins. Similarly, while it is 

possible that embodied cognition is a pre-requisite for the development of numerical 

content, as those who attribute an important ontogenetic and phylogenetic role to the 

use of fingers to explain the origin of numerical content believe, this does not help 

narrow down the process that led to the construction of novel · numerical content 

discontinuous with the output of our innate cognitive systems. As mentioned above, 

the fact that there are people with hands and no number concepts looks like an easy 

way to illustrate the limitations of this approach, as does the fact that the available 

evidence seems to suggest that counting on one' s fingers is not necessary to develop 

numerical abilities (Crollen et al. 2011). 

Ifthese considerations ring true, then the level at which cultural evolution and extended 

mind frameworks apply does not look like it is specific enough to explain how we 

bridged the gap. In the case of extended cognition, not only does the framework not 

allow us to identify the how artefacts with numerical content came to be, but the 

construction of novel numerical content itself appears outside of this approach's 

explanatory reach. 

A good way to illustrate that it is not always explanatorily rewarding to appeal to 

enculturation or extended cognition, irrespective of whether or not they describe how 

our minds work, is to consider our digestive system. Citing Wrangham (2009), Sterelny 

(2010) points out that our jaws - and, relatedly, our brains - have evolved to their 
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present shape because we started cooking our food a very long time ago.155 In a sense, 

then, our digestive system could be described a~ being extended beyond our stomach, 

given that we essentially rely on external artefacts to process, select, ferment, and store 

food in ways that have profoundly affected our digestive system and jaw: 

The physiological demands on hominin jaws, teeth and guts have been 
transformed by cooking and more generally by food preparation and food 
targeting ... [w]e are obligatorily cooks. Moreover, we supplement cooking by 
pre-engineering our food sources. (Sterelny 2010, 467) 

Similarly, given the fact that cooking requires fire, and that keeping a fire going while 

hunting prey is not a task fit for a single individual, one could argue that the shape of 

our jaw and the ensuing increase in brain size that followed the jaw's gradua! evolution 

are the results of enculturation, since such changes to our cooking practices could only 

have occurred in societies where the right tools and social hierarchies were developed. 

And yet, despite the fact that our digestive system is entirely dependent on technology 

that has allowed us to pre-process our food outside our body for thousands of 

generations, this information is not required to explain why certain foods cause 

heartburn, or other facts about how our digestive system works: "there is no 

explanatory mileage in treating my soup pot as part of my digestive system, once its 

importance as a scaffold is recognised" (Sterelny 2010, 468). Nor does our essential 

reliance on external artefacts for our food intake mean that such technology is part of 

our digestive system. As Sterelny put it in this delicious passage: 

Our digestion is, then, technologically supported in profound and pervasive 
ways ... We have engineered our gustatory niche; we have transformed both our 
food sources and the process of eating itself. Our under-powered jaws, short 
gut, small teeth and mouth fit our niche because we eat soft, rich and easily 
digested food. Our digestive system is environmentally scaffolded. But is my 

155 Sterelny mentions that while estimates locate the advent of cooking food anywhere between one and 
two million years ago, there is no doubt that we have been cooking our food for at least 400 000 years. 
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soup pot, my food processor and my fine collection of choppers part of my 
digestive system? As far as I know, no one has defended an extended stomach 
hypothesis, treating routine kitchen equipment as part of an agent's digestive 
system; indeed "extended stomach" and "extended digestion" on Google 
Scholar return some very strange hits. (Sterelny 2010, 467-8) 

So while we may indeed rely on extemal objects (and people) for our daily cognitive 

regime, including leaming and using numerical content, this does not mean that we can 

explain the emergence of novel content by appealing to these general facts about how 

our minds work. It is not always helpful to appeal to the extemal aspects of our minds 

to explain particular phenomena, even if our minds are indeed extended, enculturated, 

embodied, or any other variant of active extemalism. 



CONCLUSION 

In his review of Susan Carey's The origin of concepts (2009), Nicholas Shea writes: 

The philosopher of mind who stands convinced of the relevance of empirical 
results soon hits a problem. Lured in by a few interesting studies, the door opens 
on a cacophony of data, like a frenetic party in full swing. There are just so 
many studies out there. How do they fit together? And what do they all add up 

. to? (Shea 2011, 129) 

Shea goes on to praise Carey for her ability to make sense of all these disparate data -

rightly so. In my thesis, I have tried to navigate through such a cacophony of data 

conceming the potential origins of numerical cognition in order to paint an intemalist-

friendly picture of how numerical content of the sort used in the practice of arithmetic 

emerges from evolutionarily-inherited systems like the ANS and the OFS. This 

required filtering data from a motley crew of research domains, from anthropology to 

neuroscience, from comparative psychology to archeology, in order to determirte the 

ability of the dominant extemalist approach to numerical cognition to weave an 

explanatorily satisfactory account of the origins of mathematically-viable concepts of 

numbers. 

A quick recap will help us see the ground we have covered. In the first. two chapters 

we saw that recent breakthroughs in a wide variety of fields have allowed us to identify 

innate cognitive systems capable of producing representations -with quantitative 

content. W e also saw that there is good evidence that systems like the ANS and the 

OFS are recruited in numerical tasks, which suggests that we may have found leads on 

the potential neural underpinnings of our ability to think about numbers. However, we 
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also saw that these systems' limitations mean that they cannot, on their own, represent 

numbers. 

This led us to take a look in chapters 3 and 4 at how prominent thinkers in the study of 

numerical cognition like Stanislas Dehaene and Susan Carey exploit their knowledge 

of the extensive literature concerning these and other evolutionarily-inherited 

representational systems to explain how we overcome their limitations and represent 

natural numbers. This allowed us in tum to see the extent to which their accounts rely 

on things outside our head to bridge the gap between our limited evolutionary heritage 

and the unbounded expressive power of arithmetically-viable representations of 

number. I then presented my origins problem to these accounts, arguing that taking an 

externalist approach to the origins of numerical cognition is tantamount to putting the 

cart before the horse, since it relies on the presence in the environment of things whose 

existence in turn relies on the very same internai representations whose origins we are 

trying to explain. 

In chapter 5, I took a closer look at the philosophical motivations behind this 

externalism in Clark & Chalmer' s classic paper on the extended mind before exploring 

the constitutivity of external supports for cognition, as framed by Catarina Dutilh 

Novaes. This led me to discuss the relationship between external and internai 

representations for numbers at both ontogenetic and historical timescales. To ground 

this discussion, I took a look at Lambros Malafouris' externalist account of the 

development of abstract notation for numbers in Sumeria as well as the limited -

arguably, nonexistent - numerical abilities of cultures like the Mundurucu and the 

Piraha . These case studies helped me argue that externalist approaches have trouble 

explaining what makes the difference between individuals that manage to bridge the 

gap and those who do not, because they rely on the existence of cognitive loops with 

things outside the head to explain this difference, while I claim that both individuals 

have access to the same external resources, so the difference maker must be inside their 
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head. This led me to claim that extemalism about numerical cognition leaves out 

important details about the origin of numerical content, especially, the concept of 

precise quantity, and that an initial segment of the natural numbers seems out of reach 

for extemalist approaches to numerical cognition, given their inability to explain the 

difference between individuals that have bridged the gap and those who have not, in 

both numeral-free and numeral-enriched environments. 

In the last chapter, I considered two responses to this charge. The first is to try to explain 

the emergence of novel numerical content by appealing to , mechanisms of cultural 

evolution, as described by Helen De Cruz. I argued that this doesn't help, since such 

mechanisms are population-level, while the generation of novel content occurs at the 

level of the individual. Similarly, in response to Richard Menary's enculturated 

approach to numerical cognition, I argued that innovation matters in how we want to 

answer the gap problem and that enculturation is not well equipped to answer the 

individual-level aspect ofthis problem. Rather, enculturation is better suited to explain 

the cumulative growth of arithmetical practices and their spread through populations, 

as well as what makes the difference between two different cultures' numerical 

abilities. The daims I have relied on have to do with the fact that there are cases where 

we bridge the gap without help from our niche (as in the case of the original 

development of proto-numerical practices by creative individuals) or we can't bridge 

the gap despite being in a niche (as in cases of dyscalculia). I also argued that each step 

in the cumulative construction of cultural practices and artefacts is the result of 

individuatinnovation, and that the fact that the transformation occurs at the individual 

level means that social-level innovation and practices cannot supply a difference maker 

explaining what sets innovative individuals apart from non-innovators. 

In my analysis of the extemalist approaches of Dutilh Novaes, De Cruz, Malafouris, 

and Menary, I relied on daims about the relation between mental content and symbols, 

the continuity of ontogenetic processes through the historical development of 
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numerical cognition, and the role of individual-level psychological processes in 

mechanisms of cultural evolution. Even if these claims are mistaken, these extemalist 

frameworks could only help rid us of the apparent methodological circularity involved 

in taking a manifestation of numerical cognition to be one of its causes, and thus 

extemalism would still not have a full story about the origin of numerical content in a 

world without numerical artefacts. 

Of course, I would be foolish to deny the essential role of extemal symbols for numbers 

and public practices in shaping our arithmetical skills, given that learning from our 

interaction with a niche in which such practices abound is clearly behind our advanced 

numerical abilities. However, none ofwhat I have argued for denies the important role 

of external supports for cognition in the advanced practice of arithmetic. Rather, what 

I have argued here does not negate that some arithmetical practices - especially the 

ones mathematicians care about, and the ones that deal with 'large' numbers - could 

be considered as cases of extended, enculturated, embodied, or enactive cognition, 

given that our feeblé brain-bound memories are not strong enough to allow us to keep 

track of precise quantities beyond a certain unidentified limit. 

However, if I am correct in stressing the inability of externalist accounts to answer my 

origins problem, while some cognitive processes - including arithmetic involving 

sufficiently high numbers - may very well be usefully described as being extended into 

the world because they are impossible to complete without external aids, the role of 

these artefacts could still be limited to cognitive offloading of representations that were 

constructed via processes that can be described in terms of purely internai resources. 

While in current-day arithmetic and mathematics, this role is of capital importance, 

given the quantity and variety of arithmetical tasks that involve large numbers on a 

da:ily basis, it should not cast a shadow over the painstakingly-acquired understanding 

of numerical quantity on which it rests, without which there would be no gap problem 

to speak of. I have tried to argue that this understanding allows the development of at 
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least an initial segment of the natural numbers. 

lfl am right, then it looks like the externalist point ofview cannot give us the full story 

of how systems like the ANS and the OFS allowed us to develop mathematically-

viable number concepts. Thus, a different, internalist approach to the origin of number 

concepts seems like a worthy avenue to explore, if only to explain the initial, artefact-

free development of numerical content that externalism leaves out. 

The question is: can internalism fare any better? To show internalism is a promising 

framework to help us bridge the gap, it would be necessary to have an account what 

sort of intra-cranial processes and systems could be involved in the development of 

numerical content. Given the important role of attention in the externalist accounts of 

numerical cognition considered here, as well as in many explanations of how we 

interact with external objects in extended cognition loops (see e.g. Clark's 2008 

. discussion of language as an extemal resource ), I will allow myself to speculate that 

attention to quantity is a worthy avenue to explore. 

While the issue of whether it is best to explain the development of numerical content 

by adopting an externalist framework may not allow us to explain how numbers get the 

objectivity and generality that made Frege and Husserl weary of any psychological 

intrusion into foundational issues, settling this issue could certainly represent progress 

in that direction. This is because once we have a naturalistic understanding of what 

numbers are, it seerris reasonable to hope that their generality, objectivity, and apparent 

mind-independence could be explained in terms of the general properties of the 

cognitive processes that generate them. 

One could argue that such an attempt to explain the unique properties of numbers in 

terms of psychological processes was already present in the work of Dutch 

mathematician L.E. J Brouwer, who tried to build foundations of mathematics that rely 

not on sets and axioms, but on the recursive properties of consciousness. Regrettably, 
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Brouwer's intuitionist approach of the construction ofnumber by the human mind was 

couched in a language laden with mystical notions (van Stigt 1991), and while his 

description of the origin of numbers did produce mathematically viable tools - at least, 

as far as the natural numbers are concerned - his account did not bother with the actual 

details of how the mind works. 156 However, given that there are cognitive processes 

that share the recursive properties of Brouwer' s account of construction of natural 

numbers from the primordial intuition of time, such as attention (Dehaene & Changeux 

2011), internalists might gain from trying to adapt some aspects ofhis views to a more 

empirically-informed framework to see if it is possible to provide a psychologically-

viable version of his intuitionism. 

These are, of course, speculative remarks aimed at illustrating how an internalist 

approach could help bridge the gap without attributing a constitutive role to external 

artefacts. And yet, even ifthese suggestions turn out to be ludicrous, the problems with 

externalism listed above suggest that an internalist approach is warranted if we wish to 

describe all cases of ontogenetic development of numerical content. However, this 

would not mean that externalism needs to be abandoned. On the contrary, examining 

the causal role played by external symbols in numerical cognition can help us 

understand the internai processes involved in the development of number concepts, 

since knowledge of this causal process may help identify internai analogues that play 

the same role as external symbols. So while relying on external symbols might not give 

us the whole story, it can move us in the right direction. 

In any case, as things stand, neither internalist nor externalist accounts have managed 

to exploit the vast amounts of empirical data to offer an answer to the gap problem. 

Perhaps more importantly for the philosophical study of the foundations of arithmetic, 

neither approach has delivered an empirically-informed account of what numbers are 

156 In Brouwer's defense, few such details were available at the beginning of the 20th century. 
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that could offer sufficiently-detailed explanation ofwhere numbers get their generality 

and objectivity to offer an appetizing alternative to the platonist. 

The first step in motivating a philosophical shift away from platonism using the vast 

numerical cognition literature is to show that it can provide a workable alternative to 

the platonist story. As Dehaene admits, "the burden of elucidation clearly falls upon 

psychologists and neuroscientists, who will have to figure out how a finite brain, a mere 

collection of nerve cells, can conceive such abstract thoughts" (Dehaene 1997/2011, 

x). Given the incredible progress of this domain of research despite its young age, on 

this front, there is room for optimism. For example, consider the fact that all the writers 

covered in this thesis have a commitment to Darwinism about mathematics, in that they 

view mathematics.as the product of Darwinian processes of biological and cultural 

evolution. Already, this marks a welcome departure from the foundationalist program 

that dominated philosophy of mathematics in the last century, in that it off ers at least 

the possibility of coming up with a naturalized account of numbers. 

Darwinism looks for causes to behavior in the history of a species. In so doing, it 

embraces science's general commitment to causal explanation - a notable 

improvement over traditional foundations of mathematics. Darwinism also accepts that 

historical development. is often a series of accidents and contingencies, and that the 

products of this development are fleeting and imperf ect. On this point of view there is 

no room for a perfect platonic world proposed by Frege and Husserl. 

Thus, describing mathematical thought as· the product of a Darwinian process of 

evolution allows us to look at mathematics from a naturalistic perspective, where 

mathematics is considered as a growing body of knowledge produced by human 

activity instead of a static, platonic world of eternal truths that we somehow discover. 

Seen through the lens of evolutionary theory, mathematical concepts, their origins, and 

their evolution are all subjects of scientific inquiry. This naturalistic perspective shifts 

the focus of enquiry from considerations internai to mathematics that were typical of 
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traditional approaches to the foundations of mathematics to the actual human practice 

of mathematics and the role of human agency in the emergence of mathematical 

concepts. 

An advantage of Darwinism, th en, is that it cornes with ontological and epistemological 

commitments that make it possible (in theory) to explain how humans could interact 

with mathematical objects, a question that early 201
h -century foundationalist programs, 

with their focus on intemal consistency and foun~ational concepts, failed to address. 

The fact that this approach seems shared by philosophers reflecting on the origins of 

numerical cognition could indicate that we are gradually shifting away from the 

rampant platonism of classical foundational projects. As a naturalistically-inclined 

philosopher of mathematics, the fact that Darwinism even listens to the cacophony of 

numerical cognition data is music to my ears. 
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