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“If you can’t fly then run, if you can’t run then
walk, if you can’t walk then crawl, but whatever

you do you have to keep moving forward”

-Martin Luther King, Jr.
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RESUME

L’analyse de la relation especes-habitat a toujours ét€ un des objectifs centraux de
I’écologie. C’est devenu un cadre pour explorer, comprendre et répondre a des
questions spécifiques concernant la complexité et les mécanismes qui sous-tendent
les patrons spatio-temporels de distribution d’especes. Le savoir-faire généré par la
modélisation écologique et la quantification des relations espeéces-environnement est
un élément clé pour la conservation et la gestion des écosystémes et des populations.
L’objectif général de cette these est d’améliorer les méthodes quantitatives en : (i)
construisant une approche pour les donnée multi-especes basée sur les modeles
linéaires généralisés, appelée “Analyse de Redondance Généralisée” (gRDA) ; (ii)
améliorant la modélisation de la distribution des poissons (présence/absence) en
considérant les interactions biotiques entre espéces, et en utilisant les connaissances
générées par ces modeles pour (iii) modéliser la biomasse des poissons, déterminer
les principaux facteurs environnementaux qui influencent la biomasse des différentes
especes, ainsi qu’évaluer I’impact de la pression exercée par le péche. Ces liens
peuvent contribuer a renforcer la recherche sur la relation especes-habitat, les services
écosystémiques tout en apportant des informations sur les processus qui sous-tendent
ces relations. La recherche sur des méthodes quantitatives interconnectées devrait
permettre de mieux comprendre les agents qui structurent la biodiversité et comment
ils interagissent pour fournir des services écosystémiques, tout en clarifiant les
actions qui devraient €tre entreprises pour remédier a la perte de ces services liées a
I’augmentation de I'impact de ’homme. Dans le Chapitre 1, une méthode multi-
espéces appelée “Analyse de Redondance Généralisée” (gRDA) a été développée.
Cette méthode est basée sur la distribution logistique et la distribution de Poisson, et
elle a été étendue au Partitionnement de Variation. Le but du chapitre est de présenter
cette méthode et de déterminer ces performances en utilisant une vari€té de méthodes
de Monte Carlo. Nos résultats montrent que la méthode proposée est robuste et
devrait remplacer le Partitionnement de Variation standard basé sur 1’Analyse de
Redondance ordinaire. Le chapitre II présente une comparaison de la performance et
de la capacité prédictive de plusieurs méthodes de modélisation de la distribution des
especes, tout en identifiant les prédicteurs les plus importants pour expliquer la
présence ou I’absence des especes considérées. Ces modeles différent par 1’utilisation
de données empiriques et ont ét€ développés pour six especes de poisson de 1’eau
douce dans les lacs d’Ontario. La modélisation dans le chapitre 2 prend en compte
trois classes de modeles : (i) les modeles qui n’utilisent que I’information sur les
conditions environnementales comme prédicteurs : (ii) ceux qui utilisent uniquement
I’information sur les communautés de poissons pour prédire la présence d’une espece
particuliere (c.a.d. variables abiotiques) et (iii) une combinaison de (i) et (ii) (c.a.d.
variables abiotiques et biotiques). Finalement, en utilisant les mémes espéces de
poissons que pour le Chapitre II, le chapitre III présente des modeles de biomasse
développés au moyen d’arbres de régression permettant d’identifier 1’importance
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relative de différentes variables environnementales ainsi que la pression angulaire.
De plus, les similarités et différences entre guildes de poissons ont été mises en
évidence par I’influence de chacun des prédicteurs sur la biomasse de chaque espece.
Les résultats des chapitres II et III révelent I’importance de la morphométrie des lacs
et du climat pour ’estimation de la présence/absence et de la biomasse, et, dans le
chapitre II particulierement, il a ét€ observé que les modeles de présence/absence ont
de meilleures performances lorsqu’ils tiennent en compte de I’information biotique
ainsi que des prédicteurs abiotiques. De plus, les résultats indiquent que la
performance des modeles pourrait &tre largement affectée par la manicre dont ces
modeles sont développés et évalués. Choisir une méthode de modélisation appropriée,
les variables explicatives, les méthodes de validation et les mesures de performances
sont des étapes importantes pour obtenir des inférences ou prédictions plus fiables
plutdt que des résuitats spécifiques aux données ou des artéfacts statistiques. De ce
fait, la présente these fournit une enquéte complete sur I’amélioration des méthodes
de modélisation populaires, tout en montrant leurs utilit€s pour évaluer 1’importance
des facteurs influengant la distribution et la biomasse des poissons qui ont une
importance économique en Ontario, ce qui peut étre utile du point de vue de la
gestion des ressources naturelles.

Mots-clés: modélisation écologique; Analyse de Redondance; Partitionnement de
Variation; modélisation de la distribution des espéces; modeles de biomasse; Poisson
d’Eau Douce.



SUMMARY

The analysis of species — habitat relationships has always been a central goal in
ecology. It has become a central framework to explore, understand and tackle specific
" questions about the intricacies and mechanisms underlying species distributional
patterns in space and time. The savoir-faire generated by ecological modelling and its
quantification of species-environment relationships is critical for conservation
planning and ecosystem/population management. The general objective of this thesis
is to improve quantitative methods to: (i) build a framework for multispecies data
based on generalized linear models, called “Generalized Redundancy Analysis”
(gRDA); (ii) access improvement in species distribution modelling approaches
developed for fish presence-absence by inserting biotic information related to the fish
species, and knowledge about these models are linked to the (iii) development of fish
biomass models while unravelling the principal environmental determinants that
influence the biomass of different species, when also evaluating the impact of fishing
pressure. These links can contribute to major scientific underpinnings related to the
research of species-habitat relationships, while consisting of ecosystem services when
promoting information about the processes underlying these relationships. The
investigation of interconnected quantitative frameworks to link environmental, spatial
and biotic interactions should bring to light a greater understanding of the key agents
structuring biodiversity and how they interact to provide the delivery of aquatic
ecosystem services, while clarifying about the actions that should be taken to mitigate
the loss of these services in face of increasing human impacts. In Chapter I, a
multispecies framework called “Generalized Redundancy Analysis” (gRDA) was
developed, based on logistic and Poisson distributions via GLMs, and extend this
framework to variation partitioning. The goal was to present the framework as well as
assess its performance using Monte Carlo approaches under a variety of scenarios.
Our results showed that the proposed framework is very robust and should essentially
replace the current standard variation partitioning based on ordinary Redundancy
Analysis. Chapter II presents a comparison among a number of SDM approaches in
terms of their predictive performance and explanatory power, while identifying the
predictors that are most influent in explaining presence-absence of the species
considered. These models were contrasted by using empirical data and developed for
six species of freshwater fishes in north-temperate lakes of Ontario. The modelling
routine for Chapter 2 was done taking into account three classes of models (i)
incorporating only information about the environmental features as predictors; (ii)
using solely the information about the fish community to predict the occurrence of a
particular species (i.e. using biotic parameters) and (iii) represents a combination of
(1) and (ii) (i.e. using abiotic + biotic parameters); Finally, using the same fish species
from Chapter II, Chapter III presents biomass models developed via boosted
regression trees, allowing to identify the relative importance of the different principal
environmental determinants used as regressors, together with angling pressure. In
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addition, similarities and dissimilarities within and among fish thermal guilds were
showcased regarding the biomass response of each species to every predictor used in
the modelling process. Results from Chapter II and III point out the importance of
lake morphometry and climate to the estimation of presence-absence and biomass,
and in Chapter II particularly it was observed model improvements when biotic
information was used together with abiotic predictors for presence-absence models.
In addition results indicated that model performance could be largely affected by how
models were developed and evaluated. How to choose appropriate modelling
approaches, predictor variables, model validation methods, and performance metrics
are important steps if we want to get more reliable inferences or predictions rather
than data-specifics results or statistical artifacts. Thus, this thesis provides a
comprehensive investigation on aspects consisting of improvements of popular
modelling approaches, while showing their usefulness in assessing important
information related to factors most influent in the distribution and biomass of
economically important fish species in Ontario, which can be useful from the natural
resources management point of view.

Keywords: ecological modelling, Redundancy Analysis, Variation Partitioning,
species distribution models, biomass models, freshwater fish



INTRODUCTION

In this section, I provide details on the backgrouhd that supports this thesis. The first
part refers to a discussion about the role and increasing importance of species
distribution modelling in Ecology, showing the different steps involved in the
calibration (building) process, the importance of each of these steps, followed by the
importance of proper estimation, addressing the most common limitations faced when
building static and probabilistic models. The second part outlines ecosystem services
and the importance of different services provided by fish populations. I will address
the importance of the development and assessment of models and quantitative tools to
better predict and understand the ecosystem services provided by fish, focusing on
how this information can improve monitoring and management programs for fish

populations.

0.1 Species modelling

The analysis of species-habitat relationships has always been a central goal in
ecology. It has become a central framework to explore, understand and tackle specific
questions about the intricacies and mechanisms underlying species distributional
patterns in space and time. The savoir-faire generated by ecological modelling and its
quantification of species-environment relationships is critical for conservation
planning and ecosystem/population management. The statistical frameworks applied
in ecological modelling are generally based on estimating parameters about the
importance of environmental features (e.g., local habitat, regional climate, habitat

connectivity) influencing the distribution of species and their communities (Guisan



and Zimmermann 2000). This knowledge is of utmost importance to estimate habitat
suitability for endangered species, discover new populations or previously unknown
species, forecast effects of habitat change due to human interference, establish
potential locations for species reintroduction, predict how community structure may
be affected by the invasion of exotic species, predict the effect of ecological
disturbances, climate change or how environmental conditions affect different
communities across different spatial/temporal scales. Habitat models relating habitat
characteristics, and species distributions and community structure allows one to
derive/predict the habitat potential distribution within the modelled area, which is
equivalent to modelling its potential habitat (Schuster 1994) and niche (Elith and
Leathwick 2009). A plethora of statistical approaches for species modelling are
available (e.g. Harvey 1978; Somers and Harvey 1984; Legendre and Fortin 1989;
Jackson and Harvey 1993; Jenkins and Buikema 1998; Guisan and Zimmermann
2000; Peres-Neto et al. 2006; Sharma and Jackson 2007; Elith et al. 2008 and many
others) and they differ in their ability to model environmental relationships. As such,
an evaluation of different statistical techniques can provide insights into which
approaches are most appropriate for the biological question being asked at both the
species and community levels (Guisan and Zimmermann 2000; Elith et al. 2006;
Sharma and Jackson 2008; Sharma et al. 2012). It is important to keep in mind that
habitat models are expected to address at least two questions: (1) how well the
distribution of a set of species is explained given a set of covariates? (2) Which
covariates are unimportant in the sense of contribution to the explanation of patterns
already accounted for by other variables present in the model (i.e., marginal and

independent contribution).

The development of environmental niche models involves some steps that are central
while generating a consistent tool that works with similar levels of accuracy across

large landscapes, particularly in those in which the nature of the covariation among



predictors and their contribution to species distributions change spatially (e.g., non-
stationarity; Wenger and Olden 2012). The first step is the conceptual model
formulation, or underlying conceptual framework. In this step, one usually faces the
task of deciding which model properties are desirable to achieve. Levins (1966)
points out three main model properties, generality, reality and precision, stating that
only any two out of three can be improved simultaneously. In this sense, three classes
of models can be designed: (i) accurate prediction within a limited or simplified
reality. In this category, analytical (Sharpe 1990) models are suitable and they
incorporate precision and generality; (ii) predictions attained on real cause-effect
interactions are named mechanistic (Prentice, 1986), designed to be realistic and
general, with a focus on theoretical correctness of the predicted response over
predicted precision; (iii) Empirical models (Decoursey 1992) are based on precision
and reality, condensing empirical facts instead of considering realistic “cause and
effect” between response and explanatory variables. Central aspects to consider when
conceptualizing a predictive habitat distribution model are the inclusion of direct
versus indirect (e.g., proxy) predictors, the choice of modelling the fundamental
versus the realized niche (Kearney and Porter 2009), to assume equilibrium between
environment and observed species patterns versus non-equilibrium (Hof et al. 2012)
and individual species modelling versus community approach (Ferrier and Guisan
2006). Note that the choice of an appropriate spatial scale (Wiens 1989), selection of
a set of conceptually meaningful explanatory variables and designing an efficient
sampling strategy are equally important when formulating a given model and its

objectives.

The second step in the development of empirical ecological niche models is the
statistical model formulation. In other words, the choice of the statistical technique to
be applied in order to model the relationship between the response and explanatory

variables. The type of response variable (quantitative, semi-quantitative, qualitative)



and its probability distribution has also a great influence on the selection of an

appropriate technique. Some of the most popular species distribution modelling

approaches comprises:

(1)

(i)

(iii)

(iv)

v)

(vi)

Linear regression methods, which can be extended to model complex data
types (e.g. fixed versus random covariates) and allow the inclusion of
additive combinations of predictors and/or terms representing interactions
between predictors;

GLMs, extensively used by ecologists for its ability to deal with data
possessing different error structures, particularly presence/absence
modelled via logistic regression. They consist of mathematical extensions
of linear models that do not force data into unnatural scales, also allowing
for nonlinearity and nonconstant variance structures in data;

Generalised Additive Models (GAMs, Hastie and Tibshirani 1990), which
consist of a powerful extension of GLMs, gaining increasing popularity
due to the ability of defining non-parametric smoothers to describe
nonlinear responses, contributing with useful flexibility for fitting
ecologically realistic associations;

Multivariate Adaptive Regression Splines (MARS, Friedman 1991)
combines the strengths of regression trees with piecewise linear basis
functions, which allows the modelling of complex relationships while
possessing exceptional analytical speed;

Ordination techniques, more specifically direct gradient analysis,
providing axes that are constrained to be a function of environmental
factors, i.e., sample scores are constrained to be linear combinations of
explanatory variables. Canonical Correspondence Analysis (CCA) and
Redundancy Analysis (RDA) are noteworthy approaches;

Classification tree analysis (CTA, Breiman et al. 1984, also referred to as

classification and regression trees - CART) are machine-learning methods



(vii)

(viii)

(ix)

for constructing prediction models from data. The models are obtained by
recursively partitioning the data space and fitting a simple prediction
model within each partition. Trees explain variation of a single or multiple
response variable by repeatedly splitting the data into more homogeneous
groups, being each characterized by a typical value of the response
variable, the number of observations in the group, and the values of the
explanatory variables that specify it;

Artificial neural networks (ANN, Olden et al. 2008), whose information
processing system is composed of a large number of highly interconnected
elements called “neurons”, working together to solve specific problems.
They are popular in Ecology because they are considered to be universal
approximations of any continuous function, being quite popular when
modelling nonlinear relationships. Their full classification procedure is a
complex non-parametric process;

Random forests (RF, Prasad et al. 2006), which creates multiple boot-
strapped regression trees without pruning and averages the outputs, with
each tree being grown with a subset of predictors entered in the model in a
random order to avoid bias due to the inter dependencies among
predictors. Typically a large number of trees is grown (500 to 2000),
creating a limited generalization error, and thus reducing overfitting;
Boosted regression tree (BRT, Elith et al. 2008) improves the performance
of a single model by fitting many models and combining them for
prediction, using two algorithms: regression trees (from the classification
and decision tree group of models) and boosting builds, which combines a
collection of models. For regression problems, boosting is a form of
“functional gradient descent”, a numerical optimization technique for
minimizing the loss function by adding, at each step, a new tree that best
reduces (steps down the gradient of) the loss function. The first tree is the

one that maximally reduces the loss function, followed by a tree that is



fitted to the residuals of this first tree, which can contain quite different
variables and split points compared with the first. The model is then
updated to contain two trees (two terms), and the residuals from this two-
term model are calculated, and so on. The final BRT model is a linear
combination of many trees that can be thought of as a regression model
where each term is a tree. BRTs have been showing interesting results,
possessing the ability to account for uncertainty in model structure;

(x) Maximum entropy (MaxEnt, Phillips et al. 2006) estimates a target
probability distribution by finding the probability distribution of the
maximum entropy (in other words, that is most spread out, leading to
uniform), subject to a set of constraints that represent incomplete
information about the target distribution. It has gained popularity among
studies that entail presence-only data (e.g., museum data), but can also be

applied to presence/absence data by using a conditional model.

After selecting a given statistical approach, the model is calibrated on real data.
Rykiel (1996) defines calibration as “the estimation and adjustment of model
parameters and constants to improve the agreement between model output and a data
set”. However, the selection of proper explanatory variables is a vital component of
this process. In an ideal modelling world, a model should be parsimonious, i.e.,
should accomplish its desired level of explanation or prediction with as few predictor
variables as possible, and this can be a difficult task since nature is not completely
parsimonious. Due to the recognition of (living) nature as an extremely complex
phenomenon, driven by several factors interacting at the same time, and in different
orders of magnitude. One particular challenge to keep in mind is that parsimony is
often obtained by the trade-offs between predictive power and complexity, and not
necessarily taking into account how well we understand variable contribution to the

model. For instance, two models may have similar predictive power and amount of



predictors, but one is much easier to explain based on current knowledge of how a
predictor is likely to affect the response. The choice of predictors can be done
arbitrarily (which is not recommended for its inconsistency), automatically (via
stepwise procedufes available in linear regression methods and GLMs), following
physiological and other ecological or mechanistic principles or by shrinkage rules
(Harrell et al. 1996). After variable selection, model parameters are estimated and its
fit is characterized, most of the time, by a measure of the variance reduction (or
deviance reduction in maximum likelihood techniques). The model optimization
through deviance reduction is performed through an estimated D? (equivalent to R? in

least-squares models), being defined as:

D? = Null deviance—Residual deviance

Null deviance

where the null deviance is the deviance of the model with the intercept only, and the
residual deviance is the one that remains unexplained by the model after the insertion
of all selected predictors. The ideal model has no residual deviance and its D? equals
one. Weisberg (1980) argues that the deviance formulation is not representative of the
real fit, and proposes an adjusted version based on the number of observations » and

the number of predictors p, which has been largely adopted:

n

_1x(1—D2)

adjusted D* =1 —
n—p

The value of the adjusted D? increases with an increasing n or a decreasing p in the
model, and it allows for comparisons among nested models that include different
combinations of explanatory variables. In tree-based approaches, no fit needs to be
characterized since the model will attempt to predict the data exactly. Diagnostic tests
for significance of estimated model coefficients can be performed based on the

related variance or deviance distribution in least-squares and GLM estimation.



After model calibration, the next step consists of evaluating the model, also called
model validation, which is the measurement of adequacy between model predictions
and field observations, depending mostly on the specific purpose of the research and
the domain in which the model is supposed to be applicable (Fielding and Bell 1997).
Two main approaches are worth mentioning: (i) using a single data set to both
calibrate and validate the model via cross-validation (Van Houwelingen and Le
Cessie 1990), leave-one-out Jackknife (Efron and Tibshirani 1993) or bootstrap
(Efron and Tibshirani 1993); (ii) having two independent data sets, using one for
calibration and the other for validation, this approach being optimal and attractive.
The first approach is usually selected when the data set is too small to be split into
separate data sets but often used for large data sets as well. Regardless of the
approach, two types of measure can be used to quantify the fit between predicted and
observed values of the validation data set: (i) using the same goodness-of-fit methods
used to calibrate the model or (ii) using any discrete measure of association between
predicted and observed values (Guisan and Harrell 2000). In the case of presence-
absence data (binary), probabilities are truncated at an adjusted optimal threshold
(below threshold being predicted absent and above as present) that provides the best
agreement between predicted and observed values. A confusion matrix (Guisan et al.
1998) expressing the number of true positives (predicted and observed present), true
negatives (predicted and observed absent), false positives (predicted present but
observed absent) and false negatives (predicted absent but observed present) is then
analysed through the proportion of area correctly classified, the percentage of
commission and omission errors, or using Cohen’s k (Cohen 1960), among other
metrics. Another option for binary data is the use of a threshold-independent measure
like the receiver operating characteristic (ROC) plot methodology (Fielding and Bell
1997). For quantitative data, the evaluation of predictions can be done simply by

using Pearson’s product-moment correlation coefficient if the variable is normally



distributed, or a non-parametric rank correlation coefficient like Kendall’s T or

Spearman’s p.

With the increasing number of studies on predictive habitat distribution modelling,
some key topics related to their limitations appear frequently and they comprise

potential areas of investigation:

. Multiple scales: all species function at specific spatial and related temporal
scales. However, their joint localized activities mediate processes that are
important at the landscape scale (Anderson 1993). A hierarchy of scale-
dependent abiotic factors, biotic interactions, population processes,
disturbances and legacies govern their distribution (Ettema and Wardle
2002). Given this fact, species distribution modelling should either focus
on appropriate scales that are relevant to the research question, the system,
data availability or simultaneously consider multiples scales (Beever et al.
2006). Conceptually, there is no single natural scale at which ecological
patterns should be studied (Levin 1992).

. Biotic interactions: most SDMs are calibrated under the assumption that
biotic interactions do not influence species range patterns (Huntley et al.
1995) or only affect patterns at small spatial scales (Pearson and Dawson
2003). Recent developments aim at considering abiotic interactions (e.g.,
Boulangeat et al. 2012), though these approaches remain in their early
stages. In models for understanding or interpolation-style prediction, the
consequences may not be too severe, except where the presence of a host
species is critical and not predicted by the available covariates. Studies
were published showing how the incorporation of biotic interactions into
SDMs better models species distributions and responses to environmental

change. The information about these interactions is included, for example,
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in the form of occurrence (Heikkinen et al. 2007), counts or frequencies
(Leathwick and Austin 2001) or as a competition coefficient (Strubbe et al.
2010). The importance of biotic interactions may vary depending on the
spatial scale and position along environmental gradients. In models built
for extrapolation, like in the case of the effects of climate change on
species distributions, the effects of competitors, mutualists and conspecific
attractions might have far-reaching effects (Elith and Leathwick 2009).
Uncertainty: it results both from data deficiencies (like missing covariates,
small samples, biased species occurrences, lack of data about absence or
inadequate sampling strategy) and from errors in model specification
(Barry and Elith 2006). Few studies have addressed uncertainty in SDMs
and its effects in model calibration, predictions and associated decision
making. In management applications, it is important to investigate the
impact of uncertainty and how to reduce it, characterizing and exploring its
effects in decision making. Heikkinen et al. (2006) provide some useful
information in various aspects of SDMs that contribute to uncertainty.

The use of presence-absence data versus abundance: the relative use of
presence-only and presence-absence data has been widely discussed (Elith
et al. 2006), abundance data are available for many taxa in some regions,
and it can provide additional information that might be better related to
conservation status (Johnston et al. 2013), extinction risk (O’Grady et al.
2004) and community structure and function (Davey et al. 2012).
Moreover, SDMs derived from abundance data may reflect the importance
of key demographic and environmental factors such as carrying capacity
(Pearce and Ferrier 2001). Howard et al. (2014) points out the importance
of abundance data in predictive modelling, deriving a more accurate
assessment of habitat suitability in contrast to presence-absence data.
However, the choice of using presence-absence over abundance comes, in

most cases, from the focus on methodological development to enhance
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model performance (Guisan and Thuiller 2005, Elith et al. 2006) or pure
lack of abundance data available, the latter being the most restrictive.
Comparisons between models based on abundance versus presence-
absence data, while addressing other SDM limitations, are the subject of
potential future research.

Spatial autocorrelation (SAC): spatially explicit predictive models are
generally built with little or no attention to spatial processes that drive
species distributional patterns. SAC occurs when the values of variables
sampled at nearby locations are not independent from each other (Tobler
1970). The causes underlying are manifold, but three are worthy of
mention: 1) biological processes such as speciation, extinction, dispersal or
species interactions; 2) non-linear relationships between environment and
species modelled (erroneously) as linear; 3) spatially-structured
environmental features impose a spatial structure in the response (Legendre
and Fortin 1989, Legendre and Legendre 1998). While spatial
autocorrelation can provide information about biotic processes such as
population growth, geographic dispersal, differential mortality, social
organization or competition dynamics (Griffith and Peres-Neto 2006), if
not properly accounted for, it can also cause serious drawbacks for
hypotheses testing and prediction as it affects type I errors rates and
precision in the estimation of model parameters (with the exception of
machine-learning methods such as Random Forests). This is because SAC
violates important statistical assumptions such as independently and
identically distributed (i.i.d.) errors in both parametric and non-parametric
testing (Lennon 2000). There are several approaches to incorporate spatial
autocorrelation in statistical models, being these autocovariate regression,
spatial eigenvector mapping (SEVM), generalised least squares (GLS),
cohditional autoregressive models (CAR), simultaneous autoregressive

models (SAR), generalised linear mixed models (GLMM) and generalised
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estimation equations (GEE), among others. Dormann et al. (2007)
addresses a comparison among these methods, reporting their efficiency
and flexibility, with some remarks regarding the use of autocovariate
regression. That said, different models are likely to be affected differently
by spatial autocorrelation (e.g., logistic regression versus regression trees)
and systematic comparison of the effects of SAC on model estimation and
prediction is largely missing. There is still considerable debate as to
whether spatial autocorrelation results in (statistically) biased coefficient
estimates, how to best use explicitly spatial methods with incomplete
sample data and whether previous studies that used non-spatial methods

with spatially autocorrelated data should be considered fraught with error.

0.2 Modelling in the context of aquatic ecosystem services

Ecosystems generate a range of goods and services to society, which in turn directly
contribute to our well being and economic wealth (de Groot et al. 2012). Over the
past two decades, progress has been made in understanding how ecosystems provide
services and how service provisioning translates into economic value (Daily 1997).
Ecosystem services - the processes whereby ecosystems render benefits to people -
are becoming the principal means for communicating ecological change in terms of
human benefits (Daily 1997). Understanding ecosystem services is fundamental to
decision-making efforts that influence multiple human activities and components of
ecosystems, informing management and planning decisions such as the appropriate
scale and location of a number of activities. Wise and sustainable decisions of this
nature will require a comprehensive understanding of how changes in human
activities and ecosystem states will result in changes in ecosystem services and the

associated benefits to people. Valuing the contribution of ecosystems to human well-
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being through economic, ecological and social accounting demands robust methods
to define and quantify ecosystem services. Yet, it has proven difficult to move from
general pronouncements about the tremendous benefits nature provides to people to
credible, quantitative estimates of ecosystem service values. Without quantitative
assessments, and some incentives for landowners to provide them, these services tend
to be ignored by those making land-use and land-management decisions. Decision
making and policy aimed at achieving sustainability goals can be improved with
accurate and defendable methods for quantifying ecosystem services (McKenzie et al.

2011).

Currently, there seems to exist a gap between how the regulation of ecosystem
services is perceived and how they are managed. At one hand, the effects of
landscape patterns at different spatial scales on ecological processes and species
distributions have long been recognized by scientists and managers as crucial to
understanding how such processes function (Hobbs 1997) and regulate ecosystem
services and their sustainability. On the other hand, management strategies for
freshwater ecosystem services most often focus on local systems (place-based) such
as individual water bodies. Therefore, an integrated multi-scale framework where
conservation, management and development of ecosystem services are coordinated is

likely to result in the best approach (Abell et al. 2007).

Although an integrated, landscape oriented framework would likely offer improved
tools for the effective and sustainable conservation of regional aquatic biodiversity
and related services (Lester et al. 2003), knowledge and agreement on how such an
approach ' can best be iﬁlplemented is lacking. It is of utmost importance to design
sampling strategies (field measures, site selection for monitoring) and quantitative

frameworks to link ecological indicators of ecosystem health and provide the best
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estimates of an ecosystem’s capacity to sustainably deliver ecological services. The
focus on increasing the understanding of how ecosystem function is related to the
delivery of aquatic ecosystem services, at several spatial scales, and how to assess the
health of these ecosystems is of considerable relevance. Assessing whether
ecosystems and their functional ability to deliver services have been impaired (or are
at risk or are recovering) requires the possession of robust metrics to determine
ecosystem status and trends. Moreover, reliable ecological knowledge regarding
aquatic ecosystem services needs to incorporate ways to measure and understand the
effect of cumulative impacts on ecosystem health (Duinker and Greig 2006). Finally,
by comparing health conditions of different systems and their delivery regarding
aquatic ecosystem services, it is possible to establish (1) how multiple natural and
anthropogenic stressors interact and affect aquatic ecosystem services; and (2) an
understanding of how resilience of biodiversity-ecosystem services is linked to
environmental conditions and ecosystem health. This knowledge makes possible the
design of landscape-oriented approaches that can provide much more effective
information about the status of local and regional aquatic ecosystems and their related
services. This is especially important given the growing support for aligning

conservation efforts to ecosystem services (Goldman et al. 2008).

Fish populations in aquatic ecosystems benefit human societies in numerous ways,
providing: (i) regulating services (e.g., regulation of food web dynamics,‘recycling of
nutrients, regulation of ecosystem resilience, redistribution of bottom substrates,
regulation of carbon fluxes from water to atmosphere, maintenance of sediment
processes and maintenance of genetic species, ecosystem diversity); (ii) linking
services (e.g., linkage within aquatic ecosystems, linkage between aquatic and
terrestrial ecosystems, transport of nutrients, carbon, minerals and energy); (iii)
cultural services (e.g., production of food, aquaculture production, production of

medicine, control of hazardous diseases, control of algae and macrophytes, reduction
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of waste, supply of aesthetic values and recreational activities) and (iv) information
services (e.g., assessment of ecosystem stress and resilience, revealing evolutionary
histories, provision of historical information, scientific and educational information)
(Holmlund and Hammer 1999). Certain ecosystem services generated by fish
populations are also used as management tools, e.g. enhancing rice production
(Tilapia, carp), mitigating diseases in tropical zones (mosquito control) or mitigating
algal blooms (pike Esox Lucius). However, increasing fishing pressure, pollution,
habitat destruction, introduction of exotic species and other factors continue to exert
strong pressure on fish populations around the world (Malakoff 1997). Human-
induced direct and indirect degradation of common fisheries resources might cause
impacts at the ecosystem level, putting the fundamental and demand-derived
ecosystem services generated by fish at risk with consequences for biodiversity and

ecosystem resilience (Perrings et al. 1995).

Ecological modelling can provide a way of clarifying which factors and processes
drive ecosystem services related to fish, and it is urgently needed. Modification and
loss of aquatic habitat is recognized as the primary factor threatening the conservation
of fish populations and their communities (Ricciardi and Rasmussen 1999). Species
distribution models have a number of important applications to the conservation and
management of fish populations and their related ecosystem services, playing an
important role in prioritising surveys and monitoring programmes for fish populations
because limitations to resources often preclude exhaustive and continual sampling of
sites and that extensive sampling is needed to accurately sample lake fish
communities (Jackson and Harvey 1997). Some applications include: (i) forecasting
or measuring the effects of habitat alteration and changing land-use patterns
(Oberdorff et al. 2001); (ii) providing first-order estimates of habitat suitability to
establish potential locations for re-introduction (Evans and Oliver 1995); (iii) assess

the impacts of the most recent climate change scenarios (Buisson et al. 2008); (iv)
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understand the factors that regulate the spread of invasive species and identifying
their potential distributions (Wang and Jackson 2014); (v) predicting the likelihood of
local establishment and spread of exotic species that may help set conservation
priorities for preserving vulnerable species and populations that might be lost locally
(Peterson and Vieglais 2001). (vi) predicting hotspots of species persistence for the
conservation of biodiversity (Williams and Aradjo 2000); and (vii) revealing
additional populations of threatened species, or alternatively revealing unexpected
gaps in their range. The first step towards a comprehensive assessment of ecosystem
goods and services involves translating ecological complexity (abiotic factors and
ecological processes) into a more limited number of ecosystem functions, which in
turn provide ecosystem services (de Groot et al. 2002). The development of broad-
scale perspectives to understand the nature, function, vulnerability and threats to
fisheries-based aquatic ecosystem services are now deemed essential when designing

and implementing scientifically-sound management strategies.

0.3 Thesis outline

The goal of this thesis was to conduct an investigation into aspects currently used
modelling practices (more specifically species distribution models), seeking
improvement of these and ultimately provide analytical tools to be applied in
ecological assessments related to freshwater fish populations. To this end this thesis
is comprised of three chapters, the first one conducted with simulated data and the

others applied to freshwater fish data:

Chapter I: ~ Generalized linear models for direct gradient analysis and variation

partitioning of species data matrices
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Chapter IT:  Assessing the role of community composition and abiotic factors in

predicting fish species distributions

Chapter III: Effects of abiotic factors on the biomass of six fish species in Ontario
lakes

Within Chapter I, I developed a framework called gRDA, and evaluated its
performance via simulations for modelling multispecies data based on generalized
linear models (logistic and Poisson). To date, the most used tool for multi-species
modelling is based on linear regression (Gaussian; Legendre and Legendre 1998),
which is known to have undesirable properties for presence-absence and abundance
data. Moreover, my research within Chapter 1 found that, despite its popularity,
logistic regression has extremely bad behaviour in terms of parameter estimation
properties under a high number of covariates and when covariates are missing. To
remediate this issue, I proposed a modified Poisson model that can model presence-
absence data and that provides reliable estimates when covariates are missing or the
number of covariates is high. Moreover, I evaluated the performance of a robust
estimate for the coefficient of determination (R?) for GLMs, which allows for the first
time an appropriate variation partitioning scheme, a widely used tool in ecology

(Peres-Neto et al. 2006), which is currently based on multiple regression.

Chapter II presents a comparison among a number of SDM approaches in terms of
their predictive performance and explanatory power in predicting occurrence of six
freshwater fish species in north-temperate lakes of Ontario, including the GLM based
on Poisson distribution addressed in Chapter 1. These models were contrasted by

using empirical data based on the Aquatic Habitat Inventory provided by the Ontario
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Ministry of Natural Resources and Forestry. The modelling routine for Chapter 2 was
performed taking into account three classes of models: (i) incorporating only
environmental parameters; (ii) using solely the information about the fish community
to predict the occurrence of a particular species (i.e. using biotic parameters) and (iii)
using both environment and the information about the occurrence of other fish
species as predictors (i.e. using abiotic + biotic parameters), seeking to identify the
influence of biotic information to the predictive ability of these different models.
Finally, variable relative importance assessments were also made across models, for
each fish species and classes of models, in order to identify which variables were

important in predicting presence-absence of a particular species.

Chapter III aimed at the development of biomass models using biomass-per-unit
effort (BPUE) information from the same six freshwater fish species mentioned in
Chapter 2, using environmental predictors based on principal environmental
determinants (light, heat, lake morphometry, nutrients), together with fishing
pressure. The species were chosen in order to disentangle the effects of climate and
exploitation when evaluating the model results. To this end, four sets of
environmental predictors were used: the first one consisted of the full model, which
considered all main environmental predictors from the Broad Scale Monitoring
program dataset, including angling pressure; the second one kept the same
environmental predictors used in Chapter II to develop occurrence models, in order to
evaluate the degree of agreement between occurrence (developed in that chapter) and
biomass models; the third, a model with secchi depth, total dissolved solids (TDS)
and pH encompassing the pool of variables representing water chemistry, in order to
compare with the fourth set; the fourth set included total phosphorus (TP) and
dissolved organic carbon (DOC) by replacing secchi depth and TDS from set 3, in
order to evaluate which model better optimizes the full model, achieving model

parsimony. In addition, variable relative importance was assessed for all models built,
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and partial dependence plots were obtained for the optimized model, seeking to
evaluate the influence of each environmental feature to the biomass of the six
freshwater fish species. These models brought a better understanding related to the
importance of the different environmental determinants in the biomass composition
of each species, including existing interactions among main variables influencing

biomass.

In summary, Chapter I results provide ecologists with a new GLM-based tool for
variation partitioning schemes, consisting of an improvement over the OLS-based
ones; Chapter II presents occurrence models considering both abiotic and biotic
features, showcasing the importance of adding biotic information when seeking to
improve species distribution models developed for six freshwater fish species, and
Chapter III investigates the main environmental determinants influencing the biomass
of the same six species, while allowing us to assess similarities among the models
developed in the last two chapters, and finally making use of one of the modelling

approaches that best explained fish occurrence variability in Chapter II.
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CHAPTERI

GENERALIZED LINEAR MODELS FOR DIRECT GRADIENT ANALYSIS AND
VARIATION PARTITIONING OF SPECIES DATA MATRICES

W.S.C. Moreira and P.R. Peres-Neto

1.1 Summary

Describing and understanding species-environment relationships is one of the major
goals in ecology. It has broad applicability to conservation planning and management
such as uncovering the effects of ecological disturbances, climate change or how
environmental conditions affect different communities across different
spatial/temporal scales. One of the most common classes of approaches for modelling
multiple species is Canonical analyses of which redundancy analysis is likely the
most common form. Variation partitioning, an extension of canonical analysis, has
become the de facto quantitative framework to estimate the relative contributions of
predictors and groups of predictors to community assembly patterns, and it is based
on ordinary multiple linear regression which assumes that the response variables
(species distributions) are normally distributed. This assumption is clearly not
appropriate for most species distribution data. It is interesting to note that although
generalized linear models (GLM) are extremely used for modelling single-species
distributions due to its flexibility in allowing the response (species) to follow
different distributional families, variation partitioning has not been yet generalized to
accommodate the different families within the GLM framework. In this study, we
developed a multispecies framework that we refer to as “Generalized Redundancy

Analysis” (gRDA) based on logistic and Poisson distributions via GLMs, and extend
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the proposed framework to variation partitioning. Our goal is to present the
framework as well as assess its performance using Monte Carlo approaches under a
variety of scenarios including the correlation structure of different sets of predictors
in determining species distributions as well as the influence of predictors without any
contributions. Our results show that our proposed framework is very robust and
should essentially replace the current standard variation partitioning based on
ordinary Redundancy Analysis, contributing to variation partitioning’s popularity and

importance when analyzing species data matrices.

1.2 Introduction

Describing and understanding species-environment relationships is one of the major
goals in ecology and has broad applicability to conservation planning and
management such as uncovering the effects of ecological disturbances, climate
change or how environmental conditions affect different communities across different
spatial/temporal scales (Sharma et al. 2012, Stefan et al. 2001, Stauffer 2014).
Species respond differently to complex environmental relationships and they often
occupy only a fraction of all suitable environments in a landscape due to population
demographics (e.g., not enough individuals produced to disperse to all sites
containing suitable habitats), dispersal limitation (species cannot get to all suitable
sites) and complex interactions with other species (e.g., competition and predation
forcing species out of sites that are suitable). Although species and community
models (Guisan and Zimmermann 2000; Peres-Neto et al. 2006; Sharma and Jackson
2007, Elith et al. 2008) have been proven as extremely valuable tools to explore and
estimate the relative importance of different mechanisms (biotic and abiotic)
underlying species distributions and their biodiversity patterns (e.g., similarities and

differences among species regarding their environmental affinities), statistical



23

approaches differ dramatically in their ability to model species-environment
relationships particularly given the assumptions (or lack of assumptions) made about

species distributions (Guisan and Zimmermann 2000; Elith et al. 2006).

One of the most common class of approaches for modelling multiple species is
Canonical analyses in which redundancy analysis (RDA; Rao 1964) is likely the most
common form. Canonical analyses provide the means of conducting direct analyses
(e.g., direct gradient analysis) in which multiple species across communities (or time
periods) can be studied with respect to their commonalities or differences in their
relationships with multiple predictors (e.g., environmental, spatial). Variation
partitioning, an extension of canonical analysis, has become the de facto quantitative
framework to estimate the relative contributions of predictors and groups of
predictors to community assembly patterns (Borcard et al 1992; Cottenie 2005;
Legendre et al 2005; Peres-Neto et al 2006; Soininen 2016). In this context, variation
partitioning allows us to estimate: (1) How well species distributions are explained
(predictive ability) by the independent contribution of different sets of predictors? (2)
How different sets of predictors co-vary in their predictive ability? Because variation
partitioning estimates unique and common fractions of variation in species
distributions due to sets of predictors grouped together, it provides a way to
determine the relative contributions of broad mechanisms explaining patterns of
community structure instead of the relative importance of multiple individual
predictors within each preditctor set. Examples include the relative importance of
environmental versus spatial factors (e.g., Soininen 2016) and the importance of
environmental factors grouped into different spatial scales (e.g., local land cover

versus regional climate; Heino and Alahuhta 2014).

Variation partitioning based on canonical analyses uses ordinary multiple linear
regression which assumes that the response variables (species distributions) are

normally distributed. This assumption is not appropriate for species distribution data
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(presence-absence, abundance), Peres-Neto et al. (2006) showed that without proper
species distributions transformations (e.g., Hellinger-transformation), variation
partitioning lead to biased estimates of variable (sets) contributions. However,
transformations are not likely to make data conform well to the different statistical
properties that species distributions may take. It is interesting to note that although
generalized linear models (GLM) are extremely used for modelling single-species
distributions due to its flexibility in allowing the response (species) to follow
different distributional families (Elith and Leathwick 2009), variation partitioning has
not been yet generalized to accommodate the different families within the GLM
framework. Generalized linear modelling (McCullagh and Nelder 1989) allows one to
specify the distribution of the data, thus implicitly defining the relationship between
the mean and the variance of each observation (e.g., abundance of a species in a site)
to be a function of its predicted value (i.e., variance is not constant as in ordinary

regressions).

In this study, we developed a multispecies framework that we refer to as
“Generalized Redundancy Analysis” (gRDA) based on logistic and Poisson
distributions via GLMs. Here we concentrate in these two models given their
popularity and because robust and consistent estimators for their coefficients of
determination (R?) are available. One of the advantages of variation partitioning
based on R? is its interpretability as the proportion of variation in the response
variable explained by a set of predictors. Note, however, that although R? estimators
for the logistic and Poisson regression have existed now for quite some time, their
properties remain relatively unknown even in the statistical literature. The proposed
framework, however, is flexible enough that it can be readily extended to other
distributional families (e.g., Gamma, Exponential) if consistent coefficients of
determination (R?) are developed for other distributions. In essence, we present a
framework in which direct gradient analysis can be performed via GLMs (gRDA) and

extend the proposed framework to variation partitioning. Our goal is to present the
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framework as well as assess its performance using Monte Carlo approaches under a
variety of scenarios including the correlation structure of different sets of predictors
~ in determining species distributions as well as the influence of predictors without any
contributions. Our results show that our proposed framework is very robust (yield
good performance) and should essentially replace the current standard variation

partitioning based on ordinary Redundancy Analysis.

1.3 Methods

1.3.1 gRDA - Redundancy Analysis and Variation Partitioning via Generalized
Linear Models

Redundancy Analysis is an extension of multiple regression (linear and non-linear;
Rao 1964; Makarenkov and Legendre 2002) in which each response variable
(species) is regressed independently against a predictor matrix (e.g., environmental
variables, spatial predictors). Then the vectors of predicted values are juxtaposed into
a single matrix that undergoes a principal component analysis (PCA) to establish how
species partition themselves across environmental gradients. As such, a GLM
extension for an RDA (gRDA) is straightforward in which predicted values are
estimated for each species based on particular distributional properties of the response
(e.g., logistic, Poisson). This is a simple extension that, to our knowledge, it has not
been made into the literature yet. Although RDA (and other types of canonical
analyses) is commonly used in the ecology, its computational details remain
somewhat cryptic (but see Legendre and Legendre 1998). A more intricate extension
is the use of gRDA in the context of variation partitioning because the relative total
and unique contributions of sets of predictors are based on adjusted coefficients of

determination (R?) and their semi-partial contributions. Peres-Neto et al. (2006) have
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shown that the Wherry (1931) correction for multiple regression with one response
variable behaves well for variation partitioning in the case of normally distributed
responses (RDA on multiple response variables) as it is an unbiased sample estimator
of the true population R? (see Yin and Fan 2001 for a review on adjusted R? for the
case of ordinary regression). In this study we investigate the robustness of adjusted R*

for GLMs based on one response variable to the case of multiple responses (gRDA).

Among GLM families, logistic regression is likely the most widely used approach in
species distribution modelling given that presence-absence data are relatively easy to
collect and compare across different sampling designs (Rushton et al. 2004; Pearce
and Ferrier 2000b). Notwithstanding its popularity, the logistic model may have
undesirable properties (accuracy of parameter estimation) when data do not fit well a
logistic curve, under overdispersion, in the presence of multicollinearity, with small
sample sizes, high number of covariates and when relevant predictors in the model
are missing (Begg and Lagakos 1990; Robinson and Jewell 1991; Pearce and Ferrier
2000a; Sharma and Jackson 2008). Given these issues, it has been suggested that a
Poisson regression could potentially serve as a better approximation for modelling
dichotomous outcomes than the logistic regression (Mittlbdck and Heinzl 2001),
though this has not been tested in the literature. This extension is particularly
interesting because the Poisson distribution has been considered a good underlying
basis for developing approaches to model overdispersed and zero-inflated presence-
absence data (Yee and Dirnbock 2009).

Variation partitioning for two sets of predictor matrices (say X and W) are based on
three sets of regressions, though extensions to more than two sets are relatively
straightforward. Here we concentrate on the two-predictor set case as the results are

generalizable to any number of sets. The total amount of variation explained by the
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two-predictor set (fraction [abc]) is estimated as the R* adjusted with all predictors
from both sets into one regression model; the amount explained by predictor matrix X
(fraction [ab]) and W (fraction [bc]) are estimated by R? adjusted from two separate
regression models only containing the predictors in each set. Unique (i.e.,
independent of one another) and shared (collinear) contributions of each set are
estimated via subtraction: the unique contribution of X independent of W is [a]=
[abc]-[bc]; the unique contribution of W independent of X is [c]= [abc]-[ab]; the
shared contribution between X and W is [b]=[abc]-[a]-[c]; and the residual fraction is
[d]=1-[abc]. Below we detail the R? adjusted metrics we used to estimate the [abc],
[ab] and [bc] fractions and the Monte Carlo simulations we used to assess their

robustness under different scenarios.

1.3.2 Measures of adjusted explained variation
We consider the following adjusted measures of explained variation:

(i) Adjusted R? for logistic regression

Given a sample of n observations (patches, sites, communities) (y=[yil, X=[xis, xi...
xpl), i =1,...n, yi € {0, 1} denotes the response variable and x is the vector
containing values across p predictors for the i observation. The estimates from a

1
5“+51x“+5212i+...+5pxm)

logistic regression are Prob(y =1| xi)=['ii =

T , where P. is
1+exp

the estimated probability for the i observation based on the estimated vector of p

parameters. The proportion of one’s in the sample is given by

Prob(yi=1)=ﬁ=2yi/n. Let D(y,-)=(y,~—17)2 and D(yilxi):(yi_ﬁi)z
i=1
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denote the squared distance (residual) between observed (y;) and predicted (p and
P,) values under the null model (only with intercept bg) and under the full model
(including all covariates), respectively. Mittlbock and Schemper (1996) suggested the

following adjusted measure of explained variation R*:

SSE/(n—k —1)
~ T SST/(n-1)

2 -

where SSE = Y7 D(y;|x;), SST = X} D(y;), n is the number of local communities
(sites) and k the number of predictors. The intci'pretalion of this measure is intuitive
due to the fact that it is based on the use of squared residuals, varying between O and
1 unlike AIC and other metrics alike, which cannot be interpreted as the relative
amount of variation explained by a model. Other adjusted measures have been
suggested by Mittlbéck and Schemper (1996), but as they are based on likelihoods,

they do not have a clear interpretation when compared to the use of squared residuals.

(ii) Adjusted R? for Poisson Regression

Cameron and Windmeijer (1996) and Waldhor et al. (1998) defined R? for Poisson
regression based on deviances, while Mittlbock and Waldhor (2000) proposed bias
adjustments for small and/or many covariates (adjusted R?). In practice, however,
data are often over- and sometimes underdispersed as compared to the standard
Poisson model. As such, Heinzl and Mittlbock (2003) presented a generalization
based on the adjusted R?> measure of Mittlbock and Waldhor (2000) that has a
dispersion parameter.

Consider

D(y:,il) =logL(y)— logL(ﬁ) = Zi [yi log(y; !:&E) =y '_c&i)]
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and

D(y;5) =log L(y) ~ log L(7) = 2. [y, log(y,/3) - (v, - %)].

Where D(y; /2) is the deviance of the full model containing the covariates of interest
and D(y;y) is the deviance of the intercept-only model, y=(y,K,y,) are the
observed values of the dependent variable and 2=(# K ,i ), the corresponding
predicted values under the full model.

The adjusted measure of explained variation for Poisson regression models (Heinzl
and Mittlbock 2003) has the form:

_ D(yif1)+ kg

R?, =1
“ D(y;y)

where &D =D(y;i)/(n—k~—1) represents the dispersion parameter for over- or

underdispersed Poisson regression.

1.3.3 Simulation study considering one single matrix of regressors

To evaluate the accuracy of the adjusted R? measures described above, a Monte Carlo
- .study was carried out using simulated presence-absence data and abundance data. The
basis for generation of presence-absence data was a logistic model, using a binomial
random number generator and abundance data was generated on the basis of a
Poisson model, using a Poisson random number generator, each considering k=4
covariates. Population values consisted of a X (100000 x 4) matrix containing 4

random normally distributed variables N(0,1) and Y was generated according to:

1

E[Y|X] =P =17.5%
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for the logistic regression case, and
E[Y|X] =p=e®

for the Poisson case. B is a (50 x 5) matrix containing the slopes for 50 species on
each of the 4 covariates plus an intercept (first column of B). The slopes were
randomly originated from set intervals for each variable, which had numbers defining
the lower and upper limit of each interval in such way that rates of presence as low as
10% and as high as 90% were generated, common features in ecological data. The
generated Y in the model population is a (100000 x 50) matrix, in which each column
represents the presence-absence (logistic-generated) data or abundance (Poisson-
generated) of a given species. Model estimates for each data matrix were computed
using the respective generalized linear model approach (logistic or Poisson) and the
adjusted R? measures for each model were estimated at both population and sample
levels. For each GLM type, samples were performed according to two scenarios: (i)
1000 samples with varying number of observations (20, 50, 100, 150 and 200) were
randomly drawn from the population [Y, X] to assess the influence of sample size on
the estimation; (ii) 1000 samples of size n = 100 were randomly drawn from the
population and a number of normally distributed variables N(0,1) (5, 10, 15 and 20)
were added to the sample covariate matrix X to evaluate the impact of unimportant

predictors on the estimation of adjusted R? values.

1.3.4 Variation Partitioning - simulation study considering two groups of regressors

This second simulation study evaluated the adjusted R2 measures under variation
partitioning involving three data matrices '[Y, X, W], where X and W are two
separate sets of predictors. In common applications of variation partitioning in

ecology, these matrices often represent a set of local environmental predictors (X)
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and spatial predictors (W). Here, different levels of correlation between these two
matrices were considered to allow estimating how the adjusted R2 measures behave
in estimating unique and common fractions of variation. The population generation
and simulation structure followed the one described in above (1.3.3). In order to
generate correlation structure between X and W, a matrix XW was created containing
8 normally distributed variables N(0,1) and was post-multiplied by the Cholesky
decomposition of a (8 x 8) correlation matrix containing all cross-correlation values
set to a pre-specified number, resulting in matrix XW. The first 4 columns of XW
were then defined as X, and the last 4 as W, while Y was created according to the
generating model as before. Here the matrix of slopes B is (50 x 9) and it contains
the slopes of both X and W, as well as an intercept (first columns of B). As for the
case of one set of predictors, the influence of sample size (20, 50, 100, 150, 200) and
number of unimportant predictors (5,10,15,20) were also assessed. Note, however,
that unimportant predictors were only inserted in matrix W. For each type of data
(presence-absence or abundance), variation partitioning was performed as described
earlier (session gRDA - Redundancy Analysis and Variation Partitioning via
Generalized Linear Models) using the adjusted R2 associated with each generating

model for the data.

As noted earlier, the Poisson model may provide a better specification to presence-
absence data than the logistic model. However, given that term log(y,/fs) cannot be
defined when y; equals zero, we added a constant (here 1) to all presence-absence
values; i.e., instead of modeling zeros and ones, we modeled ones and twos. Because
variance is invariant with respect to changes in a location parameter, any constant

added to all y; values does not affect the adjusted R? for the Poisson model.
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1.3.5 Missing predictors scenario — logistic regression case

Given that logistic regression is known to affect parameter estimation of model
parameters (slopes) when relevant predictors are missing (Begg and Lagakos 1990),
we investigated the performance of the adjusted R? estimators when relevant
variables are missing in the logistic model. A species data matrix Y (presence-
absence) was generated as before containing 100000 sites and 50 species, according

to p=1/(1+exp(-(0+3x, +0.8x, +0.8x, +2x,))). Predictors (x) were sampled from a normal

distribution N(0,1). 1000 samples of size n = 100 were taken from the model
population ([Y,X]) and adjusted R? estimation was performed considering the
exclusion of one to three covariates in the model. The choice of these slope values
allow the evaluation of how missing variables having both large and small
contributions to the model (e.g., x; versus x2) affect the adjusted R? estimation. Due
to fact that the number of relevant predictors in a model should obviously affect
(increase or decrease) the true (population) adjusted R?, sampling variation in
estimates need to be contrasted considering samples from a population containing
only the missing predictor in question and a population containing all four predictors.
For example, adjusted R? estimates are obtained from a population generated with all
four variables (i.e., x1, x2, x3, x4) but sample models only containing x1 (for example;
i.e., x2, x3, x4+ missing from the model; here referred as “missing” case) were
contrasted with samples from a population generated with only x; as a predictor
(referred here as ALL case). In the case of linear ordinary least squares (OLS),
adjusted R? is not affected by missing predictors that do not co-vary with the other
relevant predictors considered in the model. As such, sample variation would not vary
considering the two types of samples above (i.e., ALL versus missing cases).
However, given that logistic regression slope estimates are affected by missing
relevant predictors that do not covary with the predictors considered in the model, we

suspect that adjusted R? should be affected as well.
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1.4 Results

1.4.1 Simulation results considering one group of predictors

Mean absolute errors for sample adjusted R? estimates in relation to the true
population value are presentéd in Appendix A and Figure 1.1 for both presence-
absence (logistic and Poisson implementation) and abundance data (Poisson
implementation). The Poisson model applied to presence-absence data yielded
greater precision in contrast to the logistic model for all sample sizes except for the
smallest number of observations considered in the simulation (20 observations;
Figure 1a). The estimation precision of adjusted R? considering irrelevant predictors
is adversely affected in the case of presence-absence data using the logistic
implementation but the estimator is quite reliable when using the Poisson
implementation (Figure 1b). The Poisson model for abundance data show that the
adjusted R? is not affected by increased numbers of irrelevant predictors (Figure 1b),
though the mean absolute error is slightly greater than the presence-absence for the

logistic implementation.
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Figure 1.2 presents the average adjusted R? across 1000 samples (sample size = 100)
and one standard deviation for presence-models missing different number of relevant
predictors contrasting ALL and missing cases (see 1.3 Methods for more details).
The results clearly indicate that the logistic model heavily bias adjusted R? estimates
when variables are missing and that the adjusted R? estimates based on the Poisson

model are much less affected by missing variables.

1.4.2 Simulation study considering two groups of predictors and assessment of GLM
Poisson and logistic measures of explained variation through variation

partitioning

Average fraction values based on variation partitioning estimated from GLM logistic
and Poisson models across different correlation values for the two predictor matrices
(X and W) are presented in Appendix B. Estimation accuracy was assessed via mean
absolute differences between the true population and samples values (Figure 1.3) for

each sample size, model type and correlation level between predictor matrices.

In the case of presence-absence data the results from the Poisson based
implementation leads to smaller sampling errors of fractions when contrasted to the
logistic model (Figure 1.3). Both models are quite sensitive to small sample sizes (20
observations) but become quite robust when considering sample sizes of 50
observations or greater. Within presence-absence models (logistic and Poisson
implementation), all fractions ([a], [b], [c], and [d]) have the same amount of
sampling error and the correlation (level of collinearity) among predictor matrices
does not affect sampling error (Figure 1.3). Variation partitioning based on Poisson

regression
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Figure 1.2: The influence of missing covariates on R? estimation. Values are expressed as
mean + standard deviation. “a” stands for intercept while “b1”, “b2” and “b3” stand for the
first, second and third slopes, respectively.
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(abundance data) generates slightly larger sampling errors for fraction [b] in contrast
to other fractions. Sampling error for all fractions is affected by the correlation
structure where relatively smaller sampling errors are achieved when predictor

matrices are more correlated (Figure 1.3).

Appendix C and Figure 1.4 presents fraction estimation accuracy results when an
increasing number of random N(0,1) of predictors are added to W in order to estimate
the impact of the number of irrelevant predictors on estimation of variation
partitioning fractions. The Poisson implementation for presence-absence data is much
less affected by \irrelevant predictors than logistic regression. Interestingly, fraction
[d] (residual variation) is greatly affected in contrast to the other fractions for the
Poisson implementation for the presence-absence data, whereas for the Poisson model
for abundance data, it is fraction [b] that is largely affected. Sampling error increases
with number of irrelevant predictors in the case of the Poisson implementation but it

remains unchanged for the Poisson regression based on abundance data.
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Figure 1.3: The influence of sample size on fraction estimation accuracy, expressed as mean
absolute error (Y axis), in R? variation partitioning according to varying levels of correlation
between X and W.
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1.5 Discussion

Our main goal in this study were (i) to introduce a multispecies framework named
“Generalized Redundancy Analysis” (gRDA) based on logistic and Poisson
distributions via GLMs; (ii) extend gRDA to perform variation partitioning which has
become a central quantitative tool in studying the underlying factors structuring
community structure. We have used simulations to demonstrate its performance and
how different model specifications perform and compare. To date there has been no
attempt to extend variation partitioning to GLM-based approaches. The approach
proposed here widens the scope of applicability of variation partitioning, contributing

to its popularity and importance when analyzing species data matrices.

Since canonical analyses have become a central quantitative framework to explore
and identify patterns and relationships in community data, it is important to
investigate alternate methods to be applied in cases where linear relationships cannot
be assumed between species distributions and environmental/spatial data (i.e.,
presence-absence and abundance data). Moreover, our results showed that a Poisson
implementation to presence-absence data provides a better model specification (small
sampling variation) than the traditional logistic regression. The Poisson distribution is
commonly applied as a model for number of events of a given dependent variable,
however, as Mittlbock & Heinzl (2001) reported, there is an approximate equivalency
between logistic and Poisson regression regarding modeling dichotomous outcomes.

GLM logistic accuracy was seriously impacted by irrelevant predictors, while GLM
Poisson had only a slight decrease in estimation quality (Figure 1 [b]). This is an
important characteristic as in real cases, we never know which predictors are truly

relevant or irrelevant.
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The sensitivity of logistic regression to large number of covariates (relevant or
irrelevant) is a known problem (Le Cessie & Van Houwelingen 1992) and here we
showed that it can impact proper estimation of adjusted R? values. GLM Poisson
applied to presence-absence data also performed better when relevant predictors were
missing in contrast to logistic regression (Figure 2). Zou (2004) reported the
robustness of Poisson estimates in cases of omitted covariates when compared to
logistic estimates, the latter being usually chosen due to its ease of application and
popularity. The good performance of GLM Poisson when examining presence-
absence data advocates its use particularly under a multispecies framework where
multiple parameters across species need to be estimated and is likely to accumulate
greater levels of error in contrast to single species models. Not surprising, the GLM
Poisson applied to abundance data showed good performance (i.e., smaller sampling

error for adjusted R?) when compared to the logistic model for presence absence.

To place the errors we observed into perspective, the average absolute error for
sample means based on 100 observations from a N(0,1) population is about 0.08. The
errors we obtained based on much more complex errors (GLM based models
considering multiple predictors and species) are greater than 0.08 but well under
accepted limits for the Poisson implementation for presence-absence data and Poisson
regression for abundance data. Results for the simulation study considering two
groups of predictors and to assess the performance of GLM-based adjusted R? in a
variation partitioning scheme (Figure 3) showed that the accuracy of fractions
estimates for the two models were quite satisfactory when n > 50 for both the Poisson
implementation for presence-absence data and Poisson regression for abundance data.
These results clearly show the robustness of our variation partitioning scheme using
GLM-based implementations, computed for multispecies presence-absence and
abundance data. Note, however, that the adjusted R® metrics used here were quite
sensitive to small sample sizes (n<50) and should not be used in these cases. Our

simulation results show that our GLM-based variation partitioning scheme is
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influenced somewhat by irrelevant predictors (Figure 4) with GLM logistic being
more affected from added covariates. Note that only four relevant predictors were
considered in matrix W where a relative large number of irrelevant predictors were

added to the important predictors.

Although error estimates varied across fractions as a function of sample size, model
specification and number of irrelevant predictors, adjusted R? estimates are unbiased
(i.e., average sample value equals population value) particularly when sample size is
greater than 50 and the correlation structure between predictors is not extremely large
(r=0.8) (Appendix B). Although we have not covered model selection procedures in
this study, future investigation may prove useful in determining how estimates of
GLM-based R? adjusted values are affected by variable selection procedures. This is
particularly important if one wants to reduce the sampling errors associated with
potential irrelevant predictors, though Peres-Neto et al. (2006) showed that forward
selection biased upwards adjusted R? values for normally distributed errors (i.e.,
GLM based on an identity link). Omitting important variables results in systematic
bias in the estimation of regression coefficients and predicted values, and including
too many predictors results in loss of precision in the estimation of regression
coefficients and the predictions of new responses (Murtaugh 1998). Variable
selection methods have been proposed for both linear and logistic regression, but not

much effort has been put towards Poisson regression of abundance data.

Our results demonstrate the robustness of GLM-based procedures under an RDA and
variation partitioning framework. For several decades now ecologists have resorted
to OLS solutions that are not likely to be robust for non-linear species-environmental
associations. We hope that this study compels ecologists for a shift in analytical tools
towards our developments and continue to improve GLM-based tools for variation

partitioning schemes which have become core in the study of communities.



CHAPTER II

ASSESSING THE ROLE OF COMMUNITY COMPOSITION AND ABIOTIC
FACTORS IN PREDICTING FISH SPECIES DISTRIBUTIONS

W.S.C. Moreira, P.R. Peres-Neto and N. Lester

2.1 Summary

Effective conservation and management of freshwater fish species would be greatly
aided by understanding the factors shaping fish species’ spatial distributions and their
patterns of biodiversity. The number of SDM studies applied to different fish species
has increased in past years with a special attention to the prediction of range shifts
caused by climate change. Understanding the importance of environmental factors
affecting different fish species and having a distribution model for each species of
interest should yield more effective conservation plans. The majority of SDMs make
use of only environmental variables to predict species distributions and ignore other
key determinants of species ranges, most pertinently, biotic interactions. Examining
both the impacts of environmental factors and species interactions on the distribution
of any given species is essential to understand how climate change, or other major
environmental changes, will affect biodiversity. The objective of this chapter
consisted of developing fish-habitat models for the occurrence of six species of
economically important freshwater fishes in north-temperate lakes of Ontario,
providing a comparison of: (i) variable importance among species and (ii) predictive
performance among six popuklar SDM approaches. We expected that the models
possessing both abiotic and biotic predictors would outperform models including only

abiotic information. Our results confirmed that for all approaches and classes of
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models. Promising results found were mostly related to random forest and boosted
regression trees, with the latter always displaying the highest explained deviances
values. The results presented by this study corroborates the idea of model
improvement through the addition of biotic variables, in this particular case,
including occurrence of other fishes from the same community as predictors. Large
lakes allows the development of abundant vegetation in the littoral zone, which
facilitates the spawning of species such as smallmouth bass, supporting the fact that
surface area of the lake was an important predictor in all six fish occurrence models
produced in this study. Climate was also important in shaping occurrences of the
same species. The results related to the importance of lake size to all species serve as
a basis for conservation measures that incorporate large lakes as part of the
conservation strategy, given their importance in providing adequate habitat for

several species.

2.2 Introduction

Effective conservation and management of freshwater fish species can be improved
by understanding the factors shaping their spatial distributions. Species distributions
are driven by abiotic (e.g. suitable climate) and biotic conditions (e.g. competitive
interspecific interactions), as well as movement and dispersal (Soberon and
Nakamura 2009). Species distribution models (SDMs) are widely used in ecology and
routinely used to relate species occurrences to environmental predictor to generate
models of environmental suitability. SDMs provide a snapshot estimation of species-
environment relationships and generate predictions of the distribution of a given
species across geographic scales. The number of SDM studies applied to different
fish species has increased in past years with a special attention to the prediction of

range shifts caused by climate change (Chu et al. 2005, Sharma and Jackson 2008,
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Bond et al. 2011, Filipe et al. 2013). Fish distributions could be strongly affected by
global warming as most species have no physiological ability to regulate their body
temperature (Wood and McDonald 1997). Also, climate-change drivers such as
temperature and precipitation can operate directly to affect range, or indirectly
through affecting habitat, feeding resources (e.g. Pratchett et al. 2011) and
reproduction (Pankhurst and Munday 2011). Additionally, because the dispersal of
freshwater fish is constrained by the network structure of drainage basins (Grant et al.
2007), their distributions and associated services may be more vulnerable to broad-
scale environmental changes than terrestrial species. A generalized conservation plan
is likely to be less effective because the species in a fish assemblage have differing
life history strategies, habitat requirements, and sensitivities to stressors (Maloney et
al. 2006). As such, species-specific SDMs should yield more effective conservation

plans.

The majority of SDMs make use of only environmental variables to predict species
distributions and do not include other key determinants of species ranges, most
importantly, biotic interactions (see Elith and Leathwick 2009; Beale et al. 2014), as
including these interactions have tended to require a priori knowledge and data on
species interactions. Although macroclimate drives species distribution patterns at
large scales (Whittaker 1975; Pearson and Dawson 2003; Thuiller et al. 2005), there
is increasing evidence of the important role of biotic interactions in determining
species’ range extents (Jablonski 2008; Wiens 2011; Wisz et al. 2013). Biotic
interactions can take place at local scales (e.g. predation, parasitism, competition and
disturbance) or regional scales (e.g. dispersal, speciation, extinction, expansions or
contractions of species ranges) (Cornell and Lawton 1992; Amarasekare 2003).
Examining both the impacts of environmental factors and species interactions on the
distribution of multiple species is essential to understand how climate change, or

other major environmental changes, will affect biodiversity.
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Despite limitations with current SDM approaches, their popularity in the realm of
prediction of species distributions will remain certain. In addition to their application
in conservation planning and management, SDMs can provide insights into the past
and future distributions of species and the factors that shape their biogeography (Elith
et al. 2006). That said, without explicitly considering biotic factors, SDMs could
potentially misinform conservation management decisions. Accurate representations
of species distributions are vital for the design and implementation of appropriate
conservation measures, e.g. protected areas, but SDMs are unlikely to produce
reliable predictions if they rely only on abiotic factors (Hof et al. 2012; Kissling et al.
2012).

Studies that use SDMs are beginning to consider biotic interactions by including the
occurrence of other species’ as additional covariates (e.g. Pellissier et al. 2010) and
this has been central in improving performance (Araujo and Luoto 2007; Mod et al.
2014). Moreover, many recent theoretical and empirical studies have addressed the
importance of including competition, predation or resource-consumer interactions in
the development of SDMs (Guisan and Zimmermann 2000; Araidjo and Guisan 2006;
Zimmermann et al. 2010; Wisz et al. 2013) since their role in shaping patterns at
broad spatial extents has been largely dismissed. Understanding the role of biotic
interactions in determining species distributions, however, is difficult and often
hindered primarily by the availability of data and then by the difficulties in inferring
causation, multicollinearity, the complexity of species interactions and spatial and

temporal variation in those interactions (Svenning et al. 2014).

The objective of Chapter 2 is to develop fish-habitat models for the occurrence of six

species of economically important freshwater fishes in north-temperate lakes of
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Ontario, providing a comparison of: (i) variable importance among species and (ii)
predictive performance among six popular SDM approaches, including the GLM
based on Poisson distribution considered in Chapter 1. Comparison of predictive
models is relevant because the performance behaviour of different modelling
. approaches often depend on the characteristics of the study system of interest and it
will determine which approach is most appropriate for that given system. As such,
regional SDMs (here north-temperate lakes of Ontario) are relevant as they generate
insights into the underlying mechanisms and relationships among species while
addressing their errors and uncertainties useful for regional conservation policies,
which are often regional themselves. Three model specifications will be developed
for each fish species: (i) adopting only environmental parameters as predictors; (ii)
using solely the information about the fish community to predict the occurrence of a
particular species (i.e. using biotic parameters); (iii) incorporating both environmental
and biotic information about the occurrence of other fish species as predictors (i.e.
using abiotic + biotic parameters). Performance comparisons will be performed
among these three classes of models as well. To date no study considering the
different target species has covered such an extensive comparison of different SDM
methods. We expect that the models possessing both abiotic and biotic predictors

outperform models including only abiotic predictors.

2.3 Methods

2.3.1 Fish-environment data source

Presence-absence data on the fish species targeted in this study were gathered from

the Aquatic Habitat Inventory (AHI) conducted in the province of Ontario (Canada).
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The inventory is a compilation of lake surveys conducted by the Ontario Ministry of
Natural Resources between 1970 and 1984. All surveys were conducted using
standard methods as described in Dodge et al. (1984). The total number of lakes
surveyed was 9885 (Figure 2.1), and the fish community surveys were conducted
concurrently with the collection of lake environmental characteristics (see Mandrak
and Crossman (1992) for the history of the data base and Goodchilde and Gale (1982)
for sampling methods). The abiotic parameters considered here were surface area of
the lake (L10Area) log transformed using base 10, growing degree days above 5°C
for 1961-1990 (DDS5), mean annual air temperature for 1961-1990 (MAT), maximum
and mean depth of the lake (Depth_Max and Depth_Mean, respectively), secchi
depth, total dissolved solids (TDS), pH and shoreline development factor (SDF). SDF
is a measure of lake shape complexity; it compares the outline to that of a circle (SDF

= 1 implies a circle), as follows:

Shoreline

2% %ézzi* Area

SDF =

where shoreline (which includes islands) and area are measured in the same units
(e.g. km and km?). Figure 2.2 shows the strong latitudinal gradient in climate across
the province. Table 2.1 summarizes descriptive statistics related to each abiotic
parameter considered here and Table 2.2 provides information on the correlations
among all abiotic parameters to be used in the species distribution models. Overall,
the correlations among abiotic parameters are between low and moderate, with the
exception of the ones found between DDS and MAT, and mean and max depth. Mean
and max depth are both measurements of depth, which justifies the correlation found
between them; both are important for habitat characterization of different thermal
guilds. Because species often use different environmental cues to maximize different
life-history stages (e.g. young versus old individuals) and needs (e.g. reproduction

versus growth), different types of variables that relate to similar factors (e.g., different
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ways to represent lake temperature) are important because they may influence species
differently across these life stages and needs (Lee et al. 2016).

Figure 2.1: Distribution of the lakes surveyed across Ontario and compiled in the
Aquatic Habitat Inventory.
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Figure 2.2: Latitudinal gradient in climate, represented by mean annual air
temperature measurements across Ontario.
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2.3.2 Target fish species

Fish species considered in this study were: smallmouth bass (Micropterus dolomieu),
walleye (Stizostedion vitreum), northern pike (Esox lucius), white sucker (Catostomus
commersonii), lake trout (Salvelinus namaycush) and lake whitefish (Coregonus
clupeaformis). They all represent species that are commercially and recreationally
important and much is known about their habitat preferencés (Scott and Crossman
1998). Figure 2.3 shows the distribution of each freshwater fish species across
Ontario. Table 2.3 presents some key ecological temperature metrics data on these
species, which helps defining their thermal requirements and are strongly related to
their fundamental niche since water temperature plays an important physiological role

and influence reproduction (Hasnain et al. 2010).

Canadian freshwater fishes are classified into three thermal guilds: cold, cool and
warm, which are assigned in accordance to their preferred summer water temperature.
Thermal guild is assigned as “cold” if the preferred temperature is < 19°C, “cool” if it
is between 19-25°C and “warm” if it is greater than 25°C. Lake trout and lake
whitefish are classified as cold-water fishes, walleye, northern pike and white sucker
are classified as cool-water fishes, and smallmouth bass, as warm water fish. In lakes,
young lake whitefish are typically found at the surface (depths smaller than 1 m) in
association with emergent vegetation and woody debris over substrates of boulder,
cobble, and sand. Juveniles are found over the same substrates as young lake
whitefish and also associate with woody debris and emergent vegetation. After
spawning, adults move to deeper water (>10 m) to overwinter. They do not appear to
have a substrate preference and have been found over boulder, gravel, cobble, sand,
and clay. They are primarily bottom dwelling but may also be found in the pelagic

zone (Sawatzky et al. 2007). In Ontario, lake trout are generally found in the pelagic
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zone of lakes at depths greater than 10 m, with temperatures of 10°C approximately.
During the summer, such temperature can only be found in deeper, cooler portions
below the thermocline in lakes that stratify (Sawatzky et al. 2007), and during spring
and fall, they can be found in surface waters. Walleye prefer large, turbid lakes but
will inhabit clear lakes, large streams and rivers if sunken trees or boulder shoals
provide shelter from daylight (Scott & Crossman, 1998). Northern pike occurs in
weedy slow rivers and, more frequently, weedy bays of lakes, requiring cover (e.g.,
logs, weeds, stumps) to capture prey and are more acliyq during the day. Lacustrine
adults typically occur in water smaller than 5 m deep, except during wiﬁter, when
they are found in deeper water (Sawatzky et al. 2007). Lacustrine young white sucker
remains in the gravel substrate for 1-2 weeks after hatching, inhabiting shallow
waters along the shore over substrates of rock and sand and are often found in
association with vegetation. They move to deeper offshore waters later in the
summer. Lacustrine adults inhabit depths of 7-13 m (Sawatzky et al. 2007). Optimum
lacustrine habitat for smallmouth bass is characterized by large, clear lakes and
reservoirs with average depth greater than 9m with rocky shoals. They exhibit strong,
cover-seeking behavior and prefer protection from light in all life stages (Scott &
Crossman, 1998).
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Figure 2.3: Distribution of the six freshwater fish species across Ontario, compiled in
the Aquatic Habitat Inventory. |
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2.3.3 Species distribution modelling approaches

Predictive models were built using the following approaches: Generalised linear
model (GLM) based on Poisson distribution; Generalised additive model (GAM);
Multivariate adaptive regression splines (MARS); Random forests (RF); Boosted
regression trees (BRT)and Maximum entropy approach (MaxEnt). These models

were chosen due to their popularity in the literature.

Refer to section 0.1 to obtain more details about the approaches considered here. All
techniques were implemented using functions and packages from the R programming
environment (R Development Core Team). GLM was implemented using the “glm”
function from the “stats” package. GAM was implemented using the “gam” function
from the “mgcv” package. MARS was implemented using the “earth” function from
the package of same name. RF was implemented using the “randomForest” function,
and its related package has the same name. BRT was implemented using the
“gbm.step” function and MAXENT was implemented using the “maxent” function,

both from the “dismo” package.

Three classes of models were built for each SDM technique: one containing only
abiotic variables (called “A”); one containing only biotic information in the form of
presence-absence of the fish species considered in this study (e.g. walleye occurrence
predicted by northern pike, white sucker, lake trout and lake whitefish occurrences),
this model class called “B”; and one containing both abiotic variables and biotic
information via presence-absence of fish species, called “A + B”. Model calibration
and validation was conducted via five-fold cross-validation: at each iterative fold,

80% of the whole dataset was withheld for model calibration and the other 20% used
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for model validation. Lakes were randomly assigned to each group at every iteration,
preserving the proportion of presences and absences. Model residuals were computed
through the differences between the observed values from the dataset and fitted
values estimated from calibration process for each modelling technique, and
expressed as mean squared error (MSE). MSE is a highly informative metric about
model performance and consist of a well-known diagnostic measure to detect
discrepancies between the data and fitted values (Lin et at. 2002). The adjusted

deviances were computed according to the formula shown in section 0.1.

In this study, model performance was also evaluated using both threshold-
independent (AUC) and threshold-dependent (sensitivity, specificity and TSS)
measures of accuracy. Models producing non-binary scores (i.e., probabilities) were
evaluated by applying a threshold to transform the scores into a dichotomous set of
presence-absence predictions, and generating the corresponding confusion matrix
necessary to calculate TSS. The threshold chosen was the one that maximizes

sensitivity + specificity. The description of each evaluation metric follows:

= Sensitivity, the proportion of observed presences that are predicted as such,
quantifying omission errors. Calculated as TP/(TP + FN), where TP = true
positives and FN = false negatives. In general, FN can result from data or
model inaccuracies or even a threshold chosen with a high value;

= Specificity, the proportion of observed absences that are predicted as such,
quantifying commission errors. Calculated as TN/(TN + FP), where TN = true
negatives and FP = false positives. FP may result from detection issues or
biotic or abiotic factors that prevent a given species from océﬁpymg suitable

habitat, such as dispersal limitations;
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®= The area under the curve (AUC) of the receiver operating characteristic
(ROC, Fielding and Bell 1997), constructed by using all possible thresholds to
classify the scores into confusion matrices, obtaining sensitivity and
specificity for each matrix/thresholds, and then plotting sensitivity against the
corresponding proportion FP. AUC ranges from 0 (no discrimination ability)
to 1 (perfect discrimination). It is the most popular measure of accuracy
reported by the literature;

= True skill statistic (TSS, Allouche et al. 2006), a synthetic index defined as
TSS = sensitivity + specificity — 1. TSS ranges from -1 (performance no better

than random) to +1 (perfect agreement).

The best-performing models were determined considering the residual metrics
computed during the calibration process, and the quantitative assessment of their
predictive performance using the above described indexes in the validation step. In
other words, since we have six calibration and validation metrics in total, models that
show the best performance in most (or all) of them are elected as best models.
Sensitivity, specificity, AUC and TSS were calculated for all SDM models using the
“evaluate” function from the “Dismo” package, R programming environment (R

Development Core Team).

Variable importance was computed for all six SDM approaches and three model
classes built for all six species. In order to standardize the computation of this metric,
each variable received a rank varying from 1-9 for A models, 1-5 for B models and 1-
14 for A + B models. The higher the rank number, higher the importance of a given
variable in a given model. The ranks were established on the ‘basis of both the
estimated coefficients for regression models and variable importance proportion

estimated from machine-learning methods. After variable importance estimation, the
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degree of agreement among models in terms of their ranked variables’ importance
was evaluated using Spearman’s rank correlation coefficient (also called “Spearman’s
tho”), a nonparametric measure of rank correlation that assesses how well the
relationship between two variables can be described using a monotonic function.
Spearman’s rho assumes values between -1 (a negative relationship between the two

variables) and +1 (a positive relationship), with O denoting absence of relationship.

2.4 Results

Calibration and validation metrics results computed for all six fish species are
compiled in Appendix D. These metrics values were based on averaging the results
from five subsets of the whole data, according to the five-fold cross-validation
procedure. Residual inspection of MSE values (Appendix D) revealed that models
were improved when both abiotic and biotic variables were taken in account. The one
exception was GLM which performed better with only environmental variables in
most cases, but still showed high values of MSE in comparison to the other models,
indicating a poor calibration performance overall. The random forests model (RF)
performed better in terms of precision (i.e., MSE), but quite similar in performance to
the generalized additive model (GAM), which also showed good precision

performance.

2.4.1 Fish species distribution models’ quality-of-fit assessment via deviance

estimation
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A comparison of goodness-of-fit results based on deviance is presented in Figure 2.4,
according to the three classes of models (A, B, A+B). Overall, adjusted deviance
values were improved when abiotic and biotic variables were included together in all
six modelling approaches, showing greater levels of variation explained in contrast to
model specifications A (only abiotic) and B (only biotic) models, with the latter
showing the lowest fit to date. Across all models, the most successful in reducing the
residual deviance was BRT. Deviance results for MAXENT are not shown because
the function related to this model (“calc.deviance” from “Dismo” package) computes
the deviance based on observed and predicted values, however there were cases in
which this function presented deviance results above 1, indicating a possible problem
since the maximum value that deviance can assume is 1 (100%). Deviance results for
smallmouth bass, walleye, northern pike and lake trout showed good variance
explanation, especially the A+B model specification for lake trout, which showed an
optimal deviance result of 66.4% (Figure 2.4), indicating that the abiotic and biotic
set of variables used to model this species’ presence-absence is a good candidate for
explaining distribution patterns. The lowest deviance results were seen for white
sucker models, with values below 30%, while the lake whitefish deviance results

were mid-low in the 20-50% range.
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2.4.2 Assessment of predictive accuracy

The predictive accuracy indicate good performance for all models (Figures 2.5 —
2.11). The same trend of an increase in performance was observed for A+B models in
comparison to A and B models separately. Figure 2.5 shows that multivariate
adaptive regression splines, random forests and boosted regression trees showed the
best predictive accuracies through the inspection of both AUC and TSS, however the
differences among all models are very small (numerical values presented in Appendix
D). The sensitivity + specificity values computed for MARS, RF and BRT models
reflect their good performance across all fish species (Appendix D). MAXENT and
GLM were the ones with the lowest performance, generating slightly lower

predictative accuracy of predictive accuracy among all species.

Lake trout models showed the highest values of predictive accuracy among all
species (Figure 2.6, Appendix D), which reflects the good calibration performance
observed through the estimated deviance values. The predictive accuracy obtained for
walleye models including only biotic information (B models), in some cases, was
slightly higher than the one based on models using only abiotic variables (A) (Figure
2.7). This indicates that the biotic variables included in walleye B models possess
approximately the same importance as the abiotic ones used to predict; this fish
species. This statement was further examined by looking at models’ variable

importance for each species.
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2.4.3 Patterns of co-occurrence in freshwater fish species, abiotic parameters and

community composition

Tables 2.4-2.6 summarise the relationships among the six freshwater fish species and
the variables used as predictors, across all models and considering the three classes of
models. The relationships were drawn from all species distribution models’ results by
verifying the type of influence (positive or negative) the different variables had on
fish occurrences. (A) models showed that mean annual air temperature has a negative
influence on cold and cool water species presence, while the opposite is found for
smallmouth bass which represents a warm water species (Table 2.4 and 2.6). DD5
was negatively correlated with cold water species’ presence, but positive on warm
water species and cool water species such as walleye and northern pike. Warmer
temperatures clearly has a positive impact on smallmouth bass since both climate

variables showed to influence the presence of this species.

Among the lake morphometry predictors, lake size (LoglOArea) was the only
variable influencing positively all species’ presences, and this result can be seen for
both (A) and (A+B) models. Additionally, these two classes of models also suggested
that mean and max depth have a positive influence on lake trout presence, while
shoreline development factor (SDF) seems to have a negative influence on all species.
The effect of water chemistry parameters on species’ presence showed slightly
different results from (A) models to (A+B) models, more specifically, in (A) models
(Table 2.4), secchi influences the presence of lake trout and smallmouth bass in a
positive way, while in (A+B) models (Table 2.6) it also influences lake whitefish
presence. Those result suggests that the incorporation of biotic information through
community composition (e.g. other fish species’ presences) reveals trends not seen

when modelling using abiotic variables alone. Finally, (A) and (A+B) model results
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suggested that water chemistry parameters such as TDS influences positively walleye
and northern pike presence, while pH has a negative impact on all freshwater fish

species.

Table 2.5 results suggest that a given freshwater fish species’ presence influences
positively other species within the same thermal guild. For instance, lake trout and
lake whitefish have a positive effect on each other’s presence. The same trend can be
seen regarding vsulalleyev, northern pike and white sucker. These results stiH ﬁold true
when the information about the community composition is incorporated together with

abiotic predictors to estimate species’ presence in (A+B) models (Table 2.6).
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2.4.4 Models’ agreement and variable importance assessment

Figures 2.12-2.17 show results related to how the -six species distribution models
agree in terms of their ranked variable importance, for each class of models (A, B,
A+B) and freshwater fish species. Results reveal that the way different SDM
approaches rank variables across species and with increased complexity (A and B
models are less complex than A+B ones) is generally quite consistent, which makes
them reliable modelling choices in terms of stability and reduced uncertainty. Overall,
(B) models showed a higher degree of agreement, with the walleye (B) models
displaying more similarity among them, which means that the predictor variables
were ranked in importance in a similar way across all (B) models for this fish species.
Among all species, northern pike models were considerably consistent in terms of

variable importance ranking across all models and classes of models.

The chosen SDM methods can be classified broadly as “regression methods”
(encompassing GLM, GAM and MARS) and “machine learning methods” (RF, BRT,
MAXENT). It was expected to see a higher degree of agreement among methods in
each of these two classifications, but here results were quite mixed across all
freshwater fish species and classes of models. In addition, it was also expected to
obtain a decreased level of agreement with increasing model complexity (e.g. A+B
models), however results across species regarding this aspect are mixed as well. For
instance, lake trout, walleye, white sucker and smallmouth bass models showed an
improvement in agreement level from (A) models to (A+B) models, while lake

whitefish and northern pike models showed a slight decrease in agreement.
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Figures 2.18 and 2.19 present the ranked variable importance estimated for (A) and
(B) models built to estimate freshwater fish occurrences, computed by averaging
across all six freshwater fish species. Results related to '(A+B) models were not
shown for the sake of simplicity, since the objective here is to assess how predictors
were ranked according to different SDM approaches. There were a number of
similarities and differences in relative predictive importance of the abiotic and biotic
variables among modelling approaches. The results based on all species for (A)
models showed that the modelling approaches shewed close agreement in the
importance of L10Area, but disagreed in the importance of others for predicting
species occurrence. Overall differences in the mean ranked importance of abiotic
variables existed among all approaches, but were most notable betweén regression
methods and machine-learning methods. For instance, the importance of MAT and
DDS5 were higher in machine-learning methods (RF, BRT and MAXENT) compared
to regression methods (GLM, GAM and MARS). Similar observations can be done
regarding the results based on all species for (B) models (Figure 2.19).
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Figures. 2.20-2.25 present the ranked variable importance estimated for each
class of models built to estimate freshwater fish occurrences, computed by
averaging across all SDM approaches. Models containing only abiotic variables
(A) suggest that air temperature (MAT) and surface area of the lake (L10Area)
have a major influence on the establishment of smallmouth bass, walleye,
northern pike, white sucker and lake whitefish, while maximum depth
(Depth_Max) plays an important role on the establishment of lake trout,

followed by surface area of the lake.

Results from models containing only biotic information (B) suggest that
presence of lake whitefish (P_LaWhi) in lakes plays a role in the distribution of
lake trout (Figure 2.20). In addition, the B models also suggested that presence
of walleye (P_Walle) influences the establishment of lake whitefish (Figure
2.21), while presence of northern pike (P_NoPik) affected the distribution of
walleye (Figure 2.22). Finally, biotic (B) models built for northern pike, white
sucker and smallmouth bass suggest that presence of walleye (P_Walle)
influences the establishment of northern pike and white sucker (Figures 2.23
and 2.24 respectively), while presence of lake trout (P_LaTro) influences the

establishment of smallmouth bass (Figure 2.25).

Models considering both abiotic and biotic variables demonstrate the
importance of surface area of the lake (L10Area) on the establishment of all
fish species, but also climatic variables and presence of other fish species play a
role as seen in the results for these models. According to the A+B models
developed for lake trout, its establishment is influenced mainly by lake
morphometry parameters such as the aforementioned surface area, maximum

and mean depth of the lake, denoting the preference of this species for deep,
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stratified lakes. For lake whitefish, its A+B models suggest that surface area of
the lake is the most important factor affecting its establishment, followed by
présence of northern pike, growing degree days above 5°C (DDS5) and presence
of walleye. Walleye A+B models indicate that its establishment is influenced
primarily by presence of northern pike, surface area of the lake, then air
temperature (MAT) and presence of lake trout, while northern pike A+B
models show that its establishment is mostly affected by air temperature,
followed by surface area of the.lake, presence of walleye and growing degree
days above 5°C. In addition, white sucker A+B models suggest that, besides
surface area of the lake, DDS5, maximum depth of the lake and presence of lake
trout are the main ones influencing its establishment. Finally, smallmouth bass
A+B models suggest that MAT, surface area of the lake and presence of

walleye are the main ones influencing its distribution.
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2.5 Discussion

A better understanding of different freshwater fishes’ habitat requirements consists of
a solid ground for developing models that better describe fish-habitat relationships,
given that spurious relationships can also be seen in species distribution models. The
lake trout model results seen in Tables 2.4 and 2.6, and Figure 2.20 suggest that lake
size, mean depth, max depth and secchi are the most important environmental
predictors and influence positively this species’ presence. Lake trout occurs only in
relatively deep lakes through the southern part of the Canadian range, but in the
northern half, specially in the Territories, it occurs also in shallow lakes and rivers
(Scott and Crossman 1998). In inland lakes in southern Canada the depth-distribution
of lake trout varies with the seasons. In autumn, usually early October, they move
into rocky shallows in preparation for spawning. Spawning most often occurs over a
large boulder or rubble bottom in inland lakes at depths of less than 12 m and
sometimes as shallow as 30 cm. Temperatures at time of spawning have been
reported at 8°-12°C (which also defines their fundamental thermal niche according to
Magnuson et al. 1990), but spawning is not initiated by temperature alone, but also by
light, since the spawning act takes place after dark (Scott and Crossman 1998). After
spawning is completed they disperse freely throughout the lake at various depths and
remain dispersed.throughout the winter months. Investigations by O’Connor et al.
(1981), as well as results of a literature search completed by Christie (1986), suggest
that lake trout growth is optimal within its fundamental thermal niche, confirming the
importance of temperature to the distribution of this species. In spring they often
occur in surface waters immediately after breakup of ice. As surface waters warm
with the advance of spring, lake trout retire to the cooler waters, eventually retreating
to the'hypolimnion, below the thermocline during the warmer summer months. The
depth of the thermocline in a particular lake depends on many factors such as latitude,

size of lake and height of surrounding land, so these are factors that are also
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important in determining lake trout distribution. Water clarity (here represented by
secchi) is a proxy for overall lake productivity as well as visibility conditions, which
is important because fish species vary in terms of their visual light sensitivities and
reliance on sight for detection of food resources (Scott and Crossman 1998). Olden
and Jackson (2001) proposed lake trout occurrence models based on artificial neural
networks, logistic regression, linear discriminant analysis and classification trees, and
their results indicated that surface area of the lake, total shoreline perimeter, lake
volume and maximum depth were the main predictors of lake trout presence. A
second study from the same authors using solely artificial neural networks as
modelling approach suggested that elevation is also an important predictor. Some
degree of agreement can be seen between the relationships presented here and the
ones showed by Olden and Jackson, however, secchi was not considered in their
models and this abiotic parameter has a considerable relevance in describing lake
trout distributions, since it has a direct relationship with productivity levels at the

benthic zone (Finstad et al 2014), i.e. food availability for lake trout.

Lake whitefish (A) and (A+B) models results also suggest that lake size is an
important predictor of this species, having a positive influence on its occurrence
(Tables 2.4 and 2.6, Figure 2.21). Figure 2.21 also indicate that climate variables
- (DDS5 and MAT) and max depth are important predictors, however their influence
(Tables 2.4 and 2.6) are negative ones. The negative influence of climate on cool
water species habitat is a known issue already reported by the literature (Mackenzie-
Grieve and Post 2006; Sharma et al. 2009; Callaghan et al. 2016), since the increasing
temperatures cause a reduction in optimal habitat availability for this thermal guild.
Since this species is classified as a cool water species, it was expected a positive

influence of mean and maximum depth of the lake with this species occurrence. Lake
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whitefish descends into the cooler waters of the hypolimnion during summer months,
over most of the southern part of its range, and only large, stratified lakes can provide
ideal habitat for this species. Throughout most of the Great Lakes, these fish move
from deep to shoal waters in early spring and back to deeper water as warming
occurs. In the fall, lake whitefish move into shallow water to spawn, looking for hard
or stone bottom but sometimes sand to lay its eggs (Sawatzky et al. 2007). Since lake
whitefish are bottom feeders, benthic production is essential for this species due to
food availability (like mentioned before for lake trout). The negative influences of
mean and maximum depth on lake whitefish occurrences suggest that most lakes
where this species was present were shallow ones, and this is likely due to: (i) greater
food availability for this species in these lakes; (ii) the species mobility (Scott and
Crossman 1998). Previous work by Olden and Jackson (2002) showed lake
morphometry predictors such as surface area of the lake, lake volume, total shoreline
perimeter and altitude to be important for lake whitefish occurrence, however the
authors did not point out the type of influences these predictors have on lake
whitefish occurrences. Here results pointed out the importance of climate to this
species. Edwards et al. (2016) in their work using logistic regression and the same
historical dataset used here, showed that a climate index variable (composed by ice-
free duration, mean July air temperature, minimum January air temperature, and total
annual precipitation), mean to maximum depth ratio, secchi, maximum depth and
lake area were influential predictors of lake whitefish occurrence. Even though the
climate variables used in their work are not similar to the ones chosen here, the
influence of climate on occurrence was also seen to be negative. On the other hand,
the influence of maximum depth presented by their lake whitefish occurrence model
was positive, which does not agree with the results seen here. This lack of agreement
suggests that the modelling method chosen by the authors had an impact on the
relationships showcased by the model, since all six methods presented here agreed on

the negative relationship of max depth with lake whitefish occurrence.
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For walleye, (A) and (A+B) models results (Tables 2.4 and 2.6, Figure 2.22) revealed
that lake siz.é :is also impértant, together with climate (especially MAT) and water
chemistry parameters such as secchi and TDS. Lake size influence on walleye
occurrence is positive (like seen for cool water species), so is the influence of TDS,
while MAT and secchi showed to influence negatively the occurrence of this species.
Walleye are tolerant of a great range of environmental situations, but appear to reach
greatest abundance in large, shallow, turbid lakes (Scott and Crossman 1998).
Optimum transparency in a shallow lake, which will allow walleye to feed
intermittently throughout the day, is in the order of 1-2 m secchi, however in clear
lakes, where they often lie in contact with the bottom apparently “sleeping”, adult and
subadult walleye are primarily crepuscular or nocturnal feeders, feeding from top to
bottom (Ali et al. 1977). Movements involve a spring spawning run to shallow
coarse-gravel shoals or to tributary rivers (where they seek for rocky areas), daily
movements up and down in response to light intensity, and daily or seasonal
movements in response to temperature or food availability (Scott and Crossman
1998). Model results regarding important abiotic features influencing walleye
occurrence are in agreement with the main variables affecting walleye production
reported by Lester et al. (2004), where they show that thermal-optical habitat area
(TOHA, the benthic area of the lake that supplies optimum light and temperature
conditions .for walleye during an annual cycle), TDS and water clarity influence
walleye habitat availability. In their work, walleye harvest increased in proportion to
TOHA times the square root of TDS, and that increases in water clarity seen in the
Great Lakes basin have reduced the supply of thermal-optical walleye habitat, thus
having negative effects on walleye production. Chu et al. (2005) showed mean annual

dew point, growing degree days, total annual precipitation and mean annual hourly
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wind speed to be significant variables in their walleye occurrence model, with mean
annual dew point showing an expressive negative influence. Nate et al. (2000) and
Hansen et al. (2015) also reported lake size to be an important abiotic feature in their
walleye model. Spring water temperatures, which is a surrogate for regional climate
variability (Beard et al. 2003) and/or water levels (Chevalier 1977; Quist et al. 2004)
was reported as influential in walleye occurrences (Serns 1982; Hansen et al. 1998;
Quist et al. 2003). The inclusion of abiotic variables not considered in this study but
shown to be important in predicting walleye occurrence by previous works would
consist of a future work perspective, with the objective of seeking a greater

improvement of the models built here.

Model results for northern pike evidenced the importance of lake size, climate
variables and water chemistry to its occurrence (Figure 2.23), with a positive
influence of lake size, mixed influences provided by climate (positive by DD5 and
negative by MAT), and water chemistry (positive by TDS and negative by secchi -
Tables 2.4 and 2.6). These abiotic features priorities are very similar to the ones seen
for walleye, which suggest habitat affinities between these two cool water species,
like already reported by the literature (Scott and Crossman 1998; McMahon and
Bennett 1996). In Canada, its habitat is usually clear, warm, slow, meandering,
heavily vegetated rivers or warm, weedy bays of lakes. They do, however, occur in a
wide range of habitat over the whole of their extensive distribution. They generally
occur in shallower water in spring and fall but move to deeper cooler water at the
height of summer temperatures. In general, northern pike are fairly sedentary,
establishing a vague territory where cover and food are adequate. Spawning occurs
during daylight hours on the heavily vegetated floodplains of rivers, marshes, and
bays of larger lakes (Scott and Crossman 1998; Raat 1988; Casselman and Lewis
1996). Relationships between abiotic variables and northern pike occurrence

presented earlier in the literature showed MAT to be an important predictor, e.g.
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Schlesinger and Regier (1982) in their work present how this abiotic feature has a
positive effect until reaching a certain temperature threshold, which past that starts to
influence negatively. Minns and Moore (1992) also showcased the importance of
MAT and lake size on northern pike. Neither of these two works showed the
importance of water chemistry in determining northern pike distributions, as climate
and lake morphometry are commonly shown to be more influential variables in
northern pike models. The results presented here represent a contribution to the
literature regarding the importance of this environmental feature to northern pike
occurrences, and since this species has quite similar habitat requirements to walleye,
the mechanisms through which TDS and secchi regulate the northern pike

distribution can be considered the same as walleye.

White sucker (A) and (A+B) model results indicated that lake size, climate and
maximum depth are influential predictors of its occurrence (Figure 2.24). Among
these, lake size is the only predictor showing a positive relationship with occurrence
(Tables 2.4 and 2.6). White sucker are usually fish of warmer, shallow lakes or warm,
shallow bays, and tributary rivers of larger lakes. In addition to spawning migrations,
movements, other than a general tendency to move offshore with increase in age, are
random, probably in response to temperature (Scott and Crossman 1998). White
suckers are moderately active during the daytime but active feeding is usually
restricted to near sunrise and sunset when they move into shallower water. This
species spawn in the spring, usually from early May to early June. Adults usually
migrate from lakes into gravelly streams when stream temperatures first reach 10°C,
but they are also known to spawn on lake margins, or quiet areas in the mouth of
blocked streams. They are bottom feeders, so benthic production is very important for

them. Previous white sucker occurrence models showed surface area, total shoreline
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perimeter and max depth to be important lake morphometry predictors of white
sucker occurrence, which agrees with the model results showed here (Olden and
Jackson 2002). Climate plays an important role on this species distribution, therefore
the models presented in this study represent an improvement over the model
presented by these authors. The negative influence of both DD5 and MAT on the
white sucker distribution reflect the preference of this species for cool waters, since
temperature increases will most likely represent loss of habitat for this species, which

needs cool water for spawning (Scott and Crossman 1998).

For smallmouth bass, (A) and (A+B) models’ results (Figure 2.25) show that lake
size, climate, TDS and secchi are impoﬁant in determining this species’ distribution,
with lake size, climate and secchi having positive influences, and TDS having a
negative influence (Tables 2.4 and 2.6). Smallmouth bass habitat varies with size and
time of year. In the spring, adult fish congregate on the spawning grounds, where
males build nests on a sandy gravel, or rocky bottom usually near the protection of
rocks, logs or, more rarely, dense vegetation (Scott and Crossman 1998). Late spring
they are usually found in rocky and sandy areas of lakes and rivers, in moderately
shallow water. In the heat of the summer they usually retreat to greater depth. The
distribution of smallmouth bass has been historically limited to the south and south-
central regions of Ontario where July air temperatures exceed 18°C (Shuter et al.
1980). Their current range is expanding throughout North America via natural and
human-mediated dispersal (Sharma and Jackson 2008), and under scenarios of
climate change, this species have been predicted to expand their range northward
(Chu et al. 2005; Sharma et al. 2007). Previous walleye occurrence models have
showed the importance of lake morphometry variables (Olden and Jackson 2002;
Vander Zanden et al. 2004; Van Zuiden et al. 2016) and climate (Olden and Jackson
2002; Vander Zanden et al. 2004; Chu et al. 2005; Alofs and Jackson 2015; Van
Zuiden et al. 2016). In addition, Van Zuiden et al. (2016) model results agree with the
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results presented here related to the positive influence of secchi on smallmouth bass
distributions, indicating the preference of this species for clean, transparent waters.
On the other hand, a lack of agreement was noted between the smallmouth bass
occurrence model presented by Olden and Jackson (2001), where they show TDS to
influence positively this species’ distribution, and the smallmouth bass models
obtained in this study, which showed TDS to have a negative relationship with

occurrence.

The results presented by this study corroborates the idea of model improvement
through the addition of biotic variables, in this particular case, including occurrence
of other fishes from the same community as predictors. For instance, the result seen
on Figure 2.22 and Table 2.6 for walleye (A+B) models indicate that presence of
northern pike was the most important variable explaining its distribution. Previous
studies on Ontario lakes reported a high frequency of occurrence of walleye and
northern pike together in big lakes, sharing the same habitat requirements. Scott and
Crossman (1998) reported that northern pike are probably the most important
predators of the walleye over much of its range, or even an important competitor as it
is the only other major, shallow-water predator in the north. Figure 2.22 also shows
that presence of lake trout, lake whitefish and smallmouth bass are important in
predicting walleye distributions, while Table 2.6 indicated that the influence of lake
trout is negative on walleye occurrences, contrary to the influences of lake whitefish
and smallmouth bass. Vander Zanden et al. (2004) found that the number of
piscivores in a lake was positively related to smallmouth bass occurrence. However,
fish species richness and food chain length are known to increase with lake size
(Vander Zander et al. 1999, Post et al. 2000). Lake size and related increases in

habitat heterogeneity may simultaneously favour predator richness and establishment
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of the fish species target of this study. Moreover, the positive relationships among
species seen on Tables 2.5 and 2.6 can indicate biotic acceptance rather than biotic
resistance explaining patterns in the establishment of all six freshwater fishes, and
negative relationships between species could also indicate distinct habitat
requirements, a ‘“habitat checkerboard” (Gilpin and Diamond 1982; Jackson et al.
1992). Shared food and habitat resources can also be an explanation for these the high
variable importance attributed to walleye when predicting smallmouth bass (Figure
2.25), northern pike (Figure 2.23) and lake whitefish (Figure 2.21). Several studies
pointed out the importance of considering biotic variables when conceptualizing
SDMs (Guisan and Zimmermann 2000; Guisan and Thuiller 2005; Ritz 2005;
Schroder 2008; Elith and Leathwick 2009; Zimmermann et al. 2010; Wisz et al.
2013). Gilman et al. (2010) reported that interactions among species can strongly
influence how climate change affects species at every scale and that failure to
incorporate these interactions limits the predictive ability of models. Biotic
interactions can affect species responses to abiotic environmental changes differently
along environmental gradients, and abiotic environmental changes can likewise
influence the nature of biotic interactions (Brooker 2006; Meier et al. 2011). In a
recent study, Wang and Jackson (2014) showed how the incorporation of biotic
interactions improved model generality when predicting biological invasions. The
poor results related to models including only biotic information reinforces the
importance of environmental features while predicting fish occurrences, however,
these models can provide an insight about which species facilitates the occurrence of
other species, through competition, predation or facilitation. The low deviance results
seen for B models of smallmouth bass and lake trout (Figure 2.4) could be linked to
limited distribution of these two species, since they represent extremes on the
temperature preference gradient. Smallmouth bass is only found in the south where
its distribution overlaps with every species (Figure 2.3), while lake trout distribution
is linked to lake depth requirement, since deep lakes provide optimum habitat for this

species.
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The structural properties of a data set rcqu1re the use of statistical approachcs that
best capture the response in the data set while prov1dmg information on the important
environmental determinants structuring species distributions and communities. The
models developed in this study using either abiotic variables (here called A models),
biotic information (B models) or both of them (A+B models) provided some valuable
insights into the relationships between species occurrences, habitat and how the fish
community determines the establishment of a given fish species. Linear methods are
traditionally the most popular approaches used (Sharma et al. 2008). However, results
revealed that machine learning methods, specifically random forests and boosted
regression trees, explained the species occurrence variation better (resulting in high
deviance values), besides the good performance seen during the calibration and
validation assessment. Machine-learning methods can have high predictive abilities
for data sets that exhibit linear and nonlinear relationships between predictor
variables, high-order interactions and multicollinearity (Breiman et al. 1984, De’ath
2002). Machine learning methods produce discontinuous changes at certain points
along the predictor variables and identify high-order local interactions that the linear-
based approaches used in this study do no appear to accommodate. Wang and
Jackson (2014) reported good results obtained from calibrating and validating random
forest models, with stable overall perfolrmance__. However, a potential drawback of
machine-learning methods can be the possibility of over-fitting a model (S.harma et
al. 2008). How to choose appropriate modelling approaches, predictor variables,
model validation methods, and performance metrics are important steps if we want to
get more reliable inferences or predictions rather than data-specifics results or
statistical artifacts. Although some of the models presented here are correlative, and

thus we cannot directly determine, but only imply causation, the results are consistent
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with findings from many studies of north-temperate fish populations (e.g. Olden and
Jackson 2002; Wang and Jackson 2014; Alofs and Jackson 2015). Each modelling
approach possesses fine tuning parameters and exploring all their possibilities for
each method is beyond the scope of this study, which focused on: (i) the development
of fish-habitat models; (ii) comparison of variables of importance among species and
(iii) compare predictive performance among models. Moreover, the results shown
here provide an indication of the candidate models that are worth considering further.
Finally, it is important to keep in mind that the fundamental goal of ecological
research is to understand how observed ecological patterns are generated by specific
processes or constraints, thus allowing for valid generalizations (Wiens 1984).
Therefore, understanding patterns of distribution of species requires that we evaluate
predictions about functional relationships between species and their environments, in
other words, understanding and prediction are both important aspects in ecological
modelling. As long as the chosen modelling approaches are constructed logically
from mechanistic principles, new data and knowledge can be used to refine the
conceptual framework over time, thereby increasing ecological understanding and,

potentially, predictive capability (Wiens 1992).

The variable importance assessment indicated that surface area of the lake was an
important morphometric feature influencing the establishment of each fish species.
The importance of lake area on species diversity has been broadly recognized
(Barbour and Brown 1974; Eadie and Keast 1984; Nate et al. 2000; Olden and
Jackson 2002; Hansen et al. 2015; Edwards et al. 2016). Large lakes allow the
development of abundant vegetation in the littoral zone, which facilitates the
spawning of species such as smallmouth bass. Furthermore, surface area of the lake
serves as an indirect measure of the diversity of habitats available in lakes, which

may be important to support small-bodied, forage fish upon which these species feed.
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Large lakes promote resource (habitat and prey) heterogeneity (Barbour and Brown
1974; Eadie and Keast 1984).

Together with lake size, climate is broadly recognized as a strong predictor of fish
distributions (O’Connor et al. 1981; Schlesinger and Regier 1982; Christie 1986,
Magnuson et al. 1990; Jackson et al. 2001; Poesch et al. 2016), and the results seen
here for all species confirm that fact. Air temperature is especially important for
smallmouth bass because a northern climatic zone was studied, and the restriction of
this species’ distribution to the southern part of Ontario shows a strong temperature
dependency. Temperature is the controlling factor pacing the metabolic requirements
for food and governing the rate processes involved in food processing (Brett 1979).
Almost all species in the young stages show a typical rapid increase in growth rate as
temperature rises passing through a peak (optimum temperature) and frequently
falling precipitously as high temperatures become adverse. Since temperature is the
most important abiotic factor controlling fish physiology (Kao et al. 2015), projected
increases in water temperature resulting from climate change are expected to affect
the growth of freshwater fishes, their population dynamics, and the ecology at
community and ecosystem levels (Jeppesen et al. 2010; Portner and Farell 2008;
Sheridan and Bickford 2011). These increases in water temperature may also change
geographical distributions of freshwater fishes (Chu et al. 2005; Comte et al. 2013)
and the production of freshwater fisheries (Ficke et al. 2007; Portner and Peck 2010).
In this study, results revealed different influences of DD5 and MAT on different fish
species (e.g. DD5 and MAT influence negatively lake trout occurrences, while DD5
and MAT have mixed influences on walleye and last, these two climate variables
have a positive influence on smallmouth bass — see Table 2.4). One hypothesis that

for this is what was stated in 2.3.1: species use different environmental cues to
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maximize different life-history stages (e.g. young versus old individuals) and needs
(e.g. reproduction versus growth) and so different temperatures may influence species

differently across these stages of life and needs (Lee et al. 2016).

Future studies should investigate how consider more elaborate indexes of community
composition, which would incorporate information about other fish species belonging
to the same lake communities. Biotic interactions are dynamic within changing
environment, but the interactions and species assemblages under investigation should
remain relatively static if it is of interest to include them into SDMs, and this is
particularly important for studies on species under climate or land-use change (Davis
et al. 1998). Some environmental conditions may be an indirect reflection of biotic
interactions, falsely suggesting a direct dependence on abiotic factors where in fact a
biologically mediated dependence may be the case. On the other hand, it is also
possible that some biotic interactions might be just caused by abiotic factors (Guisan
and Thuiller 2005). Adding biotic information into SDMs may increase the
complexity of modelling, therefore the most efficient way to incorporate only the

necessary biotic factors should be explored.

More effective conservation of aquatic biodiversity will require new approaches that
recognize the protection of key local- and regional-scale processes that shape fish
distributions (Angermeier and Winston 1999). Developments in these areas require an
increased reliance on probabilistic models and will represent an important
advancement in both population and community ecology. This study shows that
statistical modelling approaches exhibit considerable promise in providing testable,
predictive models for fish ecology. Predictive models can play an important role by
forecasting the likelihood of local establishment and spread of non-native species and

thus help set proactive conservation priorities for preserving vulnerable populations.
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The results related to the importance of lake size to all species serve as a basis for
conservation measures that incorporate large lakes as part of the conservation

strategy, given their importance in providing adequate habitat for several species.
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CHAPTER III

EFFECTS OF ABIOTIC FACTORS ON THE BIOMASS OF SIX FISH SPECIES
IN ONTARIO LAKES

W.S.C. Moreira, N. Lester and P.R. Peres-Neto

3.1 Summary

The ecological and economical importance of freshwater fish populations is
unquestionable, being valuable for many reasons. They regulate ecosystem structure
and function through the processes of selective predation, nutrient cycling,
bioturbation, play a major ecological role in structuring the benthic and zooplanktonic
invertebrate communities, they are key indicators of ecosystem health and
environmental disturbance and possess a central spiritual value to many native
cultures. However, high aquatic habitat degradation from overexploitation, water
pollution, flow modification and invasion of exotic species are causing freshwater
fish to become one of the most threatened groups of vertebrates worldwide. It is
therefore vital that fisheries managers, governments and the outdoor recreation
industry prioritize their actions on ensuring the sustainability of the actual fish stocks
under exploitation and habitat loss, via productivity assessments. It is of interest to
fisheries ecologists to know how fish production and biomass vary among
ecosystems and populations or due to changes in environmental conditions. A first
step towards this goal is to determine which characteristics of ecosystems have the
greatest impact on them. The objective of this chapter is to develop biomass models
for six freshwater fish species present in Ontario lakes (lake trout, lake whitefish,

walleye, northern pike, white sucker and smallmouth bass), using environmental
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predictors based on principal environmental determinants (light, heat, nutrients),
together with fishing pressure. The species were chosen in order to disentangle the
effects of climate and exploitation. The database used to develop the biomass models
was provided by a broad-scale monitoring (BsM) program from the Ontario Ministry
of Natural Resources and Forestry and consisted of surveys done on 722 lakes.
Biomass was expressed through biomass-per-unit effort (BPUE, kg/gang-night) and
modelled using boosted regression trees. We hypothesized that angling score would
be an important predictor of walleye, northern pike, lake trout and smallmouth bass,
but results showed that it does not represent an important variable for these species,
just moderately for northern pike. Our study provides a better understanding of the
different factors driving biomass of the different species; how they interact, while
bringing to light the importance of lake morphometry and climate to predict both
occurrence and biomass of freshwater fish species from Ontario lakes. From the
management point of view, these two environmental determinants should be
primarily taken into account, not only when selecting new conservation areas but also
when seeking an optimization of lake resources contributing to the sustainable

practice of sport fishing.

3.2 Introduction

The ecological and economical importance of freshwater fish populations is
unquestionable. They regulate ecosystem structure and function through the processes
of selective (non-random) predation (Carpenter et al. 1985), nutrient cycling
(Schindler 1992) and bioturbation (Gelwick et al. 1997); they play a major ecological
role in structuring the benthic and zooplanktonic invertebrate communities (Benndorf
et al. 1984; Mazumder et al. 1988; McQueen et al. 1990); they are key indicators of

ecosystem health and environmental disturbance (Karr 1981); and they possess a
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central spiritual value to many native cultures (Swezey and Heizer 1977).
Economically, sport freshwater fisheries are increasingly replacing commercial
fisheries landings, consisting of a driving force generating recreational values of
$CDN 8.8 billion in Canada in 2010 (Fisheries and Oceans Canada 2012), and

sportfishing’s social value lies in its role as a recreational experience.

However, high aquatic habitat degradation from overexploitation, water pollution,
flow modification and invasion of exotic species are causing freshwater fish to
become one of the most threatened groups of vertebrates worldwide (Allan and
Flecker 1993; Naiman et al. 1995; Naiman and Turner 2000; Jackson et al. 2001;
Malmgqyvist and Rundle 2002; Rahel 2002; Postel and Richter 2003; Revenga et al.
2005). It is therefore vital that the fishing industry and governments prioritize their
actions on ensuring the sustainability of the actual fish stocks under exploitation and
habitat loss. Understanding the effects of such stresses on the abundance of various

fish species depends on our knowledge of how natural factors affect fish species.

At equilibrium, unexploited fish stocks produce exactly enough biomass to balance
natural mortality (Downing and Plante 1993). The renewal of the stock is
characterized by production, defined by Ricker (1975) as amount of tissue generated
per unit time per unit area, regardless of whether or not fish survive during the time
interval. By definition, production (P) = biomass (B) * mortality (M), with production
and biomass being commonly standardized by lake area (Mertz and Myers 1998). It is
thus of interest to fisheries ecologists to know how biomass and fish production
varies: (1) among ecosystems and populations; (2) over time; (3) due to changes in

environmental conditions (Bradford and Irving 2000) and/or (4) across different life



110

history strategies (Musick 1999). A first step towards this goal is to determine which
characteristics of ecosystems have the greatest influence on biomass and
consequently, production. Investigations that have as a main scope to identify the
main factors driving biomass of a certain species also assist in understanding which
factors drive the production of the same species. In the previous chapter, we showed
how the occurrence of six fish species in Ontario lakes is affected by various abiotic
factors and the community composition of these lakes; in this chapter we explore the

effect of abiotic factors on the biomass of the same fish species.

An exhaustive number of models to account for freshwater fish biomass and
production is available in the literature, however, these models disagree about the
characteristics of lakes that have the greatest influence on them. For instance,
previous fish biomass models showed that total phosphorus (Quiros 1990; Randall et
al. 1995), carbonate content (Carlander 1955) , total nitrogen (Moyle 1956) and total
dissolved solids (Rawson 1960; Jenkins 1967) were good predictors; for fish
production models, mean depth or lake area (Rounsefell 1946; Rawson 1955), fish
density (Randall et al. 1995), primary production of the water column (Downing et
al. 1990), secchi depth (Lester et al. 2004), thermal-optical habitat (Lester et al.
2004), morphoedaphic index (Ryder 1965), annual average fish standing stock
(Downing et al. (1990), total phosphorus (Hanson and Legget 1982), algal biomass
(Jones and Hoyer 1982), macrobenthos (Matuszek 1978), climate (Schlesinger and
Regier 1982) and lake morphometry (Schlesinger and McCombie 1983) were shown
to be influential parameters. Although these models disagree in terms of the most
important predictors of biomass and production, all the factors identified as

influential fit within a conceptual model proposed by Ryder and Kerr (1989).
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Biomass of different species is mainly driven by, according to Ryder and Kerr
(1989), the four fundamental ecosystem properties: light, heat, dissolved oxygen and
nutrients, which are critical environmental factors for fish survival and subsequent
production. These four fundamental properties do not constitute an exhaustive list of
all factors critical to the survival and production of fishes, but rather are a subset of
high priority. Heat and light are the principal energetic inputs affecting the survival of
fishes while oxygen and nutrients constitute the two fundamental and essential
material items (see Figure 3.1). As a generalization, survival depends on fish
satisfying their most critical needs first (dissolved oxygen, preferred temperature), at
which point behaviour becomes dependent on the controlling factors, nutrients and
light. These four factors are interrelated to varying degrees, for example temperature
affects dissolved oxygen saturation levels; light controls photosynthesis, and hence,
nutrient availability; photosynthesis, in turn, contributes to the concentrations of

dissolved oxygen.

Temperature is one of the most important abiotic factors influencing fish survival and
performance (Christie and Regier 1988). As fish are obligate poikilothermic
ectotherms, their body temperatures are equal to or within a few fractions of a degree
of the surrounding water temperature (Beitinger et al. 2000). Therefore, they are
highly dependent - on water temperature to maintain important biochemical,
physiological and life history processes (Beitinger et al. 2000). Previous studies have
shown that physiological performance of fish is maximized within a narrow
temperature range and that, depending on the species, optimal temperatures for many
processes centre around a specific value (Jobling 1994). Christie and Regier (1988)
show strong relationships between thermal habitat measures and sustained yield of

lake trout, lake whitefish, walleye and northern pike. Shuter et al. (1983) have shown
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that differences in the supply of thermal habitat for fish are predicted largely from
lake morphometry and air temperatures, indicating that these variables are also

important when assessing fish production.

Controlling
Lim"iting

Nutrients | Oxygen

Matter

Figure 3.1: Schema of four principal environmental determinants as configured and
entrained by the morphology of an ecosystem, in this case, habitat. The four
determinants are comprised of two energetic factors (light and heat) and two material
factors (nutrients and oxygen). Light and nutrients are controlling in the sense that
they influence behavior and metabolism, but are rarely lethal at any level found in
nature. Heat and oxygen are controlling in their intermediate ranges, but may be
limjting at the extremities, and therefore are often lethal. Extract from Ryder and Kerr
(1989).

Light is another important environmental determinant controlling fish behavior and
metabolism. Subsurface illumination, because of its environmental pervasiveness at
various levels of intensity, is rarely considered to be as critical an environmental
determinant as dissolved oxygen and temperature. The retinal response to light is not

the same in all fish species, despite their broad tolerances of subsurface illumination.
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Some species are able to tolerate these wide ranges because they possess specialized
retinal structures, or have the ability to occlude light with moving pigments (Al et al.
1977). Other species utilize the turbidity of the water column to shield sensitive
retinae from the refracted sunlight of the water surface, while still others use physical
structures for the same purpose (Ryder 1977). Some fishes, such as the walleye
(Sander vitreus), have scotopic (dim-light) vision and are eminently well adapted to
crepuscular and nocturnal feeding and spawning (Scott and Crossman 1998). On the
other hand, a sympatric piscivorous species, the northern pike (Esox Lucius),
normally feeds and spawns only during daylight hours (Sawatzky et al. 2007).
Walleyes may actually be temporarily stunned at high daylight intensities and are
unlikely to be found feeding at the surface of a clearwater lake on a sunny day.
Northern pike which have photopic (daylight) vision, are ineffectual feeders at night
despite their extensive use of the lateral lines in feeding (Nikolsky 1963). Based on
these observations, Ryder and Kerr (1989) regarded light as an ecological cleaver that
determines the relative dominance or subordinance of species. Lester et al. (2004)
stressed the importance of water clarity in predicting potential yield of walleye,
integrating this variable with lake bathymetry, thermocline depth and climate.

The other controlling factor in the Ryder and Kerr model is nutrients. Nutrients reach
fish through the intermediacy of lower trophic levels, being first absorbed by
autotrophic plant life and passed up the trophic ladder through the agencies of grazing
and ultimately, predation. As in the case of light, nutrients are rarely a lethal factor by
themselves, unless augmented to extremely high levels through eutrophication and
associated with anoxic levels of dissolved oxygen. Low levels of nutrients are not
likely to be lethal as fish communities adapt by maintaining low levels of standing
stocks through compensatory feedback (Ryder and Kerr 1989). The morphometry of



114

the lake is especially important in respect to the way nutrients are channeled in the
system. The first published fish production models were a function of simple
morphometric variables like area or lake mean depth (Rounsefell 1946; Rawson
1952). Later on, Ryder (1965) introduced the morphoedaphic index (MEI = Total
Dissolved Solids/ Mean Depth), which brought popularity to nutrients as an important
environmental determinant to predict fish production. MEI’s simplicity has made it a
landmark of lake fisheries management, being extensively used together with other
physical, chemical and biological indices. Since its first appearance, MEI has been
the subject of more than 100 publications in primary scientific literature (e.g. Jenkins
1967; Henderson and Welcomme 1974; Oglesby 1977; Ryan and Harvey 1977;
Matuszek 1978) . Later on, Ryder (1982) reviewed MEI and acknowledged that fish
production should be addressed at three hierarchic levels: global (where temperature
and area are of prime importance and are interrelated through total caloric content),
regional (where mean air temperature, lake morphometry and nutrients are important)
and infra-regional (where mean depth would be influential). Schlesinger and Regier
(1982) proposed an adaptation to MEI by incorporating climate via mean annual air
temperature, showing good model results while accounting for regional differences in
climate. On the other hand, Downing and Plante (1993) criticized the performance of
MEI in their work, showing that it was not significantly correlated with fish
production when biomass and body mass effects were considered. Models linking
fish production to phytoplankton (Oglesby 1977) and benthos (Matuszek 1978)
productivity became popular in the 70s, showing themselves to constitute improved
indicators over the morphoedaphic index. Recent works have used total phosphorus
(TP) as a nutrient indicator, since it is a proxy for nutrient control of phytoplankton
biomass, having a direct link to primary production and consequently, production on
higher trophic levels of the lake (Prairie et al. 1989; Vadenbocoeur et al. 2008;
Vander Zanden et al. 2011). In addition, in studies considering the effect of total

phosphorus on fish production, it was reported its relationship with dissolved organic
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carbon (DOC) and how the latter serves as a proxy of water clarity, impacting benthic
production (Finstad et al. 2014).

Oxygen (i.e., dissolved oxygen, DO) is another limiting fundamental environmental
determinant of aquatic life. The proportion of oxygen in air that dissolves in water is
about 35%. This solubility is governed by atmospheric and hydrostatic pressure,
turbulence, temperature, salinity, currents, upwellings, ice cover, and biological
processes (Wetzel 1983). Major sources of DO in water are the atmosphere and the
photosynthesis by aquatic vegetation. The amount of oxygen available for aquatic
life, however, depends on the factors that affect its solubility. In large and deep
freshwater systems, oxygenation depends on circulation by winds, currents, and
inflows to move aerated water away from the surface. Due to human activities,
thermally stratified lakes are affected by oxygen depletion via increase of phosphorus
loadings, that causes algal blooms and therefore, depletion of late-summer dissolved
oxygen levels in the hypolimnion (cold lower water layer) of lakes (Lienesch et al.
2005). In Ontario, surface water temperature in the summer becomes too warm for
cold water species. Consequently, these three factors (morphometry of the lake,
nutrients load and DO) interact to determine habitat availability for cold water species
(Evans 2007).

Overall, the research on fish production has shown that the main parameters related to
it are alkalinity, algal biomass (chlorophyll a), air temperature, area, benthos standing
crop, body size, fishing effort, mean depth, phytoplankton productivity, total
dissolved solids, total nitrogen concentration and total phosphorus concentration.

Understanding which factors drive the dynamics of different specie.s and better
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describe their habitat preferences is key to better manage impacts of climate change

on fish production.

The objective of Chapter 3 is to develop biomass models for the six fish species for
which fish-habitat models were developed in Chapter 2 (lake trout, lake whitefish,
walleye, northern pike, white sucker and smallmouth bass). The same abiotic
variables were chosen — all of which are based on the principal environmental
determinants identified by Ryder and Kerr (1989). In addition, we included fishing
pressure because several of these species are harvested by anglers (mainly lake trout,
walleye and northern pike; smallmouth bass is also a popular sport fish target, but
harvested less because anglers practice more catch and release for this species). Also,
fishing pressure included to assist in understanding the effects of abiotic factors,
although it is of interest to know how biomass of target species have been impacted
by fishing pressure. The species were chosen in order to disentangle the effects of
climate and exploitation (Table 3.1), since angling pressure tends to correlate with
temperature. Lake trout, walleye, northern pike and smallmouth bass were selected
because they are popular targets of recreational fishing (Fisheries and Oceans Canada
2012), and this group of species includes one cold water species (lake trout), two cool
water species (walleye and northern pike) and one warm water species (smallmouth
bass). Angling pressure on these species varies across the province of Ontario,
tending to be higher in the South which has higher human population. The other two
species consist of one cool water (white sucker) and one cold water (lake whitefish)

species, both receiving very little stress from angling.
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Table 3.1: Species chosen according to the exploitation level

and thermal guild
. Exploitation
Thermal Guild
© Low High
Cold water Lake Whitefish Lake Trout
Cool water White Sucker Walleye
Northern Pike
Warm water Smallmouth Bass

Four models with different sets of predictors were built for each species: (i) a full
model including all the environmental features to be used in this study, together with
angling pressure; (ii) a model that included exactly the same environmental variables
used for the development of fish occurrence models in Chapter 2, in order to verify
the level of agreement between biomass and presence-absence models for the six fish
species; (iii) a model with secchi depth, total dissolved solids (TDS) and pH
encompassing the pool of variables representing the water chemistry environmental
determinant; and (iv) a model with total phosphorus (TP), dissolved organic carbon
(DOC) and pH representing water chemistry. Models (iii) and (iv) allow comparisons
in order to determine which set of water chemistry parameters provide a better model
parsimony, consisting of an optimization of the full model. Fishing pressure (in the
form of an angling score) was also part of the modelling routine in models (i), (iii)
and (iv), and the delgreel 6f its influence on the biomaés of the different species is
evaluated. No study to date has carried out a thoroughly investigation on biomass
models specific to each of the fish species targeted here, evaluating: (i) the
environmental determinants that are important for each species; (ii) the extent to
which biomass is affected by angling pressure; (iii) the level of agreement between
the importance of variables to predict biomass and presence-absence; and (iv) how

the different environmental features contribute to biomass prediction via BPUE.
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3.3 Methods

3.3.1 Fish-environment data source

The database used to develop the species biomass in this study was provided by the
Inland Lakes Broad-scale Monitoring program of Ontario (BsM). This program is
part of Ontario’s Ecological Framework for Fisheries Management which aims to: (i)
describe of the geographic distribution, extent and characteristics of aquatic resources
in Ontario; (ii) estimate, with known confidence, the current status and trends in
selected indicators of fishery resources; (iii) identify natural and anthropogenic
stresses affecting the condition of aquatic resources and (iv) provide periodic reports

on the state of aquatic resources.

3.3.2 Lake Selection

The target population for the BsM program is lakes larger than 50 ha, of which there
are approximately 11000 in Ontario. The data used in this study is based on surveys
from 721 lakes which were conducted during the first cycle of BsM (2008-2012). The
dataset is a stratified random sample of lakes (see Figure 3.2). The province of
Ontario is divided into 14 inland management units (i.e. excluding the Great Lakes
and Ottawa River); within each of these zones, lakes were divided into size classes
based on lake area (50-500 ha, 500-1500 ha, 1500-5000 ha, and > 5000 ha) and an
equal number of lakes within each size class were randomly selected. This selection

procedure was adjusted to ensure that 10% of known lake trout lakes and 20% of
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known walleye lakes were sampled in each zone. Standardized surveys were
conducted on each lake to sample lake morphometry, water quality, fish assemblages,

and angling pressure in each lake.

BsM - Cycle 1
2008-2012

Figure 3.2: Distribution of the sampled lakes across Ontario during the first cycle of
the BsM program.

3.3.3 Fish community sampling

Fish assemblages were sampled using small and large mesh gillnets. Data used in this
study is based on the large mesh gillnets which conforms with the proposed North
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American standard (Bonar et al. 2009): 24.8 m in length with eight panels of mesh
ranging from 38 to 127 mm (38, 51, 64, 76, 89, 102, 114, and 127 mm). Nets were set
~ in the afternoon and lifted in the morning with a target soak time of 18 h. A double
gang strap was typically used (i.e., two nets strung together). Sampling details are
described in Sandstrom et al. (2011).

3.3.3.1 BPUE

Sampling was depth stratified, and gillnets gear was fished in all depth strata: 0-3, 3-
6, 6-12, 12-20, 20-35, 35-50, 50-75, 75+ m. Sampling sites were assigned randomly
within each stratum. The number of sites per stratum ranged from two to nine
depending on lake size (see table 4 in Sandstrom et al. 2011). Species and fork length
were recorded for all caught fishes. Lake-wide BPUE (biomass-per-unit effort) was
calculated as area-weighted estimates of BPUE. For each lake, we calculated the
BPUE and benthic area in each sampled depth stratum and then calculated the area-
weighted mean. The resulting BPUE was based on the full range of body sizes caught
in each lake, measured as kg/gang-night, where a gang is 24.8 m long and 1.8 m high,
equivalent to 45 m2. BPUE is used as an index of biomass density (kg/hectare), using
as an assumption the relationship of BPUE to stock size and consequently, biomass
density (Hanchet et al. 2005). Table 3.2 shows descriptive statistics of BPUE for the

six freshwater fishes in this study.
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Table 3.2: Descriptive statistics of BPUE (kg/gang-night) for the six sport fish species

Thermal guild  Fish species NT&Z;?;?::;Y@ Mean g‘:z:;i Range
Cold Lake trout 288 0.699 0.729 6.53
Lake whitefish 362 1.004 1.196 10.5
Cool Walleye 474 1.827 1.974 12.08
Northern pike 499 0.882 0.921 6.16
White sucker 643 1.303 1.362 9.18
Warm Smallmouth bass 310 0.350 0.320 1.89

3.3.4 Environmental predictors and angling score

Table 3.3 summarises the descriptive statistics of all environmental predictors that
were used to predict the biomass of all six freshwater fish species, along with fishing
pressure: growing degree days above 5°C for 1981-2010 (DDS5), mean air
temperature for 1981-2010 (MAT), surface area of the lake transformed using log10
(L10Area), shoreline development factor (SDF, see Chapter II section 2.3.1 for
details), maximum and mean depth of the lake (Depth_Max and Depth_Mn
respectively), total dissolved solids (TDS), total phosphorus (TP), dissolved organic
carbon (DOC), secchi depth (Secchi), pH and angling score, which was computed
based on angling pressure (angler-hours/hectare). Angling pressure was measured as
part of the BsM protocol. Aerial surveys of angler activities in summer (eight
weekday and eight weekend flights) and winter (six weekday and six weekend
flights) provided the data used to estimate annual angling pressure. The summer
count included the number of vessels and shore anglers, whereas the winter count

included the number of ice huts and anglers on open ice. Weekend and weekday
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angler counts were used to calculate mean angling activity for each season in each
lake i:

5/7C ountyeerday,ism + 2/ 7Countyeekeng,i;s;m
Area;

Activity; s m =

Activityism is then multiplied by the number of anglers in vessels, shore anglers, ice
huts, open-ice anglers, season length, and hours fished per day and then summed for
all seasons and methods to produce annual estimates of angling pressure.

sm

Ang; = Activity; X angler,, X season X hours
Ji Yis,m giehrm

sm=1

See Chu et al. (2016) for more details on these expressions. Angling pressure was
then converted to angling score as a form of standardization given that angling
pressure has a very skewed distribution, with big gaps among some values of its
range. The BsM survey made available information about extra water chemistry
variables such as TP and DOC, which were not collected in the AHI survey used to
build species distribution models in Chapter 2. Table 3.4 provides information on the
correlations among all predictors to be used in the biomass modelling process. The
same comments done regarding the correlations seen in Chapter 2 hold true for this
chapter. Additionally, the correlation between angling score and climate reflects how
angling is dependent on climate, with increased angling in the south of Ontario. The
negative correlation seen between secchi and DOC is related to the impact of DOC on
water clarity, while the correlation between pH and TDS is explained by

conductivity, which is positively related to both of these water chemistry parameters.
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Table 3.3: Descriptive statistics of all environmental predictors and fishing pressure.
The ranges for angling score were: 1= 0 — 1 hr.ha'l.yr!; 2= 1.1-5 hr.hal.yr?; 3= 5.1-
10 hr.ha'l.yr!; 4= 10.1-20 hr.ha.yr!; 5= 20.1-40 hr.hal.yr! and 6= 40.1+ hr.hal.yr
1

Predictors Standard
n Mean Deviation Range
Climate DDS5 (growing degree-days) 683 1611.7 2122 1187
MAT (°C) 683 3.229 1.762 10
L10Area (ha) 683 2782 0.667 3.64
Lake SDF ‘ 681 469 312 19.78
Morphometry Depth_Max (m) 683 29.67 22.93 185.1
Depth_Mn (m) 683 8.74 6.64 39.5
TDS (mg/L) 683 49.76 49.02 385.6
TP (ug/L) 682 9.93 6.45 50.8
Water Chemistry DOC (mg/L) 682 7.33 3.51 184
Secchi (m) 682 3.60 1.79 11.7
pH 673 7.16 0.53 3.1
Angling Score 663 253 1.28 5




00T o 010 [20- 910 €v°0 80°0- 60°0- 000 €0°0- S9°0 09°'0  3J00S Bul|suy
00T ¥0°0- 600 €0 SL°0 61°0- 810~ 10°0- 0z'0 100 L00 Hd
00T 89°0- €5°0- €00 50 6v°0 10°0- 200 62°0 €2°0 1Y223s
00T 90 €00- Sv0-  8€0- 100 200 050" wo- J0a
00T 8€°0 GE'0-  9€0- S0°0- 600 ¥0°0- S00 dlL
00T 9T0-  ¥10- 80°0- £0°0 €€°0 €0 saL
00T 060 900 820 [4%¢) 110 U Ydag
00T 62°0 6€°0 L00 900 XeN~yadag
00T €90 60°0- 000 1as
00T ¥z 0- 1T°0- B3aIVOT
00T 160 C LV
00T saa
3402S Ul XeN
“8uySuy  Hd 1y3s 204 di sal  “ydeg "wideg ias e3.y0T] LY saa

s10yo1paid g Jg Suowe SUOHE[AIIOd UosIedd '€ dqeL

14!



125

3.3.5 Statistical analyses

Boosted regression tree analyses (BRT) were used to identify which variables
influenced BPUE for each freshwater fish species. The choice of modelling approach
comes from the good results shown by this method in Chapter 2, added to its
capability to create partial dependence plots, which allows the assessment of the
influence of each independent variable on the response variable. BRTs combine
regression trees (generated with recursive binary splits) with boosting (combining
trees to improve predictive performance) to produce a model built on multiple insteéd
of single trees (Elith et al. 2008). The general approach is to iteratively compute a
sequence of trees in which each successive tree is built from the prediction residuals
of the preceding tree. The optimal number of trees is determined when the mean
predictive deviance of the 10-fold cross-validation process is minimized given the
learning rate, tree complexity, and bag fraction settings. Deviance measures how
much the predicted values differ from the observations and represents the loss in
predictive performance due to a suboptimal model. Percentage deviance explained, or
pseudo R?, was calculated as 1- (residual deviance/total deviance) and, similar to
traditional regression techniques, should approach one when predictive performance
is maximized (Elith et al. 2008). The 10-fold cross-validation process evaluates
predictions of the model using 10 subsets of randomly selected data (Emmrich et al.
2014).

Relative influences of the explanatory predictors are determined based on the number
of times that they are included in the trees, and the improvement in the models with
their inclusion is averaged across all trees (Friedman and Meulman 2003; Elith et al.

2008). They are scaled to 100 with higher numbers indicating stronger influences on
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the response variables (Elith et al. 2008). The BRT models were developed with
Gaussian error distributions, learning rate of 0.005, tree complexity of 5 and bag
fraction of 0.5. All computations were done using R 3.3.3 (R Development Core
Team 2008), and the BRT models were developed using the “dismo” and “gbm”
packages as outlined by Elith et al. (2008).

For each fish species, four different sets of variables were used to estimate BPUE.
The first set consisted of the full set of predictors shown in Table 3.3; The second set
(set 2) excluded TP, DOC and angling score in order to keep the same set of variables
used to predict presence-absence in Chapter 2, with the objective to verify if the main
variables used to predict BPUE were also indicated as important ones to predict
presence-absence in that chapter; The third set (set 3) excluded TP and DOC, having
pH, TDS and secchi depth as the predictors representing water chemistry; And finally
the fourth set (set 4) excluded TDS and secchi depth, having pH, DOC and TP as
predictors representing water chemistry. Sets 3 and 4 had as main objective to allow
verification of whether predictive performance is improved by keeping a more
parsimonious set of water chemistry variables. The relative influence of each
predictor, the mean squared error and the percentage deviance of BPUE explained by

the BRT models were also computed to serve as assessment of the modelling quality.

3.4 Results

Table 3.5a and 3.5b summarises the BRT results for the four sets of predictors. These
models explained deviance in BPUE ranging from 19.71% to 77.86%, a fairly good
explanation with a considerably broad range. Figure 3.3 shows the explained

deviance variation across different sets and freshwater fish species. Overall: (i) lower
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explained deviances were obtained for the smallmouth bass models, with the
minimum deviance value seen for the full model; (ii) higher deviances were obtained
from walleye models, with the maximum value seen for walleye BPUE being
predicted by the set 4 of predictors (when water chemistry was represented by DOC,
pH and total phosphorus). Mixed results regarding which set of predictors better
predicted BPUE are seen when deviance results were compared within species. For
lake trout and white sucker, the full model showed the best results; for lake whitefish
and smallmouth bass, the model using the set 3 of predictors was the best performing,
while for walleye and northern pike, it was the model using the set 4 of predictors
that showed optimal results. However, among the subsets of predictors from the full
model used to predict BPUE (represented by sets 2-4), in average, the set 4 was the
one presenting the higher deviance values (50.5%, against 46.9% for set 2 and 48.2%
for set 3).

Graphical calibration results were expressed in terms of MSE/Mean BPUE for each
freshwater fish species. Results (Figure 3.4) indicated that smallmouth bass models
were the most precise (MSE/Mean BPUE 0.217-0.242), and lake whitefish models
were the least precise (MSE/Mean BPUE 0.629-0.711). On average, the BPUE
models that showed the best precision were the full models (mean MSE/Mean BPUE
= (0.4998) and the ones using the set 4 of predictors (mean MSE/Mean BPUE =
0.5061), while the models using the set 2 of predictors performed the worst (mean
MSE/Mean BPUE = 0.5502).
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3.4.1 Environmental determinants of species biomass

Figure 3.5 presents the relative importance of variables in each species biomass
model, based on the full set of predictors. Models developed for cold water species
showed differences in the most important predictors. For lake trout, water chemistry
was the most important environmental feature (61.31%; contributions of each
predictor showed in Table 3.5a), followed by lake morphometry (21.64%) and
climate (15.85%); pH was the most important variable (31.06%). For lake whitefish,
lake morphometry is most important (43.18%), followed by roughly equal
contributions from water chemistry (28.14%) and climate (27.25%); SDF was the
most important variable (19.13%).

Mixed results were also observed for cool water species. Lake morphometry was the
most important predictor for BPUE of white suckers (37.44%) and northern pike
(34.77%), while climate was the primary predictor for walleye BPUE (40.97).
However, the single most important variable for all cool water species was a climate
variable: DD5 for white sucker (16.90%), and MAT for northern pike (19.24%) and
walleye (34.48%).

Smallmouth bass, the single representative of warm water species, was most
influenced by lake morphometry (41.32%), closely followed by water chemistry
(38.11%) then climate with 17.9%; Mean depth was the single most important
variable (16.67%).

Angling Score was universally low as a predictor of BPUE. Angling Score showed

some influence on northern pike biomass, where it ranked as the fourth most
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important variable (9.06%). Biomass models for other species ranked Angling Score

as last in all cases, except white sucker.
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3.4.2 Comparison of biomass and occurrence models.

Figure 3.6 shows the variable relative importance for the six freshwater fish species’
models using the set 2 of predictors, which is the same used to estimate presence-
absence of the same six fish species in Chapter 2, and the purpose here is to both
verify (1) in which way variable relative importance changes in comparison to the full
model and (2) make a parallel with the results shown in Chapter 2, identifying the
existence of any similarities between the environmental determinants which are
important to predict BPUE of the six fish species, and the ones which are important to

predict presence-absence of the same species.

Cold water species’ biomass models continued to display differences in respect to the
most important environmental features, but in the same way as seen on the full
models’ results. Water chemistry was still the most important environmental feature
for lake trout (41.20%, Table 3.5a), followed by lake morphometry (34.91%) and
climate (23.90%); pH remained the most important variable (31.06%). For lake
whitefish, lake morphometry was still the most important environmental feature
(51.54%), then climate (28.44%) and water chemistry (20.01%). In addition, SDF
remained as the most important variable in the prediction of lake whitefish biomass

(21.47%).
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Results from Chapter 2 indicated lake morphometry as the most important
determinant in predicting the occurrence of lake trout and lake whitefish, with Max
Depth and LoglOArea, respectively, being the most important variables. In the case
of lake whitefish, climate also played an important role. For lake whitefish, the
biomass model (Figure 3.6) roughly agrees with the occurrence model: lake
morphometry and climate were the most important determinants. For lake trout,
however, the two models did not agree: water chemistry was the primary predictor of

biomass.

For cool water species, lake morphometry continued to be the most important
environmental feature for white sucker and northern pike biomass (42.13% and
48.19% respectively, Table 3.5a); climate continued to be the most important for
walleye (45.64%). Like seen in the full models, the most important variables for the
three cool water species’ biomass were climate ones: DD5 for white sucker
contributing 20.69%, and MAT for northern pike and walleye contributing 26.72%
and 38.35%, respectively.

The models built in Chapter 2 to predict presence-absence of the three cool water
species showed lake morphometry through logl0 area to be the most important
variable, followed by climate through MAT. It is clear from these results that these
two environmental determinants are fundamental in determining both occurrence and
biomass of cool water species, however the results suggest that lake size is the most
important variable shaping occurrence of cool water species, while climate variables

are the most important for biomass (Figure 3.6).
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Finally, smallmouth bass results were similar to the full model ones, following the
same trend seen for cold and cool water species. The most influential environmental
determinant for this species’ biomass was still lake morphometry (48.50%; Table
3.5a), followed by water chemistry (30.11%) and climate (21.39%); Mean Depth was
the most important variable (15.78%), followed by a roughly equal contribution of
Logl0Area (14.37%). Chapter 2 results indicated both climate through MAT and lake
morphometry through LoglOArea to be important predictors of smallmouth bass
occurrence, which suggests that these two environmental features are important in
shaping this species’ presence-absence, while its biomass assessed via BPUE is

primarily driven by lake morphometry.

3.4.3 Seeking model parsimony: a comparison between models using the set 3 and

4 of predictors.

Figure 3.7 presents the variable relative importance for the six freshwater fish
species’ models using the set 3 of predictors, which consists of water chemistry being
represented by pH, Secchi Depth and TDS, and Figure 3.8 presents the results using
the set 4 of predictors, consisting of water chemistry being represented by pH, Total
Phosphorus and DOC. The results of the two models were compared to determine
which set of water chemistry predictors provides a better model parsimony,

consisting of a model optimization.

Comparison of results from sets 3 and 4 indicates that an increase in the water
chemistry contribution occurred when TDS and Secchi Depth were replaced by DOC
and TP. The greatest increase occurred for lake trout (from 40.53% to 56.92%). The
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sole exception was smallmouth bass, for which the water chemistry contribution

decreased slightly (from 29.59% to 26.78%).

Figures 3.3 and 3.4 indicated that, in average, set 4 had the highest explained
deviance and lowest MSE among sets 2-4. Therefore, these findings suggest that
water chemistry represented by DOC and TP is a good parsimonious choice of

variables for predicting biomass.
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3.4.4 Responses of BPUE from all six freshwater fish species according to the

different environmental determinants

Partial dependency plots isolate the influence of individual predictor variables by
fixing the variable of interest to a set value, predicting outcomes for all possible
combinations of the other variables in the model, and averaging the predicted
response. In this instance, the y-axis represents the probability of success in biomass
production, which varies in response to the value of the predictor (represented on the
x-axis). The shape of the relationship in the partial dependence plot therefore

indicates how biomass patterns change as one moves along abiotic variables.

Partial dependence plots showing the responses of BPUE to the different
environmental determinants are presented in Figure 3.9 (a to c). These results are
based on the analysis of the predictor set 4 (Table 3.5b, Figure 3.9). Comparisons are
made taking into consideration only the effect of each variable (positive or negative)

on the biomass response accounted by the y-axis.
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3.4.4.1 Climate

Climate clearly has different effects on the biomass of species in different thermal
guilds (Figure 3.9a). As expected, the biomass of cold and cool water species declines

as temperature increases, while the warm water species increases with temperature.

a) Cold water
MAT had a smaller effect on cold water species, but a decreasing trend was still
evident. For lake trout, biomass declines rapidly when MAT exceeds 2°C. Lake
whitefish show a less clear response to MAT, but a steady decline with DDS5.

b) Cool water
MAT exerted a greater influence on cool water species, with BPUE showing a
sharp decrease around 1°C for white sucker and walleye, and around 2°C for
northern pike. DD5 showed a less consistent trend: white sucker biomass declined
steeply when DD5 exceed 1400 growing-degree days; walleye and northern pike
biomass increased with DDS, reaching a plateau when DDS5 exceeded 1500

growing-degree days.

¢) Warm water
For smallmouth bass, MAT showed an increasing influence around 3°C, that
rapidly stabilizes. Biomass for values of MAT below 2°C were zero, which
explains the lack of response (and consequent representation of the x-axis starting
from 2°C). DDS influence on biomass shows a moderate peak in response that
can be seen around 1600 growing-degree days, rapidly declining for high‘er values

of this variable.
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3.4.4.2 Lake morphometry

Lake morphometry influence on BPUE response for the three thermal guilds is shown

on Figure 3.9b.

a)

b)

Cold water

Results for this thermal guild showed that lake area influences the biomass of lake
whitefish more than lake trout. Lake whitefish biomass declines rapidly when
Logl0Area falls below 3.2 (i.e. area = 1500 ha). Lake trout biomass also declines
in smaller lakes, but to a much lesser extent. The response to maximum depth
indicates an optimum around 30m for both cold water species, with a slight
decrease beyond that value. This response to depth is less dramatic than in the
case of cool water species. Mean depth had little influence on lake whitefish
biomass, but a strong effect on lake trout with optimum values above 20 m. A
rising trend could be noticed starting at about 5m, reaching its optimum at about
20m. For both species, biomass declined with increasing SDF (i.e. higher

shoreline complexity). This effect was more pronounced in lake whitefish.

Cool water

All three cool water species in this study responded significantly to variations in
lake morphometry parameters. BPUE showed an increasing trend with
LoglOArea, with walleye showing the most expressive response, which
represents the importance of large lakes to the biomass of this species. Looking at
the effect of depth max and mean depth, BPUE values showed a sharp decline
with increasing depth, starting at around 10m. Northern pike was less affected by
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increasing depths but its optimum is clearly seen in non-stratified lakes.
Regarding the effect of SDF on BPUE results of the three species, it affected
white sucker and northern pike more, both showed decreasing trends with
increased lake complexity. Walleye BPUE was quite unaffected by this last lake

morphometry parameter.

Warm water

Smallmouth bass BPUE responded remarkably to variations in lake morphometry
predictors, with a more expressive influence of mean depth on BPUE response.
The influence of Log10Area on biomass initially showed a moderate increasing
trend at 2.0 (100 ha) followed by a decrease at 2.7 (500 ha). Depth max did not
show a notable effect on biomass, a low peak could be seen around 20m but
quickly estabilized with increasing depths. The highest values of biomass could
be seen in shallow lakes presenting mean depth of around 5m, followed by a
sharp decrease with increasing mean depth. This result suggests a preference of
this species for shallow lakes. Finally, the influence of SDF on smallmouth bass
BPUE shows a drop around 3, with a moderate peak around 5, then decreasing
again and estabilizing for more complex lakes. This result denotes a preference of
this species for lakes with low complexity, but not necessarily lakes with shapes

similar to a circle.

3.4.4.3 Water chemistry

The influence of DOC, TP and pH on the BPUE response of the three thermal guilds

is shown on Figure 3.9c.



a)

b)
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Cold water

The water chemistry parameter that had the most influence on cold water species
was DOC; biomass exhibited a sharp decline with increasing values of this
parameter. TP had little effect on lake whitefish, but a more pronounced effect on
lake trout. Lake trout biomass initially increased with TP, reached an initial peak
around TP = Sug/L. It then declined slightly before rising to a plateau when TP
exceeded 20 mg/L. The effect of pH on lake whitefish biomass shows a peak

between 7.5-8, and some variation was displayed for lake trout biomass between
6.5-7.5.

Cool water

TP did not exhibit a large influence on the biomass of white sucker and walleye,
but a biomass peak occurs around 20 ug/L. For northern pike, biomass increased
more rapidly with TP and plateaued when TP exceeded 20 mg/L. High DOC
values had a negative effect on the biomass of cool water species, but little effect
when DOC was less than 7 mg/L. On average, pH had a slight positive effect on

the biomass of cool water species, although less so for walleye.

Warm water

TP had a moderate effect on the biomass of smallmouth bass, with a sharp drop
after 5 ug/L and stabilization after around 15 ug/L. DOC also has a moderate
effect on smallmouth bass, declining when DOC exceeds 5 mg/L. pH exerted low

influence on BPUE, with a slight dip around 7.5.

3.4.4.4 Angling score
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The influence of angling score on the BPUE response of the three thermal guilds is

shown on Figure 3.9c.

a)

b)

Cold water

Angling score did not display any remarkable impact on the BPUE of both cold

water species.

Cool water

Fishing pressure inspected through angling score did not show any remarkable
influence on the BPUE of white sucker and walleye, however, a moderate impact
could be noticed on northern pike BPUE, with a biomass decrease starting at

values above 1.

Warm water

Angling score did not exhibit any remarkable influence on the biomass of

smallmouth bass.

3.5 Discussion

The main purpose of this study was to develop biomass models for six freshwater fish

species present in Ontario lakes, based on climatic, morphometric and water

chemistry variables. Climate and exploitation were the main factors dictating the

choice of species. Lake trout, walleye, northern pike and smallmouth bass were

selected because they are popular targets of recreational fishing, and white sucker and

lake whitefish receives very little stress from angling. The inclusion of harvested and

non-harvested species would help in describing the impact of fishing.
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Four models were built using different sets of predictors: the first model was
developed using 12 predictor variables representing climate, lake morphometry, water
chemistry and fishing effort; a second model was based on a reduced set of predictor
variables which matched the set of predictors used in Chapter 2 to develop species
occurrence models. This model was used to compare the relative importance of
variables used to predict species occurrence and biomass. Two additional models
were built to compare alternative measures of water clarity (e.g. Secchi and DOC)
and nutrients (TDS and TP). In Chapter 2, occurrence Umodels were built using Secchi
and TDS because detailed water chefniétry data (inclﬁdiné measures of DOC and TP)
was not conducted when the data from 10,000 Ontario lakes was collected. More
recent surveys, conducted by Ontario’s Broad-scale Monitoring program, include
detailed water chemistry making TP and DOC available for analysis. We tested
whether use of TP and DOC (instead of TDS and Secchi) was more effective in
predicting fish biomass by comparing a third model (based on TDS and Secchi) to a
fourth model (based on DOC and TP). Both the third and fourth models included a
common set of other variables. This comparison indicated TP and DOC was slightly
better than TDS and Secchi, so the fourth model was chosen for exploring the effects
of each environmental variable. These effects were described in a series of graphs
(i.e., partial dependence plots), showing how biomass of each species responds to

variation in environmental variables.

Overall, the biomass models presented in this study showed satisfactory results, being
able to showcase the main environmental determinants influencing each freshwater
fish species, with consistency across different model types. The ability of the
different models in explaining the variation of biomass evaluated through the

deviance results was quite variable (19.71 — 77.86%), with an average of 49.30%
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across all models, which consists of a moderate degree of explanation. Boosted
regression trees are becoming increasingly popular in the literature given their ability
to: (i) cope with uncertainty in model structure; (ii) show strong predictive
performance; (iii) capture non-linearity in the response to individual predictors and
interactions among predictors (Elith et al. 2008; Bond et al. 2011). Additionally, it
consists of a flexible modelling approach since it also showed satisfactory results in
Chapter 2 when modelling species occurrences, which are represented by a binary

response variable.

It is important to mention that in using BPUE as an index of biomass density, we are
assuming that BPUE is proportional to biomass density (i.e., biomass/area) multiplied
by a catchability coefficient (commonly addressed as g). Catchability varies across
species because some species are more vulnerable to be captured by gillnets, but here
we assume that g is constant across lakes for a given species. However, gillnetting is
size selective, which can add a potential bias in using BPUE as an index of biomass.
A future perspective of this work is to improve the biomass models built here by

adjusting BPUE values considering correction factors for size bias.

One of the objectives of this chapter was to address the level of agreement between
the biomass models developed in this chapter and the occurrence models developed
in Chapter 2, in terms of important variables shaping biomass and distribution of fish
species. Altogether, results from both chapters indicate that both climate and lake
morphometry are important environmental determinants shaping occurrence and
biomass, showing that occurrence and biomass models show a high level of
agreement. The sole exception was noted for lake trout, a cold-water species, whose
occurrence is influenced by lake morphometry while biomass is determined by water

chemistry. To the best of our knowledge, no previous study assessed the degree of
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agreement between occurrence and biomass models by identifying which abiotic
features are important in shaping occurrence and biomass, while using the same set of
abiotic variables in both models. The literature possesses vast information about
occurrence and biomass/production models for the species addressed here, but these
models were built using varying numbers of predictors or different modelling

approaches, which makes the comparison task difficult to be carried out.

The optimization suggested by removing Secchi and TDS from the full model had
varying impacts for the different species, but in average it presented the best deviance
among sets 2 — 4, coupled with the lowest MSE rvalues. These are desirable modelling
features. All the variables considered in this study consist of abiotic ones, which raise
a question related to how improved these models would be if we had considered
biotic variables in the modelling process, along the lines of the investigation
presented in Chapter 2 for occurrence models. This extension of the modelling

approach is a topic that could be further investigated.

Results indicated that biomass for each freshwater fish species is influenced by
different environmental determinants, independent of the thermal guild which they
make part. For instance, lake whitefish and lake trout are cold water species, however
lake morphometry showed to be more influential on the biomass of this species, while
water chemistry was more influential on the biomass of lake trout. In addition to the
assessment of the main environmental determinants controlling the biomass of
different species, some relationships can be established through inspection of
interactions between variables which comprehend a given environmental determinant,

allowing to assess their different contributions to the biomass response.
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The final boosted regression trees models developed for all freshwater fish species
demonstrate that climate, represented by MAT (mean air temperature) and DDS5
(growing degree days above 5°C) are highly important in explaining the variation of
biomass predicted via BPUE, with a higher effect seen on cool water species. Figure
3.9a shows for northern pike and walleye that while a decreasing trend in BPUE
happens with increasing values of MAT, an increase in BPUE is seen for increasing
values of DDS5, followed by a plateau. Figure 3.10-11 allow a further investigation of
MAT and DDS interaction.
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Figure 3.10: Perspective plot generated from the boosted regression tree model
developed for walleye, showing the responses of BPUE to the interaction between
MAT and DDS.
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Figure 3.11: Perspective plot generated from the boosted regression tree model
developed for northern pike, showing the responses of BPUE to the interaction
between MAT and DDS5.

According to Figures 3.10-11, the highest values of BPUE for these two cool water
species occur when MAT < 2°C and DD5 > 1600 growing-degree days, with MAT
showing a negative effect beyond 2°C. Many studies have shown the influence of
temperature on production of fish (Magnuson et al. 1979; Wismer and Christie 1987;
Downing and Plante 1993; Chezik et al. 2013; Hansen et al. 2017); growth rate
typically increases as temperature approaches an optimal value and then declines as
temperature exceeds the optimum (Hanson et al. 1997). However, none of these
studies have investigated the interaction among climate variables and their joint
effect. The perspective plots presented by Figures 3.10-11 suggest that MAT
determines a thermal threshold, while DDS5, as a cumulative metric of temperature,
encompasses the thermal niche of a species, which includes multiple life stages with
differing thermal requirements (Wismer and Christie 1987). Additionally, DD5 may

also encompass a myriad temperature influences in a single value and provide a
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measure of the metabolically relevant temperature experience of a fish that is difficult

to quantify based on temperature optima.

Coupled with climate, our results also support the importance of lake morphometry to
the biomass of both cold water and cool water fishes object of this study. Lake
morphometry affects ecosystem size, that is directly related to food-chain length,
species diversity, habitat availability and habitat heterogeneity. Overall, results
demonstrated that biomass assessed through BPUE increased with lake size,
markedly decreased with lake depth (with the exception of lake trout) and decreased
with lake complexity. Large species require large home ranges (Minns 1995;
Woolnough et al. 2008) and tend to be predatory (Romanuk et al. 2010). Physically
larger ecosystems support more (the species-area relation; Rosenzweig 1995) and
larger species, for both energetic and population dynamic reasons, while food chain
length has been suggested to increase with ecosystem size and/or ecosystem
productivity (Schoener 1989; Vander Zanden et al. 1999; Post et al. 2000; Thompson
and Townsend 2005; Baiser et al. 2012). The results related to the mean depth
influence on the biomass of all three thermal guilds reflect well their habitat
preferences. For instance, lakes with mean depth of above 10 m seem to not support
biomass of warm and cool water species, whereas these lakes promote biomass of
lake trout, a cold-water species that prefers large, thermally stratified lakes that
provide cold water refuge in the summer. Mean depth is a surrogate for hydrological
characteristics such as thermal stratification, nutrient circulation and dilution, all of
which affect how energy is processed within the water column (Chow-Fraser 1991).
Mean depth also governs the amount of oxygen stored in the hypolimnion during
stratification (Walker 1979), which plays an important role in defining the living
space of cold water and cool water species, together with temperature. Finally, the
negative influence of SDF on cool water and cold-water species is not obvious, which

indicates that this predictor interacts with other variables to affect BPUE.
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Inspection of Figure 3.9c revealed some interesting relationships among the water
chemistry predictors and their influence on the biomass for all three thermal guilds.
Biomass increased with increasing TP values, but decreased when DOC exceeded 8
mg/L (with the exception of smallmouth bass biomass, which decreased with small
values of DOC). Figures 3.12-14 show the interaction between DOC and TP on the
biomass of all three cool water species. The point which determines the threshold
between the positive and negative effect of DOC can be clearly seen (approximately
DOC =8 mg/L and TP = 20 ug/L).

Figure 3.12: Perspective plot generated from the boosted regression tree model
developed for walleye, showing the responses of BPUE to the interaction between
DOC and TP.



158

Figure 3.13: Perspective plot generated from the boosted regression tree model
developed for northern pike, showing the responses of BPUE to the interaction
between DOC and TP.

Figure 3.14: Perépectjve plot generated from the boosted regression tree model
developed for northern pike, showing the responses of BPUE to the interaction
between DOC and TP.
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A plausible explanation for the existence of a threshold between the positive and
negative effect of DOC is that increased input of nutrients increases production at the
basic trophic level (phytoplankton), which also contributes to top consumer (fish)
biomass (Karlsson 2009). On the other hand, benthic algae, which are responsible for
benthic primary production, also play an important role in fish biomass (Karlsson
2009) and it is primarily dictated by light availability instead of nutrients, with light
availability being regulated by DOC. The literature reports a direct relationship
between TP and DOC (Tanentzap et al. 2014), so when DOC increases with TP, the
biomass increase promoted by TP is offset by the increasing loads of DOC which
directly interfere with water clarity, thus affecting light penetration and hindering
benthic primary production. The initial positive response may depend on several
factors, such as screening of harmful UV-radiation (Williamson et al. 1996),
subsiding organic C to heterotrophic production (Cole et al. 2011) or organic P and N
being associated with DOC. In boreal, oligotrophic lakes surrounded by pristine
catchments DOC is also a major contributor to total P and N (Hessen et al. 2009).
However, while N and P are mostly in organic form and thus of low bioavailability,
some fractions of these pools will eventually mineralize and thus support primary
production. In the case of cold water species, biomass declined rapidly as DOC
increased (see Figure 3.9c). The reduction in light caused by higher DOC
concentration is most likely explaining the strong negative influence that was
observed for lake trout. In general, water clarity in lake trout lakes is controlled by
DOC and thus, changes in optimal habitat resulting from a variation in TP would be
much less significant than those resulting from DOC-induced modifications in water
clarity (Clark et al. 2004), which may explain the higher impact of DOC compared to
TP on biomass of lake trout. A model developed by Lester et al. (2004) shows the
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importance of light, together with temperature and bathymetry in controlling walleye
production. Their model proposed the benthic area associated with optimum light and
temperature conditions for walleye during an annual cycle (i.e. Thermal Optical
Habitat Area, TOHA) as a predictor. When testing the applicability of their model in
explaining known walleye yield, they found that little walleye habitat exists in really
dark waters. The available TOHA increased rapidly as water clarity increased, but
then declined exponentially after reaching what corresponds to the optimal water
clarity. These observations also agree with the proposition of a threshold separating

the positive and negative effects of DOC observed by Finstad et al. (2014).

Our water chemistry results revealed a high variable importance linked to pH in lake
trout models, which was unexpected. The literature reports the sensitivity and past
impact of acid waters to this species in a few Ontario lakes (Gunn and Keller 1990),
as large lakes are more susceptible to the effects of acid rain promoted by industrial
activities, which release acidifying substances to the atmosphere. Another reason that
can explain the high importance of pH in predicting lake trout biomass is the
interaction of pH and mean depth (see Figure 3.15. Depths of 20 m coupled with pH
values of approximately 6.5 seem to offer optimal habitat for this species. The

interaction plot demonstrates a peak in biomass occurs at these values of mean depth
and pH.
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Figure 3.15: Perspective plot generated from the boosted regression tree model
developed for lake trout, showing the responses of BPUE to the interaction between
pH and mean depth.

We expected that angling score would have a larger variable importance in explaining
the biomass of walleye, northern pike, lake trout and smallmouth bass, because they
are popular species in recreational fishing. In addition, Table 3.5b shows that the
contribution of angling score on white sucker biomass was higher than the one seen
for walleye, even though white sucker is an unexploited species. Our results only
support the moderate influence of this variable to northern pike biomass. The removal
of angling score from the model using the set 4 of parameters (results not presented
here) showed an increase on the other variables’ contributions, but this increase did
not happen only on climate variables as we hypothesized (since there is a correlation

between angling score and climate variables). The quantification of angling score
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takes in consideration current stress, implying that current biomass of walleye,
northern pike, lake trout and smallmouth bass will most likely be better explained by

previous reports of angling pressure.

Even though the models’ explained deviances for all six species were quite variable,
our study provides a better understanding of the different factors driving biomass of
the different species, while bringing to light the importance of lake morphometry and
climate to predict both presence-absence and production of freshwater fish species
from Ontario lakes. From the management point of view, these two environmental
determinants should be primarily taken into account, not only when selecting new
conservation areas but also when seeking an optimization of lake resources
contributing to the sustainable practice of sport fishing. Since temperature is the most
important abiotic factor controlling fish physiology (Brett 1979), projected increases
in water temperature resulting from climate change are expected to affect the growth
of freshwater fishes, their population dynamics, the ecology at community and
ecosystem levels (Portner and Farrell 2008; Sheridan and Bickford 2011), change
geographical distributions (Comte et al. 2013) and finally, production (Portner and
Peck 2010). Increases in water temperature associated with climate change should
benefit the growth of fishes with higher physiological thermal optima and stress the
growth of those with lower (Graham and Harrod 2009). However, changes in
temperature experienced by a fish may not be as great as changes in the mean water
temperature of its ecosystem because the fish may behaviorally thermoregulate by
selecting thermal habitats in which temperatures are favorable to growth (Coutant
1987). Hence, effects of climate change on fish growth may not be direct but may be
mediated by availability of thermal habitat (King et al. 1999), which in turn largely
depends on physical characteristics such as depth and trophic state of the ecosystem
(Kling et al. 2003). Climate change may also indirectly affect fish growth through
altering prey availability (Woodward at al. 2010). Regardless of the physiological



163

thermal optimum, the growth of fish may decrease with increases in metabolic costs
in a warming climate if prey consumption remains constant over time (Sheridan and
Bickford, 2011), which would be an interesting aspect to be considered in future

modelling studies focusing the same species.
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CONCLUSION

Quantifying the relationships between the distributions of species and their abiotic
and/or biotic environments has a long history in ecological research. While -
understanding where species occur is a fundamental ecological requirement,
prediction of occurrence and quantification of its productivity are essential for much
conservation and population management. With the increased availability of
statistical packages, it is becoming increasingly easy to undertake species distribution
modelling. This creates opportunities for the applied ecologists to develop
management tools for conservation in a way that was unprecedented 15 years ago.
Fish-habitat models can play an important role in prioritising surveys and monitoring
programmes for fish populations because limitations to resources often preclude
exhaustive and continual sampling of sites and that extensive sampling is needed to
accurately sample lake fish communities (Jackson and Harvey 1997). Applications of
predictive models in management include: (1) forecasting or measuring the effects of
habitat alteration and changing land-use patterns (Oberdorff et al. 2001); (2)
providing first-order estimates of habitat suitability to establish potential locations for
re-introduction (Evans and Oliver 1995); (3) predicting the likelihood of local
establishment and spread of exotic species (Peterson and Vieglais 2001); (4)
predicting “hotspots” of species persistence for the conservation of biodiversity
(Williams and Araujo 2000); and (5) revealing additional populations of threatened

species, or alternatively revealing unexpected gaps in their range.

Under that context, the goal of this thesis was to conduct an investigation on
improvement aspects in currently used modelling practices (more specifically species
distribution models), while ultimately providing analytical tools to be applied in

ecological assessments related to freshwater fish populations. Redundancy analysis
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coupled with variation partitioning, which have become core in the study of
communities, were the focus of Chapter 1. For years ecologists have been resorting to
popular OLS approaches such as them, without taking into account the
appropriateness of their usage, specially taking into account the nature of the species-
environment relationship which frequently does not fulfill the required assumptions
to conduct such analyses. To this end, the presented framework based on GLM
solutions showed itself to be quite robust alternative, and it consists of a
generalization of RDA, while widening the scope of applicability of variation
partitioning, contributing to its popularity and importance when analyzing species

data matrices.

The focus of Chapter II was to assess the importance of biotic interactions in SDMs,
since the recognition of its importance just started recently with some publications
addressing the impact of inclusion of this information in the modelling process,
consequently helping to decrease uncertainty. To increase confidence in model
projections, methodologies must acknowledge clearly the uncertainties involved and *
try to obtain conditional measurements of confidence in the forecasts made. Whereas
confidence in model projections is likely to increase as the realism of key
assumptions within a particular modelling approach are improved, tractability often
decreases, due to more demanding parameterizations. Thus, a trade-off exists between
complexity and tractability in modelling species and identifying the most reliable and
unbiased solution is not a trivial task. The approach presented in Chapter II consists
of a fairly simple one since it only required information from some species part of the
same freshwater fish community, and it provided a decrease in uncertainty while
keeping the simplicity of the different SDM models obtained. The degree of realism
of key assumptions can surely be improved by the investigation of other ways of
inserting biotic information in the models, and this consists of a future perspective for

this work, besides the investigation related to the models’ transferability. In addition,
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the comprehensive comparison of models’ results in this chapter showcased the good
performance of machine-learning methods, so future efforts in building “better”
models (here “better” representing a compromise between complexity and
tractability), should focus on this class of models. Another point worth mentioning is
that, despite the fact that the models’ performance was not the same, there was a
certain agreement regarding the most important variables explaining the presence of
the different species across models. That observation supports the idea that “there is
no bad model, what actually exists is a badly parameterized model”. Finally, one
appealing avenue to pursue is to conduct a comparison of the results obtained in
Chapter II with the ones derived from community-level models (Ferrier and Guisan
2006), establishing similarities and discrepancies between the results from these two
model types. Community-level modelling would allow to include all species data
available (instead of only the 6 species considered in Chapter II), while also
evaluating several ways of conducting this analysis (e.g. community types, species
groups, axes of compositional variation, macro-ecological properties — see Ferrier and
Guisan 2006). The main advantages of this method are: (1) fast analysis of very large
number of species, allowing a better cross-species synthesis; (2) adds value to data
for rare species by “pooling”; (3) enhanced capacity to synthesize complex data into a
form more readily interpretable by scientists and decision-makers and (4) address
interactions between species. This last advantage would allow a more comprehensive

'exploraﬁ‘on and analysis of biotic interactions in species distribution'mddelling.

Chapter III brought some of the information gotten from Chapter II about the model
most successfully explaining deviance and aimed at the development of biomass
models using biomass-per-unit effort information from the same six freshwater fish

species mentioned in Chapter 2. Results of this chapter helped better understand the
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influence of the different environmental determinants used as predictors of biomass,
allowing the assessment of their interesting interactions and how they control and
limit each other while interfering in the biomass of the fish species object of that
chapter. The knowledge obtained specific to each fish species can surely help
management and conservation authorities to develop specific plans to help ensure the
sustainability of these fish populations, by knowing their specific requirements and
important environmental determinants helping the successful increase of their stock.
Some future improvements to the models involve corrections that consider the bias
involving the use of biomass-per-unit-effort, which consist of valuable future studies.
The relationships between abiotic features and both species distributions and
biomass, observed from models’ results in Chapters II and III, contribute to
information on which of these features have most impact in the distribution and
biomass of all six studied species, which help set proactive conservation priorities for

preserving potentially vulnerable fish populations across the province of Ontario.

These investigations contribute to major scientific underpinnings related to the
research of species-habitat relationships, while consisting of ecosystem services when
promoting information about the processes underlying these relationships. The
investigation of interconnected quantitative frameworks to link environmental, spatial
and biotic interactions bring to light a greater understanding of the key agents
structuring biodiversity and how they interact to provide the delivery of aquatic
ecosystem services, while clarifying about the actions that should be taken to mitigate

the loss of these services in face of increasing human population.

Models are simplification of reality and often begin life by helping researchers to
formalize their understanding of a particular process or pattern of interest. Models are

thus primarily important aids to research. Difficulties may therefore arise when such
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theoretical models are used to guide conservation planning, management and to
support the formulation of policy decisions. The magnitude of uncertainties in
species’ range and biomass assessments is currently so great that it might lead
conservation planners, policy makers and other stakeholders to question the overall
usefulness of science as an aid to solve real world problems. Bridging the perceived
gap between science and societal needs is of paramount importance if one wants to
make progress and contribute meaningfully to solve the global environmental change
crises. The investigations pursued in this work raise additional questions about
modelling aspects that help decrease uncertainty and thus help the conceptualization
of even more useful tools that help understand the processes explaining species
distributions and their productivity. Some ideas consist of: 1- incorporating spatial
information in the models since this aspect was not investigated; 2- development of
community biomass models that take into account the structure of the food web; 3-
development of production indexes based on the biomass models presented, while
incorporating information about the natural mortality and fishing mortality of each

species. These surely represent interesting avenues of investigation for future studies.
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APPENDIX A

CHAPTER 1

Mean adjusted R? results for logistic model applied to presence-absence data, Poisson
model applied to presence-absence data and Poisson model applied to abundance
data, at population and sample level, according to varying sample sizes and number

of inserted random N(0,1) covariates.

Logistic  Logistic | Poisson Poisson Poisson Poisson
Scenario P-A P-A P-A P-A Abundance Abundance
Pop Sample Pop Sample Pop Sample
20 0.3543  0.29162 | 0.28349 0.18653 0.7039 0.67818
50 0.3671  0.39666 | 0.27895  0.2656 0.7039 0.69013
Sample size | 100 | 0.35983  0.38484 | 0.26691 0.26201 0.7039 0.6978
150 | 0.35718 0.37439 | 0.26417 0.26076 0.7039 0.69937
200 | 0.35653 0.36894 | 0.26356 0.26055 0.7039 0.70012
Number of |0 0.32241  0.34889 | 0.23891 0.23531 0.61786 0.61065
inserted of |5 0.32988 0.38767 | 0.24986 0.24366 0.61786 0.6136
random 10 0.32923  0.40528 | 0.25969 0.25047 0.61786 0.61459
N(0,1) 15 0.31103  0.39847 | 0.25616 0.24035 0.61786 0.61227
covariates | 20 0.27078  0.36378 | 0.23257 0.20969 0.61786 0.61656
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