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RESUMÉ 

L'analyse de la relation espèces-habitat a toujours été un des objectifs centraux de 
l'écologie. C'est devenu un· cadre pour explorer, comprendre et répondre à des 
questions spécifiques concernant la complexité et les mécanismes qui sous-tendent 
les patrons spatio-temporels de distribution d'espèces. Le savoir-faire généré par la 
modélisation écologique et la quantification des relations espèces-environnement est 
un élément clé pour la conservation et la gestion des écosystèmes et des populations. 
L'objectif général de cette thèse est d'améliorer les méthodes quantitatives en : (i) 
construisant une approche pour les donnée multi-espèces basée sur les modèles 
linéaires généralisés, appelée "Analyse de Redondance Généralisée" (gRDA); (ii) 
améliorant la modélisation de la distribution des poissons (présence/absence) en 
considérant les interactions biotiques entre espèces, et en utilisant les connaissances 
générées par ces modèles pour (iii) modéliser la biomasse des poissons, déterminer 
les principaux facteurs environnementaux qui influencent la biomasse des différentes 
espèces, ainsi qu'évaluer l'impact de la pression exercée par le pêche. Ces liens 
peuvent contribuer à renforcer la recherche sur la relation espèces-habitat, les services 
écosystémiques tout en apportant des informations sur les processus qui sous-tendent 
ces relations. La recherche sur des méthodes quantitatives interconnectées devrait 
permettre de mieux comprendre les agents qui structurent la biodiversité et comment 
ils interagissent pour fournir des services écosystémiques, tout en clarifiant les 
actions qui devraient être entreprises pour remédier à la perte de ces services liées à 
l'augmentation de l'impact de l'homme. Dans le Chapitre 1, une méthode multi-
espèces appelée "Analyse de Redondance Généralisée" (gRDA) a été développée. 
Cette méthode est basée sur la distribution logistique et la distribution de Poisson, et 
elle a été étendue au Partitionnement de Variation. Le but du chapitre est de présenter 
cette méthode et de déterminer ces performances en utilisant une variété de méthodes 
de Monte Carlo. Nos résultats montrent que la méthode proposée est robuste et 
devrait remplacer le Partitionnement de Variation standard basé sur l' Analyse de 
Redondance ordinaire. Le chapitre II présente une comparaison de la performance et 
de la capacité prédictive de plusieurs méthodes de modélisation de la distribution des 
espèces, tout en identifiant les prédicteurs les plus importants pour expliquer la 
présence ou l'absence des espèces considérées. Ces modèles diffèrent par l'utilisation 
de données empiriques et ont été développés pour six espèces de poisson de l'eau 
douce dans les lacs d'Ontario. La modélisation dans le chapitre 2 prend en compte 
trois classes de modèles : (i) les modèles qui n'utilisent que l'information sur les 
conditions environnementales comme prédicteurs: (ii) ceux qui utilisent uniquement 
l'information sur les communautés de poissons pour prédire la présence d'une espèce 
particulière (c.à.d. variables abiotiques) et (iii) une combinaison de (i) et (ii) (c.à.d. 
variables abiotiques et biotiques). Finalement, en utilisant les mêmes espèces de 
poissons que pour le Chapitre II, le chapitre III présente des modèles de biomasse 
développés au moyen d'arbres de régression permettant d'identifier l'importance 
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relative de différentes variables environnementales ainsi que la pression angulaire. 
De plus, les similarités et différences entre guildes de poissons ont été mises en 
évidence par l'influence de chacun des prédicteurs sur la biomasse de chaque espèce. 
Les résultats des chapitres II et III révèlent l'importance de la morphométrie des lacs 
et du climat pour l'estimation de la présence/absence et de la biomasse, et, dans le 
chapitre II particulièrement, il a été observé que les modèles de présence/absence ont 
de meilleures performances lorsqu'ils tiennent en compte de l'information biotique 
ainsi que des prédicteurs abiotiques. De plus, les résultats indiquent que la 
performance des modèles pourrait être largement affectée par la manière dont ces 
modèles sont développés et évalués. Choisir une méthode de modélisation appropriée, 
les variables explicatives, les méthodes de validation et les mesures de performances 
sont des étapes importantes pour obtenir des inférences ou prédictions plus fiables 
plutôt que des résultats spécifiques aux données ou des artéfacts statistiques. De ce 
fait, la présente thèse fournit une enquête complète sur l'amélioration des méthodes 
de modélisation populaires, tout en montrant leurs utilités pour évaluer l'importance 
des facteurs influençant la distribution et la biomasse des poissons qui ont une 
importance économique en Ontario, ce qui peut être utile du point de vue de la 
gestion des ressources naturelles. 

Mots-clés: modélisation écologique; Analyse de Redondance; Partitionnement de 
Variation; modélisation de la distribution des espèces; modèles de biomasse; Poisson 
d'Eau Douce. 



SUMMARY 

The analysis of species - habitat relationships has always been a central goal in 
ecology. lt has become a central framework to explore, understand and tackle specific 
questions about the intricacies and mechanisms underlying species distributional 
patterns in space and time. The savoir-faire generated by ecological modelling and its 
quantification of species-environment relationships is critical for conservation 
planning and ecosystem/population management. The general objective of this thesis 
is to improve quantitative methods to: (i) build a framework for multispecies data 
based on generalized linear models, called "Generalized Redundancy Analysis" 
(gRDA); (ii) access improvement in species distribution modelling approaches 
developed for fish presence-absence by inserting biotic information related to the fish 
species, and knowledge about these models are linked to the (iii) development of fish 
biomass models while unravelling the principal environmental determinants that 
influence the biomass of different species, when also evaluating the impact of fishing 
pressure. These links can contribute to major scientific underpinnings related to the 
research of species-habitat relationships, while consisting of ecosystem services when 
promoting information about the processes underlying these relationships. The 
investigation of interconnected quantitative frameworks to link environmental, spatial 
and biotic interactions should bring to light a greater understanding of the key agents 
structuring biodiversity and how they interact to provide the delivery of aquatic 
ecosystem services, while clarifying about the actions that should be taken to mitigate 
the loss of these services in face of increasing human impacts. In Chapter 1, a 
multispecies framework called "Generalized Redundancy Analysis" (gRDA) was 
developed, based on logistic and Poisson distributions via GLMs, and extend this 
framework to variation partitioning. The goal was to present the framework as well as 
assess its performance using Monte Carlo approaches under a variety of scenarios. 
Our results showed that the proposed framework is very robust and should essentially 
replace the current standard variation partitioning based on ordinary Redundancy 
Analysis. Chapter II presents a comparison among a number of SDM approaches in 
terms of their predictive performance and explanatory power, while identifying the 
predictors that are most influent in explaining presence-absence of the species 
considered. These models were contrasted by using empirical data and developed for 
six species of freshwater fishes in north-temperate lakes of Ontario. The modelling 
routine for Chapter 2 was done taking into account three classes of models (i) 
incorporating only information about the environmental features as predictors; (ii) 
using solely the information about the fish community to predict the occurrence of a 
particular species (i.e. using biotic parameters) and (iii) represents a combination of 
(i) and (ii) (i.e. using abiotic + biotic parameters); Finally, using the same fish species 
from Chapter II, Chapter III presents biomass models developed via boosted 
regression trees, allowing to identify the relative importance of the different principal 
environmental determinants used as regressors, together with angling pressure. In 
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addition, sirnilarities and dissirnilarities within and among fish thermal guilds were 
showcased regarding the biomass response of each species to every predictor used in 
the modelling process. Results from Chapter II and III point out the importance of 
lake morphometry and climate to the estimation of presence-absence and biomass, 
and in Chapter II particularly it was observed model improvements when biotic 
information was used together with abiotic predictors for presence-absence models. 
In addition results indicated that model performance could be largely affected by how 
models were developed and evaluated. How to choose appropriate modelling 
approaches, predictor variables, model validation methods, and performance metrics 
are important steps if we want to get more reliable inferences or predictions rather 
than data-specifics results or statistical artifacts. Thus, this thesis provides a 
comprehensive investigation on aspects consisting of improvements of popular 
modelling approaches, while showing their usefulness in assessing important 
information related to factors most influent in the distribution and biomass of 
econornically important fish species in Ontario, which can be useful from the natural 
resources management point of view. 

Keywords: ecological modelling, Redundancy Analysis, Variation Partitioning, 
species distribution models, biomass models, freshwater fish 



INTRODUCTION 

In this section, 1 provide details on the background that supports this thesis. The first 

part refers to a discussion about the role and increasing importance of species 

distribution modelling in Ecology, showing the different steps involved in the 

calibration (building) process, the importance of each of these steps, followed by the 

importance of proper estimation, addressing the most common limitations faced when 

building static and probabilistic models. The second part outlines ecosystem services 

and the importance of different services provided by fish populations. 1 will address 

the importance of the development and assessment of models and quantitative tools to 

better predict and understand the ecosystem services provided by fish, focusing on 

how this information can improve monitoring and management programs for fish 

populations. 

0.1 Species modelling 

The analysis of species-habitat relationships has always been a central goal in 

ecology. lt has become a central framework to explore, understand and tackle specific 

questions about the intricacies and mechanisms underlying species distributional 

patterns in space and time. The savoir-faire generated by ecological modelling and its 

quantification of species-environment. relationships is critical for conservation 

planning and ecosystem/population management. The statistical frameworks applied 

in ecological modelling are generally based on estimating parameters about the 

importance of environmental features (e.g., local habitat, regional climate, habitat 

connectivity) influencing the distribution of species and their communities (Guisan 
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and Zimmermann 2000). This knowledge is of utmost importance to estimate habitat 

suitability for endangered species, discover new populations or previously unknown 

species, forecast effects of habitat change due to human interference, establish 

potential locations for species reintroduction, predict how community structure may 

be affected by the invasion of exotic species, predict the eff ect of ecological 

disturbances, climate change or how environmental conditions affect different 

communities across different spatial/temporal scales. Habitat models relating habitat 

characteristics, and species distributions and community structure allows one to 

derive/predict the habitat potential distribution within the modelled area, which is 

equivalent to modelling its potential habitat (Schuster 1994) and niche (Elith and 

Leathwick 2009). A plethora of statistical approaches for species modelling are 

available (e.g. Harvey 1978; Somers and Harvey 1984; Legendre and Fortin 1989; 

Jackson and Harvey 1993; Jenkins and Buikema 1998; Guisan and Zimmermann 

2000; Peres-Neto et al. 2006; Sharma and Jackson 2007; Elith et al. 2008 and many 

others) and they differ in their ability to model environmental relationships. As such, 

an evaluation of different statistical techniques can provide insights into which 

approaches are most appropriate for the biological question being asked at both the 

species and community levels (Guisan and Zimmermann 2000; Elith et al. 2006; 

Sharma and Jackson 2008; Sharma et al. 2012). It is important to keep in mind that 

habitat models are expected to address at least two questions: ( 1) how well the 

distribution of a set of species is explained given a set of covariates? (2) Which 

covariates are unimportant in the sense of contribution to the explanation of patterns 

already accounted for by other variables present in the model (i.e., marginal and 

independent contribution). 

The development of environmental niche models involves some steps that are central 

while generating a consistent tool that works with similar levels of accuracy across 

large landscapes, particularly in those in which the nature of the covariation among 
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predictors and their contribution to species distributions change spatially (e.g., non-

stationarity; Wenger and Olden 2012). The first step is the conceptual model 

formulation, or underlying conceptual framework. In this step, one usually faces the 

task of deciding which model properties are desirable to achieve. Levins (1966) 

points out three main model properties, generality, reality and precision, stating that 

only any two out of three can be improved simultaneously. In this sense, three classes 

of models can be designed: (i) accurate prediction within a limited or simplified 

reality. In this category, analytical (Sharpe 1990) models are suitable and they 

incorporate precision and generality; (ii) predictions attained on real cause-effect 

interactions are named mechanistic (Prentice, 1986), designed to be realistic and 

general, with a focus on theoretical correctness of the predicted response over 

predicted precision; (iii) Empirical models (Decoursey 1992) are based on precision 

and reality, condensing empirical facts instead of considering realistic "cause and 

effect" between response and explanatory variables. Central aspects to consider when 

conceptualizing a predictive habitat distribution model are the inclusion of direct 

versus indirect (e.g., proxy) predictors, the choice of modelling the fundamental 

versus the realized niche (Kearney and Porter 2009), to assume equilibrium between 

environment and observed species patterns versus non-equilibrium (Hof et al. 2012) 

and individual species modelling versus community approach (Ferrier and Guisan 

2006). Note that the choice of an appropriate spatial scale (Wiens 1989), selection of 

a set of conceptually meaningful explanatory variables and designing an efficient 

sampling strategy are equally important when formulating a given model and its 

objectives. 

The second step in the development of empirical ecological niche models is the 

statistical model formulation. In other words, the choice of the statistical technique to 

be applied in order to model the relationship between the response and explanatory 

variables. The type of response variable (quantitative, semi-quantitative, qualitative) 
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and its probability distribution has also a great influence on the selection of an 

appropriate technique. Sorne of the most popular species distribution modelling 

approaches comprises: 

(i) Linear regression methods, which can be extended to mode! complex data 

types (e.g. fixed versus random covariates) and allow the inclusion of 

additive combinations of predictors and/or terms representing interactions 

between predictors; 

(ii) GLMs, extensively used by ecologists for its ability to deal with data 

possessing different error structures, particularly presence/absence 

modelled via logistic regression. They consist of mathematical extensions 

of linear models that do not force data into unnatural scales, also allowing 

for nonlinearity and nonconstant variance structures in data; 

(iii) Generalised Additive Models (GAMs, Hastie and Tibshirani 1990), which 

consist of a powerful extension of GLMs, gaining increasing popularity 

due to the ability of defining non-parametric smoothers to describe 

nonlinear responses, contributing with useful flexibility for fitting 

ecologically realistic associations; 

(iv) Multivariate Adaptive Regression Splines (MARS, Friedman 1991) 

combines the strengths of regression trees with piecewise linear basis 

fonctions, which allows the modelling of complex relationships while 

possessing exceptional analytical speed; 

(v) Ordination techniques, more specifically direct gradient analysis, 

providing axes that are constrained to be a fonction of environmental 

factors, i.e., sample scores are constrained to be linear combinations of 

explanatory variables. Canonical Correspondence Analysis (CCA) and 

Redundancy Analysis (RDA) are noteworthy approaches; 

(vi) Classification tree analysis (CTA, Breiman et al. 1984, also referred to as 

classification and regression trees - CART) are machine-learning methods 
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for constructing prediction models from data. The models are obtained by 

recursively partitioning the data space and fitting a simple prediction 

mode! within each partition. Trees explain variation of a single or multiple 

response variable by repeatedly splitting the data into more homogeneous 

groups, being each characterized by a typical value of the response 

variable, the number of observations in the group, and the values of the 

explanatory variables that specify it; 

(vii) Artificial neural networks (ANN, Olden et al. 2008), whose information 

processing system is composed of a large number of highly interconnected 

elements called "neurons", working together to solve specific problems. 

They are popular in Ecology because they are considered to be universal 

approximations of any continuous fonction, being quite popular when 

modelling nonlinear relationships. Their full classification procedure is a 

complex non-parametric process; 

(viii) Random forests (RF, Prasad et al. 2006), which creates multiple boot-

strapped regression trees without pruning and averages the outputs, with 

each tree being grown with a subset of predictors entered in the mode! in a 

random order to avoid bias due to the inter dependencies among 

predictors. Typically a large number of trees is grown (500 to 2000), 

creating a limited generalization error, and thus reducing overfitting; 

(ix) Boosted regression tree (BRT, Elith et al. 2008) improves the performance 

of a single mode! by fitting many models and combining them for 

prediction, using two algorithms: regression trees (from the classification 

and decision tree group of models) and boosting builds, which combines a 

collection of models. For regression problems, boosting is a form of 

"functional . gradient desœnt", a numerical optimization technique for 

minimizing the loss fonction by adding, at each step, a new tree that best 

reduces ( steps down the gradient of) the loss fonction. The first tree is the 

one that maximally reduces the loss fonction, followed by a tree that is 
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fitted to the residuals of this first tree, which can contain quite different 

variables and split points compared with the first. The model is then 

updated to contain two trees (two terms), and the residuals from this two-

term model are calculated, and so on. The final BRT model is a linear 

combination of many trees that can be thought of as a regression model 

where each term is a tree. BR Ts have been showing interesting results, 

possessing the ability to account for uncertainty in model structure; 

(x) Maximum entropy (MaxEnt, Phillips et al. 2006) estimates a target 

probability distribution by finding the probability distribution of the 

maximum entropy (in other words, that is most spread out, leading to 

uniform), subject to a set of constraints that represent incomplete 

information about the target distribution. lt bas gained popularity among 

studies that entail presence-only data (e.g., museum data), but can also be 

applied to presence/absence data by using a conditional model. 

After selecting a given statistical approach, the model is calibrated on real data. 

Rykiel (1996) defines calibration as "the estimation and adjustment of model 

parameters and constants to improve the agreement between model output and a data 

set". However, the selection of proper explanatory variables is a vital component of 

this process. In an ideal modelling world, a model should be parsimonious, i.e., 

should accomplish its desired level of explanation or prediction with as few predictor 

variables as possible, and this can be a difficult task since nature is not completely 

parsimonious. Due to the recognition of (living) nature as an extremely complex 

phenomenon, driven by several factors interacting at the same time, and in different 

orders of magnitude. One particular challenge to keep in mind is that parsimony is 

often obtained by the trade-offs between predictive power and complexity, and not 

necessarily taking into account how well we understand variable contribution to the 

model. For instance, two models may have similar predictive power and amount of 
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predictors, but one is much easier to explain based on current knowledge of how a 

predictor is likely to affect the response. The choice of predictors can be done 

arbitrarily (which is not recommended for its inconsistency), automatically (via 

stepwise procedures available in linear regression methods and GLMs), following 

physiological and other ecological or mechanistic principles or by shrinkage rules 

(Harrell et al. 1996). After variable selection, model parameters are estimated and its 

fit is characterized, most of the time, by a measure of the variance reduction (or 

deviance reduction in maximum likelihood techniques). The model optimization 

through deviance reduction is performed through an estimated D2 ( equivalent to R2 in 

least-squares models), being defined as: 

D2 = Null deviance-Residual deviance 
Null deviance 

where the null deviance is the deviance of the model with the intercept only, and the 

residual deviance is the one that remains unexplained by the model after the insertion 

of all selected predictors. The ideal model has no residual deviance and its D2 equals 

one. Weisberg (1980) argues that the deviance formulation is not representative of the 

real fit, and proposes an adjusted version based on the number of observations n and 

the number of predictors p, which bas been largely adopted: 

n-1 
adjusted D 2 = 1 - -- x (1 - D2 ) n-p 

The value of the adjusted D2 increases with an increasing n or a decreasing p in the 

model, and it allows for comparisons among nested models that include different 

combinations of explanatory variables. In tree-based approaches, no fit needs to be 

characterized since the model will attempt to predict the data exactly. Diagnostic tests 

for significance of estimated model coefficients can be performed based on the 

related variance or deviance distribution in least-squares and GLM estimation. 
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After model calibration, the next step consists of evaluating the model, also called 

model validation, which is the measurement of adequacy between model predictions 

and field observations, depending mostly on the specific purpose of the research and 

the domain in which the model is supposed to be applicable (Fielding and Bell 1997). 

Two main approaches are worth mentioning: (i) using a single data set to both 

calibrate and validate the model via cross-validation (V an Houwelingen and Le 

Cessie 1990), leave-one-out Jackknife (Efron and Tibshirani 1993) or bootstrap 

(Efron and Tibshirani 1993); (ii) having two independent data sets, using one for 

calibration and the other for validation, this approach being optimal and attractive. 

The first approach is usually selected when the data set is too small to be split into 

separate data sets but often used for large data sets as well. Regardless of the 

approach, two types of measure can be used to quantify the fit between predicted and 

observed values of the validation data set: (i) using the same goodness-of-fit methods 

used to calibrate the model or (ii) using any discrete measure of association between 

predicted and observed values (Guisan and Harrell 2000). In the case of presence-

absence data (binary), probabilities are truncated at an adjusted optimal threshold 

(below threshold being predicted absent and above as present) that provides the best 

agreement between predicted and observed values. A confusion matrix (Guisan et al. 

1998) expressing the number of true positives (predicted and observed present), true 

negatives (predicted and observed absent), false positives (predicted present but 

observed absent) and false negatives (predicted absent but observed present) is then 

analysed through the proportion of area correctly classified, the percentage of 

commission and omission errors, or using Cohen's K (Cohen 1960), among other 

metrics. Another option for binary datais the use of a threshold-independent measure 

like the receiver operating characteristic (ROC) plot methodology (Fielding and Bell 

1997). For quantitative data, the evaluation of predictions can be done simply by 

using Pearson's product-moment correlation coefficient if the variable is normally 
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distributed, or a non-parametric rank correlation coefficient like Kendall's 't or 

Spearman's p. 

With the increasing number of studies on predictive habitat distribution modelling, 

some key topics related to their limitations appear frequently and they comprise 

potential areas of investigation: 

• Multiple scales: all species fonction at specific spatial and related temporal 

scales. However, their joint localized activities mediate processes that are 

important at the landscape scale (Anderson 1993). A hierarchy of scale-

dependent abiotic factors, biotic interactions, population processes, 

disturbances and legacies govern their distribution (Ettema and W ardle 

2002). Given this fact, species distribution modelling should either focus 

on appropriate scales that are relevant to the research question, the system, 

data availability or simultaneously consider multiples scales (Beever et al. 

2006). Conceptually, there is no single natural scale at which ecological 

patterns should be studied (Levin 1992). 

• Biotic interactions: most SDMs are calibrated under the assumption that 

biotic interactions do not influence species range patterns (Huntley et al. 

1995) or only affect patterns at small spatial scales (Pearson and Dawson 

2003). Recent developments aim at considering abiotic interactions (e.g., 

Boulangeat et al. 2012), though these approaches remain in their early 

stages. In models for understanding or interpolation-style prediction, the 

consequences may not be too severe, except where the presence of a host 

species is critical and not predicted by the available covariates. Studies 

were published showing how the incorporation of biotic interactions into 

SDMs better models species distributions and responses to environmental 

change. The information about these interactions is included, for example, 
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in the form of occurrence (Heikkinen et al. 2007), counts or frequencies 

(Leathwick and Austin 2001) or as a competition coefficient (Strubbe et al. 

2010). The importance of biotic interactions may vary depending on the 

spatial scale and position along environmental gradients. In models built 

for extrapolation, like in the case of the effects of climate change on 

species distributions, the effects of competitors, mutualists and conspecific 

attractions might have far-reaching effects (Elith and Leathwick 2009). 

• Uncertainty: it results both from data deficiencies (like missing covariates, 

small samples, biased species occurrences, lack of data about absence or 

inadequate sampling strategy) and from errors in model specification 

(Barry and Elith 2006). Few studies have addressed uncertainty in SDMs 

and its effects in model calibration, predictions and associated decision 

making. In management applications, it is important to investigate the 

impact of uncertainty and how to reduce it, characterizing and exploring its 

effects in decision making. Heikkinen et al. (2006) provide some useful 

information in various aspects of SDMs that contribute to uncertainty. 

• The use of presence-absence data versus abundance: the relative use of 

presence-only and presence-absence data has been widely discussed (Elith 

et al. 2006), abundance data are available for many taxa in some regions, 

and it can provide additional information that might be better related to 

conservation status (Johnston et al. 2013), extinction risk (O'Grady et al. 

2004) and community structure and function (Davey et al. 2012). 

Moreover, SDMs derived from abundance data may reflect the importance 

of key demographic and environmental factors such as carrying capacity 

(Pearce and Ferrier 2001 ). Howard et al. (2014) points out the importance 

of abundance data in predictive modelling, deriving a more accurate 

assessment of habitat suitability in contrast to presence-absence data. 

However, the choice of using presence-absence over abundance cornes, in 

most cases, from the focus on methodological development to enhance 
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model performance (Guisan and Thuiller 2005, Elith et al. 2006) or pure 

lack of abundance data available, the latter being the most restrictive. 

Comparisons between models based on abundance versus presence-

absence data, while addressing other SDM limitations, are the subject of 

potential future research. 

• Spatial autocorrelation (SAC): spatially explicit predictive models are 

generally built with little or no attention to spatial processes that drive 

species distributional patterns. SAC occurs when the values of variables 

sampled at nearby locations are not independent from each other (Tobler 

1970). The causes underlying are manifold, but three are worthy of 

mention: 1) biological processes such as speciation, extinction, dispersal or 

species interactions; 2) non-linear relationships between environment and 

species modelled (erroneously) as linear; 3) spatially-structured 

environmental features impose a spatial structure in the response (Legendre 

and Fortin 1989, Legendre and Legendre 1998). While spatial 

autocorrelation can provide information about biotic processes such as 

population growth, geographic dispersal, differential mortality, social 

organization or competition dynamics (Griffith and Peres-Neto 2006), if 

not properly accounted for, it can also cause serious drawbacks for 

hypotheses testing and prediction as it affects type 1 errors rates and 

precision in the estimation of model parameters (with the exception of 

machine-leaming methods such as Random Forests). This is because SAC 

violates important statistical assumptions such as independently and 

identically distributed (i.i.d.) errors in both parametric and non-parametric 

testing (Lennon 2000). There are several approaches to incorporate spatial 

autocorrelation in statistical models, being these autocovariate regression, 

spatial eigenvector mapping (SEVM), generalised least squares (GLS), 

conditional autoregressive models (CAR), simultaneous autoregressive 

models (SAR), generalised linear mixed models (GLMM) and generalised 
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estimation equations (GEE), among others. Dormann et al. (2007) 

addresses a comparison among these methods, reporting their efficiency 

and flexibility, with some remarks regarding the use of autocovariate 

regression. That said, different models are likely to be affected differently 

by spatial autocorrelation (e.g., logistic regression versus regression trees) 

and systematic comparison of the effects of SAC on model estimation and 

prediction is largely missing. There is still considerable debate as to 

whether spatial autocorrelation results in (statistically) biased coefficient 

estimates, how to best use explicitly spatial methods with incomplete 

sample data and whether previous studies that used non-spatial methods 

with spatially autocorrelated data should be considered fraught with error. 

0.2 Modelling in the context of aquatic ecosystem services 

Ecosystems generate a range of goods and services to society, which in tum directly 

contribute to our well being and economic wealth (de Groot et al. 2012). Over the 

past two decades, progress has been made in understanding how ecosystems provide 

services and how service provisioning translates into economic value (Daily 1997). 

Ecosystem services - the processes whereby ecosystems render benefits to people -

are becoming the principal means for communicating ecological change in terms of 

human benefits (Daily 1997). Understanding ecosystem services is fondamental to 

decision-making efforts that influence multiple human activities and components of 

ecosystems, informing management and planning decisions such as the appropriate 

scale and location of a number of activities. Wise and sustainable decisions of this 

nature will require a comprehensive understanding of how changes in human 

activities and ecosystem states will result in changes in ecosystem services and the 

associated benefits to people. Valuing the contribution of ecosystems to human well-
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being through economic, ecological and social accounting demands robust methods 

to define and quantify ecosystem services. Y et, it has proven difficult to move from 

general pronouncements about the' tremendous benefits nature provides to people to 

credible, quantitative estimates of ecosystem service values. Without quantitative 

assessments, and some incentives for landowners to provide them, these services tend 

to be ignored by those making land-use and land-management decisions. Decision 

making and policy aimed at achieving sustainability goals can be improved with 

accurate and defendable methods for quantifying ecosystem services (McKenzie et al. 

2011). 

Currently, there seems to exist a gap between how the regulation of ecosystem 

services is perceived and how they are managed. At one band, the effects of 

landscape patterns at different spatial scales on ecological processes and species 

distributions have long been recognized by scientists and managers as crucial to 

understanding how such processes fonction (Hobbs 1997) and regulate ecosystem 

services and their sustainability. On the other band, management strategies for 

freshwater ecosystem services most often focus on local systems (place-based) such 

as individual water bodies. Therefore, an integrated multi-scale framework where 

conservation, management and development of ecosystem services are coordinated is 

likely to result in the best approach (Abell et al. 2007). 

Although an integrated, landscape oriented framework would likely offer improved 

tools for the effective and sustainable conservation of regional aquatic biodiversity 

and related services (Lester et al. 2003), knowledge and agreement on how such an 

approach ·. can best be implemented 1.s lacking. It is of utmost importance to design 

sampling strategies (field measures, site selection for monitoring) and quantitative 

frameworks to link ecological indicators of ecosystem health and provide the best 
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estimates of an ecosystem's capacity to sustainably deliver ecological services. The 

focus on increasing the understanding of how ecosystem fonction is related to the 

delivery of aquatic ecosystem services, at several spatial scales, and how to assess the 

health of these ecosystems is of considerable relevance. Assessing whether 

ecosystems and their functional ability to deliver services have been impaired (or are 

at risk or are recovering) requires the possession of robust metrics to determine 

ecosystem status and trends. Moreover, reliable ecological knowledge regarding 

aquatic ecosystem services needs to incorporate ways to measure and understand the 

effect of cumulative impacts on ecosystem health (Duinker and Greig 2006). Finally, 

by comparing health conditions of different systems and their delivery regarding 

aquatic ecosystem services, it is possible to establish (1) how multiple natural and 

anthropogenic stressors interact and affect aquatic ecosystem services; and (2) an 

understanding of how resilience of biodiversity-ecosystem services is linked to 

environmental conditions and ecosystem health. This knowledge makes possible the 

design of landscape-oriented approaches that can provide much more effective 

information about the status of local and regional aquatic ecosystems and their related 

services. This is especially important given the growing support for aligning 

conservation efforts to ecosystem services (Goldman et al. 2008). 

Fish populations in aquatic ecosystems benefit human societies in numerous ways, 

providing: (i) regulating services (e.g., regulation of food web dynamics, recycling of 

nutrients, regulation of ecosystem resilience, redistribution of bottom substrates, 

regulation of carbon fluxes from water to atmosphere, maintenance of sediment 

processes and maintenance of genetic species, ecosystem diversity); (ii) linking 

services (e.g., linkage within aquatic ecosystems, linkage between aquatic and 

terrestrial ecosystems, transport of nutrients, carbon, minerals and energy); (iii) 

cultural services (e.g., production of food, aquaculture production, production of 

medicine, control of hazardous diseases, control of algae and macrophytes, reduction 
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of waste, supply of aesthetic values and recreational activities) and (iv) information 

services (e.g., assessment of ecosystem stress and resilience, revealing evolutionary 

histories, provision of historical information, scientific and educational information) 

(Holmlund and Hammer 1999). Certain ecosystem services generated by fish 

populations are also used as management tools, e.g. enhancing rice production 

(Tilapia, carp ), mitigating diseases in tropical zones (mosquito contrai) or mitigating 

algal blooms (pike Esox Lucius). However, increasing fishing pressure, pollution, 

habitat destruction, introduction of exotic species and other factors continue to exert 

strong pressure on fish populations around the world (Malakoff 1997). Human-

induced direct and indirect degradation of common fisheries resources might cause 

impacts at the ecosystem level, putting the fondamental and demand-derived 

ecosystem services generated by fish at risk with consequences for biodiversity and 

ecosystem resilience (Perrings et al. 1995). 

Ecological modelling can provide a way of clarifying which factors and processes 

drive ecosystem services related to fish, and it is urgently needed. Modification and 

loss of aquatic habitat is recognized as the primary factor threatening the conservation 

of fish populations and their communities (Ricciardi and Rasmussen 1999). Species 

distribution models have a number of important applications to the conservation and 

management of fish populations and their related ecosystem services, playing an 

important role in prioritising surveys and monitoring programmes for fish populations 

because limitations to resources often preclude exhaustive and continuai sampling of 

sites and that extensive sampling is needed to accurately sample lake fish 

communities (Jackson and Harvey 1997). Sorne applications include: (i) forecasting 

or measuring the effects of habitat alteration and changing land-use patterns 

(Oberdorff et al. 2001); (ii) providing first-order estimates of habitat suitability to 

establish potential locations for re-introduction (Evans and Oliver 1995); (iii) assess 

the impacts of the most recent climate change scenarios (Buisson et al. 2008); (iv) 
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understand the factors that regulate the spread of invasive species and identifying 

their potential distributions (Wang and Jackson 2014); (v) predicting the likelihood of 

local establishment and spread of exotic species that may help set conservation 

priorities for preserving vulnerable species and populations that might be lost locally 

(Peterson and Vieglais 2001). (vi) predicting hotspots of species persistence for the 

conservation of biodiversity (Williams and Araujo 2000); and (vii) revealing 

additional populations of threatened species, or altematively revealing unexpected 

gaps in their range. The first step towards a comprehensive assessment of ecosystem 

goods and services involves translating ecological complexity (abiotic factors and 

ecological processes) into a more limited number of ecosystem fonctions, which in 

tum provide ecosystem services (de Groot et al. 2002). The development of broad-

scale perspectives to understand the nature, fonction, vulnerability and threats to 

fisheries-based aquatic ecosystem services are now deemed essential when designing 

and implementing scientifically-sound management strategies. 

0.3 Thesis outline 

The goal of this thesis was to conduct an investigation into aspects currently used 

modelling ~ (more specifically species distribution models), seeking 

improvement of these and ultimately provide analytical tools to be applied in 

ecological assessments related to freshwater fish populations. To this end this thesis 

is comprised of three chapters, the first one conducted with simulated data and the 

others applied to freshwater fish data: 

Chapter 1: Generalized linear models for direct gradient analysis and variation 

partitioning of species data matrices 



Chapter II: Assessing the role of community composition and abiotic factors in 

predicting fish species distributions 

Chapter III: Effects of abiotic factors on the biomass of six fish species in Ontario 

lakes 
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Within Chapter 1, 1 developed a framework called gRDA, and evaluated its 

performance via simulations for modelling multispecies data based on generalized 

linear models (logistic and Poisson). To date, the most used tool for multi-species 

modelling is based on linear regression (Gaussian; Legendre and Legendre 1998), 

which is known to have undesirable properties for presence-absence and abundance 

data. Moreover, my research within Chapter 1 found that, despite its popularity, 

logistic regression has extremely bad behaviour in terms of parameter estimation 

properties under a high number of covariates and when covariates are missing. To 

remediate this issue, 1 proposed a modified Poisson model that can model presence-

absence data and that provides reliable estimates when covariates are missing or the 

number of covariates is high. Moreover, 1 evaluated the performance of a robust 

estimate for the coefficient of determination (R2) for GLMs, which allows for the first 

time an appropriate ·variation partitioning scheme, a widel y used tool in ecology 

(Peres-Neto et al. 2006), which is currently based on multiple regression. 

Chapter II presents a comparison among a number of SDM approaches in terms of 

their predictive performance and explanatory power in predicting occurrence of six 

freshwater fish species in north-temperate lakes of Ontario, including the GLM based 

on Poisson distribution addressed in Chapter 1. These models were contrasted by 

using empirical data based on the Aquatic Habitat Inventory provided by the Ontario 
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Ministry of Natural Resources and Forestry. The modelling routine for Chapter 2 was 

performed taking into account three classes of models: (i) incorporating only 

environmental parameters; (ii) using solely the information about the fish community 

to predict the occurrence of a particular species (i.e. using biotic parameters) and (iii) 

using both environment and the information about the occurrence of other fish 

species as predictors (i.e. using abiotic + biotic parameters), seeking to identify the 

influence of biotic information to the predictive ability of these different models. 

Finally, variable relative importance assessments were also made across models, for 

each fish species and classes of models, in order to identify which variables were 

important in predicting presence-absence of a particular species. 

Chapter III aimed at the development of biomass models using biomass-per-unit 

effort (BPUE) information from the same six freshwater fish species mentioned in 

Chapter 2, using environmental predictors based on principal environmental 

determinants (light, heat, lake morphometry, nutrients), together with fishing 

pressure. The species were chosen in order to disentangle the effects of climate and 

exploitation when evaluating the model results. To this end, four sets of 

environmental predictors were used: the first one consisted of the full model, which 

considered all main environmental predictors from the Broad Scale Monitoring 

program dataset, including angling pressure; the second one kept the same 

environmental predictors used in Chapter II to develop occurrence models, in order to 

evaluate the degree of agreement between occurrence (developed in that chapter) and 

biomass models; the third, a model with secchi depth, total dissolved solids (TDS) 

and pH encompassing the pool of variables representing water chemistry, in order to 

compare with the fourth set; the fourth set included total phosphorus (TP) arid 

dissolved organic carbon (DOC) by replacing secchi depth and TDS from set 3, in 

order to evaluate which model better optimizes the full model, achieving model 

parsimony. In addition, variable relative importance was assessed for all models built, 
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and partial dependence plots were obtained for the optimized model, seeking to 

evaluate the influence of each environmental feature to the biomass of the six 

freshwater fish species. These models "brought a better understanding related to the 

importance of the different environmental determinants in the biomass composition 

of each species, including existing interactions among main variables influencing 

biomass. 

In summary, Chapter I results provide ecologists with a new GLM-based tool for 

variation partitioning schemes, consisting of an improvement over the OLS-based 

ones; Chapter II presents occurrence models considering both abiotic and biotic 

features, showcasing the importance of adding biotic information when seeking to 

improve species distribution models developed for six freshwater fish species, and 

Chapter III investigates the main environmental determinants influencing the biomass 

of the same six species, while allowing us to assess similarities among the models 

developed in the last two chapters, and finally making use of one of the modelling 

approaches that best explained fish occurrence variability in Chapter Il. 
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CHAPTERI 

GENERALIZED LINEAR MODELS FOR DIRECT GRADIENT ANAL YSIS AND 
V ARIA TION P ARTITIONING OF SPECIES DATA MATRICES 

W.S.C. Moreira and P.R. Peres-Neto 

1.1 Summary 

Describing and understanding species-environment relationships is one of the major 

goals in ecology. It has broad applicability to conservation planning and management 

such as uncovering the effects of ecological disturbances, climate change or how 

environmental conditions affect different communities across different 

spatial/temporal scales. One of the most common classes of approaches for modelling 

multiple species is Canonical analyses of which redundancy analysis is likely the 

most common form. Variation partitioning, an extension of canonical analysis, has 

become the de facto quantitative framework to estimate the relative contributions of 

predictors and groups of predictors to community assembly patterns, and it is based 

on ordinary multiple linear regression which assumes that the response variables 

(species distributions) are normally distributed. This assumption is clearly not 

appropriate for most species distribution data. It is interesting to note that although 

generalized linear models (GLM) are extremely used for modelling single-species 

distributions due to its flexibility in allowing the response (species) to follow 

different distributional families, variation partitioning has not been yet generalized to 

accommodate the different families within the GLM framework. In this study, we 

developed a multispecies framework that we refer to as "Generalized Redundancy 

Analysis" (gRDA) based on logistic and Poisson distributions via GLMs, and extend 
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the proposed framework to variation partitioning. Our goal is to present the 

framework as well as assess its performance using Monte Carlo approaches under a 

variety of scenarios including the correlation structure of different sets of predictors 

in determining species distributions as well as the influence of predictors without any 

contributions. Our results show that our proposed framework is very robust and 

should essentially replace the current standard variation partitioning based on 

ordinary Redundancy Analysis, contributing to variation partitioning's popularity and 

importance when analyzing species data matrices. 

1.2 Introduction 

Describing and understanding species-environment relationships is one of the major 

goals in ecology and bas broad applicability to conservation planning and 

management such as uncovering the effects of ecological disturbances, climate 

change or how environmental conditions affect different communities across different 

spatial/temporal scales (Sharma et al. 2012, Stefan et al. 2001, Stauffer 2014). 

Species respond differently to complex environmental relationships and they often 

occupy only a fraction of all suitable environments in a landscape due to population 

demographics (e.g., not enough individuals produced to disperse to all sites 

containing suitable habitats), dispersal limitation (species cannot get to all suitable 

sites) and complex interactions with other species (e.g., competition and predation 

forcing species out of sites that are suitable ). Although species and community 

models (Guisan and Zimmermann 2000; Peres-Neto et al. 2006; Sharma and Jackson 

2007; Elith et al. 2008) have been proven as extremely valuable tools to explore and 

estimate the relative importance of different mechanisms (biotic and abiotic) 

underlying species distributions and their biodiversity patterns ( e.g., similarities and 

differences among species regarding their environmental affinities ), statistical 
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approaches differ dramatically in their ability to model species-environment 

relationships particularly given the assumptions (or lack of assumptions) made about 

species distributions (Guisan and Ziiruriennann 2000;Elith et al. 2006). 

One of the most common class of approaches for modelling multiple species is 

Canonical analyses in which redundancy analysis (RDA; Rao 1964) is likely the most 

common form. Canonical analyses provide the means of conducting direct analyses 

(e.g., direct gradient analysis) in which multiple species across communities (or time 

periods) can be studied with respect to their commonalities or differences in their 

relationships with multiple predictors ( e.g., environmental, spatial). Variation 

partitioning, an extension of canonical analysis, has become the de facto quantitative 

framework to estimate the relative contributions of predictors and groups of 

predictors to community assembly patterns (Borcard et al 1992; Cottenie 2005; 

Legendre et al 2005; Peres-Neto et al 2006; Soininen 2016). In this context, variation 

partitioning allows us to estimate: (1) How well species distributions are explained 

(predictive ability) by the independent contribution of different sets of predictors? (2) 

How different sets of predictors co-vary in their predictive ability? Because variation 

partitioning estimates unique and common fractions of variation in species 

distributions due to sets of predictors grouped together, it provides a way to 

determine the relative contributions of broad mechanisms explaining patterns of 

community structure instead of the relative importance of multiple individual 

predictors within each preditctor set. Examples include the relative importance of 

environmental versus spatial factors (e.g., Soininen 2016) and the importance of 

environmental factors grouped into different spatial scales (e.g., local land cover 

versus regional climate; Heino and Alahuhta 2014). 

Variation partitioning based on canonical analyses uses ordinary multiple linear 

regression which assumes that the response variables (species distributions) are 

normally distributed. This assumption is not appropriate for species distribution data 
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(presence-absence, abundance), Peres-Neto et al. (2006) showed that without proper 

species distributions transformations (e.g., Hellinger-transformation), variation 

partitioning lead to biased estimates of variable (sets) contributions. However, 

transformations are not likely to make data conform well to the different statistical 

properties that species distributions may take. lt is interesting to note that although 

generalized linear models (GLM) are extremely used for modelling single-species 

distributions due to its flexibility in allowing the response (species) to follow 

different distributional families (Elith and Leathwick 2009), variation partitioning has 

not been yet generalized to accommodate the different families within the GLM 

framework. Generalized linear modelling (McCullagh and Nelder 1989) allows one to 

specify the distribution of the data, thus implicitly defining the relationship between 

the mean and the variance of each observation (e.g., abundance of a species in a site) 

to be a fonction of its predicted value (i.e., variance is not constant as in ordinary 

regressions ). 

In this study, we developed a multispecies framework that we refer to as 

"Generalized Redundancy Analysis" (gRDA) based on logistic and Poisson 

distributions via GLMs. Here we concentrate in these two models given their 

popularity and because robust and consistent estimators for their coefficients of 

determination (R2) are available. One of the advantages of variation partitioning 

based mi R2 is its interpretability as the proportion of variation in the response 

variable explained by a set of predictors. Note, however, that although R2 estimators 

for the logistic and Poisson regression have existed now for quite some time, their 

properties remain relatively unknown even in the statistical literature. The proposed 

framework, however, is flexible enough that it can be readily extended to other 

distributional families (e.g., Gamma, Exponential) if consistent coefficients of 

determination (R 2) are developed for other distributions. In essence, we present a 

framework in which direct gradient analysis can be performed via GLMs (gRDA) and 

extend the proposed framework to variation partitioning. Our goal is to present the 
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framework as well as assess its performance using Monte Carlo approaches under a 

variety of scenarios including the correlation structure of different sets of predictors 

in determining species distributions as well as the influence of predictors without any 

contributions. Our results show that our proposed framework is very robust (yield 

good performance) and should essentially replace the current standard variation 

partitioning based on ordinary Redundancy Analysis. 

1.3 Methods 

1.3.1 gRDA -Redundancy Analysis and Variation Partitioning via Generalized 

Linear Models 

Redundancy Analysis is an extension of multiple regression (linear and non-linear; 

Rao 1964; Makarenkov and Legendre 2002) in which each response variable 

(species) is regressed independently against a predictor matrix (e.g., environmental 

variables, spatial predictors ). Then the vectors of predicted values are juxtaposed into 

a single matrix that undergoes a principal component analysis (PCA) to establish how 

species partition themselves across environmental gradients. As such, a GLM 

extension for an RDA (gRDA) is straightforward in which predicted values are 

estimated for each species based on particular distributional properties of the response 

(e.g., logistic, Poisson). This is a simple extension that, to our knowledge, it has not 

been made into the literature yet. Although RDA (and other types of canonical 

analyses) is commonly used in the ecology, its computational details remain 

somewhat ~ (but see Legendre and Legendre 1998). A more intricate extension 

is the use of gRDA in the context of variation partitioning because the relative total 

and unique contributions of sets of predictors are based on adjusted coefficients of 

determination (R2) and their semi-partial contributions. Peres-Neto et al. (2006) have 
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shown that the Wherry ( 1931) correction for multiple regression with one response 

variable behaves well for variation partitioning in the case of normally distributed 

responses (RDA on multiple response variables) as it is an unbiased sample estimator 

of the true population R2 (see Yin and Fan 2001 for a review on adjusted R2 for the 

case of ordinary regression). ln this study we investigate the robustness of adjusted R2 

for GLMs based on one response variable to the case of multiple responses (gRDA). 

Among GLM families, logistic regression is likely the most widely used approach in 

species distribution modelling given that presence-absence data are relatively easy to 

collect and compare across different sampling designs (Rushton et al. 2004; Pearce 

and Ferrier 2000b). Notwithstanding its popularity, the logistic model may have 

undesirable properties (accuracy of parameter estimation) when data do not fit well a 

logistic curve, under overdispersion, in the presence of multicollinearity, with small 

sample sizes, high number of covariates and when relevant predictors in the model 

are missing (Begg and Lagakos 1990; Robinson and Jewell 1991; Pearce and Ferrier 

2000a; Sharma and Jackson 2008). Given these issues, it has been suggested that a 

Poisson regression could potentially serve as a better approximation for modelling 

dichotomous outcomes than the logistic regression (Mittlbock and Heinzl 2001 ), 

though this has not been tested in the literature. This extension is particularly 

interesting because the Poisson distribution has been considered a good underlying 

basis for developing approaches to model overdispersed and zero-inflated presence-

absence data (Y ee and Dirnbock 2009). 

Variation partitioning for two sets of predictor matrices (say X and W) are based on 

three sets of regressions, though extensions to more than two sets are relatively 

straightforward. Here we concentrate on the two-predictor set case as the results are 

generalizable to any number of sets. The total amount of variation explained by the 
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two-predictor set (fraction [abc]) is estimated as the R2 adjusted with all predictors 

from both sets into one regression model; the amount explained by predictor matrix X 

(fraction [ab]) and W (fraction [be]) are estimated by R2 adjusted from two separate 

regression models only containing the predictors in each set. Unique (i.e., 

independent of one another) and shared (collinear) contributions of each set are 

estimated via subtraction: the unique contribution of X independent of W is [a]= 

[abc]-[bc]; the unique contribution of W independent of X is [c]= [abc]-[ab]; the 

shared contribution between X and W is [b]=[abc]-[a]-[c]; and the residual fraction is 

[d]=l-[abc]. Below we detail the R2 adjusted metrics we used to estimate the [abc], 

[ab] and [be] fractions and the Monte Carlo simulations we used to assess their 

robustness under different scenarios. 

1.3.2 Measures of adjusted explained variation 

We consider the following adjusted measures of explained variation: 

(i) Adjusted R2 for logistic regression 

Given a sample of n observations (patches, sites, communities) (y=[yi], X=[xu, Xi2 ... 

Xip]), i =-l, .. . ,n, Yi E {O,' i} deriotes the response variable and Xi is the vector 

containing values across p predictors for the ith observation. The estimates from a 

logistic regression are Prob(yi = 11 xi)= ii; = -f _ l _ . , , where !i; is 
1 +exp bo+"1xu+b2X2;+ ••• +bpxpl 

the estimated probability for the ith observation based on the estimated vector of p 

parameters. The proportion of one's in the sample is given by 
n 

Prob(yi = t) = p = LYi / n. Let D(yi) = (yi - p)2 and D(yi 1 xi)= (yi - Pi )2 
i=l 
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denote the squared distance (residual) between observed (yï) and predicted ( p and 

Pi) values under the null model (only with intercept bo) and under the full model 

(including all covariates), respectively. Mittlbôck and Schemper (1996) suggested the 

following adjusted measure of explained variation R2: 

SSE/(n -k -1) 
~ SST/(n-1) 

where SSE = Lt D(ydxa, SST = Lt D(yï), n is the number of local communities 

(sites) and k the number of predictors. The interpretation of this measure is intuitive 

due to the fact that it is based on the use of squared residuals, varying between 0 and 

1 unlike AIC and other metrics alike, which cannot be interpreted as the relative 

amount of variation explained by a model. Other adjusted measures have been 

suggested by Mittlbôck and Schemper ( 1996), but as they are based on likelihoods, 

they do not have a clear interpretation when compared to the use of squared residuals. 

(ii) Adjusted R2 for Poisson Regression 

Cameron and Windmeijer (1996) and Waldhôr et al. (1998) defined R2 for Poisson 

regression based on deviances, while Mittlbôck and W aldhôr (2000) proposed bias 

adjustments for small and/or many covariates (adjusted R2). In practice, however, 

data are often over-and sometimes underdispersed as compared to the standard 

Poisson model. As such, Heinzl and Mittlbôck (2003) presented a generalization 

based on the adjusted R2 measure of Mittlbôck and Waldhôr (2000) that has a 

dispersion parameter. 

Consider 

D(y;fl,) = logL(y)-logL(fl,) = L. [yilog(yil fl,)-(Y; -fa)] 
l 
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and 

D(y;y) = logL(y)-logL(y)= L. [Yi log(yJy)-(yi -Y)]. 
1 

Where D(y;j!,) is the deviance of the full model containing the covariates of interest 

and D(y;y) is the deviance of the intercept-only model, y = (y1,K ,y n)' are the 

observed values of the dependent variable and µ = (J4,K ,jl,n)', the corresponding 

predicted values under the full model. 

The adjusted measure of explained variation for Poisson regression models (Heinzl 

and Mittlbock 2003) has the form: 

R;dj = 1-D(y;jl,) + ~  
D(y;y) 

where ~  = D(y;jt,)l(n -k-1) represents the dispersion parameter for over-or 

underdispersed Poisson regression. 

1.3.3 Simulation study considering one single matrix of regressors 

To evaluate the accuracy of the adjusted R2 measures described above, a Monte Carlo 

. study was carried out using .simulated presence-absence data and abundance data. The 

basis for generation of presence-absence data was a logistic model, using a binomial 

random number generator and abundance data was generated on the basis of a 

Poisson model, using a Poisson random number generator, each considering k=4 

covariates. Population values consisted of a  X (100000 x 4) matrix containing 4 

random normally distributed variables N(O,l) and Y was generated according to: 

1 
E[YIX] = P = l + e-Bx 
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for the logistic regression case, and 

E[YIX] = p = eBX 

for the Poisson case. B is a ( 50 x 5) matrix containing the slopes for 50 species on 

each of the 4 covariates plus an intercept (first column of B). The slopes were 

randomly originated from set intervals for each variable, which had numbers defining 

the lower and upper limit of each interval in such way that rates of presence as low as 

10% and as high as 90% were generated, common features in ecological data. The 

generated Y in the model population is a (100000 x 50) matrix, in which each column 

represents the presence-absence (logistic-generated) data or abundance (Poisson-

generated) of a given species. Model estimates for each data matrix were computed 

using the respective generalized linear model approach (logistic or Poisson) and the 

adjusted R2 measures for each model were estimated at both population and sample 

levels. For each GLM type, samples were performed according to two scenarios: (i) 

1000 samples with varying number of observations (20, 50, 100, 150 and 200) were 

randomly drawn from the population [Y, X] to assess the influence of sample size on 

the estimation; (ii) 1000 samples of size n = 100 were randomly drawn from the 

population and a number of normally distributed variables N(O,l) (5, 10, 15 and 20) 

were added to the sample covariate matrix X to evaluate the impact of unimportant 

predictors on the estimation of adjusted R2 values. 

1.3.4 Variation Partitioning - simulation study considering two groups of regressors 

This second simulation study evaluated the adjusted R2 measures under variation 

partitioning involving three data matrices• [Y, X, W], where X and W are two 

separate sets of predictors. In common applications of variation partitioning in 

ecology, these matrices often represent a set of local environmental predictors (X) 
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and spatial predictors (W). Here, different levels of correlation between these two 

matrices were considered to allow estimating how the adjusted R2 measures behave 

in estimating unique and common fractions of variation. The population generation 

and simulation structure followed the one described in above (l.3.3). In order to 

generate correlation structure between X and W, a matrix XW was created containing 

8 normally distributed variables N(0,1) and was post-multiplied by the Cholesky 

decomposition of a (8 x 8) correlation matrix containing all cross-correlation values 

set to a pre-specified number, resulting in matrix XW. The first 4 columns of XW 

were then defined as X, and the last 4 as W, while Y was created according to the 

generating model as before. Here the matrix of slopes B is (50 x 9) and it contains 

the slopes of both X and W, as well as an intercept (first columns of B). As for the 

case of one set of predictors, the influence of sample size (20, 50, 100, 150, 200) and 

number of unimportant predictors (5,10,15,20) were also assessed. Note, however, 

that unimportant predictors were only inserted in matrix W. For each type of data 

(presence-absence or abundance ), variation partitioning was performed as described 

earlier (session gRDA - Redundancy Analysis and Variation Partitioning via 

Generalized Linear Models) using the adjusted R2 associated with each generating 

model for the data. 

As noted earlier, the Poisson model may provide a better specification to presence-

absence data than the logistic model. However, given that term log(yi/ jJ) cannot be 

defined when Yi equals zero, we added a constant (here 1) to all presence-absence 

values; i.e., instead of modeling zeros and ones, we modeled ones and twos. Because 

variance is invariant with respect to changes in a location parameter, any constant 

added to all Yi values does not affect the adjusted R2 for the Poisson model. 
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1.3.5 Missing predictors scenario - logistic regression case 

Given that logistic regression is known to affect parameter estimation of model 

parameters (slopes) when relevant predictors are missing (Begg and Lagakos 1990), 

we investigated the performance of the adjusted R2 estimators when relevant 

variables are missing in the logistic model. A species data matrix Y (presence-

absence) was generated as before containing 100000 sites and 50 species, according 

to fi=l/(l+exp(-(0+3x1 +0.8x2 +0.8x3 +2x4 ))). Predictors (x) were sampled from a normal 

distribution N(O,l). 1000 samples of size n = 100 were taken from the model 

population ([Y,X]) and adjusted R2 estimation was performed considering the 

exclusion of one to three covariates in the model. The choice of these slope values 

allow the evaluation of how missing variables having bath large and small 

contributions to the model (e.g., x1 versus x2) affect the adjusted R2 estimation. Due 

to fact that the number of relevant predictors in a model should obviously affect 

(increase or decrease) the true (population) adjusted R2, sampling variation in 

estimates need to be contrasted considering samples from a population containing 

only the missing predictor in question and a population containing ail four predictors. 

For example, adjusted R2 estimates are obtained from a population generated with ail 

four variables (i.e., x1, x2, x3, X4) but sample models only containing xi (for example; 

i.e., x2, x3, X4 missing from the model; here referred as "missing" case) were 

contrasted with samples from a population generated with only xi as a predictor 

(referred here as ALL case). ln the case of linear ordinary least squares (OLS), 

adjusted R2 is not affected by missing predictors that do not co-vary with the other 

relevant predictors considered in the model. As such, sample variation would not vary 

considering the two types of samples above (i.e., ALL versus missing cases). 

However, given that logistic regression slope estimates are affected by missing 

relevant predictors that do not covary with the predictors considered in the model, we 

suspect that adjusted R2 should be affected as well. 
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1.4 Results 

1.4.1 Simulation results considering one group of predictors 

Mean absolute errors for sample adjusted R2 estimates in relation to the true 

population value are presented in Appendix A and Figure 1.1 for both presence-

absence (logistic and Poisson implementation) and abundance data (Poisson 

implementation). The Poisson model applied to presence-absence data yielded 

greater precision in contrast to the logistic model for all sample sizes except for the 

smallest number of observations considered in the simulation (20 observations; 

Figure la). The estimation precision of adjusted R2 considering irrelevant predictors 

is adversely affected in the case of presence-absence data using the logistic 

implementation but the estimator is quite reliable when using the Poisson 

implementation (Figure 1 b ). The Poisson model for abundance data show that the 

adjusted R2 is not affected by increased numbers of irrelevant predictors (Figure 1 b ), 

though the mean absolute error is slightly greater than the presence-absence for the 

logistic implementation. 
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Figure 1.2 presents the average adjusted R2 across 1000 samples (sample size = 100) 

and one standard deviation for presence-models missing different number of relevant 

predictors contrasting ALL and missing cases (see 1.3 Methods for more details). 

The results clearly indicate that the logistic model heavily bias adjusted R2 estimates 

when variables are missing and that the adjusted R2 estimates based on the Poisson 

model are much less affected by missing variables. 

1.4.2 Simulation study considering two groups of predictors and assessment of GLM 

Poisson and logistic measures of explained variation through variation 

partitioning 

Average fraction values based on variation partitioning estimated from GLM logistic 

and Poisson models across different correlation values for the two predictor matrices 

(X and W) are presented in Appendix B. Estimation accuracy was assessed via mean 

absolute differences between the true population and samples values (Figure 1.3) for 

each sample size, model type and correlation level between predictor matrices. 

In the case of presence-absence data the results from the Poisson based 

implementation leads to smaller sampling errors of fractions when contrasted to the 

logistic model (Figure 1.3). Both models are quite sensitive to small sample sizes (20 

observations) but become quite robust when considering sample sizes of 50 

observations or greater. Within presence-absence models (logistic and Poisson 

implementation), all fractions ([a], [b], [c], and [d]) have the same amount of 

sampling error and the correlation (level of collinearity) among predictor matrices 

does not affect sampling error (Figure 1.3). Variation partitioning based on Poisson 

regression 
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Figure 1.2: The influence of missing covariates on R2 estimation. Values are expressed as 
mean ± standard deviation. "a" stands for intercept while "bl", "b2" and "b3" stand for the 
first, second and third slopes, respectively. 
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(abundance data) generates slightly larger sampling errors for fraction [b] in contrast 

to other fractions. Sampling error for all fractions is affected by the correlation 

structure where relatively smaller sampling errors are achieved when predictor 

matrices are more correlated (Figure 1.3). 

Appendix C and Figure 1.4 presents fraction estimation accuracy results when an 

increasing number of random N(O, 1) of predictors are added to W in order to estimate 

the impact of the number of irrelevant predictors on estimation of variation 

partitioning fractions. The Poisson implementation for presence-absence data is much 

less affected by irrelevant predictors than logistic regression. Interestingly, fraction 

[d] (residual variation) is greatly affected in contrast to the other fractions for the 

Poisson implementation for the presence-absence data, whereas for the Poisson model 

for abundance data, it is fraction [b] that is largely affected. Sampling error increases 

with number of irrelevant predictors in the case of the Poisson implementation but it 

remains unchanged for the Poisson regression based on abundance data. 



38 

Correlat:ion 

Level 

0.2 

0.8 

0.3 

0.2 

().1 

0.0 

0.3 

+ 
1 
1 

Logist:ic P-A 

0.2. .q 
t 

~  
0.1 ~ '1 ............ . 

...... ,. -.. 
o.o 
'--.,..---r---
20 50 100 .150 200 

Poisson P·A 

20 50 100 150 200 

Sample Size 

Poisson Abundance 

\ 
\..._ 

~ 

•· ..... 
"a.. .... 

.... '"'"·-········-· ~  ... "'"* 

.... ... 
+ ~  .... . . 
20 50 100 150 200 

fractîcn 

·ra 

12: 

Figure 1.3: The influence of sample size on fraction estimation accuracy, expressed as mean 
absolute error (Y axis), in R2 variation partitioning according to varying levels of correlation 

between X and W. 
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1.5 Discussion 

Our main goal in this study were (i) to introduce a multispecies framework named 

"Generalized Redundancy Analysis" (gRDA) based on logistic and Poisson 

distributions via GLMs; (ii) extend gRDA to perform variation partitioning which has 

become a central quantitative tool in studying the underlying factors structuring 

community structure. W e have used simulations to demonstrate its performance and 

how different model specifications perform and compare. To date there has been no 

attempt to extend variation partitioning to GLM-based approaches. The approach 

proposed here widens the scope of applicability of variation partitioning, contributing 

toits popularity and importance when analyzing species data matrices. 

Since canonical analyses have become a central quantitative framework to explore 

and identify patterns and relationships in community data, it is important to 

investigate alternate methods to be applied in cases where linear relationships cannot 

be assumed between species distributions and environmental/spatial data (i.e., 

presence-absence and abundance data). Moreover, our results showed that a Poisson 

implementation to presence-absence data provides a better model specification ( small 

sampling variation) than the traditional logistic regression. The Poisson distribution is 

commonly applied as a model for number of events of a given dependent variable, 

however, as Mittlbock & Heinzl (2001) reported, there is an approximate equivalency 

between logistic and Poisson regression regarding modeling dichotomous outcomes. 

GLM logistic accuracy was seriously impacted by irrelevant predictors, while GLM 

Poisson had only a slight decrease in estimation quality (Figure 1 [b ]). This is an 

important characteristic as in real cases, we never know which predictors are truly 

relevant or irrelevant. 



41 

The sensitivity of logistic regression to large number of covariates (relevant or 

irrelevant) is a known problem (Le Cessie & Van Houwelingen 1992) and here we 

showed that it can impact proper estimation of adjusted R2 values. GLM Poisson 

applied to presence-absence data also performed better when relevant predictors were 

missing in contrast to logistic regression (Figure 2). Zou (2004) reported the 

robustness of Poisson estimates in cases of omitted covariates when compared to 

logistic estimates, the latter being usually chosen due to its ease of application and 

popularity. The good performance of GLM Poisson when examining presence-

absence data advocates its use particularly under a multispecies framework where 

multiple parameters across species need to be estimated and is likely to accumulate 

greater levels of error in contrast to single species models. Not surprising, the GLM 

Poisson applied to abundance data showed good performance (i.e., smaller sampling 

error for adjusted R2) when compared to the logistic mode! for presence absence. 

To place the errors we observed into perspective, the average absolute error for 

sample means based on 1 OO observations from a N(O, 1) population is about 0.08. The 

errors we obtained based on much more complex errors (GLM based models 

considering multiple predictors and species) are greater than 0.08 but well under 

accepted limits for the Poisson implementation for presence-absence data and Poisson 

regression for abundance data. Results for the simulation study considering two 

groups of predictors and to assess the performance of GLM-based adjusted R2 in a 

variation partitioning scheme (Figure 3) showed that the accuracy of fractions 

estimates for the two models were quite satisfactory when n 2: 50 for both the Poisson 

implementation for presence-absence data and Poisson regression for abundance data. 

These results clearly show the robustness of our variation partitioning scheme using 

GLM-based implementations, computed for multispecies presence-absence and 

abundance data. Note, however, that the adjusted R2 metrics used here were quite 

sensitive to small sample sizes (n<50) and should not be used in these cases. Our 

simulation results show that our GLM-based variation partitioning scheme is 
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influenced somewhat by irrelevant predictors (Figure 4) with GLM logistic being 

more affected from added covariates. Note that only four relevant predictors were 

considered in matrix W where a relative large number of irrelevant predictors were 

added to the important predictors. 

Although error estimates varied across fractions as a function of sample size, model 

specification and number of irrelevant predictors, adjusted R2 estimates are unbiased 

(i.e., average sample value equals population value) particularly when sample size is 

greater than 50 and the correlation structure between predictors is not extremely large 

(r=0.8) (Appendix B). Although we have not covered model selection procedures in 

this study, future investigation may prove useful in determining how estimates of 

GLM-based R2 adjusted values are affected by variable selection procedures. This is 

particularly important if one wants to reduce the sampling errors associated with 

potential irrelevant predictors, though Peres-Neto et al. (2006) showed that forward 

selection biased upwards adjusted R2 values for normally distributed errors (i.e., 

GLM based on an identity link). Omitting important variables results in systematic 

bias in the estimation of regression coefficients and predicted values, and including 

too many predictors results in loss of precision in the estimation of regression 

coefficients and the predictions of new responses (Murtaugh 1998). Variable 

selection methods have been proposed for both linear and logistic regression, but not 

much effort has been put towards Poisson regression of abundanèe data. 

Our results demonstrate the robustness of GLM-based procedures under an RDA and 

variation partitioning framework. For several decades now ecologists have resorted 

to OLS solutions that are not likely to be robust for non-linear species-environmental 

associations. We hope that this study compels ecologists for a shift in analytical tools 

towards our developments and continue to improve GLM-based tools for variation 

partitioning schemes which have become core in the study of communities. 



CHAPTERII 

ASSESSING THE ROLE OF COMMUNITY COMPOSITION AND ABIOTIC 
FACTORS IN PREDICTING FISH SPECIES DISTRIBUTIONS 

W.S.C. Moreira, P.R. Peres-Neto and N. Lester 

2.1 Summary 

Effective conservation and management of freshwater fish species would be greatly 

aided by understanding the factors shaping fish species' spatial distributions and their 

patterns of biodiversity. The number of SDM studies applied to different fish species 

has increased in past years with a special attention to the prediction of range shifts 

caused by climate change. Understanding the importance of environmental factors 

affecting different fish species and having a distribution model for each species of 

interest should yield more effective conservation plans. The majority of SDMs make 

use of only environmental variables to predict species distributions and ignore other 

key determinants of species ranges, most pertinently, biotic interactions. Examining 

both the impacts of environmental factors and species interactions on the distribution 

of any given species is essential to understand how climate change, or other major 

environmental changes, will affect biodiversity. The objective of this chapter 

consisted of developing fish-habitat models for the occurrence of six species of 

economically important freshwater fishes in north-temperate lakes of Ontario, 

providing a comparison of: (i) variable importance among species and (ii) predictive 

performance among six popular SDM approaches. We expected that the models 

possessing both abiotic and biotic predictors would outperform models including only 

abiotic information. Our results confirmed that for all approaches and classes of 
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models. Promising results found were mostly related to random forest and boosted 

regression trees, with the latter always displaying the highest explained deviances 

values. The results presented by this study corroborates the idea of model 

improvement through the addition of biotic variables, in this particular case, 

including occurrence of other fishes from the same community as predictors. Large 

lakes allows the development of abundant vegetation in the littoral zone, which 

facilitates the spawning of species such as smallmouth bass, supporting the fact that 

surface area of the lake was an important predictor in all six fish occurrence models 

produced in this study. Climate was also important in shaping occurrences of the 

same species. The results related to the importance of lake size to all species serve as 

a basis for conservation measures that incorporate large lakes as part of the 

conservation strategy, given their importance in providing adequate habitat for 

several species. 

2.2 Introduction 

Effective conservation and management of freshwater fish species can be improved 

by understanding the factors shaping their spatial distributions. Species distributions 

are driven by abiotic (e.g. suitable climate) and biotic conditions (e.g. competitive 

interspecific interactions), as well as movement and dispersal (Soberon and 

Nakamura 2009). Species distribution models (SDMs) are widely used in ecology and 

routinely used to relate species occurrences to environmental predictor to generate 

models of environmental suitability. SDMs provide a snapshot estimation of species-

environment relationships and generate predictions of the distribution of a given 

species across geographic scales. The number of SDM studies applied to different 

fish species has increased in past years with a special attention to the prediction of 

range shifts caused by climate change (Chu et al. 2005, Sharma and Jackson 2008, 
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Bond et al. 2011, Filipe et al. 2013). Fish distributions could be strongly affected by 

global warming as most species have no physiological ability to regulate their body 

temperature (Wood and McDonald 1997). Also, climate-change drivers such as 

temperature and precipitation can operate directly to affect range, or indirectly 

through affecting habitat, feeding resources (e.g. Pratchett et al. 2011) and 

reproduction (Pankhurst and Munday 2011 ). Additionally, because the dispersal of 

freshwater fish is constrained by the network structure of drainage basins (Grant et al. 

2007), their distributions and associated services may be more vulnerable to broad-

scale environmental changes than terrestrial species. A generalized conservation plan 

is likely to be less effective because the species in a fish assemblage have differing 

life history strategies, habitat requirements, and sensitivities to stressors (Maloney et 

al. 2006). As such, species-specific SDMs should yield more effective conservation 

plans. 

The majority of SDMs make use of only environmental variables to predict species 

distributions and do not include other key determinants of species ranges, most 

importantly, biotic interactions (see Elith and Leathwick 2009; Beale et al. 2014), as 

including these interactions have tended to require a priori knowledge and data on 

species interactions. Although macroclimate drives species distribution patterns at 

large scales (Whittaker 1975; Pearson and Dawson 2003; Thuiller et al. 2005), there 

is increasing evidence of the important role of biotic interactions in determining 

species' range extents (Jablonski 2008; Wiens 2011; Wisz et al. 2013). Biotic 

interactions can take place at local scales ( e.g. predation, parasitism, competition and 

disturbance) or regional scales ( e. g. dispersal, speciation, extinction, expansions or 

contractions of species ranges) (Cornell and Lawton 1992; Amarasekare 2003). 

Examining both the impacts of environmental factors and species interactions on the 

distribution of multiple species is essential to understand how climate change, or 

other major environmental changes, will affect biodiversity. 
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Despite limitations with current SDM approaches, their popularity in the realm of 

prediction of species distributions will remain certain. In addition to their application 

in conservation planning and management, SDMs can provide insights into the past 

and future distributions of species and the factors that shape their biogeography (Elith 

et al. 2006). That said, without explicitly considering biotic factors, SDMs could 

potentially misinform conservation management decisions. Accurate representations 

of species distributions are vital for the design and implementation of appropriate 

conservation measures, e.g. protected areas, but SDMs are unlikely to produce 

reliable predictions if they rel y only on abiotic factors (Hof et al. 2012; Kissling et al. 

2012). 

Studies that use SDMs are beginning to consider biotic interactions by including the 

occurrence of other species' as additional covariates ( e.g. Pellissier et al. 2010) and 

this has been central in improving performance (Araujo and Luoto 2007; Mod et al. 

2014). Moreover, many recent theoretical and empirical studies have addressed the 

importance of including competition, predation or resource-consumer interactions in 

the development of SDMs (Guisan and Zimmermann 2000; Araujo and Guisan 2006; 

Zimmermann et al. 2010; Wisz et al. 2013) since their role in shaping patterns at 

broad spatial extents has been largely dismissed. Understanding the role of biotic 

interactions in determining species distributions, however, is difficult and often 

hindered primarily by the availability of data and then by the difficulties in inferring 

causation, multicollinearity, the complexity of species interactions and spatial and 

temporal variation in those interactions (Svenning et al. 2014). 

The objective of Chapter 2 is to develop fish-habitat models for the occurrence of six 

species of economically important freshwater fishes in north-temperate lakes of 
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Ontario, providing a comparison of: (i) variable importance among species and (ii) 

predictive performance among six popular SDM approaches, including the GLM 

based on Poisson distribution considered in Chapter 1. Comparison of predictive 

models is relevant because the performance behaviour of different modelling 

approaches often depend on the characteristics of the study system of interest and it 

will determine which approach is most appropriate for that given system. As such, 

regional SDMs (here north-temperate lakes of Ontario) are relevant as they generate 

insights . into the underlying mechanisms and relationships among species while 

addressing their errors and uncertainties useful for regional conservation policies, 

which are often regional themselves. Three model specifications will be developed 

for each fish species: (i) adopting only environmental parameters as predictors; (ii) 

using solely the information about the fish community to predict the occurrence of a 

particular species (i.e. using biotic parameters); (iii) incorporating both environmental 

and biotic information about the occurrence of other fish species as predictors (i.e. 

using abiotic + biotic parameters). Performance comparisons will be performed 

among these three classes of models as well. To date no study considering the 

different target species has covered such an extensive comparison of different SDM 

methods. We expect that the models possessing both abiotic and biotic predictors 

outperform models including only abiotic predictors. 

2.3 Methods 

2.3.1 Fish-environment data source 

Presence-absence data on the fish species targeted in this study were gathered from 

the Aquatic Habitat Inventory (AHI) conducted in the province of Ontario (Canada). 
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The inventory is a compilation of lake surveys conducted by the Ontario Ministry of 

Natural Resources between 1970 and 1984. All surveys were conducted using 

standard methods as described in Dodge et al. (1984). The total number of lakes 

surveyed was 9885 (Figure 2.1 ), and the fish community surveys were conducted 

concurrently with the collection of lake environmental characteristics (see Mandrak 

and Crossman (1992) for the history of the data base and Goodchilde and Gale (1982) 

for sampling methods ). The abiotic parameters considered here were surface area of 

the lake (LlOArea) log transformed using base 10, growing degree days above 5°C 

for 1961-1990 (DD5), mean annual air temperature for 1961-1990 (MAT), maximum 

and mean depth of the lake (Depth_Max and Depth_Mean, respectively), secchi 

depth, total dissolved solids (TDS), pH and shoreline development factor (SDF). SDF 

is a measure of lake shape complexity; it compares the outline to that of a circle (SDF 

= 1 implies a circle ), as follows: 

SDF = Shoreline 
2 * vn I* Area 

where shoreline (which includes islands) and area are measured in the same units 

(e.g. km and km2). Figure 2.2 shows the strong latitudinal gradient in climate across 

the province. Table 2.1 summarizes descriptive statistics related to each abiotic 

parameter considered here and Table 2.2 provides information on the correlations 

among ail abiotic parameters to be used in the species distribution models. Overall, 

the correlations among abiotic parameters are between low and moderate, with the 

exception of the ones found between DD5 and MAT, and mean and max depth. Mean 

and max depth are both measurements of depth, which justifies the correlation found 

between them; both are important for habitat characterization of different thermal 

guilds. Because species often use diff erent environmental eues to maximize different 

life-history stages (e.g. young versus old individuals) and needs (e.g. reproduction 

versus growth), different types of variables that relate to similar factors (e.g., different 
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ways to represent lake temperature) are important because they may influence species 

differently across these life stages and needs (Lee et al. 2016). 
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Figure 2.1: Distribution of the lakes surveyed across Ontario and compiled in the 
Aquatic Habitat Inventory. 
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Figure 2.2: Latitudinal gradient in climate, represented by mean annual air 
temperature measurements across Ontario. 
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2.3.2 Target fish species 

Fish species considered in this study were: smallmouth bass (Micropterus dolomieu ), 

walleye (Stizostedion vitreum), northem pike (Esox lucius), white sucker (Catostomus 

commersonii), lake trout (Salvelinus namaycush) and lake whitefish (Coregonus 

clupeaformis). They all represent species that are commercially and recreationally 

important and much is known about their habitat preferences (Scott and Crossman 

1998). Figure 2.3 shows the distribution of each freshwater fish species across 

Ontario. Table 2.3 presents some key ecological temperature metrics data on these 

species, which helps defining their thermal requirements and are strongly related to 

their fondamental niche since water temperature plays an important physiological role 

and influence reproduction (Hasnain et al. 2010). 

Canadian freshwater fishes are classified into three thermal guilds: cold, cool and 

warm, which are assigned in accordance to their preferred summer water temperature. 

Thermal guild is assigned as "cold" if the preferred temperature is < l 9°C, "cool" if it 

is between 19-25°C and "warm" if it is greater than 25°C. Lake trout and lake 

whitefish are classified as cold-water fishes, walleye, northern pike and white sucker 

are classified as cool-water fishes, and smallmouth bass, as warm water fish. In lakes, 

young lake whitefish are typically found at the surface ( depths smaller than 1 m) in 

association with emergent vegetation and woody debris over substrates of boulder, 

cobble, and sand. Juveniles are found over the same substrates as young lake 

whitefish and also associate with woody debris and emergent vegetation. After 

spawning, adults move to deeper water (> 10 m) to overwinter. They do not appear to 

have a substrate preference and have been found over boulder, gravel, cobble, sand, 

and clay. They are primarily bottom dwelling but may also be found in the pelagic 

zone (Sawatzky et al. 2007). In Ontario, lake trout are generally found in the pelagic 
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zone of lakes at depths greater than 10 m, with temperatures of 10°C approximately. 

During the summer, such temperature can only be found in deeper, cooler portions 

below the thermocline in lakes that stratify (Sawatzky et al. 2007), and during spring 

and fall, they can be found in surface waters. W alleye prefer large, turbid lakes but 

will inhabit clear lakes, large streams and  rivers if sunken trees or boulder shoals 

provide shelter from daylight (Scott & Crossman, 1998). Northem pike occurs in 

weedy slow rivers and, more frequently, weedy bays of lakes, requiring cover (e.g., 

logs, weeds, stumps) to capture prey ~  are more ~  during the day. Lacustrine 

adults typically occur in water smaller than 5  m deep, except during winter, when 

they are found in deeper water (Sawatzky et al. 2007). Lacustrine young white sucker 

remains in the gravel substrate for 1-2 weeks after hatching, inhabiting shallow 

waters along the shore over substrates of rock and sand and are often found in 

association with vegetation. They move to deeper offshore waters later in the 

summer. Lacustrine adults inhabit depths of 7-13 m (Sawatzky et al. 2007). Optimum 

lacustrine habitat for smallmouth bass is characterized by large, clear lakes and 

reservoirs with average depth greater than 9m with rocky shoals. They exhibit strong, 

cover-seeking behavior and prefer protection from light in all life stages (Scott & 

Crossman, 1998). 
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Figure 2.3: Distribution of the six freshwater fish species across Ontario, compiled in 
the Aquatic Habitat Inventory. 
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2.3.3 Species distribution modelling approaches 

Predictive models were built using the following approaches: Generalised linear 

model (GLM) based on Poisson distribution; Generalised additive model (GAM); 

Multivariate adaptive regression splines (MARS); Random forests (RF); Boosted 

regression trees (BRT)and Maximum entropy approach (MaxEnt). These models 

were chosen due to their popularity in the literature. 

Refer to section 0.1 to obtain more details about the approaches considered here. All 

techniques were implemented using fonctions and packages from the R programming 

environment (R Development Core Team). GLM was implemented using the "glm" 

fonction from the "stats" package. GAM was implemented using the "gam" fonction 

from the "mgcv" package. MARS was implemented using the "earth" fonction from 

the package of same name. RF was implemented using the "randomForest" fonction, 

and its related package has the same name. BRT was implemented using the 

"gbm.step" fonction and MAXENT was implemented using the "maxent" fonction, 

both from the "dismo" package. 

Three classes of models were built for each SDM technique: one containing only 

abiotic variables (called "A"); one containing only biotic information in the form of 

presence-absence of the fish species considered in this study (e.g. walleye occurrence 

predicted by northem pike, white sucker, lake trout and lake whitefish occurrences), 

this model class called "B"; and one containing both abiotic variables and biotic 

information via presence-absence of fish species, called "A + B". Madel calibration 

and validation was conducted via five-fold cross-validation: at each iterative fold, 

80% of the whole dataset was withheld for model calibration and the other 20% used 
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for model validation. Lakes were randomly assigned to each group at every iteration, 

preserving the proportion of presences and absences. Model residuals were computed 

through the differences between the observed values from the dataset and fitted 

values estimated from calibration process for each modelling technique, and 

expressed as mean squared error (MSE). MSE is a highly informative metric about 

model performance and consist of a well-known diagnostic measure to detect 

discrepancies between the data and fitted values (Lin et at. 2002). The adjusted 

deviances were computed according to the formula shown in section 0.1. 

In this study, model performance was also evaluated using both threshold-

independent (AUC) and threshold-dependent (sensitivity, specificity and TSS) 

measures of accuracy. Models producing non-binary scores (i.e., probabilities) were 

evaluated by applying a threshold to transform the scores into a dichotomous set of 

presence-absence predictions, and generating the corresponding confusion matrix 

necessary to calculate TSS. The threshold chosen was the one that maximizes 

sensitivity + specificity. The description of each evaluation metric follows: 

• Sensitivity, the proportion of observed presences that are predicted as such, 

quantifying omission errors. Calculated as TP/(TP + FN), where TP = true 

positives and FN = false negatives. In general, FN can result from data or 

model inaccuracies or even a threshold chosen with a high value; 

• Specificity, the proportion of observed absences that are predicted as such, 

quantifying commission errors. Calculated as TN/(TN + FP), where TN = true 

negatives and FP = false positives. FP may result from detection issues or 

biotic or abiotic factors that prevent a· given species from ~  suitable 

habitat, such as dispersal limitations; 
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• The area under the curve (AUC) of the receiver operating characteristic 

(ROC, Fielding and Bell 1997), constructed by using all possible thresholds to 

classify the scores into confusion matrices, obtaining sensitivity and 

specificity for each matrix/thresholds, and then plotting sensitivity against the 

corresponding proportion FP. AUC ranges from 0 (no discrimination ability) 

to 1 (perfect discrimination). It is the most popular measure of accuracy 

reported by the literature; 

• True skill statistic (TSS, Allouche et al. 2006), a synthetic index defined as 

TSS = sensitivity + specificity - 1. TSS ranges from -1 (performance no better 

than random) to +1 (perfect agreement). 

The best-performing models were determined considering the residual metrics 

computed during the calibration process, and the quantitative assessment of their 

predictive performance using the above described indexes in the validation step. In 

other words, since we have six calibration and validation metrics in total, models that 

show the best performance in most (or all) of them are elected as best models. 

Sensitivity, specificity, AUC and TSS were calculated for all SDM models using the 

"evaluate" fonction from the "Dismo" package, R programming environment (R 

Development Core Team). 

Variable importance was computed for all six SDM approaches and three model 

classes built for all six species. In order to standardize the computation of this metric, 

each variable received a rank varying from 1-9 for A models, 1-5 for B models and 1-

14 for A+ B models. The higher the rank number, higher the importance of a given 

variable in a given model. The ranks were established on the , basis of both the 

estimated coefficients for regression models and variable importance proportion 

estimated from machine-learning methods. After variable importance estimation, the 
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degree of agreement among models in terms of their ranked variables' importance 

was evaluated using Spearman's rank correlation coefficient (also called "Spearman's 

rho"), a nonparametric measure of rank correlation that assesses how well the 

relationship between two variables can be described using a monotonie function. 

Spearman's rho assumes values between -1 (a negative relationship between the two 

variables) and + 1 (a positive relationship ), with 0 denoting absence of relationship. 

2.4 Results 

Calibration and validation metrics results computed for all six fish species are 

compiled in Appendix D. These metrics values were based on averaging the results 

from five subsets of the whole data, according to the five-fold cross-validation 

procedure. Residual inspection of MSE values (Appendix D) revealed that models 

were improved when both abiotic and biotic variables were taken in account. The one 

exception was GLM which performed better with only environmental variables in 

most cases, but still showed high values of MSE in comparison to the other models, 

indicating a poor calibration performance overall. The random forests model (RF) 

performed better in terms of precision (i.e., MSE), but quite similar in performance to 

the generalized additive model (GAM), which also showed good precision 

performance. 

2.4.1 Fish species distribution models' quality-of-fit assessment via deviance 

estimation 
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A comparison of goodness-of-fit results based on deviance is presented in Figure 2.4, 

according to the three classes of models (A, B, A+B). Overall, adjusted deviance 

values were improved when abiotic and biotic variables were included together in all 

six modelling approaches, showing greater levels of variation explained in contrast to 

model specifications A (only abiotic) and B (only biotic) models, with the latter 

showing the lowest fit to date. Across all models, the most successfol in reducing the 

residual deviance was BRT. Deviance results for MAXENT are not shown because 

the fonction related to this model ("calc.deviance" from "Dismo" package) computes 

the deviance based on observed and predicted values, however there were cases in 

which this fonction presented deviance results above 1, indicating a possible problem 

since the maximum value that deviance can assume is 1 (100%). Deviance results for 

smallmouth bass, walleye, northem pike and lake trout showed good variance 

explanation, especially the A+B model specification for lake trout, which showed an 

optimal deviance result of 66.4% (Figure 2.4), indicating that the abiotic and biotic 

set of variables used to model this species' presence-absence is a good candidate for 

explaining distribution patterns. The lowest deviance results were seen for white 

sucker models, with values below 30%, while the lake whitefish deviance results 

were mid-low in the 20-50% range. 
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2.4.2 Assessment of predictive accuracy 

The predictive accuracy indicate good performance for all models (Figures 2.5 -

2.11). The same trend of an increase in performance was observed for A+B models in 

comparison to A and B models separately. Figure 2.5 shows that multivariate 

adaptive regression splines, random forests and boosted regression trees showed the 

best predictive accuracies through the inspection of both AUC and TSS, however the 

differences among all models are very small (numerical values presented in Appendix 

D). The sensitivity + specificity values computed for MARS, RF and BRT models 

reflect their good performance across all fish species (Appendix D). MAXENT and 

GLM were the ones with the lowest performance, generating slightly lower 

predictative accuracy of predictive accuracy among all species. 

Lake trout models showed the highest values of predictive accuracy among all 

species (Figure 2.6, Appendix D), which reflects the good calibration performance 

observed through the estimated deviance values. The predictive accuracy obtained for 

walleye models including only biotic information (B models), in some cases, was 

slightly higher than the one based on models using only abiotic variables (A) (Figure 

2.7). This indicates that the biotic variables included in walleye B models possess 

approximately the same importance as the abiotic ones used to predict · this fish 

species. This statement was further examined by looking at models' variable 

importance for each species. 
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2.4.3 Patterns of co-occurrence in freshwater fish species, abiotic parameters and 

community composition 

Tables 2.4-2.6 summarise the relationships among the six freshwater fish species and 

the variables used as predictors, across all models and considering the three classes of 

models. The relationships were drawn from all species distribution models' results by 

verifying the type of influence (positive or negative) the different variables had on 

fish occurrences. (A) models showed that mean annual air temperature has a negative 

influence on cold and cool water species presence, while the opposite is found for 

smallmouth bass which represents a warm water species (Table 2.4 and 2.6). DD5 

was negatively correlated with cold water species' presence, but positive on warm 

water species and cool water species such as walleye and northem pike. W armer 

temperatures clearly has a positive impact on smallmouth bass since both climate 

variables showed to influence the presence of this species. 

Among the lake morphometry predictors, lake size (LoglOArea) was the only 

variable influencing positively all species' presences, and this result can be seen for 

both (A) and (A+B) models. Additionally, these two classes of models also suggested 

that mean and max depth have a positive influence on lake trout presence, while 

shoreline development factor (SDF) seems to have a negative influence on ail species. 

The effect of water chemistry parameters on species' presence showed slightly 

different results from (A) models to (A+B) models, more specifically, in (A) models 

(Table 2.4 ), secchi influences the presence of lake trout and smallmouth bass in a 

positive way, while in (A+B) models (Table 2.6) it also influences lake whitefish 

presence. Those result suggests that the incorporation of biotic information through 

community composition (e.g. other fish species' presences) reveals trends not seen 

when modelling using abiotic variables alone. Finally, (A) and (A+B) model results 
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suggested that water chemistry parameters such as TDS influences positively walleye 

and northern pike presence, while pH has a negative impact on ail freshwater fish 

species. 

Table 2.5 results suggest that a given freshwater fish species' presence influences 

positively other species within the same thermal guild. For instance, lake trout and 

lake whitefish have a positive effect on each other' s presence. The same trend can be 
t 

seen regarding walleye, northern pike and white sucker. These results still hold true 

when the information about the community composition is incorporated together with 

abiotic predictors to estimate species' presence in (A+B) models (Table 2.6). 
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2.4.4 Models' agreement and variable importance assessment 

Figures 2.12-2.17 show results related to how the ·six species distribution models 

agree in terms of their ranked variable importance, for each class of models (A, B, 

A+B) and freshwater fish species. Results reveal that the way different SDM 

approaches rank variables across species and with increased complexity (A and B 

models are less complex than A+B ones) is generally quite consistent, which makes 

them reliable modelling choices in terms of stability and reduced uncertainty. Overall, 

(B) models showed a higher degree of agreement, with the walleye (B) models 

displaying more similarity among them, which means that the predictor variables 

were ranked in importance in a similar way across all (B) models for this fish species. 

Among all species, northem pike models were considerably consistent in terms of 

variable importance ranking across all models and classes of models. 

The chosen SDM methods can be classified broadly as "regression methods" 

(encompassing GLM, GAM and MARS) and "machine leaming methods" (RF, BRT, 

MAXENT). lt was expected to see a higher degree of agreement among methods in 

each of these two classifications, but here results were quite mixed across all 

freshwater fish species and classes of models. In addition, it was also expected to 

obtain a decreased level of agreement with increasing model complexity (e.g. A+B 

models), however results across species regarding this aspect are mixed as well. For 

instance, lake trout, walleye, white sucker and smallmouth bass models showed an 

improvement in agreement level from (A) models to (A+B) models, while lake 

whitefish and northem pike models showed a slight decrease in agreement. 
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Figures 2.18 and 2.19 present the ranked variable importance estimated for (A) and 

(B) models built to estimate freshwater fish occurrences, computed by averaging 

across all six freshwater fish species. Results related to (À+B) models were not 

shown for the sake of simplicity, since the objective here is to assess how predictors 

were ranked according to different SDM approaches. There were a number of 

similarities and differences in relative predictive importance of the abiotic and biotic 

variables among modelling approaches. The results based on all species for (A) 

models showed that the modelling approaches showed close agreement in the 

importance of LlOArea, but disagreed in the importance of others for predicting 

species occurrence. Overall differences in the mean ranked importance of abiotic 

variables existed among all approaches, but were most notable between regression 

methods and machine-learning methods. For instance, the importance of MAT and 

DD5 were higher in machine-leaming methods (RF, BRT and MAXENT) compared 

to regression methods (GLM, GAM and MARS). Similar observations can be done 

regarding the results based on all species for (B) models (Figure 2.19). 
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Figures. 2.20-2.25 present the ranked variable importance estimated for each 

class of models built to estimate freshwater fish occurrences, computed by 

averaging across all SDM approaches. Models containing only abiotic variables 

(A) suggest that air temperature (MAT) and surface area of the lake (LlOArea) 

have a major influence on the establishment of smallmouth bass, walleye, 

northern pike, white sucker and lake whitefish, while maximum depth 

(Depth_Max) plays an important role on the establishment of lake trout, 

followed by surface area of the lake. 

Results from models containing only biotic information (B) suggest that 

presence of lake whitefish (P _LaWhi) in lakes plays arole in the distribution of 

lake trout (Figure 2.20). In addition, the B models also suggested that presence 

of walleye (P _ Walle) influences the establishment of lake whitefish (Figure 

2.21), while presence of northern pike (P _NoPik) affected the distribution of 

walleye (Figure 2.22). Finally, biotic (B) models built for northem pike, white 

sucker and smallmouth bass suggest that presence of walleye (P _ W alle) 

influences the establishment of northem pike and white sucker (Figures 2.23 

and 2.24 respectively), while presence of lake trout (P _LaTro) influences the 

establishment of smallmouth bass (Figure 2.25). 

Models considering both abiotic and biotic variables demonstrate the 

importance of surface area of the lake (LlOArea) on the establishment of all 

fish species, but also climatic variables and presence of other fish species play a 

role as seen in the results for these models. According to the A+B models 

developed for lake trout, its establishment is influenced mainly by lake 

morphometry parameters such as the aforementioned surface area, maximum 

and mean depth of the lake, denoting the preference of this species for deep, 
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stratified lakes. For lake whitefish, its A+B models suggest that surface area of 

the lake is the most important factor affecting its establishment, followed by 

presence of northem pike, growing degree days above 5°C (DD5) and presence 

of walleye. Walleye A+B models indicate that its establishment is influenced 

primarily by presence of northem pike, surface area of the lake, then air 

temperature (MAT) and presence of lake trout, while northern pike A+B 

models show that its establishment is mostly affected by air temperature, 

followed by surface area of the lake, presence of walleye and growing degree 

days above 5°C. In addition, white sucker A+B models suggest that, besides 

surface area of the lake, DD5, maximum depth of the lake and presence of lake 

trout are the main ones influencing its establishment. Finally, smallmouth bass 

A+B models suggest that MAT, surface area of the lake and presence of 

walleye are the main ones influencing its distribution. 
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2.5 Discussion 

A better understanding of different freshwater fishes' habitat requirements consists of 

a solid ground for developing models that better describe fish-habitat relationships, 

given that spurious relationships can also be seen in species distribution models. The 

lake trout model results seen in Tables 2.4 and 2.6, and Figure 2.20 suggest that lake 

size, mean depth, max depth and secchi are the most important environmental 

predictors and influence positively this species' presence. Lake trout occurs only in 

relatively deep lakes through the southern part of the Canadian range, but in the 

northern half, specially in the Territories, it occurs also in shallow lakes and rivers 

(Scott and Crossman 1998). In inland lakes in southern Canada the depth-distribution 

of lake trout varies with the seasons. In autumn, usually early October, they move 

into rocky shallows in preparation for spawning. Spawning most often occurs over a 

large boulder or rubble bottom in inland lakes at depths of less than 12 m and 

sometimes as shallow as 30 cm. Temperatures at time of spawning have been 

reported at 8°-l2°C (which also defines their fundamental thermal niche according to 

Magnuson et al. 1990), but spawning is not initiated by temperature alone, but also by 

light, since the spawning act takes place after dark (Scott and Crossman 1998). After 

spawning is completed they disperse freely throughout the lake at various depths and 

remain dispersed. throughout the winter months. Investigations by O'Connor et al. 

(1981 ), as well as results of a literature search completed by Christie ( 1986), suggest 

that lake trout growth is optimal within its fundamental thermal niche, confirming the 

importance of temperature to the distribution of this species. In spring they often 

occur in surface waters immediately after breakup of ice. As surface waters warm 

with the advance of spring, lake trout retire to the cooler waters, eventually retreating 

to the hypolimnion, below the thermocline during the warmer summer months. The 

depth of the thermocline in a particular lake depends on man y factors such as latitude, 

size of lake and height of surrounding land, so these are factors that are also 
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important in determining lake trout distribution. Water clarity (here represented by 

secchi) is a proxy for overall lake productivity as well as visibility conditions, which 

is important because fish species vary in terms of their visual light sensitivities and 

reliance on sight for detection of food resources (Scott and Crossman 1998). Olden 

and Jackson (2001) proposed lake trout occurrence models based on artificial neural 

networks, logistic regression, linear discriminant analysis and classification trees, and 

their results indicated that surface area of the lake, total shoreline perimeter, lake 

volume and maximum depth were the main predictors of lake trout presence. A 

second study from the same authors using solely artificial neural networks as 

modelling approach suggested that elevation is also an important predictor. Sorne 

degree of agreement can be seen between the relationships presented here and the 

ones showed by Olden and Jackson, however, secchi was not considered in their 

models and this abiotic parameter has a considerable relevance in describing lake 

trout distributions, since it has a direct relationship with productivity levels at the 

benthic zone (Finstad et al 2014), i.e. food availability for lake trout. 

Lake whitefish (A) and (A+B) models results also suggest that lake size is an 

important predictor of this species, having a positive influence on its occurrence 

(Tables 2.4 and 2.6, Figure 2.21). Figure 2.21 also indicate that climate variables 

(DD5 and MAT) and max depth are important predictors, however their influence 

(Tables 2.4 and 2.6) are negative ones. The negative influence of climate on cool 

water species habitat is a known issue already reported by the literature (Mackenzie-

Grieve and Post 2006; Sharma et al. 2009; Callaghan et al. 2016), since the increasing 

temperatures cause a reduction in optimal habitat availability for this thermal guild. 

Since this species is classified as a cool water species, it was expected a positive 

influence of mean and maximum depth of the lake with this species occurrence. Lake 
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whitefish descends into the cooler waters of the hypolimnion during summer months, 

over most of the southern part of its range, and only large, stratified lakes can provide 

ideal habitat for this species. Throughout most of the Great Lakes, these fish move 

from deep to shoal waters in early spring and back to deeper water as warming 

occurs. In the fall, lake whitefish move into shallow water to spawn, looking for hard 

or stone bottom but sometimes sand to lay its eggs (Sawatzky et al. 2007). Since lake 

whitefish are bottom feeders, benthic production is essential for this species due to 

food availability (like mentioned before for lake trout). The negative influences of 

mean and maximum depth on lake whitefish occurrences suggest that most . lakes 

where this species was present were shallow ones, and this is likely due to: (i) greater 

food availability for this species in these lakes; (ii) the species mobility (Scott and 

Crossman 1998). Previous work by Olden and Jackson (2002) showed lake 

morphometry predictors such as surface area of the lake, lake volume, total shoreline 

perimeter and altitude to be important for lake whitefish occurrence, however the 

authors did not point out the type of influences these predictors have on lake 

whitefish occurrences. Here results pointed out the importance of climate to this 

species. Edwards et al. (2016) in their work using logistic regression and the same 

historical dataset used here, showed that a climate index variable ( composed by ice-

free duration, mean July air temperature, minimum January air temperature, and total 

annual precipitation), mean to maximum depth ratio, secchi, maximum depth and 

lake area were influential predictors of lake whitefish occurrence. Even though the 

climate variables used in their work are not similar to the ones chosen here, the 

influence of climate on occurrence was also seen to be negative. On the other hand, 

the influence of maximum depth presented by their lake whitefish occurrence model 

was positive, which does not agree with the results seen here. This lack of agreement 

suggests that the modelling method chosen by the authors had an impact on the 

relationships showcased by the model, since all six methods presented here agreed on 

the negative relationship of max depth with lake whitefish occurrence. 
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For walleye, (A) and (A+B) models results (Tables 2.4 and 2.6, Figure 2.22) revealed 

that lake size is also ~  together with climate (espeeially MAT) and water 

chemistry parameters such as secchi and TDS. Lake size influence on walleye 

occurrence is positive (like seen for cool water species), sois the influence of TDS, 

while MAT and secchi showed to influence negatively the occurrence of this species. 

W alleye are tolerant of a great range of environmental situations, but appear to reach 

greatest abundance in large, shallow, turbid lakes (Scott and Crossman 1998). 

Optimum transparency in a shallow lake, which will allow walleye to feed 

intermittently throughout the day, is in the order of 1-2 m secchi, however in clear 

lakes, where they often lie in contact with the bottom apparently "sleeping", adult and 

subadult  walleye are primarily crepuscular or noctumal feeders, feeding from top to 

bottom (Ali et al. 1977). Movements involve a spring spawning run to shallow 

coarse-gravel shoals or to tributary rivers (where they seek for rocky areas), daily 

movements up and down in response to light intensity, and daily or seasonal 

movements in response to temperature or food availability (Scott and Crossman 

1998). Madel results regarding important abiotic features influencing walleye 

occurrence are in agreement with the main variables affecting walleye production 

reported by Lester et al. (2004), where they show that thermal-optical habitat area 

(TORA, the benthic area of the lake that supplies optimum light and temperature 

conditions for walleye during an annual cycle), TDS and water clarity influence 

walleye habitat availability. In their work, walleye harvest increased in proportion to 

TORA times the square root of TDS, and that increases in water clarity seen in the 

Great  Lakes basin have reduced the supply of thermal-optical walleye habitat, thus 

having negative effects on walleye production. Chu et al. (2005) showed mean annual 

dew point, growing degiee days, total annual precipitation and mean annual hourly 
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wind speed to be significant variables in their walleye occurrence model, with mean 

annual dew point showing an expressive negative influence. Nate et al. (2000) and 

Hansen et al. (2015) also reported lake size to be an important abiotic feature in their 

walleye model. Spring water temperatures, which is a surrogate for regional climate 

variability (Beard et al. 2003) and/or water levels (Chevalier 1977; Quist et al. 2004) 

was reported as influential in walleye occurrences (Serns 1982; Hansen et al. 1998; 

Quist et al. 2003). The inclusion of abiotic variables not considered in this study but 

shown to be important in predicting walleye occurrence by previous works would 

consist of a future work perspective, with the objective of seeking a greater 

improvement of the models built here. 

Model results for northern pike evidenced the importance of lake size, climate 

variables and water chemistry to its occurrence (Figure 2.23), with a positive 

influence of lake size, mixed influences provided by climate (positive by DDS and 

negative by MAT), and water chemistry (positive by TDS and negative by secchi -

Tables 2.4 and 2.6). These abiotic features priorities are very similar to the ones seen 

for walleye, which suggest habitat affinities between these two cool water species, 

like already reported by the literature (Scott and Crossman 1998; McMahon and 

Bennett 1996). In Canada, its habitat is usually clear, warm, slow, meandering, 

heavily vegetated rivers or warm, weedy bays of lakes. They do, however, occur in a 

wide range of habitat over the whole of their extensive distribution. They generally 

occur in shallower water in spring and fall but move to deeper cooler water at the 

height of summer temperatures. In general, northern pike are fairly sedentary, 

establishing a vague territory where cover and food are adequate. Spawning occurs 

during daylight hours on the heavily vegetated floodplains of rivers, marshes, and 

bays of larger lakes (Scott and Crossman 1998; Raat 1988; Casselman and Lewis 

1996). Relationships between abiotic variables and northern pike occurrence 

presented earlier in the literature showed MAT to be an important predictor, e.g. 
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Schlesinger and Regier (1982) in their work present how this abiotic feature has a 

positive effect until reaching a certain temperature threshold, which past that starts to 

influence negatively. Minns and Moore (1992) also showcased the importance of 

MAT and lake size on northern pike. Neither of these two works showed the 

importance of water chemistry in determining northem pike distributions, as climate 

and lake morphometry are commonly shown to be more influential variables in 

northem pike models. The results presented here represent a contribution to the 

literature regarding the importance of this environmental feature to northem pike 

occurrences, and since this species has quite similar habitat requirements to walleye, 

the mechanisms through which TDS and secchi regulate the northem pike 

distribution can be considered the same as walleye. 

White sucker (A) and (A+B) model results indicated that lake size, climate and 

maximum depth are influential predictors of its occurrence (Figure 2.24 ). Among 

these, lake size is the only predictor showing a positive relationship with occurrence 

(Tables 2.4 and 2.6). White sucker are usually fish of warmer, shallow lakes or warm, 

shallow bays, and tributary rivers of larger lakes. In addition to spawning migrations, 

movements, other than a general tendency to move offshore with increase in age, are 

random, probably in response to temperature (Scott and Crossman 1998). White 

suckers are moderately active during the daytime but active feeding is usually 

restricted to near sunrise and sunset when they move into shallower water. This 

species spawn in the spring, usually from early May to early June. Adults usually 

migrate from lakes into gravelly streams when stream temperatures first reach 10°C, 

but they are also known to spawn on lake margins, or quiet areas in the mouth of 

blocked streams. They are bottom feeders, so benthic production is very important for 

them. Previous white sucker occurrence models showed surface area, total shoreline 
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perimeter and max depth to be important lake morphometry predictors of white 

sucker occurrence, which agrees with the model results showed here (Olden and 

Jackson 2002). Climate plays an important role on this species distribution, therefore 

the models presented in this study represent an improvement over the model 

presented by these authors. The negative influence of both DD5 and MAT on the 

white sucker distribution reflect the preference of this species for cool waters, since 

temperature increases will most likely represent loss of habitat for this species, which 

needs cool water for spawning (Scott and Crossman 1998). 

For smallmouth bass, (A) and (A+B) models' results (Figure 2.25) show that lake 

size, climate, TDS and secchi are important in determining this species' distribution, 

with lake size, climate and secchi having positive influences, and TDS having a 

negative influence (Tables 2.4 and 2.6). Smallmouth bass habitat varies with size and 

time of year. In the spring, adult fish congregate on the spawning grounds, where 

males build nests on a sandy gravel, or rocky bottom usually near the protection of 

rocks, logs or, more rarely, dense vegetation (Scott and Crossman 1998). Late spring 

they are usually found in rocky and sandy areas of lakes and rivers, in moderately 

shallow water. In the heat of the summer they usually retreat to greater depth. The 

distribution of smallmouth bass has been historically limited to the south and south-

central regions of Ontario where July air temperatures exceed l8°C (Shuter et al. 

1980). Their current range is expanding throughout North America via natural and 

human-mediated dispersal (Sharma and Jackson 2008), and under scenarios of 

climate change, this species have been predicted to expand their range northward 

(Chu et al. 2005; Sharma et al. 2007). Previous walleye occurrence models have 

showed the importance of lake morphometry variables (Olden and Jackson 2002; 

Vander Zanden et al. 2004; Van Zuiden et al. 2016) and climate (Olden and Jackson 

2002; Vander Zanden et al. 2004; Chu et al. 2005; Alofs and Jackson 2015; Van 

Zuiden et al. 2016). In addition, Van Zuiden et al. (2016) model results agree with the 
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results presented here related to the positive influence of secchi on smallmouth bass 

distributions, indicating the preference of this species for clean, transparent waters. 

On the other hand, a lack of agreement was noted between the smallmouth bass 

occurrence model presented by Olden and Jackson (2001), where they show TDS to 

influence positively this species' distribution, and the smallmouth bass models 

obtained in this study, which showed TDS to have a negative relationship with 

occurrence. 

The results presented by this study corroborates the idea of model improvement 

through the addition of biotic variables, in this particular case, including occurrence 

of other fishes from the same community as predictors. For instance, the result seen 

on Figure 2.22 and Table 2.6 for walleye (A+B) models indicate that presence of 

northem pike was the most important variable explaining its distribution. Previous 

studies on Ontario lakes reported a high frequency of occurrence of walleye and 

northem pike together in big lakes, sharing the same habitat requirements. Scott and 

Crossman (1998) reported that northem pike are probably the most important 

predators of the walleye over much of its range, or even an important competitor as it 

is the only other major, shallow-water predator in the north. Figure 2.22 also shows 

that presence of lake trout, Jake whitefish and smallmouth bass are important in 

predicting walleye distributions, while Table ~  indicated that the influence of lake 

trout is negative on walleye occurrences, contrary to the influences of lake whitefish 

and smallmouth bass. V ander Zanden et al. (2004) found that the number of 

piscivores in a lake was positively related to smallmouth bass occurrence. However, 

fish species richness and food chain length are known to increase with lake size 

(Vander Zander et al. 1999, Post et al. 2000). Lake size and related increases in 

habitat heterogeneity may simultaneously favour predator richness and establishment 
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of the fish species target of this study. Moreover, the positive relationships among 

species seen on Tables 2.5 and 2.6 can indicate biotic acceptance rather than biotic 

resistance explaining patterns in the establishment of all six freshwater fishes, and 

negative relationships between species could also indicate distinct habitat 

requirements, a "habitat checkerboard" (Gilpin and Diamond 1982; Jackson et al. 

1992). Shared food and habitat resources can also be an explanation for these the high 

variable importance attributed to walleye when predicting smallmouth bass (Figure 

2.25), northem pike (Figure 2.23) and lake whitefish (Figure 2.21). Severa! studies 

pointed out the importance of considering biotic variables when conceptualizing 

SDMs (Guisan and Zimmermann 2000; Guisan and Thuiller 2005; Ritz 2005; 

Schroder 2008; Elith and Leathwick 2009; Zimmermann et al. 2010; Wisz et al. 

2013). Gilman et al. (2010) reported that interactions among species can strongly 

influence how climate change affects species at every scale and that failure to 

incorporate these interactions limits the predictive ability of models. Biotic 

interactions can affect species responses to abiotic environmental changes differently 

along environmental gradients, and abiotic environmental changes can likewise 

influence the nature of biotic interactions (Brooker 2006; Meier et al. 2011). In a 

recent study, Wang and Jackson (2014) showed how the incorporation of biotic 

interactions improved model generality when predicting biological invasions. The 

poor results related to models including only biotic information reinforces the 

importance of environmental features while predicting fish occurrences, however, 

these models can provide an insight about which species facilitates the occurrence of 

other species, through competition, predation or facilitation. The low deviance results 

seen for B models of smallmouth bass and lake trout (Figure 2.4) could be linked to 

limited distribution of these two species, since they represent extremes on the 

temperature preference gradient. Smallmouth bass is only found in the south where 

its distribution overlaps with every species (Figure 2.3), while lake trout distribution 

is linked to lake depth requirement, since deep lakes provide optimum habitat for this 

species. 
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The structural properties of a data set require the use of statistical approaches that 

best capture the response in the data set while providing information on the important 

environmental determinants structuring species distributions and communities. The 

models developed in this study using either abiotic variables (here called A models), 

biotic information (B models) or both of them (A+B models) provided some valuable 

insights into the relationships between species occurrences, habitat and how the fish 

community determines the establishment of a given fish species. Linear methods are 

traditionally the most popular approaches used (Sharma et al. 2008). However, results 

revealed that machine learning methods, specifically random forests and boosted 

regression trees, explained the species occurrence variation better (resulting in high 

deviance values), besides the good performance seen during the calibration and 

validation assessment. Machine-learning methods can have high predictive abilities 

for data sets that exhibit linear and nonlinear relationships between predictor 

variables, high-order interactions and multicollinearity (Breiman et al. 1984, De' ath 

2002). Machine learning methods produce discontinuons changes at certain points 

along the predictor variables and identify high-order local interactions that the linear-

based approaches used in this study do no appear to accommodate. Wang and 

Jackson (2014) reported good results obtained from calibrating and validating random 

forest models, with stable overall ~  However, a potential drawback of 

machine-learning methods can be the possibility of over-fitting a model (Sharma et 

al. 2008). How to choose appropriate modelling approaches, predictor variables, 

model validation methods, and performance metrics are important steps if we want to 

get more reliable  inferences or predictions rather than data-specifics results or 

statistical artifacts. Although some of the models presented here are correlative, and 

thus we cannot directly determine, but only imply causation, the results are consistent 
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with findings from many studies of north-temperate fish populations (e.g. Olden and 

Jackson 2002; Wang and Jackson 2014; Alofs and Jackson 2015). Bach modelling 

approach possesses fine tuning parameters and exploring all their possibilities for 

each method is beyond the scope of this study, which focused on: (i) the development 

of fish-habitat models; (ii) comparison of variables of importance among species and 

(iii) compare predictive performance among models. Moreover, the results shown 

here provide an indication of the candidate models that are worth considering further. 

Finally, it is important to keep in mind that the fondamental goal of ecological 

research is to understand how observed ecological patterns are generated by specific 

processes or constraints, thus allowing for valid generalizations (Wiens 1984 ). 

Therefore, understanding patterns of distribution of species requires that we evaluate 

predictions about functional relationships between species and their environments, in 

other words, understanding and prediction are both important aspects in ecological 

modelling. As long as the chosen modelling approaches are constructed logically 

from mechanistic principles, new data and knowledge can be used to refine the 

conceptual framework. over time, thereby increasing ecological understanding and, 

potentially, predictive capability (Wiens 1992). 

The variable importance assessment indicated that surface area of the lake was an 

important morphometric feature influencing the establishment of each fish species. 

The importance of lake area on species diversity has been broadly recognized 

(Barbour and Brown 1974; Eadie and Keast 1984; Nate et al. 2000; Olden and 

Jackson 2002; Hansen et al. 2015; Edwards et al. 2016). Large lakes allow the 

development of abundant vegetation in the littoral zone, which facilitates the 

spawning of species such as smallmouth bass. Furthermore, surface area of the lake 

serves as an indirect measure of the diversity of habitats available in lakes, which 

may be important to support small-bodied, forage fish upon which these species feed. 
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Large lakes promote resource (habitat and prey) heterogeneity (Barbour and Brown 

1974; Eadie and Keast 1984). 

Together with lake size, climate is broadly recognized as a strong predictor of fish 

distributions (O'Connor et al. 1981; Schlesinger and Regier 1982; Christie 1986; 

Magnuson et al. 1990; Jackson et al. 2001; Poesch et al. 2016), and the results seen 

here for all species confirm that fact. Air temperature is especiall y important for 

smallmouth bass because a northem climatic zone was studied, and the restriction of 

this species' distribution to the southem part of Ontario shows a strong temperature 

dependency. Temperature is the controlling factor pacing the metabolic requirements 

for food and governing the rate processes involved in food processing (Brett 1979). 

Almost all species in the young stages show a typical rapid increase in growth rate as 

temperature rises passing through a peak (optimum temperature) and frequently 

falling precipitously as high temperatures become adverse. Since temperature is the 

most important abiotic factor controlling fish physiology (Kao et al. 2015), projected 

increases in water temperature resulting from ~  change are expected to affect 

the growth of freshwater fishes, their population dynamics, and the ecology at 

community and ecosystem levels (Jeppesen et al. 2010; Portner and Farell 2008; 

Sheridan and Bickford 2011). These increases in water temperature may also change 

geographical distributions of freshwater fishes (Chu et al. 2005; Comte et al. 2013) 

and the production of freshwater fisheries (Ficke et al. 2007; Portner and Peck 2010). 

In this study, results revealed different influences of DD5 and MAT on different fish 

species (e.g. DD5 and MAT influence negatively lake trout occurrences, while DD5 

and MAT have mixed influences on walleye and last, these two climate variables 

have a positive influence on smallmouth bass -see Table 2.4). One hypothesis that 

for this is what was stated in 2.3.1: species  use different environmental eues to 
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maximize different life-history stages (e.g. young versus old individuals) and needs 

(e.g. reproduction versus growth) and so different temperatures may influence species 

differently across these stages of life and needs (Lee et al. 2016). 

Future studies should investigate how consider more elaborate indexes of community 

composition, which would incorporate information about other fish species belonging 

to the same lake communities. Biotic interactions are dynamic within changing 

environment, but the interactions and species assemblages under investigation should 

remain relatively static if it is of interest to include them into SDMs, and this is 

particularly important for studies on species under climate or land-use change (Davis 

et al. 1998). Sorne environmental conditions may be an indirect reflection of biotic 

interactions, falsely suggesting a direct dependence on abiotic factors where in fact a 

biologically mediated dependence may be the case. On the other hand, it is also 

possible that some biotic interactions might be just caused by abiotic factors (Guisan 

and Thuiller 2005). Adding biotic information into SDMs may increase the 

complexity of modelling, therefore the most efficient way to incorporate only the 

necessary biotic factors should be explored. 

More effective conservation of aquatic biodiversity will require new approaches that 

recognize the protection of key local- and regional-scale processes that shape fish 

distributions (Angermeier and Winston 1999). Developments in these areas require an 

increased reliance on probabilistic models and will represent an important 

advancement in both population and community ecology. This study shows that 

statistical modelling approaches exhibit considerable promise in providing testable, 

predictive models for fish ecology. Predictive models can play an important role by 

forecasting the likelihood of local establishment and spread of non-native species and 

thus help set proactive conservation priorities for preserving vulnerable populations. 
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The results related to the importance of lake size to all species serve as a basis for 

conservation measures that incorporate large lakes as part of the conservation 

strategy, given their importance in providing adequate habitat for several species. 





CHAPTERIII 

EFFECTS OF ABIOTIC FACTORS ON THE BIOMASS OF SIX FISH SPECIES 
IN ONTARIO LAKES 

W.S.C. Moreira, N. Lester and P.R. Peres-Neto 

3.1 Summary 

The ecological and economical importance of freshwater fish populations is 

unquestionable, being valuable for many reasons. They regulate ecosystem structure 

and fonction through the processes of selective predation, nutrient cycling, 

bioturbation, play a major ecological role in structuring the benthic and zooplanktonic 

invertebrate communities, they are key indicators of ecosystem health and 

environmental disturbance and possess a central spiritual value to many native 

cultures. However, high aquatic habitat degradation from overexploitation, water 

pollution, flow modification and invasion of exotic species are causing freshwater 

fish to become one of the most threatened groups of vertebrates worldwide. It is 

therefore vital that fisheries managers, governments and the outdoor recreation 

industry prioritize their actions on ensuring the sustainability of the actual fish stocks 

under exploitation and habitat loss, via productivity assessments. It is of interest to 

fisheries ecologists to know how fish production and biomass vary among 

ecosystems and populations or due to changes in environmental conditions. A first 

step towards this goal is to detennine which characteristics of ecosystems have the 

greatest impact on them. The objective of this chapter is to develop biomass models 

for six freshwater fish species present in Ontario lakes (lake trout, lake whitefish, 

walleye, northern pike, white sucker and smallmouth bass ), using environmental 
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predictors based on principal environmental determinants (light, heat, nutrients ), 

together with fishing pressure. The species were chosen in order to disentangle the 

effects of climate and exploitation. The database used to develop the biomass models 

was provided by a broad-scale monitoring (BsM) program from the Ontario Ministry 

of N atural Resources and Forestry and consisted of surveys done on 722 lakes. 

Biomass was expressed through biomass-per-unit effort (BPUE, kg/gang-night) and 

modelled using boosted regression trees. We hypothesized that angling score would 

be an important predictor of walleye, northem pike, lake trout and smallmouth bass, 

but results showed that it does not represent an important variable for these species, 

just moderately for northem pike. Our study provides a better understanding of the 

different factors driving biomass of the different species; how they interact, while 

bringing to light the importance of lake morphometry and climate to predict both 

occurrence and biomass of freshwater fish species from Ontario lakes. From the 

management point of view, these two environmental determinants should be 

primarily taken into account, not only when selecting new conservation areas but also 

when seeking an optimization of lake resources contributing to the sustainable 

practice of sport fishing. 

3 .2 Introduction 

The ecological and economical importance of freshwater fish populations is 

unquestionable. They regulate ecosystem structure and fonction through the processes 

of selective (non-random) predation (Carpenter et al. 1985), nutrient cycling 

(Schindler 1992) and bioturbation (Gelwick et al. 1997); they play a major ecological 

role in structuring the benthic and zooplanktonic invertebrate communities (Benndorf 

et al. 1984; Mazumder et al. 1988; McQueen et al. 1990); they are key indicators of 

ecosystem health and environmental disturbance (Karr 1981); and they possess a 
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central spiritual value to many native cultures (Swezey and Heizer 1977). 

Economically, sport freshwater fisheries are increasingly replacing commercial 

fisheries landings, consisting of a driving force generating recreational values of 

$CDN 8.8 billion in Canada in 2010 (Fisheries and Oceans Canada 2012), and 

sportfishing's social value lies in its role as a recreational experience. 

However, high aquatic habitat degradation from overexploitation, water pollution, 

flow modification and invasion of exotic species are causing freshwater fish to 

become one of the most threatened groups of vertebrates worldwide (Allan and 

Flecker 1993; Naiman et al. 1995; Naiman and Turner 2000; Jackson et al. 2001; 

Malmqvist and Rundle 2002; Rahel 2002; Postel and Richter 2003; Revenga et al. 

2005). lt is therefore vital that the fishing industry and governments prioritize their 

actions on ensuring the sustainability of the actual fish stocks under exploitation and 

habitat loss. Understanding the effects of such stresses on the abundance of various 

fish species depends on our knowledge of how natural factors affect fish species. 

At equilibrium, unexploited fish stocks produce exactly enough biomass to balance 

natural mortality (Downing and Plante 1993). The renewal of the stock is 

characterized by production, defined by Ricker (1975) as amount of tissue generated 

per unit time per unit area, regardless of whether or not fish survive during the time 

interval. By definition, production (P) = biomass (B) * mortality (M), with production 

and biomass being commonly standardized by lake area (Mertz and Myers 1998). lt is 

thus of interest to fisheries ecologists to know how biomass and fish production 

varies: (1) among ecosystems and populations; (2) over time; (3) due to changes in 

environmental conditions (Bradford and Irving 2000) and/or (4) across different life 
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history strategies (Musick 1999). A first step towards this goal is to determine which 

characteristics of ecosystems have the greatest influence on biomass and 

consequently, production. Investigations that have as a main scope to identify the 

main factors driving biomass of a certain species also assist in understanding which 

factors drive the production of the same species. In the previous chapter, we showed 

how the occurrence of six fish species in Ontario lakes is affected by various abiotic 

factors and the community composition of these lakes; in this chapter we explore the 

effect of abiotic factors on the biomass of the same fish species. 

An exhaustive number of models to account for freshwater fish biomass and 

production is available in the literature, however, these models disagree about the 

characteristics of lakes that have the greatest influence on them. For instance, 

previous fish biomass models showed that total phosphorus (Quiros 1990; Randall et 

al. 1995), carbonate content (Carlander 1955) , total nitrogen (Moyle 1956) and total 

dissolved solids (Rawson 1960; Jenkins 1967) were good predictors; for fish 

production models, mean depth or lake area (Rounsefell 1946; Rawson 1955), fish 

density (Randall et al. 1995), primary production of the water column (Downing et 

al. 1990), secchi depth (Lester et al. 2004), thermal-optical habitat (Lester et al. 

2004), morphoedaphic index (Ryder 1965), annual average fish standing stock 

(Downing et al. (1990), total phosphorus (Hanson and Legget 1982), algal biomass 

(Jones and Royer 1982), macrobenthos (Matuszek 1978), climate (Schlesinger and 

Regier 1982) and lake morphometry (Schlesinger and McCombie 1983) were shown 

to be influential parameters. Although these models disagree in terms of the most 

important predictors of biomass and production, all the factors identified as 

influential fit within a conceptual model proposed by Ryder and Kerr (1989). 
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Biomass of different species is mainly driven by, according to Ryder and Kerr 

(1989), the four fondamental ecosystem properties: light, heat, dissolved oxygen and 

nutrients, which are critical environmental factors for fish survival and subsequent 

production. These four fondamental properties do not constitute an exhaustive list of 

all factors critical to the survival and production of fishes, but rather are a subset of 

high priority. Heat and light are the principal energetic inputs affecting the survival of 

fishes while oxygen and nutrients constitute the two fondamental and essential 

material items (see Figure 3.1). As a generalization, survival depends on fish 

satisfying their most critical needs first ( dissolved oxygen, preferred temperature ), at 

which point behaviour becomes dependent on the controlling factors, nutrients and 

light. These four factors are interrelated to varying degrees, for example temperature 

affects dissolved oxygen saturation levels; light controls photosynthesis, and hence, 

nutrient availability; photosynthesis, in turn, contributes to the concentrations of 

dissolved oxygen. 

Temperature is one of the most important abiotic factors influencing fish survival and 

performance (Christie and Regier 1988). As fish are obligate poikilothermic 

ectotherms, their body temperatures are equal to or within a few fractions of a degree 

of the surrounding water temperature (Beitinger et al. 2000). Therefore, they are 

highly dependent · on water temperature to maintain important biochemical, 

physiological and life history processes (Beitinger et al. 2000). Previous studies have 

shown that physiological performance of fish is maximized within a narrow 

temperature range and that, depending on the species, optimal temperatures for many 

processes centre around a specific value (Jobling 1994). Christie and Regier (1988) 

show strong relationships between thermal habitat measures and sustained yield of 

lake trout, lake whitefish, walleye and northern pike. Shuter et al. (1983) have shown 



112 

that differences in the supply of thermal habitat for fish are predicted largely from 

~ morphometry and air te1llperatures, indicating that these variables are also 

important when assessing fish production. 

~ ·--
Light 

g ~  • .•.·.•.•.•.•.••••.•••.•» 
d 
8 

Nutrients 

Energy 

Matter 

Heat 

~ ·-) .. .. .. . .. 1 ·§ 
~ 

Oxygen 

Figure 3.1: Schema of four principal environmental determinants as configured and 
entrained by the morphology of an ecosystem, in this case, habitat. The four 
determinants are comprised of two energetic factors (light and heat) and two material 
factors (nutrients and oxygen). Light and nutrients are controlling in the sense that 
they influence behavior and metabolism, but are rarely lethal at any level found in 
nature. Heat and oxygen are controlling in their intermediate ranges, but may be 

~  at the extremities, and therefore are often lethal. Extract from. Ryder and Kerr 
(1989). 

Light is another important environmental determinant controlling fish behavior and 

metabolism. Subsurface illumination, because of its environmental pervasiveness at 

various levels of intensity, is rarely considered to be as critical an environmental 

determinant as dissolved oxygen and temperature. The retinal response to light is not 

the same in all fish species, despite their broad tolerances of subsurface illumination. 
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Sorne species are able to tolerate these wide ranges because they possess specialized 

retinal structures,·or have the ability to occlude light with moving pigments (Ali et al. 

1977). Other species utilize the turbidity of the water colunin to shield sensitive 

retinae from the refracted sunlight of the water surface, while still others use physical 

structures for the same purpose (Ryder 1977). Sorne fishes, such as the walleye 

(Sander vitreus), have scotopic (dim-light) vision and are eminently well adapted to 

crepuscular and nocturnal feeding and spawning (Scott and Crossman 1998). On the 

other hand, a sympatrie piscivorous specie_s, the northern pike (Esox Lucius), 

normally feeds and spawns only during daylight hours (Sawatzky et al. 2007). 

Walleyes may actually be temporarily stunned at high daylight intensities and are 

unlikely to be found feeding at the surface of a clearwater lake on a sunny day. 

Northern pike which have photopic (daylight) vision, are ineffectual feeders at night 

despite their extensive use of the lateral lines in feeding (Nikolsky 1963). Based on 

these observations, Ryder and Kerr ( 1989) regarded light as an ecological cleaver that 

determines the relative dominance or subordinance of species. Lester et al. (2004) 

stressed the importance of water clarity in predicting potential yield of walleye, 

integrating this variable with lake bathymetry, thermocline depth and climate. 

The other controlling factor in the Ryder and Kerr model is nutrients. Nutrients reach 

fish through the intermediacy · of lower trophic levels, · being first absorbed by 

autotrophic plant life and passed up the trophic ladder through the agencies of grazing 

and ultimately, predation. As in the case of light, nutrients are rarely a lethal factor by 

themselves, unless augmented to extremely high levels through eutrophication and 

associated with anoxie levels of dissolved oxygen. Low levels of nutrients are not 

likely to be ~  as ~ communities adapt by maintaining low levels o,f, standing 

stocks through compensatory feedback (Ryder and Kerr 1989). The morphometry of 
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the lake is especially important in respect to the way nutrients are channeled in the 

system. The first published fish production models were a function of simple 

morphometric variables like area or lake mean depth (Rounsefell 1946; Rawson 

1952). Later on, Ryder (1965) introduced the morphoedaphic index (MEi = Total 

Dissolved Solids/ Mean Depth), which brought popularity to nutrients as an important 

environmental determinant to predict fish production. MEi' s simplicity has made it a 

landmark of lake fisheries management, being extensively used together with other 

physical, chemical and biological indices. Since its first appearance, MEi has been 

the subject of more than 100 publications in primary scientific literature (e.g. Jenkins 

1967; Henderson and Welcomme 1974; Oglesby 1977; Ryan and Harvey 1977; 

Matuszek 1978) . Later on, Ryder (1982) reviewed MEi and acknowledged that fish 

production should be addressed at three hierarchic levels: global (where temperature 

and area are of prime importance and are interrelated through total calorie content), 

regional (where mean air temperature, lake morphometry and nutrients are important) 

and infra-regional (where mean depth would be influential). Schlesinger and Regier 

(1982) proposed an adaptation to MEi by incorporating climate via mean annual air 

temperature, showing good model results while accounting for regional differences in 

climate. On the other band, Downing and Plante (1993) criticized the performance of 

MEi in their work, showing that it was not significantly correlated with fish 

production when biomass and body mass effects were considered. Models linking 

fish production to phytoplankton (Oglesby 1977) and benthos (Matuszek 1978) 

productivity became popular in the 70s, showing themselves to constitute improved 

indicators over the morphoedaphic index. Recent works have used total phosphorus 

(TP) as a nutrient indicator, since it is a prbxy for nutrient control of phytoplankton 

biomass, having a direct link to primary production and consequently, production on 

higher trophic levels of the lake (Prairie et al. 1989; Vadenbocoeur et al. 2008; 

Vander Zanden et al. 2011). ln addition, in studies considering the effect of total 

phosphorus on fish production, it was reported its relationship with dissolved organic 
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carbon (DOC) and how the latter serves as a proxy of water clarity, impacting benthic 

production (Finstad et al. 2014). 

Oxygen (i.e., dissolved oxygen, DO) is another limiting fondamental environmental 

determinant of aquatic life. The proportion of oxygen in air that dissolves in water is 

about 35%. This solubility is governed by atmospheric and hydrostatic pressure, 

turbulence, temperature, salinity, currents, upwellings, ice cover, ~ biological 

processes (Wetzel 1983). Major sources of DO in water are the atmosphere and the 

photosynthesis by aquatic vegetation. The amount of oxygen available for aquatic 

life, however, depends on the factors that affect its solubility. In large and deep 

freshwater systems, oxygenation depends on circulation by winds, currents, and 

inflows to move aerated water away from the surface. Due to human activities, 

thermally stratified lakes are affected by oxygen depletion via increase of phosphorus 

loadings, that causes algal blooms and therefore, depletion of late-summer dissolved 

oxygen levels in the hypolimnion (cold lower water layer) of lakes (Lienesch et al. 

2005). In Ontario, surface water temperature in the summer becomes too warm for 

cold water species. Consequently, these three factors (morphometry of the lake, 

nutrients load and DO) interact to determine habitat availability for cold water species 

(Evans 2007). 

Overall, the research on fish production has shown that the main parameters related to 

it are alkalinity, algal biomass (chlorophyll a), air temperature, area, benthos standing 

crop, body size, fishing effort, mean depth, phytoplankton productivity, total 

dissolved solids, total nitrogen concentration and total phosphorus concentration. 

Understanding which factors drive the dynamics of different species and better 
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describe their habitat preferences is key to better manage impacts of climate change 

on fish production. 

The objective of Chapter 3 is to develop biomass models for the six fish species for 

which fish-habitat models were developed in Chapter 2 (lake trout, lake whitefish, 

walleye, northern pike, white sucker and smallmouth bass). The same abiotic 

variables were chosen - ail of which are based on the principal environmental 

determinants identified by Ryder and Kerr (1989). In addition, we included fishing 

pressure because several of these species are harvested by anglers (mainly lake trout, 

walleye and northern pike; smallmouth bass is also a popular sport fish target, but 

harvested less because anglers practice more catch and release for this species ). Also, 

fishing pressure included to assist in understanding the effects of abiotic factors, 

although it is of interest to know how biomass of target species have been impacted 

by fishing pressure. The species were chosen in order to disentangle the effects of 

climate and exploitation (Table 3.1), since angling pressure tends to correlate with 

temperature. Lake trout, walleye, northern pike and smallmouth bass were selected 

because they are popular targets of recreational fishing (Fisheries and Oceans Canada 

2012), and this group of species includes one cold water species (lake trout), two cool 

water species (walleye and northern pike) and one warm water species (smallmouth 

bass ). Angling pressure on these species varies across the province of Ontario, 

tending to be higher in the South which bas higher human population. The other two 

species consist of one cool water (white sucker) and one cold water (lake whitefish) 

species, both receiving very little stress from angling. 



Table 3.1: Species chosen according to the exploitation level 
and thermal guild 

Thermal Guild 1 Exploitation 
Low 1 High 

Cold water 

Cool water 

Warmwater 

Lake Whitefish 1 Lake Trout 

White Sucker Walleye 

N orthem Pike 

S malhnouth Bass 
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Four models with different sets of predictors were built for each species: (i) a full 

model including all the environmental features to be used in this study, together with 

angling pressure; (ii) a model that included exactly the same environmental variables 

used for the development of fish occurrence models in Chapter 2, in order to verify 

the level of agreement between biomass and presence-absence models for the six fish 

species; (iii) a model with secchi depth, total dissolved solids (TDS) and pH 

encompassing the pool of variables representing the water chemistry environmental 

determinant; and (iv) a model with total phosphorus (TP), dissolved organic carbon 

(DOC) and pH representing water chemistry. Models (iii) and (iv) allow comparisons 

in order to determine which set of water chemistry parameters provide a better mode! 

parsimony, consisting of an optimization of the full model. Fishing pressure (in the 

form of an angling score) was also part of the modelling routine in models (i), (iii) 
' ' ' \ . 

and (iv), and the degree of its influence on the biomass of the different species is 

evaluated. No study to date has carried out a thoroughly investigation on biomass 

models specific to each of the fish species targeted here, evaluating: (i) the 

environmental determinants that are important for each species; (ii) the extent to 

which biomass is affected by angling pressure; (iii) the level of agreement between 

the importance of variables to predict biomass and presence-absence; and (iv) how 

the different environmental features contribute to biomass prediction via BPUE. 
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3.3 Methods 

3 .3 .1 Fish-environment data source 

The database used to develop the species biomass in this study was provided by the 

Inland Lakes Broad-scale Monitoring program of Ontario (BsM). This program is 

part of Ontario's Ecological Framework for Fisheries Management which aims to: (i) 

describe of the geographic distribution, extent and characteristics of aquatic resources 

in Ontario; (ii) estimate, with known confidence, the current status and trends in 

selected indicators of fishery resources; (iii) identify natural and anthropogenic 

stresses affecting the condition of aquatic resources and (iv) provide periodic reports 

on the state of aquatic resources. 

3.3.2 Lake Selection 

The target population for the BsM program is lakes larger than 50 ha, of which there 

are approximately 11000 in Ontario. The data used in this study is based on surveys 

from 721 lakes which were conducted during the first cycle of BsM (2008-2012). The 

dataset is a stratified random sample of lakes (see Figure 3.2). The province of 

Ontario is divided into 14 inland management units (i.e. excluding the Great Lakes 

and Ottawa River); within each of these zones, lakes were divided into size classes 

based on lake area ( 50-500 ha, 500-1500 ha, 1500-5000 ha, and > 5000 ha) and an 

equal number of lakes within each size class were randomly selected. This selection 

procedure was adjusted to ensure that 10% of known lake trout lakes and 20% of 
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known walleye lakes were sampled in each zone. Standardized surveys were 

conducted on each lake to sample lake morphometry, water quality, fish assemblages, 

and angling pressure in each lake. 

BsM-Cycle 1 
2008-2012 

Figure 3.2: Distribution of the sampled lakes across Ontario during the first cycle of 
1 

the BsM program. 

3.3.3 Fish community sampling 

Fish assemblages were sampled using small and large mesh gillnets. Data used in this 

study is based on the large mesh gillnets which conforms with the proposed North 

~ ~ 
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American standard (Bonar et al. 2009): 24.8 min length with eight panels of mesh 

ranging from 38 to 127 mm (38, 51, 64, 76, 89, 102, 114, and 127 mm). Nets were set 

- in the aftemoon and lifted in the moming with a target soak time of 18 h. A double 

gang strap was typically used (i.e., two nets strung together). Sampling details are 

described in Sandstrom et al. (2011). 

3.3.3.1 BPUE 

Sampling was depth stratified, and gillnets gear was fished in all depth strata: 0-3, 3-

6, 6-12, 12-20, 20-35, 35-50, 50-75, 75+ m. Sampling sites were assigned randomly 

within each stratum. The number of sites per stratum ranged from two to nine 

depending on lake size (see table 4 in Sandstrom et al. 2011). Species and fork length 

were recorded for all caught fishes. Lake-wide BPUE (biomass-per-unit effort) was 

calculated as area-weighted estimates of BPUE. For each lake, we calculated the 

BPUE and benthic area in each sampled depth stratum and then calculated the area-

weighted mean. The resulting BPUE was based on the full range of body sizes caught 

in each lake, measured as kg/gang-night, where a gang is 24.8 m long and 1.8 m high, 

equivalent to 45 m2. BPUE is used as an index of biomass density (kg/hectare), using 

as an assumption the relationship of BPUE to stock size and consequently, biomass 

density (Hanchet et al. 2005). Table 3.2 shows descriptive statistics of BPUE for the 

six freshwater fishes in this study. 



121 

Table 3.2: Descriptive statistics ofBPUE (kg/gang-night) for the six sport fish species 

Thermal guild Fish species 
N umber of lakes with Mean Standard Range 

· species present Deviation 

Cold Lake trout 288 0.699 0.729 6.53 

Lake whitefish 362 1.004 1.196 10.5 

Cool Walleye 474 1.827 1.974 12.08 

N orthem pike 499 0.882 0.921 6.16 

White sucker 643 1.303 1.362 9.18 

Warm Smailmouth bass 310 0.350 0.320 1.89 

3.3.4 Environmental predictors and angling score 

Table 3.3 summarises the descriptive statistics of all environmental predictors that 

were used to predict the biomass of all six freshwater fish species, along with fishing 

pressure: growing degree days above 5°C for 1981-2010 (DD5), mean air 

temperature for 1981-2010 (MAT), surface area of the lake transformed using loglO 

(LlOArea), shoreline development factor (SDF, see Chapter II section 2.3.1 for 

details ), maximum and mean depth of the lake (Depth_Max and Depth_Mn 

respectively), total dissolved solids (TDS), total phosphorus (TP), dissolved organic 

carbon (DOC), secchi depth (Secchi), pH and angling score, which was computed 

based on angling pressure (angler-hours/hectare). Angling pressure was measured as 

part of the BsM protocol. Aerial surveys of angler activities in summer ( eight 

weekday and eight weekend flights) and winter (six weekday and six weekend 

flights) provided the data used to estimate annual angling pressure. The summer 

count included the number of vessels and shore anglers, whereas the winter count 

included the number of ice buts and anglers on open ice. Weekend and weekday 
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angler counts were used to calculate mean angling activity for each season in each 

lake i: 

. . 5/7 LoUntweekday,i,s,m + 2/7Countweekend,i,s,m 
Activityi,s,m = Areai 

Activityï,s,m is then multiplied by the number of anglers in vessels, shore anglers, ice 

huts, open-ice anglers, season length, and hours fished per day and then summed for 

all seasons and methods to produce annual estimates of angling pressure. 

s,m 
Angi = L ActivitYi,s,m x anglerm X season x hours 

s,m=l 

See Chu et al. (2016) for more details on these expressions. Angling pressure was 

then converted to angling score as a form of standardization given that angling 

pressure has a very skewed distribution, with big gaps among some values of its 

range. The BsM survey made available information about extra water chemistry 

variables such as TP and DOC, which were not collected in the AHI survey used to 

build species distribution models in Chapter 2. Table 3.4 provides information on the 

correlations among all predictors to be used in the biomass modelling process. The 

same comments done regarding the correlations seen in Chapter 2 hold true for this 

chapter. Additionally, the correlation between angling score and climate reflects how 

angling is dependent on climate, with increased angling in the south of Ontario. The 

negative correlation seen between secchi and DOC is related to the impact of DOC on 

water clarity, while the correlation between pH and TDS is explained by 

conductivity, which is positively related to both of these water chemistry parameters. 
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Table 3.3: Descriptive statistics of all environmental predictors and fishing pressure. 
The ranges for angling score were: 1= 0 - 1 hr.ha-1.yr-1; 2= 1.1-5 hr.ha-1.yr-1; 3= 5.1-
10 hr.ha-1.yr-1; 4= 10.1-20 hr.ha-1.yr-1; 5= 20.1-40 hr.ha-1.yr-1 and 6= 40.1+ hr.ha-1.yr-
1 

Predictors 1 
Standard 

n Mean Deviation Range 
Climate DD5 (growing degree-days) 683 1611.7 212.2 1187 

MAT(°C) 683 3.229 1.762 10 

L1 OArea (ha) 683 2.782 0.667 3.64 
Lake SDF 681 4.69 : 3.12 19.78 
Morphmœtry Depth_Max (m) 683 29.67 22.93 185.1 

Depth_Mn (m) 683 8.74 6.64 39.5 

TDS (mg/L) 683 49.76 49.02 385.6 
TP (uWi-) 682 9.93 6.45 50.8 

Water Chemistry DOC (mg/L) 682 7.33 3.51 18.4 
Secchi(m) 682 3.60 1.79 11.7 
pH 673 7.16 0.53 3.1 

Angling Score 1 663 2.53 1.28 5 
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3.3.5 Statistical analyses 

Boosted regression tree analyses (BRT) were used to identify which variables 

influenced BPUE for each freshwater fish species. The choice of modelling approach 

cornes from the good results shown by this method in Chapter 2, added to its 

capability to create partial dependence plots, which allows the assessment of the 

influence of each independent variable on the response variable. BRTs combine 

regression trees (generated with recursive binary splits) with boosting ( combining 

trees to improve predictive performance) to produce a model built on multiple instead 

of single trees (Elith et al. 2008). The general approach is to iteratively compute a 

sequence of trees in which each successive tree is built from the prediction residuals 

of the preceding tree. The optimal number of trees is determined when the mean 

predictive deviance of the 10-fold cross-validation process is minimized given the 

learning rate, tree complexity, and bag fraction settings. Deviance measures how 

much the predicted values differ from the observations and represents the loss in 

predictive performance due to a suboptimal model. Percentage deviance explained, or 

pseudo R2, was calculated as 1- (residual deviance/total deviance) and, similar to 

traditional regression techniques, should approach one when predictive performance 

is maximized (Elith et al. 2008). The 10-fold cross-validation process evaluates 

predictions of the model using 10 subsets of randomly selected data (Emmrich et al. 

2014). 

Relative influences of the explanatory predictors are determined based on the number 

of times that they are included in the trees, and the improvement in the models with 

their inclusion is averaged across ail trees (Friedman and Meulman 2003; Elith et al. 

2008). They are scaled to 1 OO with higher numbers indicating stronger influences on 
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the response variables (Elith et al. 2008). The BRT models were developed with 

Gaussian error distributions, learning rate of 0.005, tree complexity of 5 and bag 

fraction of 0.5. All computations were done using R 3.3.3 (R Development Core 

Team 2008), and the BRT models were developed using the "dismo" and "gbm" 

packages as outlined by Elith et al. (2008). 

For each fish species, four different sets of variables were used to estimate BPUE. 

The first set consisted of the full set of predictors shown in Table 3.3; The second set 

(set 2) excluded TP, DOC and angling score in order to keep the same set of variables 

used to predict presence-absence in Chapter 2, with the objective to verify if the main 

variables used to predict BPUE were also indicated as important ones to predict 

presence-absence in that chapter; The third set (set 3) excluded TP and DOC, having 

pH, TDS and secchi depth as the predictors representing water chemistry; And finally 

the fourth set (set 4) excluded TDS and secchi depth, having pH, DOC and TP as 

predictors representing water chemistry. Sets 3 and 4 had as main objective to allow 

verification of whether predictive performance is improved by keeping a more 

parsimonious set of water chemistry variables. The relative influence of each 

predictor, the mean squared error and the percentage deviance of BPUE explained by 

the BRT models were also computed to serve as assessment of the modelling quality. 

3.4 Results 

Table 3.5a and 3.5b summarises the BRT results for the four sets of predictors. These 

models explained deviance in BPUE ranging from 19.71 % to 77.86%, a fairly good 

explanation with a considerably broad range. Figure 3.3 shows the explained 

deviance variation across different sets and freshwater fish species. Overall: (i) lower 
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explained deviances were obtained for the smallmouth bass models, with the 

minimum deviance value seen for the full model; (ii) higher deviances were obtained 

from walleye models, with the maximum value seen for walleye BPUE being 

predicted by the set 4 of predictors (when water chemistry was represented by DOC, 

pH and total phosphorus). Mixed results regarding which set of predictors better 

predicted BPUE are seen when deviance results were compared within species. For 

lake trout and white sucker, the full model showed the best results; for lake whitefish 

and smallmouth bass, the model using the set 3 of predictors was the best performing, 

while for walleye and northem pike, it was the model using the set 4 of predictors 

that showed optimal results. However, among the subsets of predictors from the full 

model used to predict BPUE (represented by sets 2-4), in average, the set 4 was the 

one presenting the higher deviance values (50.5%, against 46.9% for set 2 and 48.2% 

for set 3). 

Graphical calibration results were expressed in terms of MSE/Mean BPUE for each 

freshwater fish species. Results (Figure 3.4) indicated that smallmouth bass models 

were the most precise (MSE/Mean BPUE 0.217-0.242), and lake whitefish models 

were the least precise (MSE/Mean BPUE 0.629-0.711). On average, the BPUE 

models that showed the best precision were the full models (mean MSE/Mean BPUE 

= 0.4998) and the ones using the set 4 of predictors (mean MSE/Mean BPUE = 

0.5061), while the models using the set 2 of predictors performed the worst (mean 

MSE/Mean BPUE = 0.5502). 
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3.4.1 Environmental determinants of species biomass 

Figure 3.5 presents the relative importance of variables in each species biomass 

model, based on the full set of predictors. Models developed for cold water species 

showed differences in the most important predictors. For lake trout, water chemistry 

was the most important environmental feature (61.31 %; contributions of each 

predictor showed in Table 3.5a), followed by lake morphometry (21.64%) and 

climate (15.85% ); pH was the most important variable (31.06% ). For lake whitefish, 

lake morphometry is most important (43.18%), followed by roughly equal 

contributions from water chemistry (28.14%) and climate (27.25%); SDF was the 

most important variable (19.13%). 

Mixed results were also observed for cool water species. Lake morphometry was the 

most important predictor for BPUE of white suckers (37.44%) and northem pike 

(34.77%), while climate was the primary predictor for walleye BPUE (40.97). 

However, the single most important variable for all cool water species was a clirnate 

variable: DD5 for white sucker (16.90%), and MAT for northern pike (19.24%) and 

walleye (34.48%). 

Smallmouth bass, the single representative of warm water species, was rnost 

influenced by lake morphometry (41.32%), closely followed by water chemistry 

(38.11 %) then climate with 17.9%; Mean depth was the single most important 

variable (16.67%). 

Angling Score was universally low as a predictor of BPUE. Angling Score showed 

some influence on northern pike biomass, where it ranked as the fourth most 
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important variable (9 .06% ). Biomass models for other species ranked Angling Score 

as last in all cases, except white sucker. 
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3.4.2 Comparison of biomass and occurrence models. 

Figure 3.6 shows the variable relative importance for the six freshwater fish species' 

models using the set 2 of predictors, which is the same used to estimate presence-

absence of the same six fish species in Chapter 2, and the purpose here is to both 

verify (1) in which way variable relative importance changes in comparison to the full 

model and (2) make a parallel with the results shown in Chapter 2, identifying the 

existence of any similarities between the environmental determinants which are 

important to predict BPUE of the six fish species, and the ones which are important to 

predict presence-absence of the sarne species. 

Cold water species' biomass models continued to display differences in respect to the 

most important environmental features, but in the same way as seen on the full 

models' results. Water chemistry was still the most important environmental feature 

for lake trout (41.20%, Table 3.5a), followed by lake morphometry (34.91 %) and 

climate (23.90% ); pH remained the most important variable (31.06% ). For lake 

whitefish, lake morphometry was still the most important environmental feature 

(51.54%), then climate (28.44%) and water chemistry (20.01 %). In addition, SDF 

remained as the most important variable in the prediction of lake whitefish biomass 

(21.47%). 
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Results from Chapter 2 indicated lake morphometry as the most important 

determinant in predicting the occurrence of lake trout and lake ~ with Max 

Depth and LoglOArea, respectively, being the most important variables. In the case 

of lake whitefish, climate also played an important role. For lake whitefish, the 

biomass model (Figure 3.6) roughly agrees with the occurrence model: lake 

morphometry and climate were the most important determinants. For lake trout, 

however, the two models did not agree: water chemistry was the primary predictor of 

biomass. 

For cool water species, lake morphometry continued to be the most important 

environmental feature for white sucker and northern pike biomass ( 42.13% and 

48.19% respectively, Table 3.5a); climate continued to be the most important for 

walleye (45.64%). Like seen in the full models, the most important variables for the 

three cool water species' biomass were climate ones: DD5 for white sucker 

contributing 20.69%, and MAT for northern pike and walleye contributing 26.72% 

and 38.35%, respectively. 

The models built in Chapter 2 to predict presence-absence of the three cool water 

species showed lake morphometry through loglO area to be the most important 

variable, followed by climate through MAT. It is clear from these results that these 

two environmental determinants are fondamental in determining both occurrence and 

biomass of cool water species, however the results suggest that lake size is the most 

important variable shaping occurrence of cool water species, while climate variables 

are the most important for biomass (Figure 3.6). 
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Finally, smallmouth bass results were similar to the full model ones, following the 

same trend seen for cold and cool water species. The most influential environmental 

determinant for this species' biomass was still lake morphometry (48.50%; Table 

3.5a), followed by water chemistry (30.11 %) and climate (21.39%); Mean Depth was 

the most important variable (15.78%), followed by a roughly equal contribution of 

LoglOArea (14.37%). Chapter 2 results indicated both climate through MAT and lake 

morphometry through Log 1 OArea to be important predictors of smallmouth bass 

occurrence, which suggests that these two environmental features are important in 

shaping this species' presence-absence, while its biomass assessed via BPUE is 

primarily driven by lake morphometry. 

3.4.3 Seeking model parsimony: a comparison between models using the set 3 and 

4 of predictors. 

Figure 3.7 presents the variable relative importance for the six freshwater fish 

species' models using the set 3 of predictors, which consists of water chemistry being 

represented by pH, Secchi Depth and TDS, and Figure 3.8 presents the results using 

the set 4 of predictors, consisting of water chemistry being represented by pH, Total 

Phosphorus and DOC. The results of the two models were compared to determine 

which set of water chemistry predictors provides a better model parsimony, 

consisting of a model optimization. 

Comparison of results from sets 3 and 4 indicates that an increase in the water 

chemistry contribution occurred when TDS and Secchi Depth were replaced by DOC 

and TP. The greatest increase occurred for lake trout (from 40.53% to 56.92% ). The 
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sole exception was smallmouth bass, for which the water chemistry contribution 

decreased slightly (from 29.59% to 26.78%). 

Figures 3 .3 and 3 .4 indicated that, in average, set 4 had the highest explained 

deviance and lowest MSE among sets 2-4. Therefore, these findings suggest that 

water chemistry represented by DOC and TP is a good parsimonious choice of 

variables for predicting biomass. 
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3.4.4 Responses of BPUE from all six freshwater fish species according to the 

different environmental determinants 

Partial dependency plots isolate the influence of individual predictor variables by 

fixing the variable of interest to a set value, predicting outcomes for all possible 

combinations of the other variables in the model, and averaging the predicted 

response. In this instance, the y-axis represents the probability of success in biomass 

production, which varies in response to the value of the predictor (represented on the 

x-axis). The shape of the relationship in the partial dependence plot therefore 

indicates how biomass patterns change as one moves along abiotic variables. 

Partial dependence plots showing the responses of BPUE to the different 

environmental determinants are presented in Figure 3.9 (a to c). These results are 

based on the analysis of the predictor set 4 (Table 3.5b, Figure 3.9). Comparisons are 

made taking into consideration only the effect of each variable (positive or negative) 

on the biomass response accounted by the y-axis. 
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3 .4.4.1 Climate 

Climate clearly has different effects on the biomass of species in different thermal 

guilds (Figure 3.9a). As expected, the biomass of cold and cool water species declines 

as temperature increases, while the warm water species increases with temperature. 

a) Cold water 

MAT had a smaller effect on cold water species, but a decreasing trend was still 

evident. For lake trout, biomass declines rapidly when MAT exceeds 2°C. Lake 

whitefish show a less clear response to MAT, but a steady decline with DDS. 

b) Cool water 

MAT exerted a greater influence on cool water species, with BPUE showing a 

sharp decrease around 1°C for white sucker and walleye, and around 2°C for 

northem pike. DDS showed a less consistent trend: white sucker biomass declined 

steeply when DDS exceed 1400 growing-degree days; walleye and northem pike 

biomass increased with DD5, reaching a plateau when DDS exceeded 1500 

growing-degree days. 

c) W arm water 

For smallmouth bass, MAT showed an increasing influence around 3 °C, that 

rapidly stabilizes. Biomass for values of MAT below 2°C were zero, which 

explains the lack of response (and consequent representation of the x-axis starting 

from 2°C). DDS influence on biomass shows a moderate peak in response that 

can be seen around 1600 growing-degree days, rapidly declining for higher values 

of this variable. 
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3.4.4.2 Lake morphometry 

Lake morphometry influence on BPUE response for the three thermal guilds is shown 

on Figure 3.9b. 

a) Cold water 

Results for this thermal guild showed that lake area influences the biomass of lake 

whitefish more than lake trout. Lake whitefish biomass declines rapidly when 

LoglOArea falls below 3.2 (i.e. area = 1500 ha). Lake trout biomass also declines 

in smaller lakes, but to a much lesser extent. The response to maximum depth 

indicates an optimum around 30m for both cold water species, with a slight 

decrease beyond that value. This response to depth is less dramatic than in the 

case of cool water species. Mean depth had little influence on lake whitefish 

biomass, but a strong effect on lake trout with optimum values above 20 m. A 

rising trend could be noticed starting at about Sm, reaching its optimum at about 

20m. For both species, biomass declined with increasing SDF (i.e. higher 

shoreline complexity). This effect was more pronounced in lake whitefish. 

b) Cool water 

All three cool water species in this study responded significantly to variations in 

lake morphometry parameters. BPUE showed an increasing trend with 

LoglOArea, with walleye showing the most expressive response, which 

represents the importance of large lakes to the biomass of this species. Looking at 

the effect of depth max and mean depth, BPUE values showed a sharp decline 

with increasing depth, starting at around lOm. Northern pike was less affected by 
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increasing depths but its optimum is clearly seen in non-stratified lakes. 

Regarding the effect of SDF on BPUE results of the three species, it affected 

white sucker and northern pike more, both showed decreasing trends with 

increased lake complexity. Walleye BPUE was quite unaffected by this last lake 

morphometry parameter. 

c) W arm water 

Smallmouth bass BPUE responded remarkably to variations in lake morphometry 

predictors, with a more expressive influence of mean depth on BPUE response. 

The influence of LoglOArea on biomass initially showed a moderate increasing 

trend at 2.0 (100 ha) followed by a decrease at 2.7 (500 ha). Depth max did not 

show a notable effect on biomass, a low peak could be seen around 20m but 

quickly estabilized with increasing depths. The highest values of biomass could 

be seen in shallow lakes presenting mean depth of around Sm, followed by a 

sharp decrease with increasing mean depth. This result suggests a preference of 

this species for shallow lakes. Finally, the influence of SDF on smallmouth bass 

BPUE shows a drop around 3, with a moderate peak around 5, then decreasing 

again and estabilizing for more complex lakes. This result denotes a preference of 

this species for lakes with low complexity, but not necessarily lakes with shapes 

similar to a circle. 

3.4.4.3 Water chemistry 

The influence of DOC, TP and pH on the BPUE response of the three thermal guilds 

is shown on Figure 3.9c. 
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a) Cold water 

The water chemistry parameter that had the most influence on cold water species 

was DOC; biomass exhibited a sharp' decline with increasing values of this 

parameter. TP had little effect on lake whitefish, but a more pronounced effect on 

lake trout. Lake trout biomass initially increased with TP, reached an initial peak 

around TP = 5ug/L. lt then declined slightly before rising to a plateau when TP 

exceeded 20 mg/L. The effect of pH on lake whitefish biomass shows a peak 

between 7 .5-8, and some variation was displayed for lake trout biomass between 

6.5-7.5. 

b) Cool water 

TP did not exhibit a large influence on the biomass of white sucker and walleye, 

but a biomass peak occurs around 20 ug/L. For northern pike, biomass increased 

more rapidly with TP and plateaued when TP exceeded 20 mg/L. High DOC 

values had a negative effect on the biomass of cool water species, but little effect 

when DOC was less than 7 mg/L. On average, pH had a slight positive effect on 

the biomass of cool water species, although less so for walleye. 

c) W arm water 

TP had a moderate effect on the biomass of smallmouth bass, with a sharp drop 

after 5 ug/L and stabilization after around 15 ug/L. DOC also has a moderate 

effect on smallmouth bass, declining when DOC exceeds 5 mg/L. pH exerted low 

influence on BPUE, with a slight dip around 7.5. 

3.4.4.4 Angling score 
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The influence of angling score on the BPUE response of the three thermal guilds is 

shown on Figure 3.9c. 

a) Cold water 

Angling score did not display any remarkable impact on the BPUE of both cold 

water species. 

b) Cool water 

Fishing pressure inspected through angling score did not show any remarkable 

influence on the BPUE of white sucker and walleye, however, a moderate impact 

could be noticed on northem pike BPUE, with a biomass decrease starting at 

values above 1. 

c) W arm water 

Angling score did not exhibit any remarkable influence on the biomass of 

smallmouth bass. 

3 .5 Discussion 

The main purpose of this study was to develop biomass models for six freshwater fish 

species present in Ontario lakes, based on climatic, morphometric and water 

chemistry variables. Climate and exploitation were the main factors dictating the 

choice of species. Lake trout, walleye, northem pike and smallmouth bass were 

selected because they are popular targets of recreational fishing, and white sucker and 

lake whitefish receives very little stress from angling. The inclusion of harvested and 
.• ' 

non-harvested species would help in describing the impact of fishing. 



151 

Four models were built using different sets of predictors: the first model was 

developed using 12 predictor variables representing climate, lake morphometry, water 

chemistry and fishing effort; a second model was based on a reduced set of predictor 

variables which matched the set of predictors used in Chapter 2 to develop species 

occurrence models. This model was used to compare the relative importance of 

variables used to predict species occurrence and biomass. Two additional models 

were built to compare alternative measures of water clarity (e.g. Secchi and DOC) 

and nutrients (TDS and. TP). In Chapter 2, occurrence models were built using Secchi 
. '. .·, .. ·.,. .. . 

and TDS because detailed water chemistry data (including measures of DOC and TP) 

was not conducted when the data from 10,000 Ontario lakes was collected. More 

recent surveys, conducted by Ontario's Broad-scale Monitoring program, include 

detailed water chemistry making TP and DOC available for analysis. We tested 

whether use of TP and DOC (instead of TDS and Secchi) was more effective in 

predicting fish biomass by comparing a third model (based on TDS and Secchi) to a 

fourth model (based on DOC and TP). Both the third and fourth models included a 

common set of other variables. This comparison indicated TP and DOC was slightly 

better than TDS and Secchi, so the fourth model was chosen for exploring the effects 

of each environmental variable. These effects were described in a series of graphs 

(i.e., partial dependence plots), showing how biomass of each species responds to 

variation in environmental variables. 

Overall, the biomass models presented in this study showed satisfactory results, being 

able to showcase the main environmental determinants influencing each freshwater 

fish species, with consistency across different model types. The ability of the 

different models in explaining the variation of biomass evaluated through the 

deviance results was quite variable (19.71 - 77.86%), with an average of 49.30% 
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across all models, which consists of a moderate degree of explanation. Boosted 

regression trees are becoming increasingly popular in the literature given their ability 

to: (i) cope with uncertainty in model structure; (ii) show strong predictive 

performance; (iii) capture non-linearity in the response to individual predictors and 

interactions among predictors (Elith et al. 2008; Bond et al. 2011). Additionally, it 

consists of a flexible modelling approach since it also showed satisfactory results in 

Chapter 2 when modelling species occurrences, which are represented by a binary 

response variable. 

It is important to mention that in using BPUE as an index of biomass density, we are 

assuming that BPUE is proportional to biomass density (i.e., biomass/area) multiplied 

by a catchability coefficient (commonly addressed as q). Catchability varies across 

species because some species are more vulnerable to be captured by gillnets, but here 

we assume that q is constant across lakes for a given species. However, gillnetting is 

size selective, which can add a potential bias in using BPUE as an index of biomass. 

A future perspective of this work is to improve the biomass models built here by 

adjusting BPUE values considering correction factors for size bias. 

One of the objectives of this chapter was to address the level of agreement between 

the biomass models developed in this chapter and the occurrence models developed 

in Chapter 2, in terms of important variables shaping biomass and distribution of fish 

species. Altogether, results from both chapters indicate that both climate and lake 

morphometry are important environmental determinants shaping occurrence and 

biomass, showing that occurrence and biomass models show a high level of 

agreement. The sole exception was noted for lake trout, a cold-water species, whose 

occurrence is influenced by lake morphometry while biomass is determined by water 

chemistry. To the best of our knowledge, no previous study assessed the degree of 
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agreement between occurrence and biomass models by identifying which abiotic 

features are important in shaping occurrence and biomass, while using the same set of 

abiotic variables in both models. The literature possesses vast information about 

occurrence and biomass/production models for the species addressed here, but these 

models were built using varying numbers of predictors or different modelling 

approaches, which makes the comparison task difficult to be carried out. 

The optimization suggested by removing Secchi and TDS from the full model had 

varying impacts for the different species, but in average it presented the best deviance 

among sets 2 - 4, coupled with the lowest MSE values. These are desirable modelling 

features. All the variables considered in this study consist of abiotic ones, which raise 

a question related to how improved these models would be if we had considered 

biotic variables in the modelling process, along the lines of the investigation 

presented in Chapter 2 for occurrence models. This extension of the modelling 

approach is a topic that could be further investigated. 

Results indicated that biomass for each freshwater fish species is influenced by 

different environmental determinants, independent of the thermal guild which they 

make part. For instance, lake whitefish and lake trout are cold water species, however 

lake morphometry showed to be more influential on the biomass of this species, while 

water chemistry was more influential on the biomass of lake trout. In addition to the 

assessment of the main environmental determinants controlling the biomass of 

different species, some relationships can be established through inspection of 

interactions between variables which comprehend a given environmental determinant, 

allowing to assess their different contributions to the biomass response. 
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The final boosted regression trees models developed for all freshwater fish species 

demonstrate that climate, represented by MAT (mean air temperature) and DD5 

(growing degree days above 5°C) are highly important in explaining the variation of 

biomass predicted via BPUE, with a higher effect seen on cool water species. Figure 

3.9a shows for northern pike and walleye that while a decreasing trend in BPUE 

happens with increasing values of MAT, an increase in BPUE is seen for increasing 

values of DD5, followed by a plateau. Figure 3.10-11 allow a further investigation of 

MAT and DD5 interaction. 
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Figure 3.10: Perspective plot generated from the boosted regression tree model 
developed for walleye, showing the responses of BPUE to the interaction between 
MATandDD5. 
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Figure 3.11: Perspective plot generated from the boosted regression tree model 
developed for northem pike, showing the responses of BPUE to the interaction 
between MAT and DD5. 

According to Figures 3 .10-11, the highest values of BPUE for these two cool water 

species occur when MAT < 2°C and DD5 > 1600 growing-degree days, with MAT 

showing a negative effect beyond 2°C. Many studies have shown the influence of 

temperature on production of fish (Magnuson et al. 1979; Wismer and Christie 1987; 

Downing and Plante 1993; Chezik et al. 2013; Hansen et al. 2017); growth rate 

typically increases as temperature approaches an optimal value and then declines as 

temperature exceeds the optimum (Hanson et al. 1997). However, none of these 

studies have investigated the interaction among climate variables and their joint 

effect. The perspective plots presented by Figures 3.10-11 suggest that MAT 

determines a thermal threshold, while DD5, as a cumulative metric of temperature, 

encompasses the thermal niche of a species, which includes multiple life stages with 

differing thermal requirements (Wismer and Christie 1987). Additionally, DD5 may 

also encompass a myriad temperature influences in a single value and provide a 
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measure of the metabolically relevant temperature experience of a fish that is difficult 

to quantify based on temperature optima. 

Coupled with climate, our results also support the importance of lake morphometry to 

the biomass of bath cold water and cool water fishes abject of this study. Lake 

morphometry affects ecosystem size, that is directly related to food-chain length, 

species diversity, habitat availability and habitat heterogeneity. Overall, results 

demonstrated that biomass assessed through BPUE increased with lake size, 

markedly decreased with lake depth (with the exception of lake trout) and decreased 

with lake complexity. Large species require large home ranges (Minns 1995; 

Woolnough et al. 2008) and tend to be predatory (Romanuk et al. 2010). Physically 

larger ecosystems support more (the species-area relation; Rosenzweig 1995) and 

larger species, for bath energetic and population dynamic reasons, while food chain 

length has been suggested to increase with ecosystem size and/or ecosystem 

productivity (Schoener 1989; Vander Zanden et al. 1999; Post et al. 2000; Thompson 

and Townsend 2005; Baiser et al. 2012). The results related to the mean depth 

influence on the biomass of all three thermal guilds reflect well their habitat 

preferences. For instance, lakes with mean depth of above 10 m seem to not support 

biomass of warm and cool water species, whereas these lakes promote biomass of 

lake trout, a cold-water species that prefers large, thermally stratified lakes that 

provide cold water refuge in the summer. Mean depth is a surrogate for hydrological 

characteristics such as thermal stratification, nutrient circulation and dilution, all of 

which affect how energy is processed within the water column (Chow-Fraser 1991). 

Mean depth also governs the amount of oxygen stored in the hypolimnion during 

stratification (W alker 1979), which plays an important role in defining the living 

space of cold water and cool water species, together with temperature. Finally, the 

negative influence of SDF on cool water and cold-water species is not obvious, which 

indicates that this predictor interacts with other variables to affect BPUE. 
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Inspection of Figure 3.9c revealed some interesting relationships among the water 

chemistry predictors and their influence on the biomass for all three thermal guilds. 

Biomass increased with increasing TP values, but decreased when DOC exceeded 8 

mg/L (with the exception of smallmouth bass biomass, which decreased with small 

values of DOC). Figures 3.12-14 show the interaction between DOC and TP on the 

biomass of all three cool water species. The point which determines the threshold 

between the positive and negative effect of DOC can be clearly seen (approximately 

DOC = 8 mg/L and TP = 20 ug/L). 
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Figure 3.12: Perspective plot generated from the boosted regression tree model 
developed for walleye, showing the responses of BPUE to the interaction between 
DOC and TP. 
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Figure 3.13: Perspective plot generated from the boosted regression tree model 
developed for northern pike, showing the responses of BPUE to the interaction 
between DOC and TP . 
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Figure 3.14: Perspective plot generated from the boosted regression tree model 
developed for northern pike, showing the responses of BPUE to the interaction 
between DOC and TP. 



159 

A plausible explanation for the existence of a threshold between the positive and 

negative effect of DOC is that increased input of nutrients increases production at the 

basic trophic level (phytoplankton), which also contributes to top consumer (fish) 

biomass (Karlsson 2009). On the other band, benthic algae, which are responsible for 

benthic primary production, also play an important role in fish biomass (Karlsson 

2009) and it is primarily dictated by light availability instead of nutrients, with light 

availability being regulated by DOC. The literature reports a direct relationship 

between TP and DOC (Tanentzap et al. 2014), so when DOC increases with TP, the 

biomass increase promoted by TP is offset by the increasing loads of DOC which 

directly interfere with water clarity, thus affecting light penetration and hindering 

benthic primary production. The initial positive response may depend on several 

factors, such as screening of harmful UV-radiation (Williamson et al. 1996), 

subsiding organic C to·heterotrophic production (Cole et al. 2011) or organic P and N 

being associated with DOC. In boreal, oligotrophic lakes surrounded by pristine 

catchments DOC is also a major contributor to total P and N (Hessen et al. 2009). 

However, while N and P are mostly in organic form and thus of low bioavailability, 

some fractions of these pools will eventually mineralize and thus support primary 

production. In the case of cold water species, biomass declined rapidly as DOC 

increased (see Figure 3.9c). The reduction in light caused by higher DOC 

concentration is most likely explaining the strong negative influence that was 

observed for lake trout. In general, water clarity in lake trout lakes is controlled by 

DOC and thus, changes in optimal habitat resulting from a variation in TP would be 

much less significant than those resulting from DOC-induced modifications in water 

clarity (Clark et al. 2004), which may explain the higher impact of DOC compared to 

TP on biomass of lake trout. A model developed by Lester et al. (2004) shows the 
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importance of light, together with temperature and bathymetry in controlling walleye 

production. Their model proposed the benthic area associated with optimum light and 

temperature conditions for walleye during an annual cycle (i.e. Thermal Optical 

Habitat Area, TORA) as a predictor. When testing the applicability of their model in 

explaining known walleye yield, they found that little walleye habitat exists in really 

dark waters. The available TORA increased rapidly as water clarity increased, but 

then declined exponentially after reaching what corresponds to the optimal water 

clarity. These observations also agree with the proposition of a threshold separating 

the positive and negative effects of DOC observed by Finstad et al. (2014). 

Our water chemistry results revealed a high variable importance linked to pH in lake 

trout models, which was unexpected. The literature reports the sensitivity and past 

impact of acid waters to this species in a few Ontario lakes (Gunn and Keller 1990), 

as large lakes are more susceptible to the effects of acid rain promoted by industrial 

activities, which release acidifying substances to the atmosphere. Another reason that 

can explain the high importance of pH in predicting lake trout biomass is the 

interaction of pH and mean depth (see Figure 3.15. Depths of 20 m coupled with pH 

values of approximately 6.5 seem to offer optimal habitat for this species. The 

interaction plot demonstrates a peak in biomass occurs at these values of mean depth 

and pH. 
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Figure 3.15: Perspective plot generated from the boosted regression tree model 
developed for lake trout, showing the responses of BPUE to the interaction between 
pH and mean depth. 

W e expected that angling score would have a larger variable importance in explaining 

the biomass of walleye, northern pike, lake trout and smallmouth bass, because they 

are popular species in recreational fishing. In addition, Table 3.5b shows that the 

contribution of angling score on white sucker biomass was higher than the one seen 

for walleye, even though white sucker is an unexploited species. Our results only 

support the moderate influence of this variable to northern pike biomass. The removal 

of angling score from the model using the set 4 of parameters (results not presented 

here) showed an increase on the other variables' contributions, but this increase did 

not happen only on climate variables as we hypothesized (since there is a correlation 

between angling score and climate variables). The quantification of angling score 
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takes in consideration current stress, implying that current biomass of walleye, 

northern pike, lake trout and smallmouth bass will most likely be better explained by 

previous reports of angling pressure. 

Even though the models' explained deviances for all six species were quite variable, 

our study provides a better understanding of the different factors driving biomass of 

the different species, while bringing to light the importance of lake morphometry and 

climate to predict both presence-absence and production of freshwater fish species 

from Ontario lakes. From the management point of view, these two environmental 

determinants should be primarily taken into account, not only when selecting new 

conservation areas but also when seeking an optimization of lake resources 

contributing to the sustainable practice of sport fishing. Since temperature is the most 

important abiotic factor controlling fish physiology (Brett 1979), projected increases 

in water temperature resulting from climate change are expected to affect the growth 

of freshwater fishes, their population dynamics, the ecology at community and 

ecosystem levels (Portner and Farrell 2008; Sheridan and Bickford 2011), change 

geographical distributions (Comte et al. 2013) and finally, production (Portner and 

Peck 2010). lncreases in water temperature associated with climate change should 

benefit the growth of fishes with higher physiological thermal optima and stress the 

growth of those with lower (Graham and Harrod 2009). However, changes in 

temperature experienced by a fish may not be as great as changes in the mean water 

temperature of its ecosystem because the fish may behaviorally thermoregulate by 

selecting thermal habitats in which temperatures are favorable to growth (Coutant 

1987). Hence, effects of climate change on fish growth may not be direct but may be 

mediated by availability of thermal habitat (King et al. 1999), which in turn largely 

depends on physical characteristics such as depth and trophic state of the ecosystem 

(Kling et al. 2003). Climate change may also indirectly affect fish growth through 

altering prey availability (Woodward at al. 2010). Regardless of the physiological 
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thermal optimum, the growth of fish may decrease with increases in metabolic costs 

in a warming climate if prey consumption remains constant over time (Sheridan and 

Bickford, 2011 ), which would be an interesting aspect to be considered in future 

modelling studies focusing the same species. 





• 

CONCLUSION 

Quantifying the relationships between the distributions of species and their abiotic 

and/or biotic environments has a long history in ecological research. While · 

understanding where species occur is a fundamental ecological requirement, 

prediction of occurrence and quantification of its productivity are essential for much 

conservation and population management. With the increased availability of 

statistical packages, it is becoming increasingly easy to undertake species distribution 

modelling. This creates opportunities for the applied ecologists to develop 

management tools for conservation in a way that was unprecedented 15 years ago. 

Fish-habitat models can play an important role in prioritising surveys and monitoring 

programmes for fish populations because limitations to resources often preclude 

exhaustive and continua! sampling of sites and that extensive sampling is needed to 

accurately sample lake fish communities (Jackson and Harvey 1997). Applications of 

predictive models in management include: ( 1) forecasting or measuring the effects of 

habitat alteration and changing land-use patterns (Oberdorff et al. 2001); (2) 

providing first-order estimates of habitat suitability to establish potential locations for 

re-introduction (Evans and Oliver 1995); (3) predicting the likelihood of local 

establishment and spread of exotic species (Peterson and Vieglais 2001); (4) 

predicting "hotspots" of species persistence for the conservation of biodiversity 

(Williams and Araujo 2000); and (5) revealing additional populations of threatened 

species, or altematively revealing unexpected gaps in their range. 

Under that context, the goal of this thesis was to conduct an investigation on 

improvement aspects in currently used modelling practices (more specifically species 

distribution models), while ultimately providing analytical tools to be applied in 

ecological assessments related to freshwater fish populations. Redundancy analysis 



166 

coupled with variation partitioning, which have become core in the study of 

communities, were the focus of Chapter I. For years ecologists have been resorting to 

popular OLS approaches such as them, without taking into account the 

appropriateness of their usage, specially taking into account the nature of the species-

environment relationship which frequently does not fulfill the required assumptions 

to conduct such analyses. To this end, the presented framework based on GLM 

solutions showed itself to be quite robust alternative, and it consists of a 

generalization of RDA, while widening the scope of applicability of variation 

partitioning, contributing to its popularity and importance when analyzing species 

data matrices. 

The focus of Chapter II was to assess the importance of biotic interactions in SDMs, 

since the recognition of its importance just started recently with some publications 

addressing the impact of inclusion of this information in the modelling process, 

consequently helping to decrease uncertainty. To increase confidence in model 

projections, methodologies must acknowledge clearly the uncertainties involved and • 

try to obtain conditional measurements of confidence in the forecasts made. Whereas 

confidence in model projections is likely to increase as the realism of key 

assumptions within a particular modelling approach are improved, tractability often 

decreases, due to more demanding parameterizations. Thus, a trade-off exists between 

complexity and tractability in modelling species and identifying the most reliable and 

unbiased solution is not a trivial task. The approach presented in Chapter II consists 

of a fairly simple one since it only required information from some species part of the 

same freshwater fish community, and it provided a decrease in uncertainty while 

keeping the simplicity of the different SDM models obtained. The degree of realism 

of key assumptions can surely be improved by the investigation of other ways of 

inserting biotic information in the models, and this consists of a future perspective for 

this work, besides the investigation related to the models' transferability. In addition, 
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the comprehensive comparison of models' results in this chapter showcased the good 

performance of machine-learning methods, so future efforts in building "better" 

models (here "better" representing a compromise between complexity and 

tractability), should focus on this class of models. Another point worth mentioning is 

that, despite the fact that the models' performance was not the same, there was a 

certain agreement regarding the most important variables explaining the presence of 

the different species across models. That observation supports the idea that "there is 

no bad model, what actually exists is a badly parameterized model". Finally, one 

appealing avenue to pursue is to conduct a comparison of the results obtained in 

Chapter II with the ones derived from community-level models (Ferrier and Guisan 

2006), establishing similarities and discrepancies between the results from these two 

model types. Community-level modelling would allow to include all species data 

available (instead of only the 6 species considered in Chapter Il), while also 

evaluating several ways of conducting this analysis ( e.g. community types, species 

groups, axes of compositional variation, macro-ecological properties - see Ferrier and 

Guisan 2006). The main advantages of this method are: (1) fast analysis of very large 

number of species, allowing a better cross-species synthesis; (2) adds value to data 

for rare species by "pooling"; (3) enhanced capacity to synthesize complex data into a 

form more readily interpretable by scientists and decision-makers and (4) address 

interactions between species. This last advantage would allow a more comprehensive 

exploration and analysis of biotic interactions in species distribution modelling. 

Chapter III brought some of the information gotten from Chapter II about the model 

most successfull y explaining deviance and aimed at the development of biomass 

models using biomass-per-unit effort information from the same six freshwater fish 

species mentioned in Chapter 2. Results of this chapter helped better understand the 
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influence of the different environmental determinants used as predictors of biomass, 

allowing the assessment of their interesting interactions and how they control and 

limit each other while interfering in the biomass of the fish species object of that 

chapter. The knowledge obtained specific to each fish species can surely help 

management and conservation authorities to develop specific plans to help ensure the 

sustainability of these fish populations, by knowing their specific requirements and 

important environmental determinants helping the successful increase of their stock. 

Sorne future improvements to the models involve corrections that consider the bias 

involving the use of biomass-per-unit-effort, which consist of valuable future studies. 

The relationships between abiotic features and both species distributions and 

biomass, observed from models' results in Chapters II and III, con tri bute to 

information on which of these features have most impact in the distribution and 

biomass of all six studied species, which help set proactive conservation priorities for 

preserving potentially vulnerable fish populations across the province of Ontario. 

These investigations contribute to major scientific underpinnings related to the 

research of species-habitat relationships, while consisting of ecosystem services when 

promoting information about the processes underlying these relationships. The 

investigation of interconnected quantitative frameworks to link environmental, spatial 

and biotic interactions bring to light a greater understanding of the key agents 

structuring biodiversity and how they internet to provide the delivery of aquatic 

ecosystem services, while clarifying about the actions that should be taken to mitigate 

the loss of these services in face of increasing human population. 

Models are simplification of reality and often begin life by helping researchers to 

formalize their understanding of a particular process or pattern of interest. Models are 

thus primarily important aids to research. Difficulties may therefore arise when such 
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theoretical models are used to guide conservation planning, management and to 

support the formulation of policy decisions. The magnitude of uncertainties in 

species'· range and biomass assessments is currently so great that it might lead 

conservation planners, policy makers and other stakeholders to question the overall 

usefulness of science as an aid to solve real world problems. Bridging the perceived 

gap between science and societal needs is of paramount importance if one wants to 

make progress and contribute meaningfully to solve the global environmental change 

crises. The investigations pursued in this work raise additional questions about 

modelling aspects that help decrease uncertainty and thus help the conceptualization 

of even more useful tools that help understand the processes explaining species 

distributions and their productivity. Sorne ideas consist of: 1- incorporating spatial 

information in the models since this aspect was not investigated; 2- development of 

community biomass models that take into account the structure of the food web; 3-

development of production indexes based on the biomass models presented, while 

incorporating information about the natural mortality and fishing mortality of each 

species. These surely represent interesting avenues of investigation for future studies. 





APPENDIXA 

CHAPTERI 

Mean adjusted R2 results for logistic model applied to presence-absence data, Poisson 
model applied to presence-absence data and Poisson model applied to abundance 
data, at population and sample level, according to varying sample sizes and number 
of inserted random N(0,1) covariates. 

Logis tic Logis tic Poisson Poisson Poisson Poisson 

Scenario P-A P-A P-A P-A Abundance Abundance 

Pop Sample Pop Sample Pop Sample 

20 0.3543 0.29162 0.28349 0.18653 0.7039 0.67818 
50 0.3671 0.39666 0.27895 0.2656 0.7039 0.69013 

Sample size 100 0.35983 0.38484 0.26691 0.26201 0.7039 0.6978 
150 0.35718 0.37439 0.26417 0.26076 0.7039 0.69937 
200 0.35653 0.36894 0.26356 0.26055 0.7039 0.70012 

Numberof 0 0.32241 0.34889 0.23891 0.23531 0.61786 0.61065 
inserted of 5 0.32988 0.38767 0.24986 0.24366 0.61786 0.6136 
random 10 0.32923 0.40528 0.25969 0.25047 0.61786 0.61459 
N(0,1) 15 0.31103 0.39847 0.25616 0.24035 0.61786 0.61227 
covariates 20 0.27078 0.36378 0.23257 0.20969 0.61786 0.61656 
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