Trends of intense cyclone activity in the Arctic from reanalyses data and regional climate models (Arctic-CORDEX)

To cite this article: M Akperov et al 2019 IOP Conf. Ser.: Earth Environ. Sci. 231 012003

View the article online for updates and enhancements.
Trends of intense cyclone activity in the Arctic from reanalyses data and regional climate models (Arctic-CORDEX)

M Akperov¹, A Rinke², I I Mokhov¹,³, H Matthes², V A Semenov¹,⁴, M Adakudlu⁵, J Cassano⁶, J H Christensen⁵,⁷, M A Dembitskaya¹, K Dethloff², X Fettweis⁸, J Glisan⁹, O Gutjahr¹⁰, G Heinemann¹¹, T Koenigk¹², N V Koldunov¹³,¹⁴, R Laprise¹⁵, R Mottram¹⁶, O Nikiéma¹⁵, M Parfenova¹, J F Scinocca¹⁷, D Sein¹⁴, S Sobolowski⁵, K Winger¹⁵ and W Zhang¹⁸,¹⁹

¹A.M. Obukhov Institute of Atmospheric Physics, RAS, Moscow, Russia
²Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, AWI, Potsdam, Germany
³Lomonosov Moscow State University, Moscow, Russia
⁴Institute of Geography, RAS, Moscow, Russia
⁵Uni Research Climate, Bjerknes Centre for Climate Research, Bergen, Norway
⁶Cooperative Institute for Research in Environmental Sciences and Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, United States
⁷University of Copenhagen, Niels Bohr Institute, Denmark
⁸Department of Geography, University of Liège, Belgium
⁹Iowa State University, United States
¹⁰Max Planck Institute for Meteorology, Hamburg, Germany
¹¹Environmental Meteorology, Faculty of Regional and Environmental Sciences, University of Trier, Germany
¹²Rossby Centre, Swedish Meteorological and Hydrological Institute, 60176 Norrköping, Sweden and Department of Meteorology, Bert Bolin Centre for Climate Research, Stockholm University, 10654 Stockholm, Sweden
¹³MARUM - Center for Marine Environmental Sciences, Bremen
¹⁴Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, AWI, Bremerhaven, Germany
¹⁵Centre ESCER, Université du Québec à Montréal, Montréal, Québec, Canada
¹⁶Danish Meteorological Institute, Copenhagen, Denmark
¹⁷Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, British Columbia, Canada
¹⁸Department of Physical Geography and Ecosystem Science, Lund University, 22362, Lund, Sweden
¹⁹Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark

E-mail: Mirseid Akperov (aseid@ifaran.ru)

Abstract The ability of state-of-the-art regional climate models (RCMs) to simulate the trends of intense cyclone activity in the Arctic is assessed based on an ensemble of 13 simulations from 11 models from the Arctic-CORDEX initiative. Some models employ large-scale spectral nudging techniques. Cyclone characteristics simulated by the ensemble in winter and summer are compared with the results from four reanalyses (ERA-Interim, NCEP-CFSR, NASA-MERRA2 and JMA-JRA55) in winter and summer for 1981-2010 period.
1. Introduction
Cyclones play a key role in the changing of Arctic climate system, in particular contributing to the meridional atmospheric heat and moisture transport from mid-latitudes into the Arctic, thereby changing cloud feedbacks with impacts on the sea ice retreat in a warming climate [1-8]. An example was the destruction of sea ice by the intense Arctic cyclone that occurred in summer 2012 contributing to the record low sea ice minimum in that September [9]. Thus, cyclones, in particular, intense cyclones, are a key component of the Arctic climate system and the understanding of their role in Arctic climate change is an important task.

The aim of this study is to assess the performance of Arctic Coordinated Regional Downscaling Experiment (CORDEX) regional climate models (RCMs) with respect to ensemble of four state-of-art reanalysis products to represent the trends of intense cyclone activity in the Arctic.

2. Data and Methods
We analyze cyclone characteristics obtained from 6-hourly mean sea level pressure (MSLP) data from an ensemble of 13 atmospheric RCMs simulations and four reanalysis products (Table 1) during the 1981–2010 period for the Arctic region (north of 65°N) for two seasons – winter (DJF) and summer (JJA).

The four reanalyses products used are ERA-Interim, NCEP-CFSR, NASA-MERRA2, and JMA-JRA55, hereafter called ERA-Interim, CFSR, MERRA2, and JRA55 (Table 1). The 13 Arctic-CORDEX RCM simulations (Table 1) are based on the standard Arctic CORDEX model setup (http://climate-cryosphere.org/activities/targeted/polar-cordex/arctic). The domain and the horizontal resolution is nearly the same (rotated 0.44 deg. x 0.44 deg. grid, 116 x 133 grid points) for all models. Only the CCLM model applies a higher resolution (15 km), but data is only available for the winter season. The key model and reanalyses information are presented in Table 1, and we refer to [10]. For the analysis, the reanalyses have been regridded onto the Arctic-CORDEX grid.

We use an algorithm of cyclone identification similar to [11,12] with some modifications for the Arctic region [10,13,14]. The algorithm is based on the MSLP field and has been shown to be useful to investigate the changes in cyclone activity in extratropical and high latitudes [13,15-18].

We calculate cyclone frequency, depth and size. The cyclone frequency is defined as the number of cyclone events per season. To map spatial patterns of cyclone characteristics we use the grid with circular cells of a 2.5° latitude radius.

We consider cyclone depth as a measure of cyclone intensity. The cyclone depth is determined as a difference between the minimum central pressure in the cyclone and the outermost closed isobar. As shown in previous studies [19,20], the depth provides a direct measure of the kinetic energy of the system. Deep cyclones are identified by anomalously strong depth exceeding an arbitrary threshold chosen to be the 95th percentile of cyclone depth distribution from all reanalyses, which corresponds to ca. 20 hPa. The cyclone size (radius) is determined as the average distance from the geometric center to the outermost closed isobar.

Trends have been calculated based on linear least-squares regression. As an indicator of the robustness of any trend, we calculate their statistical significance using a Student’s t-test at the 90% confidence level (P < 0.1).

3. Results
Figure 1 displays the climatology of intense cyclone frequency for winter and summer from multi-reanalyses and the multi-model means for the period 1981-2010. The multi-model ensemble mean realistically reproduces the spatial pattern of intense cyclone frequency in the Arctic as compared to multi-reanalyses data for both seasons. In winter, maxima of intense cyclone frequency occur over the Arctic North Atlantic and Barents Sea. Compared to winter, the intense cyclone frequency in summer is much lower and the maximum is shifted to the central Arctic Ocean. These seasonal characteristics have been discussed in previous studies [10,21-23].
Table 1. Reanalyses and Arctic CORDEX models, and their corresponding information where U – zonal wind, V – meridional wind, T – temperature, Q - humidity. w/o – without nudging.

<table>
<thead>
<tr>
<th>Type</th>
<th>Institution/Country</th>
<th>Model name</th>
<th>Original Resolution</th>
<th>Nudging</th>
<th>Sea ice thickness</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reanalyses</td>
<td>ECMWF/UK</td>
<td>ERA-Interim</td>
<td>L60, 0.75\degree (\sim 75 km)</td>
<td>w/o</td>
<td></td>
<td>[24]</td>
</tr>
<tr>
<td></td>
<td>NASA/USA</td>
<td>MERRA2</td>
<td>L72, 0.5\degree-0.625\degree (\sim 50 km)</td>
<td></td>
<td></td>
<td>[25]</td>
</tr>
<tr>
<td></td>
<td>NCEP/USA</td>
<td>CFSR</td>
<td>L64, 0.5\degree (\sim 50 km)</td>
<td></td>
<td></td>
<td>[26]</td>
</tr>
<tr>
<td></td>
<td>JMA/JAPAN</td>
<td>JRA55</td>
<td>L60, 0.5\degree (\sim 50 km)</td>
<td></td>
<td></td>
<td>[27,28]</td>
</tr>
<tr>
<td>Regional climate models (RCMs)</td>
<td>CCLM/Germany</td>
<td>CCLM</td>
<td>L60, 0.125\degree (\sim 15 km)</td>
<td>Spectral</td>
<td>PIOMAS climatology</td>
<td>[29]</td>
</tr>
<tr>
<td></td>
<td>CCCma/Canada</td>
<td>CanRCM4</td>
<td>L32, 0.44\degree (\sim 45 km)</td>
<td>Grid point (U, V, above 850 hPa)</td>
<td>Spatially varying monthly climatology</td>
<td>[30]</td>
</tr>
<tr>
<td></td>
<td>GERICS/Germany</td>
<td>REMO</td>
<td>L40, 0.5\degree (\sim 50 km)</td>
<td>w/o</td>
<td>2 m</td>
<td>[31]</td>
</tr>
<tr>
<td></td>
<td>AWI/Germany</td>
<td>HIRHAM5-awi</td>
<td>L40, 0.5\degree (\sim 50 km)</td>
<td>w/o</td>
<td>2 m</td>
<td>[32-34]</td>
</tr>
<tr>
<td></td>
<td>DMI/Denmark</td>
<td>HIRHAM5-dmi</td>
<td>L31, 0.44\degree (\sim 45 km)</td>
<td>w/o</td>
<td>2 m</td>
<td>[32,35,36]</td>
</tr>
<tr>
<td></td>
<td>SMHI/Sweden</td>
<td>RCA4</td>
<td>L40, 0.44\degree (\sim 45 km)</td>
<td>Spectral (U, V, T, above 850 hPa)</td>
<td>1 m</td>
<td>[37,38]</td>
</tr>
<tr>
<td></td>
<td>LU/Sweden</td>
<td>RCA-GUESS</td>
<td>L40, 0.44\degree (\sim 45 km)</td>
<td>w/o</td>
<td>1 m</td>
<td>[39,40]</td>
</tr>
<tr>
<td></td>
<td>MGO/Russia</td>
<td>RRCM</td>
<td>L25, 50 km (\sim 0.5\degree)</td>
<td>w/o</td>
<td>1.5 m</td>
<td>[41]</td>
</tr>
<tr>
<td></td>
<td>ULg/Belgium</td>
<td>MAR3.6</td>
<td>L23, 50 km (\sim 0.5\degree)</td>
<td>(spectral) (U, V, T for lower stratosphere)</td>
<td>0.5 m</td>
<td>[42]</td>
</tr>
<tr>
<td></td>
<td>UNI/Norway</td>
<td>WRF3.3.1</td>
<td>L51, 0.44\degree (\sim 45 km)</td>
<td>w/o, w/o</td>
<td>3 m</td>
<td>[43]</td>
</tr>
<tr>
<td></td>
<td>UQAM/Canada</td>
<td>CRCM5</td>
<td>L55, 0.44\degree (\sim 45 km)</td>
<td>spectral (spectral) (U, V, above 850 hPa)</td>
<td>0.001-2.5 m</td>
<td>[44-46]</td>
</tr>
</tbody>
</table>
The analysis of the 30-yr (1981-2010) linear trends of intense cyclone frequency shows that almost half of the RCMs (7 out of 13 in winter, and 7 out of 12 in summer) simulate a decrease for winter and summer, but these trends are not statistically significant (fig. 2a). The other half show the reverse trend sign. At the meantime, the reanalyses show a consistent increase in winter and decrease in summer. Importantly, an increase of intense cyclone frequency in winter is observed for 2 out of 5 models with spectral nudging [47]. In summer, even 4 out of 5 models with spectral nudging demonstrate the same behaviour of the decreasing trend as in reanalyses. This finding supports that a nudging procedure is useful to represent the cyclone activity in models more realistically [10].

All reanalyses show consistent trends for the mean depth of intense cyclones (fig. 2b), with an increase in winter and a decrease in summer. Adequately, most models (9 out of 14) show an increase in winter. However, in summer, half of the models show an increase, the other half an decrease of cyclone depth. But, again, nudged model runs show a higher skill. 4 out of 5 nudged models show the same trend as the reanalyses for both seasons. Most unnudged models show different trend signs. The same trend
Figure 2. 30-year trends (1981-2010) of intense cyclone frequency (a), depth (b) and size (c) from reanalyses and models in winter (blue) and summer (red), averaged over the Arctic (north of 65°N). An asterisk indicates a significant trend at the 90%-level. The names of the different datasets on the x-axis are highlighted by color (black – reanalyses, red – nudged models, blue – non-nudged models).
Figure 3. Number of datasets showing positive or negative trend of intense cyclone frequency (1981-2010) in winter (a-d) and summer (e-h). The color scale represents the number of reanalyses and models with a positive (red colors) and negative (blue colors) trends. 4 reanalyses and 13 models have been used.
behaviours are shown for intense cyclone size (fig. 2c). As shown previously [14], mostly deep (intense) cyclones are associated with a large size. It should be also noted that most trends are statistically non-significant.

Figure 3 shows the large agreement among the reanalyses, among the models and between the reanalyses and models in the spatial trend patterns of intense cyclone frequency in both seasons. In winter, they show an increase over the Beaufort Sea, Chukchi Sea, Greenland Sea, and East-Siberian Sea, and a decrease over the Arctic Ocean, Barents- and Kara Seas, Baffin Bay and continents. In summer, they agree on an increase over the Barents Sea, Kara Sea and part of Laptev Sea and over most of the continents, and a decrease over the most parts of Arctic Seas.

4. Summary and Conclusion
The ability of the regional climate models participating in the Arctic-CORDEX to simulate the intense cyclone activity in the Arctic region have been assessed in comparison with reanalyses data. The regional models accurately reproduce the spatial distribution of intense cyclone frequency as well as of the characteristics (cyclone depth and size), when compared to reanalysis data.

The reanalyses show consistent trends for the intense cyclone frequency and mean depth and size of intense cyclones, with an increase in winter and a decrease in summer. Models with spectral nudging can reproduce the same trend as in reanalyses for both seasons, while models which do not apply any nudging show often deviating trend signs compared to the reanalyses. However, the model ensemble largely agree with the reanalyses on the key regional trend patterns.

Acknowledgements
M.A., I.I.M., V.A.S., M.P, M.A.D., A.R., K.D. acknowledge the support by the project “Quantifying Rapid Climate Change in the Arctic: regional feedbacks and large-scale impacts (QUARCCS)” funded by the German and Russian Ministries of Research and Education (project №14.616.21.0078 (RFMEFI61617X0078)). We acknowledge the Japan Meteorological Agency (JMA) for providing JRA-55, the European Centre for Medium-Range Weather Forecasts (ECMWF) for providing ERA-Interim, the National Centers for Environmental Prediction (NCEP) for providing NCEP-CFSR, NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) for providing MERRA2 and Polar meteorology group for providing ASR reanalysis. Data from reanalyses were retrieved from https://reanalyses.org/atmosphere/overview-current-atmospheric-reanalyses/.

References

[23] Crawford A D and Serreze M C 2016 Does the summer arctic frontal zone influence arctic ocean cyclone activity? J. Clim. 29(13) 4977–93

[31] Sein D V, Koldunov N V, Pinto J G and Cabos W 2014 Sensitivity of simulated regional Arctic climate to the choice of coupled model domain Tellus, Series A: Dynamic Meteorology and Oceanography 66(1) 1–18

[37] Berg P, Döscher R and Koenigk T 2013 Impacts of using spectral nudging on regional climate model RCA4 simulations of the Arctic Geosci. Model Dev. 6(3) 849–59

[38] Koenigk T, Berg P and Döscher R 2015 Arctic climate change in an ensemble of regional CORDEX simulations Polar Research 34 24603

[40] Zhang W, Jansson C, Miller P A, Smith B and Samuelsson P 2014 Biogeophysical feedbacks enhance the Arctic terrestrial carbon sink in regional Earth system dynamics Biogeosciences 11 5503-19

[41] Shkolnik I M and Efimov S V 2013 Cyclonic activity in high latitudes as simulated by a regional atmospheric climate model: added value and uncertainties Environ. Res. Lett. 8(4) 45007

(CRCM5) over the CORDEX Arctic domain: effect of large-scale spectral nudging and of empirical correction of sea-surface temperature Clim. Dyn. 0(0) 1–26.