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Information regarding the early effects of obesogenic diets on feeding patterns and behaviors is limited. To improve knowledge
regarding the etiology of obesity, young male Wistar rats were submitted to high-fat (HFD) or regular chow diets (RCDs) for 14
days. Various metabolic parameters were continuously measured using metabolic chambers. Total weight gain was similar
between groups, but heavier visceral fat depots and reduced weight of livers were found in HFD rats. Total calorie intake was
increased while individual feeding bouts were shorter and of higher calorie intake in response to HFD. Ambulatory activity and
sleep duration were decreased in HFD rats during passive and active phase, respectively. Acylated and unacylated ghrelin levels
were unaltered by the increased calorie intake and the early changes in body composition.,is indicates that at this early stage, the
orexigenic signal did not adapt to the high-calorie content of HFD. We hereby demonstrate that, although total weight gain is not
affected, a short-term obesogenic diet alters body composition, feeding patterns, satiation, ambulatory activity profiles, and
behaviours in a young rat model. Moreover, this effect precedes changes in weight gain, obesity, and ensuing metabolic disorders.

1. Introduction

Obesity and ensuingmetabolic dysfunctions are major issues
for public health authorities [1–3]. ,is is of particular
concern in pediatric populations in Canada where excess
weight and obesity have reached the prevalence of 20% and
13%, respectively [4]. Early adoption of detrimental be-
haviors such as overeating, consumption of energy-dense

foods, and lack of physical activity promote excessive weight
gain. ,is is likely to have a major impact in later life stages
since 85% of obese children become obese adults [5, 6].
Further, the initial mechanisms promoting obesity and
ensuing metabolic complications remain to be better
characterized by using dynamic experimental designs rather
than classical static protocols. ,is highlights the relevance
of using animal models to characterize the early steps leading
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to obesity and its evolution towards further pathological
conditions. Obesogenic diets greatly contribute to a positive
energy balance and their fat content provides approximately
twice the caloric load of carbohydrates and proteins [7].
Beyond the simple energy intake/expenditure equation, high-
fat diets (HFD) are suspected to promote the development of
obesity through other indirect mechanisms. For instance,
prior to weight gain, a significant increase in total triglyceride
levels was reported after only 2 weeks in female rats submitted
to HFD [8, 9]. ,is suggests that important physiological
changes can occur early in response to HFD, and this can be
detected before significant increases in body weight.

Early effects of HFD include changes in critical behaviors
such as feeding, physical activity, and sleep. For instance, rats
submitted to HFD for 8 weeks decreased their physical
activity levels by 28% [10]. In mice, obesogenic diets were
also shown to alter feeding behaviors and voluntary activity
[11]. Independently of body weight fluctuations, these ob-
servations imply potential impairments in the regulation of
vital functions such as appetite, satiation, satiety, energy
utilization/storage, sleep, and voluntary activity [12]. It is
reported that only one week of HFD is sufficient to alter
eating behaviors in adult mice [13]. Although these alter-
ations are quickly reversed after animals are resubmitted to
a standard diet [14], the early effects of HFD could negatively
influence lipid and glucose homeostasis while triggering the
onset of obesity-related disorders in the long term. Similarly
to what is reported in mice, young rats are particularly
sensitive to the dysregulation of some vital physiological
functions in response to HFD [15]. ,is emphasizes the
important adverse repercussions of an obesogenic diet in
early life stages.

Critical changes in behaviors were previously noted in
rats submitted to HFD for different time periods. For in-
stance, heat production was increased before changes in
weight gain, and energy intake could be detected in young
rats submitted to HFD for 1 and 2 weeks [10]. Shorter
feeding bouts of higher calorie content were observed before
changes in weight gain in young adult rats submitted to 5
weeks of HFD [16]. However, it is currently unknown
whether these changes in feeding behaviors occur earlier in
response to HFD. Decreased ambulatory activity was ob-
served after 8 weeks of HFD in adult rats [10]. Further,
altered sleep patterns [17] and alternating periods of food
accessibility [18] are proposed to contribute to weight gain
and abdominal adiposity in rats. However, there is a critical
gap of knowledge regarding how ambulatory activity and
sleep are modulated by obesogenic diets over time. A lack of
adaptation in the secretion of neuroendocrine orexigenic
signals to calorie-dense diets could explain these phenom-
ena. In physiological conditions, ghrelin levels raise in an-
ticipation of a meal and decrease during the postprandial
period [19]. However, postprandial acylated ghrelin (AG)
levels also augment in response to stress, overfeeding, and
high-fructose or high-fat diets in animals or humans [20–
23].,is could explain why satiation and satiety do not adapt
in response to energy-dense diets.

Most of the useful information on the etiology of obesity
is derived from experiments achieved on defined set points

in adult rats. However, the present study intended to
characterize changes in behaviors with a dynamic model of
analysis through continuous noninvasive monitoring in
metabolic chambers. Such experimental protocols were
critical in investigating the synergy between diets, feeding
and behaviors as well as to determine their repercussions on
the early steps leading to obesity in young rats.

2. Materials and Methods

2.1. Animal Procedures. Young (100–125 g; approximately 4
weeks old) male Wistar rats (Charles River, St-Constant,
QC) were randomly submitted to HFD (n � 8) or regular
chow (RCD; n � 8) diets, ad libitum, after a 3-day accli-
matization period at UQAM’s animal facility. During the
experimental procedures, rats were individually housed in
metabolic chambers (at 22± 2°C) in Oxymax CLAMS
(Columbus Instruments, OH, USA) for 14 days and sub-
mitted to a 12-hour light/dark cycle starting at 06:00. ,e
Oxymax CLAMS system allowed measuring food/water
intakes, feeding patterns, energy expenditure, ambulatory
activity, and sleep profiles. Also, rats were individually
weighed daily at the same hour. Sacrifice was achieved after
a 4-hour fast to standardize the feeding status of each animal.
Blood samples were then drawn from the heart. Perirenal,
epididymal, and subcutaneous fat pads were then collected
and weighed. ,is study was carried out in strict accordance
with recommendations of the National Institutes of Health
guide for the care and use of Laboratory animals. ,e
protocol was approved by the Comité Institutionnel de
Protection des Animaux (CIPA) of UQAM (Permit Num-
ber: 0515-R3-759-0516). All efforts were made to minimize
any potential discomfort to the animals.

2.2. Diets. ,e regular chow diet (Charles River Rodent Diet
#5075, Cargill Animal Nutrition, MN, USA) had a physio-
logical fuel value (calculated using a modified Atwater
factor) of 2.89 kcal/g and a macronutrient weight content of
55.2% carbohydrate (65.6% kcal), 18% protein (21.4% kcal),
and 4.5% fat (13%kcal). ,e high-fat diet was prepared from
purified food-grade reagents according to a commercial
formulation (D12492 diet, Research Diets Inc., New
Brunswick, NJ, USA). It had a physiological fuel value of
4.80 kcal/g and a macronutrient weight content of 26.3%
carbohydrate (19.2% kcal), 26.2% protein (19% kcal) and
34.9% fat (61.8% kcal). Protein sources were casein and
L-cystine (98.5% and 1.5%, resp.) and lipid sources were lard
and soybean oil (90.7% and 9.3%, resp.) while carbohydrate
sources were maltodextrin and sucrose (64.5% and 35.5%,
resp.). ,e diet also contained cellulose (64.6 g/kg), calcium
carbonate (7.1 g/kg), dicalcium phosphate (16.8 g/kg), po-
tassium citrate (21.3 g/kg), and choline bitartrate (2.6 g/kg)
as well as mineral (12.9 g/kg) and vitamin (12.9 g/kg) mixes
(Table 1).

2.3.Metabolic Chambers. ,e CLAMS system’s O2 and CO2
sensors were calibrated every second day in accordance with
the manufacturer’s instructions, as previously described
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[24]. Measurements of O2 and CO2 (mL/kg/hr) were
achieved using open-circuit indirect calorimetry system by
calculating the difference between [O2] consumption and
[CO2] production. Furthermore, the respiratory exchange
ratio (RER), highlighting the relative contributions of lipid
and glucose oxidation, was calculated from the aforemen-
tioned volumetric values ([CO2]/[O2]). Energy expenditure
(kcal/hr) was estimated by the Oxymax CLAMS software
using the following equation: energy expenditure�CV∗
[VO2], where CV (i.e., calorie value)� (3.815 + 1.232∗RER)
[25, 26]. For each metabolic chamber, the Oxymax CLAMS
system used an individual balance (PL1502E, Mettler To-
ledo, Switzerland) allowing accurate in situ monitoring
(±0.01 g precision) of food intake and feeding bouts (weight
and duration). Feeding bouts were computed when the
feeder’s balance was used for more than 10 s or more than
0.1 g of food was ingested. Also, the system’s unique design
optimally minimized food spillage and foraging. Volumetric
drinking (mL) was calculated using the sipper tube tech-
nology. Energy balance (energy balance� daily calorie
intake − daily energy expenditure) was also calculated
from aforementioned parameters [27, 28]. Ambulatory
activity was continuously assessed using infrared photo-
cells on the X and Z axis. It was calculated when the animal
broke a series of infrared beams in sequence, thus ex-
cluding stereotypy. Sleeping time was computed when
animals did not break a single infrared beam for more than
60 s, as previously described [29, 30]. All parameters were
collected and analyzed using the Oxymax CLAMS software
and continuously monitored throughout the 14 days of the
experimental protocol.

2.4. Ghrelin Assay. Collected blood was added to chilled
EDTA Vacutainer tubes preloaded with 4-[2-aminoethyl
benzene] sulfonylfluoride (Alexis Biochemicals), then
stored on ice. Within 1 hour of collection, blood was
centrifuged for 10 minutes at 2000×g at 4°C. After separation,
0.5mL plasma was acidified with 100 μL of 1N HCl. Samples
were then stored at −20°C. Plasma acylated and unacylated
ghrelin concentrations were measured with a two-site
sandwich ELISAs, as previously described [31]. Briefly,
plates (384-well Maxisorb; Nunc, Roskilde, Denmark) were

coated with acyl-specific antiserum (acylated) or affinity-
purified C-terminal ghrelin antiserum (unacylated) at
1 μg/mL overnight. After being blocked, the plate was washed
and loaded with 25 μL/well wetting/neutralization buffer
(0.5 M phosphate buffer with 1% BSA, pH 7.4) and 25 μL/well
ghrelin standards or unknown samples and incubated
overnight at 4°C.,e washed plate was incubated for 1 h with
either a biotinylated C-terminal ghrelin antiserum (acylated)
or a biotinylated N-terminal des-acyl ghrelin-specific
monoclonal antiserum (unacylated) in blocking buffer,
then for 30min with streptavidin-poly-HRP80 (RDI Fitz-
gerald, Concord, MA). ,e plate was detected with the
fluorescent substrate QuantaBlu (Pierce ,ermo, Rockford,
IL), and fluorescence was read using a Victor2 Model 1420
(PerkinElmer, Waltham MA). All unknowns were run in
duplicate, and all samples for each admission of each rat were
run on the same plate. Standards were made up in
acid/AEBSF-treated stripped plasma. Percentage of acylation

Table 1: Ingredient composition of the high-fat diet (HFD).

Ingredient g/kg of diet
Casein 258.46
L-cystine 3.88
Maltodextrin 161.54
Sucrose 88.91
Cellulose 64.62
Soybean oil 32.31
Lard 316.62
Mineral mix 12.92
Dicalcium phosphate 16.80
Calcium carbonate 7.11
Potassium citrate 21.32
Vitamin mix 12.92
Choline bitartrate 2.58
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Figure 1: Body weight evolution (a) and average weights for livers,
perirenal, epididymal, and subcutaneous abdominal fat pads (b) in
young rats submitted to HFD or RCD for 14 days. Results are
presented as means± SD; ∗ indicates significant difference between
the two diets (P< 0.05) using an unpaired Student’s t-test.
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Table 2: Average daily food and water intake over a 14-day period.

Diurnal Nocturnal
RCD HFD P RCD HFD P

Food intake (g/day) 9.52± 3.24 5.97± 1.30 0.012 18.47± 4.11 13.55± 0.87 0.011
Carbohydrate intake (g/day) 5.26± 1.79 1.57± 0.34 <0.001 10.20± 2.27 3.56± 0.23 <0.001
Protein intake (g/day) 1.71± 0.58 1.56± 0.34 0.541 3.32± 0.74 3.55± 0.23 0.424
Fat intake (g/day) 0.43± 0.15 2.08± 0.46 <0.001 0.83± 0.19 4.73± 0.30 <0.001
Water intake (mL/day) 8.34± 3.45 6.14± 1.68 0.128 24.32± 3.97 20.03± 5.05 0.079
Means± SD; bold indicates significant difference between the two groups at the P< 0.05 level.
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Figure 2: Continued.
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was calculated using the following formula: 100∗AG/(AG
+UAG).

2.5. Statistical Analyses. All values are presented as means±
SD. Distribution normality was assessed using the Shapiro-
Wilk test. Unpaired Student’s t-tests were used to compare
14-day average values between the two groups. Mixed linear
regression models were used to compare the evolution of
various parameters over 14 days between the two groups.
Each distribution was tested for linearity beforehand. Sta-
tistical analyses were performed using the SPSS 16.0 (IBM
Corporation, Armonk, NY) and SAS Studio 3.5 (SAS In-
stitute, Cary, NC) softwares. Significance for all statistical
analyses was set at P< 0.05.

3. Results

After submitting the animals to the different diets for 14
days, body weight gain (Figure 1(a)) was similar in both
groups and followed the same trend. However, significant
differences in organs and tissues were observed at the end of
the 14-day period. Average liver weight was lower
(P � 0.001) while those of visceral perirenal (P � 0.003) and
epididymal (P � 0.004) fat pads were higher in HFD than in
RCD rats (Figure 1(b)). On the other hand, the weight of
subcutaneous fat pads was similar in both groups.

Average daily water and macronutrient intakes are
shown in Table 2. Total protein and water intakes were
similar between both groups (P � 0.771 and P � 0.091,
resp.). Further, ingested carbohydrates (g/day; P< 0.001)
were significantly higher in the RCD group. As expected, fat
intake (g/day) was more important in the HFD group
(P< 0.001). Calorie intakes (Figures 2(a)–2(d)) were sig-
nificantly higher in the HFD group over the total experi-
mental protocol (P � 0.001) and the resting (light) phase

(P � 0.014) while no difference was detected during the
active (dark) phase (P � 0.381). ,e number of feeding
bouts was similar between HFD and RCD rats (P � 0.926;
Figure 2(e)). However, feeding bout duration was lower in
HFD than that in RCD rats (P � 0.030; Figure 2(f)), and
a significant group× time effect (P � 0.005) was also de-
tected. It is also noteworthy that the weight of individual
feeding bouts was similar in both groups (P � 0.663; Figure
2(g)); thus, HFD rats ingested significantly more calories per
bout than RCD rats (P< 0.001; Figure 2(h)), suggesting the
alteration of mechanisms regulating satiation.

Average energy expenditure was equivalent in both
groups (HFD: 70.4±2.8kcal/day versus RCD: 69.4±3.8kcal/day;
P � 0.5; Figure 3(a)). Further, energy expenditure was sig-
nificantly higher during the active phase for both groups. As
expected, HFD rats displayed lower respiratory exchange ratio
(RER) values (HFD: 0.826± 0.006 versus RCD: 0.975± 0.012;
P< 0.001; Figure 3(b)). Higher calorie intakes and similar
energy expenditure resulted in a more positive energy balance
in the HFD group (P< 0.001; Figure 3(c)).

,ere was a significant difference in ambulatory activity
betweenHFD and RCD rats during the active phase (P � 0.039;
Figure 4(b)). However, this effect was not observed during the
resting phase (P � 0.582; Figure 4(a)). Interestingly, over the
progression of the experimental procedures, ambulatory activity
associated to the active phase decreased inHFDwhile remaining
stable in RCD rats. Percent sleeping time was significantly lower
in the HFD group (P< 0.001; Figure 4(d)) during the active
phase, but this effect was not observed over the resting period
(P � 0.496; Figure 4(c)).No difference in the number of sleeping
bouts was detected during the resting (P � 0.069; Figure 4(e)) or
the active (P � 0.454; Figure 4(f)) phases.

Acylated ghrelin plasma concentrations were similar in both
groups (HFD: 36.07±14.13 versus RCD: 36.71±16.95pg/mL;
P � 0.94; Figure 5(a)). Further, no significant difference could
be observed between both groups in unacylated ghrelin levels
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Figure 2: Total (a-b), resting phase (c), and active phase (d) calorie intake; number of daily feeding bouts (e), average feeding bout duration
(f), and weight (g) as well as calories per feeding bout (h) in young rats submitted to HFD or RCD for 14 days. Results are presented as
means± SD; ∗ indicates significant difference between the two groups (P< 0.05) and § indicates significant difference from nocturnal value
at the P< 0.05 level using an unpaired Student’s t-test; ∗∗ indicates significant difference between the two groups (P< 0.05) and † indicates
a significant group× time effect (P< 0.05) using a mixed linear regression test.
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(HFD: 878.30± 215.93 versus RCD: 946.34± 133.32 pg/mL;
P � 0.49; Figure 5(b)) or percentage of acylation (HFD: 4.01±
1.59 versus RCD: 3.67±1.40%; P � 0.68; Figure 5(c)).

4. Discussion

In the present study, the use of metabolic chambers was
critical to characterize how young rats respond to HFD. To
our knowledge, this is the first study that simultaneously
assessed metabolic and behavioral parameters continuously
in a noninvasive manner over a 14-day period in young
animals. Major findings of this study are that reduced sa-
tiation, active phase ambulatory activity, and percent sleep
time occur before changes in weight gain in young rats
submitted to HFD for a period of only 14 days.,is indicates
that important changes in feeding and behaviors arise early
in the process leading to the excessive accumulation of fat in
young growing rats. In turn, if not promptly reverted, this
could promote the development of obesity and ensuing
metabolic dysfunctions in later life stages.

Similar overall weight gain was observed in HFD and
RCD groups over the 14-day experimental protocol. ,is
finding is significant since short-term exposure to HFD also
yielded increases in calorie intakes and impairments in the
regulation of satiation. Further, these results were associated
with reduced liver weight and increased mass of visceral fat
pads in animals fed with this obesogenic diet. ,is indicates
that although young rats submitted to HFD were still able to
counteract excessive weight gains, alterations in body
composition occurred while the mass of visceral fat depots
simultaneously increased.,e present results are in line with
the equivalent weight gain observed over a period of up to 3
weeks in Wistar rats submitted to HFD or RCD [10]. Similar
weight gains were also reported for the first 4 weeks of
HFD in young Sprague Dawley rats [16]. In contrast to
what was observed in rat studies, only one week of HFD
was sufficient to promote significant changes in weight gain
and insulin resistance in aged C57BL6 female mice [32].
Also, reductions in liver weight combined to an excessive
accumulation of fat in hepatic tissues were reported in the

offspring of female rats submitted to HFD during pregnancy
and lactation [33]. Further, the lower liver weight observed
in response to the short-term HFD could be a consequence
of lower glycogen storage [34] or other uncharacterized
mechanisms. Data derived from the present study strongly
indicate the importance of determining the effects of HFD
before weight gain occurs in young rats. Further, these results
shed the light on feeding patterns and behaviors that are
influenced promptly by HFD and that could have a major
impact on the early alterations promoting the development
of obesity in younger populations.

In addition to the metabolic adaptations observed in re-
sponse to an obesogenic diet, the present results show that
eating habits are altered by the short-term exposure to HFD.
Impairments in the regulation of timing and rhythmicity of
feeding profiles are associated to the development of obesity in
rodents and humans [35]. In the present study, the number of
feeding bouts was the same between young rats submitted to
HFD or RCD. Over time, however, the duration of feeding
bouts was reduced while calorie intakes became higher in HFD
rats. ,is contradicts the previous assertion that the devel-
opment of obesity results from a reduction in meal numbers
and an increase in snacking events in rats submitted to a highly
palatable cafeteria diet [36]. However, data derived from the
present study show that HFD promotes the ingestion of ex-
cessive amounts of calories before satiation can be reached. It is
critical to consider that afferent endocrine signals require
approximately 20 minutes to be secreted and integrated after
feeding [37]. As previously reported, the regulation of appetite
and satiation is a complex process involving a plethora of
neuroendocrine signals derived from key organs and tissues
such as the gastrointestinal tract and adipose tissues. ,ese
signals are integrated by specific centers of the brain. In the
present study, no difference in AG or unacylated (UAG)
ghrelin levels were detected. ,is result is of particular interest
when considering that AG induces a potent orexigenic signal
that acts primarily through its activation of neuropeptide
Y (NPY) and agouti-related protein (AgRP) neurons of
the arcuate nucleus that are projecting to other centers re-
sponsible for the physiological control of food intake in the
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Figure 4: Resting phase (a) and active phase (b) ambulatory activity; resting phase (c) and active phase (d) percent sleeping time; resting
phase (e) and active phase (f) sleeping bouts in young rats submitted to HFD or RCD for 14 days. Results are presented as means± SD; ∗∗
indicates significant difference between the two groups (P< 0.05) using a mixed linear regression test.
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hypothalamus [38–40]. Ghrelin was also reported to stimulate
appetite by activating hedonic centers in the brain [41]. In
physiological conditions, AG levels are increased in preprandial
condition and decrease after the consumption of a meal [19].
However, postprandial AG levels were also shown to in-
crease in response to stress, overfeeding, and high-fructose
or high-fat diets in animals or humans [20–23,42,43]. ,is
suggests that AG’s orexigenic signal could be perpetuated
when other neuroendocrine satiation hormones should
prevail, thus leading to exaggerated calorie intakes. On the
long run, ghrelin’s adipogenic effects [19, 44] could also
promote the excessive accumulation of lipids in different
adipose tissues and liver [45, 46]. ,is could ultimately
provoke the onset of obesity-related diseases.

In this study, energy expenditure was found to be similar
in both groups regardless of the diet. Our results, obtained in
response to a 14-day treatment period, are in line with those
of Furnes et al., indicating that no alteration of energy
expenditure occurs in young Sprague Dawley rats submitted
to a HFD or a RCD for 5, 17, and 33 weeks [16]. In contrast,
energy expenditure was significantly increased during the
initial 2-week period in adult Wistar rats submitted to
HFD [10]. However, this increase was transient and did not
persist after the second week. As expected, lower RER values
were observed in HFD rats when compared to the RCD
group. ,is confirms the prompt metabolic shift towards
lipid oxidation that takes place in young rats submitted to
HFD [10].

,e present results show that the ambulatory activity
decreases with time during the active phase in HFD rats
while remaining stable in RCD rats. ,is is in line with data
obtained after 8 weeks of HFD in adult rats [10]. It is
noteworthy that voluntary physical activity was previously
shown to counteract the effects of hyperphagia and of an
obesogenic diet in young and aged rats [12, 47]. In human
adults prone to obesity, it was suggested that increased
spontaneous physical activity helps preventing weight gain
induced by overfeeding [48]. ,is is also supported by the
increased physical activity observed in normal-weight young
adults submitted to overfeeding for 56 days [49]. In addition,
it was proposed that spontaneous physical activity is a major
predictor of weight gain in overfed humans [50]. ,is further
supports the hypothesis that over time, obesogenic diets in-
crease weight gain by promoting both high calorie intakes and
sedentary behaviors. Finally, it has also been shown that sleep

deprivation can promote obesity in rodent models and
humans [51]. Lower percent sleeping time was measured
throughout the experiments using HFD in our model, and the
mechanisms underlying this effect remain to be elucidated.
Further, a steady decline in sleep quality was observed in both
groups during the 14-day period.

5. Conclusions

In conclusion, the present results show the pertinence of
measuring key metabolic parameters and behaviors in re-
sponse to obesogenic diets in a young growing rat model on
a continuous basis.,is study demonstrates that at a very early
stage, HFD alters key functions related to appetite, feeding
behaviors, satiation, fat storage, physical activity, metabolism,
and sleep. It suggests that energy-dense HFD could induce
a vicious cycle that promotes higher calorie intake and sed-
entary behaviors, two major risk factors for the development
of obesity and ensuing metabolic dysfunctions. Further, the
results presented herein imply the existence of a transitory
state where young animals accumulate visceral adiposity while
increases in weight gain are not yet detectable in response to
hypercaloric intakes. However, this transitory state may only
last between 2 and 4 weeks and could develop further into
obesity.We anticipate that the results derived from the present
study could be applied to elaborate novel interventions in
nutrition and physical activity to circumvent obesity and
ensuing metabolic dysfunctions at an early stage in human
pediatric populations, thus opening up new avenues in human
clinical and behavioral nutrition research.
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