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1. Abstract 22 

 The respiratory mucosa is the primary portal of entry for numerous viruses such as the 23 

respiratory syncytial virus, the influenza virus and the parainfluenza virus. These pathogens 24 

initially infect the upper respiratory tract and then reach the lower respiratory tract, leading to 25 

diseases. Vaccination is an affordable way to control the pathogenicity of viruses and constitutes 26 

the strategy of choice to fight against infections, including those leading to pulmonary diseases. 27 

Conventional vaccines based on live-attenuated pathogens present a risk of reversion to pathogenic 28 

virulence while inactivated pathogen vaccines often lead to a weak immune response. Subunit 29 

vaccines were developed to overcome these issues. However, these vaccines may suffer from a 30 

limited immunogenicity and, in most cases, the protection induced is only partial. A new 31 

generation of vaccines based on nanoparticles has shown great potential to address most of the 32 

limitations of conventional and subunit vaccines. This is due to recent advances in chemical and 33 

biological engineering, which allow the design of nanoparticles with a precise control over the 34 

size, shape, functionality and surface properties, leading to enhanced antigen presentation and 35 

strong immunogenicity. This short review provides an overview of the advantages associated with 36 

the use of nanoparticles as vaccine delivery platforms to immunize against respiratory viruses and 37 

highlights relevant examples demonstrating their potential as safe, effective and affordable 38 

vaccines.  39 

 40 

41 
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1. Introduction 42 

 Lower respiratory tract infections (LRTIs) constitute a major public health burden worldwide. 43 

LRTIs represent a leading cause of human mortality and morbidity, causing annually over 3 44 

million deaths worldwide (World Health Organization, 2016). Among these infections, about 80% 45 

of LRTIs cases are caused by viruses (Seo et al., 2014). In most cases, these pathogens enter the 46 

host via airborne transmissions (e.g. droplets or aerosols), replicate efficiently in the respiratory 47 

tract and cause clinical manifestations, ranging from fever to bronchiolitis and pneumonia (Kutter 48 

et al., 2018). In addition, LRTIs associated with viruses represent an important source of economic 49 

loss for livestock and poultry industry as these infections predispose animals to secondary bacterial 50 

infections (Griffin, 1997;Taylor et al., 2010;Johnson and Pendell, 2017). 51 

 52 

Viruses infecting the human lower respiratory tract include the influenza virus, the respiratory 53 

syncytial virus (RSV), the parainfluenza virus and the adenovirus (Walker et al., 1994;Pavia, 54 

2011). Seasonal influenza virus epidemics result in a significant burden of disease in children and 55 

elderlies and account for 3 to 5 million cases of severe illness and for nearly 290 000 to 650 000 56 

deaths worldwide each year (World Health Organization, 2018). RSV and parainfluenza virus 57 

infections are the leading cause of hospitalization for acute respiratory infections in young 58 

children, causing 45% and 40% of pediatric hospitalizations, respectively (Branche and Falsey, 59 

2016;Mazur et al., 2018). Adenovirus infections account for 3 to 5% of LRTIs cases in children 60 

and can be fatal for immunocompromised patients (Lu et al., 2013). In general, respiratory viruses 61 

represent a major health problem in infants, young children, immunocompromised patients and 62 

the elderly population. According to Global Burden of Diseases (GBD), 74% of deaths associated 63 

with LRTIs represent these vulnerable patient groups (Collaborators, 2017).  64 
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  65 

Vaccination remains the most cost-effective strategy to fight against infectious diseases. 66 

Conventionally, vaccine formulations consist of attenuated viruses, killed pathogens (inactivated) 67 

or subunit protein antigens, which elicit a specific immune response. These vaccine formulations 68 

have allowed the prevention, or the control, of several important diseases including rubella, yellow 69 

fever, polio and measles, and, in the case of smallpox, even eradication (Fenner et al., 1988;Hajj 70 

Hussein et al., 2015). Considerable efforts have been devoted for the development of efficient 71 

vaccines against LRTIs, including inactivated/fragmented trivalent or quadrivalent seasonal 72 

vaccines against influenza type A and type B viruses such as Influvac® (Daubeney et al., 1997), 73 

Vaxigrip® (Delore et al., 2006) and Fluzone® (Grohskopf et al., 2015) as well as live attenuated 74 

vaccines such as Nasovac® and Flumist® for nasal administration in young children (Carter and 75 

Curran, 2011;Dhere et al., 2011). Nevertheless, live-attenuated vaccines against influenza virus 76 

suffer from safety concerns due to their nature and represent a risk for elderly and 77 

immunosuppressed humans (Chattopadhyay et al., 2017). Besides, killed pathogen vaccines and 78 

virus-derived subunit vaccines induce weaker immune responses and often require the use of 79 

strong adjuvant to boost efficiency (Vartak and Sucheck, 2016).  80 

 81 

 Several promising vaccines are currently evaluated in the clinics for different respiratory 82 

viruses (Papadopoulos et al., 2017). These new vaccine formulations aim to be safer and more 83 

efficient compared to traditional vaccines based on attenuated viruses, killed pathogens and 84 

subunits. Nevertheless, the high level of antigenic drift (genetic mutations) of some viruses, such 85 

as the influenza virus, reduces the efficacy of vaccines and needs to be addressed (Boni, 2008). 86 

Therefore, while improving safety and efficiency, vaccines should also be less sensitive to 87 
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antigenic drift. The concept of “universal vaccine” is critical for viruses like the influenza virus, 88 

and new formulations to induce broad-spectrum immunity are being investigated. In the next 89 

sections, we discuss the advantages of using nanoparticle formulations against respiratory viruses 90 

and we highlight relevant examples of the use of nanoparticles as safe, effective and affordable 91 

vaccines.   92 

 93 

 2. Nanoparticles, an alternative approach to conventional vaccines 94 

 The use of particles as nanoplatforms displaying relevant antigenic moieties is appealing as 95 

an alternative approach to conventional vaccines. These nano-sized materials can be obtained from 96 

biological sources and/or can be synthetic. Currently, there is a large variety of particles evaluated 97 

as antigen carriers, including, inorganic and polymeric-nanoparticles, virus-like particles (VLPs), 98 

liposomes and self-assembled protein nanoparticles (Figure 1A). The advantages of these 99 

materials reside primarily in their size (at least one dimension should be at the nanometer level), 100 

since many biological systems such as viruses and proteins are nano-sized (Laval et al., 2000). 101 

Nanoparticles can be administered via sub-cutaneous and intramuscular injections, or can be 102 

delivered through the mucosal sites (oral and intranasal), and penetrate capillaries as well as 103 

mucosal surfaces (Parveen et al., 2016;Schneider et al., 2017). Recent progresses have allowed the 104 

preparation of nanoparticles with unique physicochemical properties. For instance, size, shape, 105 

solubility, surface chemistry and hydrophilicity can be tuned and controlled, which allows the 106 

preparation of nanoparticles with tailored biological properties (Angioletti-Uberti, 2017). 107 

Moreover, nanoparticles can be designed to allow the incorporation of a wide range of molecules 108 

including antigens which makes them highly interesting in vaccinology (Irvine et al., 2015;Szeto 109 

and Lavik, 2016).  110 
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 111 

 Incorporation of antigens in nanoparticles can be achieved by encapsulation (physical 112 

entrapment) or by conjugation (covalent functionalization) (Chattopadhyay et al., 2017). Studies 113 

have demonstrated that nanoparticles could protect the native structure of antigens from proteolytic 114 

degradation and/or improve antigen delivery to antigen-presenting cells (APCs) (Pachioni-115 

Vasconcelos Jde et al., 2016). In addition, nanoparticles incorporating antigens can exert a local 116 

depot effect, ensuring prolonged antigen presentation to immune cells (Fredriksen and Grip, 2012). 117 

Interestingly, nanoparticles have also shown intrinsic immunomodulatory activity (Mamo and 118 

Poland, 2012). For instance, nanoparticles such as carbon nanotubes (CNTs), carbon black 119 

nanoparticles, poly(lactic-co-glycolic acid) (PLGA) and polystyrene nanoparticles, titanium 120 

dioxide (TiO2) nanoparticles, silicon dioxide (SiO2) nanoparticles, and aluminum oxyhydroxide 121 

nanoparticles have been reported to induce NLRP3-associated inflammasome activation (Zhu et 122 

al., 2014). In fact, once internalized by APCs, these nanoparticles provide signals that trigger 123 

lysosomal destabilization and the production of reactive oxygen species (ROS), leading to the 124 

release of lysosomal contents, including the cysteine protease cathepsin B. This protease is sensed 125 

by NLRP3, which subsequently activates the formation of the inflammasome complex 126 

(Ghiringhelli et al., 2009;Tschopp and Schroder, 2010;Bruchard et al., 2012;Abderrazak et al., 127 

2015;He et al., 2016). Subsequently, interleukins are produced as downstream signaling events, 128 

leading to the recruitment and/or activation of immune cells (Cassel et al., 2008;Halle et al., 129 

2008;Ghiringhelli et al., 2009;Sharp et al., 2009;Masters et al., 2010;Niemi et al., 2011;Scharf et 130 

al., 2012). Taken together, these properties advocate that nanoparticles are promising antigen 131 

carriers and immune cell activators for vaccination.                 132 
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 133 

3. Nanoparticles and the respiratory tract immune system 134 

 The respiratory mucosa represents the primary site for invasion and infection by a virus whose 135 

replication occurs in the ciliated cells of the upper respiratory tract (URT). Subsequently, infection 136 

spreads to the low respiratory tract (LRT) by virus-rich secretions and by infected cell debris from 137 

the URT (Adair, 2009). Nasal-associated lymphoid tissue (NALT), the first site for inhaled antigen 138 

recognition located in the URT, is an important line of defense against respiratory viruses. NALT 139 

is present in rodents, birds and primates (Kang et al., 2014). This structure is characterized by 140 

aggregates of lymphoid cells located in the nasopharyngeal cavity (Marasini et al., 2017). In 141 

human, the Waldever’s ring, made of adenoid and tonsil, is considered as the equivalent of NALT 142 

structure, which contains various narrow epithelial channels. NALT comprises aggregates of 143 

lymphoid follicles (B-cell areas), interfollicular areas (T-cell areas), macrophages and dendritic 144 

cells (DCs) (Figure 1B), which, when activated, support the clearance of infectious agents 145 

(Zuercher et al., 2002;Adair, 2009;Marasini et al., 2017). Accordingly, NALT is considered as an 146 

inductive site for humoral and cellular immune responses and represents a promising target for 147 

vaccines against respiratory viruses. Ideally, nanovaccines would follow a path similar to 148 

respiratory viruses in order to efficiently deliver antigens to NALT and trigger a specific mucosal 149 

immune response. Therefore, formulation, size and antigen exposition are critical aspects when 150 

designing nanovaccines targeting NALT. Most respiratory viruses have an average diameter size 151 

ranging between 20 and 200 nm (Lamb and Choppin, 1983;Henrickson, 2003;Utley et al., 152 

2008;Hall et al., 2010). Thus, besides being safe and immunogenic on its own, a nanovaccine 153 

should have a size similar to viruses while incorporating relevant antigens (Gomes et al., 2017). 154 

     155 
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 Over the last decade, a number of nanoparticles have been designed to mimic respiratory 156 

viruses in terms of size, shape and surface property in order to target NALT as well as to raise 157 

humoral and cellular immune responses (Niu et al., 2013;Chattopadhyay et al., 2017;Fogarty and 158 

Swartz, 2018). First, beside a nanoparticle size of 20 to 200 nm in diameter to match the size of 159 

most respiratory viruses, nanoparticles should be preferably positively charged. In fact, positively 160 

charged polymeric, phospholipidic, metallic, inorganic and protein-based nanoparticles have 161 

shown stronger immune responses compared to their negatively charged counterparts (Fromen et 162 

al., 2015;Chattopadhyay et al., 2017). Second, the incorporation of antigens/epitopes within or on 163 

the surface of the nanoparticles can be challenging and requires advanced approaches in chemical 164 

and/or biological engineering  (Chattopadhyay et al., 2017). The most common strategy is to 165 

encapsulate or entrap antigens/epitopes within the nanoparticles. In this case, nanoparticles are 166 

used to protect the antigen/epitopes and deliver them to NALT (Rahimian et al., 2015;Kasturi et 167 

al., 2017;Kishimoto and Maldonado, 2018). Nanoencapsulation can be achieved by using different 168 

procedures, including nanoprecipitation and oil in water (o/w) emulsion (Kumari et al., 2014). 169 

Alternatively, antigens can be attached and exposed on the nanoparticle surface. This strategy aims 170 

at mimicking viruses. Conjugation of antigenic epitope can be performed directly on the 171 

nanoparticles using different chemical reactions like the disulfide bonding and the thiolate-gold 172 

bond formation (Hirosue et al., 2010;Ding et al., 2017;Tao et al., 2017). Otherwise, it can be 173 

achieved by first preparing an epitope-functionalized self-assembling unit, which upon self-174 

assembly form nanoparticles decorated with the antigen (Mora-Solano et al., 2017;Negahdaripour 175 

et al., 2017;Babych et al., 2018). Third, the formulation and administration strategies are also 176 

critical aspects to consider. Vaccines administered via subcutaneous or intramuscular injection 177 

induce systemic immunity and usually, a weak mucosal response is observed. On the other hand, 178 
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mucosal vaccination, either oral or intranasal delivery, induces humoral and cellular immune 179 

responses at the systemic level and the mucosal surfaces, which is more effective in the protection 180 

against respiratory viruses (Ichinohe et al., 2009;Lycke, 2012). Studies have demonstrated that 181 

vaccination via the intranasal route provides a better protection when compared to subcutaneous 182 

immunization in the context of respiratory pathogens and mucosal immunity. Intranasal 183 

vaccination led to higher antigen‐specific lymphocyte proliferation, cytokine production 184 

(interferon‐γ, interleukins) and induction of antigen‐specific IgA antibody (Chen et al., 2004;Giri 185 

et al., 2005;Mapletoft et al., 2010;Kharb and Charan, 2011;McCormick et al., 2018). A promising 186 

formulation strategy is the intranasal spray, which delivers conveniently and safely the 187 

nanovaccines directly to the respiratory mucosa (Birkhoff et al., 2009;Kanojia et al., 2017;Kim 188 

and Jang, 2017). However, the number of clinical trials using nanovaccine formulations for 189 

intranasal delivery, including spray dried nanovaccines, is limited. This is mostly associated with 190 

the difficulty of keeping the nanovaccine integrity during the entire formulation process (Kanojia 191 

et al., 2017). Moreover, the immune response is particularly sensitive to the nature, size, shape and 192 

surface properties of the nanoparticles as well as to the density and the potency of the antigens. 193 

Thus, it is very challenging to predict the effect of a given nanovaccine on the immune system. In 194 

addition, nanoparticles have some limitations associated with their synthesis, or preparation, and 195 

their properties. These include limited antigen loading, low synthesis yield, poor targeting 196 

capability to immune cells, limited manufacturability, and, in some cases, toxicity (Shao et al., 197 

2015;Zilker et al., 2017;Pan et al., 2018). These drawbacks can lead to side effects and/or poor 198 

immunogenicity, which precludes their clinical usage. Besides, little is known about the 199 

interactions between nanoparticles and immune cells. In fact, their adjuvant effect and their ability 200 

to activate the immune system still remain unclear and need to be better understood at the 201 
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molecular level (Sahdev et al., 2014). Nonetheless, nanoparticle formulations have recently 202 

revealed promising results against respiratory virus infections (Table 1) and relevant examples 203 

will now be discussed.  204 

 205 

4. Polymeric nanoparticles 206 

 A polymer consists of a large molecule constructed from monomeric units. Depending on the 207 

construction, polymers can be linear, slightly branched or hyperbranched (3D network) (Piluso et 208 

al., 2017). Polymeric nanoparticles can be either obtained from the polymerization of monomeric 209 

units or from preformed polymers. These nanoparticles are attractive in the medical field due to 210 

their adjustable properties (size, composition and surface properties), which allow controlled 211 

release, ability to combine both therapy and imaging (theranostics), and protection of drug 212 

molecules (Kamaly et al., 2012;Krasia-Christoforou and Georgiou, 2013;Tang et al., 2016). For 213 

example, poly(lactic-co-glycolic acid) (PLGA) is a biodegradable and biocompatible polymer 214 

approved by Food and Drug Administration (FDA) and European Medicines Agency (EMA) for 215 

use in humans. This is due to its ability to undergo hydrolysis in vivo, resulting in lactic acid and 216 

glycolic acid metabolites, which are efficiently processed by the body (Acharya and Sahoo, 2011). 217 

PLGA can be engineered to form nanoparticles capable of encapsulating different types of 218 

biomolecules and release them sustainably over time (Acharya and Sahoo, 2011;Mahapatro and 219 

Singh, 2011;Danhier et al., 2012;Silva et al., 2016). These nanoparticles can encapsulate antigens 220 

and prevent their degradation over 4 weeks under physiological conditions, which is critical for 221 

mucosal vaccination (Getts et al., 2015). Moreover, PLGA-NPs promote antigen internalization 222 

by APCs and facilitate antigen processing and presentation to naïve lymphocytes (Woodrow et al., 223 

2012;Santos et al., 2013). For instance, spherical PLGA-NPs (200 to 300 nm of diameter) were 224 
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used to encapsulate an inactivated Swine influenza virus (SwIV) H1N2 antigens (KAg) via 225 

water/oil/water double emulsion solvent evaporation (Dhakal et al., 2017). It was observed that 226 

pigs vaccinated twice with this preparation and challenged with a virulent heterologous influenza 227 

virus strain, have a significantly milder disease in comparison to non-vaccinated animals. This 228 

observation correlated closely with the reduced lung pathology and the substantial clearance of the 229 

virus from the animal lungs. Other polymeric nanoparticles, such as chitosan  a natural polymer 230 

composed of randomly distributed β-(1-4)-linked d-glucosamine and N-acetyl-d-glucosamine, and 231 

N-(2-hydroxypropyl)methacrylamide/N-isopropylacrylamide (HPMA/NIPAM), were also 232 

investigated as intranasal vaccines against respiratory viruses (Csaba et al., 2009;Li et al., 2014a;Li 233 

et al., 2014b;Sawaengsak et al., 2014;Liu et al., 2015;Lynn et al., 2015;Francica et al., 2016;Islam 234 

et al., 2016;Marasini et al., 2016;Wu et al., 2017;Dabaghian et al., 2018;Dhakal et al., 2018;Zhang 235 

et al., 2018). Polymeric nanoparticles have many advantages, including biocompatibility (Vela-236 

Ramirez et al., 2015), antigen encapsulation and stabilization (Carrillo-Conde et al., 2010;Petersen 237 

et al., 2012), controlled release of antigens and intracellular persistence in APCs (Ulery et al., 238 

2011a;Ulery et al., 2011b), pathogen-like characteristics, and suitability for intranasal 239 

administration (Ulery et al., 2011b;Ross et al., 2014). Nevertheless, the effect of the polymer 240 

properties (core chemistry, size, shape, surface properties) on the transport within the URT remains 241 

unknown. More studies are needed to better understand the effect of changing nanoparticle 242 

properties on their biological activities and to, ultimately, predict the fate of these nanocarriers 243 

upon their intranasal administration. 244 

   245 
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5. Self-assembling protein nanoparticles and VLPs 246 

 Self-assembling protein nanoparticles (SAPNs) are structures obtained from the 247 

oligomerization of monomeric proteins. The protein building blocks are mostly obtained through 248 

recombinant technologies and are considered safe for biomedical applications (Scheerlinck and 249 

Greenwood, 2008). SAPNs can be engineered to have a diameter ranging from 20 to 100 nm, 250 

similar to the sizes of many viruses and therefore, are considered as potential nanovaccine 251 

candidates against viruses, including respiratory viruses (Scheerlinck and Greenwood, 252 

2008;Schneider-Ohrum and Ross, 2012). For example, SANPs, designed to elicit an immune 253 

response against RSV, have been explored using the nucleoprotein (N) from the virus 254 

nucleocapsid. N is a major target of antigen-specific cytotoxic T-cell response. The self-assembly 255 

of N-protein protomers led to the formation of supramolecular nanorings of 15 nm diameter (Roux 256 

et al., 2008). This platform was modified by fusing the FsII epitope targeted by monoclonal 257 

neutralizing antibody (palivizumab) to the N-protein, in order to form chimeric nanorings with 258 

enhanced immune response and virus protection against RSV. The results showed reduced virus 259 

load in the lungs of challenged mice (Herve et al., 2017). Similarly, chimeric nanorings displaying 260 

3 repeats of the highly conserved ectodomain of the influenza virus A matrix protein 2 (M2e), 261 

were prepared by recombinant technologies (Herve et al., 2014). When administrated via the 262 

intranasal route, these M2e-functionalized nanorings induced local production of mucosal 263 

antibodies and led to mice protection (Herve et al., 2014). These N-nanorings are interesting for 264 

intranasal delivery of antigen due to their similarities with respiratory viruses in term of size and 265 

structure (sub-nucleocapsid-like superstructures). Other examples of SAPNs as potential 266 

nanovaccines against respiratory viruses include the capsid protein of the papaya mosaic virus 267 

(PapMV), the purified coronavirus spike protein and ferritin, which are self-assembling proteins 268 
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that form rod-shaped and nearly spherical nanostructures, respectively (Lawson et al., 1991;Lee 269 

and Wang, 2006;Li et al., 2006;Yamashita et al., 2010;Yang et al., 2012;Babin et al., 270 

2013;Kanekiyo et al., 2013;Coleman et al., 2014;Lopez-Sagaseta et al., 2016;Park et al., 271 

2017;Therien et al., 2017;Qi et al., 2018). Recently, assemblies composed of four tandem copies 272 

of M2e and headless HA proteins were prepared and stabilized by sulfosuccinimidyl propionate 273 

crosslinking, showing the possibility of generating protein nanoparticles almost entirely composed 274 

of the antigens of interest (Deng et al., 2018).  275 

 276 

 VLPs are spherical supramolecular assemblies of 20 to 200 nm dimeter, which result from the 277 

self-assembly of viral capsid proteins. These particles are free from genetic materials and have the 278 

advantage of mimicking perfectly the structure and the antigenic epitopes of their corresponding 279 

native viruses. Therefore, this repetitive antigen display promotes efficient phagocytosis by APCs 280 

and subsequent activation (Kushnir et al., 2012;Mathieu et al., 2013;Zeltins, 2013;Zhao et al., 281 

2013;Mohsen et al., 2017). Recently, Lee and colleagues demonstrated that intranasal delivery of 282 

influenza-derived VLPs expressed in insect cells and exposing 5 repeats of the M2e epitopes, 283 

confers cross protection against different serotypes of influenza viruses by inducing humoral and 284 

cellular immune responses (Lee et al., 2018). 285 

 286 

 SAPNs and VLPs are thus attractive but their formulation into stable and spray dried vaccines 287 

for intranasal injection can be challenging and may require the use of surfactants and saccharides 288 

(Lang et al., 2009). In the last decades, self-assembling peptides (SAPs) have also been 289 

investigated as intranasal nanovaccines against respiratory viruses due to their straightforward 290 

chemical synthesis and their storage stability upon lyophilization (Si et al., 2018).  291 
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 292 

6. Inorganic nanoparticles 293 

 There are many inorganic nanoparticles suitable for biomedical applications, including 294 

superparamagnetic nanoparticles (iron oxide nanoparticles), quantum dots and plasmonic 295 

nanoparticles (gold and silver nanoparticles). Inorganic materials are mostly used as tools with 296 

improved therapeutic efficacy, biodistribution and pharmacokinetics. However, inherently, plain 297 

inorganic core nanoparticles would not be suitable in biological fluids due to particle aggregation. 298 

Therefore, in the medical field, these nanoparticles are often coated with organic molecules via 299 

adsorption or chemical reactions. In fact, these biocompatible nanoparticles can be described as 300 

complex hybrids materials with an inorganic core and an organic outer shell (Feliu et al., 301 

2016;Giner-Casares et al., 2016). Among inorganic nanoparticles, the most commonly used for 302 

vaccination are gold nanoparticles (AuNPs). AuNPs are readily internalized by macrophages and 303 

dendritic cells, and induce their activation (Bastus et al., 2009;Kang et al., 2017). Large scale 304 

production is possible with strict control on particle size and ease of functionalization using the 305 

strong affinity between thiol groups and gold. Thiol groups can be attached to AuNP surface by 306 

forming thiolate–Au bonds (Hiramatsu and Osterloh, 2004;Pensa et al., 2012;Spampinato et al., 307 

2016;Belmouaddine et al., 2018). Furthermore, no immune response is elicited towards inert 308 

carriers like AuNPs (Wang et al., 2018). Thus, these nanoparticles are an appealing platform for 309 

nanovaccine engineering via antigen functionalization.  310 

 311 

 A wide range of molecules, including adjuvants and antigens can be conjugated on AuNPs at 312 

high density, resulting in improved immunogenicity and antigen presentation (Cao-Milan and Liz-313 

Marzan, 2014;Jazayeri et al., 2016). AuNPs can be formulated for intranasal administration and 314 
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can diffuse into the lymph nodes, triggering robust antigen-specific cytotoxic T-cell immune 315 

responses (Salazar-Gonzalez et al., 2015;Marques Neto et al., 2017). Tao and coworkers have 316 

demonstrated that the peptide consensus M2e of influenza A viruses with a non-native cysteine 317 

residue at the C-terminal end could be attached on the AuNPs via thiolate–Au chemistry. The 318 

resulting M2e-AuNPs was administered by the intranasal route to mice with CpG (cytosine-319 

guanine rich oligonucleotide) adjuvant, triggering a fully protective immune response against the 320 

influenza virus PR8 strain (Tao et al., 2014). More recently, it was demonstrated that this 321 

formulation could induce lung B cell activation and robust serum anti-M2e IgG response, with 322 

stimulation of both IgG1 and IgG2a subclasses (Tao et al., 2014). Additionally, this vaccination 323 

strategy led to protection against infection by the pandemic influenza virus strain, 324 

A/California/04/2009 (H1N1pdm) pandemic strain, influenza virus A/Victoria/3/75 (H3N2) strain 325 

and the highly pathogenic avian influenza virus A/Vietnam/1203/2004 (H5N1) (Tao et al., 2017). 326 

Although gold nanoparticles constitute an attractive platform for antigen conjugation, they can 327 

accumulate in organs such as liver and spleen for a long period, which could be ultimately 328 

associated with toxicity (Boisselier and Astruc, 2009). Coating with biocompatible materials 329 

reduces their toxicity, although it can lead to alterations of the physicochemical and biological 330 

properties. Therefore, safety issues of AuNPs still need to be addressed. 331 

       332 

7. Conclusion and perspectives 333 

 Engineered nanoparticles have demonstrated their potential as vaccine delivery platforms. 334 

They can be envisaged as both antigen nanocarriers and adjuvants. In all cases, intranasal 335 

administration of nanovaccines allows a convenient and safe delivery of the antigen to NALT, 336 

inducing mucosal and systemic immunity. Nonetheless, additional studies are still needed before 337 
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their clinical translation. While intranasal vaccination of nanoparticles generates specific IgA 338 

antibody in the URT and leads to high survival rates in animal models, there are still limited studies 339 

on nonhuman primates, thus making nanoparticle’s fate difficult to predict in a human URT. In 340 

addition, nanoparticle vaccines are generally functionalized with specific antigen(s), which result 341 

in an immune response targeted against these antigenic determinants. Considering antigenic drifts, 342 

the growing human population that needs to be vaccinated and the different type of viruses, the 343 

cost to address all these aspects would be too prohibitive to produce affordable vaccines. 344 

Consequently, the development of broad spectrum vaccines constitutes a critical need and we 345 

consider that nanovaccine engineering will contribute to achieve this objective. 346 
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 816 

Figure 1: Overview of the immune response in the upper respiratory tract. A) Schematic view of 817 
different nanoparticles used for intranasal vaccination. B) Mechanisms of NALTs immune 818 
responses in the upper respiratory tract. (1) Nanoparticles are transcytosed from the mucus layer 819 
into the nasal epithelial tissues by microfold cells (M cells) or passively diffuse through epithelial 820 

cell junctions. (2) Other nanoparticles are captured and internalized by DCs (dendritic cells) from 821 

their extension through epithelial junctions and by other APCs, such as B cells. (3) Cells that have 822 

encountered nanoparticles migrate to the nearest lymph node in order to activate naive T helper 823 
cells. Once activated, T helper cells activate B cells that have encountered the same antigen 824 
presented by nanoparticles. Activated B cells proliferate in the lymph node (B cell zone) and, once 825 
mature, enter systemic circulation in order to reach the inflammation site. IgA+ B cells locally 826 
differentiate into antibody-secreting plasma cells to produce IgA dimers. (4) IgA dimers are 827 

secreted via polymeric Ig receptor (pIgR) at the mucosal surface. NALT immune response induces 828 
long-lasting memory B and T cells able to trigger a rapid recall response. 829 
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 830 

Table 1: Nanoparticle-based vaccines against respiratory viruses delivered via the 831 
intranasal route.   832 

Material Size (nm) Virus Antigen/epitope Adjuvant Reference 

Polymeric nanoparticles 

 

 

PLGA 

225.4 Bovine 

parainfluenza 3 

virus (BPI3V) 

BPI3V proteins - (Mansoor et al., 2015) 

200 - 300 Swine influenza 

virus (H1N2) 

Inactivated virus 

H1N2 antigen 

- (Dhakal et al., 2017) 

-PGAa 100 - 200 Influenza 

(H1N1) 

Hemagglutinin - (Okamoto et al., 2009) 

 

 

 
Chitosan 

140 Influenza 

(H1N1) 

H1N1 antigen - (Liu et al., 2015) 

300 - 350 Influenza 

(H1N1) 

HA-Split - (Sawaengsak et al., 

2014) 

571.7 Swine influenza  

virus (H1N2) 

Killed swine 

influenza antigen 

- (Dhakal et al., 2018) 

200 - 250 Influenza  

(H1N1) 

M2e  Heat shock 

protein 70c 

(Dabaghian et al., 2018) 

HPMA/NIPAM 12-25 RSV F protein TLR-7/8 

agonist 

(Francica et al., 2016), 

(Lynn et al., 2015) 

Polyanhydride 200 - 800 RSV F and G 

glycoproteins 

- (McGill et al., 2018), 

(Ulery et al., 2009) 

Self-assembling proteins and peptide-based nanoparticles 

N nucleocapside 

protein of RSV 

15 RSV RSV 

phosphoprotein 

R192G (Roux et al., 2008) 

15 RSV FsII Montanide™ 
Gel 01 

(Herve et al., 2017) 

15 Influenza 

(H1N1) 

M2e Montanide™ 

Gel 01 

(Herve et al., 2014) 

Ferritin 
12.5 

Influenza 
(H1N1) M2e - 

(Qi et al., 2018) 

Q11 

- 

Influenza 

(H1N1) Acid polymerase  - 

(Si et al., 2018) 

Inorganic nanoparticles 

Gold  12 Influenza M2e CpG (Tao et al., 2017) 

Others 

 

 
 

 

VLP 

80 - 120 Influenza 

(H1N1) 

Hemagglutinin - (Quan et al., 2007) 

80 - 120 Influenza 
(H1N1, H3N2, 

H5N1) 

M2e - (Lee et al., 2018) 

80 - 120 RSV F protein et G 
glycoprotein of 

RSV and M1 

protein of Influenza 

- (Cai et al., 2017) 

ISCOMb 40 Influenza 
(H1N1) 

Hemagglutinin ISCOMATRIX (Wee et al., 2008), 
(Coulter et al., 2003) 

 

DLPC liposomesc 

30-100 Influenza 

(H1N1) 

M2, HA, NP MPL and 

trehalose 6,6′ 

dimycolate 

(Tai et al., 2011) 

a Poly--glutamic acid 833 
b Quillaia saponin, cholesterol, phospholipid and associated antigen 834 
c Dilauroylphosphatidylcholine liposomes 835 


