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RÉSUMÉ 

Soit J(C) l'ensemble ordonné de part ies commençantes dans un ensemble ordonné 
cominuscule C, où C est membre de deux des t rois familles infini es d'ensembles or­
donnés cominuscules, ou est un des deux ensembles cominuscules exceptionels. 
Nous démontrons que la translation de Auslander-Reiten T sur le groupe de 
Grothendieck de la catégorie dérivée bornée pour l'algèbre d 'incidence de l 'ensemble 
ordonné J ( C) , qui s 'appelle la transformation de Coxeter dans ce cas, a un ordre 
fini. Spécifiquement, nous démontrons que T (h+ l ) = ±id où h est le nombre de 
Coxeter pour le système de racines pertinent. Écrivant Pan pour l 'application 
de Panyushev, c'est connu que Panh = id sur un ensemble ordonné cominus­
cule (Rush & Shi , 2013). Nous étudions aussi la relation entre la transformation 
de Coxeter et l'application de Panyushev. 

Mots clés: Théorie des représentations, algèbre d 'incidence, la transform ation 
de Coxeter , la translation de Auslander-Reiten , ensemble ordonné cominuscule. 
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ABSTRACT 

Let J (C) be the poset of order ideals of a cominuscule poset C where C cornes from 
two of t he t hree infinite families of cominuscule posets or t he except ional cases . 
We show that the Auslander-Reiten translation T on the Grothendieck group of 
the bounded derived category for the incidence algebra of the poset J(C), which 
is called the Coxeter transformation in this context, has fini te order. Specifically, 
we show that T (h.+l) = ±id where h is the Coxeter number for the relevant root 
system. Let Pan denote the Panyushev map . It is known that Panh = id on 
cominuscule posets (Rush & Shi , 2013) . We also investigate the relation between 
Coxeter transformation and Panyushev map. 

K eywords : Representation theory, incidence algebra, Coxeter transformation, 
Auslander-Reiten translation, cominuscule poset. 





INTRODUCTION 

Let A be the incidence algebra of a poset P over a base field !k. If the poset P is 

fini te, then A is a fini te dimensional algebra wit h fini te global dimension . We are 

interested in incidence algebras coming from cominuscule posets. A cominuscule 

poset can be thought of as a parabolic analogue of the poset of positive roots of 

a fini te root system. Cominuscule posets (also called minuscule posets) appear 

in the study of representation theory and algebraic geometry, especially in Lie 

theory and Schubert calculus (Billey & Lakshmibai, 2000), (Green, 2013) . 

Let J ( C) be the poset of order ideals of a given co minuscule poset C. The poset 

J (C) is an interesting abj ect in its own right. For inst ance, there is a corre­

spondence between the elements of J (C) and the minimal coset representatives of 

the corresponding Weyl group (Billey & Lakshmibai, 2000) , (Rush & Shi, 2013). 

Many combinatorial properties of order ideals of cominuscule posets are explained 

in (Thomas & Yong, 2009) . However, our main motivation for this thesis cornes 

from a conj ecture by Chapoton which can be st ated as follows. 

Let J (ët>+) be the poset of order ideals of ët> + where ët>+ is the poset of positive roots 

of a fini te root system éP. Let H be a hereditary algebra of type éP and let TH be the 

poset of torsion classes. Consider the incidence algebras of J ( ët>+) and TH. Chapo­

ton conjectures that there is a triangulat ed equivalence between the bounded de­

rived cat egories 'Db(mod J (ët>+)) and V b(modTH) and that 'Db(mod J (ët>+)) is frac­

tionally Calabi-Y au, i.e. sorne non-zero power of the Auslander-Reiten translation 

T equals sorne power of the shift functor. 

In (Chapoton, 2007), Chapoton proved that the Auslander-Reiten translation 
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T on the Grothendieck group of the bounded derived category (which is called 

Coxeter transformation in this context) for Tamari posets is periodic. There is 

an abundance of studies on Coxeter transformation in the literature. We refer 

to Ladkani (Ladkani, 2008) for references on the topic and recent results on the 

periodicity of Coxeter transformation. Kussin , Lenzing, Meltzer (Kussin et al. , 

2013) showed that the bounded derived category is fractionally Calabi-Y au for 

certain posets by using singularity theory. Recently, Diveris, Purin , Webb (Diveris 

et al. , 2017) introduced a new method to determine whether the bounded derived 

category of a poset is fractionally Calabi-Y au. 

In this thesis , we consider Chapoton's Conjecture on t he level of Grothendieck 

groups for cominuscule posets instead of root posets. We calculate the action of 

Auslander-Reiten translation Ton the bounded derived category Db(mod J (C)) 

of the incidence algebra of t he poset J (C) of order ideals of a cominuscule poset 

C, and then we write the action on the Grothendieck group. We show that the 

Auslander-Reiten translation T acting on the corresponding Grothendieck group 

has finite order for two of the three infinite families of cominuscule posets , and 

for the exceptional cases. One can do this by considering the action of T on any 

convenient set of generators. The obvious choices are the set of the isomorphism 

classes of simple modules, and the set of the isomorphism classes of projective 

modules . However, the periodicity of T is not evident on these sets of generators. 

Instead, we consider a special spanning set of the Grothendieck group on which 

we see the periodicity combinatorially. 

The plan of the thesis is as follows. In t he first chapter, we give necessary back­

ground material we use throughout the thesis. In the second chapter , we give a 

short survey on derived categories, and we prove certain results which are impor­

tant in our study. In the third chapter , we give the definition of the Grothendieck 

group in our setting. We explain the machinery of the Grothendieck group which 
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we will apply in our study. In the fourth chapter , we introduce a special collection 

of projective resolutions for grid posets which are t he first infini te family of comi­

nuscule posets coming from the type A. Then, we also show the corresponding 

combinatorics for the homology of these proj ective resolut ions. These projective 

resolut ions provide a spanning set for the Grothendieck group , and in the same 

section we show that the Coxeter transformation T permutes this collection. In 

the fifth section , we study the generalization of our main results for cominuscule 

posets. The sixth chapter is devoted to developing certain combinatorial tools 

and using them to show a connection between Coxeter transformation and the 

Panyushev map. Finally, in the conclusion, we furt her discuss t he second infinite 

family of cominuscule posets with sorne examples. We also give a brief discussion 

about the Panyushev map in this context. 





CHAPTERI 

PRELIMIN ARIES 

In this preliminary section, we will recall basic definitions to fix notation in the 

thesis. 

1.1 Posets and order ideals 

A part ially ordered set P is a set together with a binary relation :::; which is 

reflexive, ant isymmetric, and t ransit ive. Any part ially ordered set P is going to 

be called a poset throughout this thesis. Two elements a, b are comparable in P 

if a :::; b or b :::; a, otherwise we say they are incomparable. We say b covers a in 

P if a < b and there is no element c such that a < c < b. An interval [a, b] in P 

consists of all elements x such t hat a :::; x :::; b. A poset P is called locally fini te 

when every interval in P is fini te. When P is locally fini te, we will represent it 

by its Hasse diagram, i.e. we represent every element in the poset P by a vertex 

and we put an edge between two vertices if one covers the other one. We use the 

convention that the arrows in the Hasse diagram go downwards in the poset even 

t hough we simply draw edges in the figures. 
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A chain is a subset of Pin which every pair of elements is comparable. An antichain 

is a subset of P such t hat every pair of different elements is incomparable. 

D efinition 1.1.1. A grid poset Pm ,n is t he product of two chains of length m and 

of length n. Explicitly, the elements of P m,n are the pairs ( i , _j) with i E {1 , · · · , m } 

and _j E {1 , · · · , n }. We compare elements entry-wise in Pm,n, i.e. (a , b) ~ (c, d) 

when a ~ c and b ~ d. 

A lattice L is a poset such that every pair of elements in L has a unique least 

upper bound, also called the join, and a unique greatest lower bound, also called 

the meet. A lat t ice is distributive if the join and meet operations distribute over 

each other . 

D efini t ion 1.1.2. An arder ideal of a poset P is a subset 1 Ç P such that if b E 1 

and a ~ b, then a E 1. We write J (P) for the set of all order ideals of P. 

Note t hat J (P) is always a distributive lattice. Recall that the fundamental the­

orem for finite distribut ive lattices states t hat if L is a finite distribut ive lattice , 

then t here is a unique fini te poset P such that L ~ J (P) (Stanley, 201 2) . 

D efinit ion 1.1.3. A non-decreasing finite sequence of posit ive integers (a1 , ... , am) 

is called a partition. We are going to represent su ch sequences by a = (>,~ 1 , · · · , À~r ) 

where 0 ~ À1 < · · · < Àr ~ n denote the distinct integers in the partition a while 

a/s denote the number of repetitions of each Ài · 

For each k E {1 , ... , m }, by the k -th row of Pm,n we mean elements of the form 

(k, b) in Pm,n· We represent an order ideal l in J (Pm,n) by its corresponding parti­

tion, i.e. the list of the number of elements of 1 in each row from top to bottom. 

Exa mple 1.1 .4 . Here is an example of a grid poset and its poset of order ideals 

with the corresponding partitions: 
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(3,3)<5< 

~ 
(2,3)<):' 

/ ~ 
(2 ,2)<> (1,3)"'/ 

~/~ 
(1, 2) ·v (0, 3v 
/ ~/ 

(1, 1) ~ (0, 2) / 

~/ 
(0, 1) • 

(0, 0) 0 / 

Figure 1.1 The Hasse diagrams of the grid poset P2,3 and the poset of order 

ideals J (P2,3). 

For instance, take the order ideal 1 represented by the partit ion (2, 3) in J(P2,3 ) . 

The order ideal 1 consists of two rows: there are two elements in t he first row, and 

we have three elements in the second row. 

Example 1.1.5 . This example shows the poset of order ideals in P3,3 . We draw 

sorne of the edges with dot ted lines for the sake of presentation . 
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<8>(3,3,3) 

Figure 1.2 The Hasse diagram of the poset of order ideals J (P3,3 ). 



9 

1.2 A quiver and representations of a quiver 

A quwer consists of four p1eces of information ( Q0 , Q1 , s, t) : Q0 is the set of 

vertices , Q1 is the set of arrows between vertices, and s, t : Q1 -t Q0 are two 

maps on the arrows where s sencls an arrow to its starting vertex, call it source 

and t; sends an arrow to its ending vertex, call it target. 

A quiver is said to be finite if Q0 and Q1 are finite sets . Two arrows ex and fJ are 

composable if t(cx) = s(fJ), and we write the composition as concatenation of ex 

and fJ, cxfJ. A pa th in Q is a sequence of composable arrows. A pa th of length 

greater than or equal to one is called a cycle if its source and t arget coïncide. A 

cycle of length one is called a loop. A quiver is acyclic if it contains no cycles. For 

every vertex v in Q0 , we define t he lazy path at v to be the path of length 0 at 

a vertex v. Let lk be a ground fi ld . A relation in Q is a lk-linear combination of 

path of length at least two, with the same source and the target. 

All vector spaces we mention are over !k. A quiver representation M = (Vi , fa) is a 

collection of vector spaces Vi for each vertex i E Q0 and linear maps fa : Vi -t Vj 

for every arrow a : i -t j E Q1 . If each vector space Vi is finite-dimensional, then 

M is called finite-dimensional. In this case, we define the dimension vector of M 

as dim(M) = (dim Vi) iEQo where dim Vi denotes the dimension of the vector space 

at vertex i E Qo. 

Let lV! = (Vi , f a) and N = (Wi, ga) be two representations of a quiver Q . We 

define a morphism of representations cp : M -t N as a collection of linear maps 

( c/Ji )iEQo such that for every arrow a E Q1 the following diagram commutes: 
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'\!Ve define R ep( Q) to be the category of lk-linear representations of Q and their 

morphisms and r ep( Q) as the fu ll subcategory of R ep( Q) consist ing of fin i te di­

mensional representat ions. Both R ep( Q) and r ep( Q) are abelian categories. 

A quiver representat ion M is said to be indecomposable if J\1! is nonzero and 

lVI has no direct sum decomposition lVI ~ N EB L , where L and N are nonzero 

representations of the quiver. 

We recall here a fundamental result , the Krull-Schmidt theorem, in representation 

theory. 

Theorem 1.2.1. (Etingof et al. , 2011 , Th eorem 2.1 9) Any finit e dimensional 

representation can be uniquely decomposed into a direct sum of indecomposable 

representations up to an isomorphism and arder of summands. 

Example 1.2.2. (Etingof et al. , 2011) Let us now discuss the indecomposable 

representations of the A3 quiver with the following orientation. 

A 3: •~ •~ • 

A representation of this quiver looks like 

In total, for A3 qui ver , we have six indecomposable representations as listed below: 

lk~o~o , o~o~lk , 

lk~lk~o , lk~lk~lk , 

o~lk~o , o~lk~lk . 
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Example 1.2 .3. Let Q be the quiver • ~ • ~ • and X and Y be the repre-

. 1 1 1 0 () sentatwns; lk ~ lk ~ lk and lk ~ lk ~ 0 . Let us show that Hom X , Y 

is the one-dimensional and Hom(Y, X) =O. 

~ : ~ 

À À 0 y y y 
lk _.,._2_ lk ~ 0 

The only morphisms are as shawn. This shows that Hom(X, Y) = lk 

À ' J-L ' 0 ~ y y y 
lk _.,._2_ lk ~ lk 

The only values for À and J.L which make the diagram commute are À = J.L = O. 

From this, we can easily see that Hom(Y, X) =O. 

1.3 Path algebras 

Let P( Q) be the set of all paths over a qui ver Q. We define the path algebra of the 

quiver Q as A= lkQ := spank (P(Q)) with a lk-linear multiplication J.L: A x A---+ A 

as follows 

{

pq 
J.L(p , q) = 0 

if s(q) = t(p) 

otherwise 

where p , q E P( Q). This multiplication is unital (unit being the sum of lazy 

paths) if Q0 is finite, and it is associative. 

Lemma 1.3.1. (A ssem et al., 2006) The path algebra A = lkQ is fin ite dimen­

sional if and only if Q is finite and acyclic. 
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Assume that A is a fini te dimensional lk-algebra. An element e E A is called an 

idempotent if e2 = e. A finite list of idempotents { e1 , · · · , en } is called a complete 

set of primitive pairwise orthogonal idempotents if 

3. ei cannot be written as a sum of two nontrivial orthogonal idempotents, 

The algebra A is called basic if eiA ~ ej A for all i =!= j. For instance, the pa th 

algebra lkQ satisfies t hese conditions; ei 's are the vertices, in other words paths of 

lenght zero. 

Let J be t he two-sided ideal of the path algebra A = lkQ generated by the arrows 

of Q. A two-sided ideal 1 of A = lkQ is called admissible if there exists m 2': 2 

such that Jm Ç 1 Ç J2 where J i, 2 :::; i :::; m is t he two-sided ideal generated by 

paths of length greater or equal to i . 

Example 1.3.2. Let the quiver Q be defined as 

In this case, the set of paths is P(Q) = {e, f , g, h, x , y , z, t , xy , zt}. Sorne examples 

of admissible ideals are spanr.. { xy } , spanr.. { zt}, spanr.. { xy , z t} , spanr.. { x y - z t}. The 

vector space spank{x , x y , zt} is an example of a non-admissible ideal. 

We recall the following results: 
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Proposition 1.3.3. (Assem et al. , 2006) Let Q be a finite quiver with admissible 

ideal I in lkQ, th en lkQ 1 I is finite dimensional. 

Let ( Q, R) be the qui ver with a set of relations R which consists of sorne linear 

combination of paths of at least length two, with the same source and the target. 

We call (Q, R) a bound quiver. Let rep(Q, R) be the full subcategory of r ep(Q) 

consisting of the representations of Q bound by the relations in R. 

Theorem 1.3.4. (Assem et al. , 2006) Let Q be a finite connected quiver and 

I be an admissible ideal of lkQ. There is an equivalence between the category 

mod A of right modules over the algebra A = lkQ 1 I and the category rep( Q, I) of 

representations of a quiver Q bound by I. 

The equivalence of these categories is given by the following functors: 

F : mod A -t rep( Q, I) and G : rep( Q, I) -t mod A 

For a module M E mod A, F(M) = (Vi , fa)iEQo ,aEQ 1 where Vi = M ei which is 

the vector space consisting of all vei for all v E M and fa : Vi -t Vj is defined as 

follows: for every arrow a : i -t j 

{

va if s(a) = i 
fa(v ei) = v(eia) = 

0 otherwise. 

For every map <jJ : M -t M' in mod A, F( <jJ) is the morphism defined as </Ji : Mi -t 

M; for the vertex i which sends v ei ~ <j;(v)ei· 

For a quiver representation V= (Vi , fa)iEQo ,aE Q1 , G(V) = M where M = EBiE Qo Vi 

with the action of A is defined as follows: for v = ( vi) iE Qo E M, and s = 
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L 6cc + 1 E A where c runs over all paths in Q, vs = L Ocfc(v ) where f e( v) = 

(0, · · · , 0, f c(vs(c)), 0, · · · , 0) with the only nonzero entry in t( c). 

For every map '1/J = ('1/Ji)iEQo : (Vi , .fa) --7 (V:' , f~), G('l/J ) : V --7 V' defined by 

G(f)(m) = ('1/Ji (vi))iEQo· 

1.4 The indecomposable projective modules 

We first recall t he following. 

D efinition 1.4.1. An A-module X is called decomposable if it can be written as 

a direct sum of two non-trivial A-modules as X = Y EB Z. Otherwise, it is called 

indecomposable. A module X is called simple if it has no non-trivial submodules. 

Note that each simple module is indecomposable, but the converse need not be 

true. 

Let i be a vertex of t he qui ver Q. We define Pi to be the indecomposable projective 

module at t he vertex i which is spanned by the set of all paths starting at i . Let 

us use xi?.j to denote the unique path that starts at vertex i and ends at vertex 

j. Then, the morphisms between two indecomposable proj ective modules Pi and 

Pj are 

By definition , Pi is a subspace of lk.Q . But , it is also a submodule, and there­

fore, it is a right ideal. We also have a decomposit ion of lk.Q as a direct sum of 

indecomposable modules as 

lk.Q = E9 Pi = E9 ei lk.Q 
iEV iEV 

Let A = lk.Qj I be a quotient of a quiver algebra with lk.Q an admissible ideal!. If 

the algebra A is finite dimensional, the algebra A viewed as a right module over 
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itself, then it admits a direct sum decomposition 

where Pi = ei A are proj ective indecomposable modules which are also ideals 

and the ei 's are a set of primit ive pairwise orthogonal idempotents of A su ch that 

1 = :2:~= 1 ei· This is a decomposition of A as a sum of indecomposable summands. 

Example 1. 4 .2. Let Q be the quiver depict ed as follows: 

. 1 -----i>- • 2 -----i>- • 3 

Then the indecomposable projective modules are 

p3 : 0 -----i>- 0 -----i>- lk 

Example 1.4 .3. Let Q be the quiver depict ed as follows: 

Then the indecomposable proj ective modules are 
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\Ve define Ji to be the indecomposable injective module at the vertex i which is 

spanned by the set of all paths ending at i. The simple module Si at vertex i is 

spanned by the lazy path at i. For a more detailed description of indecomposable 

projective , injective and simple modules over a quotient of a path algebra, see 

(As sem et al. , 2006) , ( Schiffier, 2014). 

1.5 Nakayama functor 

Let A = kQ/ 1 be a quotient of a quiver algebra kQ with an admissible idealJ. 

D efinition 1.5.1. The endofunctor v= DHomA(-,A) on modA is called the 

Nakayama functor where D = Homk( -, k) is a duali ty between left and right 

A-modules. 

Lemma 1.5.2. The Nakayama functor v is right exact and is functorially iso­

morphic to - ®A DA . 

Proof. The functor D is contravariant exact, and Hom A (- , A) is a contravari­

ant left exact functor. So, their composition v is right exact. The isomorphism 

between v and - ®A DAis given by the following map. 

c/J: X ® A DA--+ DHomA(X, A) 

with x Q9 f f--7 ('lj; f--7 f( 'lj; (x))) where xE X , fE DA , and 'ljJ E HomA(X, A). 0 

Let proj A be t he full subcategory of mod A whose abjects are the proj ective 

modules and inj A be the full subcategory of mod A whose abjects are the inj ective 

modules. 

Lemma 1.5.3. The Nakayama functor v induces an equivalence between proj A 

and inj A. Th e quasi-inverse of this equivalence is v-1 = HomA(DA , -) from 

inj A to proj A. 
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Proof. Let Px be the indecomposable projective module ex A where ex is the 

idempotent at vertex x . Then, we have vPx = DHomA(exA , A) ~ D(Aex ) = 

Ix where Ix is the inj ective module at vertex x. Similarly, we can show that 

Hom A(DA , Ix)= HomA(DA , D(Aex )) ~ HomAo~'(Ae:c , A)~ ex A =Px· 0 

1.6 Coxeter transformation 

Definition 1.6.1. Let A be a basic finit e dimensional algebra wit h a complete 

set { e1 , e2 , · · · , en} of primitive orthogonal idempotents. The Cartan matrix CA 

of A is the n x n matrix 

Cn., 1 Cn.,2 Cn,n 

where Cji = dimlk ei Aej, for i , j = 1, · · · , n. 

Example 1.6.2. Let Q be the same quiver as in 1.3.2. We consider the path 

algebra A = lkQ / I where I is the ideal generated by the relation < x y - zt >. 

Then, the Cartan matrix is 

1 0 0 0 

1 1 0 0 
CA= 

1 0 1 0 

1 1 1 1 

The following lemma states that since we have the isomorphisms 

eyAex ~ HomA(Px, Py) ~ HomA(Ix, Iy) 

the Cartan matrix CA records t he number of lin earl y independent homomorphisms 

between the indecomposable projective modules and the number of linearly inde­

pendent homomorphisms between the indecomposable injective modules. 
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Lemma 1.6.3 . We have the following properties for the Cartan matrix CA ; 

1. Th e i-th column of CA is the dimension vector dim Pi of the indecomposable 

projective Pi, 

2. Th e i -th row of CA is the transpose of the dim ension vector dim Ii of the 

indecomposable projective Ii . 

Definition 1.6.4. The Coxeter matrix of Ais defin ed as <I> A = -C~ C_4 1
. The cor­

responding linear transformation <]) A: zn --+ zn defined by matrix multiplication 

<])A (x) = <]) AX for all x E zn is called the Coxeter transfo rmation. 

Notice th at sin ce dimension vectors are elements of zn , we can apply the Coxeter 

transformation on dimension vectors . 

Example 1.6.5. We continue with Example 1.6.2. In this case, the Coxeter 

matrix is the following 

0 0 0 -1 

0 0 1 -1 

0 1 0 -1 

- 1 1 1 - 1 

Lemma 1. 6 .6 . <I> A dim Pi =- dim Ii . 

Prooj. Let dim Si be the dimension vector of the simple module at vertex i . So, 

we have the following by Lemma 1.6.3 

<])A dim pi = -C~C_4 1 dim pi= -C~ dim s i =- dim Ii 

0 

Observe that we have <I> A dim Pi = - dim v Pi for every projective module Pi since 

vPi = h 
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1. 7 Incidence algebra of a poset 

For a given locally finite poset P, we define t he incidence algebra of P as the path 

algebra of the Hasse diagram of P modulo the relation that any two paths are 

equal if their starting and ending points are the same. Recall that we draw edges 

in the Hasse diagram oriented downwards. 

Throughout this thesis , let A be the incidence algebra of J(Pm,n) · The algebra A 

has finite global dimension since we do not have any oriented cycles in t he quiver 

of J ( P m,n) . Let mod A be the category of fini tel y generated right modules over A . 

Let Po. be an indecomposable projective module over the algebra A for a vertex 

a in J ( P m,n) and denote Xo.?J3 the unique pa th th at starts at vertex a and ends at 

vertex /3 . Such elements in Po. form a lk-basis for P o. · 





CHAPTER II 

DERIVED CATEGORIES 

Our treatment of t he subject follows Krause's Chicago Lectures on derived cate­

gories (Krause, 2007). Let lk be a ground field, and let A be a fini te dimensional 

unital algebra over !k. We will use mod A to denote t he category of fin i te dimen­

sional right A-modules. 

2. 1 Category of complexes 

Throughout this thesis, we will use t he cohomological convention for complexes: 

all differentiais increase the degree by one and we use superscripts to denote the 

degree at which the module is placed in the complex. 

Definition 2.1.1. A chain complex C over an algebra A is defined as a diagram 

of A-modules and morphisms of A-modules 

Cn-1 dn-1 en dn cn+l . . . --+ ---+ ---'+ --+ ... 

such that dn+ldn = 0 for all n E Z. 

Definition 2.1.2. The n -th homology Hn(C) of a complex C is defined as follows: 

A complex C is called acyclic if Hn( C) is the trivial A-module 0 for every n E Z. 
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Definition 2.1.3 . A chain map between two complexes e and D is a sequence 

of maps f = un : en ---+ n n )na su ch that the following diagram commutes: 

e n- 1 dn- 1 en dn en+1 
· ·· ~ ~ ~ ~··· 

r-11 rl r+l l 
. . . -----r n n - 1 -----r n n -----r n n+ 1 -----r ... 

dn- 1 dn 

The lk-vector space of chain maps between two complexes e and D is denoted 

by Hom(e, D) , and the category of chain complexes of A-modules is denoted by 

e h(A). 

Definition 2.1.4 . A complex e in C h(A) is called bounded below if there is an 

index N E Z su ch th at Cn = 0 for every n ~ N. Similarly, e is called bounded 

above if there is an N E Z su ch that en = 0 for every n 2': N . Finally, a complex e 

is called bounded if it is both bounded below and bounded above. The subcategory 

of bounded above complexes is denoted by eh_(A) , the subcategory of bounded 

below complexes is denoted by e h+(A) , and finally t he subcategory of bounded 

complexes is denoted by e hb(A). 

Proposition 2.1.5. The n -th homology is a functor of the fo rm H n: e h(A) ---+ 

modA. 

Proof. Assume ( e , de ) and (D , dD) are complexes in eh( A) , and let f: e ---+ D 

be a map of complexes . By defini t ion, 

for every n E Z. Th en t here is a well-defined map H n (.f) : H n ( e) ---+ H n ( D) . The 

fact that H n(idc) is the identity map, and that H n(gf) = H n(g)Hn(f) for a pair 

of composable map of complexes, f E Hom(e, D) and g E Hom(D , E) , and for 

every n E Z follows from the defini t ions. 0 

-----------
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2.2 Homotopy category 

D efinit ion 2. 2. 1. We say a chain map f : e ---7 D is null-homotopic if there is a 

sequence of maps h = (hn : en ---1 Dn-l) such that for the following diagram 

. . . ______,._ en-1 ~ en ~ en+ 1 ______,._ . .. 

r-1 l 7tn 1 h/ lr+l 
. . . ______,._ Dn - 1 ______,._ D n ______,._ D n+ 1 ______,._ . . . 

dn - 1 dn 

we have .r = dn_1hn + hn+1dn for all n E Z. If we have two chain maps f , g , 

then we say f is homotopie to g if f- g is null-homotopic. The chain map h is 

called a homotopy. 

D efinition 2 .2 .2 . A collection of chain maps I in the category eh(A) is called a 

right ideal if for every morphism f E Hom( e , D) in eh( A) and every morphism 

g E Hom(D, E) nI the composition gf is also in I . Left ideals and two sided 

ideals are defined similarly. 

Lemma 2.2 .3 . Let I be a two sided ideal of eh(A). Th e quotient category 

eh( A) j i which shares the same set of abjects with morphisms are defin ed as 

quotients 

Hom(e, D) / I(e, D) 

is a lk -linear category. 

Proof. The fact that each Hom object for the quotient is a lk-vector space and 

compositions are lk-bilinear is obvious. The fact that the compositions are well-

defined follows from the fact that I is a two sided ideal. 0 

Proposition 2.2 .4. Th e subcategory Null(A) of null homotopie maps is a two 

sided ideal in eh( A) . The quotient category eh( A) / N ull (A) is called t he homo­

topy category of chain complexes of A-modules, and is denoted by K(A) . 
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The corresponding subcategories of bounded above, bounded below and bounded 

complexes are denoted by K-(A) , K +(A) , and Kb (A), respectively. 

2.3 Multiplicative systems 

D efinit ion 2.3 .1. A subcategory S of K(A) is called a a multiplicative system if 

(i) For every s E S(C, D) and f E Homi<(A)(C, C') , there are morphisms 

s' E S(C', D') and f' E HomK(A)( D , D') such that the following diagram 

is commutative: 

C'~D' 
s' 

(ii) For every s E S(C, D) and g E Homi<(A)( D' , D) , there are morphisms 

s' E S( C' , D' ) and g' E Homi< (A) ( C' , C) such that the following diagram 

is commutative: 

C'~D' 
s' 

(iii) For every s , tE S(C, D) , there is a f E Homi<(A)( D , D') with fs =ft if and 

only if there is agE Homi< (A)(C' , C) such that sg =tg. 

Theorem 2 .3 .2. (Gabriel & Zisman, 1967) AssumeS is a multiplicative system 

in K(A). Then, there is a category s-1 K(A) in which morphisms of S are all 

invertible. 
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2.4 Derived category 

Definition 2.4.1. A map of complexes f is a quasi-isomorphism if f induces 

isomorphisms in all homology groups, i.e. Hn(f): Hn( C) ---7 Hn(D) is an isomor­

phism for every n E Z. 

Proposition 2.4.2. (Kraus e, 2001, Sect. 3.1) Th e subcategory of quasi-isomorphisms 

Q(A) of K(A) forms a multiplicative system. Th e resulting localization Q(A) - 1 K(A) 

is called the (unbounded) derived category of A-modules, and is denoted by D(A). 

The corresponding derived subcategories of bounded above, bounded below and 

bounded complexes are denoted by v -(A), v +(A), and Db(A) , respectively. 

2.5 Exact sequences and exact functors 

Definition 2.5.1. A composable pair of morphisms of A-modules X ~ Y .!!....t Z is 

called an exact sequence if Ker(g) =lm(!). Note that for such an exact sequence 

X = 0 if and only if g is injective, and Z = 0 if and only if f is surjective. 

Similarly, 

0---+X~Y---+0 

is an exact sequence if and only if f is an isomorphism. 

A composable pair of morphisms of A-modules of the form 0 ---7 X ~Y .!!....t Z ---7 0 

is called a short exact sequence if it is exact and f is injective, g is surjective. 

With this definition in hand, we see that a complex C is acyclic when C viewed 

as a sequence of morphisms 

dn - 1 C dn C dn+l 
· · · ~ n ----'7 n+l ~ · · · 

is a long exact sequence, i.e. Im(dn) = Ker(dn+l) for every nEZ. 
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Definition 2.5.2. Assume F: mod A -+ mod B is a functor. Then F is called 

right exact if every short exact sequence of A-modules 0 -+ X -4 Y !4 Z -+ 0 is 

mapped to an exact sequence of the form 

F(X) F(J) F(Y) F (g) F( Z ) -+ 0, 

and similarly, F is called lejt exact if we have an exact sequence 

0-+ F(X) F(J) F (Y ) F(g) F (Z) . 

Such a functor is called exact if it is both left and right exact . 

Example 2.5.3. Assume M is a left A-module and a right B-module such that 

(a· m) · b = a · (m · b) 

for every m E M , a E A and b E B. The functor F : mod A -+ mod B from 

the category of right A-modules to the category of right B-modules defined on 

the abj ect s as F(X) = X ®A M is right exact. On the other hand , G(X) = 

H om A (X , M) defines a left exact contravariant functor from the category of left 

A-modules to the category of right B-modules. 

2.6 Resolutions 

We start recalling sorne definit ions. 

Definition 2.6.1. An A-module P is called projective if for every epimorphism 

of A-modules h: X -+ Y , every morphism of A-modules f : P -+ Y lifts to a 

morphism g : P -+ X such that the following diagram commutes: 

9 

;:.·· 

x -----+ y -----+ 0 
h 
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Similarly, we call an A-module E injective if for every monomorphism of A­

modules h : Y ---+ X , every morphism of A-modules f : Y ---+ E lifts to a morphism 

g: X ---+ E such that the following diagram commutes: 

E 
J ·· ... g l"' 

0 ---?- y ---?- x 
h 

Definition 2.6 .2 . For a module M from mod A , by the stalk complex of M we 

mean the complex which consists of just M at one degree and 0 everywhere else. 

Definition 2.6.3. For a module M from modA, by a resolution of M we mean a 

complex X= (Xi)iEZ where Xi = 0 for all i > 0 or for all i < 0 with the property 

that the homology H0 (X) is M while Hn(X) is zero for all n =/=O . 

If X is bounded from above and each X i is proj ective, then X is called a projective 

resolution. Similarly, if X is bounded from below and each X i is injective, then 

X is called an injective resolution. 

Notice that if X is a proj ective resolution of a module X , then the natural surjec­

t ion X ---+ X of complexes is a quasi-isomorphism. Similarly, ifE is an inj ective 

resolution of X , then the natural inj ection X---+ E is also a quasi-isomorphism. 

Lemma 2.6.4. Assume f: X---+ Y is a morphism of A-modules. Assume X is a 

projective (respectively, injective) resolution of X , and Y is a projective (respec­

tively, injective) resolution ofY. Then there is a unique (up to a homotopy) chain 

map of complexes of the form f*: X---+ Y such that H 0(f*) = f . 

Proof. We give the proof below for the proj ective case only. The proof for the 

inj ective case is similar , and we omit it. Since X is a resolution of X and Y 

is a resolution of Y , there are epimorphisms of A-modules Px: X 0 ---+ X and 
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py: Y 0 ---7 Y. Then there is a commutative square 

X0 ~X 

y 
Jo lJ 

yo------+ y 
py 

Here J0 lifts the morphism Jo Px· Since the square above is commutative, J0 

restricts to a morphism of the form J0 
: Ker(p x) ---7 Ker(py) . Sin ce both X and 

Y are resolutions, we must have Ker(px) = lm(d_1) and Ker(py) = lm(d_1). So, 

we now have 

-1 d- l l (d ) X __,... m - 1 

•rl 
y 1 Jo 

y - 1 _____,._ lm(d-1) 
d-1 

where this time J-1 lifts the composition J0 d_ 1 . Now, we proceed by induction to 

get the chain map f*. As for our second claim, assume we have two lifts f* and 

g* for the same morphism of A-modules J: X ---7 Y . Then , we geta commutative 

diagram of the form 

x -1 d-
1 xo PX X 

rl-g-11 ... ·· . '~o. /·· lJo-go la 
y-1 ""' " d- 1 

./ yo y 

~ ~/ py 

lm(d- 1) 

where 

1. the lift X 0 ---7 lm ( d- 1) exists because lm ( d-1) = Ker (py) and py o (!0 - g0 ) = 

0, 

2. the lift h0 : X 0 ---7 y-1 exists because X 0 is projective and y-1 ---7 lm(d- 1) 

is an epimorphism, 
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Note that we do not necessarily have h0 d- 1 = f - 1 - g- 1 , but we have 

Thus, we get a lift of j - 1 - g-1 - h0 d- 1 : x-1 --t y-1 first to x-1 --t Im(d- 2 ) 

then to h- l: x - l --t y - 2 that satisfies 

Proceeding by induction, we get maps hi : X i --t y i-l such that 

for every i E N which gives us the desired null homotopy. 0 

2.7 Derived functors 

D efinit ion 2 . 7 .1 . Assume F: mod A --t mod B is a right exact functor . For every 

p E N we define t he left derived functor V F: mod A --t mod B as V F(X) := 

HP(F(X)) where X is any proj ective resolution of X. Note that LP F is well­

defined because of Lemma 2.6.4, and that L° F = F since F is right exact. 

Example 2.7.2 . Recall that for a A-B-bimodule M, the functor _ ®AM defines 

a right exact covariant functor from the category of right A-modules to the cat­

egory of right B-modules. The left derived functors of _ ®A M are denoted by 

Tor~(_ , M). 

D efinition 2. 7 .3 . Assume G: mod A--t mod Bis a left exact functor. For every 

p E N we define t he right derived functor RPG: mod A --t mod B as RPG(X) := 

HP(G(X)) where X is any injective resolution of X. Note that, again, RPG is 

well-defined because of Lemma 2.6.4, and that R0G = G since Gis left exact. 
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Example 2.7.4. Recall that for an A-B-bimodule !VI, the functor HomA(_, M) 

defines a left exact cont ravariant functor from the category of left A-modules to 

the category of right B-modules. The right derived functors of HomA (_,Nf) are 

denoted by Ext~(_ , M). 



CHAPTER III 

GROTHENDIECK GROUP AND THE EULER CHARACTERISTIC 

Throughout this chapter , we assume A and B are finite dimensional lk-algebras , 

and we use mod A and mod B to denote the categories of fini te dimensional right 

A and B-modules. We also assume C is a subcategory of mod A. 

3.1 The definit ion 

Definition 3.1.1. The Grothendieck group K 0 (C) of C is defined to be t he abelian 

group generated by isomorphism classes of objects in C divided by the relation 

[X] - [Y] + [ Z] for every short exact sequence 0 -+ X -+ Y -+ Z -+ 0 in C. 

Theorem 3.1.2. Assume F: mod A-+ mod B is an exact functor. Then F in­

duces a map of Grothendieck groups of the fo rm K 0 (F): K0 (mod A) -+ K 0 (mod B). 

Proof. Any functor sends an isomorphism to another isomorphism. Moreover, F 

sends short exact sequences to short exact sequences since F is also exact . Then 

K 0 (F)[X] = [F(X)] is well-defined for every A-module X. D 
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3.2 Composit ion series 

Definition 3.2.1. We say that an object X in mod A admits a composition series 

in C if there is a sequence of submodules 

Xo C · · · C Xn =X 

such that X 0 E C and each Xi+I/Xi E C. We are going to use Camp C to denote 

the subcategory of modules that admit a composition series over C. Notice that 

C is contained in Camp C as a subcategory. 

Lemma 3.2.2. The embedding C-t Camp C induces an epimorphism of abelian 

groups I<0 (C) -t I<0 (Comp C). In other words, I<0 (Comp C) is generated by 

isomorphism classes of modules from C. 

Proof. We prove the surj ectivity by mathematical induction on the length of a 

composition series . If X admits a composition series of length one then we already 

have XE C. Now assume that if X has a composition series of length n then [X] 

is in the image of I<0 (C) -t I<0 ( Camp C). Assume X' is a module which has a 

composit ion series of length n + 1 

Xo c · · · c Xn+l = X' 

Then X =X' / X 0 has a composition series of length n 

So, [Xn+I/Xo] = [Xn+1]-[X0]is intheimageofthe morphismi<o(C) -t I<o(CompC). 

Th en 

is also in the image. 0 
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Proposition 3.2.3. Th e Grothendieck group K0 (mod A) is generated by the set 

of isomorphism classes of simple modules. 

Proof. Assume X is a finite dimensional A-module X , and consider the poset 

of all its submodules. Since X is finite dimensional, every decreasing chain of 

submodules must t erminate. Then , X has simple submodules, say X 0 . The 

same is also true for X / X 0 , and therefore, we get a simple module 5 1 of X / X 0 . 

By the Fourth Isomorphism Theorem, we have a submodule X 1 Ç X such that 

XI/ X 0 =51 . Proceeding by induction we get a series 

Xo C · · · C Xn C · · · C X 

But X is fini te dimensional, and therefore, the series must terminate. Thus we 

get a composition series for X where each consecutive quotient is simple. 0 

3.3 Resolut ions and the Euler characteristic 

Definition 3.3.1. We say that an object X in mod A admits a resolution in C if 

t here is a finite resolut ion X 

0 -t X 0 ~ ... ~ x n+l -t 0 

su ch that each X i E C. We are going to use R es C to denote the subcategory of 

modules th at admit a fini te resolution over C. Notice that C is a subcategory of 

R es C. 

Definition 3.3.2. We say that A has proj ective dimensionnE Nif every object 

admits a resolution of length less than or equal ton over the subcategory of finit ely 

generated projective A modules. Similarly, we say that A has injective dimension 

n E N if every object admits a resolution of length less than or equal to n over 

the subcategory of fini tely generated injective A modules. The global dimension 

of A is the supremum of the proj ective dimensions of all fini te A-modules. 
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Theorem 3 .3.3 . (Lam, 1999, Section SC) A has finit e projective dimension if 

and only if A has finit e injective dimension. 

Definition 3.3.4. Assume C is a subcategory of mod A, and let C be a fini te 

complex in C, i. e. Ci E C for every i E Z, and Ci = 0 for all but finite ly many 

i E Z. The Euler characteristic of C is an element x(C) E K 0 (C) which is defined 

as 

Proposition 3.3 .5. Let R es C be an abelian subcategory of mod A. Then the 

embedding C ---1 R es C induces an epimorphism of abelian groups K 0 (C) ---1 

K 0 (Res C). In other words, K 0 (Res C) is generated by isomorphism classes of 

modules in C. 

Proof. Assume X admits a resolution X in C 

0 ---1 X 0 ~ . . . ~ x n+ 1 ---1 0 

su ch th at H0 (X) = X , and Hi (X) = 0 for every i =!= 0. In mod A we have short 

exact sequences 

0 --t Ker( di) --t X i --t lm( di) --t 0, 

and therefore, [Xi] = [Im(di)] + [Ker(di)] in K 0 (Res C) for every i since R es C is 

closed under kernels and cokernels. Now, 

x( X) = L(-l)i[Xi] = L (- l )i([Ker(di)] + [Im(di)]) (3. 1) 

= L ( -l)i([Ker(di) ] - [Im(di_1 )]) (3.2) 

= L ( -l)i[H i(X)] = [X] (3 .3) 

Since each Xi E C, we see that x( X) is in the image of K 0 (C) ---1 K 0 (Res C). So, 

we also see that [X] is in the image. D 
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Theorem 3.3.6. If A has a finite global dimension then K 0 (mod A) is generated 

by isomorphism classes of finite ly generated projective modules, and by isomor­

phism classes of finit ely generated injective modules. 

Proof. If A has finite global dimension then every module has a finite projective 

resolu tion, and equivalently, a finite inj ective resolu tion . Then we use Proposi-

tion 3.3.5 to get the equality we wanted to prove. D 

3.4 The Grothendieck group of a derived category 

Note that we defined the Euler characteristic of a finit e complex X by 

and we saw in t he proof of Proposition 3.3.5 that even when X is not a resolution , 

we still have 

Thus , we have 

Proposition 3.4.1. The Euler characteristic of a complex is a well-defined june­

tian on the set of abjects of Db (A). 

This result suggests that we should be able to define the Grothendieck group of 

Definition 3.4.2. A sequence of morphisms X 1 ~ X2 !:_, X 3 is called a triangle 

if there is a short exact sequence of complexes 

!' !' 
0 --+ X' ---4 X.' ----4 X' --+ 0 1 2 3 
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such that there are quasi-isomorphisms Œi : Xi ---t Xf that fit into commutative 

squares of the form 

Now, we define the Grothendieck group K 0 (Db(A)) as the free abelian group on 

the set of isomorphism classes of abjects in Db(A) divided by the relations [X1] ­

[X2] + [X3] for every triangle X1 ~ X2 ~ X3. 

Theorem 3.4.3. The natural map K 0 (modA) ---t K 0 (Db(A)) that sends the 

isomorphism class [X] of a module X in K 0 (mod A) to the isomorphism class of its 

stalk complex [X] in K 0 (Db(A)) induces an isomorphism between the corresponding 

Grothendieck groups . 

Pro of. Isomorphisms in mod A are sent to isomorphisms in Ch( A). So, for a A­

module X the quasi-isomorphism class of the stalk complex [X] is well-defined . 

Moreover , since short exact sequences of A-modules are sent to short exact se-

quences of stalk complexes, any relation [X]- [Y]+ [Z] in K 0 (A) is sent to another 

relation in K 0 (Db(A)). So, t he natural map K 0 (A) ---t K 0 (Db(A)) is well-defined. 

Next, we must show that the image of t he natural map covers everything in 

K 0(Db(A)). We are going to do t his by induction on t he length of a complex. 

If an isomorphism class [X] in K0 (Db(A)) contains a stalk complex, then it is 

already in the image of the natural map. So, by our induction hypothesis, let us 

assume that if [X] is an isomorphism class such that all shortest complexes in [X] 

have length n or less, t hen it is in the image of the natural map. Let us take a 

generator [X] such that a shortest complex U in [X] has length n + 1. Without 

loss of generality, we can assume U looks like 

0 Uo do dn-1 un 0 ---t ~ . . . ----7 ---t 
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Now, consider the complex U' 

0 ----7 U0 
----7 i m (do) ----7 0 

where U0 is placed at degree 0, and the complex U" 

where U1/im(d0 ) is placed at degree one. Since U' is quasi-isomorphic to the stalk 

complex of H0 (U) , its class [U'] is already in the image of t he natural map. On 

the other hand, the length of the complex U" is n. So, [U"] is also in the image of 

the natural map too. Finally, there is a short exact sequence of complexes of the 

form 

0 ----7 u 1 
----7 u ----7 u Il ----7 0 

This means [U] = [U'] + [U"] is also in the image of the natural map . 0 





CHAPTERIV 

MAIN RESULT 

We first recall sorne definitions from Chapter 1, Section 1.1 and Section 1.7. Let 

Pm,n be a grid poset and J(Pm,n) be the poset of order ideals in Pm,n· Recall that we 

orient the edges in the Hasse diagram of J ( P m,n) downwards in the poset and we 

label the vertices in J(Pm,n) with the corresponding partitions to the order ideals. 

We th en consider the incidence algebra A of the poset J ( P m,n) . We also recall that 

Po. is the indecomposable proj ective module at a and the elements Xo.?.fJ form a 

lk-basis for Po. . 

In this chapter , we will describe a special collection of proj ective resolutions in 

Db(mod A) that will span the Grothendieck group. In order to prove the peri­

odicity of T, we are going to need these resolutions. One key thing about these 

proj ective resolutions is that when we apply T to these projective resolutions, we 

will prove that the result ing complexes are inj ective resolutions (up to a shift). So, 

these resolutions are going to have the homology in only one place. This allows 

us to study these resolutions from a combinatorial point of view. We define two 

functions f and g to give a combinatorial description of t he homologies of these 

projective and injective resolutions. Then, with the help of this combinatorial 

description we will able to keep track of the elements in T-Ol·bits with another 
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combinatorial fun ction f . \Ve also define the notion of configurations associated 

to the elements in T-orbits to show that the action T corresponds to a cyclic ac­

tion on these configurations. Finally, we show that T-orbits which come from 

these proj ective resolutions are enough to generate the Grothendieck group K 0 . 

This establishes that the Auslander-Reiten translation T in K 0 , i.e. the Coxeter 

transformation, is periodic for J ( p m,n) . 

4.1 Proj ective resolutions 

We will define enhanced partitions to write a special collection of resolutions. 

Definition 4.1.1. We call a tuple of non-negative integers of the following form 

an enhanced partition: 

r+l 

with 0 :S )11 < À2 < · · · < Àr :S n and L ai = m. E ach exponent Œi refers to the 
i=O 

number of times Ài is repeated. We will refer to the O's and the n's separated by 

vertical bars as fix ed entries. Note that a 0 and ar+l can be zero. 

Let E be the set of enhanced partitions, and let F be the set of partitions. We 

now define a func t ion p from E to F , which sends an enhanced partition to a 

part ition by forgetting the bars . This means there are no fixed entries anymore. 

Formally, 

The function p allows us to treat enhanced partitions as usual partitions. 

Let EL be the set of enhanced parti ti ons of the form a = ( oao 1 À~ 1 
, À~2 , • • • , ).~r 1 n Ctr+l ) 

where À1 =/= 0 and ER be to the set of enhanced partitions of the form a = 

(oao 1>.~ 1 , ). ~2 , ••• , ).~r ina'-+ 1 ) where Àr =/= n. 
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Definition 4 .1.2. For a given enhanced partition a = (0°01Àr1, ... , À~'· in o-r+!) , 

let Ro be the set of indices of the nonzero entries Ài in a. 

If a E EL , then Ra- = {1 , 2, · · · , r} , and if a tf: EL , then Ro = {2, · · · , T}. 

Let (\ be the sequence of 0 's and 1 's w here 1 is placed at t h ose places Ài 's appear 

m a, i. e. bi = (oo-o' Ü0 1 ' . . 0 ' oai-l ' 1 Qi' oai+l' 0 
•• ' oar' oar+l ) 0 For a given subset 

X C R 0 , let 8x = L iEX bi · Notice t hat we defin e bi's only for non-fixed and 

nonzero entries in a. 

Definition 4.1 .3 . For an enhanced partition a= (oao 1Àr1, · · · , À~·· i nar+l) E EL , 

we define a complex of proj ective modules Pa as follows: 

with the maps 

J ÇRo, 
IJI=T-1 

J ÇR" , 
lll=k-1 

J ÇR o, 
IJI=1 

(4 .2) 

Remark 4.1.4. The grading of the complex Pa cornes from the cardinality of 

J Ç Ra, and a - 61 is just a vector subtraction. 

Proposition 4 .1.5. Th e complex Pa in Equation (4.2) defin es a projective reso­

lution. 

Proof. Notice that for any f3 ::; {3' t here is a unique embedding of ? 13 into ? 13, by 

left multiplication with Xf3'?J3 sending Xf3 ?. "Y f---7 Xf3'?."Y for each 'Y ::; {3 . Thus, the 
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maps a-k are all right A-module maps. Therefore, it is enough to show t hat we 

have a complex in the cat egory of lk-vector spaces . 

For every {3 ::; a, the graded lk-subspace Pa · .'Ef3 ?. /3 is actually a lk-subcomplex of 

P a since t he different iais preserve the grading. Therefore, it is enough to prove 

the exactness of Pa by showing we have an exact complex at each vertex in the 

support of Pa. Note that Pa has support over the vertices {3 ::; a . 

For a given {3 ::; a we find the maximal J13 Ç Ra so that the inequality {3 ::; a - 61(3 

holds. Let k = 1113 1. When we multiply the complex by x /3?./3 on the right, each 

of the projective modules in Pa reduces to t he ground field !k. Moreover , after 

t he reduct ion, the face maps in t he differentiais are ali ident ity maps. Now, 113 

determines which summands of Pa have Sf3 in their composit ion series . Then we 

have t he following subcomplex of lk-vector spaces : 

S : 0 ~ lk - k ~ ffi lk- k+l ~ . . . ~ ffi !k- 2 ~ ffi !k-1 ~ lko ~ 0 

(k~l ) m m 
with the differentia! as defined above. T his is the face complex of t he standard 

(k - 1)-simplex. We show this fact as follows. Consider t he subset J Ç R such that 

Ill = k . Any such subset J is linearly ordered since 0 < À1 < À2 < · · · < Àr :S n , 

say without loss of generality J = {À1 , · · · , Àk} , and we define (D as all subset 
k 

of J of size u. Let us define a graded set ck = u Cu where Cu = (D . Now, 
u=O 

we are going to define an abstract simplicial set structure on Ck. This requires 

t he defini t ions of t he face maps dj : Cu ~ Cu-l for 0 ::; j ::; k defined by 

{À1 , À2 , · · · , Àu} t---1 {À1 , · · · , ~ ' · · · , Àu}· Note that since Àj's are linearly ordered , 

du is well-defined . Let us now define a simplicial vector space !k[Cu] := span r.r. (Cu) 

and we extend t he face maps to dj : !k[C,J ~ !k[Cu_1]linearly. From this simplicial 

vector space , we define its face complex by defining t he different iais as Bk = 
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k 

2:) - 1).idj. 
j=O 

Since the standard (k - 1)-simplex is contractible, its reduced homology is zero 

provided k - 1 2 0 (Hatcher , 2002). This means th at there is a homology if and 

only if k = IJ{j l = O. 

Hn(S ) ~ {: 

Then , we have 

if 0 < k ::; r , n =/= 0, 

if k = 0, n = O. 

if 0 < k ::; r , n =/= 0, 

if k = 0, n =O. 

and this implies that Pa. is a projective resolution. 

0 

Remark 4.1.6. Notice that the homology of Pa. is supported only over vertices 

f3 such that Jf3 = 0. This is equivalent to f3 ::; a: and f3 i. a: - 6i for each i E Ra. · 

We will further investigate the homology of Pa. in Section 4.4. 

Example 4.1. 7. Let A be the incidence algebra for the poset J(P5,7 ) . Let us 

consider a: = (012 , 2, 3, 71) . Then Ra. = {1 , 2, 3} and 

p . 0 p -3 p-2 E9 p -2 E9 p -2 a. . --t (0 ,1,1,2,6) --t (0,1 ,1,2, 7) (0,2,2,2,6) (0,1,1,3,6) --t 

P - 1 p - 1 ffi p - 1 P.o 0 
(0,1,1,3, 7) E9 (0,2,2,2,7) w (0,2,2,3,6) --t (012 ,2,3,71) --t . 

N ow let a:' = ( 012 , 2, 317) . Note th at a:' is the same as a: except that 7 is now a 

fixed entry. Th en we have Ra.' = { 1, 2} and 
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4.2 Action of the Auslander-Reiten translation on the proj ective resolutions 

In this section, we are going to look at the action of the Auslander-Reiten trans­

lation on the projective resolutions P Ct and discuss the homology of the resulting 

complex. 

Proposition 4.2.1. Let Pet be the pTojective Teso lution defin ed in Equation (4.2). 

If we apply the A uslandeT- R eiten tr-anslation T ta the camp lex P Ct, the Tesulting 

complex is an injective Tesolution up to a shift. 

Pmof. After applying- 0 DA on Pet, we get the following inj ective complex: 

The proof of Proposition 4.1.5 with sorne modifications can be applied here. 

Firstly, notice that ICt-liJ has support over the vertices 1 ~ a - 61 . Then we 

write the subcomplexes as follows: for a given 1 we :find the minimal J"~ such that 

the inequality 1 ~ a - 6 I -r holds. Let k = 1 J'Y 1, th en the ver ti ces 1 will appear as 

in the following: 

0---+ lk~ r ---+ œ lk~7+l ---+ ... ---+ œ lk~ k- 2 ---+ œ lk~k- 1 ---+ lk~k ---+ 0 

(
r -k ) ( r-k ) ( r-k ) 

] r - k - 2 r - k - l 

This is another face complex which only has homology when k = T. Consequently, 

the complex ( 4.3) is an injective resolution up to a shift . 

D 

Remark 4.2.2. As in the proj ective case, the homology of I et has support over 

vertices 1 only when J'Y = Ret · This means that a - 6R"' ~ 1 and a - 61 i 1 

where Ill = r- 1. We will further investigate the homology of I et in Section 4.4. 
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4.3 Intervals in t he poset J(P m,n) 

In this section , we are going to define two functions: f from EL to ER, and g from 

ER to EL· These functions will help us to describe the homology of t he complexes 

Pa and I a defined in Sections 4. 1 and 4 .2 combinatorially. 

1. Let a = (0°0 1Àr 1 , À~2 , · ·· , À~r l na,-+ 1 ) E E L and then Ra = {1 , 2, · ·· , r }. 

The function f (a) is defined as follows: We first apply p which is defined 

in ( 4.1) to a . Th en for each i E Ra, we leave the last occurrence of Ài in a 

unchanged while we minimize t he rest of t he occurrences including t he fixed 

n's at the end if there are any, thus making the parti t ion as small as possible. 

Finally, we enhance the resul t as follows: t he first bar is placed in the same 

position as in a and if there is no n in j(a ) the second bar obviously goes 

at t he end , while if there are n's we put the second bar before all of them. 

Formally, 

j( ( oao 1À rl, À~2, . .. , À~r l no.r+ l )) 

{ 

(oao lüal - 1' Àr2 , À~3, . .. , À~.::. 11À~+ar+ l ) 

(oo.o loo.l-1 À0.2 À0.3 ... ÀO.r À1+o.r+ ll ) 
> 1 > 2 > ' r- 1 > r 

if Àr = n , 

if Àr -=/: n . 

2. Let a = (0°0 1Àr\ À~2 , · · · , À~r l no.r+l ) E ER. Note thathere Ra = {1 , 2, · · · ,T} 

if À1 -=/: 0 and Ra = {2, · · · , T} if À1 = O. The function g(a ) is defined as 

follows: We first apply p to a . For each i E Ra, we leave the first occurrence 

of Ài in a unchanged while maximizing the rest of t he occurrences, thus 

making the partition as large as possible. Notice that we do not change O's 

which wer fixed in a, but we do maximize the unfixed O's. Then we place 

t he first bar in t he same place as in a; the posit ion of second bar can be 

seen in the following formal definition. 
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Fm·mally, 

if ar+l = 0 and À1 = 0, 

if ar+l =/= 0 and À1 = 0, 

if ar+l = 0 and À1 =/= 0, 

if ar+l =/= 0 and À1 =/= O. 

Ex ample 4.3.1. Let a = (02 123
, 5, 64, 92 1132

) = (0 , 012, 2, 2, 5, 6, 6, 6, 6, 9, 9113, 13). 

Then Rc1: = {1, 2, 3, 4}. To find J(a ) we first apply p. Now, we fix t he last occur­

rences of each Ài , i E Ra: while minimizing the rest as shawn in the following: 

(0 , 0, 2, 2, 2, 5, 6, 6, 6, 6, 9, 9, 13, 13) 

We leave the last occurrences of each Ài unchanged: 

(0 , 0, 2, 2,2, 5, 6, 6, 6,6, 9,9, 13, 13) 

We minimize: (0, 0, 0, 0, 2, 5, 5, 5, 5, 6, 6, 9, 9, 9) 

Then we enhance: (0, OIO , 0, 2, 5, 5, 5, 5, 6, 6, 9, 9, 91 ) 

Lemma 4 .3 .2. The functions f and g are inverses of each other. 

if À,. = n 

if Àr =/= n 

We can easily conclude that the result is a. Similarly, one can show that f og( /3 ) = 

f3 for f3 E ER. D 



------------------------------------------------ - - - ------------------------

47 

4.4 Homologies and intervals 

In this section , we will discuss t he homology of Pa., and the homology of I a. in 

relation to intervals in the poset J (pm ,n). 

D efinition 4.4.1. Let ['-y , 'Y'] be an interval in J(Pm,n) · We define t he correspond­

ing element in the Grothendieck group }(0 for the interval ['-y , 'Y'] as [['-y , 'Y']] := 

L [Sx]· 
")':'S X:'S "Y' 

Proposition 4.4.2. The class of the projective resolution Pa. in }(0 is [[!( ex) , a ]] 

f or every ex E EL· 

Proof. Let 1 = {.r E Pm,n 1 .r ::::; ex and .r 'f;. ex - 6i for any i E R a. }· Firstly, notice 

t hat the class in }(0 for the homology of the projective resolution Pa. is supported 

over the vert ices in 1 by the result in Proposit ion 4. 1.5. Recall also Remark 4.1.6. 

We will prove that 1 forms an interval in t he poset J(Pm,n)· Clearly, ex is the 

maximum element in 1. 

Let ex = ( Oa.0 IÀ~\ À~2 , · ·· , À~r l na.r+ 1 ) . We also write ex = (a 1 , a2 , ·· · , am )· Then , 

we write ex - 6i = (b1 , b2, · · · , bm) where 

{ 

aj when aj =f. Ài, 
bj = 

a j - 1 otherwise. 

for 1 ::::; j ::::; m . Let x = (c1 , c2 , · · · , cm) E 1. In order for x ::::; ex but x 'f;. 

ex - 6i for all i E R a., for each i we must have ci ::::; ai, and at least one of 

must equal Ài· Since c1 ::::; c2 ::::; · · · ::::; cm. , it must be that cao+· +a.i = Ài· Now, it 

is clear that 

1 ={x E Pm,n 1 Ca.o+·+a.i = Ài for each i E R a. }. 

This is an interval having minimum f (cx ). This completes the proof. 0 
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The following is an illustration of the proof with an example. For this example, let 

us assume a= (12 , 2, 6, 6, 6, 6, 9, 9, 9, 9, 91) . We illustrate the corresponding order 

ideal with the black contour in Figure 4.1. Then we have Ra. = {1 , 2, 3} . For 

instance, a - 62 = (2 , 2, 5, 5, 5, 5, 9, 9, 9, 9, 9) which is shown with the red contour 

in Figure 4.1. The gray box shows the row where Ca.a+o.1 +a.2 = c5 = À2 = 6. 

Finally, .f(a ) is illustrated with the blue dotted contour in Figure 4.1. 

Figure 4.1 An illustration of the function .f(a ) 

Example 4.4.3. As in Example 4.1.7, let a = (012 , 2, 3, 71) and consider its 

proj ective resolution. The corresponding element in K 0 for the homology of this 

proj ective resolut ion is [[f( a) , a ]]= [(0, 0, 2, 3, 7), (0, 2, 2, 3, 7)]. Now, assume a' = 

(012 , 2, 317) , then [[.f(d) , a']] = [(0, 0, 2, 3, 3) , (0 , 2, 2, 3, 7)]. 

In the following, we would like to analyze the homology of the injective resolution 

I a. after the action of Ton the proj ective resolution P0 . 

Proposition 4.4.4. The class of the injective resolution I a in K 0 zs ±[[a -

6Ro, g(a- bRJJl for every a E EL. 

Remark 4.4.5 . Before proving Proposition 4.4.4, we need to discuss the rule 

that enhances the partition a - 6Ro so that we can apply the function g. Let 

us assume a = ( 0°0 
1 À f 1 

, À~2 , • · • , À~'· l n o.r+ 1 ) E EL. Th en the enhanced parti ti on 

a- bR"' is defined as follows: The position of the second bar is the same as in a. 
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This implies t hat we fix all of t he n's in a- 6Ra· Now, if we have O's in a - 6Ra' 

we have to determine which of t hem are fixed . To do so, we will look at a. Recall 

t hat À1 ::f. 0 in a fo r P a.. If À1 ::f. 1, then we do not fix any O's in a- 6Ra, i.e we 

put the first bar before all of the entries. If À1 = 1, then we look at t he location 

of first appearance of À1 in a, say in k-th posit ion from the beginning. Then we 

put the fi rst bar after the k-th 0 in a - 6 Ra. Formally, 

Proof of Proposition 4. 4.4 . Here finding g(a- 6RJ is the dual of finding f (a). 

Let J' = {xE Pm,n 1 a - 8Ra ~x and xi. a - 8.1 with Ill = r- 1} . In this case, 

we know the minimum element of J' is a - 6 Ra. 

Let a = (Oa.0 1Àr 1 , À~2 ,· · · , À~r l nor+ 1 ), and let ::r = (c1,c2,··· ,cm.) E J' . We can 

deduce the following as in the proof of Proposit ion 4.4. 2: In order for a - 6Ra ~ x 

and x i. a - 81 where Ill = r - 1, t he entries Ca.o+ ··+a.i- 1 +1 must equal Ài - 1 for 

each i. Now, we can conclude that 

J'= {x E Pm,n 1 Ca.o+· +a.i- 1+1 = Ài -1 for each i E R a. }· 

This is an interval with the maximum g(a - 8RJ · This fini shes the proof. D 

We will illustrat e the idea of the proof by an example as we study in the previous 

case. Assume n = 9 and a = (12, 2, 6, 6, 6, 6, 9, 9, 9, 9, 91 ). Then R a. = {1 , 2, 3} and 

a - 8Ra = (Il , 1, 5, 5, 5, 5, 8, 8, 8, 8, 81). The corresponding order ideal is illustrated 

with the black contour in Figure 4.2 . Also, we can calculate that g(a - 6RJ = 

(Il , 5, 5, 8, 8, 8, 81 9, 9, 9, 9) as illustrated with t he blue contour . The red contour 

shows a - 8p,2} = (1 , 1, 5, 5, 5, 5, 9, 9, 9, 9, 9). The gray box shows the row a 0 + 
a1 + a2 + 1 = 7 where Ca.o+a.1 +a.2 +1 = À 3 - 1 = 8. 
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Figure 4.2 An illustration of the function g(ex) 

Proposition 4.4.2 and 4.4.4 in combination with Proposition 4.2.1 show that 

Auslander-Reiten translation sends [[f( ex), ex]] to ±[[ex - dRa, g(ex - dRJ]]. As 

we have seen , the function ex t---7 g(ex - dRJ is important , and it will be useful 

to calculate it more directly. So, we will define a new function j, and then later 

prove that f(ex) = g(ex- fiRJ in Lemma 4.4.7. 

We define the function f from EL to EL as follows: Let ex E EL· First apply p, 

then deduct one from t he first occurrence of each Ài, i E Ra while maximizing all 

of the other indices, i. e. make the partition as large as possible. Then we fix all 

of the O's, i.e. we put t he first bar at the end of t he O' s in the result. If we have 

n fixed k times in ex, we make n fixed k- 1 times in !(ex). If we do not have any 

fixed n'sin ex, then we fix all n 's in f( ex) . 



51 

Formally, 

(oao+11(À2 -l)ai , ... ' (À,. -l)Œr- IInar - 1) if a,.+1 = 0, À1 = 1 

(oao+li(À2 -l)ai, .. . ' (À,. -l)Œr- I, nŒr lnŒr+I- 1) if a,.+l =J. O, Àl = 1 

(I(À1 - l )no+1, (À2 -l)Œ]) ... ) (À,. -l)Œr- IInŒr-1) if a,·+1 = O, À1 =J.l 

(1 (Àl - l)ao+1 > (À2 - l)Œ] > • • • >(À,- - l)Œr-1 > nŒr lnŒr+J - 1) if a,-+1 =J. 0, À1 =J. 1. 

Example 4.4.6. Consider the same a as in Example 4.3.1 . Then 

Lemma 4.4.7. We have ](a)= g(a- 6RJ for every a E EL· 

Proof. Let a = (oao IÀr\ À~2 , • • • , À~r lnar+l) E EL · Recall that in Remark 4.4.5 

we explained how we get the enhanced partition a- 6Ra· So, we have the O's 

fixed in a - 6Rc, only when À1 = 1 in a. Recall also that since a E EL, we have 

À1 =J. O. Firstly assume À 1 =J. 1, i.e. there is no 0 fixed in a - 5 Ra. Th en we get 

a - 6Ra = (loao, (Àl -l)a1 , (À2 - l) a2 , ·· ·,(À,. - l )ar lnŒr+I) . Now, we apply t he 

map g. We get the following which is the desired result. 

g(a- 5RJ = 

{ 

(1 (À1- l)no+I, (À2 - l )ŒI' . .. ' (À,. - l) Œr- I Ina,.-1) 

(I(Àl -l)no+I, (À2 - l )Œl , .. . , (À,. -l)Œr- l , nŒrlnŒr+ J-1) 

if a,.+ 1 = 0 

The case À1 = 1 can be calculated similarly. This finishes t he proof. D 

Proposition 4.4.8. T([Pa]) = ±[Pg(a-JRa)], or equivalently T([Pa]) = ±[P](a) l · 

Proof. Since we proved that f and gare inverses of each other in Lemma 4.3 .2, it 

is easy to see that the class of the proj ective resolution P9(a-8R"' ) of the enhanced 

D 
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To sum up , for any enhanced partition o: E EL , one can write the proj ective 

resolution Pa and find t he class of Pa in K 0 which is [[f (o:) , o:]]. The class of 

TPa in K 0 is [[o: - bR", g(o: - t5RJ]] . Moreover , we can determine g(o: - t5RJ 

directly from o: by using the map j. We are now in a good position to iterate the 

application of T. 

4.5 Configurat ions and enhanced partitions 

The goal of t his section is to define a bij ection from EL to a set V m,n which we 

defin e below and has a natural act ion of Z/ (m + n + 1). 

Consider Z := { -m, · · · , - 1, 0, 1, · · · , n} for the elements of Z/(m + n + 1). 

D efinition 4.5.1. A configuration D is an increasing sequence of m elements 

from Z . We write D = { i 1 < i 2 < · · · < im} for a configuration. The set V m,n 

denotes all configurations. otice that the cardinality of V m,n is (m+~+1 ) . 

Consider a configuration D. By D{ i} we mean the i times shifted version of 

D, i. e. D{ i } is the set of elements { i 1 - i , · · · , im - i} which are sorted into 

increasing order, and we write sorted{i1 - i , · · · , im- i} . Call this operation {i} 

a shift. Clearly, D{m + n + 1} = D. The set of all configurations D{i} for all 

0 ::::; i ::::; m + n is called the full orbit of D. 

Recall that EL is the set of enhanced partitions of the form 

where )11 -=JO. We also write it as a sequence o: = (a1 , a2 , · · · , a111 ). We are going 

to define a fun ction 'ljJ from EL to Vm ,n as follows. 
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Let us first define a function J-La : { 1, · · · , m} ---t Z 

{

a· 
J-Lo. (j) = J . 

-.J 

if j = L:7=oai for sorne k E {0 , .. . ,r}, 

otherwise. 

It is easy to see th at i t is well-defined. N ow, we defi ne 

as follows: 

'1/J(a) = sorted{J-La(j) 1 for j E {1 , · · · , m} }. 

Example 4.5.2. We continue in the setting of Example 4.1.7. Consider the en­

hanced partition a = (012, 2, 3, 71) , then the corresponding configurat ion is 'ljJ (a) = 

{ - 2 < 0 < 2 < 3 < 7}. Now, consider the enhanced partition a' = (0 12 , 2, 317). 

Then the corresponding configurat ion is 'ljJ (a') = { -5 < -2 < 0 < 2 < 3}. 

Lemma 4.5.3. The map 'ljJ is a bijection. 

Proof. We can think of an element in EL as a multiset on {0, 1, · · · , n, n*} where 

we use n* to represent the fixed n's. Notice that the cardinalities of EL and D m,n 

are the same. Then , it is enough to show that the map 1/J is injective. 

Let a= (oao l>-r\ >-~2, ... , À~r lnar+ I) , f3 = (oJ3o lçf~, çf2, ... , Ç~· InJ3s+I) E EL · To 

simplify the exposition, we assume ai > 1 for all i E {0 , 1, · · · , r} and f3j > 1 for 

all j E { 0, 1, · · · , s} . The pro of for the general case is similar. 

We also write 

f3 = (b1 , ... , bJ3o -1 > bJ30 , bJ3o+ 1, . . . , bJ3o+J31 -1 , bJ3o+J31 , .. ·, 

bJ3o+ J3 I + ·+ J3s- I +1 > • • • ' bJ3o+ J3I +··+}3.-1' beo+J3I +·+J3s ln J3s+ l) 
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Assume 1/; (a.) = 1/; ((3 ), then we have 

{ - m < -m + 1 < · · · < -m + Ctr+l - 1 < 

- x o < - x o + 1 < · · · < - x o + Ctr - 2 < · · · < 

- Xr < - Xr + 1 < · · · < - Xr + Cto- 2 < 0 < À1 < · · · < À,.} 

oo -1 

= { -m < - m + 1 < · · · < -m + f3s+ l - 1 < 

-yo < -yo + 1 < · · · < -yo + f3s - 2 < · · · < 
/3s- l 

-ys < -ys + 1 < · · · < -ys + f3o- 2 < 0 < Ô < · · · < Çs} 

f3o- l 

where Xk = eto + a.1 + · · · + Ctr-k - 1 for k E {0, 1, · · · , T} and Yk = f3o + (31 + · · · + 
f3s -k- 1 for k E {0 , 1, · · · , s }. 

Since Ài 's and Çi 's are all positive and linearly ordered, then for each i > 0, À i = Çi 

and r = s. Now, assume Ctr+ l =/= f3s+ l· Without loss of generality, say f3s+ l < Ctr+l · 

Then - m + f3r+l- 1 < -m + Ctr+l- 1 which implies - m + f3r+l ::; -m + Ctr+l- 1. 

Thus, -m + f3r+ l E 1/; (a.). But this is a contradiction, because -m + f3r+ l cannot 

be in 1/; ((3 ). By the same argument , we can prove th at for each j , Ctj = (3j. This 

proves th at a = (3 . D 

Now, let F := {0, 1, · · · , n , n*} where n* is a formal element distinct from n. We 

also clefine a map <p from Dm,n to EL · Let D = {i1 < i2 < · · · < im}· First of all , 
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let us defin e a function TJD : { 1, · · · , m} ---+ F as follows. For each j, 

TJD(j) = n* if i.i < 0 and li.il + j = m + 1, (4 .4) 

2.7 otherwise. 

Lemma 4.5.4. The map TJD is well-defined. 

Proof. Let D = { i 1 < i 2 < · · · < im }. The only case we need to check is that if 

li.il + j < m + 1 and i.i < 0, then ilijl+.i E F . Assume i 1, · · · , im are nonnegative. 

Then we have the following , 

which implies 

Therefore, for 1 .:::; j .:::; l - 1, we have m 2:: li.il + j 2:: l . This shows that 

0 

N ow, we defi ne a map 

as follows: 

cp( D) = enhanced(sorted{TJD(j) 1 jE {1 ,· ·· ,m}}) 

where we first sort into a non-decreasing order with n* after n and then enhance 

t he result as follows: fix all of the O's and fix all of t he n*'s. This map is the 

inverse map of 'tf; . But we will not prove it here since we do not need this fact. 



- --------------------------- ----- --- --------- ---- -----

56 

4.6 The main result 

We consider the Grothendieck group of the bounded derived category of the inci­

dence algebra A of the poset of order ideals in a grid J ( P m,n) . In this section , we 

are going to prove the following: 

Theorem 4.6.1. Th e Auslander-Reiten translation T has finit e arder on I<0 (Db(A)) 

for the inciden ce algebra A of the poset of arder ideals J(P m,n) of a grid poset P m,n. 

Specifi cally, Tm+ n+ 1 = ±id . 

Our main result follows from two auxiliary Propositions. 

(1) In Proposition 4.6.2 we show that Auslander-Reiten translat ion satisfies T 2(m+n+l) = 

id on the elements [Pa] in I<o . 

(2) In Proposition 4.6.4 we show that the Grothendieck group I<0 is generated by 

the elements of the form [P 0 ]. 

Proposition 4.6.2. T 2(m+n+l ) =id on the elem ents [Pa] in I<0 . 

Proof. First , we are going to prove that the following diagram commutes since 

the shift {1} has finite order of (m + n + 1) on Dm,n· 

Let a = (0°0 i>. r 1
, À~2 , · · · , ).~r l no,·+ J) E EL be an enhanced partition. To simplify 

the exposition, assume a; > 1 for all i and assume À1 =/=- 1. The general case is 

similar. Then , ](a) = ( (>. 1 - 1 )00+1 , (>.2 - 1)01 , · · · , (ÀT - 1)0 r- I , n°r ln°r+ 1 -
1 ) 
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'1/J (a ) = {-m < -m+ 1 < · · · < -m+ a,.+1 - 1 < 

- x0 < - x0 + 1 < . . . < - xo + a ,. - 2 < .. . < 

-Xr < -Xr + 1 < . . . < - Xr + a o- 2 < 0 < À1 < . . . < Àr } 

a o- 1 

'lfJ (](a)) = {-m < - m + 1 < . .. < - m + a,.+1 - 2 < 
ar+ J- 1 

- x 0 - 1 < - X o < . .. < - x 0 + ar - 3 < . . . < 

- Xr - 1 - 1 < - Xr- 1 < · · · < -.Tr - 1 + a r- 3 < 
a l - 1 

- X r - 1 < - X r < · · · < - Xr + a o - 2 < À 1 - 1 < · · · < À r - 1 < n} 

where the x/ sare defined as in t he proof of Lemma 4.5.3. 

From these calculations, it is easy to see t hat '1/J (a ){l} = '1/J (](a)). This shows 

that Tm+n+1[Pal = ±[Pal· Therefore, T2(m+n+1l[Pal =[Pal· The proof of t he case 

À1 = 1 is similar. Also, observe t hat t he order of T cannat be less than ( m + n + 1) 

because t his is obviously t rue for the action of {1} on D m,n· This finishes the 

pro of. D 

Example 4.6.3. In this example, we will write the action of T algebraically and 

combinatorially. Assume m = 5 and n = 3. 

Let a = (Il , 1, 2, 3, 31). Write the projective resolut ion as follows: 

p . O p -3 p - 2 EB p - 2 EB p - 2 
a 0 ---+ (0,0 ,1,2,2) ---+ (0 ,0,1,3 ,3) (1 ,1,1,2,2) (0,0 ,2,2,2) ---+ 

p - 1 EB p - 1 EB p - 1 po O 
(0 ,0,2,3 ,3) (1,1,1,3 ,3) (1,1,2,2,2) ---+ (11,1,2,3,31) ---+ 
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with the homology [[f(a), a]] = [[(0, 1, 2, 2, 3), (1 , 1, 2, 3, 3) ]] . 

Apply T to Po. : 

I · o I - 3 I - 2 œ I - 2 œ I - 2 
o. . -t (0.0 ,1,2,2) -t (0,0,1,3,3) (1 ,1,1,2,2) (0,0,2,2,2) -t 

1- 1 8 J - 1 œ 1- 1 1° 0 (0,0,2,3,3) (1 ,1,1,3,3) (1,1 ,2,2,2) -t (1,1 ,2,3,3) -t 

with the homology [[(0, 0, 1, 2, 2) , (0 , 1, 1, 2, 3) ]] . 

Note that ]((Il , 1, 2, 3, 31)) = (Oil , 1, 213). So , TP (I 1,1,2,3,3I) ~ P (OI1 ,1,2I3)[-2] . In the 

Grothendieck group , we have the following 

T[[(O, 1, 2, 2, 3) , (1, 1, 2, 3, 3)]] = [[(0 , 0, 1, 2, 2) , (0, 1, 1, 2, 3) ]] 

Now, let us look at the action of T combinatorially. Firstly, we find the corre­

sponding configuration D of a which is D = '1/; (a) = { -4 < - 1 < 1 < 2 < 3}. 

We now compute that '1/; ](a) = 't/J((OI1 , 1, 213)) = { -5 < -2 < 0 < 1 < 2} which 

equals D{1} . 

Proposition 4.6.4. The set {[P o.] 1 a is a partition} generates the Grothendieck 

group Ko of the incidence algebra A of the poset J(Pm,n)· 

Proof. The Grothendieck group JC0 is generated by all the isomorphism classes of 

indecomposable projective modules [Po.J, a E J(Pm,n)· Now, we will think of a as 

an enhanced partition with th first bar is placed after O's and the second bar at the 

very end. Let us define Lx = [[f(x), x]] where x is an enhanced partition. We will 

show that each [Po.] can be written as a linear combination of elements of the form 

[Lx]. We will proceed by strong induction on partitions ordered lexicographically. 

The base case is a = (0 , · · · , 0). Then [Po.] = [Lo.J, and we are done. 

Recall that we get the element [P o.] in JC0 by taking the Euler characteristic of the 

proj ective resolution Po.· 
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Recall also the notation from Subsection 4.1. Let us write each partition a - 61 

where J Ç Ra. and J =1= 0. Notice that each a - 61 cornes before a in the 

lexicographical or der. 

Now , we write [Pa]= [Pa]+ [ffi Pa-<lJ]- [ E9 Pa-<lJ ] + · · · + (-l)IJI[Pa-<ln,J 
J Ç R"' , J ÇR"', 
IJI=l IJI=2 

Therefore, by the induction hypothesis, each [Pa-<lJ] can be written as a linear 

combination of elements of the form [Lx]· So, we have 

And we know that [Pa]= [La]· Now, we have the desired result : 

x 

0 





------- - -----

CHAPTER V 

A GENERAL FRAMEWORK: COMI USCULE POSETS 

In Chapter 4, we proved the fini teness of the Coxeter transformation on grid 

posets. In this chapter , we are going to study the generalization of our result 

to the incidence algebra of the poset of order ideals J(C) of a cominuscule poset 

C. We start by recalling sorne basic facts on root systems and Coxeter groups. 

Then, we are going to give the defini tion of a cominuscule poset C in the poset 

of posit ive roots of a given root system <I> . Next, we are going to investigate the 

action of the Coxeter transformation T for the poset of or der ideals J ( C). We are 

going to show that Th+l = ±id for two infinite families of cominuscule posets and 

exceptional cases where h is the Coxeter number for the relevant root system. 

5.1 Reflection along hyperplanes 

The material in this section is drawn from (Humphreys, 1978). 

Let V be a finite dimensional real vector space together with a posit ive definite 

symmetric bilinear form (x, y) for x, y EV. A reflection is defined as an invertible 

linear map from V to itself fixing a hyperplane and sending its normal vector to 

its negative. For a given hyperplane H with a normal vector CJ E V, we can define 
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sa t he refiection along H as follows: 

(v, a-) 
sa(v) = v - 2-( -)a-

a-, a-

for every vector v E V. 

A subset cp of V is a root system if the following conditions hold: 

Rl) cp is finite , spans V and does not contain O. 

R2) For a- E cp , the only multiples of a- in cp are exactly ±o-. 

R3) If a- E cp , th en the refiection sa leaves cp invariant . 

R4) If 1 :r, th 2(a' ,a ) '71 a-, a- E <y, en -(- ) E /ù. a,a 

The elements of cp are called roots. A subset !::,. of cp is called a base of cp if: 

Bl) it is a basis for V , 

B2) each root in cp can be written as a linear combination of roots in !::,. with 

integral coeffi cients which are either all nonnegative or all non-positive. 

Every root system has a base. The elements in !::,. are called simple roots. The 

subset cp+ consists of roots which are the combinations of elements in 6. , and cp ­

consists of roots which are the combination of the negative of elements in 6.. One 

can easily see that cp - = -cp+ and cp = cp+ U cp - . Note that the decomposition of 

cp into cp+ and cp - is not unique. 

One can define a par tial order on cp+ naturally as follows: For a-, a-' E cp+, we 

say that a-' -< a- if and only if a- - a-' is a sum of positive roots. This poset is 
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called the poset of positive mots of the root system <D . The partial order on <J? + is 

well-dcfined, and it does not depend on t he choice of 6. up to isomorphism. 

We say that <Dis irreducible if it cannot be partitioned into two proper, orthogonal 

subsets . Also, we can state this as follows (Humphreys, 1978, Section 10.4) : <D is 

irreducible if 6. cannot be partitioned into two proper, orthogonal subsets. 

The height of a root Œ is defined as t he sum of the coefficients in the expression of 

Œ as a linear combination of simple roots. Assume <D is irreducible, then the poset 

<J? + has always a highest root , say TJ · For a detailed discussion of the subj ect, see 

(Humphreys, 1978) . 

Example 5.1.1. The following is the poset of positive roots of A4 with the set 

of simple roots!::. = {Œ1 , Œ2 , Œ3 , Œ4 } and TJ = Œ1 + Œ2 + Œ3 + Œ4 is the highest root . 

Figure 5.1 Root poset of A4 

5.2 Coxeter groups 

Coxeter groups provide a good abstraction of the geometrie setting we described 

in Section 5.1. They were introduced and classified by H. S. M. Coxeter (Coxeter, 

1934), (Coxeter, 1936). 

A finitely generated Coxeter group has a presentation of t he form 
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where mii = 1 and 2 :::; miJ = mji :::; oo, mij = oo means no corresponding relat ion 

at all. We can encode t his information by a graph called the Coxeter diagram, In 

the Coxeter diagram the vertices are labeled with reftections 1, · · · , n. We connect 

two vertices with an edge only when mij > 3 if i =!= j and we label the edge with 

the corresponding mij. 

We know that if <I> is irreducible , its Coxeter diagram is connected, and vice 

versa. It is sufficient to classify irreducible root systems. The classification of 

irreducible root systems is clone by using the Dynkin diagrams. We construct 

Dynkin diagrams from 6. as follows: We put a vertex for each element in 6.. We 

connect two vertices with respect to the following rule. We put 

• no edge if the corresponding roots are orthogonal. 

• one edge if the angle between the corresponding roots is 120 degrees. 

• two edges if the angle between the corresponding roots is 135 degrees. 

• three edge if the angle between the corresponding roots is 150 degrees. 

We direct an edge from the vertex corresponding to the longer root to the vertex 

corresponding to the shorter one. If the roots have the same length , the edges are 

undirected. 

Here is t he list of Dynkin diagrams for finite root systems: 

An : · --·-- ···--· -- · 

E n:· -- · --· · · --·=>= · 
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Cn: ·--·--···--·=<=· 

D n: · --·--·--·· ·--· 

E 6: · --· --·-- · --· 

E7: ·--· --· --·-- ·--· 

Es:·-- ·--·--·-- ·-- ·--· 

F4: ·-- · = >=·--· 

5.3 Cominuscule posets 

Throughout this section, assume that <P is a finite irreducible root system and let 

TJ be its highest root. 
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D efini t ion 5.3 .1. A simple root O" is called a cominuscule root if the multiplicity 

of O" in the simple root expansion of rJ is 1. 

D efiniti on 5 .3.2 . An interval C of the form [O", rJ] c <t>+ is called a cominuscule 

poset if O" is a cominuscule root . 

Cominuscule posets appear in representat ion theory of Lie groups, Schubert calcu­

lus, and combinatorics. For more details on root systems see (Humphreys, 1978), 

and for cominuscule posets (Billey & Lakshmibai, 2000), (Green, 2013) , (Rush & 

Shi , 2013) and (Thomas & Yong, 2009). 

Example 5.3.3. In Example 5. 1.1 , all simple roots are cominuscule roots. The 

following are cominuscule posets for the simple roots 0"1 and 0"2 , respectively. 

a, 

The following shows an illustration of the possible shapes of cominuscule posets 

except the exceptional cases. The exceptional cominuscule posets will be discussed 

at the end of this section. 

Q988>··.· .·<8 
. <8> .. N . ~ 

Figure 5.2 Cominuscule posets of type 1, Il , Ill 
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Conj ectu re 5 .3 .4 . Auslander-Reiten translation T has finit e arder on the Grothendieck 

group of the bounded derived category for the incidence algebra of the po set J ( C). 

Specifically, T 2(h+l) = id where h is the Coxeter number for the relevant root 

systems (A, B , C, D , E6 or E7). 

In this chapter, we prove that the Conjecture 5.3.4 is true for cominuscule posets 

J (C1 ), J (C111 ), J (CE6 ), J(CE7 ) . 

R em ark 5.3 .5 . If the same cominuscule poset cornes from two different root 

systems, since the order of the Coxeter transformation T obviously agree, Conjec­

ture 5.3.4 is self-consistent . 

We will proceed with a case by case analysis and prove sorne results. 

5.4 Type A 

All simple roots in the root poset of An are cominuscule roots . So, they all give 

rise to cominuscule posets . 

The cominuscule poset over any simple root in A n is of type 1 in Figure 5.2. In 

other words , they are the grid posets P m,k of size m + k = n + 1. 

Example 5.4. 1. The following figure is an illustration of root poset of An· The 

shaded area shows the cominuscule poset C1 over the simple root Œk. 
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Figure 5.3 The root poset of An and the cominuscule poset C1 over the simple 

root O"k· 

In this case, we have the following results. 

Theorem 5.4.2 (Theorem 4.6.1) . The Coxeter transformation T acts .finit ely on 

the poset J(Pm,k) of arder ideals in Pm,k· 

Recall that the Coxeter number h is n + 1 in type An· So, the Conjecture 5.3.4 

holds for the type An , i.e. T 2(h+l) =id in K 0 (Db(A)) for the incidence algebra A 

of the poset of or der ideals J (cl ). 

Now, we will prove the order of T explicitly. 

Proposition 5.4.3. Let J(P m,n) be the poset of arder ideal of a grid poset P m,n . 

If m , n are bath even, then the arder of T is 2(m + n + 1) . Otherwise, the arder 

of T is m + n + 1. 

Proof. First , we observe that if IRai is odd, then [TPa:] is a positive sum of simples 

in JC0 ; if IRai is even, then [TPa:] is a negative sum of simples in JC0 . 

Let us state t his fact in terms of configurations as follows. We will work with 

sign configurations which are just configurations with a sign attached. Let D 
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be the corresponding configuration to a with a sign attached. In this case, IRai 
is the number of positive en tries in D . vVe define t he action of { 1} on signed 

configurations as follows: if 1 Ra 1 is odd, th en D{ 1} will have the same sign; if 

IRai is even, t hen D{1} will have the opposite sign. We will write this fact in an 

explicit way as follows. Let D = { a1 < · · · < am} for a = ( a1 , · · · , am). 

We first define T : D -t { 1, -1} by sen ding ai ~ T( ai) where 

Then sign(D{1} ) is as follows: 

sign(D{l}) ~ ( - 1) (fi r(aj) ) sign(D) 

We know that each ai will be non-negative n times in the full or bit of D . So, we 

have 
m+n 

II T(ai- j) = (-1r 
j=O 

Now, let us determine the sign of D{m + n + 1}. 
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sign (D{m + n + 1}) 

((-1) fi r(a1 - m - n) ) sign (D{m + n ) ) 

( (-1) ft r(aj- m-n) ) ( (- 1) ft r(ai - m - n -1)) 
]= l ]= l 

. . . ( - 1) fi r(a1 )) sign(D) 

= ( - 1)m+n+l (TI r- (a1 - j) ) · · · (TI" T(am- j)) sign(D) 
]=0 ]=Ü 

= ( - 1)m+n+l ( - 1)nm sign (D ) = ( -1 )(m+l)(n+ll sign(D ) 

From t his, we see that when m and n are both even, t he order is 2(m + n + 1) . 

Ot herwise, it is m + n + 1. 0 

5.5 Type B 

In type Bn, t he only simple root which is a cominuscule root is CT1 and t he comi­

nuscule poset is t he grid poset P1,2n- l · The Coxeter number h is 2n in this case. 

Therefore, we have the desired result, i. e. T 2(1+2n-Hl) = T 2(h+l) = id. 

5.6 Type C 

In type C n, the only simple root which gives rise to the cominuscule poset is O"n 

and the cominuscule poset is the type of Il in Figure 5. 2. 

Example 5.6.1. Here we illustrate the root poset of C n and the shaded area 

shows the cominuscule poset over the simple root O"n· 
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a, 

Figure 5.4 The root poset of Cn and the cominuscule poset C11 over the simple 

root Œn· 

This case is still open . We give the detailed discussion of this case in the conclusion 

of the thesis. 

5.7 Type D 

In type D n, n > 3, there are three simple roots Œ1 , Œn- l , and O"n which give rise to 

cominuscule posets. The simple roots Œn -l and Œn give rise to cominuscule posets 

of type Il which is the same as the cominuscule poset for Cn-l · 

The simple root Œ1 gives rise to the cominuscule poset of type Ill. The cominuscule 

poset C111 and the poset of order ideals J(C 111 ) is shown as follows: 
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211-2 2n 

1 1 
2u - 3 2n - 1 

1 1 

n 1- 2 Tl t- 3 

1 1 
Il + J Il t- 2 

/~ 
n- 1 11 

/~ 
n n 1 1 

~/ ~/ 
n-2 Il - J 

1 1 

n-3 n -2 

1 

Figure 5 .5 The cominuscule poset C111 and the order ideal poset J (C111 ) for the 

simple root 0"1 in the root system for Dn. 

Now, we are going to prove Conj ecture 5.3.4 for the cominuscule poset ( 111 • 

Theorem 5. 7 .1. Let A (Dn,a1 ) be the incidence algebra of the poset J(C111) of size 

2n f or the corresponding root system Dn. The Auslander-Reiten translation T on 

K 0 (Db(mod A (Dn,ai)) ) has finit e arder of 2(h + 1) where h is the Coxeter number 

for type Dn. 

Proof. We will first wri te sorne orbits of T explicit ly to see the order. In this 

poset , we distinguish four cases for the action of T on the stalk complexes of the 

corresponding simple modules: 

1. Let Sj be the simple module supported over t he vertex j where j i- n , n + 
1, n + 2 or 1. Consider t he st alk complex 0--+ SJ --+ 0, then t he act ion of T 

is calculated as follows: 
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• Take the projective resolution 0 ---+ pj--\ ---+ Pj0 ---+ 0 of Sj. 

• After applying the functor (- ® DA(Dn,a 1 ) ) we get the inj ective reso­

lution 0 ---+ Ij-_!1 ---+ IJ ---+ 0 which is quasi-isomorphic to 0 ---+ s j-_!1 ---+ 

0 ---+ O. 

• Finally the shift [ -1], 0 ---+ SJ_1 ---+ O. 

We conclude that T(O ---+ SJ ---+ 0) ~ 0 ---+ SJ_ 1 ---+ O. 

2. Let 51 be the simple module supported over the vertex 1. Consider 0 ---+ 

sp---+ 0, then we compute TSl as follows: 

• Write the proj ective resolution 0 ---+ P~ ---+ O. 

• Apply the functor , then we have 0---+ If ---+ O. 

• Now apply the shift [- 1]. 

Thus, we get T(O ---+ sp ---+ 0) ~ 0 ---+ If ---+ o. 

3. Let us now consider the simple module Sn+2 , then the action of T on the 

stalk complex 0 ---+ S~+2 ---+ 0 can be computed as follows: 

• 0 ---+ P;:3.1 ---+ pn- 1 EB P;:J1 ---+ P~+2 ---+ 0 is the projective resolution. 

• After applying the functor we get 0 ---+ L;;,3.1 ---+ 1;;1 EB 1;;~ 1 ---+ 1~+2 ---+ 0 

which is quasi-isomorphic to 0 ---+ s;:3. 1 ---+ O. 

• and now apply the shift functor [ -1], th en we get 0 ---+ s;:~ 1 ---+ 0. 

So, we h ave T(O ---+ 5~+2 ---+ 0) ~ 0---+ s;:~1 ---+o . 

4. Finally we will look at the simple Sn or Sn+1 . We write the proof only for the 

vertex n since the proof of the other case is ident ical. Consider 0 ---+ S~ ---+ O. 

• Write the proj ective resolution 0 ---+ P;:.!1 ---+ P~ ---+ O. 
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• ext , we get the injective resolution 0 --7 J;;~ I --7 I~ --7 0 and the 

corresponding element in Ka is -[Sn-I ] - [Sn+Il· 

• The shift fun ctor is - id in Ka , thus T([Sn]) = [Sn- I]+ [Sn+I] in Ka. 

Now, we will write two different T-m·bits in Ka . Assume j 2: n + 2. First T-m·bit 

is as follows: 

[Sj] ~[Sj-I ] ~ · · · ~ [Sn+3] ~ [Sn+2] ~ -[Sn-I] ~ 

- [Sn-2] ~ · · · ~ - [SI] ~ [JI] ~ -[S2n] ~ · · · ~ -[Si] 

Therefore, we conclude that for jE {1 , 2, · · · , n- 1, n + 2, n + 3, · · · , 2n} , 

The second T-orbit is calculated as follows. For simplicity, we assume n is odd 

since the case n is even is not significant ly different. 

Th us, 

[Sn] ~[Sn-I EB Sn+I] ~ [Sn-2 EB Sn- I EB Sn] 

~ [Sn-3 EB Sn-2 EB Sn-I EB Sn+I] ~ · · · 

~ [SI EB S2 EB · · · EB Sn- I EB Sn] 

~ - [In] ~ - [Sn+l EB Sn+2 EB Sn+3 EB · · · EB S2n- 1J 

~ - [Sn EB Sn+2 EB Sn+3 EB · · · EB S2n-2J 

~ · · · ~ - [Sn+I EB Sn+2] 

~-[Sn] 
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To sum up , in b oth orbits we see that the arder of T is 2(2n - 1). We can 

see from these orbits t hat T acts fini tely on every simple. So, T
2n- l = -id in 

the Grothendieck group K0 . Also, recall that the Coxeter number in type Dn is 

2n - 2. This fini shes t he proof. D 

We can give a second proof of t he previous result which in fact establishes more. 

Theorem 5. 7.2. Db(mod A (on ,o-J) ) is fractionally Calabi- Yau. 

Proof. Let D 2n be the path algebra with the following orientation: 

2n 

1 
1 ~ 2 ~ · · · ~ 2n- 2 ~ 2n- 1 

Let Mo be the module over the algebra D 2n with dimension vector (1 , 1, · · · , 1, 1) , 

and Mi be the module with dimension vector (1 , 1, · · · , 1, 2, · · · , 2, 1) where we 

have the dimension 2 appears i times for i > O. Let us now consider the following 

module: T = P1 EB P2 EB · · · EB Pn- l EB P2n- 1 EB P2n EB Mo EB M1 EB · · · EB Mn-2 which 

is illustrated in Figure 5.6. 
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Pn- 1 -•. 
. ..-. 

P2n
0 

P2n-1 •> 

M;-.~ 2 

.•. . 

·- / Mo 

Figure 5.6 An illustration of the module category of D2n and the tilting module 

T . 

It is not difficult to see T is a tilting module. So, we consider the endomor­

phism algebra EndT which is the algebra A (Dn,a!)· Therefore, we have that 

Vb(mod A (Dn,a1 )) is derived equivalent to Vb(mod D2n)· We know by (Keller , 

2005, Example 8.3(2)), Vb(modD2n) is fractionally Calabi-Yau, and therefore 

Vb(modA(Dn,a1 )) is also fractionally Calabi-Yau. Thus, we have the desired re-

sult. D 

Remark 5.7.3. Theorem 5.7.2 can also be proved by using the technique of fiip­

fiops of Ladkani (Ladkani , 2007)[Theorem 1.1] . Let P be a finite poset, P1 be the 

poset with a unique maximum element added to P, and P0 be the poset with a 

unique minimum element added to P. Ladkani shows that P1 and P0 are derived 

equivalent. Using this fact , we can show that the poset J (C111 ) of size 2n is derived 

equivalent to D 2n· 

Example 5. 7.4. In this example, we use Ladkani 's technique showing that J(C 111 ) 

of size 8 is derived equivalent to D8 . 
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'2::der i v ed '2::derived '2::der i v ed 

Figure 5. 7 The derived equivalent posets 

5.8 Exceptional cases 

There are two cominuscule roots which give rise to the same cominuscule poset for 

type E6 and there is only one cominuscule root which gives a cominuscule poset 

for type E7 . 

Figure 5.8 The cominuscule poset CE6 and the cominuscule poset CE7 

We checked that Conjecture 5.3.4 also holds for these two exceptional cases by 

using the mathematical software SageMath (Stein et al. , 2017) . 





CHAPTER VI 

MOVIES AND THE PANYUSHEV MAP 

In this chapter , we will define a domino configuration 'D associated to a configura­

t ion D. Recall that in Section 4.5, we proved the periodicity of T for J(Pm,n) wi th 

a corresponding cyclic action on the configurations. Now, we will interpret the 

periodicity of T from a different perspective using t he combinatorics of domino 

configurations. 

We will also study a remarkable map which is defined on orcier ideals in a poset (Pa­

nyushev, 2009). In the li terature, there are different nam es for t his ma p . We will 

call it by Panyushev map Pan . Moreover , Pan , or sorne variations of it , is exten­

sively studied by many mathematicians in various setting (Brouwer & Schrijver , 

1974), (Fon-Der-Flaass, 1993), (Cameron & Fon-Der-Flaass, 1995), (Reiner et al. , 

2004), (Panyushev, 2009) , (Stanley, 2009), (Striker & Williams, 2012) (Armstrong 

et al. , 2013), (Rush & Shi, 2013) , (Grinberg & Roby, 2014). We investigate a con­

nection between the Coxeter transformation T and the Panyushev map Pan . This 

connection requires us to work wi th a variation of domino configurations called a 

configuration of singletons S associated to a configuration D . We will see t hat the 

behavior of P an is obtained by t he rotation of t he configuration of singletons. We 

remark that this amounts to a proof of t he orcier of Pan on a grid which goes back 
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to Brouwer and Schrijver (Brouwer & Schrijver , 1974) in only slight ly different 

form. 

6.1 Configurations of dominos 

We start this section by recalling that we write Z := { - m , · · · , -1 , 0, 1, · · · , n } 

for the elements of Z / (m+n+1). Let D = {i1 < i 2 < · · · < im} b e a configuration 

where i.i E Z , 1 ::; j ::; m. 

We consider a frame Fr m+n+l which consists of m + n + 1 columns. We di vide 

the frame into two different regions: the clark zone and the light zone. We label 

the columns with respect to our st arting poset P m,n: we let the width of the light 

zone be n+ 1, and we label the columns 0, . .. , n . The width of the clark zone is 

m ; we label the columns of the clark zone from -m to -1. 

D efinition 6 .1.1. The domino configuration V D associat ed to a configuration 

D = { i1 < i2 < · · · < i,n} consists of m dominos placed in Frm+n+l so as to 

occupy the columns ij - 1, i j for each 1 ::; j ::; m . 

1 

1 - m .. · - 1 : 0 1 .. · n 1 

1 

1 

rn .. . rn 
rn ... rn 

1 • 

1 clark zone : light zone 1 

Figure 6.1 An illustration of a domino configuration. 
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For convenience, we do not necessarily draw all dominos in the same row, but 

t hcir ver t ical posit ion does not carry any significance. Notice that no domino 

configuration is going to fit into the dark zone completely since we have m distinct 

dominos. This means we are going to have at least one domino or part of it in the 

light zone. Since we assume our frame is cylindrical, i. e. we ident ified bot h ends, 

it is possible to have a domino half of which sits in the light zone while the other 

half of which sits in the dark zone. There are two possible positions for this case: 

being in columns - m and n , as well as being in columns - 1 and O. 

Let a: = (oua i>.r1
, À~2 , • • • , ).~r ln ur+! ) E EL be an enhanced partition. In the 

following, we will defin e a mar-ked light domino configur-ation 1J~ corresponding to 

the enhanced partition a: E EL· 

Definition 6.1.2 . In the frame Frm+n+l , we place 

• for each i E Ru, one domino marked on both sides with ai - 1 dots and the 

right half of it sitting in the column Ài · 

• one domino marked on the right half with a:0 - 1 dots and the right half of 

it sitting in the column O. 

• one domino marked on the left half with O:r+ l - 1 dots and the left half of 

it sitting in the position n . 

We call this configuration of r + 2 dominos with the marks on the dominos 

as a marked light domino configuration 1J~. 

In the following Figure 6.2 , an example of a marked light domino configuration is 

shown. 
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1 1 

1 - m · · · - 1 : 0 1 · · · n 1 

~ o œ ... EEJ0 1 

1 1 

d ark zone : light zone 1 

Figure 6.2 An illustration of a marked light domino configuration 

Let 1) denote the set of domino configurations and 1)* denote the set of marked 

light domino configurations. ote t hat there are m dominos in a domino config­

uration associated to D = { i1 < i2 < · · · < im} and there are r + 2 dominos and 

a total of m- r- 2 marks in a markcd light domino configuration associated to 

We defined a map <p in Section 4.5 from the set of configurations D m,n to the set 

of enhanced partitions EL · Now, we can translat e this map to a map <p* from 1) 

to 1)* . Let 

<p* : 1) ---1 1)* 

Let D 0 E 1) . Then <p*(D o) is defined as follows: For every domino in D o whose 

right half sits in the column k in the dark zone we count k dominos to the right , 

and mark the corresponding domino on both sides, and then delete the domino 
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in the dark zone. 

The map <.p* is obviously well-defined. The following lemma shows the reason why 

we call them 'marked light '. 

Lemma 6.1.3. For each domino whose right half sits in the column k in the dark 

zone, the k-th domino to its right sits, partially or jully, in the light zone . 

Proof. Here the argument is that for a domino, the right half of which sits in the 

column k in the dark zone, there are only k - 1 dominos that can fi t ent irely in 

the dark zone to its right . 0 

Therefore, a marked light domino configuration is a domino configuration at least 

partly in the light zone with sorne marks. Notice that the number of dominos and 

the number of times it is marked in total for D~ sums up to m with respect to 

the description above. 

Lemma 6.1.4. The map <.p* is a bij ection. 

Proof. Let D D, D'ry E n. Assume <.p* (DD) = <.p* (D~,). This means that DD 

and D~, has exactly same domino configurations in the light zone. Then, the 

inj ectivity of <.p* follows from the fact that dominos do not coincide. We cannat 

have two dominos sitting in the same place in the dark zone, and the marks in 

the light zone are certainly determined by the positions in the dark zone. For an 

m x n grid poset , recall that the cardinality of the set 1) of domino configurations 

is (m+;+l) which equals to the cardinality of the set 1)* of marked light domino 

configurations, because the set 1) * can be thought of as the collection of mult isets 

of size m on n + 2 elements. This argument gives us the desired bijection. 0 

Example 6.1.5. Here are examples of a domino configuration and the corre­

sponding marked light domino configuration for the grid poset P5,7 . Since mis 5, 
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we have five dominos placed in t he frame Fr13 . We label the light zone from 0 to 

7 and dark zone from -5 to -1. 

Since we have two dominos placed in the dark zone, we are going to mark two 

dominos in the light zone. 

Consider the first domino in the dark zone. Since its right half sits in the column 

-1 , we mark the first domino to its right which is the one sitting in columns 

- 1, O. Notice that we marked only right half of the domino which sits in the 

column O. 

For the other domino the right half of which sits in the column -3, we mark the 

third domino on both sides. 

1 • 1 
1- 5 - 4 -3-2-1 : 0 1 2 3 4 5 6 7 1 : - 5 - 4 - 3 - 2 - 1 : 0 

1 

1 234567 1 

:co CD 

CD co: 

dark zone lighl zone dark zone lighl zone 

(I) (II) 

Figure 6.3 A domino configuration (I) and the corresponding marked light 

domino configuration (II) 

We sometimes present domino configurations and marked light domino configu­

rations in one frame as shown below. 
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1 • 1 

1 - 5 - 4 -3 -2 - 1 : 0 1 2 3 4 5 6 7 1 .EEJ [IJ 

CE] 

[IJ [IJ: 

dark zone light zone 

Remark 6.1.6. Recall that for a given enhanced partition a E EL , we can write 

the projective resolution Po. · Assume that IRai = k, then Po. has 2k modules 

in total. Notice t hat the corresponding marked light domino configurations D~ 

records the labeling of every module in Pa as follows. Dominos in D~ are labeled 

by the columns in which they sit in the frame. We read one label from each 

domino in D~ at a time and form a partition from these labels. If a domino lies 

in columns - 1 and 0, we only read a zero . If a domino has marks, we repeat 

the label in the partition that many times. By the description above, we produce 

2k partitions where k is the number of dominos in D~. Notice also that a is the 

partition which is obtained by reading the rightmost part of the dominos . We 

enhanced a from D~ as follows: (i) If the label 0 cornes from the right half of a 

domino and if that domino has l marks , then we put t he first bar aft er the l-th 0 

in a; (ii) If the label n cornes from the left half of a domino and if that domino 

has l marks , then we put the second bar before the l-th n in a. 

Example 6.1.7. We write the corresponding projective resolution of the dominos 

in Example 6.1.5 as follows: 

P o.= (O,OI1,1,3I): 0 ---+ P (o,o,o,o,2) ---+ P (o,O,I,l ,2) E9 P (o,o,o,o,3) ---+ P (o,OI1,1,3I) ---+ 0 
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6.2 The movie for a domino configuration 

Let D n be a domino configuration and D~ be the marked light domino config­

urat ion. As we define a shift operation {1} on configurations, we will do t he 

same for domino configurat ions. Consider a domino configuration D n in a frame 

Fr m+n+l, and st.art shifting this configuration by one to the left in the frame at 

each step. We call this operation on domino configurations also a shift { 1}. There­

fore, D D { i } is the i-th times shifted version of D D in the frame. A ft er m + n + 1 

steps, clearly we will come back to the domino combination we started with in 

Fr m+n+l· We will have a full or bi t of these domino configurations in the frame. 

By the map <p* we can consider the full orbit of the corresponding marked light 

domino configurations as well. 

Remark 6.2.1. When we apply T on the proj ective resolution Pen we get a 

projective resolution starting with Pj(a) . Therefore, as it happened in the case of 

configurations, j corresponds to shift operation { 1} on Dn. 

Example 6.2.2. For 5 x 7 grid, consider the following projective resolution and 

the corresponding combinatorics: 

Pa : 0 --+ P (o,o,o,o,2) --+ P (o,o,1 ,1,2) EB P(o,o,o,o,3) --+ P(o,OJ1,1,3J) --+ 0 

NI1 = {f( a) = (0, 0, 0, 1, 3) < · · · < (0, 0, 1, 1, 3)} 

We can write the projective resolution after the action of T toPa, and show the 

corresponding combinatorics as follows: 

TP a: 0 --+ P (o,o,o,l,l) --+ P (o,o,OJ2 ,2J) --+ 0 

M2 = {(0 , 0, 0, 0, 2) < · · · < g(a) = (0,0 , 0, 2, 2)} 



87 

1 • 1 

1 -5-4 -3 -2- 1 : 0 1 2 3 4 5 6 7 1 

:Er!] [IJ 

CEl 
[IJ c:::o: 

1 
l " . . • • 1 

dark zone light zone 

D efinition 6.2.3. We call the orbi t of marked light domino configurations in a 

frame a movie. 

Example 6.2.4. We continue with Example 4.6.3. Let a = (Il , 1, 2, 3, 31). We 

will write the orbit of projective resolutions with the homology at the top of the 
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resolutions. 

[[(0, 1, 2, 2, 3) , (1, 1, 2, 3, 3)]] 

0 --+ p - 3 --+ p - 2 œ p - 2 œ p-2 --+ 
(0 ,0, 1,2,2) (0 ,0, 1 ,3,3) (1 ,1, 1 ,2,2) (0 ,0,2,2,2) 

p - 1 œ p - 1 EB p-1 po 0 (0 ,0,2,3,3) (1 ,1,1,3,3) (1 ,1,2,2,2) --7 (11 ,1,2,3,31) --7 

[[(0, 0, 1, 2, 2) , (0 , 1, 1, 2, 3) ]] 

0 p - 2 p - 1 EB p - 1 pO 
--7 (0 ,0,0,1,3) --7 (0 ,0,0,2,3) (0 ,1,1,1,3) --7 (Oj l ,l ,2j3) 

[[(0, 0, 0, 1, 3) , (0 , 0, 1, 1, 3)]] 

0 --+ p - 2 --+ p - 1 œ p - 1 --+ po 
(0 ,0,0,0,2) (0 ,0,1,1 ,2) (0 ,0,0,0,3) (O ,Ojl ,l ,3j ) 

[[(0, 0, 0, 0, 2) , (0 , 0, 0, 2, 2)]] 

[[(0 , 0, 0, 1, 1) , (1 , 1, 1, 1, 3)]] 

[[(0 , 0, 0, 0, 3) , (0 , 3, 3, 3, 3) ]] 

0 --7 p-1 --7 pO 
(0 ,2,2,2,2) (Oj3 ,3,3,3j) 

[[(0 , 2, 2, 2, 2) , (2 , 2, 3, 3, 3)]] 

[[(1 , 1, 3, 3, 3) , (1, 3, 3, 3, 3)]] 

0 --+ p-2 --+ p - 1 œ p - 1 --+ po 
(0 ,2,2,3,3) (1 ,2,2,3,3) (0 ,3 ,3,3 ,3) ( 11 ,3 ,313 ,3) 

[[(0, 2, 2, 3, 3) , (0 , 2, 3, 3, 3)]] 

0 --+ p-2 --+ p-1 œ p-1 --+ po 
(0 ,1,2,2,3) (0 ,2,2,2,3) (0 ,1,3,3,3) (Oj2 ,3,3j3) 

Here is the corresponding movie for this orbit: 
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1 
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..1 

D l 

c:::Jc:::J 
DD 

light zone 

Figure 6.4 The corresponding movie for a. (Il , 1, 2, 3, 31). 
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Example 6.2.5. Here is another example of a movie for the corresponding T-orbit 

of P(oll ,l ,3,31) . 
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1 -5 -4 -3 - 2 - 1 : 0 1 2 3 

:COCO , 
, CDCDCD 
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6.3 The Panyushev map 
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• • • • • • • • • 1 

EEl 
EEl 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1 

D EEl D , 
CD CD EEl 

clark zone light zone : 

In this section, we will discuss a remarkable map Pan defined on the order ideals of 

a poset in (Panyushev, 2009). By (Rush & Shi , 2013) , we know that t he Panyushev 

map Panh = id on the order ideals coming from cominuscule posets. In Chapter 5, 

we proved that T (h.+l) = -id for the two of t hree infinite families of cominuscule 

posets and exceptional cases. Ignoring the sign, we will investigate why is the 

order of T one bigger than the order of Pan. We will use the combinatorics of 

domino configurations and cor~figv.mtions of singletons to show the similarit ies of 

T with t he Panyushev map Pan . 
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D efinit ion 6.3.1. Let 1 be an order ideal of a poset P. Then Pan( l) is defined to 

be the order ideal generated by the minimal elements not in 1. 

Note t hat the order ideals are down-closed sets in a poset. We define arder filt ers 

as up-closed set s in a poset. Then, the inverse of the Panyushev map Pan -l is 

t he complement of the order filter generated by the maximal elements of 1. 

Theorem 6.3.2. (Rush & Shi, 201 3, Theorem 1.4) The Panyushev map has finit e 

arder on the cominuscule posets, specifi cally Panh = id where h is the relevant 

Coxeter number. 

Example 6.3.3. In Figure 6.5 we show an example of one orbit of Pan on the 

order ideals of P2,3 . 

(1 ) 1) (0 , 2) (1, 3) (2 , 2) (0 , 3) 

Figure 6.5 An orbit of Panyushev map Pan 

Example 6.3.4. Here is another example of a Pan-orbit for P5,3 . 
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(1,1,2,3,3) (0,2,3,3,3) (1,3 ,3,3,3) (2,2,2,2,2) 

(0,0,0,0,3) (0,0,0, 1,1) (0,0,1,1,2) (0,1,1,2,3) 

6.4 The short movie for the orbit of the Panyushev map 

In this section , we are going to describe a movie of orbits of Pan for the grid 

posets Pm,n· We recall that Panm+n = id for grid posets which come from che first 

infinite family of the cominuscule posets. In this section, we write Z' := { -m + 

1, · · · ,-1, 0, 1, ··· , n } fortheelementsofZ/(m+n)and D = {i1 < i 2 < ··· < im} 

for a configuration where ij E Z' , 0 :S j :S m. 

Similar to the previous section , we consider a frame Fr m+n of size m + n and we 

divide the frame into two different regions: the dark zone and the light zone. We 

label the columns with respect to our st arting poset P m,n. We let the width of 

t he light zone ben + 1, and we label the columns 0, . . . , n. The width of the dark 

zone is m ; in this case we label the columns of the dark zone from ( -m + 1) to 

-1. 

We first define a configur-ation of singletons S D for a configuration D as follows. 

Definition 6.4.1. The configur-ati on of singletons SD associated co a configura-
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tion D consists of m distinct boxes in the frame Fr m+n each of which is placed in 

the column ij E D . We write 6 for t he collection of configurations of singletons. 

Secondly, we give the following defini t ion . Let a= p,r1
, · · · , À~r ) , 0 ::; À1 < À2 < 

· · · < Àr ::; n be a partition . 

Definition 6.4.2. The m arked light configuration of singletons S~ associat ed to 

a partition a consist s of r distinct boxes in the frame Frm+n each of which occupy 

the column Ài E a and each of which has ai - 1 marks. We denote by 6 * the 

collection of markecl light configurations of singletons. 

The map <p* we defined from ~ to ~* can be modifiecl t o this setting. 

<p! :6--*6* 

where 6 is the set of configurations of singletons wit h m boxes and 6 * is the set 

of marked light configurations of singletons with r boxes and m- r marks. 

Let S D E 6 . <p! ( S D) is defined as follows: For ev er y singleton in S D in the column 

kin the clark zone we count k dominos to the right , and mark the corresponding 

singleton, and then delet e the singleton in the clark zone. Similar to the proof of 

Lemma 6.1 .4, it can be shown that this gives us a bijective map. 

Definition 6.4.3. We call the orbit of marked light configurations singletons in 

a frame Fr m+n a short movie. 

Example 6.4.4. Let us see the corresponding short mov1e for the partition 

(0 , 1, 1, 3, 3). 
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Figure 6.6 The or bit of { - 4, -2, 0, 1, 3} under the shift {1} and the correspond-

ing short movie. 

Let a = (À~1 , • · • , À~r) E F. We reformulate the action of Pan- 1 on the partitions 

as follows: Pan - 1 (a) = 

{

((À1 -1) , (À2 -1)a1 , · · ·, (Àr - 1)a•-- 1 , na,--1) 

((À2- 1)QJ+I, (À3 - 1)a2 , ... ' (À,.- 1)Q··- ], nar-1 ) otherwise. 

Note that the set 6 * is a combinatorial reformulation of the partition set F. 

Lemma 6.4.5. The action of Pan on the set partitions 6 * corresponds to the 

shift { 1} on 6 . 



Proof. We claim the following diagram commutes : 

6 * ________,._ 6 * 
P an 

This is just a reformulation of the proof we gave in Lemma 6.1.4. 
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0 

Notice t hat we can easily see that Panm.+n = id within this combinatorics since 

the or der of { 1} is o bviously rn + n on S. 

6.5 The Coxet er transformation and The Panyushev map 

In t his section, we define a map n from 1) to 6 as follows: for every D 0 E 1) , the 

map D(Do ) is just deleting the left side of the domino so that it becomes a box. 

Remark 6.5.1. When we start shift ing t he configuration D 0 in a frame Frm.+n+l , 

we come back in the same position after rn+ n + 1 times. Now, we consider the 

configuration of singletons S0 = D(Do) in a frame Frm.+n · We come back in the 

same position after rn+ n steps. The movie associated to D 0 exhibits the T-orbit 

for Pcx and the short movie associated to S0 = D(D0 ) exhibits the Pan-orbit . 

This explains why is the order of P anyushev Pan is one less than the order of 

Cox et er transformation T. 

Example 6.5.2. In Example 6.2.5 , if we apply D to t he domino configuration 

D 0 for the configuration { -4 < -2 < 0 < 1 < 3} , then we obtain the orbit of 

Panyushev for the corresponding arder ideal to (0 , 1, 1, 3, 3). 
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Figure 6.7 Movie and short movie for (0 , 1, 1, 3, 3) 

6.6 Explicit description of orbits of T and Pan for m = 2 

In this section , we will show the T-orbits and Pan-orbits for order ideals of P(2 ,n) 

explicitly. First , we recall the order ideal poset of P (2 ,n) as follows. 
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F igure 6.8 An illustration of the order ideal poset J(P(2 ,n)) 

We will first write down the orbits of T for the order ideal poset J(P(2,n))· Denote 

the simple module at a vertex (i , j) in the qui ver of J(P(2,n)) simply by (i, j). Now, 

let us look at the orbits of simples. We can write the action of T on the simples 

in t he Grothendieck group as follows: see Section 4.3. 

1. T(O , 0) = - L (i , j), 
O~i~j~n 

j-1 

2. T(O , j) = L (k, j - 1) where 1 ::; j ::; n , 
k=O 

n 

3. T(i, i) = L (i- 1, k) where 1 ::; i ::; n, 
k=i 
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4. T(i , j ) = - (i- 1, j- 1) where 0 < i < j::; n . 

We know that 

{ 

(n , n) 
Tn+ 3 (n , n) = 

-(n,n) 

if n is odd , 
(6.1 ) 

if n is even. 

For t he purpose of analyzing the combinatorics , we can ignore the sign. The orbits 

of T are shown in Figure 6.9. We number t he orbits with respect to our starting 

point and then iteration of T . Intervals are drawn as t riangles or rectangles. 

( i) (ii) (iii) 

Figure 6.9 An illustration of some orbits of T and Pan in red for J(P(2,n) ) 

The only simples which we did not consider are the (i , i) for 1 ::; i ::; n. But , we 
n 

know that T(i , i) = L (i - 1, k) and since we already analyzed the latter , we are 
k= i 

do ne. 
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Example 6.6.1. In this example, we show the movie and the short movie in blue 

for P (s ,9) in the or der ideal poset J ( P (2,9) ). 

1 

r-2 t: 0 1 2 3 4 5 6 7 8 9 1 

Cil Lil l 
1 • • • ' • • • • • • • • ••... ..... • 

Cil Cil 
1 • • • ' •• • • ••••••••• .•.••. 

Cil Cil 1 
1 . .. ' . ...... . ....... . . . . 

: Cil Cil 
1 ... ' ......... .. .. . . . . . . 

1 Cil Cil 
1 . .. ' ..•.•.•.....••• • ••• 

Cil 

1 
. . . ' .... . ... . . . . ... . . . . 1 : ~ .1 

rn rn : 

Figure 6.10 T-orbit and Pan-orbit in blue for J (P(2,9 ) ) 





CONCLUSION 

Our aim in t his thesis was to investigate t he following conj ecture by Chapoton: 

Given a root system <P , consider the distribut ive lattice J (cp+) of order 

ideals of q>+. The bounded derived category 'Db(mod J (cp +)) of the 

incidence algebra of J (cp+) is fractionally Calabi-Yau, i. e. sorne non­

zero power of the Auslander-Reiten t ranslation T equals sorne power 

of the shi ft functor . 

One can relax the conj ecture in various directions. In one direction , since the 

Auslander-Reiten translation T on t he bounded derived category 'Db(mod J ( cp+)) 

naturally defines an endomorphism on the Grothendieck group of the incidence 

algebra J (cp+) which we call Coxeter transformation , one can ask if the Coxeter 

transformation has fini te order on t he Grothendieck group for J (cp +). This is still 

a very difficult problem to solve. 

In this thesis, we investigated a version of this conjecture relaxed in two directions. 

First of all , we considered a variation of Chapoton conjecture where J (cp+) is 

replaced with t he poset of order ideals J (C) of a cominuscule poset C. Then , 

instead of working with the bounded derived category we worked on the level of 

Grothendieck group of the bounded derived category. This group happens to be 

the same as the Grothendieck group of the module category (see Theorem 3.4.3). 

Let J (Pm,n) be the poset of order ideals in the grid poset Pm,n and A be the 

incidence algebra of J (P m,n). There are two obvious choices of generators for 

the Grothendieck group K 0 (A) of A-modules: (i) The isomorphism classes of 
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simple A-modules, and (ii) the isomorphism classes of finitely generated proj ec­

tive A-modules. The action of the Coxeter transformation (the Auslander-Reiten 

translation T on K 0 (A) ) written in terms of these generators does not yield an 

easy-to-follow pat tern . However , there are other sets of generators one canuse. In 

Chapter 4, we develop such a fini te set of generators. We started wit h discussing 

the periodicity of t he Coxeter transformat ion T for the algebra A . Using sorne 

powerful combinatorial tools, we showed that T 2(m+n+ l ) = id in t his case. A key 

idea was to consider the orbits of T consist ing of elements which correspond to cer­

t ain project ive resolutions. These projective resolutions helped us to underst and 

the structures of t he orbits combinatorially. After explaining the corresponding 

combinatorics, we showed that the Coxeter transformation acts by a cyclic per­

mutation on the classes corresponding to these projective resolutions, i.e. there is 

a cyclic order of t hese generators and the Coxeter transformation sends one gen­

erator to the next . Finally, by showing that the elements corresponding to t hese 

proj ective resolutions generate the Grothendieck group , we succeed to prove our 

d aim in Chapter 4 for grid posets P m,n which come from t he first infinite family 

of cominuscule poset s. 

We ultimately would like to address Chapoton 's conj ecture in t he most general 

setting, and therefore, we need to expand the validity of our combinatorial result 

to a more general setting. So, we consider the incidence algebra of t he poset of 

order ideals J (C) of a cominuscule poset C in Chapter 5. 

Co minuscule posets are special type of su bposets of the poset of or der ideals J ( <t> + ) . 

There are three infinite families of cominuscule posets and t he two exceptional 

cases. We succeeded to extend our result to two of the t hree infinite fami lies of 

cominuscule posets , and for the exceptional cases. Moreover , we showed that in 

each case T 2(h+l) = id where h is t he relevant Coxeter number. 
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We also managed to go further and verified that t he 2(h + 1 )-th power of the 

Auslander-Reiten translation is indeed is a power of the ordinary shift functor [1] 

on the bounded derived category for t he cominuscule poset of t he third infinite 

family, i.e . D b(modJ(C 111 )) is fractionally Calabi-Yau . 

For the exceptional cases, we verified t he fini teness of t he order of t he Coxeter 

transformation with the help of a computer algebra system SageMath (Stein et al. , 

2017). 

The remaining open case is t he case of the cominuscule poset of second infinite 

family shown in Figure 5.2. We conjecture that the order is again 2(h + 1) where 

h is the relevant Coxeter number. It turns out that the combinatorics of this 

case is really different from the ot her families. The difficulty one has to overcome 

is finding a nice basis for the Grothendieck group and showing the action is by 

permutations, cyclic or otherwise, in t his remaining case too. We provided sorne 

examples and found promising tactics to attack this case below. 

7.1 The second infini te family of cominuscule posets 

In this section, we will further investigate the co minuscule poset s of type C11 , and 

we will show sorne orbits of Auslander-Reiten translation T. 

If every element in a T-orbit forms an interval over the poset , we call this orbit 

a good orbit of T. We ask the following question: Are there good or bits of T for 

J(C 11 )? We will first give sorne examples . 

Example 7.1.1. Let J(Cc4 ) be the order ideal poset of the cominuscule poset Cc4 

coming from type C4 . We show here an example of one of the good T-orbits for 

J(CcJ in Figure 7.11 . 



------------------------------
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T T T T 

T T T T T 

Figure 7.11 An example of a good orbit of T for the poset J (CcJ 

Example 7.1.2. Here is another example for J (Cc5 ) in Figure 7.12. 
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T T T 

T T T 

T T T 

Figure 7.12 An example of a good orbit of T for the poset J (Ccs) 
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Now, the question is how many good T-orbits we have for J (C11 ) . More specifically, 

we can ask the following question: For which vertices does the iteration of T gives 

rise to intervals over the poset. We will call the vertices which do not give rise to 

intervals as red vertices. 

Example 7 .1. 3. Figure 7.13 shows the red vertices for J (CcJ and J (Cc5 ) . 

(1) 

Figure 7.13 (1) for J (CcJ , (2) for J (Cc5 ) 

We observe that the number of red vertices goes as follows: 2, 10, 32, 84 . ... 

The (OEIS Foundation Inc., 2018) suggests that the formula for these numbers 

may be a(n) = 2(2n- 1- n(n + 1) / 2) . 
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7.2 The Coxeter transformation and the Panyushev map on cominuscule posets 

In t he course of constructing a combinatorial setup for our proof of the fini te­

ness of the Coxeter transformation , we observed that the orbits of the Coxeter 

transformation and the Panhusyev map are very similar. The P anyushev map is 

a combinatorial function defin ed on posets of order ideals. In Chapter 6, we show 

that there is a structural similarity between the Coxeter transform ation and the 

Panhusyev map for the grid posets, i. e. t he first infinite family of cominuscule 

posets. Now, we need to investigate the other cases. 

For t he t hircl infinite family of cominuscule posets, it is not difficult t o verify a 

similarity thanks to the simple structure of its order ideal poset . We give an 

example in the following. 

Example 7.2.1. In this example, we will look at the T-orbits and Pan orbits for 

the cominuscule poset C0 4 coming from t he t hird infinite family. 

(1 ) 
0 

(II ) 

Figure 7.14 (J) for C04 , (11) for J ( C04 ). 
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Figure 7,15 T-orbits in red and Pan-orbits in blue. 

The difficul ty with t he second infinite family of cominuscule posets is that they 

are neither as simple as the third family of cominuscule posets, nor do we have 

nice combinatorial tools such as movies and short movies we developed for the 

first infinite family of cominuscule posets . So, it becomes difficult to see the 

reason for the similarity between the orders of the Coxeter transformation and 

t he Panyushev map in this case. We conj ecture t hat for the second infinite family 

of cominuscule poset , T2(h+l) = id. Recall that Panyushev map Pan2h = id on 

order ideal poset of cominuscule posets . We expect to see a similar connection 

between T and Pan in this case as well. But , for now this still remains as an open 

problem. 
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