UNIVERSITE DU QUEBEC A MONTREAL

THE COXETER TRANSFORMATION ON COMINUSCULE POSETS

THESIS
PRESENTED
AS PARTIAL REQUIREMENT

TO THE PH.D IN MATHEMATICS

BY

EMINE YILDIRIM

MAY 2018



UNIVERSITE DU QUEBEC A MONTREAL
Service des bibliotheques

Avertissement

La diffusion de cette thése se fait dans le respect des droits de son auteur, qui a signé le
formulaire Autorisation de reproduire et de diffuser un travail de recherche de cycles
supérieurs (SDU-522 — Rév.07-2011). Cette autorisation stipule que «conformément a
larticle 11 du Réglement no 8 des études de cycles supérieurs, ['auteur] concéde a
Université du Québec a Montréal une licence non exclusive dutilisation et de
publication de la totalité ou d’'une partie importante de [son] travail de recherche pour
des fins pédagogiques et non commerciales. Plus précisément, [Fauteur] autorise
I'Université du Québec a Montréal a reproduire, diffuser, préter, distribuer ou vendre des
copies de [son] travail de recherche a des fins non commerciales sur quelque support
que ce soit, y compris FIinternet. Cette licence et cette autorisation n’entrainent pas une
renonciation de [la] part [de Fauteur] a [ses] droits moraux ni & [ses] droits de propriété
intellectuelle. Sauf entente contraire, ['auteur] conserve la liberté de diffuser et de
commercialiser ou non ce travail dont [il] posséde un exemplaire.»



UNIVERSITE DU QUEBEC A MONTREAL

LA TRANSFORMATION DE COXETER SUR LES ENSEMBLES
ORDONNES COMINUSCULES

THESE
PRESENTEE
COMME EXIGENCE PARTIELLE
DU DOCTORAT EN MATHEMATIQUES

PAR
EMINE YILDIRIM

MAI 2018






ACKNOWLEDGMENTS

I would like to thank my supervisor Hugh Thomas for his generous support and
for his careful reading of this thesis. His insight and enthusiasm guide me through
whole my program. I always admired his intuition, working with him was a great

experience.

I would like to thank Thomas Briistle, Ralf Schiffler, Franco Saliola for reading

the thesis and giving me their valuable suggestions.

I would like to thank Institut des Sciences Mathématiques (ISM) for the scholar-
ships I received throughout my program. I am grateful for my friends and men-
tors Véronique Bazier-Matte, Nathan Chapelier, Aram Dermenjian, Guillaume
Douville, Alexander Garver, Patrick Labelle, Kaveh Mousavand, Rebecca Patrias
whom I worked with in working goups at LaCIM. I learned a lot from you! My
office mates Aram Dermenjian and Kaveh Mousavand are awesome friends. I val-
ued their unlimited support, they were there everytime I needed them. I would
like to thank Aram for frequently leaving me encouraging notes around my desk

to cheer me up.

I thank my mom Hatice, my father Miihendis, my siblings Fatma, Zeynep, Elif,
Harun, and my nephew Eymen for being an amazing and supportive family. Ev-

erything becomes fantastic when I share it with them.

Finally, I would like to thank my precious Atabey for his never-ending kindness,
support, and his unconditional love. He never ceases to amaze me with his unique

point of view on life.






CONTENTS

GEROPTRIURES « : o v= o s0v roe 5os 09y o5 6B Tl V0§ =0 &8 &
RESUME . .......... e
BREDIBAUT Lo b i m = Bnd 54 o 8% K Ba a®'r BW ait waMn Bis
LSEIROIICERICI, & 5. 8 i B 3 5w lb b mG os b Go 5l fm @ - b

CHAPTER 1
PRELININERIS 5 o . . foe bow s oe vl giaie 68 6w e b o 8 b 678 5

11 Pisstsandorderidesls . . . - o . 2. cie s i vw il e b me
1.2 A quiver and representations of a quiver . . . . .. .. ... .. ...
1.3 Pathalgebras . .. ... ... ... .. ... ... ..
1.4 The indecomposable projective modules . . . . . .. ... .. ....
5 WakhyBiistuBmeHon | . . . & <> oo DG @b m as &= nd be & ad sk -
1.6 Ulonoster ansiormakibm . - . o -« o2 = - . 5w 5 28 a5 e 05 2w
1.7 Incidence algebraof aposet . .. .. ... ... ... ... .. ...,

CHAPTER 1I
DERIVEE CATIGORIES . | - o o6 s mw 5o v vt 300w a6 viw agmis 55

2.1 Category of complexes . . . . . . . . . ...l
2.2 Homotopy category . . . . . . . . .« oo
28 DMultplicotiveayetetnEy . 2'c « - i a5 cum fw b @ oh wa b oo Bte s
4 Pl TR - o ne 2elb nE Y 36 blb (H BB b 5 @ SleTe B
2.5 Exact sequences and exact functors . . . . . . ... ... oL
B0 Besolulion® . . o . o . %o T8 0 Ko me o8 @ ek mE wk B

Da7, DETIVE fUNGUOLS: (= & = & & e Ak e s e fie be 5 ok e EaAle 5

CHAPTER III
GROTHENDIECK GROUP AND THE EULER CHARACTERISTIC

Sl MRe Qefimitions: e A & & S firar S8 A A S8 me B SIE BE R A R

11
14
16
17
19

21
21
23
24
25
25
26
29

31



32 Compusiiun §8HEE = » 1o (@ 5 06 ol m sl fa ne ad 6 on S & b 32
3.3 Resolutions and the Euler characteristic . . ... ... ... ... .. 33
3.4 The Grothendieck group of a derived category . . . . . ... ... .. 35
CHAPTER IV

SNSRI o i 5 e - 7 sle 2F © BIE 995 -6 =E GBX D= 16O ;= 39
4.1 Projectiveresolutions . . . . . . . . ... ..o oL 40

4.2 Action of the Auslander-Reiten translation on the projective resolutions 44

4.3 [Intervalsin the poset J(Pyns) . . . - « o o v v vt i v i e . 45
4.4 Homologiesand intervals . . . . . . . . ... ... ... ... ... 47
4.5 Configurations and enhanced partitions . . . . . . . . ... ... ... 52
4l ThemslaTesfle . << < S 06 o .o 4 ke comb . aamen .%o .= 56
CHAPTER V

A GENERAL FRAMEWORK : COMINUSCULE POSETS ... ... .. 61
5.1 Reflection along hyperplanes . . . . . . . .. ... ... ........ 61
G2 ‘CORSYErEIoNDS « 4 & 418 04 A% 6 voba b 96 oc Aeb sa 48 & 1 6 63
Do LOMEEEHle DOSEEE o o5 o c 3 6 8 - F G E 5@ b GG E L B G o 65
54 Type A . . . . e e e e 67
00 AGHBLE 5% ' o f WAl . A n AW ik B B A mA o B B 70
Gl SETREE | ne g14 = mll b s Al 480 KiL & @ aale = AW S dlY bce BB & 70
B STDEIEY 514 ololx ot (e DD bl s DIb 6l 530 © bi6 Gt @ L G G5 Glese il §
5.8 Exceptionalcases . . . .. .. ... . ... ... .. ... ..., 77
CHAPTER VI

MOVIES AND THE PANYUSHEV MAP . . ... ... .. .. ...... 79
6.1 Configurations of dominos . . . . . . .. ... ... ... ... 80
6.2 The movie for a domino configuration. . . . . . ... ... ...... 86
Gha ke PERyiehevInih: e 4 4lh 4 s = alh 6 & A1k s s din = B4 ale bk 90
6.4 The short movie for the orbit of the Panyushevmap . ... ... .. 92

6.5 The Coxeter transformation and The Panyushevmap . . . . . . . .. 95



vi

6.6 Explicit description of orbits of 7 and Pan form=2 . .. ... ... 96
L) L e e e e o et b o e s e 5 101
7.1 The second infinite family of cominuscule posets . . . . . .. ... .. 103

7.2 The Coxeter transformation and the Panyushev map on cominuscule
PR ¢ 35 4w = 136 e 8 306 1= PIB© a6 N6 = - O 80w w @ - g 107

BIBLIOGRAPHY . . . . . e 109






Figure
k1

|[h
4.1
4.2
5.1
5.2
5.3

5.4

5.5

5.6

5.7
5.8
6.1
6.2
6.3

6.4

LIST OF FIGURES

Page
The Hasse diagrams of the grid poset P, 3 and the poset of order
ideals J(Pg,a). ............................. i
The Hasse diagram of the poset of order ideals J(P33). . . . . .. 8
An illustration of the function f(a) . . . . .. .. ... ... ... 48
An illustration of the function g{e) . . . . . . . .o 0oL 50
RGOS Bl AL o5 « wd B . Dm e pE ol w ae b s b B e Sk 63
Cominuscule posets of type I, IIL I . . . ... .. ... ... ... 66
The root poset of A, and the cominuscule poset C; over the simple
TOOL Tk rimll wid e A SiE M A Adnr B e A BvA mam ke e b A 68
The root poset of C,, and the cominuscule poset Cj over the simple
EOOL- g sl 518 e & 5B S pad i@ EbE o b tLEE D8 A E Lol 71
The cominuscule poset Cy and the order ideal poset J(Cyy) for the
simple root o in the root system for D,,. . . . . .. .. ... ... T2
An illustration of the module category of D5, and the tilting module
W & me Bins NA BE o B BE AT Bd mnE 34 65 T80l A A e 76
The derived equivalent posets . . . . . ... ... ... ... ... i
The cominuscule poset Cg, and the cominuscule poset Cg, . ... 77
An illustration of a domino configuration. . . ... .. ... ... 80
An illustration of a marked light domino configuration .. .. .. 82
A domino configuration (I) and the corresponding marked light
domino configuration (II) . . . . .. ... ... ... ........ 84

The corresponding movie for & = (|1,1,2,3,3[). .. ........ 89



6.5
6.6

6.7
6.8
¢:9
6.10
Tl
7.12
7.13
| 7.14
7.15

viii

An orbit of Panyushevmap Pan . . . . . .. .. ... ... .... 91
The orbit of {—4,—2,0,1,3} under the shift {1} and the corre-

sponding short movie. . . . . ... ... .. .. ... .. ..., 94
Movie and short movie for (0,1,1,3,3) . ... ... ........ 96
An illustration of the order ideal poset J(Pany) . . . . ... ... 97
An illustration of some orbits of 7 and Pan in red for J(P2,)) .. 98
7-orbit and Pan-orbit in blue for J(Pag) . . . . . . . ... .. .. 99
An example of a good orbit of 7 for the poset J(C¢,) . . .. . .. 104
An example of a good orbit of 7 for the poset J(C¢,) . . . . . .. 105
ClRiEn G ) () r=lCe] 12 ¢ kit 88 oBle us Bld & 718 48 modle 106
e Eh s (o lor G I % = 50 Ue alaie &lb ais & nia d% 20 107
7-orbits in red and Pan-orbitsin blue. . . . . ... ... ... .. 108



RESUME

Soit J(C) ’ensemble ordonné de parties commengantes dans un ensemble ordonné
cominuscule C, ou C est membre de deux des trois familles infinies d’ensembles or-
donnés cominuscules, ou est un des deux ensembles cominuscules exceptionels.
Nous démontrons que la translation de Auslander-Reiten 7 sur le groupe de
Grothendieck de la catégorie dérivée bornée pour 1’algébre d’incidence de I’ensemble
ordonné J(C), qui s’appelle la transformation de Coxeter dans ce cas, a un ordre
fini. Spécifiquement, nous démontrons que 7+t1) = +4d ot h est le nombre de
Coxeter pour le systéme de racines pertinent. Ecrivant Pan pour l'application
de Panyushev, c’est connu que Pan® = id sur un ensemble ordonné cominus-
cule (Rush & Shi, 2013). Nous étudions aussi la relation entre la transformation
de Coxeter et ’application de Panyushev.

Mots clés: Théorie des représentations, algébre d’incidence, la transformation
de Coxeter, la translation de Auslander-Reiten, ensemble ordonné cominuscule.






ABSTRACT

Let J(C) be the poset of order ideals of a cominuscule poset C where C comes from
two of the three infinite families of cominuscule posets or the exceptional cases.
We show that the Auslander-Reiten translation 7 on the Grothendieck group of
the bounded derived category for the incidence algebra of the poset J(C), which
is called the Cozeter transformation in this context, has finite order. Specifically,
we show that 7(#*1) = +4d where h is the Coxeter number for the relevant root
system. Let Pan denote the Panyushev map. It is known that Pan® = id on
cominuscule posets (Rush & Shi, 2013). We also investigate the relation between
Coxeter transformation and Panyushev map.

Keywords: Representation theory, incidence algebra, Coxeter transformation,
Auslander-Reiten translation, cominuscule poset.






INTRODUCTION

Let A be the incidence algebra of a poset P over a base field k. If the poset P is
finite, then A is a finite dimensional algebra with finite global dimension. We are
interested in incidence algebras coming from cominuscule posets. A cominuscule
poset can be thought of as a parabolic analogue of the poset of positive roots of
a finite root system. Cominuscule posets (also called minuscule posets) appear
in the study of representation theory and algebraic geometry, especially in Lie

theory and Schubert calculus (Billey & Lakshmibai, 2000), (Green, 2013).

Let J(C) be the poset of order ideals of a given cominuscule poset C. The poset
J(C) is an interesting object in its own right. For instance, there is a corre-
spondence between the elements of J(C) and the minimal coset representatives of
the corresponding Weyl group (Billey & Lakshmibai, 2000), (Rush & Shi, 2013).
Many combinatorial properties of order ideals of cominuscule posets are explained
in (Thomas & Yong, 2009). However, our main motivation for this thesis comes

from a conjecture by Chapoton which can be stated as follows.

Let J(®*) be the poset of order ideals of ®* where @ is the poset of positive roots
of a finite root system ®. Let H be a hereditary algebra of type ® and let 7 be the
poset of torsion classes. Consider the incidence algebras of J(®*) and 7. Chapo-
ton conjectures that there is a triangulated equivalence between the bounded de-
rived categories D*(mod J(®*)) and D?(mod Ty ) and that D?(mod J(®1)) is frac-
tionally Calabi-Yau, i.e. some non-zero power of the Auslander-Reiten translation

7 equals some power of the shift functor.

In (Chapoton, 2007), Chapoton proved that the Auslander-Reiten translation



7 on the Grothendieck group of the bounded derived category (which is called
Cozeter transformation in this context) for Tamari posets is periodic. There is
an abundance of studies on Coxeter transformation in the literature. We refer
to Ladkani (Ladkani, 2008) for references on the topic and recent results on the
periodicity of Coxeter transformation. Kussin, Lenzing, Meltzer (Kussin et al.,
2013) showed that the bounded derived category is fractionally Calabi-Yau for
certain posets by using singularity theory. Recently, Diveris, Purin, Webb (Diveris
et al., 2017) introduced a new method to determine whether the bounded derived

category of a poset is fractionally Calabi-Yau.

In this thesis, we consider Chapoton’s Conjecture on the level of Grothendieck
groups for cominuscule posets instead of root posets. We calculate the action of
Auslander-Reiten translation 7 on the bounded derived category D°(mod J(C))
of the incidence algebra of the poset J(C) of order ideals of a cominuscule poset
C, and then we write the action on the Grothendieck group. We show that the
Auslander-Reiten translation 7 acting on the corresponding Grothendieck group
has finite order for two of the three infinite families of cominuscule posets, and
for the exceptional cases. One can do this by considering the action of 7 on any
convenient set of generators. The obvious choices are the set of the isomorphism
classes of simple modules, and the set of the isomorphism classes of projective
modules. However, the periodicity of 7 is not evident on these sets of generators.
Instead, we consider a special spanning set of the Grothendieck group on which

we see the periodicity combinatorially.

The plan of the thesis is as follows. In the first chapter, we give necessary back-
ground material we use throughout the thesis. In the second chapter, we give a
short survey on derived categories, and we prove certain results which are impor-
tant in our study. In the third chapter, we give the definition of the Grothendieck

group in our setting. We explain the machinery of the Grothendieck group which



we will apply in our study. In the fourth chapter, we introduce a special collection
of projective resolutions for grid posets which are the first infinite family of comi-
nuscule posets coming from the type A. Then, we also show the corresponding
combinatorics for the homology of these projective resolutions. These projective
resolutions provide a spanning set for the Grothendieck group, and in the same
section we show that the Coxeter transformation 7 permutes this collection. In
the fifth section, we study the generalization of our main results for cominuscule
posets. The sixth chapter is devoted to developing certain combinatorial tools
and using them to show a connection between Coxeter transformation and the
Panyushev map. Finally, in the conclusion, we further discuss the second infinite
family of cominuscule posets with some examples. We also give a brief discussion

about the Panyushev map in this context.






CHAPTER 1

PRELIMINARIES

In this preliminary section, we will recall basic definitions to fix notation in the

thesis.

ik Posets and order ideals

A partially ordered set P is a set together with a binary relation < which is
reflexive, antisymmetric, and transitive. Any partially ordered set P is going to
be called a poset throughout this thesis. Two elements a, b are comparable in P
if a < bor b < a, otherwise we say they are incomparable. We say b covers a in
P if @ < b and there is no element ¢ such that a < ¢ < b. An interval [a,}] in P
consists of all elements z such that a < x < b. A poset P is called locally finite
when every interval in P is finite. When P is locally finite, we will represent it
by its Hasse diagram, i.e. we represent every element in the poset P by a vertex
and we put an edge between two vertices if one covers the other one. We use the
convention that the arrows in the Hasse diagram go downwards in the poset even

though we simply draw edges in the figures.



A chain is a subset of P in which every pair of elements is comparable. An antichain

is a subset of P such that every pair of different elements is incomparable.

Definition 1.1.1. A grid poset Pp, , is the product of two chains of length m and
of length n. Explicitly, the elements of Py, , are the pairs (7, j) withz € {1,--- ,m}
and j € {1,---,n}. We compare elements entry-wise in Pp,,, i.e. (a,b) < (¢, d)

when a < cand b < d.

A lattice L is a poset such that every pair of elements in L has a unique least
upper bound, also called the join, and a unique greatest lower bound, also called
the meet. A lattice is distributive if the join and meet operations distribute over

each other.

Definition 1.1.2. An order ideal of a poset P is a subset | C P such that if b € |
and a < b, then a € |. We write J(P) for the set of all order ideals of P.

Note that J(P) is always a distributive lattice. Recall that the fundamental the-
orem for finite distributive lattices states that if L is a finite distributive lattice,

then there is a unique finite poset P such that L = J(P) (Stanley, 2012).

Definition 1.1.3. A non-decreasing finite sequence of positive integers (ay, - - . , @m)
is called a partition. We are going to represent such sequences by o = (A{*, - -+ , A2)
where 0 < \; < --- < A\, < n denote the distinct integers in the partition o while

a;’s denote the number of repetitions of each A;.

For each k € {1,...,m}, by the k-th row of P,,, we mean elements of the form
(k,b) in Py, .. We represent an order ideal | in J(Py, ) by its corresponding parti-

tion, i.e. the list of the number of elements of | in each row from top to bottom.

Example 1.1.4. Here is an example of a grid poset and its poset of order ideals

with the corresponding partitions:



Figure 1.1 The Hasse diagrams of the grid poset P,3 and the poset of order
ideals J(P2,3).

For instance, take the order ideal | represented by the partition (2,3) in J(P,3).
The order ideal | consists of two rows: there are two elements in the first row, and

we have three elements in the second row.

Example 1.1.5. This example shows the poset of order ideals in P33. We draw

some of the edges with dotted lines for the sake of presentation.



<§;>@33)

(2,2,2)

R

3

~~
3’
2,
—i
—

\I/

7

\\/QLLM

A
Pt \4

ESReSBF

m ,V\ /o _
mv\ A& \> NS =
.& N & /<\ \g

03&”

Figure 1.2 The Hasse diagram of the poset of order ideals J(P3 3).



1.2 A quiver and representations of a quiver

A guiver consists of four pieces of information (Qy, @1,s,t): Qo is the set of
vertices, ), is the set of arrows between vertices, and s, £ : @1 — Qo are two
maps on the arrows where s sends an arrow to its starting vertex, call it source

and t sends an arrow to its ending vertex, call it target.

A quiver is said to be finite if Qo and ¢, are finite sets. Two arrows a and 3 are
composable if t(a) = s(B), and we write the composition as concatenation of a
and 3, a8. A path in Q is a sequence of composable arrows. A path of length
greater than or equal to one is called a cycle if its source and target coincide. A
cycle of length one is called a loop. A quiver is acyclic if it contains no cycles. For
every vertex v in (o, we define the lazy path at v to be the path of length 0 at
a vertex v. Let k be a ground field. A relation in @ is a k-linear combination of

path of length at least two, with the same source and the target.

All vector spaces we mention are over k. A quiver representation M = (V;, f,) is a
collection of vector spaces V; for each vertex i € Qo and linear maps f, : V; = Vj
for every arrow a : 1 — j € (3. If each vector space V; is finite-dimensional, then
M is called finite-dimensional. In this case, we define the dimension vector of M
as dim(M) = (dim V;);eq, where dim V; denotes the dimension of the vector space

at vertex i € Qo.

Let M = (V,, f,) and N = (W,,g,) be two representations of a quiver Q. We
define a morphism of representations ¢ : M — N as a collection of linear maps

(¢i)icq, such that for every arrow a € Q; the following diagram commutes:

Vi
¢il 143.1'
Wi TWJ‘
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We define Rep(Q@) to be the category of k-linear representations of @ and their
morphisms and rep(Q) as the full subcategory of Rep(Q) consisting of finite di-

mensional representations. Both Rep(Q) and rep(Q) are abelian categories.

A quiver representation M is said to be indecomposable if M is nonzero and
M has no direct sum decomposition M = N @ L, where L and N are nonzero

representations of the quiver.

We recall here a fundamental result, the Krull-Schmidt theorem, in representation

theory.

Theorem 1.2.1. (Etingof et al., 2011, Theorem 2.19) Any finite dimensional
representation can be uniquely decomposed into a direct sum of indecomposable

representations up to an isomorphism and order of summands.

Example 1.2.2. (Etingof et al., 2011) Let us now discuss the indecomposable

representations of the A; quiver with the following orientation.

A3: *e—> 00—

A representation of this quiver looks like

VlflvzfzvEi

In total, for A3 quiver, we have six indecomposable representations as listed below:

k—>0—>0, 0—0—k,
k—k—>0, k—>k—k,

0—k—0, 0—k—k.



1]

Example 1.2.3. Let Q be the quiver e <—— e —— e and X and Y be the repre-
sentations; k<—k ——>k and k<-—k —>>0. Let us show that Hom(X,Y)

is the one-dimensional and Hom(Y, X) = 0.

)\v )\ 0
Y A
k<—k—250

The only morphisms are as shown. This shows that Hom(X,Y) =k

k—k——0

Al i 0
R B
k<~—-5k—k

The only values for A and g which make the diagram commute are A = p = 0.

From this, we can easily see that Hom(Y, X) = 0.
1.3 Path algebras

Let P(Q) be the set of all paths over a quiver Q. We define the path algebra of the
quiver Q as A = k@ := spany(P(Q)) with a k-linear multiplication u: AxA — A

as follows

pqg  if s(q) = t(p)
wp,q) =
0 otherwise

where p, ¢ € P(Q). This multiplication is unital (unit being the sum of lazy

paths) if Qy is finite, and it is associative.

Lemma 1.3.1. (Assem et al., 2006) The path algebra A = kQ is finite dimen-

sional if and only if Q is finite and acyclic.
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Assume that A is a finite dimensional k-algebra. An element e € A is called an
idempotent if 2 = e. A finite list of idempotents {e;, - , e, } is called a complete

set of primitive pairwise orthogonal idempotents if

B
1. ef = e,

B

€i€; =Olf17é],
3. e; cannot be written as a sum of two nontrivial orthogonal idempotents,

4. 1A = 2?21 €;.

The algebra A is called basic if e;A % e;A for all 4 # j. For instance, the path
algebra k(@ satisfies these conditions; e;’s are the vertices, in other words paths of

lenght zero.

Let J be the two-sided ideal of the path algebra A = k@ generated by the arrows
of Q. A two-sided ideal I of A = k@ is called admissible if there exists m > 2
such that J™ C I C J? where J?, 2 < i < m is the two-sided ideal generated by

paths of length greater or equal to .
Example 1.3.2. Let the quiver @ be defined as
e — f
1
g s h
In this case, the set of paths is P(Q) ={e, f, 9, h, 2, v, 2,1, zy, 2t}. Some examples

of admissible ideals are spank{zy}, spank{2t}, spank{zy, 2t}, spanx{zy—=zt}. The

vector space spanx{z, Ty, zt} is an example of a non-admissible ideal.

We recall the following results:
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Proposition 1.3.3. (Assem et al., 2006) Let Q be a finite quiver with admissible
ideal I in k@, then kQ/I is finite dimensional.

Let (Q, R) be the quiver with a set of relations R which consists of some linear
combination of paths of at least length two, with the same source and the target.
We call (Q, R) a bound quiver. Let rep(Q, R) be the full subcategory of rep(Q)

consisting of the representations of () bound by the relations in R.

Theorem 1.3.4. (Assem et al., 2006) Let Q be a finite connected quiver and
I be an admissible ideal of kQ). There is an equivalence between the category
mod A of right modules over the algebra A =kQ/I and the category rep(Q, I) of

representations of a quiver QQ bound by I.

The equivalence of these categories is given by the following functors:

F:modA — rep(Q,I) and G : rep(Q,I) — mod A

For a module M € mod A, F(M) = (V;, fa)icQoacq. Where V; = Me; which is
the vector space consisting of all ve; for all v € M and f, : V; — V; is defined as
follows: for every arrow a:i — j

va if s(a) =1

fa(ve;) = v(eza) =

0 otherwise.
For every map ¢ : M — M’ in mod A, F(¢) is the morphism defined as ¢; : M; —
M for the vertex ¢ which sends ve; — ¢(v)e;.

For a quiver representation V' = (V, fa)icgo,ae@is G(V) = M where M = @, Vi
with the action of A is defined as follows: for v = (vi)ieg, € M, and s =



14

> d.c+ I € A where ¢ runs over all paths in Q, vs = Y d.f.(v) where f.(v) =
0,---,0, fe(vs(e)), 0, - - - ,0) with the only nonzero entry in #(c).

For every map ¥ = (¥i)icq, : Vi fa) = (V/, 1), G(¥) : V — V' defined by
G(f)(m) = (¥i(v1) )ieqo-

14 The indecomposable projective modules

We first recall the following.

Definition 1.4.1. An A-module X is called decomposable if it can be written as
a direct sum of two non-trivial A-modules as X =Y @ Z. Otherwise, it is called
indecomposable. A module X is called simple if it has no non-trivial submodules.
Note that each simple module is indecomposable, but the converse need not be

true.

Let ¢ be a vertex of the quiver (). We define P; to be the indecomposable projective
module at the vertex 7 which is spanned by the set of all paths starting at 7. Let
us use z;>; to denote the unique path that starts at vertex i and ends at vertex
j. Then, the morphisms between two indecomposable projective modules P; and
P; are

HOIIIA(R, R,) = HOII]A(xiZiA, ijjA) = szjAziZi

By definition, P; is a subspace of k). But, it is also a submodule, and there-
fore, it is a right ideal. We also have a decomposition of k@ as a direct sum of
indecomposable modules as

kQ =D P = PDekQ

i€V icV

Let A =kQ/I be a quotient of a quiver algebra with k@ an admissible ideal I. If

the algebra A is finite dimensional, the algebra A viewed as a right module over
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itself, then it admits a direct sum decomposition
A=P®---®PF,

where P, = e;A are projective indecomposable modules which are also ideals
and the e;’s are a set of primitive pairwise orthogonal idempotents of A such that

1=73"",e;. Thisisadecomposition of A as a sum of indecomposable summands.

Example 1.4.2. Let @ be the quiver depicted as follows:
.1 — > @y —> .3

Then the indecomposable projective modules are

P:k—k—k

P:0—k—>k

B:0—0—k
Example 1.4.3. Let @ be the quiver depicted as follows:

o S
) . %0 3

Then the indecomposable projective modules are
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We define I; to be the indecomposable injective module at the vertex ¢ which is
spanned by the set of all paths ending at i. The simple module S; at vertex i is
spanned by the lazy path at i. For a more detailed description of indecomposable
projective, injective and simple modules over a quotient of a path algebra, see

(Assem et al., 2006), (Schiffler, 2014).

L5 Nakayama functor

Let A =k@Q/I be a quotient of a quiver algebra k@ with an admissible ideal I.

Definition 1.5.1. The endofunctor v = DHom4(—, A) on mod A is called the
Nakayama functor where D = Homyg(—,k) is a duality between left and right

A-modules.

Lemma 1.5.2. The Nakayama functor v is right ezact and is functorially iso-

morphic to — ® 4 DA.

Proof. The functor D is contravariant exact, and Homu4(—, A) is a contravari-
ant left exact functor. So, their composition v is right exact. The isomorphism

between v and — ®4 DA is given by the following map.
¢: X ®4 DA — DHomy(X, A)

with z® f— (¥ — f(¥(z))) where z € X, f € DA, and ¢ € Homu4(X,A). O

Let proj A be the full subcategory of mod A whose objects are the projective
modules and inj A be the full subcategory of mod A whose objects are the injective

modules.

Lemma 1.5.3. The Nakayama functor v induces an equivalence between proj A
and inj A. The quasi-inverse of this equivalence is v=! = Homu(DA, —) from

inj A to proj A.
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Proof. Let P, be the indecomposable projective module e, A where e, is the
idempotent at vertex z. Then, we have vP, = DHomy(eyA, A) = D(Ae;) =
I, where I is the injective module at vertex z. Similarly, we can show that

Hom,(DA, I,) = Hom4 (DA, D(Ae;)) = Homaor(Ae,, A) 2 e, A = P,. O

1.6 Coxeter transformation

Definition 1.6.1. Let A be a basic finite dimensional algebra with a complete
set {e), ey, ,e,} of primitive orthogonal idempotents. The Cartan matriz Cx

of A is the n X n matrix

C1p G2 *°° Cin
C21 C2 ' Can
Ca= . . . = Mn(Z)
Cn,l Cn2 " Cnn
where c;; = dimy e;Ae;, for i,5=1,--- ,n.

Example 1.6.2. Let @ be the same quiver as in 1.3.2. We consider the path
algebra A = kQ/I where I is the ideal generated by the relation < zy — 2t >.

Then, the Cartan matrix is

(SO

1 1,800
Ca=

L Okl

1 S |

The following lemma states that since we have the isomorphisms
eyAe, = Homy(P;, P,) = Homy(1z, 1)

the Cartan matrix C4 records the number of linearly independent homomorphisms
between the indecomposable projective modules and the number of linearly inde-

pendent homomorphisms between the indecomposable injective modules.
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Lemma 1.6.3. We have the following properties for the Cartan matriz Cu;

1. The i-th column of C, 1s the dimension vector dim P; of the indecomposable

projective F;,

2. The i-th row of C, is the transpose of the dimension vector dim I; of the

indecomposable projective I;.

Definition 1.6.4. The Cozeter matriz of A is defined as &4 = —C4C;"'. The cor-
responding linear transformation ®4: Z"™ — Z™ defined by matrix multiplication

®4(z) = D4z for all z € Z™ is called the Cozeter transformation.

Notice that since dimension vectors are elements of Z™, we can apply the Coxeter

transformation on dimension vectors.

Example 1.6.5. We continue with Example 1.6.2. In this case, the Coxeter

matrix is the following

0 00 -1
gl gk L ==l
I B ¢ B
-111 -1

Lemma 1.6.6. &, dim P, = —dim ;.
Proof. Let dim S; be the dimension vector of the simple module at vertex i. So,
we have the following by Lemma 1.6.3
$,4dim P, = —~C4C; ' dim P, = —C% dim S; = —dim I;
O

Observe that we have ® 4 dim P, = — dim v P; for every projective module P, since

I/}).,; = I-,;.
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1.7 Incidence algebra of a poset

For a given locally finite poset P, we define the incidence algebra of P as the path
algebra of the Hasse diagram of P modulo the relation that any two paths are
equal if their starting and ending points are the same. Recall that we draw edges

in the Hasse diagram oriented downwards.

Throughout this thesis, let .A be the incidence algebra of J(P, ). The algebra A
has finite global dimension since we do not have any oriented cycles in the quiver
of J(Pm,n). Let mod A be the category of finitely generated right modules over A.
Let P, be an indecomposable projective module over the algebra A for a vertex
a in J(Pmn) and denote z,>4 the unique path that starts at vertex a and ends at

vertex 8. Such elements in P, form a k-basis for P,.






CHAPTER II

DERIVED CATEGORIES

Our treatment of the subject follows Krause’s Chicago Lectures on derived cate-
gories (Krause, 2007). Let k be a ground field, and let A be a finite dimensional
unital algebra over k. We will use mod A to denote the category of finite dimen-

sional right A-modules.

21 Category of complexes

Throughout this thesis, we will use the cohomological convention for complexes:
all differentials increase the degree by one and we use superscripts to denote the

degree at which the module is placed in the complex.

Definition 2.1.1. A chain complex C over an algebra A is defined as a diagram

of A-modules and morphisms of A-modules
T ot e o U
such that d,,d, = 0 for all n € Z.
Definition 2.1.2. The n-th homology H"(C) of a complex C is defined as follows:
H™(C) = Kerd,/Imd,

A complex C is called acyclic if H*(C) is the trivial A-module 0 for every n € Z.
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Definition 2.1.3. A chain map between two complexes C' and D is a sequence

of maps f = (f*: C™ = D™),¢z such that the following diagram commutes:

i LB om G il

f'n—l l f‘n l f'n+1 l

'-——>Dn_1—>Dn-—d>Dn+1—>---
-1 n

The k-vector space of chain maps between two complexes C and D is denoted
by Hom(C, D), and the category of chain complexes of A-modules is denoted by
Ch(A).

Definition 2.1.4. A complex C in Ch(A) is called bounded below if there is an
index N € Z such that C, = 0 for every n < N. Similarly, C is called bounded
above if there is an N € Z such that C,, = 0 for every n > N. Finally, a complex C
is called bounded if it is both bounded below and bounded above. The subcategory
of bounded above complexes is denoted by Ch_(A), the subcategory of bounded
below complexes is denoted by Ch,(A), and finally the subcategory of bounded
complexes is denoted by Chy(A).

Proposition 2.1.5. The n-th homology is a functor of the form H": Ch(A) —
mod A.

Proof. Assume (C,d°) and (D, dP) are complexes in Ch(A), and let f: C — D

be a map of complexes. By definition,
f"(Ker(dS)) C Ker(d®) and  f"(Im(d%)) C Im(d?)

for every n € Z. Then there is a well-defined map H™(f): H*(C) — H™(D). The
fact that H™(id¢) is the identity map, and that H*(gf) = H"(g)H"(f) for a pair
of composable map of complexes, f € Hom(C, D) and g € Hom(D, E), and for

every n € Z follows from the definitions. O
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22 Homotopy category

Definition 2.2.1. We say a chain map f : C — D is null-homotopic if there is a

sequence of maps h = (h, : C® — D™ !) such that for the following diagram

1 o O o1

e

....—)Dn_1—>Dn—>Dn+l—>...

dn—1 dn

we have f* = d,_h™ + h"*ld, for all n € Z. If we have two chain maps f, g,
then we say f is homotopic to g if f — g is null-homotopic. The chain map A is

called a homotopy.

Definition 2.2.2. A collection of chain maps Z in the category Ch(A) is called a
right ideal if for every morphism f € Hom(C, D) in Ch(A) and every morphism
g € Hom(D, E) N T the composition gf is also in Z. Left ideals and two sided

ideals are defined similarly.

Lemma 2.2.3. Let Z be a two sided ideal of Ch(A). The quotient category
Ch(A)/Z which shares the same set of objects with morphisms are defined as

quotients

Hom(C, D)/Z(C, D)

is a k-linear category.

Proof. The fact that each Hom object for the quotient is a k-vector space and
compositions are k-bilinear is obvious. The fact that the compositions are well-

defined follows from the fact that Z is a two sided ideal. O

Proposition 2.2.4. The subcategory Null(A) of null homotopic maps is a two
sided ideal in Ch(A). The quotient category Ch(A)/Null(A) is called the homo-
topy category of chain complexes of A-modules, and is denoted by K(A).
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The corresponding subcategories of bounded above, bounded below and bounded

complexes are denoted by K~(A), K*(A), and K°(A), respectively.

23 Multiplicative systems
Definition 2.3.1. A subcategory S of K(A) is called a a multiplicative system if

(i) For every s € S(C,D) and f € Homga)(C,C"), there are morphisms
s’ € S(C',D') and f' € Homga)(D, D') such that the following diagram

1s commutative:

(ii) For every s € S(C,D) and g € Homga) (D', D), there are morphisms
s’ € S(C',D') and ¢’ € Homg(4)(C’,C) such that the following diagram
is commutative:

C——D

4 b

C’/ D/

8§
(iii) For every s,t € S(C, D), there is a f € Homga)(D, D’) with fs = ft if and
only if there is a g € Homg4)(C’, C) such that sg = tg.

Theorem 2.3.2. (Gabriel & Zisman, 1967) Assume S is a multiplicative system
in K(A). Then, there is a category S~'K(A) in which morphisms of S are all

invertible.
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24 Derived category

Definition 2.4.1. A map of complexes f is a quasi-isomorphism if f induces
isomorphisms in all homology groups, i.e. H*(f): H*(C) — H™(D) is an isomor-

phism for every n € Z.

Proposition 2.4.2. (Krause, 2007, Sect. 8.1) The subcategory of quasi-isomorphisms
Q(A) of K(A) forms a multiplicative system. The resulting localization Q(A) 1K (A)
is called the (unbounded) derived category of A-modules, and is denoted by D(A).

The corresponding derived subcategories of bounded above, bounded below and

bounded complexes are denoted by D~(A), D*(A), and Db(A), respectively.

2.5 Exact sequences and exact functors

Definition 2.5.1. A composable pair of morphisms of A-modules X Ly & gis
called an ezact sequence if Ker(g) = Im(f). Note that for such an exact sequence
X = 0 if and only if g is injective, and Z = 0 if and only if f is surjective.
Similarly,

0-XLy—o

is an exact sequence if and only if f is an isomorphism.

A composable pair of morphisms of A-modules of the form 0 —» X Lvshg sy

is called a short exzact sequence if it is exact and f is injective, g is surjective.

With this definition in hand, we see that a complex C is acyclic when C viewed

as a sequence of morphisms

e S o ey SEEG

is a long exact sequence, i.e. Im(d,) = Ker(d,41) for every n € Z.
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Definition 2.5.2. Assume F': mod A — mod B is a functor. Then F' is called
right ezact if every short exact sequence of A-modules 0 —+ X Ly%zs0is

mapped to an exact sequence of the form

F) A, () 22, 5 0,

and similarly, F' is called left exact if we have an exact sequence
0= F(X) 29 riy) 29 p2).
Such a functor is called ezact if it is both left and right exact.

Example 2.5.3. Assume M is a left A-module and a right B-module such that
(a-m)-b=a-(m-b)

for every m € M, a € A and b € B. The functor F: mod A — mod B from
the category of right A-modules to the category of right B-modules defined on
the objects as FI(X) = X ®4 M is right exact. On the other hand, G(X) =
Hom 4 (X, M) defines a left exact contravariant functor from the category of left

A-modules to the category of right B-modules.

2.6 Resolutions

We start recalling some definitions.

Definition 2.6.1. An A-module P is called projective if for every epimorphism
of A-modules h: X — Y, every morphism of A-modules f: P — Y lifts to a

morphism g: P — X such that the following diagram commutes:

F
g lf
y 2
X—Y—0
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Similarly, we call an A-module F injective if for every monomorphism of A-
modules h: Y — X, every morphism of A-modules f: Y — F lifts to a morphism

g: X — E such that the following diagram commutes:

E'.. [
fT <0

0—>Y—h>X

Definition 2.6.2. For a module M from mod A, by the stalk complex of M we

mean the complex which consists of just M at one degree and 0 everywhere else.

Definition 2.6.3. For a module M from mod A, by a resolution of M we mean a
complex X = (X*);cz where X* =0 for all ¢ > 0 or for all ¢ < 0 with the property
that the homology H®(X) is M while H*(X) is zero for all n # 0.

If X is bounded from above and each X* is projective, then X is called a projective
resolution. Similarly, if X is bounded from below and each X* is injective, then

X is called an injective resolution.

Notice that if X is a projective resolution of a module X, then the natural surjec-
tion X — X of complexes is a quasi-isomorphism. Similarly, if £ is an injective

resolution of X, then the natural injection X — £ is also a quasi-isomorphism.

Lemma 2.6.4. Assume f: X — Y is a morphism of A-modules. Assume X 1is a
projective (respectively, injective) resolution of X, and Y is a projective (respec-
tively, injective) resolution of Y. Then there is a unigque (up to a homotopy) chain

map of complezes of the form f*: X — Y such that H°(f*) = f.

Proof. We give the proof below for the projective case only. The proof for the
injective case is similar, and we omit it. Since X is a resolution of X and Y

is a resolution of Y, there are epimorphisms of A-modules px: X°® — X and
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py: Y? = Y. Then there is a commutative square

XOI’_X>X

g0 lf
Y

YU

PY

Here f° lifts the morphism f o px. Since the square above is commutative, f°
restricts to a morphism of the form f°: Ker(px) — Ker(py). Since both X and
Y are resolutions, we must have Ker(px) = Im(d_,) and Ker(py) = Im(d_,). So,

we now have

where this time f~! lifts the composition f°d_,. Now, we proceed by induction to
get the chain map f*. As for our second claim, assume we have two lifts f* and
g* for the same morphism of A-modules f: X — Y. Then, we get a commutative

diagram of the form

Px X

where
1. thelift X% — Im(d™!) exists because Im(d~!) = Ker(py) and pyo(f®—g¢°) =
0,

2. the lift A%: X® — Y ! exists because X is projective and Y1 — Im(d?)

is an epimorphism,
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3. and we have d"1h° = f0 — g0

Note that we do not necessarily have h°d~! = f~1 — g7, but we have
d—l(f—l o g—l = hOd—l) - d—lf—l o d—lg—l — d—lhOd—l =0

Thus, we get a lift of f~! — g7 — A%d~1: X1 — Y! first to X! — Im(d~?)
then to A™1: X! — Y2 that satisfies

d—2h—1 =i f—l _ g-l = hOd—l
Proceeding by induction, we get maps h*: X* — Y*~! such that
dz'—lhi AR fi = gi — hi—ldi

for every i € N which gives us the desired null homotopy. 1

2.7 Derived functors

Definition 2.7.1. Assume F': mod A — mod B is a right exact functor. For every
p € N we define the left derived functor LPF: mod A — mod B as IPF(X) :=
HP(F(X)) where X is any projective resolution of X. Note that LPF is well-
defined because of Lemma 2.6.4, and that L°F = F since F is right exact.

Example 2.7.2. Recall that for a A-B-bimodule M, the functor _® 4 M defines
a right exact covariant functor from the category of right A-modules to the cat-
egory of right B-modules. The left derived functors of _ ®4 M are denoted by
Tor2(_, M).

Definition 2.7.3. Assume G: mod A — mod B is a left exact functor. For every
p € N we define the right derived functor RPG: mod A — mod B as RPG(X) :=
H?(G(X)) where X is any injective resolution of X. Note that, again, RPG is
well-defined because of Lemma 2.6.4, and that R°G = G since G is left exact.
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Example 2.7.4. Recall that for an A-B-bimodule M, the functor Hom,(_, M)
defines a left exact contravariant functor from the category of left A-modules to
the category of right B-modules. The right derived functors of Hom(_, M) are
denoted by Ext}(_, M).



CHAPTER III

GROTHENDIECK GROUP AND THE EULER CHARACTERISTIC

Throughout this chapter, we assume A and B are finite dimensional k-algebras,
and we use mod A and mod B to denote the categories of finite dimensional right

A and B-modules. We also assume C is a subcategory of mod A.

3.1 The definition

Definition 3.1.1. The Grothendieck group Ko(C) of C is defined to be the abelian

group generated by isomorphism classes of objects in C divided by the relation
[X] — [Y] + [Z] for every short exact sequence 0 » X - Y - Z 5 0in C.

Theorem 3.1.2. Assume F: mod A — mod B is an ezact functor. Then F in-

duces a map of Grothendieck groups of the form Ko(F): Ko(mod A) = Ky(mod B).

Proof. Any functor sends an isomorphism to another isomorphism. Moreover, F
sends short exact sequences to short exact sequences since F is also exact. Then

Ko(F)[X] = [F(X))] is well-defined for every A-module X. O
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32 Composition series

Definition 3.2.1. We say that an object X in mod A admits a composition series

in C if there is a sequence of submodules
XO @G Xn =X

such that X, € C and each X;;,/X; € C. We are going to use Comp C to denote
the subcategory of modules that admit a composition series over C. Notice that

C is contained in Comp C as a subcategory.

Lemma 3.2.2. The embedding C — Comp C induces an epimorphism of abelian
groups Ko(C) — Ko(Comp C). In other words, Ko(Comp C) is generated by

isomorphism classes of modules from C.

Proof. We prove the surjectivity by mathematical induction on the length of a
composition series. If X admits a composition series of length one then we already
have X € C. Now assume that if X has a composition series of length n then [X]
is in the image of Kp(C) — Ko(Comp C). Assume X’ is a module which has a

composition series of length n + 1
XoC--CXppn=X
Then X = X'/ X, has a composition series of length n
X1/Xo C -+ C Xny1/Xo

So, [Xn+1/Xo] = [Xn+1]—[Xo] is in the image of the morphism Ky(C) — Ko(CompC).
Then
[Xns1] = ([Xns] — [Xo]) + [Xo]

is also in the image. (]
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Proposition 3.2.3. The Grothendieck group Ko(mod A) is generated by the set

of isomorphism classes of simple modules.

Proof. Assume X is a finite dimensional A-module X, and consider the poset
of all its submodules. Since X is finite dimensional, every decreasing chain of
submodules must terminate. Then, X has simple submodules, say X,. The
same is also true for X/X,, and therefore, we get a simple module S; of X/Xj.
By the Fourth Isomorphism Theorem, we have a submodule X; C X such that

X1/Xo = S1. Proceeding by induction we get a series
XoC---CX,Cc---CX

But X is finite dimensional, and therefore, the series must terminate. Thus we

get a composition series for X where each consecutive quotient is simple. O

33 Resolutions and the Euler characteristic

Definition 3.3.1. We say that an object X in mod A admits a resolution in C if

there is a finite resolution X
s 0 B0, T L e

such that each X* € C. We are going to use Res C to denote the subcategory of
modules that admit a finite resolution over C. Notice that C is a subcategory of

Res C.

Definition 3.3.2. We say that A has projective dimension n € N if every object
admits a resolution of length less than or equal to n over the subcategory of finitely
generated projective A modules. Similarly, we say that A has injective dimension
n € N if every object admits a resolution of length less than or equal to n over
the subcategory of finitely generated injective A modules. The global dimension

of A is the supremum of the projective dimensions of all finite A-modules.
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Theorem 3.3.3. (Lam, 1999, Section 5C) A has finite projective dimension if

and only if A has finite injective dimension.

Definition 3.3.4. Assume C is a subcategory of mod A, and let C be a finite
complex in C, i.e. C* € C for every i € Z, and C* = 0 for all but finitely many
i € Z. The Euler characteristic of C is an element x(C) € Ky(C) which is defined

as

X(€) = Y (-1y(C

Proposition 3.3.5. Let Res C be an abelian subcategory of mod A. Then the
embedding C — Res C induces an epimorphism of abelian groups Ko(C) —
Ko(Res C). In other words, Ko(Res C) is generated by isomorphism classes of

modules in C.

Proof. Assume X admits a resolution X in C
Pl X0 8 51 5 S

such that H°(X) = X, and H*(X) = O for every i # 0. In mod A we have short
exact sequences

0 — Ker(d;) = X* — Im(d;) = 0,
and therefore, [X?] = [Im(d;)] + [Ker(d;)] in Ko(Res C) for every i since Res C is
closed under kernels and cokernels. Now,

x(X) = Z(— VX =D (~1)([Ker(dy)] + [Im(dy)]) (3.1)

—Z ) ([Ker(d:)] — [Im(d;-1))) (3.2)
—Z V[H (X)) = [X] (3.3)

Since each X* € C, we see that x(X) is in the image of K(C) — Ko(Res C). So,
we also see that [X] is in the image. O
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Theorem 3.3.6. If A has a finite global dimension then Ko(mod A) is generated
by isomorphism classes of finitely generated projective modules, and by isomor-

phism classes of finitely generated injective modules.

Proof. If A has finite global dimension then every module has a finite projective
resolution, and equivalently, a finite injective resolution. Then we use Proposi-

tion 3.3.5 to get the equality we wanted to prove. O

3.4 The Grothendieck group of a derived category

Note that we defined the Euler characteristic of a finite complex & by
X(X) = (-1)X7]
and we saw in the proof of Proposition 3.3.5 that even when A’ is not a resolution,

we still have

X(X) =Y (-1)[H(X)]

)

Thus, we have

Proposition 3.4.1. The Euler characteristic of a complex is a well-defined func-

tion on the set of objects of D°(A).

This result suggests that we should be able to define the Grothendieck group of
Db(A).

Definition 3.4.2. A sequence of morphisms &} LS Xo Lt X; is called a triangle
if there is a short exact sequence of complexes

IV PV R
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such that there are quasi-isomorphisms a;: X; — X/ that fit into commutative

squares of the form

X; L Xipa

ai 1 lai-'-l
i

fi
X — X,

Now, we define the Grothendieck group K,(D°(A)) as the free abelian group on

the set of isomorphism classes of objects in D°(A) divided by the relations [X;] —
[Xo] + [A5] for every triangle X; ELS AL T

Theorem 3.4.3. The natural map Ko(mod A) — Ko(D?(A)) that sends the
isomorphism class [X] of a module X in Ko(mod A) to the isomorphism class of its
stalk complez [X] in Ko(DP(A)) induces an isomorphism between the corresponding

Grothendieck groups.

Proof. Isomorphisms in mod A are sent to isomorphisms in Ch(A). So, for a A-
module X the quasi-isomorphism class of the stalk complex [X] is well-defined.
Moreover, since short exact sequences of A-modules are sent to short exact se-
quences of stalk complexes, any relation [X]—[Y]+[Z] in Ko(A) is sent to another
relation in Ko(D?(A)). So, the natural map Ko(A) = Ko(D?(A)) is well-defined.
Next, we must show that the image of the natural map covers everything in
Ko(DP(A)). We are going to do this by induction on the length of a complex.
If an isomorphism class [X] in Ko(D°(A)) contains a stalk complex, then it is
already in the image of the natural map. So, by our induction hypothesis, let us
assume that if [X] is an isomorphism class such that all shortest complexes in [X)]
have length n or less, then it is in the image of the natural map. Let us take a
generator [X] such that a shortest complex U in [X] has length n + 1. Without

loss of generality, we can assume U looks like

(G N Y
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Now, consider the complex U’
0— U= im(dy) = 0

where U is placed at degree 0, and the complex 4"

dn

0= UYim(de) > U* & ... 28 yn 5 0

where Ul /im(dy) is placed at degree one. Since U’ is quasi-isomorphic to the stalk
complex of H(U), its class [I{'] is already in the image of the natural map. On
the other hand, the length of the complex U” is n. So, [{”] is also in the image of
the natural map too. Finally, there is a short exact sequence of complexes of the

form

0-U->U-U">0

This means [U] = [U'] + [U"] is also in the image of the natural map. a






CHAPTER IV

MAIN RESULT

We first recall some definitions from Chapter 1, Section 1.1 and Section 1.7. Let
Pm.n be a grid poset and J(Pp, n) be the poset of order ideals in Pr, n. Recall that we
orient the edges in the Hasse diagram of J(Pm,) downwards in the poset and we
label the vertices in J(Pp ) with the corresponding partitions to the order ideals.
We then consider the incidence algebra A of the poset J(Pm,n). We also recall that
P, is the indecomposable projective module at o and the elements z,>g form a

k-basis for P,.

In this chapter, we will describe a special collection of projective resolutions in
D’(mod A) that will span the Grothendieck group. In order to prove the peri-
odicity of 7, we are going to need these resolutions. One key thing about these
projective resolutions is that when we apply 7 to these projective resolutions, we
will prove that the resulting complexes are injective resolutions (up to a shift). So,
these resolutions are going to have the homology in only one place. This allows
us to study these resolutions from a combinatorial point of view. We define two
functions f and g to give a combinatorial description of the homologies of these
projective and injective resolutions. Then, with the help of this combinatorial

description we will able to keep track of the elements in 7-orbits with another
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combinatorial function f . We also define the notion of configurations associated
to the elements in 7-orbits to show that the action 7 corresponds to a cyclic ac-
tion on these configurations. Finally, we show that 7-orbits which come from
these projective resolutions are enough to generate the Grothendieck group Kjp.
This establishes that the Auslander-Reiten translation 7 in Kj, i.e. the Coxeter

transformation, is periodic for J(Pp, ).

4.1 Projective resolutions

We will define enhanced partitions to write a special collection of resolutions.

Definition 4.1.1. We call a tuple of non-negative integers of the following form

an enhanced partition:
(anl’\llnv & A$r|nar+1)
r+1
with0< A< A< <A\ <nand Zai = m. Each exponent «; refers to the

i=0
number of times ); is repeated. We will refer to the 0’s and the n’s separated by

vertical bars as fized entries. Note that ap and ;41 can be zero.

Let E be the set of enhanced partitions, and let F' be the set of partitions. We
now define a function p from E to F, which sends an enhanced partition to a
partition by forgetting the bars. This means there are no fixed entries anymore.

Formally,
p[(0a0|Allns e aAgrlnar+l)] = (an, Atlxla =D Agra nar-H) (41)
The function p allows us to treat enhanced partitions as usual partitions.

Let Ey, be the set of enhanced partitions of the form o = (0°°|AT*, A3?, - - - , A% |nor+1)
where A\; # 0 and Fr be to the set of enhanced partitions of the form a =

(0% [ A, NG, - - - , A8r|nor+1) where A, # n.
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Definition 4.1.2. For a given enhanced partition o = (0%°|AT?, - -+ , A27|nor+1),

let R, be the set of indices of the nonzero entries ); in a.

If a € Ep, then R, ={1,2,--- ,7}, and if a ¢ Er, then R, = {2,--- ,7}.

Let 4; be the sequence of 0’s and 1’s where 1 is placed at those places \;’s appear
in @, ie. & = (0%,0%,...,0%-1 1% Q%+ ... (0%, 0%+!). For a given subset
X C R,, let ox = Zz’ex d;. Notice that we define ¢;’s only for non-fixed and

nonzero entries in «.

Definition 4.1.3. For an enhanced partition a = (0%°|Af?,--- , A% |n%+1) € E,

we define a complex of projective modules P, as follows:

Pai0 P IH D P DR, S50 (42)

a—6R, a—by
JCRa, JCRa,
|J|=r—1 |Jl=1

with the maps

g
9" @ P"_‘s-’ = @ Pa—&_;, La—biy, . i) 2B) oS Z(—l)tx(a_g{il ----- i’;,.--,ik)Zﬁ)
t

JCRa, JCRa,
| Ti=k | Jj=k—1
for each J = {iy,«*: iz} € Ry ond wo_ 5,58 © Foi;

Remark 4.1.4. The grading of the complex P, comes from the cardinality of

J C R,, and a — 4y is just a vector subtraction.

Proposition 4.1.5. The complex P, in Equation (4.2) defines a projective reso-

lution.

Proof. Notice that for any 8 < ' there is a unique embedding of Pj into Pz by

left multiplication with zg>g sending zg>, — Tz, for each v < B. Thus, the
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maps O~ * are all right A-module maps. Therefore, it is enough to show that we

have a complex in the category of k-vector spaces.

For every 8 < a, the graded k-subspace P, - z5>5 is actually a k-subcomplex of
P, since the differentials preserve the grading. Therefore, it is enough to prove
the exactness of P, by showing we have an exact complex at each vertex in the

support of P,. Note that P, has support over the vertices 8 < a.

For a given 8 < a we find the maximal Js C R, so that the inequality 8 < a—4d;,
holds. Let k = |Jg|. When we multiply the complex by zg>z on the right, each
of the projective modules in P, reduces to the ground field k. Moreover, after
the reduction, the face maps in the differentials are all identity maps. Now, Jg
determines which summands of P, have Sg in their composition series. Then we

have the following subcomplex of k-vector spaces:

S:0=sk*—o @k"‘“—)---—) k’za@k‘l—nk‘)—)o
Y (5) 4

with the differential as defined above. This is the face complex of the standard
(k—1)-simplex. We show this fact as follows. Consider the subset J C R such that
|J| = k. Any such subset J is linearly ordered since 0 < A} < A2 < --- < Ap < m,

say without loss of generality J = {A;,---, A}, and we define (i) as all subset
k

of J of size u. Let us define a graded set Cy = |_| C, where C, = (z) Now,
u=0
we are going to define an abstract simplicial set structure on Cy. This requires

the definitions of the face maps d; : C, = Cy_; for 0 < j < k defined by
{M, 22, A = {Ay, - ,5\;-, --+, Au}. Note that since A;’s are linearly ordered,
d,, is well-defined. Let us now define a simplicial vector space k[C,] := spang(C,)
and we extend the face maps to d; : k[C,] — k[C,_1] linearly. From this simplicial

vector space, we define its face complex by defining the differentials as gy =
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Since the standard (k — 1)-simplex is contractible, its reduced homology is zero
provided k — 1 > 0 (Hatcher, 2002). This means that there is a homology if and
only if k = |Jg| = 0.

0 it < &< hm= D,
H™(S) =
k k=0, n=[0.
Then, we have

0 Iil<k<rn£0,
H™(Pa) - 2p3p =
k ifk=0 n=0

and this implies that P, is a projective resolution.
a

Remark 4.1.6. Notice that the homology of P, is supported only over vertices
3 such that Jg = 0. This is equivalent to 8 < o and 8 £ a — ¢; for each i € Ry,.
We will further investigate the homology of P, in Section 4.4.

Example 4.1.7. Let A be the incidence algebra for the poset J(Ps7). Let us
consider o = (0|2, 2,3,7|). Then R, = {1,2,3} and

. -3 —2 —2 —2
Pa:0— Pgoiiae ?Fo1127 @ Po2226 @ Poi1se

=1 =V =
B 01,137 @ P, 02227 P Poz2236 — P(%|2,2,3,7|) — 0.

Now let o' = (0|2, 2,3|7). Note that o/ is the same as a except that 7 is now a
fixed entry. Then we have Ry = {1,2} and

: —2 -1 -1 0
Par: 0= Fola27 = Foi1s7 ® Pozzzn = Fozzsm =0
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4.2 Action of the Auslander-Reiten translation on the projective resolutions

In this section, we are going to look at the action of the Auslander-Reiten trans-
lation on the projective resolutions P, and discuss the homology of the resulting

complex.

Proposition 4.2.1. Let P, be the projective resolution defined in Equation (4.2).
If we apply the Auslander-Reiten translation T to the complex P,, the resulting

complez is an injective resolution up to a shift.

Proof. After applying — ® DA on P,, we get the following injective complex:

L:0o 17, = @ L7 o > P, 21020 (43)

|J|=r—1 |J]=1
The proof of Proposition 4.1.5 with some modifications can be applied here.
Firstly, notice that I,_s, has support over the vertices v > a — d;. Then we
write the subcomplexes as follows: for a given v we find the minimal J, such that
the inequality v > a — 6, holds. Let k = |J,|, then the vertices v will appear as

in the following:

0ok Pk = P kK2 P K -kF -0
(7% (-Z3%2) (Cundy

This is another face complex which only has homology when k = r. Consequently,

the complex (4.3) is an injective resolution up to a shift.
O

Remark 4.2.2. As in the projective case, the homology of Z, has support over
vertices v only when J, = R,. This means that a —dg, < yand a —6; £ v
where |J| = r — 1. We will further investigate the homology of Z, in Section 4.4.
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4.3 Intervals in the poset J(Pp,)

In this section, we are going to define two functions: f from E to Eg, and g from
Eg to E;. These functions will help us to describe the homology of the complexes

P, and 7, defined in Sections 4.1 and 4.2 combinatorially.

1. Let a = (02%|Af", Ag2, - , A% |n%+) € E; and then R, = {1,2,--- ,7}.
The function f(a) is defined as follows: We first apply p which is defined
in (4.1) to a. Then for each i € R,, we leave the last occurrence of ); in o
unchanged while we minimize the rest of the occurrences including the fixed
n’s at the end if there are any, thus making the partition as small as possible.
Finally, we enhance the result as follows: the first bar is placed in the same
position as in « and if there is no n in f(a) the second bar obviously goes

at the end, while if there are n’s we put the second bar before all of them.

Formally,

f((anl)‘?l’ 321 s ,Agrlnar+1))
(anlom—l, /\?2, /\33, .. ,/\10_1:1|/\71_+ar+1) if )\-r = My

(0%0[01=1, X2 AZs ... Aer. Altarti|) if A 5 .

2. Let o = (0%°|A{Y, AS?, - , A2r|nor+1) € Eg. Note that here R, = {1,2,--- ,r}
if \; # 0 and R, = {2,---,7} if \; = 0. The function g(a) is defined as
follows: We first apply p to a. For each i € R,, we leave the first occurrence
of ); in a unchanged while maximizing the rest of the occurrences, thus
making the partition as large as possible. Notice that we do not change 0’s
which were fixed in «, but we do maximize the unfixed 0’s. Then we place
the first bar in the same place as in «; the position of second bar can be

seen in the following formal definition.
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Formally,
g((oa()l)‘(ln1 )‘gza e ’Agrlnar"’l))
( +1 ;

(0P| RS2 T=, MG, + « - , Alr=1|por—1) if ar41 =0and A\ =0,
(00| A+ AZ2 ... Aar-1 por|peeni—l) g, £ 0and A =0,
(

09| Ay, A2, AG2, .- | Aar-1|par—1) if 01 = 0 and Ay # O,

| (0%0]A0, AZ%, Ag2, -+, A1, nr [n®r+17h) if gy # 0 and Mg # 0.
Example 4.3.1. Let o = (0223, 5, 64, 9%|13%) = (0, 0|2, 2, 2,5, 6,6, 6,6, 9, 9|13, 13).
Then R, = {1,2,3,4}. To find f(a) we first apply p. Now, we fix the last occur-

rences of each \;, ¢ € R, while minimizing the rest as shown in the following:

(0,0,2,2,2,5,6,6,6,6,9,9,13,13)
We leave the last occurrences of each \; unchanged:
(0,0,2,2,2,5,6,6,6,6,9,9,13,13)
We minimize: (0,0,0,0,2,5,5,5,5,6,6,9,9,9)
Then we enhance: (0,0|0,0,2,5,5,5,5,6,6,9,9,9|)

The result is f(a) = (02|0?,2,54,62,9%)).

Similarly, we can get g(a) = g((0%]23, 5, 6, 92|13%)) = (0|2, 5%, 6, 94, 132|13).

Lemma 4.3.2. The functions f and g are inverses of each other.

Proof. Let a = (0%°|A7*, A3, - -+ ,A27|n%+1) € E;. Then

e LSRR DR e R PER) =
g((0°000™1 71, A2, X80, -, A2y, A2t ) A, #

We can easily conclude that the result is . Similarly, one can show that fog(3) =

Bfor Be En. O
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4.4 Homologies and intervals

In this section, we will discuss the homology of P,, and the homology of Z, in

relation to intervals in the poset J(Ppm ).

Definition 4.4.1. Let [y,+'] be an interval in J(Pm ). We define the correspond-
ing element in the Grothendieck group Kj for the interval [y,v'] as [[v,7]] =

> 8]

r<zy
Proposition 4.4.2. The class of the projective resolution P, in Kjy is [[f(), ¢]
for every a € Ej,.

Proof. Let I = {x € Pmp |z < aand z £ a — §; for any i € R,}. Firstly, notice
that the class in K for the homology of the projective resolution P, is supported
over the vertices in I by the result in Proposition 4.1.5. Recall also Remark 4.1.6.
We will prove that I forms an interval in the poset J(Ppmn). Clearly, o is the

maximum element in [.

Let o = (0°°|A$, A92, - -+, A%r|n2+1). We also write o = (a1,a2," - ,am). Then,
we write a — §; = (by, by, -+ , by,) Where
a; when a; 7£ /\i,
b; =
a5 —1 otherwise.
for 1 < j<m. Let z = (c1,¢, " ,cm) € I. In order for z < a but z £

o —0; for all i € R,, for each i we must have ¢; < a;, and at least one of
gty * * 5 Chigteary TINIEYE b8 Srenter Shan bayy . 14152 * ) Bagee- e 40
must equal A;. Since ¢; < ¢3 < -+ < ¢y, it must be that chg4...q0; = Ai. Now, it
is clear that

I ={z €Ppp| Cogtta; =i for each i € B, }.

This is an interval having minimum f(a). This completes the proof. O
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The following is an illustration of the proof with an example. For this example, let
us assume o = (|2,2,6,6,6,6,9,9,9,9,9|). We illustrate the corresponding order
ideal with the black contour in Figure 4.1. Then we have R, = {1,2,3}. For
instance, o — 8 = (2,2,5,5,5,5,9,9,9,9,9) which is shown with the red contour
in Figure 4.1. The gray box shows the row where copta;4a; = €6 = A2 = 6.

Finally, f(e) is illustrated with the blue dotted contour in Figure 4.1.

Figure 4.1 An illustration of the function f(a)

Example 4.4.3. As in Example 4.1.7, let o = (0|2,2,3,7]) and consider its
projective resolution. The corresponding element in Kj for the homology of this
projective resolution is [[f(a), ¢]] = [(0,0,2, 3,7),(0,2,2,3,7)]. Now, assume o’ =
(02,2, 3|7}, ¥hen [[fie')a']]= [(6;0,23,3), (0,2,2,8,7)].

In the following, we would like to analyze the homology of the injective resolution

7, after the action of 7 on the projective resolution P,.

Proposition 4.4.4. The class of the injective resolution I, in Ky is x[[a —

5Ra’g(a - 6Ra)]] for every « E EL'

Remark 4.4.5. Before proving Proposition 4.4.4, we need to discuss the rule
that enhances the partition oo — dp, so that we can apply the function g. Let
us assume a = (0% AT, AS?, -+ | A% |n®+1) € Ep. Then the enhanced partition

o — Og, is defined as follows: The position of the second bar is the same as in a.
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This implies that we fix all of the n’s in a — dgr,. Now, if we have 0’s in o — dp_,
we have to determine which of them are fixed. To do so, we will look at «. Recall
that A; % 0 in « for P,. If A; # 1, then we do not fix any 0’s in o — dg,, i.e we
put the first bar before all of the entries. If A; = 1, then we look at the location
of first appearance of A; in a, say in k-th position from the beginning. Then we
put the first bar after the k-th 0 in o — dp, . Formally,

(109, (A — 1)1, (Ag — 1), - -+, (A, — 1)2r|nor+1)  if Ay £ 1

Y= 5RQ =
(0°0F2[0%2 77, (Ag = 1)%2, -+, (A = 1)2r[nri) L=,

Proof of Proposition 4.4.4. Here finding g(a — dg, ) is the dual of finding f(a).

Let I' = {z € Py | @ — 0g, <z and z # o — §; with |J] =r — 1}. In this case,

we know the minimum element of I’ is o — dg, .

Let a = (0°°|A$*, A32, -+ , A%r|n%+1)) and let * = (¢, ¢0, - ,¢m) € I'. We can
deduce the following as in the proof of Proposition 4.4.2: In order for o — g, < z
and z z a — &7 where |J| = r — 1, the entries cog4...40;_,+1 Must equal \; — 1 for

each 1. Now, we can conclude that
I'={z € Ppn | Cagttas_,+1 = X — 1 for each i € R,}.

This is an interval with the maximum g(a — dg_). This finishes the proof. O

We will illustrate the idea of the proof by an example as we study in the previous
case. Assumen =9 and a = (|2,2,6,6,6,6,9,9,9,9,9|). Then R, = {1,2,3} and
a—dg, =(1,1,5,5,5,5,8,8,8,8,8|). The corresponding order ideal is illustrated
with the black contour in Figure 4.2. Also, we can calculate that g(a — dg,) =
(I1,5,5,8,8,8,8]|9,9,9,9) as illustrated with the blue contour. The red contour
shows o — d;12y = (1,1,5,5,5,5,9,9,9,9,9). The gray box shows the row «p +

(63} + Qg + ]. = 7 Where Ca0+al+az+1 = A3 o ]. = 8
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Figure 4.2 An illustration of the function g(«)

Proposition 4.4.2 and 4.4.4 in combination with Proposition 4.2.1 show that
Auslander-Reiten translation sends [[f(c),a]] to X[ — dr,,g(a — dr,)]]. As
we have seen, the function o — g(a — dg,) is important, and it will be useful
to calculate it more directly. So, we will define a new function f, and then later

prove that f(a) = g(a — &g, ) in Lemma 4.4.7.

We define the function f from E; to E as follows: Let o € Er. First apply p,
then deduct one from the first occurrence of each A;, i € R, while maximizing all
of the other indices, i.e. make the partition as large as possible. Then we fix all
of the 0’s, i.e. we put the first bar at the end of the 0’s in the result. If we have
n fixed k times in o, we make n fixed k — 1 times in f(c). If we do not have any

fixed n’s in o, then we fix all n’s in f(a).
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Formally,

FUO%AE 282, A in®r)) =

r

(0|2 — 1), -+ , (A — 1)or-1ner) i Oy = 0,0 = 1
< (0°0F1|(Ag — 1)@, - -+, (A, — 1)1, par|p@rsi=1) i i g =1
(10 — 1203, (Ag = 1), -, (A, — 1)1 o) if gy = 0,0 # 1
(1O = 12, Qg — 1), -+, (A = 1)1, 0 |n®eh171) i g # 0,00 # 1.

Example 4.4.6. Consider the same a as in Example 4.3.1. Then
fla) = F((0%2,5,6%, 9]18%)) = (1°,4%,5,8%,13%]13)

Lemma 4.4.7. We have f(a) = g(a — dg,) for every a € Ey.

Proof. Let a = (0°°|Af*, A2, .-+ ,\27|n®+1) € E;. Recall that in Remark 4.4.5
we explained how we get the enhanced partition a — dg,. So, we have the 0’s
fixed in @ — dg, only when A; = 1 in a. Recall also that since a € Er, we have
A1 # 0. Firstly assume A; # 1, i.e. there is no 0 fixed in @ — dg,. Then we get
a—0ogr, = (J0%, (A — 1)%, (Mg — 1)22,- - | (A, — 1)27|n®+1). Now, we apply the
map g. We get the following which is the desired result.
g(a —dr,) =
{[CANES N o PR EERCTE v S | ) if apyy =0

IOz = 1) (A — 1), -+, (A — 1)1, n® [ne+171)  if gy £ 0.

The case A\; = 1 can be calculated similarly. This finishes the proof. a

Proposition 4.4.8. 7([Pa]) = £[Py(a—sr,)), or equivalently 7([Pa]) = £[Pf)].

Proof. Since we proved that f and g are inverses of each other in Lemma 4.3.2, it
is easy to see that the class of the projective resolution Py, sz ) of the enhanced

partition g(a — dg,) in Ky is £[[a — 0r,, 9(a — R, )]]- O



92

To sum up, for any enhanced partition oo € E, one can write the projective
resolution P, and find the class of P, in Ky which is [[f(a),a]]. The class of
7Py in Ky is [[@ — Or,,g(c — Og,)]]- Moreover, we can determine g(o — dg,)
directly from o by using the map f. We are now in a good position to iterate the

application of .

4.5 Configurations and enhanced partitions

The goal of this section is to define a bijection from Ej to a set D, ,, which we

define below and has a natural action of Z/(m +n + 1).
Consider Z := {-m,---,—1,0,1,--- ,n} for the elements of Z/(m + n+ 1).

Definition 4.5.1. A configuration D is an increasing sequence of m elements

from Z. We write D = {4; < 43 < -+ < iy} for a configuration. The set Dy,

m+n+1) )

denotes all configurations. Notice that the cardinality of Dy, is ( iy

Consider a configuration D. By D{i} we mean the i times shifted version of
D, i.e. D{i} is the set of elements {i; — 4, - ,¢m — 4} which are sorted into
increasing order, and we write sorted{i; — %, -+ , 4, — i}. Call this operation {i}
a shift. Clearly, D{m + n+ 1} = D. The set of all configurations D{i} for all
0 <i<m+nis called the full orbit of D.

Recall that E; is the set of enhanced partitions of the form
a = (anl)‘?l’ )‘gz, e a)‘grlnaﬂ-l)

where \; # 0. We also write it as a sequence a = (ay,a2, -+ ,0n,). We are going

to define a function ¢ from E; to D,,, as follows.
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Let us first define a function p4 : {1,--- ,m} = Z

_ a; if j = S°F ;o for some k € {0,...,7},
/’l’a(J) —
—J otherwise.

It is easy to see that it is well-defined. Now, we define
Y:EL = Dy

as follows:
P(a) = sorted{uq,(j) | for j € {1,--- ,m}}.

Example 4.5.2. We continue in the setting of Example 4.1.7. Consider the en-
hanced partition a = (0/2, 2, 3, 7|), then the corresponding configuration is (o) =
{-2 < 0 < 2 < 3 < 7}. Now, consider the enhanced partition o/ = (0|2,2, 3|7).

Then the corresponding configuration is ¢¥(o/) = {-5 < -2 <0< 2 < 3}.

Lemma 4.5.3. The map 1 is a bijection.

Proof. We can think of an element in E; as a multiset on {0,1,--- ,n,n*} where
we use n* to represent the fixed n’s. Notice that the cardinalities of E;, and Dy, ,

are the same. Then, it is enough to show that the map 7 is injective.

Let a = (0&0')‘1111’)‘32’._ : ,)‘grlnar+1), ﬁ = (Oﬁoléjllsla /232,' o ,§£a|nﬂ’+1) € EL' To
simplify the exposition, we assume o; > 1 for all s € {0,1,--- ,7} and 8; > 1 for

all j € {0,1,---,s}. The proof for the general case is similar.
We also write

o= (a17 co oy Qapg—1,00g |Tag+1s - - - s Bagtar1—1) Bagt+ayy - -+
a a a e
ao+ai+-+ar—1+1s - - -y bagtai+-+ar—1; Yagtai+-+ar
B=(b,... +bBo—1, b0, bgo+1, - - - 5 bgo+B1~15 DBo+p1s -

DfotBr-to+Bocrtls - - s DBortprtotBa=1s Dot Brot 48 1P
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Assume ¥ (a) = (), then we have

{:m<—m+1<---<—m+ar+1—11<

il
Qr41

—m<—T+1<--<—gpta—2<---<

-~

ar—1

=3y & =gl o oo < —gp § oy =2 S Ay L avs L AR

-—

ap—1

={-m<-m+1l<---<—m+Fp—1<

ﬁs+1

=g gy AL e g =gy By R Sie
Bem1

:ys<_ys+1<"'<"ys+ﬂ0_’%<0<€1<"'<£s}

Bo—1

where zxy = ap+ a1+ +a,x—1lfork e {0,1,--- ,7}and yy =B+ 51+ -+
Bs—r — 1 for k€ {0,1,--- ,s}.

Since A;’s and &;’s are all positive and linearly ordered, then for each i > 0, \; = &
and r = s. Now, assume a,41 # Bsy1. Without loss of generality, say 8,11 < qri1.
Then —m+ fr+1 —1 < —m+ayy1 — 1 which implies —m+ 8,41 < —m+ap41 — 1.
Thus, ~m + 8,41 € ¥(a). But this is a contradiction, because —m + S,;; cannot
be in 9(8). By the same argument, we can prove that for each j, a; = ;. This

proves that a = . O

Now, let F :={0,1,--- ,n,n*} where n* is a formal element distinct from n. We

also define a map ¢ from Dy, , to Er. Let D = {i; <42 < --+ < ip,}. First of all,
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let us define a function 7np : {1,--- ,m} — F as follows. For each 7,

(
i|’ij|+j leJ <0and |Z]|+j<m+].,

no(d) = { n* if i; < 0 and |i;| +j =m +1, (4.4)

%5 otherwise.

Lemma 4.5.4. The map np is well-defined.

Proof. Let D = {i; < ia < --+ < i;,}. The only case we need to check is that if
;| + 7 < m+ 1 and i; < 0, then 4;,4; € F. Assume 4, - - , %, are nonnegative.

Then we have the following,
m > |Z1| > |1,2| > |23| R li1_1| >0
which implies
m2>lig|+12>|ia| +22> |ig] +3> - > |y +1-12> 1
Therefore, for 1 < j < | — 1, we have m > [i;| + j > [. This shows that
i|ij|+j e F. U
Now, we define a map
@ : Dm,n — FEp

as follows:

@(D) = enhanced(sorted{np(j) | 7 € {1,--- ,m}})

where we first sort into a non-decreasing order with n* after n and then enhance
the result as follows: fix all of the 0’s and fix all of the n*’s. This map is the

inverse map of 1. But we will not prove it here since we do not need this fact.
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4.6 The main result

We consider the Grothendieck group of the bounded derived category of the inci-
dence algebra A of the poset of order ideals in a grid J(Ppy ). In this section, we

are going to prove the following:

Theorem 4.6.1. The Auslander-Reiten translation T has finite order on Ko(D%(A))
for the incidence algebra A of the poset of order ideals J(Py ) of a grid poset Py p.
Specifically, 7™t = 4id.

Our main result follows from two auxiliary Propositions.

(1) In Proposition 4.6.2 we show that Auslander-Reiten translation satisfies 72(m*7+1) =

id on the elements [P,] in Kj.

(2) In Proposition 4.6.4 we show that the Grothendieck group Kj is generated by
the elements of the form [P,].

Proposition 4.6.2. 7™t = i4 on the elements [Pa] in Kp.

Proof. First, we are going to prove that the following diagram commutes since

the shift {1} has finite order of (m + n+ 1) on Dy p.

EL _lw) Dm,n

fl 1{1}

E; _¢> Dm,n

Let a = (02| A*, A%, -+ ,A%"|n®+1) € E be an enhanced partition. To simplify
the exposition, assume a; > 1 for all ¢+ and assume A; # 1. The general case is

similar. Then, f(a) = (A — 1)@t (Ag — 1)™, ... (A, — 1)@-2 nor|por+1-1)
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Yla)={-m<-m+1<..-<-m+orpn—-1<

WV
Qri41

T < —Tp+1<:<—xp+0,—2<---<

ar—1

=yt L€ ) F a2 SR My s - D)

apg—1

’P(f(a))={jm<—m+1<---<—m+ar+1—%<

ary1—1

—fp-l<-z;p< - <-zgtop—3<---<

ar—1

:x,_l—l<—:cr_1<---<—:cr_1+a,—§<

-~

a1—1

— g =il =T G rwasd —Epep =2 € Dy —1 € o5 & Ap— T i)

o

where the z;’s are defined as in the proof of Lemma 4.5.3.

From these calculations, it is easy to see that 9(a){1} = ¥(f(a)). This shows
that 7™+7+1([P,] = £[P,]. Therefore, 72m++1[P,] = [P,]. The proof of the case
A1 = 1 is similar. Also, observe that the order of T cannot be less than (m+n+1)
because this is obviously true for the action of {1} on D,,,. This finishes the

proof. O

Example 4.6.3. In this example, we will write the action of 7 algebraically and

combinatorially. Assume m =5 and n = 3.

Let a = (|1,1,2,3,3|). Write the projective resolution as follows:

. o =)
'Pa-0—>P(oo122) P00133)€BP11122)€BP(00222)

o x 0
P00233) EBP(11133) €BP(11222) - P(I1,1,2,3,3l) =51
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with the homology [[f(e), a]] = [[(0,1,2,2,3),(1,1,2,3,3)]].

Apply 7 to Py,:
: -3 —2 —2 -2
Lo 0= Jgo122 = L0133 D lan120 ® 00222
= s =3 0
1(0,10,2,3,3) ® (1,11,1,3,3) ® 111909 {01233 =0

with the homology [[(0,0,1,2,2), (0,1, 1,2, 3)]].

Note that f((ll, 1.2 380 =011y 1 [ Ho, TP(1,1,2,33) = Proj1,1,2/3) [—2]. In the

Grothendieck group, we have the following

0,12 280 11, 2,8, 30 = [ 0,0k, 2, 251014, 1 2. 3) ||

Now, let us look at the action of 7 combinatorially. Firstly, we find the corre-

sponding configuration D of a which is D =¢(a) ={-4< -1<1<2<3}.

We now compute that ¥ f(a) = ¥((0]1,1,2|3)) = {-5 < —2 < 0 < 1 < 2} which
equals D{1}.

Proposition 4.6.4. The set {[P,] | @ is a partition} generates the Grothendieck
group Ko of the incidence algebra A of the poset J(Pp ,).

Proof. The Grothendieck group X, is generated by all the isomorphism classes of
indecomposable projective modules [Py, @ € J(Pm.n). Now, we will think of o as
an enhanced partition with the first bar is placed after 0’s and the second bar at the
very end. Let us define L, = [[f(z), z]] where z is an enhanced partition. We will
show that each [P,] can be written as a linear combination of elements of the form
[L.]. We will proceed by strong induction on partitions ordered lexicographically.

The base case is @ = (0, -- ,0). Then [P,] = [L,), and we are done.

Recall that we get the element [P,] in Ky by taking the Euler characteristic of the

projective resolution P,.
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Recall also the notation from Subsection 4.1. Let us write each partition a — 4,
where J C R, and J # (. Notice that each o — §; comes before o in the
lexicographical order.

Now, we write [Py] = [Pa] + | @ P sl= @ P, s+ + (=1)M E= e
JgRa, Jng
|7j=1 |J]=2

Therefore, by the induction hypothesis, each [P,_s,] can be written as a linear

combination of elements of the form [L;]. So, we have

Z(“l)(”lﬂ) [Pa—s,] = Z 03[ La]

J#0

And we know that [P,] = [L,]. Now, we have the desired result:

[Po] = [Lq] + Z az[ Ly



Y



CHAPTER V

A GENERAL FRAMEWORK : COMINUSCULE POSETS

In Chapter 4, we proved the finiteness of the Coxeter transformation on grid
posets. In this chapter, we are going to study the generalization of our result
to the incidence algebra of the poset of order ideals J(C) of a cominuscule poset
C. We start by recalling some basic facts on root systems and Coxeter groups.
Then, we are going to give the definition of a cominuscule poset C in the poset
of positive roots of a given root system ®. Next, we are going to investigate the
action of the Coxeter transformation 7 for the poset of order ideals J(C). We are
going to show that 7"+ = +id for two infinite families of cominuscule posets and

exceptional cases where h is the Coxeter number for the relevant root system.
5.1 Reflection along hyperplanes

The material in this section is drawn from (Humphreys, 1978).

Let V be a finite dimensional real vector space together with a positive definite
symmetric bilinear form (z,y) for z, y € V. A reflection is defined as an invertible
linear map from V to itself fixing a hyperplane and sending its normal vector to

its negative. For a given hyperplane H with a normal vector o € V, we can define
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s, the reflection along H as follows:

sellu) =w— 2(0 e
for every vector v € V.

A subset @ of V is a root system if the following conditions hold:

R1) @ is finite, spans V and does not contain 0.
R2) For o € ®, the only multiples of ¢ in ® are exactly +o.
R3) If o € ®, then the reflection s, leaves ® invariant.

R4) If 0,0 € ®, then X122 € Z.

(0,0)

The elements of ® are called roots. A subset A of @ is called a base of ® if:

B1) it is a basis for V,

B2) each root in ® can be written as a linear combination of roots in A with

integral coefficients which are either all nonnegative or all non-positive.

Every root system has a base. The elements in A are called simple roots. The
subset ®* consists of roots which are the combinations of elements in A, and &~
consists of roots which are the combination of the negative of elements in A. One
can easily see that &~ = —®* and & = ¢+ UP~. Note that the decomposition of

® into ®* and P~ is not unique.

One can define a partial order on ®* naturally as follows: For o, ¢’ € ®*, we

say that ¢/ < ¢ if and only if ¢ — ¢’ is a sum of positive roots. This poset is
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called the poset of positive roots of the root system ®. The partial order on &7 is

well-defined, and it does not depend on the choice of A up to isomorphism.

We say that ® is irreducible if it cannot be partitioned into two proper, orthogonal
subsets. Also, we can state this as follows (Humphreys, 1978, Section 10.4): ® is

irreducible if A cannot be partitioned into two proper, orthogonal subsets.

The height of a root ¢ is defined as the sum of the coefficients in the expression of
o as a linear combination of simple roots. Assume ® is irreducible, then the poset
®* has always a highest root, say 1. For a detailed discussion of the subject, see

(Humpbhreys, 1978).

Example 5.1.1. The following is the poset of positive roots of A4 with the set

of simple roots A = {01, 09, 03,04} and 7 = 01 + 02 + 03 + 04 is the highest root.

or+o2+03+04

-

oy +0o2+03 g3+ 0o3+0,

o — =

o+ 02 o2+ 03 o3+ 04
/ \62 \63/ \

Figure 5.1 Root poset of A,

/\

\

[ g4

5.2 Coxeter groups

Coxeter groups provide a good abstraction of the geometric setting we described
in Section 5.1. They were introduced and classified by H. S. M. Coxeter (Coxeter,
1934), (Coxeter, 1936).

A finitely generated Coxeter group has a presentation of the form

W =< 81,00 7Sn|53’(5i‘sj)mﬁ’ 1 S Z)J S n >
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where m;; = 1 and 2 < m;; = m,;; < 00, m;; = co means no corresponding relation
at all. We can encode this information by a graph called the Cozeter diagram, In
the Coxeter diagram the vertices are labeled with reflections 1, --- ,n. We connect
two vertices with an edge only when m;; > 3 if ¢ # j and we label the edge with

the corresponding m;.

We know that if ® is irreducible, its Coxeter diagram is connected, and vice
versa. It is sufficient to classify irreducible root systems. The classification of
irreducible root systems is done by using the Dynkin diagrams. We construct
Dynkin diagrams from A as follows: We put a vertex for each element in A. We
connect two vertices with respect to the following rule. We put

¢ 1o edge if the corresponding roots are orthogonal.

¢ one edge if the angle between the corresponding roots is 120 degrees.

¢ two edges if the angle between the corresponding roots is 135 degrees.

o three edges if the angle between the corresponding roots is 150 degrees.
We direct an edge from the vertex corresponding to the longer root to the vertex

corresponding to the shorter one. If the roots have the same length, the edges are

undirected.

Here is the list of Dynkin diagrams for finite root systems:




Eei'

==

Gz:

5.3 Cominuscule posets

D
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Throughout this section, assume that @ is a finite irreducible root system and let

7 be its highest root.
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Definition 5.3.1. A simple root o is called a cominuscule root if the multiplicity

of ¢ in the simple root expansion of 7 is 1.

Definition 5.3.2. An interval C of the form [o,7] C @7 is called a cominuscule

poset if o is a cominuscule root.

Cominuscule posets appear in representation theory of Lie groups, Schubert calcu-
lus, and combinatorics. For more details on root systems see (Humphreys, 1978),
and for cominuscule posets (Billey & Lakshmibai, 2000), (Green, 2013), (Rush &
Shi, 2013) and (Thomas & Yong, 2009).

Example 5.3.3. In Example 5.1.1, all simple roots are cominuscule roots. The

following are cominuscule posets for the simple roots o) and o3, respectively.

o1+ 02+ 03+ 04 oy + 02+ 03+ 04

b

oy + 09 + 03 oy + 02+ 03 03+ 03+ 04

/ /

o1+ 0, oy + 03 02+ 03

\0‘2

The following shows an illustration of the possible shapes of cominuscule posets

/\

\

4]

except the exceptional cases. The exceptional cominuscule posets will be discussed

at the end of this section.

G

Figure 5.2 Cominuscule posets of type I, Il, Il
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Conjecture 5.3.4. Auslander-Reiten translation T has finite order on the Grothendieck
group of the bounded derived category for the incidence algebra of the poset J(C).
Specifically, 2P = id where h is the Coxzeter number for the relevant root

systems (A, B, C, D, Eg or E7).
In this chapter, we prove that the Conjecture 5.3.4 is true for cominuscule posets
J(C1); J(Cin), J(Ces), I(Cey).

Remark 5.3.5. If the same cominuscule poset comes from two different root
systems, since the order of the Coxeter transformation 7 obviously agree, Conjec-

ture 5.3.4 is self-consistent.

We will proceed with a case by case analysis and prove some results.

54 Type A

All simple roots in the root poset of A, are cominuscule roots. So, they all give

rise to cominuscule posets.

The cominuscule poset over any simple root in A, is of type | in Figure 5.2. In

other words, they are the grid posets Pmx of size m +k=n+ 1.

Example 5.4.1. The following figure is an illustration of root poset of A,. The

shaded area shows the cominuscule poset C; over the simple root oy.
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Figure 5.3 The root poset of A, and the cominuscule poset C; over the simple

root oy.

In this case, we have the following results.

Theorem 5.4.2 (Theorem 4.6.1). The Cozxeter transformation T acts finitely on

the poset J(Pmk) of order ideals in Pp .

Recall that the Coxeter number h is n + 1 in type A,,. So, the Conjecture 5.3.4
holds for the type Ay, i.e. 72A*1) =id in Ky(D?(A)) for the incidence algebra A
of the poset of order ideals J(C)).

Now, we will prove the order of 7 explicitly.

Proposition 5.4.3. Let J(Pn,) be the poset of order ideal of a grid poset Pp p.
If m, n are both even, then the order of T is 2(m + n +1). Otherwise, the order

of T ism+n+1.

Proof. First, we observe that if | R,| is odd, then [7P,] is a positive sum of simples

in KCo; if |R,| is even, then [7P,] is a negative sum of simples in Ky.

Let us state this fact in terms of configurations as follows. We will work with

sign configurations which are just configurations with a sign attached. Let D
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be the corresponding configuration to o with a sign attached. In this case, |Rq|
is the number of positive entries in D. We define the action of {1} on signed
configurations as follows: if |R,| is odd, then D{1} will have the same sign; if
|Ro| is even, then D{1} will have the opposite sign. We will write this fact in an

explicit way as follows. Let D = {a; < --- < ap} for a = (a1, , am).
We first define 7 : D — {1, —1} by sending a; — 7(a;) where

-1 if O0<a; <n
r(a;) =
1 if —m<a; <0.

Then sign(D{1}) is as follows:

sign(D{1}) = (1) (Hm») sign(D)

We know that each a; will be non-negative n times in the full orbit of D. So, we

have
m+n

Il (e —5) = (1)
=0

Now, let us determine the sign of D{m +n + 1}.
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sign(D{m +n+1})

<<—1> I1 r(a») siga(D)
” m+4n m4n
= (=i (H r(ay - J)) (H r(am — j)) sign(D)
= =0

= (_1)m+n+l(__1)nm sign(D) = (_1)(m+1)(n+1) sign(D)

From this, we see that when m and n are both even, the order is 2(m + n + 1).

Otherwise, it is m+n + 1. O

5.5 Type B

In type B,, the only simple root which is a cominuscule root is o; and the comi-
nuscule poset is the grid poset P; 2n—1. The Coxeter number k is 2n in this case.

Therefore, we have the desired result, i.e. 72(1+2n=1+1) — 72(A+1) — 44,

5.6 Type C

In type C,, the only simple root which gives rise to the cominuscule poset is o,

and the cominuscule poset is the type of Il in Figure 5.2.

Example 5.6.1. Here we illustrate the root poset of C, and the shaded area

shows the cominuscule poset over the simple root o,.
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Figure 5.4 The root poset of C,, and the cominuscule poset C; over the simple

root o,.

This case is still open. We give the detailed discussion of this case in the conclusion

of the thesis.

5.7 Type D

In type D,, n > 3, there are three simple roots 01, o,_1, and o, which give rise to
cominuscule posets. The simple roots ¢,,_; and o, give rise to cominuscule posets

of type Il which is the same as the cominuscule poset for C),_;.

The simple root o gives rise to the cominuscule poset of type lll. The cominuscule

poset Cy; and the poset of order ideals J(Cyy;) is shown as follows:
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2n-3 2n-1

+1

Figure 5.5 The cominuscule poset C);; and the order ideal poset J(Cy;) for the

simple root o) in the root system for D,.

Now, we are going to prove Conjecture 5.3.4 for the cominuscule poset Cy.

Theorem 5.7.1. Let A(p, .,) be the incidence algebra of the poset J(Ciy) of size

2n for the corresponding root system D,. The Auslander-Reiten translation T on

Ko(DP(mod A(p, ¢,))) has finite order of 2(h + 1) where h is the Cozeter number

for type D,,.

Proof. We will first write some orbits of 7 explicitly to see the order. In this

poset, we distinguish four cases for the action of 7 on the stalk complexes of the

corresponding simple modules:

1. Let S; be the simple module supported over the vertex j where j # n,n +

1,74 2 or 1. Consider the stalk complex 0 — S;? — 0, then the action of 7

is calculated as follows:
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o Take the projective resolution 0 — P;-; — P} — 0 of 5.

o After applying the functor (— ® DA(p, ,)) we get the injective reso-
lution 0 — Ij"_l1 — I? — 0 which is quasi-isomorphic to 0 — Sj__ll —

0— 0.

e Finally the shift [-1], 0 = S?_; — 0.
We conclude that 7(0 — S — 0) 20— 5} ; = 0.

2. Let S; be the simple module supported over the vertex 1. Consider 0 —

S9 — 0, then we compute 75; as follows:

e Write the projective resolution 0 = P — 0.
e Apply the functor, then we have 0 — IY — 0.
e Now apply the shift [—1].

Thus, we get 7(0 = SY —» 0) =0 — I = 0.

3. Let us now consider the simple module S,,3, then the action of 7 on the

stalk complex 0 — S2 +2 — 0 can be computed as follows:

e 0 P2 — P7' @ P, & P, — 0 is the projective resolution.

e After applying the functor we get 0 — I3 — I;' @ I,;ll — 13,0

which is quasi-isomorphic to 0 — S;2, — 0.

e and now apply the shift functor [—1], then we get 0 — S}, — 0.
So, we have 7(0 = S%,, = 0) =0 — S;}; — 0.

4. Finally we will look at the simple S, or S,;1. We write the proof only for the

vertex n since the proof of the other case is identical. Consider 0 — S2 — 0.

o Write the projective resolution 0 — P %, — P? — 0.
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o Next, we get the injective resolution 0 — I}, — I — 0 and the

corresponding element in Ky is —[Sp—1] — [Snt1].

e The shift functor is —id in Kp, thus 7([Sy]) = [Sn-1] + [Sn+1] in Kp.

Note that 7([Sn+1]) = [Sn-1] + [Sa] in K.

Now, we will write two different T-orbits in K. Assume 7 > n + 2. First 7-orbit

is as follows:

[S;] —5[Sj—1] = «++ = [Snta] — [Sns2] — —[Sna] 5

~[Sn-g] - D5 =[] 5 [B] > =[S2n] > --- — =[5]]

Therefore, we conclude that for j € {1,2,--- ,n—1,n+2,n+3,---,2n},

([S;]) = (8]

The second T-orbit is calculated as follows. For simplicity, we assume n is odd

since the case n is even is not significantly different.

[Sn] —=[Sn-1® Sp41] = [Sn—2 ® Sn1 ® S,1]
3 [Sn-3® Sn2® Sn1® Sny1] — -
L [5105:d  ®S_10 S,
3 —[Iy] = —[Sns1 © Sns2 ® Sn43 @ - © San1]
> —[Sn ® Snt2 D Sny3 @+ -+ D San—s
— -+ = —[Sps1 © Spa]
— —[Sa]
Thus,
721 ([Sn]) = —[Sn]
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To sum up, in both orbits we see that the order of 7 is 2(2n — 1). We can

see from these orbits that 7 acts finitely on every simple. So, 72*~! = —id in

the Grothendieck group Kj. Also, recall that the Coxeter number in type D, is
2n — 2. This finishes the proof. E

We can give a second proof of the previous result which in fact establishes more.

Theorem 5.7.2. D*(mod A(p,q,)) is fractionally Calabi-Yau.

Proof. Let Dy, be the path algebra with the following orientation:

2n
1 2 e 2n—2<—2n-—1
Let My be the module over the algebra D,, with dimension vector (1,1,---,1,1),
and M; be the module with dimension vector (1,1,---,1,2,---,2,1) where we

have the dimension 2 appears i times for ¢ > 0. Let us now consider the following
module: T=P1@PQ@"'@P_l@PZn_l@PZnGBM()@M]@"‘@Mn_z which

is illustrated in Figure 5.6.
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Pn—l'."'“..'

Figure 5.6 An illustration of the module category of D,,, and the tilting module
T.

It is not difficult to see T is a tilting module. So, we consider the endomor-
phism algebra EndT which is the algebra A(p,.,). Therefore, we have that
DP(mod A(p,,s,)) is derived equivalent to D?(mod D,,). We know by (Keller,
2005, Example 8.3(2)), D’(mod D,,) is fractionally Calabi-Yau, and therefore
Db(mod A(p, +,)) is also fractionally Calabi-Yau. Thus, we have the desired re-

sult. M|

Remark 5.7.3. Theorem 5.7.2 can also be proved by using the technique of flip-
flops of Ladkani (Ladkani, 2007)[Theorem 1.1]. Let P be a finite poset, P! be the
poset with a unique maximum element added to P, and Py be the poset with a
unique minimum element added to P. Ladkani shows that P! and Py are derived
equivalent. Using this fact, we can show that the poset J(Cyj;) of size 2n is derived

equivalent to D,,.

Example 5.7.4. In this example, we use Ladkani’s technique showing that J(Cy)

of size 8 is derived equivalent to Ds.
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Figure 5.7 The derived equivalent posets

7N

0.8 Exceptional cases

There are two cominuscule roots which give rise to the same cominuscule poset for

type Eg and there is only one cominuscule root which gives a cominuscule poset

for type E;.

Ce; Ce,

Figure 5.8 The cominuscule poset Cg, and the cominuscule poset Cg,

We checked that Conjecture 5.3.4 also holds for these two exceptional cases by
using the mathematical software SageMath (Stein et al., 2017).






CHAPTER VI

MOVIES AND THE PANYUSHEV MAP

In this chapter, we will define a domino configuration D associated to a configura-
tion D. Recall that in Section 4.5, we proved the periodicity of 7 for J(Pp, ) with
a corresponding cyclic action on the configurations. Now, we will interpret the
periodicity of 7 from a different perspective using the combinatorics of domino

configurations.

We will also study a remarkable map which is defined on order ideals in a poset (Pa-
nyushev, 2009). In the literature, there are different names for this map. We will
call it by Panyushev map Pan. Moreover, Pan, or some variations of it, is exten-
sively studied by many mathematicians in various setting (Brouwer & Schrijver,
1974), (Fon-Der-Flaass, 1993), (Cameron & Fon-Der-Flaass, 1995), (Reiner et al.,
2004), (Panyushev, 2009), (Stanley, 2009), (Striker & Williams, 2012) (Armstrong
et al., 2013), (Rush & Shi, 2013), (Grinberg & Roby, 2014). We investigate a con-
nection between the Coxeter transformation 7 and the Panyushev map Pan. This
connection requires us to work with a variation of domino configurations called a
configuration of singletons S associated to a configuration D. We will see that the
behavior of Pan is obtained by the rotation of the configuration of singletons. We

remark that this amounts to a proof of the order of Pan on a grid which goes back
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to Brouwer and Schrijver (Brouwer & Schrijver, 1974) in only slightly different

form.
6.1 Configurations of dominos
We start this section by recalling that we write £ := {-m,--- ,-1,0,1,--- ,n}

for the elements of Z/(m~+n+1). Let D = {i; < iz < --- < in,} be a configuration

wherei; € 2,1 < j < m.

We consider a frame Fr,, .1 which consists of m + n + 1 columns. We divide
the frame into two different regions: the dark zone and the light zone. We label
the columns with respect to our starting poset Py, ,: we let the width of the light
zone be n + 1, and we label the columns 0,...,n. The width of the dark zone is

m; we label the columns of the dark zone from —m to —1.

Definition 6.1.1. The domino configuration Dp associated to a configuration
D = {iy < i3 < -+ < ip} consists of m dominos placed in Fryiny1 so as to

occupy the columns i; — 1, 4; for each 1 < j < m.

-m---=1:0 1 --- n

s

[
|
I
|
I
i
|
|
|
|
|
|
|
1
|
|
|
|
|
)
|
|
I

dark zone! light zone

Figure 6.1 An illustration of a domino configuration.
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For convenience, we do not necessarily draw all dominos in the same row, but
their vertical position does not carry any significance. Notice that no domino
configuration is going to fit into the dark zone completely since we have m distinct
dominos. This means we are going to have at least one domino or part of it in the
light zone. Since we assume our frame is cylindrical, i.e. we identified both ends,
it is possible to have a domino half of which sits in the light zone while the other
half of which sits in the dark zone. There are two possible positions for this case:

being in columns —m and n, as well as being in columns —1 and 0.

Let @ = (0%|A*, 32, -+ ,A2"|n>+1) € E; be an enhanced partition. In the
following, we will define a marked light domino configuration D}, corresponding to

the enhanced partition o € Ey.

Definition 6.1.2. In the frame Fr,, .11, we place

e for each i € R,, one domino marked on both sides with a;; — 1 dots and the

right half of it sitting in the column A;.

e one domino marked on the right half with ag — 1 dots and the right half of

it sitting in the column 0.
¢ one domino marked on the left half with «,,; — 1 dots and the left half of
it sitting in the position n.

We call this configuration of r + 2 dominos with the marks on the dominos

as a marked light domino configuration D,.

In the following Figure 6.2, an example of a marked light domino configuration is

shown.
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Figure 6.2 An illustration of a marked light domino configuration

Let © denote the set of domino configurations and ©* denote the set of marked
light domino configurations. Note that there are m dominos in a domino config-
uration associated to D = {i; < i3 < --- < i, } and there are r + 2 dominos and
a total of m — r — 2 marks in a marked light domino configuration associated to

@ = (0%[AT, A2, - -+ , AS|mer+1),

We defined a map ¢ in Section 4.5 from the set of configurations D, ,, to the set
of enhanced partitions E;. Now, we can translate this map to a map ¢, from ©

to D*. Let

P DD

Let Dp € ®. Then ¢,(Dp) is defined as follows: For every domino in Dp whose
right half sits in the column k in the dark zone we count ¥ dominos to the right,

and mark the corresponding domino on both sides, and then delete the domino
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in the dark zone.

The map o, is obviously well-defined. The following lemma shows the reason why

we call them 'marked light’.

Lemma 6.1.3. For each domino whose right half sits in the column k in the dark

zone, the k-th domino to its right sits, partially or fully, in the light zone.

Proof. Here the argument is that for a domino, the right half of which sits in the
column k in the dark zone, there are only k — 1 dominos that can fit entirely in

the dark zone to its right. (I

Therefore, a marked light domino configuration is a domino configuration at least
partly in the light zone with some marks. Notice that the number of dominos and
the number of times it is marked in total for D} sums up to m with respect to

the description above.

Lemma 6.1.4. The map p. is a bijection.

Proof. Let Dp,Dp, € ®. Assume ¢.(Dp) = p.(Dp). This means that Dp
and D}, has exactly same domino configurations in the light zone. Then, the
injectivity of ¢, follows from the fact that dominos do not coincide. We cannot
have two dominos sitting in the same place in the dark zone, and the marks in
the light zone are certainly determined by the positions in the dark zone. For an
m X n grid poset, recall that the cardinality of the set ® of domino configurations
is (™*"*1) which equals to the cardinality of the set ©* of marked light domino
configurations, because the set ®* can be thought of as the collection of multisets

of size m on n + 2 elements. This argument gives us the desired bijection. O

Example 6.1.5. Here are examples of a domino configuration and the corre-

sponding marked light domino configuration for the grid poset Ps7. Since m is 5,
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we have five dominos placed in the frame Fry3. We label the light zone from 0 to

7 and dark zone from —5 to —1.

Since we have two dominos placed in the dark zone, we are going to mark two

dominos in the light zone.

Consider the first domino in the dark zone. Since its right half sits in the column
—1, we mark the first domino to its right which is the one sitting in columns
—1, 0. Notice that we marked only right half of the domino which sits in the

column 0.

For the other domino the right half of which sits in the column —3, we mark the
third domino on both sides.

=514 =8=Bri0a0 B d dVE 6T =Eedmareaiinl 0 B Bid 56

] 1
] ] ]
' o - ' ‘ HONCE - i
: ) ! | x| :
=) | : : I
1 g 1 | '
: i l i
1 1 1 1
1 1 ] 1
1 1 ] 1
1 1 1 1
1 1 ] i
] 1 1 1
] 1 ] 1
1 i 1 (
1 : 1 1 : 1
, dark zone light zone : | dark zone light zone :
I . 1 1 T 1

@ 1)

Figure 6.3 A domino configuration (I) and the corresponding marked light

domino configuration (II)

We sometimes present domino configurations and marked light domino configu-

rations in one frame as shown below.
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Remark 6.1.6. Recall that for a given enhanced partition o € F, we can write
the projective resolution P,. Assume that |R,| = k, then P, has 2*¥ modules
in total. Notice that the corresponding marked light domino configurations D},
records the labeling of every module in P, as follows. Dominos in D}, are labeled
by the columns in which they sit in the frame. We read one label from each
domino in D}, at a time and form a partition from these labels. If a domino lies
in columns —1 and 0, we only read a zero. If a domino has marks, we repeat
the label in the partition that many times. By the description above, we produce
2 partitions where k is the number of dominos in D?. Notice also that « is the
partition which is obtained by reading the rightmost part of the dominos. We
enhanced a from D, as follows: (i) If the label 0 comes from the right half of a
domino and if that domino has ! marks, then we put the first bar after the I-th 0
in a; (i) If the label n comes from the left half of a domino and if that domino

has [ marks, then we put the second bar before the I-th n in a.

Example 6.1.7. We write the corresponding projective resolution of the dominos

in Example 6.1.5 as follows:

Pa=001,1,3)): 0 = Fl0,0002) — Ploo,1,1,2) ® Fo,0,003 — Poo,3) =0
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6.2 The movie for a domino configuration

Let Dp be a domino configuration and D, be the marked light domino config-
uration. As we define a shift operation {1} on configurations, we will do the
same for domino configurations. Consider a domino configuration Dp in a frame
Frmin+1, and start shifting this configuration by one to the left in the frame at
each step. We call this operation on domino configurations also a shift {1}. There-
fore, Dp{i} is the i-th times shifted version of Dp in the frame. After m+n +1
steps, clearly we will come back to the domino combination we started with in
Froiny1. We will have a full orbit of these domino configurations in the frame.
By the map ¢, we can consider the full orbit of the corresponding marked light

domino configurations as well.

Remark 6.2.1. When we apply 7 on the projective resolution P,, we get a
projective resolution starting with Pj(qy- Therefore, as it happened in the case of

configurations, f corresponds to shift operation {1} on Dp.

Example 6.2.2. For 5 x 7 grid, consider the following projective resolution and

the corresponding combinatorics:
Pa: 0= Popo02 — Foo,1,1,2) @ Foo003 — Fooay =0
M = {f(a) = (0’0’0’1’3) s LA (0’0a1a1,3)}

We can write the projective resolution after the action of 7 to P,, and show the

corresponding combinatorics as follows:

7Pa: 0 = Poop11) = Pooozz) — 0

M, ={(0,0,0,0,2) < --- < g(a) = (0,0,0,2,2)}
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Definition 6.2.3. We call the orbit of marked light domino configurations in a

frame a movie.

Example 6.2.4. We continue with Example 4.6.3. Let a = (|1,1,2,3,3]). We

will write the orbit of projective resolutions with the homology at the top of the
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resolutions.

[[(0,1,2,2,3),(1,1,2,3,3)]]

0= Pooazy = Pooiss @ Painzy @ Foozes —

Pionass ® Pinnss © Pangas = Piuizssy = 0

(001, 2, 8), (011,23

0— P (3,20,0,1,3) — P (5,10,0,2,3) ® P (3,11,1,1,3) = P12
[[(0,0,0,1,3),(0,0,1,1,3)]]

0= P00 ~ Poorny ® Poooes — Foonia)
[[(0,0,0,0,2),(0,0,0,2,2)]]

0— P(B,lo,o,l,l) = P(%,0,0|2,2|)
[[{0,0,0,1,1), (1, 1,1, 1,3)]]

9= F (B,lo,o,o,s) =25 31,1,1,1|3)
[[(O’ 0’ O’ O’ 3)’ (07 3’ 37 3, 3)]]

0 — Pohaza — Posssa)
[[(O, 2, 2’ 2’ 2), (2’ 2’ 3’ 3’ 3)]]

0= Pilass — Flasss
[1,1,3,3,3),(1,3,3,3,3)]]

0= Pobass = Pazzss ® Fossss = Flusass)
[1(0,2,2,3,3),(0,2,3,3,3)]]

—9 as] —1 0
O _) P(0y1=212v3) _) P(012’2)213) @ ‘P(01173)333) _) P(0]2373I3)

Here is the corresponding movie for this orbit:
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Figure 6.4 The corresponding movie for a

Example 6.2.5. Here is another example of a movie for the corresponding 7-orbit

of Poj1,1,3,3))-
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6.3 The Panyushev map

In this section, we will discuss a remarkable map Pan defined on the order ideals of
a poset in (Panyushev, 2009). By (Rush & Shi, 2013), we know that the Panyushev
map Pan” = id on the order ideals coming from cominuscule posets. In Chapter 5,
we proved that 7("*1) = —id for the two of three infinite families of cominuscule
posets and exceptional cases. Ignoring the sign, we will investigate why is the
order of 7 one bigger than the order of Pan. We will use the combinatorics of
domino configurations and configurations of singletons to show the similarities of

7 with the Panyushev map Pan.
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Definition 6.3.1. Let | be an order ideal of a poset P. Then Pan(l) is defined to

be the order ideal generated by the minimal elements not in I.

Note that the order ideals are down-closed sets in a poset. We define order filters

as up-closed sets in a poset. Then, the inverse of the Panyushev map Pan! is

the complement of the order filter generated by the maximal elements of I.

Theorem 6.3.2. (Rush & Shi, 2013, Theorem 1.4) The Panyushev map has finite
order on the cominuscule posets, specifically Pan® = id where h is the relevant

Cozeter number.

Example 6.3.3. In Figure 6.5 we show an example of one orbit of Pan on the

order ideals of P; 3.

<§><§><§><§><§>

(0,2) (1,3) (2,2) (0,3)

Figure 6.5 An orbit of Panyushev map Pan

Example 6.3.4. Here is another example of a Pan-orbit for Ps 3.
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PR

(1,1,2,3,3) (0,2,3,3,3) (1,3,3,3,3) (2,2,2,2,2)

2% BB

(0,0,0,0,3) (0,0,0,1,1) (0,0,1,1,2) (0,1,1,2,3)

6.4 The short movie for the orbit of the Panyushev map

In this section, we are going to describe a movie of orbits of Pan for the grid
posets P, ,. We recall that Pan™*" = 4d for grid posets which come from the first
infinite family of the cominuscule posets. In this section, we write Z’ := {—m +
1,---,-1,0,1,--- ,n} for the elements of Z/(m+n) and D = {i; < i3 < -+ < i}

for a configuration where i; € 2, 0 < j < m.

Similar to the previous section, we consider a frame Fr,, ., of size m 4+ n and we
divide the frame into two different regions: the dark zone and the light zone. We
label the columns with respect to our starting poset Py, ,. We let the width of
the light zone be n + 1, and we label the columns 0, ...,n. The width of the dark
zone is m; in this case we label the columns of the dark zone from (—m + 1) to

-1
We first define a configuration of singletons Sp for a configuration D as follows.

Definition 6.4.1. The configuration of singletons Sp associated to a configura-
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tion D consists of m distinct boxes in the frame Fr,,,, each of which is placed in

the column i; € D. We write G for the collection of configurations of singletons.

Secondly, we give the following definition. Let oo = (AT*,--- ,A2"), 0 < A < A <

-+ < A < n be a partition.

Definition 6.4.2. The marked light configuration of singletons S}, associated to
a partition « consists of r distinct boxes in the frame Fr,,,, each of which occupy
the column )\; € o and each of which has a; — 1 marks. We denote by G* the

collection of marked light configurations of singletons.

The map ¢, we defined from D to D* can be modified to this setting.

w6 56"

where G is the set of configurations of singletons with m boxes and G* is the set

of marked light configurations of singletons with r boxes and m — r marks.

Let Sp € &. ¢3(Sp) is defined as follows: For every singleton in Sp in the column
k in the dark zone we count & dominos to the right, and mark the corresponding
singleton, and then delete the singleton in the dark zone. Similar to the proof of

Lemma 6.1.4, it can be shown that this gives us a bijective map.

Definition 6.4.3. We call the orbit of marked light configurations singletons in

a frame Fr,,,,, a short movie.

Example 6.4.4. Let us see the corresponding short movie for the partition

{0 1,18, 8
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Figure 6.6 The orbit of {—4,—2,0, 1,3} under the shift {1} and the correspond-

ing short movie.

Let a = (A%,--- ,A2") € F. We reformulate the action of Pan™" on the partitions

as follows: Pan™!(a) =

(()‘1 l 1)> ()‘2 N 1)0!1’ e 7()‘7‘ o l)ar_lanar_l) if A1 7é 0

(Mg — 1)+l (A3 —1)22 ... (A, — 1)21,n>~1)  otherwise.
Note that the set G* is a combinatorial reformulation of the partition set F'.

Lemma 6.4.5. The action of Pan on the set partitions G* corresponds to the

shift {1} on &.
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Proof. We claim the following diagram commutes:
T T

This is just a reformulation of the proof we gave in Lemma 6.1.4. O

_

Pa,n

m+n

Notice that we can easily see that Pan = id within this combinatorics since

the order of {1} is obviously m +n on S.

6.5 The Coxeter transformation and The Panyushev map

In this section, we define a map 2 from © to G as follows: for every Dp € D, the

map Q(Dp) is just deleting the left side of the domino so that it becomes a box.

Remark 6.5.1. When we start shifting the configuration Dp in a frame Fr,;, 1,41,
we come back in the same position after m + n + 1 times. Now, we consider the
configuration of singletons Sp = Q(Dp) in a frame Fr,,,,. We come back in the
same position after m +n steps. The movie associated to Dp exhibits the 7-orbit
for P, and the short movie associated to Sp = Q(Dp) exhibits the Pan-orbit.
This explains why is the order of Panyushev Pan is one less than the order of

Coxeter transformation 7.

Example 6.5.2. In Example 6.2.5, if we apply {2 to the domino configuration
Dp for the configuration {—4 < —2 < 0 < 1 < 3}, then we obtain the orbit of
Panyushev for the corresponding order ideal to (0,1,1, 3, 3).
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Figure 6.7 Movie and short movie for (0,1,1,3,3)

6.6 Explicit description of orbits of 7 and Pan for m = 2

In this section, we will show the 7-orbits and Pan-orbits for order ideals of P )

explicitly. First, we recall the order ideal poset of P(, ;) as follows.
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Figure 6.8 An illustration of the order ideal poset J(P(zn))

We will first write down the orbits of 7 for the order ideal poset J(P(2,5)). Denote
the simple module at a vertex (¢, j) in the quiver of J(P(2,n)) simply by (%, 7). Now,
let us look at the orbits of simples. We can write the action of 7 on the simples

in the Grothendieck group as follows: see Section 4.3.

L 7(0,0)== > (i),

0<i<j<n
j—1
2. 7(0,7) = » (k,j—1) wherel <j<mn,
k=0
3. 7(3,i) = ) (i—1,k) where 1 <i < mn,

k=i



98

4. 7(4,7)=—(t—1,7—1) where0<i< j < n.

We know that

(n,n) if n is odd,
™3 (n,n) = (6.1)

—(n,n) if n is even.
For the purpose of analyzing the combinatorics, we can ignore the sign. The orbits
of 7 are shown in Figure 6.9. We number the orbits with respect to our starting

point and then iteration of 7. Intervals are drawn as triangles or rectangles.

(id)

Figure 6.9 An illustration of some orbits of 7 and Pan in red for J(P¢ )

The only simples which we did not consider are the (7,7) for 1 <1 < n. But, we
n

know that 7(i,1) = Z(z — 1, k) and since we already analyzed the latter, we are

k=i
done.
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Example 6.6.1. In this example, we show the movie and the short movie in blue

for P(sgy in the order ideal poset J(Prg)).
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Figure 6.10 T-orbit and Pan-orbit in blue for J(P )






CONCLUSION

Our aim in this thesis was to investigate the following conjecture by Chapoton:

Given a root system ®, consider the distributive lattice J(®*) of order
ideals of ®*. The bounded derived category D°(mod J($+)) of the
incidence algebra of J(1) is fractionally Calabi-Yau, i.e. some non-
zero power of the Auslander-Reiten translation 7 equals some power

of the shift functor.

One can relax the conjecture in various directions. In one direction, since the
Auslander-Reiten translation 7 on the bounded derived category D?(mod J($+))
naturally defines an endomorphism on the Grothendieck group of the incidence
algebra J(®*) which we call Coxeter transformation, one can ask if the Coxeter
transformation has finite order on the Grothendieck group for J(®*). This is still

a very difficult problem to solve.

In this thesis, we investigated a version of this conjecture relaxed in two directions.
First of all, we considered a variation of Chapoton conjecture where J(®%) is
replaced with the poset of order ideals J(C) of a cominuscule poset C. Then,
instead of working with the bounded derived category we worked on the level of
Grothendieck group of the bounded derived category. This group happens to be
the same as the Grothendieck group of the module category (see Theorem 3.4.3).

Let J(Pmn) be the poset of order ideals in the grid poset P, and A be the
incidence algebra of J(Pmn). There are two obvious choices of generators for

the Grothendieck group Ky(A) of A-modules: (i) The isomorphism classes of
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simple A-modules, and (ii) the isomorphism classes of finitely generated projec-
tive A-modules. The action of the Coxeter transformation (the Auslander-Reiten
translation 7 on Ky(A)) written in terms of these generators does not yield an
easy-to-follow pattern. However, there are other sets of generators one can use. In
Chapter 4, we develop such a finite set of generators. We started with discussing
the periodicity of the Coxeter transformation 7 for the algebra .A4. Using some
powerful combinatorial tools, we showed that 72(™+"+1) = {d in this case. A key
idea was to consider the orbits of 7 consisting of elements which correspond to cer-
tain projective resolutions. These projective resolutions helped us to understand
the structures of the orbits combinatorially. After explaining the corresponding
combinatorics, we showed that the Coxeter transformation acts by a cyclic per-
mutation on the classes corresponding to these projective resolutions, i.e. there is
a cyclic order of these generators and the Coxeter transformation sends one gen-
erator to the next. Finally, by showing that the elements corresponding to these
projective resolutions generate the Grothendieck group, we succeed to prove our
claim in Chapter 4 for grid posets Py, , which come from the first infinite family

of cominuscule posets.

We ultimately would like to address Chapoton’s conjecture in the most general
setting, and therefore, we need to expand the validity of our combinatorial result
to a more general setting. So, we consider the incidence algebra of the poset of

order ideals J(C) of a cominuscule poset C in Chapter 5.

Cominuscule posets are special type of subposets of the poset of order ideals J(¢7).
There are three infinite families of cominuscule posets and the two exceptional
cases. We succeeded to extend our result to two of the three infinite families of
cominuscule posets, and for the exceptional cases. Moreover, we showed that in

each case 72("1) = id where h is the relevant Coxeter number.
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We also managed to go further and verified that the 2(h + 1)-th power of the
Auslander-Reiten translation is indeed is a power of the ordinary shift functor [1]

on the bounded derived category for the cominuscule poset of the third infinite

family, i.e. D°(mod J(Cyy))) is fractionally Calabi-Yau.

For the exceptional cases, we verified the finiteness of the order of the Coxeter
transformation with the help of a computer algebra system SageMath (Stein et al.,

2017).

The remaining open case is the case of the cominuscule poset of second infinite
family shown in Figure 5.2. We conjecture that the order is again 2(h + 1) where
h is the relevant Coxeter number. It turns out that the combinatorics of this
case is really different from the other families. The difficulty one has to overcome
is finding a nice basis for the Grothendieck group and showing the action is by
permutations, cyclic or otherwise, in this remaining case too. We provided some

examples and found promising tactics to attack this case below.

74 The second infinite family of cominuscule posets

In this section, we will further investigate the cominuscule posets of type C;;, and

we will show some orbits of Auslander-Reiten translation 7.

If every element in a 7-orbit forms an interval over the poset, we call this orbit
a good orbit of 7. We ask the following question: Are there good orbits of 7 for

J(Cn)? We will first give some examples.

Example 7.1.1. Let J(Cc,) be the order ideal poset of the cominuscule poset Cc,
coming from type C,. We show here an example of one of the good 7-orbits for

J(Cc,) in Figure 7.11.
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Figure 7.11 An example of a good orbit of 7 for the poset J(Cc,)

Example 7.1.2. Here is another example for J(Cc,;) in Figure 7.12.
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Figure 7.12 An example of a good orbit of 7 for the poset J(Cc;)
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Now, the question is how many good 7-orbits we have for J(C);). More specifically,
we can ask the following question: For which vertices does the iteration of 7 gives
rise to intervals over the poset. We will call the vertices which do not give rise to

intervals as red vertices.

Example 7.1.3. Figure 7.13 shows the red vertices for J(Cc,) and J(Cc;).

(1)

Figure 7.13 (1) for J(Cc,), (2) for J(Cc,)

We observe that the number of red vertices goes as follows: 2, 10, 32, 84 ....
The (OEIS Foundation Inc., 2018) suggests that the formula for these numbers
may be a(n) =2(2" — 1 —n(n+1)/2).
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& The Coxeter transformation and the Panyushev map on cominuscule posets

In the course of constructing a combinatorial setup for our proof of the finite-
ness of the Coxeter transformation, we observed that the orbits of the Coxeter
transformation and the Panhusyev map are very similar. The Panyushev map is
a combinatorial function defined on posets of order ideals. In Chapter 6, we show
that there is a structural similarity between the Coxeter transformation and the
Panhusyev map for the grid posets, i.e. the first infinite family of cominuscule

posets. Now, we need to investigate the other cases.

For the third infinite family of cominuscule posets, it is not difficult to verify a
similarity thanks to the simple structure of its order ideal poset. We give an

example in the following.

Example 7.2.1. In this example, we will look at the 7-orbits and Pan orbits for

the cominuscule poset Cp, coming from the third infinite family.

(I) (I1)

Figure 7.14 (I) for Cp,, (II) for J(Cp,).
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Figure 7.15 7-orbits in red and Pan-orbits in blue.

The difficulty with the second infinite family of cominuscule posets is that they
are neither as simple as the third family of cominuscule posets, nor do we have
nice combinatorial tools such as movies and short movies we developed for the
first infinite family of cominuscule posets. So, it becomes difficult to see the
reason for the similarity between the orders of the Coxeter transformation and
the Panyushev map in this case. We conjecture that for the second infinite family
of cominuscule poset, 72(A*1) = id. Recall that Panyushev map Pan?" = id on
order ideal poset of cominuscule posets. We expect to see a similar connection
between 7 and Pan in this case as well. But, for now this still remains as an open

problem.
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