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0. Introduction

Let p be a prime. The theory pCF, of p-adically closed fields of p-rank d was
introduced in [21] to study the model theory of finite extension fields (of a given
degree d) of the field Q, of p-adic numbers. Among other things Prestel and
Roquette generalize Macintyre’s elimination theorem for pCF (d =1, [19]) but
with the addition of constants ¢4, ..., ¢; such that the ¢; yield a basis for the
valuation ring modulo p as a vector space over F,. A primitive recursive
procedure for this elimination has been given in [27] and [13]. For a coun-
terexample to see that Macintyre’s language alone doesn’t suffice in general for
d > 1 see [25].

The results of this paper consist of an explicit axiomatization for the universal
part of pCF, in the Macintyre—Prestel-Roquette language and a model-theoretic
proof of an elimination theorem for Th({Q, : p prime}).

Section 1 contains basic definitions from [21], to which we refer for further
details. We also give basic results we shall appeal to in Section 2.

In Section 2 we give our axiomatization for the universal part of pCF;, in the
language of elimination to be called %,(P,) below. This adds a new element in
the analogy between the p-adic fields and the real field by giving an exact analog
to the notion of ordered field. The basic predicates P, of %,(P,), denoting
nth-powers, yield for each n» a multiplicative subgroup of finite index which we
denote by P,. In our axiomatization, emphasis is given to the fact that for each of
these groups the language of elimination contains closed terms giving a full set of
coset representatives. A different axiomatization for (pCF)y in Macintyre’s
language was obtained independently by E. Robinson [23, 25]. We discuss it at
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the end of Section 2. When establishing our axiomatization we get, as a
byproduct, first-hand information on the model-theoretic réle of coset repre-
sentatives for P, in the elimination theory. This can be illustrated by a simple
proof of uniqueness of p-adic closures we give in [4]. In a similar way first-hand
knowledge of the 1-types over models of pCF, can be used to give a treatment of
the model theory of pCF, in parallel with Abraham Robinson’s treatment of real
closed fields: e.g., proofs are provided in [4] which readily transpose to the case
d>1.

Finally, in Section 3, the key argument in the proof of uniqueness of p-adic
closures alluded to above is used to give a model-theoretic proof of an elimination
theorem for Th({Q, :p prime}). Coset representatives of the P, are again in the
foreground. This result might be relevant when looking for some uniformity with
respect to p in Denef’s work concerning Poincaré series (see [12]). Connection
with known elimination theorems is made.

For valuation theory we refer to [22] and for model theory to [7]. We use script
letters &, B, . . . in the standard model-theoretic fashion. We write R or R* for
the interpretation of the relation symbol R in & and R*(a) for o F R(a). Further
notation is listed below.

Notation
L = the language of fields (0, 1, +, —, -, 71),
card X = the cardinality of the set X,
x=(x,...,%,),
A’ = the group of units of the ring A,
v,(n) = the p-adic valuation of the integer n.

If K is a field or a valued field,

char K = the characteristic of K,

val K = the value group of X,

v(x) = the value of x for the valuation v,
Vi = the valuation ring of X,

res K = the residue field of K,

i = the residue of x via ~: Vx—res K.

1. Preliminaries

We construe a valued field as a domain equipped with a divisibility relation
D(x, y) to be interpreted as v(x) <v(y) (see [20]). The relation D is axiomatized
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by the universal axioms
=D(0, 1),
D(x, y) v D(y, x),
D(x, y) A D(y, z)— D(x, z),
D(x,y) AD(x', y')—= D(xx', yy"),
D(x,y) A D(x,y" )= D(x, y +y).

Note that one can make sense of a valuation map v for a domain instead of a
field. Then, both v and D extend uniquely to similar structures on the field of
fractions, namely

v(a/b)=v(a) —v(b) and D(a/b, c/d)<> D(ad, cb).

Our language of valued fields, %, is the language of fields L augmented with a
binary predicate D(x, y) to be interpreted as a divisibility relation. We will
nonetheless currently refer to the valuation map associated to a given divisibility
relation.

Definition 1.1. Let p be a prime. A valued field K of characteristic 0 is a p-valued
field if res K is of characteristic p and the dimension of the vector space Vi/(p)
over [, is finite. If d = dim Vi/(p), then K is said to be of p-rank d.

The fields Q@ and Q, with the p-adic valuation are both p-valued fields of
p-rank 1. Finite extensions of Q, of degree d are p-valued of p-rankd. A
p-valued field has finite absolute ramification index (and so has a discrete value
group) and finite absolute residue degree (and so has a finite residue field). We
refer to these numbers respectively as the p-ramification index, denoted by e, and
the p-residue degree, denoted by f. We then have ef = d. A subfield of a p-valued
field of a given p-rank need not have same p-rank. However it is the case if one
augments the language with constants c,, ..., ¢, and interpret 1, ¢,, ..., ¢, as
giving a basis for V/(p) over F, in any p-valued field of p-rank d. We denote by
%, this extension of £. We sometimes let ¢, stand for the constant 1 in %,. Note
=%

1.2. Let n(w) denote the following formula of %,

D(1, w) A=D(w, 1) A D(w, p) A /\{D(i Lic;, 1) v D(w, i ljc,-) IEA <p}.

Lemma 1.3. In a p-valued field of p-rank d an element w is a prime element if and
only if w(w) holds.

Proof. Suppose 7(w) holds and let v(y)>0. There are 0</,<p such that
v(y =Zhg)=v(p). If v(y)=v(p), then v(y)=v(p)=wv(w). Otherwise,
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v(X ;) <v(p) and v(y) = v(X lic;) = v(w). Hence m(w) implies that v(w) is the
least positive element of the value group, as wanted. The converse is clear. O

We record a strong (but equivalent) form of Hensel’s lemma.

Lemma 1.4. Let K be an henselian valued field and f € V[ X). If there is some
a € Vi such that v(f(a)) >2v(f'(a)), then there is b € Vi such that f(b) =0 and

v(b —a) > v(f’'(a)).

Lemma 1.5. Let K be an henselian p-valued field with p-ramification index e and
eeN such that p 4 ¢ and € >e. Then the valuation ring of K is algebraically
definable by x € Vi iff 1 + px© is an &-th power.

Proof. Necessity follows from Hensel’s lemma. For sufficiency, if 1+px®=y*
and v(x) <0, then v(y)<0 and v(p)=ev(yx~"'), contradicting the choice of
e 0O

It follows that being an henselian p-valued field of a given p-rank can be
axiomatized in the language of rings since we have D(x,y) iff D(1, yx7') iff
1+ p(yx~")¢is an eth power iff x* + py is an £-th power. We now state some key
facts. Let K be an henselian p-valued field of p-rank d, Y ¢ Vi be a complete set
of representatives for res K, and w € K be a prime element. Let B(d, n)=
2dv,(n).

Fact 1.6. For all n €N, any x € Vi has a finite expansion
x=Dymi+x' with y,eY and v(x')>nv().
0

Fact 1.7. If x€K and v(x)=0, then x is an n-th power if and only if
v(x — A") >2v(n) for some A =Y.5@" ya' with y, e Y and v(A) = 0.

Fact 1.8. If x € K and v(x) =0, then Ax is an n-th power for some A as above.
Fact 1.6 is true for any valued field with a discrete value group. The two others

are combinations of 1.6 with Lemma 1.4: e.g. in 1.8 apply 1.6 to x~' and 1.4 to

X" — Ax.

Definition 1.9. We denote by pCF, the theory of henselian p-valued fields of

p-rank d with value group a Z-group. We write pCF when d = 1. Models of pCF,

are called p-adically closed fields of p-rank d.

Finite extensions of Q, of degree d are models of pCF,, in particular Q, F pCF.
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Lemma 1.10. In the trléO‘rjy‘ pbrd the mumpucut {2 uugruup P, U_[ non-zero n-th
powers has finite index with coset representatives among the Ax’, 0<r<n and A

like in Fact 1.7.

Proof. Let KFpCF,, x € K. We have v(x) =nv(y) + rv(mr) for some y € K and
N v < 5 qince val K ic a Z.oronun Hance 11fvm7 71 = ) and the racnult follawe hy
U SST7 TNTE OIS YAL Uy 10 A &£ sluuy LAGRINA U\AJI/ } U aliu Uiy 1wOouIl LVIIUYYD U

Definition 1.11. We denote by Z,(P,) the language ¥, augmented with unary

predicates P, for n =2, each P, to be interpreted as the n-th powers in models of
nCF

Ptq-

Prestel and Roquette showed that pCF, admits elimination of quantifiers in
Z,4(P,). Finally let us remark that if K is a p-valued field of p-rank d, then res K
is a quotient ring of Vi/(p) so that there is always a complete set of
representatives for res K among the ¥ Ic;, 0<I <p.

2. The universal theory of p-adic fields

Let p be a fixed prime throughout. We give here an explicit axiomatization for
the universal part of the theory pCF, in the language Z,(P,). Recall that in
Z,(P,) substructures of models of pCF, are p-valued fields of p-rank d.

It is convenient to establish the following notation.

Definition 2.1. For integers n =2, d >1 let
B(n) =2v,(n),
B(d n) =2dv,(n),
={AeN:1sA<pf™+! p} A},

R,,={re|“' 0sr<nj},

A,={leN:l=Ap", A€ A,,reR,},

AT £ e Rl e _.B(n)+1 2ot el oo 3 B(n)+ 10

iV, = 1L EN.U={ \[} L 15 dll ri-il pUWCl lllUUP >

n

8a, ,,(C\fo, . aﬁ(d n) W) ap+ oyw + + afﬁ(d,,,)wp( )
=] 11l t...0]~ Nl <nl

‘Jd 1‘1 T l b2 T l Ldl{d V=i \l/)',

a(w):=D(1, w) AD(w, 1) A D(w, p) A A{D(z, 1) v D(w, T):T€ E,},
I/(r\ = (1 )/\D(r 1).

il N I Nt RV o

We point out that E, is a finite set of closed terms in %, and n(w) U(x) are

Atamntifae fean favmilaa O wnpemn~tlerals. PR S

Guainiiicrt 11 1orimuias in al/d’ oL 1capcu.1vc1y As we saw plcv‘luual)’ JI\W) defines
a prime element in a p-valued field of p-rankd if c,, ..., c, are correctly
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interpreted. In a valued field with divisibili

in the valuation ring.
Let T, = T be the following theory.

Axiom 1. Axioms for a field of characteristic 0.

Axiom 2. Axioms for a p-valuation.
2.1. Axioms for a divisibility relation D(x, y).
2.2. =D(p, 1), D(x, 1) v D(p, x).
2.3. D1, x)-> \/{D(p,x —i):0<si<p}.

Axiom 3. Explicit definition of P, for units of the valuation ring.

U(x)— [P, (x) o \/{D(pP™*L, x —i):i e N,}].
Axiom 4. Behaviour of the P,.
4.1. P,(x™).
4.2. P,(x) A P,(y)— P,(xy).
4.3. P,(x)—> P,(x7).
44. P, (x)— P,(x).
4.5. P,(x)— P,.(x™).

e 74 h\

4.6. \/{P,(Ap'x):A€A,, T€R,}.
Axiom 5. P,(x)— D(z"x, 1) v D(p", z"x).

The first two axioms are self explanatory in view of Section 1. Axiom 3 is the
..... 14 wxrn smemnvad ol tha Aafimolslatey ~AF 2 marrare (Hant 1 anlalyy 1 tarema
lCDull wo PIUVCU auuut LllC UClllldUlllly UL n- Lll }}UWCI.D \L avli 1. l}, DUlUly 111 o1
of the valuation. Axioms 4.1, 2, 3, 6 say that P, is a subgroup of finite index of
the multiplicative group, with coset representatives in A,. Axiom 5 keeps the P,

consistent with the (lack of) ramification. The following lemma is crucial.

n(KY=2and A=A ... X+ XA ... We have
n(g)=2and A=A, X A, k) We nave

Proof. It suffices to see that for any n =2 there is [, € A, such that P, (I1x).
Indeed, taking n = lcm(n(s)) and I, € A, such that P,)(Ll,") (Axiom 4.6), we
easily get Pn,(I7x) (Axiom 4); moreover if n(t) |n(u), then P.(LI;") by
Axiom 4.4 so that P,y(ll;") (Axiom 4).

Now let Ap” € A, be such that P,,(Ap'x). By Axiom 4 we have F,(Ap'x) and
P,(Ap"). Axiom 5 and v,(A) =0 imply that r =gr’ for some 0<r’<n, so that

P (1) Now A is an intecer and Up (2\ = <0 hv Axiom 3 and since Q is dense in

gq\/v): YUV /v IS all el alls u, o AnilJii Gaiila SiIAV Sot 25 WL IiSC i

its henselization with respect to vp (or alternatlvely, by arguing as if to ‘construct’
a g-th root of A in Q, but using only a finite number of steps (approximations)),
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there is an integer A, € A, such that A7'A? satisfies the condltlons in Axiom 3 in
order that P, (A7'A%). It follows that P,,(/Zx) for [, =4,p" € A,, as wanted. O

To establish our axiomatization we have to show that we can embed a given
model & of T in a p-adically closed field (of p-rank 1) M. The process of going
II'OII] J& io M lIlVUlVéS extenumg .9! to ldfgel' .,Z\ra,)-btruuur% Dy dUUlIlg an n- lIl
root to each element a €  for which P,(a) holds. Let y? = a in a p-adically closed
field (of p-rank 1) and let ,, n=2, be integers such that P,(/,y) holds. Then
P,,(l7a), and the statements of Lemma 2.2 hold uniformly for the /,. The
sequence ([,) tells us in which coset of P, y lies for each n and, as we shall see
later, this information determines the type of y, at least as far as the P, are
concerned. Lemma 2.2 gives consistency conditions for a € & such that P,(a)
holds in order to keep available to us (in some elementary extension) the P,-type
of some g-th root of a.

Let T, be the following theory, d a fixed integer d > 1.
Axiom 1d. Axioms for a field of characteristic 0.

Axiom 2d. Axioms for a p-valuation of p-rank d.
2.1d. Axioms for a divisibility relation D(x, y).
2.2d. °D(p, 1), D(1,¢),i=2,...,4d.
2.3d. D(1 x)-—> \/{D(p, x—1):TeEy}.
2.4d. °D(p, 1+ - -+1,c5), 0, <p not all 0.

Axiom 3d. Explicit definition of P, for the units of the valuation ring.

re s IRE Y4

®) A (W)= [Pa(x) & V{D(?, x ~ (84,n(T w))")
ATD(x = (84,u(% WY, n?): T € EE@*1)],

Axiom 4d. Behaviour of the P,.
4.1d to 4.5d are the same as 4.1 to 4.5.

4.6d. 5(9) =\ {PulBun(E, WIWX) A Ulgan(s, w)):r €R,, 7€ EL
Axiom 5d. P,(x) A (w)—> D(z"x, 1) v D(W", 2"x).

The analogy between T; and 7, is clear anough. Note that T} is universal and it
cfrai htfarward to vnrrFu nlC'R . T, Tha fallawing 1 is tha analac AF T amma D 9

AIVAUL VW GINE WU VVARy pdig r ige A% 1ULUYWLLE 10 I.x < allalvg Ul LAdia 4.4,

e

Lemma 2.3. Let d>1 and consider q,n(1),...,n(k)=2, R=R,q) X -+ X
R, and E = E§@rN*1x ... x EA@nt)* FEor v e E and 1<i<k let 7, be in
Ef@r@*Y gnd denote the i-th component of t. Then we have

LERG) ATW)= VA {Paa@anor(Tes W), UGt W)

Pn(t)(gd,n(t)(tn w)wr(t)(gd,n(u)(tu’ w)wr(u))-l) 1< S, Lus k; n(t) | n(u)}‘
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w
=)
r
a
=

Proof. The proof is the sam ma 2.
field generated by the constants f 2 (Fact
@ v,). O

We shall see that every model of T, can be embedded in a model of pCF,, thus

suG"vv'ing T = (pCFd}V

Theorem 2.4. Let o £T,. Then o - M for some MF pCF,,.

Lemma 2.5. We have TEP,(x) AD(x,y) A D(y,x)—\/ {P.(Ay):A2€ A,}, and
ford>1
JUT &2,

T, P,(x) A D(x, y) AD(y, x) A T(w)

\/fD 7, N~ ﬂ(dn)+1}

— V Al dn\" W).Y)’\ngdn\"x W) . T€Ly,
Proof. Use Axiom 4.6d for x 'y and Axiom 5d to see that r =0. O

Lemma 2.6. Let 4+ T; and MEpCF, such that A is a ¥;-substructure of M. If

D-v! DM £,
ci, JU

Proof. We have P; < PY and [A":P.]=[M :PY] is finite, and P4 and P)’
have the same coset representatives already in A". 0O

Anv p-va alued field of p-rank d, in particular a model of T, can be embedded

£3a2 anea nela ot P oAGAR pPaiit AaSL VL dgy MRV SR

as a valued field in a model of pCF,, see e.g. [8] for a suitable Zorn’s lemma
argument. We are now reduced to show that given a model & of 7, we can start
adding the required n-th roots and stay inside a model of T,. First we reduce to
the case when o is henselian.

Lemma 2.7. Assume s{ & T, and B is an immediate henselian valued field extension
of A. Then B can be expanded to a model B > A of T,.

Proof. Put ¢ =c?. Since B/A is immediate, B is a p-valued field of p-rank d
with the same p-ramification index and p-residue degree and 1, c,, . . ., ¢4 still
form a basis for Vz/(p). We do the case d =1 for definiteness. If x € B, there is
some y € A such that v(xy) =0. Since B is henselian p-valued we get A, xy =b"

- cayre an B
fUl suvLie }Ln < IAln aud b € B Deﬁﬁe P (x) juss 1 n \"'n)'}

(i) This definition is independent of the y and A, chosen. Indeed suppose
v(xy) =0, v(xy') =0, Axy, A'xy’ are n-th powers in B, Pa(Ay)and A, A', y, y' as
above. Then v(A~'y~'A’y")=0 and A~'y~'A’y’ satisfies the residue condition in
Axiom 3 so that P£(A~'y™'A’y’) and P4 (A’y’) by Axiom 4.

(ii) PEN A =P, for all n: easily seen from (i) and using 7.

(iii) We verify the remaining axioms for & = (B, PZ:n=2).
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Axiom 3. Use Fact 1.7 and similar axiom in A.

Axiom 4.1. Use y” for x" if v(xy) =0.

Axioms 4.2-4.5. For example we verify Axiom 4.2. Suppose P2(x,), P2(x,),
v(x;¥;) =0, A;x;y; is an n-th power and P4(A;y;). Then v(x,x,y,y,) =0. Let A be
chosen such that AA7'A;! is an n-th power, so Pa(AAT'A;") (Axiom 3). Thus
AX1X, Y1y, is an n-th power and P4 (Ay, y,) (Axiom 4.2 in A) whence P7(x,x,).

Axiom 4.6. Let x #0, v(xy)=0, y € A. It is not hard to get Pi(Ap~"y) for
suitable A, r, v(A) =0 (cf. Axiom 4 and Lemma 2.5 in A). We have v(Axy) =0 so
A’'Axy is an n-th power for some suitable A’. Hence v(A'p'xp~"y) =0, AA'p’xp~"y
is an n-th power and P;(Ap~ y) So PE(A'p'x).

o By . \ So for soiie V €A a
Axiom 5. Let x, z € B be such that P X ). 90 101 SOmE€ y € A ail
b4

< A

] u
an n-th power and P (Ay). Hence P4 (A~ 1y’l) v(x) =v(A'y™"). The conclusion
follows because the axiom is true in 4. O

1~ A 1 s 4o
A€ Ny, AXY 1S

Z
Q
(=g
o
—*
=
=~
-
-
o
Q
o
=
(=9
=
Q
=
-
=
[¢]
=
[¢]
=
wn
[«
[
&
=
&
w
=
5
g
=,
=}
=]
=
=}
8
-
=
o
=]
=
a
(e}
[¢]
E..
=
aga
—
o
8
8
®

Firet 11ge Aviom 34 ta define P far the 1

tQ a
OISt UsS€ AXIOom Sa O GCine £y UL IV units oi e va

A, such that A, xy satisfies Axiom 3d, etc.

Lemma 2.8. Suppose that for all £ T, and all prime q and a € A such that P} (a)
we can embed s{ in a model of T; where a is a q-th power. Then the same is true

for all natural numbers n.

Proof. By induction on n and using Lemma 2.5 and Axiom 4.6d we can go to a
model Bk T, with b € B such that P,(ab™™) and v(ab™")=0. By the previous
lemma we can assume B henselian whence the result by Axiom 3d and Fact
1.7. O '

Remark that as we just saw above, if o F T, is henselian and P#(a), then a is an
n-th power iff v(a) is divisible by n.

Lemma 2.9. Let Ak T,, q prime, a € A such that P}(a). We can embed A in a
model of T; where a is a q-th power.
Proof. Relying on the previous work we can assume A is henseliar
q +v(a) in val A.

By Lemma 2.3 (2.2) and compactness there is B>, p,eB, n=2,3,.
such that Po(p2a) and P2(p,p,») for all n, m. Then a is not a g-th power/uf B

and X?-a is irreducible over B. Note that B is also henselian p-valued of p-rank d.
Consider the valued field extension B(«a)/B, a? =qa. It has degree g. Now

NS AN LR L) B § Le it AR ALCIRIVAN D& O, Aas LIl

q 4 v(a) in val B and ¢ is prime, so for any x € B(a), v(x) =v(ba’) for some
b € B and 0 =i <gq. This together with Axiom 5d ensures that the p-ramification
index does not increase in B(«). These considerations and v(«&) >0 imply also
that the residue field does not extend. In fact, if v(¥ b,a’) =0, then v(b,a’)=0
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for all i and v(b,a’) >0 for i >0. Thus (B(a), ¢f) is a p-valued fieid of p-rank d
and is henselian.

Let Y={ba':beB,b+#0,0<i<q} and define PY(ba') iff PEZ(bp;’). We
show that (Y, c?, PY) satisfies the axioms of T, concerning the P, and then use

those PY to expand B(a). Notice that if be B, l[eN, [=kq +i, 0<i<gq, then

Bt A—h ; ~—kq PN P e at <
Pn(bpnl) iff PB(bpn qp l) 11 (bu On 1) (as PB(pqu)) iff P,l,/(bu ) Also PY

extends P2, i.e., PYN B = P&

Axiom 3d. Notice that for ye Y, v(y)=0iff y € B.

Axiom 4d. For example Axiom 4.3d. Let y = ba‘ € Y be such that PY(y), i.e.,
P2(bp;"). Then PEb7'p.), y'=b"la'a?’ Since PE(pla) we get

Brp—1,—1,.i—q\ Yy, —1
PE(b7a7'pi9), ie., PX(y~1). Use the compatibility P3(p,0,1) in Axioms 4.4
and 4.5d.

Axiom 5d. We show that if yeY, z,weB(a), n(w) and PX(y), then
v(z"y) <0 or v(z"y)=nv(w). Suppose y =ba’ and PE(bp;’). We have v(z) =
v(b'&’) for some b' € B and 0=<i <gq. Now if

0<v(z®y)=v(b"") + niv(a) + v(b) + ju(a) <nv(w),
then
(*) 0<nqu(b’) +v(a™b%a’) < nqu(w).

But P2(a), P2(p%a), PE(bp;’) yield PE (a™b%’) so that (*) would contradict the
conclusion of the similar axiom in B for the element a™b%a’.

So we have established (Y, c¢Z, PY) E“relevant axioms of 7,” and PYNB =
DB Tat M M= Ria\ Far v = M thare ic v e V atinh that 2fyvu)l =N and cince M ic

i ne* LA/l iV T U\u}- AVl A T UL Lilviw O )’ L= § ouULil Liiab U\A_y} — U, Qllu ollive drz 1w
henselian p-valued of p-rank d there is some A € B, v(A1) =0, such that Axy is an
n-th power in M. Define P¥(x) iff PY(Ay). We can then proceed as in Lemma 2.7
to show that (M, ¢, PM)ET; and P¥NY = P!. This completes the proof. O

Proof of Thpnrpm 24. Use Lemma 2.8. Lemma 2.9 and a standard model-

2P Pl )] ol 008 E00.3 O, Liila aile a4

theoretic argument to embed &f in a model of T, where every a € P; is an n-th
power. Embed this model (as a valued field) in a model of pCF, and conclude by
Lemma 2.6. O

Remark that since pCF,kD(x, y) <> P.(x®+ py®) where £ can be any positive
integer prime to p and larger than d, the above theory immediately gives also an
axiomatization of (pCF,)y in L(c;, P,), i.e., the language obtained when we drop
[ﬂC UlVllelllly I'Cldlloﬁ SyﬁTUUI U

We now compare our axiomatization with that of [25]. Robinson’s axiomatiza-
tion of (pCF)y in £(P,) relies on the fact that the group P, of n-th powers is
‘effectively open’, namely there is an integer r, such that if x, y #0, x € P, and

v(x —y)>v(x) +r,v(p), then y e P,. It is clear how to relate this to Hensel’s
Lemma. He also includes the diagram of Q@ (in (P, \\ but it is not hard to see

B LaRIRiQ. QIS0 ILLINACS AL Llegi 8l 2 et el DRl At I 10 a2

that it is contained in our Axiom 3 and Axiom 5. The other axioms are mainly the
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same as in Axiom 4. So the essential difference lies in Axiom 3. In fact, “P,, is
effectively open” follows directly from Axiom 3 and conversely; they are
interchangeable. To establish his axiomatization Robinson needs to know
explicitly the (number of) n-th roots of 1 in pCF, which can be done easily
because of lack of ramification. The proof is also tied to the rigidity of p-adic
closures, which is established at the same time. It is clear that Axiom 3d is
interchangeable as well with a suitable version of “P; is effectively open” in
pCF,.

Any axiomatization of (pCF,)y in %,(P,) relates to the description of the
points of the p-adic spectrum associated to each completion of pCF,, see [24],
[3], [26], [5]. Along these lines it is clear that Lemma 2.3 is closely related to the
description of Brocker and Schinke [5], via their neat use of lim (L°/L™), L/Q, a
fixed finite extension. —

3. Uniformity of elimination

We now state an elimination theorem for the Q, when p varies through the
primes, namely for the theory Th({Q,:p prime}). We take into account the
residue theory Th({F,:p prime}), which contains a theory of pseudo-finite fields.
A reasonable elimination theorem was shown to hold for those by Kiefe [17],
building on the work of Ax [1]. As a theory of valued fields our theory has two
kinds of models:

(1) those with a residue field of non-zero characteristic p, which are p-adically
closed of p-rank 1;

(2) those of equal characteristic zero, which are henselian valued in a Z-group
with residue field a pseudo-finite field.

Having Shoenfield’s criterion for elimination of quantifiers (later E.Q.) in
mind, we can split the analysis into those two possibilities. The first one is
handled by Macintyre’s Theorem. The second one can be taken care of by the
Theorem 5 in [9], or Corollaire 2.21 in [11], or Theorem 4.12 in [27]. With
techniques of Delon [11] we give here an independent proof based on the key
argument in our proof of uniqueness of p-adic closures mentioned in Section 0.
The global elimination theorem we get for Th({Q,:p prime}) can also be
deduced from the Main Theorem 4.3 in [27]. We discuss this more precisely
below. Similar questions are treated in an unpublished paper of Fried [14], but in
the very different framework of [16] (see also [15]).

We refer to [1] for pseudo-finite fields, e.g., the first-order axiomatization we
implicitly use. We need some preliminary results.

Lemma 3.1. Let n be a fixed positive integer. There is a uniform bound 6(n) for
the index [Q, : P,] when p varies through the primes.
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Lemma 3.2. The theory Th({F,:p prime}) admits elimination of quantifiers in the

language of fields augmented with n-ary predicates Sol, interpreted as
Cal (v, ¥y Y \{\)"-Lvy" l-L . -l-vn——ﬂ\rnfhoflqn

DU\ Ay <« 3 M) =y \J = V) e anic uvu:]

Proof. See [17]. O

Lemma 3.3. Let m, n,d be positive integers. We can find a positive integer
B(m, n, d) with the following property. If k is a finite field with card k >
ﬂ(m, n,d), then forall f, ..., f,€k[Xy, ..., X,], degf <d, such that the ideal
I=(fi,...,fn) in k[X] is absolutely irreducible, the variety defined by I has a

k-point,
Proof. See [1, Section 8. O

Lemma 3.4. For any prime p, M+ pCF, x € M, we have v(x) =0 iff P,(1 + px?) or
B+ p(1+x)?).

Proof. (Cf. Axiom 3 in Section 2.) Suppose v(x)=0. If p#2, then readily
P(1+px?). If p=2, then v(1—-(1+2x)*)=3 when v(x)>0, and v(1—(1+
21+ x)?))=3 when v(x) 0, so that accordingly P,(1 + 2x?) or Py(1 + 2(1 + x)?).

Suppose 1+ px®=y® and U(x) <0. Then v(y) <0 and 2| v(p) which is absurd.

Similarly if 1+ p(1+x)*=y? and v(x)<0. O

Let £’ be the language whose vocabulary consists of the vocabulary of £(P,),

a new constant f, and for n =2, a n-ary predicate Sol, and new constants
where A’(n\ = n“lﬂ(n\ 8(n) oiven bv Lemma 3.1. We first mvp

Upis oy Up s (n) WILIC O W), o) gven oy ».emma 3.1, nrst
an explicit axiomatization for Th({Q, :p prime}).

Let T’ be the theory in £’ consisting of the following axioms:

(1) Axioms for an henselian valued field of characteristic 0.

(2) The value group is a Z-group with unit v(¢).

(3) Pn(\x) < ay (yn = X), D(un,,"r 1) A D(l- un,,*)‘

(4) Sol,(xy,...,x,) > /AD(@, x;) A3y (D(,y)

AD(, Yy +x,y" 4 X))

(5) If the residue field has characteristic p # 0, then it has p elem

(6) D(x, y) o P(x* + 1y*) v Pox* + t(x — y)?).

D V {Pu, t'x):1<j<6'(n),0<r<n}.

(8) If the residue field has more than ﬂ(m, n, d) elements, B(m, n, d) from
Lemma 3.3, and i(X,, ..., X,), - . ., fu(X4, . . ., X},) are polynomials of degree

<d over the valuation ring such fhaf their imaoce f. under the residue man

L WIb VaiuwauUil liidg Sutids uiar wualiad ailagh LS R SR L R ) e

generate an absolutely irreducible ideal over the res1due field, then the f; have a
common zero in the residue field.
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(9) The residue fieid is quasi-finite, i.e., it is perfect and has a unique extension
of each degree.

Proposition 3.5. The theories T' and Th({Q), :p prime}) have the same models.

™ . O PR PPN 2 Al 4L L/ A
Proof. In view of our discussion it is clear that Th({Q,:p prime})rT".

On the other hand, let MET'. If charresM is p#0, then MEpCF, so
M ETh({Q, :p prime}). If char res M is 0, then M is henselian of equal character-
istic 0, val M is a Z-group, and res M is a pseudo-finite field of characteristic 0. By
(1] there is some ultrafilter &% on the set of primes such that res M =IIF,/%.

It follows by Ax-Kochen-Ershov that M=]]Q,/% as valued fields. So
MrTh({Q,:p prime}). O
We need the next two lemmas in the proof of the elimination theorem.

Lemma 3.6. Let K be an henselian valued field of equal characteristic 0 and K, be
a subfield of K. The following are equivalent.

(i) The residue map induces an isomorphism of K, onto res K.
(ll) a maximal trivially valued subfield nf K.

Ko is a maximal aily vaiuea onela

Proof. See, e.g., [18, Lemma 8]. O

Lemma 3.7. Let Ec F be valued fields, Fyc F be such that the residue map
induces an isomorphism « of F, onto res F. Suppose that E,= a [res E] is
contained in E and let K, be such that E,c Ko c F,. Then

(i) E and F, are linearly disjoint over E.

(i) Any x € E[K,) can be written x = Y1 ek;, e, € E, k; € K, and v{e;)) <uvle) if
i<j.
(iii) val EK, = val E and res EK, = res K.
Proof. See [11, Proposition 2.15]. O
Theorem 3.8. The theory T’ admits elimination of quantifiers in &L'.
Proof. We use Shoenfield’s criterion, Let #;, 4, be models of T', o, c M,
f:s413 o4, such that card M; = w and A is w,-saturated. We have to see that f

extends to an embedding 4, — ./MQ.

Case 1: The field res A, has characteristic p #0. Then so do res M; and the M,
are p-adically closed of p-rank 1. We get the desired extension by Macintyre’s
Theorem.

Case 2: The field res A, has characteristic 0. Then the M; are henselian valued
fields of equal characteristic 0 valued in a Z-group with pseudo-finite residue
fields. We argue in the blylc of 1111 to reduce to res A; = res M;; then use our
argument to reduce further to val A, being pure in val M;, and finally close the

case with Ax—Kochen-Ershov.
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{2.1) We may assume A; is henselian. Let n? be the henselization of A; in M,.
Then f extends to an isomorphism of valued fields f* between the Af. This f* is
compatible with the Sol, because those are determined at the level of residue
fields and A?/A; is an immediate extension. For the P,, let y € A% v(y)=0.

There is x € A, such that v(x) =v(y) <v(x —y) and by Hensel’s Lemma we have
ye M IFF \) cM. Clearly such a confiouration trang ers to M. via 'f {and V ce

~ T dVLg o MAVALLY SULIL @ VUL UIGLIVIL MGHBIVIY W i) Via G

versa) and the desired conclusion follows.

(2.2) We may assume res A; = res M;. First, observe that with the interpreta-
tion of Sol, in M;, we can define in a natural way predicates Sol,, in res M; which
coincide with the Sol, of Lemma 3.2. By Lemma 3.2 there exists

g:{res M, Sol,,) & {res M,, Sol, )

extending the map induced by f on the residue fields (res A;, Sol,) considered as
substructures. By Lemma 3.6 and (2.1), iet Ay < A, be such that the residue map
induces an isomorpbism of A, onto res A;, and N; ¢ M; with the similar property
such that Ao N,. Let «;: N,— M, be the inverse to the residue map. By Lemma
3.7, A; and N, are linearly disjoint over Ay, val AN, =valA,, resAN, =

res N; = res Ml and any z € A{[N;] can be written z = ¥, x; y, with x; eAl, y, € Nl
and U\JL,) < U\.k ) if & \j We can thus define a map j A1\1v1)—7112\w25a1 llVlj}
which extends f and is an isomorphism of valued fields. To see that f' is an
Z'-isomorphism, first remark that the Sol, are immediately taken care of because
of g. For the P,, let z = ¥ x;y; with x;, y; as above. Then v(z) = v(x;y;) for some j
and Hensel’s Lemma implies z € M;" iff x;y;e M;". Let u=u,, be such that

v, e M Than > e M i v v c M i vy~ l o A1 6 £ Ny~ 2 MR i
u_y] < l'll . 4 1iwvil o T 1"1 111 A]/V] < l'll vy AIW < l'll 111 J \Ajlu L= 1712 ey

Fx)f'(y;) € My iff f'(z) e M;". (Note that the analytic configuration of z, x;, y;
carries over to M,.)
(2.3) We may assume val A, is pure in val M,. First note that we need only

worry about prime numbers. Let ¢ be a prime. By axiom (7) of T' it suffices to
add a g- th root to any a, € A; such that M, tP (n \ but g Jr'n(n \ in val 4. and

add th root to any a; € A; such that M, but in val A;, and
extend f accordingly. So let a; € A; be as above such that, w.l.o.g, v(a;)>0. Let
1€ My, p,=u,;t" such that y{=a, and p,y; € M;". Let a,=f(a,) and consider
the partial type

2(x) = {x? —a; =0, P,(pux), n=2}.

Claim. X is realized in M,.

Assume the claim is true and ieti y, realize Z. First observe that X7 —gq; is
irreducible over A; and that the induced valuation on A,(y;) is completely
determined, namely

v(eot e, yi+ - +e,_1y? ") =minv(eyl).

(=1 % 1 1O A <L)

sendmg y1 onto y,. Let us see that f” preserves the P,. Le Ay yl) 2= f (xl)

So we get an iegmnrph sm of valued fields f": A;(y,)—
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Wa Ln"n el v — N fAar gnmra A o N e 2~ ey
vwC 11ave U\, ul_yl } = v 101 50i1c u1 cnl anasome Usj< q. Let u2 —/ \uu, then

v(x2d2y2 7y =0. There exists A, € A, such that v(4,) =0 and A,x,d, y7’ € M;". Let

= f(A,); then A,x,d,y;7 € M;" (cf. (2.2)). Hence x, € M;" iff A d,y;/ e M;" iff
/l dlp,', € M;" iff A,d,p’, e M5" iff A,d,y;’ € M;" iff x, € M;" and we are done. By
(2.2) the Sol, are again taken care of by the residue fields. So f” is an
p

'_icamornhiem
ISULIGVUL pPFiilssii.

Proof of the Claim. Since we are in equal characteristic (0, the number of g-th
roots of 1 in the M, is decided in the residue fields and by (?_’)\ has to be the

same. If there is only one g-th root of 1, there is only one choice for y, and
nothing to prove since, then, x e M;" iff x? e M;™ and (p,y,)? = pla, € A,, etc.
So let £ be a primitive g-th root of 1 in M, and b € M, be such that 67 =aq,.
Suppose the claim false. Then there are #n,, . . . —1 such that p,, bt ¢ M;". Let
n=lem(n;), then p,h{’' ¢ M;" for all j (o;'p GMn %). But p, vleM implies
pla, = (p,,b)” € M;". So (p,bx™)? =1 for some xe M, and p,bt’ € M;" for some j,
contradiction. This completes the proof of the claim and (2.3).

(2.4) So we now have A, henselian, res A; = res M; and val A, pure in val M,.
Since val M, is a Z- group and val A, has the same unit, this implies that val A, is a
L-gluup as Wﬁll néi‘lce Uy A.X l\ULllCll“Dl’bllUV Al =< lVll as leucu llClUb, SO lﬂd[
clearly o, <#;. Now, since A, is w,-saturated, it follows that f extends to an

embedding M, — M,. O

The argument related to uniqueness of p-adic closures lies in part (2.3) of the
preceding proof.

Theorem 3.8 can be deduced from the Main Theorem in [27] as follows. The
setting is a 2-sorted language for valued fields, with additional sorts R, k € w, for
the residue rings V/(¢t**'). By Variant 4.5 (ibid.) with 1 =v(t), g=¢t, E, =
{u,;t:1<j<6'(n)} and C=4@, there is a primitive recursive procedure to
eliminate the base field guantifiers. To get rid of the R. sorts for b\n we

eliminate the base field quantifiers. get rid of the R, sorts for we
replace the R;-variables (terms) by R,-variables (terms), using the basic 1dea that
an element of R, is essentially determined by a finite sum yo+ y;t + - - - + yet¥,
v(y;) =0. The problem is to do this in 7’. Now for any non-principal ultrafilter ¥
on the set of primes the ultraproducts [1 Q,/% and [ F,((T))/ % are elementarily
equivalent as valued fields. So, given a polynomial f € Z[X ,o.., X, ]and k>0
there is a bound N(f) and polynomlals geZ[Y, ..., ] Y. (Yl, ey Y,
such that for all p > N(f) the condition R Ef(x;,...,x,)= O is equivalent (in
T’) to a finite set of conditions Rokg(y,...,¥,)=0, where, e.g., if
x; =Y z# mod t**', then Z; = y;, those equations being obtained by identifying R,
with Ro[T)/(T**"), T transcendental over R,, char R,=0. This N(f) can be
obtained primitive recursively as in [10, Section 5], or even explicitly by [6]. In
this way we can replace the Rk quantifiers by Ro quantiﬁers Clearly this
el i iditra AT moiTIA Thic hrimas 13 ey Aibi s gieeilae

PlUbCu\.‘uU lD Dllll l}llllllllVC 1eLul DIVC 11iiS ULIEdS us llltU bUllulLlUllb oLlillial I.U

those of Theorem 4.2 (ibid.) allowing the transfer of (primitive recursive) E.Q.
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from (the theory of...) the value group and the residue field to the whole
structure. Hence we get Theorem 3.8 from axiom (7) of T' together with
standard E.Q. for Z-groups on the one hand, and the Sol, predicates together
with Lemma 3.2 on the other hand. It is well known that the theory of Z-groups
admits primitive recursive E.Q. It is also known that a primitive recursive E.Q.
procedure exists for the elementary theory of finite fields, as given by [16], and
that it can be put in the formalism of Lemma 3.2. Putting everything together we
conclude that T' admits primitive recursive elimination of quantifiers in &£’.

One sees that a suitable version of Theorem 3.8 also holds for finite extensions
of Q, of a given degree d. The same kind of argument applies for the index of P,
etc. However there is no uniform bound for [K':P;] for arbitrarily large finite
extensions K/Q, for fixed n, even if p is fixed, so our method fails for such classes
of local fields.

Example 3.9. Consider the index of P; in Q,(2"3),..., Q,(2""),.... Let

@, =2"". The valuation ring of Qy(w,) is Z,[«,] and it suffices to look at the

number of square roots of 1 mod a?**!. Now, e.g., consider Q,(a,). A typical

element of Z,(2"*)/(2 - 2'*) looks like L A,2%%, A, € {0, 1}, and when it is squared
the parameters As;, A, disappear. So there are at least 2> square roots of 1.
Similarly, there are at least 2" square roots of 1 in Z,[a,]/(a?**!). Hence
[Qx(a,): P;]=2"*". A similar argument works for unramified extensions and any
other p.
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