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Proposition 1. 30. Again, let sand (J be as in definition 1.26, we have the following 

useful relations 

a 
Wg L R (Ja /\ e (1.12) 

a 

IIRI12 L i = L 2 (1.13)IRjaOI 2 IRijaOI 

IIKI12 L i2 = L 2 = L i 2 (1.14)IKjl IKjil IRjanl 

IIpl12 L 2 L i 2 (1.15)IRaOI = 1R iat31. 

Where once again (as in definition 1.26) K denotes the mean curvature of (E,h), p 

the Ricci tensor which is the curvature of the determinant bundle det( E) = /\k E and 

(J the scalar curvature of the Hermitian manifold NI. 

Definition 1.31. Let e(x) denotes the field of unitary frames defined for x in an open 

subset of M, and let ( = Li (iei be a tangent vector at x, then the holomorphic 

sectional curvature in the direction of ( is defined to be 

From the symmetries of R (i. e. Rij,o = ~j,o) we see that R(x, () is a real quantity and 

determines the whole K iihler curvature. 

We introduce the closed 2k-form 'Yk and the Chern classes via the following definition. 

Definition 1.32. The k-th Ghern Glass ck(E, h) E H 2k (M, /Z) of a hermitian vector 

bundle (E, h) is represented by the closed 2k-form 'Yk defined by 

1 
det(Ir - -.wg ) = 1 + 'YI + 'Y2 + '" + 'Yr (1.16) 

27TI 

( l)k- - L dl···jknll /\ /\ nlk'YF - ui 1 H· H . (1.17)'(27Ti)kk! 1··· k J1 ... Jk 

Theorem 1.33. The class ck(E, h) is independent of h. Hence we may set 

We also wTite ck(M) for ck(TM). 
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We note in particuLar that 

"Yl
 

"Y2 (1.18 )
 

For example the first Chern class Cl (E, h) is represented by 

in terms of a loeal holomorphie eoordinate Z = (Zl, ... , zn) and is independent of h. 

1.2.2 En Route Towards the Proof of Miyaoka-Vau Inequality 

We are now in a position to apply the tools developed in the previous sub-seetion to 

praye sorne lemmata and propositions that will be used in the proof of the Miyaoka- Yau 

InequaLity. 

Lemma 1.34. (Apte, 1955) The first and second Chern classes cl(E, h) and c2(E, h) 

satisfy the following two relations respectively 

Proof. - From the definition of the "Yl and "Y2 in formula (1.18) we have, 

"Y2 = 

Therefore we need only to prove the following relations 



16 

For i') we have, 

n(n -1) Ln; A n~ Aw;-2 n( n - 1) L (Ro:jjeo: A O(3) A (R'Y8B'Y A 0°) A w;-2 

n(n - 1) L Ro:jjR'Y8BO: A Of3 A B'Y A 0° A w;-2 

-n(n ­ 1) L(RO:6:Rr;y - Ro:;yR'Y6:)w; 

We have used the fact that the local unitary frames BIl- and Oll- appear in pairs in the 

above equations with 

ii) n(n - 1) LO:=OiFiJ BO: A O,e A B'Y A 0° A w~-2 = -w~ 

iii) 0 otherwise. 

By formulae (1.15) and (1.10), 

which proves i'), 

ii') follows similarly: 

'" R - -BO: B-,e R - -B'Y B-o n-2
~ kjo:iJ A A jk-yb A A wg 

- L (Rk30:6: Rjk-yi - Rk ]o:;yRj k 'Y6:)w; 

where in the last step we have used formulae (1.13) and (1.14). D 

We have the following lemma relating IIRI1 2 and Ilp112. 
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Lemma 1.35. Let (E, 17,) be an Hermitian vector bundle of rank r over a compact Her­

mitian manifold (M, g) of dimension n. Then IIRI12 and IIpl12 satisfy the following 

inequality: 

and equality holds if and only if 

By formulce (1.13) and (1.15) we get our desired result, namely 

D 

Definition 1.36. When Rjcx{3 = ~ojRcxi3 holds, we say that (E,h) is projectively fiat. 

We are now in a position to introduce the notion of Einstein manifolds via the Her­

mitian Einstein condition for vector bundles (Kobayashi,1987). 

Definition 1.37. Let (E, 17,) be a holomorphie Hermitian vector bundle of rank r over an 

Hermitian manifold (M,g). We say that (E,h) satisfies the weak Einstein condition 

(with factor <p) if the mean curvature K satisfies 

K = <pITE i. e. K] = cpo; (1.19) 

where cp is a real function defined on M. lf <p is a constant, we say that (E, 17,) satisfies the 

Einstein condition and (E,h) is then called an Einstein vector bundle over (M, g). 
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If further E = TM and h = 9 we call the couple (M, g) an H ermitian Einstein 

manifold. Furthermore, if the (1, 1)-form w g is closed i.e. satisfied the condition in 

definition 1.29 we call (M, g) a K iihler-Einstein manifold. 

Making use of definition 1.26 and proposition 1.30, we have the following lemma. 

Lemma 1.38. For any n-dimensional Kahler manifold M, we have always 

and equality holds if and only if M is a space of constant holomorphie sectional curvature. 

Proof. - In the Kahlerian case we have 

and from formulce (1.14) et (1.15) we get in particular that 

(1.20) 

Now, in the Einstein-Kahler case, we have that KJ = ~c5j where Cf is the scalar curvature 

of the n-dimensional manifold M, therefore 

(1.21) 

Now set 

Then 

This implies that 
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and equality holds if and only if T = O. Therefore from equation (1.21), 

as required. D 

1.3 Proof of the Miyaoka-Yau Inequality (DifferentiaI Geometrie) 

FinaJly, we are in a position to give the differential geometric proof of the Miyaoka-Yau 

inequality, the algebraic counterpart of which will be given in the next chapter. 

Theorem 1.39. (Apte, 1955) Let (M, g) be a compact Kahler-Einstein manifold of di­

mension n. Then 

and equality holds if and only if (M, 9) is of constant holomorphic sectional curvature. 

Prooj. - We denote ci(TM,g) (the i th chem class of the tangent bundle TM) by 

Ci(M,g) and set E = TM and 9 = h so we can apply the results of lemma 1.34. 

By i)in lemma 1.34 we have 

)2 n-2 2
Cl (M,g 1\ W g 47f2n(~ _ 1) (0- - IlpI12)w; 

47f2n(~ _ 1) (nllpl12 - IlpI12)w; 

_1_llpI12w~ = _1_11K112w; (by equation (1.21) ).
47f2 n 47f2 n 

By ii) 'in lemma 1.34 and using equation (1.21) we have 

87f2n(~ _ 1) (0-
2 

-llpl12 - IIKI1
2+ IIRI1

2
)w;
 

87f2n(~ _ 1) ((n - 2)IIKW + IIRI1
2
)w;. (1.22)
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Hence, 

r {2(n + 1)c2(iV1) - nCl (M)2} 1\ w;-2
lN! 

2 t )r ((n+1)(n-2)IIKI1 2 +(n+1)IIRI1 2 -n(n-1)11K11 2
)I\W;

47f n n - 1 lM . 
2 t )r (-21IK I1 2+(n+1)IIRI12)I\W;.

47f n n - 1 lM 
We therefore get 

By lemma 1.38 we have that 

which implies that the right hand side is positive and therefore, 

Equality holds if 

IIRI12= -2-IIKI12
n+1 

i.e. when the holomorphie sectional curvature is constant. 

D 

ln particular for n = 2 we have that 

which is the Miyaoka- Yau inequality for a compact Kèihler-Einstein manifold M of di­

mension two. 

1.4 Discussion and Conclusion 

We have thus proved the geometric equivalence of the Miyaoka-Yau inequality for a 

compact Kahler-Einstein manifold using tools from complex differential geometry. It 

is remarkable that the proof is very simple and is quite short (modulo the Einstein 
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condition) compared to its algebraic-geometric analog as we will see in chapter two. 

The main ingredients of the differential geometric proof were the fad that the manifold 

was Kiihler (Definition 1.29) and Einstein (definition 1.37). Those conditions simplified 

tremendously the relationships between the mean curvaiure the Ricci tensor and the 

scalar curvaiure of proposition 1.30. Although the Kahler-Einstin condition is a very 

strong one, we were able with minimal assumptions (we did not need anyon the Chern 

class for example, to be compared with the algebraic-geometric proof) to arrive at our 

desired result. 

1.4.1 Remarks (for non-mathematicians) on the Bibliography 

Readers who are not familiar with the abstract mathematical literature would find the 

following books very helpful as an introduction to the ideas and techniques of Fiber 

bundles, (Isham, 1999) and (Nash and Sen, 1992). The latter especially has a very nice 

and comprehensive discussion of Chern classes with examples. At a more advanced level 

J would recommend (Spivak, 1979) especially volume 5 for a detailed discussion of Chern 

classes, Gauss Bonnet Theorem etc .... 

For the readers interested in K iihler Geometry, 1 recommend the book by Kobayashi 

(Kobayashi, 1987) and parts of (Nicolaescu, 2000). 

For those who would like a quick introduction to al! of the above (yet superficial) includ­

ing applications to physics such as in gravitation or in gauge-theory, a good pedagogical 

review is (Egushi, Gilkey and Hanson, 1980), it treats even Index theorems with and 

without boundaries. 

Finally, ail interested readers should consider (Griffiths and Harris, 1994) to bridge 

the gap between this chapter on complex differential geometry and the next chapter on 

algebraic geometry. 



CHAPTER II
 

ALGEBRAIC-GEOMETRIC PROOF OF THE MIYAOKA-YAU
 

INEQUALITY
 

2.1 Motivation 

Chapter one was devoted to the differential geometric approach to the proof of Miyaoka­

Yau inequality. In this chapter we give the algebraic-geometric proof due to Miyaoka 

(Miyaoka, 1977) following (Barth, Hulek, Peters, and Van De Ven, 2004). It is in alge­

braie geometry that the inequality has been most useful. In fact, in the classification 

theory (see (Ueno, 1975), (Hartshorne, 1977) and (Friedman, 1998)) of (minimal) sur­

faces of general type the rv!iyaoka-Yau inequality plays an essential role This raie is 

mostly played in what i5 known as the geography of surfaces of general type. The 

main question posed there is that given a pair (cf, C2) of numerical invariants allowed by 

the Miyaoka-Yau inequality, can one find a minimal surface of general type that realizes 

this pair of integers? And if so, what can we say about the geometry (e.g. the curvature, 

connection, ... ) of the moduli space? 

The answer ta these questions are still open, but to fully appreciate it let us now turn to 

the proof itseif which will not only shed sorne light on the result but on the tools used 

to study such questions as weil. 
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2.2 Preliminaries 

Following the same organization of chapter one, we start in the first subsection by 

introducing the necessary tools of algebraic-geometry that we will need for the proof of 

the Miyaoka-Yau inequality. It will be brief and not intended to be complete. 

In the subsequent sections we will give some lemmas and propositions which will be the 

building blocks of the final proof. 

2.2.1 Tools of Algebraic Geometry 

Following (Yang, 1991) we introduce the following notions 

Sheaves 

Definition 2.1. Let X be a topological space. A Presheaf P of Abelian groups X zs 

given by two pieces of information: 

a)	 For every open set U C X we are given an Abelian group P(U) 

b)	 For every pair of open sets V C U of X there is a homomorphism, called the 

restriction map, pvu : P(U) ------t P(V) such that 

puu = id., pwu = pwv 0 pvu whenever Wc V c U. 

We also write puv as sv. 

Definition 2.2. Given a presheaf {P(U) : Uopen in X} on X. We fix a point x EX. 

Then we define the stalk of P at x E X to be the inverse limit, 

P x := lim P(U). 

xEU 

An	 element of Px is called a germ of sections ofP at x. 

Definition 2.3. Let X be a topological space. A sheaf of Abelian groups over X is a 

topological space S with a map 7f : S ------t X such that, 
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a) n is a local homeomorphism. 

b) For every x EX, n-1(x) = 5 x is an Abelian group. 

c) The gTOUp uperations are continuous, where on 5 x 5 we use the product topology. 

A sheaf gives rise to a presheaf in a natural way by considering local sections: 

Definition 2.4. A section of 5 over an open set U C X is defined to be a continuous
 

map f : U ------+ 5 with n 0 f = id.
 

We denote by 5(U) the set of aU sections over U.
 

The presheaf {5(U) : U open in X} is called the presheaf associated to 5, while the
 

stalk at x E X of the associated sheaf is precisely 71'-1 (x) = 5 x .
 

Example 2.5. Let X = M be a C CO -manifold. We have 

COO ------+ M) 

the sheaf of germs of smooth functions on M. The presheaf COO(U) consists of smooth 

functions on V, while the stalk at x EMis the set of germs of smooth functions defined 

in a neighborhood of x. 

Definition 2.6. A morphism of presheaves ~ : F ------+9 28 a collection where we 

associate, for each open set U a morphism of groups 

cPu : F(U) ------+9(U) 

such that for a E F(U) and V cU, we have 

cPu(a)lv = cPv(alv). 

Lemma 2.7. For every presheaf:F over X, there exists a unique sheaf FI over X 

satisfying the following conditions: 

i) There exi8t a morphism of presheave8 
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ii) For every morphism of prcshcavcs 

where 9 is a sheaf, there exists a unique morphism of sheaves X : :Jf------79 such 

that 'l/J = X 0 cP. (See (Voisin, 2002) p.86-87 for a proof.) 

Remark 2.8. If cP : F ------79 is a morphism of sheaves i.e. F and 9 are sheaves and cP 

is a morphism of presheaves, then cP induces a morphism of abelian groups 

at each point x. 

Definition 2.9. The morphism cP is injective (resp. surjective) if for every x E X 

the morphism cPx is injective (resp. surjective). 

To understand better what sheafs and stalks are, we can think of them as follows 

Remark 2.10. A sheaf over X is a fiber bundle and gives Tise to a presheaf so that 

the stalks of the presheaf are the fibers. 

Notation 2.11. Let M be a complex manifold. Then 

o ------7 Nf 

denotes the sheaf of germs of holomorphie functions on Nf, also known as the structure 

shea! of M. Meanwhile 

0* ------7 M 

denotes the multiplicative sheaf of germs of nowhere zero holomorphie functions on Nf. 

We also have 

M Nf, J'v'/. * ------7 Nf,------7 

which denote respectively, the sheaf of germs of meromorphic functions and the multi­

plicative sheaf of not identically zero meromorphic functions on M. 
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Remark 2.12. Script letters such as M will be reserved for sheaves while ordinary 

capital letters such as M will denote spaces or surfaces unless otherwise specified. 

Line Bundles and Divisors 

In view of definition 1.4 of chapter one on vector bundles we state the following definitions 

Definition 2.13. A complex rank r = l-vector bundle over a smooth manifold M is 

called a eomplex-line bundle. 

Definition 2.14. If M is a complex manifold and if L----tM is a complex-line bundle 

admitting trivializations (U; <Pa) with holomorph'ic transition functions (cI chap.l, def. 

1.3 and def 1.4) {gab : Ua n Ub ~ GL(l, te) = C*} (where C* = CI {ü}), the line bundle 

is called a holomorphie line bundle. 

Notation 2.15. Let X be a topological space and S a sheaf of groups on X.
 

We shall denote by Hi(X, S) or Hi(S) the i-th cohomology group of X with coefficients
 

in S. For the group of sections we shall also write HO(X,S) or r(X,S).
 

If S is a sheaf of real or complex vector spaces, then Hi(X, S) is also a real or complex
 

vector space.
 

Further if dim Hi(X, S) is finite then we denote by hi(X, S) = hi(S) this dimension.
 

Remark 2.16. i) We will often use the same notation for a holomorphie vec:tor bun­

die and its sheaf of sections. 

ii)	 A characteristic pTOperty of cohomology of sheaves is that a short exact sequence 

of sheaves over X gives rise to a long exact sequence of cohomogies o'Uer X with 

values in these sheaves. That is given the short exact sequence 

O-tF-tÇ-----7H.-tO 

of sheaves over a manifold X J we have the associated long exact sequence of coho­
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rnology 

o ----; HO (X J F) ----; HO (X, Q) ----; HO (X, 7--{) 

----; H\X,F)----;H 1 (X, Q)----;H1 (X, 7--{)----; . 

----; Hq(X, F)----;Hq(X, Q)----;Hq(X, 7--{)----; . 

(See (Voisin, 2002) for a detailed discussion of the cohomology of sheaves.) 

Proposition 2.17. The collection (isomorphism classes) of complex line bundles over 

M is canonicaily identified with Hl (M, A *) where A * is the multiplicative sheaf of germs 

of no where zero complex valued smooth functions on M. 

For a proof of this see (Yang, 1991) p.53. 

Replacing A* by 0* we have the following important proposition 

Proposition 2.18. The collection of all holomorphie line bundles over a cornplex man­

ifold is nat'uraily identified with Hl (M, 0*). 

Remark 2.19. As a consequence a holomorphie line bundle L----;M can be thought of 

as an element of the cohomology group Hl (j\1, 0*). Under this identification the group 

operations in Hl (M, 0*) are given by: 

1) L + L' = L <2> L' 

2) - L = L *, where L *----;M denotes the dual of L. 

Definition 2.20. A divisor D on a compact complex manifold M, is a finite (integral) 

sum D = I:i ai Vi with ai E 'L, where the Vi 's are irreducible analytical hypersurfaces 

of M (i.e. the Vi 's are algebraic subvarieties of codimension 1). If ail the (I/ sare non­

negative i. e all ai ~ 0, V i, we say that D is effective and we write D ~ O. 

Remark 2.21. Under addition the set of ail divis ors on M, denoted by Div(M), forms 

a free Abelian grol.l.p. 
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Definition 2.22. Let V be an irreducible subvariety of codimension 1 of M. By a local 

defining function f at x E V we mean an element of Ox vanishing alon9 V such that 

if another germ in Ox vanishes along VJ it has to be a multiple of fin Ox). 

Definition 2.23. Given 9 E O(U), U :3 XJ we define the arder of g along V at x by 

the m.aximal a such that 9 = rh, for sorne hE Ox· We denote it by ordv,x(g). This is 

a notion independent of the point x E V nU since Vis connected, and therefore we talk 

about the ordv (g) at any x EV. Since 9 E M implies 9 = gIf92 as germs at x for 91 J 

92 E Ox, we can define 

Definition 2.24. The divisor of fis defined by 

(f) = L ordv(f).V, V irreducible V C M as in definition 2.20 

Definition 2.25. A divis or D on M is called a principal divisor if there exists a 

meromorphic function f such that (1) = D.
 

Definition 2.26. Two divisors Dl and D2 are said to be linearily equivalent if Dl - D2
 

is principal.
 

We arrive at the following important proposition.
 

Proposition 2.27. Let M be a compact complex manifold. Then:
 

a)	 Div(M) are naturally isomorphic to HO(M, M* /0*) 

b)	 There exists a canonical homomorphism 

rp : Div(M)------tHl(M, 0*), D ~ .cD 

with ker(rp) = {normal subgroup of principal divisors} and for all divisors D, there 

exist a meromorphic section of .cD such that (s) = D. 

We call Hl(M, 0*) the Picard group and denote it by Pic(M). 

For a proof see (Yang, 1991) p.65-67. 
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Remark 2.28. We noie that given a divisor D on X, the line bundle L D is also written 

as L = Ox(D). If L has holomorphie sections s and DI = (s) the effective divis or 

associo,ted to s, then L = 0 X (DI) . 

Proposition 2.29. Let D be a divisor on the compact complex manifold M. Denote by 

L(D) a space of meromorphic functions f on M such that D + (f) ~ 0 and by IDI the 

set of aU effective divis ors linearly equivalent to D. We have the foUowing isomorphism 

IDI ~ IP'(L(D)) ~ IP'(Ho(M, O([D])). 

Proof. - Let so be a global meromorphic section of [D] with (so) = D, then for any 

global holomorphie section s of [D], the quotient fs = :0 is a meromorphic function on 

M with 

(fs) + D = (s) - (so) + D = (s) ~ 0, 

which means that fs E L(D). Meanwhile, for any f E L(D) the section s = f.so of [D] 

is holomorphie. Thus we have established the identification 

L(D) ~ HO(M,O([D])). 

For every Do E IDI, there exists an f E L(D) such that Do - D = (f) and any two such 

functions fI and 12 differ by a non zero constant. This establishes IDI ~ IP'(L(D)). 0 

Definition 2.30. Let M be a compact complex manifold with a holomorphie line bundle 

1. A linear subspace of IP'(HO(M, O([L])) is caUed a linear system of divisors. 

A complete linear system is a linear system of the form IDI for some divisor D, The 

dimension of the linear system is dim HO (M, 0 (L )) - 1. 

Chern Classes revisited 

Following (Voisin, 2002) we outline the construction of the Chern classes from a different
 

(yet related) point of view than chapter one.
 

Let X be a topological or differentiable manifold, and let E----+X be a (topological or
 

differentiable) complex vector bundle ofrank r.
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Definition 2.31. We construct the Chern classes Ci(E) E H 2i (X, Z), 1 :::; i :::;, with 

the convention that Co (E) = 1 and Ci (E) = 0 for i > r, by introducing the Chern 

polynomial 

c(E) = LCië E H*(X,Z)[t]. 

Now consider the exponential exact sequence 

where C is the sheaf of continuous complex functions and Co* is the sheaf of everywhere 

non-zero functions. Ey the associated long exact sequence, it gives the isomorphism 

(the map is an isomorphism since Hl (X, Co) = H 2(X, Co*) = 0 because the topological 

manifold admits partitions of unity subordinate to open covers.) 

Remark 2.32. i) The group Hi(X, Co*) is the group of isomorphism classes of com­

plex line bundles over X! with the group structure given by the tensor product. 

ii)	 If a line bundle L is endowed with a hermitian metric, we remark that it is not 

difficult to show that Cl (L) is represented by its curvature form. 

Theorem 2.33. (See (Hirtzebruch, 1966)) There exists a unique Chern class map c, 

which associates to a complex vector bundle E over X an element 

c(E) E H*(X,Z)[t] i.e. c(E) = LCi(EW, with each ci(E) E H 2i (X,Z) 

satisfying the following conditions: 

i)	 If rank E = 1, then c(E) = 1 + tCI (E). 

ii)	 The Chern class map satisfies the following functoriality conditions:
 

if q; : Y -----+ X is a continuous (or difJerentiable) map, then
 

c(q;* E) = q;*(c(E)), 

where cjJ* : H 2i (X, Z)-----+H2i (y, Z) is the pullback map. 
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iii) (Whitney's formula) if E is the direct sum of two complex bundles F and C, 

then 

c(E) = c(F)c(C), 

where the ring structure on H*(X, Z)[t] is used. 

To close this brief exposition on Chern classes we give the celebrated splitting pTinciple 

via the following lemma. 

Lemma 2.34. Let E---'------tX be a complex vector bundle. Then there exists a continuous 

map cP : y ------+ X satisfying: 

i)	 The pullback maps cP* : Hk(X, Z)------+Hk(y, Z) are injective. 

ii)	 The pullback cP* E is a direct sum of line bundles. 

Remark 2.35. i) The splitting principle provides us with the curvature Whitney for­

mula for hermitian bundles which are metrically direct sums of line bundles and 

thus gives us the connection with the curvature definition of the previous chapter. 

ii)	 We also want to point out that the fundamental class in analytic and algebraic 

duality differs by a factor of 27l'i. If X is a compact algebraic manifold of dimension 

n, then under the identification 

we have
 

algebraic fund. class = (27l'it analytie fund. class.
 

Riemann-Roch Theorem, and Further Tools 

Following (Barth, Hulek, Peters, and Van De Ven, 2004) we further introduce the fol­

lowing theorems and propositions. 
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Notation 2.36. Let X be an n-dimensional complex manifold, then we shall denote by 

i)	 T x: the (holomorphic) tangent bundle of X, while its dual we will denote by T";. 

ii)	 D~: the sheaf of germs of holomorphic i-forms on X, i. e. the sheaf of sections in 

the bundle 1\i T"; (i ~ 1) 

iii)	 0 x: the structure sheaf of X. 

iv)	 Kx: the canonical line bundle on X, i. e. the holomorphic l-vector bundle 1\nT"; 

v)	 N y / x : the normal bundle of the complex submanifold Y in X dejined by the 

normal bundle sequence 

where by "1" we denote the analytic restriction. 

vi)	 Ci(X): the i-th Chern class of X) that is ci(Tx ). 

(In particular in the case where X is compact we have that [cn(X)] = e(X) where 

e(X) denotes the Euler number of X) 

Remark 2.37. By a common abuse of notation; we often use the same symbole for a 

bundle and its sheaf of sections. 

Definition 2.38. In particular if we set D~ = Ox we can dejine: 

hp,q(X) hq(D~ ) 

q(X) hO,! (X), the irregularity of X 

pg(X) = hO,n(X), the geometric genus of X 

We note as well the Betti number bi (X) which is a topological invariant of the surface
 

X and is related by Hodge thèory to the irr-egularity q(X) and the geometrical genus
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pg(X) respectively by: 

b1 (X) = 2q(X) (2.1 ) 

b2 (X) = 2pg(X) + h 1,1 (X) (2.2) 

Definition 2.39. A sheaf of Ox-modules S is is said to be coherent, if locally there 

always is some exact sequence of sheaves of 0 x -modules 

The complex vector spaces Hi(X, S) are finite dimensional provided that X be compact
 

and S a coherent sheaf on X. Therefore we have that hi(X,S) is finite for such a sheaf.
 

l t vanishes unless Ü ~ i ~ n by Grothendieck vanishing theorem (d. (Hartshorne, 1977)
 

Thm. 2.7 in Section III, p.2ü8).
 

As a consequence the Euler characteristic is weil defined
 

'n 
x(X, S) = 2.)-l)ihi(S) (2.3) 

i=O 

One of the cornerstones of algebraic geometry is the following theorem due to Serre, 

known as Serre '5 duality theorem for manifolds. 

Theorem 2.40. (Serre '8 Duality Theorem) 

Let X be a compact, connected complex n-dimensional manifold, and V a holomorphie 

vector bundle on X. Then 

As a special case we find that Pg(X) = hO,'n(X) = h'n,O(X) as we noted at the end of 

definition 2.25. (VV here denotes the dual vector bundle of V). 

We will also need the celebrated Riemann-Roch Theorem which we now state in the 

following form. 

Theorem 2.41. (Hirzebruch-Atiyah-Singer Riemann-Roch theorem) 

Let V be a holomorphie vector bundle on a compact, connected n-dimensional complex 
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manifold X. Then 

x(X, V) = t2n(Todd(X).ch(V)) 

In particular when V is the trivial line bundle X(X) = X(Ox) = t2n(Todd(X)), where 

the righthand side is a homogeneous polynomial with rational coefficients in the Chern 

classes of XI white the lefthand side is called the Todd genus of X and denoted by T(X). 

Remark 2.42. We briefiy describe what the Chern chameter and Todd Class are. 

Let E be a complex vector bundle over X of rank r. The Chern ehamcter ch(E) of E 

is defined as follows by means of the factoTization of the total Chern class. 

iIf L Ci(E)x = II(1 + ti X ), then ch(E) = L exp ti· 

While the Chern class c(E) is in H* (X; Z), the Chern character ch(E) is in H* (X; Q). 

The Chern character satisfies (Hirzebruch, 1966) 

ch(E EB El) = ch(E) + ch(E I
) 

ch(E 0 El) = ch(E) Uch(EI 
), 

where U denotes the cup product. The first feV! terms of the Chern character ch( E) can
 

be expressed in terms of Chern classes as follows:
 

where r is the rank of E.
 

Now if our multiplicative sequence T is given by the series
 

t 
f(t) = (1 _ e-t) 

then for our complex bundle Ethe class defined by 

T(E) = T(c(E)) E H*(X(E)) 

is called the Todd class of E. So the Todd class and the Chern character are related 

through their dependence on the total Chern class. 
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As a consequence we have the following computational theorem 

Theorem 2.43. (Todd-Hirzebruch Formula). 

If X is any compact, connected complex manifold, then 

x(X) = T(X) 

For n = 1 this gives that q(X) = g(X), where g(X) is the topological genus of X. 

For n = 2 we find the Noether's formula 

1 
1 - q(X) + Pg(X) = 12(eî(X) + C2(X)). (2.4) 

Applying theorem 2.41 to a line bundle 12 on a compact, connected smooth curve X, we 

get 

we also call Cl (12) the degree deg(L) of L, denoted sometimes by 0(12) as well (this is
 

the classical Riemann-Roch for curves).
 

For n = 2, Tank V=l:
 

combining the above formula with Serre dUlflity we get: 

Finally, for dimX = n, and Tank V = 1: 

(2.7) 

where "... Il stands for terms containing lower powers of Cl (V). 

Theorem 2.44. Let X be a complex manifold, and V a holomorphic vector bundle on 

X. Let Y = IP'(VV) = IP'(V) (the projectivization of VV and V respectivelly) and let 

P : Y ------7 X be the proJection. We denote by LV the tautological line bundle on Y. 
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Then for every coherent sheaf S on X and for ail n 2 1 there are natural isomorphisms 

of 0 X -modules: 

p*(p*(S)) -----7 S 

p*(.cn ® p*(S)) -----7 snv®s 

P*i(.cn 
@ p*(S)) 0, Vi 2 o. (2.8) 

Where by snV we denote the n-th symmetric product of the holomorphie vector bundle 

V-----7X. 

Ey the Leray spectral sequence (see (Bott and Tu, 1982) chap. 3), or (Griffiths and 

Harris, 1994) chap. 5 we have the following cohomological isomorphisms 

Hi(y,p*(S)) Hi(X,S)-----7 

Hi(Y,.cn@p*(S)) -; Hi(X,SnV®S), Vi21 (2.9) 

Lemma 2.45. (Grothendieck, 1958) Let:F be a locally free sheaf ofrank r over a complex 

manifold X, and Y = IP'(F). Denote by LV the tautological line sub-bundle of p*F on 

Y, where p : Y -----7 X is the projection. 

We have the following exact sequence 

Together with the functoriality of the Chern classes, we get 

(2.10) 

and by eliminating the Chern classes of W we have the following identity in the coho­

mology group H 2r (IP'(F), Z) 

L
r

ci (.cV)p*(c,._j (.F)) = 0 (2.11 ) 
j=O 

where by F we mean the dual sheaf to F. 

Upon expending and specifically when r = 2 we get 

(2.12) 
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where we have switched to 12 and F instead of their duals, which does not alter the aDove 

result. 

Remark 2.46. Equation (2.12) should be understood as addition and multiplication in 

the cohomology ring and therefore each term is in the class of H 4 (lP'(F), Il). 

Notation 2.47. We write L as OIP'(F) (1) and also as HF. 

In view of the above, keeping in mind that F denotes a rank-two locally free subsheaf, 

we can derive the following expressions: 

Intersection Formulas Cr = 2, n = 2) 

If we multiply equation (2.12) with p*(cl(F)) we get 

The last term is zero, since it cornes from H6(X, Il) = O. 

While on the other hand, the second term 

Therefor the above equation simplifies to 

(2.13) 

Now, if we multiply equation (2.12) with c := Cl (12) we get: 

By noting that the last term is equal to [c2(F)] and with the help of equation (2.13). we 

arrive at the very simple looking relation: 

(2.14) 
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Covering Tricks 

Theorem 2.48. (Branched covering trick)
 

Given a holomorphie lP\ -bundle over an irreducible, complex space X, with total space
 

B and projection p : B ----t X .
 

If S is any irreducible divisor on B meeting a general fiber F in n points, then there exists
 

a complex manifold Y, a generically surjetive map f : Y ----tX and n effective divisors
 

Sl,S2, ... ,Sn on the fiber product B' = B Xx Y:= {(x,v) p(x) = f(v)} c B X Y,
1 

ail meeting the general fiber f- 1F of B' ~Y in one point, such that for the projection 

g : B'----tB we have g*(S) = SI + ... + Sn. 

Proof. - For n = 1, g*(S) = SI and there is nothing to prove.
 

For n ~ 2, we consider the desingularization on S of Sand we put BI = S Xx B, and
 

denoting by gl : B 1 ----tB the natural projection, we have in a canonical way g*(S) =
 

SI + S', where SI meets a general fiber F of B 1----tS in one point, while S' meets F in
 

n - 1 points.
 

We can continue this procedure for Sand so on, till we reach the desired result. D
 

As a consequence we have the following theorem: 

Theorem 2.49. Let X be a compact, connected complex manifold and L a holomorphie 

line bundle on X with hO(L0n) ~ 2 for sorne n ~ 1. Then there exists a compact complex 

manifold Y and a generically finite-to-one map f : Y ----tX, such that h°(j*(L)) ~ 2. 

Theorem 2.50. Unbranched covering trick 

Let X be a connected complex manifold. 

i) If b1 (X) =j:. 0, then X admits unbranched coverings of any arder. 

ii) If Hl (X, Z) contains k -torsion, then X has an unbranched covering of order k. 
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0 

We will mainly be concemed with part i) of the theorem and therefore we outline its 

praof. 

Prao! - i) If bl (X) #- 0, then Hl (X, 7l) is infinite and therefore admits cyclic quotient 

groups of any order. As a consequence the fundamental group 7f1 (X) of X admits such 

quotients, and so there exist unbranched cyclic coverings of X of arbitrary order. 

Finally we cite the following important theorem and definitions. 

Theorem 2.51. (Adjunction formula)
 

If y is a complex submanifold of codimension 1 of a complex manifold X! then
 

Ky = K x 09 Ox(Y)ly 

where by "I" we denote the analytic restriction, and Ox(Y)ly ~ J'/y/x the normal 

bundle introduced earlier (c.f. notation 2.4 v). 

Definition 2.52. Let X be a connected compact K iihler manifold and let {WI, ...W g } be 

a basis for HO(Dx ) (where 9 = h1,0(X)). The Albanese map 0' is defined by: 

0' = (J~ Wl, ... , 1: wn) :X ~cn. 
It is well defined up to the period A given by 

by homological invariance of the definition with respect to the path r between z and zo. 

Definition 2.53. We define the Kodaira dimension of a surface X denoted Kod(X) 

by: 
100- hO (K@m)

Kod(X) = lim b X. 
m--->oo logm 

Having introduced some of the language, terminology and tools of algebraic geometry 

we turn now to more specifie lemmas and propositions that we will use in the final proof. 

We refer the reader to (Griffiths and Harris, 1994), (Ueno, 1995), (Yang 1991) a.s well as 

(Friedman, 1998) and (Barth, Hulek, Peters, and Van De Ven, 2004) for an introduction 

to algebraic geometry and some of the concepts introduced so far. 
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2.2.2 En Route Towards Miyaoka-Yau Inequality 

We know that to classify projective algebraic surfaces, we need only consider the minimal 

models (c.f. definition 2.63 bellow) of such surfaces, which follows from the following 

two theûl·ems. 

Theorem 2.54. Every non singular surface with K od(X) ~ 0 has a minimal model. 

Theorem 2.55. If X is a nonsingular connected surface with K od(X) ~ 0, then aU 

minimal models of X are isomorphic. 

For a proof of the above theorems see (Barth, Hulek, Peters, and Van De Ven, 2004) 

p.99. 

Definition 2.56. By Pm(X) we denote the m-th plurigenus of X which is equal to 

hO (JCÎ,m), V m ~ 1. 

Notation 2.57. By JCÎ,m we mean the k-th tensor product of the canonicalline bundle 

JCx. We denote by K x a divisor associated to JCx. Hence, mKx is associated to JCÎ,m. 

The Kodaira Dimension 

We have the following important theorem which relates the behavior of Pm(X) for large 

m to the Kodaira dimension of X. 

Theorem 2.58. Let X be a compact connected complex manifold. Then: 

i) Kod(X) E {-oo,O, ... ,n}. 

i) K od(X) = -00 if and only if Pm(X) = 0 for aU m ~ 1 

iii) Kod(X) = 0 if and only if Pm(X) = 0 or 1 for m ~ l, but not always 0 
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iv)	 J< od(X) = k, for 1 ~ k ~ dim X <===? there exists real constants ex > 0, /3 > 0, 

sùch that for m large enough (i. e. m» 0) we have 

exmk < Pm(X) < /3m k . 

kSa for k 2: l, we have that Pn(X) grows like m . 

We refer ta (Dena, 1997) for this result. 

We note also the following two properties of the Kodaira dimension. 

Theorem 2.59. If Xl and X 2 are compact connected complex manifolds, then 

Theorem 2.60. Let X and Y be compact, connected complex manifolds of the same
 

dimension. If there exists a generically finite holomorphic map from X onto Y, then
 

Pm(X) 2: Pm(Y) for n 2: l, hence J<od(X) 2: J<od(Y).
 

Furtheremore, if the map is an unramified covering, then J< od(X) = J< od(Y).
 

Definition 2.61. Aline bundle L on a projective manifold X is called nef if for all
 

curve C in X one has
 

(L.C) 2: 0 

where (L.C) stands for the intersection product of cI(L) E H 2 (X) and [Cl E H 2 (X). 

Notation 2.62. J< od(X) is sometimes written as K(X). 

Definition 2.63. A non-singular projective surface X is called a minimal model if the 

canonical bundle J<x is nef. 

Notation 2.64. Let D be a divisor on a surface X. We will set D 2 = cî([D]). 

Theorem 2.65. (Serre, 1955) Serre 's Criterion for Ampleness, Serre 's Vanish­

ing theorem: 

Let X be a nonsingular projective surface. A divisor A on X is said to be ample if and 

only if any of the conditions below hold: 
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i) For any coherent sheaf:F on X 

Hi (X, :F 0 0 X (nA)) = 0, i > 0, 'tj n » 0 

ii) For any coherent sheaf:F on X, :F ® 0 x (nA) is generated by its global sections. 

iii) For any line bundle L---+X, L0 Ox(nA) is (very) ample for n» O. 

Remark 2.66. Another condition for ampleness is the Kleiman criterion (Kleiman, 

1966). Let X be a projective variety and D a Cartier divisor on X. Then D is ample if 

and only if there exist an E > 0 s'uch that 

D.C 2 E IICII 

for aU curve C in the real vector space of curves in X endowed with a fixed norm 11·11· 

In what follows we consider X to be a minimal surface of general type i.e. of 

K od(X) = 2 and we work with algebraic varieties defined over the algebraic field OC = <C 

of characteristic zero. 

We arrive at one of the main pillars in the proof of the Miyaoka-Yau inequality, namely 

the following lemma. 

Lemma 2.67. Kodaira's Lemma and the Positivity of cr(X) 

Let X be a minimal model of dimension 2. Then, 

K od(X) = dimX = 2 if and only if Kl > 0 

Proof. - Suppose K od(X) = 2.
 

Choose an no E N and a, (3 > 0 such that as in theorem 258 .
 

Let A be a very ample divisor on X as characterized in Serre's theorem (theorem 2.65),
 

and consider the exact sequence
 

O---+Ox(nomKx - A) ---+0x (nomKx )---+0A (nomKx )---+0 
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which gives rise to the exact cohomology sequence 

We have by theorem 2.58 that hO (X, Ox(nomKx)) 2: cxmK.(X) V m» O. 

Together with hO(A, Ox(nomKx )) ~ m.degA(noKxIA), we deduce that 

o i- ker(1]) C HO(X, 0 x (nomKx - A)) for sorne mEN 

and thus we can represent nomKx - A by a divisor D such that D ~ loKx where 

D E InomKxl is an effective divisor and we set lo := nom. Here by IloKxl we understand 

the linear system which is the set of ail effective divisors linearly equivalent to D. 

Now by Kleiman's criterion (c.f. remark 2.66) 

2	 1 
loKx = Kx·(D + A) 2: Kx· A = lo (D + A).A > 0 

and hence 

K~ = cî(X) > O. 

We now suppose that K~ > o. 

By Riemann-Roch we get 

x(Ox(mKx))	 hO(S, Ox(mKx )) - h1(S, Ox(mKx )) + h2(S, Ox(mKx)), 

1 
"2(mKx - Kx).mJ(x + X(Ox) 

< hO(S, 0 x (mKx )) + h2(S, 0 x (mKx )) 

and by Serre's duality for m » 0 we have that 

which must vanish since otherwise there would exists an effective divisor G E 1(1-m)Kx l 

and therefore by Kleiman's criterion 

0> Kx(l - m).A = (Kx - mKx ).A = G.A > 0, V m» 0 

a contradiction. Thus hO(S,Ox(mKx)) ~ ~m2K~ V m» 0 and by theorem 2.58 we 

conclude that J(od(X) = 2. 0 
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Definition 2.68. A singular rational curye C with self intersection -1 

(i. e. (C.C) = C2 = -1) is called an exceptional curve or a (-1) -curves. 

We have the following two propositions on such curves (see (Barth, Hulek, Peters, and 

Van De Ven, 2004) p.91 for a proof of propostions 2.69 and 2.70 and p.270 for prop. 

2.73). 

Proposition 2.69. An irreducible curve CcX is a (-1) curve if and only if 

C 2 < 0, and (Kx.C) < 0 

Proposition 2.70. Let X be a smooth compact, connected surface with Kod(X) :::::: 0 

and D an effective divis or on X such that (Kx.D) < 0, then D contains (-l)-curves 

(called exceptional curves). 

Definition 2.71. A smooth rational curue with self-intersection -2 is called a (-2)­

curve. 

An important corollary of Kodaira's lemma (lem.2.67) is the following 

Corollary 2.72. Let X be a minimal surface of general type and C an irreducible curve 

on X. Then 

Kx.C:::::: 0 and Kx.C = 0 

if and only if C is a (-2)-curve. 

Proposition 2.73. If there exists on an algebraic surface X an algebraic system of 

effective divisors, of dimension at least l, s'tlch that the general member is a (possibly 

singular) rational or elliptic curve, then Kod(X) 'S 1. 

We give sorne inequalities involving the Hodge numbers via the following propositions 

and corollaries. 
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Proposition 2.74. Let f : X ---+5 be a fibration and X gen a nonsingular fibre, whieh 

we denote sometimes by F. Then 

i) e(Xs ) 2: e(Xgen ) for aU fibre X s 

ii) If X is compact, then 

e(X) = e(Xgen ).e(5) + I)e(Xs ) - e(Xgen )). 

sES 

(See (Barth, Hulek, Peters, and Van De Ven, 2004) p.1I8 for a proof.) 

Corollary 2.75. If X is a compact surface and F : X ---+5 a fibration with fibre genus 

gl and base genus g2, then 

e(X) 2: 4(gl -1)(g2 -1). 

The following useful proposition is known as the DeFranchis-Severi-Castelnuovo lemma 

Proposition 2.76. If on a compact surface X, there are two linearly independent holo­

morphie 1-forms Wl and W2 with Wl AW2 == 0, then there exists a smooth curve C of genus 

g(C) 2: 2, a eonnected holomorphie map k : X ---+C and 1-forms 0:1, 0:2, sueh that· 

wl = k*(o:d and W2 = k*(0:2) (where Wl, W2 E HO(D.x ) and 0:1, 0:2 E HO(D.c)). 

Remark 2.77. A map is ealled connected if its fibers are. 

Its corollary include the following inequality of Hodge numbers. 

Proposition 2.78. If the compact surface X does not admit a holomorphie map onto 

a curve of genus 9 2: 2, then 

Remark 2.79. If X is Kiihlerian (c.f. definition 1.16), then we can write the ineqv,ality 

in propostion 2.74 as 

Pg(X) 2: 2q(X) - 3. 
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Proposition 2.80. If the compact surface X with h1,O(X) > 2 does not admit any 

holomorphie map onto a curve of genus 9 :::: 2, then 

Corollary 2.81. If the compact Kiihler surface X does not admit any eonneeted fibration 

with base genus 9 :::: 2 then 

(See (Barth, Hulek, Peters, and Van De Ven, 2004) p.158 for a proof of propositions 2.9 

and 2.10.) 

We now arrive at the second pillar in the praof of the Miyaoka-Yau inequality, namely 

Proposition 2.82. If X is any surface of general type (i.e. K od(X) = 2), then 

Proof. - There are two cases. 

Case l	 If X adroits a connected holomorphie map n: onto a curve of genus g(C) > 2, 

then the general fibre F must have g(F) :::: 2 

Proof. - We are given g(C) :::: 2 and K x = 1\2Ox together with n: : X ~C. 

We have the short exact sequence (F = n:-1(x) is the genericfibre) 

and the corresponding 

As n:*(Oclx) = OF = n:*(Tclx) this implies that K~mIF = OF = KF.
 

Thus, g(X) = g(F) ::::: 2 0
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From proposition 2.74 or corollary 2.75 we have that 

C2(X) = e(X) ;::: 4(g(C) - l)(g(F) - 1) ;::: 4 

Case II If X does not admit such a map. From the Hodge-diamond: 

H 4 h4 hO 

H 3 h3,0 hO,3 h3,0 h3,0 

H 2 17,2,0 hl,l hO,2 Serre' s duality 
------+ h2,0 hl,l h2,0 

Hl hl,O hO,l hl,O hl,O 

HO hO hO 

Putting in the known numbers, as weil as Pincaré duality hl = 17,3 

H 4 1 

H3 17,1,0 hl,O 

H 2 17,2,0 hl,l h2 ,0 

Hl 17,1,0 17,1,0 

HO 1 

C2(X) = e(X) = 2(1) - 417,1,0 + 217,2,0 + 17,1,1 

with h2 ,0 := pg(X) and hl,O(X) := q(X) (from definition 2.38), we have 

C2(X) = e(X) = 2 - 4q(X) + 2pg(X) + hl,l(X) 

By proposition 2.78 and corollary 2.81 we see that e(X) > 0 unless one of the 

following two cases holds: 

a) q(X) = 1 ; Pg(X) = 0 

b) q(X) = 2; pg(X) = 1. 

We have two ways of finishing the proof. 

First let us consider the following facts: 

In case a), since q( X) = 1 and Pg (X) = 0, the albanese map 0: maps X onto an 
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elliptic curve.	 Therefore we have by equations (2.1) and (2.2) that 

h1,l(X) =	 e(X) + 2b1(X) - 2 

e(X) + 2 

which implies that 

e(X) = h1,1(X) - 2 = 0 

and hence C2(X)=O.
 

By Noether's formula we would thus get
 

ci(x) + C2(X) = 12(1 - q(X) + Pg(X)) = 0 

which would force ci(X) to be zero, in contradiction with lemma 2.67. 

In case b), with q(X) = 2 and pg(X) = 1, the Albanese map 0: is either a map 

from X onto a 2-torus T or a map onto a curve of genus at least 2 by proposition 

2.76 which is excluded here.
 

In the case 0: : X ----+ Cq(X) /i where here q(X) = 2, (i.e. the target space defines
 

a 2-torus) , we have that:
 

C2(X) = e(X)	 2ho(X) - 4h1,o(X) + 2h2,o(X) + h1,1(X) 

2(1) - 4(2) + 2(1) + hl,l(X) 

-4 + h1,1 (X) 

Since h1,l(X)	 2: h1,1(T) we have that 

Since C2(X)	 = 0 is excluded by Noether's formula we conclude that C2(X) > 0 as 

desired. 

The second way of finishing up the proof is by considering the following: 

We are given K3< > 0 from lemma 2.67, let us assume that there exists a surface X 

such that q(X) > 0 and C2(X) :::; O. The positivity of K3< forces already C2(X) < 0 
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(by	 Noether's formula) and hence bl(X) = 2q(X) =1= O. We have by i) in theorem 

2.50 and by theorem 2.60, that X must admit unbranched covering (al! of general
 

type) of any order. We pick one, say Y, with C2(Y) < -3. From case l above, this
 

Y cannot admit a connected holomorphie map onto a curve of genus g(C) 2: 2,
 

otherwise C2 (Y) would be at least 4.
 

But by proposition 2.80 this would imply that C2(Y) 2: -3, which is in contra­


diction with our original assumption. Thus, such a surface X does not exist and
 

therefore C2 (X) ean only be positive.
 

o 

Remark 2.83. If one assumes Bogomolov's theorm (Bogomolov, 1979) on the insta­

bility of rank 2-vector bundles (and its generalization) which states that: 

a)	 Given X an algebraic surface and H an ample divis or on X. Suppose that V is an 

H-stable vector bundle of rank 2 (generalized to rank r) on X. Then: 

CI(V)2 ~ 4C2(V) 

(r - l)cr(V) ~ 2rc2(V) (generalized version). 

b)	 The cotangent bundle Slx of X is H-stable for some H. 

We see immediately, from lemma 2.67 that the positivity of C2(QX) is automatically 

satisfied. 

We will need the following theorem, again a consequence of proposition 2.80. 

Proposition 2.84. If on an algebraic surface X there exists a line bundle L with 

then there exists a constant c such that 
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Proof. - We assume that h°(f:,0k o) 2 2 for some ko 2 1; otherwise the result is trivial. 

We distinguish between two cases. 

Case 1:	 Suppose ko = 1. Take SI, S2 E HO(C-) to be linearly independent sections and let 

h : .c----tn\- be a homomorphism, with h i- 0, then h(SI) and h(S2) are linearly 

independent 1-forms on X, with h(sd 1\ h(S2) = O. Thus, we are in a position 

to apply proposition 2.76 and consequently, there exists a holomorphie map f : 

X----tC where C is a smooth curve, such that both h(s}) and h(S2) are pull-backs 

of 1-forms on C. It follows that the vanishing of s} on a curve D, implies that this 

curve is contained on some of the fibres of f and hence by remark 2.28 .c ~ 0 x (D). 

(In the case that D = 0, we take for s} the constant function 1). 

Since (D - nF).A < °for sorne n » 0, A ample and F any given fibre, there 

are no non-zero divisors on X which are homologous to k(D - nF) where kEN, 

n» O. If we denote by Fk the divisor which consists ofnk-general (smooth) fibres 

of f, we have the following standard exact sequence: 

O----tOx(kD - Fk)-----7 0 x(kD)-tOFk(kD)-tO. 

(Recall that we have.c ~ Ox(D) and Ox(kD) ~ .c0k .) We find that: 

hO(.c®k)	 ::; hO(Oh(.c0k )) :::; ck, V k 21. 

Case II:	 Now let ka > 1 for the general case. 

From theorem 2.49 there exists an algebraic surface Y and a holomorphie surjective 

map 0: : Y ----tX such that, a*(.c) has two independent sections. 

Since 

implies	 that 

we can apply to Y and o:*(L) the result of Case J above with ko = l, i.e. there 

exists a constant c, such that for ail k 2 1 the inequality 
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holds. But since 

we are done. 

o 

As a final step towards the proof of Miyaoka-Yau inequality we will need the following 

proposition together with its generalization. 

Proposition 2.85. Let X be an algebraic surface, Ox(D) a line bundle on X, and F a 

locally free, rank-two subsheaf of n\, such that: 

(i) cdF).S 2 Ü for every effective divisor S on X. 

(ii) hO(Hom(Ox(D), F)) =!- ü. 

Then cdF).D S max(c2(F),ü). 

Proof. - We note that since 

there is a non-negative divisor S on X, such that F 0 0 X ( - D - S) admi ts a section
 

with at most isolated zeros.
 

Applying Todd-Hirzebruch (theorem 2.43), equation (2.5) for dimX 2, and [ank
 

V=1:
 

We have that
 

But by assumption (i) in the hypothesis, cdF).S 2 Ü and therefore 
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If (D + 5)2 :S 0, we are done.
 

On the other hand, if (D + 5)2 > 0, then applying Riemann-Roch with Serre's duality
 

(i.e. hO(Ox(n(D+5))+h2(Ox(n(D+5)) = hO(Ox(n(D+5))+hO(Ox(Kx-n(D+5))) 

together with theorem 2.58, there exists ad> 0 such that for n» 0 we have 

So we eithèr have 

or 
1

hO(Ox(Kx - n(D + S)) > 2dn2 for infinite number of n. 

Since h°(11.om(Ox(D),F)) 1= 0 implies that h°(11.om(Ox(D + 5),0\) 1= 0, we can
 

apply proposition 2.84 and therefore there exists a C such that hO(n(D + 5) :S cn for ail
 

n ;::: 1 excluding the first possibility.
 

In the second possibility, we have by (i)
 

Cl (F).Kx - Cl (F).n(D + 5) ;::: O. 

Rearranging the terms, 

As the left hand side goes to zero when n tends to infinity, 

Cl (F).(D + 5) :S 0, 

which tells us that 

and therefore that 

o 

We generalize proposition 2.85 by considering the n-th symmetric power of the locally 

free subsheaf F as follows: 
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Proposition 2.86. Let X be as in proposition 2.85 and consider the n-th symmetric 

power of the locally free subsheaf F such that assumption (ii) of proposition 2.85 reads: 

(ii') h°(7-{om(Ox(D),Sn F)) i- 0 together with Cl (.1").S > 0, Then 

Proof. - Let Z be the projectivization of F, i.e. Z = IP'(F) = P(FV
) and p : Z------7X the 

projection, then by theorem 2.44, there exists a divisor class H = HF on Z such that by 

applying equation (2.9) we have a canonical isomorphism between HO(Oz(nH +p*(E))) 

and HO (sn F@O X (E)) for any given divisor E on X. In our case thcrc cxists an effective 

divisor G on Z, such that 

Oz(G) = Oz(nH - p*(D)). 

Furthermore, the Branched Covering Trick (c.f. theorem 2.48) tells us that there exists 

an algebraic surface Y, together with a surjective map f : Y ----7 X with deg(J) = k, such 

that under the inclucecl bundle map from P(J*(F)) into IP'(F) and q : 1P'(J*(F))------7Y the 

projection, we have that the pull-back of G decomposes into a sum of effective divisors 

representing Hq*(F) - q*(Di ). The D/s neecl not be effective, but we have that 

By the canonical isomorphism of theorem 2.44 and assumption (ii') in our hypothesis, 

we have that 

Together with the functoriality of the Chern classes we have that 

(2.15) 

for every effective divisor P on Y.
 

.Observe that equation (2.15) is the equivalent of the assumption (i) in proposition 2.85.
 

Therefore from proposition 2.85 we have:
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By summing up over i and with the above observation we get 

1*(Cl (F) .D) ::; max(nc2(f* (F)), 0) 

kCl(F).D::; kmax(nc2(F),O) 

which implies the required result. D 

2.2.3 Proof of the Miyaoka-Yau Inequality (Algebraic-Geometry) 

Finally, we are in a position to prove Miyaoka-Yau inequality from the algebraic geo­


metric point of view using the tools we have developed in the first section while relying
 

on the lemmas and propositions we have discussed in the second section.
 

We will state briefly once again the assumptions behind our approach and then go on
 

directly to prove the theorem.
 

Since blowing up ( a point on a complex manifold :M, consists in replacing a point p of
 

M by the set of (complex) tangent directions around the point, leaving unchanged the
 

remainder of M) increases the Euler number (i.e. ci(X) goes down while C2(X) goes
 

up) we may assume together with theorem 2.54 and proposition 255 that our surface
 

X is a minimal surface of general type (i.e. of K od(X) = 2). We will work as weil, with
 

algebraic varieties defined on the closed field C of complex numbers of characteristic
 

zero.
 

Theorem 2.87. (Main Theorem) 

For every surface of general type X, the inequality cT(X) ::; 3C2(X) holds. 

Proof. -(A slight simplification of (Miyoka, 1977)) 

We set 

C2(X) 1 
0: := ci(X) < 3 (216) 

and derive a contradiction based on that assumption. 

Let /3 be given by 

/3 = 
1
-(1 - 30:)
4 

(2.17) 
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such that 
1
 

ce + (3 = 4(ce + 1) 

and let n be a natural number such that n(ce + (3) E Z. 

We consider the vector bundle Vn that we set to: 

(2.18) 

where with the same notation as in equation (2.8), snnl- denotes the n-th symmetric 

product af the cotangent bundle. 

We note in passing that the dual of this vector bundle is 

(snn\ ® Ox(-n(ce + (3)Kx ))v
 

(sn(y\ ® KXI 
) ® Ox(n(ce + (3)Kx + Kx))
 

(Sny\ ® K xn ® 0 X (K~(c<+,6)+I)) . (2.19)
 

Here we used the fact that given a locally free sheaf F of rank-2 with
 

det F := K, F V ® K = F (Kx the canonical divisor of X in the case F = n\).
 
This is true via the splitting principle so that we can write:
 

F = LEBL/, 

while 

K = L®L I 

and verify that 

det:F = K 

as stated abave and 

(LEBLI)V®K 

LI v ® [{ EB LV ® K 

LI V® (LI 0 L) EB LV ® (L@L/) 

LEB LI = F 
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where in the last step we have used the fact that A Q9 B = -B Q9 A and its dual. 

Let us look at the Euler characteristic of our vector bundle Vn of equation (2.18). 

From equation (2.3) we can write 

(2.20) 

We will specialize to F = D1- and our divisor D = n(o: + (3) and write: 

(We can work with F and K instead of n1- and Kx , the final result and proof are
 

identical with minor changes.)
 

From Serre's duality (c.E. theorem 2.40) we have:
 

h2 (Vn) =	 hO(V~ Q9 K x ) 

hO(snD1- Q9 Ox((n(o: + (3 - 1) + l)Kx )) == hO(SnF Q9 Ox((n(o: + (3 - 1) + l)K)) 

hO(SnF Q9 Ox(K(n(a-3)+4)/4) 

Prao/. -

hO(Vn) =	 hO(snF Q9 0 X (-n(o: +(3)K)) = hO(7iom(Ox(n(o: + (3)K, Sn F)) 

hO(snF Q9 0 X (-n(o: +1)K/4)) 

where in the last step we have used the fact that 0: + {3 = ~ (0: + 1).
 

Let uS consider a divisor D = ~(o: + l)K and cdF) == K.
 

We compute the intersection
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By lemma 2.67, chF) = K 2 > 0, thus we have that 

This implies that 

(on account of c2(F) > 0 proposition 2.82). 

By proposition 2.86 we thus have that 

o 

We proceed in a similar manner: 

Proof. - We look at hO(snF @ 0 X ((n( a + (3 - 1) + I)K)) and proceed as before. 

We compute the intersection of Cl (F) = K and the divisor D given by 

D = -[n(a + (3 - 1) + 1]K. 

cI(F).D _K2 [n(a+(3-1)+I] 

_K2 [~(a - 3) + 1] 

K2 

4 [n(3 - a) - 4] 

K2 

> 4n(3 ­ a). 

Now 

K2 

-n(3 - a)
4 

= 
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By our assumption in equation (2.16), ei(F) > 3C2(.J) which implies that 

and therefore, 

This gives
 

cl(F).D> 2nc2(F), for ail n» O.
 

As C2 (F) > 0 we arrive at
 

Cl (F).15 > max(nc2(F), 0). 

Therefore on account of proposition 2.86 we conclude that: 

D 

Continuing with the proof of theorem 2.87, the fact that hO(Vn ) = h2 (Vn ) = 0, implies 

using equation (2.20) that 

x(SnF00x(-n(ex+{3)K) <0 'lfn»O. (2.21 ) 

On the other hand, we can compute X(snF00x (-n( ex+,6)K) from the Todd-Hirzebruch 

formula (c.f. theorem 2.43 equation (2.7)) and we get the following result: 

X(Ln 0 p*(Ox( -n(ex + (3)K))) (by theorem 2.44, equation two in (2.8)). 
3n 

cr(L 0 p*(Ox (-(ex + (3)K)))3T + ,n2 + <5n +é. (2.22) 

We finally daim that d(Vn ) > 0, 

Proof. Our claim is that 

3 

d(Vn) '" ei(L tg) p*(Ox( -(ex + ,6)K))) ~! > 0 
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du:: @p*(Ox(-(a + ,8)K))) (c - (a + ,8)p*( -cI(F)))3, 

C3 + 3(a + ,8)c2.p*(C1(F)) + 3(0: + ,G)2C.[p*(CI(F)]2. 

Recall that chF) E H 6 (!P'(F), Z = o. Where we put c := Cl (L). Therefore the equation 

simplifies to: 

cy(L @ p*(Ox(-(a + (3)K))) = c3 + 3(a + ,G)c.[cp*(cI(F)) + (0: + (3)p*(ci(F))]. 

Rewriting equation (2.14) as: 

and recalling that c2(F) = a ci(F), we get: 

ei(L @ p*(Ox( ~(a + (3)K)))	 é + 3(a + ,8)c.[-c2 - p*(c2(F)) + (a + (3)p*(ei(F))] 

c3 + 3(a + (3)c.[-c2 - ap*(ci(F)) + ap*(ci(F)) + (3p*(ci(F))] 

c3 + 3(a + (3)[-é + ,Gc·p*(ei(F))] 

By the intersection formulas equations (2.13) and (2.14) we get: 

d(L @ p*(Ox(-(a + (3)K)))	 ci(F)[(l - a) + 3(a + (3)( -(1 - a) + (3)]
 
c2 (F)

--\-6 [16 - 16a + 3(1 + a)(a - 3)] 

c2 (F) 
=	 --\-6[16 - 16a + 3a - 9 +3a2 - 9a] 

c2 (F)
=	 _1_ [3a2 - 22a + 7]

16 
c2 (F) 

= --\-6 [(3a - l)(a - 7)] > 0 (2.23) 

The last step follows from the fact that ci(F) > 0 and our assumption equation (2.16). 

o 

which would imply that 

But this is in contradiction with our previous calculations of X(Vn ) from its definition, 

therefore our assumption that a :s; 1/3 is false and our main theorem is thus proved. 
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That is: 

For every surface X of general type, the inequality c2(F) :S 3C2(F) holds for F a subsheaf 

cl~. D 

2.3 Discussion and Conclusion 

We have arrived at our aim, mainly to prove the Miyaoka-Yau inequality using the 

algebraie geometric approaeh putting aH the developed tools, lemmas and propositions 

at use to aceomplish this aim. We have tried to remain as transparent and complete as 

possible in writing the proof, leaving very little out for the reader to figure out. AH the 

steps even the trivial ones were worked out eompletely as this presentation is meant ta 

be pedagogieal in its approach benefiting the experts and the non-expert equaHy. 

The baggage needed for algebraic geometry is so broad and abstract that one might 

find it difficult to understand what algebraic geometry is aH about. The need for such 

a vast preparation arises from the way the subject was develaped. Algebraic geome­

try was essentiaHy developed to put on firm grounds the works of Monge's Géometrie 

(1795), Mobius, Plücker, and Cayley's projective geometry, Bernhard Riemann's bira­

tional geometry, as weH as the works of Gauss, Euler and Abel to site just a few of the 

pioneers and fathersof this subject. Rigorous constructions of the theory were needed 

ta avaid paradoxes arising from naive intuition and by the way algebraic geometers bor­

rowed from every branch of mathematics to patch together the skeleton of their theory 

(see (Dieudonné, 1985) for the history of algebraje geometry. In the next section, we 

suggest some references at various levels to the interested readers for further consulta­

tion. 

2.4 Remarks on the Bibliography 

Readers with a good background in algebra and seek an introduction to algebraic­

geometry shauld consult one of the foHowing (Ueno, 1995) or/and (Yang, 1991) which 

provide a good introduction to the abstract language and techniques of sheaves, and 
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pre-sheaves as well as giving a very clear exposition of the notion of divisors with very 

good examples and explanation. 

For more advanced readers, l would recommend (Griffiths and Harris, 1994) for both the 

differential geometric content and the algebraic-geometric material. A masterpiece to 

consult is (Hartshorne, 1977) which is a classic on algebraic geometry and a prerequisite 

to more advanced texts such as (Matsuki, 2002) and (Barth, Hulek, Peters, and Van De 

Ven, 2004). 

A personal favourite of mine is (Yang, 1991) cited above, both for its style, material 

and clarity and is a very good place to learn the ABC of the Riemann-Roch theorem for 

curves paving the way for understanding the higher dimensional generalization. 



FURTHER DISCUSSION AND CONCLUSION
 

The Kahler-Einstein condition for a manifold provided us with a very simplifying tool 

to prove the Miyaoka-Yau inequality following the footsteps of S.T.Yau's differential 

geometric approach as weB as away to understand its complex structure by metrics. The 

argument also showed when the equality holds, and this fact turned out to be useful for 

proving the Severi conjecture (that ClP'2 has only one complex structure, namely the 

obvious one; this is sort of like a complex analogue of the Poincaré conjecture). 

The inequality is optimal as the equality it is achieved by quotient of the complex baIl. 

However, it is still an open question to prove analytically that the equality 3C2(M) = 

cr(M) implies that either M is Cp2 or quotient of the baIl. 

Kahler-Einstein metrics with cosmological constant zero (i.e. Ricci-fiat Kahler metrics) 

are also used in algebraic geometry and string theory, for instance in establishing various 

versions of Torelli's theorem. The Kahler-Einstein metric seems to serve in sorne sense 

as a concrete "witness" of the fact that a certain bundle is stable (i.e. there exits a link 

between these metrics and the algebraic-geometric stability of the underlying manifold). 

To bridge the gap between chapter one and chapter two, we point out the paper by (R. 

Kobayashhi, 1985) which generalizes the Miyaoka-Yau result by considering a compact 

normal surface X with only quotient singularities. The canonical divisor bundle for 

such a surface still makes sense up to a multiple and its ampleness guarantees by the 

same analysis as that of Yau to produce an orbifold Kahler-Einstein metric and thus the 

same inequality of Miyaoka-Yau. Now for surfaces of general type, its canonical model 

is obtained by contracting the (-2)-curves ending in a normal surface with only ordinary 

double points as singularities (these are just the order 2 quotient singularities). Hence 

Yau's result in this setting implies Miyaoka's result for a surface of general type. 
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We would like to point out as weil that the Miyaoka-Yau inequal'ity has been generalized 

to higher dimensions (see for example (Lu and Miyaoka 1998) for such a generalization) 

which could be of importance in String theory. We leave such a realization of the 

inequality in String TheOl'y as an important question to study, together with finding 

possible bounds on the Hodge numbers in a higher dimensional set-up. 
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